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Abstract. We study the following generalization of the classical edge
coloring problem: Given a weighted graph, find a partition of its edges
into matchings (colors), each one of weight equal to the maximum weight
of its edges, so that the total weight of the partition is minimized. We
present new approximation algorithms for several variants of the prob-
lem with respect to the class of the underlying graph. In particular, we
deal with variants which either are known to be NP-hard (general and
bipartite graphs) or are proven to be NP-hard in this paper (complete
graphs with bi-valued edge weights) or their complexity question still
remains open (trees).

1 Introduction

In the classical edge coloring problem we ask for the minimum number of colors
required in order to assign different colors to adjacent edges of a graph G =
(V, E). Equivalently, we ask for a partition S = {M1, M2, . . . , Ms} of the edge
set of G into matchings (color classes) such that s is minimized. This minimum
number of matchings (colors) is known as the chromatic index of the graph and
it is denoted by χ′(G).

In several applications, the following generalization of the classical edge col-
oring problem arises: a positive integer weight is associated with each edge of
G and we now ask for a partition S = {M1, M2, . . . , Ms} of the edges of G into
matchings (colors), each one of weight wi = max{w(e)|e ∈ Mi}, such that their
total weight W =

∑s
i=1 wi is minimized. As the weight wi of each matching

is defined to be the maximum weight of the edges colored i, we refer to this
problem as Maximum Edge Coloring (MEC) problem.

� This work has been funded by the project PENED 2003. The project is cofinanced
75% of public expenditure through EC–European Social Fund, 25% of public ex-
penditure through Ministry of Development–General Secretariat of Research and
Technology of Greece and through private sector, under measure 8.3 of Operational
Programme “Competitiveness” in the 3rd Community Support Programme.

�� Part of this work has been carried out while the author was with the Department
of Informatics of Athens University of Economics and Business.

E. Bampis and M. Skutella (Eds.): WAOA 2008, LNCS 5426, pp. 279–292, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



280 G. Lucarelli, I. Milis, and V.Th. Paschos

The most common application for the MEC problem arises in the domain of
communication systems and, especially, in single hop systems. In such systems
messages are to be transmitted directly from senders to receivers through direct
connections established by an underlying switching network. Any node of such
a system cannot participate in more than one transmissions at a time, while the
transmission of messages between several pairs of nodes can take place simul-
taneously. The scheduler of such a system establishes successive configurations
of the switching network, each one routing a non-conflicting subset of the mes-
sages from senders to receivers. Given the transmission time of each message, the
transmission time of each configuration equals to the longest message transmit-
ted. The aim is to find a sequence of configurations such that all the messages
are transmitted and the total transmission time is minimized. It is easy to see
that the above situation corresponds directly to the MEC problem.

In practical applications there exists a non negligible setup delay to establish
each configuration (matching). The presence of such a delay, say d, in the instance
of the MEC problem can be easily handled: by adding d to the weight of all edges
of G, the weight of each matching in S will be also increased by d, incorporating
its set-up delay. A natural idea to decrease the weight of a solution to such
a problem is to allow preemption i.e., interrupt the transmission of a (set of)
message(s) in a configuration and complete it later. However, in this preemptive-
MEC problem the presence of the set-up delay d plays a crucial role in the
problem’s complexity [11,4,1].

The analogous to the MEC problem generalization for the classical vertex col-
oring problem, called Maximum (vertex) Coloring (MVC), has been also studied
in the literature during last years [2,9,7,5,8,19,18]. In the MVC problem we ask
for a partition of the vertices of G into independent sets (colors), each one of
weight equal to the maximum weight of its vertices, so that the total weight of
the partition is minimized. Like the classical edge and vertex coloring problems,
the MEC problem, on a general graph G, is equivalent to the MVC problem
on the line graph, L(G), of G. However, this is not true for every special graph
class, since most of them are not closed under line graph transformation (e.g.
complete graphs, trees and bipartite graphs).

Related Work. It is known that the MEC problem is strongly NP-hard even
for (i) complete balanced bipartite graphs [20], (ii) bipartite graphs of maximum
degree three and edge weights w(e) ∈ {1, 2, 3} [11,13], (iii) cubic bipartite graphs
[7] and (iv) cubic planar bipartite graphs with edge weights w(e) ∈ {1, 2, 3} [5].
Moreover, in conjunction with the results (iii) and (iv) above, it has been shown
that the MEC problem on k-regular bipartite graphs cannot be approximated
within a ratio less than 2k

2k−1 , which for k = 3 becomes 8/7 [7]. This inapprox-
imability result has been improved to 7/6 for cubic planar bipartite graphs [5].

Concerning the approximability of the MEC problem, a natural greedy 2-
approximation algorithm has been proposed by Kesselman and Kogan [13] for
general graphs. A 2Δ−1

3 -approximation algorithm, for bipartite graphs of max-
imum degree Δ, has been presented in [7], which gives an approximation ratio
of 5/3 for Δ = 3. Especially for bipartite graphs of Δ = 3, an algorithm that
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Table 1. Known approximation ratios for bipartite graphs in [8] and [16] vs. those in
this paper

Δ [8] [16] This paper
3 1.42 1.17 1.42
4 1.61 1.32 1.54
5 1.75 1.45 1.62
6 1.86 1.56 1.68
7 1.95 1.65 1.72
8 > 2 1.74 1.76
9 > 2 1.81 1.78
10 > 2 1.87 1.80
11 > 2 1.93 1.82
12 > 2 1.98 1.84
13 > 2 > 2 1.85
20 > 2 > 2 1.90
50 > 2 > 2 1.96

attains the 7/6 inapproximability bound has been presented in [5]. For general
bipartite graphs of Δ ≤ 12 have been also presented algorithms that achieve
approximation ratios ρ < 2. In fact, an algorithm presented in [8] achieves such
a ratio for 4 ≤ Δ ≤ 7, while another one presented in [16] achieves the best
known ratios for maximum degrees between 4 ≤ Δ ≤ 12 (see the 2nd and
3rd columns of Table 1). However, for bipartite graphs of Δ > 12 the best
known ratio is achieved by the 2-approximation algorithm in [13] for general
graphs.

On the other hand, the MEC problem is known to be polynomial for a few
very special cases including complete balanced bipartite graphs and edge weights
w(e) ∈ {1, 2} [20], general bipartite graphs and edge weights w(e) ∈ {1, 2} [7],
chains [8] (in fact, this algorithm can be also applied for graphs of Δ = 2), stars
of chains and bounded degree trees [16]. It is interesting that the complexity of
the MEC problem on trees remains open.

Our results and organization of the paper. In this paper we further explore
the complexity and approximabilty of the MEC problem with respect to the class
of the underlying graph. Especially, we present new approximation results for
several variants of the problem exploiting the general idea of producing more
than one solutions for the problem and choosing the best of them.

The next section starts with our notation and a remark on the known greedy
2-approximation algorithm [13]. Then, combining this remark with a simple idea,
we present a first algorithm for general and bipartite graphs. For bipartite graphs,
this algorithm achieves better approximation ratios than the algorithms in [8]
(for Δ ≥ 4) and [16] (for Δ ≥ 9) which ratios, in addition, tend asymptotically
to 2 as Δ increases.
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In Section 2 we present a new algorithm for the MEC problem on bipartite
graphs which, like algorithms in [8] and [16], produces Δ different solutions
and chooses the best of them. Our algorithm derives the best known ratios for
bipartite graphs for any Δ ≥ 9, that remain always strictly smaller than 2 (see
the 4th column of Table 1).

Section 4 deals with the MEC problems on trees. An exact algorithm for
this case of complexity O(|E|2Δ+O(1)) has been proposed in [16]. In this section
we present a generic algorithm for trees depending on a parameter k, which
determines both the complexity of the algorithm and the quality of the solution
found. In fact, the complexity of the algorithm is O(|E|k+O(1)) and it produces
an optimal solution, if k = 2Δ − 1, an e/(e − 1)-approximate solution, if k = Δ,
and a ρ-approximate solution, with ρ < 2, if 2 ≤ k ≤ Δ.

Finally, in Section 5 we prove that the MEC problem is NP-complete even
in complete graphs with bi-valued edge weights, and we give an asymptotic 4

3 -
approximation algorithm for general graphs of arbitrarily large Δ and bi-valued
edge weights.

2 Notation and Preliminaries

We consider the MEC problem on a weighted graph G = (V, E). By dG(v), v ∈ V
(or simply d(v)), we denote the degree of vertex v and by Δ(G) (or simply Δ)
the maximum degree of G. We consider, also, the edges of G sorted in non-
increasing order of their weights with e1 denoting the heaviest edge of G, that
is w(e1) ≥ w(e2) ≥ . . . ≥ w(em). By S∗ = {M∗

1 , M∗
2 , . . . , M∗

s∗} we denote an
optimal solution to the MEC problem of weight OPT = w∗

1 + w∗
2 + . . . + w∗

s∗ .
We call a solution S = {M1, M2, . . . , Ms} to the MEC problem nice if w1 ≥
w2 ≥ . . . ≥ ws and each matching Mi is maximal in the subgraph induced by
the edges E \

⋃i−1
j=1 Mj . In the following we consider any (suboptimal or optimal)

solution to the MEC problem to be nice. This is due to the next proposition
(see also [16]).

Proposition 1. Any solution to the MEC problem can be transformed into a
nice one, without increasing its total weight. For the number of matchings, s, in
such a solution it holds that Δ ≤ s ≤ 2Δ − 1.

The most interesting and general result for the MEC problem is due to Kessel-
man and Kogan [13] who proposed the following greedy algorithm:

Algorithm 1
1. Sort the edges of G in non-increasing order of their weights;
2. Using this order:
- Insert each edge into the first matching that fits;
- If such a matching does not exist then compute a new matching;

It is proved in [13] that Algorithm 1 obtains a solution, S, of total weight
W ≤ 2OPT and they also presented a 2 − 1

Δ tightness example. We prove here
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that the approximation ratio of this algorithm matches exactly its lower bound
on the given tightness example. In fact, the solution S is, by its construction, a
nice one. Using the bound on s in Proposition 1, the bound on W can be slightly
improved as in next lemma.

Lemma 1. The total weight of the solution obtained by Algorithm 1 is W ≤
2

∑Δ
i=1 w∗

i − w∗
1 ≤ 2OPT − w∗

1 .

Proof. (Sketch) Let e be the first edge inserted into matching Mi, i.e. wi = w(e).
Let Ei be the set of edges preceding e in the order of the algorithm plus edge e
itself, Gi be the graph induced by those edges and Δi be the maximum degree of
Gi. The optimal solution for the MEC problem on the graph Gi contains i∗ ≥ Δi

matchings each one of weight at least wi, that is wi ≤ w∗
i∗ . By Proposition 1, the

matchings constructed by Algorithm 1 for the graph Gi are i ≤ 2Δi−1 ≤ 2i∗−1,
that is ⇒ i∗ ≥ � i+1

2 �. Hence, wi ≤ w∗
i∗ ≤ w∗

� i+1
2 �.

Summing up the above bounds for all wi’s, 1 ≤ i ≤ s ≤ 2Δ − 1, we obtain
W ≤

∑2Δ−1
i=1 wi = w∗

1 + 2(
∑Δ

i=2 w∗
i ) = 2OPT − w∗

i .

From the first inequality of Lemma 1 we have W
OPT = 2

∑ Δ
i=1 w∗

i −w∗
1∑

s∗
i=1 w∗

i

≤
2

∑ Δ
i=1 w∗

i −w∗
1∑

Δ
i=1 w∗

i

≤ 2 − w∗
1∑

Δ
i=1 w∗

i

≤ 2 − w∗
1

Δ·w∗
1

= 2 − 1
Δ , and hence the approximation

ratio of Algorithm 1 is 2 − 1
Δ .

It is well known that the chromatic index of any graph is either Δ or Δ + 1
[21], but deciding between these two values is NP-hard even for cubic graphs
[12]. On the other hand, the chromatic index of a bipartite graph is Δ [14]. As
in the following we deal only with edge colorings of graphs, the terms k-coloring
or k-colorable graph always refer to an edge coloring. It is well known that a
(Δ + 1)-coloring of a general graph or a Δ coloring of a bipartite graph can be
found in polynomial time. Obviously, such an edge coloring algorithm applied to
a weighted graph, leads to a solution for the MEC problem that is feasible but
not necessarily optimal. If, in addition, the edge weights in an instance of the
MEC problem are very close to each other, then such an algorithm will obtain
a solution very close to optimal. In fact, this is the case of tightness example
presented in [13] for Algorithm 1. Thus, a natural idea is to combine such an
edge coloring algorithm and Algorithm 1 as following (for the case of bipartite
graphs).

Algorithm 2
1. Run Algorithm 1;
2. Find a solution by a Δ-coloring of the input graph;
3. Select the best solution found;

Theorem 1. Algorithm 2 is a tight (2− 2
Δ+1 )-approximation one for the MEC

problem on bipartite graphs.

Proof. (Sketch) By Lemma 1, the solution computed in Line 1 of the algorithm
has weight W ≤ 2OPT −w∗

1 . The solution built in Line 2 consists of Δ matchings



284 G. Lucarelli, I. Milis, and V.Th. Paschos

C − ε C − εε

CC Cε C ε

(a) (b)

C

C

C − ε

M∗
1

C

C

C − ε

M∗
2 M∗

3

ε

ε

ε

(d)

C

C

C − ε

M1

C

M2 M3

ε

ε

C

ε

C − ε

(c)

C

C

M1

C

M2 M3

ε

ε

ε

C − ε

C

C − ε

M4

Fig. 1. (a) A instance of the MEC problem where Δ = 3 and C >> ε. (b) An optimal
solution of weight 2C + ε. (c) The solution built by Algorithm 1 of weight 3C. (d) A
solution obtained by a Δ-coloring of weight 3C.

each one of weight at most w∗
1 = w(e1) and it is, therefore, of total weight

W ≤ Δw∗
1 . Multiplying the second inequality with 1/Δ and adding them we

obtain: (1 + 1
Δ )W ≤ 2OPT , that is W ≤ 2Δ

Δ+1OPT = (2 − 2
Δ+1 )OPT .

For the tightness of this ratio let the instance of the MEC problem shown
in Figure 1, where an optimal solution as well as the two solutions computed
by the algorithm are also shown. The ratio achieved by the algorithm for this
instance is 3C

2C+ε � 3
2 = 2 − 2

Δ+1 .

Note that 2− 2
Δ+1 < 2− 1

Δ for any Δ ≥ 2, and thus Algorithm 2 outperforms Al-
gorithm 1. More interestingly, Algorithm 2 outperforms the algorithm proposed
in [8] for bipartite graphs of any Δ ≥ 4 as well as the algorithm proposed in [16]
for bipartite graphs of any Δ ≥ 9.

Algorithm 2 can be also extended for general graphs, by creating in Line 2 a
(Δ + 1)-coloring of the input graph. The approximation ratio achieved in this
case becomes 2− 2

Δ+2 , which is better than 2− 1
Δ , for any Δ ≥ 3. By modifying

the counterexample for bipartite graphs, we can prove that this ratio is also
tight. Thus, the next theorem follows.

Theorem 2. Algorithm 2 achieves a tight 2− 2
Δ+2 approximation ratio for gen-

eral graphs.

3 Bipartite Graphs

A general idea towards an approximation algorithm for the MEC problem with
ratio less than two, is to produce more than one solutions for the problem and
to choose the best of them. Algorithm 2 above produces two solutions, while for
the case of bipartite graphs with Δ = 3 [5] three solutions were enough to derive
a 7

6 ratio. Algorithms proposed in [8] and [16] are generalizations of this idea,
which produce Δ different solutions. In this section we present a new algorithm
for the MEC problem on bipartite graphs. It also produces Δ different solutions
and chooses the best of them, beats the best known ratios for bipartite graphs
for any Δ ≥ 9 and it is the first one of this kind yielding approximation ratios
that tends asymptotically to 2 as Δ increases.
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In our algorithm we repeatedly split a given bipartite graph G, of maximum
degree Δ, first into two and then into three edge induced subgraphs. To describe
this partition as well as our algorithm, let us introduce some additional notation.
Recall that we consider the edges of G sorted in non-increasing order with respect
to their weights, i.e., w(e1) ≥ w(e2) ≥ . . . ≥ w(em). For this order of edges we
denote by Gj,k, j ≤ k, the subgraph of G induced by the edges ej , ej+1, . . . , ek.
We denote by Δj,k the maximum degree of graph Gj,k. By convention, we define
Gj+1,j to be an empty graph. We denote by jq the maximum index such that
Δ1,jq = q. It is clear that j1 < j2 < . . . < jΔ = m.

In general, for each j = 1, 2, . . . , j2 our algorithm examines a partition of
graph G into two edge induced subgraphs: the graph G1,j of Δ1,j ≤ 2, induced
by the j heaviest edges of G, and the graph Gj+1,m, induced by the m−j lightest
edges of G. For each one of these partitions, the algorithm computes a solution
to the MEC problem on graph G.

Moreover, for each pair (j, k), j = 1, 2, . . . , j2, k = j +1, . . . , m, of indices, our
algorithm examines a partition of graph G into three edge induced subgraphs:
the graph G1,j of Δ1,j ≤ 2, induced by the j heaviest edges of G, the graph
Gj+1,k, induced by the next k − j edges of G, and the graph Gk+1,m, induced
by the m − k lightest edges of G. We shall call such a partition of G a partition
(j, k). For each one of these partitions, the algorithm checks the existence of a
set of edges in graph Gj+1,k and if there exists it computes a solution to the
MEC problem on graph G.

The algorithm computes one more solution by finding a Δ-coloring of the
original graph G and returns the best among all the solutions found.

Algorithm 3
1. Find a solution S0

1,m by a Δ-coloring of G;
2. For j = 1, 2, . . . , j2 do
3. Find an optimal solution S1

1,j for G1,j;

4. Find a solution S1
j+1,m by a Δ-coloring of Gj+1,m;

5. Concatenate S1
1,j and S1

j+1,m;
6. For k = j + 1 to m do
7. Find an optimal solution S2

1,j for G1,j;
8. If there is a set of edges E′ in Gj+1,k saturating any

vertex of Gj+1,k with degree Δ1,k and E′ fits in S2
1,j then

9. Find a solution S2
j+1,k by a (Δ1,k−1)-coloring of Gj+1,k−E′;

10. Find a solution S2
k+1,m by a Δ coloring of Gk+1,m;

11. Concatenate S2
1,j, S2

j+1,k and S2
k+1,m;

12. Return the best solution found in Lines 1, 5 and 11;

The following lemma shows that the check in Line 8 of Algorithm 3 can be
done in polynomial time.

Lemma 2. It is polynomial to determine if there exists a set of edges E′ in
Gj+1,k saturating all vertices of degree Δ1,k in Gj+1,k that fits the solution S2

1,j.
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Proof. (Sketch) For a partition (j, k) of G let d1,j(u) and dj+1,k(u) be the degrees
of vertex u in subgraphs G1,j and Gj+1,k, respectively. Consider the subgraph
H of Gj+1,k induced by its vertices of degree d1,j(u) ≤ Δ1,j − 1. Note that, by
construction, each edge in H fits in a matching of the solution S2

1,j . Let A be the
subset of vertices of H of degree dj+1,k(u) = Δ1,k, i.e. the set of vertices which
we want to saturate, and B the subset of vertices in A of degree dH(u) = 1. For
each vertex u ∈ B we can clearly insert the single edge (u, v) in E′. Let H ′ be
the subgraph of H induced by its vertices but those in B and A′ ⊆ A be the
subset of vertices of A that are not saturated by the edges already in E′. It is
now enough to find a matching on H ′ that saturates each vertex in A′. Adding
the edges of this matching in E′ we get a set that saturates each vertex in A.

Determining if such a matching exists can be done in polynomial time as
follows. Consider the graph Q = (X, F ) constructed by adding into H ′ an addi-
tional vertex, if the number of vertices in H ′ is odd, and all the missing edges
between the vertices X − A′ (i.e., the vertices X − A′ induce a clique in Q). If
there exists a perfect matching in Q, then there exists a matching in H ′ satu-
rating all vertices in A′, since no edges adjacent to A′ have been added in Q.
Conversely, if there exists a matching M in H ′ saturating all vertices in A′, then
there exists a perfect matching in Q, consisting of the edges of M plus the edges
of a perfect matching in the complete subgraph of Q induced by its vertices
that are not saturated by M . Therefore, in order to determine if there exists a
matching M in H ′ it is enough to check if there exists a perfect matching in Q.
It is well known that this can be done in polynomial time (see for example [17]).

Theorem 3. Algorithm 3 is a ( 2Δ3

Δ3+Δ2+Δ−1 )-approximation one for the MEC

problem on bipartite graphs.

Proof. (Sketch) The solution obtained by a Δ-coloring of the input graph com-
puted in Line 1 of the algorithm is of weight W ≤ S0

1,m ≤ Δ ·w∗
1 , since w∗

1 equals
to the heaviest edge of the graph.

In Lines 3–5, consider the solutions obtained in the iterations where w(ej+1) =
w∗

z , for z = 2, 3. In both cases it holds that Δ1,j ≤ 2. An optimal solution is
computed for G1,j of weight S1

1,j ≤
∑z−1

i=1 w∗
i , since the edges of G1,j are a subset

of the edges that appear in the z − 1 heaviest matchings of the optimal solution.
Moreover, a Δ-coloring is built for Gj+1,m of weight S1

j+1,m ≤ Δ ·w∗
z , since ej+1

is the heaviest edge of this subgraph. Therefore, W ≤
∑z−1

i=1 w∗
i + Δ · w∗

z , for
z = 2, 3.

In Lines 7–11, consider the solutions obtained in the iterations (j, k) where
w(ej+1) = w∗

3 and w(ek+1) = w∗
z , for 4 ≤ z ≤ Δ. In these iterations the set of

edges E′ exists, since in the optimal solution the edges of G1,k belong in at most
Δ1,k ≤ z − 1 matchings. The edges of E′ are lighter than the edges of G1,k, and
thus it is possible to add them in S2

1,j without increasing its weight. Thus, using
the same arguments as for the weight of S1

1,j, it holds that S2
1,j ≤ w∗

1 + w∗
2 . The

heaviest edges in Gj+1,k − E′ and Gk+1,m are equal to w∗
3 and w∗

z , respectively.
Hence, we have that S2

j+1,k ≤ (Δ1,k − 1) ·w∗
3 ≤ (z − 2) ·w∗

3 and S2
k+1,m ≤ Δ ·w∗

z .
Therefore, W ≤ w∗

1 + w∗
2 + (z − 2) · w∗

3 + Δ · w∗
z , for 4 ≤ z ≤ Δ.
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In this way we have Δ different bounds on W . Multiplying each one of
these inequalities with an appropriate factor and adding them we get W

OPT ≤
2Δ3

Δ3+Δ2+Δ−1 .

The complexity of Algorithm 3 is dominated by the check in Line 8, which by
Lemma 2 can be done in polynomial time. This check runs for

(|E|
2

)
= O(|E|2)

different combinations of weights.
The approximation ratios achieved by Algorithm 3, as Δ increases, are given

in the 4th column of Table 1.

4 Trees

The complexity of the MEC problem on trees still remains open, while an exact
algorithm of complexity O(|E|2Δ+O(1)) is known [16]. In this section we present
a generic algorithm which for a given number k searches exhaustively for the
weights of k matchings of an optimal solution. The complexity of our algorithm is
O(|E|k+O(1)) and, within this time it produces an optimal solution, if k = 2Δ−1,
an (e/(e − 1))-approximate solution, if k = Δ, and a ρ-approximate solution,
with ρ < 2, if 2 ≤ k < Δ.

Our algorithm is based upon the fact that the following List Edge-Coloring
problem can be solved in polynomial time in trees [6], while it is NP-complete
for bipartite graphs even for Δ = 3 [15].

List Edge-Coloring:
Instance: A graph G = (V, E), a set of colors C = {C1, C2, . . . , Ck} and for
each e ∈ E a list of authorized colors L(e).
Question: Is there a feasible edge coloring of G, that is a coloring such that
each edge e is assigned a color from its list L(e) and adjacent edges are assigned
different colors?

The first part of our algorithm searches exhaustively for the weights of the z,
1 ≤ z ≤ k − 1, heaviest matchings of the optimal solution, w∗

1 ≥ w∗
2 ≥ . . . ≥ w∗

z .
Then, for each z, the graph is partitioned into two subgraphs induced by the
edges of weights w(e) > w∗

z and w(e) ≤ w∗
z , respectively. By a transformation to

the List Edge-Coloring problem we obtain a solution for the whole tree consisting
of an optimal solution for the first subgraph and a Δ-coloring solution for the
second one.

In the second part the algorithm searches exhaustively for the weight of the
z-th, k ≤ z ≤ Δ, matching of the optimal solution w∗

z . Then, the graph G is
partitioned into three subgraphs induced by the edges of weights w(e) > w∗

k−1,
w∗

k−1 ≥ w(e) > w∗
z and w∗

z ≥ w(e), respectively. By a transformation to the List
Edge-Coloring problem we obtain a solution for the whole tree consisting of an
optimal solution for the first subgraph, a (z − k + 1)-coloring solution for the
second and a Δ-coloring for the third one.
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Algorithm 4
1. Exhaustively search for the weights of the k − 1 heaviest

matchings of the optimal solution, w∗
1 ≥ w∗

2 ≥ . . . ≥ w∗
k−1;

2. For z = 1, 2, . . . , k − 1
3. Build the input for the List Edge-Coloring algorithm:

- Set of colors {C1, C2, . . . , Cz , . . . , Cz+Δ−1};
- If w(e) > w∗

z then L(e) = {Ci : w(e) ≤ w∗
i , 1 ≤ i ≤ z − 1};

- If w(e) ≤ w∗
z then L(e) = {C1, C2, . . . , Cz+Δ−1};

4. Run the algorithm for the List Edge-Coloring problem;
5. For z = k, k + 1, . . . , Δ
6. Exhaustively search for the weight of the z-th matching

of the optimal solution, w∗
z;

7. Build the input for the List Edge-Coloring algorithm:
- Set of colors {C1, C2, . . . , Ck−1, . . . , Cz, . . . , Cz+Δ−1};
- If w(e) > w∗

k−1 then L(e) = {Ci : w(e) ≤ w∗
i , 1 ≤ i ≤ k − 2};

- If w∗
z < w(e) ≤ w∗

k−1 then L(e) = {C1, C2, . . . , Cz−1};
- If w(e) ≤ w∗

z then L(e) = {C1, C2, . . . , Cz+Δ−1};
8. Run the algorithm for the List Edge-Coloring problem;
9. Return the best solution found;

Lemma 3. Algorithm 4 computes a solution for the MEC problem of weight

W ≤
{

w∗
1 + w∗

2 + . . . + w∗
z−1 + Δ · w∗

z , if 1 ≤ z ≤ k − 1
w∗

1 + w∗
2 + . . . + w∗

k−2 + (z − k + 1) · w∗
k−1 + Δ · w∗

z , if k ≤ z ≤ Δ

Proof. (Sketch) For the first part of the bound, consider the solution computed at
the z-th iteration of Line 4 of the algorithm. By the construction of the instance
of the List Edge-Coloring problem in Line 3, its solution is also a solution for the
MEC problem with z +Δ−1 matchings and matching weights w∗

1 , w∗
2 , . . . , w∗

z−1
plus Δ matchings of weight w∗

z . Observe that, for each z, 1 ≤ z ≤ k − 1, the
List Edge-Coloring algorithm always finds a feasible solution, because (i) the
optimal solution for the MEC problem contains a feasible coloring for the edges
with weights greater than w∗

z and (ii) there exists a Δ-coloring for the remaining
edges, since the graph is a tree. Therefore, in the z-th iteration of Line 4, the
algorithm returns a solution of weight W ≤ w∗

1 + w∗
2 + . . . + w∗

z−1 + Δ · w∗
z .

For the second part of the bound similar arguments apply for the z-th iteration
of Line 8 of the algorithm.

The complexity of Algorithm 4 is exponential in k. In Line 1, the exhaustive
search for the weights of the k − 1 heaviest matchings of the optimal solution
examines

( |E|
k−1

)
= O(|E|k−1) combinations of weights. Furthermore, in Line 6,

the weight of one more matching is exhaustively chosen in O(|E|) time. For
each one of these combinations, an algorithm of complexity O(|E| · Δ3.5) for the
List Edge-Coloring problem is called. Thus, the complexity of Algorithm 4 is
O(|E|k+1 · Δ3.5), that is O(|E|k+O(1)), since Δ is O(|E|).

Theorem 4. Algorithm 4 achieves a e
e−1 � 1.582 approximation ratio for the

MEC problem within O(|E|Δ+O(1)) time.
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Proof. (Sketch) For k = Δ the second part of the algorithm (Lines 5–8) runs
exactly once for z = Δ. Thus, Δ−1 inequalities are obtained by the first part of
Lemma 3 and one inequality by its second part. Multiplying the z-th inequality
by Δz−1·(Δ−1)Δ−z

ΔΔ , 1 ≤ z ≤ Δ, and adding them we get:

W
OPT ≤ ΔΔ

∑
Δ
k=1 Δk−1·(Δ−1)Δ−k = ΔΔ

∑Δ
k=1( Δ

Δ−1 )k· (Δ−1)Δ
Δ

= ΔΔ+1

(Δ−1)Δ·∑ Δ
k=1(

Δ
Δ−1 )k .

Using the formulæ
∑Δ

k=1 xk = xΔ+1−x
x−1 and e = ( x

x−1 )x−1 it follows that

W
OPT ≤ e·( Δ

Δ−1 )
e·( Δ

Δ−1 )−1 < e
e−1 .

In a same way, we can prove that, for any fixed 2 ≤ k < Δ, the approximation
ratio achieved by Algorithm 4 for the MEC problem in trees is equal to

2
(1+ k2+Δ−3k+1

(Δ−1)2
)(2− k

Δ−( Δ−1
Δ )k)

.

This ratio becomes e
e−1 for k = Δ and its is strictly less than two, for any k ≥ 2.

Note that if k = 2Δ − 1 the second part of the algorithm is not executed. In
this case the algorithm coincides with the exact algorithm in [16].

Furthermore, if Δ < k < 2Δ − 1, we can modify Algorithm 4 in order to
obtain an approximation ratio equal to

1
1− 2Δ−1−k

Δ ·( Δ−1
Δ )Δ−1 .

Observe that for such a value of k, Algorithm 4 can create in some iterations
not nice solutions i.e., solutions consisting of more than 2Δ − 1 matchings. By
decreasing the number of colors used in Lines 3 and 7 of the algorithm from
z + Δ − 1 to min{z + Δ − 1, 2Δ − 1}, all the solutions created will be nice, and
the above ratio follows. This ratio is between 1, if k = 2Δ−1, and e

e−1 , if k = Δ.
Table 2 summarizes the ratios achieved by Algorithm 4 for different values of

k and Δ, taking into account all the above discussion. The values of k ≥ 5 have
been selected such that k = 2Δ − 1, as for these values the algorithm returns an
optimal solution.

5 Complete Graphs

In this section we show that the MEC problem is NP-complete for complete
graphs even with bi-valued edge weights. We give a reduction from the classical
edge coloring problem, which is known to be NP-complete even for cubic graphs
[12]. In this problem we are given a graph G = (V, E) with d(v) = 3, for each
v ∈ V , and we ask if there exists a 3-coloring of the edges of G, that is a partition
of the set of edges E into three matchings (colors).

Theorem 5. The MEC problem is NP-complete even in complete graphs with
edge weights w(e) ∈ {1, 2}.



290 G. Lucarelli, I. Milis, and V.Th. Paschos

Table 2. Approximation ratios for trees

Δ
k

2 3 4 5 7 9 19 29 39 59 79 99
3 1.50 1.42 1.17 OPT
4 1.60 1.55 1.46 1.27 OPT
5 1.67 1.64 1.56 1.49 1.20 OPT
10 1.82 1.81 1.79 1.75 1.64 1.56 OPT
15 1.88 1.87 1.86 1.84 1.78 1.71 1.34 OPT
20 1.90 1.90 1.90 1.89 1.85 1.80 1.56 1.23 OPT
30 1.94 1.94 1.93 1.93 1.91 1.89 1.70 1.57 1.33 OPT
40 1.95 1.95 1.95 1.95 1.94 1.92 1.80 1.65 1.57 1.23 OPT
50 1.96 1.96 1.96 1.96 1.95 1.94 1.86 1.73 1.63 1.42 1.17 OPT

Proof. (Sketch) Given an instance of the edge coloring on a cubic graph G =
(V, E), |V | = n, we construct the complete weighted graph Kn with edge weights
w(e) = 2, for each e ∈ E, and w(e) = 1, for each e 
∈ E. We will show that there
is a 3-coloring of G iff there is a solution for the MEC problem on Kn of weight
at most n + 2, if n is even, or n + 3, if n is odd.

Assume, first, that there is a 3-coloring of G. Then, there are three matchings
of Kn each one of weight equal to 2, which include all the edges of Kn of weight
2. Let Kn − G be the graph induced by remaining edges of Kn (those of weight
1). Kn−G is a (n−4)-regular graph. If n is even, then Kn−G is (n−4)-colorable
[3]. Therefore, there is a solution for the MEC problem on Kn of weight at most
3 · 2 + (n − 4) · 1 = n + 2. If n is odd, then Kn − G is (n − 3)-colorable as an
overfull graph1. Therefore, there is a solution for the MEC problem on Kn of
weight at most 3 · 2 + (n − 3) · 1 = n + 3.

Conversely, consider, first, that n is even and we have a solution for the MEC

problem for Kn of weight at most n + 2. This solution contains s ≥ n − 1
matchings, since a complete graph of even order has chromatic index equal to
n−1 [10]. By the construction of Kn, any solution for the MEC problem contains
at least three matchings of weight equal to 2, since there are exactly three edges
of weight 2 adjacent to each vertex. Assume that there was a forth matching of
weight equal to 2. In this case we get a solution of weight at least 4·2+(s−4)·1 ≥
n + 3, a contradiction. Thus, in a solution to the MEC problem on Kn there
exist exactly 3 matchings of weight equal to 2, which imply a 3-coloring for G.

Using the same arguments, we can prove that if n is odd and there is a solution
for the MEC problem for Kn with weight at most n + 3 then we can get a 3-
coloring of G. The only difference, here, is that a complete graph of odd order
has chromatic index equal to n [10].

Theorem 5 implies that the MEC problem is NP-complete in all superclasses
of complete graphs, including split and interval graphs. On the other hand, the

1 A graph is called overfull if |E| > Δ · � |V |
2 �. It is easy to see that an overfull graph

is (Δ + 1) − colorable.
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MEC problem on bipartite graphs with edge weights w(e) ∈ {1, t} is polynomi-
ally solvable [7].

In what follows, we present an approximation algorithm for general graphs
with two different edge weights. Assume that the edges of the graph Kn = (V, E)
have weights either 1 or t, where t ≥ 2. Let G1 = (V, E1), of maximum degree
Δ1, and Gt = (V, Et), of maximum degree Δt, be the graphs induced by the
edges of Kn with weights 1 and t, respectively.

Algorithm 5
1. Find a solution by a (Δ + 1)-coloring of Kn;
2. Find a solution by a (Δ1 + 1)-coloring of G1,

a solution by a (Δt + 1)-coloring of Gt and concatenate them;
3. Return the best of the two solutions found;

Theorem 6. Algorithm 5 achieves an asymptotic 4
3 -approximation ratio for the

MEC problem on general graphs of arbitrarily large Δ and edge weights w(e) ∈
{1, t}.

Proof. (Sketch) An optimal solution contains at least Δ(Kn) = n− 1 matchings
and at least Δt of them are of weight equal to t. Therefore, a lower bound to
the total weight of an optimal solution is OPT ≥ Δt · t + (Δ − Δt).

By Vizing’s theorem any graph has a (Δ + 1)-coloring. Using such colorings
the algorithm computes in Line 1 a solution of total weight W ≤ (Δ+1)·t, and in
Line 2 a solution of total weight W ≤ (Δt+1)·t+(Δ1+1)·1 ≤ (Δt+1)·t+(Δ+1).
Multiplying the first inequality with Δ2

t +2Δt−Δ
(Δ+1)2 , the second one with Δ−Δt

Δ+1 and

adding them, we get Δ2+Δ2
t−Δ·Δt+Δt

(Δ+1)2 · W ≤ Δt · t + (Δ − Δt) ≤ OPT , that

is W
OPT ≤ (Δ+1)2

(Δ−Δt)2+Δt(Δ+1) . This ratio is maximized when Δt = Δ−1
2 , and

therefore W
OPT ≤ 4(Δ+1)

(Δ+1)+2(Δ−1) = 4Δ+4
3Δ−1 = 4

3 + 16
9Δ−3 .
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