
Chapter 2
Fundamental Concepts of Knowledge
Management

Chapter 1 provided an overview of the basic terms and goals of experience and
knowledge management. Tacit, implicit, and explicit knowledge were distinguished.
The basic concepts of data, information, and knowledge were introduced and dis-
cussed. A layered model for knowledge transfer was built upon those terms. In the
end, the benefit of a number of knowledge management interventions in software
engineering situations was evaluated. In Chap. 2, we will look a little deeper into
the theoretical foundations of knowledge management. This will provide the back-
ground for the remaining chapters.

2.1 Objectives of this Chapter

After reading this chapter, you should be able to:

• Explain iterative models of learning.
• Sketch a typical knowledge management life-cycle and point out its challenges.
• Explain the relationships of individual, group, and organizational levels in learn-

ing and knowledge sharing.
• Identify software engineering situations where knowledge management can

make a contribution and explain how value can be added in those situations.
• Recall the structure and outline of the Software Engineering Body of Knowledge

(SWEBOK) [56].

This chapter refers to the overview given in Chap. 1. It details some of the
core concepts, such as learning, organizational levels, and adequate application
scenarios. Underlying theories of the above-mentioned issues are fundamental to
knowledge engineering in general. The SWEBOK catalogue of software engineer-
ing knowledge [56] is a foundation for identifying learning topics in software
engineering.

Recommended Reading for Chap. 2

• Nonaka, I. and T. Hirotaka, The Knowledge-Creating Company. 17 ed. 1995,
Oxford: Oxford University Press

K. Schneider, Experience and Knowledge Management in Software Engineering,
DOI 10.1007/978-3-540-95880-2 2, C© Springer-Verlag Berlin Heidelberg 2009

29

30 2 Fundamental Concepts of Knowledge Management

• Argyris, C. and D. Schön, Organizational Learning: A Theory of Action Perspec-
tive. 1978, Reading, MA: Addison-Wesley

• Argyris, C. and D. Schön, Organizational Learning II: Theory, Method and Prac-
tice. 1996, Reading, MA: Addison-Wesley

• Schön, D.A., The Reflective Practitioner: How Professionals Think in Action.
1983, New York: Basic Books

• Johnson-Laird, P.N., Mental Models. 1983, Cambridge: Cambridge University
Press

• Fischer, G., Turning breakdowns into opportunities for creativity. Knowledge-
Based Systems, 1994. 7(4): pp. 221–232.

2.2 Learning Modes and the Knowledge Life-Cycle

Learning and knowledge are two central concepts of knowledge management. There
are a number of very well known and influential theories on learning and knowledge.
We will first look at Argyris’ and Schön’s seminal work on loops in learning [7, 8].
It explains the iterative character of learning, which is also inherent in knowledge
management. Schön puts an emphasis on reflection. His work on reflection-in-action
[98] has a major impact on practical approaches to learning in a working environ-
ment. The work by Nonaka and Takeuchi [77] reacts to Argyris and Schön and to
many other sources. It is well known for its view on the tacit-explicit dichotomy
in knowledge modes. Implications of those concepts lead to a generic knowledge
life-cycle. It can serve as a reference model for more software-specific and tailored
variants of knowledge management processes.

Some further related work will be put into perspective:

• We will take a glance at the logical patterns of deduction, induction, and abduction
that are the theoretical foundation of reasoning with experience and knowledge.

• Mental models are not only a theoretical concept but also a background and
driver of some practical techniques described in later chapters.

• Learning is foremost an individual activity. Organizational learning has several
aspects that transcend individual learning, but it will only work with employees
who are willing and able to contribute to learning at the workplace.

• A look at Popper’s famous philosophical work on theories and their merits will
close this section. His argumentation is of general value for everyone working
with knowledge, theories, and experiences of unknown credibility.

2.2.1 Loops in Learning: Argyris and Schön

There are numerous theories on learning in general. Everyone studying knowledge
management or learning issues needs to know the core of Argyris’ and Schön’s
concepts of single-loop and double-loop learning. In general, they see learning as a
cyclic process.

2.2 Learning Modes and the Knowledge Life-Cycle 31

Definition 2.1 (Governing variables)
There are governing variables that determine the goals and constraints of acting in
a certain situation.

An “action strategy” is derived from those governing variables. It leads to
intended or real activity. When those actions or activities are carried out, certain
“consequences” follow. Learning occurs by comparing consequences of actions
with the desired consequences of the action strategy, which are dictated by the
governing variables. If there is a deviation between planned and perceived conse-
quences, the action strategy will be modified. The intention is to better meet goals
and governing variables and, thus, to reduce the deviation of actual from desired
consequences.

It is important to note that this loop does not necessarily need to be carried out in
reality. Both actions and consequences may also occur in the minds of knowledge
workers, or in a simulation model, to name just two alternative options. Therefore,
a learner does not need to make all kinds of mistakes: It is sufficient to imagine
making them. Real or imagined feedback on the outcome will lead to an improved
action strategy. Governing variables stay unchanged and provide the criteria by
which “improvement” is being evaluated. Learning is considered a cyclic process of
reducing deviations in consequences. Argyris and Schön call this process “single-
loop learning,” as there is a single feedback loop of (real, simulated, or imagined)
consequences back to the actions that caused them (Fig. 2.1).

Action
Strategy Consequence

Governing
Variables

Goals & Constraints Activities Results

Deviation

FeedbackSingle-loop learning

Fig. 2.1 Single-loop learning

Example 2.1 (Single-loop learning in software engineering)

In software engineering, single-loop learning can occur, for example, when a devel-
oper writes a program in a language she is not very familiar with. Whenever there
is a compiler error, or when tests uncover unexpected behavior, the developer will
modify her programming actions to reach her goal of producing a program for a
given set of requirements. Constraints include the syntax and semantics of the lan-
guage, and the requirements for the program constitute the goals.

Feedback is an essential ingredient of learning according to that theory. There
is no improved behavior without feedback on (potential or real) consequences of
possible actions.

32 2 Fundamental Concepts of Knowledge Management

Action
Strategy ConsequenceGoverning

Variables

Goals & Constraints Activities Results

Double-loop learning

more compliant
to goals

Revised goals
and constraints

Fig. 2.2 Double-loop learning

Argyris and Schön argue that there is a second mode of learning that tran-
scends single-loop learning. As Fig. 2.2 illustrates, the above loop is main-
tained but enclosed in a second, outer loop that affects the governing variables.
A deviation is again identified by using the governing variables to compare con-
sequences. However, unlike single-loop learning, the outer loop may modify the
governing variables: Reflecting on the background and reasons of a deviation may
lead to changing constraints and goals as well. In single-loop learning, a specific
problem is solved by adapting the action strategy. In double-loop learning, a set of
governing variables (goals and constraints) is questioned, which may impact many
future problems. Knowledge is acquired on that higher level. Both action strategy
and governing variables may be adjusted in order to satisfy (adjusted) goals and
constraints better.

Example 2.2 (Programmer)

The programmer in the above example conceives a module. If its foreseeable behav-
ior differs from the specified (required) behavior, the programmer either can change
the module (single-loop learning) or may challenge the requirements and try to
extend the constraints. Maybe there was a misunderstanding? If customers agree to
change the requirements, the new requirements may be fulfilled without changing
the module. This is an example of double-loop learning. Corrected requirements or
improved requirements engineering procedures will help to avoid similar problems
in the future.

How can people carry out action strategies without acting? The concept of
mental models helps to better understand what this means. Johnson-Laird [60]
defines mental models: “. . . humans create working models of the world by making
and manipulating analogies in their minds.” In their recommendations for double-
loop learning, Argyris and Schön refer to mental models. Mental models convey
the schemata and frameworks for anticipating the outcome of actions. Therefore,
Argyris and Schön use maps (their word for mental models) to find common ground
with decision makers and knowledge workers.

Just for exercise, we can interpret Fig. 1.8 as such a map: It provides a simplified
overview of a complex piece of reality, namely knowledge management. By using
that map as governing variable, one may develop an action strategy for setting up

2.2 Learning Modes and the Knowledge Life-Cycle 33

a knowledge management initiative. For example, the map in Fig. 1.8 uses dashed
lines to indicate direct communication during experience elicitation. It thus encour-
ages us to consider interviews, meetings, or other forms of direct communication
rather than document templates. Single-loop learning within the limits of that men-
tal model might imply asking programmers to call in instead of writing. In double-
loop learning, the assumption of the mental model is challenged: Maybe, under
certain circumstances, a phone call is less appropriate than a written note. This will
change the map and the governing variable it represents, adding a solid line for
written experience reports. By taking that possibility seriously, the initiative may
encourage written complaints as yet another form of urgent, emotionally intense
kind of experience. This transcends the initial goal and modifies the mental model
we started with. In both cases, the deviation between assumed and real outcome has
been reduced. Either the outcome or the assumptions has been adjusted.

Mental models provide guidance for our actions and plans. Maps like Fig. 1.8
can be seeds for mental models. By conveying a lot of information, a single map can
guide single-loop learning and become an initial reference for double-loop learning,
too.

2.2.2 A Knowledge Management Life-Cycle

We have already encountered a central topic of Nonaka’s and Takeuchi’s theory of
knowledge creation [77] in Chap. 1: the dichotomy of tacit and explicit knowledge.
In their theory, they considered the work by Argyris and Schön but extended it to a
three-dimensional life cycle of knowledge management.

The first dimension of knowledge creation is the tacit–explicit dimension. In
Fig. 2.3, those two modes are shown twice: The matrix describes the four possible
conversions of the two modes of tacit and explicit knowledge. When tacit knowl-
edge is converted into explicit knowledge, this is called externalization, as we saw in

Socialization
sympathized
knowledge

Externalization
conceptual
knowledge

Internalization
operational
knowledge

Combination
systemic

knowledge

fr
om

ta
ci

t
ex

pl
ic

it

tacit explicit
to

Fig. 2.3 Conversions
between tacit and explicit
knowledge

34 2 Fundamental Concepts of Knowledge Management

Chap. 1. Vice versa, internalization stands for converting explicit into implicit and
finally maybe tacit knowledge. Simple examples are reading (internalization) and
writing (externalization). Usually, internalizing a skill will take more time and more
effort than will internalizing a simple procedure. Operational knowledge is typically
being internalized: A person reads a recipe and tries to gain cooking knowledge.
Often, conceptual knowledge is externalized: From all the tacit knowledge in some-
one’s head, only the concepts (abstractions and simplifications) get documented.

There are two more conversions: We have briefly touched on socialization in
Chap. 1, indicating the transfer of knowledge from one person directly to another.
In socialization, there is no explicit intermediate externalization and internalization
as we defined it. However, the consequences of one person acting or speaking (exter-
nalization) are observed or heard by the learner (internalization). This is often a very
intense but not highly efficient mode of transfer. Making knowledge explicit helps
making the transfer of knowledge faster, more reliable, and accessible to a larger
group of learners.

Example 2.3 (Combination)

When explicit knowledge is converted into other explicit knowledge, this is called
combination. For example, a middle manager may combine a company policy with
a concrete project budget to instantiate a concrete quality assurance plan for that
project. If the contribution of that manager is small compared with the knowledge
within those documents, this move is called combination. (Otherwise, we would
consider it an invention of “new” knowledge.)

Nonaka and Takeuchi imply an iterative learning process by drawing a spiral in
Fig. 2.4. Time progresses along the spiral, and the amount of knowledge learned
grows with the diameter of the spiral. It starts with socialization: Someone acquires
knowledge by directly observing or talking to someone else. This constitutes a
dialogue. After some time, there is a need to write down some of the learned
knowledge. By externalizing the key concepts, the documented knowledge will

Socialization Externalization

Internalization Combination

F
ie

ld
 b

u
ild

in
g

L
in

kin
g

 exp
licit kn

o
w

led
g

e

Dialogue

Learning by doing

Fig. 2.4 Learning process as
a spiral over knowledge
conversions

2.2 Learning Modes and the Knowledge Life-Cycle 35

be linked to preexisting explicit knowledge. This is when externalization shifts to
combination.

The situation changes again when the knowledge is applied. It turns into
operational knowledge, which can be used in actual work. This conversion starts
out as learning by applying knowledge in a practical situation (learning by doing).
After some experience and exercise, the operational knowledge is internalized bet-
ter. Gradually, a field of knowledge is built up. The iteration is about to start again.
Because of the extended knowledge, the diameter of the spiral grows.

Nonaka and Takeuchi point out several subtle properties of their model:

– They see knowledge as “action, belief, and commitment to an end” [77]. They
emphasize the personal relationship over a perspective of knowledge as passive
“material.” For that reason, knowledge management is not just a matter of logis-
tics but a challenge for learning and creating new knowledge. The opening spiral
alludes to creating new knowledge, too.

– Along the same lines, knowledge is created inside an organization and delivered
to the outside – not just absorbed and digested outside-in.

– Double-loop learning requires “questioning and rebuilding existing perspectives,
interpretation frameworks, or decision premises” [8]. Nonaka and Takeuchi are
concerned with managing such a learning process. Who could trigger it, and who
could direct it in the sense of managing it? They suggest there needs to be a
continuous, ongoing process of learning that includes the rearranging of mental
models. Therefore, there is only one spiral that refers to both kinds of learning
loops.

The spiral in Fig. 2.4 iterates over the conversion modes. It grows into a knowl-
edge management life-cycle when additional dimensions are added. In Fig. 2.5, not
only the tacit/explicit and conversion dimensions are used; this model also refers to
the sources and sinks of knowledge. The spiral in the middle of Fig. 2.5 corresponds

Market

Learning (Software-) Organization

Sharing
tacit

knowledge

Creating
concepts

Justifying
concepts

Building an
“archetype“
(prototype)

Cross-
leveling

knowledge

Explicit knowledge
in organization

Tacit knowledge
in organization

Socialization Externalization

Internalization

Combination

Internalization by userstacit: from users and
collab. organizations

explicit:
products, patents, ads

Fig. 2.5 Life cycle of knowledge management according to Nonaka and Takeuchi [77]

36 2 Fundamental Concepts of Knowledge Management

with the spiral in Fig. 2.4 when it is stretched along the five stages of maturing
knowledge. It is embedded within a larger learning spiral that includes the market.
Maturing knowledge is externalized and used in the market as explicit knowledge
(patents, products, or services). It is internalized by users. They feed it back as sug-
gestions, complaints, or requirements. Together with supporting knowledge from
collaborating organizations, this feedback drives the inner knowledge spiral. Do not
confuse the outer spiral with the outer loop of double-loop learning: There are two
different user groups intertwined in feedback loops of different speed and granu-
larity. All of them constantly improve both solutions and mental models. Dashed
lines indicate the flow of tacit and implicit knowledge, and solid lines indicate more
explicit knowledge. The small symbols highlight the main media used at both ends
of the spectrum. They are people on the tacit end and documents or data stores on
the explicit end.

A learning software organization must organize externalization and internaliza-
tion of knowledge; it also needs to provide opportunities for direct learning via
socialization. Life-cycle models like Fig. 2.5 show the conceptual or cognitive
phases for sharing knowledge in a company. We are obviously living in a “knowl-
edge society” that depends on learning on all levels. However, Eraut and Hirsh
claim:

Although organisational learning sounds like something the organisation controls, it has
become increasingly clear that organisations only truly learn when they give much of that
power back to individuals and self-selected groups. [37]

While it is important to keep this warning in mind, we may still look at knowl-
edge logistics and cognitive mechanisms for creating and distributing knowledge.
Promoting individuals to responsible drivers of their own learning processes is def-
initely important for successful learning – and also for organizational learning. In
the end, both individual learning commitment and knowledge logistics need to come
together.

2.2.3 Kolb’s Learning Cycle

A number of core questions can be asked with Fig. 1.8 in mind:

– How can one learn a general lesson from making concrete observations?
– How can conceptual knowledge be applied to a situation at hand? How do we

whether it is applicable or not?
– How can widely applicable knowledge be created from a small number of obser-

vations someone has made?
– What conclusions can we draw from observing yet another concrete situation?

In his seminal work on learning cycle and learning styles, Kolb [64] claims a
“concrete observation” must be the basis of “reflective observation.” Reflection is a
prerequisite for “abstract conceptualization,” as Kolb puts it: Abstract conceptual-
ization is the process of drawing a conclusion from a single or a few observations.

2.2 Learning Modes and the Knowledge Life-Cycle 37

Concrete
Experience

Abstract
Conceptualization

Reflective
Observation

Active
Experimentation

Fig. 2.6 Kolb’s learning
cycle [64], simplified by
Davies [27]

That conclusion will be more general (hence, more “abstract”) than the initial obser-
vation(s). More abstract and more general conclusions apply to more situations.
They can be reused better (Fig. 2.6).

In our terminology, an experience includes Kolb’s

• “Concrete experience,” which corresponds with “observation” in our terms.
• Results of “reflective observation” and “abstract conceptualization.” The latter

results are called hypothesis or conclusion in our terminology.

Kolb points out that derived conclusions must be used and challenged actively.
This will help to validate them – and stimulate making new experiences. Our defini-
tion of experience includes an emotional aspect. It is missing in Kolb’s model. Our
definition stresses the difference between an “emotionally neutral” piece of knowl-
edge and an “emotionally loaded” experience. In compliance with Kolb’s learning
cycle [64], learning from concrete observations and experiences can abstract to con-
clusions. When such a conclusion is validated and deprived of ı́ts emotional aspect,
it may gradually turn into knowledge.

2.2.4 Classical Modes of Reasoning

All theories presented above see knowledge from an action-oriented point of view.
Creating knowledge and improving knowledge by iterative learning are closer to
psychology than to formal logic. A few short remarks should be sufficient to cover
the logical aspects of learning and reasoning. They are rooted in epistemology, the
science of learning and understanding.

Definition 2.2 (Reasoning patterns)
From a logical perspective, reasoning in knowledge engineering follows certain pat-
terns: induction, deduction, and abduction. These concepts provide a guiding struc-
ture for all abstractions or applications of knowledge.

Induction: Concluding from one or more specific cases to a general principle.
Example: An apple falls to the ground. So does a pear. Induction: All fruits fall to
the ground. Further induction: All dead material falls to the ground. Yet another
induction: Everything falls to the ground.

38 2 Fundamental Concepts of Knowledge Management

Deduction: Concluding from a general principle to a specific case. Example: If
all fruit falls to the ground, those cherries will also fall. I cannot know about this
pencil (because it is no fruit), but the orange will fall.

Abduction: Inventing a new general principle by deriving a hypothesis from a
special case. There are three apples on the ground. I hypothesize that they fell from
the tree. I come up with a general rule to explain the one case I have seen (Fig. 2.7).

The patterns deserve some discussion. Obviously, induction is very powerful –
but may lead to false theories or conclusions. In the above-mentioned examples, the
last induction is not true: Our sun does not fall to the ground of the earth. As we will
see, however, practical knowledge management cannot succeed without induction:
Inducing new principles is a characteristic of double-loop learning.

The difficulties in the examples above were not due to subjective or psychological
aspects. They are purely logical. Of course, induction is applicable to physical and
social phenomena alike – but it assumes a logical perspective on both. Statements
about personal taste, such as “I like chocolate, so does my friend,” can be combined
by induction to derive “everyone likes chocolate.” This induction obviously went
too far: There are many people who do not like chocolate. Induction is a logical
operator, not a consensus-building activity.

Mnemonic 2.1 (Deduction)
Deduction, if applied according to the rules, never yields wrong results. It is rather
too cautious.

In our example, pencils are not fruit and are, therefore, not covered by our knowl-
edge of falling fruit. We may not deduce a pencil will fall. The rules only allow
deducing cases that are covered by the general principle. Here lies a challenge for
deduction in practice: What exactly is covered by the general principle? Do only
apples fall – or also pears, and maybe pencils? This question is easy to answer in
formal environments but sometimes very difficult in practice.

Whereas induction and deduction go back to Greek philosophers, abduction was
mainly promoted in the 19th century by Charles Sanders Peirce, a proponent of
semiotics [52]. Semiotics is the discipline of signs, symbols, and their meaning.
Pierce argued for a process of understanding that started with abduction (I have an
idea and generalize it to a principle), deduction (if the general principle is true, it

Given

Observed

Derived

∀ f ε Fruit ⇒ f falls

Orange will fall.
I know nothing about
pencils.

There is an Orange (ε Fruit)

DeductionInduction

Apple falls, Pear falls

⇒

⇒ ⇒

f ε Fruit∀

∀ ∀

f falls. Apples fell from the tree
and in general:

Apples on the ground

Abduction

f ε Fruit f fallsf ε Object f falls
may be more general:

Fig. 2.7 Comparison of induction, deduction, and abduction

2.2 Learning Modes and the Knowledge Life-Cycle 39

applies to these specific cases), and induction (because the principle was valid with
those examples, I assume my principle is correct).

2.2.5 Reflective Practitioners and Breakdowns: Donald Schön

Donald Schön studied the conditions under which practitioners could create knowl-
edge. In particular, his work on “reflection-in-action” is influential for making
knowledge engineering work in practice.

In his book The Reflective Practitioner [98], Donald Schön investigated how
working and creating knowledge interact. He observed working practitioners and
noticed that they hardly reflected on what they were doing while they were doing
it. While they carried out complex and difficult tasks, they were operating “in tacit
mode.” Being absorbed by their demanding tasks, they invested all their attention
into solving their problem. Afterward, they could not explain what they had done
either, because they did not remember in sufficient detail.

Schön found:

Mnemonic 2.2 (Reflection in action)
Interrupting knowledge workers in their task helps them to reflect.

Donald Schön called this a “breakdown” that can lead to reflection and – finally –
better understanding. Gerhard Fischer [40, 41] has integrated the concept of break-
downs into the construction of critiquing systems: When a practitioner uses a com-
puter system for a design task, certain situations trigger a critiquing message warn-
ing the practitioner. For example, a software design may contain too-deep inheri-
tance of Java classes. A design tool may notice that and remind the architect of the
respective design recommendation. This constitutes a breakdown, allowing the prac-
titioner to “wake up” and reflect on the tacit knowledge he has just applied or failed
to apply. When you need to externalize tacit knowledge, planning for appropriate
breakdowns can help.

2.2.6 Popper: When Should We Trust a Theory?

We have seen the theory of single- and double-loop learning by Argyris and Schön.
Schön has suggested eliciting tacit knowledge by generating breakdowns. His theory
assumes people will be able to reflect better when they are interrupted. Nonaka and
Takeuchi have proposed a sophisticated theory of knowledge creation. In the above
section on formal reasoning patterns, we saw a sequence of abduction–induction–
deduction, which can produce a theory and test it. Theories abound, plus hypotheses
from all experiences! It is obviously important to find out when to trust a theory and
when not.

Philosopher Sir Karl Popper is famous for his work on theories [85]. He suggests
a good theory must be falsifiable: It should be easy to demonstrate that it is false –
if it is false.

40 2 Fundamental Concepts of Knowledge Management

Definition 2.3 (Falsifiable theory)
A theory is falsifiable if it allows making predictions. In addition, it must be easy to
recognize when a prediction is violated.

Example 2.4 (Falsification)

For example, a tourist may come up with the theory “it never rains in Southern Cali-
fornia.” One single day of rain will falsify that theory, which makes it a good theory.
As long as it never rains, the theory gains in credibility – but it can never be proved.
Even after 100 sunny years, there might be rain eventually. According to Popper
[85], this is true for all theories: As long as they are not falsified (despite their fal-
sifiability), theories gain in credibility. As soon as there is one counterexample, the
theory is obviously false. This reasoning is very close to the abduction–induction–
deduction pattern.

Practical knowledge management relies on experiences and induction for
improvement. How can we know that resulting “best practices” are actually bet-
ter than the original ones? Following Popper, hypotheses gained from experiences
(or from other sources) should imply predictions. As long as they hold, this is strong
support for the hypotheses. If, however, only a single prediction fails, the hypotheses
cannot be true in general. It needs to be either refined or refuted.

Mnemonic 2.3 (Pragmatic use of theories)
In practice, however, one will even stick to theories and hypotheses that have been
falsified – as long as no better alternative is available.

2.3 Knowledge in People, Teams, and Organizations

Knowledge management exceeds individual learning. Organizational learning was
briefly introduced as a term, and the concept was put into context in Chap. 1. In
this section, we will see how the theories by Argyris and Schön and by Nonaka and
Takeuchi explain organizational learning beyond individuals.

Senge [99] adds a perspective rooted in system theory. The organization is
seen as a complex system with many interactions and interdependencies. Other
researchers have emphasized the importance of learning for competent behavior.
Wenger describes “communities of practice, ” and Simon [102] focuses on decision-
making by managers. Those well-known approaches were selected to represent the
foundations of using and managing knowledge in an organization.

2.3.1 The Scope Dimension in Knowledge Creation

Nonaka and Takeuchi extend their above-mentioned theory on learning into an orga-
nizational setting. The dichotomy of tacit and explicit knowledge is the starting
point. It represents the dimension of epistemology in their model (Fig. 2.8). Episte-
mology is the science of knowledge and belief. Tacit and explicit are two different
epistemological modes of knowledge. As we have seen above, learning occurs as an

2.3 Knowledge in People, Teams, and Organizations 41

Scope

E
pi

st
em

ol
og

ic
al

 d
im

en
si

on
explicit

tacit

Individual Group Organization inter-organizational

Combination

Socialization

Externalization

Internalization

Fig. 2.8 Additional scope dimension of the spiral learning curve with conversions, adapted from
Nonaka [77]

iterative process over those modes. The spiral in Fig. 2.4 showed a cycle of conver-
sions between those modes: There is a continuous back and forth between tacit and
explicit knowledge.

We will now look at the scope that can be reached through iterative conversions.
In a way, the spiral will be stretched over yet another dimension, namely the spec-
trum of individual versus organizational scope. An individual goes through conver-
sions of tacit and explicit knowledge. By being a member of a team or work group,
individual learning feeds into group learning. It cycles through tacit and explicit
phases again. A similar iteration occurs on the organizational and even interorga-
nizational levels. There are many intertwined iterations over the epistemological
dimension. They can be read from both sides of the scope: Individuals share their
knowledge and experience through socialization and combination. At the same time,
the cycle of larger units keeps the iterations of smaller units turning.

When looking at Fig. 2.8 from the right-hand side, this scope dimension is invis-
ible. From that perspective, we would only see an oscillation between tacit and
explicit knowledge. Fig. 2.5 detailed activities and conversions during this oscilla-
tion, thus providing a second dimension. The scope dimension in Fig. 2.8 introduces
a third dimension: in Ref. 77 it is called “ontological dimension,” but in the context
of our current topic, scope is a better term.

There are some core messages conveyed by Fig. 2.8:

• The iteration links individuals, groups, and organizations. For example, a
sequence of externalizing and then internalizing knowledge is a way to transfer
previously tacit knowledge from one person to another, or even to an entire group.
Conversions drive the spiral and at the same time allow others to participate and
benefit.

42 2 Fundamental Concepts of Knowledge Management

• Epistemological modes and conversions occur in organizations and in individu-
als. Internalization in an organization, for example, may indicate that the orga-
nization reacts according to knowledge that is deeply rooted (internalized and
tacit) in its individuals, repositories, and infrastructure.

• Knowledge transfer along the scope dimension is not a one-way traffic. Fig. 2.8
shows several individuals and one instance of an organization. The spiral medi-
ates between all of them, and there is knowledge transfer in both directions:
Individuals need to receive knowledge to make the organization smarter.

There is a highly complex relationship between individual, group, and organiza-
tional knowledge. From a practical point of view, it is most important to remember
(1) that it is an iterative process and (2) that it transfers knowledge not just in one
direction. Knowledge cycles from tacit to explicit – and back again. And it cycles
from the individual to the organization – and back to individuals.

2.3.2 Group Interactions and Shared Maps

Argyris and Schön discuss organizational aspects of learning with respect to their
notions of single-loop and double-loop learning modes. For the purpose of knowl-
edge management in software engineering, we will focus on the interrelations
between the two learning modes:

As Smith [103] points out, Argyris and Schön consider many organizational
learning activities as “Model I” or single-loop learning. However, pure single-loop
learning improves behavior only as long as goals and constraints are correct and
adjusted to organizational needs. Leaving them unadjusted for a longer time may
lead to less advantageous results: Behavior keeps being “optimized” with respect to
an outdated measure, which diminishes success.

The inherent warning in this argument is as follows: If we support and enforce
single-loop learning abilities too much and make it too efficient, its positive out-
come will degrade and even turn against the organization. Our goals should not
remain static but follow external pressures and demands. Organizations tend to reg-
ulate learning (e.g., in knowledge management initiatives) and promote single-loop
learning (Fig. 2.9).

Overly efficient single-loop learning may be counterproductive, as the third
sketch illustrates: It still hits the old target; but in the meantime, the target has
shifted. Double-loop learning helps to adjust goals and targets. It combines elements
to better hit a target – and others that help adjusting goals and targets.

Example 2.5 (Adapting or adjusting)

If a software company considers top quality its highest priority, steering projects
closer to that goal will be an improvement – for a while. It can be achieved through
single-loop learning. But the company needs to notice and to adjust when customers
request fast and agile projects more and more often. Sticking to the traditional

2.3 Knowledge in People, Teams, and Organizations 43

No learning:
deviation

Single-loop learning
meeting the static goal

Single-loop learning
missing the moving target

Double-loop learning
adjusting goals

goal

consequence
of action

Moving conditions

Fig. 2.9 Impact of single- and double-loop learning, with static and moving goals

top-quality goal will prevent people and their projects from learning how to develop
in a more agile way.

Mnemonic 2.4 (Adjusting goals)
Outdated goals and “governing variables” prevent learning from adjusting. Shifting
goals are more likely to be missed when goals of learning are not adjusted.

Individual software engineers may change their goals and constraints more read-
ily when they are not guided by a company policy (“governing variables”). There
is an obvious need for a compromise between guidance toward efficient single-loop
learning and opportunity for higher-order double-loop learning.

Productive and nondegrading organizational learning, according to Argyris and
Schön, requires double-loop-learning (“Model II”). This setting is characterized by
a number of factors – and those need to be promoted by knowledge management,
too:

• People construct maps together. A map is a mental model that facilitates shared
understanding. A map is a schema or model on the “governing variable” level.
By revising maps, goals and procedural rules are adapted. When a problem is
encountered, there needs to be not only the efficient single-loop option of fixing
it but also the double-loop option of rethinking and reframing. Fig. 1.8 can be
considered a map in that sense.

• Shared maps constitute shared understanding. Although shared maps will be con-
stantly revised and updated, the process and interaction of constructing a com-
mon view is at the core of organizational learning on a double-loop level.

• Not only must a learning organization permit shared construction of maps; there
also must be active interventions to encourage group interactions and updating
of knowledge repositories. Smith [103] writes:

For organizational learning to occur, “learning agents,” discoveries, inventions, and evalua-
tions must be embedded in organizational memory. [7]

Although Argyris and Schön consider double-loop learning a necessity, they
concede it is difficult to reach on an organizational level. Eraut and Hirsh [37] claim

44 2 Fundamental Concepts of Knowledge Management

that a different kind of expert is needed on the higher levels where problems are
increasingly vague and ill-defined, and an expert’s experience mainly helps her to
assess situations better. Such an expert may not even have superior reasoning skills
or problem-solving capacities.

Different levels of expertise and experience require different learning environ-
ments, incentives, and different techniques. Dreyfus and Dreyfus [33] (cited after
[37]) identify five levels of learning that can be related to degrees of (double-loop)
goal reflection:

1. Rigid adherence to taught rules or plans (as in single-loop learning).
2. Situational perception still limited, but improved awareness for situation.
3. Standardized and routine procedures at reduced cognitive load.
4. Setting of priorities: Perceives deviations from the normal pattern.
5. Intuitive grasp of situations based on deep tacit understanding.

It is an achievement to learn and follow rules, as on level 1. Single-loop learn-
ing is an essential ingredient of a learning organization. It leads to more efficient
work at the middle levels. Routine procedures and processes have driven software
process improvement over more than a decade with maturity models the like Capa-
bility Maturity Model (CMM) [83], its Integrated new version CMMI [29], or the
SPICE standard with European roots (ISO 15 504). However, at some point and for
some tasks, software engineers need to transcend efficient adherence to given plans.
Recognizing patterns is more flexible and calls for more experience. As experience
grows, it will become more and more tacit. Gifted software engineers can reach a
level of understanding they are not able to explain. It is based on numerous obser-
vations and cases and patterns they have seen in their career.

A learning organization does not have to focus on the highest levels of learning
only. There are numerous software engineering tasks that call for defined procedures
that are communicated and taught well within a business unit. Supporting this level
is an honorable and demanding endeavor. Of course, knowledge management should
encourage software engineers to assess situations more effectively and, thus, choose
the appropriate processes more deliberately.

On the highest level of intuitive and tacit understanding, a knowledge manage-
ment initiative can still provide information access and infrastructure. At the same
time, highly experienced employees will often be knowledge providers rather than
knowledge receivers. They turn into the knowledge and experience bottleneck in an
organization. Knowledge management can offer them a welcome multiplication and
dissemination mechanism to spread what they know to more junior colleagues – at
a lower personal effort.

2.3.3 Other Related Theories and Approaches

Nonaka and Takeuchi emphasize different aspects than do Argyris and Schön, but
the core of their theories are compatible, at least at the level we need to see in this
book. However, there are a few other well-known approaches that influence practi-
cal experience and knowledge management in software engineering. They provide

2.3 Knowledge in People, Teams, and Organizations 45

additional pieces for the puzzle that underlies knowledge management initiatives
and learning from experience. For that reason, some additional ideas are presented
below. We will meet them again in later chapters.

Senge [99] is one of the pioneers of system thinking in organizational learning.
He was a student of Chris Argyris, and his bestselling book, The Fifth Discipline,
shows some common ground with his former teacher. For example, mental models
are considered one of the five disciplines Senge describes. The five disciplines are
considered prerequisites for organizational learning:

1. Personal mastery: An organization learns through its members, and those “parts”
of the organization need to develop knowledge, skills, and mastery.

2. Mental models: The way we see the world and how it works. Like the above-
mentioned maps, mental models are deeply held beliefs, often tacit and some-
times shared.

3. Shared vision: An organization can act smarter than each of its parts if it is guided
by a common goal.

4. Team learning: An organization needs to streamline and bundle the activities and
knowledge of its parts.

5. System thinking: An organization is a complex and interrelated system of parts
and dependencies. More important than optimizing a part is improving the struc-
ture of the system.

Senge’s main contribution to knowledge management is his strong emphasis
on system thinking, the “fifth discipline” in the above list. This distinguishes his
approach from all others discussed in this section. All authors (including Senge)
stress the importance of individual learning for organizational learning. Senge, how-
ever, emphasizes the structures of the system, whereas all others underline the social
and process-related aspects of organizational learning.

Argyris and Schön talk about loops in learning. Their above-mentioned theory
on building organizational maps in double-loop learning is obviously dominated
by interaction. Nonaka and Takeuchi depict the process as a (spiral) line. By spi-
raling through epistemological (tacit vs. explicit) modes and different holders of
the knowledge, they describe continuous exchange and interaction. In addition,
they highlight knowledge creation, which occurs during that process. Nonaka and
Takeuchi criticize Senge for focusing too much on individual learning. They advo-
cate creation and development of knowledge as another important source of orga-
nizational learning. Our Definition 1.1 (organizational learning) includes collective
repositories and a infrastructure as well. The infrastructure includes tools, collabo-
ration opportunities, and processes that guide systematic work in the workplace.

Wenger [119] studied communities of practice as a key part of a learning orga-
nization. Communities of practice (CoPs) are groups of knowledge workers who
share experiences and knowledge in a common field of practice. A CoP is usually
a self-organizing group of people that cuts across organizational structures. Unlike
a team or organizational unit, members of a CoP do not need to work on the same
project or even in the same team. They are volunteer members of the CoP, motivated
by their own perceived benefit. Mechanisms of sharing experiences and knowl-
edge within a CoP follow the above-mentioned theories. By not being hierarchically

46 2 Fundamental Concepts of Knowledge Management

organized, and by reaching into different parts of an organization, a CoP can facili-
tate organization-wide learning and spreading of knowledge. Some companies have
explicitly founded and encouraged communities of practice as a major component
of their knowledge management initiatives, such as Siemens [26]. In many other
companies, aspects of cross-cutting volunteer groups are used in different variants.
Communities of practice emphasize interactions of individuals.

Dodgson summarizes the structural and behavioral aspects of learning organiza-
tions [32]: “Learning organizations purposefully construct structures and strategies
as to enhance and maximize organizational learning.” Obviously, both aspects are
needed.

2.4 Software Engineering Knowledge

The foundations of knowledge engineering discussed so far are not specific to soft-
ware engineering. Because this book is about experience and knowledge manage-
ment in software engineering, this specific knowledge area is sketched below. This
helps students to understand the bigger picture of the examples and discussions
throughout the book. Practitioners are reminded of some knowledge-related aspects
they will probably know from their own experience. In the remainder of this book,
the discussion builds on this selection of software engineering knowledge aspects.

2.4.1 Software Engineering from a Knowledge Perspective

We have seen theories about learning and how knowledge transfer works according
to selected famous theories. But what kind of knowledge is worth being managed in
software engineering? This depends on what we mean by “software engineering.”
This term is widely used to refer to any activities related to building software. This
intuitive characterization is sufficient for many practical purposes. It can be helpful
to define the term more precisely to understand better where knowledge is needed
within software engineering.

2.4.1.1 Defining Software Engineering

In 1968, the term software engineering was coined. It expressed the desire to turn
software development into an engineering discipline, just like electrical or mechani-
cal engineering. Engineers obviously follow a systematic and disciplined process to
achieve their results. In computer science, many developers saw themselves rather
as artists than as engineers. They emphasized the creative aspect of building soft-
ware, whereas the engineering perspective emphasized predictability of duration and
cost, reuse, and quality-oriented behavior. Software engineering encompasses both
aspects. There are many activities that require creativity, knowledge, and experience.
At the same time, many critical tasks can be carried out with a systematic and

2.4 Software Engineering Knowledge 47

disciplined approach, thus harvesting the benefits of engineering wherever possi-
ble.

According to IEEE Standard 610.12 – 1990, software engineering and software
are well-defined terms:

Definition 2.4 (Software Engineering; SE)

1. The application of a systematic, disciplined, quantifiable approach to the devel-
opment, operation, and maintenance of software; that is, the application of engi-
neering to software.

2. The study of approaches as in (1).

This definition includes operation and maintenance along with development of
software. The scientific approach to study and improve those aspects is also included
under the term “software engineering.” Many people associate software with pro-
gram code. However, it does not cover the entire meaning of the term, according to
IEEE Standard 610.12 – 1990:

Definition 2.5 (Software; SW)
Computer programs, procedures, and possibly associated documentation and data
pertaining to the operation of a computer system.

Documentation, data, and procedures required to install, configure, and operate
a computer program are part of software, too. From a knowledge perspective, a
substantial amount of technical and application knowledge is represented in man-
uals, technical documentation, and configuration parameters. All of those are part
of software, and software engineering is concerned with acquiring that knowledge
and guiding it into program and associated material. Because software engineer-
ing targets a systematic and disciplined approach for development, the required
knowledge must not be taken as a given – in many projects, most of the applica-
tion domain knowledge must be acquired or built during the project. Practition-
ers know that disciplines such as management, psychology, and all the applica-
tion domains of the software products affect the development of software. There is
much more knowledge to handle in software engineering than one may think at first
glance.

It is advantageous to share a common understanding of fundamental knowl-
edge challenges relevant to “typical software engineering tasks.” We cannot pro-
vide a complete or very detailed enumeration of those tasks and challenges here.
Instead, pointing to some examples of knowledge-intensive tasks is supposed to
create a common basis for both experienced practitioners and students of software
engineering.

Tasks will be briefly introduced. This introduction stresses the mission and pur-
pose of tasks, and it highlights their relationships with each other. In particular,
related knowledge is emphasized. This short overview provides motivation for con-
sidering this task as a rewarding application area of knowledge management. In
the next section, those tasks are summarized within the Software Engineering Body
of Knowledge (SWEBOK). SWEBOK presents the essence of knowledge-related
software engineering tasks. It can serve as a reference model. All examples in this

48 2 Fundamental Concepts of Knowledge Management

book are largely self-explanatory. However, most of them refer to situations covered
in the following summary. They highlight selected aspects of the bigger picture of
software engineering.

2.4.1.2 Core Activities: Requirements, Design, and Software Construction

Software engineering is mostly associated with programming. Writing code in a pro-
gramming language is a core task. In addition, manuals and technical documentation
must be written. According to Definition 2.5, “associated data and documentation”
are part of software. Knowing syntax and semantics of a programming language is
only a small fraction of the knowledge required in software construction. The abil-
ity to transform a given algorithm to a computer program is a skill often acquired
during computer science education. An industrial environment requires program-
mers to adhere to standards and guidelines. Standards come from external sources
and regulate the use of techniques that have proven useful. Guidelines and con-
ventions, such as the Sun code conventions (http://java.sun.com/docs/codeconv/),
are internal regulations. Coding conventions tell programmers how to comment
and format code, how to name variables and identifiers, and how to structure pro-
grams in packages, classes, and methods. Developers need to know what relevant
standards, guidelines, and conventions are and what they require. More than that,
developers need to know how to apply guidelines in their workplace. Some stan-
dards must be followed strictly, whereas internal recommendations can be ignored if
there are good reasons to do so. Distinguishing good from bad reasons is often tacit
knowledge.

Requirements engineering: A piece of code is useful only with respect to a cus-
tomer or user. If the code does not meet the requirements and expectations of the
customer, it is useless. Because there may be different user groups, there will be
different sets of requirements and expectations. Knowledgeable developers need to
know a lot about all of them. Even well-commented and technically well-structured
code cannot compensate for missing or misunderstood requirements. Therefore,
requirements analysts need to understand the real requirements before they can be
fulfilled. This is an important task and a major effort. It requires knowledge and
insight into the application domain; the ability to communicate with domain experts;
and technical skills to map requirements to possible solutions. Without the last abil-
ity, unrealistic requirements are uncovered too late in the process.

Requirements engineering refers to all activities related to requirements as out-
lined in Fig. 2.10: elicitation of requirements in interviews, workshops, and work-
place observations. Facilitating negotiation between so-called stakeholders is also
part of the job. A stakeholder is any person or group that is potentially affected by
the software. By this definition, not only users but also managers, administrators,
and even workers who may lose their jobs due to the new software must be consid-
ered stakeholders. Obviously, a subset of all those stakeholders must be identified
and involved in the process. This requires interviews and workshops to be prepared,
moderated, and analyzed. Software engineers need to master moderator tasks. There
are informal and formal techniques to elicit, visualize, and validate requirements in

2.4 Software Engineering Knowledge 49

Requirements
Engineering

Requirements
Analysis

Requirements
Management

Elicitation

Interpretation

Negotiation

Documentation

Validation/ Verification

Change Management

Tracing

Fig. 2.10 Analysis and
management activities in
requirements engineering

those situations. When requirements surface, they need to be interpreted (to avoid
misunderstandings and inconsistent use of terminology) and documented in a spec-
ification, set of use cases, or other forms. Of course, final specifications should be
checked by the stakeholders to remove errors. During a project, requirements often
change and need to be traced into design decisions. Requirements engineering is a
subdiscipline of software engineering.

The gap between requirements engineering and software construction is bridged
by software design. Rough decisions and structures are defined in the software archi-
tecture. This structure is then refined and filled during detailed design. As a result,
specified requirements should be met by the constructed software, including associ-
ated documents. Functional requirements describe the features and functions of the
program, whereas nonfunctional requirements refer to speed, volume of data pro-
cessed, and other aspects. Architectural considerations need to take nonfunctional
requirements into account: A suitable structure, use of frameworks, and distribution
of components is often a prerequisite to reaching desired performance, maintain-
ability, and flexibility.

Software engineers need technical knowledge in all areas affected by require-
ments, design, and software construction. In addition, they need experience in order
to choose alternatives, prioritize and select stakeholders, and make informed deci-
sions. For many of those decisions, there is no single optimal solution that could be
taken from a textbook. Instead, experience and tacit knowledge must guide develop-
ers as decision makers. Software engineers make many decisions under uncertainty.
Having access to more knowledge sources and experiences can increase confidence
in their decisions.

50 2 Fundamental Concepts of Knowledge Management

2.4.1.3 Software Quality and Support

The above-mentioned basic activities are obviously not as basic as they first seemed.
At first glance, they seem sufficient for developing software. However, high-quality
software requires many supportive tasks to be carried out.

Most nontrivial software projects include more than one developer and several
versions of code and documents. It is easy to lose track in that situation, in particu-
lar, if the workforce is geographically distributed. When contributions are integrated
manually, the same modules may be modified by more than one person, leaving the
system in an inconsistent or undefined state. Configuration management tools are
the usual way of solving this problem. They offer a repository of artifacts, such as
code modules of different size, and document chapters. A system is composed of
a defined set of artifacts. The tool ensures conflicts will be detected and updated
versions of all artifacts will be composed into a product release. Configuration man-
agement works in distributed settings and allows different variants of flexibility:
“Optimistic locking strategies” allow multiple developers to access the same docu-
ment d, as in Fig. 2.11. Developers add new documents and commit them. Others
check out and may modify documents in parallel. Then, the first developer commits
the changed version back to the system. If there are conflicting changes, they are
detected when the second author tries to return his work. In that case, he needs to
update his working copy, fix inconsistencies, and recommit. “Pessimistic locking”
avoids this effect by locking all artifacts when someone checks them out for chang-
ing them. As a result, the above-mentioned conflicts cannot occur. At the same time,
potential parallelism of work is rather limited.

Global software projects impose additional challenges, resulting from different
time zones to cultural differences.

Nonfunctional requirements often refer to quality aspects like performance,
maintainability, robustness, and so on. Assuring, maintaining, and managing soft-
ware quality is yet another demanding (and knowledge-demanding) task within
software engineering. Quality engineers or quality agents are a subset of software

d

d

d

Configuration management system

Working copies of documents

1: add
2: commit

3: checkout

4: change
5: commit

6: commit
=>CONFLICT

Fig. 2.11 Principle of
optimistic locking in
configuration management
systems

2.4 Software Engineering Knowledge 51

engineers. Their tasks include checking code for errors. However, good quality must
start much earlier in the development of software. Almost like a shadow project,
software quality must be planned and pursued along the entire duration of the soft-
ware project. Producing good quality requires formal and informal verification of
development results. It should also include validation of requirements: Does the
product reflect the customer requirements correctly? Did the requirements change
since they were elicited?

Testing is a well-known subtask of quality assurance. In testing, a piece of code
is executed with the goal of finding errors [75]. Of course, the final goal is to remove
those errors and improve functional correctness and quality of the code. However,
testing is almost a discipline in itself. If we want to uncover errors that produce
wrong results or reactions, we need to know what the correct results are. Only if
a test engineer (yet another software engineer!) prepares for testing, she creates a
long list of test cases. A test case consists of the stimulus and the desired reaction
or result. If we use many tests, we need many results. Unfortunately, desired results
can only come from the customer or the specification. Who else could know what
the customer desires? There are only very, very few cases in which desired results
can be derived automatically from another formal source. In most cases, creating
test cases includes a substantial amount of manual work (Fig. 2.12).

Knowledge helps to reduce effort in testing. There are several strategies to opti-
mize the set of test cases. Ideally, a small set of test cases will find many errors.
According to one test strategy, testers use only the specification to create “black-
box test cases.” Because the specification is considered a valid representation of the
customer’s desires, covering each requirement in the specification by at least one test
case is a good heuristic. In “glass-box testing,” testers look into the piece of code
under test. They see more or less complex structures and data types. In glass-box
testing, testers try to stimulate complex parts more frequently. They argue that errors
are more likely to occur there. Knowledgeable testers use more sophisticated strate-
gies and tools to determine the “coverage” of their test cases. When both all require-
ments and all structures in the code are stimulated (“covered”) by test cases, testers
can be quite confident to do a good job. However, complete testing of all possible
executions of a program is infeasible in the general case, so testers have to resort to
a strategy that has worked in the past. They know from experience that this strategy
finds many defects. Software quality in general is an area that requires experience
and a sense of economical pragmatism. For example, it may be desirable to review

ID Set up Parameters Correct result

1 Set to 10:00 a.m. 1:45 11:45 a.m.

2 Set to 11:00 a.m. 2:15 1:15 p.m.

…

Fig. 2.12 Two example test cases for a method that adds times and durations. Many more test
cases are needed in a realistic testing environment

52 2 Fundamental Concepts of Knowledge Management

all documents produced. This implies a group of reviewers should read, comment,
and discuss their findings. Reviews have been found to be very effective; up to 60%
of all errors can be detected [38, 48]. At the same time, reviews are rather slow and
take a lot of effort. Finding an adequate compromise requires knowledge of different
variants of reviews and inspections with their properties [101]. More than that, qual-
ity agents need experience in planning and carrying out reviews effectively in their
environment.

Management: Software engineers elicit requirements; they develop architec-
tures and design code. Software engineers take care of software quality; they review
documents and test code, among many other activities.

After a successful job as a programmer, a software engineer may be promoted to
project leader. Managing projects is an important activity for software engineers –
and it depends on knowledge and engineering. A project manager has many tasks.
Project planning is the responsibility of a project manager. Planning depends on a
good understanding of the required deliverables and a realistic estimation of effort
and time to complete those deliverables. A knowledgeable project leader does not
just “guess” effort and time. There are techniques to come up with sound estima-
tions. They assume the project leader can assess and classify the project. Despite the
formulas and techniques, most software estimations contain a good part of gut feel-
ing and experience. Project managers provide work-breakdown structures, provide
PERT charts, and milestone plans [53]. They control progress and consider error
and quality measurements. And they present their projects to higher management
and the customer. Of course, software engineers acting as project managers are also
responsible for their fellow software engineers working in the project.

Software engineering is supposed to adopt a systematic and disciplined way of
building software. In such an approach, successes should be repeatable. A learning
organization will try to eliminate errors in their activities and improve their pro-
cesses by building on proven practices. A process prescribes sequences and alter-
natives of activities to be carried out. Many processes also define roles and respon-
sibilities. Deliverables are specified with respect to their roles in a process. Project
managers have to instantiate and follow a project. On the one hand, a defined process
will help the project manager and all participants to comply with good practices. On
the other hand, an overly demanding process can put the project at risk. There are
many examples of projects that made wrong decisions: Some neglect the process
and deviated from plans and deliverables. They may finish in time but compromise
quality and process conformance. Others strictly follow the process but are not able
to complete the project in time. A project manager needs substantial experience
and background to make a responsible decision for a good compromise. Processes
incorporate past knowledge, but because technology and project pressures change
constantly, there must be constant adaptation and tailoring.

Software projects involve risks. An interesting project cannot be sure to achieve
all of its goals. Many things can go wrong: The customer may change her mind,
making a lot of work obsolete. Developers may leave the company, removing essen-
tial knowledge from the team, which can delay progress. Or a subcontractor may
not deliver in time, which can affect the project’s own schedule. A risk is defined

2.4 Software Engineering Knowledge 53

as a potential problem that may occur but is not certain to occur. If it will certainly
occur, we just call it a “problem,” not a risk. A professional software process sup-
ports managers by risk management. Risk management is a technique for system-
atic handling of risks. Using checklists and iterative risk management procedures,
risk managers identify risks through interaction with project participants. A risk is
classified according to its probability and the potential damage it causes. The team
will then develop mitigation plans for each of the top risks. Members of the team or
the project leader are assigned mitigation tasks. In the above-mentioned example, a
customer changed her mind about a requirement. A possible mitigation would be a
contract that defines a price for each change request. A different mitigation can be
an iterative process, which repeats requirements and construction in order to identify
and fulfill changing requirements (Fig. 2.13).

Knowledge of many kinds is needed to lead a software project well. Of course,
a project leader needs to know as much as possible about the problem to solve. A
good estimation requires a realistic evaluation of environmental parameters. A good
estimation is the prerequisite of a realistic project plan. All information available
about the customer and his goals should be taken into account to reduce uncertainty
and risk. Risk checklists from previous projects can provide a good start. Warnings
and recommendations from the experience of other projects is an invaluable source
for good decisions and compromises.

Integrate into
work practices

Management
decision

Risk
identification

Risk
monitoring

Plan activities

Risk analysis

Implement
activities

Introduction
workshop

Fig. 2.13 Typical risk
management process with
set-up activities and iterative
part

54 2 Fundamental Concepts of Knowledge Management

2.4.1.4 Domain Knowledge and Other Knowledge Areas

Software supports customers in carrying out their tasks. If you want to build good
software, you need to know the customers and their tasks. For example, embed-
ded software will run within a system or device constructed by electrical engineers.
When requirements analysts talk to electrical engineers, they will face a specific
attitude and language. When they talk to medical doctors about that same device,
their perspectives and terminology will be very different.

Knowing the application domain with its traditions, terminology, and particular-
ities is essential for success. Some domains, like safety-critical systems, have their
own standards and rules. They are common to everyone working in the domain.
Software engineers changing their working domain run the risk of not knowing
some of the relevant standards. Ignoring them is a major risk, as it will lead to unus-
able software.

There are many other areas in software engineering with a huge number of addi-
tional knowledge areas. Agile methods, for example, offer a new approach to fast
and flexible software projects [15, 16]. They apply incremental and iterative pro-
cesses that involve the customer on a regular basis. Agile methods sound good in
textbooks, but they require a lot of discipline and experience. Boehm and Turner
[21], for example, claim that only those software engineers should work on agile
projects who have proved their ability to work successfully in a traditional project.

Generating code is another technology that attracts a lot of attention [72]. The
idea is old, but there are new contributions every now and then. In principle, code
generation tries to produce more code faster than any programmer can write. The
goal is to multiply development efficiency. Code is generated from macros or from
models. If it is easier to draw a UML model than to write the code it represents,
generating this code from the model is an appealing idea. However, using the code
generators in an appropriate way requires a lot of knowledge. Should a certain piece
of code be generated or written manually? Again, experience is needed to make
informed decisions.

2.4.1.5 Summary

Obviously, basic textbook knowledge is rarely the problem in software engineering.
Developers, quality personnel, and project leaders need good qualifications and a
lot of technical expertise. In particular, decisions under uncertainty on several levels
call for experience and specific knowledge.

Mnemonic 2.5 (Informed decisions under uncertainty)
In software engineering, experience and knowledge is needed to make compromises
and decisions under uncertainty. There is no way of knowing the optimal decision.
Context specifics and experiences must be taken into account.

The research of Orasanu and Connolly [81] into decision-making in practice
showed that real-life settings include many of the following characteristics that are
also typical of software engineering work. The following list applies their findings
to the above-mentioned situation in software projects:

2.4 Software Engineering Knowledge 55

• Problems are ill-structured: It is difficult to see all relationships and dependencies
of requirements, constraints, and stakeholders.

• Information is incomplete, ambiguous, or changing: Requirements change in all
major software projects. Requirements tend to change because many stakehold-
ers did not have sufficient expertise, imagination, or simply time to produce
a concise and consistent set of requirements. Change is a symptom of grow-
ing understanding, which is one reason why agile software methods “embrace
change” [15].

• Many participants contribute to the decisions, and goals are shifting, ill-defined,
or competing: Stakeholders of a complex software project may include users,
managers, and those workers who will lose their jobs when the software is
installed. Usability goals compete with cost constraints and vague goals of saving
jobs.

• Typically, time constraints exist and stakes are high, which makes decisions dif-
ficult and urgent at the same time. Limited information and knowledge access
delimits well-informed decision making.

• The decision maker must balance personal choice with organizational norms and
goals [81]. Software quality standards may be high – according to the company
process model. An experienced quality engineer may know where corners can
be cut e.g., in the case of a budget cut. Such a situation is often not explained in
process manuals.

This short section on software engineering tasks and challenges has outlined the
wide range of knowledge and experience needed in practice. It evades all phases
and activities of a software project, and it ranges from simple factual information
(on context, domain, requirement constraints, etc.) to delicate experiences and tacit
assessment capabilities for decision making.

2.4.2 The Software Engineering Body of Knowledge

As the previous section shows, the range of knowledge in software engineering is
huge. There is no exhaustive list of knowledge areas or knowledge transfer mecha-
nisms. However, there is a reference classification of software engineering knowl-
edge, the Software Engineering Body of Knowledge (SWEBOK) [56]. SWEBOK
in itself can be regarded as a knowledge transfer mechanism: Every practitioner and
software engineering scientist may have certain requirements in mind: What does
a qualified software engineer need to know? SWEBOK is more than an intersec-
tion and less than a union of all those expectations. For our purpose of experience
and knowledge management in software engineering, SWEBOK can serve different
purposes:

• Classification: As we will see in Chap. 3, a stable, agreed-upon classification
of terms is important for managing knowledge. Because of its broad approach,
SWEBOK offers a category for most pieces of knowledge one can imagine in
software engineering.

56 2 Fundamental Concepts of Knowledge Management

• Checklist for personal development: An individual software engineer may use
SWEBOK as a reference to identify weak spots in his or her competencies. Indi-
vidual learning can aim at closing any gaps. However, it is overly ambitious to
aim for full coverage: Without practical project experience, many lessons can
be learned only superficially. When working in a company, however, there is no
need for a wish list like SWEBOK to identify room for improvement. Several
deficits will become apparent in daily work. But there will be little time and
opportunity to study what is missing.

• Matching problems with existing knowledge: This leads to the home ground of
knowledge management: What can we do in a concrete, specific situation to act
competently, although some knowledge is missing? SWEBOK can be used as a
classification and index. When someone has a problem or demand, a common
vocabulary will help to make the match with experiences and knowledge avail-
able in the organization.

Definition 1.4 (knowledge management) refers to the purpose of “solving a prob-
lem” as opposed to “completing computer science education.” In general, knowl-
edge management should be directed by actual or foreseeable demands, not personal
interests in fictitious applications. Learning on demand is preferential in a company
setting. This is where knowledge management takes place.

When we now look at SWEBOK, we do that with the above-mentioned consid-
erations in mind: We are not trying to describe the perfect software engineer, but
we see whether SWEBOK can help in classifying and indexing pieces of knowl-
edge. At the same time, we treat SWEBOK as an attempt to structure a complex
field of knowledge. This is a good exercise for Chap. 3, where structuring domain
vocabulary is the focus.

Fig. 2.14 shows the outline of SWEBOK [56]. There are 10 main knowledge
areas defined in SWEBOK. They are depicted as horizontal bars with attached
subtopics. Each bar shows the knowledge area according to SWEBOK on the right.
Related areas are labeled in SWEBOK as an additional knowledge area number 11.
SWEBOK is represented by a rectangle that covers most of these knowledge area
bars.

There is one more box in Fig. 2.14: it represents the growing number of related
aspects and knowledge areas. They are considered outside software engineering
(hence outside the SWEBOK rectangle) but are highly relevant for a knowledge
management initiative in software engineering. Knowledge areas are grouped in
Fig. 2.14 for the sake of this overview. Those groups called “core activities,” “qual-
ity and support,” and “management” were introduced in the previous section. They
show where those discussions feed into SWEBOK.

There are recurring patterns of subtopics in the knowledge areas: Concepts or
Basic Concepts introduce the knowledge area and its terminology. There are Key
Issues to detail certain aspects. In some fields, there is an established set of activi-
ties, such as in Software Requirements: the labels are almost identical to the ones
used in Fig. 2.10 and in many other sources on requirements engineering. Other
labels reflect the challenge of finding useful abstractions, for example “Techniques

2.4 Software Engineering Knowledge 57

Application Domains and many other emerging and related Knowledge Areas

Software Requirements

Requirements
Engineering

Process

Requirements
Elicitation

Requirements
Analysis

Requirements
Specification

Requirements
Validation

Requirements
Management

Software Design

Software
Design

Basic Concepts

Key Issues
in Software

Design

Software
Structure and
Architecture

Software Design
Quality Analysis
and Evaluation

Software
Design

Notations

Software Design
Strategies and

Methods

Software Construction

Reduction in
Complexity

Anticipation
of Diversity

Structuring
for Validation

Use of External
Standards

Software Configuration Management

Management
of the SCM

Process

Software
Configuration
Identification

Software
Configuration

Control

Software
Configuration

Status Accounting

Software
Configuration
Accounting

Software Release
Management
and Delivery

Software Quality

Software
Quality

Concepts

Definition
and Planning

for Quality

Techniques
Requiring Two
or more People

Support to
other

Techniques

Testing
special to

SOA or V&V

Defect
Finding

Techniques

Measurement in
Software Quality

Analysis

Software Testing

Testing
Basic Concepts
and Definition

Test Levels Test Techniques Test-Related
Measures

Managing the
Test Process

Software Engineering Management

Organizational
Management

Process/Project
Management

Software
Engineering

Measurement

Software Engineering Process

Software
Engineering

Process Concepts

Process
Infrastructure

Process
Measurement

Process
Definition

Qualitative
Process
Analysis

Process
Implementation

and Change

Software Maintenance

Basic
Concepts

Maintenance
Process

Key Issues
in Software

Maintenance

Techniques
for

Maintenance

Software Engineering Tools and Methods

Software
Tools

Software
Methods

C
o

re
A

ct
iv

it
ie

s
Q

u
al

it
y

an
d

 S
u

p
p

o
rt

M
an

ag
em

en
t

Software Engineering Body of Knowledge (SWEBOK)

Related Areas

Computer
Engineering

Computer
Science

Management Mathematics Project
Management

Quality
Management

Software
Ergonomics

Systems
Engineering

(additional Knowledge Area 11)

(Knowledge Area 1)

(KA 2)

(KA 4)

(KA 5)

(KA 6)

(KA 3)

(KA 9)

(KA 8)

(KA 7)

(KA 10)

Fig. 2.14 SWEBOK structure as a classification scheme for matchmaking [56]

requiring two or more people” within Software Quality. It is difficult to summarize
and classify all the knowledge relevant for an emerging and quickly growing field
like software engineering. Not all new trends can be covered by SWEBOK, but a
big portion of the core of software engineering is captured and organized. Fig. 2.14
could be further detailed to show the concrete types of tools, methods, and test

58 2 Fundamental Concepts of Knowledge Management

aspects that are covered by SWEBOK. Some important tasks like risk management
are not depicted on this level of abstraction, but they are definitely a crucial piece of
knowledge in software engineering. Most other aspects presented during the short
introduction to software engineering tasks in the previous chapter can be located
easily within the SWEBOK outline.

SWEBOK is proposed as an agreed-upon structure of the discipline of soft-
ware engineering. Using SWEBOK as a semantic structure can help software engi-
neers and knowledge managers alike to come to a better mutual understanding. In
very concrete terms, a defined outline like SWEBOK facilitates searching beyond
keyword search. It will also facilitate communication in the software engineering
community.

The authors of SWEBOK made a clear decision about the scope of this body
of knowledge. Domain knowledge is not considered part of software engineering
knowledge:

Software engineers must not only be knowledgeable in what is specific to their discipline,
but they also, of course, have to know a lot more. The goal of this initiative is not, however,
to inventory everything that software engineers should know, but to identify what forms
the core of software engineering. It is the responsibility of other organizations and initia-
tives involved in the licensing and certification of professionals and the development of
accreditation criteria and curricula to define what a software engineer must know outside
software engineering. We believe that a very clear distinction must be made between the
software engineering body of knowledge and the contents of software engineering curric-
ula. (www.swebok.org)

This distinction is useful for framing software engineering terminology and con-
text. There are other experts in application domains like medicine or automotive who
may develop their own body of knowledge. Therefore, application domain knowl-
edge is considered outside the SWEBOK. It is not drawn within the boundaries of
SWEBOK according to Fig. 2.14. However since it is closely related to the software
engineering knowledge, it is depicted in an extra gray rectangle just below SWE-
BOK. It is part of the knowledge software engineers have to master in practice. It
does not matter who structures and publishes those related bodies of knowledge.

2.4.2.1 Evaluation of SWEBOK as a Matchmaker

How appropriate is SWEBOK as a matchmaker? Imagine a situation in which you
need a piece of information or knowledge: Where would you look it up in SWE-
BOK? If you can easily identify two or three subsections to look into, SWEBOK is
a powerful classifier. It guides you to a small number of places to check. If, how-
ever, no label really fits or if too many categories might be relevant, SWEBOK is
less adequate.

But even if you are sure where to look: Will relevant material really be there?
From the knowledge authors’ point of view, the situation looks different: Without

knowing future demands and problems that could possibly be addressed by a piece
of knowledge they want to store, authors are asked to categorize it. This is more
difficult than one might think. Any real problem or solution will touch on more than
one category. Should an experience be classified by problem area, or by solution, or
by some blend of both? How should we consider context? It is often a hard piece of

2.5 Appropriate Knowledge Management for Software Engineering 59

work to imagine what future users might want to know. Engineering knowledge and
experiences is concerned with that question, among others. Engineering includes
structuring, indexing, and comparing with other knowledge. Chapter 3 is devoted to
engineering knowledge for reuse.

SWEBOK refers mainly to “hard software knowledge”: technical skills, not soft
skills. Many problems in software projects go back to personal conflicts, misunder-
standings, and poor social skills. When we look at software engineering knowledge
from that angle, we definitely need to add corresponding categories of knowledge.

The discussion about SWEBOK as a matchmaker shows:

• It is not easy to develop a good classification scheme for experiences and knowl-
edge. An index looks different from the authors’ and the users’ points of view.
Effective matching requires engineering of knowledge.

• Matching keywords will rarely do: Each piece or demand might need several
keywords or categories to describe it.

• SWEBOK has many merits that we did not even mention here. We are only
interested in knowledge management for the software engineering area. Other
goals and contributions have been omitted.

For the remainder of this book, we treat SWEBOK as a good overview of knowl-
edge areas within software engineering. We are aware that it is not the one and
only possible classification scheme for software engineering. As we will see later,
part of a classification should grow out of the problems and applications – not be
imposed top-down. In essence, there is no static borderline around software engi-
neering knowledge relevant for knowledge management.

2.5 Appropriate Knowledge Management
for Software Engineering

Before Chap. 3 starts the discussion of techniques, we should mention the diversity
in knowledge management research. There is not just one orientation but a whole
variety of research directions.

In a workshop on learning software organizations and requirements engineering
(LSO+RE 2006), the editorial discusses what makes software engineering special
as a domain for knowledge management [20].

Software process improvement intersects with learning organizations. Both fields
aim at improving efficiency; both fields apply iterative approaches to feedback and
learning. The concept of “Experience Factory” [11] is the first well-known system-
atic approach to organizational learning in the software engineering field [11, 31].
It will be discussed in detail in Chap. 4.

What sets a learning software organization apart from other learning organiza-
tions? Software development is a very knowledge-intensive form of work. Software
organizations are also more mature in the usage of information technology. In fact,
the input and outcome of software engineering is information. As a consequence,
we might expect software organizations to make better use of available tools.

60 2 Fundamental Concepts of Knowledge Management

Table 2.1 Schools of knowledge management, according to Earl [35]

ConsciousnessBusinessKnowledge capabilitiesMindsetStrategic

ConnectivityPlaceKnowledge exchangeSpaceSpatial

CollaborationCommunitiesKnowledge poolingNetworksOrganizationsBehavioral

CommercializationKnow-howKnowledge assetsIncomeCommercialEconomic

CapabilityActivityKnowledge flowsProcessesEngineering

ConnectivityEnterpriseKnowledge directoriesMapsCartographic

CodificationDomainKnowledge basesTechnologySystemsTechnocratic

PhilosophyUnitAimFocus

Attribute

S
ch

o
o

l

Earl [35] has developed a framework to categorize studies on knowledge man-
agement according to different research directions, which he calls “schools,”
as shown in Table 2.1. The “technocratic” approach to knowledge management
focuses on systems, cartography (maps), and engineering of knowledge, whereas
the “economic” school looks at the commercial value of knowledge. “Behavioral”
approaches focus on organizational, spatial, and strategic aspects of knowledge
management.

As Table 2.1 shows, each direction focuses on different aspects that are rooted
in a specific philosophy and attitude toward knowledge management. There is a
typical aim and associated focus and a certain kind of unit that will often pursue the
respective kind of knowledge management aspect.

Example 2.6 (Systems school)

For example, a philosophy of codification (“knowledge needs to be coded explic-
itly”) may aim at building knowledge bases. For those repositories, technology is
an obvious focus. Often, an entire domain of knowledge is addressed. For example,
building a knowledge base for estimating software project duration and cost may
be pursued by setting up a data exchange system for the estimation community.
CeBASE is a software engineering initiative for developing experience bases in a
community [76].

Example 2.7 (Organizational school)

Someone convinced of the power of collaboration (as a philosophy) may aim at
pooling knowledge, including tacit knowledge. For a community, building a network
may be the focus. For example, a department head may decide to institutionalize the
exchange of software quality experts (a community) by inviting them to regular
meetings. Networking can also be supported by yellow pages or other systems, but
such a technocratic approach would rather point to a cartographic view. Usually, an
initiative reflects a certain mixture of different influences.

We will use Table 2.1 as another map for orientation. Real companies will need to
exploit several knowledge management aspects together. In the following chapters,
techniques can be mapped to aspects to find similarities. Maps or mental models

2.5 Appropriate Knowledge Management for Software Engineering 61

S
u

p
p

o
rt

 f
o

r
M

at
ch

-M
ak

in
g

Knowledge Management Approaches

Aim

Focus

! ?

sources demands

Unit

PhilosophyFig. 2.15 Philosophy and
kind of unit point to
appropriate support for
matchmaking

help people (and organizations!) to develop shared understanding. As a reference
for problems, existing experiences, and ongoing research, they can be catalysts.
Whereas SWEBOK was a rather linear reference for software engineering knowl-
edge, the schema provided by Earl’s table provides categories for knowledge man-
agement approaches. As Fig. 2.15 illustrates, knowledge management approaches
can be characterized by the philosophy they represent and by their respective unit.
Those search criteria lead to an approach, which implies an aim and a focus to pur-
sue. The selection will be an approach that complies with the philosophy and kind of
unit. All selected approaches support making the match between those in demand of
knowledge and those people who have that kind of knowledge – tacitly or explicitly.

There are some general lessons learned associated with picking knowledge man-
agement approaches. They can be used as general guidelines for designing appro-
priate knowledge management initiatives:

• Managing knowledge is more successful if there is already something to manage.
Starting without sources and without existing knowledge is difficult. Imagine you
need some information on a software tool. If software engineers find an empty
knowledge base, and no links to experts, this would not help a lot. Therefore,
knowledge management in software engineering must provide an initial content
for a base before it is delivered to its users. This is called a “seed.”

• Capturing knowledge without concrete demands is difficult, too. The purpose of
knowledge management is not to store and encode knowledge, but to deliver it to
those who need it. Knowledge acquisition needs to be aware of what is needed.
Imagine someone who has been working with a tool for a while. How should this
person know whether it is worth the time to put something into the knowledge
base about that tool? And what kind of information would be most appropriate?

• There is good potential for reuse if many knowledge workers need the same kind
of knowledge frequently. Imagine the company using a software tool only for
certain tasks (e.g., risk management). Risk management should be carried out
by each project, but only as a background activity. As a consequence, knowledge
about the tool is needed on a regular basis, but not frequently enough for everyone
to know it by heart.

62 2 Fundamental Concepts of Knowledge Management

• Knowledge that can be acquired or internalized fast is more likely to make knowl-
edge management a success. If learning takes very long or requires a teacher and
exercises, that type of knowledge is less adequate for knowledge management.
It should rather be learned in a formal education program. In the example of the
risk management tool, gaining basic awareness about risks in software projects
is a slow and tedious topic. But if someone knows those basics already and finds
some hints and checklists to make risk management more effective, this is a faster
and more promising approach.

• The granularity of meaningful pieces of knowledge should be small to medium.
Very small chunks, like the meaning of an acronym, can be handled with nonspe-
cific search engines and hardly justify expensive knowledge initiatives. However,
very voluminous packages of knowledge take too much time and are difficult to
evaluate for relevancy (see item above). Medium granularity provides substantial
support but is still economical to read, evaluate, and internalize when needed.

• Tacit knowledge is important and must not be excluded. Restricting an initiative
to explicit knowledge cuts out the source of most interesting experiences and
may restrict it to single-loop learning [7, 8].

• However, relying on tacit knowledge alone is often too time-consuming and takes
too much effort. Knowledge management techniques can unfold their capabilities
best when there is also a reasonable portion of explicit knowledge to spread.

Ideally, knowledge workers already know a lot about the software engineering
domain they are working in. Knowledge management can build on this prior knowl-
edge and enable knowledge workers to exchange details, facts, new rules, and hints.
New knowledge combines with existing knowledge, as Definition 1.7 (knowledge)
implies. Tacit and explicit sources and mechanisms for making matches can be
exploited. In short, knowledge management is most promising in software engi-
neering when all parts of Fig. 1.8 are activated.

For example, software engineers in an automotive company know how to build
brake system software. They benefit from a knowledge management approach that
does not need to convey all their basic knowledge but supports them with details
of brake hardware, new safety regulations, and experiences from their fellow soft-
ware engineers. It should also support them in feeding back what they have learned
individually. There are both experience exchange opportunities and mechanisms for
capturing and externalizing tacit knowledge. Newly created knowledge will be engi-
neered and matched to future demands. An appropriate approach can be ambitious.
It should be neither oversized nor too modest. Appropriate approaches meet the
above-mentioned success criteria.

Example 2.8 (Supporting managers)

Supporting software managers is a promising field within software engineering.
Managers need data and information to plan a project. They need progress infor-
mation to control it. And they need support from simulations (based on “explicit
mental simulation models”) and experiences for predicting and estimating project
parameters. There are many chunks of medium-sized information. Several pieces

2.6 Types of Tools Supporting Knowledge Management 63

of knowledge will be communicated from person to person because no one writes
down all his gut feelings. Managers will still make their decisions by themselves:
Simon [102] showed that managers do not act fully rationally; the bounded ratio-
nality they apply is informed by adequate knowledge management, but there is no
need to oversize heuristic support. The decision will and should be made by the
managers, not by a resolution mechanism.

2.6 Types of Tools Supporting Knowledge Management

Earl’s classification of knowledge management schools illustrates the broad vari-
ety of approaches, goals, and mechanisms for supporting knowledge management.
Some are tightly associated with a certain kind of tool like knowledge directories or
bases. Some specific tools will be mentioned in the respective chapters below (e.g.,
for ontologies and mind maps).

Many aspects of knowledge management may be carried out manually, but a
larger number of knowledge workers usually require tools, too. For that reason,
tools are fundamental parts of knowledge management. Even without going into
detail about any particular tool, there are two types of tools that are associated with
their respective type of knowledge management approach.

Our map of knowledge management (Fig. 1.8, repeated below as Fig. 2.16) shows
many tasks in perspective, starting with the identification of appropriate sources of

Activity or event

?

?
multip

ly

identify source elicit engineer
& store

match add value use & benefit

relate &

reason

encourage

support

store

structure

validate

conclusion
emotion

observation presentation

& style

• know domain
terminology

• no guessing
needed

• avoid mis-
understandings

• adhere to rules

• conform to
standards

• fewer rework

• easier certification

• use best practices

• avoid pitfalls

• save time through
templates

• know product
details

• find experts and
consultants

• make better-
informed
decisionsexperience

people

bases

Fig. 2.16 Map (repeat of Fig. 1.8) to show product- and process-centered aspects

64 2 Fundamental Concepts of Knowledge Management

knowledge. Eliciting tacit and explicit knowledge leads to structuring, engineering,
and storing knowledge. To add value, a match must be made between available
material (sources) and knowledge workers who need this material.

If a single tool had to support all those aspects, it would need to be highly specific
and very versatile. Because all companies are different, tailoring would be impor-
tant. That makes a tool very expensive. In practice, relying on existing components
will be less expensive and more powerful. If a new tool is introduced, learning cost
often exceeds tool license fees. In addition, the psychological barrier can be a prob-
lem. Knowledge workers must have good reasons to adopt yet another tool. They
will not do it when they perceive or believe the new tool only replicates functionality
of well-known tools they already know. Therefore, providing adequate information
on new benefits must be part of the introduction.

Example 2.9 (Supporting communication)

Imagine communication about knowledge: Would you rather use your familiar e-
mail tool, or would you prefer to learn using a dedicated tool with similar features?
How would you like checking for messages in two tools? Since knowledge man-
agement is itself a discipline supporting software engineering, it should not erect
unnecessary hurdles for mastering new tools. Instead, a knowledge management
initiative should identify and bundle existing tools and relevant features and help to
use them for exploiting knowledge resources better. Specific tools will mostly be
limited to highly specific tasks (e.g., for automated reasoning).

These general remarks apply to almost all environments: Tools should be picked
and combined according to the existing tool base in a company. There is a huge
diversity of customary tools, and it is impossible to even list them all. Instead, we
want to look at two families of tools that relate to different viewpoints on knowledge
management: the product view and the process view. Both occur in our map, but
both call for different tools.

Mentzas et al. [73] compare the two approaches nicely. The difference is deeply
routed in different philosophies and schools: One of them views knowledge as a
product (or a “thing” to be moved around). The other considers knowledge a pro-
cess; as in Definition 1.7, knowledge is treated as something residing in people’s
minds.

Product-centric approaches to knowledge management are concerned with
knowledge logistics: how to package and store and classify a “piece” of knowl-
edge in order to find and “deliver” it when needed. In this world view, knowledge
workers live in a supermarket of more or less “tasty” servings of knowledge. It
is up to the supermarket management to organize the offers and ensure the fresh-
ness of the products. Knowledge workers are responsible for selecting products
with the support of the structures and pointers created by management. They will
swallow and digest those pieces at their own pace. When new chunks of knowl-
edge come in from “somewhere,” they are checked, repackaged, labeled, and put
on the shelves. Artificial intelligence has pursued a similar approach in computer
science. Approaches from that direction are often technocratic (cf. Earl [35]) and

2.7 Problems for Chapter 2 65

product-centric. Powerful mechanisms are available in this field. Search and infor-
mation retrieval tools help to match demands and offers. Using metadata helps to
go far beyond keyword search. Pieces of knowledge are stored in expert systems
and knowledge-based systems. Reasoning mechanisms use ontologies and Semantic
Web technology for automated classification, comparison, and mining of informa-
tion relevant to a task at hand [73]. Selected approaches are explained in more detail
in Chap. 3.

Process-centric approaches to knowledge management are centered on the
learning of individuals and teams. Because knowledge resides in people, network-
ing is a social, psychological, and cognitive necessity. Empowering people to carry
out learning loops and reflection is the focus. In this world view, knowledge work-
ers live in a community of chefs in a gourmet restaurant. Ingredients for their great
meals need to be fresh, and that is a concern. However, much more important is the
tacit experience that their colleagues have acquired when working in various great
restaurants before.

Example 2.10 (Socialization)

Kitchen apprentices watch the master chefs and copy what they see: Socialization
is taken very seriously. New knowledge about recipes and refinements is created by
bringing experts together in an empowering environment. Knowledge consumers
out in the restaurant enjoy the sophisticated solution and benefit, too. A gourmet
restaurant does not scale up to feed as many people as a supermarket.

Yellow pages help to establish and maintain networks. Technologies for exchang-
ing information in a group, such as groupware, and computer-supported cooperative
work will support group learning: They facilitate remote or multimodal meetings.
People modify the same document while they talk or chat over the Internet.

Obviously, a product-centric view alone will miss a large portion of knowl-
edge creation and engineering potential. On the other hand, a purely process-centric
approach might not be sufficient to feed a large company. It will usually be a wise
decision to go for a balance between both views. There is no principal competition
between those world views – but proponents typically come from different research
and work backgrounds. This might lead to a (tacit) controversy. You should rather
pick the best of both worlds: Why not have great knowledge masters refine knowl-
edge and disseminate it with product-centric logistics and formalisms?

2.7 Problems for Chapter 2

Problem 2.7.1: Single- and double-loop learning
What is the difference between single-loop and double-loop learning? Explain both
modes and give a short example from software engineering for each of the two.

66 2 Fundamental Concepts of Knowledge Management

Problem 2.7.2: Framework XY learning scenario
A software company has used a certain framework XY for building business applica-
tions. Problems using that framework are reported to a hotline. The hotline releases
a new version of its newsletter “XY Procedures.” New projects are supposed to fol-
low those procedures. This is supposed to spread learning through all projects. What
kind of learning is this? How could this type of learning turn out to be counterpro-
ductive? Refer to the XY example. What concrete activities could help to prevent
that negative effect?

Problem 2.7.3: Formal reasoning patterns
You are working as a test engineer. Over the years, you have noticed that many
tests fail due to the incomplete initialization of variables. Describe the three for-
mal reasoning patterns (abduction, deduction, induction) and label the following
statements with the corresponding reasoning pattern name:

• “. . .there are often errors in initialization.”
• “Initialization looks so trivial, so many people are not very careful about it.”
• “Programmers make more and more mistakes.”
• “Setting a counter to 0 or 1 is often forgotten.”
• “Flawed initialization is easy to find by testing; that is why we find so much,

because we test more systematically.”
• “Programs have errors.”

Problem 2.7.4: Schools and approaches of knowledge management
A company wants to encourage the exchange of knowledge among its software engi-
neers. For each of the following suggestions, identify the respective school accord-
ing to Earl and approach (product- or process-centric) it belongs to:

• “We develop a knowledge database and send an e-mail to all software engineers
asking them to enter their knowledge.”

• “Let’s put an info terminal in the main lobby; every time you enter the building,
you will see a new ‘knowledge item of the day.’”

• “We could use a Wiki Web to record everything we think others might need.”
• “Okay, but there needs to be a moderator; plus, we should have monthly meetings

of the Wiki User Group.”
• “Let’s put up a coffee machine and two sofas.”
• “There are powerful networks now, so we can even send movies. Everybody gets

a camera on their desk, and when they want or have something interesting, they
record a movie.”

• “Great idea! We hire a person who can index all incoming movies according
to their SWEBOK category, and a few other attributes. We build a resolution
machine that helps to match new entries with stored ones.”

Problem 2.7.5: Knowledge management life-cycle
Draw Nonaka and Takeuchi’s knowledge management life-cycle. Explain it by
applying the concepts to the example of a group of software project leaders who
meet in a community of practice (CoP) to learn about cost estimation.

	to 2 Fundamental Concepts of Knowledge Management
	2.1 Objectives of this Chapter
	2.1.0
	2.1.0.0 Recommended Reading for Chap. 2

	2.2 Learning Modes and the Knowledge Life-Cycle
	2.2.1 Loops in Learning: Argyris and Schön
	2.2.1.0 Example 2.1 (Single-loop learning in software engineering)
	2.2.1.0 Example 2.2 (Programmer)

	2.2.2 A Knowledge Management Life-Cycle
	2.2.2.0 Example 2.3 (Combination)

	2.2.3 Kolb's Learning Cycle
	2.2.4 Classical Modes of Reasoning
	2.2.5 Reflective Practitioners and Breakdowns: Donald Schön
	2.2.6 Popper: When Should We Trust a Theory?
	2.2.6.0 Example 2.4 (Falsification)

	2.3 Knowledge in People, Teams, and Organizations
	2.3.1 The Scope Dimension in Knowledge Creation
	2.3.2 Group Interactions and Shared Maps
	2.3.2.0 Example 2.5 (Adapting or adjusting)

	2.3.3 Other Related Theories and Approaches

	2.4 Software Engineering Knowledge
	2.4.1 Software Engineering from a Knowledge Perspective
	2.4.1.1 Defining Software Engineering
	2.4.1.2 Core Activities: Requirements, Design, and Software Construction
	2.4.1.3 Software Quality and Support
	2.4.1.4 Domain Knowledge and Other Knowledge Areas
	2.4.1.5 Summary

	2.4.2 The Software Engineering Body of Knowledge
	2.4.2.1 Evaluation of SWEBOK as a Matchmaker

	2.5 Appropriate Knowledge Management for Software Engineering
	2.5.0
	2.5.0.1 Example 2.6 (Systems school)
	2.5.0.1 Example 2.7 (Organizational school)
	2.5.0.1 Example 2.8 (Supporting managers)

	2.6 Types of Tools Supporting Knowledge Management
	2.6.0
	2.6.0.1 Example 2.9 (Supporting communication)
	2.6.0.1 Example 2.10 (Socialization)

	2.7 Problems for Chapter 2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

