~ Kurt Schneider

I Experience and
Knowledge Management
in Software Engineering

@ Springer

Experience and Knowledge Management
in Software Engineering

Kurt Schneider

Experience and
Knowledge Management
in Software Engineering

@ Springer

Prof. Dr. Kurt Schneider

Leibniz Universitdt Hannover

Fachgebiet Software Engineering

Welfengarten 1

30167 Hannover

Germany

Kurt.Schneider @inf.uni-hannover.de
www.se.uni-hannover.de/fachgebiet/enkschneider

ISBN 978-3-540-95879-6 e-ISBN 978-3-540-95880-2
DOI 10.1007/978-3-540-95880-2

ACM Computing Classification (1998): D.2, K.6, 1.2

Library of Congress Control Number: 2009920220

(© Springer-Verlag Berlin Heidelberg 2009

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Cover design: KiinkelLopka GmbH

Printed on acid-free paper

987654321

springer.com

To my wife,
Barbara

Preface

This is a book for students and practitioners of software engineering. Software
engineers carry out knowledge-intensive tasks in software development, project
management, or software quality. With this book, they will make better use of their
personal knowledge and experience — and also of the knowledge in their groups or
companies. In many organizations, there are initiatives to foster knowledge manage-
ment or experiential learning. Some of them target software departments. Everyone
involved in such an initiative will benefit from this book: managers, software engi-
neers, and knowledge managers.

Knowledge engineers may find this book interesting as a view of knowledge
management from the perspective of an application domain: software engineering.

At the intersection of software engineering and knowledge management.
Software has become the most fascinating discipline in our society. Software con-
trols cars, airplanes, and factories. Travel agencies and the military, banks and games
depend on software. And software depends on knowledgeable experts. The ever-
increasing demand for software calls for a broader and more explicit application of
knowledge and experience. Software engineering is now a knowledge discipline,
combining knowledge from computer science, engineering, and the application
domains a particular software project is working for. Many individuals working in
the software area increase their market value by improving use of knowledge and
experience. However, companies should no longer rely on their employees’ individ-
ual commitment to learning. Many software companies have identified knowledge
as a catalyst for success. Knowledge management deals with the creation, manage-
ment, and dissemination of knowledge in general.

Knowledge management has roots in philosophy, epistemology, and in several
other disciplines — and it extends to formal languages and computer support. To
make effective use of the techniques and tools, many software engineers believe
they need a good overview of related concepts without having to dig into too many
details. This book is an attempt to select key issues on several levels and provide an
overview of the intersection of software engineering and knowledge management.

There are clear advantages in focusing on this audience. The familiarity of soft-
ware engineers with computers and programming languages provides a better starting
point for knowledge and experience management. Therefore, examples are almost
exclusively taken from the software realm. Software engineering imposes a view on

vii

viii Preface

knowledge management that differs from the perspective of business or sociology.
This book wants to support software engineers better by adopting their perspective.

Taking experience seriously. This book puts an exceptional emphasis on experi-
ence. Experience is indispensable around software. However, this general assertion
is rarely followed by any concrete consequence. When it comes to planning and opti-
mization, experience is treated as “soft stuff” that resides inside individuals and is
not accessible to a team or a company. This attitude gives away many opportunities
for improvement. Of course, experience is a delicate material, and it takes dedicated
techniques to handle it well. They are similar but not identical to the approaches
used in knowledge management. Some techniques are explained in this book.

Neither knowledge nor experience can be collected, stored, and shipped like
material goods. Knowledge and experience are effective only in the brain and con-
sciousness of people. Knowledge and experience management can establish links
and support learning on individual and organizational levels. Knowledge has been
called a company asset. However, this is only part of the truth: software engineers
and other knowledgeable people should be regarded the assets, as they will make
knowledge effective. This insight leads to various consequences: Semiformal and
formal descriptions can be well-suited although they are difficult to support by a
computer. In certain situations, more formal notations and ontologies are applicable.
Itis the challenge and art of good knowledge and experience management to identify
the best techniques in a given situation and to support smooth transitions between
them.

Textbook and resource for self-directed learning. This book can be used as a
classic textbook. It is organized in self-contained chapters. Nevertheless, it will be
best to read all chapters in sequence. Readers less interested in the formalisms of
Web-based languages and ontologies may want to skip the corresponding chapter.
They will still be able to follow subsequent chapters on experience and application
scenarios.

The book contains several problems as exercises for each chapter. They repeat
some of the material presented, and they challenge the reader to reflect on some of
the issues. There are solutions to all problems at the back of the book.

A reader studying the full material in a rigorous way, solving the problems and
following the interactive examples, will gain the most in-depth insights.

Just for curiosity. Others might read the book with a different goal in mind.
Knowledge managers can learn more about software engineering as a particular
application domain by looking through a software engineer’s eyes. Software experts
with a genuine interest in improving their professional working style may pick
the chapters and sections they are most interested in. They will be able to gain
an overview of an emerging field. Assumptions and challenges are presented as
well as opportunities and working lightweight techniques. A selection of application
scenarios puts the techniques in context.

Preface ix
Benefits for Readers

This book contains problem sections and solutions. Various learning objectives are
pursued. When readers follow the text and solve the problems, they will increase
their capabilities and opportunities within a software organization.

Learning objectives of this book. Readers will gain a good overview of knowl-
edge management aspects. As a result, they will be able to make judgments and
well-informed decisions.

In particular:

® They will understand which kind of knowledge is important in software engi-
neering, and why knowledge needs to be managed.

e They will know the terminology used in experience and knowledge management.

e They will understand the difference between knowledge and experience in the
context of software engineering.

® They will be able to evaluate and discuss a given knowledge management initia-
tive planned in a company.

e They will be able to suggest improvements on knowledge management initia-
tives.

® They will understand and distinguish management and developer perspectives
on knowledge and experience management — and their potential conflicts.

® They will understand why information needs to be structured and reorganized
(“engineered”) for reuse in software projects.

e They will be aware of the fact that knowledge and experience is deeply related
with people — it is not just dead material.

Readers will also be enabled to contribute to improvement initiatives actively:

e Readers will know different techniques and tools for structuring knowledge in
software engineering.

They will understand the meaning and potential of patterns for reuse.

e They will know how to start effective experience exchange in a team or business
unit.

® Readers will know and understand recurring problems and misunderstandings
that challenge the reuse of experiences and knowledge — and options to overcome
them.

e They will know the visions of experience factory, organizational memory, and
Web 2.0 approaches like Wikis or blogs, which have been drivers for the devel-
opment of novel experience and knowledge management techniques.

® They can avoid common pitfalls associated with the introduction of new experi-
ence management tools.

e They will be able to recall practical examples of introducing and applying expe-
rience and knowledge management in companies for discussions and planning.

Concrete impact on software engineering work. According to Eraut and Hirsh
[37], there are a number of concrete benefits associated with improved learning
abilities.

Preface

Applying knowledge management and experiences to software engineering can

have the following impacts:

Carrying out software engineering activities faster.

Improving the quality of the process.

Improving communications around complex software engineering tasks.
Becoming more independent and needing less supervision, which is important
for new employees.

Helping others learn to preform knowledge-intensive tasks, thus freeing
resources for development activities.

Combining tasks more effectively.

Recognizing possible problems faster.

Expanding the range of project situations in which one can perform competently.
Increasing ability to handle difficult tasks and taking on tasks of greater com-
plexity.

Dealing with more difficult or more important cases, clients, customers, suppli-
ers, or colleagues.

This list of value-adding abilities shows the potential of focusing on experience

and knowledge management — as a learning approach for software engineers.

Hannover, Germany Kurt Schneider

Acknowledgments

I am a software engineer — and I worked at the intersection of software engineer-
ing, experience, and knowledge management for several years. After holding a
postdoctoral position at the University of Colorado at Boulder, I had just joined
DaimlerChrysler Research and Technology, when one direction of our research
turned toward systematic learning from experience. Prof. Victor R. Basili from the
University of Maryland at College Park was a promoter and coach for all of our
work on experience and experiments in software engineering for years. I owe him
many insights and good ideas that made it into this book and also a lot of fun during
all our meetings.

Prof. Dieter Rombach, the Director of the Institute for Empirical and Experi-
mental Software Engineering (Fraunhofer IESE) in Kaiserslautern, Germany, was
an equally important partner in several collaborative projects. Together with Vic
Basili, Dieter Rombach formed the Software Experience Center (SEC) initiative.
Five world-class companies met on a regular basis to exchange experience on soft-
ware engineering issues: ABB, Boeing, DaimlerChrysler, Motorola, and Nokia.

For DaimlerChrysler, the membership in the SEC consortium was an impor-
tant step. Bérbel Horger, the head of Software Process Design at DaimlerChrysler
Research and Technology, recognized this early and supported SEC. She initiated
an internal SEC project within DaimlerChrysler. I had the honor to lead Daimler-
Chrysler’s part of SEC and work with a large number of dedicated, committed,
and inspiring colleagues: Frank Sazama, Frank Houdek, and Heike Frank added a
lot of ideas and insights about experience factory and use of knowledge. Stefanie
Lindstaedt was a driving force and the leader of the Coronet collaborative learning
project, associated with SEC. Dieter Landes, Ton Vullinghs, and J. Kontio provided
knowledge and experience on software risk management from several large projects.
Jan von Hunnius, Thilo Schwinn, and Thomas Beil made SEC work by putting
techniques on the intersection of software engineering and experience management
to work. Many people participated in building experience bases, collections of expe-
rience, and knowledge, which we then refined and improved step by step. SEC was
not always an easy project. We learned many lessons the hard way — but I always
enjoyed working with the great people at SEC. Hopefully, this book can give others
an easier start to reach an equally rewarding experience faster.

Xi

xii Acknowledgments

When I joined Universitdt Hannover in 2003, I brought many of the concepts to
the university environment. An experience circle with companies was formed; tech-
niques were applied in more than 50 student projects over the first 4 years. We built
new and better repository construction kits — and we made new mistakes. By that
time, I had already learned to appreciate an uncovered problem as an opportunity
for learning and improvement. Dieter Rombach initiated the effort that led to this
book. In that process, Eric Ras from Fraunhofer IESE has provided numerous good
ideas and corrections. Frank Bomarius read an earlier version very carefully and
provided insightful remarks. Sebastian Meyer from Leibniz Universitit Hannover
has provided many detailed comments to improve the book. My colleague, Prof.
Nicola Henze, pointed me to some interesting ontologies on the Web.

Stefanie Lindstaedt, who is now a department head at the Know-Center in Graz,
Austria, reminded me of the importance of workplace learning issues. We were both
inspired by Prof. Gerhard Fischer from the University of Colorado at Boulder.

Thank you very much!

Contents

1 Motivation and Terminology 1
1.1 Objectives of this Chapteroiiiiiiniiineenn... 1
1.2 A Guided Tour of Experience and Knowledge Management 1

1.2.1 Knowledge Helps an Organization to Act and React Better . 2
1.2.2 Examples of Knowledge Workers in Software Projects 5
1.2.3 Spreading Knowledge and Experiences 7
1.2.4 What Others Call “Knowledge Management”............. 8
1.3 Data, Information, Knowledge —and Beyond 9
1.4 Application of Knowledge Management in Software Engineering .. 20
1.4.1 Factsand Termsc.oveunniineineineennn.. 20
142 Rulesand Standards 21
1.4.3 Procedures and Templates, 23
1.4.4 Engineering and ProductionData 24
1.4.5 Competenciesand People 24
1.4.6 Skills and Relationships..................... 25
1.4.7 Opinions and Decisions, 26
1.5 Facilitating Workplace Learning 26
1.6 ProblemsforChapter 1 i, 27

2 Fundamental Concepts of Knowledge Management 29
2.1 Objectives of thisChapter oo, 29
2.2 Learning Modes and the Knowledge Life-Cycle 30

2.2.1 Loops in Learning: Argyris and Schon................... 30
2.2.2 A Knowledge Management Life-Cycle 33
2.2.3 Kolb’sLearningCycle, 36
2.2.4 Classical Modes of Reasoning 37
2.2.5 Reflective Practitioners and Breakdowns: Donald Schon. ... 39
2.2.6 Popper: When Should We Trust a Theory? 39
2.3 Knowledge in People, Teams, and Organizations 40
2.3.1 The Scope Dimension in Knowledge Creation 40
2.3.2 Group Interactions and Shared Maps 42
2.3.3 Other Related Theories and Approaches 44
2.4 Software Engineering Knowledge 46

Xiii

Xiv

Contents
2.4.1 Software Engineering from a Knowledge Perspective 46
2.4.2 The Software Engineering Body of Knowledge 55
2.5 Appropriate Knowledge Management for Software Engineering ... 59
2.6 Types of Tools Supporting Knowledge Management 63
2.7 ProblemsforChapter2.................. .. 65
Structuring Knowledge for Reuse 67
3.1 Objectives of thisChapterccoviiiiiiiineinn... 67
3.2 The Vision of a Shared Language 68
3.3 Overview and Comparison of Structuring Approaches 70
3.4 Structuring Vague Information: Mind Maps. 72
3.5 Semiformal Approaches in Software Engineering................ 77
351 UseCases ...ovviiiiiiiii i 77
352 GloSSariesouiiiiiiiii 83
353 DomainModels i i 87
3.6 Metamodels and Instantiation 92
3.7 Patterns as Experience Representation 94
3.8 ProblemsforChapter3.......... .. i 96
Formal Representations and Structures........................... 99
4.1 Objectives of thisChapter 99
4.2 Concept and Purpose of Ontologies 99
4.3 Representing Knowledge Items 102
4.3.1 Resource Description Framework....................... 103
4.3.2 RDF Triples for Simple Statements 103
4.3.3 RDF Graphs for Multiple Related Statements............. 106
4.3.4 Ontologies, Schemas, and Namespaces Provide Structure . . . 108
4.3.5 Semantics Through Resource Description
Framework Schema (RDFS) 109
4.4 Defining Ontologies with Web Ontology Language (OWL)........ 111
4.4.1 Ontology Metainformation (Header) 112
442 Creating Classes in Class AXioms 112
443 PrOpertiesottt et 114
4.5 Ontologies and Object-Oriented Terminology 114
4.6 Software Engineering Ontologiesccovvuiveenn.... 116
4.6.1 Software Engineering Ontologies on the Internet 116
4.6.2 Small Software Engineering Ontology for Exercise 117
4.7 A Tool for Working with Ontologies: Protégé 120
4.8 Benefits from Using Ontologiesccoooiiveeen... 127
4.8.1 Semantic Queries and Reasoning 127
4.8.2 Preserving Knowledge for the Organization 130
4.8.3 Benefits Through Adequate Presentation................. 130
49 ProblemsforChapter4.............. i i, 133

Contents XV

5

Experiences: Beyond Knowledge 135
5.1 Objectives of this Chapter 135
5.2 What is Experience, and Why is it Different? 135
5.3 Valuable Experience in Software Engineering 139
5.4 Experience Life-Cycle 142
5.4.1 Activating and Eliciting Raw Experience 144
5.4.2 Experience Engineering and Storing 145
543 Disseminationueeiiiiiinneeiiiina. 148
5.4.4 From Dissemination to Activation (Next Cycle)........... 151
5.4.5 Software Engineering Specifics 153
5.5 Challenges to Software Engineering Experience Reuse 155
5.5.1 Can Experience Management Replace Experts? 156
5.52 DoNotRelyonAltruism...............ccooviiinenn .. 157
5.5.3 Barriers to Experience Flow 159
5.5.4 Essential: Management Support 160
5.6 Problems forChapterS......... i, 162
Experience and Knowledge Management at Work 165
6.1 Objectives of this Chapter 165
6.2 Specific Experience Management Techniques 166
6.2.1 Interviews, Workshops, and Post-Mortems 166
6.2.2 Light-Weight Identification and Documentation
of EXperiences i 170
6.2.3 Case-Based Techniques for Dissemination 174
6.24 Expert Networks.......... ..., 176
6.3 Experience Bases............ooiiiiiiiiii 179
6.3.1 Overview of Experience Management Functionalities 180
6.3.2 Experience Organization Must Correspond
with Experience Volume 183
6.3.3 Focus Contentsueiiuuuineeeeunnneeennnn. 184
634 SeedtheBase i 185
6.3.5 Link Experiences to a Work Process or Product 186
6.3.6 Encourage Feedback and Double-Loop Learning 186
6.4 Experience and Knowledge Management in Companies 188
6.4.1 The NASA Software Engineering Laboratory
and its Experience Factory 188
6.4.2 Experience Brokers at Ericsson......................... 191
6.4.3 DaimlerChrysler: Electronic Books of Knowledge
and the Software Experience Center 193
6.5 Internetand Web2.0....... i 195
6.5.1 Impact of Internet Technologies on EKM Initiatives 195
6.5.2 Using the New Internet in an Innovative Way 197
6.5.3 Integrating Technology and Workplace Learning 199
6.6 Where We Stand Today it 199

6.6.1 The Age of Software, 199

XVi Contents

6.6.2 Experts in Structuring, Modeling — and Learning 200

6.6.3 AToolIsNotEnough 201

6.7 Problems forChapter 6.............cooiiiiiiiiniiiinnan. 201

7 Solutions of Problems. 203
7.1 Chapter 1 ... 203

T2 Chapter 2 ... 206

7.3 Chapter 3 ..ot 209

T4 Chapterd 214

7.5 Chapter ... 217

7.6 Chapter 6t 221
References............ 225
GlosSary 231

Chapter 1
Motivation and Terminology

1.1 Objectives of this Chapter

After reading this chapter, you should be able to:

e Define the basic concepts in knowledge and experience management.
e Distinguish between data, information, knowledge, and experience by defining

the terms and by providing short examples.

Understand why experience and knowledge need to be stored and how they are
supposed to be used and reused.

Give an overview of the entire field of knowledge management, its relationship
to experience exploitation, and point out the most difficult tasks in that field.
Explain why ability, motivation, and opportunity to learn are required for effec-
tive knowledge work.

In future chapters, we will use the following overview like a map. It will provide

orientation and help to embed future chapters into a bigger picture. We will take a
deeper look at all interesting areas, in particular at the more difficult ones. The basic
terminology presented in this chapter will be used throughout the book and will be
extended where appropriate.

Recommended Reading for Chap. 1

Nonaka, I. and T. Hirotaka, The Knowledge-Creating Company. 17 ed. 1995,
Oxford: Oxford University Press

Senge, P., The Fifth Discipline — The Art & Practice of the Learning Organiza-
tion. 1990, London: Random House

Polanyi, M., The Tacit Dimension. 1966, Garden City, NY: Doubleday

1.2 A Guided Tour of Experience and Knowledge Management

Building and maintaining software is a knowledge-intense endeavor. Software engi-
neers, developers, project leaders, and managers need to know a lot about com-
puter technology, problem domains, and software engineering methods. As the field
progresses, all of them need to constantly learn more and new facts and techniques

K. Schneider, Experience and Knowledge Management in Software Engineering, 1
DOI 10.1007/978-3-540-95880-2_1, © Springer-Verlag Berlin Heidelberg 2009

2 1 Motivation and Terminology

and acquire additional capabilities. Because software is developed in teams, relevant
knowledge and skills include social and organizational skills, too.

Before we look at a number of examples that illustrate the importance of knowl-
edge in software engineering, this chapter will take a closer look at the situation
described above. What do we mean by knowledge — and what aspect will be empha-
sized in this book? Why should one bother to manage knowledge — something that
typically resides in the brains of people? And what are the opportunities envisioned
by proponents of knowledge management?

Experience is treated as a special kind of knowledge during most of this intro-
duction. In later chapters, the distinctive nature of experience will be highlighted
and discussed, but in this overview, we will emphasize commonalities.

Mnemonic 1.1 (Experience)

Experience is treated as a special kind of knowledge.

In this chapter, we travel to the vista points of knowledge and experience man-
agement. There will be several short stops along the route; we will try to cover a
large area in a few pages. Additional trips will be needed to explore fascinating
aspects one by one. Do not worry if you cannot see all the details now — just try to
get the bigger picture. Welcome to the tour!

1.2.1 Knowledge Helps an Organization to Act and React Better

The principal motivation for knowledge management is simple: A smarter com-
pany reacts better to the demands of customers and markets [77]. When a customer
requests a software solution, or a change to a product, a smarter company will be
able to provide it faster and at better quality. This is the first, fundamental convic-
tion of knowledge management. Managing knowledge is a means and not an end in
software engineering.

Mnemonic 1.2 (Knowledge impact)

Knowledge helps a software organization to react faster and better.

However, this conviction needs to be analyzed further: What exactly is a smarter
company? What kind of knowledge does this claim refer to, and how does knowl-
edge lead to better reactions of the entire company? A “better” reaction may refer to
a more accurate or more precise response, leading to better software quality. In the
end, higher customer satisfaction can be achieved.

The field of organizational learning addresses the issue of organizations (such
as software companies or business units) that learn and become smarter [32, 99]. An
organization can learn in different ways:

e Most importantly, individual members of the organization learn. By their acting
on behalf of the company, they make the organization act smarter.

e Pieces of knowledge are collected in a common repository. It can be used by
company members or by software that interprets the contents and reacts accord-

ingly.

1.2 A Guided Tour of Experience and Knowledge Management 3

e Infrastructure within the organization is provided. This allows existing sources
and users of knowledge to interact more effectively. Existing knowledge can be
brought to bear. Infrastructure includes technical connections and tools, as well
as established procedures and processes.

In the third item above, a more intelligent behavior of an organization is not
achieved by more knowledge but by better use of existing knowledge. Infrastructure
may refer to technical means of exchanging knowledge (access to a repository) and
to providing easier access to human knowledge resources as well (yellow pages,
knowledge brokers).

Definition 1.1 (Organizational learning)

Organizational learning is an approach that stimulates

1. learning of individuals;
2. organization-wide collection of knowledge;
3. cultivation of infrastructure for knowledge exchange.

Learning occurs on several levels, from individuals over groups to the entire orga-
nization. Organizational learning needs to coordinate all levels into a systematic pro-
cess of acquiring new knowledge and evaluating it. Learning is a complex process;
facts are learned in a different way than learning to carry out a complex task or by
learning to make decisions under uncertainty (Fig. 1.1).

It is not only the knowledge that makes the difference but also the representation
of knowledge and where it resides. To guide human actions, knowledge needs to
be internalized [77] in human minds. However, not all knowledge is neatly spelled
out and documented. Many important pieces of knowledge reside inside people and
cannot be “accessed” at will. Even worse, people are not fully aware of everything
they know. Polanyi [84] calls this type “tacit knowledge.” The term alludes to
the fact that people use knowledge every day (by acting accordingly), but cannot
express it, or might not even identify it as knowledge. It will be one of the most
interesting aspects in later chapters to envision techniques for externalizing [77] tacit

Environment

infrastructure

%/

2: collection

% 1: individual learning
% . k%
Customer

Request and
r ti

Learning Software Organization

Fig 1.1 Three aspects of organizational learning with the goal of reacting better to changes in the
environment or to customer requests

4 1 Motivation and Terminology

knowledge (i.e., to help its owners expressing it). Explicit information can be stored
and disseminated. Dissemination is probably the most visible part of knowledge
management — but it is not the most crucial one. Helping software engineers and
other project participants to externalize their knowledge and others to internalize
and use it is as challenging and as rewarding as the mere process of dissemination.
Externalization can imply writing a document or explaining things orally.

Mnemonic 1.3 (Knowledge management)

Knowledge management addresses all of the following:

e acquiring new knowledge;

e transforming it from tacit or implicit into explicit knowledge and back again;
e systematically storing, disseminating, and evaluating it;

e applying knowledge in new situations.

Obviously, the notion of learning is part of the bigger picture. Internalizing
explicit knowledge into implicit or tacit knowledge is an act of learning. On a higher
level, organizational learning occurs in several variants within an organization that
takes knowledge management seriously (Fig. 1.2).

Learning from

; Transformations
different sources

Explicit Externalization Multiple internalizations
document

Impilicit,

maybe tacit | ~————-= > === i

Explicit

collection Implicit, Explicit

maybe tacit document
Representations

Fig. 1.2 Concepts of externalization and internalization in learning, from the perspective of the
person in the center

Definition 1.2 (Know-how)

Know-how refers to procedural knowledge: facts and rules directly guiding action
by saying how to do or achieve something.

From a more strategic perspective, learning must enable an organization to adapt
to new environmental demands and changing goals. Ongoing learning is the neces-
sary response to the constant changes an organization faces every day.

Several authors have investigated these learning aspects more thoroughly [8, 32,
34, 99]. Their refined distinction of different learning modes leads to many questions
of practical significance:

e Do we just learn facts and concepts or do we also learn how and where to apply
them?

1.2 A Guided Tour of Experience and Knowledge Management 5

e Do we learn to forget; that is, how do we get rid of outdated and obsolete infor-
mation and knowledge?

e Does the learning process enable the learners and their organization to put new
knowledge into perspective and relate it to existing concepts?

e Do learning and the acquired knowledge stimulate and encourage a better view
of the dependencies and dynamic behavior of the organization?

Overall, the question is as follows: How far can a company get with its particular
style of learning? We will have to stop and rethink at several points what we really
need and want for software engineering.

Kelloway and Barling point out that the mechanisms of learning should not be
seen as pure logistics of a material called “knowledge” [62]. Instead, each individ-
ual knowledge worker needs to have (1) the ability, (2) the motivation, and (3) the
opportunity to engage in knowledge work. As we will see throughout this book,
knowledge management initiatives can provide opportunities for learning and expe-
rience exchange. Individual software developers can gain or improve their ability
for knowledge work by using the techniques described below. The issue of moti-
vation needs to be addressed as well. The culture of a company or a team can be
encouraging or discouraging for knowledge management. Working with knowledge
requires individual effort of all participants. Software engineers are not buckets an
organization can fill with knowledge at will. Opportunity, ability, and motivation for
working with knowledge must go hand in hand. Techniques of knowledge represen-
tation and sharing must be embedded in a learning-friendly environment. This must
be reflected in the design of each knowledge or experience management technique.

1.2.2 Examples of Knowledge Workers in Software Projects

In an ambitious software project, there are many knowledge workers, as Drucker
calls them [34].

Definition 1.3 (Knowledge worker)

Knowledge workers contribute to company success mainly by gathering, organizing,
and applying knowledge. Knowledge can also be created.

New knowledge is created when a new perspective or a new relationship is estab-
lished, leading to a conclusion that could not be drawn before. This is a truly “cre-
ative act.”

Example 1.1 (Knowledge workers)

Most participants in a software project are knowledge workers by this definition. A
few examples may serve to illustrate this point:

e Imagine a project leader who is a technical expert but knows nothing about
his or her new project. How could such a person plan or control the project?
There are so many things to know: Who is the customer, and what are the key

6 1 Motivation and Terminology

requirements? There are nonfunctional requirements, and facts about the envi-
ronment influence planning. There are “soft” aspects to consider: What is this
customer’s payment history? Does he have a record of changing requirements
frequently? What do we know about his existing software base that the new sys-
tem may have to link to? The more a project manager knows, the better plans
can be.

e A designer or software architect needs to know the requirements, in particu-
lar nonfunctional requirements. Those tend to influence the architecture more
than most functional requirements do: A software system will be structured very
differently depending on the priorities of speed, robustness, or flexibility. How
does an architect know what consequences a certain structure will have? A lot of
experience is required to make appropriate decisions — and experience counts as
knowledge, as we stated before.

e Developers need to know programming paradigms, such as object orientation.
They need to know development tools and techniques. Eclipse is a popular inte-
grated development environment (IDE) in the open source domain. Eclipse is a
very powerful, extensible tool for developers — but learning to use it is tough.
Developers need to know a lot before they can write their first programs.

e Maintenance personnel often use expert systems or other Web-based tools that
help them to identify problems. When faced with a broken ticket machine or
copier, maintenance personnel may feed symptoms into the machine and receive
potential causes in return. They need to know what symptoms to look for. A vast
amount of knowledge is encoded in the support tool.

e In a complex software project, individuals play several roles: project manager,
quality assurance, developer, architect, tester, and so forth. Each individual needs
to do his or her job properly, applying the knowledge required. However, the
project will only appear and act “smart” if all participants collaborate effec-
tively. This requires appropriate project structures (like work breakdown struc-
tures, teams), knowledge exchange infrastructure — and the attitude of sharing
knowledge.

This list of short examples sheds some light on the importance and variability of
knowledge present in a software project. Some participants, like the maintenance
technician, need to know facts. Developers need to know how to handle tools,
designers know from experience which program structures worked in the past.
Project managers know details, but also relationships about the customer; they know
about some vague beliefs and risks when planning the project. The entire project
calls for infrastructure and even “a knowledge-sharing attitude.”

1.2.2.1 Hypotheses Related to Experiences

Experience was mentioned with regard to the architect scenario above. The term
will be defined in a later chapter. For now, experience can be understood as a piece
of knowledge gained from participating in some activity or event. When we observe
something meaningful, we may learn from it: by drawing a conclusion or by deriving

1.2 A Guided Tour of Experience and Knowledge Management 7

a hypothesis about the observed event. Why did it happen? How could it have been
avoided? What will be the consequence? Those conclusions or hypotheses can be
treated like a piece of knowledge: They can be passed on to others or compared with
similar experience. Most importantly, experiences can be reused. If a hypothesis is
true, the observed event could occur again in a similar situation. This mechanism of
transfer is fundamental to understanding the value of experiences.

But what if a hypothesis is not true? Or not true in general? Unlike pieces of
“knowledge” from a book, the conclusions drawn from experiences may be flawed.
Therefore, experience should be treated with more caution than is accepted knowl-
edge. As Chap. 5 will discuss in detail, the process of acquiring, refining, and
reusing experience is a special variant of a general knowledge life cycle. This
raises the issue of knowledge acquisition — and the variant of experience elicitation:
What are suitable sources? How do we know we can trust them and where we can
reapply the hypotheses? These are some of the more difficult questions concerning
experiences.

1.2.3 Spreading Knowledge and Experiences

Let us assume that we have acquired or identified several knowledge sources and
experiences. To make the organization smarter, many members of the organization
should be empowered to use those sources easily. There are several prerequisites for
such reuse:

Experience must be “cleaned” and validated.

Knowledge must be evaluated and organized (i.e., structured and linked).
Experience should be transformed into readily usable material. For example, con-
clusions should be made clear and explicit.

e Related experiences and pieces of knowledge can be combined, reworked (“‘engi-
neered”), and rephrased. They are turned into recommendations rather than
observations or experiences. For example, if previous projects experienced a
problem using a certain design notation in Unified Modeling Language (UML),
the derived ““ best practice” may recommend using a different diagram or using
this diagram in a specific way. New projects can simply follow the advice without
the need to derive that conclusion from the experiences again and again.

Knowledge can be created by combining existing knowledge in a new way or
by making experiences and conclusions. For example, a software tester may have
seen many mistakes before she is able to identify a code pattern that seems to pro-
voke misunderstandings. Creating new knowledge about the pattern builds on a lot of
existing knowledge and experience, and it usually entails the use of creative thinking.

Definition 1.4 (Knowledge management)

When experience and knowledge is created, evaluated, maintained, engineered,
and disseminated systematically to solve a problem, we call this knowledge
management.

Storing knowledge (and experiences) seems to be a crucial point in this man-
agement task. For that reason, setting up a database or other knowledge exchange

8 1 Motivation and Terminology

mechanism is important. As we will see, however, this is not the most essential
aspect of knowledge management. Acquiring material to be put into that storage is
equally important. Preparing the material and finding it when needed are other key
tasks.

Providing the above prerequisites for knowledge reuse is necessary but not suf-
ficient for successful knowledge management. As was pointed out above, work-
place learning is not only an organizational activity but also an individual endeavor.
Kelloway and Barling [62] call knowledge workers “investors of knowledge,”
emphasizing the importance of some “return on investment” for those individuals.
Motivation is yet another prerequisite. Many of the discussions below address the
issue of encouragement and the need to avoid “demotivation.”

1.2.4 What Others Call “Knowledge Management”

Nonaka and Takeuchi propagated the term knowledge management in 1995 [77].
Of course, learning occurred in companies long before this term was coined. In
software engineering, there is a long tradition of tools offering comparable services,
so-called computer-aided software engineering (CASE) tools.

CASE tools typically integrate a graphical editor for a requirement or design
notation with a database to store respective models. Often, rules are defined that
the CASE tool can apply to its models for checking consistency. During the early
1990 s, when CASE tools were broadly introduced, they were considered knowledge
bases for the software designers. They offer mechanisms for entering models, com-
bining and engineering them, and analyzing them afterward. When several people
use the same model, the tool even supports sharing of that knowledge. The reposi-
tory of a tool preserves all models — unlike developers or designers who may forget
(Fig. 1.3).

According to the above-mentioned definition, CASE tools can be considered
a contribution to knowledge management in software engineering, but in a very
narrow and specific sense. Early CASE tools were strictly oriented toward a struc-
tured development method, such as structured analysis and data-flow diagrams [28].
Today, comparable tools offer object-oriented methods and usually UML diagrams.
Only a limited piece of information is represented in a CASE tool. Often, the infor-
mation only refers to the pure functional requirements of the product. Nonfunctional
requirements are often missing. Reasons for making design decisions, so-called
design rationale, is also often not captured. As a consequence, it may or may not
be justified to call the stored texts or annotations a piece in the puzzle of knowledge
management. However, typical knowledge management approaches go beyond such
a narrow technical focus.

In the 1990s, knowledge management gained high attention, and not only in
software engineering. Most companies claimed to do it and were proud of it. Like
all fashions, knowledge management transcended its peak at some point in time.
Since then, several knowledge management initiatives were renamed but are still
important to their host companies. New trends and new buzzwords have arrived.

1.3 Data, Information, Knowledge — and Beyond 9

©f WinARD
Fla Edt Aepot Wirdow Fage Format Option Heip

heddd o DEDEBEEDBEE O

y 6.1 ™, -
(aeesal)
\ /

TE

&
T
™
®
-
e
v

B

&<—=EEeeREEODNO84s

Fig. 1.3 A screen of a CASE tool showing several structured analysis and design models
(WinA&D from Excel Software, http://www.excelsoftware.com/sasdtopic.html, printed with per-
mission from Excel Software, 19 Misty Mesa Court, Placitas, NM 87043 USA)

Some people have invested effort and energy into knowledge management for a long
time. They may ask for new visions and prefer to do similar things under different
headlines. This is very reasonable, but for clarity, this book sticks with the original
label: knowledge management.

1.3 Data, Information, Knowledge — and Beyond

The term knowledge has not yet been defined sufficiently in this book. In fact, defin-
ing this essential concept is surprisingly difficult. Knowledge is an old term that has
been used by philosophers, sociologists, educators, and so on for centuries. A gen-
eral definition that covers all disciplines is beyond our focus: We are interested in a
working definition for software engineering.

In this section, the meaning of knowledge will be discussed. Terms like data
and information are tightly connected to knowledge. However, we go beyond those
terms and look at experience and skills to complete the spectrum.

10 1 Motivation and Terminology

There is a basic distinction between data, information, and knowledge:

Data: Symbols organized according to syntactic rules.

Information: Data with meaning according to a given interpretation.
Knowledge: Information related to other knowledge in the human mind for the
purpose of solving problems.

For example, a software designer draws a class diagram in UML for a new
subsystem of a software product (Fig. 1.4). Symbols in that diagram are defined by
the UML notation: rectangles with lines and text labels, arrows and lines between
the boxes. UML implies syntactic rules for drawing class diagrams. The rules allow
lines and arrows between rectangles but no dangling lines. The diagram needs to
conform to UML syntax rules. Before we have assigned a meaning to the symbols,
the diagram is still data. Someone unfamiliar with UML will not be able to interpret
the diagram.

However, UML also provides an interpretation: A box indicates a class, showing
the class name, its attributes, and operations. Class symbols are connected via asso-
ciations (denoted by lines) and so on. UML 2.0 semantics is formally defined in the
language specification [78]. When data comes with an interpretation, it constitutes
information.

A programmer who sees the class diagram perceives it as information. Accord-
ing to the above definition, it turns into knowledge only when human beings, like
programmers, understand it and integrate it into the network of knowledge they
bear in mind. For example, they may associate the class “Simulator” with a similar
class they know. As a consequence, they may solve the implementation problem
by reusing that other class. A programmer may also remember that there is a tool
to generate code from UML class diagrams. Combining the information depicted
in Fig. 1.4 and the knowledge about that tool provides more support for problem
solving.

However, there is a startling consequence: When we strictly follow the infor-
mal definition above, the model in Fig. 1.4 turns into knowledge when a designer
understands it. Not so with the generator tool: Because there is no human mind
involved, the definition of knowledge does not apply. When the tool generates code,
the model remains information rather than turning into knowledge. Although the

*
Simulator ! - Model
animates
1 1
* *

Fig. 1.4 Simple UML class
diagram as a “well-formed
composition of UML Agent Resource
elements”

1.3 Data, Information, Knowledge — and Beyond 11

generated code may solve the implementation problem just as well as does the code
manually written by a programmer, information in a machine does not qualify as
knowledge.

Because we will use the terms data, information, and knowledge frequently, they
deserve more thorough attention. We follow Stapel’s excellent summary [105].

Definition 1.5 (Data)

Data are facts that can be distinguished. They may be composed into well-formed
models or terms.

The presence of a rectangle in a diagram can be distinguished from an oval in
that diagram. A character in a requirements text can be distinguished from a differ-
ent character or from a blank. A number on one page can be distinguished from a
number printed two pages later.

Floridi [44] distinguishes four types of data:

e Primary data is what we usually mean by data: the content of documents or
databases, or messages transferred over a network, or sensor readings.

e Metadata refers to primary data by describing its format, version, status, and so
forth. Metadata is data about data.
Operative data is a subtype of metadata describing how data is to be used.
Derivative data is derived from the three above-mentioned data types. It can
be used to sort, organize, or search for patterns in the above-mentioned types of
data.

All four types of data occur in software engineering and need to be distinguished
on the conceptual level. Metadata is of particular importance. It specifies the mean-
ing of models. Models are ubiquitous in computer science, and so are metamodels
with their associated metadata. Extracting an explicit metamodel can substantially
foster automatic and semiautomatic dissemination and use of information. When
several people agree on a common metamodel, they can share information more
efficiently and with fewer misunderstandings.

Definition 1.6 (Information)

Information is well-formed data with a meaning.

Data must follow syntactical rules. Information goes beyond that by adding
meaning. There is a reference to the “well-formedness” of the combined data ele-
ments because meaning cannot be assigned to terms that violate syntax rules.

Different data can mean the same thing, as illustrated in Fig. 1.5. Vice versa, the
same data can mean different things — if it is interpreted in a different way. Because
information consists of data and assigned meaning, different data can never be the
same information (but can mean the same thing).

In Fig. 1.5, the meaning of a class diagram can also be described in well-formed
sentences. Spoken language also qualifies. Audio data are the sounds produced in a
language, combined into (grammatically) well-formed and meaningful sentences.

Some authors, like the above-mentioned philosopher Floridi [43], further require
the information to be “true.” This concept is interesting and might provide assistance
for distinguishing “true” information from “doubtful” experiences. However, it turns

12 1 Motivation and Terminology

1: Distinguisable facts 2: Well-formed sentences (data) 3: Meaning assigned
g UML interpretation
© = - Simulator - Model
& animates

! <assoe> Different information,
may mean the same thing
-
3 « ! .
k) abcdefghijk ... A I_/Iodel is related to one Simulator.
123456 A Slmulator has zero or more models.
v It animates those models.” English language

interpretation

Fig. 1.5 Different data (as text or diagrams) can mean the same thing

out to be counterproductive in software engineering, as the following example will
illustrate:

Example 1.2 (Requirements text)

A requirements engineer has interviewed a customer representative and has written
down requirements: The primary data consist of strings of characters. This text is
written in English words, following the English grammar. It is (rather) well-formed,
so others can interpret the data and assign meaning to it. Let us assume that the
representative requested a “l1-second response time” to a certain hardware signal. In
the context of the respective operation, this request obviously has a meaning. Thus,
it constitutes information. However, it may be wrong: The representative may have
guessed the required response time. One-second response time may be insufficient.
In Floridi’s opinion, that requirement could not be called information.

Let us extend the exercise in terminology: What if there was some metadata
coming with the requirement data? It could say: “This is what Mr. X, the represen-
tative, said” — which is well-formed, meaningful, and true information, whereas the
requirement itself is not true (or not yet true, or no longer true — requirements do
change!). As you can see, the appealing notion of information that is true by defi-
nition is misleading, at least in a requirements engineering environment. It is not a
property of the information alone whether it is true or not. Trueness is rather a func-
tion of information plus context over time. There may be philosophical arguments to
defend Floridi’s definition. However, from a software engineering point of view, it
is simply not helpful. In software engineering, we have to deal with wrong or unsure
information, too.

The above example shows how the terminology works when exposed to
real-world scenarios. It has practical implications and is not “pure theory”! Infor-
mation has more facets than that of the short definition above. Referring to the
above-mentioned remark, knowledge resides only in people. Information mediates
between the lower layer of data (which has no meaning) and the higher level of
human understanding and problem solving (more knowledge, additional capabil-
ities). In that model, knowledge can never be transferred directly, “from brain to
brain.” Each and every transfer operation needs to descend to the information layer

1.3 Data, Information, Knowledge — and Beyond 13

Knowledge transfer
through three layers
A i Knowledge layer A different
s related to other knowledge knowledge
A 2 ~ contedt A

Information layer Same or
meaning added different _
— meaning associated

- Data layer received as is
<name> symbols, facts and well-formed sentences

Fig. 1.6 A layered model of knowledge transfer

and finally to the data layer. As Fig. 1.6 illustrates, data reside in a layer of docu-
ments, electrical signals, and the like. There are obvious transfer options for those
representations. Whenever data are interpreted, a meaning is assigned to the data.
Hopefully, sender and receiver share a common interpretation! This is one reason
for agreeing to standards or for using the UML: They provide clearly (pre-) defined
meaning to well-formed terms or models. Information can be stored and transferred
(via data). The layer above interpretation and meaning provides integration with
other knowledge in a human brain. One might argue whether machines can count
as knowledgeable: Can a generator build and receive knowledge? We want to leave
this discussion to others. However, distinguishing between transferable data, partly
interpretable information, and nontransferable knowledge helps to clarify knowl-
edge management aspects.

This layered model can be applied to many situations. For example, when we
learn by observing a knowledgeable person performing knowledge work, informa-
tion and knowledge may never be expressed in any explicit form. Nevertheless, even
implicit information conveyed by observation relies on the data provided by seeing
and hearing. If the knowledgeable person also provides explanations, this data turns
into information. Without those explanations, observers can only guess the meaning
of the observed data — and why things are done that way.

Sunassee and Sewry [108] define knowledge as:

Definition 1.7 (Knowledge)

“[...] knowledge is the human expertise stored in a person’s mind, gained through
experience and interaction with the person’s environment.”

This definition provides a link to interaction and experience, and it empha-
sizes: Knowledge resides in the mind. When knowledge management refers to the
organizational dimension of learning, knowledge must be spread. In the sense of
Fig. 1.6, this can only mean converting the knowledge of person A into informa-

14 1 Motivation and Terminology

tion and finally into data. Data can be stored and information re-created by again
assigning meaning and context.

When persons Py, ..., Psgo copy and adopt that information, we can call this
complex process “spreading knowledge.” It is obviously an abstraction or an abbre-
viation to talk about “knowledge transfer,” because it is rather information or data
that is being transferred. However, as computer scientists we should be comfortable
with a layered communication model (cf. the ISO/OSI seven- layer communication
model [25]). By establishing communications on a certain layer, all lower layers are
invoked, too. This descent may be hidden from users on higher layers. Knowledge
management needs to manage all of those aspects, including the lower layers. There
is a clear relationship to knowledge infrastructure. In fact, knowledge exchange is
far more complex than technical protocols. It requires managing human minds that
interact on several levels at a time. The protocol view is a simplification that can
help to understand certain phenomena.

Experience is another key term. It has a lot in common with knowledge. In fact,
Definition 1.7 of experience-induced knowledge and the following interpretation of
experience are almost identical:

Mnemonic 1.4 (Experience requires involvement)

Experience is the type of knowledge a person acquires by being involved.

In this book, experience is used in a slightly more specific meaning: “An expe-
rience” (singular) refers to the conclusions drawn from being involved in an activ-
ity or an event. “Several experiences” (plural) refer to a chunk of those conclu-
sions, gained in one or more activities or events. The following definition [93]
emphasizes the emotional dimension of an experience as much as the cognitive
dimension:

Definition 1.8 (Experience)

An experience is defined as a three-tuple consisting of

e an observation;
e an emotion (with respect to the observed event);
e a conclusion or hypothesis (derived from the observed event and emotion) .

If someone is involved in an activity — or a project, or an accident — that person
makes “observations.” Unlike learning from a book, the involvement and personal
relationship stimulate emotional responses to what has been observed: When you
participate in a software test, and 44 critical errors are detected 1 day before deliv-
ery, emotional responses are drastic. They may reach from frustration to panic, and
they make the experience a memorable piece of knowledge. Emotions can also be
positive: Passing a review with no major findings will be remembered as a joyful
success, not just a fact.

Because knowledge (including experience) was defined as being applied to prob-
lem solving, an experience needs a component to support problem solving. In
the above definition, the observation is transformed into a hypothesis (Why did
it happen? What could we have done?) or a conclusion (What is the general pat-
tern? What should be done?). In the testing example, one hypothesis may be “Late

1.3 Data, Information, Knowledge — and Beyond 15

—
Under which circumstances .
— could it happen again? Activity or event —
Why did this happen? E What will be consequences?

How can it be avoided
- or stimulated?

Fig. 1.7 Hypotheses and conclusions around an experience

testing can lead to bad mistakes” or a conclusion may be “Plan to finish testing 4
days before delivery so that you can remove errors in time.” This is the rationale
part of the experience; emotions are an integral part of the initiating observation
(Fig. 1.7).

According to Sunnassee’s above-mentioned definition of knowledge, all knowl-
edge is created through interaction and experience. This would make experience
the one and only mechanism for acquiring knowledge, a conviction shared by posi-
tivism [85]. Whoever participates in a formal study program assumes there are other
sources: reading a book, solving an exercise. However, book exercises facilitate only
small-scale experiences; because of their artificial nature and short-term relevance
for a learner, they hardly induce realistic emotions. To conclude, we will treat expe-
riences as a subset and as a special type of knowledge. Experience is acquired by
having been involved, and it consists of more than the conclusion: There is always
an authentic observation and an emotional “color.” This shapes an experience:

e Real involvement and an authentic observation make an experience credible. As
a witness one knows: It really happened.

e Intense emotions help one to remember the experience. They are a good motiva-
tion for either repeating or avoiding what happened.

e With a rational conclusion, an experience can be used for further problem-
solving. This part tells us what to do after the two upper aspects have convinced
us why to do it.

Shannon wrote about information: “It is hardly to be expected that a single con-
cept of information would satisfactorily account for the numerous possible applica-
tions of this general field” [100]. The same is true for the term experience. We are
satisfied with a definition that helps us to be more successful in software projects.

Skill is another term in the vicinity of information, knowledge, and learning.
When challenging tasks need to be completed and problems must be solved, soft-
ware project participants should have appropriate skills. How do these relate to
knowledge and experience?

Definition 1.9 (Skill)

A skill is the talent or ability to perform a task.
According to Kelloway and Barling [62], a skill addresses one of the three pre-
requisites for effective knowledge work: the ability to do it. To apply a skill, there

16 1 Motivation and Terminology

must also be a situation that provides the opportunity to do so and the motivation to
invest knowledge and effort.

Mnemonic 1.5 (Prerequisites for workplace learning)

There are three prerequisites for effective workplace learning:
(1) ability, (2) motivation, and (3) opportunity.

Good knowledge management should take all three aspects into account.

Vice versa, even highly motivated software engineers in urgent demand can orga-
nize knowledge support and exchange if they lack the related skills. Knowledge
management is not just about good intentions; it also requires able and skilled pro-
ponents.

Software engineers are knowledge workers [34]. Performing their usual tasks
requires knowledge and experience. Each new piece of knowledge is related to pre-
vious experiences and other knowledge. To complete a task, explicit information
needs to be internalized; experience and knowledge (e.g., from books) need to be
combined.

When developers write a database application, they need knowledge about the
particular database system (e.g., MySQL or Access). Having experience is advan-
tageous: Certain malfunctions or awkward features will be foreseen and can be
avoided. Those who have encountered problems with an indexing feature, for exam-
ple, will be able to foresee or avoid that problem in the future. A skilled worker must
have knowledge and experience. Personality and noncognitive abilities may also be
needed (e.g., for manual labor).

Knowledge management is concerned with acquiring, engineering, and dissem-
inating knowledge for the purpose of solving problems, as we defined above. The
discussion about implicit and explicit knowledge has also raised a challenge: How
to internalize information in order to turn it into knowledge? Acquiring knowledge
must reach beyond individuals and their own commitments. According to the con-
cept of learning organizations, knowledge collections and infrastructure need to be
added. Knowledge management should not only make knowledge “available” but
also actively advertise and disseminate (i.e., “push”) it [120].

The discussion about the three-layered knowledge transfer model is the basis
for storing, transferring, and exchanging knowledge. Again, we want to make a
few basic distinctions to introduce essential terms and concepts. Details will be
discussed later.

There are different channels for transferring knowledge and experience. Strictly
following the terminology introduced above, each of the following modes can occur:

From person to person: This is called socialization [77]. Unlike the process
discussed above, it is possible to transfer tacit knowledge without ever externaliz-
ing it consciously. The classic example is an apprenticeship. In that situation, the
apprentice observes the master. The master performs a task but usually does not
explain it step by step. In a software engineering situation, an apprentice may learn
from a project manager by simply “shadowing” her: Like a shadow, the apprentice
follows the master. In software architecture, or in interface design, an apprenticeship
may be advantageous:

1.3 Data, Information, Knowledge — and Beyond 17

All those tasks require a substantial amount of knowledge and experience.
None of those experts has time or is inclined to externalize their knowledge in
writing.

Rather surprisingly, apprenticeships are rare in software engineering. Neverthe-
less, you should be aware of this option.

Stimulating experiences: It has been suggested to expose novice software engi-
neers to certain situations in which they will most probably have foreseeable expe-
riences. There is no direct transfer of experience or information, but an indirect one.

There are different alternative implementations:

e Recommend a training course: Send somebody to a course that has helped oth-
ers to get better.

e Trainee or internship: Let somebody observe what is going on in projects with-
out taking full responsibility.

e Pair programming: Agile approaches [15, 16] require developers to work in
pairs. They interact intensely because they share one computer. A main intention
of this concept is to stimulate exchange of experience and immediate feedback
in the workplace.

e Pilot project: Allow someone to make typical mistakes in a project situation to
gain emotional feedback, too.

e Simulated project: Expose them to a simulated project with the same intention,
but at a lower cost: No real project suffers or is treated as learning object [89].

Using a knowledge base: On the lowest level, we need only a data storage
device. As Fig. 1.6 shows, data with interpretation can be considered information.
The information can turn into knowledge in someone’s mind. With Fig. 1.6 in mind,
such a database can be called a “knowledge base” for short. There are many hard-
ware and software platforms available. In principle, a paper-based knowledge base
might be sufficient. A group of software engineers may share a folder containing
frequently asked questions (FAQs) on their product or even a few experiences with
a tool they all use. (Example experience: “Never store in RTF format: There is a bug
in the loader; I lost all my formats in the spec file.”)

If a paper folder works, an electronic folder might work even better. All software
engineers can access an electronic folder from their desktops without walking to
the shelf. While one of them reads an experience, others might proceed in parallel.
An electronic folder can even be shared over the Internet, which supports larger,
distributed teams, and it can be searched much faster and at any time from any
place.

Of course, computer science offers more convenient features for a shared collec-
tion of data when it can be interpreted as information: A whole range of opportuni-
ties opens up for indexing, sorting, searching, and connecting pieces of information.
Databases are the most popular tool for handling large collections of well-structured
pieces of information. Knowledge items or single experiences that are stored as
database entries can be easily treated as separate, meaningful units. Depending
on the database capabilities, managing those pieces of information is quite easy

18 1 Motivation and Terminology

and convenient. Using database operations and some additional software leads to
specialized tools for filtering, comparing, and automatically interpreting pieces of
knowledge [5].

This mode of transfer looks very promising. However, it is only applicable to
explicit knowledge stored in the rigid structure of the electronic repository. Knowl-
edge passed by socialization is not covered. Nor does a repository reach the large
amount of implicit knowledge that is neither explicit nor passed on through social-
ization. It simply remains inside an expert’s mind.

In this introductory chapter, a pointer to some additional mechanisms should be
sufficient. Even at this early point, it should be obvious that a technical component
like a database is adequate for data and information management. As such, it is
a prerequisite for knowledge management, too. But there are many other aspects
to consider. Installing a database is only one aspect of knowledge management in
software engineering.

Tasks for knowledge management include the following :

o Knowledge owners need to be identified. How do we know who really has some-
thing to share — even if those people are not even aware of (the value of) their
knowledge [84]?

e Knowledge owners need to be encouraged or convinced or forced to share their
knowledge in any of the modes presented above. Why would anybody want to
invest effort into making someone else smarter? This is a key question, and we
will have to take it very seriously!

e The conversion processes from and to explicit forms need to be facilitated
and supported. All participants should face a low threshold for transfer. If
effort and annoyance exceed a limit, transfer will not occur. This limit is often
rather low.

e Matchmaking plays a crucial role. How can a potential user of a piece of knowl-
edge learn about its existence? There must be a match between knowledge pieces
that are needed and those that are available. Humans are good at making those
matches. Advanced technical bases may support matchmaking.

e Managing the meaning of information. It is not sufficient to transfer the “raw”
data; there must also be metadata about the meaning of the raw data. But this
does not solve the problem: How do we know what the metadata means? Sending
meta-metadata along will not do the job. We need some quality assurance with
regard to the successful transfer of knowledge.

e Managing and supporting the intensity and style of consuming the information.
Experiences are more than facts or rules. They contain an observation, an emo-
tion, and a conclusion or hypothesis. If knowledge management wants to provide
full-fledged experiences, the emotional aspect needs to be captured, managed,
and delivered, too.

e Organizing multipliers. Transferring knowledge from point to point is important.
Often, spreading one piece of information to many receivers is required. The
same piece is exploited and reused several times, multiplying the benefit and

1.3 Data, Information, Knowledge — and Beyond 19

validating the information as a side effect. This is a specific form of making
many matches.

e Oblivion is a somewhat related concept: Sometimes, old knowledge gets out-
dated or turns out to be inapplicable in a new context and must not be used any
longer. Oblivion will be implemented through heuristic selection and deletion
of contents or by marking contents as “deprecated” before they are ultimately
removed. This issue is very important to keep experience repositories manage-
able and usable. Users confronted with outdated or wrong information will very
quickly lose trust in the knowledge base. At the same time, it is conceptually
difficult to identify “outdated information.”

Fig. 1.8 summarizes the different tasks of knowledge management.

Challenges arise at conversion points. They occur whenever explicit informa-
tion needs to be internalized or vice versa. In addition, the database and other data
stores need an administrator. Furthermore, not all software engineers should be con-
fronted with all details of knowledge transfer. This situation calls for roles. When
the repository and the activities around the repository grow, it is advantageous to
assign specialists to some of the tasks.

It is important to remind everyone involved in knowledge management activities:
Knowledge management is not the main purpose of a software organization! Knowl-
edge management and organizational learning are important supportive activities
to the development, operation, and maintenance of software. To support software
engineers’ knowledge, activities should be integrated seamlessly into normal devel-

4 Identify source elicit engineer match add value use & benefit
& store A
¢ know domain
4 terminology
o0 J * Support informed
° L] decision making
oo A % * avoid mis-

understandings
adhere to rules

conform to
standards

fewer rework
easier certification
use best practices

______ L
! | [~
XX X " %
N
oo [j
e
x\“"\\“

I
I

I

I

|

I

+¢
>0
RN
. 1040346

%
%

avoid pitfalls
o . ‘e\"’*\:o‘\ * save time through
oo®] (e templates
N
(/ \\, e know product
A N | .
! conclusion N ! l”\\\ ‘\‘a(\o“ details
Activity orevent || emetion />} e ?‘eszl\e « find experts and
S I — N [consultants
N\ //

7
.

make better-

e
e(\e“c‘ @ informed
\ o® decisions /

Fig. 1.8 A map of knowledge management tasks supporting knowledge and experience

20 1 Motivation and Terminology

opment tasks — and they must avoid any unnecessary effort or overhead. Ideally,
knowledge management aspects should not be defined in a purely top-down manner
but allow for decentralized integration and tuning.

1.4 Application of Knowledge Management
in Software Engineering

In the above sections, terminology and basic tasks of knowledge management were
outlined. Fig. 1.8 can be used as a map of the main concepts in knowledge manage-
ment. We will now see how knowledge management can support software engineers
in their daily work.

As the terminology sections have shown, knowledge management is concerned
with the acquisition, engineering, and dissemination of knowledge for the purpose
of solving problems in an organization. In some cases, this goal can be reached by
finding a simple fact that is missing from a solution. In other cases, more complex
and interrelated pieces of knowledge will be required. It is important to validate
knowledge before it is reused. Validation will compare knowledge from different
sources, for example. We will now look at the different kinds of knowledge that can
be provided by knowledge management.

Examples are ordered from easiest to most challenging in terms of knowledge
management. In most cases, this also corresponds with the amount of benefit gen-
erated. Each example represents an entire class of similar applications. It is a good
exercise to search for similar opportunities in your company, project, or team. This
helps to see more potential and opportunities for future benefits. There are many
different ways to benefit from knowledge and experience engineering in software
projects — you need to identify and exploit them.

In each case, there is a short description of a project situation. It is followed by a
knowledge management intervention. The benefit of this support will be addressed,
and an evaluation will look at the general properties.

1.4.1 Facts and Terms

Consistent use of terminology is important to avoid misunderstandings. Knowledge
management can help to organize facts and terms and make them available to other
people and over a distance of time and space.

Example 1.3 (Requirements)

Requirements analysts have received a document from a customer. It is “considered
part of the specification,” as the customer puts it.

The analysts understand most of the document but do not know some of the
acronyms and are not sure about one diagram. Their software is supposed to control
a chemical device. Despite its many details, the document fails to explain some of

1.4 Application of Knowledge Management in Software Engineering 21

the chemical terms and processes. Analysts and developers are hesitant to ask the
customer. They would have done that in an interview situation. With just a document
in their hands, they prefer to find out by themselves: They do not want to raise doubts
about their competence in the domain. This hesitation may delay the project or even
lead to misinterpretations and defects.

First solution: A searchable dictionary can solve most of this problem. Using
Google, software engineers will be able to understand most of the acronyms and
terms.

Benefits: There is no need to bother a customer with questions software engineers
can easily answer themselves.

Follow-up problem: Software development often takes place within very specific
application domains. Not all domain-specific terms and acronyms will be known to
the software engineers, nor will all of them be accessible via the Internet. And, there
may be homonymous acronyms that in turn require further clarification.

Improved solution: A learning company might decide to build up a domain-
specific glossary as a knowledge asset. An extended glossary will go beyond terms
and contain more complex pieces of knowledge.

Evaluation: Implementations can range from a paper folder to a dedicated
database with a Web front-end. Dedicated repositories should not make an attempt to
replicate external sources. They will contain specific material only and may refer to
other external sources, such as the Internet. A good structure will help, and a search
engine should complement it. The benefit is manifold: Engineers will not spend as
much time searching for domain information. The contents of the internal repository
are more credible than those from external sources, such as anonymous and volatile
Internet sources. Being able to get the information fast will lower the threshold to
check when in doubt. Without that opportunity, engineers are tempted to guess what
the customer wants — which is a costly trap especially when applied in requirements
engineering. Wrong guessing leads to severe problems later on. Repositories can be
built and run with existing technology. Seeding (i.e., initially loading) and updating
repositories are crucial aspects and will be discussed in later chapters.

It should be noted that even a simple mechanism like a domain glossary con-
sumes a fair amount of effort. A high-tech solution may be debatable. Small and
medium-size companies will often take the risk of relying on the Internet instead
— or just ask the customer. No matter what size a project, it is advisable to build a
domain glossary. Asking the customer for a term once may be acceptable; having
three people ask for the same term several times is annoying and unprofessional.
Ignoring customer terminology is even worse. Striving for easier and faster access
to recurring key terminology is always worth the effort in the long run.

1.4.2 Rules and Standards

Software engineering is a term that alludes to the traditions and achievements of
engineering in other domains. Among the strengths associated with engineering is a
commitment to reuse. This includes reuse of terms, established procedures, and stan-

22 1 Motivation and Terminology

dardized criteria. Norms and standards represent an agreed-upon body of knowledge
to be shared by all serious software professionals. Knowledge management can con-
tribute to using those standards more systematically. First of all, software engineers
must be made aware of existing and relevant standards.

Example 1.4 (Software standards)

Examples of relevant standards include IEEE 610.10-1990 (software engineering
terminology), ISO 8402 (software quality assurance and management), ISO 9126
(quality and usability criteria), and ISO 61 508 (security of electrical systems).
Whereas a domain-specific term may be unknown to a novice project participant,
software engineering terminology should be used properly in all domains. A cus-
tomer can expect professional developers and their managers to interpret standard-
ized terms accordingly. Some standards refer to terminology, whereas others also
refer to procedures and rules. In ISO 61 508, for example, a security impact classifi-
cation is given according to which programmable systems are classified by applying
a set of specified rules. This standard recommends (or requires) certain procedures
and techniques to ensure adequate levels of security in the system under develop-
ment. Although standards are mentioned in most software engineering classes and
books, they are not easy to obtain. They cannot be downloaded free of charge but
must be ordered and cost more than $100 each. Just having a look is not so easy.

Knowledge management: A few hundred dollars will not be a problem for a
professional software organization. Essential standards need to be bought and pro-
vided to the developers. Again, a paper-based solution in the company library is the
easiest solution, and it may be a good one. Electronic access is not always permitted
because of copyright and fees.

Benefit: Lowering the threshold for actually referring to a standard will avoid
unnecessary uncertainty. Therefore, a professional development organization should
keep relevant standards ready for reference. This way, developers can refer to stan-
dards whenever appropriate. If they do not have access to a standard, they can only
guess whether it might be relevant. When the standards are provided, there is no
need for guessing.

Follow-up problem: Many standards are long and boring to read. It is not obvious
what they mean in terms of a concrete organization.

Improved solution: A more ambitious knowledge management approach will try
to interpret a relevant standard once and then spread the interpretation. There can be
concrete implementation hints, experiences from those who have tried it, and even
tools or templates to get started faster.

Evaluation: Standards are similar to terminology, but they can be either domain-
specific or generic to software engineering. In both cases, a professional organiza-
tion and its members should have fast and easy access. Putting them on a shelf may
meet that requirement — provided there is an effective mechanism for relating those
who need a standard to that standard document. Such a look-up service can be inte-
grated with the fact retrieval mentioned above. All add-on functionality that exploits

1.4 Application of Knowledge Management in Software Engineering 23

the analysis and experience of one project to help many others is welcome. As we
will see, however, this vision is difficult to implement.

1.4.3 Procedures and Templates

Many software engineering tasks are complex or difficult. Several roles and people
need to interact in a synchronized way. It should not be necessary for each and every
employee to reinvent the best way of performing those tasks. Instead, procedures
and templates can offer guidance. They should be based on previous experience and
best practices.

Example 1.5 (Risk management)

A senior software project leader wants to start systematic risk management on her
project. She has participated in earlier projects and knows the power of risk man-
agement to avoid critical problems. However, she does not remember the details
of doing it. Risk management is a basic technique most advanced projects should
apply. In a business unit, similar risks will occur (e.g., with management, or with
similar subcontractors, or with a similar environment). Therefore, there should
be support for those procedures. Without systematic knowledge management, the
project leader will probably ask colleagues who have done it in the past. If she is
lucky, she might pick someone who has done it recently, remembers all the tips and
tricks, and is willing to provide material for reuse. If she is less lucky, she might run
into someone who tried it 3 years ago, did not manage to set it up properly, and gave
up. Hopefully, this person will be too busy to share those experiences or provide
unproved or flawed materials.

Knowledge management: A network of project leaders can support the exchange
of information. An index by topic can help to find knowledgeable people faster.
Knowledge management can do much more: Procedures and templates (e.g., typical
risks, risk indicators, and mitigation procedures) can be collected and disseminated.
There can be a tool or a database, or a Web site for accessing crucial process support.

Evaluation: A reliable and credible source for procedures that have already been
tailored to the environment encourages others to reuse the knowledge. This saves
time and money for reusing the tailored procedures.

We found the management of procedures and templates rewarding in several
areas [92]. Procedures like reviews, risk management, or some requirements engi-
neering activities are rewarding for a knowledge management initiative in software
engineering [91]. We used experience bases to support both acquisition and dissem-
ination of knowledge. Unlike the fine granularity in the terms and standards exam-
ples, a package for a procedure (like risk management) is larger, contains a variety
of related templates and tools, and sometimes comes with a set of related experi-
ences. Therefore, a full-fledged experience base faces more management challenges
than does a simple dictionary of domain terms.

24 1 Motivation and Terminology
1.4.4 Engineering and Production Data

Large companies often develop software as just one component of a bigger system,
which may be an administrative system or an embedded software product. In both
cases, software engineers need access to data produced during the engineering or
production of other components. Software may control mechanical parts, so devel-
opers need to take physical properties into account. Other software may interface
with a legacy system — developers will need to know many details about version and
interface formats, and so on.

Knowledge management: Knowledge management should provide easy access
to all the construction data available. No single developer will know it all, so there
needs to be a tool to make it available upon request. It will need to handle IDs,
part numbers, and construction drawings. Computer-aided design (CAD) tools hold
a lot of the information needed. CASE tools are an equivalent means for software
parts. Indeed, the family of electronic data management (EDM) systems was intro-
duced to deal with the large variety and overwhelming number of details involved
in engineering projects.

Evaluation: Getting access to the company’s own engineering data is mandatory.
For knowledge management in software engineering, however, EDM tools are not
sufficient. For instance, managing the different versions and configurations of soft-
ware modules often exceeds their capabilities. Software developers need to know
the exact configuration when they make a change or when they fix a bug in a deliv-
ered release. The biggest benefits can be achieved when an EDM product can be
combined with a tool to manage software versions and configurations, like the open-
source tool Subversion [111].

1.4.5 Competencies and People

Sometimes, a software project needs advice or instant help by an expert. It will not
always be possible to breed or transfer competencies within a short period of time.
Instead, it may be easier and more appropriate to ask an expert directly. For that, it
is necessary to identify experts quickly.

Example 1.6 (Database expertise)

A project needs to connect to a new database. No one on the team has implemented
such a database connection before. Learning from scratch takes weeks. The cus-
tomer might get impatient, and implementations may be error-prone. One could
hire an external consultant or try to find someone internally to help out.

Knowledge management: In a large company, someone might have performed
this task before. Knowledge management needs to support the matching of those
who need a competence for a limited amount of time with those who could offer it.
Approaches like yellow pages, or marketplaces of skills, or expert networks can help
to make the match. Those mechanisms may be strictly internal, or may also contain

1.4 Application of Knowledge Management in Software Engineering 25

links to external consultants who have delivered good services in the past. Each
large company has a list of established subcontractor relationships. It is a challenge
to set up such a matchmaker, and even more so to keep it up to date. Many yellow
pages soon get out of date and are no longer useful. However, in this section we will
not worry about this aspect.

1.4.6 Skills and Relationships

Building up a skill takes time and cannot be achieved within a few hours or days.
Many skills are acquired during formal education or in training programs. Skill
management is a difficult task usually supported by human resources departments.
Knowledge management can hardly play this role. It can support certain aspects. In
software engineering, there are some technical skills that are more suitable for being
managed.

Example 1.7 (Java skills)

A team needs to implement a user interface in Java. They have a background in C
and C#, including the libraries used in those environments. Because Java is gaining
importance, the manager decides to assign two developers to Java interfaces from
now on. He does not want to rely on external consultants for this key skill.

Knowledge management: There is no magic in knowledge management. Build-
ing up a skill, like using object-oriented constructs in Java as opposed to C#, cannot
be done just by reading a few tutorials. However, there are two things knowledge
management can do: In the long run, a learning company should organize and man-
age individual learning of its members. If several people in different projects need to
learn Java, there could be an in-house course, with follow-up experience exchange
circles over several months. Although the individual’s actual learning is mainly
beyond knowledge management, organizing courses and feedback is a meaning-
ful task. When a task is dominated by a complex structure of dependencies, formal
knowledge management tools could help to reason in that jungle of dependencies.
For example, no single project may have reported: “We need someone to learn Java
in order to migrate some of our C# interfaces to that language.” However, if a formal
structure of knowledge exists, which contains all projects with their programming
languages, and if there is a developer profile, then a reasoning mechanism may iden-
tify: “. . .those projects that use Java AND that use C# AND where THERE IS NO
developer whose profile CONTAINS Java.” What looks like an awkward database
search query in this example can become quite an elegant usage of pieces of knowl-
edge when seen in context.

Knowledge management can manage people and long-term learning. If there is
formally structured and encoded information, a powerful search mechanism can
help to see relationships and find people in a similar situation.

26 1 Motivation and Terminology
1.4.7 Opinions and Decisions

Long-term opinions and resulting decisions cannot be influenced by short-term
interventions. Knowledge management can mainly provide support on underlying
layers. In the end, an opinion can change. Decision-support systems try to provide
leverage in concrete cases.

Example 1.8 (Adopting UML)

A project manager is about to start a new project. State charts are a common tool in
the company, but many developers are not yet familiar with UML diagrams. In con-
ferences and journals, UML is clearly state-of-practice, so this could be an oppor-
tunity to get started. However, the project must not suffer. What are the risks and
chances and what needs to be considered when shifting to UML?

Knowledge management: Decisions are made under uncertainty. This is true
almost by definition, as no decision is needed when the next step can simply be
“derived.” Rational decisions will take data and information into account and will
also consider the opinions of other knowledgeable people. If not all reasons and
rationale can be externalized and explicitly stated, a decision maker can still try to
find similar situations in the past and study their outcome. Case-based reasoning
[61] is one technique that helps to identify similar situations (or “cases”).

Evaluation: A lot of additional information comes with each case, providing a
decision maker with data, information, and opinions. There are some other tech-
niques that try to support complex decisions by means of simulation, modeling, or
formal reasoning. This problem is far more severe than finding a definition for a
term. Knowledge management contributions to solving the decision-making prob-
lem require sophisticated approaches. They may not work in each and every case,
but in some niches, they may provide very powerful support.

1.5 Facilitating Workplace Learning

The above examples refer to different contents of knowledge in software engineer-
ing. However, software engineers will also learn how to learn in the workplace.
This cross-sectional ability can improve the effectiveness of learning new facts, new
skill, and so forth. Learning is not usually listed as a key competence of software
engineers. Much like other knowledge workers, software engineers are left to their
own devices when it comes to learning.

Strengthening this ability of software engineers will indirectly strengthen a whole
range of process-related and product-related software aspects. Researchers [62]
claim the effectiveness of knowledge work in a workplace environment depends
on three related prerequisites: ability, motivation, and opportunity (see Mnemonic
1.5). Software engineers can increase their learning abilities by learning about tech-
niques of knowledge and experience management, for example by reading this book.

1.6 Problems for Chapter 1 27

They will be able to build up some intrinsic motivation or gain motivation from the
benefits of mastering more demanding tasks.

Beyond those individual contributions, learning in a workplace environment is
framed and determined by the company or organization. Learning and acquiring
new knowledge should be encouraged and supported by necessary external mecha-
nisms. In a way, external motivation should be added to intrinsic motivation. Along
the same line, knowledge workers need opportunities to exercise and apply their
learning abilities and also their increased knowledge and experience. There is a lot
of business administration and management literature on motivation. Many of the
discussions in experience and knowledge management will be influenced by con-
siderations of perceived benefit, motivation, and the need for creating opportunities
for effective learning in the workplace.

Knowing more about the mechanisms of learning and experience-based improve-
ment can by itself increase motivation. All together, working toward a learning-
friendly company culture reinforces the prerequisites for more learning. In the ideal
case, the success of learning will enable more learning in the workplace.

In the following chapters, we will look behind the scenes of approaches that were
mentioned in the examples.

1.6 Problems for Chapter 1

Problem 1.6.1: Data, information, and knowledge

A customer calls the requirements engineer and tells her about a feature they forgot
to put into the specification. Where are data, information, and knowledge in this
example?

Problem 1.6.2: Missing the expert

Explain what could happen if a customer cannot reach the requirements engineer
but reaches a salesperson instead. Assume the requirements engineer knows the
project very well.

Problem 1.6.3: Exact meaning

Your company has a cooperation project with an offshore development organization.
You are not sure whether they use the same version of UML as you do. How do you
make sure you transfer not just data but also the information implied in your UML
2.0 diagrams? Discuss your attempt using the terminology introduced in Chap. 1.

Problem 1.6.4: Experience in a review

During a review of a design document, the team finds out that there was a misun-
derstanding among customer representatives: They did not really need a distributed
system. As a consequence, most of the design effort invested was wasted. Two of
the authors participate in the review,; one will be told about it later. What will be
the experiences of the authors and reviewers? Describe their observations, their
emotions, and possible conclusions they may draw. Emphasize differences between
different authors and between authors and reviewers.

28 1 Motivation and Terminology

Problem 1.6.5: Experience capture form

Sketch a one-page form for capturing experiences when they occur. Explain your
design and discuss how you will be able to effectively and efficiently collect what
you need for your form and how you will use the collected information later. Did
your first sketch cover all relevant information for successful reuse?

Chapter 2
Fundamental Concepts of Knowledge
Management

Chapter 1 provided an overview of the basic terms and goals of experience and
knowledge management. Tacit, implicit, and explicit knowledge were distinguished.
The basic concepts of data, information, and knowledge were introduced and dis-
cussed. A layered model for knowledge transfer was built upon those terms. In the
end, the benefit of a number of knowledge management interventions in software
engineering situations was evaluated. In Chap. 2, we will look a little deeper into
the theoretical foundations of knowledge management. This will provide the back-
ground for the remaining chapters.

2.1 Objectives of this Chapter

After reading this chapter, you should be able to:

e Explain iterative models of learning.

e Sketch a typical knowledge management life-cycle and point out its challenges.

e Explain the relationships of individual, group, and organizational levels in learn-
ing and knowledge sharing.

o Identify software engineering situations where knowledge management can
make a contribution and explain how value can be added in those situations.

e Recall the structure and outline of the Software Engineering Body of Knowledge
(SWEBOK) [56].

This chapter refers to the overview given in Chap. 1. It details some of the
core concepts, such as learning, organizational levels, and adequate application
scenarios. Underlying theories of the above-mentioned issues are fundamental to
knowledge engineering in general. The SWEBOK catalogue of software engineer-
ing knowledge [56] is a foundation for identifying learning topics in software
engineering.

Recommended Reading for Chap. 2

e Nonaka, I. and T. Hirotaka, The Knowledge-Creating Company. 17 ed. 1995,
Oxford: Oxford University Press

K. Schneider, Experience and Knowledge Management in Software Engineering, 29
DOI 10.1007/978-3-540-95880-2_2, © Springer-Verlag Berlin Heidelberg 2009

30 2 Fundamental Concepts of Knowledge Management

e Argyris, C. and D. Schon, Organizational Learning: A Theory of Action Perspec-
tive. 1978, Reading, MA: Addison-Wesley

e Argyris, C. and D. Schon, Organizational Learning II: Theory, Method and Prac-
tice. 1996, Reading, MA: Addison-Wesley

e Schon, D.A., The Reflective Practitioner: How Professionals Think in Action.
1983, New York: Basic Books

e Johnson-Laird, PN., Mental Models. 1983, Cambridge: Cambridge University
Press

e Fischer, G., Turning breakdowns into opportunities for creativity. Knowledge-
Based Systems, 1994. 7(4): pp. 221-232.

2.2 Learning Modes and the Knowledge Life-Cycle

Learning and knowledge are two central concepts of knowledge management. There
are a number of very well known and influential theories on learning and knowledge.
We will first look at Argyris’ and Schon’s seminal work on loops in learning [7, 8].
It explains the iterative character of learning, which is also inherent in knowledge
management. Schon puts an emphasis on reflection. His work on reflection-in-action
[98] has a major impact on practical approaches to learning in a working environ-
ment. The work by Nonaka and Takeuchi [77] reacts to Argyris and Schon and to
many other sources. It is well known for its view on the tacit-explicit dichotomy
in knowledge modes. Implications of those concepts lead to a generic knowledge
life-cycle. It can serve as a reference model for more software-specific and tailored
variants of knowledge management processes.
Some further related work will be put into perspective:

e We will take a glance at the logical patterns of deduction, induction, and abduction
that are the theoretical foundation of reasoning with experience and knowledge.

e Mental models are not only a theoretical concept but also a background and
driver of some practical techniques described in later chapters.

e Learning is foremost an individual activity. Organizational learning has several
aspects that transcend individual learning, but it will only work with employees
who are willing and able to contribute to learning at the workplace.

e A look at Popper’s famous philosophical work on theories and their merits will
close this section. His argumentation is of general value for everyone working
with knowledge, theories, and experiences of unknown credibility.

2.2.1 Loops in Learning: Argyris and Schon

There are numer