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Abstract. Dealing with distributed implementations of P systems, the
bottleneck communication problem has arisen. When the number of
membranes grows up, the network get congested. In agreement with this,
several published works have presented an analysis for different architec-
tures, which implement P systems in a distributed cluster of proces-
sors, allocating several membranes to the same processor. The purpose
of these architectures is to reach a compromise between the massively
parallel character of the system and the needed evolution step time to
transit from one configuration of the system to the next one, solving the
bottleneck communication problem.

The work presented here carries out an analysis of semantics of the
P systems, in several distributed architectures. It will be shown how
to restructure P systems when dissolutions or inhibitions take place in
membranes. Moreover, it will be also determined the extra information
necessary at every communication step in order to allow all objects to
arrive at their targets without penalizing the communication cost. This
will be based on usefulness states, presented in a previous work, which
allow each membrane of the system to know the set of membranes with
which communication is possible at any time.

1 Introduction

Membrane computing [6] is a new branch of natural computing, inspired by liv-
ing cells. Membrane systems establish a formal framework in which a simplified
model of cells constitutes a computational device. Starting from a basic model,
transition P systems, many different variants have been considered and many of
them have been demonstrated to be equivalent to the Turing machine. Strictly
speaking from an implementation point of view and considering only the sim-
plest model transition P systems), there are several challenges for researchers
in order to get real implementations of such systems. Today, one of the most
interesting is to solve the communication bottleneck problem when the number
of membranes grows up in the system. Accordingly with this fact, several works
[8], [2] and [3] present an analysis for distributed architectures based on allocat-
ing several membranes to the same processor, in order to reduce the number of
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external communications. These architectures allow certain degree of parallelism
in application rules phase, as well as in the communication phase in a transition
step during P system execution.

On the other hand, usefulness states were defined in [5] with two main goals.
First and foremost, a usefulness state in a membrane represents the set of mem-
branes to which objects can be sent by rules in the current evolution step. This
information is essential to carry out a transition correctly. And second, useful-
ness states are used to improve the first phase (evolution rules application inside
membranes) getting useful rules in a faster way. In [8], [2] and [3] the total time
for an evolution step is computed, and what is more important is the fact that
reducing the application phase time, the system obtains an important gain in
the evolution total time.

The goal of this paper is to fit usefulness states into communication architec-
tures presented in [8], [2] and [3], solving the problem of membrane dissolution
and membrane inhibition, not considered in those works. Furthermore, it will
also be considered the required information for objects to reach their respective
target membranes. This information is based on the usefulness state concept.

2 Related Works

In what follows, several distributed architectures for implementing transition P
systems are described, and also the usefulness state concept is reviewed.

2.1 Communication Architectures

In order to face the communication problem in P system implementations, in
[8] an architecture named “partially parallel evolution with partially parallel
communication” is presented. This architecture is based on the following ideas:

1. Membrane distribution. Several membranes are placed at each processor
which will evolve, at worst, sequentially. Then, there are two kinds of commu-
nications: (i) internal communications between membranes allocated at the
same processor, with negligible communication time due to the use of shared
memory techniques, and (ii) external communications between membranes
placed in different processors.

2. Proxies used to communicate processors. When a membrane wants to com-
municate with another one allocated at a different processor, uses a proxy.
Therefore, external communications are carried out between proxies, no
between membranes. This implies that each processor has a proxy which
gathers objects from all membranes allocated to it, and after that it com-
municates with suitable proxies.

3. Tree topology of processors in order to minimize the total number of external
communications in the system. Proxies only communicate with their parent
and children proxies. Figure 1 shows an example of a membrane structure
for a transition P system and its distribution in an architecture with four
processors.
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Fig. 1. Membrane distribution in processors

4. Token passing in communications in order to prevent collisions and network
congestion. A communication order is established through a token, and then
only one proxy tries to communicate at any moment. This token travels
through a depth search sequence in the topology of processors tree. In the
architecture of Figure 1, the order in communications would be the following:
P1 to P2, P2 to P4, P4 to P2, P2 to P1, P1 to P3 and finally P3 to P1.

More recently, Bravo et al. [2] have proposed a variant of this architecture.
Membranes are placed in slave processors and a new processor is introduced
acting as master. Slaves apply rules and send to the master multisets of objects
whose targets are in a different slave. Master processor redistributes multisets
to its own slaves. This architecture keeps the parallelization in the application
phase obtained in [8], but also it seeks for parallelizing the rule application phase
in some processors with the communication phase in others. This produces the
reduction of the evolution step time in the system.

An improvement of the last architecture was proposed in [3] by Bravo
et al. Now, several master processors in a hierarchical way are used. This fact
allows the parallelization of external communication and drastically increases
the parallelization of application rules and external communication phases. As
a result, a better evolution time of the system is obtained.

2.2 Usefulness States

The usefulness state concept for membranes of a P system was introduced in [5].
This state allows to any membrane to know the set of child membranes to com-
municate with (membrane context). This information is necessary to determine
the set of rules to be applied in a evolution step, and it changes dynamically
when membranes are dissolved or inhibited in the P system.

The set of usefulness states for a membrane j in a transition P system can be
obtained statically, that is, at analysis time, as it is shown in [5]. One usefulness
state in a membrane represents a valid context for that membrane, that is, a
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Fig. 2. Dissolving and inhibiting capabilities in membranes

context that can be reached after an evolution step. As the membrane context
can change dynamically, transitions among states are also defined in [5].

From a given usefulness state we can obtain the set of useful rules. A rule is
useful in an evolution step if all its targets are adjacent, not dissolved and not
inhibited, hence the communication is feasible.

Figure 2 represents our example of P system. In this case, only rules associated
to membrane 3 are detailed. Symbol δ in membranes 6, 9, 10 and 11 represents
the possibility of these membranes to be dissolved by the application of some
rules inside them. The symbol τ represents the possibility of inhibiting the com-
munication through membranes 6, 7, and 11. Usefulness states for membrane 3
are depicted in table 1, together with their contexts and useful rules.

Tables defining transitions among states are also defined at analysis time.
Suitable transitions take place when a child membrane of the current context
changes its permeability in such a way that, during system execution, membranes
will obtain the set of useful evolution rules directly from their usefulness states,
without any computation.

Table 1. Usefulness states for membrane 3

Usefulness State Context Useful rules
q0 {6, 7} r1, r2, r3, r5

q1 {6} r3, r5

q2 {8, 9, 7} r2, r4, r5

q3 {8, 9} r4, r5

q4 {8, 7} r2, r4, r5

q5 {9} r5

q6 {7} r2, r5

q7 ∅ r5
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From an implementation point of view, problems arise when membranes have
a high number of states, which cause transition tables to grow up. That is why in
[5] it is proposed to encode usefulness states in order to avoid transition tables.
Each usefulness state is encoded depending on its context, hence transitions are
carried out directly in the code. Two definitions are introduced:

Total context for membrane j. This is the set of all membranes that even-
tually can become children of membrane j. Therefore, all contexts are included
in the total context:

TC(j) = Child Of(j)
⋃

jk∈Child D(j)

TC(jk), (1)

where Child Of(j) is the set of all membrane j children in the initial structure,
and where Child D(j) is the set of membrane j children that can be dissolved.

Normalized total context for membrane j. This is defined as the TC(j)
sorted in depth and in pre-order:

TCNormal(j) = (j1, TCNormal(j1), . . . , jn, TCNormal(jn)), (2)

where jk ∈ Child Of(j) from left to right in μ, that is, in the initial mem-
brane structure, and TCNormal(jk) is considered as null if membrane jk has no
dissolving capability. For instance, in our P system, TCNormal(3) = {6, 8, 9, 7}.

Each usefulness state of a membrane j is encoded by TCNormal(j) depending
on its context, with binary logic. The value 1 represents that the membrane
belongs to the state context. For example, the usefulness state q0 for membrane
3, representing the context {6, 7}, is encoded as 1001.

If qj(t) = (i1, . . . , ik, . . . , in) encoded by TCNormal(j) is the usefulness state
for membrane j at time t, the transitional logic will be the following:

1. If membrane ik at time t is inhibited, then qj(t + 1) = (i1, . . . , 0, . . . , in)
2. If membrane ik at time t comes back to be permeable, then qj(t + 1) =

(i1, . . . , 1, . . . , in)
3. If membrane ik at time t is dissolved, it has to send its usefulness state

qij (t), encoded by its normalized total context TCNormal(ik), to membrane j.
Considering formula 2, the usefulness state for membrane j can be expressed
in a deeper way as qj(t) = (i1, . . . ,ik, TCNormal(ik), . . . ,in). Then, the
transition obtained for membrane j is qj(t + 1) = (i1, . . . ,0, qij (t), . . . ,in)

In the example, if membrane 3 is in usefulness state q3(t) = 1001, encoded by
TCNormal(3) = {6, 8, 9, 7} and membrane 6 is dissolved in q6(t) = 11 encoded
by TCNormal(6) = {8, 9}, it is obtained the transition q3(t + 1) = 0111.

3 Usefulness States Updating in Membrane Dissolution
and Inhibition

In order to fit properly usefulness states updating, we will describe the succession
of tasks that are carried out in an evolution step before communications initiate,
that is, in the phase of rules application inside a membrane.
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1. Active rules are obtained for every membrane of the system.
2. Active rules are applied in a maximally parallel and non-deterministic way

in every membrane of the system.
3. Each membrane of the system determines the result of rules application. The

following information is obtained:
– Objects which are produced and remain at the same membrane.
– Objects which are produced and have as target an adjacent membrane of

the P system. These objects will be sent to the proxy of the processor in
which the membrane is placed. This proxy will be in charge of collecting
objects and sending them to their respective targets, as will be described
in Section 5.

– A new permeability state for the membrane, which is computed following
the Figure 3 automaton. This automaton represents transitions among
membranes states based on the resulting dissolution and inhibition in
the applied rules. The membrane will notify its new permeability state
to the proxy only in case of changing.

Fig. 3. Membrane permeability states

When a proxy receives the information sent by a membrane (new permeability
state and current usefulness state in case of dissolution) it is necessary to carry
out the following tasks:

1. The proxy has to find out the father membrane. It is necessary to consider
that it can change dynamically, as membranes are dissolved. Furthermore,
the father may be allocated to another processor.

2. The proxy has to notify the new situation to the father. The latter will
update its usefulness state according to this situation, as it has been shown
in Subsection 2.2.

In order to achieve these goals, the proxy must know the membrane structure,
as regards membranes allocated in the proxy processor. For each of them, the
proxy must know the following information:

– j: membrane identifier.
– D(j): Dissolved. The value will be true if membrane j is dissolved.
– TCL(j): Total context lenght. This value is computed in analysis time fol-

lowing the formula:

TCL(j) =
n∑

k=1

(1 + TCL′(jk)) (3)
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where jk ∈ Child Of(j) and

TCL′(jk) =
{

TCL(jk) if jk has dissolving capability
0 otherwise

– PFTC(j): Position at father total context. This value is the membrane j
position at the normalized father total context. This value is computed from
the initial structure in analysis time following the formula:

PTCF (ji) = 1 +
i−1∑

k=1

(1 + TCL′(jk)), (4)

where jk ∈ Child Of(j) at the left of ji in μ. For instance, as TCNORMAL(3)
= {6, 8, 9, 7}, values of PFCT for child membranes are obtained from this
total context. Specifically, PFTC(6) = 1 and PFTC(7) = 4.

– USM(j): Usefulness state mask. The membrane j will make use of this mask
in the usefulness state updating process.

Following with the example in Figure 1, Figure 4 represents the stored informa-
tion in proxies. The values for TLC(j) and PFTC(j) are worked out from the
corresponding normalized total context, which are obtained taking into account
dissolving and inhibiting capabilities of membranes, depicted in Figure 2.

The proxy looks for the father of the membrane which has changed the per-
meability state, going up in the membrane structure. In this case, it is necessary
to use D(j) to find a non-dissolved membrane.

The proxy has also to prepare the suitable information for father membrane
in order to update its usefulness state. The updating process is performed by
changing the bit representing the membrane which has changed its permeability
state and this is done through a XOR between the usefulness state and the
USM(j) field. As shown in Subsection 2.2, the following cases can be found:

– Inhibition of a child membrane. The position associated to the child mem-
brane in the usefulness state has to be changed from 1 to 0, which means

Fig. 4. Information stored in proxies to update usefulness states
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that the communication is not possible for the next evolution step. A
XOR operation with a bit 1 reaches this change. For instance, let us sup-
pose that membrane 3 in our P system has the usefulness state 1001. As
TCNormal(3) = {6, 8, 9, 7}, this state represents the context {6,7}. Let us
also suppose that membrane 7 is inhibited at this time. The usefulness state
for membrane 3 is updated as follows:

USM(3) = 0001 (bit 1 for membrane 7)
1001 XOR 0001 = 1000 (Context(3) = {6})

– Removing inhibition of a child membrane. The position associated to this
membrane has to be changed from 0 to 1. This shows that the child mem-
brane accepts objects for the next evolution step. Again, a XOR operation
with a bit 1 reaches the change.

– Dissolution of a child membrane. The bit representing the child membrane
in the total context has to be changed from 1 to 0. Moreover, several of the
following positions in the normalized total context represent the context of
the dissolved membrane, as formula 2 shows, and necessarily these bits have
to be replaced with the usefulness state of the dissolved membrane. These
changes can be done with a XOR operation between the usefulness state
and the mask stored in the USM(j) field. For instance, let us suppose that
the usefulness state of membrane 3 is 1001, representing context {6, 7}, and
membrane 6 is dissolved in the usefulness state 10. As TCNormal(6) = {8, 9},
this state represents context {8}. The usefulness state of membrane 3 would
be updated in the following way:

USM(3) = 1100 (bit 1 for 6, followed by its usefulness state)
1001 XOR 1100 = 0101 (Context(3) = {8, 7})

The main problem now is to exactly determine the position of this information
in the binary mask, that is, in the field USM(j). In order to do this, it is
necessary the PFTC(j) field. The proxy goes up in the membrane structure
looking for the father membrane, and simultaneously performing the addition of
PFTC(j) fields for every dissolved membranes found in the path.

As an example, let us suppose that membrane 9 is dissolved in a evolution
step and membrane 6 was already dissolved in a previous step, in such a way that
membrane 3 is the father of membrane 9. The USM(3) field can be obtained in
the following way:

Information = 1 (membrane 9, followed by its usefulness state)
Position = PFTC(9) + PFTC(6) = 3
Length = TCL(3) = 4
—————————————–
USM(3) = 0010 (as TCNormal(3) = {6, 8, 9, 7} ⇒ 9 dissolution)

When a membrane j changes its permeability, the algorithm ChangeUS
(Figure 5) will carry out this process. The operator + represents strings con-
catenation and 0n represents a string with n symbols 0.

In an evolution step, it may happen that several child membranes change
their permeability, involving the same father. Therefore, the usefulness state of
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Fig. 5. Algorithm used to obtain the USM field for membrane j father

a membrane has to be modified with several masks. No matter the order in
which the proxy processes permeability changes, commutative and associative
properties of XOR operation allow to obtain the value for USM(j) correctly. Let
us suppose, in our example, that membranes 6 and 9 are dissolved in the same
evolution step. If proxy processes membrane 6 before, the resulting USM(3) is
processed as follows:

Both dissolutions have been considered owing to XOR operation in line 15.
On the other hand, if proxy processes membrane 9 before, the resulting UMS(3)
is processed as follows:
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When membrane 6 is dissolved UMS(6) is inherited by the father membrane,
that is UMS(3), through XOR operation in line 4.

Finally, it is important to note that the father membrane may be placed in a
different processor; therefore the process is carried out by several processors in
a distributed way. The algorithm in Figure 5 deals with this situation in lines
8 and 13, in which OutProcessor checks if the target membrane is allocated in
other processor.

4 Encoding Targets of Rules within Total Context

Evolution rules in transition P systems have the form u → v, u → v δ or u → v τ ,
with u ∈ O+ and v ∈ (O+ × TAR)∗, where O is the alphabet of objects, and
TAR = {here, out} ∪ {inj | j is a membrane label}. Symbol δ represents mem-
brane dissolution, while symbol τ represents membrane inhibition; u is called
the antecedent and v, vδ, vτ the consequent of rules.

Usually, transition P systems implementations up to now [4] [7] require to store
a membrane identification for every target inj in every rule in every membrane.
In this paper a compact representation for evolution rules consequent based on
the concept of total context is presented. It allows to represent targets without
membranes identifications, what reduce significantly the space necessary to store
rules. Moreover, this representation allows proxies to find any membrane target
in a precise way.

The total context of a membrane is obtained at analysis time, and it encodes
any possible inj target for evolution rules of the membrane. Hence, adding a
binary mask of length equal to membrane total context length, it is possible to
control if a rule sends objects to a determined child membrane with label j. It
is expressed setting to 1 the j position in the binary mask.

In addition, we propose four bits more in order to encode the complete con-
sequent of a rule rk, two for targets here (bk

h) and out (bk
o) respectively and two

for representing membrane dissolution (bk
δ ) and inhibition (bk

τ ). Figure 6 shows
the proposed encoding for a rule consequent. Besides the sequence of bits, each
target has a multiset associated, represented as Mk

h Mk
o Mk

1 . . . Mk
n .

On the other hand, the antecedent of a rule rk can be represented with another
multiset: Mk

a .

Fig. 6. Encoding a rule consequent
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Table 2. Encoding consequent of membrane 3 rules

Rule Encoding Multisets
r1 : a2b → (a2 in7)(b in6) τ 00100110 M1

1 = b, M1
4 = a2

r2 : a2b2 → (a2 in7)(a2 here)(b2 here) 10000100 M2
h = a2b2, M2

4 = a2

r3 : a2b5 → (b2 in6)(b2 out) δ 01100001 M3
o = b2, M3

1 = b2

r4 : a4 → (a2 here)(b in8) 10010000 M4
h = a2, M4

2 = b

r5 : b2 → (a here)(b here) 10000000 M5
h = ab

Table 2 contains the encoded consequent of rules in membrane 3 of our ex-
ample. Let us remind that the normalized total context for this membrane is
{6,8,9,7}

In Section 3 it was enumerated the task list to be performed in evolution rules
application phase in membranes. Let us explain how can be used and computed
the resulting evolution rule using this compact representation of binary mask and
multiset of objects. Let MR(p) = rn1

1 . . . rnm
m =

∑m
i=1 niri be the multiset of

rules to be applied in the evolution step p, where ni means the number of times
the rule ri has to be applied. Then, it is needed to compute:

– C(p), the sequence of bits, encoding targets, for the multiset of evolution
rules consequent (bh bo b1 . . . bn bτ bδ)

C(p) = OR∀ ri ∈ MR(p) C(ri) (5)

– Mh(p), Mo(p), M1(p), . . . , Mn(p), the list of multisets of objects associated
to C(p).

Mh(p) =
∑

∀ ri ∈ MR(p)

ni M i
h (6)

Mo(p) =
∑

∀ ri ∈ MR(p)

ni M i
o (7)

Mj(p) =
∑

∀ ri ∈ MR(p)

ni M i
j (8)

– And finally, Ma(p) the antecedent of the multiset of evolution rules.

Ma(p) =
∑

∀ ri ∈ MR(p)

ni M i
a (9)

When this process finishes, membranes proceed to data delivery:

– Multisets Mh(p) and Ma(p) will be applied directly to the membrane. Con-
sidering w the multiset of objects placed in the membrane at the beginning
of the evolution step, w is updated by:

w = w − Ma(p) + Mh(p) (10)
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– bo b1 . . . bn, together with Mo(p) M1(p) . . . Mn(p), will be sent to the proxy
processor.

– bδ bτ will be used to find out changes of permeability, as the automaton in
Figure 3 shows. If bδ is equal to 1, the transition δ is applied; otherwise if bτ

is equal to 1, the transition τ is applied; finally, the transition δ τ is applied if
both bδ and bτ are equal to 1. In the case of permeability change, membrane
will notify the new permeability state to the proxy, in order to update the
usefulness state of its father, as it is detailed in section 3.

5 Targets Search in Proxies

When a membrane has to send objects to its adjacent membranes, it uses the
proxy. The membrane sends to the proxy a pair of data (Targets, MS), where
Targets is a binary sequence encoding labels of target membranes (bo b1 . . . bn)
and MS is the sequence of multisets associated to each one of the target mem-
branes (Mo(p)M1(p) . . . Mn(p)). At this moment, the proxy has to perform the
following tasks:

1. Target membrane for Mo(p) is the father membrane. Hence the proxy will go
up in the membrane structure looking for the first non-dissolved membrane.

2. Target membranes for M1(p) . . . Mn(p) are encoded by b1 . . . bn. Hence, the
proxy needs to analyze the normalized total context of the source membrane.
Considering equation (2) for the normalized total context of a given mem-
brane, for every child membrane the proxy has to keep two important data:
the dissolving capability of this membrane, and the length of its normalized
total context.

As a consequence, in order to perform targeting search, the proxy has to store
the following information related to membranes allocated to its processor:

– D(j): Dissolved. The value will be true if membrane j is dissolved.
– DC(j): Dissolving capability. Its value will be true if there is any evolution

rule which could dissolve the membrane j. It is obtained at analysis time.
– TCL(j): Total context length.
– M(j): Multiset for membrane j. When proxy determines that membrane j

is a target, it stores temporally the suitable multiset in the M(j) field.

Moreover, it is also necessary to note that one or more targets could be placed
in different processors. Hence, the proxy has to prepare properly some informa-
tion to send them, because search of targets must continue on these processors.
So, the proxy has to store some data about membranes placed in other processors
with which there are established connection (virtual connections in Figure 1).
The needed data for the proxy are:

– DC(j), TCL(j), and M(j)
– Targets(j): To store a sequence of bits encoding a list of targets.



Usefulness States in New P System Communication Architectures 181

– MS(j): To store a list of multisets associated to the sequence of targets. This
field and the previous one are needed only for membranes with dissolving
capability.

Figure 7 shows the required information by proxies of the processors depicted
in Figure 2.

Fig. 7. Information stored in proxies to search targets

5.1 Target Search for Mo(p)

The algorithm presented here (Target Out) looks for membrane j father in order
to send it the multiset Mo(p). In line 5, Mo(p) is assigned to the temporary field
M of the father. Line 3 considers the situation in which the search has to be
continued in another processor, then the partial result remains in a field M
awaiting to be sent to the appropriate processor. Section 6 of this paper deals
with communications in architectures.

Fig. 8. Target search for multiset Mo(p)
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5.2 Targets Search for M1(p) to Mn(p)

The proxy has to interpret the normalized total context of the source membrane.
With this aim, the proxy will go down into the sub-tree of the membrane struc-
ture, starting from the source membrane, in depth and in pre-order. When a
membrane j has no dissolving capability (DC(j)) the analysis of this branch of
the sub-tree is finished.

The recursive algorithm in Figure 9 describes the search of targets from the
source membrane j, the sequence of bits, encoding targets (Targets) and the list
of multisets (MS) associated to targets. The algorithm visits child membranes
from left to right. When the corresponding bit bi is equal to 1, the multiset Mi(p)
is associated to the child membrane (line 7). Otherwise the child membrane is
not a target, but if it has dissolving capability (DC(j)) then the search has to be
continued from bi+1 into the normalized total context of the child membrane, as
equation (2) shows. In case that the child membrane were allocated to the same
processor, the search continues in the child membrane by making a recursive
call in line 17. Otherwise, the information corresponding to the normalized total
context of the child membrane is stored in Targets(j) and MS(j) fields in order
to continue searching in the appropriate processor (lines 19 and 20).

An additional detail of the algorithm is that if bi = 1 and the child membrane
has dissolving capability, the algorithm skips the total context of the current
child membrane, because these membranes are not possible targets (line 8).

Fig. 9. Searching targets for multisets M1(p) to Mn(p)
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5.3 Membrane Dissolution

As it has been said before, the proxy has to execute algorithms Target Out and
Target In for every membrane placed at the processor which require sending
objects. Moreover, it has to execute the algorithm ChangeUS for every membrane
which notifies a change of permeability.

Nevertheless, membrane dissolution has not been solved yet. Dissolution takes
place when an evolution step finishes. Then, objects remaining inside the mem-
brane have to pass to its father. In this way, when membrane j is going to be
dissolved, we have to bear in mind the following:

1. Self processing in membrane: Objects remaining in the membrane after rules
application will be sent to the father membrane together with Mo(p),

Mo(p) ← Mo(p) + w − Ma(p) + Mh(p),

where w is the multiset of objects in the membrane at the beginning of the
evolution step

2. Objects coming from other membranes in the current evolution step. In
this case, it is needed to distinguish two possibilities depending on whether
objects are processed by proxy: before or after proxy set the membrane as
dissolved (field D(j)).
(a) M(j) stores objects arriving the proxy before it has marked the mem-

brane j as dissolved. At the moment the proxy marks membrane j as
dissolved, it sends M(j) to membrane j father using Target Out algo-
rithm. This behavior is reached by adding lines 5 to 9 to the ChangeUS
algorithm, as Figure 10 shows.

Fig. 10. In case of dissolution, M(j) is sent to membrane j father
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(b) In case of objects for membrane j arriving in the proxy after membrane
j has been marked as dissolved and before the current evolution step has
finished, the Targets In algorithm will send them to membrane j father
(lines 5 and 6 of Figure 9).

6 Results Distribution

When system proxies finish all the tasks explained above with algorithms
ChangeUS, Target Out, and Targets In, their results are stored in USM(j),
M(j), Targets(j), and MS(j) fields, where membrane j may be allocated to
other processor. In order to deliver these results, the distributed architecture in
which the P system is implemented is very important, because external commu-
nications are implemented by distributed architectures in different ways.

6.1 Architecture Proposed by Tejedor et al. in [8]

The external communications are established in depth in the processors tree.
After receiving information coming from the upper level, a processor P commu-
nicates with each descendant processor in both directions and from left to right;
finally, P sends data to its ascendant processor. Taking this order into account,
the sequence of tasks to be carried out by processor P proxy is the following:

1. P proxy gets all data contained in M(j), Targets(j) and MS(j) coming
from ascendant processor proxy.

2. P proxy processes the arrived data using Targets In algorithm for Targets(j)
and MS(j) fields. Multisets received in M(j) are placed in the correspond-
ing M(j) field, but if membrane j has been marked as dissolved in the
current evolution step, then M(j) has to be sent to membrane j father with
Target Out algorithm. In this case, M(j) will come back to the ascendant
processor in step 4.

3. for each descendant processor of P from left to right:
(a) P proxy sends the corresponding information (M(j), Targets(j) and

MS(j)) to the descendant processor.
(b) P proxy waits until the descendant processor replies with data composed

of fields M(j) and USM(j).
(c) P proxy continues searching targets upwards from membrane j related

to fields M(j) and USM(j) by using Target Out and ChangeUS algo-
rithms.

4. Once P proxy has processed all data from all its descendant processors, it
sends to its ascendant processor the corresponding fields M(j) and USM(j).

5. Finally and through internal communications, P proxy delivers the defini-
tive fields M(j) and USM(j) associated to inner membranes processor. The
evolution step finishes when every membrane j updates its multiset and its
usefulness state with this information, as follows:

w ← w + M(j)

Usefulness State ← Usefulness State XOR USM(j).
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6.2 Architectures Proposed by Bravo et al. in [2] and [3]

These architectures make use of one [2] or several [3] master processors which
are in charge of controlling communications among slaves processors, while mem-
branes are placed on slaves processors. Hence, a master processor has to store
and process M(j), USM(j), TCL(j), PFTC(j), CD(j) and D(j) fields, for all
membranes belonging to slaves controlled by the master. As it was said above,
D(j) is a dynamic field and it is changed during execution by membranes. There-
fore, a problem arises with the D(j) field updating. Proxies associated to slave
processors have to notify membranes dissolutions to master proxy.

The sequence of tasks in these architectures is the following:

1. Every slave processor proxy sends data to the suitable master in its corre-
sponding turn. In particular, it sends fields M(j), USM(j), Targets(j) and
MS(j) to its master, regardless of the target processor. Additionally, it has
to send the list of dissolved membranes in the current evolution step.

2. Master proxy processes the incoming information as follows: Target(j) and
MS(j) with Targets In algorithm, M(j) with Target Out algorithm and
USM(j) with ChangeUS algorithm. Furthermore, master proxy updates
D(j) field for all dissolved membranes, taking into account the same ques-
tions as in section 5.3.

3. Master proxy sends the corresponding M(j) and USM(j) fields to each one
of the slaves processors.

4. Finally, slave proxy sends to each one of its inner membranes their corre-
sponding M(j) and USM(j) fields. Then, evolution step finishes.

7 Conclusion

Membranes make use of usefulness state to determine the set of membranes
with which they can communicate. Moreover, when dissolutions or inhibitions
are produced in the system, only usefulness states changes in father membranes
in order to reconfigure the membrane structure of P systems are necessary.

The work presented here shows that usefulness states can be implemented in
several distributed architectures for P systems implementations [8], [2] and [3].
In addition, usefulness states solve permeability changes in P systems for the
referred architectures.

In [5], membrane total context concept was defined. This paper shows how
to use it in a very useful manner to encode targets in evolution rules, avoiding
labels in membranes. This encoding method allows to find any target membrane
in a precise way. Moreover, it can be used in several distributed architectures for
P systems implementation [8], [2] and [3].

It is also presented here a semantic analysis of P systems for determining what
kind of information is relevant for the communications among membranes. In this
sense, it was necessary to determine how to solve the targeting problem without
producing an overload in the system communication, and how to update and
communicate new membranes states all over the systems. The presented solution
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based on usefulness states has been proved to be useful at least in distributed
architectures presented in [8], [2] and [3].
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