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Abstract. Given a computational model M, and a “reasonable” encod-
ing function C : M → {0, 1}∗ that encodes any computation device M
of M as a finite bit string, we define the description size of M (under
the encoding C) as the length of C(M). The description size of the entire
class M (under the encoding C) can then be defined as the length of the
shortest bit string that encodes a universal device of M. In this paper
we propose the description size as a complexity measure that allows to
compare different computational models. We compute upper bounds to
the description size of deterministic register machines, Turing machines,
spiking neural P systems and UREM P systems. By comparing these
sizes, we provide a first partial answer to the following intriguing ques-
tion: what is the minimal (description) size of a universal computation
device?

1 Introduction

Looking for small universal computing devices is a natural and well investigated
topic in computer science: see e.g., [24,12,20,21,22,9,10] for classic computational
models, [23,6,4] for tissue and symport/antiport P systems, [26,3] for cellular
automata, and [7,17] for spiking neural P systems.

A related question that we investigate in this paper is: What is the size of the
smallest among all possible universal computation devices? Of course we must
agree on the meaning of the term “size”, since the size of a given device may de-
pend on several parameters (for example, the number of registers and the number
of program instructions when speaking of register machines), whose number and
possible values vary depending on the device under consideration. Trying to find a
common unit to measure the size of different computation devices, in section 3 we
will define the description size of a computation device as the number of bits which
are needed to describe it. Precisely, for a given model of computation M (for exam-
ple, register machines), we will define an encoding function C : M → {0, 1}∗ that
associates a bit string to every computing device M taken from M; the description
size dsC(M) of M (under the encoding C) will be the length of the bit string C(M),
whereas the description size of the entire class M will be the minimum between
the description sizes dsC(M) for M that varies over the set of universal computing
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devices contained in M. Then, we start a quest for the shortest possible bit string
that describes a universal computation device: that is, we look for a computational
model M and an encoding function C : M → {0, 1}∗ such that M contains at least
one universal computation device and dsC(M) is as low as possible. To this aim,
we will compute the description size of randomly generated deterministic register
machines, Turing machines, spiking neural P systems [8] and UREM P systems
[5], as well as the size of a specific small universal instance of each of these compu-
tational models. Then, by taking deterministic register machines as the reference
model, we will compute the redundancy of the other computing devices here con-
sidered as the ratio between their description size and the description size of the
smallest (to the best knowledge of the authors) universal deterministic register
machine currently known. As a result, we will have an idea about how verbose are
such models of computation in catching the notion of universality.

A word of caution is due: with our work, we are not saying that the most
compact computational model is the best: a computation device that requires
a lot of features to perform its computations may be more interesting than
others because of many reasons. A notable example is given by traditional P
systems [18,19], whose structure and behavior are inspired from the functioning
of living cells; the amount of theoretical results and applications reported in the
bibliography of [27] is certainly an indication of how interesting is such a model
of computation.

The paper is structured as follows. In Section 2 we briefly recall the definition
of the computational models we will work upon: deterministic register machines,
spiking neural P systems and UREM P systems. Since several variants of Turing
machines have been defined in the literature, we will later refer the reader to
the bibliography for the details on the these machines. In Section 3 we will
define and compute the description size of randomly chosen instances of all
these models. We will also consider a small universal instance (taken from the
literature) of each of these models, and we will compute both its description size
and the redundancy with respect to the smallest (to the best knowledge of the
authors) currently known deterministic register machine. In Section 4 we draw
some conclusions and we propose some directions for future research.

2 Some (Universal) Models of Computation

2.1 Deterministic Register Machines

A deterministic n–register machine is a construct M = (n, P, m), where n > 0 is
the number of registers, P is a finite sequence of instructions bijectively labeled
with the elements of the set {0, 1, . . . , m− 1}, 0 is the label of the first instruction
to be executed, and m−1 is the label of the last instruction of P . Registers contain
non-negative integer values. The instructions of P have the following forms:

– j : (INC(r), k), with j, k ∈ {0, 1, . . . , m − 1} and r ∈ {0, 1, . . . , n − 1}
This instruction, labeled with j, increments the value contained in register
r, and then jumps to instruction k.
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– j : (DEC(r), k, l), with j, k, l ∈ {0, 1, . . . , m − 1} and r ∈ {0, 1, . . . , n − 1}
If the value contained in register r is positive then decrement it and jump
to instruction k. If the value of r is zero then jump to instruction l (without
altering the contents of the register).

Computations start by executing the first instruction of P (labeled with 0), and
terminate when the instruction currently executed tries to jump to label m.

For a formal definition of configurations and computations of M we refer the
reader to [5]. Here we just recall that deterministic register machines provide a
simple universal computational model, as stated in [5, Proposition 1].

2.2 Spiking Neural P Systems

Spiking neural P systems (SN P systems, for short) have been introduced in [8]
as a class of synchronous, parallel and distributed computing devices, inspired
by the neurophysiological behavior of neurons sending electrical impulses along
axons to other neurons.

Formally, a spiking neural membrane system (SN P system, for short) of degree
m ≥ 1, as defined in [7] in the computing version (i.e., able to take an input
and provide and output), is a construct of the form Π = (O, σ1, σ2, . . . , σm, syn,
in, out), where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

(a) ni ≥ 0 is the initial number of spikes contained in σi;
(b) Ri is a finite set of rules of the following two forms:

(1) firing (also spiking) rules E/ac → a; d, where E is a regular expres-
sion over a, and c ≥ 1, d ≥ 0 are integer numbers;

(2) forgetting rules as → λ, for s ≥ 1, with the restriction that for each
rule E/ac → a; d of type (1) from Ri, we have as �∈ L(E) (the regular
language defined by E);

3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m}, with (i, i) �∈ syn for 1 ≤ i ≤ m, is the
directed graph of synapses between neurons;

4. in, out ∈ {1, 2, . . . , m} indicate the input and the output neurons of Π ,
respectively.

A firing rule E/ac → a; d ∈ Ri can be applied in neuron σi if it contains
k ≥ c spikes, and ak ∈ L(E). The execution of this rule removes c spikes from
σi (thus leaving k − c spikes), and prepares one spike to be delivered to all the
neurons σj such that (i, j) ∈ syn. If d = 0 then the spike is immediately emitted,
otherwise it is emitted after d computation steps of the system. During these
d computation steps the neuron is closed, and it cannot receive new spikes (if
a neuron has a synapse to a closed neuron and tries to send a spike along it,
then that particular spike is lost), and cannot fire (and even select) rules. A
forgetting rule as → λ can be applied in neuron σi if it contains exactly s spikes;
the execution of this rule simply removes all the s spikes from σi.

Extended rules provide a common generalization of firing rules. These rules
are of the form E/ac → ap; d, where c ≥ 1, p ≥ 1 and d ≥ 0 are integer numbers.
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The semantics of these rules is the same as above, with the difference that now
p spikes are delivered (after d time steps) to all neighboring neurons.

We refer the reader to [7] for a formal definition of configurations and compu-
tations ; here we just recall that (many variants of) SN P systems have proven
to be universal. In what follows we will use the two small deterministic univer-
sal SN P systems which are defined in [17]: one of them uses 84 neurons, each
one containing only standard rules; the other uses 49 neurons, but in this case
extended rules are needed.

2.3 UREM P Systems

P systems with unit rules and energy assigned to the membranes (UREM P
systems, for short) have been introduced in [5] as a variant of P systems in
which a non–negative integer value (regarded as an amount of energy) is assigned
to each membrane of the system. The rules are assigned to the membranes
rather than to the regions of the system, and operate like filters that control the
movement of objects (symbols of an alphabet) across the membranes.

Formally, a UREM P system [5] of degree d + 1 is a construct Π of the form
Π = (A, μ, e0, . . . , ed, w0, . . . , wd, R0, . . . , Rd), where:

– A is an alphabet of objects ;
– μ is a membrane structure, with the membranes labeled by numbers 0, . . . , d

in a one-to-one manner;
– e0, . . . , ed are the initial energy values assigned to the membranes 0, . . . , d.

We assume that e0, . . . , ed are non–negative integers;
– w0, . . . , wd are multisets over A associated with the regions 0, . . . , d of μ;
– R0, . . . , Rd are finite sets of unit rules associated with the membranes 0, . . . , d.

Each rule of Ri has the form (αi : a, Δe, b), where α ∈ {in, out}, a, b ∈ A,
and |Δe| is the amount of energy that — for Δe ≥ 0 — is added to or — for
Δe < 0 — is subtracted from ei (the energy assigned to membrane i) by the
application of the rule.

A computation step is performed by non-deterministically choosing one rule
from some Ri and applying it (hence in a sequential way, as opposed to the
maximally parallel way often required in P systems). Applying (ini : a, Δe, b)
means that an object a (being in the membrane immediately outside of i) is
changed into b while entering membrane i, thereby changing the energy value ei

of membrane i by Δe. On the other hand, the application of a rule (outi : a, Δe, b)
changes object a into b while leaving membrane i, and changes the energy value
ei by Δe. The rules can be applied only if the amount ei of energy assigned
to membrane i fulfills the requirement ei + Δe ≥ 0. Moreover, a sort of local
priorities is assumed: if there are two or more applicable rules in membrane i,
then one of the rules with max |Δe| has to be used.

If we consider the distribution of energy values among some predefined mem-
branes as the input to be processed and the resulting output (a non–halting
computation does not produce a result) we obtain a universal model of com-
putation, as proved in [5, Theorem 1]. The proof is obtained by simulating de-
terministic register machines by deterministic UREM P systems which contain
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one elementary membrane into the skin for each register of the simulated ma-
chine. The contents of each register are expressed as the energy value assigned
to the corresponding membrane. A single object is present in the system at
every computation step, which stores the label of the instruction of the program
P currently simulated. Increment instructions of the kind j : (INC(i), k) are
simulated in two steps by using the rules (ini : pj, 1, p̃j) and (outi : p̃j, 0, pk).
Decrement instructions of the kind j : (DEC(i), k, l) are also simulated in two
steps, by using the rules (ini : pj , 0, p̃j) and (outi : p̃j , −1, pk) or (outi : p̃j , 0, pl).
The use of priorities associated to these last rules is necessary to correctly sim-
ulate a decrement instruction, and hence to reach the computational power of
Turing machines, as proved in [5, Theorem 2].

3 Description Size

As stated in the Introduction, we define the description size of a given computa-
tion device M as the length of the binary string which encodes the structure of
M . Since this is an informal definition, we have to discuss some technical difficul-
ties that immediately arise. First of all, for any given computational model M
(register machines, SN P systems, etc.) we have to find a “reasonable” encoding
function C : M → {0, 1}∗, in the sense given in [2]. Such a function should be
able to encode any computation device M of M as a finite bit string. When
this string is interpreted (that is, decoded) according to a specified set of rules
(the decoding algorithm), the decoder unambiguously recovers the structure of
M . In order to avoid cheating — by hiding information into the encoding or de-
coding algorithms — we ask to consider only reasonable encodings that satisfy
the following requirements.

1. For each model of computation, the encoding and decoding algorithms are
fixed a priori, and their representation as a program for a deterministic reg-
ister machine or as a deterministic Turing machine have a fixed finite length.
Note that, when computing the description size of a given device, we will not
count the size of the encoding and decoding algorithms; moreover, instead of
formally specifying such algorithms, we will only provide informal instruc-
tions on how to encode and decode our computation devices. An alternative
approach, not followed in this paper, consists of minimizing the size of the
decoding (and, possibly, encoding) algorithm together with the length of the
encoded strings.

2. With the selected encoding algorithm it should be possible to describe any
instance of the computational model under consideration (for example, any
deterministic register machine). Encodings that allow to represent in a very
compact form only one or a few selected instances of the computational
model (for example, all the register machines whose program P contains
exactly five instructions) are not considered acceptable.

We can look at any computational model as a family of computation devices,
whose size depends upon a predefined collection of parameters. For example, the
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class of all deterministic register machines is composed by machines which have
n registers and whose programs are composed by m instructions, for all possible
integers n ≥ 1 and m ≥ 0. Denoted by M a computational model, and by
(n1, n2, . . . , nk) the non–negative integer parameters upon which the size of the
computing devices of M depend, we can write M =

⋃

n1,...,nk
{M(n1, . . . , nk)},

where M(n1, . . . , nk) is the subclass of M that is composed of those devices M ∈
M for which the parameters have the indicated values n1, . . . , nk. An encoding
function C : M → {0, 1}∗ can thus be viewed as a family {C(n1, . . . , nk)}n1,...,nk

,
where the function C(n1, . . . , nk) encodes any instance M ∈ M(n1, . . . , nk). Note
that the values n1, . . . , nk need not to be encoded, since they can be determined
by the sub-function of C we are using. In what follows we will propose specific
encodings C(n1, . . . , nk) for each of the computational models considered in this
paper, both for generic and for specific values of n1, . . . , nk; with a little abuse of
notation, we will sometimes indicate the functions C(n1, . . . , nk) as the encodings
(that is, C) of our models.

Let C : M → {0, 1}∗ denote a fixed encoding of M, and let M be a computa-
tion device from M. By dsC(M) = |C(M)| (the length of C(M)) we will denote
the description size of M , obtained by using the encoding C, and by dsC(M) we
will denote the length of the most compact representation — produced by the en-
coding algorithm of C — of a universal computing device taken from the class M,
that is, dsC(M) = min{dsC(M) : M ∈ M is universal}. By definition, for any
fixed universal computing device M ∈ M the value dsC(M) is an upper bound for
dsC(M). We say that a universal computing device M∗ ∈ M is optimal (referred
to the description size, for a prefixed encoding C) if dsC(M∗) = dsC(M). Given
two classes of computation devices M and M′ (with possibly M = M′), we
define the redundancy of a universal computation device M ′ ∈ M′, with respect
to the computational model M and the encoding C, as RM,C(M ′) = dsC(M ′)

dsC(M) .
Similarly, we define the redundancy of a computational model M′ (with respect
to M and C) as RM,C(M′) = dsC(M′)

dsC(M) . Finally, by letting C vary on the class of
all possible “reasonable” encodings, for any computational models M and M′

we can define:

ds(M) = min
C

{dsC(M)} and RM(M′) =
ds(M′)
ds(M)

that is, the description size complexity of M and the redundancy of M′ with
respect to M, respectively.

Let us note that the quantities ds(M) and dsC(M), for some fixed computa-
tional model M and encoding C, may be difficult to find, as it usually happens
with theoretical bounds. Hence in general we will obtain upper bounds to these
quantities, and thus lower bounds for the corresponding redundancies. The final
goal of the research line set out with this paper is to find a universal computa-
tional class M and an encoding C : M → {0, 1}∗ whose description size dsC(M)
is as low as possible, and eventually an optimal instance M ∈ M. In this way,
no other model M′ that contains a universal computation device would have
ds(M′) < dsC(M), and hence the value dsC(M) = dsC(M) could be regarded
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as the description size complexity of universality: in other words, it would be
the minimal number of bits which are needed to describe the ability to compute
Turing computable (that is, partial recursive) functions.

In the next subsections we will compute the description size of randomly
generated computing devices taken from each of the classes mentioned in section
2: deterministic register machines, Turing machines, SN P systems and UREM
P systems (each with respect to an appropriate predefined encoding). Then, we
will also compute the description size of a small universal device taken from
each of these classes, thus providing upper bounds to the description sizes of the
whole classes.

In what follows, for any natural number n we will simply denote by lg n the
number �log2 n	 + 1 of bits which are needed to represent n in binary form.

3.1 Deterministic Register Machines

Denoted by DRM(n, m) the subclass of register machines that have n registers
and programs composed of m instructions, we can express the class DRM of de-
terministic register machines as: DRM =

⋃

n≥1,m≥0 DRM(n, m). Let us describe
a function C(n, m) that encodes any machine from the subclass DRM(n, m).

Let M ∈ DRM(n, m), and let P denote its program. To describe each instruc-
tion of P , we need 1 bit to say whether it is an INC or a DEC instruction, lg n
bits to specify the register which is affected, and lg m bits (resp., 2 · lg m bit) to
specify the jump label (resp., the two jump labels) for the INC (resp., DEC)
instruction. A simple encoding of M is a sequence of m blocks, each composed
of 1+lg n+lg m or 1+lg n+2 · lg m bits, encoding the corresponding instruction
of P .

If M is a randomly chosen (and thus, possibly, non–universal) machine, then
about half of the instructions of P will be INCs and half will be DECs; hence
the description size of M , with respect to the encoding C we have just defined,
will be:

dsC(M) =
m

2
[1 + lg n + lg m] +

m

2
[1 + lg n + 2 · lg m]

= m · [1 + lg n] +
3m

2
lg m

In order to compute an upper bound to ds(DRM) we have instead to restrict
our attention to universal register machines. In [9], several universal register ma-
chines are described and investigated. In particular, the small universal register
machine illustrated in Figure 1 is defined. This machine has n = 8 registers and
m = 22 instructions. However, recall that we need a further label (22) to halt
the execution of P anytime by simply jumping to it, and thus we put m = 23.
The number of bits required to store these values are 3 and 5, respectively. The
encoding of this machine produces a bit string which is composed of 22 blocks,
one for each instruction of P . Each register will require 3 bits to be specified,
and each label will require 5 bits. If we denote INC instructions by a 0, and
DEC instructions by a 1, then the first block will be 1 001 00001 00010, where
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0 : (DEC(1), 1, 2) 1 : (INC(7), 0)

2 : (INC(6), 3) 3 : (DEC(5), 2, 4)

4 : (DEC(6), 5, 3) 5 : (INC(5), 6)

6 : (DEC(7), 7, 8) 7 : (INC(1), 4)

8 : (DEC(6), 9, 0) 9 : (INC(6), 10)

10 : (DEC(4), 0, 11) 11 : (DEC(5), 12, 13)

12 : (DEC(5), 14, 15) 13 : (DEC(2), 18, 19)

14 : (DEC(5), 16, 17) 15 : (DEC(3), 18, 20)

16 : (INC(4), 11) 17 : (INC(2), 21)

18 : (DEC(4), 0, 22) 19 : (DEC(0), 0, 18)

20 : (INC(0), 0) 21 : (INC(3), 18)

Fig. 1. The small universal deterministic register machine defined in [9]

we have put a small space to make clear how the block is formed: the first 1 de-
notes a DEC instruction, which has to be applied to register number 1 (= 001),
and the two labels to jump to when we have executed the instruction are 1 (=
00001) and 2 (= 00010). Similarly, the block that encodes the second instruction
is 011100000 (here we have omitted the unnecessary spaces), whereas the string
that encodes the whole machine M is:

10010000100010 011100000 011000011 11010001000100
11100010100011 010100110 11110011101000 000100100
11100100100000 011001010 11000000001011 11010110001101
11010111001111 10101001010011 11011000010001 10111001010100
010001011 001010101 11000000010110 10000000010010
000000000 001110010

Here the spaces denote a separation between two consecutive blocks; of course
these spaces are put here only to help the reader, but are not necessary to decode
the string. We can thus conclude that, referring to the encoding C given above:

dsC(M) = 14 ∗ 13 + 9 ∗ 9 = 182 + 81 = 263

Since our final goal is to find the shortest bit string that encodes a universal
computation device, we could wonder how many bits we would save by compress-
ing the above sequence. This means, of course, that the encoding algorithm will
have to produce a compressed representation of M , that will be decompressed
by the decoding algorithm. Many compression algorithms exist, that yield dif-
ferent results. For simplicity here we just consider entropy-based compressors,
such as the Huffman algorithm, and we compute a bound on the length of the
compressed string. If we look at the above bit string, we can see that it contains
154 zeros and 109 ones. Hence in each position of the string we have the proba-
bility p0 = 154

263 that a 0 occurs, and the probability p1 = 109
263 that a 1 occurs. By
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looking at the output of the encoding algorithm as a memoryless information
source, we can compute the entropy of the above sequence, that measures the
average amount of information carried by each bit of the string:

H(M) = −p0 log2 p0 − p1 log2 p1 ≈ 0.979

Now, by applying an optimal entropy-based compressor we would obtain a com-
pressed string whose length is approximately equal to the length of the un-
compressed string times the entropy, that is, �263 · 0.979
 = 258 bits. Such a
quantity is less than 263, but of course is still an upper bound to ds(DRM), the
(unknown, and possibly very difficult to determine) description size complexity
of deterministic register machines.

As stated above, the choice of a different category of (lossless) compression
algorithms may yield to different string lengths. Moreover, even if we restrict our
attention to entropy-based compressors the fact that we have modeled the output
of the encoding algorithm as a memoryless information source is questionable.
In fact, when we encounter a 0 at the beginning of a new block that encodes an
instruction of the register machine then it is clear that 8 bits will follow, instead
of 13, since we are reading an INC instruction. This means that the occurrence
of the bits in the sequence depends somehow upon the bits which have already
been emitted by the source, and to capture this dependence we should use a
source endowed with memory, such as a Markovian source.

3.2 Turing Machines

Let TM(n, m) be the class of Turing machines with n symbols and m states. Sev-
eral definitions of Turing machines, all equivalent from the computational power
point of view, have been given in the literature. Here we refer to the traditional
(standard) one, with a bi-infinite tape and one read/write head. We refer to [25]
for a formal definition of Turing machines, configurations and computations.

Several authors have investigated small universal Turing machines. For exam-
ple, Rogozhin [22] constructed small universal machines in the classes TM(5, 5),
TM(6, 4), TM(10, 3) and TM(18, 2), Kudlek and Rogozhin [11] constructed a
machine in TM(9, 3), and Baiocchi [1] constructed machines in TM(2, 19) and
TM(4, 7). The smallest machine, both in terms of number of instructions (22)
and number of symbol–state pairs (24) is Rogozhin’s machine in TM(6, 4). Let
us note in passing that, by slightly modifying the definition of Turing machines
(and, consequently, the notion of universality) it is possible to obtain even smaller
machines [15,16,3,26]. Concerning traditional machines, assuming that a single
instruction is reserved for halting, it is known that there are no universal ma-
chines in TM(2, 2), TM(2, 3), TM(3, 2), TM(n, 1) and TM(1, n) for n ≥ 1. See
[14] for further details and references.

Given M ∈ TM(n, m), we need lg n and lg m bits to represent each symbol and
each state, respectively. The read/write head can only move to the cell on its left,
to the cell on its right, or not move; two bits are thus needed to represent the head
movement. A simple encoding of M is a sequence of blocks of 2 lg n + 2 lg m + 2



How Redundant Is Your Universal Computation Device? 283

bits, each encoding an instruction of the kind (current state, current symbol, new
state, new symbol, head movement). The maximum number of blocks is n · m. By
writing the 2 head movement bits at the beginning of each block, we can encode the
empty instruction (for those symbol–state pairs that do not have an instruction)
as the unused head movement 2-bit configuration. In this way, the description size
(under this encoding C) of any Turing machine M ∈ TM(n, m) having k ≤ n · m
instructions will be dsC(M) = k · (2 lg n + 2 lg m + 2) + (n · m − k) · 2 bits.

Using this encoding, each non-empty instruction of Rogozhin’s 6-symbol 4-
state 22-instruction universal machine requires 12 bits. Hence the description
size of the machine is 268 bits, which is an upper bound to the description size
ds(TM) of the class of Turing machines. To limit the length of the paper, we
do not show the explicit bit string that encodes Rogozhin’s machine; we just
note that its size is just a little bit higher than the (uncompressed) size of the
smallest currently known register machine.

3.3 Spiking Neural P Systems

Let SNP(m, R, C, D) denote the class of SN P systems having degree m and a
total number R of rules, where each rule consumes a maximum number C of
spikes and has a maximum delay D.

Let Π ∈ SNP(m, R, C, D). In order to describe the synapse graph of Π (which
is a directed graph, without self–loops) we need m2 − m bits. To describe a
forgetting rule as → λ we need 1 bit to distinguish it from spiking rules, and
lg C bits to represent the value of s. On the other hand, to describe a firing rule
E/ac → a; d we need 1 bit to distinguish it from forgetting rules, lg C bits to
represent c and lg D bits to represent d; moreover, we need some bits to describe
the regular expression E. In general, there are no limitations to the length of
a regular expression, but by observing the systems described in [17] we note
that the expressions a, a2, a3, a(aa)+ and a(aa)∗ suffice to reach computational
completeness, and thus we will restrict our attention to systems that contain only
these kinds of regular expressions. Of course this restriction will influence our
results; any different choice of the set of regular expressions is valid, provided
that the class of SN P systems thus obtained contains at least one universal
computation device. To specify one of the above five expressions we need 3
bits, and hence we need a total of 1 + lgC bits to describe a forgetting rule, and
1+3+lgC+lg D bits to describe a firing rule. On average, a randomly generated
SN P system with R rules will contain about R

2 firing rules and R
2 forgetting rules,

and thus we will need R
2 [1+lgC]+ R

2 [4+lgC +lg D] = R [1+lg C]+ R
2 [3+lg D]

bits to encode it.
A simple encoding of Π is a sequence of m blocks — one for each neuron —

followed by the m2 −m bits that encode the structure of the synapse graph. For
each neuron we have to specify the list of its rules; since each neuron may have
a different number of rules (possibly zero), we will put an additional bit equal to
1 in front of the encoding of each rule, and a 0 at the end of the list. In this way,
when decoding, the presence of a 1 means that the next bits encode a rule of the
neuron, whereas a 0 means that the next bits encode a different neuron. Using
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this encoding C, the description size of a randomly chosen (and thus, possibly,
non–universal) system Π ∈ SNP(m, R, C, D) is:

dsC(Π) =
R

2
[2 + lg C] +

R

2
[5 + lg C + lg D] + R + m2 − m =

=
9R

2
+ R lg C +

R

2
lg D + m2 − m

As we did with register machines, in order to determine an upper bound to
the description size ds(SNP ) of the entire class of SN P systems we now turn our
attention to universal systems. In [17], a small universal SN P system is obtained
by simulating a slightly modified version of the small universal deterministic reg-
ister machine described in section 3.1. The modification is needed for a technical
reason due to the behavior of SN P systems (see [17] for details); the modified
version of the register machine has 9 registers, 24 instructions and 25 labels.
Each instruction is simulated through an appropriate subsystem; moreover, an
input module is needed to read the input spike train from the environment and
initialize the simulation, and an output module is needed to produce the out-
put spike train if and when the computation of the simulated register machine
halts. As a result, the universal SN P system is composed of 91 neurons, which
are subsequently reduced to 84 by simulating in a different way one occurrence
of two consecutive INCs and two occurrences of an INC followed by a DEC.
These 84 neurons are used as follows: 9 neurons for the registers, 22 neurons for
the labels, 18 auxiliary neurons for the 9 INC instructions, 18 auxiliary neurons
for the 9 DEC instructions, 2 auxiliary neurons for the simulation of two con-
secutive INC instructions, 3 · 2 = 6 auxiliary neurons for the two simulations
of consecutive INC − DEC instructions, 7 neurons for the input module, and
finally 2 neurons for the output module. Considering all these neurons, the
system contains a total number R = 117 of rules.

For such a system it is uncomfortable to make a detailed analysis of the
encoded string as we did for register machines, and thus we will just determine
its length. Let us first note that in such a system we have D = 1 and C = 3, and
thus 1 and 2 bits will suffice to represent any delay and any number of consumed
spikes, respectively. The 9 neurons that correspond to the registers contain two
firing rules each, and thus require 15 bits each, for a total of 135 bits. The 22
neurons associated with the labels contain each one firing and one forgetting rule,
for a total of 11 bits that, multiplied by 22, makes 242 bits. Each auxiliary neuron
involved in the simulation of the 9 INC instructions contains one firing rule, and
thus requires 8 bits to be described; all the 18 neurons require 144 bits. The same
argument applies to the 18 auxiliary neurons involved in the simulation of the 9
DEC instructions, thus adding further 144 bits. The two auxiliary neurons used
to simulate two consecutive INC instructions also contain one firing rule each,
thus contributing with 16 bits. The same applies to the 6 auxiliary neurons used
to simulate (two instances of) an INC followed by a DEC, thus adding 48 bits,
as well as to the 7 neurons that are used in the input module (56 bits) and the
2 auxiliary neurons of the output module (16 bits).
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All considered, we need 801 bits to describe the rules contained in the neurons.
To these we must add the m2 − m = 6972 bits needed to describe the structure
of the synapse graph. We thus obtain a total of 7773 bits to encode the universal
standard SN P system presented in [17]. This quantity is an upper bound to
dsC(Π), the description size of the system under the proposed encoding, which
in turn is an upper bound to ds(SNP), the description complexity of the class
of SN P systems. Tighter bounds can be obtained by explicitly computing the
encoding of Π and then compressing it by means of a lossless compressor.

By assuming ds(DRM) = 263 and ds(SNP) = 7773, an approximated value of
the redundancy of spiking neural P systems with respect to deterministic register
machines, is:

RDRM(SNP) =
ds(SNP)
ds(DRM)

=
7773
263

≈ 29.56

On the other hand, by assuming ds(DRM) = 258 (that results from the com-
putation of the entropy of the string that encodes the universal deterministic
register machine depicted in Figure 1) the redundancy becomes RDRM(SNP) =
ds(SNP)
ds(DRM) = 7773

258 ≈ 30.13. These results suggest that the description of a uni-
versal SN P system is at least 29 or 30 times more verbose with respect to the
description of a universal deterministic register machine.

In [17] it is also shown that by allowing firing rules of the extended type it
is possible to build a universal SN P system by using only 49 neurons. However
this time many neurons have 7 rules instead of 2, and to describe every extended
rule E/ac → ap; d we also need some bits to specify the value of p, that does
not occur in standard rules. As a result, there may be some doubts about what,
among the two systems, is smaller. To find out the winner of this competition,
let us compute the description size of the extended SN P system. As reported in
[17], this time the system is able to simulate the universal register machine which
is composed of n = 8 registers and m = 23 instructions. The rules contain 12
different regular expressions, do not contain delays, and the maximum number of
spikes produced or consumed is 13. Thus we will need 4 bits to specify a regular
expression, 0 bits to represent the delays, and 4 bits to represent each number
of produced/consumed spikes. The 49 neurons are used as follows: 8 neurons for
the registers, 22 neurons for the labels, 13 for the DEC instructions, 5 for the
input module, and 1 for the output module. Each extended firing rule requires
1+4+4+4 = 13 bits to be encoded, whereas a forgetting rule requires 1+4 = 5
bits. Recall that each rule is preceded by a 1 in a list of rules, while the list itself
is terminated with a 0. Each of the 8 neurons used for the registers contains 2
firing rules (2 · 13 + 3 = 29 bits), for a total of 232 bits. Each of the 22 neurons
used for the labels contains 3 firing rules and 4 forgetting rules (67 bits), for a
total of 1474 bits. Each of the 13 neurons which are used in the simulation of the
DEC instructions contains 1 firing rule (15 bits), for a total of 195 bits. Each
of the 5 neurons used in the input module also contains 1 firing rule (total: 75
bits), whereas the neuron used in the output module contains 2 firing rules and
1 forgetting rule (35 bits). To all these bits we must add the 492 − 49 = 2352
bits which are needed to encode the synapse graph. All considered, we obtain
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4361 bits, which is well less than the 7773 bits obtained with the first universal
SN P system. Hence this is a tighter upper bound to ds(SNP) and, assuming
ds(DRM) = 263 or ds(DRM) = 258, we obtain

RDRM(SNP) =
4361
263

≈ 16.58 and RDRM(SNP) =
4361
258

≈ 16.90

respectively. Also in this case, tighter bounds can be obtained by explicitly com-
puting the bit string that encodes the universal extended SN P system and then
compressing it using a lossless compressor.

3.4 UREM P Systems

Let UREM denote the class of UREM P systems. As proved in [5], in order to
reach computational completeness we can restrict our attention to deterministic
systems in which the skin membrane contains one elementary membrane for each
register of the (possibly universal) simulated deterministic register machine. This
means getting rid of the membrane structure, saving a lot of bits when describing
the system. Similarly, we can restrict our attention to UREM P systems in
which the amounts Δe of energy that occur in each rule are taken from the set
{−1, 0, 1}. This means that for each rule 2 bits will suffice to encode the actual
value of Δe.

Under these assumptions, we can define the subclass UREM(n, m, R) of UREM
P systems having R rules, an alphabet of m symbols, and n elementary membranes
contained into the skin. Given Π ∈ UREM(n, m, R), for each membrane we have
to specify the list of its rules. Just like it happens with SN P systems, in general
every membrane will have a different number of rules, and thus we will append
the description of each rule by a bit equal to 1, and we will conclude each list of
rules with a 0. To encode each rule (opi : a, Δe, b) we need 1 bit to specify whether
op = in or op = out, 2·lgm bits to specify the alphabet symbols a and b, and 2 bits
to express the value of Δe. A simple encoding of Π is composed of n+1 blocks, one
for each membrane. Each block encodes the sequence of rules associated with the
corresponding membrane, listing the rules as described above. Each rule requires
4 + 2 lg m bits to be encoded (one bit is used to indicate that we have not yet
reached the end of the list of rules), for a total of 2R [2 + lg m] bits. One bit is
needed to terminate each of the n + 1 lists, and thus the description size of the
whole system under the encoding C just proposed is dsC(Π) = 2R [2+lgm]+n+1.

A small universal UREM P system (here proposed for the first time) can
be obtained by simulating the small universal deterministic register machine
described in section 3.1. Such a small UREM P system contains n = 8 elementary
membranes. As stated in Section 2.3, to simulate the instructions of the register
machine we need the objects pj and p̃j, for all j ∈ {0, 1, . . . , 21} (see [5] for
details), as well as the object p22 to simulate the jump to the non-existent
instruction number 22 (to halt the computation), for a total of m = 45 alphabet
symbols. Each INC instruction of the register machine requires 2 rules to be
simulated, whereas each DEC instruction requires 3 rules, for a total of R = 57
rules, reported in Figure 2.
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0 : (in1 : p0, 0, �p0), (out1 : �p0, −1, p1), (out1 : �p0, 0, p2)

1 : (in7 : p1, 1, �p1), (out7 : �p1, 0, p0)

2 : (in6 : p2, 1, �p2), (out6 : �p2, 0, p3)

3 : (in5 : p3, 0, �p3), (out5 : �p3, −1, p2), (out5 : �p3, 0, p4)

4 : (in6 : p4, 0, �p4), (out6 : �p4, −1, p5), (out6 : �p4, 0, p3)

5 : (in5 : p5, 1, �p5), (out5 : �p5, 0, p6)

6 : (in7 : p6, 0, �p6), (out7 : �p6, −1, p7), (out7 : �p6, 0, p8)

7 : (in1 : p7, 1, �p7), (out1 : �p7, 0, p4)

8 : (in6 : p8, 0, �p8), (out6 : �p8, −1, p9), (out6 : �p8, 0, p0)

9 : (in6 : p9, 1, �p9), (out6 : �p9, 0, p10)

10 : (in4 : p10, 0, �p10), (out4 : �p10, −1, p0), (out4 : �p10, 0, p10)

11 : (in5 : p11, 0, �p11), (out5 : �p11, −1, p12), (out5 : �p11), 0, p13)

12 : (in5 : p12, 0, �p12), (out5 : �p12, −1, p14), (out5 : �p12), 0, p15)

13 : (in2 : p13, 0, �p13), (out2 : �p13, −1, p18), (out2 : �p13), 0, p19)

14 : (in5 : p14, 0, �p14), (out5 : �p14, −1, p16), (out5 : �p14), 0, p17)

15 : (in3 : p13, 0, �p13), (out3 : �p13, −1, p18), (out3 : �p13), 0, p20)

16 : (in4 : p16, 1, �p16), (out4 : �p16, 0, p11)

17 : (in2 : p17, 1, �p17), (out2 : �p17, 0, p21)

18 : (in4 : p18, 0, �p18), (out4 : �p18, −1, p0), (out4 : �p18), 0, p22)

19 : (in0 : p19, 0, �p19), (out0 : �p19, −1, p0), (out3 : �p19), 0, p18)

20 : (in0 : p20, 1, �p20), (out0 : �p20, 0, p0)

21 : (in3 : p21, 1, �p21), (out3 : �p21, 0, p18)

Fig. 2. A small universal deterministic UREM P system. In each row, the number on
the left refers to the label of the simulated instruction of the register machine depicted
in Figure 1.

The skin membrane does not contain any rule, and thus the first block of the
encoding of Π is 0. The elementary membrane that simulates register 0 contains
the five rules that correspond to the INC (line 19 in Figure 2) and to the DEC
(line 20) instructions that affect the contents of register 0. Since n = 8, we will
need 3 bits to encode a register number; similarly, to encode an alphabet symbol
we will need lg m = lg 45 = 6 bits. The bit string that encodes membrane 0 is thus:

1 0
︸︷︷︸

in

010011
︸ ︷︷ ︸

p19

00
︸︷︷︸

0

110011
︸ ︷︷ ︸

�p19

1 1
︸︷︷︸

out

110011
︸ ︷︷ ︸

�p19

11
︸︷︷︸

−1

000000
︸ ︷︷ ︸

p0

1 1
︸︷︷︸

out

110011
︸ ︷︷ ︸

p19

00
︸︷︷︸

0

010010
︸ ︷︷ ︸

p18

1 0
︸︷︷︸

in

010100
︸ ︷︷ ︸

p20

01
︸︷︷︸

1

110100
︸ ︷︷ ︸

�p20

1 1
︸︷︷︸

out

110100
︸ ︷︷ ︸

�p20

00
︸︷︷︸

0

000000
︸ ︷︷ ︸

p0

0

where we have encoded in as 0, out as 1, Δe = 0 as 00, Δe = 1 as 01, Δe = −1 as
11, pk as the 5-bit binary encoding of k ∈ {0, 1, . . . , 22} with an additional leading
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0, and p̃k as the 5-bit binary encoding of k ∈ {0, 1, . . . , 21} with an additional
leading 1. Operating in a similar way for all the elementary membranes of Π ,
we obtain the following binary string (the spaces denote a separation between
consecutive rules; they are put here to help the reader, but are not necessary to
decode the string):

(Skin membrane)

0

(Membrane 0)

1 001001100110011 1 111001111000000 1 111001100010010

1 001010001110100 1 111010000000000 0

(Membrane 1)

1 000000000100000 1 110000011000001 1 110000000000010

1 000011101100111 1 110011100000100 0

(Membrane 2)

1 000110100101101 1 110110111010010 1 110110100010011

1 001000101110001 1 111000100010101 0

(Membrane 3)

1 000110100101101 1 110110111010010 1 110110100010100

1 001010101110101 1 111010100010010 0

(Membrane 4)

1 000101000101010 1 110101011000000 1 110101000001011

1 101000001110000 1 111000000001011 1 001001000110010

1 111001011000000 1 111001000010110 0

(Membrane 5)

1 000001100100011 1 110001111000010 1 110001100000100

1 000010101100101 1 110010100000110 1 000101100101011

1 110101111001100 1 110101100001101 1 000110000101100

1 110110011001110 1 110110000001111 1 000111000101110

1 110111011010000 1 110111000010001 0

(Membrane 6)

1 000001001100010 1 110001000000011 1 000010000100100

1 110010011000101 1 110010000000011 1 000100000101000

1 110100011001001 1 110100000000000 1 000100101101001

1 110100100001010 0

(Membrane 7)

1 000000101100001 1 110000100000000 1 000011000100110

1 110011011000111 1 110011000001000 0

We can thus conclude that dsC(Π) = 921, where C denotes our encoding.
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Since UREM P systems are a relatively compact model of P systems, it is
interesting to ask how many bits we would further save by compressing the
above bit string. By operating like we did with register machines, if we look
at such a string we can see that it contains 516 zeros and 405 ones. Hence
the probability that a 0 occurs in any given position is p0 = 516

921 , whereas the
probability that a 1 occurs is p1 = 405

921 . The entropy of the above sequence
is thus H(Π) = −p0 log2 p0 − p1 log2 p1 ≈ 0.990, and we can conclude that
a compressed string produced by an optimal entropy-based compressor, whose
length is approximately equal to the length of the uncompressed string times the
entropy, would contain �911.79
 = 912 bits. Such a quantity is an upper bound
to ds(UREM), the theoretical description size complexity of the class of UREM
P systems.

By assuming ds(DRM) = 263 and ds(UREM) = 921, an approximated value
of the redundancy of UREM P systems with respect to deterministic register
machines is:

RDRM(UREM) =
ds(UREM)
ds(DRM)

=
921
263

≈ 3.50

On the other hand, by assuming ds(DRM) = 258 and ds(UREM) = 912 (that
result by considering the entropies of the corresponding encoded strings) the
redundancy becomes RDRM(UREM) = 912

258 ≈ 3.53. These results suggest that
the description of a universal UREM P system is at least 3.5 times more verbose
with respect to the description of a universal deterministic register machine.

4 Conclusions and Directions for Further Research

Trying to find a common measure for the size of different computation devices,
we have introduced the description size of a device M as the length of the binary
string produced by a “reasonable” encoding of M . For four classes of compu-
tation devices (deterministic register machines, Turing machines, SN P systems
and UREM P systems) we have computed the description size of randomly cho-
sen devices, as well as of a universal device taken from each class. In this way
we have observed that the smallest universal SN P system currently known has
a description which is about 16.58 times as verbose as the the description of
the smallest deterministic register machine (currently known), while the small-
est universal deterministic UREM P system (here described for the first time) is
only about 3.5 times more verbose with respect to the register machine. Further,
we have seen that the smallest (standard) universal Turing machine currently
known has about the same size of the smallest deterministic register machine.
An intriguing question that naturally arises after these calculations is: What is
the minimum theoretical description size that can be obtained by considering all
possible universal computing devices (including, for example, the small universal
tissue and antiport P systems considered in [4,23,6])? In other words: What is
the minimum number of bits which are necessary to describe the structure of a
universal computing device?
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Different encoding functions could produce shorter strings than those we have
presented in this paper, thus showing tighter bounds to the theoretical values
of description size complexities. Improving our results under this point of view
is a direction of research of a clear interest. Let us also note that we did not
formally specify the encoding and decoding functions for our computational
models. Finally, we did not count the size of these functions when calculating
the description size of our computation devices. Whether this choice is correct or
not is questionable, but let us note that also representing the decoding algorithm
as a string of bits would require a decoding process, and so on in an endless
sequence of encodings and decodings.
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