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Abstract Current research tends to support that lungfish (Dipnoi) and land verte-
brates (Tetrapoda) form a sister group, which has stimulated an interest in these ani-
mals. The extant lungfish include: Protopterus, the African lungfish (four species)
and the South American lungfish (Lepidosiren paradoxa) (one species). The African
and South American lungfish have well-developed lung and reduced gills, while the
Australian lungfish (Neoceratodus forsteri) is highly dependent on the gill venti-
lation, and its lung is one of the simplest among vertebrates. Lungfish and land
vertebrates share many features of respiratory control. Lepidosiren (and probably
Protopterus possess central cerebral CO2 and H+ receptors, which regulate acid–
base by increases or decreases in pulmonary ventilation. This regulatory pattern is
also valid for land vertebrates, including human beings. By contrast, teleost fish lack
central CO2/H+-receptors, which suggests that the lung and the central chemore-
ceptors evolved together. In this context, any very specific features are common to
lungfish and land vertebrates, and these include the Hering–Breuer reflex and the
presence of very specific stretch receptors.

1 Introduction

Styloichthys, a 417-million-year-old fossil was found, with the characteristics to be
expected for a last common ancestor of tetrapods and lungfish (Zhu and Yu 2002).
The descendants of the Sarcopterygians (lobe-finned fish) include the coelacanths
(Actinistii) with two species Latimeria chalumnae, which was discovered in 1938
at the east coast of South Africa, while L. menadoensis was seen for the first time
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in 1999. Latimeria possess lungs, but these are filled with fat (Carroll 1988), which
makes sense since coelacanths belong to the deep waters. Other descendants of the
sarcopterygians include the lungfish (Dipnoi) and the land vertebrates (Tetrapoda),
and current research favors the lungfish as the sister group to the tetrapods (Meyer
and Dolven 1992; Yokobori et al. 1994; Zardoya et al. 1998; Toyama et al. 2000;
Brinkmann et al. 2004). Tetrapod albumin has been studied to a great extent in
tetrapods; Metcalf et al. (2007) recently reported its presence in the Australian lung-
fish (Neoceratodus forsteri), and it turned out to have a high degree of similarity to
the sequence of tetrapod albumins.

Lepidosireniformes (subclass: Dipnoi; class: Sarcopterygii) include the South
American lungfish Lepidosiren paradoxa, which the Austrian morphologist
Fitzinger (1837) found appropriate to an animal, due to the unexpected combina-
tion of a lung and a gill system. This slender lungfish is equipped with appendages
and can weigh about 1 kg (Fig. 1), and its popular name is ‘pirambóia’, taken from
the language of the Tupi indians. L. paradoxa is found within the Amazon and
Paraná-Paraguai regions and inhabits shallow vegetation-covered lakes. Mainly, L.
paradoxa feeds on invertebrates, including mollusks that can easily be crushed by
its tooth plates (Sawaya 1946).

The African lungfish Protopterus includes four species (amphibius, annectens,
aethiopicus and dollei). These lungfish are similar to L. paradoxa, although more
heavily built, and their habitats are much like those described above. L. paradoxa
and Protopterus sp. are crucially dependent on the lung for gas exchange, while
the Australian lungfish (Neoceratodus forsteri) has a well-developed gill system

Fig. 1 Photo of the South American lungfish (Lepidosiren paradoxa) in the laboratory, making a
slow but elegant turn
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combined with a simple lung, which is ventilated at very long intervals (one h or
more) (Kind et al. 2002). It inhabits slowly moving rivers of the Queensland region
of Australia, where it may reach 1.5 m and a weight of 40 kg.

In the nineteenth and twentieth centuries, much effort was devoted to compara-
tive morphology and anatomy, which was backed by the concepts of evolutionary
biology and paleontology. Recently, techniques based on amino acid sequences
and mitochondrial genome DNA sequences have provided criteria to evaluate the
most probable cladograms for specific groups of animals (cf Yokibori et al. 1994;
Brinkmann et al. 2004). Clearly, comparative physiology can be used to trace back
the origins and evolution of physiological mechanisms. In this chapter, we will
focus on some mechanisms of ancient origin. One example is the dual locations of
CO2/H+-receptors: the peripheral chemoreceptors monitor acid–base status of the
blood, while the central chemoreceptors are stimulated by changes of acid–base sta-
tus of the CSF and the interstitial environment. This would have pleased the Greek
philosopher Anaximander, who about 2,500 years ago stated that once man was
another animal, perhaps a fish.

2 How Advanced is the Lungfish Lung?

Surfactant is a substance that reduces surface tension of the lung, and it con-
tains disaturated and unsaturated phospholipids along with surfactant proteins. A
lung cannot function without surfactant and, interestingly, surfactant is also present
in swim bladders and gill systems, and is produced by type II cells (Daniels
et al. 2003); see also Chap. . Lepidosireniformes (Protopterus and Lepidosiren) pro-
duce surfactants that are very similar to those of amphibians, whereas Neoceratodus
has a lipid composition, which is more closely related to that of actinopterygian
fish (Orgeig and Daniels 1995). In the same context, Power et al. (1999) stated
that the surfactant composition of Neoceratodus has been preserved over the last
300 million years. Only the right lung develops in N. forsteri, and it receives blood
from both pulmonary arteries. Further, the lung is in a dorsal position, while lepi-
dosireniformes and land vertebrates possess bilaterally positioned lungs in a ventral
position (Perry 2007). Bassi et al. (2005) reported pulmonary diffusing capacity
in L. paradoxa, using the equation: DLO2 = V̇ O2 ·∆PO−1

2 (Bohr 1909), in which
the individual components are: DLO2 = diffusing capacity; V̇ O2 = O2 flux through
the tissue membrane, which separates lung gas and pulmonary capillary blood,
or in general O2 uptake; ∆PO2 = the O2 pressure gradient between lung gas and
pulmonary capillary blood. DLO2 was 0.044 mLSTPD kg−1 min−1 at 35◦C (Bassi
et al. 2005), which is close to the value for a bullfrog (Rana catesbeiana), which
has a DLO2 of 0.054 mLSTPD kg−1 min−1 (Glass et al. 1981a). Further, Crawford
et al. (1976) report the rather high DLCO of 0.068mLSTPD · kg−1 min−1 for the
Greek turtle (Testudo greca).

The lung of L. paradoxa was studied by morphometric measurements, which
provided the amazing information that 99% of its gas exchange surface belongs to
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the lung, while the skin and the rudimentary gills account for the remaining 1%
(Moraes et al. 2005). On the other hand, Sanchez et al. (2005) reported that aquatic
O2 uptake accounted for 9% of total uptake. This seeming contradiction can be
solved, because Moraes et al. (2005) found a high density of capillaries in all parts
of the gill system, and a respiratory role of the gills cannot be excluded.

The DLO2-values for L. paradoxa and a bullfrog are very similar, whereas the
diffusing capacity of the tegu (Tupinambis sp.) and the monitor lizards (Varanus
exanthematicus) is twofold greater than L. paradoxa (Glass and Johansen 1982;
Glass et al. 1981a, b). The transition from ectothermic to endothermic metabolism
greatly increased metabolism which is not surprising, considering that an alveo-
lar mammalian lung has a 16-fold higher DLO2 than L. paradoxa (Takezawa et al.
1980).

3 Regulation of Acid–Base Status and Oxygen Levels

As explained in Chap. 3, true lungs are found in land vertebrates, lungfish and
bichirs (Subclass: Actinopterygii — ray-finned fish. Order: Polypteriformes). Cur-
rently, information on respiratory control in land vertebrates is increasing rapidly,
and the interest in lungfish is growing. By contrast, the information on the res-
piratory physiology of bichirs is scarce (see Chap. 3). Holeost and teleost fish
regulate acid–base status by ion exchange (Heisler 1984), because O2 homeosta-
sis has a priority due to the ever-changing O2 levels of the aquatic environment
(Dejours 1981). Oxygen receptors are located within the gill system, where recep-
tor groups screen the blood or the inspired water (Soncini and Glass 2000; Burleson
and Milsom 1995a,b). Acid–base regulation of teleost fish depends on cells located
in the gill epithelia, and accounts for no less than 90% of the acid–base relevant ion
transfers, while the kidney contributes the remaining 10% (Heisler 1984; Claiborne
and Heisler 1986).

In land vertebrates and lungfish, the ability to regulate acid–base status and O2
homeostasis depends on adjustments of the ratio

VEF/V CO2 = RT/PEFCO2,

where VEF = effective ventilation of the lung, V CO2 = pulmonary CO2 output,
R = the gas constant, and T = absolute temperature (◦K), and the equation is
derived from the general gas law. In mammalian respiratory physiology, the equa-
tion is usually referred to as “the alveolar ventilation equation”. Mammals are the
only land vertebrates equipped with alveolar lungs, but ‘alveolar’ ventilation can be
substituted by ‘effective ventilation’ of a lung.

Land vertebrates (Tetrapoda) control acid–base status by means of central and
peripheral CO2/H+-receptors, and by far most information is available for mam-
mals. The passage of H+ and HCO−3 through the blood–brain barrier is very limited,
whereas CO2 traverses. Therefore, in a classical study Loeschcke et al. (1958)
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assumed that CO2 would react with water according to the equation: CO2 +H2O⇔
H+ + HCO−3 , which would leave H+ as the stimulus. As a further progress, H+

receptors were detected in a bilateral position within the ventral part of the medulla
oblongata (Schläfke et al. 1975). We now know that more sites are involved, includ-
ing the retrotrapezoid nucleus (Guyenet et al. 2005) and the midline raphe (Bernard
et al. 1996). The peripheral chemoreceptors are of very ancient origin, and the
chemoreceptors of the aortic arch of reptiles and birds and the carotid bifurca-
tion of mammals and amphibians are homologous to the O2-receptors on the first
gill arch of fish (Milsom 2002). It is, therefore, not surprising that the peripheral
receptors include the O2-sensitive glomus cells (For further information see Nattie
(1999; 2006)). Studying one specimen of Protopterus, Lahiri et al. (1970) injected
the afferent gill arteries with hypoxic blood and cyanide, which increased ventila-
tory movements. As further evidence, bilateral section of the first three gill arches
reduced responses to the stimuli, but the procedure would not define the exact
locations of the O2-sensitive sites.

4 Respiratory Control in Lungfish Compared to Amphibians
and Other Land Vertebrates

Striedter (2005) stated: “Lungfish brains exhibit very little histological differen-
tiation, and are among the simplest vertebrate brains”. This is true; but in some
regards, they possess characteristics which strikingly resemble those of the land
vertebrates. The Lepidosireniformes (Protopterus and Lepidosiren) have amazingly
high PaCO2, high bicarbonate and a low pHa. As an example, at 35◦C PaO2
was 76 mmHg, PaCO2 30 mmHg, pHa 7.39 and plasma [HCO−3 ] 25.9 mM (Bassi
et al. 2005). The corresponding values at 25◦C were PaO2 81 mmHg, PaCO2
21 mmHg, pHa 7.53, and plasma [HCO−3 ] 20.0 mM. The values for Protopterus
dolloi have the same tendency: PaO2 66 mmHg, PaCO2 18 mmHg, pHa 7.37 (Perry
et al. 2007). This is very distinct from the values for anuran amphibians such as the
cane toad (Chaunus schneideri), with PaO2 61 mmHg, PaCO2 7.7 mmHg, pHa 7.75,
and plasma [HCO−3 ] 13.7 mM (Wang et al. 1998). Neoceratodus (Ceratodontidae)
is certainly different from the lepidosireniformes. Its values are PaO2 39 mmHg,
PaCO2 4 mmHg, pHa 7.64 (Lenfant et al. 1966, 1967), which reflects its predom-
inant gill respiration and Dejours (1981) has pointed out that the more an animal
depends on aquatic respiration, the lower its PaCO2. It should be noted that some
early studies report very low PaO2 values, which are unrealistic due to invasive
techniques and/or incorrect handling of the blood samples.

5 Focus on the South American Lungfish L. paradoxa

Figure 1 shows the eel-like body of L. paradoxa, with which Johansen and Lenfant
(1967) obtained pioneering data, in particular concerning gill function. They mea-
sured an O2 extraction from the gills (EO2) of 30%, which is low compared to
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Fig. 2 Upper curve: Carbon dioxide elimination to the water as a function of total CO2 output.
Lower curve: Total O2 uptake from the water. The temperature range is 15–35◦C. Increasing tem-
peratures reduced the percentage CO2 output to the water, because a larger percentage of total
CO2 became redirected and eliminated by pulmonary ventilation. A small amount of O2 was taken
up from the water at 15◦C, whereas the uptake was practically nil at 35◦C, which confirms a
high dependence of L. paradoxa on lung ventilation (ANOVA, log-nat. transform., Bonferroni,
Friedman, Dunn. Mean ± SEM, n = 5)

teleost fish, which reach no less than 70–85% (Rantin et al. 2007). Further, they
discovered that the gill arches 1 and 2 are practically devoid of gill filaments, and
the remaining arches had considerably reduced surface areas. A high density of cap-
illaries might, however, account for some O2 uptake by the gills, since the proper
respiratory exchange surface is negligible (Moraes et al. 2005).

The relative roles of aquatic and aerial gas exchanges were assessed by Amin-
Naves et al. (2004), who focused on a temperature range from 15 to 35◦C. Aquatic
O2 uptake by the animal was minute, and constant with temperature (about
0.01mlSTPDkg−1 min−1), while pulmonary O2 uptake increased from 0.06 (15◦C)
to 0.73 (35◦C) mlSTPD kg−1 min−1, while pulmonary ventilation increased 17-fold
over the same temperature range. Figure 2 shows the pulmonary and aquatic gas
exchanges, presented as percentage values for V̇ O2 and V̇ CO2 at the three tested
temperatures. It is clear that the aquatic V̇ O2 is practically nil at 35◦C, while the lung
has taken over. Concurrently, aquatic CO2 elimination strongly dominates at 15◦C,
but becomes reduced as temperature increases, and at 35◦C only 1/3 of the total CO2
output is eliminated to the water, while the lung eliminates 2/3 of the remaining out-
put. This occurs because the higher the temperature, the more dominant becomes
the gas exchange by the lung.

L. paradoxa possess central chemoreceptors, which were first detected using
superfusion of the 4th cerebral ventricle with mock CSF solutions at pH levels
ranging from 7.4 to 8.0, while pulmonary ventilation was measured using a method
for freely diving animals. A reduction of pH from 8.0 to 7.4 increased ventilation
threefold, while respiratory frequency increased from 5 to 12 breaths h−1 (Sanchez
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et al. 2001a). The next step was to verify the hypothesis that the L. paradoxa possess
peripheral CO2/H+-receptors. To test this, the lungfish was initially kept in aerated
water, after which combined aquatic/gas-phase hypercarbia (PCO2 = 49mmHg)
was maintained for 5 h, during which pulmonary ventilation gradually increased 8-
fold relative to the initial control value. In a second run, this procedure was repeated
with the modification that superfusion of normocarbic mock CSF was applied
during the last 2 h of the experiment. This reduced ventilation which, however,
remained 3-fold higher than the initial control value. In addition, this hyperventila-
tion was statistically different both from the control value and from the maximum
response. With this information, it could be calculated that peripheral CO2/H+-
receptors accounted for 20% of the ventilatory drive, whereas the bulk part of the
drive was central (Amin-Naves et al. 2007a,b).

This was consistent with data on the central chemoreceptor drive in the cane toad
Chaunus schneideri, and in the alligator (Branco and Wood 1993). The value for
mammals is from Smith et al. (2006), and the measurement for birds (duck) is from
Milsom et al. (1981). See Fig. 3 for a cladogram that informs on peripheral and
central components to the CO2/H+ receptor drive in various groups of vertebrates.

Shams (1985) exposed the medulla of anaesthetized cats to an increased PCO2
while pH was kept constant by superfusion, which stimulated pulmonary ventila-
tion. Harada et al. (1985) studied the brainstem of the newborn rat, and found that
hypercarbia increased the respiratory output of the phrenic nerve, while pH was kept
constant. Toads (Chaunus schneideri. Previously Bufo paracnemis) were also eval-
uated in this context, and it turned out that an increase of mock CSF CO2 increased
ventilation, while pH was kept constant.

These two stimuli (CO2 and pH) were also tested in L. paradoxa and the acid–
base environment of the central chemoreceptors was controlled by superfusion,
while pulmonary ventilation was recorded. Initially, superfusion was applied to keep
PaCO2 at 21 mmHg and pH at 7.45, which corresponds to normal values for ani-
mals in the water at 25◦C. As a second step, pH continued at 7.45, while PCO2
was increased to 42 mmHg, and this increased pulmonary ventilation twofold. Con-
versely, ventilation increased 3-fold, when mock CSF pH was reduced from 7.45 to
7.20, while PCO2 was kept constant at 21 mmHg.

Peripheral chemoreceptors in mammals also respond to both CO2 and H+(cf.
Hlastala and Berger 1996), and the advantage of this dual mode of stimulation might
be that ventilation can respond to both respiratory and metabolic acidosis.

Evidently, lungfish and land vertebrates share characteristics of respiratory regu-
lation, and the origins of key elements are clearly very ancient. A large number of
non-mammalian land vertebrates are equipped with intrapulmonary stretch recep-
tors, in which the firing rate becomes reduced by increases of CO2 (cf. Milsom
et al. 2004). Slowly adapting stretch receptors were discovered in Protopterus and
L. paradoxa (DeLaney et al. 1983), and it turned that increased intrapulmonary CO2
levels inhibited the firing rate of the receptors. Rapidly adapting receptors were
also found, but the slowly adapting type was more common. The firing rate of the
slowly adapting receptors was dependent both on rate of inflation and on CO2 levels.
Curiously, such types of receptors have been found in the air-breathing organ of the
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Fig. 3 Cladogram representing probable relationships between the vertebrate groups. Blue indi-
cates that the peripheral contribution to the peripheral chemoreceptor drive is known for at least one
species of the group. The references are: (1) dipnoi: lungfish L. paradoxa 20% (Bassi et al. 2005),
(2) anura: toad Chaunus schneideri (earlier Bufo paracnemis) (Branco et al. 1993), (3) euthe-
ria (placentals): dog 37% (Smith et al. 2006), (4) crocodylia — crocodiles 24%, Branco and

gar L. oculatus (Smatresk and Azizi 1987). Two types of receptors were identified.
Like in the lungfish, a rapidly adapting receptor was present, and a slowly adapting
type was CO2-sensitive. Further, hypercarbia reduced the firing rate of the slowly
adapting receptors, which might suggest an ancient origin rather than a coincidence.

It is easy to detect CO2-sensitive stretch receptors. Initially the animal breathes
air, after which hypercarbia is applied, which increases pulmonary ventilation at a
fixed CO2 level. After some time, the animal suddenly returns to air-breathing. At
this point, one would expect a decrease of ventilation. Instead, ventilation increases
steeply, because the intrapulmonary CO2 levels become reduced, which removes
the inhibitory action of the CO2-sensitive stretch receptors. This effect is often
referred to as a ‘post-hypercapnic hyperpnea’ (Milsom et al. 2004). L. paradoxa

Wood (1993), (5) aves — pekin duck 25% (Milsom et al. 1981; Shams and Scheid 1989)
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Fig. 4 This figure illustrates the presence of ‘post-hypercapnic hyperpnea’ in L. paradoxa. The
recording shows the tidal volume during steady state hypercarbia. Both gas phase and water were
kept at PCO2 = 55mmHg, after the inspired gas was substituted with air. This reduced intra-
pulmonary CO2 levels, which stimulated ventilation and caused a transient burst of intensive
respiration. This response is a hallmark for the present of intrapulmonary CO2-sensitive stretch
receptors

was tested in that regard, and the recording shows the expected response (Sanchez
and Glass 2001); see Fig. 4.

O2-receptor function has also been studied in L. paradoxa, including an evalu-
ation of ventilatory responses to aerial and/or aquatic hypoxia. It turned out that
aquatic hypoxia (range 145–153 mmHg; t = 25◦C) had no effect on pulmonary
ventilation, whereas gas phase hypoxia caused a fourfold increase of ventilation.
In addition, the O2 stimulus (O2 content or, alternatively, O2 partial pressure) was
identified, since a reduction of O2 content by 50% had no effect on ventilation.
This proves that the specific O2 stimulus is O2 partial pressure and not O2 con-
tent (Sanchez et al. 2001b). Amphibians such as Chaunus schneideri also possess
O2 receptors that monitor O2 partial pressure, and this modality seems to apply
to most land vertebrates, including human beings (Wang et al. 1994; Branco and
Glass 1995).

6 Focus on the African Lungfish Protopterus sp

Smith 1935) initiated a line of studies on kidney physiology, including P. aethiopi-
cus (Smith 1930). In an early pioneering work, Johansen and Lenfant 1968) studied
gill function and the relative importance of gas exchange surfaces at 20◦C. In
this species, the O2 extraction by the gills ranged from 11 to 36%, which is
very low considering that the normal value for teleost fish is about 85% (Rantin
et al. 2007), but this is consistent with data for L. paradoxa. In addition, Johansen
and Lenfant (1968) reported that the O2 uptale from the water accounted for as lit-
tle as 11% of total uptake. By contrast, the CO2 output to the water accounted for
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no less than 73% of total CO2 output. The corresponding values for L. paradoxa
at 25◦C were an aquatic O2-uptake of 10% of total uptake, combined with 65%
of CO2 produced eliminated to the water (Amin-Naves et al. 2004). The values of
Protopterus sp. and L. paradoxa are strikingly similar, which is surprising since the
split of South America from Africa took place some 100 million years ago (Vidal
et al. 2007).

Recently, Perry et al. (2007) studied acid–base regulation in the P. annectens
assuming that ventilatory responses to hypercarbia would occur which, in turn,
would indicate the presence of chemoreceptors. A 1-h acid infusion was applied,
which temporarily increased respiratory frequency of the gills and lung twofold,
after which these values dropped to reach the previous baseline within 5 h. The
procedure can not distinguish between central and peripheral chemoreceptors. Nev-
ertheless, the respiratory responses of P. annectans were large and immediate, and
clearly distinct from the weak responses of teleost fish to acid–base disturbances
(Soncini and Glass 2000). The authors also found that extra-renal routes were a
key factor in metabolic compensation. On the other hand, during aestivation in P.
aethiopicus, plasma [HCO−3 ] gradually increased over 7 months, but the mecha-
nism of the increase was not clear, and a possible explanation could be a gradual
loss of body water, concentrating plasma [HCO−3 ] (DeLaney et al. 1977).

Compensation of pHa was not evident in L. paradoxa, in spite of an exposure to
7% CO2 (49 mmHg) during 48 h (Sanchez et al. 2005). It should be pointed out that
its gills are considerably more reduced than those of Protopterus sp.. As a possi-
bility, the pH regulation could be similar to that of salamanders studied by Heisler
et al. (1982). Urodeles inhabit a strenuous hypercarbic environment, which makes
the regulation of the extracellular environment difficult, whereas the intracellular
compartments are regulated in response to hypercarbia.

Carbonic anhydrase (CA) has one of the fastest turnover numbers of all enzymes.
Nevertheless, recent studies report that addition of CA will increase CO2 excretion
(Gilmour et al. 2007). Thus, bovine CA slightly decreased PaCO2 of P. dolloi, while
pH increased from 7.48 to 7.53. The authors conclude that the bulk parts of O2 and
CO2-excretion occurs by the lung, which is consistent with data on L. paradoxa
exposed to temperatures from 15 to 35◦C (Amin-Naves et al. 2004).

Both amphibians and lungfish inflate the lung by positive pressure, using the buc-
cal cavity as a force pump that inflates the lung with the inspired gas
(McMahon 1969). Lungfish have ribs, but these are not activated during respiration
(Foxon and Bishop 1968). Reaching the surface, Protopterus closes the mouth and
compresses the buccal cavity to eject water through the operculum. As the second
step, the opercular and buccal spaces expand, while air enters by the mouth. Sub-
sequently, a glottal sphincter opens and the gas is expelled from the lung. After
that, several stepwise movements force the gas into the lung (McMahon 1969;
Lomholt 1993). These rather complicated movements invite the question asked by
Pack et al. (1992) about a possible action of a Hering–Breuer reflex in response to
the lung inflation. To this end, the authors placed a tube into the lung of the animal,
which allowed to more volume to be added at the onset of the buccal force pump,
which would shorten the time for inspiratory buccal force movements. In addition,
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it turned out that vagotomy would virtually abolish the relationship between infla-
tion of the lung and expansion of the lung. The presence of this mechanism in a
lungfish indicates that a control of lung expansion is a basal feature. See also Pack
et al. (1990).

7 Focus on the Australian Lungfish Neoceratodus Forsteri

The Australian lungfish, Neoceratodus forsteri Krefft, is heavily built and reminds
us of ancestors such as the Devonian Dipterus (Carroll 1988). As a new and sur-
prising development, this lungfish turns out to be an obligate neotene animal, or
in other words, it can be considered as a larval form with capacity to produce,
which is backed up by deficiencies in its thyroid function. Concurrently, possible
neotenic features in Lepidosiren and Protopterus are under discussion (Joss and
Johanson 2007). N. forsteri inhabits river systems in the South-East Queensland
region, and aestivation has never been reported for this lungfish. Surprisingly, N.
forsteri possess ampullary organs that may be used to locate the prey. Based on
application of various stimuli, the authors confirmed that N. forsteri can detect weak
electric fields surrounding living animals, and they also propose that the fish uses
this information to locate hidden prey (Watt et al. 1999). To my knowledge, there is
no similar information for Lepidosiren and Protopterus.

Aestivation is absent in N. forsteri, which makes sense, since this animal is not
exposed to the strenuous environmental conditions of Lepidosireniformes. Johansen
et al. (1967) studied respiratory function in N. forsteri, and found that the inter-
val of air-breaths often lasted more than 1 h or more (temp. 18◦C). This is not
surprising, because its gill system is highly developed, whereas the lung is very
simple, when compared to those of other extant lungfish. As could be expected,
hypoxia provoked large increases of branchial and pulmonary ventilation. Later,
Kind et al. (2002) reported a nearly 8-fold increase of air-breaths, with reduction
of O2 from 120 mmHg to 40 mmHg. Air-breathing was always accompanied by a
burst of branchial movements and a large increase of pulmonary perfusion (Fritsche
et al. 1993). Based on the principle of Dejours 1981), a high dependence on gill
respiration leads to a low PaCO2, and the blood gas values (PCO2 = 3.6mmHg and
pHa = 7.64; t = 18◦C) are close to those for teleost fish. By contrast, L. paradoxa
and Protopterus sp. are highly dependent on the lung, which is reflected in their high
PaCO2 values and low pHa.

8 Aestivation

Aestivation is a seasonal dormancy, which is usually related to adverse environ-
mental conditions such as a dry season and/or limited availability of food items.
Different from hibernation, aestivation can occur without any temperature changes.
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Aestivation is well-studied in amphibians, and information on reptiles is growing
(Abe 1995; Andrade et al. 2004). In amphibians, the reductions in O2 uptake ranged
from 18 to 54% relative to previous baseline value for awake, undisturbed animals
(Glass et al. 1997).

DeLaney et al. (1974) decided to address aestivation in P. aethiopicus. Initially
the lungfish caved out a burrow, when the mud gradually dried out, and this was fol-
lowed by mucous secretion from the skin of the animal. Soon, the mucous hardened
to cover the animal, except for an opening at the mouth, which allowed respira-
tion via a breathing channel. The transition from water to cocooned conditions,
correlated with reduction of O2 uptake to half of the previous value for the ani-
mal in water (DeLaney et al. 1974). Over 2 weeks the mean blood pressure fell
from 24 mmHg to 15 mmHg, and fH decreased from 35 to 11–16 beats min−1. As
an extreme case, Lomholt (1993) reported that P. amphibius could remain in the
cocooned state for 6–7 years, and in one specimen the O2 uptake had decreased
to 15% of the initial value for the animal in water. Using X-rays, Lomholt (1993)
claimed that one of the animals (0.4 kg) occupied the entire space of the burrow,
which would require a lung volume of 250 ml. The survival time for cocooned Pro-
topterus is amazing, but one P. amphibius achieved a possible record, with 7 years
of survival (Lomholt 1993). If the animal really fills out the space of the burrow,
then it should be possible to apply pneutachography, since inspiration and expira-
tion would be the only major movements. Later, DeLaney et al. (1977) studied the
effects of aestivation on blood gases of P. aethiopicus at 25◦C. With the animal in
water the values were: PaCO2 = 26mmHg; pHa = 7.60. During the second weak of
aestivation, PaCO2 increased at a lower rate to reach a PaCO2 of 49.8 mmHg, with
a pHa of 7.37. These changes can be explained based on several mechanisms. When
in water, a large fraction of the CO2 output becomes eliminated to the water. Assum-
ing that the observation of a close fit to the burrow is correct (Lomholt 1993), then
the whole CO2 output would be eliminated by the lung. Once again the principle
of Dejours (1981) can be applied to predict a large increase of PaCO2 which, con-
sequently, lowers pHa. The authors were, however, uncertain about the nature of a
slow increase of plasma [HCO−3 ]. DeLaney et al. (1974) reported a downregulation
of mean blood pressure, and a heart rate that was reduced to 50% of the value for the
animal in water. The breathing frequency decreased from 20 to 8 breath h−1 (values
before and after aestivation). Unfortunately, respiratory signals provide no informa-
tionregarding the possible reduction of VT after transition to aestivation. Returning
to long-term data, one P. amphibius that had been in the cocoon for 6 years had
an end-tidal PCO2 of 40 mmHg and an end-tidal PO2 of 120 mmHg, which would
practically fit into the data for some weeks of aestivation (Lomholt 1993).

Recently, Perry et al. (2008) studied aestivation in P. dolloi, and under favorable
conditions in the laboratory would induce secretion of a cocoon, which became hard
after 4–5 days. Before aestivation, P. dolloi consumed 0.35mlSTPDkg−1 min−1

(5◦C) but in the cocoon the O2 uptake increased to 0.45mlSTPDkg−1 min−1, which
reduced PaCO2 from 18 to 14 mmHg. Greenwood 1986) states, however, that this
lungfish does not aestivate in its normal habitat. The authors realized that the animals
were not in a state of aestivation and, therefore, coined the word ‘terrestrialization’,
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Table 1 Blood gases in Lepidosiren in water and after 40 days of aestivation

In water Aestivation 40 days

PaO2 (mmHg) 87.7± 2 77.1±3∗

PaCO2(mmHg) 21.8± 0.4 34.4±3.2∗

pHa 7.51± 0.05 7.53± 0.05

Mean values ± SEM; n = 5 (p < 0.05 paired t-test)

and this condition was maintained for more than 1 month, which is important,
because true aestivation could have appeared after a longer period. The solu-
tion to this enigma would be highly interesting, and interactions between various
disciplines would be required.

The South American lungfish also aestivates, but for much shorter periods, typi-
cally 1 or 2 months. When a lake dries out, the aestivation is initiated by a position
in which it assumes a U-shape in which the tail approaches the head. For breath-
ing, the animal slides the head upward, and breaks the surface to respire. There is
no cocoon formation, but the characteristics of aestivation are very similar as seen
from Table 1.

In conclusion, it is clear that lungfish and land vertebrates share very fundamen-
tal mechanisms of physiological regulation. These concern the control of pulmonary
ventilation. These involve the relative drives of central and peripheral CO2/H+

receptors, where their relative roles are very similar. Moreover, in mammals, toads
and lungfish the common central stimuli are both CO2 and H+, and intrapulmonary
stretch receptors that lower firing rate if intrapulmonary PCO2 increases are also
found in lungfish as well as in tetrapods. A Hering–Breuer reflex is even present in
lungfish, which once again shows common traits which most likely evolved before
the now rather likely ramification between lungfish and tetrapods.
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Fitzinger e Arapaima gigas Cuvier). Boletim da Faculdade de Filosofia Ciências e Letras da
Universidade de São Paulo 11:255–286



Physiological Evidence Indicates Lungfish as a Sister Group to the Land Vertebrates 177
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