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Abstract This review focuses on four areas of fish gill function: oxygen transport
and transfer, carbon dioxide transport and transfer, oxygen and carbon dioxide sens-
ing, and ammonia excretion. Each section presents a synthesis of previous work
while also highlighting recent and ongoing studies that are shaping the growth
of these research fields. Where possible, we will comment on the utility of using
emerging technologies, including gene knockdown in zebrafish, to evaluate the
function of the fish gill.

1 Introduction

Is another review chapter on gas transport across fish gills really necessary? We
asked ourselves the same question before taking on this task, and decided to try and
determine what impact previous scholarly reviews of fish respiration were having in
educating the public at large. A quick Google search using the key words ‘fish AND
gill’ produced 319,000 hits (about half the number of hits obtained by Googling
‘rat AND lung’). The very first hit (arguably the most popular) directed us to a site
about respiration in fish where we learned that ‘fish breathe by drinking’. . . Clearly,
there is still work to be done! Here, we try to address this need while avoiding
competition with other recent reviews, notably the ambitious and comprehensive
tome on fish gills by Evans et al. (2005), which has soared to Google hit number 12
of 319,000 in only 3 years. For a wealth of detail on the structure and function of the
fish gill, we urge the reader to consult Evans et al. (2005). In this review, we have
focused on four areas of gill function: oxygen transport and transfer, carbon dioxide
transport and transfer, oxygen and carbon dioxide sensing, and ammonia excretion.
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In each section, we have tried to synthesize previous work while highlighting recent
studies that we feel are shaping the growth of these research fields.

2 Blood Oxygen Transport and Transfer Across the Gill

The processes of blood O2 transport and transfer across the fish gill have been
investigated intensely over the past 40 years, resulting in a comprehensive under-
standing of the underlying mechanisms, at least in the few so-called ‘model’ species
that have been examined (e.g. rainbow trout; Oncorhynchus mykiss). Numerous
detailed reviews have been written on various aspects of this broad topic (e.g.
Randall et al. 1982; Jensen 1991, 2004; Weber and Jensen 1988; Perry and
Wood 1989; Nikinmaa and Tufts 1989; Piiper 1989; 1998; Randall 1990; Thomas
and Motais 1990; Swenson 1990; Thomas and Perry 1992; Nikinmaa 1992; 2001;
2002; 2006; Piiper and Scheid 1992; Fritsche and Nilsson 1993; Brauner 1995;
Nikinmaa and Boutilier 1995; Val 1995; 2000; Brauner and Randall 1996; Ultsch
1996; Gilmour 1997; Malte and Lomholt 1998; Perry and Reid 2002; Graham 2006).
Given this wealth of pre-existing review material, we aim to focus on the processes
involved in optimizing blood O2 transfer and transport during stress, as well as the
more recent discoveries that are catalyzing further research.

2.1 Carriage of O2 in the Blood

Except for the haemoglobin-lacking Antarctic ice fish (Chaenocephalus aceratus;
Holeton 1970), typically about 95% of blood O2 is carried within red blood cells
(RBC) chemically bound to haemoglobin, with only a small fraction carried as phys-
ically dissolved O2 in blood plasma. The concentration of haemoglobin in RBCs
is relatively constant among those species that have been examined (Perry and
McDonald 1993), such that arterial blood O2 content (CaO2) is essentially deter-
mined by haematocrit, the O2-binding affinity of haemoglobin, and arterial blood
O2 partial pressure (PaO2). At any given ambient PO2, the PaO2 is set by the com-
bined properties of diffusive conductance, ventilation and perfusion (see Sect. 2.2.
in this chapter, O2 transfer across the gill).

2.1.1 Haematocrit

Large inter-specific variation in haematocrit exists among fish species. Active fish
of high metabolic scope typically exhibit high haematocrit (e.g. Pacific blue marlin
Makaira nigicans; Dobson et al. 1986), whereas more sluggish fish tend to have
lower haematocrit (e.g. starry flounder Platichthys stellatus; Wood et al. 1979). An
elevated haematocrit, while affording an increase in blood O2 carrying capacity,
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can be disadvantageous for two reasons. First, increasing blood viscosity (espe-
cially in fish inhabiting colder water) will increase the energetic costs associated
with cardiac pumping and second, the increase in capacitance of the blood for O2
may tend (depending on gill transit times and any existing diffusion limitations)
to lower branchial O2 transfer efficiency, leading to a lowering of PaO2. On the
other hand, moderate or high resting metabolic rates in fish of low haematocrit
can be achieved only through elevation of cardiac output (Wood et al. 1979; Perry
and McDonald 1993), which will constrain scope for activity and limit exercise
performance.

Intuitively, it seems reasonable to assume that an optimal haematocrit (or range
of haematocrits) exists that allows adequate O2 carrying capacity without evoking
diffusion limitations or impairing cardiac function because of elevated viscosity
(Wells and Weber 1991). Surprisingly however, the intriguing question of whether
an optimal haematocrit exists for any given species has rarely been addressed.
Gallaugher et al. (1995) experimentally manipulated haematocrit to values between
8 and 55% in rainbow trout, and then challenged these anaemic, normocythaemic
or polycythaemic fish with exercise trials to determine critical swimming speeds. In
accordance with theory, O2 uptake and critical swimming velocities were reduced
in fish with lowered haematocrit (<22%). Surprisingly, however, critical swimming
velocity increased with increasing haematocrit (up to 55%) and O2 uptake peaked
at an abnormally elevated haematocrit of 42%. Clearly, the data of Gallaugher
et al. (1995) do not support the notion of an optimal haematocrit in rainbow trout.
Noteworthy, however, was the observation that PaO2 during exercise was reduced to
a greater extent in fish with elevated haematocrit, implying that a detrimental conse-
quence of excessively increased O2 carrying capacity is the imposition of diffusion
limitations on O2 transfer when cardiac output is elevated and transit times for gas
exchange are reduced.

O2 carrying capacity can be increased either acutely or chronically via eleva-
tion of haematocrit. Acute changes in haematocrit primarily reflect the release of
sequestered RBCs from the spleen in response to activation of splenic α-adrenergic
receptors by circulating catecholamines (Perry and Vermette 1987; Vermette and
Perry 1988b; Perry and Kinkead 1989) or sympathetic nerves (Nilsson and Grove
1974). Conditions during which contraction of the spleen lead to an increase
in blood O2 carrying capacity include hypoxia (Yamamoto et al. 1985; Wells
and Weber 1990), hypercapnia (Perry and Kinkead 1989) and exhaustive exercise
(Yamamoto et al. 1980; Yamamoto 1988; Yamamoto and Itazawa 1989; Pearson and
Stevens 1991b; Gallaugher et al. 1992). While it is uniformly accepted that the ele-
vated blood O2 carrying capacity associated with increasing haematocrit serves to
increase CaO2 during hypoxia, hypercapnia (Vermette and Perry 1988a) and exer-
cise (Pearson and Stevens 1991b), the physiological benefit of the polycythaemia,
at least during exercise, is unclear. For example, exercise-induced increases in
haematocrit are reliably prevented by splenectomy, but conflicting consequences
on exercise performance have been documented, with Pearson and Stevens (1991a)
reporting a diminishment of aerobic swim performance in splenectomized rainbow
trout, whereas Gallaugher et al. (1992) demonstrated that splenectomy was without
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effect on aerobic swimming. Considering that the release of RBCs from the spleen
is a common response to exercise, it is somewhat surprising that the physiological
significance of this response is not more apparent.

Blood O2 carrying capacity is chronically regulated during hypoxia (Wood
and Johansen 1973; Lai et al. 2006; Rutjes et al. 2007) and sustained exercise
(Thorarensen et al. 1993; Gallaugher et al. 2001) by mechanisms independent of
splenic contraction. During sustained hypoxia, erythropoiesis is probably stimu-
lated within the kidney by erythropoietin (EPO) (Lai et al. 2006), probably under
the control of hypoxia inducible factor (HIF) (Soitamo et al. 2001; Semenza 2004).

2.1.2 Haemoglobin O2 Binding Affinity

The relationship between CaO2 and PaO2 is dictated by the shape of the O2 equi-
librium curve (OEC). Except for the monomeric haemoglobins of agnathans, fish
haemoglobins are tetramers that exhibit cooperativity of O2 binding and hence yield
sigmoidal OECs. The O2-binding affinity of haemoglobin, estimated by the P50 (the
PO2 at which haemoglobin is 50% saturated with O2), exhibits tremendous vari-
ation among the species that have been examined. At the extremes are those fish
with unusually low or high affinities (i.e. high and low P50s respectively). There are
obvious advantages to high-affinity haemoglobins. Most importantly, PaO2 can be
maintained at lower levels than might otherwise be possible, resulting in reduced
ventilatory convection requirements and accompanying energetic savings. The abil-
ity to saturate haemoglobin at a low PO2 allows greater flexibility with respect to
habitat selection, and may permit residence in environments that experience fluc-
tuating O2 levels. Additionally, a low PO2 within the blood perfusing the gills will
increase the overall water-to-blood PO2 gradient, enhancing diffusive conductance.
Low-affinity haemoglobins require a higher PaO2, necessitating increased ventila-
tion convection requirements and constraining fish to habitats with relatively high
PO2 levels.

As in other vertebrates, haemoglobin–O2 (Hb–O2) binding affinity is regulated
acutely via a suite of intracellular allosteric modulators, including H+, CO2, organic
phosphates and several anions including lactate and chloride. Increased RBC pH
and reduced organic phosphate levels are the principal mechanisms underlying
increased Hb–O2 binding affinities during hypoxia or systemic acidosis. In rainbow
trout and other teleosts (the number as yet undetermined; Berenbrink et al. 2005),
increasing RBC pH or defending RBC pH during extracellular acidosis (e.g. hyper-
capnia) stems from the activation, via mobilization of circulating catecholamines,
of a β-adrenergic Na+/H+ exchange protein (βNHE) (Borgese et al. 1992) on
the RBC membrane. Upon binding to β3b receptors (at least in trout; Nickerson
et al. 2003, 2004), catecholamines cause cAMP-mediated activation of protein
kinase A and phosphorylation-induced stimulation of βNHE. The pioneering stud-
ies more than 20 years ago of several researchers including Mikko Nikinmaa, René
Motais and Andrew Cossins revealed that adrenergic activation of βNHE results in
the (relative) alkalization of the RBC owing to the extrusion of H+ coupled to the
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inward movement of Na+ (Nikinmaa 1982; Nikinmaa and Huestis 1984; Baroin
et al. 1984; Cossins and Richardson 1985). This process either raises RBC pH (e.g.
during severe hypoxia) (Boutilier et al. 1988) or effectively uncouples RBC pH
from plasma pH, allowing RBC pH to be maintained during extracellular acidosis
(Boutilier et al. 1986; Primmett et al. 1986; Vermette and Perry 1988a). The net
consequence of RBC alkalization is increased Hb–O2 affinity (Nikinmaa 1983) via
the Bohr effect. Maintenance of RBC pH during systemic acidosis also can prevent
reductions in CaO2 that otherwise might occur because of Root effects (Vermette
and Perry 1988a). Moreover, stimulation of RBC Na+/H+ exchange results in an
inward flux of Na+ and a compensatory activation of Na+/K+-ATPase. The resul-
tant decline in cellular ATP levels also serves to increase Hb–O2 binding affinity
(see review by Nikinmaa and Boutilier 1995). Finally, the increase in RBC osmo-
larity associated with Na+ entry causes osmotic water influx and cell swelling,
leading to dilution of cellular organic phosphates and a further increase in Hb–O2
affinity. Increases in Hb–O2 binding affinity also occur independently of adren-
ergic phenomena. For example, hyperventilation induced by hypoxia may cause
respiratory alkalosis and thereby raise RBC pH to evoke a Bohr effect. Deoxygena-
tion of haemoglobin may promote RBC alkalization via the Haldane effect and so
contribute to a decrease in P50. Long-term increases in Hb–O2 binding affinity asso-
ciated with exposure of fish to hypoxia appear to be mediated predominantly by
reductions in RBC organic phosphate levels (Wood and Johansen 1973; Greaney
and Powers 1978; Soivio et al. 1980).

2.2 O2 Transfer Across the Gill

The rate of O2 transfer across the gill is governed by diffusive conductance, convec-
tion (ventilation and perfusion), and the blood-to-water PO2 gradient (∆PO2). The
importance of each of these factors in controlling gas transfer has been extensively
detailed in previous reviews (Randall and Daxboeck 1984; Perry and Wood 1989;
Randall 1990; Perry and McDonald 1993; Gilmour 1997; Piiper 1998; Malte
and Lomholt 1998; Perry and Gilmour 2002; Evans et al. 2005; Graham 2006).
Briefly, diffusive conductance is determined by functional surface area, diffusion
distance and Krogh’s permeation coefficient (diffusion constant · capacitance).
Functional surface area and diffusion distance are labile, and can be dynami-
cally adjusted according to metabolic requirements or environmental conditions.
Under resting and normoxic conditions, diffusive conductance typically is kept
as low as possible to reduce obligatory salt and water movement across the gill.
Thus, the strategy of matching diffusive conductance to gas transfer requirements
(the so-called osmorespiratory compromise) offers considerable energetic savings,
particularly considering the relatively high costs of actively absorbing salts in
freshwater and actively excreting salts in seawater. While it has long been known
that fish are able to alter functional surface area by recruiting previously unper-
fused lamellae (lamellar recruitment) or by more uniformly perfusing individual
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lamellae (Booth 1979; Farrell et al. 1980), only recently was it discovered that
some species can dramatically alter gill functional surface (in some cases reversibly)
by physical covering/uncovering of lamellae (Sollid et al. 2003, 2005; Brauner
et al. 2004; Ong et al. 2007). Species exhibiting this strategy of gill remodelling
include Crucian carp (Carassius carassius), goldfish (Carassius auratus), man-
grove killifish (Kryptolebias marmoratus) and Arapaima gigas. In all cases, the
gill remodelling consists of the invasion or retraction of an inter-lamellar cell mass
(ILCM). The signalling mechanisms underlying proliferation of the ILCM or its
removal by apoptosis are unknown (Sollid and Nilsson 2006; Nilsson 2007). In
Crucian carp and goldfish, the ILCM is present in fish exposed to cold water but is
retracted in fish exposed to increasing temperature (Sollid et al. 2005) or hypoxia
(Sollid et al. 2003). In this manner, diffusive conductance is enhanced during peri-
ods of increased metabolism or hypoxia, conditions that require optimization of gill
O2 extraction. In the amphibious mangrove killifish, the ILCM appears when fish
are exposed to aerial conditions where the gill is not functional (Ong et al. 2007).
Appearance of the ILCM in Arapaima is associated with a developmental transition
from water- to air-breathing (Brauner et al. 2004). Intuitively, the benefit of ILCM
appearance and the associated loss of functional surface area should be a reduc-
tion in obligatory movements of ions and water. Surprisingly, however, only scarce,
indirect data (plasma Cl− levels in Crucian carp with or without ILCM; Sollid
et al. 2003) exist to support this notion. Clearly, this area warrants future research.

A different type of gill remodelling occurs when freshwater fish are placed
into ion-poor environments. In an attempt to increase branchial ion uptake capac-
ity, fish placed into ion-poor water experience proliferation of mitochondria-rich
cells on the lamellae (Laurent et al. 1985; Leino et al. 1987; Avella et al. 1987;
Perry and Laurent 1989; Greco et al. 1996). The proliferation of mitochondria-
rich cells causes a marked increase in the lamellar blood-to-water diffusion distance
(Bindon et al. 1994b; Greco et al. 1996), thereby negatively affecting gas transfer
(Bindon et al. 1994a; Greco et al. 1995), albeit in a relatively subtle manner (Perry
et al. 1996; Perry 1998). CO2 transfer is impeded because CO2 movement across the
gill behaves as a diffusion-limited system (reviewed by Perry and Gilmour 2002),
but O2 transfer is impaired only under conditions of hypoxia.

One of the more intriguing theories related to modulation of gas transfer is that
hypoxic bradycardia, the reduction in heart rate observed in many fish upon expo-
sure to hypoxic conditions, serves to increase gill gas-transfer efficiency (i.e. to
raise PaO2 or lower PaCO2). Theoretically, the mechanisms underlying improved
gas-transfer efficiency with bradycardia are a reduction in gill transit time (if car-
diac output is lowered) and/or increased arterial pulse pressures (which may cause
lamellar recruitment or increased gas permeability) (Davie and Daxboeck 1982).
Empirical studies, however, have yielded conflicting results, with evidence both for
(Taylor and Barrett 1985) and against (Short et al. 1979; Perry and Desforges 2006)
a beneficial role of hypoxic bradycardia (reviewed by Farrell 2007). As suggested by
Farrell (2007), the main benefit of the hypoxic bradycardia may be to enhance car-
diac performance, because increased diastolic residence time may serve to increase
O2 delivery to the myocardium and improve cardiac contractility.
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Equally puzzling is the physiological benefit (if any) on gas transfer of the eleva-
tion of blood pressure that may accompany hypoxia (Holeton and Randall 1967;
Wood and Shelton 1980) or hypercapnia (Perry et al. 1999). While it has been
demonstrated that increased blood pressure can promote lamellar recruitment
(Farrell et al. 1979) and thus theoretically can enhance gas transfer, empirical data
do not support this idea (Kinkead et al. 1991; Perry and Desforges 2006).

3 Blood Carbon Dioxide Transport and Transfer Across
the Gill

As with oxygen, our basic understanding of the processes of blood CO2 trans-
port and transfer across the fish gill has been developed through concentrated
research attention spanning many years (e.g. see reviews by Cameron and Polhe-
mus 1974; Randall et al. 1982; Randall and Daxboeck 1984; Perry 1986; Perry
and Wood 1989; Piiper 1989; Randall 1990; Brauner 1995; Randall and Val 1995;
Brauner and Randall 1996; Tufts and Perry 1998; Henry and Swenson 2000; Perry
and Gilmour 2002). However, incorporation of molecular approaches into these
studies is opening up exciting new research directions, including recognition and
characterization of the diversity of carbonic anhydrase isoforms and, following on
from this discovery, awareness of species-to-species differences in patterns of CO2
excretion. These new directions will form the main focus of our discussion of CO2
excretion.

3.1 Carriage of CO2 in the Blood

Carbon dioxide is transported within the blood of fish in three distinct chemical
forms, as physically dissolved CO2, carbamino CO2, and bicarbonate ions (HCO−3 ).
Physically dissolved CO2 usually makes up less than 5% of the total, largely due to
the low solubility of gaseous CO2 in plasma (Boutilier et al. 1984). The contribution
of carbamino CO2 also appears to be quite low in both teleost and agnathan species
owing to few binding sites for CO2 on haemoglobin (Heming et al. 1986; Fago and
Weber 1998), although this may not be true for elasmobranchs (Jensen 2004). The
vast majority of CO2 therefore is transported as HCO−3 , with estimates exceeding
90% of the total circulating CO2 pool. Consequently, blood CO2 transport is depen-
dent upon the conversion of CO2 to HCO−3 , a reaction catalyzed by the enzyme
carbonic anhydrase (CA) (Brinkman et al. 1932; Meldrum and Roughton 1933).
Because the conversion of CO2 to HCO−3 produces a proton, the CO2 capacitance
of whole blood is related to buffering capacity which is largely determined by the
concentration of haemoglobin, the primary non-HCO−3 blood buffer.

In teleosts, CO2 transport begins with molecular CO2 flooding into the blood
from the tissues. In the RBC, the CA-catalyzed hydration of CO2 yields HCO−3 ,
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which is exchanged for plasma Cl− via the band 3 anion exchange protein (AE1 or
SLC26A1; Obaid et al. 1979; Heming et al. 1986; Perry 1986; Tufts et al. 1998), and
H+ that is buffered by haemoglobin. Dual end-product removal sustains the conver-
sion of CO2 to HCO−3 within the RBC. In teleost fish as well as lamprey, some of
the protons that bind to haemoglobin act as Bohr protons and the resultant decrease
in Hb–O2 binding affinity (Bohr effect) aids in O2 delivery to the tissues (Fig. 1a).
These reactions are reversed at the branchial epithelium, where CA catalyzes the
dehydration of HCO−3 retrieved from the plasma via band 3 (Fig. 1a). The produc-
tion of CO2 is initiated both by the loss by diffusion of molecular CO2 across the gill,
and by the large Haldane effect of teleost haemoglobins (Brauner and Randall 1998),
in which haemoglobin oxygenation results in the release of Bohr protons into the
RBC cytoplasm. The rate-limiting step of this process is the relatively slow rate
of anion exchange between the plasma and RBC (Wieth et al. 1982; Perry 1986;
Perry and Gilmour 1993; Tufts et al. 1998; Desforges et al. 2001). Indeed, CO2
excretion in teleosts behaves as a diffusion-limited system, largely due to the chem-
ical equilibrium constraints within the blood during the 0.5–2.5 s (Cameron and
Polhemus 1974) gill transit time (Desforges et al. 2002); by contrast, O2 uptake is
perfusion-limited (Perry and Gilmour 2002). The process is nonetheless sufficient
for successful matching of CO2 excretion rates to the rate of CO2 production by
the tissues under steady-state conditions, with up to 35% of total blood CO2 being
removed in a single passage through the gills (Perry 1986).

3.2 Molecular Mechanisms Underlying CO2 Transport
and Transfer in Teleost Fish

The success of the CO2 excretion pathway is largely predicated on the inter-
play between CA and the anion exchange protein, band 3. All teleost RBC CA
enzymes examined to date are high-activity isozymes that are catalytically similar
to mammalian CA II, one of the fastest known naturally occurring enzymes. Bio-
chemical characterization of fish RBC CA isozymes suggested that teleost RBCs
exhibited CA II, whereas agnathan RBCs contained the low activity CA I and a high-
activity intermediate was present in elasmobranch RBCs (Henry and Heming 1998).
This pattern led to the attractive hypothesis that high-activity RBC CA isozymes
evolved only after the incorporation of band 3 into the RBC membrane (Henry
et al. 1993). However, sequencing of several fish CA isozymes and ensuing phyloge-
netic analyses of the α-CA gene family indicate that fish cytoplasmic CA isozymes
are evolutionarily distinct from their mammalian counterparts (Lund et al. 2002;
Esbaugh et al. 2004; 2005; Esbaugh and Tufts 2006). Moreover, the RBCs of the
agnathan lamprey were found to express a high-activity isozyme that was basal to
both the derived fish and mammalian RBC CA groups (Esbaugh and Tufts 2006).
Thus, high-activity RBC CA appears to have arisen early in the evolution of verte-
brates, although hagfish and elasmobranch CA isozymes have yet to be investigated
to complete this picture. Interestingly, the catalytic efficiency of the enzyme has
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Fig. 1 A schematic model of CO2 excretion in (a) teleost fish, (b) elasmobranch fish, and (c) the
lamprey, an agnathan fish. Oxygen movement is from left to right, i.e. from water to blood at the
gill, and then from blood to tissue, while CO2 movement is in the opposite direction. Carbonic
anhydrase (CA) is present in the cytosol of the red blood cells, and is also found associated with
the branchial epithelium in elasmobranch fish. A Haldane effect, oxygenation-linked H+ binding to
haemoglobin (Hb), contributes to CO2 excretion in teleost fish and lamprey but not in elasmobranch
fish. In teleost and elasmobranch fish, HCO−3 shuttles between red blood cell and plasma via the
band 3 anion exchanger. This exchanger is absent from lamprey red blood cells, but a Na+/H+

exchanger contributes to end-product removal

changed very little through the evolution of vertebrates, whereas the RBC enzyme
concentration has increased dramatically in more derived vertebrate groups (i.e.
teleosts). This observation led to the idea that CA may be limiting at sub-cellular
locations during specific physiological circumstances (Esbaugh et al. 2004, 2005;
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Esbaugh and Tufts 2006). The available evidence from mammals, however, sug-
gests that RBC CA exceeds the amount required for CO2 excretion by 17-fold
under steady state conditions, and 6-fold during intense exercise (Swenson and
Maren 1978). Similarly, CA limitations on O2 delivery (via the Bohr effect) appear
only if CA inhibition is nearly complete (Maren and Swenson 1980). Indeed, in
species examined to date, CA appears to be present in excess of 20-fold that needed
for a functional Bohr effect during capillary transit, with an excess upwards of
300-fold in humans (Maren and Swenson 1980).

Although the physiological significance of the apparent excess of RBC CA in
fish is unclear, in its presence the rate-limiting step in CO2 excretion is the relatively
slow rate of anion exchange (Wieth et al. 1982; Perry 1986; Tufts and Perry 1998;
Desforges et al. 2001). Recently, it was suggested that RBC CA and band 3 form
a physical association that could increase the efficiency of anion exchange. Initial
support for this idea came from several studies on mammalian RBCs that posited
an association of human CA II and AE1 (Vince and Reithmeier 1998; 2000; Vince
et al. 2000; Reithmeier 2001; Sterling et al. 2001), but similar associations between
other CA isozymes and ion transporters in other tissues have also been proposed;
e.g. Na+−HCO−3 cotransporter isoform 1 (NBC1 or SLC4A4) (Gross et al. 2002),
NBC3 (SLC4A7) (Loiselle et al. 2004), Na+/H+ exchanger isoform 1 (NHE1 or
SLC9A1) (Li et al. 2002), monocarboxylate transporter 1 (MCT1 or SLC16A1)
(Becker et al. 2005), and Cl−/anion exchanger protein downregulated in adenoma
(DRA or SLC26A3) (Sterling et al. 2002). In a recent and comprehensive study
of the SLC4 HCO−3 transporter family, however, Piermarini et al. (2007) did not
find functional associations between human CA II and any member of the SLC4
family, and suggested that previously described associations may be attributed to
CA II binding directly to the GST tag to which the recombinant anion exchange
transporter C-terminal tails were bound. The results of other studies that used GST
tags, such as those on NHE1 and DRA, therefore require re-examination. Neverthe-
less, whether functional associations occur between CA and various transporters is
still debatable. For example, conflicting results were obtained in recent studies on
whether the co-expression of CA II and NBCe1 resulted in increased membrane ion
transport in oocytes (Lu et al. 2006; Becker and Deitmer 2007). Further research is
needed to clarify whether CA may play a direct role in increasing the efficiency of
anion exchange across RBC membranes in fish.

Aquaporins, specifically aquaporin 1, constitute another group of proteins inte-
grally involved in the transport and excretion of CO2. Several studies over the past
decade have challenged the traditional view that CO2 diffuses freely across lipid
membranes (Cooper et al. 2002). Initial studies using oocytes demonstrated that
CO2 could enter cells via aquaporin 1 (Cooper and Boron 1998; Nakhoul et al. 1998;
Prasad et al. 1998). A more recent series of studies indicated that aquaporin 1, and
to a lesser extent rhesus A glycoprotein, are responsible for 50–80% of CO2 per-
meability in human RBCs (Endeward et al. 2006a, b, 2007). Several studies on
aquaporin 1 knock-out mice, on the other hand, have failed to reveal any effect
of null mutations on CO2 permeability of RBCs or red cell ghosts, lung or kid-
ney tissues, or reconstituted liposomes (Yang et al. 2000; Fang et al. 2002; Ripoche
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et al. 2006). Thus, the debate over the contribution of aquaporins to membrane CO2
permeability continues. To date, neither the possible contribution of aquaporins to
CO2 permeability in non-mammalian RBCs nor their role in CO2 movement across
the branchial epithelium has been investigated.

3.3 Alternative Strategies of CO2 Transport and Excretion

In several groups of fish, CO2 excretion differs from the typical teleost pattern
(Fig. 1a). For example, anion exchange activity is absent from agnathan RBCs, so
that HCO−3 formed from the hydration of CO2 is transported within the RBC (see
review of Tufts and Perry 1998) (Fig. 1c). Cellular accumulation of end-products
should in theory reduce the capacity for CO2 hydration, but the arterio-venous dif-
ferences in blood total CO2 of lamprey are comparable to those of rainbow trout
(Tufts and Perry 1998), suggesting the existence of an efficient excretion pathway.
The efficiency of CO2 transport in lamprey is aided by two main characteristics,
the large Bohr and Haldane effects of lamprey haemoglobins, and the involvement
of RBC Na+/H+ exchange. Lamprey haemoglobins exhibit Bohr/Haldane effect
coefficients comparable to those of many teleost species (Tufts and Perry 1998),
and therefore provide substantial non-bicarbonate buffering upon deoxygenation.
This trait not only effectively removes protons from the cytoplasm favouring CO2
hydration, but it is also integral to CO2 excretion at the respiratory epithelium, since
O2 uptake causes the release of Bohr protons that drive the dehydration of HCO−3 . In
addition, Na+/H+ exchange allows lamprey RBCs to maintain a high intracellular
pH (Nikinmaa 1986, 1997; Nikinmaa et al. 1986; Tufts 1992), which also effec-
tively lowers the proton concentration in the cytoplasm. These two mechanisms of
single end product (H+) removal are sufficient to maintain the hydration of CO2,
even at high intracellular HCO−3 concentrations (Nikinmaa 1986, 1997; Nikinmaa
et al. 1986).

Much less is known of CO2 transport in hagfish. Although hagfish RBCs lack
anion exchange and contain CA, the majority of HCO−3 is found in the plasma.
Unlike in lamprey, the RBC non-bicarbonate buffer capacity in Atlantic hagfish
(Myxine glutinosa) is not greatly elevated (Tufts and Perry 1998). Hagfish RBC
membranes are also devoid of appreciable Na+/H+ exchange (Nikinmaa et al. 1993),
implying that there is little in the way of H+ removal from the RBCs. Thus, although
hagfish are similar to lamprey in lacking RBC anion exchange, their mechanisms of
CO2 carriage appear to differ. Interestingly (and unlike in other fish species), hagfish
haemoglobin binds HCO−3 in an oxygenation-dependent fashion (Fago et al. 1999),
an effect that would not only increase the efficiency of CA-catalyzed CO2 hydration,
but would also favour HCO−3 dehydration at the gill as haemoglobin is oxygenated.
In vitro work on hagfish RBCs documented a significant increase in RBC but not
whole blood CO2 content with deoxygenation; the large pool of plasma HCO−3
may have masked any effect of deoxygenation on whole blood CO2 content (Tufts
et al. 1998). It is unclear whether this unusual HCO−3 -based Haldane effect alone is
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sufficient to drive CO2 transport through the RBCs of hagfish in the short gill transit
time, but the very low metabolic rates of hagfish (Malte and Lomholt 1998) may
allow it.

Elasmobranch fish also constitute an exception to the typical model of CO2
excretion, in that a substantial proportion of CO2 excretion occurs directly from the
plasma rather than via the RBC (Gilmour 2001; Gilmour and Perry 2004) (Fig. 1b).
Two characteristics permit this excretion pathway. First, significant branchial
membrane-bound CA activity with an extracellular orientation is present, allow-
ing HCO−3 dehydration to occur in the plasma as it passes through the gills (Henry
et al. 1997; Gilmour et al. 2002; Gilmour and Perry 2004). The enzyme responsi-
ble for this activity is a CA IV isozyme bound to the membranes via a GPI-anchor
(Gilmour et al. 2002, 2007). The relatively high non-bicarbonate buffering capacity
of elasmobranch plasma is also integral to this model, by providing H+ for HCO−3
dehydration (Gilmour et al. 2002). Studies in rainbow trout in which both bovine
CA and non-bicarbonate buffers were added to the plasma provided support for the
elasmobranch model, by demonstrating that CO2 excretion can be driven through
the plasma given the availability of plasma CA (Desforges et al. 2001), to an extent
that depends on plasma buffering (Gilmour et al. 2004). Why an alternative pathway
is present in elasmobranchs is, however, unclear, particularly given the presence in
elasmobranch RBCs of both CA and anion exchange (Obaid et al. 1979). One pos-
sible explanation stems from the absence of an appreciable Haldane effect in these
animals (Lai et al. 1989; Wood et al. 1994), which may compromise the effective
removal of CO2 during capillary transit. For example, the Haldane effect in trout is
directly responsible for approximately 30–40% of CO2 excretion in vitro (Perry and
Gilmour 1993).

Unlike most teleost fish examined to date, two Antarctic species (Chaeno-
cephalus aceratus and Notothenia coriiceps) possess branchial membrane-bound
CA (Tufts et al. 2002). Interestingly, C. aceratus lacks RBCs and exhibited approx-
imately three times more membrane-bound CA than did N. coriiceps. Although
complete characterization of CO2-excretion pathways in these species remains to
be carried out, Tufts et al. (2002) suggested that branchial membrane-bound CA
was unlikely to contribute substantially to CO2 excretion, owing to the very low
metabolic rates of these species and the predominant role of the RBC route in most
teleost fish.

Air-breathing fish also provide an interesting dilemma owing to the spatial
uncoupling of O2 uptake, which occurs via the air-breathing organ, and CO2
excretion, the bulk of which typically occurs via the gills or skin (Brauner and
Randall 1998). In keeping with the spatial uncoupling, functional uncoupling of
O2 uptake and CO2 excretion is achieved by the presence of only small Haldane
effects, with Arapaima gigas being a notable exception in this regard. This adapta-
tion could, however, in theory reduce the efficiency of CO2 excretion by eliminating
the contribution of Bohr protons to HCO−3 dehydration, which would then be driven
solely by the fall in PCO2 as molecular CO2 diffuses across the gills. The generally
small surface area and high blood-to-water diffusion distances found in the gills of
many obligate air-breathers may compound this problem. An increased contribution
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of dissolved CO2 to overall CO2 transport in the blood may provide a way around
this difficulty (Brauner and Randall 1998), and in fact, the blood total CO2 concen-
trations of obligate air-breathers are typically much higher than in water-breathing
fish species. Interestingly, CO2 excretion in the African lungfish Protopterus dol-
loi was shown to be unaffected by complete blood CA inhibition, suggesting that
HCO−3 dehydration is not limiting in this species (Perry et al. 2005). However,
this species is unique among lungfish in excreting the majority of CO2 through the
lung, and CO2 excretion in many other air-breathing species is reduced by blood
CA inhibition (Burggren and Haswell 1979; Daxboeck and Heming 1982; Sma-
tresk and Cameron 1982; Pelster et al. 1988). Although branchial membrane-bound
CA that contributes significantly to CO2 excretion could provide an alternative
mechanism to supplement CO2 excretion in obligate air-breathers, there is no evi-
dence to support this possibility in the two species examined to date (Gervais
and Tufts 1998; Perry et al. 2005), albeit neither exhibits spatially uncoupled
gas exchange.

4 Sensing of Respiratory Gases at the Gill

The ability of fish to mount appropriate cardiorespiratory adjustments during fluctu-
ations of the gaseous composition of the environment requires effective gas-sensing
mechanisms or chemoreception. The gill is a critical site of gas sensing owing to
the presence of both O2 and CO2 chemoreceptors that are able to detect changes
in external and/or internal gas levels. Numerous detailed reviews have been writ-
ten on chemoreception in fish (Shelton et al. 1986; Milsom 1989, 1995a, b, 2002;
Smatresk 1990; Burleson et al. 1992; Fritsche and Nilsson 1993; Burleson 1995;
Milsom et al. 1999; Gilmour et al. 2001; Perry and Gilmour 2002; Gilmour and
Perry 2006). In this chapter, while briefly summarizing some of the classical
concepts of chemoreceptor control of cardiorespiratory function, we will focus pre-
dominantly on relatively recent developments regarding the cellular mechanisms of
O2 and CO2 sensing and chemoreceptor plasticity.

4.1 Downstream Responses Associated with Chemoreceptor
Activation

Despite marked species variation in the thresholds required to elicit physiologi-
cal responses and in the magnitude of those responses that do occur, there are
several well-documented outcomes of chemoreceptor activation. Hyperventilation
in response to hypoxia or hypercapnia is probably the most robust of responses,
occurring in the vast majority of species that have been examined (Gilmour and
Perry 2006). The physiological significance of hyperventilation during hypoxia is
obvious, at least in those species attempting to maintain a constant metabolic rate. In
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addition to lamellar recruitment and gill remodelling (see above), hyperventilation
is an effective (yet costly) strategy for increasing branchial gas transfer while raising
arterial PO2. For the latter, the benefit stems from the fact that the increased water
flow decreases the inspired–expired PO2 difference, allowing the arterial blood to
approach equilibrium with ventilatory water of higher mean PO2. The benefit of
hyperventilation during hypercapnia is to reduce the extent of the associated respi-
ratory acidosis, since even a slight lowering of PaCO2 can have a significant impact
in raising blood pH.

Common cardiovascular responses to hypoxic and hypercapnic exposure are
elevated blood pressure owing to increased systemic vascular resistance, and brady-
cardia (see Tables 3.1 and 3.2 in Gilmour and Perry 2006). Increased blood pressure
during hypoxia (Holeton and Randall 1967; Wood and Shelton 1980) or hypercap-
nia (Perry et al. 1999) reflects peripheral vasoconstriction arising from stimulation
of vascular smooth muscle α-adrenergic receptors by sympathetic nerves or cir-
culating catecholamines (Fritsche and Nilsson 1990; Kinkead et al. 1991; Perry
et al. 1999). Bradycardia arises from increased activity of cardiac parasympathetic
nerves (Taylor et al. 1977; Wood and Shelton 1980).

In rainbow trout, the secretion of catecholamines (adrenaline and noradrenaline)
into the circulation, a response intricately linked to cardiovascular control, is at least
in part initiated by activation of branchial chemoreceptors during hypoxia (Reid and
Perry 2003) and hypercapnia (Perry and Reid 2002).

4.2 Location and Orientation of Branchial Chemoreceptors

O2 chemoreceptors sense changes in both water PO2 and blood PO2, suggesting that
two populations of O2 chemoreceptors are present, one that is oriented to sense the
external environment and another positioned to sense the internal milieu (Milsom
and Brill 1986; Burleson and Milsom 1993). Alternatively, a single population of
O2 chemoreceptors may be strategically located within the gill epithelium to sense
changes in both water and blood PO2. It has largely been accepted that activation
of externally-oriented O2 receptors stimulates cardiovascular and ventilatory adjust-
ments, whereas stimulation of internally-oriented O2 receptors elicits only ventila-
tory responses. However, a close inspection of the available data (see Table 3.3 in
Gilmour and Perry 2006) reveals that this generalization probably oversimplifies a
more complex situation in which a diversity of response patterns exist.

Fewer data are available for CO2 chemoreceptors. More recent studies have
provided evidence for the presence of branchial CO2 chemoreceptors that are exclu-
sively oriented towards the external environment and respond to PCO2 rather than
pH (McKendry and Perry 2001; Perry and McKendry 2001; Perry and Reid 2002;
Gilmour et al. 2005), but data from earlier studies suggest the additional presence of
internal receptors that may be stimulated by changes in body fluid CO2 and/or pH
(see review by Gilmour 2001).
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4.3 Cellular Mechanisms of O2 and CO2 Sensing

Gill neuroepithelial cells (NECs) closely resemble the O2- and CO2-sensing glo-
mus (Type I) cells of the mammalian carotid body (Dunel-Erb et al. 1982; Bailly
et al. 1992; Goniakowska-Witalinska et al. 1995; Zaccone et al. 1997; Sundin
et al. 1998; Jonz and Nurse 2003; Saltys et al. 2006). Typically, NECs are enriched
with serotonin and possess dense-cored vesicles containing synaptic vesicle protein
(Dunel-Erb et al. 1982; Bailly et al. 1992; Jonz and Nurse 2003), features that are
characteristic of neurosecretory cells. NECs are occasionally found on lamellae, but
are concentrated along the leading edge of distal regions of gill filaments. Based
on the anatomical and chemical similarities between NECs and glomus cells and
their favourable location to sense water and blood gases, Dunel-Erb et al. (1982)
suggested that NECs may function as O2 chemoreceptors. The first evidence to sup-
port their claim of an O2-sensory function was the observation that NECs undergo
degranulation (indicative of neurotransmitter release) in response to severe hypoxia
(Bailly et al. 1992). Additional indirect evidence that the NEC acts as an O2 sen-
sor has accumulated in recent years. In adult zebrafish, the number of NECs is
increased by hypoxic exposure (Jonz et al. 2004) and decreased during hyperoxia
(Vulesevic et al. 2006). In larval zebrafish, the magnitude of the hypoxic ventilatory
response correlates with the maturation of the NEC, becoming maximal as the NEC
becomes fully innervated (Jonz and Nurse 2005). The most compelling evidence that
gill NECs act as O2 chemoreceptors stems from studies in which zebrafish (Jonz
et al. 2004) or channel catfish (Ictalurus punctatus) (Burleson et al. 2006) NECs
were cultured and subjected to patch clamp electrophysiology experiments. As in
the glomus cells of the carotid body, NECs exposed to hypoxia exhibited membrane
depolarization owing to inhibition of K+ conductance. An important next step in this
research area is to determine whether membrane depolarization is accompanied by
neurotransmitter release. Although it is now clear that NECs are able to sense O2,
and that their response resembles the well-characterized response of carotid body
cells, direct data linking NECs to the initiation of cardiorespiratory adjustments
when ambient O2 levels are altered remain to be collected.

Recently, it was demonstrated that NECs of zebrafish, like mammalian carotid
body glomus cells, are bimodal sensors able to respond to both hypoxia and hyper-
capnia (Zhaohong Qin, J. Lewis and S.F. Perry, unpublished observations). The
mechanisms of O2 and CO2 signal transduction appear to be similar, at least in
part, as both involve inhibition of background K+ conductance.

4.4 Chemoreceptor Plasticity

The zebrafish has emerged as an important resource for studying the ontogeny and
plasticity of chemoreceptor-mediated cardiorespiratory responses (Pelster 2002).
Although hyper-ventilatory responses to hypoxia in zebrafish are observed at 2 days
post-fertilization (dpf), maximal ventilatory responses to hypoxia are elicited only
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after 7 dpf, coinciding with the full innervation of gill NECs (Jonz and Nurse 2005).
Interestingly, the zebrafish cardiac M2 muscarinic receptor can initiate bradycar-
dia in response to cholinergic stimulation at 3 dpf (Hsieh and Liao 2002), well
before the full maturation of branchial NECs. Thus, if dependent on fully functional
NECs, hypoxic bradycardia may only occur several days after maturation of the
cardiac M2 receptor. Peripheral vasoconstriction, often observed during hypoxia or
hypercapnia (see above), can be elicited by α-adrenergic receptor agonists at 8 dpf
(Bagatto 2005). Thus, maturation of the α-adrenergic receptor appears to coincide
closely with the development of a functional NEC. The rate at which these cardio-
vascular control mechanisms develop can be influenced by environmental factors
including water oxygen levels and temperature (Bagatto 2005). For example, the
development of adrenergic tachycardia and peripheral vasoconstriction are accel-
erated by hypoxia. It is unclear, however, whether development of the branchial
chemoreceptors controlling these functions is similarly affected.

The developmental plasticity of respiratory control in zebrafish recently was
investigated by exposing fish to hypoxia, hyperoxia or hypercapnia during the first
week of development (Vulesevic and Perry 2006). As adults, the responses of
these same fish to acute ventilatory stimuli were assessed. The results indicated
that chemoreceptor-mediated responses in adult fish could be markedly affected
by the rearing environment. For example, the respiratory responses of fish reared
under hyperoxic conditions to acute hypoxia, hypercapnia or external cyanide
were blunted (hypoxia, cyanide) or eliminated (hypercapnia). Future studies should
attempt to link the plasticity of these ventilatory responses to changes in chemore-
ceptor function.

Adult fish also are capable of exhibiting chemoreceptor plasticity that can influ-
ence cardiorespiratory responses. For example, adult zebrafish exposed for 28 days
to hyperoxic water (PWO2 = 350mmHg) exhibited a blunting of the ventilatory
responses to acute hypoxia or hypercapnia, which was associated with a significant
reduction in the density of gill filament NECs (Vulesevic et al. 2006). Although
long-term (60-day) exposure of zebrafish to hypoxia (PWO2 = 35mmHg) caused
hypertrophy of gill filament NECs in zebrafish (Jonz et al. 2004), their response to
acute hypoxia (at least after 28 days) was actually blunted (Vulesevic et al. 2006).
This finding is in marked contrast to the results of Burleson et al. (2002), who
demonstrated that prior exposure of channel catfish to moderate hypoxia for 7 days
increased the ventilatory response to acute severe hypoxia.

5 Ammonia Excretion

The gills are structurally and functionally suited not only to exchange of the res-
piratory gases, O2 and CO2, but also for the excretion of gaseous ammonia. While
ammonia excretion has received considerable attention in the context of nitroge-
nous waste excretion and/or acid–base balance (e.g. see reviews by Cameron and
Heisler 1985; Randall and Wright 1989; Heisler 1990; Walsh and Henry 1991;
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Mommsen and Walsh 1992; Wood 1993; Ip et al. 2001; Wilkie 2002), the recent
emergence of rhesus proteins as an ammonia transporter mechanism has renewed
interest in the excretion of gaseous ammonia at the fish gill.

The biological oxidation of amino acids and proteins produces nitrogenous
waste, the most reduced and energy-efficient form of which is ammonia (Smith
and Rumsey 1976; Wood 1993). The liver is the primary source of ammonia in
fish, responsible for up to 70% of total production (Randall and Ip 2006). While
the majority of the ammonia produced is a direct result of the deamination of
amino acids to provide substrates that can be used in energy production (Brown
and Cameron 1991; Wood 1993), an important secondary source of ammonia
occurs within muscle fibres via the deamination of adenylates in exercising fish
(Driedzic and Hochachka 1976). However, much of this ammonia is not excreted
(Wood 1988), but rather acts to buffer the pH depression caused by the build-up of
lactic acid (Dobson and Hochachka 1987), and may help maintain glycolytic flux
by stimulating phosphofructokinase (Wood 1993).

The ability to act as a biological buffer is only one of several properties that
ammonia shares with carbon dioxide, as it, too, occurs in both gaseous (NH3)
and ionic (NH+

4 ) forms in aqueous solution, with the sum of both forms known
as total ammonia (Tamm): NH3 + H+↔ NH+

4 . In fish plasma, this relationship has
a pK of approximately 9.5 (Boutilier et al. 1984), meaning that at physiological pH
approximately 95% of Tamm is carried as NH+

4 .

5.1 Toxicity

Ammonia is the most toxic of the respiratory gases and must be continually removed
from the body through either conversion into less toxic compounds (urea, uric acid)
or excretion. Most terrestrial animals make use of the former strategy, and only
encounter elevated levels of ammonia when experiencing pathological conditions
such as hepatic encephalopathy. With the exception of the ureotelic elasmobranchs
and a few unusual teleosts such as the Gulf toadfish (Opsanus beta) (Mommsen and
Walsh 1989) and the Lake Magadi tilapia (Alcolapia grahami) (Randall et al. 1989),
most fish are ammonotelic, excreting up to 90% of their nitrogenous waste as ammo-
nia (Wood 1993). Perhaps as a consequence, they tend to have a higher tolerance for
ammonia than terrestrial vertebrates (Wilkie 2002), but fish will also succumb when
exposed to high concentrations of ammonia.

High internal levels of Tamm cause severe central nervous system disruptions,
including convulsions, coma and death (Iles and Jack 1980; Cooper and Plum 1987;
Raabe 1987; Norenberg et al. 1992; Rama Rao et al. 2003). While much remains to
be learned about mechanisms of ammonia toxicity, it appears, ironically, that it is the
predominant ionic form, NH+

4 , that is most dangerous. NH+
4 has long been known

to substitute for K+ in ion transporters and channels (Binstock and Lecar 1969) and
can therefore affect ionic homeostasis. NH+

4 interferes with the currents underlying
excitatory and inhibitory signalling in synapses (Iles and Jack 1980; Raabe 1987)
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and depolarizes membranes (Allert et al. 1998), both of which actions can lead to
activation of N-methyl-D-aspartate (NMDA) glutamate receptors (Rose 2002). In
fact, excessive glutamate release via activation of the NMDA receptor appears to
underlie many of the damaging effects usually linked with ammonia toxicity (Felipo
et al. 1998; Rose 2002; Klejman et al. 2005). Hyperammonaemia has been asso-
ciated with increased release of free radicals (Albrecht and Wegrzynowicz 2005),
high levels of intracellular calcium (Randall and Tsui 2002; Rama Rao et al. 2003),
opening of the mitochondrial permeability transition pore (Rama Rao et al. 2003)
and apoptosis (Rose 2002; Svoboda et al. 2007), all of which are downstream effects
of glutamate excitoxicity (Bickler et al. 2002).

Injection of NMDA receptor blockers appears to protect mammalian neurons
from ammonia intoxication (Marcaida et al. 1992), and injection of the NMDA
receptor antagonist MK-801 also reduced ammonium-induced mortality in the
weatherloach Misgurnus anguillicaudatus (Tsui et al. 2004). However, MK-801 did
not give similar protection to the mudskippers Periophthalmodon schlosseri and
Boleophthalmus boddaerti (Ip et al. 2005), suggesting that NMDA receptors may
not be involved in ammonia toxicity in all fish.

5.2 Ammonia Excretion Pathways

Despite the relatively high tolerance of fish for ammonia (Wilkie 2002), effi-
cient ammonia excretion is vital for survival. While it is accepted that the majority
of ammonia is lost at the gills, evidence exists for several different mechanisms of
ammonia excretion, including passive diffusion of NH3, passive diffusion of NH+

4 ,
apical Na+/NH+

4 exchange, and basolateral Na+/NH+
4 (K+) ATPases (Fig. 2).

5.2.1 Passive Diffusion of NH3

Due to the interplay of pH, Tamm and electrical potential, a complete understanding
of the mechanisms of ammonia excretion has been difficult to attain. However, while
questions still remain, the consensus opinion is that the majority of ammonia excre-
tion takes place at the gills as simple diffusion of NH3 from the blood to the water
(Wood 1993; Wilkie 2002). The concentration of total ammonia found as NH3 intra-
cellularly is low, but sufficient to maintain excretion down the NH3 partial pressure
(PNH3) gradient from the blood to the water. When the pH of the water is increased
(increasing PNH3 in the water), Tamm excretion falls in rainbow trout (McGeer and
Eddy 1998). Indeed, a favourable PNH3 blood-to-water gradient is maintained in
large part via acidification of the gill boundary layer, either through CO2 excretion
or direct excretion of H+. Water pH can drop significantly (up to 1.5 pH units) in
passing over the gills (Wright et al. 1986), and Wright et al. (1989) proposed that
H+ released from the hydration of excreted CO2 ‘trapped’ NH3 as NH+

4 , preventing
backflux of NH3 and maintaining the PNH3 blood-to-water gradient.
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Fig. 2 A Schematic model of ammonia movement through fish gills. Dashed lines indicate diffu-
sion, while movement through pumps and exchangers is represented with solid lines. NH3 diffuses
across the gills down the blood-to-water partial pressure gradient, where in many fish it is trapped
as NH+

4 . The H+ required for ‘acid trapping’ is produced by the hydration of CO2, or is secreted
directly into the water via the V-type H+-ATPase (V ), or in exchange for Na+ through a Na+/H+

exchanger (NHE). NH+
4 can diffuse out through the permeable paracellular spaces of marine fish

gills (small tight junction) or it can be actively excreted by means of a basolateral Na+/K+-ATPase
(NKA) and an apical NHE. B An expanded view of the gill tissue depicts the discrete tissue lay-
ers and the arrangement of ammonia transporting rhesus (Rh) proteins. Rhag is found on both
surfaces of pillar cells, while Rhbg and Rhcg occur on the basolateral and apical surfaces respec-
tively of pavement cells. Rh proteins appear to increase membrane permeability to both NH3 and
NH+

4 . Additional orthologues of Rhcg are expressed in mitochondria-rich (MR) cells, and NH+
4 can

enter these cells in exchange for Na+ via NKA before leaving through the Rhcg transporter. Often
closely associated with V-type H+-ATPases, this coexpression provides the acidification required
for the efficient acid trapping of NH3. Modified from Wilkie (2002) and Nakada et al. (2007a)
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Evidence supporting the linkage between boundary-layer acidification and Tamm
excretion has come from studies demonstrating that changes in acidification of the
boundary layer changed the rate of excretion of NH3. NH3 excretion fell drastically
when CO2 excretion was inhibited with the CA inhibitor acetazolamide (Wright
et al. 1989), or when TRIS or HEPES buffer was added to the ventilatory water
(Wright et al. 1989; Wilson et al. 1994). The increased buffer capacity of the
water prevents boundary-layer acidification and limits the potential for acid trap-
ping. However, as the internal ammonia levels rise, the blood-to-water gradient is
re-established and excretion rates return to normal (Wilson et al. 1994). Similarly,
maintenance of a high plasma ammonia level allows the creation of a favourable
blood-to-water PNH3 gradient in freshwater environments where boundary-layer
acidification is impossible (e.g. in the heavily buffered water of Pyramid Lake, pH
9.4) (Wright et al. 1993).

Acidification of the boundary layer may not be limited to hydration of CO2. The
presence of V-type H+-ATPases on the apical membrane of certain mitochondria-
rich cells (Lin et al. 1994) or pavement cells (Sullivan et al. 1995) provides
an alternative proton source for boundary layer acidification in freshwater fish.
While the activity of these ATPases has been linked with Na+ uptake in fresh-
water fish, their importance in ammonia excretion can be distinguished using
amiloride. Blockade of Na+ uptake alters the apical membrane potential, inhibit-
ing electrogenic H+-ATPase activity, and resulting in a drop in NH3 excretion
(Wilkie 2002).

Due to the heavily buffered nature of seawater, marine fish are unlikely to
benefit from boundary-layer acidification. However, evidence of NH3 diffusion
remains. Injection of NH4Cl into spiny dogfish (Wood et al. 1995), Atlantic hagfish
(McDonald et al. 1991) or sculpin (Myoxocephalus octodecimspinosus) (Claiborne
and Evans 1988) resulted in an increase in Tamm excretion and metabolic acidosis,
suggesting that the NH+

4 dissociated, crossing the gills as NH3 and leaving behind
the excess protons.

5.2.2 Passive Diffusion of NH+
4

NH+
4 diffusion is unlikely to be significant in freshwater teleosts owing to its ionic

nature. The deep tight junctions (Sardet 1980) and low permeability to cations of
freshwater fish gills probably preclude NH+

4 diffusion (Evans et al. 2005). By con-
trast, the shallow junctions between epithelial pavement cells of marine fish can have
high cation permeability, potentially allowing NH+

4 diffusion (Evans et al. 1989).
Evidence for this route comes from the failure of longhorn sculpin exposed to high
water Tamm concentrations to exhibit metabolic alkalosis, which suggests that the
ammonia species entering the fish was NH+

4 , rather than the basic NH3 (Claiborne
and Evans 1988).
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5.2.3 Na+/NH+
4 Exchange

Although amiloride blockade decreases Tamm excretion in freshwater fish, as noted
above this outcome probably reflects disruption of the apical membrane potential
rather than a direct linkage between Na+ and NH+

4 (Avella and Bornacin 1989). In
freshwater fish, altered membrane potential may impact activity of the proton pump,
limiting Tamm excretion by decreasing boundary-layer acidification. In marine fish,
however, the large inward Na+ gradient and apical Na+/H+ exchangers (NHEs)
provide the potential for Na+/NH+

4 exchange (Evans et al. 2005). Although marine
fish possess the necessary exchangers, they may not be required, owing to the
favourable blood-to-water gradients for passive diffusion of Tamm. There is very lit-
tle evidence for a significant Na+/NH+

4 exchange under normal conditions; neither
amiloride treatment nor Na+ removal have an effect on Tamm excretion in a vari-
ety of marine species (Evans et al. 2005). Whether NHEs become more important
during exposure to high external ammonia levels is unknown.

5.2.4 Active Excretion of Tamm

Certain fish possess the capacity to excrete ammonia against an unfavourable con-
centration gradient, a possibility that exists because NH+

4 can substitute for K+

in the Na+/K+-ATPase (Towle and Holleland 1987) and Na+/2Cl−/K+ cotrans-
porter (Good et al. 1984), and can penetrate bio-membranes through K+ channels
(Thomas 1984). The giant mudskipper, Periphthalmodon schlosseri, which can
maintain constant internal Tamm(150 µM) and excretion rates in the face of high
external pH and greatly elevated environmental ammonia concentrations (100 mM)
provides the best example of this situation (Thomas 1984; Randall et al. 1999; Chew
et al. 2003; 2007). Ammonia excretion in these animals is not sensitive to HEPES,
indicating that diffusive acid trapping is not important under these conditions (Wil-
son et al. 2000). However, Tamm excretion has been shown to fall when fish were
exposed to ouabain, an inhibitor of Na+/K+-ATPase or amiloride (Randall et al.
1999). Mitochondria-rich cells in P. schlosseri possess apical NHE2 and NHE3
(Wilson et al. 2000) and express high levels of basolateral Na+/K+-ATPase. The
mechanism of ammonia excretion in these animals may be similar to that in mam-
malian renal proximal tubules (Evans et al. 2005), in which NH+

4 is secreted across
the basolateral membrane by substituting for K+ on the Na+/K+-ATPase, thereby
lowering intracellular Na+ concentrations. These conditions stimulate NHE, and
NH+

4 is then excreted across the apical membrane via the NHE by substituting
for H+.

Another amphibious fish, the mangrove killifish Kryptolebias marmoratus,
makes use of ammonia volatilization to survive long periods of air exposure (Frick
and Wright 2002). Volatilization is made possible by greatly increasing the cuta-
neous NH+

4 concentration and pH so as to favour gaseous NH3 release (Litwiller
et al. 2006). However, these same conditions will make NH3 diffusion from the
blood to the cutaneous boundary layer more difficult. How mangrove killifish
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maintain Tamm excretion from plasma to skin is not currently known, but it may
be that to maintain high NH+

4 levels in the boundary layer fluid, K. marmoratus
uses the same active excretion processes as P. schlosseri.

5.3 Problems with the Models

Most reviews invariably picture the gills as a single homogenous layer of cells that
are universally permeable to ammonia. However, the gills are made up of sev-
eral distinct cell layers that may be differentially permeable (or impermeable) to
ammonia. Owing to its high water solubility and diffusivity (1,000 times that of
CO2; Wood 1993), ammonia is commonly assumed to move easily through cell
membranes. However, ammonia is only moderately lipid-soluble (Wright 1995)
and many lipid membranes are impermeable to NH3, including those of the renal
thick ascending limb (Kikeri et al. 1989) and Xenopus oocyte (Burckhardt and
Frömter 1992). Among fish, the apical membrane of pavement cells from the gill
of Pleuronectes americanus exhibited very low NH3 permeability, while in Squalus
acanthias the permeability of the basolateral membrane was twice that of the apical
membrane (Hill et al. 2004). Even the assumption of NH+

4 immobility is question-
able, as a cultured gill epithelium from rainbow trout revealed greater permeability
to NH+

4 than NH3 under conditions similar to those found in vivo (Kelly and
Wood 2001). These results indicate that diffusion alone may not be sufficient for
branchial ammonia excretion, i.e. that carrier-mediated transport may be required.

5.3.1 Rh Proteins

Ammonia transporters (Amt) in plants, methylammonium permeases (MEP) in
yeast and rhesus (Rh) proteins in animals all serve to increase the flux of ammo-
nia across the plasma membrane (Marini et al. 2006). In the last decade, several
of the Rh proteins, long known to perform a structural role within RBCs, were
discovered to be homologues to Amt proteins (Marini et al. 1997b, 2000). But
while these intrinsic transmembrane proteins seem to function as CO2 channels
within green algae (Peng and Huang 2006), their main transport function in animal
cells is for ammonia. When expressed in various heterologous expression systems
(Xenopus oocytes, Nakhoul et al. 2006; HeLa, Benjelloun et al. 2005; yeast, Marini
et al. 2000), mammalian orthologues always increased ammonia permeability. The
members of the Rh family known to possess transport function include Rh A gly-
coprotein (Rhag), Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg). In
mammals, Rhag is found exclusively on RBCs, whereas Rhbg and Rhcg are found
in a variety of tissues such as kidney, skin, liver, testes, ovary, and brain (Nakhoul
and Hamm 2004). Interestingly, in liver and kidney, expression of Rhbg and Rhcg
appears to be limited to the basolateral and apical cell membranes respectively
(Eladari et al. 2002; Weiner et al. 2003; Quentin et al. 2003; Verlander et al. 2003).
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Despite years of study of the Amt/MEP/Rh family, which have definitively
demonstrated their ability to transfer ammonia across cell membranes (Kleiner 1985;
Marini et al. 1994, 1997a; Ninnemann et al. 1994; von Wiren et al. 2000), whether
ammonia is transferred as a gas (NH3) (Peng and Huang 2006; Bostick and Brooks
2007) or as an ion (NH+

4 ) (Verlander et al. 2003; Nakhoul et al. 2006) is less certain
(Nakhoul and Hamm 2004; Mayer et al. 2006). Some of the confusion regarding the
specific transport function of Rh proteins may arise from the widely varying exper-
imental conditions used, but it is also possible that Rh proteins transport both the
ionic and gaseous species of ammonia as suggested for the human orthologues of
Rhag and Rhcg (Benjelloun et al. 2005; Bakouh et al. 2006).

Recently, the Rh proteins and their functional significance have been examined
in fish. In an elegant study on the pufferfish Takifugu rubripes, Nakada et al. (2007a)
identified four Rh protein homologues (fRhag, fRhbg, fRhcg1 and fRhcg2) that
mediated methylammonium transport when expressed in Xenopus oocytes. In situ
hybridization and immunohistochemistry clearly demonstrated that not only were
the Rh proteins located on the gill, they possessed an orientation nearly identical to
that found in mammalian kidneys (Fig. 2). While fRhag was localized to pillar cells,
fRhbg and fRhcg2 were located on the basolateral and apical surfaces, respectively,
of the pavement cells. Expression of fRhcg1 was detected only on the apical sur-
face of mitochondria-rich cells, where it may be acting in concert with basolateral
Na+/K+-ATPases to actively excrete ammonia (Nakada et al. 2007a). Rather than
indiscriminate diffusion, ammonia may be following a specific pathway through the
gill tissue from blood to water.

Rh proteins now have been found also in the gills of rainbow trout (Nawata
et al. 2007), mangrove killifish (Hung et al. 2007), and zebrafish (Danio rerio)
(Nakada et al. 2007b). Furthermore, their expression is inducible, and responsive to
changes in the ammonia load. For example, the onset of ammonotely during devel-
opment in zebrafish coincides with a marked increase in Rhcg expression (Fig. 3)
(M. Braun, S. Steele and S.F. Perry, unpublished observations). Reported variation
in Rh protein type and tissue location in these fish is not surprising, considering
the wide range of habitats and lifestyles of these species. Nevertheless, Rh pro-
teins appear to be a vital part of the ammonia excretion pathway in both marine
and freshwater fish, and must be incorporated into existing models of ammonia
excretion. Recent results reinforce the notion that acid trapping of NH3 is crucial
to the effective removal of ammonia. For example, Rhcg1 in zebrafish co-localizes
with V-type H+-ATPase (Nakada et al. 2007b), while in trout exposed to high envi-
ronmental ammonia, increased expression of Rhcg2 and V-type H+-ATPase occur
simultaneously (Nawata et al. 2007). Active excretion of H+ resulting in the con-
version of NH3 to NH+

4 would increase the efficiency of NH3 movement through
Rhcg. Similar co-expression patterns of MEP and H+-ATPase in fungi allow them
to concentrate ammonia (Soupene et al. 2001), and this co-expression pattern in fish
may allow ammonia excretion against a large gradient.

Answers to questions regarding regulatory mechanisms and reasons for the var-
ied expression patterns remain elusive, and a larger number of species must be
examined. For example, as yet only a single marine species has been investigated
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Fig. 3 A comparison of Rhcg mRNA expression and ammonia excretion during development in
zebrafish (Danio rerio) embryos. Expression levels were measured using real-time RT-PCR and
have been calculated using the delta–delta Ct method relative to the expression of Rhcg at 1
day post-fertilization (dpf). Values are means ± 1 SEM with N = 4 (expression data) or N = 8
(excretion data). (M. Braun, S. Steele and S.F. Perry, unpublished observations)

and if, as suggested above, seawater interferes with acid trapping of NH3, com-
pensatory changes in the expression of Rh proteins may occur. The mangrove
killifish demonstrated inducible expression of Rh proteins in both gills and skin
when exposed to air (Hung et al. 2007); examination of other amphibious fish may
provide insight into whether this expression pattern is broadly distributed in all these
species or unique to killifish. Clearly, a full understanding of ammonia excretion in
fish will only occur with a detailed examination of the functional significance of Rh
proteins.
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