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Abstract. In this paper, we introduce malicious Bayesian congestion
games as an extension to congestion games where players might act in
a malicious way. In such a game each player has two types. Either the
player is a rational player seeking to minimize her own delay, or – with a
certain probability – the player is malicious in which case her only goal
is to disturb the other players as much as possible.

We show that such games do in general not possess a Bayesian Nash
equilibrium in pure strategies (i.e. a pure Bayesian Nash equilibrium).
Moreover, given a game, we show that it is NP-complete to decide whether
it admits a pure Bayesian Nash equilibrium. This result even holds when
resource latency functions are linear, each player ismalicious with the same
probability, and all strategy sets consist of singleton sets of resources. For
a slightly more restricted class of malicious Bayesian congestion games, we
provide easy checkable properties that are necessary and sufficient for the
existence of a pure Bayesian Nash equilibrium.

In the second part of the paper we study the impact of the mali-
cious types on the overall performance of the system (i.e. the social
cost). To measure this impact, we use the Price of Malice. We provide
(tight) bounds on the Price of Malice for an interesting class of malicious
Bayesian congestion games. Moreover, we show that for certain conges-
tion games the advent of malicious types can also be beneficial to the
system in the sense that the social cost of the worst case equilibrium
decreases. We provide a tight bound on the maximum factor by which
this happens.

1 Introduction

Motivation and Framework. Over the last decade, the study of strategic
behavior in distributed systems has improved our understanding of modern com-
puter artifacts such as the Internet. Normally, the users of such distributed sys-
tems are modeled as rational, utility optimizing players. However, in many real
world scenarios, users do not necessarily act rationally, but rather irrationally.
In this paper, we address one form of irrationality, namely, we allow that players
act in a malicious way. In this case, the only goal of a malicious player is to
disturb the (non-malicious) players as much as possible. The presence of De-
nial of Service attacks in the Internet is an example showing that such systems
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are quite realistic. In many such systems with malicious players, the players
have only incomplete information about the set of malicious players. A standard
approach for modeling games with incomplete information uses the Harsanyi
transformation [14], which converts a game with incomplete information to a
game where players have different types. The type of a player represents its pri-
vate information that is not common knowledge to all players. In the resulting
Bayesian game, each player’s uncertainty about each other’s type is described
by a probability distribution.

One aspect of Game Theory that was studied extensively in recent years is
the Price of Anarchy as introduced by Koutsoupias and Papadimitriou [16]. The
Price of Anarchy is the worst case ratio between the value of the social cost in
an equilibrium state of the system and that of some social optimum. Usually,
the equilibrium state is defined as Nash equilibrium – a state in which no player
can unilaterally improve her private objective function, also coined as private
cost. A Nash equilibrium is pure if all players choose a pure strategy and mixed
if players choose probability distributions over pure strategies.

While the celebrated result of Nash [20] guarantees the existence of a mixed
Nash equilibrium for every finite game, pure Nash equilibria are not guaranteed
to exist (see e.g. [9,12,17,18]). A natural question to ask, is whether a given game
possesses a pure Nash equilibrium or not. We address this question by asking
about the complexity of this decision problem.

A class of games that always possess pure Nash equilibria is the class of
congestion games as introduced by Rosenthal [21]. Here, the strategy set of
each player is a subset of the power set of given resources, the latency on each
resource is described by a latency function in the number of players sharing
this resource, and the private cost of each player is the sum of the latencies of
its chosen resources. Milchtaich [18] considered weighted congestion games as
an extension to congestion games in which the players have weights and thus
different influence on the latency of the resources.

To measure the influence of malicious behavior, Moscibroda et al. [19] in-
troduced the Price of Byzantine Anarchy as the worst case ratio between the
social cost in an equilibrium state of the system under some assumption on the
malicious players and the social cost of some social optimum without malicious
players. They further define the Price of Malice as the ratio between the Price
of Byzantine Anarchy and the Price of Anarchy. We will use a similar definition
and define the equilibrium state as a Bayesian Nash equilibrium.

Contribution. In this paper, we introduce malicious Bayesian congestion games
as an extension to congestion games where players might act in a malicious way.
Following Harsanyi’s transformation [14], we allow each player to be of two
types. Either the player is a rational player seeking to minimize her own delay,
or – with a certain probability – the player is malicious in which case her only
goal is to disturb the other players as much as possible. For such games we
study the complexity of deciding whether a given game has a pure Bayesian
Nash equilibrium. Moreover, we study the impact of the malicious types on the
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overall performance of the system (i.e. the social cost). To measure this impact,
we use the Price of Malice, which we define similarly as Moscibroda et al. [19].

As our main result, we show that it is NP-complete to decide whether a given
malicious Bayesian congestion game admits a pure Bayesian Nash equilibrium
even if resource latency functions are linear and all strategy sets are singleton
sets. We show that this result holds already for the very restricted case that each
player is malicious with the same probability, and for the case that only one
player is malicious with positive probability (Theorem 1). The same result even
holds if we further restrict to the case that each player has at most four strategies
and at most three players can be assigned to each resource (Theorem 2). For
symmetric Bayesian congestion games with identical type probability, identical
latency functions and strategy sets that consist only of singletons, we provide
easy checkable properties that are necessary and sufficient for the existence of a
pure Bayesian Nash equilibrium (Theorem 3).

We then shift gears and present results related to the Price of Malice. For
general malicious Bayesian congestion games with linear latency functions, we
show an upper bound on the Price of Byzantine Anarchy (Theorem 4). Moreover,
we prove a lower bound on the same ratio that already holds for the case of
identical type probabilities (Theorem 5). As a corollary, we get an asymptotic
tight bound on the Price of Malice (Corollary 2). We close the paper with a tight
lower bound on the maximum factor by which the social cost of a worst case
(Bayesian) Nash equilibrium of a congestion game might decrease by introducing
malicious types (Theorem 6).

Related Work. Congestion games and variants thereof have long been used
to model non-cooperative resource sharing among selfish players. Rosenthal [21]
showed that congestion games always possess pure Nash equilibria. The com-
plexity of computing such a pure Nash equilibrium has been settled for arbitrary
latency functions by Fabrikant et al. [8] and later for linear latency functions by
Ackermann et al. [1]. On the other hand, for weighted congestion games, Libman
and Orda [17], Fotakis et al. [9] and Goemans et al. [12] provide examples that
do not allow for a pure Nash equilibrium. Dunkel and Schulz [7] showed that it
is NP-complete to decide the existence of a pure Nash equilibrium for a given
weighted congestion game.

The Price of Anarchy for weighted congestion games has been studied exten-
sively (see e.g. [3,2,5]). In case of linear latency functions, the Price of Anarchy
is exactly 5

2 for unweighted congestion games [5] and 1 + Φ for weighted con-
gestion games [3], where Φ = 1+

√
5

2 is the golden ratio. The exact value of the
Price of Anarchy is also known for the case of polynomial latency functions [2].
For bounds on the Price of Anarchy of (weighted) congestion games with each
strategy set being a singleton set of resources, we refer to [11] and references
therein.

Several recent papers considered games allowing for malicious player behavior
[4,15,19]. Moscibroda et al. [19] introduced the Price of Malice and gave bounds
on the Price of Malice for a virus inoculation game where some of the play-
ers are malicious. In fact, our definition of Price of Malice is motivated by the
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corresponding definition from this paper. Karakostas et al. [15] and Babaioff et
al. [4], study malicious player behavior in non-atomic congestion games. Here,
each player from a continuum of infinitely many players controls only an in-
finitesimally small amount of weight and a fraction of those players is malicious.
In contrast to those papers, our games are atomic, and thus have only finitely
many players. This yields different results.

For general Bayesian games, questions concerning the complexity of deciding
the existence of a pure Bayesian Nash equilibrium have been addressed in two
recent works [6,13]. On the one hand, if the game is given in standard normal
form, i.e. the utility functions and the type probability distribution are rep-
resented extensively as tables, then deciding the existence of a pure Bayesian
Nash equilibrium is NP-complete [6]. On the other hand, if both – the utility
functions and the type probability distribution – are succinctly encoded, then
the problem becomes PP-complete [13]. In contrast to [6], malicious Bayesian
congestion games are succinctly represented but they are more structured as the
games considered by Gottlob et al. [13].

A certain class of Bayesian congestion game has been introduced in [10].
Here, players act completely rationally but they are uncertain about each other’s
weight. Among other results, the authors show that such games always possess
pure Bayesian Nash equilibria if latency functions are linear.

Roadmap. The rest of the paper is organized as follows. In Section 2, we intro-
duce malicious Bayesian congestion games. In Section 3, we present our results
on the complexity of deciding for pure Bayesian Nash equilibria, while Section 4
comprises our findings related to the Price of Malice.

2 Model

2.1 Congestion Games

Instance. A congestion game Γ is a tuple Γ = (N , E, (Su)u∈N , (fe)e∈E) . Here,
N is the set of players and E is the finite set of resources. Throughout, we
denote n = |N | and r = |E| and assume n ≥ 2 and r ≥ 2. For every player
u ∈ N , Su ⊆ 2E is the strategy set of player u. Denote S = S1 × . . . × Sn.
For every resource e ∈ E, the latency function fe : N → R is a non-negative,
non-decreasing function that describes the latency on resource e. For most of our
results, we consider affine latency functions with non-negative coefficients, that
is, for all resources e ∈ E, the latency function is of the form fe(δ) = ae · δ + be

with ae, be ≥ 0. Affine latency functions are linear if be = 0 for all e ∈ E. A
congestion game is called symmetric, if Su = S′

u for any pair of players u, u′.

Strategies and Strategy Profiles. A pure strategy for player u is some specific
strategy su ∈ Su, while a mixed strategy Qu = (q(u, su))su∈Su is a probability
distribution over Su, where q(u, su) denotes the probability that player u chooses
the pure strategy su.

A pure strategy profile is an n-tuple s = (s1, . . . , sn) whereas a mixed strategy
profile Q = (Q1, . . . , Qn) is represented by an n-tuple of mixed strategies. For a
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mixed strategy profile Q, denote by q(s) =
∏

u∈N q(u, su) the probability that
the players choose the pure strategy profile s.

Load and Private Cost. For a pure strategy profile s, denote by δe(s) = |{u ∈
N : e ∈ su}| the load on resource e ∈ [m], i.e. the number of players assigned
to e. In the same way, for a partial strategy profile s−i, denote δe(s−i) = |{u ∈
N \ {i} : e ∈ su}| the load on resource e ∈ [m] without player i.

Fix a pure strategy profile s. The private cost PCu(s) of player u ∈ N is
defined by the latency of the chosen resources. Thus PCu(s) =

∑
e∈su

fe (δe(s)).
For a mixed strategy profile Q, the private cost of player u ∈ N is PCu(Q) =∑

s∈S q(s) · PCu(s).

Social Cost. Associated with a congestion game Γ and a mixed strategy profile
Q is the social cost SC(Γ,Q) as a measure of social welfare. In particular we use
the expected average latency. That is,

SC(Γ,Q) =
1
n

∑

u∈N
PCu(Q) =

1
n

∑

s∈S

q(s)
∑

e∈E

δe(s) · fe(δe(s)).

Observe, that this measure differs from the total latency [22] only by the factor
n.

The optimum associated with a congestion game Γ is the least possible social
cost, over all pure strategy profiles s ∈ S. Thus, OPT(Γ ) = mins∈S SC(Γ, s).

Nash Equilibria. Given a congestion game and an associated mixed strategy
profile Q, player u ∈ N is satisfied if the player cannot improve its private cost by
unilaterally changing its strategy. Otherwise, player u is unsatisfied. The mixed
strategy profile Q is a Nash equilibrium if and only if all players u ∈ N are
satisfied, that is, PCu(Q) ≤ PCu(Q−u, su) for all u ∈ N and su ∈ Su.

Depending on the type of strategy profile we distinguish between pure and
mixed Nash equilibria.

Price of Anarchy. Let G be a class of congestion games. The Price of Anarchy,
also called coordination ratio and denoted by PoA, is the supremum, over all
instances Γ ∈ G and Nash equilibria Q, of the ratio SC(Γ,Q)

OPT(Γ ) . Thus, PoA =

supΓ∈G,Q
SC(Γ,Q)
OPT(Γ ) .

2.2 Malicious Bayesian Congestion Games

Instance. A malicious Bayesian congestion game Ψ is an extension of conges-
tion games, where each player is malicious with a certain probability. Following
Harsanyi’s approach, we model such a game with incomplete information as a
Bayesian game, where each player u ∈ N can be of two types: Either u is self-
ish or malicious. For each type of player u ∈ N we introduce two independent
type-agents us and um, denoting the selfish and malicious type-agent of player
u, respectively.

Let pu be the probability that player u ∈ N is malicious and call pu the type
probability of player u. Define the type probability vector p = (p1, . . . , pn) in the
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natural way. Denote pmin = minu∈N pu. In the case of identical type probabilities
pu = p for all player u ∈ N . Define Δ =

∑
u∈N pu as the expected number of

malicious players. Observe, that for identical type probabilities Δ = p·n. Denote
by ΓΨ the congestion game that arises from the malicious Bayesian congestion
game Ψ by setting pu = 0 for all player u ∈ N .

Summing up, a malicious Bayesian congestion game Ψ is given by a tuple
Ψ = (N , E, (Su)u∈N , (pu)u∈N , (fe)e∈E).

Strategies and Strategy Profiles. A pure strategy σu for player u ∈ N is now
a tuple σu = (σ(us), σ(um)) ∈ S2

u, where σ(us) and σ(um) denote the strategy of
the selfish type-agent and malicious type-agent of player u, respectively. Denote
σ = (σ1, . . . , σn). A mixed strategy Qi is now a probability distribution over
Si × Si. Define Q and q(σ) as before.

Private Cost. For any type probability vector p and pure strategy profile σ,
denote the expected selfish load on resource e ∈ E by δe(σ) =

∑
u∈N :e∈σ(us)(1 −

pu) and the expected malicious load by κe(σ) =
∑

u∈N :e∈σ(um) pu. For a par-
tial assignment σ−u define δe(σ−u) and κe(σ−u) accordingly, by disregarding
player u.

Fix any type probability vector p and pure strategy profile σ. The private cost
of player u ∈ N is defined by PCu(p, σ) =

∑
e∈σ(us) fe (δe(σ−u) + κe(σ−u) + 1).

In other words PCu(p, σ) is the expected latency that player u experiences if
player u is selfish. For each player u ∈ N , type-agent us aims to minimize
PCu(p, σ). Observe, that PCu(p, σ) does not depend on σ(um). For a mixed
strategy profile Q, define PCu(p,Q) accordingly.

Social Cost. Let Ψ be a malicious Bayesian congestion game with type prob-
ability vector p and let Q be a mixed strategy profile for Ψ . We generalize the
definition of social cost SC(Ψ,Q) to the weighted average latency of the selfish
type-agents. That is, SC(Ψ,Q) =

∑
u∈N (1−pu)·PCu(p,Q)

n−Δ .

Bayesian Nash equilibria. A selfish type-agent is satisfied if she cannot uni-
laterally decrease her private cost, that is, PCu(Q) ≤ PCu(Q−us , σ(us)) for all
u ∈ N and σ(us) ∈ Su. In contrast to the selfish type-agents, each malicious
type-agent aims to maximize the social cost. So, a malicious type-agent is satis-
fied if she cannot increase the social cost by unilaterally changing her strategy.

For a malicious Bayesian congestion game, a mixed strategy profile Q is a
Bayesian Nash equilibrium if and only if both type-agents of all players u ∈ N
are satisfied. Depending on the type of strategy profile we again differ between
pure and mixed Bayesian Nash equilibria.

Price of Byzantine Anarchy and Price of Malice. For a fixed expected
number of malicious players Δ, let G(Δ) be the class of malicious Bayesian
congestion games where

∑
u∈N pu = Δ. Similarly to [19], we define the Price

of Byzantine Anarchy, denoted by PoB, as the supremum, over all instances
Ψ ∈ G(Δ) and Bayesian Nash equilibria Q, of the ratio between the social
cost in Q and the optimum social cost of the corresponding congestion game
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ΓΨ . Thus, PoB(Δ) = supΨ∈G(Δ),Q
SC(Ψ,Q)
OPT(ΓΨ ) . Observe that for Δ = 0, the Price

of Byzantine Anarchy PoB(0) reduces to the Price of Anarchy PoA as defined in
Section 2.1.

Again similarly to [19], we define the Price of Malice by PoM(Δ) = PoB(Δ)
PoB(0) .

3 Existence and Complexity of Pure Bayesian Nash
Equilibria

In this section, we study the complexity of deciding whether a given malicious
Bayesian congestion game possesses a pure Bayesian Nash equilibrium or not.

Theorem 1. The problem of deciding whether a malicious Bayesian congestion
game with linear latency functions possesses a pure Bayesian Nash equilibrium
is NP-complete, even if all strategy sets consist of singletons and either of the
following properties holds:

(a) All players are malicious with the same probability p for any 0 < p < 1.
(b) Only one player is malicious with positive probability p for any 0 < p ≤ 1.

Proof. Our proof uses a reduction from a restricted version of 3-SAT. Here, 3-
SAT is restricted to instances where each clause is a disjunction of 2 or 3 variables
and each variable occurs at most three times. Tovey [23] showed that it is NP-
complete to decide the satisfiability of such instances. Consider an arbitrary
instance of 3-SAT with set of variables X = {x1, . . . x�} and set of clauses
C = {c1, . . . ck}. Without loss of generality, we may assume that each variable
occurs at most twice unnegated and at most twice negated.

Part (a): We will construct a malicious Bayesian congestion game with sin-
gleton strategy sets and identical type probability p. Our construction imposes
one player uc for each clause c ∈ C, one player ux and two resources e0

x, e1
x

for each variable x ∈ X , 3 additional players u0, u1, u2, and 5 additional re-
sources e0, e1, e2, e3, e4. Our construction is summarized in Figure 1. Resources

ux1

ux2

ux	

e0
x1

e1
x1

e0
x2

e1
x2

e0
x	

e1
x	

e0

e4u2

u0

uc1

uc2

uck

1

β

M

u1

e2

e1

1

1

1

e3

Fig. 1. Construction for the proof of Theorem 1
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are depicted as squares and players as circles and an edge (solid or dotted)
between a resource e and a player u indicates that {e} is in u’s strategy set.
A number α above a resource e defines the slope of the corresponding linear
latency function fe(δ) = α ·δ. Denote Ev = {e0

x1
, e1

x1
, . . . , e0

x�
, e1

x�
}. For the proof

of part (a), let β = 2 − p. So, all resources e ∈ Ev share the latency function
fe(δ) = (2 − p) · δ.

Player u0 can only be assigned to e0. Both u0 and e0 are used to collect the
malicious type-agents of all players except player u1. Thus all those players have
e0 in their strategy set and M is chosen sufficiently large, such that for all those
malicious type-agents e0 is a dominant strategy and no selfish type other than us

0
will ever prefer to choose e0. Choosing M = 	 + 1 suffices. Player u1 and u2 are
connected to e1, e2, and e3, while u2 can also choose e0 and e4. For each variable
x ∈ X , the corresponding variable player ux is connected to e0, e4, e0

x and e1
x.

Assigning the selfish type-agent us
x to e0

x (resp. e1
x) will be interpreted as setting

x to true (resp. false). For each clause c ∈ C, the corresponding clause player uc

is connected to e0 and to all resources e0
x (e1

x) with x ∈ X and x appears negated
(unnegated) in c. For the example in Figure 1, c1 = (x1 ∨x2 ∨x�), c2 = (x1 ∨x2),
and ck = (x1 ∨ x2 ∨ x�). Observe that by the structure of our 3-SAT instance,
no more than two clause players are connected to each resource in Ev. This
completes the construction of the malicious Bayesian congestion game.

We will first show that if the 3-SAT instance is satisfiable then the correspond-
ing Bayesian congestion game possesses a pure Bayesian Nash equilibrium. Given
a satisfying truth assignment, we define a strategy profile σ of the malicious
Bayesian congestion game as follows:

– Both type-agents of player u0 can only be assigned to e0.
– All malicious type-agents except um

1 are assigned to resource e0. By the
choice of M , none of those malicious type-agents can improve.

– Both type-agents of player u1 are assigned to e1 and no type-agent of any
player is assigned to e2 or e3. It is easy to see that neither um

1 nor us
1 have

an incentive to switch.
– Type agent us

2 is the only type-agent assigned to e4. So, us
2 cannot improve.

– For each x ∈ X , the selfish type-agent us
x of variable player ux is assigned

to resource e0
x if x = true in the satisfying truth assignment, and to e1

x

otherwise. Each of these selfish type-agents is the only type-agent assigned
to her resource. So, they all experience an expected latency of β = 2 − p
and changing to e4 would yield the same expected latency. Thus, the selfish
type-agents of all variable players are satisfied.

– Denote by E′
v the subset of resources from Ev to which no selfish type-agent

of a variable player is assigned. Since we have a satisfying truth assignment,
each clause player is connected to some resource from E′

v. For each c ∈ C ,
the selfish type-agent us

c is assigned to some resource in E′
v as follows:

Consider the sub-game that consists only of the selfish type-agents of
the clause players uc, c ∈ C and the set of resources E′

v. Observe that
this sub-game is a (non-malicious) congestion game and thus admits a pure
Nash equilibrium [21]. Assign the selfish type-agents of each clause player
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according to this Nash equilibrium. So, none of these selfish type-agents can
improve by changing to some other resource in E′

v. Moreover, at most two
selfish type-agents are assigned to each resource in E′

v and there is exactly
one selfish type-agent of a variable player assigned to each resource in Ev\E′

v.
Thus, the selfish type-agents of all clause players are satisfied.

Since no type-agent can improve be changing her strategy, it follows that σ in a
pure Bayesian Nash equilibrium.

For the other direction observe that any pure Bayesian Nash equilibrium σ
fulfills the following structural properties:

(I) All malicious type-agents except um
1 are assigned to resource e0 and us

0 is
the only selfish type-agent assigned to e0.

(II) The selfish type-agent us
2 is assigned to e4 and no other type-agent is assigned

to e4.

Property (I) follows immediately by the choice of M . We will now prove property
(II).

By way of contradiction assume that us
2 is assigned to a resource in {e1, e2, e3}

in a pure Bayesian Nash equilibrium σ. In this case um
1 will always choose

the same resource as us
2. However, then there must be an empty resource in

{e1, e2, e3} and us
2 can improve by choosing this empty resource. This contradicts

our assumption that σ is a pure Bayesian Nash equilibrium. Thus, us
2 is assigned

to e4. If some other type-agent is also assigned to e4, then us
2 experiences an

expected latency of at least 2 − p and us
2 could decrease her expected latency to

1 by switching to the empty resource in {e1, e2, e3}. Again a contradiction to σ
being a pure Bayesian Nash equilibrium. It follows that us

2 is the only type-agent
assigned to e4 in σ. This completes the proof of property (II).

Since us
2 is the only type-agent assigned to e4 it follows that for each variable

x ∈ X the corresponding selfish type-agent us
x is either assigned to e0

x or to e1
x.

If us
x is not the only type-agent on that resource then her expected latency is at

least (2 − p)2 while changing to e4 would improve her expected latency to 2 − p,
a contradiction to σ being a pure Bayesian Nash equilibrium. It follows that the
selfish type-agents of all clause players are only assigned to resources in Ev to
which no selfish type-agent of a variable player is assigned. This is only possible
if the strategies of the selfish type-agents us

x, x ∈ X correspond to a satisfying
truth assignment. This completes the proof of part (a).

Part (b): To see that (b) holds we alter the construction depicted in Figure 1
slightly by deleting player u0 and resource e0. Furthermore, in the new construc-
tion player u1 is the only player that is malicious with positive probability p.
For the slope of the latency functions of resources in Ev, let β = 3

2 (in fact any
1 < β < 2 would also do). The rest of the construction does not change. The
proof now follows the same line of arguments as in part (a) with only minor
changes. �	
Theorem 2. The results from Theorem 1 hold, even if |Su| ≤ 4 for all players
u ∈ N and for each resource e ∈ E there are at most three players u ∈ N with
{e} ∈ Su.
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e4,0

e4,x1

e4,x2

e4,x3

1

β

β2

u2

ux1

ux2

ux3

Fig. 2. Tree for � = 3

Proof (Sketch). We will slightly alter the construction from Figure 1. First ob-
serve that we have already |Su| ≤ 4 for all players u ∈ N . Furthermore, the only
resources that are in the strategy set of more than three players are e4 and for
part (a) also e0.

To resolve this for e4, disconnect all players from e4 and replace the sin-
gle resource e4 with a binary tree of resources with root e4,0 that has 	 leaves
e4,x1 , . . . e4,x�

, all with depth 
log(	)�. For a resource e at level j the latency
function is defined by fe(δ) = βj · δ. So fe4,0(δ) = 1 and fe4,x(δ) = β�log(�)� · δ
for all leaves x ∈ X . For each pair of resources from two consecutive levels, we
introduce a new player to connect them. Call those players tree players. Figure 2
shows the construction for 	 = 3. Player u2 is connected to resource e4,0 and each
variable player x ∈ X is connected to e4,x. We also change the latency function
of all resources e ∈ Ev (cf. Theorem 1) to fe(δ) = β�log(�)� · δ.

Moreover, for part (a) we have to resolve that more than three players are
connected to e0. To do so, we simply copy resource e0 together with player
u0 multiple times and connect all players (including the tree players) except
player u1 to the new set of resources that evolve from e0. By having suffi-
ciently many copies, this can be done, such that no more than three players
are connected to each new resource. Again, M is chosen sufficiently large, e.g.
M = 2�log(�)�+1.

Observe that us
2 will only selfishly choose e4,0 if all tree players choose the

strategy that is closer to the leaves. The rest of the proof now simply follows the
proof of Theorem 1. �

For the more restricted class of symmetric malicious Bayesian congestion game
with singleton strategy sets, identical type probability p and identical latency
functions we can easily decide whether a pure Bayesian Nash equilibrium exists
or not.

Theorem 3. A symmetric malicious Bayesian congestion game with singleton
strategy sets, identical type probability p and identical (not necessarily linear)
latency functions possesses a pure Bayesian Nash equilibrium if and only if either
(a) p ≤ 1

2 and r = 2, or (b) p ≤ 1
2 and r|n.

Observe, that the proof of Theorem 3 is constructive. So, if the requirements
for the existence of a pure Bayesian Nash equilibrium are fulfilled, then this
equilibrium can also be easily constructed in linear time.
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4 Price of Malice

We now shift gears and present our results that are related to the Price of Malice.
We start with a general upper bound on the Price of Byzantine Anarchy. The
proof of this upper bound uses a technique from [5] adapted to the model of
malicious Bayesian congestion games.

Theorem 4. Consider the class of malicious Bayesian congestion games G(Δ)
with affine latency functions. Then, PoB(Δ) ≤ n

n−Δ(1 − pmin)
(
Δ + 3+

√
5+4Δ
2

)
.

For the case of identical type probabilities we can provide a better upper bound
on the Price of Byzantine Anarchy. Observe that for identical type probabilities,
Δ = p · n and pmin = p. As an immediate corollary to Theorem 4, we get:

Corollary 1. Consider the class of malicious Bayesian congestion games G(Δ)
with affine latency functions and identical type probability. Then, PoB(Δ) ≤
Δ + 3+

√
5+4Δ
2 .

We proceed by introducing a malicious Bayesian congestion game that is param-
eterized by a parameter α. In the remainder of the paper, we will make use of
this construction twice, each time with a different parameter α.

Example 1. Given some α > 0, construct a malicious Bayesian congestion game
Ψ(α) with linear latency functions, n ≥ 3 players and identical type probability
p and |E| = 2n as follows: Let E = E1 ∪ E2 with E1 = {g1, . . . , gn} and
E2 = {h1, . . . , hn}. Each player u ∈ {1, . . . n} has three strategies in her strategy
set. So, Su = {s1

u, s2
u, s3

u} with s1
u = {gu, hu}, s2

u = {gu+1, hu+1, hu+2} and s3
u =

E1 ∪ E2, where gj = gj−n and hj = hj−n for j > n.
Each resource e ∈ E1 has a latency function fe(δ) = α·δ whereas the resources

e ∈ E2 share the identity as their latency function, i.e. fe(δ) = δ.

We make use of Example 1 to show a lower bound on the Price of Byzantine
Anarchy:

Theorem 5. Consider the class of malicious Bayesian congestion games G(Δ)
with linear latency functions and identical type probability p. Then, PoB(Δ) ≥
Δ + 2.

Proof. Consider the malicious Bayesian congestion game Ψ = Ψ(α) given in
Example 1 with α = 1+(n−1)p

1−p . Observe that Δ = n · p.
Obviously , the optimum allocation s∗ for the corresponding non-malicious

game ΓΨ is for each player u ∈ N to choose strategy s1
u. This yields SC(ΓΨ , s∗) =

1 + α = 2+(n−2)p
1−p .

On the other hand, if σ(um) = s3
u and σ(us) = s2

u for all player u ∈ N , then
σ is a (pure) Bayesian Nash equilibrium for Ψ , with

SC(Ψ, σ) = 2(1 + (1 − p) + (n − 1)p) + (1 + (n − 1)p)α

=
2(1 − p)(2 + (n − 2)p) + (1 + (n − 1)p)2

1 − p
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It follows that

SC(Ψ, σ)
SC(ΓΨ , s∗)

= 2(1 − p) +
(1 + (n − 1)p)2

2 + (n − 2)p

= 2(1 − p) +
1 + (n − 1)p(2 + (n − 1)p)

2 + (n − 2)p
> 2 − 3p + n · p
= Δ + 2 − 3p.

The theorem follows for p → 0, which implies n → ∞. �	

Recall that the Price of Anarchy of (non-malicious) congestion games with affine
latency functions is 5

2 [5]. By combining this with Corollary 1 and Theorem 5
we get:

Corollary 2. Consider the class of malicious Bayesian congestion games G(Δ)
with affine latency functions and identical type probability p. Then, PoM(Δ) =
Θ(Δ).

For certain congestion games, introducing malicious types might also be benefi-
cial to the system, in the sense that the social cost of the worst case equilibrium
(one that maximizes social cost) decreases. To capture this, we define the Wind-
fall of Malice. The term Windfall of Malice is due to [4]. For a malicious Bayesian
congestion game Ψ , denote WoM(Ψ) as the ratio between the social costs of the
worst case Nash equilibrium of the corresponding congestion game ΓΨ and the
worst case Bayesian Nash equilibrium of Ψ . We show:

Theorem 6. For each ε > 0 there is a malicious Bayesian congestion game Ψ
with linear latency functions and identical type probability p, such that
WoM(Ψ) ≥ 5

2 − ε.

Proof (Sketch). Define Ψ = Ψ(α) as in Example 1 with n = 3 and α = 1. For the
congestion game ΓΨ that corresponds to Ψ , all players u choosing s2

u is a Nash
equilibrium s that maximizes social cost and SC(ΓΨ , s) = 5.

For the malicious congestion game Ψ (where p > 0), there is a unique (pure)
Bayesian Nash equilibrium σ where σ(us) = s1

u and σ(um) = s3
u for all players

u ∈ N . For its social cost we get SC(Ψ, σ) = 2 + 4p.
So, for each ε > 0 there is a sufficiently small p, such that

WoM(Ψ) =
SC(ΓΨ , s)
SC(Ψ, σ)

=
5

2 + 4p
≥ 5

2
− ε.

This completes the proof of the theorem. �	

We remark that this is actually a tight result, since for the considered class of
malicious Bayesian congestion games the Windfall of Malice cannot be larger
than the Price of Anarchy of the corresponding class of congestion games which
was shown to be 5

2 in [5].
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5 Conclusion and Open Problems

In this paper, we have introduced and studied a new extension to congestion
games, that we call malicious Bayesian congestion games. More specifically, we
have studied problems concerned with the complexity of deciding the existence
of pure Bayesian Nash equilibria. Furthermore, we have presented results on the
Price of Malice.

Although we were able to derive multiple interesting results, this work also
gives rise to many interesting open problems. We conclude this paper by stating
those, that we consider the most prominent ones.

– Our NP-completeness result in Theorem 1 holds even for linear latency func-
tions, identical type probabilities, and if all strategy sets are singleton sets of
resources. However, if such games are further restricted to symmetric games
and identical linear latency functions, then deciding the existence of a pure
Bayesian Nash equilibrium becomes a trivial task. We believe that this task
can also be performed in polynomial time for non-identical linear latency
functions and symmetric strategy sets.

– Although the upper bound in Corollary 1 and the corresponding lower bound
in Theorem 5 are asymptotically tight, there is still potential to improve. We
conjecture that in this case PoB(Δ) = Δ + O(1).

– We believe that the concept of malicious Bayesian games is very interesting
and deserves further study also in other scenarios. We hope, that our work
will encourage others to study such malicious Bayesian games.
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