
Applications of Page Ranking in P Systems

Michael Muskulus

Mathematical Institute, Leiden University
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

muskulus@math.leidenuniv.nl

Abstract. The page rank of a webpage is a numerical estimate of its
authority. In Google’s PageRank algorithm the ranking is derived as
the invariant probability distribution of a Markov chain random surfer
model. The crucial point in this algorithm is the addition of a small prob-
ability transition for each pair of states to render the transition matrix
irreducible and aperiodic. The same idea can be applied to P systems,
and the resulting invariant probability distribution characterizes their
dynamical behavior, analogous to recurrent states in deterministic dy-
namical systems. The modification made to the original P system gives
rise to a new class of P systems with the property that their computations
need to be robust against random mutations. Another application is the
pathway identification problem, where a metabolite graph is constructed
from information about biochemical reactions available in public data-
bases. The invariant distribution of this graph, properly interpreted as
a Markov chain, should allow to search pathways more efficiently than
current algorithms. Such automatic pathway calculations can be used to
derive appropriate P system models of metabolic processes.

1 Introduction and Background

Page ranking is the process of assigning a quantitative measure of “authority”
to a webpage. Internet search engines usually use a combination of key word re-
lated measures and general page ranks to order the results of a user query. These
results are displayed in a linear order, and the higher the rank of a webpage, the
higher in the resulting list it is displayed. Since a higher rank means a higher
visibility, there has developed a large commercial interest in optimizing a web-
page’s content with the goal of improving its ranking, and nowadays the activity
of search engine optimization has become a full-time job for many people.

On the one hand, users of a search engine expect results that lead them to
their desired search goals efficiently, so in a way a search engine should optimize
their ranking methods with regards to user preferences. In particular, it can be
argued that a search engine should use ranking strategies which are objective
and unbiased. But note that this leads to a dilemma: if a search engine would
openly publish its ranking algorithms, on the one hand this would benefit its
users, since then they could, in principle at least, target their queries better.

On the other hand, this knowledge would enable owners and designers of
webpages to target their desired audience by specific search engine optimization
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strategies — which might not be what users desire. At the moment, search
engines therefore keep their algorithms and ranking methods as closely guarded
secrets. This is, of course, not the only possible solution, but seems to also
stem from (i) considerations about competition between distinct search engines,
and (ii) probably the assumption that the benefit for the common user would
be negligible, since on the average s/he would not be able to understand the
algorithms, whereas commercial companies would.

A particular case is Google, probably the most important general purpose
search engine of today. It is believed by professional consultants that its page
ranking methods take into account more than 200 distinct factors1, but Google
states that the “heart of their software” is an algorithm called PageRank [16],
whose name seems to be inspired by the last name of Google founder Lawrence
Page [38].

The original ranking algorithm behind Google has been published [8,33] and
is also patented (sic!) as a “Method for node ranking in a linked database”
(US patent no. 6.285.999), assigned to Stanford University. It can be shown
that PageRank is natural in the sense that a few axioms, motivated by the
theory of social choice, uniquely characterize PageRank [2]. Interestingly, the
same method has recently been proposed as a new method of citation analysis
that is more authoritative, as self-citations have less impact than in traditional
citation analysis [28].

In the following we will describe applications of page ranking in the area
of membrane systems [34,35]. We will specifically concentrate on the original
PageRank algorithm, since it is closely related to Markov chain modeling of
dynamical P systems as in [31]. The applications that we will discuss are (i)
defining the recurrent behavior of dynamical P systems, which results in (ii) a
new complexity measure for dynamical P systems; (iii) proposing a new class of P
systems with interesting robustness properties, and (iv) discussing applications
in the identification of P systems, where biochemical databases are used to infer
P system models via pathway extraction.

2 The PageRank Algorithm

The description of the PageRank algorithm is usually given in terms of the so-
called webgraph. This is the directed graph D = (V, A) where each node u ∈ V
represents a webpage and each arc (u, v) ∈ A ⊆ V 2 represents a link. A link
from page u ∈ V to v ∈ V can be thought of as providing evidence that v is an
“important” page or, more generally, as a vote for page v. Intuitively, the more
authoritative page u itself is, the higher its vote for page v should count, leading
to a recursive definition as follows. Let

r : V → R+

v �→ r(v)

1 An analysis of the most important factors used by Google can be found on
http://www.seomoz.org/article/search-ranking-factors
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be the ranking function that assigns a numerical value r(v) to each node v in
the webgraph. Then

r(v) :=
∑

u∈{V |(u,v)∈A}

r(u)
outdeg(u)

where the sum runs over all nodes u linking to the page v and outdeg(u) is the
out-degree of node u. In the above interpretation, each page thus transfers its
own PageRank value equally to all of its link targets. Note that webpages can
link multiple times to the same page, but that this counts as only one link, i.e.,
one arc in the webgraph.

To see that the PageRank ranking function is well defined, we need to turn
to the theory of Markov chains [7]. Since the webgraph is finite, the function r

can be normalized such that
∑

v∈V r(v) = 1. One can then interpret r ∈ R
|V |
+ as

a probability distribution over the set V of webpages. The transition matrix

Puv =
{

1/outdeg(u) if (u, v) ∈ A,
0 if (u, v) /∈ A

then corresponds to the model for a person surfing between web pages, from now
on simply addressed as a surfer , as described in [8]. In this so-called random
surfer model a surfer is considered who randomly follows links, without any
preference or bias. The matrix Puv then describes the probability for the surfer,
being at page u, to visit page v next. The PageRank definition is then equivalent
to the following matrix equation:

r = P tr.

In the language of Markov chain theory this means that r is required to be
a stationary distribution. In other words, if a large number of random surfers
find themselves, at the same time, at webpages distributed according to the
probability distribution r, then after randomly following a link, the individual
surfers would end up at different pages, but the number of surfers visiting each
webpage would stay approximately the same (exactly the same in the limit of
an infinite number of surfers).

Markov chain theory tells us when such a stationary distribution exists and
when it is unique. By the ergodic theorem for Markov chains, an aperiodic and
irreducible transition matrix P is sufficient. The transition matrix is aperiodic if
the least common multiple of all possible circuits in the webgraph is trivial. This
can always be assumed for general digraphs, since only very special digraphs
are periodic. Irreducibility is the requirement that each webpage is reachable
from each other page, i.e., that the webgraph is strongly connected, and this
is usually not fulfilled by the transition matrix. In particular, the webgraph
usually has pages without outbound links, so-called dangling pages or, in the
language of Markov chain theory, sinks or black holes. If one were to apply the
PageRank idea to a digraph with one or more of these, they would effectively
absorb all probability, since eventually a random surfer would always end up
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in a black hole and stay there forever. To be more precise: One would expect
that the resulting invariant distribution would be zero for all non-sinks, and
each sink would be assigned the probability of ending up in it, starting from
a random page, in accordance with the random surfer model. However, this is
not true. There simply would not exist any stationary distribution in such a
case. This “singular” behavior led some people to call such nodes black holes,
since the usual laws of Markov chain theory cease to work when one of these is
encountered.

The solution to this problem is the truly original idea of the founders of
Google: In analogy with the random surfer model, it is assumed that a surfer
ending on a sink gets bored and turns randomly to a new page from the whole
webgraph, which is called teleportation in [20]. Of course, this is a somewhat
unrealistic model for actual internet user behavior, since how does a surfer find
a random webpage (and with uniform probability)? But changing the transition
matrix accordingly,

P̄uv =

⎧
⎨

⎩

1/outdeg(u) if (u, v) ∈ A,
1/|V | if outdeg(u) = 0,
0 if outdeg(u) > 0 and (u, v) /∈ A

leads to a matrix with irreducible blocks (which is still not irreducible, except
in special cases). Finally, extending this idea and assuming that the surfer has
a certain chance α > 0 of turning to a random page every time s/he follows a
link, leads to

¯̄Puv =

⎧
⎨

⎩

1/|V | if outdeg(u) = 0,
α/|V | if outdeg(u) > 0 and (u, v) /∈ A,
α/|V | + (1 − α)/outdeg(u) if (u, v) ∈ A

(1)

which is truly an irreducible and aperiodic matrix [26]. The stationary distrib-
ution r is then, also by the ergodic theorem, an asymptotic distribution. This
means that a random surfer, starting at an arbitrary webpage, has the chance
r(u) to be at page u ∈ V , if he has followed a large number of links, using Puv

as transition matrix:
lim

n→∞(P t)nx0 = r, (2)

independent of the initial distribution x0, i.e., his/her starting page. Note that
there is a probability α/|V | that the random surfer stays at the same page
(we can also say that the surfer accidentally jumps to the same page that he
comes from), i.e., we explicitly allow self-transitions here, since it makes the
mathematical analysis simpler.

These results are consequences of the Perron-Frobenius theorem [5], which also
shows that r is the (normalized) dominant eigenvector of P t, i.e., the correspond-
ing eigenvalue λ = 1 is the largest eigenvalue P t possesses. In practice, the direct
computation of the dominant eigenvector for the (sparse) transition matrix of the
webgraph is very difficult, due to the graph’s enormous size. On the other hand,
Eq. 2, starting from the uniform distribution x0(u) = 1/|V | is used in practice,
and is usually called the power method [15]. See [20] for further improvements.



Applications of Page Ranking in P Systems 315

3 P Systems and the Random Surfer Model

P system is a general term to describe a broad class of unconventional models
of computation that are usually based on multiset rewriting in a hierarchical
structure of so-called membranes [35], but also include computational models
based on other mechanisms, for example string or grammar rewriting. Originally
introduced by Gheorghe Păun in a seminal paper [34], nowadays there exists a
large community of researchers working on and with different extensions and
variants of P systems.

How are we to interpret the above changes in the context of P systems, i.e.,
when we are thinking about the random surfer model with possible jumps (Eq. 1)
not only as mathematically sufficient and convenient, but rather as a feature of
a P system? Obviously, such a mechanism can turn the multisets that describe
the object content of a P system into completely different multisets – and we
need to control the outcome of such an operation somehow. Before discussing
the problems and possible solutions, the following example illustrates the notion
of an invariant distribution in a simple class of P systems.

Let us consider the case of a probabilistic P system as in [11]. Starting from
an initial configuration (multiset) c0 the evolution of a probabilistic P system
generates a rooted tree S of possible states, where each state i ∈ S is encountered
with a probability pc0,i during the computation (confer [35]). The leaves L ⊂ S
of this tree are the halting states and each halting state h ∈ L is reached with a
probability ph, where

∑
h∈L ph = 1. If we now introduce additional transitions

from each halting state back to the initial state c0, the state space has the
structure of an irreducible Markov chain. This Markov chain could be periodic,
but it is easy to see that for a such a finite “closed tree” an invariant probability
distribution exists as in the case of an irreducible and aperiodic Markov chain.
In fact, the unique invariant distribution is given by μi = 1/|S| · pc0,i for each
state i ∈ S. The factor 1/|S| has been introduced such that

∑
i∈S μi = 1.

We see that the concept of invariant distribution generalizes the probability
of reaching a halting state in a probabilistic P system. However, the requirement
that the evolution has a tree structure makes the class of probabilistic P systems
very special. Moreover, the evolution of such a system is not the same as the
dynamics described by Eq. 1.

We consider flat P systems in the following, i.e., P systems with exactly one
membrane. It is well known that each static2P system with k membranes is
isomorphic to a flat P system, so this is no restriction.

Problem 1. The state space of P systems is usually not known a priori.

Remark 1. Generating the state space of a P system corresponds to the well
known reachability problem. But if the P system operates in the asymptotic
regime, i.e., when there are enough objects in the system such that all rules are
2 A P system is static if the membrane structure does not evolve in the course of time.

To be more precise: membrane creation or destruction are not allowed in a static P
system.
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applicable, it can be considered a vector-addition system on the infinite lattice
Z

n, where n is the number of distinct objects. The state space is the affine image
of R

m (m being the number of rules) under the stoichiometric map M , which
for a given initial condition c ∈ Z

n is the sublattice c+MR
m of Z

n. In this case,
the geometry of the state space is easy to understand and reachability can be
efficiently tested [31].

In general P systems, we are often only interested in a finite subset Q ⊂ S
of state space S, and the restriction of the invariant distribution to Q. Due to
Eq. 2 the invariant distribution on Q can be approximated by simulating the P
system a large number of times, provided that it is aperiodic and irreducible.

Problem 2. The state space of P systems is usually infinite.

Remark 2. This is a variant of the previous problem. In principle, for a countably
infinite state space there can still exist invariant distributions (see [7] for results
about when this is known to be the case). However, some problematic issues
surface with an infinite state space for the teleportation property. In particular,
the probability of teleportating from state i ∈ V to some state j ∈ V is equal to
zero3 when |V | = ∞. The only solution of this problem is to somehow modify
the teleportation property (confer Section 4).

Problem 3. P systems are non-deterministic, and not probabilistic. What sense
does an invariant probability distribution make for a non-deterministic system?

Remark 3. The easy solution of this problem is to only consider variants of P
systems that are probabilistic instead of being non-deterministic (see Section 5).

However, for the sake of the argument, let us consider a truly non-deterministic
system. It can be considered as the equivalence class of all probabilistic systems
with non-zero transition probabilities Pij > 0 exactly for all states i, j ∈ V ,
where j is reachable from i in one time step. An invariant distribution has the
property that its support is the whole state space, so the notion of invariant
distribution for a non-deterministic system is equivalent with the information
what the state space is. Note that quantitative information can be obtained in
non-deterministic systems (see the next remark for an example).

Problem 4. If we consider a subset Q ⊂ S of the state space S of a P system,
can we find the invariant distribution restricted to Q?

Remark 4. This is probably the most important problem from a practical point
of view. As already discussed in the first remark, when the P system is aperiodic
and irreducible, the invariant distribution can be approximated by simulation.
However, when the system leaves the subset Q during the simulations, knowledge
about the dynamics outside of Q is needed, so this is not completely satisfying.
3 Mathematically, although there does not exist a uniform probability distribution on

V then, it is still possible to jump to a random element j ∈ V with probability α > 0
at each time step, when a probabilistic version of the axiom of choice is assumed.
However, this will lead too far here, as it is not of practical importance.



Applications of Page Ranking in P Systems 317

The main problem with the calculation of the invariant distribution on Q is
that the flow of probability from S \ Q into Q is not known. However, for the
invariant distribution the flow is in equilibrium, i.e., the total outflow from Q
into its complement equals the total of the unknown inflows. By looping back
each outflow into the inflows it is possible to constrain the possible invariant
distributions4 of Q, but it seems unlikely that they can be uniquely identified.

When inflows and matching outflows are prescribed , however, it is always
possible to determine a corresponding invariant distribution on Q.

Problem 5. When is this invariant distribution compatible with prescribed
outflows?

Remark 5. The answer is very simple: it never is, generically. So now it is im-
portant to find algorithmic ways of adjusting (and thereby violating) the inflow
conditions such that the total sum of inflow and outflow violations is minimized.

Another related and very useful quantity, which can be computed by local in-
formation only is the mean escape time5 from a subset Q ⊂ S of state space.

4 Aperiodic and Irreducible P Systems

When a P system with probabilistic state transitions has an aperiodic and ir-
reducible transition matrix, a unique invariant probability distribution exists.
However, Google’s random surfer model is not the only way to achieve these
properties of the transition matrix.

For example, when all rules in a P system are irreversible, the system is
irreducible. Unfortunately, in such a system the question of periodicity is unclear.

Let us now consider a more general situation. Assume that at each time step6

there is a small probability for each object to change spontaneously into another
object, analogous to mutations in DNA. The objects undergoing such a change
4 Let Q be a finite set of order k. Consider the modified (k + 1)-by-(k + 1) transition

matrix Qk that describes the transitions inside Q and from Q to an external state x
(which represents all states outside of Q) and back from x into the k-th state of Q
(with probability 1). Denote the unique invariant distribution of this matrix by ri.
Due to the linearity at the level of distributions, the true invariant distribution r,
restricted to Q, is a linear combination of the first k components of all ri. Of course,
this only holds when α = 0, but the result can easily be generalized to α > 0 also.

5 There are subtle connections between (i) this quantity, (ii) the page ranks of the
states in Q, and (iii) the number of loops in Q. Basically, there are two contributions
to the invariant distribution r on Q: Part of r consists of probability that flows into
Q from outside of Q, and another part of r results from probability that flows around
inside of Q in loops. However, this connection is not well understood at the moment,
and further research is required.

6 If time is assumed to be continuous, as in dynamical P systems that are simulated
by Gillespie-type algorithms, there is still a discrete sequence of events, and by
introducing an exponential waiting time distribution for such an event the same
comments also apply to this case.
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cannot be used in another rule at this time step. By adding rules of the form
u → v for each possible pair of objects (u, v), we can realize this. Let us call a
P system with this property a leaky P system. Note that leaky P systems are
not always irreducible, as the example of a system with the rule 2A → B shows:
From the state with only one B we can never get to a state with more than one
A, although the opposite is possible. However, if all rules were reversible, a leaky
P system would be irreducible and have an invariant distribution.

A successful computation in a leaky P system would need to be robust against
the continuous possibility of small changes of its objects. How could this be
realized? What kind of error-correcting (repair) mechanisms can be envisaged in
P systems? Moreover, the following two theoretical problems exist:

Problem 6. Given an irreducible aperiodic Markov chain, when adding the tele-
portation property of Eq. 1, do the corresponding invariant distributions μ(α)
converge in the limit α → 0?

Remark 6. Numerical studies have been done in case of the webgraph (confer
[26] for references).

Problem 7. Although the random surfer model does not apply to a leaky P
system, does the invariant distribution of a leaky P system converge against
the same invariant distribution as in the random surfer model (of the same
underlying P system), in the limit that α → 0?

Remark 7. This is the case if the leaky P system has the same communicating
classes as the corresponding random surfer system P.

5 Recurrent Behavior and Complexity

A particular interesting application area for P systems is the emerging discipline
of systems biology [24], and in the past years a number of biological systems have
been simulated and analyzed by P systems [10,37]. It should be noted, however,
that this line of research is only a small part of the total work on P systems, so
we consider P systems from a particular perspective here.

The original state-transition P systems are characterized by a unique descrip-
tion of their dynamical behavior in terms of a nondeterministic and maximally
parallel application of rules. The first of these concepts puts the focus not on an
actual realization of behavior of a P system, but on all possible computations pos-
sible with it, i.e., on the (formal) language generated by it. The concept of maximal
parallelism allows interesting control structures, but seems rather inappropriate
when modeling in a biological context. Therefore, a number of researchers have
turned to dynamical P system models, where the nondeterministic dynamics is re-
placed by a sequential and probabilistic evolution law. Two important approaches
are dynamically probabilistic P systems [36] and the metabolic algorithm developed
and propagated by V. Manca and colleagues [6,29]. The first is directly based on
mass action kinetics [18], whereas the latter considers a special form of competi-
tion of rules for objects, called the mass partition principle. Another approach has
been proposed in [37], where rules have fixed reaction rates.
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As has been discussed in [31], static dynamical P systems are Markov chains.

Problem 8. How can notions from the theory of dynamical systems [14], such as
fixed points and attractors be defined for dynamical P systems?

Remark 8. This problem underlies much of the recent research on dynamical P
systems. Indeed, one has to be careful here. The notion of a dynamical system
is (notwithstanding proper generalizations [3]) that of a deterministic system,
whereas dynamical P systems are stochastic systems.

One consequence of this difference is that the notion of a fixed point, so useful
in the theory of deterministic systems, has little importance in the theory of
dynamical P systems. By definition the only fixed points in a dynamical P system
are sinks, i.e., halting states.

We now give a satisfying solution of this problem. The proper way to analyze
dynamical P systems from the dynamical perspective is by considering a proper
generalization of fixed points, recurrent behavior. Different notions of recurrence
are discussed in [1], the most general being chain-recurrence, introduced by Con-
ley. A point x in a dynamical system is chain-recurrent, if for all ε > 0 and T > 0,
there exists a finite sequence of states x = x0, x1, x2, . . . , xn = x from x to it-
self, and a corresponding finite sequence of times t0, . . . , tn−1 in [T, ∞), such
that the distance between xi+1 and the endpoint ti of the trajectory, starting
at xi and being followed for a time ti, is less than ε for all i. In other words, a
chain-recurrent point can be reached by a sequence that alternately (i) follows
the dynamics for at least a time T , and (ii) jumps to a state within a distance ε.
It can be shown that the chain recurrent set contains all fixed points, periodic
points and limit sets.

In a dynamical P system, the state space has the discrete topology, and time
evolution is also discrete. A chain-recurrent point then corresponds to a point that
is reachable from itself, i.e., the chain recurrent set is exactly the set of communi-
cating states. So in an irreducible P system, which consists of exactly one commu-
nicating class, the chain recurrent set is the whole state space. But note that each
dynamical P system, when started from a single initial condition (or a different
initial condition that comes from the same communicating class) that lies inside
a communicating class, is irreducible. What makes the notion of invariant distri-
bution interesting, is that it carries quantitative information about how often the
system is expected to be in a certain state. States with a higher page rank will be
visited more often than states with a lower page rank. The invariant distribution
orders the recurrent states of the system by their importance.

From a stationary distribution we can derive a complexity measure for P
systems that quantifies the complexity in dynamical behavior.

Definition 1. The entropy of a P system is the entropy of its invariant proba-
bility distribution. That is, if p : S �→ R

n
+ is its invariant distribution, then

h =
−

∑
i∈S p(i) log p(i)

log |S|
is its entropy.
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The denominator has been chosen such that 0 ≤ h ≤ 1 holds. A low value
of h signifies simple dynamical behavior, whereas a value of h close to one is
characteristic of random behavior.

This idea generalizes the global entropy of [11], where a similar complexity
measure has been introduced for probabilistic P systems with an evolution tree.
Of course, the question arises what the advantage of such a measure is, com-
pared to other complexity measures (for a list of possible candidates, see [9]).
An important point here is that the definition of entropy of an invariant distrib-
ution is a mathematically elegant concept that quantifies the complexity of the
dynamics of a P system in a way that relates to complexity considerations in
other fields of science (confer [4,27]).

6 Approximating Asymptotic Behavior

Since the state space in dynamical P systems is usually infinite, a stationary
distribution usually does not exist. Even if it does, it is not clear how to actually
compute it. An interesting alternative is to simplify the situation considerably.
Instead of working with the state space on which the dynamics takes place, we
work with the object network of the P system, which is always finite.

Definition 2. The object network of a P system is the directed graph D =
(V, A), where the vertex set V is given by the set of objects, and there exists an
arc (u, v) ∈ A between two objects u, v ∈ V if there exists a rewriting rule of the
form

p1u1 + · · · + pnun → q1v1 + · · · + qmvm, pk, ql ≥ 1 for all k ≤ n, l ≤ m,

and furthermore u = ui and v = vj for some indices i ≤ n and j ≤ m.

The connectivity matrix of a P system is the the adjacency matrix of its object
network, normalized row-wise such that its rows sum to one.

Definition 3. The ranking matrix of a P system is the matrix ¯̄C (confer Eq. 1)
where C is its connectivity matrix.

Definition 4. The stationary object distribution of a P system is the dominant
eigenvector of its ranking matrix.

The above definitions only use (i) the topological information about how ob-
jects can be transformed into each other. However, in a P system there are two
more levels that can be considered, namely (ii) the stoichiometry, which intro-
duces further constraints, and (iii) reaction rates. The latter has been discussed
already, of course. However, incorporating the stoichiometry only, is not very
satisfying. Eventually we need to come up with probabilities for a Markov chain,
and although these can be readily defined from stoichiometric weights, this is a
somewhat artificial construction that is difficult to interpret.

Let us finally, for completeness, consider the conventional analysis of steady
state fluxes in biochemical networks [18]. Given a stoichiometric matrix S ∈
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Z
m×n that describes the possible transitions of a chemical system, and some

external fluxes b ∈ R
m
+ , one searches for a solution x ∈ R

n of the equation
S ·x = 0, which is interpreted as a steady state flux. In the context of P systems,
we can think of x as an application vector , telling us how often each rule has to
be used. Unfortunately, linear algebra cannot be used, since the solutions need
to be positive, i.e., it is necessary that xi ≥ 0 for some of the components of
x = (x1, . . . , xn), since we cannot have negative rule applications. Therefore, one
resorts to convex analysis and calculates the convex cone of all possible solutions
[23]. This cone is usually not unique, so there are many possible steady state
fluxes across the system.

But consider now what happens if we make use of the probabilities for tran-
sitions, corresponding to the complete probabilistic description of the system as
in the beginning of the paper. The invariant distribution then induces a unique
steady state flux (given by the product of the invariant distribution with the
relative outdegrees), in contrast to the topological and the stoichiometric case.
The implications of this, especially with regard to pathway analysis, have yet to
be fully realized.

7 Page Ranking in P System Identification

In a previous work [30] we have discussed the general problem of identification
of P systems; here we will focus on the application of page ranking to this prob-
lem. System identification can be considered the reverse of the usual modeling
and analysis process. Instead of analyzing a given P system, the problem is to
find an interesting P system that then can be analyzed, for example by simu-
lation studies. This is particularly interesting in the application of P systems
to biochemical systems. To this extent, public databases on the Internet can
be used that store and collect information about biochemical reactions. These
include WIT, EcoCyc, MetaCyc [22], aMAZE and KEGG [21]. For example, the
LIGAND database [17], which is a particular database inside the KEGG reposi-
tory, contains (as of version 42.0) information about 15053 chemical compounds
(KEGG COMPOUND), 7522 biochemical reactions (KEGG REACTION) and
4975 enzymes (KEGG ENZYME) in ASCII text files that are easily parseable
by computer.

In the usual approach [12,32] one constructs an undirected metabolite network
graph G = (V, E) from these files, where nodes represent compounds, and edges
represent reactions (for simplicity, we do not consider enzymes here). Two com-
pounds u, v ∈ V in the metabolite graph are connected by an arc (u, v) ∈ E ⊆ V 2

if there exists a reaction in which both u and v participate. Note that u and v
can both occur on the same side of a reaction, in contrast to what we have
done for P system object networks, resulting in an undirected as opposed to a
directed graph. The main problem considered in the bioinformatics community
is the extraction of (meaningful) possible pathways that allow to transform one
compound s ∈ V into a target compound t ∈ V , which is equivalent to the k
shortest path problem [13].
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A particular problem with this approach is the existence of so-called currency
metabolites [19]. These are usually small biomolecules that participate in a large
number of reactions, and are used to store and transfer energy and/or certain
ions. Examples of currency metabolites include H2O, ATP, and NADH. Because
of them, for example, there exist more than 500000 distinct pathways of length at
most nine between glucose and pyruvate [25], most of which are not biochemically
feasible. The solution considered by Croes and co-workers is to weight the paths
by the (out-) degrees of their vertices, such that vertices with a large degree are
punished relative to compounds with a higher specificity, i.e., a lower degree [12].

Here we propose to use a directed metabolite graph that more realistically
captures the flow constraints of the biochemical reaction network, and to use
the stationary distribution of such a biochemical object network to weight the
paths. Currency metabolites are expected to have a large stationary probability,
since they partake in many circular reaction patterns, and interesting pathways
should then be found more effectively by bounding the total path weight.

P systems identification is then possible by first generating a large stoichio-
metric network graph, calculating its invariant distribution p ∈ R

N
+ , and using

its components pi, 1 ≤ i ≤ N , to define weights N · pi for a second pathway
search (the constant N is used to ensure that the average weight is one). Only
compounds encountered on paths with a weight below a certain, user-defined
threshold are then used to define a P system model that captures the (hope-
fully) relevant biochemical reactions.

8 Discussion
In this paper we have shown some applications of page ranking to the analysis
and identification of P systems. Dynamical P systems can be considered Markov
chains, and Google’s page ranking then corresponds to the stationary eigenvec-
tor of the transition matrix, after adding a small positive constant to ensure
irreducibility and aperiodicity. For P systems, page ranking allows to define a
probability distribution on the objects (and, dually, also on the rules), and this
in turn allows to define the entropy of a P system, generalizing ideas of [11].

More generally, this work was motivated by the urge to adapt the methods of
dynamical systems theory to P systems, and from this perspective the invariant
distribution of a P system can be considered to represent the recurrent dynamical
behavior. In particular, we can now give operational definitions of the concept of
“fixed points” for P systems as states with large invariant probability, whereas
“transient” states will have very small invariant probability (on the order of α).

A different application has been in the identification of P system models from
biochemical databases. The invariant distribution should allow to search more
effectively for pathways, improving the degree weights introduced by Croes and
co-workers. Although the complete stoichiometric graph available in the LIG-
AND database consists of more than 10000 vertices, the eigenvector calculation
has to be done only once. The test of this idea is underway.
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