Chapter 7
Solutions of Problems

7.1 Chapter 1

Problem 1.6.1: Data, information, and knowledge

A customer calls the requirements engineer and tells her about a feature they forgot
to put into the specification. Where are data, information, and knowledge in this
example?

The missing characters in the specification constitute “data.” There is also “audio
data” of the customer’s voice. “Information” implies meaning. Interpretation of
characters or spoken words as describing a feature of the product turns the data into
“information.” Both requirements engineer and customer have additional “knowl-
edge” about the system before they start the conversation. This context turns the
information about a new feature into “knowledge” that is related to other knowl-
edge in their minds.

Problem 1.6.2: Missing the expert

Explain what could happen if a customer cannot reach the requirements engineer,
but reaches a sales person instead. Assume the requirements engineer knows the
project very well.

Data in terms of spoken words is transmitted just as in the previous problem.
However, because of a lack of background knowledge, the sales person may be
unable to interpret those words: Information about the missing feature could be lost
when the sales person misinterprets what is being said. By all means, the sales per-
son is missing contextual knowledge, so the information about the missing feature
cannot be contextualized within preexisting knowledge. In this example, data has
been transferred, information may be partially transmitted, but knowledge has not
been successfully transferred.

Problem 1.6.3: Exact meaning

Your company has a cooperation project with an offshore development organization.
You are not sure whether they use the same version of UML as you do. How do you
make sure to transfer not just data but also the information implied in your UML
2.0 diagrams? Discuss your attempt using the terminology introduced in Chap. 1.

K. Schneider, Experience and Knowledge Management in Software Engineering, 203
DOI 10.1007/978-3-540-95880-2_7, © Springer-Verlag Berlin Heidelberg 2009

204 7 Solutions of Problems

UML 2.0 is formally defined. When a UML 2.0 diagram is used to represent
information, it is important to let the receiver know about this formal definition.
For that purpose, a piece of metadata must be conveyed together with the opera-
tional data (the UML diagram itself). This metadata must at least tell the receiver
that you used UML 2.0. Maybe, there should be additional metadata on the implica-
tions of that fact. After reading the metadata, receivers can interpret the diagram as
UML 2.0 formally defined data. This helps them in assigning semantics (the implied
meaning) to the UML syntax. In summary, the operational data (the diagram) is
transferred together with metadata pointing out the version of UML and the for-
mal meaning of the symbols. As a consequence, semantics is received together with
syntax, thus conveying all information expressed in the details of a UML 2.0 dia-
gram. With a knowledgeable receiver, this information can be reconstructed into the
knowledge the sender intended to express in the UML diagram. Without that meta-
data, a receiver might have treated the diagram as a less formally defined sketch and
missed part of the meaning (i.e., information and knowledge).

Problem 1.6.4: Experience in a review

During a review of a design document, the team finds out that there was a misun-
derstanding among customer representatives: They did not really need a distributed
system. As a consequence, most of the design effort invested was wasted. Two of
the authors participate in the review, and one will be told about it later. What will
be the experiences of the authors and reviewers? Describe their observations, their
emotions, and possible conclusions they may draw. Emphasize differences between
different authors and between authors and reviewers.

Participating authors: They have observed the review and the finding. They
“observed” the conversation that uncovered the misunderstanding. As they have
invested so much effort into a document by mistake, they will be frustrated or
angry — a strong negative emotion. They might draw very different conclusions
from this observation and emotion: Either they might conclude that “it is not worth
putting that much effort into a document, as it might be wasted effort” or they might
conclude to “never start writing the full-fledged document without checking basic
assumptions.” It is important to note that there is no single, objective, or obvious
conclusion in an observation — but any conclusion drawn will have an impact on
future actions and performance.

The author who did not participate in the review does not share the same observa-
tion and, hence, misses the first-hand emotion. When the other authors tell him what
happened, their own conclusions will influence their report. The listening author will
“observe” this report, which will cause a second-hand emotion and — probably — a
similar conclusion.

Reviewers participated in the same situation but see it from a different perspec-
tive. Their observation will include the success of finding a severe misunderstand-
ing. Although this will cause extra effort for the designers, the reviewers will feel
good about having detected the problem. Implementation effort was not wasted.
Reviewers’ emotions could be positive; at worst, they might feel bad for the authors.
The resulting conclusion will look very different from the authors’. “A review is

7.1 Chapter 1 205

always worth the time, as you may find hidden misunderstandings” is one, but the
author conclusion “never start writing the full-fledged document without checking
basic assumptions” may also be concluded by the reviewers. This exercise highlights
the importance of experiences — even though they may be highly individual, differ-
ent, and unpredictable.

Problem 1.6.5: Experience capture form

Sketch a one-page form for capturing experiences when they occur. Explain your
design and discuss how you will be able to effectively and efficiently collect what
you need for your form and how you will use the collected information later. Did
your first sketch cover all relevant information for successful reuse?

A predefined experience report form should help people to remember what
needs to be recorded about a memorizable observation. It should solicit experiences
and support people in documenting them — but it should not restrict their desire
to express themselves. Therefore, experience collection mechanisms need to offer
guidance without limiting expressiveness.

The sketch below is just one example. It contains only the essential fields (guid-
ance) but allows people to add more or different information on the back. Note the
“return to ...” tag. Each report form should show where it needs to be sent when
completed: by fax, e-mail, or company mail.

Experience Report Form

Who reports? Observation date| [Place/context

Return to (put recipient here). Feel free to use back side of page

Observation: What happened?

Emotion: How did you feel?

Conclusions: What do you conclude?

206 7 Solutions of Problems

The small fields collect essential metadata:

— Who made the observation?
— When was it observed (not documented!)?
— In which context was it collected?

Most space is reserved for operational data about the three key components of an
experience:

— What was observed?
— What was the emotion it provoked?
— What is the conclusion or hypothesis derived from that?

The page should allow ample room for the operational data and allow people to
document the experience with the lowest effort possible. It is rarely advisable to ask
for more details or aspects. People who want to tell more can do so on the reverse
side. People in a hurry will be turned off by more questions.

7.2 Chapter 2

Problem 2.7.1: Single- and double-loop learning
What is the difference between single-loop and double-loop learning? Explain both
modes and give a short example from software engineering for each of the two.

In single-loop learning, a given goal is to be reached. Learning leads to reaching
the goal faster or better. For example, a skilled software designer will become faster
in drawing UML diagrams through single-loop learning. In double-loop learning,
however, setting, reflecting, and adjusting goals are included in the learning process.
In the software engineering example, software engineers will learn to use UML
diagrams in only those situations in which they are advantageous. They may use
Petrinets in other situations (e.g., for specifying process synchronization).

Problem 2.7.2: Framework XY learning scenario

A software company has used a certain framework XY for building business applica-
tions. Problems using that framework are reported to a hotline. The hotline releases
a new version of its newsletter “XY Procedures.” New projects are supposed to fol-
low those procedures. This is supposed to spread learning across all projects. What
kind of learning is this? How could this type of learning turn out to be counterpro-
ductive? Refer to the XY example. What concrete activities could help to prevent
that negative effect?

The newsletter promotes single-loop learning: Existing procedures are presented
and are supposed to be followed without criticizing them. However, if the XY frame-
work turns out to be inadequate for a project, following the procedures might add
to the problem: A better framework should be proposed instead, thus adjusting the
goal. Promoted procedures could also be modified in order to circumvent the disad-
vantages of framework XY in the given project. In all cases, single-loop learning of
using XY in the standard way is not helpful but counterproductive.

7.2 Chapter 2 207

Problem 2.7.3: Formal reasoning patterns

You are working as a test engineer. Over the years, you have noticed that many
tests fail due to the incomplete initialization of variables. Describe the three for-
mal reasoning patterns (abduction, deduction, induction) and label the following
statements with the corresponding reasoning pattern name:

Induction: A general rule is derived from one or more observations. This rea-
soning may be flawed.

Deduction: A special case is derived by applying a general rule.

Abduction: From an observation in a special case, a hypothesis is derived (what
led to the observed situation?) as well as a general principle that supports the
hypothesis.

Answers to the examples:

e “...there are often errors in initialization.”

Induction: Some errors were observed, the general rule (“are often”) is
derived.

e “Initialization looks so trivial, so many people are not very careful about it.”
Abduction: Provides an explanation for a specific observation (people forget
initializations). Hypothesis leads to general rule (“people are not careful
when they consider something trivial” and: “initialization looks trivial”).
e “Programmers make more and more mistakes.”
Induction: General rule derived from several observations.
e “Setting a counter to O or 1 is often forgotten.”
Deduction from the general rule derived above (“there are often errors in ini-
tialization”). This is a special case of an initialization: setting a counter to
Oorl.
e “Flawed initialization is easy to find by testing; that is why we find so much,
because we test more systematically.”
Abduction: An observation is explained by a hypothesis about a generally
applicable principle. Like induction, a principle is derived from a few (or
a single) observations.
e “Programs have errors.”
Induction: The programs we have seen had errors, so we derive a general
rule: (all) programs (seem to) have errors.

Problem 2.7.4: Schools and approaches of knowledge management

A company wants to encourage the exchange of knowledge among their software
engineers. For each of the following suggestions, identify the respective school
(according to Earl) and approach (product- or process-centric) it belongs to:

e “We develop a knowledge database and send an e-mail to all software engineers
to enter their knowledge.”

Technocratic/Systems, product-centric: Infrastructure perspective.

208 7 Solutions of Problems

e “Let’s put an info terminal in the main lobby; every time you enter the building,

LIEY)

you will see a new ‘knowledge item of the day’.
Behavioral/Space. Process-centric: The daily learning impulse.
e “We could use a Wiki to record everything we think others might need.”

Technocratic/Systems. Product-centric: A mechanism for exchanging
knowledge chunks.

e “Okay, but there needs to be a moderator; plus, we should have monthly meetings
of the Wiki User Group.”

Behavioral/Organizational. Process-centric: The learning aspect in several
facets is being addressed.

e “Let’s put up a coffee machine and two sofas.”

Behavioral/Spatial. Process-centric: Psychological and social aspects are
highlighted, logistics of knowledge are not addressed.

e “There are powerful networks now, so we can even send movies. Everybody gets
a camera on their desk, and when they want or have something interesting, they
record a movie.”

Technocratic/Engineering. Product-centric: Movies are chunks of “knowl-
edge” or “question,” and this statement is concerned with the logistics of
those movies.

e “Great idea! We hire a person who can index all incoming movies according
to their SWEBOK category, and a few other attributes. We build a resolution
machine that helps to match new entries with stored ones.”

Technocratic/Cartographic. Product-centric: Even more obvious focus on
storing and managing chunks of “knowledge.”

Problem 2.7.5: Knowledge management life-cycle

Draw Nonaka and Takeuchi’s knowledge management life-cycle. Explain it by
applying the concepts to the example of a group of software project leaders who
meet in a community of practice in order to learn about cost estimation.

Tacit knowledge Learning (Software-) Organization Explicit knowledge
in organization in organization
Socialization e __.__Extemalization Combination
——= Se=<" Tos<TT =

~

e - : N
Sharing /

Building an Cross-

~
Creating N\ 4 Justifying N\

tacit } “archetype” leveling
f\ knowledge ~» \\concepts /) \ \concepts /} (prototype) knowledge
[=< - <
| SRR —_— e —— —_— e ——
1 Internalization
]
T
1 i% % Market @
AL
tacit: from users and Internalization by users explicit:

collab. organizations products, patents, ads

7.3 Chapter 3 209

The CoP meets to exchange experience and knowledge. During the first meetings,
most knowledge is implicit and often tacit. Participants will learn by socializing and
talking about their projects. Some may not even be able to externalize their (tacit!)
knowledge on cost estimation; they simply “do it.” The CoP encourages its members
to enter into the next phase of the life cycle: Those who listen might be able to derive
concepts (by induction or abduction). Those concepts need to be tested, so later
meetings can be used to collect additional reports in order to validate the concepts.
During this phase, the more experienced participants externalize what they know
(adding to the concepts, and finally, a constructive prototype of a cost estimation
model). Others learn by internalizing the stories they hear: Applying models helps
them to deeply understand (and internalize) what they hear. The final product of
the cycle will be an externalized, documented package including the elicited and
externalized knowledge that has been combined into a prototype, and finally a model
with variants. This model is disseminated in the organization (in the CoP, to start
with). When new needs arise to update or correct the model, the CoP may enter into
a new iteration of the cycle.

7.3 Chapter 3

Problem 3.8.1: Pattern

What is a “pattern” with respect to knowledge and experience management? What
are the core elements of a pattern and what are they used for when describing and
reusing software engineering knowledge? Give an example from software testing.

A pattern is defined as a situation and a consequence or a problem (situation)
and a solution (consequence). Core elements are the application condition, the sit-
uation or problem that is characteristic of the pattern, and the consequence. The
consequence is usually the solution proposed by the pattern. Experience and knowl-
edge can be represented in patterns. By making the application condition (including
situation and context) explicit, this knowledge can be used more easily.

Example: A testing expert has seen many cases in which only very few errors
were found during the first 3 days of testing. According to his experience, this is not
an indication of supreme software quality but rather points to a poor testing strategy.
This experience can be represented as:

e Problem/situation: Very few errors found during first 3 days of testing.
e Solution: Review testing strategy.

Although those two aspects make a pattern, it will be advantageous to document
the rationale for the solution. This will often point to observations and experiences,
like the concrete observations made in this example. Whenever the situation occurs
in a project, the pattern should be used, and poor testing strategies will be detected.
Applying the pattern is simple, and the benefit may be significant: No project will be
deceived by the low number of findings. Even if the pattern should be wrong every
now and then, this is not a major problem.

210 7 Solutions of Problems

Note that the “problem” does not look like a problem at first. Therefore, it is
more appropriate to call the triggering condition the “application situation.”

Problem 3.8.2: Defining quality aspects
Finding a common language with the customer is important in software engineer-
ing. Assume you are defining quality attributes for a new piece of software with a
customer from a medical background. Why is it important to define key terms like
“reliability” or “ease of use” explicitly?

Customers and other project participants may use the same terms in different
contexts and with different meanings (homonyms). In most cases, meanings will be
similar but differ in important details. Quality attributes are part of quality require-
ments. Meeting the (quality) requirements is an important goal of a project, so it
should be clear what they really mean. A misunderstanding could turn into a major
problem: A medical customer may associate the reliability of a device with its avail-
ability during surgeries. A computer person may think about correctness of oper-
ation. Both associations of reliability are not precisely conformant to quality stan-
dards, but both “definitions” of reliability can be found in real projects. The common
language needs to bridge the gap between participants.

Assume you are developing a banking system for teenagers on the Internet. This
program is supposed to target young, inexperienced banking customers. They should
be offered basic and additional information on the banking products, and each of
their interactions should be explained in detail if they wish. Also, teenage customers
should not be allowed to overdraw their account. This example is used for the fol-
lowing problems.

Problem 3.8.3: Mind map

In the process of developing the system, innovative ideas and important reminders
are collected in a mind map. The intention is to gain an overview of important and
“cool and catchy” concepts that should be taken into account to make the teenage
bank account system a success. Draw a mind map of a teenage bank account with at
least four directly related concepts and about two to four comments each. Comments
should explain the innovation or importance of each concept.

(See the accompanying mind map.)

Each button and each function has help option

. . Important transactions are explained when started
Personal advisor picture B
‘e.g: Money is transferred, cannot be called back

Animations to explain transactions }9|Look & feel i " i " —
\ e —— Ie.g. PIN is changed; old one becomes invalid,

new one needs to be stored. No use keeping

the initial mailing letter that contained the
old PIN.

Teenage Bank
Account

Tioatod o fch customers / Show video on stolen ATM card
ock charts available o{iaken seriousi) :)
inanci ©| taken seriously | Remind to block view when entering PIN
Frened comnend reon retilior Y e e —

7.3 Chapter 3 211

Problem 3.8.4: Brainstorming versus mind map

When you drew the mind map, you were not performing brainstorming, although some
people might call it so. What are the main differences between drawing your mind map
and “real” brainstorming?

Here are some important deviations. Not all of them may apply in your situation:

e Drawing the map alone. Brainstorming is supposed to be carried out in a group;
participants should base their contributions on what they hear and see from
others.

e In particular, a moderator is missing who would observe the brainstorming rules.
In many cases, the moderator will also write down the contributions.

e Associations and relationships in a mind map were drawn while the mind
map was generated. In brainstorming, the moderator should not influence the
process, and there should be no online structuring (such as relationships,
labeling, etc.).

Problem 3.8.5: Glossary entries
Provide glossary entries for “graphical user interface,” “bank account,” and “ATM
card” (no debt allowed for teenagers) with respect to the teenage bank account.

e Graphical user interface: The screen of the banking application consists of dif-
ferent graphical elements for input and output. Young customers interact with
the banking application by interacting with those elements, similar to a com-
puter game. For example, screens contain symbols that represent functions.
They can be clicked to trigger the respective function. Dragging and drop-
ping banknote symbols with the mouse indicates money transfer (and so on:
it is important to refer to specific aspects of graphical user interfaces in this
application).

e Bank account: The amount of money put into the bank is stored individually
for each customer. Administrative information (such as name, age, address, etc.)
is stored together with the monetary information. When managed by the bank,
the set of personal and monetary information is called an “account.” It is identi-
fied by an eight-digit “account number,” which is also part of the account. One
customer may have multiple accounts, which will have different account num-
bers. (It is important to explain the term so that young customers will under-
stand it. Most of them are computer-literate but not used to banks and financial
operations.)

e ATM card: Personal card that enables a customer to carry out banking opera-
tions at a banking machine (called ATM; Automated Teller Machine). Customers
receive ATM cards at their request. They cannot withdraw more money than
they have in the bank. (This entry could have more or less detail on how to use
the ATM card. In principle, a short definition might be enough. It is not recom-
mended to explain the rules of usage within a glossary entry.)

Problem 3.8.6: Typos
Typos (incorrectly spelled words) are more common in mind maps than in glos-
saries. Why is that so and why is it usually not a problem for mind maps?

212 7 Solutions of Problems

e Mind maps are mostly drawn using a computerized tool. The person drawing and
writing tries to capture contributions of the entire group and write them down
fast. This process requires drawing lines and links, rephrasing what people say,
and typing fast. A typo will mostly not endanger meaning, so little care will be
taken in deleting small mistakes.

e Glossaries will be used as a reference in a project. They should not have obvious
mistakes, as those might put their credibility at stake. For that reason, a glossary
will be checked before it is used in a project. In extreme cases, a typo or mistake
may ripple through many documents that use the flawed glossary entry.

Problem 3.8.7: Domain model

What happens when a teenage customer turns legally adult? How can you find out
what is supposed to happen then? Write a use case for this operation and highlight
two pieces of “domain knowledge” it contains.

From the above-mentioned description, it is not clear what will happen. This
situation of a customer turning adult may have been forgotten.

In that case, the customer (i.e., the bank building the young customer portal) will
need to decide. A use case can help to facilitate precise communication between
developing organization and bank. The following example shows a process that may
be carried out automatically or manually. The two pieces highlighted describe sim-
ple but important pieces of domain knowledge that have been made explicit using
the use case.

(See Use Case 42, “Adopting customer status to adult,” below.)

Use Case 42 Adapting customer status to adult

Environment Regular batch account processing
Level Main level
Primary Actor Bank
Stakeholders and Stakeholders __ Interests
their interests Customer: wants to be treated as & serious customer, no extra info needed |
Bank: ‘wants to change account conditions, including user mterface (and price)

Precondition

‘Customer has been a i.eemge customer for at least half a year

Guarantee

Basic account information remains the same (name, balance)

Success case

Customer receives a letter informing him or her sbout the new status
Status is set to adult, leading to higher prices and simplified “expert-mode” user interface

Trigger

Batch routine identifies a Young Customer tumed legally adult

Sequence of Steps

Step Actor Activity

1 Bank Sends information letter to customer
2 Bank Modifies sccount status

3 Customer Uses ATM the next time

4 ATM Uses Adult dislogue and nteraction

Extensions

1a If Customer has not been teenage customer for at least half a year, postpone status change for | month.
3a If customer does not use ATM for 60 days, send another letter inviting him to a visit.

Technology

If there is el ic contact inf tion for the

(SMS, email), send information to those in parailel.

7.3 Chapter 3 213

Problem 3.8.8: Use case

Describe the use case of “changing the PIN” using the use-case template shown in
Fig. 3.8. Make sure to address the characteristic need of young customers to learn
about permitted PIN formats and the implications of changing a PIN (and maybe
forgetting it). What happens when they enter incorrect input?

When they enter incorrect input, additional information is displayed — in contrast
with normal ATM software that simply requests the correct PIN again.
(See Use Case 12, “ChangingPIN,” below.)

Use Case 12 Changing PIN
Environment ATM on a wall inside or outside bank building
Level Main level
Primary Actor Young customer (customer, for short)
keholders and Stakahold, I
their interests Customer: wamts 1o change PIN (to memonize it better, or 1o ensure higher security level)
Bank wants 1o avoid fraud {foreign imerference, unauthonzed modification of PINg) and forgotten PINs (=cffort)
Precondition Customer has a valid Young Customer account

Customer has identified and authentified {PIN) him/herself

Guarantee PIN is not changed without old PIN being
Mot cha

ered correctly

without the new PIN being entered identically two times immediately after each other

Success case PIN is cha
The customer has effectively been miormed about all consequences of that change

ged to the new PIN given by the customer,

The customer has demonstrated he or she remembers the new PIN

Trigger Customer inserts ATM card
Sequence of Steps Step Actor Activity
| Customer selects change PIN™ option
2 System asks for old PIN
3 Customer enters old PIN
4 System explains (a) old PIN will be imvalid (b) no need looking up old PIN {c) new PIN needs to be
memorized. Anmounce that this will be tested through a little game..
5 System asks for new PIN
i Customer enters new PIN
7 System asks for PIN in o modified way (e, “in reverse order”, “typed as words™)
8 Custorer enters modified PIN
0 Svstem acknowledges change, reminds Customer to memorize new PIN

Extensions 3a If customer cannot provide PIN, explain the securnity impact of changing PIN, ask to come back later
re PIN any more, provide option b 2e minde

G 1f customer does net want o cha

Bh If customer enters the old PIN again, do not accept, but assume misunderstanding and go 1o 4
fa If customer enters wrong modified PIN, explaim game again, go to 7 — offer cancellation,

Technology Do not speak text, even when speakers are available (can be overheard),

Problem 3.8.9: Writing a pattern

Let us assume the company developing the teenage banking system has gathered
experience with many other systems for young people. During those projects, there
was a recurring misunderstanding: When young customers were interviewed for
requirements, they rarely checked “intuitive interface” as a high priority. Neverthe-
less, customer satisfaction seemed to depend on ease of use. Structure this obser-
vation as a pattern, and describe how the teenage banking project can make use

of it.
Observation as a pattern:
e Situation/Problem: A young customer project.

e Solution: Ease of use is an important quality aspect. This is true no matter what
teenage customers say in interviews.

214 7 Solutions of Problems

Different possibility: We conclude from the observation that young customers
either did not understand the term “intuitive interface” or they did not consider it
important. This conclusion would lead to a different pattern:

Situation: Interviewing teenage customers about software quality requirements.
Solution: Ask about the importance of intuitive interface by using examples and
concrete prototypes.

e Rationale: Teenagers seem to be unable or unwilling to associate with the abstract
term of “intuitive interface.” The question must be asked in a way teenagers can
relate to.

The teenage banking project can benefit from either of the two patterns: When
they find the situation matches their own situation, the solution part can be treated as
advice. In the two examples: (1) ease of use will be treated as important, no matter
what the interviewees say, and (2) the interviews will consider the teenagers’ ten-
dency to ignore or underestimate interface issues. Examples and concrete scenarios
will help.

7.4 Chapter 4

Problem 4.9.1: Definition and purpose
What is the definition and the purpose of an ontology?

An ontology is a data model that represents a set of concepts within a domain
and the relationships between those concepts. It is used to reason about the
objects within that domain (Wikipedia, August 30, 2007).

An ontology provides a clear reference for a certain domain. Knowledge workers,
tools, and projects can refer to it. By introducing formally defined concepts, rela-
tionships, and properties, those elements can be used in searches, reasoning, and for
computer-supported tasks.

Problem 4.9.2: RDF graph

Use the ontology sketched in Fig. 4.1: Describe a situation as an RDF graph in
which Dr. Dieter Drew prescribes “weight lifting” as a physical therapy to patient
Peter Painful. Nathalia Newton is a nurse who assists Peter in doing the weight
lifting in a health-stimulating way. Treat names as string attributes defined in that
same ontology.

Use http://ontoMed.schema/ as the name for the ontology shown in Fig. 4.1.
The hospital maintains a list on the intranet. Employees, patients, and treat-
ments offered are listed in http://hospital. mainList, with the subcategories /doctors,
/nurses, /patients, and /treatments. A specific entry (e.g., XY) is accessible at #XY.

7.4 Chapter 4 215

Dr. Dieter Drew

http:// ontoMed.schema/name

http:// hospital.mainList/doctors#DrDrew

http:// ontoMed.schema/gives'

Nathalia Newton

http://ontoMed.schema/name http:ontoMed.schema/name

http:// hospital.mainList/nurses#Nathalia http://hospital.mainList/patients#Peter

http://ontoMed.schema/attends-to

Peter Painful

http://ontoMed.schema/receives
http:// ontoMed.schema/prescribes

ittp:// hospital. mainList/treatments#weightLifting

http:// ontoMed.schema/name

Weight Lifting

Problem 4.9.3: Inheritance
Explain what happened to the inheritance relationships in Fig. 4.1 when you drew
the RDF graph, and why.

Inheritance relationships are not visible in the RDF graph. The RDF graph shows
instances and refers back to where they are defined. For example, gray ovals point
to the mainList for each instance. Predicates (arcs) point to the schema (Fig. 4.1) in
which the respective relationship was defined. Literals like names were not defined
anywhere, so they stand for themselves.

The name-relationship needs to be defined somewhere, and the problem descrip-
tion said you should assume they were defined in the ontoMed.schema ontology.

Inheritance is a relationship between classes (or types), but not instances. Each
instance belongs to one type or class. The most specific class is referenced in the
RDF graph. For “Weight Lifting,” this is Physical Therapy as opposed to Treatment.

Problem 4.9.4: Multiple roles
Looking at the RDF graph above: Can an individual or instance have multiple roles
(subject, predicate, object)? Substantiate your answer with an example.

Yes, this occurred to Peter Painful. He is the subject of the triple: Peter—receives—
Weight Lifting, and at the same time, he is the object in the triple Nathalia—attends-
to—Peter (this short notation for triples is not officially defined, as you know, but you
should understand what it means).

Problem 4.9.5: xmlns
What does the statement (xmins:medSchema= "http://ontoMed.schema/") mean
and how can that be used in subsequent statements?

A shortcut (medSchema) is defined. The given prefix of URIs is the “path” to
that schema. After opening that schema as a namespace, subsequent statements
can use it instead of the lengthy prefix (e.g., medSchema:prescribes instead of
http://ontoMed.schema/prescribes).

This makes the XML code more readable and avoids inconsistencies or typos.

216 7 Solutions of Problems

Problem 4.9.6: Attributes

What is the difference between an attribute “name” in a Protégé ontology versus
that in an object-oriented class model? How are attributes assigned in both envi-
ronments?

An attribute in an object-oriented class model is a part of a specific class symbol.
If several class symbols have an attribute that is spelled identically, like name, those
attributes are nevertheless different.

In ontologies, attributes are entities by themselves and are not dependent on a
class. The attribute name, for example, can be defined once (e.g., consisting of first
name and last name). Every class using this attribute actually refers to that same
entity, not just different entities with the same identifier.

In class models, the attribute is written in the second part of a class symbol. An
attribute in an ontology is created in a separate editor before it can be assigned to
none, one, or many classes.

Problem 4.9.7: OWL-DL
OWL-DL is often used as the variant for ontologies applied in practice. Name the
two other variants available and provide reasons that make OWL-DL preferable.

OWL-Full is powerful but not decidable. This makes it inadequate for formal
operations.

OWL-Light is very lean but not powerful enough for many applications.

OWL-DL is decidable and powerful enough. This makes it the best candidate.

Problem 4.9.8: Test ontology

Construct a simple ontology in Protégé with six classes. Sketch the ontology first
using the bubble notation of Fig. 4.1 or Fig. 4.3. The purpose is to collect knowl-
edge on test strategies. A test strategy determines what test cases look like. A test
case is characterized by the provided input values (parameter values) and by the
expected outcome or reaction. A test strategy is considered successful if it helps to
find many errors. The test cases used as a reference are combined in a test suite.
After this sequence of test cases has been performed, the number of errors detected
is recorded.

TestStrategy

7.5 Chapter 5 217

Problem 4.9.9: Knowledge acquisition

Who could provide what part of the knowledge you need to populate the above-
mentioned knowledge base? Outline a plan for how you could get all required data
into the knowledge base with the lowest possible effort.

Testers will be able to provide all data needed. They develop or use test strategies,
derive test cases, and carry them out. When they analyze the results, they are able to
count the number of errors detected.

Asking the testers looks straightforward. However, most of the data needed will
probably be available anyway. In a mature software organization, test cases will be
stored in a database, and so will test protocols. They contain errors and test cases
performed (test suites, if you will).

It should, therefore, be possible to get that data from the test databases using an
automated routine. Remember to save everybody’s time — except for the knowledge
management professionals, who should invest a little of their time to save a lot of
the software engineer’s effort.

From a knowledge management perspective, knowledge acquisition will often
mean asking people for their knowledge or data. However, as this problem shows,
sometimes a little tool can free human actors from unnecessary work.

7.5 Chapter 5

Problem 5.6.1: Life cycle
Draw the experience life-cycle and briefly explain each activity.

Elicit & Collect

@ Engineer & Store

Apply & Use Disseminate

The life cycle may start in any state/activity, depending on existing material at
a particular point in time. Usually, doing something (Apply & Use oval) is the first
activity. In terms of the experience life-cycle, activation comes first: After having
done something relevant, the interesting insights, experiences, and knowledge need
to be made conscious.

Activated experience, knowledge, and insights need to be assembled. Elicitation
refers to the activity of actively asking and digging for those materials, whereas
collection emphasizes the administrative or technical part of actually getting all the
provided data together in an organized way.

218 7 Solutions of Problems

Engineering and storage means adding value to knowledge and experience by
relating it to other material and by modifying its style. While an experience is about
an observation made in the past, engineered experiences are often turned into recom-
mendations or best practices: guidelines on what to do in a similar future situation.

Dissemination goes beyond making something available: It refers to an activity
of delivering material in a specific format to people at the time they need it. Under
these circumstances, recommendations can be used when performing a project duty.
At that time, new observations are made, and the circle may start again.

Problem 5.6.2: Experience engineering

Assume your team is using a new framework for software development. Program-
mers report problems they have had. If possible, they also report how they solved
them in the end. What should experience engineering do with those reports, and
what roles can patterns play?

Experience engineering is the activity performed after collecting material. Once
material has been elicited or collected in another way (e.g., measurement), it needs
to be related to other observations. Statements and conclusions in similar situations
should be compared and combined into a more believable (or more differentiated)
view. If all conclusions agree, this strengthens the conclusion. If there is a differ-
ent view on a similar situation, differentiating factors and preconditions need to be
investigated (either by reading the submitted material or by performing additional
interviews). Contents are derived by interpretation and comparison.

After that, the result of this analysis needs to be “turned around” from stories
of what happened into recommendations of what should be done (best practices).
Patterns can help to format both experiences and recommendations. The situation
is described as an “IF” part of a pattern, and the conclusion (or recommendation)
is written as the “THEN” part. Patterns make reuse easier, because they explicitly
factor out conditions and recommendations.

Problem 5.6.3: Experience three-tuple
Describe one of your own experiences in software engineering as an experience
three-tuple. Make sure you do not neglect the emotion!

Observation: We changed an interface in a project. Only one type was “relaxed,”
so an operation could accept more instances than before. However, it turned out
that two groups had used the initial interface definition in a way that later caused
problems during integration. It took some time to understand how “relaxation” could
cause problems.

Emotion: We were stunned and felt bad, because we knew very well about the
importance of interfaces. All three groups had to make changes and corrections,
which took some of their time. It was an embarrassing situation for those who had
decided the interface change was “neglectable.”

Conclusion: Never ever change an interface without informing all affected
groups. Let them consider implications before you take the freedom to change what

7.5 Chapter 5 219

you have agreed upon. Only during experience engineering will the experience be
turned into a practice recommendation.

Problem 5.6.4: Best practice

All projects in a business unit need to follow a new process. The first project using it
reports some experiences. Why can experience engineering usually not be shortcut
by asking the projects to provide best practices right away?

A single experience is usually not sufficient for generalizing from it. Like a the-
ory, a conclusion needs to be confirmed to be believable. Only when it is a pure
technical problem that was solved and only if there is little doubt about the pro-
posed solution could this one conclusion be presented as a recommendation.

It is better to have one experience than none. However, there is little use in revers-
ing it into a practice — and the label “best practice” is not appropriate if there is no
comparison with any other practice at all.

Problem 5.6.5: Contradictory experiences

Two testers report experiences on a test tool. Tester A is happy, because the tool
helped him to create far more test cases than usual. A larger number of errors were
found early in the testing process, and late testing phases were far more relaxed.
Tester B, however, was disappointed because the tool provided only “trivial test
cases,” as he puts it. Assume you are an experience engineer and need to make
sense of those contradictory experiences. Give at least two potential explanations
for the different experiences! If both testers A and B are equally competent, what
could experience engineering ideally try to derive from their experiences?

Given both partners are competent, the different situation and context should be
the source of the different experiences. An experience engineer will, therefore, ana-
lyze those differences carefully. Maybe one of the two people had different expec-
tations or was in a different situation.

For example, code in example A may contain more errors, so the tool can be used
more effectively for finding them. Tester B might already have worked with code B
for a longer time and have better preexisting test cases. In that situation, the tool has
more problems exceeding the present state. Present state, quality of the code, and
many other properties can be differentiating factors.

The IF-part of a pattern will have to reflect that differentiation. Future projects
will need to classify themselves, so that the best-matching patterns are found. They
should contain recommendations best suited for the particular context and situation
at hand.

Problem 5.6.6: Delicate experience

Why is experience an even more delicate matter than factual knowledge? Describe
two different kinds of experience: (1) one highly critical kind of concrete experience
that would be very helpful to reuse, but that will be very hard to elicit; (2) one kind

220 7 Solutions of Problems

of knowledge that should be easy to get (and useful to reuse). As an experience
engineer, what kind of experience would you focus on first?

Experience is always subjective. Because of a certain perspective, details or
aspects of the situation may have been missed during the observation. Conclusions
may be faulty, and the emotional aspect is deeply subjective. A raw experience is
difficult to validate, and the subjective elements are difficult to preserve during the
experience life-cycle.

1. There are experiences that either remain unconscious or that are embarrassing
for somebody. Those experiences are hard to elicit (“get out of somebody to”).
For example, a project manager may find that she is weak in planning and did
not know how to use the planning tools correctly. Although conscious, this expe-
rience will hardly be made explicit by that project manager — but others on the
team may have made the same observation. If a person has been doing something
for a very long time, there is little chance it will be considered an experience.
The challenge for experience elicitation lies in helping this person: Seeing the
value and the details in daily (implicit, tacit) knowledge is difficult. A highly
“experienced” project manager may master his planning tools without giving it
a thought. It takes some questioning to find out more about those procedures.

2. Easy-to-get experiences are about events and things that people were very aware
of (trying something new, having a success or problem).

It is advantageous to take the easier material first. Use the experience manage-
ment effort wisely! When the easy material takes only a short time for elicitation, the
experience that is more difficult to elicit will still be rather fresh afterward. Because
there is only limited time available for total elicitation, as many useful experiences
as possible should be collected — not starting with one that will use up all the time
assigned.

Problem 5.6.7: Argue well

How do you react if your boss asks you to start developing a knowledge-building
strategy for your team of eight people — with the option of spreading it across the
entire business unit if it really provides substantial benefits. Once you reach that
level, he promises to provide additional resources and promote you to “knowledge
expert.” Sketch your argumentation!

Starting at the point where you are is a good idea. However, a company-wide
knowledge management initiative can hardly grow from bottom-up alone. It has
been reported many times how important management commitment is for know-
ledge management. Starting with a small team may lead to effective support for
that team (e.g., resulting in a team glossary and a simple repository of experiences).
Larger teams or entire business units call for additional and different mechanisms.
The same strategy will not work (i.e., everyone who made an important observation

7.6 Chapter 6 221

fills in a form and puts it into the paper folder). Knowledge management practices
do not scale up easily.

Therefore, you should take the chance to build something for your team but point
out the above-mentioned argumentation. It is derived from experience in several
companies. Ask for more commitment upfront or recommend setting more modest
goals.

7.6 Chapter 6

Problem 6.7.1: Life cycle

A friend tells you they are using a newsgroup as experience base. Which of the
typical tasks of an experience base can be performed by a newsgroup, and which
cannot? Provide arguments for all examples.

e Activation: When a problem is discussed in a newsgroup, this may show some
participants how relevant their experiences are.

e Collecting: Because communication in a newsgroup works through writing,
nothing is lost and everything is collected.

e Engineering: A moderated newsgroup may contain elements that resemble engi-
neering. However, most newsgroups offer the stored material more or less in the
way it is typed in. There is no major reformatting or rephrasing.

e Dissemination: When the newsgroup offers mechanisms for distinguishing
threads or sub-newsgroups, a reader has a better chance of finding relevant
entries. However, there is usually no sophisticated mechanism for dissemination.

Problem 6.7.2: Risk of experience brokers

A situation like the one at Ericsson is risky: An experience broker may leave the
company and disrupt the exchange of knowledge and experience. What could be
done to mitigate that risk? That means: If a broker actually leaves, how will your
suggestion improve the situation?

Let two or more brokers work together. That way, a lot of implicit knowledge can
be exchanged without the need to document it. When one of the brokers leaves, the
other one can take over.

Documenting everything is not such a good idea. A core concept is the fast and
unbureaucratic response to a demand. Documentation would slow down and disrupt
the reaction chain.

Problem 6.7.3: Risk mitigation
Name three important differences between a community of practice (CoP) and an
expert network. What do they have in common?

e A CoP is a volunteer organization; an expert network is organized and supported
by the organization.

222 7 Solutions of Problems

e Entering and leaving a CoP is up to the participants. The members of an expert
network are usually nominated by the company.

e A CoP is a network of people who work in the same domain. An expert network
connects people whose expertise may complement each other.

e Participants benefit from a CoP by learning about other experiences. In the best
case, some of those experiences are documented and made available to other
projects. Members of an expert network are often supposed to provide advice or
guidance to a new project. There is more direct support.

In both forms, there is a group of people defined by their knowledge. Connecting
those people is considered a way to sustain implicit and tacit knowledge.

Problem 6.7.4: Compare
The LIDs technique is optimized for “cognitive aspects.” Explain what that means
and provide two concrete examples within LIDs.

Cognitive aspects refer to the human abilities (and disabilities) during the task of
providing or reusing experience. Considering cognitive aspects should help to avoid
unrealistic expectations and demands that cannot be met by most people.

For example, people cannot distinguish the crucial from the irrelevant aspects of
an extended task. Without support (by an agenda or a table of contents), they may
get lost.

People are not willing to spend long hours on capturing experience; they prefer to
continue with the next assignment. Therefore, minimizing the LIDs session duration
is a contribution to a cognitive aspect.

Problem 6.7.5: Cognitive aspects

Many knowledge management visions include the role of a knowledge manager.
In the case of a software engineering knowledge base: What background should a
knowledge manager have, and what existing role in a project (see Fig. 4.3) might be
a good choice?

A knowledge manager should have an EKM background, as presented in this
book. There should be a good overview of the techniques relevant for structuring
knowledge and the ability to describe knowledge and experience in patterns and
maybe ontologies.

In most cases, it is more important to have experience in setting up learning
initiatives than to know all details of a formalism. The latter can be acquired faster
than can good judgment about EKM options.

Quality people are often a good choice. They have a cross-cutting concern for
quality. Many of them are organized in CoPs or other networks. And they should
be organized in the quality hierarchy, which helps them to consider other project
experiences.

7.6 Chapter 6 223

Problem 6.7.6: Seeding

You have designed a knowledge and experience base about test strategies and their
effectiveness. What could you seed this knowledge base with, and where do you get
that knowledge from?

Seeding could start with a book or with single experiences that someone tells
you in a meeting. With book material, make sure to keep advice concrete. With
experiences, try to generalize them toward reusable information. The combination
of both book (general) and specific aspects helps to make a good seed. Do not try to
cover too many aspects, but rather to reach a certain depth.

	to 7 Solutions of Problems
	7.1 Chapter 1
	7.2 Chapter 2
	7.3 Chapter 3
	7.4 Chapter 4
	7.5 Chapter 5
	7.6 Chapter 6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

