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Abstract. This paper presents a basic framework to define testing strate-
gies for some classes of P systems. Techniques based on grammars and fi-
nite state machines are developed and some testing criteria are identified
and illustrated through simple examples.

1 Introduction

In 1998, Gheorghe Păun initiated the field of research called membrane com-
puting with a paper firstly available on the web [17]. Membrane computing, a
new computational paradigm, aims at defining computational models which are
inspired by the functioning and structure of the living cell. In particular, mem-
brane computing starts from the observation that compartmentalization through
membranes is one of the essential features of (eucaryotic) cells. Unlike bacterium,
which generally consists of a single intracellular compartment, an eucaryotic cell
is sub-divided into distinct compartments with well-defined structures and func-
tions. Further on have been considered other biological phenomena like tissues,
colonies of different organisms, various bio-chemical entities with dynamic struc-
ture in time and space. Membrane systems, also called P systems, consist now
of different computational models addressing multiple levels of bio-complexity.
There are cell-like P systems, relying on the hierarchical structure of the living
cells, tissue-like models, reflecting the network structure of neurons and other
bio-units arranged in tissues or more complex organs, P colonies and population
P systems, drawing inspiration from the organization and behavior of bacterium
colonies, social insects and other organisms living together in larger communities
(see [18], [19]).

The most basic model and the first introduced, [17], the cell-like paradigm
has three essential features: (i) a membrane structure consisting of a hierarchical
arrangement of several compartments, called regions, delimited by membranes,
(ii) objects occurring inside these regions, coding for various simple or more
complex chemical molecules or compounds, and (iii) rules assigned to the regions
of the membrane structure, acting upon the objects inside. In particular, each
region is supposed to contain a finite set of rules and a finite multiset (or set)
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of objects. Rules encode for generic transformation processes involving objects
and for transporting them, through membranes, from one region to an adjacent
one. The application of the rules is performed in a non-deterministic maximally
parallel manner: all the applicable rules that can be used to modify or transport
existing objects, must be applied, and this is done in parallel for all membranes.
This process abstracts the inherent parallelism that occurs at the cellular level.

Since this model has been introduced, many variants of membrane systems
have been proposed, a research monograph [18] has been published and regular
collective volumes are annually edited – a comprehensive bibliography of P sys-
tems can be found at [19]. The most investigated membrane computing topics
are related to the computational power of different variants, their capabilities
to solve hard problems, like NP-complete ones, decidability, complexity aspects
and hierarchies of classes of languages produced by these devices. In the last
years there have been significant developments in using the P systems paradigm
to model, simulate and formally verify various systems [7]. For some of these ap-
plications suitable classes of P systems have been associated with and software
packages developed. For these models corresponding formal semantics [1] and
verification mechanisms [2] have been produced.

There are well-established application areas where the software specifications
developed are also delivered together with a model and associated formal verifica-
tion procedures. All software applications, irrespective of their use and purpose,
are tested before being released, installed and used. Testing is not a replacement
for a formal verification procedure, when the former is also present, but a neces-
sary mechanism to increase the confidence in software correctness and ultimately
a well-known and very well-established stage in any software engineering project
[10]. Although formal verification has been applied for different models based on
P systems, testing has been completely neglected so far in this context. In this
paper we suggest some initial steps towards building a testing framework and its
underpinning theory, based on formal grammars and finite state machines, that
is associated to software applications derived from P systems specifications. We
develop this testing theory based on formal grammars and finite state machines
as they are the closest formalisms to P systems and the testing mechanisms for
them are well-investigated. Of course, other testing approaches can be considered
in this context as well, but all of them require a bigger effort of translation and
inevitably difficulties in checking the correctness of this process and in mapping
it back to P systems.

The paper is organized as follows: in Section 2 there are introduced basic
concepts and definitions; a testing framework based on context-free grammars
and finite state machines is built and some examples presented in Sections 3 and
4, respectively; conclusions are drawn in Section 5.

2 Basic Concepts and Notations

For an alphabet V = {a1, ..., ap}, V ∗ denotes the set of all strings over V . λ
denotes the empty string. For a string u ∈ V ∗, |u|ai denotes the number of ai
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occurrences in u. For a string u we associate a vector of non-negative integer
values (|u|a1 , ..., |u|ap). We denote this by ΨV (u).

A basic cell-like P system is defined as a hierarchical arrangement of mem-
branes identifying corresponding regions of the system. With each region there
are associated a finite multiset of objects and a finite set of rules; both may
be empty. A multiset is either denoted by a string u ∈ V ∗, where the order is
not considered, or by ΨV (u). The following definition refers to one of the many
variants of P systems, namely cell-like P system, which uses non-cooperative
transformation and communication rules [18]. We will call these processing rules
and this model simply P system.

Definition 1. A P system is a tuple Π = (V, μ, w1, ..., wn, R1, ..., Rn), where

– V is a finite set, called alphabet;
– μ defines the membrane structure, a hierarchical arrangement of n compart-

ments called regions delimited by membranes; these membranes and regions
are identified by integers 1 to n;

– wi, 1 ≤ i ≤ n, represents the initial multiset occurring in region i;
– Ri, 1 ≤ i ≤ n, denotes the set of rules applied in region i.

The rules in each region have the form a → (a1, t1)...(am, tm), where a, ai ∈ V ,
ti ∈ {in, out, here}, 1 ≤ i ≤ m. When such a rule is applied to a symbol a in
the current region, the symbol a is replaced by the symbols ai with ti = here;
symbols ai with ti = out are sent to the outer region, and symbols ai with ti = in
are sent into one of the regions contained in the current one, arbitrarily chosen.
In the following definitions and examples all the symbols (ai, here) are used as
ai. The rules are applied in maximally parallel mode which means that they are
used in all the regions in the same time and in each region all symbols that may
be processed, must be.

A configuration of the P system Π is a tuple c = (u1, ..., un), ui ∈ V ∗,
1 ≤ i ≤ n. A derivation of a configuration c1 to c2 using the maximal parallelism
mode is denoted by c1 =⇒ c2. In the set of all configurations we will distinguish
terminal configurations; c = (u1, ..., un) is a terminal configuration if there is no
region i such that ui can be further processed.

The set of all halting configurations is denoted by L(Π), whereas the set of all
configurations reachable from the initial one (including the initial configuration)
is denoted by S(Π).

Definition 2. A deterministic finite automaton (abbreviated DFA), M , is a
tuple (A, Q, q0, F, h), where A is the finite input alphabet, Q is the finite set
of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and
h : Q × A −→ Q is the next-state function.

The next-state function h can be extended to a function h : Q × A∗ −→ Q
defined by:

– h(q, ε) = q, q ∈ Q;
– h(q, sa) = h(h(q, s), a), q ∈ Q, s ∈ A∗, a ∈ A.
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For simplicity the same name h is used for the next-state function and for the
extended function.

Given q ∈ Q, a sequence of input symbols s ∈ A∗ is said to be accepted by M
in q if h(q, s) ∈ F . The set of all input sequences accepted by M in q0 is called
the language defined (accepted) by M , denoted L(M).

3 Grammar-Like Testing

Based on testing principles developed for context-free grammars [13], [14], some
testing strategies aiming to achieve rule coverage for a P system will be defined
and analyzed in this section.

In grammar engineering, formal grammars are used to specify complex software
systems, like compilers, debuggers, documentation tools, code pre-processing tools
etc. One of the areas of grammar engineering is grammar testing which covers the
development of various testing strategies for software based on grammar specifi-
cations. One of the main testing methods developed in this context refers to rule
coverage, i.e., the testing procedure tries to cover all the rules of a specification.

In the context of grammar testing it is assumed that for a given specification
defined as a grammar, an implementation of it, like a parser, exists and will
be tested. The aim is to build a test set, a finite set of sequences, that reveals
potential errors in the implementation. As opposed to testing based on finite
state machines, where it is possible to (dis)prove the equivalent behavior of the
specification and implementation, in the case of general context-free grammars
this is no longer possible as it reduces to the equivalence of two such devices,
which is not decidable. Of course, for specific restricted classes of context-free
grammars there are decidability procedures regarding the equivalence problem
and these may be considered for testing purposes as well, but we are interested
here in the general case. The best we can get is to cover as much as possible
from the languages associated to the two mechanisms, specification and imple-
mentation grammars, and this is the role of a test set. We will define such test
sets for P systems.

Given a specification G and an implementation G′, a test set aims to reveal
inconsistencies, like

– incorrectness of the implementation G′ with respect to the specification lan-
guage L = L(G), if L(G′) �⊂ L and L �= L(G′);

– incompleteness of the implementation G′ with respect to the specification
language L = L(G), if L �⊂ L(G′) and L �= L(G′).

We start to develop a similar method in the context of P systems. Although
there are a number of similarities between context-free grammars utilized in
grammar testing and basic P systems, like those considered in this paper, there
are also major differences that pose new problems in defining suitable test-
ing methods. Some of the difficulties that we encounter in introducing some
grammar-like testing procedures are related to the main features that define
such systems: hierarchical compartmentalization of the entire model, parallel
behavior, communication mechanisms, the lack of a non-terminal alphabet.



208 M. Gheorghe and F. Ipate

We define some rule coverage criteria by firstly starting with one compartment
P system, i.e., Π = (V, μ, w, R), where μ = [1 ]1. The rule coverage criteria are
adapted from [13], [14]. In the sequel, if not otherwise stated, we will consider
that the specification and the implementation are given by the P systems Π and
Π ′, respectively. For such a P system Π , we define the following concepts.

Definition 3. A multiset denoted by u ∈ V ∗, covers a rule r : a → v ∈ R, if
there is a derivation w =⇒∗ xay =⇒ x′vy′ =⇒∗ u; w, x, y, v, u ∈ V ∗, a ∈ V .

If there is no further derivation from u, then this is called a terminal coverage.

Definition 4. A set T ⊆ V ∗, is called a test set that satisfies the rule coverage
(RC) criterion if for each rule r ∈ R there is u ∈ T which covers r.

If every u ∈ T provides a terminal coverage then T is called a test set that
satisfies the rule terminal coverage (RTC) criterion.

The following one compartment P systems are considered, Πi, 1 ≤ i ≤ 4,
having the same alphabet and initial multiset:

Πi = (Vi, μi, wi, Ri), where:

– V1 = V2 = V3 = V4 = {s, a, b, c};
– μ1 = μ2 = μ3 = μ4 = [1 ]1;
– w1 = w2 = w3 = w4 = s;
– R1 = {r1 : s → ab, r2 : a → c, r3 : b → bc, r4 : b → c};
– R2 = {r1 : s → ab, r2 : a → λ, r3 : b → c};
– R3 = {r1 : s → ab, r2 : a → bcc, r3 : b → λ};
– R4 = {r1 : s → ab, r2 : a → bc, r3 : a → c, r4 : b → c}.

In the sequel for each multiset w, we will use the following vector of non-
negative integer numbers (|w|s, |w|a, |w|b, |w|c).

The sets of all configurations expressed as vectors of non-negative integer
numbers, computed by the P systems Πi, 1 ≤ i ≤ 4 are:

– S(Π1) = {(1, 0, 0, 0), (0, 1, 1, 0)} ∪ {(0, 0, k, n) | k = 0, 1; n ≥ 2};
– S(Π2) = {(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 0, 1)};
– S(Π3) = {(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 2)};
– S(Π4) = {(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 2), (0, 0, 0, 3)}.

Test sets for Π1 satisfying the RC criterion are

– T1,1 = {(0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 2)} and
– T1,2 = {(0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 3)},

whereas T ′
1,1 = {(0, 1, 1, 0), (0, 0, 0, 2)} and T ′

1,2 = {(0, 1, 1, 0), (0, 0, 1, 2)} are not,
as they do not cover the rules r3 and r4, respectively. Both T1,1 and T1,2 show
the incompleteness of Π2 with respect to S(Π1) (Π2 is also incorrect). T1,1 does
not show the incompleteness of Π3 with respect to S(Π1), but T1,2 does. None
of these test sets does show the incompleteness of Π4.

The sets of terminal configurations expressed as vectors of non-negative inte-
ger numbers, computed by the P systems Πi, 1 ≤ i ≤ 4 are:
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– L(Π1) = {(0, 0, 0, n) | n ≥ 2};
– L(Π2) = {(0, 0, 0, 1)};
– L(Π3) = {(0, 0, 0, 2)};
– L(Π4) = {(0, 0, 0, 2), (0, 0, 0, 3)}.

A test set for Π1 satisfying the RTC criterion is T = {(0, 0, 0, 3)}. As (0, 0, 0, 3)
is not in L(Π2) and L(Π3), it follows that Π2 and Π3 are incomplete with respect
to L = L(Π1). However, the test set does not prove the incompleteness of Π4.

The examples above show that none of the test sets provided is powerful
enough to prove the incompleteness of Π4, although S(Π4) ⊂ S(Π1), and
L(Π4) ⊂ L(Π1).

A more powerful testing set is computed by considering a generalization of
the RC criterion, called context-dependent rule coverage (CDRC) criterion.

Definition 5. A rule r ∈ R, r : b → uav, u, v ∈ V ∗, a, b ∈ V , is called a direct
occurrence of a. For every symbol a ∈ V , we denote by Occs(Π, a), the set of all
direct occurrences of a.

For the P system Π1, the following sets of direct occurrences are computed:

– Occs(Π1, s) = ∅;
– Occs(Π1, a) = {r1 : s → ab};
– Occs(Π1, b) = {r1 : s → ab, r3 : b → bc};
– Occs(Π1, c) = {r2 : a → c, r3 : b → bc, r4 : b → c}.

Definition 6. A multiset denoted by u ∈ L(Π) covers the rule r : b → y ∈ R
for the direct occurrence of b, a → ubv ∈ R if there is a derivation w =⇒∗ u1av1
=⇒ u1ubvv1 =⇒ u1uyvv1 =⇒∗ z; z, u1, v1, u, v, y ∈ V ∗, a, b ∈ V. A set Tr is
said to cover r : a → x for all direct occurrences of a if for any occurrence
o ∈ Occs(Π, a) there is t ∈ Tr such that t covers r for o. A set T is said to
achieve CDRC for Π if it covers all r ∈ R for all their direct occurrences.

Clearly, Tr covers r in the sense of Definition 3. Similar to the coverage rule cri-
terion introduced by Definition 4 where a terminal coverage criterion (RTC) has
been given, we can also extend CDRC by considering only terminal derivations
for all z in Definition 6 and obtain the CDRTC criterion. Obviously, any test set
that satisfies CDRC (CDRTC) criterion will also satisfies RC (RTC) criterion,
as well.

For Π1 the set

– T ′ = {(0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 2), (0, 0, 1, 3), (0, 0, 0, 3))} satisfies the
CDRC criterion and

– T ′′ = {(0, 0, 0, 2), (0, 0, 0, 3), (0, 0, 0, 4)} satisfies the CDRTC criterion.

These sets show the incompleteness of Π4 as well as the incompleteness of the
other two P systems.

In all the above considerations we have considered maximal parallelism. If we
consider sequential P systems, only one rule is used at a moment, then all the
above considerations and the same sets remain valid.

Now we consider general P systems, as introduced by Definition 1, and refor-
mulate the concepts introduced above for one compartment P systems:
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– RC criterion becomes: the configuration (u1, ..., ui, ..., un) covers a rule ri :
ai → vi ∈ Ri if there is a derivation
(w1, ..., wi..., wn) =⇒∗ (x1, ..., xiaiyi, ..., xn) =⇒ (x′

1, ..., x
′
iviy

′
i, ..., x

′
n) =⇒∗

(u1, ..., ui, ..., un);
– a test set T ⊆ (V ∗)n is defined similar to Definition 4.

In a P system with more than one compartment, two adjacent regions can ex-
change symbols. If the region i is contained in j and ri : a → x(b, out)y ∈ Ri

or rj : c → u(d, in)v ∈ Rj then ri, rj are called communication rules between
regions i and j.

Now Definition 5 can be rewritten as follows.

Definition 7. A rule r : b → uav ∈ Ri or a communication rule between i
and j, r′ : b′ → u′(a, t)v′ ∈ Rj, where i and j are two adjacent regions and
t ∈ {in, out}, is called a direct occurrence of a. The set of all direct occurrences
of a in region i is denoted by Occsi(Π, a) and consists of the set of all direct
occurrences of a from i, denoted by Si and the sets of communication rules, r′,
from the adjacent regions j1, ..., jq, denoted by Sj1 , ..., Sjq .

Let the two compartment P systems:

Π ′
i = (Vi, μi, w1,i, w2,i, R1,i, R2,i), where:

– V1 = V2 = {s, a, b, c};
– μ1 = μ2 = [1[2 ]2]1;
– w1,1 = s, w2,1 = λ, w1,2 = s, w2,2 = λ;
– R1,1 = {r1 : s → sa(b, in), r2 : s → ab, r3 : b → a, r4 : a → c};
– R2,1 = {r1 : b → bc, r2 : b → c};
– R1,2 = {r1 : s → sa(b, in), r2 : s → ab(b, in)(c, in), r3 : b → a, r4 : a → c};
– R2,2 = {r1 : b → λ, r2 : b → c}.

For the P system Π ′
1, the following sets of direct occurrences are computed:

– Occs1(Π1, a) = S1 ∪ S2, where S1 = {r1 : s → sa(b, in), r2 : s → ab, r3 :
b → a} and S2 = ∅;

– Occs2(Π ′
1, b) = S1 ∪ S2, where S1 = {r1 : s → sa(b, in)} and S2 = {r1 : b →

bc}.

A test set T that satisfies the CDRC criterion is:

{((1, 1, 0, 0), (0, 0, 1, 0)), ((0, 1, 1, 1), (0, 0, 1, 1)), ((0, 1, 0, 2), (0, 0, 0, 2)),
((0, 0, 0, 3), (0, 0, 0, 2))},

which is obtained from the derivation

(s, λ) =⇒ (sa, b) =⇒ (bac, bc) =⇒ (acc, cc) =⇒ (ccc, cc).

The P system Π ′
2 is incomplete as it does not contain configurations (ck, ch)

with h > k, but T above, fails to show this fact.
We can consider the CDRTC criterion to check whether it distinguishes be-

tween Π ′
1 and Π ′

2. It is left to the reader to verify this fact.
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4 Finite State Machine Based Testing

In this section we apply concepts and techniques from finite state based testing.
In order to do this, we construct a finite automaton on the basis of the derivation
tree of a P system.

We first present the process of constructing a DFA for a one compartment P
system Π = (V, μ, w, R), where μ = [1 ]1. In this case, the configuration of Π can
change as a result of the application of some rule in R or of a number of rules, in
parallel. In order to guarantee the finiteness of this process, for a given integer
k, only computations of maximum k steps will be considered. For example, for
k = 4, the tree in Figure 1 depicts all derivations in Π1 of length less than or
equal to k. The terminal nodes are in bold.

As only sequences of maximum k steps are considered, for every rule ri ∈ R
there will be some Ni such that, in any step, ri can be applied at most Ni

times. Thus, the tree that depicts all the derivations of a P system Π with
rules R = {r1, . . . , rm} can be described by a DFA Dt over the alphabet A =
{ri1

1 . . . rim
m | 0 ≤ i1 ≤ N1, . . . , 0 ≤ im ≤ Nm}, where ri1

1 . . . rim
m describes the

multiset with ij occurrences of rj , 1 ≤ j ≤ m.
As Dt is a DFA over A, one can construct the minimal DFA that accepts pre-

cisely the language L(Dt) defined by Dt. However, as only sequences of at most
k transitions are considered, it is irrelevant how the constructed automaton will
behave for longer sequences. Thus, a finite cover automaton can be constructed
instead.

A deterministic finite cover automaton (DFCA) of a finite language U is a DFA
that accepts all sequences in U and possibly other sequences that are longer than
any sequence in U.

r2 r4r2 r3

r1

s

ab

bc2 c2

r4r3

bc3 c3

r4r3

bc4 c4

Fig. 1. Derivation tree for Π1 and k = 4
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Definition 8. Let M = (A, Q, q0, F, h) be a DFA, U ⊆ A∗ a finite language and
l the length of the longest sequence(s) in U . Then M is called a deterministic
finite cover automaton (DFCA) of U if L(A)∩A[l] = U, where A[l] =

⋃
0≤i≤l U

i

denotes the sets of sequences of length less than or equal to l with members in
the alphabet A.

A minimal DFCA of U is a DFCA of U having the least number of states. Unlike
the case in which the acceptance of the precise language is required, the minimal
DFCA is not necessarily unique (up to a renaming of the state space) [5], [6].

The concept of DFCA was introduced in [5], [6] and several algorithms for
constructing a minimal DFCA of a finite language have been devised since [5],
[6], [4], [3], [11], [12], [16]. The time complexity of these algorithms is polynomial
in the number of states of the minimal DFCA. Interestingly, the minimization of
DFCA can be approached as an inference problem ([8]), which had been solved
several years earlier.

Any DFA that accepts U is also a DFCA of U and so the size (number of
states) of a minimal DFCA of U cannot exceed the size of the minimal DFA that
accepts U . On the other hand, as shown by examples in this paper, a minimal
DFCA of U may have considerably fewer states than the minimal DFA that
accepts U.

A minimal DFCA of the language L(Dt) defined by the previous derivation
tree is represented in Figure 2; q3 in Figure 2 is final state. It is implicitly assumed
that a non-final “sink” state, denoted qS , also exists, that receives all “rejected”
transitions. For testing purposes we will consider all the states as final.

r2 r4r2 r3

r1

q0

q1

r4

r3

q2 q3

Fig. 2. Minimal DFCA for Π1 and k = 4
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Not only the minimal DFCA of L(Dt) may have (significantly) less states than
the minimal DFA that accepts L(Dt), but it also provides the right approxima-
tion for the computation of a P system. Consider u1, u2 ∈ V ∗, w =⇒∗ u1,
w =⇒∗ u2, such that the derivation from u1 is identical to the derivation from
u2, i.e., any sequence s ∈ A∗ that can be applied to u1 can also be applied to
u2 and vice versa (e.g., u1 = bc2 and u2 = bc3 in Figure 1). Naturally, as the
derivation from u1 is identical to the derivation from u2, u1 and u2 should be
represented by the same state of a DFA that models the computation of the P
system. This is the case when the DFA model considered is a minimal DFCA of
L(Dt); on the other hand, u1 and u2 will be associated with distinct states in
the minimal DFA that accepts L(Dt), unless they appear at the same level in
the derivation tree Dt. For example, in Figure 1, bc2 and bc3 appear at different
levels in the derivation tree and so they will be associated with distinct states
in the minimal DFA that accepts L(Dt); on the other hand, bc2 and bc3 are
mapped onto the same state (q2) of the minimal DFCA represented in Figure 2.
Furthermore, if the entire computation of the P system (i.e. for derivation se-
quences of any length) can be described by a DFA over some alphabet A, then
this DFA model will be obtained as a DFCA of L(Dt) for k sufficiently large.

Once the minimal DFCA M = (A, Q, q0, F, h) has been constructed, various
specific coverage levels can be used to measure the effectiveness of a test set.
In this paper we use two of the most widely known coverage levels for finite
automata: state coverage and transition coverage.

Definition 9. A set T ⊆ V ∗, is called a test set that satisfies the state coverage
(SC) criterion if for each state q of M there exists u ∈ T and a path s ∈ A∗ that
reaches q (h(q0, s) = q) such that u is derived from w through the computation
defined by s.

Definition 10. A set T ⊆ V ∗, is called a test set that satisfies the transition
coverage (TC) criterion if for each state q of M and each a ∈ A such that a labels
a valid transition from q (h(q, a) �= qS), there exist u, u′ ∈ T and a path s ∈ A∗

that reaches q such that u and u′ are derived from w through the computation
defined by s and sa, respectively.

Clearly, if a test set satisfies TC, it also satisfies SC. A test set for Π1 satisfying
the SC criterion is

T1,1 = {(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 2)},

whereas a test set satisfying the TC criterion is

T1,s = {(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 2), (0, 0, 1, 3), (0, 0, 0, 3)}.

The TC coverage criterion defined above is, in principle, analogous to the RC
criterion given in the previous section. The TC criterion, however, does not only
depend on the rules applied, but also on the state reached by the system when
a given rule has been applied. Test suites that meet the RC and TC criteria can
be efficiently calculated using automata inference techniques [9], [15]. A stronger
criterion, in which all feasible transition sequences of length less than or equal to
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2 must be triggered in any state can also be defined – this will correspond to the
CDRC criterion defined in the previous section. Of course, a more careful analysis
of the relationships between criteria used in testing based on grammars and those
applied in the context of finite state machines, considered for P systems testing,
needs to be conducted in order to identify the most suitable testing procedures
for these systems.

The construction of a minimal DFCA and the coverage criteria defined above
can be generalized for a multiple compartment P system

Π = (V, μ, w1, ..., wn, R1, ..., Rn).

In this case, the input alphabet will be defined as

A = {(ri1,1
1 . . . r

i1,m1
m1 , . . . , r

in,1
1 . . . r

in,mn
mn ) |

0 ≤ ij,p ≤ Nj,p, 1 ≤ j ≤ mp, 1 ≤ p ≤ n},

where Nj,p is the maximum number of times rule rj , 1 ≤ j ≤ mp from compart-
ment p can be applied in one derivation step, 1 ≤ p ≤ n. Analogously to one
compartment P systems, only computations of maximum k steps are considered.

For k = 3, the derivation tree of Π ′
1 defined above is as represented in Figure 3.

For clarity, in Figure 3 if the derivation from some node u (not found at the
bottom level in the hierarchy) is the same as the derivation from some previous
node u′ at a higher level or at the same level in the hierarchy, then u is not
expanded any further; we denote u ∼ u′. Such nodes are (sac, bc) and (abc, c),
(sac, bc) ∼ (sa, b) and (abc, c) ∼ (ab, λ); they are given in italics. A minimal
DFCA of the language defined by the derivation tree is represented in Figure 4.

Similar to one compartment case, test sets for considered criteria, state and
transition cover, can be defined in this more general context.

(r3r4, r2)

(r3r4, r1)
(r2r4, r2

2)(r2r4, r1r2)

(r2r4, r1
2)

(r2r4, r1)

(r1r4, r2)

(r1r4, r2
2)

(r1r4, r1r2)

(r1r4, r1
2)

(r2r4, r2)(r1r4, r1)

(r4, λ)

(r3r4, λ)

(r2, λ)(r1, λ)

s, λ

sa, b ab, λ

ac, λ

abc2, b2c3sac2, b3c3
sac2, b2c3 sac2, bc3 abc2, bc3 abc2, c3 ac2, bc2 ac2, c2 cc, λλλλ

sac, b2c sac, bc abc, bc abc, c

Fig. 3. Derivation tree for Π ′
1 and k = 3
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(r3r4, r1)
(r3r4, r2)

(r2r4, r1)

(r1r4, r2)

(r1r4, r1
2)

(r1r4, r1r2)
(r1r4, r2

2)
(r2r4, r1

2)
(r2r4, r1r2)
(r2r4, r2

2)
(r2r4, r2)

(r1r4, r1)

(r4, λ)

(r3r4, λ)

(r2, λ)(r1, λ)

q0

q1

q3

q2

q4 q5

Fig. 4. Minimal DFCA for Π ′
1 and k = 3

5 Conclusions and Future Work

In this paper we have discussed how P systems are tested by introducing gram-
mar and finite state machine based strategies. The approach is focussing on
cell-like P systems, but the same methodology can be used for tissue-like P sys-
tems. Simple examples illustrate the approach and show their testing power as
well as current limitations. This very initial research reveal a number of inter-
esting preliminary problems regarding the construction of relevant test sets that
point out faulty implementations.

This paper has focused on coverage criteria for P system testing. In grammar
based testing, coverage is the most widely used test generation criteria. For finite
state based testing we have considered some simple state and transition coverage
criteria, but criteria for conformance testing (based on equivalence proofs) can
also be used; this approach is the subject of a paper in progress. Future research is
also intended to cover relationships between components and the whole systems
with respect to testing, other testing principles based on the same criteria and
strategies, as well as new strategies and different testing methods. Relationships
between testing criteria based on grammars and those used in the case of finite
state machine based specifications remain to be further investigated in a more
general context.

Acknowledgements. The authors of the paper are grateful to the anonymous
referees for their comments and suggestions.
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5. Câmpeanu, C., Sântean, N., Yu, S.: Minimal cover-automata for finite languages.
In: Champarnaud, J.-M., Maurel, D., Ziadi, D. (eds.) WIA 1998. LNCS, vol. 1660,
pp. 43–56. Springer, Heidelberg (1999)
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7. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane
Computing. Springer, Heidelberg (2006)
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