

Lecture Notes in Artificial Intelligence 5397
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Matteo Baldoni
Tran Cao Son
M. Birna van Riemsdijk
Michael Winikoff (Eds.)

Declarative
Agent Languages
and Technologies VI

6th International Workshop, DALT 2008
Estoril, Portugal, May 12, 2008
Revised Selected and Invited Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Matteo Baldoni
Università di Torino
Dipartimento di Informatica
Via Pessinetto 12, 10149 Turin, Italy
E-mail: baldoni@di.unito.it

Tran Cao Son
New Mexico State University
Department of Computer Science
P.O. Box 30001, MSC CS, Las Cruces, NM 88003, USA
E-mail: tson@cs.nmsu.edu

M. Birna van Riemsdijk
Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands
E-mail: m.b.vanriemsdijk@tudelft.nl

Michael Winikoff
University of Otago
Higher Education Development Centre
P.O. Box 56, Dunedin, New Zealand
E-mail: michael.winikoff@otago.ac.nz

Library of Congress Control Number: Applied for

CR Subject Classification (1998): I.2.11, C.2.4, D.2.4, D.2, D.3, F.3.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-93919-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-93919-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12604487 06/3180 5 4 3 2 1 0

Preface

The workshop on Declarative Agent Languages and Technologies (DALT), in its
sixth edition this year, is a well-established forum for researchers interested in
sharing their experiences in combining declarative and formal approaches with
aspects of engineering and technology of agents and multiagent systems.

DALT 2008 was held as a satellite workshop of AAMAS 2008, the 7th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems, in Es-
toril, Portugal. Following the success of DALT 2003 in Melbourne (LNAI 2990),
DALT 2004 in New York (LNAI 3476), DALT 2005 in Utrecht (LNAI 3904),
DALT 2006 in Hakodate (LNAI 4327), and DALT 2007 in Honolulu (LNAI
4897), the workshop again provided a discussion forum to both (a) support
the transfer of declarative paradigms and techniques to the broader community
of agent researchers and practitioners, and (b) to bring the issue of designing
complex agent systems to the attention of researchers working on declarative
languages and technologies.

The aim of the DALT workshop is to stimulate research on formal and declar-
ative approaches both for developing the foundations of multiagent systems as
well as for all phases of engineering multiagent systems, i.e., for specification
and modeling, for implementation, and for verification. By providing a forum
for the presentation of ideas addressing both of these aspects, DALT encourages
the integration of formal and declarative techniques and methods that are based
on solid theoretical foundations in the engineering of multiagent systems.

Recent advances in the area of computational logic provide a strong founda-
tion for declarative languages and technologies, increasingly allowing agents to
be endowed with mechanisms for behaving flexibly and autonomously in open
and dynamic environments. In this setting, it becomes more and more impor-
tant that multiagent systems are engineered to ensure both adaptability and a
certain level of predictability. While providing a certain level of predictability
is important for any software, it is especially important for multiagent systems
in which the agents are autonomous and adaptive. Formal and declarative tech-
nologies both for specification and verification as well as for implementation are
arguably the most promising approach to providing this required predictabil-
ity. Ensuring a certain level of predictability is important for the adoption of
multiagent technology in practice, as users have to trust a multiagent system to
behave as required even though the agents are autonomous and adaptive.

An ongoing challenge for the DALT community is the investigation of formal
and declarative techniques for the specification and implementation of ratio-
nal agents. Moreover, techniques for structuring a multiagent system and for
facilitating cooperation among agents such as organizational views of agent sys-
tems, norms, teams, coordination mechanisms, and argumentation and negotia-
tion techniques are becoming increasingly important and are challenges for the

VI Preface

DALT community. Further, there are several areas that have commonalities with
multiagent systems and to which declarative agent languages and technologies
can be applied, such as the Semantic Web, service-oriented systems, component-
based systems, security, and electronic contracting.

There is thus an ongoing and even increasing demand for formal and declar-
ative approaches for the development of multiagent systems. In this volume, we
report on the latest results in this area, including papers on logical foundations,
declarative programming approaches, and verification of multiagent systems.
The DALT workshop received 24 submissions. Each paper was reviewed by at
least 3 reviewers, and 14 papers were accepted: 10 as full papers, and 4 as short
papers. Out of these 14 contributed articles that were selected for presentation
at the workshop, 12 papers were selected by the Program Committee for pub-
lication in this volume, as well as three invited articles, originally presented as
short papers at AAMAS 2008, that have been extended by their authors.

We would like to thank all authors for their contributions, the members of the
Steering Committee for their valuable suggestions and support, and the members
of the Program Committee for their excellent work during the reviewing phase.

November 2008 Matteo Baldoni
Tran Cao Son

M. Birna van Riemsdijk
Michael Winikoff

Organization

Workshop Organizers

Matteo Baldoni University of Turin, Italy
Tran Cao Son New Mexico State University, USA
M. Birna van Riemsdijk Delft University of Technology,

The Netherlands
Michael Winikoff University of Otago, New Zealand; and

RMIT University, Australia

Program Committee

Thomas Agotnes Bergen University College, Norway
Marco Alberti University of Ferrara, Italy
Natasha Alechina University of Nottingham, UK
Grigoris Antoniou University of Crete, Greece
Matteo Baldoni University of Turin, Italy
Cristina Baroglio University of Turin, Italy
Rafael Bordini University of Durham, UK
Federico Chesani University of Bologna, Italy
Amit Chopra North Carolina State University, USA
Keith Clark Imperial College London, UK
Francesco M. Donini University of Tuscia, Italy
Benjamin Hirsch Technical University Berlin, Germany
Shinichi Honiden National Institute of Informatics, Japan
John Lloyd Australian National University, Australia
Viviana Mascardi University of Genoa, Italy
Nicolas Maudet University of Paris-Dauphine, France
John-Jules Ch. Meyer Utrecht University, The Netherlands
Enrico Pontelli New Mexico State University, USA
Birna van Riemsdijk Delft University of Technology,

The Netherlands
Chiaki Sakama Wakayama University, Japan
Tran Cao Son New Mexico State University, USA
Wamberto Vasconcelos University of Aberdeen, UK
Mirko Viroli University of Bologna, Italy
Marina De Vos University of Bath, UK
Michael Winikoff University of Otago, New Zealand; and

RMIT University, Australia

VIII Organization

Steering Committee

João Leite New University of Lisbon, Portugal
Andrea Omicini University of Bologna-Cesena, Italy
Leon Sterling University of Melbourne, Australia
Paolo Torroni University of Bologna, Italy
Pınar Yolum Bogazici University, Turkey

Additional Reviewers

James Harland
Inoue Katsumi
Emiliano Lorini

Marco Montali
Jonty Needham
Naoyuki Nide

Viviana Patti
Sebastian Sardina

Sponsoring Institutions

Matteo Baldoni has partially been funded by the MIUR PRIN 2005 “Specifica-
tion and verification of agent interaction protocols” national project.

M. Birna van Riemsdijk has partially been supported by the EU project SEN-
SORIA (IST-2005-016004), which is part of the 6th Framework Programme.

Tran Cao Son has been supported by the NSF grants HRD 0420407, CNS
0220590, and IIS 0812267.

Table of Contents

Invited Papers

Specifying and Enforcing Norms in Artificial Institutions 1
Nicoletta Fornara and Marco Colombetti

Social Norm Emergence in Virtual Agent Societies 18
Bastin Tony Roy Savarimuthu, Maryam Purvis, Martin Purvis, and
Stephen Cranefield

A Distributed Normative Infrastructure for Situated Multi-agent
Organisations . 29

Fabio Y. Okuyama, Rafael H. Bordini, and
Antônio Carlos da Rocha Costa

Contributed Papers

A Complete STIT Logic for Knowledge and Action, and Some of Its
Applications . 47

Jan Broersen

Combining Multiple Knowledge Representation Technologies into
Agent Programming Languages . 60

Mehdi M. Dastani, Koen V. Hindriks, Peter Novák, and
Nick A.M. Tinnemeier

Model-Checking Strategic Ability and Knowledge of the Past of
Communicating Coalitions . 75

Dimitar P. Guelev and Catalin Dima

JASDL: A Practical Programming Approach Combining Agent and
Semantic Web Technologies . 91

Thomas Klapiscak and Rafael H. Bordini

Leveraging New Plans in AgentSpeak(PL) . 111
Felipe Meneguzzi and Michael Luck

Increasing Bid Expressiveness for Effective and Balanced E-Barter
Trading . 128

Azzurra Ragone, Tommaso Di Noia, Eugenio Di Sciascio, and
Francesco M. Donini

Inductive Negotiation in Answer Set Programming 143
Chiaki Sakama

X Table of Contents

Mental State Abduction of BDI-Based Agents . 161
Michal P. Sindlar, Mehdi M. Dastani, Frank Dignum, and
John-Jules Ch. Meyer

Iterated Belief Revision in the Face of Uncertain Communication 179
Yoshitaka Suzuki, Satoshi Tojo, and Stijn De Saeger

Abstracting and Verifying Strategy-Proofness for Auction
Mechanisms . 197

Emmanuel M. Tadjouddine, Frank Guerin, and
Wamberto Vasconcelos

Using Temporal Logic to Integrate Goals and Qualitative Preferences
into Agent Programming . 215

Koen V. Hindriks and M. Birna van Riemsdijk

Strategic Agent Communication: An Argumentation-Driven
Approach . 233

Jamal Bentahar, Mohamed Mbarki, John-Jules Ch. Meyer, and
Bernard Moulin

Author Index . 251

Specifying and Enforcing Norms
in Artificial Institutions�

Nicoletta Fornara1 and Marco Colombetti1,2

1 Università della Svizzera italiana, via G. Buffi 13, 6900 Lugano, Switzerland
{nicoletta.fornara,marco.colombetti}@lu.unisi.ch

2 Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano, Italy
marco.colombetti@polimi.it

Abstract. In this paper we investigate two related aspects of the for-
malization of open interaction systems: how to specify norms, and how to
enforce them by means of sanctions. The problem of specifying the sanc-
tions associated with the violation of norms is crucial in an open system
because, given that the compliance of autonomous agents to obligations
and prohibitions cannot be taken for granted, norm enforcement is nec-
essary to constrain the possible evolutions of the system, thus obtaining
a degree of predictability that makes it rational for agents to interact
with the system. In our model, we introduce a construct for the defini-
tion of norms in the design of artificial institutions, expressed in terms of
roles and event times, which, when certain activating events take place, is
transformed into commitments of the agents playing certain roles. Norms
also specify different types of sanctions associated with their violation.
In the paper, we analyze the concept of sanction in detail and propose a
mechanism through which sanctions can be applied.

1 Introduction

In our previous works [10, 11, 26] we have presented a metamodel of artificial
institutions called OCeAN (Ontology, CommitmEnts, Authorizations, Norms),
which can be used to specify at a high level and in an unambiguous way open
interaction systems, where heterogeneous and autonomous agents may interact.

In our view open interaction systems and artificial institutions, used to model
them, are a technological extension of human reality, that is, they are an in-
strument by which human beings can enrich the type and the frequency of their
interactions and overcome geographical distance. Potential users of this kind of
systems are artificial agents, that can be more or less autonomous in making
decisions on behalf of their owners, and human beings using an appropriate in-
terface. For example, it is possible to devise an electronic auction where the
artificial agents are autonomous in deciding the amount of their bids, or an in-
teraction system for the organization of conferences in which human beings (like

� Supported by the Hasler Foundation project number 2204 title “Artificial institu-
tions: specification of open distributed interaction systems”.

M. Baldoni et al. (Eds.): DALT 2008, LNAI 5397, pp. 1–17, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 N. Fornara and M. Colombetti

the organizers, or the Program Committee members) act by means of artificial
agents that have a very limited level of autonomy. In any case it is important to
remark that in every type of system there is always a stage when the software
agents have to interface with their human owners to perform certain actions in
the real world. For these reasons artificial institutions have to reflect, with the
necessary simplifications, crucial aspects of their human counterparts. Therefore
in devising our model we draw inspiration from an analysis of social reality [22]
and from human legal theory [14].

In this paper we concentrate mainly on the definition of the constructs nec-
essary for the specification of the normative component of artificial institutions,
that is, of obligations, permissions and prohibitions of the interacting agents.
The normative component is fundamental because it can be used to specify the
expected behavior of the interacting agents, for example by means of flexible
protocols [27]. We shall extend our OCeAN metamodel by defining a construct
for the specification of norms for open systems, whose semantics is expressed by
means of social commitments, the same concept that we have used to specify the
semantics of a library of communicative acts [9, 10]. Commitments, having a well
defined life-cycle, will be used at run-time to detect and react to the violation
of the corresponding norms.

An important feature of our proposal, with respect to other ones [1, 5, 12,
19, 24], is that, using the construct of a commitment, it gives a uniform solution
to two crucial problems: the specification of the semantics of norms and the
definition of the semantics of an Agent Communication Language. Therefore
a software agent able to reason on one construct is able to reason on both
communicative acts and norms.

Moreover we present an innovative and detailed analysis of problem of defining
a mechanism for enforcing obligations and prohibitions by means of sanctions
that, that is, a treatment of the actions that have to be performed when a viola-
tion occurs, in order to deter agents from misbehaving and to secure and recover
the system from an undesirable state. We speak of “obligation and prohibition
enforcement” instead of “norm enforcement”, as done in other approaches, be-
cause our proposal can be used to enforce obligations and prohibitions that
derive either from predefined norms or from the autonomous performance of
communicative acts.

The problem of managing sanctions has been tackled in a few other works:
for example, López y López et al. [19] propose to enforce norms using the “en-
forcement norms” that oblige agents entitled to do so to punish misbehaving
agents but does not treat the actions that the misbehaving agents may have
to perform to repair to its violation; Vázquez-Salceda et al. [24] present, in the
OMNI framework, a method to enforce norms described at a different level of
abstraction but do not investigate in detail the mechanism to manage santc-
tions; whereas Grossi et al. in [13] develop a high-level analysis of the problem
of enforcing norms. Other interesting proposals introduce norms to regulate the
interaction in open systems but, even when the problem of enforcement is con-
sidered to be crucial, do not investigate with sufficient depth why an agent ought

Specifying and Enforcing Norms in Artificial Institutions 3

to comply with norms and what would happen if compliance does not occur. For
instance, Esteva et al. [5, 12] propose ISLANDER, where a normative language
with sanctions is defined but not discussed in detail, Boella et al. [3] model vi-
olations but do not analyze sanctions, and Artikis et al. [1] propose a model
where the problem of norm enforcement using sanctions is mentioned but not
fully investigated.

The paper is organized as follows: in Section 2 we briefly describe the part
of metamodel for artificial institutions that we have presented in other works
[10, 11, 26]. In Section 3 the reasons why in open interaction frameworks it makes
sense to allow for the violation of obligations and prohibitions are discussed, and
then in Section 4 a proposal on how to enforce obligations and prohibitions by
means of sanctions is presented. In Section 5 our model of norms is described and
the construct of commitment is extended, with respect to our previous works, by
adding the treatment of sanctions. In Section 6 we briefly exemplify our proposal
and finally in Section 7 we present conclusions.

2 The OCeAN Metamodel

In our previous works we have started to define the OCeAN metamodel [10, 11],
that is, the set of concepts, briefly recalled in the sequel, that can be used to
design artificial institutions. Examples of artificial institutions are the institution
of language (that we call the Basic Institution, because we assume it will be
used in the specification of every interaction system), the institution of English
or Dutch auctions [10, 26], and the institution of organizations. In our view an
open interaction system for autonomous agents can be specified using one or
more artificial institutions. The state of the interaction system will then evolve
on the basis of the events and actions that take place in the system, and whose
effects are defined in the various institutions and on the basis of the life-cycle
of the concepts defined in our model. (Investigating the relationships among the
specification of different institutions is an interesting open problem [4], that we
shall not tackle in this paper.) The concepts introduced by our metamodel are:

– The constructs necessary to define the core ontology of an institution, in-
cluding: the notion of entity, used to define the concepts introduced by the
institution (e.g., the notion of a run of an auction with its attributes in-
troduced by the institution of auctions); the notion of institutional action,
described by means of their preconditions and postconditions (e.g., the ac-
tion of opening an auction, or declaring the current ask-price of an auction).
The core ontology also defines the syntax of a list of base-level actions, like for
instance the action of exchanging a message, whose function is to concretely
execute institutional actions.

– Two fundamental concepts that are common to all artificial institutions: the
notions of role and of event. In particular roles are used in the specification
of authorizations and norms, while the happening of events is used to bring
about the activation of a norm or to specify the initial or final instance of a
time interval.

4 N. Fornara and M. Colombetti

– The counts-as relation that is necessary for the concrete performance of in-
stitutional actions. In particular, such relation relies on a set of conventions
that bind the exchange of a certain message, under a set of contextual con-
ditions, to the execution of an institutional action. Contextual conditions
include authorizations (called also powers) that specify what agents are au-
thorized to perform certain institutional actions. Authorizations for the agent
playing a given role to perform an institutional action iaction with a certain
set of parameters if certain conditions are satisfied are represented with the
following notation: Auth(role,iaction(parameters), conditions).

– The construct of norm analyzed, discussed, and defined in Section 5, used
to impose obligations and prohibitions to perform certain actions on agents
interacting with the system.

3 Regimentation vs. Enforcement

In our model, as it will be discussed in more detail in Section 5, an active obliga-
tion is expressed by means of commitments to perform an action of a given type
within a specified interval of time; similarly, an active prohibition is expressed by
a commitment not to perform an action of a given type; moreover, every action
is permitted unless it is explicitly forbidden. Note that a commitment can be
created not only by the activation of a norm, but also by the performance of a
communicative act [10], for instance by a promise.

In this section we briefly discuss the reasons why in open interaction systems
it makes sense, and sometimes it is also inevitable, to allow for commitment
violations, that happen when a prohibited action is performed or when an oblig-
atory action is not performed within a predefined interval of time. The question
is, why should we give an agent the possibility to violate commitments? why
not adopt what in the literature is called “regimentation” [14], as proposed in
[13], by introducing a control mechanism that does not allow agents to violate
commitments?

To answer this question, it is useful to distinguish between obligations and
prohibitions. With respect to obligations, there is only one way to “regiment”
the performance of an obliged action, that is, by making the system performing
the obliged action instead of a misbehaving agent. But this solution is not always
viable, especially when the agent has to set the values of some parameters of the
action. For instance, the auctioneer of a Dutch Auction is repeatedly obliged
to declare a new ask price, lower than the one previously declared, but can
autonomously decide the value of the decrement; therefore it would be difficult
for the system to perform the action on behalf of the auctioneer. In any case
it has to be taken into account that, even if the regimentation of obligations
violates the autonomy of self-interested interacting agents, sometimes it can be
adopted to recover the system from an undesirable state.

With respect to the regimentation of prohibitions, it is useful to introduce a
further distinction between natural (or physical) actions (like opening a door or

Specifying and Enforcing Norms in Artificial Institutions 5

physically delivering a product), whose effects take place thanks to physical laws,
and institutional actions (like opening an auction or transferring the property of
a product), whose effects take place thanks to the common agreement of the in-
teracting agents (more precisely, of their designers). For our current purpose, the
main difference between natural and institutional actions is that, under suitable
conditions, the latter can be “voided”, that is, their institutional effects can be
nullified; on the contrary, this is not possible with natural actions. Consider for
example the difference between destroying and selling an object: while in general
a destroyed object cannot be brought back into existence, the transfer of own-
ership involved in selling it can always be nullified. The previous considerations
imply that, in general, it is impossible to use regimentation to prevent the viola-
tion of a prohibition to perform a natural action. Concerning the prohibition of
institutional actions, in our model it can be expressed using two different mech-
anisms: (i) through the lack of authorization: in fact, when an agent performs
a base-level action bound by a convention to an institutional action ai, but the
agent is not authorized to perform ai, neither the “counts-as” relation nor the ef-
fects of ai take place; (ii) through a commitment not to perform such an action: in
this case, if the action is authorized, its effects do take place but the correspond-
ing commitment is violated. The solution to block the effects of certain actions by
changing their authorizations during the life of the system is adopted for instance
in AMELI (an infrastructure that mediates agent interactions by enforcing insti-
tutional rules) by means of governors [6], which filter the agents’ actions letting
only the allowed actions to be performed. However, this solution is not feasible
when more than one institution contributes to the definition of an interaction sys-
tem, as it happens for example when the Dutch Auction and the Auction-House
institutions contribute to the specification of an interaction system as presented
in [26] and briefly recalled in Section 6. In such cases, an action authorized
by an institution cannot be voided by another institution, which can at most
prohibit it.

It is moreover important to remark that in an open system, where hetero-
geneous agents interact exhibiting self-interested behavior based on a hidden
utility function, it is impossible to predict at design phase all the interesting
and fruitful behaviors that may emerge. To reach an optimal solution for all
participants [28] it may be profitable to allow agents to violate their obligations
and prohibitions.

We therefore conclude that regimenting an artificial system so that violations
of commitments are completely avoided is often impossible and sometimes even
detrimental, since it may preclude interesting evolutions of the system towards
results that are impossible to foresee at design time. It is also true, however,
that in order to make the evolution of the system at least partially predictable,
misbehavior must be reduced to a minimum. But then, how is it possible to
deter agents from violating commitments? An operational proposal to tackle
this problem, based on the notion of sanction, is described in the following
sections.

6 N. Fornara and M. Colombetti

4 Sanctions

In this section we briefly discuss the crucial role played by sanctions in the specifi-
cation of an open interaction system. In the Merriam-Webster On Line
Dictionary1 a sanction is defined as “the detriment, loss of reward, or coercive
intervention annexed to a violation of a law as a means of enforcing the law”. In
an artificial system, even if the utility function of the misbehaving agent is not
known, sanctions can be mainly devised to deter agents from misbehaving bring-
ing about a loss for them in case of violation, under the assumption that the inter-
acting heterogeneous agents are human beings or artificial agents able to reason
on sanctions. Moreover sanctions can be devised to compensate the institution
or other damaged agents for their loss due to the misbehavior of the agents; to
contribute to the security of the system, for example by prohibiting misbehaving
agents to interact any longer with the system; and to specify the acts that have to
be performed to recover the system from an undesirable state [23].

When thinking about sanctions from an operational point of view, and in
particular to the set of actions that have to be performed when a violation
occurs, it is important to distinguish between two types of actions that differ
mainly as far as their actors are concerned:

– One crucial type of action that deserves to be analyzed in detail, and that
is not taken into account in other proposals [12, 19, 24], consists of the
actions that the misbehaving agent itself has to perform when a violation
occurs, and that are devised as a deterrent and/or a compensation for the
violation. For instance, an unruly agent may have to pay a fine or compensate
another agent for the damage. When trying to model this type of action it
is important to take into account that it is also necessary to check that the
compensating actions are performed and, if not, to sanction again the agent
or, in some situations, to give it a new possibility to remedy the situation.

– Another type is characterized by the actions that certain agents are autho-
rized to perform only against violations. In other existing proposals, for in-
stance [19, 24], which do not highlight the notion of authorization (or power
[15]), those actions are simply the actions that certain agents are obliged to
perform against violations. From our point of view, instead, the obligation
to sanction a violation should be distinguished from the authorization to do
so. The reason why authorizations are crucial is obvious: sanctions can only
be issued by agents playing certain specific roles in an institution. But an
authorization does not always carry an obligation with it.

In some situations, and in particular when the sanction is crucial for the contin-
uation of the interaction, one may want to express the obligation for authorized
agents to react to violations by defining an appropriate new norm. For instance,
in the organization of a conference if a referee does not meet the deadline for
submitting a review, the organizers are not only authorized, but also obliged
to reassign the paper to another referee. The norm that may be introduced to
1 <http://www.m-w.com>

Specifying and Enforcing Norms in Artificial Institutions 7

oblige the agents entitled to do so to manage the violation is similar to the “en-
forcement norm” proposed in [19]: it has to be activated by a violation and its
content has to coincide with the sanctions of the violated obligation or prohi-
bition. This norm may in turn be violated, and it is up to the designer of the
system to decide when to stop the potentially infinite chain of violations and
sanctions, leaving some violation unpunished.

Regarding this aspect, to make it reasonable for certain agents (or for their
owner) to interact with an open system, it has to be possible to specify that
certain violations will definitely be punished (assuming that there are not soft-
ware failures). One approach is to specify that the actor of the actions performed
as sanctions for those violations is the interaction-system itself, that therefore
needs to be represented in our model as a “special agent”. By “special” we mean
that such an agent will not be able to take autonomous decisions, and will only
be able to follow the system specifications that are stated before the interaction
starts. We call this type of agents heteronomous (as opposite to autonomous).
Given that the interaction-system can become, in an actual implementation, the
actor of numerous actions performed as sanctions, it would be better to imple-
ment it in a distributed manner in order to avoid that it becomes a possible
bottleneck.

Examples of reasonable sanctions that can be inflicted by means of norms in
an open artificial system are the decrement of the trust or reputation level of
the agent (similar to the reduction of the driving licence points that is nowadays
applied in some countries), the revocation of the authorization to perform certain
actions or a change of role (similar to confiscation of the driving licence) or,
as a final action, the expulsion of the agent from the system. Another type of
sanction typical of certain contracts (i.e., sets of correlated commitments created
by performing certain communicative acts) is the authorization for an agent to
break its part of the contract, without incurring a violation, if the counterpart
has violated its own commitments.

5 Norms

Norms are taken as a specification of how a system ought to evolve. In an open
system, they are necessary to impose obligations and prohibitions to the interact-
ing agents, in order to make the system’s evolution at least partially predictable
[2, 20]. In particular, norms can be used to express interaction protocols as ex-
emplified in [10, 26], where the English Auction and the Dutch Auction are
specified by indicating what agents can do, cannot do, and have to do at each
state of the interaction.

At design time, the main point is to guarantee that the system has certain
crucial properties. This result can be achieved by formalizing obligations and
prohibitions by means of logic and applying model checking techniques as studied
in [17, 25]. At run time, and from the point of view of the interacting agents,
norms can be used to reason about the relative utility of future actions [18].
Still at run time, but from the point of view of the open interaction system,

8 N. Fornara and M. Colombetti

norms can be used to check whether the agents’ behavior is compliant with the
specifications and able to suitably react to violations. Our model of norms is
mainly suited for the last task.

Coherent with other approaches [1, 5, 12, 19, 24], in our view norms have to
specify who is affected by them, who is the creditor, what are the actions that
should or should not be performed, when a given norm is active, and what are
the consequences of violating norms. For instance, a norm of a university may
state that a professor has to be ready to give exams any day from the middle
to the end of February, otherwise the dean is authorized to lower the professor’s
public reputation level.

In the definition of our model it is crucial to distinguish between the def-
inition of a construct for the specification of norms in the design phase, that
will be used by human designers, and the specification of how such a construct
will evolve during the run-time phase to make it possible to detect and react to
norm violations. In particular we assume that during the run-time of the system
the interacting agents cannot create new norms, but can create new commit-
ments, directed to specific agents, by performing suitable communicative acts,
for example by making promises or by giving orders.

During the phase of specification of the set of norms of a certain artificial
institution the designer does not know the actual set of agents that will inter-
act with the system at a given time. In this phase it is therefore necessary to
define norms based on the notion of role. Moreover, the time instant at which
a norm becomes active is typically not known at design time, being related to
the occurrence of certain events; for example, the agent playing the role of the
auctioneer in an English auction is obliged to declare the current ask-price after
receiving each bid by a participant. Therefore at design phase it is only possible
to specify the type of event that, if it happens, will activate the norm.

During the system run time such a construct of norm, expressed in terms of
roles and times of events, must be transformed into an unambiguous representa-
tion of the obligations and prohibitions that every agent has at every state of the
interaction. To tackle this problem we propose to use Event-Condition-Action
(ECA) rules to transform the norms given in the design phase into concrete com-
mitments, whose operational semantics is given in our previous work [10] and
will be extended in Section 5.2. The main advantage of using commitments to
express active obligations and permissions is that the same construct is also used
in our model of institutions to express the semantics of numerous communica-
tive acts [10]. Interacting agents may therefore be designed to reason on just one
construct to make them able to reason on all their obligations and prohibitions,
derived both from norms and from the performance of communicative acts.

5.1 The Construct of Norm

First of all a norm is used to impose a certain behavior on certain agents in the
system. Therefore a norm is applied to a set of agents, identified by means of
the debtors attribute, on the basis of the roles they play in the system.

Specifying and Enforcing Norms in Artificial Institutions 9

Another fundamental component of a norm is its content, which describes the
actions that the debtors have to perform (if the norm expresses an obligation) or
not to perform (if the norm expresses a prohibition) within a specified interval
of time. In our model temporal propositions, which are defined by the Basic
Institution (for a detailed treatment see [8]), are used to represent the content
of commitments and, due to the strict connection between commitments and
norms, are also used to represent the content of norms. A temporal proposition
binds a statement about a state of affairs or about the performance of an action
to a specific interval of time with a certain mode (that can be ∀ or ∃). Temporal
propositions are represented with the following notation:

TP (statement, [tstart, tend],mode, truth-value),

where the truth-value could be undefined (⊥), true or false. In particular when
the statement represents the performance of an action and the mode is ∃, the
norm is an obligation and the debtors of the norms have to perform the action
within the interval of time. When the statement represents the non-performance
of an action and the mode is ∀ the norm is a prohibition and the debtors of the
norms should not perform the action within the interval of time. In particular
tstart is always equal to the time of occurrence of the event that activates the
norm. Regarding the verification of prohibitions, in order to be able to check
that an action has not been performed during an interval of time it is necessary
to rely on the closure assumption that if an action is not recorded as happened
in the system, then it has not happened.

A norm becomes active when the activation event estart happens. Activation
can also depend on some Boolean conditions, that have to be true in order that
the norm can become active; for instance an auctioneer may be obliged to open
a run of an auction at time tstart if at least two participants are present.

An agent can reason whether to fulfil or not to fulfil a norm on the basis of the
sanctions/reward (as discussed later) and of whom is the creditor of the norm, as
proposed also in [16, 19]. For example, an agent with the role of auctioneer may
decide to violate a norm imposed by the auction house if it is in conflict with
another norm that regulates trade transactions in a certain country. Moreover
the creditor of a norm is crucial because, given that it becomes the creditor
of the commitments generated by the norm (as described in next section), is
the only agent authorized to cancel such commitment [10]. In particular the
cancelation of the commitment generated by the activation of a norm coincides
with the operation of exempting an agent from obeying the norm in certain
circumstances. Like for the debtors attribute, it is useful to express the creditor
of declarative norms by means of their role. For instance, a norm may state
that an employee is obliged to report to his director on the last day of each
month; this norm will become active on the last day of each month and will be
represented by means of a set of commitments, each having an actual employee
as the debtor, and the employee’s director as creditor.

Sometimes it may be useful to take the creditor of norms to be an institution-
alized agent, that typically represents a human organization, like a university, a
hospital, or a company, which can be regarded as the creditors of their bylaws.

10 N. Fornara and M. Colombetti

In the human world, an institutionalized agent is an abstract entity that can
perform actions only through a human being, who is its legal representative and
has the right mandate [21]. On the contrary, in an artificial system it is always
possible to create an agent that represents an organization but can directly exe-
cute actions. Therefore we prefer to view an institutionalized agent as a special
role that can be assigned to one and only one agent having the appropriate
authorizations, obligations, and prohibitions.

In order to enforce norms it is necessary to specify sanctions. More precisely,
as discussed in the previous section, it is necessary to specify what actions have
to be performed, when a violation occurs, by the debtors of a norm and by the
agent(s) in charge of norm enforcement. These two types of actions, that we re-
spectively call a-sanctions (active sanctions) and p-sanctions (passive sanctions)
are sharply dissimilar, and thus require a different treatment. More specifically,
to specify an a-sanction means to describe an action that the violator should
perform in order to extinguish its violation; therefore, an a-sanction can be spec-
ified through a temporal proposition representing an action. On the contrary, to
specify a p-sanction means to describe what actions the norm enforcer is au-
thorized to perform in the face of a violation; therefore, a p-sanction can be
specified by representing a suitable set of authorizations.

Regarding a-sanctions, it is necessary to consider that a violating agent may
have more than one possibility to extinguish its violation. For example, an agent
may have to pay a fine of x euro within one month, and failing to do so may
have to pay a fine of 2 ∗ x euro within two months. In principle we may regard
the second sanction as a compensation for not paying the first fine in due time,
but this approach would require an unnecessarily complex procedure of viola-
tion detection. Given that any Boolean combination of temporal propositions
is still a temporal proposition, and that the truth-value of the resulting tempo-
ral proposition can be obtained from the truth-values of its components using
an extended truth table to manage the indefinite truth-value [7], a more viable
solution consists in specifying every possible action with a different temporal
proposition, and combining them using the OR operator.

In summary, in our model the construct of norm is characterized by the fol-
lowing attributes having the specified domains:

debtors : role;
creditor : role;
content : temporal proposition;
estart: event-template;
conditions : Boolean expression;
a-sanctions : temporal proposition;
p-sanctions : authorization;

5.2 Commitments with Sanctions

In order to give an intuitive operational semantics to the construct of norms
introduced so far, we now describe a mechanism to transform them, at run time,

Specifying and Enforcing Norms in Artificial Institutions 11

into commitments relative to specific agent and time interval. The transforma-
tion of norms defined at design time in commitments at run time is crucial
because they are the mechanisms used to detect and react to violations. More-
over given that the activation event of norms may happen more than once in
the life of the system, it is possible to distinguish between different activations
and, in case, violations of the same norm. Given that our previous treatment
of commitment [8, 10] does not cover sanctions, in this section we extend it to
cover this aspect.

In our model a special institution, the Basic Institution, defines the construct
of commitment, which is represented with the following notation:

Comm(state, debtor, creditor, content).

The content of commitments is expressed using temporal propositions (briefly
recalled in Section 5). The state of a commitment, as described in Figure 1, can
change as an effect of the execution of institutional actions (solid lines) or of
environmental events (dotted lines). Relevant events for the life cycle of com-
mitments are due to the change of the truth-value of the commitment’s content.
If the content becomes true an event-driven routine (as discussed in detail in
[26]) automatically changes the commitment’s state to fulfilled, otherwise it be-
comes violated. In particular the unset state is used to represent commitments
created by means of a request communicative act and that have not been already
accepted by their debtor.

In our view an operational model of sanctions has to specify how to detect:
(i), that a commitment has been violated (a mechanism already introduced in
our model of commitment); (ii), that the debtor of the violated commitment
performs the compensating actions; and (iii), that the agents entitled to enforce
the norms have managed the violation by performing certain actions.

Regarding the necessity to check that the debtor performs the compensating
actions, one solution may be to create a new commitment to perform those ac-
tions. But this solution brings in the problem of taking trace that the violation of
a given commitment is extinguished by the fulfillment of another commitment.
A simpler and more elegant solution consists in adding two new attributes, a-
sanctions and p-sanctions, to commitments, and two new states, extinguished
and irrecoverable, to their life-cycle. The value of the a-sanctions attribute is a
temporal proposition describing the actions that the debtor of the commitment
has to perform, within a given interval of time, to remedy the violation. If the
actions indicated in the a-sanctions attribute are performed, the truth-value
of the related temporal proposition becomes true and an event driven routine
automatically changes the state of the violated commitment to extinguished, as
reported in Figure 1. Analogously, if the debtor does not perform those actions,
at the end of the specified time interval the truth-value of the temporal propo-
sition becomes false and the state of the commitment becomes irrecoverable.
Similarly to what we did for norms, the actions that certain agents are autho-
rized to perform against the violation of the commitment are represented in the
p-sanctions attribute. Note that whether such actions are or are not performed
does not affect the life cycle of the commitment; this depends on the fact that

12 N. Fornara and M. Colombetti

content.truth_value=T

makeCommitment

setPending

violated

fulfilled

setCancel
setCancel

content.truth_value=F

content.truth_value=T

pending

cancelled

unset

a-sanctions.truth_value=F

irrecoverable

extinguished

a-sanctions.truth_value=T

Fig. 1. The life-cycle of commitments

the agent that violated a commitment cannot be held responsible for a possible
failure of other agents to actually carry out the actions they are authorized to
perform.

Finally, for proper management of violation it may be necessary to trace
the source of a commitment, either deriving it from the activation of a norm
or from the performance of a communicative act. In order to represent this
aspect we add to commitments an optional attribute called source. Our en-
riched notion of commitment is therefore represented with the following nota-
tion:

Comm(state, debtor, creditor, content, a-sanctions, p-sanctions, source).

In our model we use ECA-rules (Event-Condition-Action rules), inspired by
Active Database models, to specify that certain actions are executed when an
event identified by an event-templates happens, provided that certain Boolean
conditions are true. The semantics of ECA rules is given as usual: when an event
matching the event template occurs in the system, the variable e is filled with
the event instance and the condition is evaluated; if the condition is satisfied, the
set of actions are executed and their effects are brought about in the system. The
interaction-system agent (see Section 4) is the actor of the actions performed
by means of ECA-rules, and has to have the necessary authorization in order to
perform them. In our model, ECA rules are specified according to the following
notation:

on e: event-template
if condition then

do action(parameters)+

In particular the following two ECA-rules have to be present in every inter-
action system. One in necessary to transform at run time norms into com-
mitments: when the activation event of the norm happens, the makePending-
Comm institutional action is performed and creates a pending commitment for
each agent playing one of the roles specified in the debtors attribute of the
norm:

Specifying and Enforcing Norms in Artificial Institutions 13

on estart

if norm.conditions then
do foreach agent | agent.role in norm.debtors
do makePendingComm(agent, norm.creditor, norm.content

norm.a-sanctions, norm.p-sanctions, norm-ref)

The other is necessary to give the authorizations expressed in the p-sanctions
attributes to the relevant agents when a commitment is violated:

on e: AttributeChange(comm.state, violated)
if true then
do foreach auth in comm.p-sanctions

do createAuth(auth.role, auth.iaction)

The createAuth(role,iaction) institutional action creates the authorization for
the agents playing a certain role to perform a certain institutional action. We
assume that the interaction-system (the actor of ECA-rules) is always authorized
to create new authorizations. A similar ECA-rule has also to be defined to remove
such authorizations once iaction has been performed.

In certain systems, to guarantee that the interaction-system actually performs
the actions specified in the p-sanctions attribute, it is also possible to create the
followingECA-rule that reacts to commitmentviolations performing those actions:

on e: AttributeChange(comm.state, violated)
if true then

do foreach auth in comm.p-sanctions
if auth.role = interaction-system
do auth.iaction(parameters)

6 Example

An interesting example that highlights the importance of a clear distinction
between permission and authorization, which becomes relevant when more than
one institution is used to specify the interaction system, is the specification of
the Dutch Auction as discussed in [26].

One of the norms of the Dutch Auction obliges the auctioneer to declare a
new ask-price (within λ seconds) lowering the previous one by a certain amount
κ, on condition that δ seconds have elapsed from the last declaration of the
ask-price without any acceptance act from the participants. If the auctioneer
violates this norm the interaction-system is authorized to declare the ask-price
and to lower the auctioneer’s public reputation level (obviously there is no need
of an authorization to change a private reputation level), while the auctioneer
has to pay a fine (within h seconds) to extinguish its violation. Such a norm can
be expressed in the following way:

14 N. Fornara and M. Colombetti

debtors= auctioneer;
creditor= auction-house;
content= TP (setAskPrice(DutchAuction.LastPrice-κ),

[time-of(estart), time-of(estart) + λ],∃,⊥);
estart= T imeEvent(DutchAuction.timeLastPrice+ δ);
conditions= DutchAuction.offer.value = null;
a-sanctions= TP (pay(ask-price, interaction-system),

[time-of(e), time-of(e) + h], ∃,⊥);
p-sanctions= Auth(interaction-system, setAskPrice(DutchAuction.LastPrice-κ)),

Auth(interaction-system,ChangeReputation(auctioneer, value));

where variable e refers to the event that happens if the commitment generated
at run-time by this norm is violated.

At the same time, the seller of a product can fix the minimum price (minPrice)
at which the product can be sold, for example by means of an act of proposal [7].
The auction house, by means of its auctioneer, sells the product in a run of the
Dutch Auction where the auctioneer is authorized to lower the price to a pre-
determined reservation price. The reservation price fixed by the auction house
can be lower than minPrice, for example because in previous runs of the auc-
tion the product remained unsold. If the auctioneer actually sells the product at a
price (winnerPrice) lower than minPrice, the sale is valid but the auction house
violates its commitment with the seller of the product and will incur the corre-
sponding sanctions; for example, it may have to refund the seller, while the seller
is authorized to lower the reputation of the auction house. This situation can be
modelled by the following commitment between the seller and the auction house:

state= pending;
debtor= auction-house;
creditor= seller;
content= TP (not setCurPrice(p) | p < minPrice, [now,+∞)], ∀,⊥);
a-sanctions=TP (pay(seller,minPrice-winnerPrice),

[time-of(e), time-of(e)+15days], ∃,⊥);
p-sanctions=Auth(seller, ChangeReputation(auction-house, value));

where variable e refers to the event that happens if the commitment is violated.

7 Conclusions

In this paper we have discussed the importance of formalizing and enforcing
obligations and prohibitions in the specification of open interaction frameworks.
We have proposed a construct to define norms in the design of institutions ex-
pressed in terms of roles and event times. The operational semantics of norms
is defined by the commitments they generate through ECA-rules.

The innovative aspects of our proposal are the definition of different types
of sanctions and of the operational mechanisms for monitoring the behavior of
the agents and reacting to commitment violations. In particular, an interesting
feature of our proposal is that the construct of commitment is uniformly used to

Specifying and Enforcing Norms in Artificial Institutions 15

model the semantics of communicative acts and of norms. Differently from [19]
our model of norms specifies the interval of time within which norms are active.
Thanks to their transformation into commitments, it is possible to apply certain
norms (whose activation event may happen many times) more than once in the
life of the system. Another crucial aspect of our norms is that, differently from
[19], they are activated by the occurrence of events and not simply if a certain
state holds. Regarding the treatment of sanctions our model is more in-depth
with respect to other proposals [13, 19, 24] because we distinguish the actions
of the debtors from the actions of the other agents that are entitled to react
to violations. In particular, regarding the actions of the debtors, we propose
an effective solution for managing multiple sanctions, that is, multiple possibil-
ities to compensate the violation (for example, paying an increasing amount of
money), without entering in an infinite loop of checking violations and applying
punishments. Regarding the sanctions applied by other agents, we discussed the
reasons why a norm expresses what actions are authorized against violations and
the reasons why some norms may be enforced by the interaction-system itself,
which is treated as a special heteronomous agent.

Acknowledgements

We would like to thank Bertil Cottier, professor of Law at Università della
Svizzera italiana, for helping us to improve our knowledge on the legal aspects
of sanctions.

References

1. Artikis, A., Sergot, M., Pitt, J.: Animated Specifications of Computational Soci-
eties. In: Castelfranchi, C., Johnson, W.L. (eds.) Proceedings of the 1st Interna-
tional Joint Conference on Autonomous Agents and Multi-Agent Systems (AA-
MAS 2002), pp. 535–542. ACM Press, New York (2002)

2. Barbuceanu, M., Gray, T., Mankovski, S.: Coordinating with obligations. In:
Sycara, K.P., Wooldridge, M. (eds.) Proceedings of the 2nd International Con-
ference on Autonomous Agents (Agents 1998), pp. 62–69. ACM Press, New York
(1998)

3. Boella, G., van der Torre, L.: Contracts as legal institutions in organizations of
autonomous agents. In: Dignum, V., Corkill, D., Jonker, C., Dignum, F. (eds.)
Proceedings of the 3rd International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2004), pp. 948–955. IEEE Computer Society, Los
Alamitos (2004)

4. Cliffe, O., Vos, M.D., Padget, J.: Specifying and Reasoning About Multiple Insti-
tutions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V.,
Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 67–85.
Springer, Heidelberg (2007)

5. Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and
norms. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS, vol. 2333, pp.
348–366. Springer, Heidelberg (2002)

16 N. Fornara and M. Colombetti

6. Esteva, M., Rodŕıguez-Aguilar, J.A., Rosell, B., Arcos, J.L.: AMELI: An Agent-
based Middleware for Electronic Institutions. In: Jennings, N.R., Sierra, C., Sonen-
berg, L., Tambe, M. (eds.) Proceedings of the 3rd International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS 2004), pp. 236–243.
ACM Press, New York (2004)

7. Fornara, N.: Interaction and Communication among Autonomous Agents in Mul-
tiagent Systems. PhD thesis, Faculty of Communication Sciences, University of
Lugano, Switzerland (2003), http://doc.rero.ch

8. Fornara, N., Colombetti, M.: A commitment-based approach to agent communi-
cation. Applied Artificial Intelligence an International Journal 18(9-10), 853–866
(2004)

9. Fornara, N., Viganò, F., Colombetti, M.: Agent communication and institutional
reality. In: van Eijk, R., Huget, M., Dignum, F. (eds.) AC 2004. LNCS, vol. 3396,
pp. 1–17. Springer, Heidelberg (2005)

10. Fornara, N., Viganò, F., Colombetti, M.: Agent communication and artificial in-
stitutions. Autonomous Agents and Multi-Agent Systems 14(2), 121–142 (2007)

11. Fornara, N., Viganò, F., Verdicchio, M., Colombetti, M.: Artificial institutions: A
model of institutional reality for open multiagent systems. Artificial Intelligence
and Law 16(1), 89–105 (2008)

12. Garcia-Camino, A., Noriega, P., Rodriguez-Aguilar, J.A.: Implementing norms in
electronic institutions. In: Proceedings of the 4th International Joint Conference
on Autonomous agents and Multi-Agent Systems (AAMAS 2005), pp. 667–673.
ACM Press, New York (2005)

13. Grossi, D., Aldewereld, H., Dignum, F.: Ubi lex, ibi poena: Designing norm enforce-
ment in e-institutions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O.,
Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386,
pp. 101–114. Springer, Heidelberg (2007)

14. Hart, H.L.A.: The Concept of Law. Clarendon Press, Oxford (1961)
15. Jones, A., Sergot, M.J.: A formal characterisation of institutionalised power. Jour-

nal of the IGPL 4(3), 429–445 (1996)
16. Kagal, L., Finin, T.: Modeling Conversation Policies using Permissions and Obli-

gations. In: van Eijk, R., Huget, M., Dignum, F. (eds.) AC 2004. LNCS, vol. 3396,
pp. 123–133. Springer, Heidelberg (2005)

17. Lomuscio, A., Sergot, M.: A formulation of violation, error recovery, and enforce-
ment in the bit transmission problem. Journal of Applied Logic (Selected articles
from DEON 2002 - London) 1(2), 93–116 (2002)

18. López y López, F., Luck, M., d’Inverno, M.: Normative Agent Reasoning in Dy-
namic Societies. In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M. (eds.)
Proceedings of the 3rd International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2004), pp. 535–542. ACM Press, New York (2004)

19. López y López, F., Luck, M., d’Inverno, M.: A Normative Framework for Agent-
Based Systems. In: Proceedings of the First International Symposium on Norma-
tive Multi-Agent Systems, Hatfield (2005)

20. Moses, Y., Tennenholtz, M.: Artificial social systems. Computers and AI 14(6),
533–562 (1995)

21. Pacheco, O., Carmo, J.: A Role Based Model for the Normative Specification of
Organized Collective Agency and Agents Interaction. Autonomous Agents and
Multi-Agent Systems 6(2), 145–184 (2003)

22. Searle, J.R.: The construction of social reality. Free Press, New York (1995)

http://doc.rero.ch

Specifying and Enforcing Norms in Artificial Institutions 17

23. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing Norms in Multi-
agent Systems. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.)
MATES 2004. LNCS (LNAI), vol. 3187, pp. 313–327. Springer, Heidelberg (2004)

24. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems.
Autonomous Agents and Multi-Agent Systems 11(3), 307–360 (2005)

25. Viganò, F.: A Framework for Model Checking Institutions. In: Edelkamp, S., Lo-
muscio, A. (eds.) MoChArt IV. LNCS, vol. 4428, pp. 129–145. Springer, Heidelberg
(2007)

26. Viganò, F., Fornara, N., Colombetti, M.: An Event Driven Approach to Norms
in Artificial Institutions. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G.,
Matson, E., Ossowski, S., Simao Sichman, J., Vázquez-Salceda, J. (eds.) ANIREM
2005 and OOOP 2005. LNCS (LNAI), vol. 3913, pp. 142–154. Springer, Heidelberg
(2006)

27. Yolum, P., Singh, M.: Reasoning about commitment in the event calculus: An ap-
proach for specifying and executing protocols. Annals of Mathematics and Artificial
Intelligence 42, 227–253 (2004)

28. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 12(3), 317–370 (2003)

Social Norm Emergence in Virtual Agent
Societies

Bastin Tony Roy Savarimuthu, Maryam Purvis, Martin Purvis,
and Stephen Cranefield

Department of Information Science, University of Otago, Dunedin, P.O. Box 56,
Dunedin, New Zealand

{tonyr,tehrany,mpurvis,scranefield}@infoscience.otago.ac.nz

Abstract. The advent of virtual environments such as SecondLife call
for a distributed approach for norm emergence and spreading. In open
virtual environments, monitoring various interacting agents (avatars),
using a centralized authority might be computationally expensive. The
number of possible states and actions of an agent could be huge. An
approach for sustaining order and smoother functioning of these envi-
ronments can be facilitated through norms. Agents can generate norms
based on interactions. In particular, those social norms that incur certain
cost to an individual agent but benefit the whole society are more inter-
esting than those benefit both the agent and the society. The problem is
that the selfish agents might not be willing to share the norm adherence
cost. In this work, we experiment with notion proposed by Axelrod that
social norms are best at preventing small defections where the cost of
enforcement is low. We also study how common knowledge can be used
to facilitate the overall benefit of the society. We believe our work can
be used to facilitate norm emergence in virtual online societies.

1 Introduction

Norms are expectations of an agent about the behaviour of other agents in the
society. The human society follows norms such as tipping in restaurants and
exchange of gifts at Christmas. Norms are of interest to researchers because
they help to improve the predictability of the society. They also reduce the
computations required by an agent to make a decision. Norms have been of
interest in different areas of research such as Sociology, Economics, Psychology
and Computer science [1]. Norms have been shown to facilitate co-ordination
and co-operation among the members of the society [2, 3]. Some of the well
established norms may become laws.

While the discussion on how norms emerge and spread remains a research
issue among scientists in Sociology, the advent of new ways of human interactions
proxied through software agents in virtual 3D worlds such as SecondLife [4] have
created interest among researchers in MAS to work on the applicability of the
concept of norms in these digital societies.

We believe that software agents that operate autonomously or on behalf of hu-
man users in these virtual worlds cannot be effectively monitored and controlled

M. Baldoni et al. (Eds.): DALT 2008, LNAI 5397, pp. 18–28, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Social Norm Emergence in Virtual Agent Societies 19

through centralized policing mechanisms. The explosion of possible action states
for an agent in a open environment is huge. It would be computationally ex-
pensive and taxing for a centralized monitor to enforce behavioural regularities
to ensure smoother functioning of these systems. We believe that an alterna-
tive approach based on norms could be effectively used in such scenarios where
norms can be derived and built using a bottom-up approach through interac-
tions between the agents. Our objective in this paper is to experiment with the
bottom-up approach where we observe whether a norm against littering a park
spreads in an agent society.

The paper is organized as follows. Section 2 provides a brief overview on
the work on norms with a focus on the norm emergence addressed in the field of
multi-agent systems. The experimental set up used for conducting simulations on
norm emergence is described in Section 3. The results are presented in Section 4.
The discussion and future work are presented in Section 5.

2 Related Work on Norms

Due to multi-disciplinary interest in norms, several definitions for norms exist.
Habermas [5], a renowned sociologist, identified norm regulated actions as one
of the four action patterns in human behaviour. A norm to him means fulfilling
a generalized expectation of behaviour, which is a widely accepted definition for
social norms. When members of a society violate the societal norms, they may
be punished (and even ostracized in some cases). Many social scientists have
studied why norms are adhered. Some of the reasons for norm adherence include
a) fear of authority b) rational appeal of the norms and c) feelings such as shame,
embarrassment and guilt that arise because of non-adherence.

Social scientists have categorized norms into several categories [1]. One such
categorization is based on the the cost-benefit analysis of a norm from a per-
spective of an individual agent and how that relates to the society as the whole,
proposed by Horne [6]. There are four categories of norms according to Horne.
There are norms which benefit both the individual agents and the society and
some norms incur cost to both the agent and the society. There are some norms
that benefit the agent but cost the society. Some norms cost the agent but are
beneficial to the society. The last category of norms where the whole society is
benefitted when an agent incurs a cost, is more interesting than the others. For
these norms to be established there should be agents in the society that will
help in the enforcement process. In the realm of digital societies such as that
of SecondLife, it is important that there are these distributed enforcing agents
that are helpful in regulating social order which is beneficial to the society.

2.1 Normative Multi-agent Systems

Norms have been of interest to multi-agent system researchers for over a decade
[3, 7, 8]. Norms in multi-agent systems are treated as constraints on behaviour,
goals to be achieved or as obligations [9]. The research on norms in sociology and
multi-agent systems complement each other. Researchers in multi-agent systems

20 B.T.R. Savarimuthu et al.

have borrowed ideas from sociology such as speech act theory and autonomy
to model software agents. Sociologists on the other hand have used multi-agent
systems for testing their theories through simulations.

The definition of normative multi-agent systems as described by the
researchers involved in Normas 2008 workshop is as follows [10]: A norma-
tive multi-agent system is a multi-agent system organized by means of mech-
anism to represent, communicate, distribute, detect, create, modify and enforce
norms, and mechanism to deliberate about norms and detect norm violation and
fulfillment.

While some aspects of normative multi-agent systems such as normative sys-
tem architectures, norm representations, norm adherence and violation detec-
tions [11, 12, 13] have received a lot of interest, areas such as norm creation and
modification have not been explored in-depth. Our work in this paper borders
the area of norm distribution (i.e. norm spreading) and the detection of the norm
that has been created (through emergence).

2.2 Norm Spreading and Emergence

The concepts of norm spreading and norm emergence are related. A norm
emerges in a society as a result of norm spreading mechanism. According to
Boyd and Richerson [14], there are three ways by which a social norm can be
propagated from one member of the society to another. They are a) Vertical
transmission (from parents to offspring), b) Oblique transmission (from a leader
of a society to the followers) and c) Horizontal transmission (from peer to peer
interactions). Norm propagation is achieved by spreading and internalization of
norms. Boman and Verhagen [7, 15] have used the concept of normative advice
(advice from the leader of a society) as one of the mechanisms for spreading
and internalizing norms in an agent society. The work done by Savarimuthu et
al. [16] uses a distributed approach for normative advise based on the notion of
leadership. Another recent development is the consideration of the role of net-
work topologies on norm emergence [17, 18]. Sen et al. [19] have experimented
with the emergence of traffic norm using social learning. In his well known work,
Axelrod [2] has shown the role of metanorms to be effective in norm emer-
gence. He also discusses several other approaches that might be useful for norm
establishment which include the role of power, reputation, internalization and
punishment. The contribution of this paper to this area are two fold. Firstly, we
investigate Axelrod’s statement that social norms are better suited for preventing
smaller defections when the enforcement costs are low using social simulations
in the context of norm emergence. Secondly, we introduce the notion of common
knowledge that can help sustain norms in agent societies.

3 Experimental Setup and Parameters

Multi-Agent Based Simulation (MABS) is a inter-disciplinary research area
which brings together researchers within the Agent-Based Social Simulation
community (ABSS) [20] and the Multiagent Systems community (MAS). MABS

Social Norm Emergence in Virtual Agent Societies 21

researchers use simulation as a mechanism to experiment with and validate new
hypotheses (both social and computational theories). Simulations are used as
tools that provide explanations for behaviours exhibited by complex systems.
Simulation tools help researchers to investigate the implications of a strategies
adopted by participating agents by running simulations starting from different
initial conditions [21]. Adopting this approach, we have set up a simulation en-
vironment with multiple agents that interact in a social context.

We model agents in our virtual society as particles moving in a 2 dimensional
space of linear size L. This virtual environment can be considered as a communal
region such as a park. The agents explore and enjoy the park by moving around.
Collisions of these particles in the virtual space represent interactions between
agents in a social space as shown in figure 1. Each collision corresponds to two
agents observing each other’s actions. When two agents interact (when they
meet each other within certain area of the park) they can observe each other
performing one of the two actions, Litter (L) or Not Litter (NL), i.e. keep the
environment clean. The payoff matrix that corresponds to the littering scenario
is given in table 1.

An agent in our society starts with a score (s) of 100. When an agent litters, it
gets a payoff of 0.5 while the cost associated with non littering is -0.5. These are
the payoffs to an individual agent. When an agent litters, it pollutes the area

Fig. 1. Simulation of the park scenario (100 agents)

22 B.T.R. Savarimuthu et al.

Table 1. Payoff matrix

L NL
L 0.5, 0.5 0.5,-0.5

NL -0.5, 0.5 -0.5,-0.5

that belongs to the commons. So, this can be considered defecting the entire
society. This impacts the productivity of the society. Productivity refers to the
benefits that the park users will receive in using the park. This has been modeled
using a variable prod that holds values from 0 to 1. The value of 1 represents
the clean state of the park while 0 represents a littered, unusable park. Initially
the productivity of the park is set to 1. When an agent litters, the productivity
of the park goes down. For every X littering actions the productivity value is
reduced by 0.01. The value of X was set to 10 in our system. The final payoff
value is the sum of the individual payoff and the productivity of the system.

Let us now assume that the society does not have a law against littering and
hence there is no centralized policing mechanism. In this scenario, any agent
that believes that there should be no littering in the society, might choose to
punish the other agent whom it observes littering. A punishment cost (Pcost)
is incurred by the non-litterer when punishing a littering agent. Every agent
in the society is initialized with an autonomy value from 0 to 9 based on a
uniform distribution. Autonomy refers to the stubbornness of the agent. This
value governs the number of punishments required by an agent to move from L
to NL (change of strategies).

Another parameter that we have defined in the system is the minimum Sur-
vival score (Sscore).When an agent’s score, s goes below Sscore or the productivity
of the system goes below 0.5 (prod< 0.5), it changes its strategy (moves from L
to NL). Sscore is set to 50 in our experiments.

4 Experiments and Results

4.1 Role of Punishments with Low Enforcement Cost

In the first experiment there are 100 agents, 50 agents of type L and 50 of type
NL. In every society there will be certain percentage of agents that are vengeful
enough to punish another agent when they observe certain behaviour that they
consider to be inappropriate. Let us assume that there are certain percentage
of non-littering agents that are punishers (p=0.05, 0.10 and 0.25). Pcost is kept
low (0.01) in these experiments.

In each iteration two agents are randomly chosen to interact. We conducted ex-
periments over 6000 iterations. At the end of the simulation, we observe whether
a littering or non-littering norm emerges. In our experiments we consider a
norm to have emerged if all the agents are either of type L or NL (100% norm
emergence). In other works, the value for norm emergence has varied from 70%
to 100%.

Social Norm Emergence in Virtual Agent Societies 23

Fig. 2. Emergence of norm against littering in an agent society

Figure 2 shows 6 different lines. For each p value, there are two lines, one
respresenting the number of litterers and the other representing the number of
non-litterers. As the number of litterers decreases, the number of non-litterers
increases (and vice versa). For this reason, these lines for a given p value, are
the mirror images of each other. It is of interest to observe whether the littering
or non-littering group reaches the value of 100. All the 6 lines start from a value
of 50. Note that non-litterers are represented using hollow symbols while the
litterers are shown using solid symbols.

It can be observed from figure 2 that as the number of punishers increases,
the norm against littering is established. When the values of p are 0.10 and
0.25, the system converges to a norm against littering. When the value of p is
0.05, there aren’t enough punishers in the system. Hence, the productivity of the
society drops gradually and falls below the minimum level which results in the
establishment of littering norm. Once there are adequate number of punishers,
the cost of punishment is spread across the non-littering punishers, hence their
individual scores do not reach the minimum threshold and they are successful
in converting the litterers to become non-litterers.

Wikipedia is a good example of a system where more number of enforcers are
needed to maintain the quality of the articles at a reasonable level. Members of
Wikipedia have been successful in establishing a norm of collaboration using a
peer to peer mechanism based on careful scrutiny of the content.

Figure 3 shows three different productivity lines that correspond to the results
reported in figure 2. It can be observed that when there were adequate number
of punishers p = 0.1, 0.25, the productivity of the society gradually improved

24 B.T.R. Savarimuthu et al.

Fig. 3. Productivity of the society

and was sustained (prod = 1) in the end. When the litterers took over (p = 0.05)
due to lack of enough punishers, the value of productivity plummeted to 0.

So, the important characteristics that governs this change are the autonomy of
the individual agents (littering agents), the minimum score of productivity and
the minimum threshold for survival (Sscore). If a society has large autonomy
values and high threshold for survival or productivity, the system will end up
with litterers.

This type results can be observed in many social interactions. For example,
when you go to a restaurant, if you were the first ones, you might be polite
and keep your voice low when interacting with your friends. As the restaurant
becomes crowded, you might observe the noise levels rising. As the noise level
increases, there is no incentive for you to keep your voice down. Moreover, you
might be forced to speak out loud as that is the only way you might be heard by
others. This case is similar to the litterers becoming non-litterers after certain
threshold is surpassed.

4.2 Role of Punishments with High Enforcement Cost

This experiment shows that when the enforcement cost increases the system
drives all the agents to litter. This experiment shows the behaviour of the system
for three different values of punishment cost (Pcost = 0.1, 1, 10). There are 25%
punishers in a society for all the three experiments. Again, note that non-litterers
are represented using hollow symbols while the litterers are shown using solid
symbols.

It can be observed from figure 4 that lower enforcement costs (Pcost = 0.1,
1) resulted in a non-littering norm while the higher cost (Pcost =10) resulted in
littering norm. When Pcost was set to 10 the society initially had more number
of non-litterers (till iteration 1000). Soon, the survival score(Sscore) of punishers

Social Norm Emergence in Virtual Agent Societies 25

Fig. 4. Emergence of norm against littering in an agent society (p=0.25)

fell below the minimum threshold due to high punishment cost. The non-littering
punishers then became litterers and hence the littering norm was established in
the society.

From this experiment it can be inferred that social norms can successfully be
established and sustained against smaller defections when the costs of enforce-
ments are low. But for norms that require larger costs of punishment (e.g. honour
killing), social norms might not be very useful. In those cases, institutionalized
mechanisms such as laws would be best suited.

4.3 Conditional Punishment Based on Common Knowledge

In human societies we tend to gather information about the state of the world
through certain common knowledge sources such as newspapers, television, radio
and even from some influential, well connected people. At any point of time,
not everyone in the society might know about the current state of an issue or a
problem. But, once some information is available through the common knowledge
sources, it can be assumed that there would be an increase in the awareness of
the situation in the society. Chwe [22] describes the role of common knowledge
in solving coordination problems. In this section we describe our experiment on
how common knowledge helps with in the context of social littering.

Let us assume that a common knowledge source is available (e.g. a newspa-
per). This common knowledge source periodically informs the agents about the
state of the park. The agents in the society can choose to look at the infor-
mation available from the knowledge source periodically. Based on the informa-
tion available, the agents can choose to react. For example, whenever the park’s

26 B.T.R. Savarimuthu et al.

Fig. 5. Comparison of emergence of norm against littering - with and without Common
Knowledge (CK)

productivity is less than certain value (prod < 0.75 in our experiment), the non lit-
tering agents can choose to punish. For example, say there were only 5% of the non-
litterers were punishers originally. After the information is known to all the other
non litterers (remaining 45% of non-litterers), can choose to punish the litterers
based on a conditional probability which is their vengefulness value. Each non-
littering punisher agent has a vengefulness value (V) which is similar to the au-
tonomy value and this is initialized at the start of the experiments. A non-littering
punisher with vengefulness value of 8 will punish a litterer 8 out of 10 times.

Figure 5 shows a comparison of punishment mechanisms with and without
the use of common knowledge keeping Pcost=0.1 as a constant. The figure shows
four lines that correspond to the establishment or fading of the non-littering
norm. We have omitted the lines that show the trend lines of the littering norm
for the sake of clarity of the diagram.

When p=0.05, the punishment mechanism that makes use of common knowl-
edge results in a non-littering norm (hollow triangles) while the mechanism that
does not use common knowledge results in a littering norm (solid triangles).
When p=0.10, the punishment mechanism that uses common knowledge (hol-
low squares) converges faster than the one that does not use it (solid squares).
So, it can be inferred that the availability of common knowledge has increased
the rate of establishment of a norm against littering in one case (p=0.10) and
has resulted in the emergence of a new norm in another (p=0.05).

Social Norm Emergence in Virtual Agent Societies 27

5 Discussion and Future Work

The results presented in this paper demonstrate that norms can be established
through a bottom-up process based on a distributed, peer to peer punishment
mechanism. The results obtained in our experiments are in agreement with Ax-
elrod’s statement that the norms are best in preventing smaller defections when
the cost of enforcement is low. Also, it was shown that common knowledge can
be used as a mechanism for improving norm establishment when used in con-
junction with the punishment mechanism.

We agree that our results are preliminary. However, this work is aimed towards
experimenting with mechanisms that might be suitable for generating norms in
a bottom-up approach than a prescriptive top-down approach. In particular, our
work is relevant for virtual online societies where behavioural norms should be
derived by the agents themselves rather than adhering to an enforced law.

We are currently extending our simulation scenario to include agents of dif-
ferent personality types. Another extension to our system is to experiment with
the emergence of different norms among different sub-groups within an agent
society. To achieve that we need an application domain that has more states
than a simple co-ordination game. Another important extension is to test the
model on network topologies as agents evolve norms based on the influence from
agents that they are connected to. The concept of distributed norm emergence is
applicable to many applications in agent societies (e.g. buyer-seller scenarios in
supply chain management, file sharing). A fertile ground for the study and ex-
perimentation of new mechanisms for norm emergence are the social networking
applications.

Furthermore, norm emergence in digital societies can be studied using real
data collected from social networking sites. New mechanisms for norm emergence
can be experimented and applied on services such as file sharing on the Internet.
Further investigations on norm emergence mechanisms are important because we
believe that the future of the digital world will be played in digital environments
where the software agents that act on behalf of human users might want to
emerge norms rather than accepting an enforced norm.

References

1. Elster, J.: Social norms and economic theory. The Journal of Economic Perspec-
tives 3(4), 99–117 (1989)

2. Axelrod, R.: An evolutionary approach to norms. The American Political Science
Review 80(4), 1095–1111 (1986)

3. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: Off-line
design. Artificial Intelligence 73(1-2), 231–252 (1995)

4. Second life, http://secondlife.com/
5. Habermas, J.: The Theory of Communicative Action: Reason and the Rationaliza-

tion of Society, vol. 1. Beacon Press (1985)
6. Horne, C.: Sociological perspectives on the emergence of norms. In: Hechter, M.,

Opp, K.D. (eds.) Social Norms, pp. 3–34 (2001)

http://secondlife.com/

28 B.T.R. Savarimuthu et al.

7. Boman, M.: Norms in artificial decision making. Artificial Intelligence and
Law 7(1), 17–35 (1999)

8. Conte, R., Falcone, R., Sartor, G.: Agents and norms: How to fill the gap? Artificial
Intelligence and Law 7(1), 1–15 (1999)

9. Castelfranchi, C., Conte, R.: Cognitive and social action. UCL Press, London
(1995)

10. Boella, G., Torre, L., Verhagen, H.: Introduction to the special issue on normative
multiagent systems. Autonomous Agents and Multi-Agent Systems 17(1), 1–10
(2008)

11. López y López, F., Márquez, A.A.: An architecture for autonomous normative
agents. In: Fifth Mexican International Conference in Computer Science (ENC
2004), pp. 96–103. IEEE Computer Society, Los Alamitos (2004)

12. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Norm-
oriented programming of electronic institutions. In: Proceedings of The Fifth In-
ternational Joint Conference on Autonomous Agents and Multi Agent Systems,
AAMAS, pp. 670–672. ACM Press, New York (2006)

13. Boella, G., van der Torre, L.: An architecture of a normative system: counts-as con-
ditionals, obligations and permissions. In: Proceedings of The Fifth International
Joint Conference on Autonomous Agents and Multi Agent Systems, AAMAS, pp.
229–231. ACM Press, New York (2006)

14. Boyd, R., Richerson, P.J.: Culture and the evolutionary process. University of
Chicago Press, Chicago (1985)

15. Verhagen, H.: Norm Autonomous Agents. PhD thesis, Department of Computer
Science, Stockholm University (2000)

16. Savarimuthu, B.T.R., Purvis, M., Cranefield, S., Purvis, M.: Mechanisms for norm
emergence in multi-agent societies. In: Sixth International Joint Conference on Au-
tonomous Agents and Multi-agent Systems (AAMAS 2007), pp. 1097–1099 (2007)

17. Pujol, J.M.: Structure in Artificial Societies. PhD thesis, Software Department,
Universitat Politénica de Catalunya (2006)

18. Savarimuthu, B.T.R., Cranefield, S., Purvis, M., Purvis, M.K.: Role Model Based
Mechanism for Norm Emergence in Artificial Agent Societies. In: Sichman, J.S.,
Padget, J., Ossowski, S., Noriega, P. (eds.) COIN 2007. LNCS, vol. 4870, pp. 203–
217. Springer, Heidelberg (2008)

19. Sen, S., Airiau, S.: Emergence of norms through social learning. In: Proceedings
of Twentieth International Joint Conference on Artificial Intelligence (IJCAI), Hy-
derabad, India, pp. 1507–1512. MIT Press, Cambridge (2006)

20. Davidsson, P.: Agent based social simulation: a computer science view. Journal of
Artificial Societies and Social Simulation 5 (2002)

21. López-Sánchez, M., Noria, X., Rodŕıguez, J.A., Gilbert, N.: Multi-agent based
simulation of news digital markets. IJCSA 2(1), 7–14 (2005)

22. Chwe, M.: Rational Ritual: Culture, Coordination and Common Knowledge.
Princeton University Press, Princeton (2001)

A Distributed Normative Infrastructure for
Situated Multi-agent Organisations

Fabio Y. Okuyama1, Rafael H. Bordini2, and Antônio Carlos da Rocha Costa3

1 Universidade Federal do Rio Grande do Sul, Brazil
okuyama@inf.ufrgs.br

2 University of Durham, United Kingdom
R.Bordini@durham.ac.uk

3 Universidade Católica de Pelotas, Brazil
rocha@atlas.ucpel.tche.br

Abstract. In most of the existing approaches to the design of multi-agent sys-
tems, there is no clear way in which to relate organisational and normative struc-
tures to the model of the environment where they are to be situated and operate.
Our work addresses this problem by putting together, in a practical approach
to developing multi-agent systems (and social simulations in particular), a high-
level environment modelling language that incorporates aspects of agents, organ-
isations, and normative structures. The paper explains in some detail how the
ideas of normative objects and normative places, put together as a distributed
normative infrastructure, allow the definition of certain kinds of situated multi-
agent organisations, in particular organisations for multi-agent systems that op-
erate within concrete environments. Normative objects are environment objects
used to convey explicitly normative content that regulates the behaviour of agents
within the place where such objects can be perceived by such agents. The paper
defines these concepts, shows how they were integrated into the MAS-SOC multi-
agent systems platform for social simulation, gives examples that illustrate the
approach, and hints on new problems of (situated) organisational and normative
structures that were brought forward by the work presented here.

1 Introduction

Multi-agent systems (MAS) are typically composed of agents, an environment, organi-
sational structures, and means of interaction among those components. Organisational
structures for multi-agent systems have been usually defined in a non-situated way, by
which we mean independently of the environment where the system is to operate. In
face of this issue, when a MAS is to be situated in a environment, there appears to be
a ‘gap’ between the environment and the organisational structures, since no connection
can be made between elements of the organisational structure and the physical places
where such elements operate.

Furthermore, most current approaches to normative multi-agent systems [1] address
the various issues on how norms can be defined, enforced, and so forth but with no clear
indication on how those approaches can be used in the practical development of MAS.
The work reported in this paper aims to address both these issues of state-of-the-art
normative multi-agent systems.

M. Baldoni et al. (Eds.): DALT 2008, LNAI 5397, pp. 29–46, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

30 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

At first sight, the connection between environment and organisation could appear to
be unimportant for the modelling and understanding of the system. However, as one
recognises that the physical environment may influence the operation of the organisa-
tion and of the agents that work in it, one also has to recognise that the explicit con-
nection between organisational structures and environmental structures may be of some
importance for the concrete realisation of such situated organisations.

In particular, the connection between organisational and environmental structures
and processes is important when one is dealing with organisations whose normative
structure does not operate in a homogeneous way throughout the physical environment.
That is, it is important for organisations where the rules that regulate the behaviour
of the agents vary according to the different places where the agents are located. For
instance, in a certain factory, workers that are located in an excessively noisy room
may be required to work no more than two consecutive hours with a break of at least
twenty minutes, while workers that are located in a less noisy room may be allowed to
work more consecutive hours without a break. Also, organisations often make use of
norms that are spatially and temporally bounded — that is, norms that refer to some
specific places and times, and not to others. Simple behavioural regulations are often
of this kind, for example in signs such as “Please keep silence” and “Do not enter after
18:00h”. Moreover, locations and physical objects may be used by organisations to the
empowering of their agents. For example, porters are given the authority to check and
control anyone entering or leaving a building, and one signal of that authority is the
place where they conduct their work.

In other words, in many situations organisations regulate their operation by mak-
ing use of physical resources (objects and places) as means for the propagation and
instantiation of norms and agent powers. Lacking an explicit connection between or-
ganisational and environmental structures represents, thus, a conceptual gap between
the modelling of organisations and their realisation in concrete multi-agent systems.
Often the problem is not noticed because in most approaches norms are given at a
very abstract level, which then has the effect of making it difficult for norms to be
implemented in practice (i.e., to be formulated in a way that agents can interpret and
follow them).

It is precisely the gap between environmental and organisational/normative struc-
tures that we intend to bridge in our current work and, importantly, in such a way that
can be directly implemented through a combination of our previous work on environ-
ment modelling with an agent-oriented programming framework, as well as with ex-
isting organisational models and normative languages. In particular, we have extended
the MAS-SOC [2] multi-agent based simulation platform to incorporate the approach
presented in this paper. Based on [12], which presents the ELMS language for environ-
ment description, and on [14], where notions of a normative infrastructure is presented,
we have developed an approach for relating environmental structures to normative or-
ganisational structures of multi-agent systems, as reported in this paper.

In brief, with the extensions proposed here, the ELMS language for environment de-
scription has been extended to support situated organisations through situated norms
and situated group structures. This was done by two means: first, we developed a dis-
tributed normative infrastructure, which is the structure that allows the distribution of

A Distributed Normative Infrastructure for Situated Multi-agent Organisations 31

normative information over the spatial environment; and second, we defined a norma-
tive principle, associated with the design of MAS, and conceived as a special form of a
conditional deontic rule, where an explicit condition on an agent’s perception of a norm
is included:

Agent A, when playing the relevant role to a norm N and being physically
situated within the confines referred to by a normative object O carrying the
norm N , is expected to reason about following N , if the agent perceived O;
otherwise, agent A is exempted from reasoning about N .

In other words, the normative infrastructure is meant to provide the required elements
to allow the agent to take the decision if it will follow the norms. Since our main goal
is to provide means to enable the development of social simulations with cognitive
agents, it is mostly the case where the norm-breaking behaviour would be desirable
(to the designer of the simulation) in order to observe how the other agents (playing
organisational roles) would react in such situation.

In this paper, we present the results we have achieved so far, and hint on some of the
new avenues that the current work opened for further research. In Section 2, we give
the background to our work, summarising the main ideas of the MAS-SOC platform,
and the AgentSpeak language as interpreted by the Jason interpreter, which we use to
program the agents’ reasoning. In Section 3, we quickly review the environment lan-
guage that we defined for describing physical environments. In Section 4, we summarise
the idea of a distributed normative infrastructure for situated multi-agent organisations,
introducing the concepts of normative object and normative place. In Section 5, we dis-
cuss the way norms are integrated into the MAS-SOC platform, in particular the way
norms can be represented, contextualised, interpreted, and checked. Section 6 discusses
various issues brought forward by our work. Section 7 discusses some related work.
The conclusions of this paper are given in Section 8.

2 Background

We are developing a simulation platform called MAS-SOC (Multi-Agent Simulations
for the SOCial Sciences). Its purpose is to provide a framework for the creation of
agent-based simulations which do not require too much experience in programming
from users, yet allowing users to use state-of-the-art agent technologies. In particular, it
should allow for the implementation of simulations with cognitive agents.

In our approach, the agents’ reasoning is specified in an extended version of
AgentSpeak (an abstract programming language for BDI agents introduced by
A. Rao [16]), as interpreted by Jason, an agent platform based on Java [3].

The environment where agents are to be situated are specified in ELMS
(Environment Description Language for Multi-Agent Simulation), a language specially
designed for the description of multi-agent environments. Further references about the
ELMS language can be found in [13].

Until recently, the description of shared environments for situated multi-agent sys-
tems [20] had not been thoroughly addressed in the literature on agent-oriented software
engineering, as the environment where agents of multi-agent systems were to be situated

32 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

used to be considered as “given” rather than an essential part of the engineering of such
systems.

In [14], extensions to ELMS were made in order to introduce a distributed norma-
tive infrastructure within a (simulated) physical environment. Through the use of such
infrastructure, an organisation can be integrated into the environment. However, those
extensions only provide the means to situate the organisations within an environment.
The concepts of normative objects, normative places, and norm supervisors introduced
to the language are meant to bridge the above mentioned gap between environment
structures and organisation structures, helping to support the proper instantiation of an
organisation in an environment.

3 The ELMS Language

According to [21], agents are computational systems situated in some environment, and
are capable of autonomous action in this environment in order to meet their design ob-
jectives. Therefore, the environment has an important role in the specification, design
and implementation of a MAS, whether it is the Internet, the real world, or some sim-
ulated environment. Even when the environment of the multi-agent system is the “real
world” and the agent is embodied in a robot with sensors and effectors, the environment
model should play a significant role in the design of the system. Any robot should have
a set of sensors that give a predefined set of percepts that the robot will acquire when
sensing the environment. Also, it should have a set of effectors that allow a restricted
set of (parameterisable) actions. Thus, the possible sensor inputs and effectors output
should be modelled first to facilitate the development of the software for the robot.

We understand by environment modelling, the modelling of all of the external world
that an agent needs to know about for reasoning and deciding on courses of action.
Agents themselves should also be considered components of the environment insofar
as, from the point of view of an agent, any other agent is also part of the environment.

Thus, to define agents from this point of view, it is necessary to include in the de-
scription of the environment all properties that define the aspects of the “body” of each
agent, which represent the properties of an agent that are perceptible to other agents.
Furthermore, it is necessary to model explicitly the physical actions that agents are
allowed to perform and the perception capabilities they have in their environment.

Through the definition of actions and perceptions, we define the physical rules of the
environment (e.g., no one may see or pass through a wall) that must be satisfied in order
to ensure the meaningfulness of the system model. This is in contrast to the norms of
a organisational structure, which an agent may reason upon and decide to breach, with
no implication to the meaningfulness of the system.

The objects that are part of an environment can be modelled as a set of properties
and a set of reactions that characterise the behaviour of such objects in response to
stimuli. They are treated as reactive components; only agents are pro-active, through
their reasoning and deliberation processes.

From the point of view of the ELMS language, the deliberative activities of an agent
are not relevant and are left out of the description of the environment, since they are
internal to the agents (i.e., they are not physically perceived by the other agents). As

A Distributed Normative Infrastructure for Situated Multi-agent Organisations 33

mentioned before, in the MAS-SOC platform, the mental aspects of agents are de-
scribed in the AgentSpeak language.

Below, we briefly review how an environment is described using this language. In
section 3.1 we describe the modelling of agent “bodies”, and in Section 3.2 the physical
environment.

3.1 Modelling Agent Bodies

In the environment description, agents are characterised through the definition of classes
of agent bodies, agent sensorial capabilities, and agent effective capacities.

Agent Body: The agent’s characteristics that are perceptible to other agents. In our
approach, classes of agent bodies are defined by a set of properties that characterise
them and are perceptible to other agents. Each body is associated with a set of actions
that it is allowed to perform and a set of environment properties that it can perceive.

Agent Sensorial Capabilities (Percepts): Each sensorial capability is used to specify
which environment properties will be perceptible to each agent that has a “body” with
such capacity. It determines the environmental properties that will be sensed by the
agent and the specific circumstances where they are possible. If the preconditions are
all satisfied, then the values of those properties will be made available to the agent’s
reasoning procedure as the result of the agent’s perception of the environment.

Agent Effective Capacities (Actions): These are the capabilities of performing actions
in the environment that are made available to each class of agent body. Each definition
of an action determines the environmental changes that such action can make when
performed by an agent that has a body with such capacities. These changes are defined
as assignments of values to the attributes of the environment. As the choice on (courses
of) actions is meant to be part of the agent’s “mind”, something that is more naturally
seen as a whole series of actions should not be implemented as one action available to
agents at the environment level.

3.2 Environment Modelling

The environment is modelled by the definition of the objects available in the environ-
ment, the reactions that such objects might produce, and the spatial representation of
the environment. Each of these form specific language constructs classified as follows.

Physical Environment Objects: The objects that are present in the environment.
Agents interact with objects through the actions they perform in the environment, and
by perceiving them. Object structures are defined by a set of properties that are relevant
to the modelling and that could potentially be perceived by agents. The reactions that a
class of objects can have is given by a list of identifying labels.

Object Reactions: The objects can “react”, under specific circumstances, responding
to actions performed by the agents in the environment.

Space Representation: The spatial representation of the environment can be done as
a grid or a graph, according to the requirements of a particular simulation or design
preferences. When a grid is used, the space is divided into cells forming a grid that

34 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

represents the spatial structure of the environment, either in 2 or 3 dimensions. As for
resources, each grid cell can have reactions associated with them. When a graph is used,
the space is represented by nodes connected by links. As the cells of the grid, each
node of the graph represents a spatial location, where reactions may occur in response
to some action performed on it. The links represent connections between places that
agents can follow, and may have weights or values associated with them, according to
the needs of each particular project. In both grid- and graph-base spaces, the granularity
of the spatial representation should follow the requirements of the application.

4 Normative Infrastructure

Certain real environments have objects aimed at informing “agents” about norms, give
some advice, or warn about potential dangers. For example, a poster fixed on a wall in a
library asking for silence is an object in the environment, but also informs about a norm
that should be respected within that space. The existence of such signs, which we call
normative objects, implies the existence of a regulating code in such context, which we
call situated norm.

Situated norms are only meant to be followed within certain boundaries of space or
time, and lose their effect completely if those space and time restrictions are not met.
Another important advantage of modelling some norms as situated norms is the fact
that the spatial and temporal context where the norm is to be followed is immediately
determinable. Thus, the norm can be “pre-compiled” to its situated form, making it
easier for the agents to operationalise the norm, and also facilitating the verification of
norm compliance.

The normative infrastructure is intended to provide a means to inform the agents
about the norms in a specific spatial context, allowing the agents to reason about norms
of which they may have no previous knowledge. Also, the normative infrastructure has
no specific enforcing nature, as the agents might not perceive (or may pretend to have
not perceived) some of the normative objects, when they should.

In this section we present the extensions to ELMS that are meant to provide an in-
frastructure allowing the distribution of normative information within an environment.
We refer as normative infrastructure, the concepts introduced in ELMS in order to al-
low the distribution of norms over the environment, while we use normative structure
to designate a structured set of norms, some of which may be expressed by instances of
normative objects and places, thereby regulating some agent organisation.

4.1 Normative Objects

Normative objects are “readable” by agents under specific individual conditions; that
is, an agent can read a specific rule if it has the ability to perceive that type of object,
at the location where the object is placed in the environment model. In the most typical
case, the condition is simply being physically close to the object.

Such objects can be defined before the simulation starts, or can be created dynam-
ically during the simulation. Each normative object can be placed in a collection of
cells/nodes of the spatial representation of the environment. For example, a cell or group
of cells of an environment grid can be used to represent a normative place, determining

A Distributed Normative Infrastructure for Situated Multi-agent Organisations 35

the first condition for the normative object being perceived: it is only within that nor-
mative place that the content of the normative object is relevant. The conditions under
which the normative objects can be perceived are defined by the simulation designer
using the constructs for defining perception conditions.

The normative information in a normative object is “read” by an agent through its
usual sensing/perceptual abilities. It contains the norm itself and also meta-information,
as follows:

Id: Identification string, for the management of the normative object within the system.

Norm: A string that represents the normative information; this can be in any format that
the targeted agents are be able to understand — for instance, AgentSpeak terms in the
case of ELMS environments in the MAS-SOC platform. However, to enforce a uniform
norm specification format over all applications, a fixed format should be adopted. For
practical reasons, we have chosen the policy language REI [11] for such purpose.

Type: The type of the normative information contained in the object; it determines the
level of importance (e.g., a warning, an obligation, a direction);

Issued by: Agent or group that issued the norm;

Source: Where the power underlying the norm issuance comes from; this could be the
role that was being performed by the agent when issuing the norm, and the organisation
(or group) that endorses such role;

Addressees: The organisational components (agent groups and agent roles) to which
the normative information applies.

Placement: The set of normative places where the normative information applies. If
omitted, the object is assumed to be valid everywhere in the environment, but normally
only under the specific conditions determined by the designer (see the next item).

Condition: Conditions under which the normative information can be perceived. The
conditions can be associated with physical location, time, perception capabilities, spa-
tial orientation of agents and objects, etc.

It is worth noting that norm-abiding behaviour is not related just to the existence of
a normative object at some place. Beyond the existence of such object, it is necessary
for the agent to physically perceive the normative object. Besides, autonomous agents
will also reason about whether to follow or not the norm stated by the normative object,
if and when they perceived it. This suggests that various specific problems should be
tackled, concerning the study of agent reasoning about situated normative objects, a
topic we discuss in Section 6.

4.2 Normative Places

Normative places are abstractions to define the boundaries of spatial locations where
a set of related activities are done, or where groups of agents interact, and where
some specific norms are valid and relevant. These places are also the physical spaces
where the components of an organisational structure are located; that is, a normative
place constitutes the spatial scope of an organisation, as well as the norms related to that

36 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

organisation. The relevant normative information for each place is usually stored there,
through the use of normative objects.

A normative place is defined simply by an identification label (a name) and the spec-
ification of its spatial boundaries, which is defined by the set of cells of the grid that are
part of it (or, the nodes of the graph, according to the spatial representation being used).
For each normative place, a set of local roles is defined to be located at such place,
so that the roles that are present in such spatial context are regulated through norms
embedded in the normative objects that are placed in that space.

A normative place may have intersections with other normative places, or may even
be contained by another. For example, a “school” may be seen as a normative place
encompassing a large portion of the environment grid where some of those grid cells
refer to a normative place “classroom” and others to a normative place “library”.

The area covered by a normative place may increase or decrease during a simula-
tion, since we are dealing with possibly dynamic environments, which may be associ-
ated with possibly dynamic organisations. Thus, the influence area of an organisation
may expand or reduce dynamically, according to the requirements of the application, by
changing the set of cells or nodes defined to belong to such normative place, which can
be done by an agent empowered to effect such change. Such changes may occur under
two circumstances: first, when the organisation deliberately rearranges the area where
it needs to influence agent behaviour; and second, when the organisation acknowledges
that the agent behaviour prescribed in a particular place has become more widely prac-
ticed by the agents themselves, so the organisation changes its area of operation (a
normative structure) to reflect the actual (emergent) agent behaviour.

Similarly, different social behaviour might emerge if we rearrange the distribution of
normative objects within a normative place where a particular organisation is situated,
or if we create new normative objects. Clearly, these situations appear in many social
situations, and having high-level abstractions available to model such situations can
greatly facilitate the development of social simulations.

5 Using Norms

5.1 Norm Contextualisation

Normative objects are not supposed to be means of broadcasting general norms. The
norms informed through normative objects should be contextualised (by the system
designer or the agent that created the norm), incorporating specific information about
the normative place where it is relevant.

As the spatial context of the norm is bounded and determined by its normative place,
a generic abstract norm can be “pre-compiled” using such information, in order to make
it less abstract. This process is meant to facilitate norm operationalisation, as such con-
crete norms are “ready to use” in the spatial scope where it is relevant. Other advan-
tages of having less abstract norms are that the verification of norm compliance is
facilitated and that they can reduce misinterpretations that could occur with abstract,
non-contextualised norms.

For example, a norm that says “be kind to the elderly” can be quite hard to oper-
ationalise and verify, in general. However, in a fixed spatial context, such as a bus or

A Distributed Normative Infrastructure for Situated Multi-agent Organisations 37

a train, with the norm contextualised as “give up your seat for the elderly”, or in a
street crossing with the norm contextualised as “help elderly people cross the street”,
the norm would be much easier for the agents to interpret, and easier to verify using any
norm-compliance checking mechanism.

5.2 Policy Language

In the MAS-SOC platform, the norms contained in the normative objects can be ex-
pressed simply as valid AgentSpeak predicates. In order to represent the norms in a
uniform way in all simulations, we have adopted the policy language REI [11]. REI is a
policy language aimed at the definition of policies for pervasive computing, being well-
suited to our platform, as the pervasive computing paradigm is very close to the notion
of having different normative places in a physical environment. In the REI language,
there are constructs to define rights, prohibition, obligations, and dispensations. Also,
the language has many other constructs, which include specific ones to solve conflicts,
action specification, and rights delegation. A detailed description of the language can be
found at http://www.cs.umbc.edu/∼lkagal1/rei. Below, we present some
of the main constructs available in the REI language, summarised from [11].

Rights, prohibitions, obligations, and dispensations:

has(agent ag, right(action act, Conds)): means that agent agent ag
has the right of executing action action act if expression Conds is satisfied. The
notion of right or permission can be interpreted as the deontic expression ∼O∼.

has(agent ag, prohibition(action act, Conds)): means that agent
agent ag is prohibited from executing action action act if expression Conds is sat-
isfied. The notion of prohibition can be interpreted as the deontic expression O∼.

has(agent ag, obligation(action act, Conds)): means that agent
agent ag is obliged to execute action action act if expression Conds is satisfied.
The notion of obligation can be interpreted as the deontic operator O.

has(agent ag, dispensation(action act, Conds)): means that agent
agent ag is dispensed from executing action action act if expression Conds is sat-
isfied. The notion of dispensation can be interpreted as the deontic expression ∼O.

Definition of priorities:

overrides(A1,B1): means that rule A1 overrides rule B1.

5.3 Library of Norm-Considering Plans

In order to facilitate the programming of normative agents, we developed plans to deal
with the reasoning and deliberation about certain kinds of norms. Those plans are or-
ganised in files that can be imported from another file by the use of the include
directive in Jason. Since such plans are available as plain files, it is also possible to use
them as templates to build customised plans according to the requirements of individual
projects.

For example, in order to program an agent that never violates a prohibition to
execute an action a, one should replace in its program, every occurrence of a by
!execute(a), and also include the following plans in the agent’s plan library:

38 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

+!execute(Action)
: not prohibition(Action,_)
<- Action.

+!execute(Action)
: prohibition(Action,Condition)

& not Condition
<- Action.

+!execute(Action)
: prohibition(Action,Condition)

& Condition
<- .fail.

As another example, to program an agent that always accomplishes an obligation deter-
mined by an organisation it trusts, unless the agent turns out to be dispensed from it (or,
of course, if it violates some prohibition), the following plans can be used:
+has(Self,obligation(Action,Condition))[sourceOrg(SO)]

: .my_name(Self) & trusted(SO) & Condition
<- !checkDispensation(Action);

+!checkDispensation(Action)
: .my_name(Self)

& has(Self,dispensation(Action,Condition))
& not Condition

<- !execute(Action).

+!checkDispensation(Action).

In the code above, to handle the event that occurred because a new obligation was
perceived, the agent checks whether the organisation that endorses the norm is trusted; if
so, it checks the conditions of the obligation, and then it checks if there is a dispensation
for such obligation; if there is none, it will execute the action, after checking if there
is no prohibition on such action, as usual. The AgentSpeak code above is used to give
priority to prohibition: a prohibited action is never executed. However, priorities among
norms can be easily changed. In the code above, replacing !execute(Action) by
Action would cause the agent to give priority on the obligation over the prohibition.

A topic of research in normative multi-agent systems is precisely the definition of
general reasoning procedures to cope with various sorts of normative situations, such
as when an action is both desired and prohibited [1]. We have not yet addressed some
of these issues, in particular those that are controversial and still being debated at the
theoretical level.

6 Issues in Distributing Norms

6.1 Norm Monitoring

In our approach, we define a special class of agents, called norm supervisors, which mon-
itor other agents’ compliance to norms within an organisation. Since agents are free to
reason about abiding or not to a norm stated in a normative object, there is also the need

A Distributed Normative Infrastructure for Situated Multi-agent Organisations 39

to monitor the behaviour of those agents, at least in some applications. In order to be able
to act as a norm supervisor, an agent may need extra information and perhaps extra capa-
bilities. For this reason, it is possible to define, in ELMS, an agent as a norm supervisor,
which will enable it to receive information about the relevant normative structure as well
as about the actions being done by other agents in a given normative place.

Agents in charge of norm supervision could be agents that are not part of the actual
simulation being conducted, designed specially to check agents’ compliance to norms,
or could be “normal” agents that belong to the simulation, and whose interests require
that certain other agents follow certain norms. As the norm and the possible violations
are confined to a specific normative place, it is potentially easier to identify the possible
violations of those norms. The simulation designer may want to enable such capacity in
a agent just to help it achieving its goal, to use such information to monitor/debug the
simulation, or as an input to a reputation system, among other things.

For instance, according to [5], an agent may be motivated to verify the compliance
to norms by other agents in order to reassure itself that the costs of norm adherence is
being paid by the other agents too. A norm abiding agent will want that all the other
addressees of the norms follow it too, otherwise the norm adhering behaviour may
become some sort of competitive disadvantage. In [5], the authors refer to agents with
such behaviour as “norm defenders”.

6.2 Organisations and Environments

In most of the existing approaches for multi-agent organisations, such as MOISE+ [10],
the organisational structures are connected to the agent’s reasoning by the implemen-
tation or through communication messages. Our work is not intended to replace such
connection. In fact, we aim to intensify the interactions of agents and organisations,
by having both direct an indirect interactions. The connection of an organisation to an
environment, in our approach, can be done essentially in two ways:

Static: As shown in the left-hand side of Figure 1, from an (external) organisation
description, the designer can model the normative structure to reflect a static image
of an organisation, converting the organisational structures into roles and organisational

Environment

ag1
ag2

ag3

ag4

ag5

ag6

ag7

Norm

Norm

Norm

External
Organisation

Organisation
Image

Environment

ag1
ag2

ag3

ag4

ag5

ag6

ag7

Norm

Norm

Norm

External
Organisation

org

perceptionag

ii) Dynamic Environment-Organisation Bindingi) Static Environment-Organisation Binding

Normative Place A

Normative Place B

Normative Place A
Normative Place B

Fig. 1. Organisation and Environment Binding

40 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

links. The roles are attached to the normative places while the organisational behaviours
and links are prescribed by norms included in normative objects.

Dynamic: As shown in the right-hand side of Figure 1, agent ‘org ag’ obtains the infor-
mation available in the organisation description and dynamically changes the normative
structure in the environment. An agent, when receiving the percepts from the environ-
ment, may use this information as feedback to the organisational engine, which may
change the organisation. Agent ‘org ag’ may take part in the simulation or not, accord-
ing to the requirements of the application.

It seems that, by using either static or dynamic binding as described above, it is
possible to integrate an environment definition with most of the existing approaches to
multi-agent systems organisations such as [18, 10, 8, 6]. However, simplifications may
be required, and certain features of some approaches to agent organisations may not be
captured by the use of such integration.

6.3 Implicit Role Adoption

For each normative place, a set of local roles that are regulated by the normative ob-
jects present in such place can be defined. In each spatially and temporally bounded
normative place, an agent may adopt such temporary roles according to the activity it
is doing in that place. The adoption of such roles may happen in an explicit or implicit
manner.

An agent may have to explicitly identify itself to the other agents or institutions in
order to adopt a specific role. For example, in a website that offers banking transactions,
an agent may browse anonymously the public sections, but if it wants access to private
information about its account, it must authenticate itself (e.g., with a username and
password), explicitly adopting the role of an “identified user”, acquiring access to the
specific rights of that role.

Using special elements (spatial positioning, orientation, possession of certain ob-
jects, agents’ roles in organisational structures, etc.) an implicit role adoption may hap-
pen, which can be defined for each normative place with the use of simple rules. Below,
we give some examples (using pseudocode) of how this can be done:

Default role: a default role may be defined for each place; for example, the user role,
in a library:

default -> agent.role = user

Possession of an object: an agent may hold an object that associates it to a role; for
example an agent carrying a badge may be assigned the role of staff in a library:

agent.hasBadge -> agent.role in library = staff

Positioning: according to its position, an agent may have a specific role; for example
an agent in a moving car, seated at the driver’s seat, will be assigned the role of
driver:

agent in car AND agent.position = driver-position
-> agent.role in car = driver

A Distributed Normative Infrastructure for Situated Multi-agent Organisations 41

Relative role: a role in an organisation can be associated to the role performed in an-
other organisation:

agent.role in university1 = researcher
AND agent at university2
-> agent.role in university2 = visiting-researcher

6.4 Perception-Bounded Norm Reasoning

Given that a norm published through a normative object is only accessible as far as the
normative object itself is accessible (i.e., perceptible), the normative reasoning concern-
ing that norm is bounded by the boundaries of perception of the normative object. That
is, when an agent did not follow a norm that was supposed to be followed at a given
normative place, at least three different types of reason could explain that fact: (i) the
agent really did not perceive the normative object; (ii) the agent perceived the object
but not carefully enough to be able to grasp its normative content; and finally (iii) the
agent correctly perceived the object and its normative content, but decided not to follow
the norm.

The problem of norm abiding in normative situations, based on normative objects,
then, has to take into account not only the possibility that agents autonomously decide to
follow or not to follow the norms, but also the possibility that agents are not able to cor-
rectly perceive the normative objects. Issues such as responsibility, and others related to
norm abiding, incorporate thus not only the usual aspects of rationality and affectivity,
but also issues related to physical perception in concrete environments. Our approach,
by bridging the gap between environment, organisations, and normative systems, has
highlighted such issues.

6.5 Distribution of Normative Objects

Issues related to the adequacy of the distribution of normative objects in a normative
environment also arise when dealing with the kind of distributed normative infrastruc-
ture that we are proposing. That is, guaranteeing that the set of normative objects is
well distributed, and distributed in a satisfactory way, is an issue that should concern
the agents responsible for issuing normative objects or the system designer.

Moreover, regulation of normative exceptions is also often made with normative ob-
jects (e.g., “It is forbidden to smoke in this building, except in the areas marked with a
‘Smoking allowed’ sign”). Thus, guaranteeing that the hierarchical structure of norms
operating at a given normative place is well accessible and understandable to the agents
is also an issue for the regulating agents.

6.6 Modular Design of Normative Places

Using the abstractions of normative place and local roles, the roles referred to in each
normative place are strictly relative to the functions being performed in such place,
which may have no direct relation to existing roles in other parts of the organisation.
For example, consider a city as a multi-agent system. In a normative place “street”, an
agent driving a car will be playing the “driver” role, and another one not driving a car

42 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

will be playing the “pedestrian” role — this is regardless of whether they are a school
teacher or a hospital nurse in other places.

In such case, from the point of view of the design of such environment portion and
normative structure, the agents are simply moving from one place to another, irrespec-
tive of the various other roles that they may be playing for other organisations within
the city. The partitioning the environment into normative places, which can be done in
a modular way, reducing the interdependence of each part, facilitates the modelling of
large-scale simulations.

7 Related Work and Discussion

The notion of artifacts [19] and coordination artifacts [15] resembles, in some aspects,
our notion of normative objects. However, they are clearly a different concept. Coordi-
nation artifacts are defined as runtime abstractions that encapsulate and provide a coor-
dination service to the agents, but they express normative rules only implicitly, through
their automatic effects on the actions of the agents. So their impositive impact on agent
behaviour dismisses any need for normative reasoning on the part of the agents. In fact,
coordination artifacts preempt the agents’ freedom to overlook social norms and to de-
cide not to follow them. In our work, rather than having a notion of objects that by
their (physical) properties facilitate coordination, normative objects are used to store
symbolic information that can be interpreted by agents, so that they can become aware
of norms that should be followed within a well-defined location. Even if the general
notion of artifact is similar to ELMS objects and could also contain symbolic normative
information, one advantage of our approach is that it allows for a declarative language
in which to represent the environment, which is executed by the interpreter to simulate
the environment, whereas the existing implementations of artifacts provide a Java API
with which to program the environment model.

Our choice in regards to normative objects has the advantage of keeping open the
possibility of agent autonomy, as suggested in [4]. Agents are, in principle, able to
decide whether to follow the norms or not when pursuing goals. Another important
aspect is that normative objects are spatially distributed over a physical environment,
with a spatial scope where they apply, and closely tied to the part of the organisation
that is physically located in that space. Our work simplifies the way designers can guide
the behaviour of each individual agent as they move around an environment where
organisations are spatially located; this allows agents to adapt the way they behave in
different social contexts.

The AGRE model, presented in [6], allows the definition of structures that represent
the physical space, as “specialisations” of a generic space. However, we find that the
social structures are not contextualised as they are in our work, leaving the social and
physical structures rather unrelated.

Another important series of related work is that on Electronic Institutions [8]. The in-
ternal workings of an electronic institutions is given (in rough terms) as a state-machine
where each state is called a “scene”. Each scene specifies the set of roles that agents
can perform in it, and a “conversation protocol” that the agents should follow when
interacting within a scene. To traverse the series of scenes of the electronic institution,

A Distributed Normative Infrastructure for Situated Multi-agent Organisations 43

agents must do a sequence of actions in each scene, and also commit to certain actions
in certain scenes, as the result of having performed certain other actions in certain other
scenes. Our notion of normative place was inspired by such notion of scene, in giving
it a physical, spatial reference where norms apply.

Similar to the electronic institutions approach, Computational Institutions [17] are
defined as virtual organisations ruled by constitutive norms and regulative norms.
In such institutions, organisational modelling uses coordination artifacts as building
blocks, in a way that is very similar to our use of normative objects in spatially dis-
tributed organisations, but still keeping implicit in coordination artifacts the normative
content imposed on the agents.

In [9], the notion of governor agents was introduced. Such agents aim to ensure that
external agents fulfil all their social duties during the enactment of an electronic insti-
tution. The external agents interact with the environment through the governor agents,
which also inform them about norms and possible actions. Governor agents differ from
the norm supervisors presented here, as norm supervisors do not have as primary objec-
tive to avoid norm infringement, while governors aim to prevent external agents from
performing actions that are not permitted in an institution.

In the research on normative multi-agent systems, various aspects of normative sys-
tems are discussed which are not directly dealt with in our model as yet, such as an explicit
model of sanctions and norm enforcement, and a formal basis for norm representation
and reasoning [1, 22, 7]. The advantage of our approach, however, is that is can be di-
rectly used in the development of practical multi-agent systems. We plan to incorporate
increasingly sophisticated aspects of normative systems into our framework in the future.

8 Conclusions

We have presented an approach to integrate the modelling of environments and organi-
sations, using a normative infrastructure that provides the means to distribute normative
information over an environment. Such infrastructure, composed of normative objects
and normative places, allows the spatial contextualisation of norms. The contextualisa-
tion of norms in a bounded spatial/temporal scope facilitates the operationalisation of
the norms and the verification of compliance, and helps avoiding the misinterpretation
of norms. Also, in our approach, a normative structure is a connection point relating en-
vironments and organisations, being a reflection of the organisation on its environment.

The distribution of norms over the environment, using normative objects, allows the
environment to be partitioned in a modular way. Such partitioning facilitates an inde-
pendent modelling of each part of the system, reducing the interdependence among the
various parts, thus facilitating the modular modelling of the environment and organisa-
tions, taking advantage of the natural distribution of certain environments, with norms
being associated only with the places where they should be followed, instead of re-
quiring a central repository of norms. Therefore, the proposed normative infrastructure
facilitates the design, development, and maintenance of large-scale multi-agent systems
or simulations. Besides, this should pose less of a burden on agents that dynamically ac-
cess normative information compared to approaches where all norms are made centrally
available.

44 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

We believe that an explicit environment description is an important part of a multi-
agent system, as thoroughly discussed in the literature on approaches to modelling
multi-agent environments. Also, environment modelling facilitates the engineering of
multi-agent systems as it is a stable point from where the agent reasoning and the or-
ganisational structures can be tuned to facilitate the development of agents and organ-
isations. The notion of spatially distributed normative objects that we have introduced
seems to serve well the integration of organisations and environments.

As future work, we plan not only to develop simulations using our platform, so as to
further evaluate it and improve our approach, but also to study interesting issues related
to the use of this approach. One issue to be investigated in future work is that having the
norms spread over many independent spatial scopes may result in different reputations
of a single agent over the environment, leading to a notion of locality of reputation.
Another interesting aspect is that, being conditioned on the possibility of perceiving the
existence of a normative object, the reasoning of agents that deal with normative objects
is necessarily of a non-monotonic nature.

In summary, the normative reasoning required by the possibility of having normative
places within the environment, each one with with its own organisational purposes and
sets of norms, leads to many issues to be addressed in the future.

Acknowledgements

This work was partially supported by CNPq and FAPERGS.

References

1. Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multiagent systems. In:
Boella, G., van der Torre, L., Verhagen, H. (eds.) Normative Multi-agent Systems, number
07122 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2007),
http://drops.dagstuhl.de/opus/volltexte/2007/918 [date of citation:
2007-01-01]

2. Bordini, R.H., Costa, A.C.d.R., Hübner, J.F., Moreira, A.F., Okuyama, F.Y., Vieira, R.: MAS-
SOC: a social simulation platform based on agent-oriented programming. Journal of Artifi-
cial Societies and Social Simulation 8(3) (2005)

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak Using Jason. Wiley Series in Agent Technology. John Wiley & Sons, Chich-
ester (2007)

4. Castelfranchi, C., Dignum, F., Jonker, C.M., Treur, J.: Deliberative normative agents: Prin-
ciples and architecture. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757, pp. 364–378.
Springer, Heidelberg (2000)

5. Conte, R., Castelfranchi, C.: Cognitive and Social Action. UCL Press, London (1995)
6. Ferber, J., Michel, F., Baez, J.: AGRE: Integrating Environments with Organizations. In:

Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS, vol. 3374, pp.
48–56. Springer, Heidelberg (2005)

A Distributed Normative Infrastructure for Situated Multi-agent Organisations 45

7. Fornara, N., Colombetti, M.: Specifying and enforcing norms in artificial institutions. In:
Boella, G., van der Torre, L., Verhagen, H. (eds.) Normative Multi-agent Systems, number
07122 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2007),
http://drops.dagstuhl.de/opus/volltexte/2007/909 [date of citation:
2007-01-01]

8. Garcı́a-Camino, A., Noriega, P., Rodrı́guez-Aguilar, J.A.: Implementing norms in electronic
institutions. In: Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P., Wooldridge,
M. (eds.) AAMAS 2005: Proceedings of the Fourth International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pp. 667–673. ACM Press, New York (2005)

9. Garcı́a-Camino, A., Rodrı́guez-Aguilar, J.A., Sierra, C., Vasconcelos, W.W.: A distributed ar-
chitecture for norm-aware agent societies. In: Baldoni, M., Endriss, U., Omicini, A., Torroni,
P. (eds.) DALT 2005. LNCS, vol. 3904, pp. 89–105. Springer, Heidelberg (2006)

10. Hübner, J.F., Sichman, J.S., Boissier, O.: MOISE+: Towards a structural, functional, and de-
ontic model for MAS organization. In: AAMAS 2002: Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems. ACM Press, New York
(2002)

11. Kagal, L., Finin, T.W., Joshi, A.: A policy language for a pervasive computing environ-
ment. In: 4th IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY 2003), Lake Como, Italy, June 4-6, 2003, pp. 63–74. IEEE Computer Society, Los
Alamitos (2003)

12. Okuyama, F.Y., Bordini, R.H., da Rocha Costa, A.C.: ELMS: An Environment Description
Language For Multi-Agent Simulation. In: Weyns, D., Van Dyke Parunak, H., Michel, F.
(eds.) E4MAS 2004. LNCS, vol. 3374, pp. 91–108. Springer, Heidelberg (2005)

13. Okuyama, F.Y., Bordini, R.H., da Rocha Costa, A.C.: Spatially Distributed Normative In-
frastructure. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS,
vol. 4389, pp. 203–220. Springer, Heidelberg (2007)

14. Okuyama, F.Y., Bordini, R.H., da Rocha Costa, A.C.: Spatially Distributed Normative Ob-
jects. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N.,
Matson, E. (eds.) COIN 2006. LNCS, vol. 4386, pp. 133–146. Springer, Heidelberg (2007)

15. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination artifacts:
Environment-based coordination for intelligent agents. In: AAMAS 2004: Proceedings of
the Third International Joint Conference on Autonomous Agents and Multiagent Systems,
Washington, DC, USA, pp. 286–293. IEEE Computer Society, Los Alamitos (2004)

16. Rao, A.S.: Agentspeak(l): Bdi agents speak out in a logical computable language. In: Per-
ram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer,
Heidelberg (1996)

17. Rubino, R., Omicini, A., Denti, E.: Computational institutions for modelling norm-regulated
MAS: An approach based on coordination artifacts. In: Lindemann, G., Ossowski, S., Padget,
J., Vazquez-Salceda, J. (eds.) 1st International Workshop Agents, Norms and Institutions for
Regulated Multi-Agent Systems (ANI@REM 2005), AAMAS 2005, Utrecht, The Nether-
lands, July 25 (2005)

18. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems. Autonomous
Agents and Multi-Agent Systems 11(3), 307–360 (2005)

19. Viroli, M., Omicini, A., Ricci, A.: Engineering MAS environment with artifacts. In: Weyns,
D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2005. LNCS, vol. 3830, pp. 62–77.
Springer, Heidelberg (2006)

20. Weyns, D., Van Dyke Parunak, H., Michel, F., Holvoet, T., Ferber, J.: Environments For
Multiagent Systems State-Of-The-Art And Research Challenges. In: Weyns, D., Van Dyke
Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS, vol. 3374, pp. 1–47. Springer, Heidel-
berg (2005)

46 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

21. Wooldridge, M.: Intelligent agents. In: Weiß, G. (ed.) Multiagent Systems—A Modern Ap-
proach to Distributed Artificial Intelligence, ch. 1, pp. 27–77. MIT Press, Cambridge (1999)

22. Lopez, F.L.y., Luck, M., d’Inverno, M.: A normative framework for agent-based systems. In:
Boella, G., van der Torre, L., Verhagen, H. (eds.) Normative Multi-agent Systems, number
07122 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2007),
http://drops.dagstuhl.de/opus/volltexte/2007/933 [date of citation:
2007-01-01]

A Complete STIT Logic for Knowledge and
Action, and Some of Its Applications

Jan Broersen

Department of Information and Computing Sciences
Utrecht University

Utrecht, The Netherlands
broersen@cs.uu.nl

Abstract. This paper presents a complete temporal STIT logic for rea-
soning about multi-agency. I discuss its application for reasoning about
norms, knowledge, autonomy, and other multi-agent concepts. Also I give
some arguments in favor of taking STIT formalisms instead of dynamic
logics as the basis for logics for representing multi-agent system notions.

1 Introduction

The acronym ‘STIT’ stands for ‘Seeing To It That’, and STIT logics are philo-
sophical logics of agency. Recently these logics have attracted the attention of
computer scientist who aim at using STIT formalisms to model and reason about
multi-agent systems [11,20,12,13]. The present paper takes several new steps in
this line of research. First of all a new semantics is presented. Key features of
the semantics are its two-dimensional structure and the circumstance that STIT
actions only take effect in successor states. Second, the present logic encompasses
reasonable axioms for the interaction of the next-time operator and the STIT-
operators. This solves one of the weaknesses of the logic in [10] where there is no
interaction between the time and the action dimensions. Third, new principles
for the interaction between knowledge and action are proposed. I show how the
combination of knowledge and STIT operators can be used to represent a notion
of ‘knowingly doing’. Several new and fascinating questions arise by introducing
this notion. For instance, the concept presupposes that things can also be done
‘unknowingly’ or ‘unaware’. Finally, the paper not only presents the formal se-
mantics and a complete axiomatization, but also discusses the applicability of
the proposed epistemic STIT logic to the modeling of several key multi-agent
system concepts.

2 A Temporal Epistemic STIT Logic

In this section 1 define a complete STIT logic with operators for knowledge.
Knowledge operators were first introduced in the STIT framework in [20] the
ideas of which were further developed and generalized in [13] and [10]. The dis-
tinguishing feature of the present STIT logic is that actions only take effect in

M. Baldoni et al. (Eds.): DALT 2008, LNAI 5397, pp. 47–59, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

48 J. Broersen

‘next’ states, where ‘next’ refers to immediate successors of the present state.
This distinguishes the present STIT logic not only from the STIT variants in the
above mentioned papers, but also from any STIT-logic in the (philosophical) lit-
erature. However, there are very good reasons for taking this approach. The first
reason is that it can be shown (see [4]) that the logics of the multi-agent versions
of, what we might call, the standard ‘instantaneous’ STIT, are undecidable. The
second reason is that the view that actions only take effect in some immediate
next state, is the standard view in formal models of computation in computer
science. And finally, also from an ontological perspective, the choice is defend-
able. Given that an action can always be thought of as a ‘process’ connected to
some effort of the agent involved, and given that processes can suitably thought
of as occurring ‘in’ time, we may conclude that also actions take place ‘in’ time.

The present paper also further adapts and develops ideas from [20,13,10]
by suggesting new properties and corresponding axioms for the interaction be-
tween time and action, and between action and knowledge, and by giving a
two-dimensional modal semantics. The semantics has two strong advantages. As
compared to the semantics in [10] it is much closer in spirit to the branching
time STIT semantics known from the philosophical literature, while at the same
time it is completely ‘standard’ from a modal logic perspective.

Besides the usual propositional connectives, the syntax of the logic comprises
an operator Kaϕ for knowledge of individual agents a, an operator �ϕ for his-
torical necessity, which plays the same role as the well-known path quantifiers in
logics such as CTL and CTL∗ [16], and finally, an operator [A xstit]ϕ for ‘agents
A jointly see to it that ϕ in the (immediate) next state’.

Definition 1. Given a countable set of propositions P and p ∈ P , and given a
finite set Ags of agent names, and a ∈ Ags and A ⊆ Ags, formally the language
can be described as:

ϕ, ψ, . . . := p | ¬ϕ | ϕ ∧ ψ | Kaϕ | �ϕ | [A xstit]ϕ

I define operators for ‘next’ Xϕ, and several operators for obligation as ab-
breviations in the language. In this section 1 only give the definition for the
‘next’ because the explanation of the definition of the obligation operators can
better be done after the formal semantics of the base operators is given. I de-
fine the ‘next’ operator as the current action performed by the complete set of
agents Ags:

Definition 2

Xϕ ≡def [Ags xstit]ϕ

The view that the complete set of agents uniquely determines the next state is a
common one. Not only it can be found in the multi-agent STIT logics of Horty
[21], but also in related computer science formalisms such as ATL [1,2]. For the
relation between STIT formalisms and computer science formalisms such as ATL
and Coalition Logic [23], see [11,12].

A Complete STIT Logic for Knowledge and Action 49

Before I give the formal definitions for the frames and the models, I briefly
elaborate on what these structures represent. The frames are two-dimensional,
with a dimension of ‘histories’ which are thought of as linear time-lines coming
from the past and extending into the future, and a dimension of ‘states’ which
are possible states the system of agents can be in. Given any particular history,
the next time relation relates states along that history. Given any particular
state, the historical necessity relation relates all histories associated with that
state. Effectivity relations1 relate history/state pairs to sets of possible next
history/state pairs: the pairs the actual situation is ensured to be among next, if
the choice is taken. Behaviors of the system of agents can be seen as trajectories
through the two dimensional space going from the past to the future along the
dimension of states, and jumping from sets of histories to sub-sets of histories
(the choices) along the dimension of histories.

Definition 3. A frame is a tuple F = 〈H,S,R�, {RA | A ⊆ Ags}, {∼a| a ∈
Ags}〉 such that:

– H is a non-empty set of histories. Elements of H are denoted h, h′, etc.
– S is a non-empty set of states. Elements of S are denoted s, s′, etc.
– R� is a ‘historical necessity’ relation over the elements of H × S such that

〈h, s〉R�〈h′, s′〉 if and only if s = s′

– The RA are ‘effectivity’ relations over the elements of H × S such that:

• RAgs is a ‘next time’ relation such that if 〈h, s〉RAgs〈h′, s′〉 then h = h′,
and RAgs is serial and deterministic (the next state is completely deter-
mined by the choice made by the complete set of agents). So, histories
‘contain’ linearly ordered sets of states.

• R� ◦ RAgs ⊆ R∅ (the empty set of agents is ineffective)
• RA ⊆ R� ◦ RAgs for any A (an action undertaken by A in the present

state ensures the next state is element of a specific subset of all possible
next states)

• RAgs ◦ R� ⊆ RA for any A (no actions constitute a choice between
histories that are undivided in next states)

• RA ⊆ RB for B ⊂ A (super-groups are at least as effective)
• if 〈h, s〉R�〈h′, s〉 and 〈h, s〉R�〈h′′, s〉 then there is a 〈h, s〉R�〈h′′′, s〉 such

that for A ∩ B = ∅, if 〈h′′′, s〉RA〈h′′′′, s′〉 then 〈h′, s〉RA〈h′′′′, s′〉 and if
〈h′′′, s〉RB〈h′′′′′, s′′〉 then 〈h′′, s〉RB〈h′′′′′, s′′〉 (independence of agency)

– The ∼a are epistemic equivalence relations over the elements of H × S such
that:

• ∼a ◦Ra ⊆∼a ◦RAgs (agents cannot know what choices other agents per-
form concurrently)

• RAgs◦ ∼a⊆∼a ◦Ra (agents recall the effects of the actions they knowingly
perform themselves)

1 This terminology is inspired by Coalition Logic, where in the semantics the actions
(or ‘choices’) are represented by effectivity functions.

50 J. Broersen

Definition 4. A frame F = 〈H,S,R�, {RA | A ⊆ Ags}, {∼a| a ∈ Ags}〉 is
extended to a model M = 〈H,S,R�, {RA | A ⊆ Ags}, {∼a| a ∈ Ags}, π〉 by
adding a valuation π of atomic propositions:

– π is a valuation function π : P −→ 2H×S assigning to each atomic proposi-
tion the set of history/state pairs in which they are true.

The truth conditions for the semantics of the operators on these models is stan-
dard for a two-dimensional modal logic [17].

Definition 5. Validity M, 〈h, s〉 |= ϕ, of a formula ϕ in a history/state pair
〈h, s〉 of a model M = 〈H,S,R�, {RA | A ⊆ Ags}, {∼a| a ∈ Ags}, π〉 is defined
as:

M, 〈h, s〉 |= p ⇔ 〈h, s〉 ∈ π(p)
M, 〈h, s〉 |= ¬ϕ ⇔ not M, 〈h, s〉 |= ϕ
M, 〈h, s〉 |= ϕ ∧ ψ ⇔ M, 〈h, s〉 |= ϕ and M, 〈h, s〉 |= ψ
M, 〈h, s〉 |= Kaϕ ⇔ 〈h, s〉 ∼a 〈h′, s′〉 implies that M, 〈h′, s′〉 |= ϕ
M, 〈h, s〉 |= �ϕ ⇔ 〈h, s〉R�〈h′, s′〉 implies that M, 〈h′, s′〉 |= ϕ
M, 〈h, s〉 |= [A xstit]ϕ ⇔ 〈h, s〉RA〈h′, s′〉 implies that M, 〈h′, s′〉 |= ϕ

Satisfiability, validity on a frame and general validity are defined as usual.

While the semantics is very standard from a (two-dimensional) modal logic per-
spective, the relation with standard STIT semantics deserves some explanation.
In the conditions on the frames we recognize standard STIT properties like
‘no choice between undivided histories’ and properties that are specific for the
present STIT version, like ‘actions take effect in successor states’. Actually, the
frames can easily be pictured as trees where histories branch in states, like in
standard STIT theory. The main difference is that states are not partitioned into
choice sets. The choice sets appear here (implicitly) as sets of possible next states
(like in Coalition Logic). From a given ‘actual’ history/state pair, we reach these
choice sets by first jumping (along R�) to another history through the same
state, and then looking (along RA) what next states are reachable through the
choice made by agents on that history.

In particular one aspect of the present semantics needs extra clarification.
Like in standard STIT semantics, all the history/state pairs belonging to one
state can have different valuations of atomic propositions. In standard STIT
formalisms this is actually needed to give semantics to the instantaneous effects
of actions. But here, as said, the effects are not instantaneous. Therefore, in the
present logic, the fact that different histories through the same state can have
different valuations of non-temporal propositions, does not carry much meaning.
Of course, in the logic we can talk about atomic propositions being true or
not in other histories through the same state. For instance, the formula "�p"
expresses that all the histories through the present state have in common that
the atomic proposition p holds on them. But the point is that one might think
that actually we should impose on the models that all histories through a state
come with identical valuations of atomic propositions. That would induce the

A Complete STIT Logic for Knowledge and Action 51

property ϕ → �ϕ for ϕ any ‘STIT-operator-free’ formula (in [10] we give a
system encompassing this axiom). However, this would complicate establishing
a completeness result, and does not strengthen the logic in any essential or
interesting way. I think there is no need at all to impose such a condition.
Since actions only take effect in next states, alternative valuations for atomic
propositions on other histories through the same state are ‘harmless’.

Now I go on to the axiomatization of the logic. Actually, axiomatization is
really easy. The approach I have taken for constructing this logic is to build
up the semantic conditions on frames and the corresponding axiom schemes
simultaneously, while staying within the Sahlqvist class. This ensures that the
semantics cannot give rise to more logical principles than can be proven from
the axiomatization.

Definition 6. The following axiom schemas, in combination with a standard
axiomatization for propositional logic, and the standard rules (like necessitation)
for the normal modal operators, define a Hilbert system:

S5 for �
KD for each [A xstit]

(C-Mon) [A xstit]ϕ → [A ∪ B xstit]ϕ
(Indep) ♦[A xstit]ϕ ∧ ♦[Bxstit]ψ → ♦([A xstit]ϕ ∧ [B xstit]ψ) for A ∩B = ∅
(Det) ¬X¬ϕ → Xϕ
(Ineff-∅) [∅ xstit]ϕ → �Xϕ
(X-Eff) �Xϕ → [A xstit]ϕ
(N-C-U-H) [A xstit]ϕ → X�ϕ

S5 for each Ka

(Know-X) KaXϕ → Ka[a xstit]ϕ
(Rec-Eff) Ka[a xstit]ϕ → XKaϕ

Theorem 1. The Hilbert system of definition 6 is complete with respect to the
semantics of definition 5.

Proof. The axioms are all within the Sahlqvist class. This means that the axioms
are all expressible as first-order conditions on frames and that they are complete
with respect to the corresponding frame classes, cf. [7, Th. 2.42]. So the only thing
we need to check is whether the axioms correspond one-to-one to the semantic
conditions defined on the frames. This can be done automatically, using for
instance SQEMA [14].

As part of the above axiomatization, we recognize Ming Xu’s axiomatization
for multi-agent STIT logics (see the article in [6]). Xu’s axiomatization is for
the standard, instantaneous STIT variant. But, it should not come as a surprise
that the same axioms apply to the present logic. The central property in Xu’s
axiomatization is the ‘independence of agency’ property. But the issue of inde-
pendence of choices of different agents does not depend on the condition that
effects are instantaneous or occur in next states.

As a proposition I list some theorems. Derivation of these is just a little
exercise in normal modal logic. The last theorem in the list below is the well

52 J. Broersen

known ‘perfect recall’ or ‘no forgetting’ axiom, known from the literature on the
interaction between epistemic and temporal modalities.

Proposition 1. The following are derivable:

[A xstit]ϕ ∧ [B xstit]ψ → [A ∪ B xstit](ϕ ∧ ψ)
�Xϕ → X�ϕ
[A xstit]ϕ → Xϕ
X¬ϕ → ¬Xϕ
�Xϕ ↔ [∅ xstit]ϕ
KaXϕ ↔ Ka[a xstit]ϕ
KaXϕ → XKaϕ

Pauly’s Coalition logic [23] is a logic of ability that is very closely related to STIT
formalisms, as was shown in [11]. Since in Coalition Logic actions also take effect
in next states, restricting the STIT formalism by only allowing effects in next
state, as in the logic of this paper, does not inhibit definability of Coalition Logic.

Theorem 2. Coalition logic, whose central operator is [A]ϕ for ‘agents A are
able to do ϕ’, is embedded into the present logic by the definition [A]ϕ :=
♦[A xstit]ϕ (plus the obvious isomorphic translations for other connectives).

Proof. The same strategies as in [11] and [10] can be applied. First we make
sure that the axioms of coalition logic, after applying the above translation, are
valid for the present logic. Here I will not verify this explicitly, and I only list
the translated CL axioms:

(⊥) ¬♦[A xstit]⊥
(�) ♦[A xstit]�
(N) ♦[∅ xstit]ϕ ∨ ♦[Ags xstit]¬ϕ
(MON) ♦[A xstit](ϕ ∧ ψ) → ♦[A xstit]ϕ
(S) ♦[A xstit]ϕ ∧ ♦[B xstit]ψ → ♦[A ∪ B xstit](ϕ ∧ ψ) for A ∩ B = ∅

It is quite straightforward to verify these properties for the present logic, either
semantically, or as theorems in the Hilbert system. To complete the proof, we
also have to show that the translation preserves validity in the other direction.
Or, equivalently, we check that it preserves satisfiability in the same direction.
That is, given that a CL formula is satisfiable on a CL-model, we have to show
that its translation is satisfiable on the models I defined in this paper. This is
not difficult to show given the structural similarities between CL-models and the
models in this paper.

3 More on ‘Knowingly Doing’

Since it is a rather new, in this section 1 elaborate on the notion of ‘knowingly
doing’. I explain what it means to do something (un)knowingly. I gave semantics
in terms of models where epistemic equivalence sets (information sets) contain

A Complete STIT Logic for Knowledge and Action 53

history/state pairs. An agent knowingly does something if his action holds for all
the history/state pairs in the epistemic equivalence set that contains the actual
history/state pair.

Several closure conditions apply. The first one says that epistemic equiva-
lence sets are closed under choices2. The corresponding axiom, is KaXϕ →
Ka[a xstit]ϕ (this property does not hold if the STIT operator is replaced by a de-
liberative STIT oparator). This property ensures that an agent cannot know that
two histories through the same choice are different, which reflects that agents
cannot knowingly do more then what is affected by the choices they have. In
particular, the property KaXϕ → Ka[a xstit]ϕ says that agents can only know
things about the (immediate) future if they are the result of an action they them-
selves knowingly perform. Then, an agent unknowingly does everything that is
(1) true for all the history/state pairs belonging to the actual choice it makes
in the actual state, but (2) not true for all the history/state pairs it considers
possible. In general the things an agent does unknowingly vastly outnumber the
things an agent knows he does. For instance, by sending an email, I may en-
force many, many things I am not aware of, which are nevertheless the result of
me sending the email. All these things I do unknowingly by knowingly sending
the email.

Another, equivalent way of interpreting the property KaXϕ → Ka[a xstit]ϕ
is to say that it expresses that agents cannot know what actions other agents
perform concurrently. This is because choices of other agents always refine the
choice of the agent whose choice we consider. Then, knowing the choice of the
other would mean that the agent would be able to know more about the fu-
ture state of affairs then is guaranteed by his own action. Yet another way of
explaining this is to say that for any agent, the histories within its choices are
indistinguishable.

The second constraint on the interaction between knowledge and action is the
one expressed by the axiom Ka[a xstit]ϕ → XKaϕ. The issue here is that if
agents knowingly see to it that a condition holds in the next state, in that same
next state they will recall that the condition holds.

The epistemic equivalence sets of history/state pairs represent the actions
an agent knows it can do. The historical possibility operator ranges over the
histories in these classes. So we can say things like: there is a history for which
the agent knows it can take the bus. It might be considered puzzling that the
agent can knowingly take the bus while at the same time it knows it is not
taking the bus. A similar issue arises in standard STIT logic, that is, without
the knowledge operator. In STIT it is consistent to assert that an agent actually
does p, while he can do ¬p. This may seem inherently contradictory, since, if
the agent actually does p, how can it be that at the same he is able to do ¬p?
Is it not the case that the fact that he actually does p prevents him from being
able to do ¬p at the same state? A possible answer to such questions is that
truth of the operator [a xstit]p should better be associated to the agent having

2 An extreme case is where the information sets are exactly the choices in each state.
In that case an agent knows all the consequences of his actions.

54 J. Broersen

‘decided’ on p, and not to the agent ‘doing’ p. This interpretation leaves room
for still being able to ‘decide’ ¬p at the same time, because decisions can be
reconsidered.

The above discussion also shows that we have to adopt a slightly more agile
stance towards the concept of ‘actual world/history’. This should not come as
a surprise. We talk about agents choosing between actions thereby determining
themselves what will be the actual worlds (histories). So it no longer makes sense
to talk of an actual world independent of what agents do/choose. In standard S5
epistemic logic, one usually pays no attention to the meaning of the epistemic
equivalence classes outside the one containing the actual world. One actually
never asks what the meaning of these classes is. And indeed in S5 epistemic logic
we may neglect their meaning, since we evaluate only with respect to an actual
world that is independent of what agents choose. But in our present setting, a
historical possibility operator ranges over the histories contained by the different
epistemic equivalence classes. So in this setting, the equivalence classes outside
the one containing the actual world, do have meaning. In our setting they mean
that the agent can knowingly do the associated actions thereby forcing the actual
world to be among a different set of histories.

4 A Discussion on Applications and Further Extensions

4.1 Deliberate Action

The kind of STIT operator I defined above has often been criticized for properties
like [A xstit]�. The idea is that agents should not be able to bring about things
that are true inevitably, but only things that without their intervention might
not become true. If we want an operator that takes this into account we can
easily define a deliberative version of the STIT operator, as follows:

[A d1xstit]ϕ ≡def [A xstit]ϕ ∧ ¬�Xϕ

This is the standard way in the literature for defining the deliberative STIT in
a so called ‘Chellas’ STIT. However, the addition of a knowledge operator and
the introduction of the notion of ‘knowingly doing’ enables us to give a more
fine-grained analysis of ‘deliberateness’. It seems strange to accept that agents
can deliberately do something without knowing that they do it. So the action
part of the above definition should better be replaced by a ‘conformant’ STIT.

[a d2xstit]ϕ ≡def Ka[a xstit]ϕ ∧ ¬�Xϕ

But now what about the side condition? Should the agent be aware of the fact
that there is a side condition ¬�Xϕ saying that the outcome could have been
different if it was not for a’s action, or not? If this question is answered affirma-
tively (which I think is the better option), we can define:

[a d3xstit]ϕ ≡def Ka[a xstit]ϕ ∧ Ka¬�Xϕ

A Complete STIT Logic for Knowledge and Action 55

4.2 Autonomy and (In)Dependency

Note that we can express that agents A see to it that agents B see to it that ϕ as
[A xstit][B xstit]ϕ. So, since in our STIT version effects only occur in next states,
one agent being able to influence the behavior of some other agent is expressed as
a simple nesting of modalities. In the standard, instantaneous STIT formalisms,
we actually have that a nesting of the STIT operators is equivalent with the
ineffective action, that is, we have the axiom [A stit][B stit]ϕ ↔ [∅ stit]ϕ (in [10]
we used this to show that in standard STIT formalisms the historical necessity
operator is definable). In standard STIT formalisms the above axiom actually
replaces the ‘independence of agency’ axiom I give in the present paper. For the
present STIT version, I had to formulate the independency property explicitly
by using Xu’s axiom.

If one group of agents A influencing another group B can be expressed as
[A xstit][B xstit]ϕ, then the concept of ‘autonomy’ for a group of agents A relative
to some other group B and a certain property ϕ might be associated to something
like ¬[B xstit][A xstit]ϕ. Of course this is a very specific expression of autonomy,
because it is relative to another group of agents and a property ϕ. If we are
interested in autonomy of a group of agents ‘as such’ we have to quantify the
other agents and properties out. This is clearly a topic of future research, since
it is beyond the scope of the present language.

There is a direct link between autonomy and deliberateness of actions. The
relation is that if other agents can see to it that you are no longer able to
deliberately see to something, you are not an autonomous agent.

4.3 Deontic Modalities

For the extension of this framework with an operator for ‘ought-to-do’, I adapt
the approach taken by Bartha [5] who introduces Anderson style ([3]) violation
constants in STIT theory. The approach with violation constants is very well
suited for theories of ought-to-do, witnessing the many logics based on adding
violation constants to dynamic logic [22,8]. However, I believe that the STIT
setting is even more amenable to this approach. Some evidence for this is found
in Bartha’s article ([5]), who shows that many deontic logic puzzles (paradoxes)
are representable in an intuitive way. And a clear advantage in the present ap-
proach is that since our base STIT logic is complete, defining obligation as a
reduction using violation constants guarantees that completeness is preserved
under addition of the obligation operator

To define an operator for ‘obligation to do’, I adapt the approach of Bartha [5]
to the present situation where actions only take effect in next states. The intu-
ition behind the definition is straightforward: an agent is obliged to do something
if and only if by not doing it, it performs a violation. As said, the difference with
Bartha’s definition is that the effect of the obliged action can only be felt in
next states, which is why also violations have to be properties of next states.
Formally, our definition is given by:

O[a xstit]ϕ ≡def �(¬[a xstit]ϕ → [a xstit]V)

56 J. Broersen

First note that I slightly abuse notation by denoting [{a} xstit]ϕ as [a xstit]ϕ.
Also note that ¬[a xstit]ϕ expresses that A do not see to it that ϕ, which is
the same as saying that A ‘allow’ a choice where ¬ϕ is a possible outcome. The
definition then says that all such choices do guarantee that a violation occurs.

The � operator in the definition ensures that obligations are ‘moment deter-
minate’. This means that their validity only depends on the state, and not on
the history (see [21] for a further explanation of this concept). I think that this
is correct. But see [26] for an opposite opinion.

The above defined obligation is a ‘personal’ one. If, by ‘coincidence’, ϕ occurs,
apparently due the action of other agents, while the agent bearing the obligation
did not make a choice that ensured that ϕ would occur, a violation is guaranteed.
So agents do not escape an obligation by letting other agents do the work for
them. Using the notion of ‘knowingly doing’ we can define other variants of
obligation, but we reserve that for another paper.

A seemingly bad feature of the above definition of obligations is that it results
in the formulas �[a xstit]ϕ → O[a xstit]ϕ and �[a xstit]V → O[a xstit]ϕ being
theorems. It is sometimes argued that these counter-intuitive properties might
be avoided by concentrating on conditional obligations. But the solution is much
simpler than that. We only have to replace the STIT operator in the definition
of obligation by a deliberative STIT operator. Again, the exact details of these
deontic issues will be discussed in a future paper.

4.4 STIT Versus Dynamic Logic

The final theme in this paper will be the distinction between our present formal-
ism and dynamic logic formalisms [25,19]. I want to contribute to the discussion
about which formalism is better suited as a basis for logics for multi-agent sys-
tems. I know there are many arguments in favor of dynamic logic. But here I
give a few arguments in favor of STIT formalisms.

Action Negation. In PDL there are no really satisfactory solutions for defining
action negation. The natural ‘stance’ on this issue is to look for a semantics for
dynamic logic object level formulas of the form [∼ α]ϕ, where ‘∼’ constructs an
action that is the negation of the action α. The problem is, of course, that if we
have no idea about what the action α is more than just a name for something
unspecified, we have no idea what it is we have to negate. Do we negate the effect,
and refer to the opposites effect? What is the opposite effect if the effect is not
even specified (see [9] for a possible answer)? Or do we negate the possibility
for execution of the action? That is, does negation of an action mean that we
cannot execute it? Or do we assume that α is a complex action, that can thus
be seen as a non-deterministic program, and do we refer to all other programs?
To which other program? To the non-deterministic choice between all of them?
These are many questions. Several authors have tried to give an answer to some
of these question, resulting in several concrete proposals [9,27,22]. However, a
definite answer seems hard to obtain.

In STIT the issue is of negating actions is completely clear. Since an action is
identified with its own effect, it is clear what we have to negate: the effect. By

A Complete STIT Logic for Knowledge and Action 57

doing so, we obtain the well known STIT definitions for ‘refraining’. Refraining
is defined as not seeing to it that a certain effect is ensured. In other words:
allowing that the opposite effect might occur.

Concurrent Action. More or less the same story can be told for modeling
concurrency of action. In STIT things are clear: concurrency of acts of an in-
dividual agent is modeled by logical conjunction, and concurrency of acts by
different agents is modeled by group STIT. As shown in section 2, coalition logic
is definable in our STIT logic. Coalition logics super-additivity axiom, which in
our logic comes in the form ♦[A xstit]ϕ∧♦[B xstit]ψ → ♦[A∪B xstit](ϕ∧ψ) for
A ∩ B = ∅, can be read directly as an axiom on concurrent action: if A and B
each can do something, together they can do it concurrently.

In PDL, again, things are less clear. Several proposals are around [24,22,15].
Actually, all semantics that have been developed in concurrency theory [18], are
amenable for being imported in a dynamic logic formalism.

Agency. STIT is a logic for agency. In STIT we can express abilities of agents,
talk about autonomy and dependency, and formulate logical properties concern-
ing how abilities of groups relate to abilities of group-members. All of these
things are much harder to express in dynamic logic formalisms. Actually, I do
not know of any dynamic logic formalisms with a satisfactory solution for defin-
ing agency. Agents are usually simply introduced as indexes to dynamic logic
modalities.

5 Conclusions

In this paper I presented an epistemic STIT logic that improves on earlier work
in several ways. First of all there is a new semantics that is close to the STIT
semantics in the philosophical literature. At the same time, the semantics is
completely standard which enables me to ensure completeness by referring to
the Sahlqvist result. Second, new interactions between time and action, and be-
tween knowledge and action are proposed and incorporated in the logic. Finally, I
discuss the application of the logic to reasoning about norms, knowledge, auton-
omy, and several other multi-agent concepts. I conclude with a brief discussion
on the pros and cons of the STIT formalism as compared to systems based on
dynamic logic. I gave some arguments in favor of taking STIT formalisms instead
of dynamic logics as the basis for logics for representing multi-agent concepts.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. In:
Proceedings of the 38th IEEE Symposium on Foundations of Computer Science,
Florida (October 1997)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49(5), 672–713 (2002)

58 J. Broersen

3. Anderson, A.R.: A reduction of deontic logic to alethic modal logic. Mind 67, 100–
103 (1958)

4. Balbiani, P., Gasquet, O., Herzig, A., Schwarzentruber, F., Troquard, N.: Coalition
games over Kripke semantics: expressiveness and complexity. In: Dègremont, C.,
Keiff, L., Rückert, H. (eds.) Festschrift in Honour of Shahid Rahman, College
Publications (to appear, 2008)

5. Bartha, P.: Conditional obligation, deontic paradoxes, and the logic of agency.
Annals of Mathematics and Artificial Intelligence 9(1-2), 1–23 (1993)

6. Belnap, N., Perloff, M., Xu, M.: Facing the future: agents and choices in our inde-
terminist world, Oxford (2001)

7. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theo-
retical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

8. Broersen, J.M.: Modal Action Logics for Reasoning about Reactive Systems. PhD
thesis, Faculteit der Exacte Wetenschappen, Vrije Universiteit Amsterdam, febru-
ari (2003)

9. Broersen, J.M.: Relativized action negation for dynamic logics. In: Balbiani, P.,
Suzuki, N.-Y., Wolter, F., Zakharyaschev, M. (eds.) Advances in Modal Logic,
vol. 4, pp. 51–70 (2003)

10. Broersen, J.M., Herzig, A., Troquard, N.: A normal simulation of coalition logic
and an epistemic extension. In: Proceedings Theoretical Aspects Rationality and
Knowledge (TARK XI), Brussels (2007)

11. Broersen, J.M., Herzig, A., Troquard, N.: From coalition logic to STIT. In: Pro-
ceedings LCMAS 2005. Electronic Notes in Theoretical Computer Science, vol. 157,
pp. 23–35. Elsevier, Amsterdam (2005)

12. Broersen, J.M., Herzig, A., Troquard, N.: Embedding Alternating-time Temporal
Logic in strategic STIT logic of agency. Journal of Logic and Computation 16(5),
559–578 (2006)

13. Broersen, J., Herzig, A., Troquard, N.: A STIT-extension of ATL. In: Fisher, M.,
van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS, vol. 4160, pp.
69–81. Springer, Heidelberg (2006)

14. Conradie, W., Goranko, V., Vakarelov, D.: Algorithmic correspondence and com-
pleteness in modal logic I: The core algorithm SQEMA. Logical Methods in Com-
puter Science 2(1), 1–26 (2006)

15. Danecki, R.: Nondeterministic propositional dynamic logic with intersection is de-
cidable. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 34–53. Springer,
Heidelberg (1985)

16. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, volume B: Formal Models and Semantics, ch. 14,
pp. 996–1072. Elsevier, Amsterdam (1990)

17. Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyachev, M.: Many-Dimensional
Modal Logics: Theory and Applications. Elsevier, Amsterdam (2003)

18. van Glabbeek, R.J.: Comparative Concurrency Semantics and Refinement of Ac-
tions, 2nd edn. CWI Tract, vol. 109. CWI, Amsterdam (1996)

19. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cambridge (2000)
20. Herzig, A., Troquard, N.: Knowing How to Play: Uniform Choices in Logics of

Agency. In: Weiss, G., Stone, P. (eds.) 5th International Joint Conference on Au-
tonomous Agents & Multi Agent Systems (AAMAS 2006), Hakodate, Japan, pp.
209–216. ACM Press, New York (2006)

21. Horty, J.F.: Agency and Deontic Logic. Oxford University Press, Oxford (2001)
22. Meyer, J.-J.C.: A different approach to deontic logic: Deontic logic viewed as a

variant of dynamic logic. Notre Dame Journal of Formal Logic 29, 109–136 (1988)

A Complete STIT Logic for Knowledge and Action 59

23. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and
Computation 12(1), 149–166 (2002)

24. Peleg, D.: Communication in concurrent dynamic logic. Journal of Computer and
System Sciences 35, 23–58 (1987)

25. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: Proceedings 17th
IEEE Symposium on the Foundations of Computer Science, pp. 109–121. IEEE
Computer Society Press, Los Alamitos (1976)

26. Wansing, H.: Obligations, authorities, and history dependence. In: Wansing, H.
(ed.) Essays on Non-classical Logic, pp. 247–258. World Scientific, Singapore (2001)

27. Wansing, H.: On the negation of action types: Constructive concurrent PDL. In:
Valdes-Villanueva, L., Hájek, P., Westerstahl, D. (eds.) Proceedings of the Twelfth
International Congress of Logic Methodology and Philosophy of Science (LMPS
2003), pp. 207–225. King’s College Publications (2005) (invited lecture)

Combining Multiple Knowledge Representation
Technologies into Agent Programming

Languages

Mehdi M. Dastani1, Koen V. Hindriks2, Peter Novák3,
and Nick A.M. Tinnemeier1

1 Utrecht University, Utrecht, The Netherlands
{mehdi,nick}@cs.uu.nl

2 Delft University of Technology, Delft, The Netherlands
k.v.hindriks@tudelft.nl

3 Clausthal University of Technology, Clausthal-Zellerfeld, Germany
peter.novak@tu-clausthal.de

Abstract. In most agent programming languages in practice a program-
mer is committed to the use of a single knowledge representation tech-
nology. In this paper we argue this is not necessarily so. It is shown
that rational agent programming languages allow for the combination
of various such technologies. Specific issues that have to be addressed
to realize such integration for rational agents that derive their choice of
action from their beliefs and goals are discussed. Two techniques to deal
with these issues which enable the integration of multiple knowledge
representation techniques are presented: a meaning-preserving transla-
tion approach that maps one representation to another, and an approach
based on so-called bridge rules which add additional inference power to
a system combining multiple knowledge representation technologies.

1 Introduction

Rational agent programming has been motivated on several grounds. One of
its motivations has been to provide for a high-level specification framework for
agent programs based on common sense concepts such as beliefs, goals, actions,
and plans. Such a programming framework comes with several benefits, among
others that, though the programming framework is abstract, it can be realized
computationally, and, that the programming framework is based on common
sense intuitive concepts which nevertheless have a well-defined semantics.

In our view, rational agent programming is abstract in one sense in that it
does not commit to a particular knowledge representation language. Though
it is common in several concrete programming languages for rational agents to
use Prolog like expressions to represent an agent’s mental states (cf. Jason[1],
2APL[4], and GOAL[6]), this is more a de facto standard and is not implied by
the concept of rational agent programming itself. Some agent frameworks such
as Jadex[16] and JACK[18] have taken a much more pragmatic road and use
object oriented technology to implement the beliefs and goals of an agent.

M. Baldoni et al. (Eds.): DALT 2008, LNAI 5397, pp. 60–74, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Combining Multiple Knowledge Representation Technologies 61

Even though in implemented agent programming systems there are ways to
add a limited support for external KR technologies, such as accessing a database
engine, this is achieved on the technological level and the solution is bound to
be proprietary w.r.t. the implemented application. Therefore as far as we know,
it can be said that all of the existing programming frameworks for rational
agents in principle commit to a particular kind of knowledge representation (in
the sense of Definition 1; see Section 2). In our view, this is not so much a
limitation implied by rational agent programming per se. Moreover, we believe
that rational agent programming has the integrative potential to facilitate and
support the design and construction of agents that use multiple and various
knowledge representation languages. In this sense, we are inspired by similar
ideas of using various knowledge representation languages that motivated the
knowledge interchange format project (KIF)[15].

As a motivating example to allow multiple knowledge representations for build-
ing rational agents consider Ape (Airport Passenger E-assistant), a mobile robot
with the task of helping passengers by providing them with flight schedules and
getting them at the right gate on time. Ape needs to make decisions about, for
example, who to serve first, and when to call for the assistance of airport person-
nel in case she cannot handle all requests in time. In practice, to support such
decision-making, it may be best to use various representation technologies. For
example, Ape could use Prolog to reason about various decision options, and may
have access to a Geographic Information System (GIS) containing the topology
of the airport and an Oracle database with the flight schedules.

The aim of this paper is to explore the use of multiple knowledge represen-
tations, not only between agents, but also within a single agent, both from a
pragmatic, practical perspective as well as a theoretical perspective. One of the
main motivations to do this stems from the fact that various knowledge repre-
sentations come with various strengths and weaknesses which would be inherited
by an agent program if such a program would be restricted to the use of only a
single knowledge representation language. This point has also been particularly
argued for by Marvin Minsky[13]. In this work, he argues that to organize in-
telligence multiple representations are required to do the job. We believe that
rational agent programming may provide part of a solution for integrating such
a multitude of representations in a clean and well-organized manner with appli-
cations in mind.

From a pragmatic point of view, we would also not like rational agent pro-
gramming languages to commit a programmer to learn a new and specific knowl-
edge representation language that comes with the agent programming language.
Learning to program rational agents should not necessarily mean also learning
a new and unfamiliar language for representing knowledge. The programmer
should have (at least some) freedom to choose his or her favorite language for
representing facts about the application domain. The motivation thus is practi-
cal, but at the same time it has been and still is quite hard to combine various
knowledge representations in a useful manner. In practice, moreover, it should
be possible to develop agent applications that incorporate legacy databases, such

62 M.M. Dastani et al.

as, for example, an Oracle flight schedule database. To facilitate such integra-
tion, the use of a particular agent language should not imply the need to redesign
the original database but instead an agent language ideally would support and
provide an Oracle interface.

In Section 2, we first define knowledge representation in a formally precise
way. In order to illustrate the use of multiple knowledge representations within
a single agent, we present and discuss in Section 3 the syntax and semantics of the
GOAL[6] agent programming language. In Section 4, we introduce a technique
to integrate different knowledge representations for the case that the beliefs and
goals of a single agent are represented by means of different knowledge represen-
tations. In Section 5, we discuss another technique for the case that the belief
base of a single agent is represented using different knowledge representations.
Finally, in Section 6, we discuss related work and conclude the paper.

2 KR Technology

Our interest in this paper is in basic representation and reasoning tools such as
logic, Bayesian networks, or others more than in upper ontologies or domain-
specific ontologies. In [5] such representation and reasoning tools are referred to
as knowledge technologies, a convention we will adopt here as well. A knowledge
representation is characterized by means of five roles. Here we are particularly
interested in two roles associated with knowledge technologies:

1. Knowledge technologies provide a fragmentary theory of intelligent reason-
ing, i.e. a knowledge technology defines a notion of inference that enables
drawing conclusions from other available information represented by means
of the same technology, and

2. Knowledge technologies provide a medium for pragmatically efficient compu-
tation, i.e. a knowledge technology provides tools and techniques to compute
with (or to use) the representations supported by the technology.

Other roles of knowledge representations discussed in [5] as being a set of onto-
logical commitments or as providing a medium of human expression are less im-
portant in this context. The choice of ontology presumably is application driven,
whereas the integration of various representation tools into agent programming
languages poses more general challenges.

For our purposes, it is useful to more formally define what a knowledge tech-
nology is. Our aim is to relate the semantics of agent programming languages
with a very generic concept of a knowledge technology. Informally, a knowl-
edge technology is defined here as a language with a well-defined semantics that
comes with an inference relation and procedures to update information stored in
a knowledge base. Though update procedures may not commonly be regarded as
part of a knowledge technology, in our view providing some support and concept
of updating a knowledge base to maintain a correspondence with the entities
being represented is essential. Moreover, in the context of agent programming
update operators are essential, which provides our main motivation to include
them in our definition.

Combining Multiple Knowledge Representation Technologies 63

Definition 1. (Knowledge Representation Technology)
A knowledge representation technology is defined as a tuple:

〈L, |=,⊕〉

where L is a representation language which can be used to express declarative
sentences, with a given set Lq ⊆ L of query expressions, |= : 2L×Lq → {�,⊥}
is an inference relation, and ⊕ : 2L × L → 2L is an update operator.

Definition 1 is intentionally kept very abstract. Our concern here is with the roles
that a knowledge representation can fulfill in the context of agent languages. The
main roles in this context are that it can be used to represent an agent’s mental
states (e.g., beliefs and goals) and to query the agent’s mental state, as well as
that it allows for performing an update on stored representations to maintain a
correspondence of the agent’s mental state and its environment. These operations
can be conceptualized as providing a TELL and ASK interface on a database of
stored representations as discussed in [10]. We assume (though it is in our quite
general setting not strictly necessary to do so) that provided consistency of a
database Σ and a sentence φ the update operator ⊕ preserves consistency, i.e.
Σ ⊕ φ is consistent as well and the database remains unchanged if the sentence
to update with is inconsistent (Σ ⊕⊥ = Σ). ⊥ denotes here falsity. Information
is expressed by means of sentences from the language that can be true or false,
but we also allow for semantics that incorporate more truth values as is typical
in multi-valued logic. A knowledge base, or, alternatively, simply a database, is
then defined as a set of sentences from the knowledge representation language.

The use of the inference relation and update operations in defining an agent
language is clarified below where we show how the semantics of an agent language
can be defined in terms of these operators. In concrete agent languages the
update operator typically is not a single operator ⊕ but one or more operations
to add and remove stored representations from a database (though it may be a
single operator, as e.g. postconditions of actions can be interpreted in a STRIPS-
like fashion as add/delete lists). The definition provided suits, however, for the
purposes of this paper.

Some typical examples of knowledge representation technologies that fit the
definition are logical languages such as first-order logic and description logics
such as the Ontology Web Language (OWL), Frame languages [12], Prolog,
Answer Set Programming, Constraint Programming, relational databases, and
others, such as Bayesian Network also fit though the notion of an update in
Bayesian Networks is rather limited and it is not common to view a Bayesian
network as a database consisting of a set of sentences.

To illustrate the scope of our definition, we discuss the example of relational
databases - one of the most common technologies for storing information in
practice - in slightly more detail. In this case, the representational language
L can be identified with languages such as Datalog [3] or SQL. Datalog is a
declarative database query language whereas SQL is a declarative language for
both querying and updating relations stored in a database. SQL query formulas
provide the query language Lq whereas SQL update formula can be used to

64 M.M. Dastani et al.

specify the insertion or removal of relations from a database. Finally, the SQL
interpreter (the relational database engine) implements the inference relation |=
and update operator ⊕. The correspondence between Datalog or SQL and the
abstract KR language scheme of Definition 1 thus is rather straightforward.

3 Integrating Multiple KRTs into Rational Agents

The question of how to usefully integrate multiple knowledge representations into
a software application in general poses several complex issues [15]. One particu-
larly interesting question is how to facilitate the derivation of a conclusion from
knowledge stored in different representations in various databases controlled or
accessible by the agent. The combination of multiple knowledge technologies into
a rational agent programming language, however, raises some specific issues of
its own. To illustrate these, we first provide a very brief overview of the essential
ingredients of the agent programming language GOAL [6], which are introduced
here mainly for illustrative purposes. Only those parts of the GOAL language
related to the subject of this paper are introduced. The interested reader is re-
ferred to [6] for a more extensive presentation of the language. GOAL agents -
as agents programmed in related agent programming languages such as 2APL,
Jason, and Jadex - derive their choice of action from their beliefs and goals.
Beliefs and goals are represented by means of some knowledge technology (as
mentioned earlier, typically Prolog is used), and, for the purpose of this paper, it
will be particularly relevant to look into the relation between these two notions.

3.1 GOAL: Syntax and Semantics

The main defining features of a rational agent programming language are con-
structs for defining the agent’s mental state, including its beliefs and goals, its
action selection mechanism used by the agent to derive a choice of action from
its beliefs and goals, and a commitment strategy which determines when an agent
will revise its goals given its beliefs. An example of a commitment strategy is to
only drop a goal when the agent believes it has been achieved, a so-called blind
commitment strategy (cf. [17]). The semantic interdependence of an agent’s goals
and beliefs differentiate rational agent programming languages from other high-
level languages such as database languages. At the same time, however, this
interdependency raises some special issues for integrating multiple knowledge
representation languages into such a language. In order to clarify these issues
some of the key semantic rules of GOAL that formalize these interdependencies
are introduced.

In the following we use 〈Σ, Γ 〉 to denote an arbitrary mental state of a rational
agent where Σ is the belief base and Γ is the goal base of the agent. Although
it is usual to assume both the belief base as well as the goal base consist of
sentences from a single knowledge technology (e.g. Prolog), for the purposes of
this paper, we are interested in relaxing this assumption in two ways. First, the
belief base and goal base do not need to be based on one and the same knowledge
technology. Second, the belief base does not need to be monolithic and might

Combining Multiple Knowledge Representation Technologies 65

instead consist of various databases based on various knowledge technologies.
Similarly, a goal base might be based on multiple technologies, but we do not
discuss this possibility explicitly in this paper since it seems less useful to us.
However, the the same techniques we propose for handling belief base multiple
belief bases could be applied also in this situation.

The issues that are introduced by relaxing this assumption can be illustrated
after introducing some basic definitions.

First, we introduce a belief operator bel(φ) and goal operator goal(φ) and
associated semantics which express that an agent has a belief or goal φ in a
mental state M = 〈Σ, Γ 〉. These operators enable the expression of conditions
on mental states of an agent. Formally, a mental state condition is a boolean
combination of belief and goal conditions, i.e.

m ::= bel(φ) | goal(φ) | ¬m | m ∧ m

The semantics of simple belief and goal conditions is defined next. In the standard
way these can be extended to handle boolean combinations.

Definition 2. (Semantics of Mental State Conditions)
Let M = 〈Σ, Γ 〉 be a mental state. Then the semantic clauses for bel and goal
are provided by:

– M |= bel(φ) iff Σ |= φ
– M |= goal(φ) iff ∃γ ∈ Γ s.t. γ |= φ and Σ �|= φ.

According to this definition, an agent has a belief φ if φ is entailed by the agent’s
belief base and a goal φ if and only if φ is entailed “locally” from its goal base
(i.e. from one of the agent’s goals in its goal base) but does not follow from its
belief base. What is important in this context to note is that this semantic clause
requires us to both verify whether φ is entailed by the goal base as well as the
belief base.

Second, we introduce a transition rule which defines the operational (“ex-
ecution step”) semantics for GOAL agents. This transition rule defines when
the agent can perform an action. The execution of an action involves updating
the agent’s mental state and to formally define it we need a transition function
T (a, Σ). Presumably, this transition function can be defined in terms of the up-
date operators associated with the knowledge representation language used to
specify the belief base, e.g. we could define the function by T (a, Σ) = Σ ⊕ ψ
where ψ is the postcondition of action a.

Definition 3. (Action Execution Rule)
Let 〈Σ, Γ 〉 be a mental state, c be a conditional action of the form if ϕ then a
where ϕ is a mental state condition. Then the execution of the conditional action
c is defined by:

〈Σ, Γ 〉 |= ϕ

〈Σ, Γ 〉 −→ 〈Σ′, Γ ′〉
where: Σ′ = T (a, Σ), and Γ ′ = Γ \ {γ ∈ Γ | Σ′ |= γ}.

66 M.M. Dastani et al.

This rule defining the semantics of action execution also “implements” the blind
commitment strategy discussed above. In the absence of other facilities to modify
goals, an agent will drop a goal γ only if it is believed to be achieved (i.e. Σ |= γ).
This automatic update of the goal base requires that each goal in the goal base
is checked against the belief base to verify if it has been achieved (though in
practice more efficient implementations are possible).

The semantics introduced above enables us to introduce the issues raised by
introducing multiple knowledge technologies into a rational agent more precisely.
First, by allowing the belief base and the goal base to be based on different
knowledge technologies (but still assuming each uses a single technology) we
need a means to relate these technologies. The reason is that Definition 3 requires
an agent to verify whether its goals γ have been achieved by verifying whether
they are entailed by its belief base Σ. Definition 3 thus requires that a query
γ specified using one knowledge technology can be resolved using a database Σ
based on another knowledge technology.

Second, by allowing a belief base to consist of multiple databases (i.e. Σ =
D1 × . . . × Dn) using different knowledge technologies the question arises what
it means to query such a belief base. It may be useful to decompose an agent’s
belief base into several databases in practice, e.g. to integrate legacy databases,
but how does the agent derive a conclusion that requires combining information
from such a distributed set of databases?

Finally, the semantics of both Definition 2 and 3 pose certain requirements
for the knowledge representation technologies used for goal bases. The point is
that both definitions require that a goal base can be viewed as a set, either to
check whether an element of the goal base entails some formula, or to remove
achieved goals from the goal base (Df. 2). Though most logic-based knowledge
technologies do support such a view not all do so naturally. For example, it is
not clear how a Bayesian network could be viewed as a set, and, in practice,
even Prolog systems allow for multiple occurrences of facts. Although the latter
issue is easily circumvented, the use of Bayesian networks to represent goals in
a goal base is practically excluded. In the remainder, we will assume that goal
bases are always implemented with a KRT that allows for set-theoretic view of
its associated databases.

There are several options to deal with the issues discussed above. It is unlikely
that there is one and only one unique best solution for handling these issues. Our
strategy here therefore will be to discuss some of the more promising options.
We do not claim to discuss an exhaustive list of options. Our main interest is in
the specific issues that are raised when dealing with the problem of combining
different knowledge representations in the context of agent programming and
our objective is to provide some generic solutions to be able to usefully combine
knowledge representations into a rational agent.

A natural first suggestion is that if it would be possible to somehow translate
one knowledge representation into another one. In that case, below we show
that some of the issues specific to rational agents can be solved using translation
operators. In the next section some variations on this topic are explored.

Combining Multiple Knowledge Representation Technologies 67

A second suggestion explored in this paper is to use so-called bridge rules to
connect knowledge stored in various databases (or contexts) and derive a new
conclusion from those knowledge sources much in the spirit of multi-context logic
[9]. This technique is discussed in Section 5.

4 A Translation Approach to Combine KRT’s

In this section, we assume that the belief and goal bases of an individual agent are
represented using different knowledge representation technologies. This transla-
tion approach will be applied to define the semantics of the GOAL language to
fit multiple KRT’s. This approach is based on the assumption that the expres-
sions of one knowledge representation language can be translated to expressions
of the second language by means of a translation operator.

Definition 4. (translation operator) Let L1 and L2 be two knowledge represen-
tation languages. A translation operator τ from L1 to L2 is a function from L1
to L2. The translation operator can be defined on sets of formula as follows:
τ({φ1, . . . , φn}) = {τ(φ1), . . . , τ(φn)}.

A translation operator can be used to connect knowledge representation tech-
nologies with each other if their entailment relations and update operators im-
pose the same structures on the set of language expressions.

Definition 5. (KRT translation operator) Let K1 = 〈L1, |=1,⊕1〉 and K2 =
〈L2, |=2,⊕2〉 be two knowledge representation technologies and τK1→K2 : L1 →
L2 be a translation operator. We write τ instead of τK1→K2 if it is clear that
τ : L1 → L2.

τ is a KRT translation operator from K1 to K2 iff

– ∀Λ ⊆ L1, ∀φ ∈ L1 : Λ |=1 φ → τ(Λ) |=2 τ(φ)
– ∀Λ ⊆ L1, ∀φ ∈ L1 : τ(Λ ⊕1 φ) = τ(Λ) ⊕2 τ(φ)

In this paper, we will use a particular knowledge representation technology which
is based on a propositional language, its corresponding well-known entailment
relation and an update operator. Using this specific knowledge representation
technology, we can study some logical properties of other knowledge represen-
tation technologies and investigate their behaviors when they are used in agent
programming languages.

Definition 6. (Logically founded KRT) Let Kp = 〈Lp, |=p,⊕p〉 be the proposi-
tional knowledge representation technology, where Lp is the language of propo-
sitional logic, |=p is its corresponding entailment relation, and ⊕p is an update
function that satisfies some reasonable belief update postulates, amongst which
the consistency preservation property.

Let K = 〈L, |=,⊕〉 be an arbitrary knowledge representation technology. K is
called logically founded if and only if there exists a KRT translation operator τ
from Kp to K. Moreover, we say Λ ⊆ L is τ-consistent only if τ(Λ) is consistent.

68 M.M. Dastani et al.

The choice of propositional language in the above definition is not strict. In
fact, we may use an expressive but computational subset of predicate logic or
KIF[15]. We use the propositional language to simplify the presentation of the
relevant part of our approach. In the rest of this section, we use the translation
operator and present two ways to adapt the semantics of the GOAL programming
language.

4.1 Intermediate KRT Translation Approach

One approach is to assume that an agent programming language comes with
a propositional knowledge representation technology without assuming how the
belief and goal bases are represented. The proposition knowledge representation
technology is used to express the query and update expressions. For example, in
the GOAL programming language, the propositional formulae are used to im-
plement the pre- and post-conditions of actions without making any assumption
on the belief and goal languages. We call such a programming language generic.

In particular, one and the same language for query expressions (e.g., a propo-
sitional language Lp) is assumed, whereas the representation languages used to
represent the belief and goal bases may differ from each other and from the
generic language Lp embedded in the agent language. The entailment relation
for the propositional language Lp is well-known. Moreover, various update op-
erators are studied for propositional language and some postulates are proposed
that should be valid for such operators. For example, if we consider only propo-
sitional atoms and their negations, then an update operator can be defined in
terms of addition and deletion of atoms.

Additionally we assume that the knowledge representation technologies used
for beliefs and goals are logically founded. This implies that there exists a KRT
translation operator that maps propositional expressions to the expressions of
the languages used in the knowledge representation technologies. In order to il-
lustrate this approach, we apply it to the GOAL programming language. The
semantic clauses of the GOAL programming language as defined above can be
modified to allow for the integration of multiple knowledge representation tech-
nologies.

Definition 7. (Semantics for Generic GOAL) Let Kb = 〈Lb, |=b,⊕b〉 and Kg =
〈Lg, |=g,⊕g〉 be logically founded KRT, based on KRT translation operator τb and
τg, respectively. Let also M = 〈Σ, Γ 〉 be a mental state with Σ ⊆ Lb, Γ ⊆ Lg,
φ ∈ Lp be a proposition, and c = if ϕ then a be a conditional action. Let ψ ∈ Lp

be a proposition representing the postcondition for action a. The semantics of
the generic GOAL language can be defined as follows:

– M |= bel(φ) iff Σ |=b τb(φ)
– M |= goal(φ) iff ∃γ ∈ Γ : γ |=g τb(φ) and Σ �|=b τb(φ)
– Action execution:

〈Σ, Γ 〉 |= ϕ

〈Σ, Γ 〉 −→ 〈Σ′, Γ ′〉

Combining Multiple Knowledge Representation Technologies 69

where: Σ′ = Σ ⊕b τb(ψ)

Γ ′ = Γ \ {τg(ψ) ∈ Γ | Σ′ |=b τb(ψ)}

The semantics of the GOAL programming language as defined above has some
interesting properties. In particular, despite using different knowledge represen-
tation technologies for belief and goal bases, it can be shown that when executed
the agent’s belief base remains consistent if the initial belief base of the agent is
consistent. Moreover, it can be shown that the agent will never have goals that
are already achieved.

Proposition 1. Let Kb = 〈Lb, |=b,⊕b〉 and Kg = 〈Lg, |=g,⊕g〉 be logically
founded KRT based on τb and τg, respectively. Let 〈Σ0 ⊆ Lb, Γ0 ⊆ Lg〉 be an
agent’s initial state, and 〈Σi, Γi〉 (for i > 0) be a state generated by executing
the agent according to the semantics as defined above. Then,

– if Σ0 is τb-consistent then Σi is τb-consistent for i > 0
– if Σi |=b τb(φ) then Γi �|=g τg(φ) for φ ∈ Lp and i > 0.

An advantage of this approach is that agent programs, which are implemented in
the generic version of the GOAL programming language, are independent from
the employed knowledge representation technologies. Consequently, changing the
employed knowledge representation technologies requires only a modification of
the translation operators such that nothing needs to be changed in the agent
programs. Furthermore, an agent program can be designed before a final choice
for a specific knowledge representation technology is made. A disadvantage is
that we should specify the translation operator in terms of the set of belief
queries which can be a large set.

4.2 Direct KRT Translation Approach

In this subsection, we assume that the adapted agent programming language is
defined in terms of two distinct knowledge representation technologies, one to
implement the belief base and its corresponding query expressions and one to
implement the goal base and its corresponding query expressions. The idea is
thus to represent each mental attitude (goals and beliefs) and its corresponding
queries with one and the same knowledge representation technology. In this ap-
proach, the knowledge representation technologies form integral constituents of
the definition of the agent programming language. We illustrate this approach
by applying it to the GOAL programming language. As the query languages
depend on the knowledge representation technologies, we first redefine the syn-
tax of the GOAL programming language by allowing expressions of different
knowledge representation technologies to be used as query expressions.

Definition 8. (Syntax for Multiple KRTs) Let Lb and Lg be representation
languages for belief and goal expressions, respectively. Let Σ ⊆ Lb and Γ ⊆ Lg.
The GOAL programming language based on Multiple KRT’s can be defined as
follows:

70 M.M. Dastani et al.

– ’if ϕ then a’, where
• if bel(φ) occurs in ϕ, then φ ∈ Lb

• if goal(φ) occurs in ϕ, then φ ∈ Lg

• PostCondition(a) ∈ Lb

Here we assume a translation operator that translates Lg into Lb. Given such
translation operator, the semantics for the GOAL programming language can
be redefined as follows.

Definition 9. (Semantics for Multiple KRTs) Let τ : Lg → Lb, Kb = 〈Lb, |=b

,⊕b〉 and Kg = 〈Lg, |=g,⊕g〉. Let also M = 〈Σ, Γ 〉 be a mental state with Σ ⊆ Lb,
Γ ⊆ Lg, φb ∈ Lb, φg ∈ Lg, and c = if ϕ then a be a conditional action. Let ψ ∈
Lb be the postcondition for action a. The semantics of the GOAL programming
language based on Multiple KRT’s can be defined as follows:

– M |= bel(φb) iff Σ |=b φb

– M |= goal(φg) iff ∃γ ∈ Γ : γ |=g φg and Σ �|=g τ(φg)
– Action execution:

〈Σ, Γ 〉 |= ϕ

〈Σ, Γ 〉 −→ 〈Σ′, Γ ′〉
where: Σ′ = Σ ⊕b ψ

Γ ′ = Γ \ {ψ ∈ Γ | Σ′ |=b τ(ψ)}

Like the previous approach, it is shown that the consistency of the belief base
can be preserved and its relation with the goal base can be maintained.

Proposition 2. Let Kb = 〈Lb, |=b,⊕b〉 be a KRT, Kg = 〈Lg, |=g,⊕g〉 be logically
founded based on τp and let τ be a KRT translation operator from Lg to Lb. Let
also 〈Σ0 ⊆ Lb, Γ0 ⊆ Lg〉 be an agent’s initial state, and 〈Σi, Γi〉 (for i > 0)
be a state generated by executing the agent according to the agent semantics as
defined above. Then,

– if Σ0 is τp-consistent then Σi is τp-consistent for i > 0.
– if Σi |=b τ(φ) then Γi �|=g φ for φ ∈ Lg and i > 0.
– Kb = 〈Lb, |=b,⊕b〉 is logically founded.

An advantage of this approach is that only a translation has to be made for the
goals of the agents, which are known at design time. A disadvantage is that if
the employed knowledge representation technologies for the goal or belief bases
are changed, not only a new translation function has to be defined, but also the
code of the agent program should be updated.

5 Integrating Multiple KRTs into a Belief Base

Although in principle the techniques of translating sentences specified using dif-
ferent KRTs also can be applied to handle inferencing on a composed belief base
that consist of multiple belief bases (cf. previous section and e.g. [15]), we propose

Combining Multiple Knowledge Representation Technologies 71

another technique to deal with such inferencing. One reason is that translation
may work well only for certain application types that use relatively small knowl-
edge bases. Another reason is that we believe that the technique to handle multiple
KRTs should facilitate drawing conclusions that combine information from several
of the databases a belief base may be composed of. As a simple example, consider
the airport service robot again which this time needs to give lost luggage back to
a passenger. The robot will need to combine information from several databases
to derive the quickest way to do this. A Prolog-like query to obtain this informa-
tion might look like loc(luggage,L,passenger),loc(passenger ,P),route(L,P,R).
A translation approach that has to deal with a query like this would give rise to
redundant processing and search for the right source of information that can an-
swer (part) of the query. It is a priori not clear from the query itself to identify the
right database to pose (part of) the query to. A technique is needed that allows
an agent programmer to “guide” the reasoning of an agent.

The approach suggested in this section proposes to connect various knowledge
bases by means of so-called bridge rules. Instead of translating languages, the
main idea of bridge rules is to add additional inference power on top of the
two or more knowledge technologies that are to be integrated into the agent
application. The mechanism to do so should also provide a means to connect
pieces of knowledge represented by different knowledge technologies. The relation
suggested by calling these rules bridge rules with multi-context logic is intentional
[9]. Multi-context logic provides a framework that can be used to achieve our
objective to integrate various knowledge technologies in the sense of Definition
1 (cf. also [8] for a similar proposal).

Bridge rules are particular kind of inference rules. They sanction an additional
inference to a conclusion represented using one knowledge technology given avail-
able inferences and associated conclusions using other knowledge technologies.
More formally, a bridge rule can be defined as a rule of the following form:

ϕ1, . . . , ϕn ⇒ ψ

where each ϕi and ψ are representations from a particular knowledge repre-
sentation language L. The intended semantics is that a bridge rule allows the
inference of ψ if all ϕi can be derived somehow given the inference relations |=Ki

associated with each ϕi. A bridge rule thus sanctions the inference of ψ given
these other inferences, and allows ψ to be used in other inferences to draw cer-
tain conclusions again. It does not require such inferences to be made, nor does
it require any updates on knowledge bases or the like; these rules only provide
additional inference power.

Continuing the example of the service robot, suppose information about pas-
sengers is stored “ad hoc” in the robots’ belief bases implemented in Prolog, lost
luggage information is stored in a SQL database, and routing information may
be requested from a GIS system implemented using OO database technology. In
that case, a bridge rule could be used to compute a route by directing queries
to these various information sources by a rule that such as the following:

72 M.M. Dastani et al.

loc(passenger, P),
SELECT L FROM

LostLuggage WHERE Pgnr = passenger,
mapGIS.get route(L, P, R)
⇒ route(R)

It will be clear that the syntax of the bridge rules provides clues how to resolve
a particular (part of a) query.

The idea thus is to allow a programmer to add specific bridge rules to an
agent program to facilitate inferences using multiple knowledge technologies.
The programmer is supposed to be able to design such rules given his knowledge
about the application and the use that the various knowledge technologies have
been put to. Bridge rules only add additional inference power and give rise to
a new inference relation |=∗. The inference relation |=∗ defines when a query
φ ∈ L from some knowledge representation language L is entailed by multiple
knowledge bases using various knowledge technologies which are possibly related
by a set of bridge rules B.

Definition 10. (Induced Inference Relation)
Let a set of knowledge bases KB1, . . . , KBn with associated knowledge technolo-
gies Ki = 〈Li, |=i,⊕i〉 for i = 1, . . . , n be given. Furthermore, assume a set of
bridge rules B consisting of formulas of the form ϕ1, . . . , ϕm ⇒ ψ with ϕi, ψ each
taken from one of the knowledge representation languages Li. Then the induced
inference relation |=∗ is defined by:

KB1, . . . , KBn,B |=∗ φ iff ∃i : 1 ≤ i ≤ n ∧ KB∗
i |=i φ

where the KB∗
i are defined by simultaneous induction as the smallest set such

that:

– KBi ⊆ KB∗
i , and

– whenever ϕ1, . . . , ϕm ⇒ ψ ∈ B with ψ ∈ Li and for all j = 1, . . . , m there is
a k such that KB∗

k |=k ϕj, then ψ ∈ KB∗
i .

The semantics indicates that each knowledge base with an additional set of
bridge rules can be computed incrementally, and that bridge rules can be viewed
as a kind of completion operator. An implementation using backward chaining
would make this approach a practical option for integration into agent languages.

It should be clear that a translation approach and an approach using bridge
rules do not exclude each other. In fact, both can be used to address the issue
discussed in the previous section - to facilitate inference when a belief base and
goal base use different KRTs - as well as the issue discussed in this section -
handling inference in a composed belief base. Bridge rules thus can be viewed as
kind of a translation operators but provide a programmer with more flexibility
whereas the approach using translation operators is more generic.

Combining Multiple Knowledge Representation Technologies 73

6 Conclusion and Related Work

The paradigm of rational agents and multi-agent systems provides an integrative
view on a multitude of topics in AI. Agents can usefully exploit the entities to
strengths of various technologies, especially w.r.t. knowledge representation and
control. To our knowledge, the problem of integrating heterogeneous knowledge
bases in a single agent system arose in the agent-oriented programming commu-
nity only recently. Most state-of-the-art agent oriented programming frameworks
do prescribe employment of a single knowledge base in a fixed KR language. Most
of the time it is either a logical language (Prolog), or a programming language
in which the particular framework is developed (Java). Homogeneous KBs in
such systems do not pose a problem, as formulas of different KBs come from the
same language, hence the same entailment/update operators can be used with
them.

We are aware of only two efforts in the context of agent oriented program-
ming which aimed at mixing heterogeneous knowledge representations in a single
agent system. Project IMPACT [7] aimed at integration of heterogeneous legacy
knowledge bases accessible to an agent. IMPACT treats each underlying KB
as an opaque body of software code, modeled as a set of predefined functions
providing access to the underlying data objects capturing a part of the current
agent’s (mental) state. The agent logic program consists of a set of if-then-else
rules regarded as a logic program. However, as IMPACT did aim for integra-
tion of heterogeneous information sources in the first place, IMPACT agents, by
default, do not maintain any stronger semantic conditions on their knowledge
bases (such as e.g. blind commitment strategy). That implies no special need for
translation of formulas from different KBs. In terms of approaches introduced
in this paper, IMPACT can be seen as an instance of a system implementing
a mechanism similar to bridge-rules discussed in Section 5. Modular BDI archi-
tecture [14] is another recent attempt to approach combining heterogeneous KR
technologies in an BDI-inspired agent system. Even though the agent system dy-
namics and semantics differs from that of IMPACT, the approach to integration
of heterogeneous KBs in a single agent is very similar.

In this paper we explored several approaches to integrate various knowledge
representation technologies so that these can be exploited in a single agent system
in a consistent way. This is as an initial attempt to study the problem. We believe
that an implemented proof of concept for the presented integration approaches
is necessary. Moreover, in our future research we want to compare our approach
with the results regarding translating database schemes, such as [11].

We would like to emphasize that the use of propositional logic as an inter-
mediary knowledge representation technology was for simplicity reasons and in
order to focus on the problem of integration of knowledge representation tech-
nologies. We believe that for developing practical agent systems the propositional
knowledge representation technology can easily be extended with first-order ele-
ments (such as variables) or even with representation technologies as developed
in KIF[15].

74 M.M. Dastani et al.

References

1. Bordini, R., Hübner, J., Vieira, R.: Jason and the Golden Fleece of agent-oriented
programming. In: Multi-Agent Programming - Languages, Platforms and Applica-
tions. Springer, Heidelberg (2005)

2. Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Program-
ming Languages, Platforms and Applications. Multiagent Systems, Artificial So-
cieties, and Simulated Organizations, vol. 15. Kluwer Academic Publishers, Dor-
drecht (2005)

3. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE Trans. of KDE 1(1) (1989)

4. Dastani, M., Meyer, J.-J.C.: A Practical Agent Programming Language. In: Das-
tani, M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007.
LNCS, vol. 4908, pp. 107–123. Springer, Heidelberg (2008)

5. Davis, R., Shrobe, H.E., Szolovits, P.: What is a knowledge representation?
AI 14(1), 17–33 (1993)

6. de Boer, F., Hindriks, K., van der Hoek, W., Meyer, J.-J.: A Verification Framework
for Agent Programming with Declarative Goals. Journal of Applied Logic (2007)

7. Dix, J., Zhang, Y.: IMPACT: A Multi-Agent Framework with Declarative Se-
mantics. In: Multi-Agent Programming - Languages, Platforms and Applications.
Springer, Heidelberg (2005)

8. Farquhar, A., Dappert, A., Fikes, R., Pratt, W.: Integrating Information Sources
Using Context Logic. In: Knoblock, C., Levy, A. (eds.) Information Gathering from
Heterogeneous, Distributed Environments (1995)

9. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics or: How we can do
without modal logics. AI 65(1), 29–70 (1994)

10. Levesque, H.: Foundations of a functional approach to knowledge representation.
AI 23, 155–212 (1984)

11. Makowsky, J.A., Ravve, E.V.: Translation schemes and the fundamental problem
of database design. In: Thalheim, B. (ed.) ER 1996. LNCS, vol. 1157, pp. 5–26.
Springer, Heidelberg (1996)

12. Minsky, M.: A framework for representing knowledge. In: Haughland, J. (ed.) Mind
Design, pp. 95–128. MIT Press, Cambridge (1981)

13. Minsky, M.: The society of mind. Simon & Schuster, Inc., New York (1986)
14. Novák, P., Dix, J.: Modular BDI architecture. In: Nakashima, H., Wellman, M.P.,

Weiss, G., Stone, P. (eds.) Proc. AAMAS 2006, pp. 1009–1015. ACM, New York
(2006)

15. Patil, R.S., Fikes, R.E., Patel-Schneider, P.F., McKay, D., Finin, T., Gruber, T.R.,
Neches, R.: The DARPA knowledge sharing effort: Progress report. In: Rich, C.,
Nebel, B., Swartout, W. (eds.) Princ. of KR and Reasoning: Proc. of the Third
Int. Conf. Morgan Kaufmann, San Francisco (1992)

16. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine. Mul-
tiagent Systems, Artificial Societies, and Simulated Organizations. In: [2], ch. 6,
vol. 15, pp. 149–174 (2005)

17. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In:
Proc. of the 2nd Int. Conf. on Princ. of KR and Reasoning, pp. 473–484 (1991)

18. Winikoff, M.: JACK(TM) Intelligent Agents: An Industrial Strength Platform.
Multiagent Systems, Artificial Societies, and Simulated Organizations. In: [2], ch.
7, vol. 15, pp. 175–193 (2005)

Model-Checking Strategic Ability
and Knowledge of the Past

of Communicating Coalitions

Dimitar P. Guelev1 and Catalin Dima2

1 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
gelevdp@math.bas.bg

2 Laboratory of Algorithms, Complexity and Logic, University XII of Paris, France
dima@univ-paris12.fr

Abstract. We propose a variant of alternating time temporal logic
(ATL) with imperfect information, perfect recall, epistemic modalities
for the past and strategies which are required to be uniform with re-
spect to distributed knowledge. The model-checking problem about ATL
with perfect recall and imperfect information is believed to be unsolv-
able, whereas in our setting it is solvable because of the uniformity of
strategies. We propose a model-checking algorithm for that system, which
exploits the interaction between the cooperation modalities and the epis-
temic modality for the past. This interaction allows every expressible goal
ϕ to be treated as the epistemic goal of (eventually) establishing that ϕ
holds and thus enables the handling of the cooperation modalities in a
streamlined way.

1 Introduction

Alternating time temporal logic (ATL, [AHK97, AHK02]) was introduced as a
reasoning tool for the analysis of strategic abilities of coalitions in infinite mul-
tiplayer games with temporal winning conditions. Several variants of ATL have
been proposed in the literature. The main differences arise from various restric-
tions on the considered games such as the players’ information on the game state,
which may be either complete or incomplete (imperfect), and their ability to keep
complete record of the past, which is known as perfect recall [JvdH04, Sch04].
The awareness of coalitions of the existence of winning strategies is another
source of differences, which is specific to the case of incomplete information.
The completeness of a proof system for ATL with complete information and
the decidability of validity in it was demonstrated in [GvD06]. Notably, model
checking is believed to be undecidable for ATL with imperfect information and
perfect recall. The result is attributed to a personal communication of Mihalis
Yannakakis to the authors of [AHK02]; this reference has been borrowed in
[Sch04] too. This undecidability recall has stimulated the introduction of several
systems [Sch04, vOJ05, JvdH06] with restrictions leading to more feasible model-
checking. An extensive study of the complexity of the model checking problem

M. Baldoni et al. (Eds.): DALT 2008, LNAI 5397, pp. 75–90, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

76 D.P. Guelev and C. Dima

for the variants of ATL which arise from allowing imperfect information and/or
perfect recall was done in [DJ08].

The formal analysis of multi-agent systems has generated substantial in-
terest in the study of combinations of ATL with modal logics of knowledge
[vdHW03, JvdH04]. Such combinations can be viewed as related to temporal
logics of knowledge (cf. e.g [HFMV95]) in the way ATL is related to computa-
tional tree logic CTL. Epistemic goals make it essential to study strategic abil-
ity with incomplete information. Variants of the cooperation modalities which
correspond to different forms of coordination within coalitions were proposed
in [JvdH04]. The recent work [JÅ07] proposes a combination of ATL with the
epistemic modalities for collective knowledge. In that system formulas are inter-
preted at sets of states and the existence of strategies which are winning for all
the epistemically indiscernible states can be expressed by combining epistemic
and cooperation modalities. Such strategies are called uniform with respect to
the corresponding form of collective knowledge.

Along with the alternating transition systems proposed in [AHK02], ATL has
been given semantics on interpreted systems, which are known from the study of
knowledge-based programs [HFMV95], and other structures, some of which have
been shown to be equivalent [GJ04]. Most of the proposed extensions of ATL and
other temporal logics by epistemic modalities include only the future temporal
operators and the indiscernibility relations which are needed for the semantics
of the S5 epistemic modalities are either defined as the equality of current local
states of the corresponding agents or assumed to be given explicitly in the respec-
tive structures and required to respect equality of local state [LR06a, LR06b].
The axiomatisation of knowledge in the presence of past temporal operators has
been studied in [FvdMR05], where indiscernibility is defined as equality of local
state again. ATL with complete information can be regarded as an extension of
computation tree logic CTL. CTL∗ with past modalities was given a complete
axiomatisation in [Rey05]. Model-checking an extension of LTL by epistemic
modalities, including common knowledge, with perfect recall semantics, but no
past temporal operators in the language, has been studied in [vdMS99]. We also
note the paper [SG02], which gives a model-checking algorithm for a variant of
CTL with knowledge (no common knowledge), by a reduction to the chain logic
with equal level predicate [Tho92]. Extensions of CTL by modalities to reason
about indiscernibility with respect to path observations in the past have been
proposed in [AČC07]. The model-checking problem for a corresponding more
expressive system of µ-calculus has been found to be undecidable. A system of
CTL with past whose set of temporal modalities is closest to that of the system
which we propose in this paper was introduced and studied in [LS95, LS00].

In this paper we propose a variant of ATL with epistemic modalities which
can be applied to past formulas to allow the formulation of epistemic goals.
We assume incomplete information and perfect recall and choose a variant of
the meaning of the cooperation modalities of ATL in a way which renders the
model-checking problem decidable. We achieve this by requiring strategies to be
uniform with respect to the distributed knowledge of the coalition and assuming

Model-Checking Strategic Ability and Knowledge 77

that strategies are functions on the combined local state of all the members
of the coalition. This corresponds to the unrestricted sharing of information
within the coalition while implementing the coalition strategy. Requiring uniform
strategies can spoil the determinacy of games: it is possible that neither side
knows how to win without taking chances. However, the impossibility to prevent
one’s opponent from achieving something using a uniform strategy still means
that the opponent has a possibly non-uniform strategy. Notably, some games
with imperfect information for just two players are solvable, and our technique for
model-checking uniform strategies bears similarities with that from [CDHR07].
That is why the reason for the undecidability under the standard (non-uniform)
interpretation of ATL with imperfect information and perfect recall appears
to be the fact that, even though the members of a coalition are assumed to
be working towards a common goal, each agent’s strategy is supposed to use
only its own observations on the evolution of the system. With strategies that
are uniform with respect to distributed knowledge and allow the agents to act
using their combined knowledge a coalition can be viewed as a single player
whose abilities and information are a combination of those of all the members.
We allow past formulas which are interpreted on finite histories in the scope
of epistemic modalities. The corresponding indiscernibility relations are defined
as equality of local state throughout the past and not just of current local state,
which is the most marked difference from the majority of the systems known from
the literature. Our model-checking algorithm exploits the interaction between
uniform strategies and knowledge, which can be formulated in the logic thanks
to the presence of both epistemic and strategic modalities: in our setting any
strategic goal ϕ can be formulated as the goal of (eventually) establishing that ϕ
holds, which is an epistemic goal. The respective strategies, of course, incorporate
the effort of making the original goal ϕ hold.

Structure of the paper. After brief preliminaries on ATL and its semantics
on interpreted systems we introduce our extension of ATL by a modality for
distributed knowledge of the past and our variant of the cooperation modalities.
Then we propose a transformation of interpreted systems which enables the
elimination of any given finite set of formulas built using the epistemic modality,
and establish some properties of the new variants of the cooperation modalities
which, in turn, allow the formulation of all strategic goals as corresponding
epistemic goals. Finally we combine these technical results into a model checking
algorithm for the proposed system of ATL.

2 Preliminaries

2.1 Interpreted Systems

Definition 1 (Interpreted systems). Given a set of agents Σ = {1, . . . , n}
and a set of atomic propositions AP , an interpreted system is a tuple of the form
〈〈Li,Act i, Pi, ti〉 : i ∈ Σ ∪ {e}, I, h〉 where

78 D.P. Guelev and C. Dima

– Li is the set of the local states of agent i ∈ Σ ∪ {e}; e �∈ Σ stands for the
environment;

– Act i is the set of actions available to agent i;
– Pi : Li → 2Acti is the protocol of agent i;
– ti : Li ×Le ×Act1 × . . .×Actn ×Acte → Li is the local transition function

of agent i;
– I ⊆ L is the set of initial global states, where L = L1 × . . . × Ln × Le is the

set of all global states;
– h : AP → 2L is the valuation function.

Informally, Pi(l) is the set of actions which are available to agent i when its
local state is l and ti(l, le, a1, . . . , an, ae) is the local state of i after a transition
in which the actions chosen by the agents and the environment are a1, . . . , an, ae,
respectively.

A run of an interpreted system IS = 〈〈Li,Act i, Pi, ti〉 : i ∈ Σ∪{e}, I, h〉 is an
infinite sequence r = r0r1 . . . rk . . . ∈ Lω such that r0 ∈ I and for every k < ω,
if rk = 〈l1, . . . , ln, le〉 and rk+1 = 〈l′1, . . . , l′n, l′e〉, then there exist some a1 ∈
P1(l1), . . . , an ∈ Pn(ln), ae ∈ Pe(le) such that l′i = ti(li, le, a1, . . . , an, ae), for i ∈
Σ∪{1, . . . , n, e}. In words, an interpreted system evolves by each agent choosing
an available action at every step and the successor local states of the agents being
determined by their respective current local states and all the actions which were
simultaneously chosen by the agents and the environment. The environment
behaves as an agent, except that, along with its actions, its local state too has
direct influence on the evolution of the local states of all the agents.

The local state of agent i within global state l ∈ L is denoted by li. Fur-
thermore, l′ = t(l, a1, . . . , an, ae) denotes l′i = ti(li, le, a1, . . . , an, ae) for all
i ∈ Σ ∪ {e}.

2.2 ATL on Interpreted Systems

Syntax. ATL formulas are built from propositional variables p from some given
vocabulary AP and sets of agents Γ within some given set of agents Σ using the
following syntax:

ϕ ::= ⊥ | p | ϕ ⇒ ϕ | 〈〈Γ 〉〉 ◦ ϕ | 〈〈Γ 〉〉(ϕUϕ) | [[Γ]](ϕUϕ)

Semantics. The semantics of the 〈〈Γ 〉〉-modalities of ATL involves strategies for
sets of agents. A strategy for agent i is a function f of type L+

i → Act i such
that f(l0 . . . lk) ∈ Pi(lk) for all l ∈ Lk+1

i . Given a set of agents Γ , a global state
l ∈ L, and a system of strategies F = 〈fi : i ∈ Γ 〉, out(l, F) denotes the set
of infinite sequences r ∈ Lω such that r0 = l and rk+1 is reached from rk by a
transition in which the action of each agent i ∈ Γ is fi(r0

i . . . rk
i) for all k < ω.

Informally, out(l, F) consists of the behaviours starting at l in which the agents
from Γ stick to their respective strategies in F .

Given an interpreted system IS = 〈〈Li,Act i, Pi, ti〉 : i ∈ Σ ∪ {e}, I, h〉, the
modeling relation |= is defined between global states l ∈ L and ATL formulas as
follows:

Model-Checking Strategic Ability and Knowledge 79

l �|= ⊥
l |= p iff l ∈ h(p)
l |= ϕ ⇒ ψ iff l |= ψ or l �|= ϕ
l |= 〈〈Γ 〉〉 ◦ ϕ iff there exists a system of strategies F for Γ

such that r1 |= ϕ for all r ∈ out(l, F)
l |= 〈〈Γ 〉〉(ϕUψ) iff there exists a system of strategies F for Γ

such that for every r ∈ out(l, F) there exists an m < ω
such that rk |= ϕ for all k < m and rm |= ψ

l |= [[Γ]](ϕUψ) iff for every system of strategies F for Γ
there exists an r ∈ out(l, F) and an m < ω such that
rk |= ϕ for all k < m and rm |= ψ

The other combinations between 〈〈Γ 〉〉 and [[Γ]] and the LTL modalities ◦, � and
� are introduced as abbreviations:

〈〈Γ 〉〉�ϕ ⇀↽ 〈〈Γ 〉〉(�Uϕ), [[Γ]]�ϕ ⇀↽ [[Γ]](�Uϕ), [[Γ]] ◦ ϕ ⇀↽ ¬〈〈Γ 〉〉 ◦ ¬ϕ,
〈〈Γ 〉〉�ϕ ⇀↽ ¬[[Γ]]�¬ϕ, [[Γ]]�ϕ ⇀↽ ¬〈〈Γ 〉〉�¬ϕ.

3 ATL with Knowledge of the Past and Communicating
Coalitions

According to the definition of |= for formulas built using a cooperation modal-
ity, despite pursuing a common goal, the members of a coalition are supposed
to follow strategies which are based on each individual member’s observation
of the behaviour of the system as represented by its sequence of local states.
This appears to render the model-checking problem for ATL with incomplete
information undecidable. A proof of the undecidability is attributed to a private
communication of Mihalis Yannakakis to the authors of [AHK02]; the reference
to that communication has been borrowed also in [Sch04]. In this section we
introduce a semantics for the cooperation modalities which allows to treat a
coalition as an individual player with its abilities being an appropriate combi-
nation of the abilities of the coalition members by assuming that they exchange
information on their local state while acting as a coalition, in order to coordinate
each others’ actions. We believe that both this assumption and the assumption
of each coalition member having to cope using just its own local state are real-
istic. We also include knowledge modalities, which can be applied to past LTL
formulas. Making reference to the past requires the satisfaction relation |= to
be defined with respect to global histories r instead of just a current state. Un-
like runs, histories include the actions of the agents because the knowledge of
the coalition’s actions contributes restrictions on the global behaviours which
correspond to the coalition’s observation.

The proposed logic involves two types of formulas denoted by ϕ and ψ in the
BNFs for their syntax:

ϕ ::= ⊥ | p | ϕ ⇒ ϕ | DΓ ψ | 〈〈Γ 〉〉D ◦ ϕ | 〈〈Γ 〉〉D(ϕUϕ) | [[Γ]]D(ϕUϕ)
ψ ::= ⊥ | ϕ | ψ ⇒ ψ | ◦ψ | (ψSψ) | DΓ ψ

80 D.P. Guelev and C. Dima

As expected, Γ denotes a subset of Σ in 〈〈Γ 〉〉D, [[Γ]]D and DΓ . We use D to denote
the epistemic modality of distributed knowledge, which is usually introduced in
systems with Ki as the basic modalities about the knowledge of individual agents
i. Since Ki is equivalent to D{i}, and we have little technical need to treat the case
of singleton coalitions separately, we use only D in our syntax. The superscript D

to the cooperation modalities is meant to emphasize the uniformity with respect
to distributed knowledge within coalitions in their semantics. The ”main” type of
formulas are those defined by the BNF for ϕ. The past modalities ◦ and (.S.) can
appear only in the scope of DΓ , without intermediate occurrences of 〈〈.〉〉D or [[.]]D.

3.1 Cooperation Modalities for Communicating Coalitions

Let IS = 〈〈Li,Act i, Pi, ti〉 : i ∈ Σ ∪ {e}, I, h〉 be an interpreted system IS with
set of global states L. Let Act =

∏
i∈Σ∪{e}

Act i. Then r = l0a0l1 . . . lm−1am−1lm ∈

L(Act L)∗ is a global history of IS, if l0 ∈ I and ak+1
i ∈ Pi(lki) for all i ∈ Σ ∪{e}

and lk+1 = t(lk, ak
1 , . . . , a

k
n, ak

e) for k = 0, . . . ,m. The length |r| of r is m.
We denote the set of the global histories of IS of length m by R(IS,m) and

write R(IS) for
∞⋃

m=0
R(IS,m). Given r = l0a0l1 . . . lm−1am−1lm ∈ R(IS,m)

and a coalition Γ , the corresponding local history rΓ of Γ is the sequence
l0Γ a0

Γ l1Γ . . . lm−1
Γ am−1

Γ lmΓ ∈ LΓ (ActΓ LΓ)m where lΓ stands for 〈li : i ∈ Γ 〉, aΓ

stands for 〈ai : i ∈ Γ 〉, and LΓ and ActΓ are
∏
i∈Γ

Li and
∏

i∈Γ

Act i, respectively. In

case Γ = ∅, lΓ and aΓ are the empty tuple 〈〉. The local histories of the empty
coalition are sequences of 〈〉s. Two histories r, r′ are indistinguishable to coali-
tion Γ , written r ∼Γ r′, if rΓ = r′Γ . The definition of |= for formulas built using
the cooperation modalities 〈〈.〉〉D and [[.]]Dinvolves a notion of joint strategies for
coalitions which can have internal communication.

Definition 2. Let IS be as above and Γ ⊆ Σ. A (communicating) strategy for
a coalition Γ in IS is a mapping s : LΓ (ActΓ LΓ)∗ → ActΓ such that if the last
member of r is l, then s(r) ∈

∏
i∈Γ

Pi(li).

The set of outcomes out(r, s) of a given strategy s for Γ starting from a given
global history r ∈ R(IS) consists of the infinite extensions of r which can be
obtained if Γ sticks to the strategy s from the end of r on. The clauses for |= on
formulas built using cooperation modalities are as follows:

r |= 〈〈Γ 〉〉D ◦ ϕ iff there exists a strategy s for Γ such that for all r′ ∈ [r]∼Γ

and all l0a0l1 . . . lkak . . . ∈ out(r′, s)
l0a0l1 . . . l|r|a|r|l|r|+1 |= ϕ

r |= 〈〈Γ 〉〉D(ϕUψ) iff there exists a strategy s for Γ such that for all r′ ∈ [r]∼Γ

and all l0a0l1 . . . lkak . . . ∈ out(r′, s) there exists an
m ≥ |r| such that l0a0l1 . . . ak−1lk |= ϕ
for all k ∈ {|r|, . . . ,m − 1} and l0a0l1 . . . am−1lm |= ψ

Model-Checking Strategic Ability and Knowledge 81

r |= [[Γ]]D(ϕUψ) iff for all strategies s for Γ there exists an r′ ∈ [r]∼Γ ,
an l0a0l1 . . . lkak . . . ∈ out(r′, s) and an m ≥ |r|
such that l0a0l1 . . . ak−1lk |= ϕ for all k ∈ {|r|, . . . ,m − 1}
and l0a0l1 . . . am−1lm |= ψ

Formulas of the forms 〈〈Γ 〉〉D�ϕ, [[Γ]]D�ϕ, [[Γ]]D ◦ ϕ, 〈〈Γ 〉〉D�ϕ and [[Γ]]D�ϕ are
introduced as abbreviations just like in ATL with standard semantics.

Since the same strategy is supposed to work for all the histories which the con-
sidered coalition cannot distinguish from the actual one, a coalition can achieve
something in the sense of 〈〈.〉〉D iff it knows that it can achieve it. As it becomes
clear below, it is also true that a coalition can achieve something iff it can even-
tually establish that it has achieved it, or that it keeps achieving it, in the case
of �-goals.

3.2 Knowledge of the Past

Past LTL modalities ◦ and (.S.) in the scope of D are used to express properties
of the history of behaviour of the considered interpreted system. We call formulas
built using just these modalities past LTL formulas. The semantics of D is defined
in terms of the indistinguishability of global histories to coalitions. The clause
for |= for knowledge formulas is as follows:

r |= DΓ ψ iff r′ |= ψ for all r′ ∈ [r]∼Γ

Formulas built using past temporal modalities and propositional connectives
have their usual meaning:

l0a0l1 . . . ak−1lk �|= ⊥
l0a0l1 . . . ak−1lk |= p iff lk ∈ h(p)
l0a0l1 . . . ak−1lk |= ϕ ⇒ ψ iff either l0a0l1 . . . ak−1lk �|= ϕ

or l0a0l1 . . . ak−1lk |= ψ
l0a0l1 . . . ak−1lk |= ◦ϕ iff k ≥ 1 and l0a0l1 . . . ak−2lk−1 |= ϕ
l0a0l1 . . . ak−1lk |= (ϕSψ) iff there exists an m ≤ k

such that l0a0l1 . . . am−1lm |= ψ
and l0a0l1 . . . aj−1lj |= ϕ for j = m + 1, . . . , k

We denote the dual of D by P and use �, � and I as abbreviations in the usual
way:

PΓ ψ ⇀↽ ¬DΓ¬ψ, �ψ ⇀↽ (�Sψ), �ψ ⇀↽ ¬�¬ψ, I ⇀↽ ¬◦�.

This completes the definition of our variant of ATL, which we denote by ATLP
D .

The definition of DΓ affects the way local state contributes to the agents’
knowledge. Instead of an explicit encoding of the entire memory of agent i
as originally proposed [HFMV95], li becomes just the projection of the global
state which is visible to i. Now agents’ understanding of the overall structure
of the given interpreted system, including their knowledge of its set of initial

82 D.P. Guelev and C. Dima

states I and the effect of actions as described by the functions ti are involved
in calculating the global histories r′ which are indistinguishable from the ac-
tual one, and DΓ ψ holds if ψ holds at all these runs. This means that, e.g.,
〈〈Γ 〉〉D ◦ (D{i}ψ ∨ D{i}¬ψ) is an expression for Γ can enforce a transition after
which i’s local history is sufficient to determine whether the global history satis-
fies ψ or not. Furthermore, it is possible that, e.g., 〈〈Γ 〉〉D ◦ DΓ ψ [[Γ]]D ◦ P∆¬ψ
are simultaneously true for some ψ and a proper sub-coalition ∆ ⊂ Γ . The exact
meaning of 〈〈Γ 〉〉D ◦ D∆ψ is that Γ is capable of causing the system’s next state
to be one in which ∆ can conclude that ψ holds about the past from its own
observations, regardless of the fact that reaching this state might have involved
unrestricted sharing information between ∆ and the rest of the members of the
greater coalition Γ . Therefore 〈〈Γ 〉〉D ◦ D∆ψ can be read as in one step Γ can
achieve ψ in a way which lets ∆ realize that ψ holds, that is, disregarding the
information exchanged in order to coordinate the transition designated by ◦.

Facts about the past can include (possibly missed) opportunities to enforce
certain properties of behaviours; such facts are expressible by writing 〈〈Γ 〉〉D-
formulas in the scope of past modalities. Our model-checking algorithm below
involves restoring to local state the role of explicitly storing all the information
which is relevant to a fixed set of epistemic goals about the past.

4 Encoding Knowledge of the Past in the Local State

In this section we show how, given a finite interpreted system

IS = 〈〈Li,Act i, Pi, ti〉 : i ∈ Σ ∪ {e}, I, h〉

and a finite set ΦΓ of past LTL formulas for each coalition Γ , one can construct
a corresponding (bigger) finite interpreted system IS〈ΦΓ :Γ⊆Σ〉 with its states
encoding whatever knowledge Γ can extract on the satisfaction of the formulas
from ΦΓ by observing the evolution of its local state in IS. The transitions of
IS〈ΦΓ :Γ⊆Σ〉 correspond to the transitions of IS, but connect states of IS〈Φi:i∈Σ〉
with appropriately related accounts on the satisfaction of the formulas from ΦΓ

for each coalition Γ in them.
To encode knowledge of the past in the local state we use a guarded normal

form for the past formulas from the sets ΦΓ . A finite set of formulas A is said
to be a full system, if the formulas from A are pairwise inconsistent and their
disjunction

∨
A is valid.

Lemma 1. Let π be a past LTL formula. Then there exists a finite set of for-
mulas Φπ of the form

θ ∧ I ∨
∨
i

αi ∧ ◦βi

where θ and the αis are purely propositional, and the αis form a full system,
such that

- π has an equivalent in Φπ;
- if θ ∧ I ∨

∨
i

αi ∧ ◦βi ∈ Φπ, then all the βis have equivalents in Φπ.

Model-Checking Strategic Ability and Knowledge 83

Proof. An induction on the construction of π shows that it has an equivalent
of the above form with the modal height of the βis in it being no greater than
that of π itself. The latter implies that a closure of {π} under taking the βis
from guarded forms would contain only finitely many pairwise non-equivalent
formulas.

Note that no syntactical restriction is imposed on the βis in the normal form
above. For example, one normal form for (pSq) is

q ∧ I ∨ q ∧ ◦� ∨ (p ∧ ¬q) ∧ ◦(pSq) ∨ (¬p ∧ ¬q) ∧ ◦⊥

and Φ(pSq) can be chosen to consist of the latter formula and the formulas ⊥ ∧
I∨�∧◦⊥ and �∧ I∨�∧◦�, which are normal forms for ⊥ and �, respectively.

A more accurate estimate of the size of Φπ can be obtained by taking a
deterministic finite state machine 〈Q, q0, δ, F 〉 which recognizes the language
{rk . . . r0 ∈ L+ : r0 . . . rk |= π} and taking Φπ to consist of the formulas πq

which define in the same way the languages accepted by the finite state machines
〈Q, q, δ, F 〉 for each q ∈ Q.

In the sequel we assume a fixed Φπ for every given formula π and, without
loss of generality, we assume that ΦΓ =

⋃
π∈ΦΓ

Φπ for each Γ ⊆ Σ.

Next we show that at each step of the evolution of IS the knowledge of
coalition Γ on the satisfaction of the formulas from Φ = ΦΓ can be represented
as a collection of facts of the form:

The current global state of IS is one of the states in X and, for each
l ∈ X, if the global state of IS is actually l, then the past satisfies the
formulas from Φ which are in Ψl.

That is, the knowledge of Γ can be encoded as the tuple 〈X,Ψl : l ∈ X〉, where
X ⊆ L and Ψl ⊆ Φ for every l ∈ X .

Consider a local history v0b0v1 . . . vm−1bm−1vm. The possible corresponding
global histories l0a0l1 . . . lm−1am−1lm satisfy the conditions

lkΓ = vk for k = 0, . . . ,m, and ak
Γ = bk for k = 0, . . . ,m − 1.

The initial state of the global history can be any of the states from X0 = {l ∈ I :
lΓ = v0}, and if the actual initial state is l, then Ψ0

l consists of those π ∈ Φ which
have a disjunctive member θ ∧ I such that l |= θ. Given v = v0, in the sequel we
denote the corresponding H0 = 〈X0, Ψ0

l : l ∈ X〉 defined above by IΓ,Φ(v). Let
k < m and the knowledge of Γ on Φ corresponding to v0b0v1 . . . vk−1bk−1vk be
Hk = 〈Xk, Ψk

l : l ∈ Xk〉. Then Γ ’s knowledge Hk+1 = 〈Xk+1, Ψk+1
l′ : l′ ∈ Xk+1〉

at v0b0v1 . . . vkbkvk+1 can be derived as follows. The set Xk+1 of the possible
global states is

{l′ ∈ L : l′Γ = vk+1, (∃l ∈ Xk)(∃a ∈
∏

i∈Σ∪{e}
Pi(li))(aΓ = bk and l′ = t(l, a1, . . . , an, ae)}

84 D.P. Guelev and C. Dima

To determine Ψk+1
l′ , l′ ∈ Xk+1, observe that θ ∧ I ∨

∨
s

αs ∧ ◦βs ∈ Ψk+1
l′ for

l′ ∈ Xk+1 iff βs ∈ Ψl for the only s such that l′ |= αs and all l ∈ Xk such that
l′ = t(l, a1, . . . , an, ae) for some a ∈

∏
i∈Σ∪{e}

Pi(li) such that aΓ = bk.

In the sequel, given H = Hk, v = vk and b = bk, we denote Hk+1 by
TΓ,Φ(H, b, v). Given that the current knowledge of Γ on the satisfaction of the
formulas from Φ is encoded by H , TΓ,Φ(H, b, v) encodes Γ ’s knowledge on the
satisfaction of the formulas from Φ after a transition by action b which leads to
local state v for Γ . Since X ⊆ {l ∈ L : lΓ = v}, the local state v can always be
determined from H = 〈X,Ψl : l ∈ X〉. Given H , we denote the corresponding
local state by vΓ (H). Now we are ready to define

IS〈ΦΓ :Γ⊆Σ〉 = 〈L̃Γ , ÃctΓ , P̃Γ , t̃Γ : Γ ∈ 2Σ ∪ {e}, Ĩ, h̃〉,

in which each coalition from Γ ⊆ Σ is represented as an agent. We put:

L̃e = Le, L̃Γ = {〈X,Ψl : l ∈ X〉 : X ⊆ {l ∈ L : lΓ = v} for some v ∈ LΓ , Ψl ⊆
ΦΓ for each l ∈ X};

Ãct{i} = Act i, P̃{i}(H) = Pi(v(H)) for singleton coalitions {i}; ˜ActΓ = {∗},
P̃Γ (H) = {∗} for non-singleton coalitions Γ ;

t̃Γ (H, le, a1, . . . , an, ae) = TΦΓ ,Γ (H, aΓ , 〈ti(vi(H), le, a1, . . . , an, ae) : i ∈ Γ 〉);
Ĩ = {〈IΓ,ΦΓ (lΓ) : Γ ⊆ Σ, le〉 : l ∈ I};

The set of atomic propositions ÃP for IS〈Φi:Γ⊆Σ〉 extends AP by the fresh
propositions pDΓ π , π ∈ ΦΓ , Γ ⊆ Σ. For p ∈ AP , h̃ is defined by the equality

h̃(p) = {〈HΓ : Γ ⊆ Σ, le〉 : 〈v{1}(H{1}), . . . , v{n}(H{n}), le〉 ∈ h(p)}.

For the new propositions we put

h̃(pDΓ ϕ) = {〈〈XΓ , ΨΓ
l : l ∈ XΓ 〉 : Γ ⊆ Σ, le〉 : ϕ ∈ ΨΓ

l for all l ∈ XΓ }.

According to this definition, only agents in IS〈ΦΓ :Γ⊆Σ〉 who correspond to sin-
gleton coalitions in IS have proper choice of actions, which is the same as that
of the respective individual agents in IS; all other coalitions have just singleton
action sets, but have the combined ability of observation of their member agents.

Proposition 1. Let r = l0a0l1 . . . lk−1ak−1lk . . . be a run of IS. Let

l̃0ã0 . . . l̃k−1ãk−1 l̃k . . .

be a run of IS〈ΦΓ :Γ⊆Σ〉 with the actions of the singleton coalitions {i}, i ∈ Σ in
ãk being those from ak and let

l̃0 = 〈IΓ,ΦΓ (l0Γ) : Γ ∈ Σ, l0e〉.

Then for all k < ω we have

lk = 〈v{i},Φ{i}(l̃k) : i ∈ Σ, l̃ke 〉

and
l0a0l1 . . . lk−1ak−1lk |= DΓ π iff l̃0ã0 . . . l̃k−1ãk−1 l̃k |= pDΓ π.

Model-Checking Strategic Ability and Knowledge 85

This can be established by a straightforward argument using induction on j.
The proposition holds with L̃{i} being just Li and t̃i being defined as ti on the
appropriate arguments in case Φ{i} is empty; agents Γ can be omitted altogether
for non-singleton Γ with empty ΦΓ .

Corollary 1. Let ϕ be an ATLP
D formula written in the vocabulary ÃP , then IS

satisfies the result [DΓ π/pDΓ π : π ∈ ΦΓ , Γ ⊆ Σ]ϕ of substituting the propositional
variables pDΓ π by the respective formulas DΓ π in ϕ iff IS〈ΦΓ :Γ⊆Σ〉 satisfies ϕ
itself.

Remark 1. The crucial property of LTL which enables the technique from this
section is Lemma 1. Similar statements apply to quantified propositional LTL,
the (linear time) modal µ-calculus [Koz83], regular expressions, propositional
interval-temporal logic [Mos85], etc. All these systems have the expressive power
of (weak) monadic second order logic on the natural numbers, which is greater
than that of just LTL’s past modalities, and can be used in place of the past
subset of LTL to define the formulas allowed in the scope of D without any
substantial change to the model-checking algorithm described in this paper.

5 Some Properties of the ATLP
D Cooperation Modalities

The previous section describes a method for the elimination of D-formulas by
replacing them with dedicated propositional variables in appropriately extended
interpreted systems. In this section we describe a method which does the same
for formulas built using the cooperation modalities. As it becomes clear in the
next section, this allows our model-checking algorithm to work bottom-up by
replacing modal formulas with dedicated propositional variables in correspond-
ing extensions of the given interpreted system. Only formulas with cooperation
modality-free and D-free arguments need to be considered at each step. In this
section we establish the properties of the ATLP

D cooperation modalities which
we need for the handling of modal formulas built with them.

Let us fix an interpreted system IS with its components named as previously.

Proposition 2. Let ϕ and ψ be boolean combinations of propositional variables.
Let r ∈ R(IS) and X = {l ∈ L : (∃r′ ∈ R(IS))r′ ∼Γ r and r′|r| = l}. Then

r |= 〈〈Γ 〉〉D(ϕUψ) is equivalent to l |= 〈〈Γ 〉〉D�DΓ �(ψ ∧ ¬◦¬�ϕ)

for all the 0-length histories l consisting of an initial state l ∈ X of the interpreted
system ISX = 〈〈Li,Act i, Pi, ti〉 : i ∈ Σ ∪ {e}, X, h〉. Similarly

r |= [[Γ]]D(ϕUψ) is equivalent to l |= [[Γ]]D�PΓ �(ψ ∧ ¬◦¬�ϕ)

for all l ∈ X in ISX .

Informally, this means that a strategy which enforces (ϕUψ) also enables the
coalition to eventually learn that (ϕUψ) was enforced. Learning this can as well

86 D.P. Guelev and C. Dima

be postponed by some steps from the time point at which ψ first happens to be
satisfied, and it is indeed possible that the coalition ”overlook” several events of
satisfying ψ, before being able to deduce that such an event took place.

Proof. The backward implication is obvious. For the forward implication, let s
be a strategy for Γ which enforces (ϕUψ) starting from all r′ ∈ [r]∼Γ in IS.
Let rΓ be the local history for Γ which corresponds to r. Let s′ be a strategy
for Γ which is defined by the equality s′(v0b0v1 . . . vk) = s(rΓ · b0v1 . . . vk) for
all local histories v0b0v1 . . . vk in ISX . Note that, by the definition of X , all
the local histories in ISX start at the last local state of rΓ . Assume that l �|=
〈〈Γ 〉〉D�DΓ �(ψ ∧ ¬◦¬�ϕ) for some l ∈ X for the sake of contradiction. Then
this formula is satisfied for no l ∈ X , since, by the definition of X , the local
states lΓ are the same for all l ∈ X and, consequently, the 0-length histories
l ∈ R(ISX , 0) are all indistinguishable to Γ . This means that there are arbitrarily
big numbers m and r = l0a0 . . . lkak . . . ∈ out(l, s′) such that l0a0 . . . am−1lm �|=
DΓ �(ψ∧¬◦¬�ϕ). By the definition of DΓ , for such m and r there exist histories
r′ ∈ IR(ISX ,m) such that r′ ∼Γ l0a0 . . . am−1lm and r′ �|= �(ψ ∧ ¬◦¬�ϕ).
Since s′ is observation-based, the r′s with the above property are in prefixes of
infinite runs in out(l′, s′) for some l′ ∈ X as well. Since the finite prefixes of
the behaviours from out(l′, s′) form trees of finite width, König’s Lemma entails
that for some l′ ∈ X there is an infinite run l∞,0a∞,0 . . . l∞,ka∞,k . . . ∈ out(l′, s′)
such that l∞,0a∞,0 . . . a∞,m−1l∞,m �|= �(ψ∧¬◦¬�ϕ) for all m. By the definition
of s′, r′ · a∞,0l∞,1 . . . l∞,ka∞,k . . . ∈ out(r′, s) for some r′ ∈ [r]∼Γ r such that r′

has l′ as its last state. Hence s does not enforce (ϕUψ) starting from r′, which
is a contradiction. The proof about [[Γ]]D(.U.)-formulas is similar.

Similar statements apply to formulas built using 〈〈Γ 〉〉D◦ and 〈〈Γ 〉〉D�:

Proposition 3. The following equivalences are valid in ATLP
D :

〈〈Γ 〉〉D ◦ ϕ ⇔ 〈〈Γ 〉〉D ◦ DΓ ϕ (1)
〈〈Γ 〉〉D�ϕ ⇔ 〈〈Γ 〉〉D�DΓ ϕ (2)

The proofs are similar, though simpler, because � and ◦ express safety properties
and therefore it is not necessary to use König’s Lemma. Cutting of the proper
past part of the satisfying behaviour, which is done by moving from IS to ISX ,
and is required in the case of (.U.) because of the need to satisfy it from the end
of that behaviour on, is not needed either. This makes it possible to express the
connection between the satisfaction of 〈〈Γ 〉〉D◦ϕ, 〈〈Γ 〉〉D�ϕ and the corresponding
formulas with DΓ applied to their designated arguments as a straightforward
equivalence.

6 Model-Checking ATLP
D

Now we are ready to describe a model-checking algorithm for ATLP
D . The algo-

rithm works by a series of transformations of the given interpreted system. The

Model-Checking Strategic Ability and Knowledge 87

transformations have the forms described in Section 4 and Propositions 2 and
3. The number of transformations is equal to the 〈〈.〉〉D-depth d(ϕ) of the given
formula ϕ, which is defined by the clauses

d(⊥) = d(p) = 0;
d(ϕ ⇒ ψ) = d((ϕSψ)) = max{d(ϕ), d(ψ)};
d(◦ϕ) = d(ϕ);
d(DΓ ϕ) = d(〈〈Γ 〉〉D ◦ ϕ) = d(〈〈Γ 〉〉D�ϕ) = d(ϕ) + 1;
d(〈〈Γ 〉〉D(ϕUψ)) = d([[Γ]]D(ϕUψ)) = max{d(ϕ), d(ψ)} + 1.

Note that the past modalities ◦ and (.S.) have no effect on d; the reasons for this
become clear below.

Unless the given formula ϕ is modality-free, which renders the model-checking
problem trivial, ϕ has either

(i) a subformula DΓ ψ with no occurrences of the cooperation modalities,
or

(ii) a subformula of one of the forms 〈〈Γ 〉〉D ◦ϕ, 〈〈Γ 〉〉D(ϕUψ), [[Γ]]D(ϕUψ) and
〈〈Γ 〉〉D�ϕ in which ϕ and ψ are modality-free.
Despite that 〈〈Γ 〉〉D�ϕ is just an abbreviation for ¬[[Γ]]D�¬ϕ, we consider it
separately in this case distinction because, as it becomes clear below, it can be
handled more efficiently. The better efficiency justifies treating [[Γ]]D�ϕ as its
equivalent ¬〈〈Γ 〉〉D�¬ϕ as well.

Assume that (i) holds. Let

ΦΓ = {ψ : DΓ ψ ∈ Subf(ϕ) and ψ is cooperation modality-free}

for every Γ ⊆ Σ. Then ϕ can be written as [DΓ ψ/pDΓ ψ : ψ ∈ ΦΓ , Γ ⊆ Σ]ϕ′ for
some appropriate ϕ′ which has no D-subformulas without a cooperation modality
in their scope. Then by Corollary 1 IS satisfies ϕ iff IS〈ΦΓ :Γ⊆Σ〉, which is defined
as in Section 4, satisfies ϕ′. Clearly d(ϕ′) = d(ϕ) − 1.

Now assume that (ii) holds. For the sake of simplicity, we assume that there
is just one subformula of the considered form. If there are more, then the trans-
formations below can be done for all of them simultaneously.

Let the subformula in question be 〈〈Γ 〉〉D(ϕUψ). Note that, since ϕ and ψ
make no reference to the past, the satisfaction of 〈〈Γ 〉〉D(ϕUψ) depends just on
the set of states which are the ends of histories r′ that Γ cannot distinguish
from the actual reference history r. Consider IS′ = IS〈Φ∆:∆⊆Σ〉 where Φ∆ = ∅
for all ∆ ⊆ Σ. Moving from IS to IS′ with Φ∆s is equivalent to a subset
construction for IS. The states of IS′ are the sets of indistinguishable states for
all the possible coalitions as the states of the new system. The satisfiability of
〈〈Γ 〉〉D(ϕUψ) is preserved in IS′ according to Corollary 1. Moreover, we can define
l |= 〈〈Γ 〉〉D(ϕUψ) for every individual global state l of IS′, and, if l = 〈〈X∆〉 :
∆ ∈ 2Σ ∪ {e}〉, that would be equivalent to the existence of a strategy for Γ to
enforce (ϕUψ) for all the states of IS in X = XΓ . According to Proposition 2,
this is equivalent to the satisfaction of 〈〈Γ 〉〉D�DΓ �(ψ ∧ ¬◦¬�ϕ) at the system
IS′

Y which is obtained by replacing the set of the initial states of IS′ with the
set Y = {〈〈X∆〉 : ∆ ∈ 2Σ ∪ {e}〉 : XΓ = X}, which consists of the states

88 D.P. Guelev and C. Dima

of IS′ which are the ends of 0-length histories in IS′ that Γ cannot tell apart
from the 0-length history l. To model-check 〈〈Γ 〉〉D�DΓ �(ψ ∧ ¬◦¬�ϕ) in IS′

Y ,
we construct IS′′ = (IS′

Y)〈Ψ∆:∆⊆Σ〉 where Ψ∆ = ∅ for ∆ �= Γ again, and
ΨΓ = {�(ψ∧¬◦¬�ϕ)}. According to Corollary 1, what remains to be done is to
model-check 〈〈Γ 〉〉D�p

DΓ �(ψ∧¬◦¬�ϕ)
in IS′′, which can be done by calculating

the appropriate fixpoint just like for 〈〈Γ 〉〉�p
DΓ �(ψ∧¬◦¬�ϕ)

with respect to the
standard semantics of 〈〈Γ 〉〉(.U.) in ATL.

The steps for formulas of the forms 〈〈Γ 〉〉D◦ϕ and 〈〈Γ 〉〉D�ϕ are similar, with the
role of Proposition 2 being played by the equivalences (1) and (2), respectively.
Since there is no need to replace the set of the initial states as done upon moving
from IS′ to IS′

Y in the case of 〈〈Γ 〉〉D(.U.), a single extension of the form from
Proposition 1 with ΦΓ being {ϕ} is sufficient.

If the formula in question is [[Γ]]D(ϕUψ), then we use the equivalence between
[[Γ]]D�PΓ �(ψ ∧ ¬◦¬�ϕ) and ¬〈〈Γ 〉〉D�DΓ �¬(ψ ∧ ¬◦¬�ϕ) and solve the case
by model-checking the latter formula at IS′

Y , which is defined as in the case of
〈〈Γ 〉〉D(ϕUψ).

This concludes the description of our model-checking procedure for ATLP
D .

7 Conclusion

We have proposed a system of ATL with imperfect information, perfect recall,
an epistemic modality for past LTL formulas and cooperation modalities which
are interpreted over strategies that are uniform with respect to the distributed
knowledge on the past of the respective coalition. The model-checking prob-
lem for the proposed system is decidable. The system can be used to specify
goals which combine enforcing conditions on the future behaviour of the given
system with the acquisition of knowledge or the prevention of acquisition of
knowlegde on its past behaviour. Our model-checking algorithm exploits the
interaction between the epistemic modality and the cooperation modalities in
order to encode all strategy goals as epistemic goals and works by transforming
the model-checked system in a way which allows the relevant knowledge of the
past to be encoded in the local states of the respective agents and coalitions
and thus eliminate the explicit occurrences of the epistemic modality from the
model-checked formula.

Acknowledgements

Work on this paper was done during the D. Guelev’s visit to LACL at University
XII of Paris in October-November 2007, and was partially supported by the ANR
SPREADS (Safe P2P Reliable Architecture for Data Storage) project.

The authors are grateful to Pierre Yves Schobbens and Valentin Goranko for
some discussions and helpful comments on the topic of the paper and to an
anonymous referee for pointing to the relevance of [LS00].

Model-Checking Strategic Ability and Knowledge 89

References

[AČC07] Alur, R., Černý, P., Chaudhuri, S.: Model checking on trees with path
equivalences. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS,
vol. 4424, pp. 664–678. Springer, Heidelberg (2007)

[AHK97] Alur, R., Henzinger, T., Kupferman, O.: Alternating-time Temporal
Logic. In: Proceedings of the 38th IEEE Symposium on Foundations
of Computer Science, pp. 100–109 (1997)

[AHK02] Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal
logic. Journal of the ACM 49(5), 1–42 (2002)

[CDHR07] Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Algorithms for
Omega-regular Games with Imperfect Information. Logical Methods in
Computer Science 3(4), 1–23 (2007)

[DJ08] Dix, J., Jamroga, W.: Model Checking Abilities of Agents: A Closer
Look. Theory of Computing Systems 42(3), 366–410 (2008)

[FvdMR05] French, T., van der Meyden, R., Reynolds, M.: Axioms for Logics of
Knowledge and Past Time: Synchrony and Unique Initial States. In:
Advances in Modal Logic, vol. 5, pp. 53–72. King’s College Publications
(2005)

[GJ04] Goranko, V., Jamroga, W.: Comparing Semantics for Logics of Multi-
agent Systems. Synthese 139(2), 241–280 (2004)

[GvD06] Goranko, V., van Drimmelen, G.: Decidability and Complete Axioma-
tization of the Alternating-time Temporal Logic. Theoretical Computer
Science 353(1-3), 93–117 (2006)

[HFMV95] Halpern, J., Fagin, R., Moses, Y., Vardi, M.: Reasoning about Knowl-
edge. MIT Press, Cambridge (1995)

[JÅ07] Jamroga, W., Ågotnes, T.: Constructive knowledge: what agents can
achieve under imperfect information. Journal of Applied Non-Classical
Logics 17(4), 423–475 (2007)

[JvdH04] Jamroga, W., van der Hoek, W.: Agents That Know How to Play. Fun-
damenta Informaticae 63(2-3), 185–219 (2004)

[JvdH06] Jamroga, W., van der Hoek, W.: Strategic Ability under Uncertainty.
Technical Report 6, Institute of Computer Science, Clausthal University
of Technology (2006)

[Koz83] Kozen, D.: Results on the propositional µ-calculus. Theoretical Com-
puter Science 27, 333–354 (1983)

[LR06a] Lomuscio, A., Raimondi, F.: Model checking knowledge, strategies, and
games in multi-agent systems. In: Proceedings of the 5th International
Conference on Autonomous Agents and Multi-Agent systems (AAMAS
2006), pp. 161–168. ACM Press, New York (2006)

[LR06b] Lomuscio, A., Raimondi, F.: The Complexity of Model Checking Con-
current Programs Against CTLK Specifications. In: Baldoni, M., En-
driss, U. (eds.) DALT 2006. LNCS, vol. 4327, pp. 29–42. Springer, Hei-
delberg (2006)

[LS95] Laroussinie, F., Schnoebelen, P.: A Hierarchy of Temporal Logics with
Past. Information and Computation 148(2), 303–324 (1995)

[LS00] Laroussinie, F., Schnoebelen, P.: Specification in CTL+Past for Verifi-
cation in CTL. Information and Computation 156(1-2), 236–263 (2000)

[Mos85] Moszkowski, B.: Temporal Logic For Multilevel Reasoning About Hard-
ware. IEEE Computer 18(2), 10–19 (1985)

90 D.P. Guelev and C. Dima

[Rey05] Reynolds, M.: An Axiomatization of PCTL*. Information and Compu-
tation 201(1), 72–119 (2005)

[Sch04] Schobbens, P.Y.: Alternating-time logic with imperfect recall. Electronic
Notes in Theoretical Computer Science 85(2), 82–93 (2003); Proceedings
of LCMAS 2003

[SG02] Shilov, N.V., Garanina, N.O.: Model-checking Knowledge and Fix-
points. In: Preliminary Proceedings of the 3rd Workshop on Fixpoints in
Computer Science (FICS 2002), number NS-02-2 in BRICS Notes Series,
pp. 25–39. BRICS (July 2002) (Also available as Preprint 1998, Ershov,
A.P., Institute of Informatics Systems, Russian Academy of Sciences
(Siberian Division))

[Tho92] Thomas, W.: Infinite Trees and Automation-Definable Relations over
ω-Words. Theoretical Computer Science 103(1), 143–159 (1992)

[vdHW03] van der Hoek, W., Wooldridge, M.: Cooperation, Knowledge and Time:
Alternating-time Temporal Epistemic Logic and Its Applications. Studia
Logica 75, 125–157 (2003)

[vdMS99] van der Meyden, R., Shilov, N.V.: Model Checking Knowledge And
Time In Systems With Perfect Recall. In: Pandu Rangan, C., Raman,
V., Ramanujam, R. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 432–445.
Springer, Heidelberg (1999)

[vOJ05] van Otterloo, S., Jonker, G.: On Epistemic Temporal Strategic Logic.
In: Proceedings of the 2nd International Workshop on Logic and Com-
munication in Multi-Agent Systems (2004). ENTCS, vol. 126, pp. 77–92.
Elsevier, Amsterdam (2005)

JASDL: A Practical Programming Approach
Combining Agent and Semantic Web Technologies

Thomas Klapiscak and Rafael H. Bordini

Department of Computer Science
University of Durham, U.K.

�����������	�
���
����������������	��

Abstract. Although various ideas for integrating Semantic Web and Agent Pro-
gramming techniques have appeared in the literature, as yet no practical pro-
gramming approach has managed to harness the full potential for declarative
agent-oriented programming of currently widely used Semantic Web technolo-
gies. When agent programmers are familiar with existing ontologies for the do-
main of interest, they can take advantage of the knowledge already represented
there to make their programs much more compact and elegant, besides the ob-
vious interoperability and reuse advantages. This paper describes JASDL: an ex-
tension of the Jason agent platform which makes use of OWL-API to provide
features such as plan trigger generalisation based on ontological knowledge and
the use of such knowledge in querying the belief base. The paper also includes
a running example which clearly illustrates the features and advantages of our
approach.

1 Introduction

The idea of agent-oriented programming with underlying ontological reasoning was
first put forward in [19]. That paper showed the changes in the operational seman-
tics of AgentSpeak that were required for combining agent-oriented programming with
ontological reasoning. The Semantic Web vision depends on the availability of ontolo-
gies [24] so that web resources are semantically annotated, but depends also on the
availability of agents that will be able to make use of such semantically enriched web
resources. For this to be possible in practice, a well devised combination of autonomous
agents and semantic web technologies is essential. This paper aims to contribute to-
wards addressing this problem.

The main advantages for agent programming that were claimed in [19] to result
from the work on that variant of AgentSpeak [22] (called AgentSpeak-DL) based on a
Description Logic (DL) [1] are:

(i) “queries to the belief base are more expressive as their results do not de-
pend only on explicit knowledge but can be inferred from the ontology;

(ii) the notion of belief update is refined so that a property about an individual
can only be added if the resulting ontology-based belief base would pre-
serve consistency (i.e., if the ABox assertion is consistent with the concept
descriptions in the TBox);

M. Baldoni et al. (Eds.): DALT 2008, LNAI 5397, pp. 91–110, 2009.
c� Springer-Verlag Berlin Heidelberg 2009

92 T. Klapiscak and R.H. Bordini

(iii) retrieving a plan (from the agent’s plan library) that is relevant for deal-
ing with a particular event is more flexible as this is not based solely on
unification, but also on the subsumption relation between concepts; and

(iv) agents may share knowledge by using web ontology languages such as
OWL [17].”

The four points above were quoted from [19]. However, that was a formal paper, which
set the grounds for this work, but was far removed from the actual technologies — such
as an AgentSpeak interpreter and ontological reasoners such as [23,15]. As anyone with
experience in applied work in multi-agent systems will agree, there are major research
questions to solve and technical obstacles to overcome before a theoretical contribution
becomes useful for practical work. That is probably the reason why, so far, only one
attempt has been made to implement the ideas in [19], at least to our knowledge. The
first initial contribution towards implementing those ideas appeared in [7]; there are,
however, limitations to that approach which our approach circumvents (as discussed in
Section 3).

This paper describes JASDL (Jason AgentSpeak–DescriptionLogic), which uses Ja-
son [4] customisation techniques (as well as some language constructs such as annota-
tions) and the OWL-API [13] in order to provide all the features of agent programming
combined with ontological reasoning mentioned above, as well as some novel features
conceived of during the development of JASDL. To our knowledge, JASDL is the first
full implementation of an agent-oriented programming language with transparent use
of ontologies and underlying ontological reasoning within a declarative setting.

However, while [19] suggested changes in the operational semantics to achieve
this, we did not need to change any of the core classes of Jason in order to
implement AgentSpeak-DL (note that JASDL is a Jason-based implementation of
AgentSpeak-DL). This is due to the various customisation and extension techniques
which have been built into Jason [4]. This paper shows how such mechanisms were
used, the various choices that had to be addressed in order to make concrete the formal
proposal for combining agent-oriented programming and ontologies, and exemplifies
how the features of such a combination can be useful in software development using
JASDL.

The remainder of this paper is organised as follows. In Section 2 we describe JASDL
in detail, including a running example which helps illustrate the main features of agent
programming in JASDL. In Section 3, we discuss related work and then conclude the
paper and mention future work in Section 4.

2 JASDL

2.1 The General Architecture

We now explain the main components of JASDL, how they fit together, and how each
corresponds to the enhancements claimed in this paper. A simplified view of the general
architecture can be seen in Figure 1. Note that, throughout this paper we will be refer-
ring to points i–iv of the advantages of combining agent programming with ontologies
as quoted in Section 1.

JASDL: Combining Agent Programming and Semantic Web Technologies 93

The extensibility mechanisms of Jason allow the functioning of certain steps in the
agent reasoning cycle to be modified by extending core Jason classes and overriding
methods as required. This technique is adopted to integrate the various mechanisms
of JASDL with Jason; this is to ensure that JASDL will work with future releases of
Jason. We now describe the four main Jason components that JASDL overrides and to
what end it does so.

Belief Base. A Jason agent stores information about the world within a data structure
known as the belief base. Initially, the Jason belief base was simply a list of ground

Belief Base Agent Arch Plan Library

Jason

JASDL

Bridge

DL-Reasoner OWL-API

Agent

Axiom to Literal
Converter

Literal to Axiom
Converter

Fig. 1. The Architecture of JASDL

literals, although this has recently
been extended to allow the use of
Prolog-like rules [4]. JASDL extends
this in such away that the belief base
now partly resides within a set of
in-memory instantiations of OWL
ontology schemas. This, in combina-
tion with a DL reasoner, facilitates
the use of publicly available knowl-
edge (in web ontologies) to increase
the extent of inferences an agent can
make based on its beliefs (point i;
see Section 2.3), and an enhanced
assurance of knowledge consistency
(point ii; see Section 2.4).

Plan Library. The plan library of a Jason agent combines a data structure for storing
AgentSpeak plans with various modification and retrieval operations. JASDL overrides
these operations to facilitate enhanced plan retrieval flexibility to include additional,
more general (according to ontological knowledge) plans for dealing with an event
(point iii; see Section 2.8).

Agent Architecture. The “overall agent architecture” provides an interface between the
reasoning module of a Jason agent and the multiagent infrastructure it uses for commu-
nication, perception, and action. Jason’s extensibility mechanisms allow us to override
certain aspects of this interfacing independently of implementation specifics [4]. In the
case of JASDL, we augment the default architecture with message processing to facili-
tate semantically-enriched inter-agent communication (point iv; see Section 2.7).

Agent. We extend Jason’s internal representation of an agent for two reasons. Firstly,
we override its configuration routines to include JASDL specific parameters. Secondly,
we override various application-dependent functions such as the AgentSpeak select op-
tion function, SO

1, (as part of the implementation of point iii) and the agent’s belief
revision function (as part of the implementation of point ii).

The OWL-API can be thought of as a repertoire of data structures and utility
classes facilitating a high-level means of representing, modifying and reasoning over

1 Due to shortness of space, we cannot introduce the AgentSpeak language in this paper. Readers
unfamiliar with the language are referred to the cited AgentSpeak literature.

94 T. Klapiscak and R.H. Bordini

OWL ontologies. Description Logic reasoning services are provided through a general
interface of which there are well established implementations for the widely known DL
reasoners Pellet [23] and FaCT�� [15]. The OWL-API takes an axiomatic approach to
representing an OWL ontology, which, as its authors point out, can lead to more elegant
implementations than those possible using other approaches (such as the RDF-triple
data model adopted by the Jena API [16]). Our experience provides further evidence
to that, as a previous JASDL implementation used Jena and it seems to us that the
new implementation is significantly clearer. Additionally, the OWL-API exposes vari-
ous black-box debugging features (presently not supported by Jena to the best of our
knowledge) that are necessary for two of JASDL’s features which will be discussed
later in this paper.

Finally, the bridge sub-component of JASDL encapsulates the interfacing between
JASDL and the OWL-API. Its primary purpose is to provide various factory classes to
conveniently allow the creation of Jason constructs (such as literals) from the constructs
of the OWL-API (axioms), and vice-versa.

2.2 The “Takeaway” Case-Study

Throughout this paper we refer to a simplified version of the “Takeaway” case-study
that has been developed using JASDL. Although the code seen within this paper is
based upon an actual implementation, it has been heavily adapted in the interest of
concise discussion of the most relevant issues. The version we describe is a simple
multi-agent system containing three main types of agent: ���������, �	
�	�	��, and
���
	����. ��������� act as “personal-assistants” and coordinate with �	
�	�	��

to purchase types of takeaway food on behalf of a human. �	
�	�	�� are grouped
according to the ���
	���� that own them; all those within the same company are
assumed to share profits (and thus have a common goal).

The agents in this society make use of two OWL ontologies, fastfood.owl2 and soci-
ety.owl3, both of which are depicted in Figure 2. We give an overview of each ontology
below, whilst deferring a more detailed account until required in later discussions.

The �	����������ontology describes a hierarchy of types of fast food. An instance
of this hierarchy corresponds to a portion of prepared foodstu�. To describe pizzas, it
imports a fragment of the well-known pizza.owl4 ontology. In that ontology, pizzas are
classified according to their relationships with instances of ����	��

��� over the
�	���

��� object property. On top of that, we have added various classes to describe
types of curry and a single data property, �	������ relating all instances of �	������
to a ������ constant value.

The ����������� ontology describes a hierarchy of agent types which agents can
use to reason about their peers and the society within which they exist. Additionally,
we define the ���� object property used to express agent subservience. Not only does
this ontology grant the multi-agent system a shared vocabulary and an expression of
social rules, it also acts as a shared data-source since agent instances are defined within
the ontology schema itself (rather than within local in-memory instantiations as is

2 Available at ����������������	��
�����
�����	�
������������������
3 Available at ����������������	��
�����
�����	�
��������	��������
4 Available at �����������	��������������������������� !!"�#!�#$����������

http://www.dur.ac.uk/t.g.klapiscak/onts/fastfood.owl
http://www.dur.ac.uk/t.g.klapiscak/onts/society.owl
http://www.co-ode.org/ontologies/pizza/2005/10/18/pizza.owl

JASDL: Combining Agent Programming and Semantic Web Technologies 95

Fig. 2. Ontologies used within the “Takeaway” case-study. Ovals depict classes or data types,
rectangles depict instances, dotted lines depict subsumption, and labelled solid lines depict prop-
erties (inverses are given in brackets).

the case for instances of ����). We define a �������� agent ���, a ���
	�� agent
���� ��� and two �	
�	�	� agents, ��	��	�	 and ����� ��	�, which have types
��	��	��	
�	�	� and ����	��	
�	�	� respectively.

2.3 More Expressive Queries to the Belief Base

The belief base of a JASDL agent should be seen as being the result of the combination
of two reasoning engines and knowledge representation languages. The first is identical
to the default Jason belief base and is used to store normal AgentSpeak beliefs as
well as Prolog-like rules that can be used for making inferences over existing beliefs.
The second wraps around a set of read�write in-memory instantiations of read-only
OWL ontology schemas and is used for storage of those beliefs that correspond to some
ontological fact.

Semantically-Enriched Literals. In order to provide a means for the representation of
beliefs that correspond to some ontological fact using standard AgentSpeak syntax, we
define the notion of a Semantically-Enriched Literal, or SE-literal for short. An SE-
literal is characterised by its association with the ontology annotation (o�1) — see [4]
for the use of annotations in Jason literals. The single, atomic term of this annotation is
an ontology label; a unique, succinct reference to a single in-memory ontology instance.
Nested within an SE-literal are one or more terms that define the individual(s) or con-
stant that this assertion is about. The functor of the SE-literal defines the TBox resource
the assertion refers to and is simply an AgentSpeak syntax compatible modification of
the fragment of the URI that identifies the resource. We refer to ���������	
��	

pairs as aliases since they provide a level of indirection between SE-literals and onto-
logical resources. For emphasis, a normal Jason literal that does not have an ontology
annotation or alias is referred to as “semantically-naive”.

Functor and label mappings can be manually configured for an agent. Additionally,
JASDL provides an extensible and configurable auto-mapping mechanism to perform
common functor mapping operations (mapping strategies) across an entire ontology,
such as decapitalising the first letter of the URI fragment of each resource if necessary.
If an automatic mapping operation results in a non-unique alias, the functor is replaced

96 T. Klapiscak and R.H. Bordini

with an anonymous one, which can in turn be preemptively overridden by a manual
mapping.

In the interests of succinctness, we assume this transformation is implicit in all
examples seen in this paper. Further, we consider all agents to share the label “��”
for �	���������� and “�” for �����������. The
���	���� ontology is imported
by �	���������� and need not be directly referenced by a label; �� can be used to
reference resources from this ontology and the specifics are handled transparently by
JASDL.

We define four types of SE-literal for the representation of di�erent kinds of as-
sertions within the ontological components of an agent’s belief base. We classify an
SE-literal implicitly based on its arity and the types of its nested terms.

Class Assertion. This is a unary SE-literal corresponding to the assertion that the in-
dividual represented by the term given as the parameter is a member of the class refer-
enced by the predicate (in the respective ontology).

Object Property Assertion. This is a binary SE-literal corresponding to the assertion
that the individual represented by the first parameter is related to the second by the
object property referenced by the predicate.

Data Property Assertion. This is also a binary SE-literal. It corresponds to the asser-
tion that the individual represented by the first parameter is related to the constant value
given as the second by the data property referenced by the predicate.

All Di�erent Assertion. By default, OWL does not make the unique naming assump-
tion [18]. This implies that, unless explicitly stated otherwise, individuals with di�er-
ent names may be treated as identical by a reasoner. When developing an agent using
JASDL, we may wish to explicitly state at run-time that a set of individuals are mutually
distinct. To this end, we represent such assertions with a unary SE-literal possessing the
predefined and global predicate ��	�� �����������. The parameter of this predicate
is a list of individuals that we wish to assert as mutually distinct.

Fig. 3. Example SE-literals and corresponding axiomatic representation

Modification. A belief addition or deletion comes in the form of a ground5 literal � to
be asserted or retracted within the belief base of the agent. In JASDL, these operations
can follow one of two flows of execution, determined by intercepting � in our extended
belief base Jason class.

5 Unground additions fail, whilst unground removals are grounded – using the first unifying
literal in the belief base – before removal is attempted.

JASDL: Combining Agent Programming and Semantic Web Technologies 97

If � is not semantically enriched, it is simply passed up to the standard Jason belief
base to be handled as per usual. If, on the other hand, � is semantically enriched we
proceed as follows. We encode the precise meaning of � into its equivalent OWL-API
axiomatic representation. We then assert or retract this encoding within the appropriate
ontology instance using the standard mechanisms provided by the OWL-API.

The only complication to this process is related to the storage of annotations associ-
ated with � (with the exception of the ontology annotation, since this is implicit in the
location of the axiom). Jason’s default belief base, which stores hash-table references to
(semantically-naive) literals themselves, handles this implicitly since annotations form
part of the literal description. For JASDL this is not so straightforward since our literals
are deconstructed for ontological storage and reconstructed upon retrieval. JASDL ap-
proaches this issue by exploiting OWL’s capacity for annotating axioms with constant
values. We simply serialise the literal annotations and apply them to the corresponding
ABox axiom ready for retrieval and deserialisation.

Retrieval. A query against the belief base in Jason amounts to testing whether a sup-
plied literal � is a logical consequence of the beliefs and prolog-like rules contained
within the belief base; this is done using standard unification. JASDL augments this
with knowledge represented in DL and the use of eÆcient DL reasoners. As mentioned
earlier, the results of a query are no longer formed only of the knowledge available in
the standard Jason belief base, but also of that inferred by a DL reasoner operating over
the ontology instances known to the agent.

Like the modification operations, processing of a literal � is passed either to the
standard Jason belief base or JASDL’s extension depending on the type of literal. As
before, � is encoded into its OWL-API axiomatic equivalent. This translation is identical
except that, in this case, � can be ground or unground. In the former case, � is returned
only if it is entailed by the axioms within the ontology instance. In the latter, we return
a set of grounded SE-literals corresponding to all possible groundings of � that can be
inferred from the ontology. Additionally, literal annotations applied to asserted ABox
axioms are deserialised (as discussed above) and added to the appropriate literal before
it is returned.

Through extension of the core methods of Jason’s belief base, in combination with
the use of SE-literals, we intuitively expose the full power of a DL reasoner to the
JASDL agent designer; any inference a DL reasoner is capable of making about individ-
uals can be implicit in the standard AgentSpeak syntax. Additionally, this enhancement
is ubiquitous across any AgentSpeak operator that tests logical consequence against the
belief base. This includes, for example, test goals, internal actions, and plan contexts
when the AgentSpeak interpreter checks for applicable plans.

Figure 4 gives two side-by-side AgentSpeak plan fragments. To the left, we show
some belief additions that define the ABox state for the agent in this example. To the
right, we show some examples of the DL inferencing power exposed to the agent de-
signer by JASDL. The TBox state is defined as shown in Figure 2.

1. This test goal succeeds for two reasons. Firstly, the domain of �	���

��� is
����	. Since
���	� participates, as part of the domain, in relationships over
this property, we can infer that
���	� must be of this class. Secondly, by the

98 T. Klapiscak and R.H. Bordini

Fig. 4. Two plan fragments demonstrating the DL inferencing power exposed by JASDL

transitivity of the subsumption relationship, we can infer that ����	 is a sub-class
of ����.

2. This test goal succeeds, unifying the variable with
���	�. This is because these
individuals are asserted to participate in the inverse of this relationship (i.e., over
�	���

���).

3. To be “interesting”, a ����	 must have at least three di�erent toppings. We know
this is the case for
���	�, since it is related to ��, �!, �" by �	���

���.
We can infer that �" is di�erent to �� and �! since ������

��� (of which
��	�����

��� is a sub-class) is asserted to be disjoint to #����	�����

��� (of
which ���	����

��� and $����������	����

��� are sub-classes of). How-
ever, no such inference can be made for �� and �!. Accordingly, we have asserted
that the two are di�erent using the 	�� ��������� SE-literal. Consequently, this
test goal succeeds.

4. A #����	��	�����	 is one that does not have any ������

��� or
%�	���

���. Since
���	� has ��	�����

���, we can conclude that it can-
not be a #����	��	�����	, therefore this strongly-negated test goal succeeds.

5. This test goal succeeds, unifying & with either ��	��	�	 or '	��. This is because
the ���� object property is transitive and we have the asserted chain that ���� ���

���� ��	��	�	 that ���� '	��.
6. The �����	�� internal action unifies its third argument with a list of ground-

ings of its first argument that renders its second argument a logical consequence
of the belief base [4]. Consequently, since ����� (whose alias has the label ���)
is the super-class of all others, this line results in the unification of the variable
(with a list of all individuals known to the agent (i.e.,)
���	�*��*�!*�"*
����� ��	�* ���+).

2.4 Belief Base Consistency Assurance

As stated by point (ii), having the belief base of an agent partially resident within a set
of ontologies grants us a refined means for maintaining knowledge consistency when
adding a belief to such an ontology. Specifically, we can make use of a DL reasoner
to detect when the addition of an assertion within the ABox leads to an inconsistency
according to the axioms expressed within the corresponding TBox. Measures can then
be taken to restore consistency. Note that since the description logic used to give formal

JASDL: Combining Agent Programming and Semantic Web Technologies 99

Fig. 5. A plan fragment demonstrating JASDL’s belief base consistency assurance capabilities

semantics to OWL-DL is monotonic, only additions to the ontology may lead to the
formation of new inconsistencies [10]; thus, we need not worry about removals here.

When faced with an addition of a fact that leads to an inconsistency, we must act to
preserve the consistency of the belief base. For this purpose, JASDL implements two
alternative mechanisms: Contradiction Rejection and Description-Logic Based Semi-
Revision. Both are implemented within the application-specific belief revision function
extension point provided by Jason.

We now discuss these mechanisms in more detail. Below, the transformation from
SE-literal to its corresponding axiomatic representation is considered implicit; hence
the two are interchangeable.

Contradiction Rejection. This mechanism simplifies the process of consistency assur-
ance by making the assumption of temporal precedence. This states that beliefs already
resident within the belief base take precedence over new, or “incoming” beliefs. As
shown in Algorithm 1, we check for belief-base consistency after each new belief addi-
tion. If an inconsistency is detected, we simply rollback the addition and notify Jason
accordingly. In this case, we consider the belief addition to have failed, causing the
respective AgentSpeak plan to fail accordingly.

Figure 5 shows an AgentSpeak plan fragment that will result in a belief base in-
consistency. The property �	���

��� is asserted to be an inverse functional property.
That is, it can relate to any particular individual at most once. Asserting that
���	� and

���	! are distinct is a contradiction because the only way both can validly relate to
�� over �	���

��� is if they are the same individual (recall that OWL does not make
the unique naming assumption). Accordingly, our mechanism rejects this assertion and
fails the plan.

Algorithm 1. Contradiction Rejection
1: � � incoming belief
2: B � axioms from agent belief base
3: B � B � ���

4: if B ��� then
5: B � B����
6: return reject
7: end if
8: return accept

Description Logic Based Semi-Revision. This mechanism is more complex owing to
the avoidance of the temporal precedence assumption. An implication of this is that we

100 T. Klapiscak and R.H. Bordini

may need to revise the belief base by removing resident beliefs in order to accommodate
an incoming belief, �, while preserving knowledge consistency. It is known as semi-
revision because it is still possible to reject the incoming belief addition in the face of
inconsistency (as is always the case with Contradiction Rejection).

To implement this mechanism, we draw heavily upon ideas taken from [11]. Due to
limited space, we do not give formal definitions for the operators we use. Instead, we
align our implementation with their approach and refer the reader to that paper.

The kernel operator �. This function selects the set of all possible justifications for a
belief � (or kernelset). A justification for � (or �-kernel) is a set of axioms taken from
the belief base that imply �. Justifications are minimal in the sense that removal of at
least one member undermines it causing it to no longer imply �. Thus, undermining all
possible justifications for � results in it no longer being a logical consequence of the
belief base as a whole. For reasons that will become clear we use a modified form of
�, the singleton-kernel operator, �single, which generates just a single member of the
kernelset at a time. We make use of the black-box debugging functionality provided as
part of the OWL-API to implement this function.

The �-kernel filter function Æ. Given an �-kernel, this function returns a subset repre-
senting those axioms which are to be considered “mutable” by our revision mechanism;
in other words, those axioms that may be removed to undermine justifications and ul-
timately accommodate �. JASDL’s particular implementation filters out TBox axioms.
This is because we do not consider it desirable for our agent to be capable of rendering
its own ontology instance structurally incompatible with the shared ontology. Future
work will explore further the implications and validity of this assumption.

The incision function �. This function chooses a non-empty subset of an �-kernel
corresponding to those beliefs that should be retracted to undermine the justification.
There may be many di�erent ways of choosing this subset and the specifics are applica-
tion dependent. JASDL’s particular implementation of� chooses the least trusted belief
from those available. The standard Jason source annotation gives us the name(s) of the
agent(s) responsible for the presence of a belief. Thus, we can establish the degree of
trust associated with a belief by performing a look up against a “trust-rating” hash table,
maintained by JASDL, that maps known agent names to a numerical trust rating.

The high-level operation of the mechanism is given in Algorithm 2, and is described
informally as follows. To begin, � is added to the belief base, perhaps resulting in an
inconsistency and thus the invocation of semi-revision. A justification for the inconsis-
tency is generated, to which � is added, allowing this new belief to be selected by the
incision function and thus rejected. This set is then filtered and incised, producing a
set of beliefs to be retracted. If � belongs to this set, we consider it rejected. Accord-
ingly, we rollback the modifications made by the mechanism thus far and terminate
prematurely, causing a Jason plan failure. If not, we track and retract the chosen revi-
sions. We terminate once consistency has been restored, generating belief addition and
deletion events as appropriate.

Since we do not consider TBox axioms mutable, we deal only with a subset of all
possible justifications for an inconsistency; it is possible for multiple justifications to
exist which di�er only in the TBox axioms involved. We avoid generation of these

JASDL: Combining Agent Programming and Semantic Web Technologies 101

through use of �single, which allows us to obtain justifications one at a time and halt as
soon as consistency is restored.

It is worth mentioning that the power of this mechanism comes with a high compu-
tational cost relative to that incurred by the alternative contradiction-rejection mecha-
nism. Accordingly, the two can be toggled between, both in the agent configuration and
at run-time using a special internal action.

Revisiting the example seen in Figure 5, the agent behaves di�erently when making
use of this mechanism. The (filtered) justification generated consists of the three asser-
tions seen here. Supposing we trust assertions made by the agent ��� less than our own
(����), our incision function chooses the assertion that
���	� �	���

��� �� for
retraction, while accepting the assertion that
���	� and
���	! are distinct. In this
case, we have accommodated a new belief by revision and so execution of the plan can
continue as normal.

Algorithm 2. Description Logic Based Semi-Revision
1: R � �� �Used for tracking revisions so as to rollback in case of belief rejection�
2: � � incoming belief
3: B � axioms from agent belief base
4: B � B � ��� �Add incoming belief�
5: while B ��� do
6: X � B �single� �Apply Singleton Kernel Operator�
7: X � X � ��� �Ensure incoming belief can be rejected�
8: X � Æ(X) �Apply Kernel Filter�
9: X � �(X) �Apply Incision Function�

10: if � � X then
11: B � B���� �Remove rejected belief�
12: B � B � R �Re-establish revised beliefs�
13: return rejected �Notify Jason of failure�
14: else
15: R � R � X �Track revisions�
16: B � B�X �Revise belief base�
17: end if
18: end while
19: return accepted �Notify Jason of success�

2.5 Removal as Contraction

The implementation of the removal operation for an SE-literal, �, as described in
Section 2.3, will only remove the assertion of � from the ABox. However, since be-
liefs can now be inferred from others according to the rules expressed in the TBox,
simply removing the assertion itself is not guaranteed to result in completely abolishing
the belief. In fact, there may be multiple justifications for �, all of which need to be
undermined to ensure it is no longer an implication of the belief base. Consider, also,
that this operation will certainly fail if � corresponds to inferred, rather than asserted,
information.

JASDL o�ers a solution to this issue by allowing the belief base removal operation
to be implemented as the kernel contraction operator, similar to that defined in [11].

102 T. Klapiscak and R.H. Bordini

We defer discussion of this feature until now, as it relies upon operators defined in
Section 2.4. With these operators in place, implementation of this mechanism becomes
straightforward. Informally, we begin by removing the assertion made by � (if present).
Next, while � is a logical consequence of the belief base, we use the singleton kernel
operator to find a justification for � to which we apply the kernel filter and incision
functions, the result of which we remove from the belief base.

2.6 Run-Time Class Definition

No feature of JASDL seen thus far allows modification of the TBox component of
an ontology instance. Hence, our ABox retrieval capabilities are restricted to querying
in terms of existing classes and properties. The only exception to this is when using
strongly-negated unary SE-literals, which essentially provide a short-cut to defining the
complement of a class at run-time. Beyond this, however, practical experience shows
that it is useful for agents to be capable of, at run-time, producing new classes for
interaction with the ABox using classes, properties, and logical connectives.

JASDL exposes this functionality in the guise of the “define class” internal action:
�	�����	������� ��	��,�������* �-
�������.. Its first parameter, functor, is
an atomic term that will from now on form the predicate symbol of any SE-literal re-
ferring to this new class. Its second parameter, �-
�������, is a textual description of
a class in a variant of the Manchester OWL Syntax [14]. This is a concise and easily
comprehensible syntax for describing OWL ontologies or fragments thereof, designed
specifically with non-logicians in mind. JASDL uses a form of this syntax in which
ontological resources are referenced by �	���/������� pairs corresponding to known
aliases. In this way we can concisely refer to any resource, including other run-time
defined classes, across all known ontologies.

To avoid overlap with schema-defined classes, all classes defined locally at run-time
are assigned the special ontology label “����”. This label is assigned a unique (with
respect to the known society) URI, enabling it to be referred to unambiguously by com-
municating agents (see Section 2.7). If an overlap on the ������� is detected with a
previous run-time definition, it is simply overridden.

Figure 6 gives an AgentSpeak plan fragment demonstrating the usage of this func-
tionality. In this plan, we first add the assertions that ������ is an instance of %	��	�
and is related to the value 0�1 by the �	������ data property. Next, we define the
class of individuals that are instances of either %	��	� or 2	��� and that are related
to some double less than 3�4 by the �	������ data property. The alias ,��5����*

����. is now assigned to this class. Finally, the test goal results in the unification of
������ with the variable since its membership to this class can be inferred owing to
our earlier assertions.

Fig. 6. A plan fragment demonstrating JASDL’s run-time class definition capabilities

JASDL: Combining Agent Programming and Semantic Web Technologies 103

Currently, it is possible to define unsatisfiable classes using this internal action, thus
placing the ontology as a whole in an inconsistent state. Future work will explore how
we might apply mechanisms similar to the (currently ABox only) belief base consis-
tency assurance mechanisms seen in Section 2.4.

2.7 Semantically-Enriched Inter-agent Communication

As indicated by point (iv), the use of ontological reasoning facilitates the sharing of
knowledge among agents through the use of standard ontologies for many domains
which are increasingly available on the Web. An ontology provides a shared vocabulary
between communicating agents. Moreover, a recipient agent can easily be introduced to
novel ontologies, thus extending its knowledge of the world as required at run-time. The
implications of this for Multi-Agent Systems are huge, since the meaning of inter-agent
communication can potentially be understood even with no prior agreement on termi-
nology. As contributions from the community doing research on ontological alignment
(such as [5]) fully mature, the benefits will be further increased, since two agents will
be able to communicate even when using disparate ontologies.

The payload, or propositional content, of a message sent by the inter-agent commu-
nication mechanism of a Jason agent can be composed of AgentSpeak literals. JASDL
extends this to allow this propositional content to refer to an axiom within the ABox
of some ontology. At first sight, it may appear that this can already be achieved simply
by making use of SE-literals. While partly true, complications arise when we take into
account a JASDL agent’s capacity (and need) for local (and largely arbitrary) aliasing.
This problem is exacerbated by the fact that agents can themselves locally define new
classes (see Section 2.6). Accordingly, in order to ensure the semantic inter-operability
of JASDL agents, we must dereference these aliases, thus rendering the correspond-
ing SE-literals contained within a message globally comprehensible (with respect to an
ontology) and unambiguous.

A detailed account of this mechanism is beyond the scope of this paper; instead,
we give a high-level overview of its operation. The mechanism is invoked upon en-
countering an outgoing message containing one or more SE-literals (referred to as an
SE-message), which has been intercepted by JASDL’s customised agent architecture as
discussed in Section 2.1. To each SE-literal, �, within this SE-message, we add special
annotations (of which all JASDL agents know the meaning), that dereference the locally
assigned alias of � thus ensuring the recipient can ascertain its precise meaning. Con-
tained within these annotations are the full URIs of any ontology schemas or resources
prerequisite to the understanding of �. Additionally, if � corresponds to a local run-time
defined class, these annotations include its normalised (i.e., using only schema-defined
resources) rendering in the Manchester OWL Syntax.

For incoming SE-messages (also intercepted in JASDL’s extended agent architec-
ture), uninstantiated ontologies are instantiated and assigned anonymous labels, class
expressions are compiled, and dereferenced ontologies and resources are mapped back
in terms of local aliases.

2.8 Enhanced Plan Retrieval Flexibility

As part of its reasoning cycle, a Jason agent must establish a set of relevant plans for
dealing with an event resulting from a perceived change in environmental or internal

104 T. Klapiscak and R.H. Bordini

circumstances. This plan-event relevance is established, in part, through unification of
the literals associated with their respective triggers.

Consider that, in JASDL, these literals can have some correspondence to a class or
property from the TBox of an ontology. Additionally, this TBox describes a taxonomy
relating its members by subsumption. An implication of this is that we now are able
to place plans and events whose triggers contain some SE-literal (SE-plans and SE-
events respectively) into a taxonomy of identical structure. Thus, for an SE-event it
might be possible to obtain a set of plans that are relevant in a more general sense
by appealing to subsumption, when an appropriate specifically designated plan cannot
be found by unification. This grants us a much more elaborate and precise notion of
plan generality than the use of higher-order variables in plan triggers allows (the only
currently available means for this in Jason). Hence, a JASDL agent is well equipped to
automatically, through re-use of existing ontological rules, adopt potentially beneficial
courses of action when no specifically designated plans are available. Moreover, this is
achieved with little additional e�ort on the part of the agent designer.

The mechanism for this is defined by [19] in terms of an extension to a rule of the op-
erational semantics of AgentSpeak. Unfortunately, this rule correlates with code within
a core class of Jason for which no extension points are directly exposed. Since it is
highly desirable that JASDL remains compatible with future Jason releases, this exten-
sion must be performed indirectly, which we accomplish by exploiting the extensibility
mechanisms built into Jason’s plan library implementation.

We now give a brief overview of our approach to this issue. The code responsible for
determining the relevance of a plan to an event is located within Jason’s internal repre-
sentation of a plan. JASDL extends this for SE-plans by checking, when dealing with an
SE-event for which unification has failed, if the plan trigger subsumes that of the event
in question. This subsumption detection is not straightforward since we permit com-
parison of SE-literals nested arbitrarily within semantically-naive ones. Due to space
restrictions, we cannot give in this paper a full specification of the algorithm used for
this. In high-level terms, however, we consider two literals in parallel, recursively as-
signing each a specificity “score” according to their respective nestings of SE-literals.
We take the literal with highest score at the root of the recursion tree to be the most
specific. We substitute these SE-plan representations for their semantically-naive coun-
terparts by interception of plan additions within JASDL’s extended plan library.

For the sake of eÆciency, Jason does not perform this full relevancy check against
all plans in its library, but rather against a candidate subset obtained through a hash-
table look up based on the functor and arity of the event trigger. For JASDL, this notion
of candidacy is not so amenable to a hash-table look up since it is based also upon
ontological rules. Consequently, (additional) candidates are found simply by testing for
trigger subsumption across all known SE-plans. Clearly, this is not ideal since we are
duplicating work; future research will look at ways of mitigating this added cost.

When a generalisation occurs, the trigger of the plan we have generalised to is re-
placed by that of the event leading to its generalisation. This allows Jason’s standard
unification mechanism to operate correctly when establishing the e�ect of the plan ex-
ecution upon the intention stack within which it resides. To ensure we do not modify
the actual plan library when we do so, an additional modification is made to the plan

JASDL: Combining Agent Programming and Semantic Web Technologies 105

library which causes cloned version of candidate SE-plans to be injected into the rea-
soning cycle.

An important feature of this mechanism is that it assigns precedence to SE-plans
according to how specific their corresponding ontological resources are; the rationale
behind this is that the more specific a plan is to an event, the better suited it is to deal
with it. This is implemented within the application dependent SO function6 using the
subsumption detection algorithm discussed above.

Practical experience gained during implementation has shown that the original cause
of the generalisation is potentially valuable information that we cannot always a�ord to
lose. This is made available in JASDL through provision of the “get trigger generali-
sation cause” internal action: �	�����	���� �� �	���,�	���* ���	�� 	�����..
This unifies �	��� with the event that ultimately resulted in generalisation to this
plan. If ���	�� 	����� is set, the annotations applied to this event are retained, or
dropped otherwise (with the exception of the ontology annotation, which is vital to all
SE-literals).

We now give an example of a practical scenario that makes use of this functionality.
Suppose that the class ��5����, as defined earlier in Figure 6, represents a description
of a takeaway meal that agent ��� wishes to purchase on behalf of its human operator.
The AgentSpeak plan fragment shown in Figure 7 shows the request made to ��	��	�	.

Fig. 7. Sending a request to ��������

Upon receipt of this request,
��	��	�	, being an ��	��	��	
�	�	�,
does not stock any curry and so is unable
to find an individual within its belief
base that belongs to this class. As

standard in Jason, upon failure of a simple unification against the belief base of an
agent, a complex test goal is generated. This is an internal event intended to result
in the adoption of a goal in an attempt to resolve a test goal. In this case, it is of the
form 67��5����, .)�,	��� �	��� 4.+. Notice that JASDL has replaced the ����

ontology label used by ��� with an anonymous one. It is this label that ��	��	�	 will
henceforth use in aliases referencing classes defined at run-time by ���.

Figure 8 shows two AgentSpeak plan fragments from the plan library of agent
��	��	�	. Intuitively, these plans are intended as general plans to deal with circum-
stances under which a request has been made that cannot be directly serviced by this
agent. Because of the enhanced plan retrieval flexibility granted by JASDL, and by the
inference that ��5���� is (in part) subsumed by ����� and by �	������, both these
plans are considered relevant to the complex test-goal event. They are also both appli-
cable, since the trigger of this event (i.e., the original cause of the generalisation, unified
with �	��� using the �	�����	���� �� �	��� internal action) is not a logical conse-
quence of the belief base. The first plan deals with the request of an unknown general
type of �	������, in which case we refer it to any other takeaway owned by the same
company as ��	��	�	. We find such an individual by defining its class at run-time and
querying against it using a test goal. The second deals with the more specific request
for an unknown type of �����. Under these circumstances, it would be prudent to refer

6 In reality, this is implemented as a composable JMCA module allowing it to be used with other
SO functions. See 2.9 for more details on JMCA.

106 T. Klapiscak and R.H. Bordini

Fig. 8. A fragment of ��������%� plan library demonstrating general plans

the request to an ����	��	
�	�	� or a ��	��	
�	�	�. Accordingly, we define such
a class of individuals and use it to find a potentially helpful recipient, to whom we then
refer the request.

Owing to JASDL’s implementation of the SO function, the most specific of these two
plans (67�����), is chosen to deal with the complex test goal event. Consequently, the
request is referred to a likely stockist (����� ��	� in this case), the results of which
are passed back to the customer for approval (which is not shown here).

2.9 Jason Module Composition Architecture

During the implementation of JASDL, an issue became apparent with the extensi-
bility mechanisms provided by Jason that allow an agent designer to override the
methods that implement the various selection functions of an agent [4]. Conceivably,
selection function implementations may be provided as libraries for general use. How-
ever, it becomes diÆcult for an agent designer who wishes to simultaneously make use
of multiple such libraries whose implementations overlap, since they are forced to com-
bine code in an ad-hoc fashion (presuming the library source code is available in the
first place).

As a solution to this problem, a separate extension to Jason was devised, namely
JMCA 7 (Jason Module-Composition Architecture). JMCA permits multiple selection
function implementations to interact in a well-defined manner. This is achieved by pro-
viding a framework under which an agent designer can encapsulate the implementation
of a selection function within a selection strategy. Subsequently, an agent making use
of JMCA is capable of composing a chain of such selection strategies and specifying a

7 An initial release of JMCA is available at http:��jason.sf.net

JASDL: Combining Agent Programming and Semantic Web Technologies 107

mediation strategy to mediate between the choices they make, thus defining the over-
all behaviour produced by the composition chain and ultimately the choices made by
the agent.

As discussed in Section 2.8, the most specific plan is given precedence by JASDL
from a generalised set. This is best implemented within the SO application-specific
agent function. However, since JASDL is intended as a development platform for other
agents, an agent designer wishing to make use of their own SO implementation would
encounter great diÆculty incorporating it with this (important) feature of JASDL. Ac-
cordingly, JASDL’s SO function is implemented as a composable JMCA selection strat-
egy, allowing an agent designer to easily and elegantly compose it with their own
implementation(s).

3 Related Work

Theoretical foundations for the use of ontologies in agent-oriented programming lan-
guages first appeared in [19]. The paper used the formal semantics of AgentSpeak to
show a number of features that would result from the use of ontological reasoning, and
forms the basis of our work. Similar ideas, restricted to an agent’s belief base, and using
the Go! language, appeared independently in [6]. However, di�erently from the main
idea in JASDL which is to refer to existing ontologies on the Web at run-time (in par-
ticular, using run time instances of such ontologies as extra information available to
the agent on top of its current beliefs), and making use of existing (eÆcient) ontolog-
ical reasoners, the work in [6] concentrates in showing how to translate an OWL-Lite
ontology into Go! so as to use that knowledge as part of an agent’s belief. Note, how-
ever, that without an explicit link to the ontology as a web resource, and agents being
able to change their beliefs, the interoperability aspect that is an important advantage of
standard Semantic Web technologies is (possibly) lost.

There is a variety of agent-oriented programming languages [3], some of which have
working interpreters with a growing user base in the Multi-Agent Systems community,
such as 3APL [8] (and its recent 2APL variant), Jadex [21], SPARK [20], and JIAC [12];
there are also commercial products such as JACK [25]. Some of these platforms allow
a reference to an ontology used for agent communication to be given (such as JIAC and
Jade [2], and the platforms that use Jade as middleware, such as Jadex, 2APL, and also
Jason itself). However, this is a long way from the functionalities that a full integration
(at the declarative level) of agent-oriented programming and ontological reasoning, as
first suggested in [19], provides. For example, relevant plans to handle an event can be
inferred using ontological relations when an agent is not aware of a specific plan for
an event.

An approach combining BDI-like agents and Semantic Web technologies was
introduced in [9]. The paper presented an agent architecture called Nuin and a scripting
language, whose interpreter is based on AgentSpeak, where XML name-space prefixes
can be used as part of identifiers, thus allowing particular names to be linked to given
ontologies. One disadvantage of the approach is that the BDI agent programming
notions are only informally described; by using Jason, in contrast, we are able to take

108 T. Klapiscak and R.H. Bordini

advantage of the significant body of work formalising the core AgentSpeak constructs
used as part of the language interpreted by Jason.

As this paper is concerned with a practical implementation of a combination of
an agent programming language and ontology techniques, the closest work to ours is
that on Argonaut [7]. Argonaut demonstrates how ontological reasoning can be practi-
cally integrated with Jason to grant some degree of contextual awareness to an agent
providing location-based services. The approach taken by Argonaut isolates all onto-
logical interaction within highly specialised, predefined internal actions. JASDL, on
the other hand, integrates ontological reasoning more tightly and transparently with
the Jason AgentSpeak interpreter. This has several advantages, some of which are
discussed below.

To implement new kinds of ontological interaction, Argonaut requires new Java code
to be written. JASDL however allows the implementation of new ontological processes
at the AgentSpeak level. Since JASDL augments the Jason belief base with the capac-
ity for ontological reasoning, additional inferencing immediately becomes ubiquitous
amongst the syntactic operators of AgentSpeak. For example, test goals, plan contexts,
predefined internal actions that query the belief base (such as �����	��), belief ad-
ditions and deletions, etc., all leverage the combined expressive power and tractability
of description logic. Contrast this to the Argonaut approach, under which queries can
be made only by means of internal actions made available as part of Argonaut. Plan
contexts, for example, cannot be so naturally expressed since they must contain such
internal actions.

4 Conclusion and Future Work

In this paper, we have described the implementation of an existing theoretical proposal
for combining agent-oriented programming and ontological reasoning. The paper high-
lights various issues that need to be addressed in practice which are not apparent from
the abstract point of view of formal work. The running example used in the paper made
reference to an existing ontology on the Web; an important aspect of our approach is
precisely to allow programmers to make use of existing knowledge representation to
facilitate programming as well as allowing agents to share ontological information.

A recent development in JASDL that we do not have space to discuss in detail here
allows agent configuration through the use of OWL ontologies. JASDL agents have,
from the start of development, been highly configurable owing to a rich set of param-
eters that can be specified in the standard Jason multi-agent system configuration file.
The OWL2MAS add-on allows for the automatic generation of this based purely upon
special OWL ontologies. Applications can extend a standard “skeleton” ontology8 (or
extensions thereof) using the OWL import mechanism, adding application-specific pa-
rameters and concrete multi-agent system settings. This allows Jason multi-agent sys-
tem configurations to be specified in a standard language distributed across the Internet,
thus encouraging re-use and reducing redundancy. Moreover, JASDL agents can instan-
tiate these ontologies and use them to reason both about the society they reside within
and other Jason multi-agent systems. Additionally, a framework is included allowing

8 Available at ����������������	��
�����
�����	�
��������� �����������

http://www.dur.ac.uk/t.g.klapiscak/onts/owl2mas/mas.owl

JASDL: Combining Agent Programming and Semantic Web Technologies 109

parts of the Java code modelling the agents’ environment to be instantiated based on
this configuration.

We plan a number of other directions for future work, including incorporating means
for ontological alignment when an agent detects any ontological mismatch, and facili-
tating the use of Web services in the context of JASDL by means of OWL-S9. Future
work will also include mechanisms that permit persistency of the (at present volatile)
ontology instances of JASDL agents.

Although everything described in this paper has been implemented and the examples
have been executed, it is still very early days for the development of JASDL. Whether its
engineering principles will prove natural and useful in programming real-world applica-
tions remains to be seen, as does the analysis of performance issues. In the near future,
JASDL will be made available open source, which should help in our aim to assess its
usability and eÆciency in practical applications. Nevertheless, our initial experiments
show that there is great potential benefit to be obtained from the use of JASDL and
performance does not seem to be an issue.

References

1. Baader, F., Calvanese, D., McGuinness, D.N.D., Patel-Schneider, P. (eds.): Handbook of De-
scription Logics. Cambridge University Press, Cambridge (2003)

2. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE — a java agent development frame-
work. In: Bordini, et al. (eds.) [3], ch. 5, pp. 125–147

3. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-Agent Program-
ming: Languages, Platforms and Applications. Multiagent Systems, Artificial Societies, and
Simulated Organizations, vol. 15. Springer, Heidelberg (2005)

4. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak Using Jason. Wiley Series in Agent Technology. John Wiley & Sons, Chich-
ester (2007)

5. Castano, S., Ferrara, A., Messa, G.: Islab hmatch results for oaei 2006. In: Proc. of Inter-
national Workshop on Ontology Matching, held with ISWC 2006, Athens, Georgia, USA
(November 2006)

6. Clark, K.L., McCabe, F.G.: Ontology schema for an agent belief store (2005)
7. da Silva, D.M., Vieira, R.: Argonaut: Integrating jason and jena for context aware computing

based on owl ontologies. In: Baldoni, M., Baroglio, C., Mascardi, V. (eds.) Proc. of AWE-
SOME 2007 held as part of MALLOW 2007, Durham, September 3–7 (2007)

8. Dastani, M., van Riemsdijk, M.B., Meyer, J.-J.C.: Programming multi-agent systems in
3APL. In: Bordini, et al. (eds.) [3], ch. 2, pp. 39–67.

9. Dickinson, I., Wooldridge, M.: Towards practical reasoning agents for the semantic web. In:
Proc. of AAMAS 2003, Melbourne, Australia, July 14-18, 2003, pp. 827–834. ACM, New
York (2003)

10. Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A Framework for
Handling Inconsistency in Changing Ontologies. In: Gil, Y., Motta, E., Benjamins, V.R.,
Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 353–367. Springer, Heidelberg (2005)

11. Halaschek-Wiener, C., Katz, Y.: Belief base revision for expressive description logics. In:
Proc. of OWLED 2006 (2006)

9 Refer to ������������&�����'�(��������)*+�'� .

http://www.w3.org/Submission/OWL-S/

110 T. Klapiscak and R.H. Bordini

12. Heler, A., Hirsch, B., Keiser, J.: Collecting Gold. In: Dastani, M., El Fallah Seghrouchni,
A., Ricci, A., Winiko�, M. (eds.) ProMAS 2007. LNCS, vol. 4908, pp. 251–255. Springer,
Heidelberg (2008)

13. Horridge, M., Bechhofer, S., Noppens, O.: Igniting the owl 1.1 touch paper: The owl api. In:
Proc. of OWLED 2007, Innsbruck, Austria, CEUR-WS (2007)

14. Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wang, H.: The manch-
ester owl syntax. In: Proc. of OWLED 2006, Athens, GA, USA (2006)

15. Horrocks, I.: FaCT and iFaCT. In: Proc. of the International Workshop on Description Logics
(DL 1999), pp. 133–135 (1999)

16. McBride, B.: Jena: a semantic web toolkit. IEEE Internet Computing 6(6), 55 (2002)
17. McGuinness, D.L., van Harmelen, F. (eds.): OWL Web Ontology Language overview. W3C

Recommendation (February 2004), ������������&���������������������
18. McGuinness, D.L., van Harmelen, F. (eds.): OWL Web Ontology Language Reference. W3C

Recommendation (February 2004)
19. Moreira, Á.F., Vieira, R., Bordini, R.H., Hübner, J.F.: Agent-oriented programming with

underlying ontological reasoning. In: Baldoni, M., Endriss, U., Omicini, A., Torroni, P. (eds.)
DALT 2005. LNCS, vol. 3904, pp. 155–170. Springer, Heidelberg (2006)

20. Morley, D., Myers, K.L.: The spark agent framework. In: AAMAS 2004, New York, USA,
August 19-23, 2004, pp. 714–721. IEEE Computer Society, Los Alamitos (2004)

21. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In: Bordini, et al.
(eds.) [3], ch. 6, pp. 149–174

22. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Per-
ram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer,
Heidelberg (1996)

23. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl reasoner.
Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 51–53 (2007)

24. Staab, S., Studer, R. (eds.): Handbook on Ontologies. International Handbooks on Informa-
tion Systems. Springer, Heidelberg (2004)

25. Winiko�, M.: JACKTM intelligent agents: An industrial strength platform. In: Bordini, et al.
(eds.) [3], ch. 7, pp. 175–193

http://www.w3.org/TR/owl-features/

Leveraging New Plans in AgentSpeak(PL)

Felipe Meneguzzi and Michael Luck

King’s College London
Department of Computer Science
Strand, London WC2R 2LS, UK

{felipe.meneguzzi,michael.luck}@kcl.ac.uk

Abstract. In order to facilitate the development of agent-based software, sev-
eral agent programming languages and architectures, have been created. Plans in
these architectures are often self-contained procedures with an associated trigger-
ing event and a context condition, while any further information about the con-
sequences of executing a plan is absent. However, agents designed using such an
approach have limited flexibility at runtime, and rely on the designer’s ability to
foresee all relevant situations an agent might have to handle. In order to overcome
this limitation, we have created AgentSpeak(PL), an interpreter capable of per-
forming state-space planning to generate new high-level plans. As the planning
module creates new plans, the plan library is expanded, improving performance
over time. However, for new plans to be useful in the long run, it is critical that
the context conditions associated with new plans are carefully generated. In this
paper we describe a plan reuse technique aimed at improving an agent’s runtime
performance by deriving optimal context conditions for new plans, allowing an
agent to reuse generated plans as much as possible.

1 Introduction

Software based on autonomous agents is often advocated as a solution to addressing
highly dynamic environments in which human intervention is impractical or impossi-
ble. In order to facilitate the development of such agent-based software, several agent
programming languages, as well as associated agent architectures, have been created.
So far, however, for reasons of efficiency, the set of practical agent architectures devel-
oped has mainly focused on providing a plan execution framework for a plan library
defined at design time [1,2]. Plans in these architectures are often self-contained pro-
cedures with an associated triggering event, while any additional information about the
consequences of executing a plan is absent. For example, PRS [3] and its successors
[4,5] provide concrete agents which, while efficient, are noticeably inflexible in han-
dling anything not foreseen at design-time.

Traditional BDI agents [2] are designed using a procedural approach, which requires
a designer to create detailed procedural plans for every relevant situation in which an
agent may find itself prior to deployment. Situations in which plans must be executed
are encoded in a plan header in two parts: an invocation condition, identifying the
moment when a plan may be necessary; and a context condition describing the pre-
requisites for the plan to be applicable, as shown in Figure 1. Both the triggering event
and the context condition are defined statically at design time, and ensure that a plan

M. Baldoni et al. (Eds.): DALT 2008, LNAI 5397, pp. 111–127, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

112 F. Meneguzzi and M. Luck

Actions

 step2;

 step3;

 step4.

Context

Environment
<− step1; Belief Base

Invocation :

Events

Fig. 1. AgentSpeak(L) plan and dynamics

can execute successfully when it is required. However, agents designed using such an
approach have limited flexibility at runtime, and rely on the designer’s ability to foresee
all relevant situations an agent might have to handle.

In order to overcome this limitation, we have created AgentSpeak(PL) [6], an in-
terpreter capable of generating new high-level plans when no suitable plans exist in the
plan library. These high-level plans are created by sequencing existing lower-level plans
from the plan library, from which key information about their declarative preconditions
and consequences is extracted. AgentSpeak(PL) uses state-space planning to create new
plans, and since state-space planners are inherently declarative, AgentSpeak(PL) is able
to reason about declarative goals and create plans which, when executed, ensure that a
certain world-state is true. The approach taken in AgentSpeak(PL) consists of evaluat-
ing the consequences of procedural plans in terms of belief additions and deletions and
converting these plans into a STRIPS-like representation, which can then be supplied
to a classical planner [7] along with the current belief base and the desired goal state.
In this setting, STRIPS operators are essentially an analogue for lower-level Agent-
Speak(L) plans and, therefore, plans generated by the planning module represent high-
level AgentSpeak(L) plans, which consist entirely of lower-level plan invocations. As
the planning module creates new plans, the plan library is expanded, improving perfor-
mance over time.

However, for new plans to be useful for an agent in the long run, it is critical that
the context condition associated with new plans is simple enough so that plans can be
executed whenever they accomplish their goals, and restrictive enough, so that plans
do not execute in situations in which they would fail. As an example, suppose that a
certain agent has a car and a motorcycle available to move it from home to work, and
an action to drive each one of these vehicles having a precondition that the vehicle
being used must have enough fuel for the journey. Furthermore, suppose that at one
point in time this agent generated a plan to drive its car to work, while believing that
both the motorcycle and the car had enough fuel. The precondition of the high-level
plan involving the car surely must contain the belief regarding the car’s fuel level, but
not the motorcycle’s, as it is irrelevant to that plan.

While previous work [6] focused on the integration of the interpreter with the planner
through a translation process, in this paper we focus on specific aspects of adding new
plans to the plan library. The key contribution is an improvement in an agent’s runtime
performance by deriving optimal context conditions for new plans, allowing an agent

Leveraging New Plans in AgentSpeak(PL) 113

to reuse generated plans as much as possible. We evaluate the resulting system against
a naive strategy of plan reuse, as well as a similar agent designed using AgentSpeak(L),
in order to demonstrate the efficiency of our approach. Although we use AgentSpeak(L)
as a demonstration platform, our approach can also be applied to other planning-capable
agent architectures.

This paper is organised as follows: Section 2 reviews previous work on Agent-
Speak(PL), providing the necessary background for this paper; Section 3 describes our
plan reuse strategy, including an algorithm for context generation; Section 4 reports on
the experiments performed using an implementation of our strategy and its results for a
production cell scenario; Section 5 provides a brief overview of recent related work in
comparison to ours; finally, Section 6 draws conclusions from our results and proposes
future research based on them.

2 AgentSpeak(PL)

AgentSpeak(PL) [6] is an extended AgentSpeak(L) interpreter that uses a planning
component to reason about declarative goals. In this section we briefly describe both
the original AgentSpeak(L) interpreter and language, and the extensions provided in
AgentSpeak(PL).

2.1 AgentSpeak(L)

AgentSpeak(L) [2] is an agent language, as well as an abstract interpreter for the lan-
guage, that follows the beliefs, desires and intentions (BDI) model of practical reason-
ing [8]. In simple terms, a BDI agent tries to realise the desires it believes are possible by
committing to carrying out certain courses of action through intentions. The language
of AgentSpeak(L) allows the definition of reactive procedural plans, so that plans are
defined in terms of an event to which an agent should react by executing a sequence of
steps (i.e. a procedure). Plan execution is further constrained by the context in which
these plans are relevant. Here, a plan is executed under the assumption that some im-
plicit goal is being accomplished by that plan at that particular moment.

The control cycle of an AgentSpeak(L) interpreter is driven by events relating to
either new beliefs (including perceptions) or new goals. These events are used as invo-
cation conditions for the adoption of plans, so that adding an achievement goal means
that an agent desires to fulfil the goal, and plans whose invocation condition includes
that goal (i.e. are relevant to the goal) should lead to that goal being achieved. Moreover,
a plan includes a logical context condition that specifies when the plan is applicable (i.e.
possible to be executed) in any given situation. Whenever a goal addition event is gener-
ated (as a result of the currently selected plan having subgoals), the interpreter searches
the set of relevant plans for applicable plans; if one (or more) such plan is found, it
is pushed onto an intention structure for execution. Elements in the intention structure
are popped and handled by the interpreter. If the element is an action it is executed,
while if the element is a goal, a new plan for that goal is added to the intention structure
and processed. During this process, failures may take place either in the execution of
actions, or during the processing of subplans. When such a failure takes place, the plan

114 F. Meneguzzi and M. Luck

Fig. 2. AgentSpeak(L) reasoning cycle

that is currently being processed also fails. Thus, if a plan selected for the achievement
of a given goal fails, the default behaviour of an AgentSpeak(L) agent is to conclude
that the goal that caused the plan to be adopted is not achievable. This control cycle
is illustrated in the diagram of Figure 2,1 and strongly couples plan execution to goal
achievement.

In order to better understand the relationship between the control cycle and the plan
library, it is necessary to introduce the notation of AgentSpeak(L) plans. The events on
an agent’s data structures that can trigger the adoption of plans consist of additions and
deletions of goals and beliefs, and are represented by the plus (+) and minus (−) sign
respectively. Goals are distinguished into test goals and achievement goals, denoted by
a preceding question mark (?), or an exclamation mark (!), respectively. For example,
the addition of a goal to achieve g is represented by +!g, whereas the addition of a goal
to test the truth value of a belief b is represented by +?b. Belief additions and deletions
arising as the agent perceives the environment are outside its control, while goal ad-
ditions and deletions and some belief modifications only arise as part of the execution
of an agent’s plans. Plans in AgentSpeak(L) are represented by a header comprising
an invocation condition and a context, as well as a body describing the steps the agent
takes when a plan is selected for execution, as illustrated in Figure 1. Thus, if e is a
triggering event, b1, . . . , bm are belief literals, and h1, . . . , hn are goals or actions, then
e : b1& . . .&bm ← h1; . . . ;hn. is a plan. As an example, consider a plan associated
with the invocation condition !move(O,A,B) corresponding to an achievement goal to
move an object O from A to B, where:

1 For a full description of AgentSpeak(L), refer to d’Inverno et al.[9].

Leveraging New Plans in AgentSpeak(PL) 115

– e is !move(O,A,B);
– at(O,A) and not at(O,B) are belief literals; and
– -at(O,A) and +at(O,B) are two steps in the plan body, consisting of information

about belief additions and deletions.

The plan is then as follows:

+!move(O,A,B) : at(O,A) & not at(O,B)
<- -at(O,A);

+at(O,B).

When this plan is executed, it should result in the agent believing O is no longer in
position A, and then believing it is in position B. For an agent to rationally want to
move O from A to B, it must believe O is at position A and not already at position B.

2.2 Planning in AgentSpeak(PL)

In order to overcome the limitations of traditional AgentSpeak(L) programming in
terms of dynamic plan generation and declarative goal representation, previous work
has introduced AgentSpeak(PL) [6], which is an extended AgentSpeak(L) interpreter
coupled with a planning module able to perform STRIPS-like planning. The agent in-
terpreter communicates with the planning module through a translation process that
relies on the similarities between AgentSpeak(L) plans and STRIPS operators. This is
possible because both formalisms describe world modification functions that can be
applied if certain preconditions hold, resulting in changes to the world-state.

The Planning Action. In addition to the traditional way of encoding goals for an
AgentSpeak(L) agent implicitly as invocation conditions consisting of achievement
goals (!goal), AgentSpeak(PL) allows desires including multiple beliefs (b1, . . . , bn)
describing a desired world-state in the form goal conj([b1, . . . , bn]). An agent desire
description thus consists of a conjunction of beliefs the agent wishes to be true simulta-
neously at a given point in time. The execution of the planning component is triggered
by an event +goal conj([b1, . . . , bn]) as shown in Listing 1.

In this approach, planning in AgentSpeak is introduced through a special planning
action, denoted plan(G), where G is a conjunction of desired goals. This action is
bound to an implementation of a planning module, and allows all of the process regard-
ing the conversion between formalisms to be encapsulated in the action implementation,
making it completely transparent to the remainder of the interpreter. Note that there are
two different steps in invoking the planning action: the declarative goal, represented
by the +goal conj(Goals) event; and the planner invocation action plan, which may
occur as a consequence of adopting a declarative goal.

Whenever an agent needs to achieve a goal that involves planning, it uses this spe-
cial planning action that converts the low-level procedural plans of AgentSpeak(L) into
STRIPS operators and invokes the planning module. If the planner succeeds in finding
a plan, it is converted back into a high-level AgentSpeak(L) plan and is added to the
intention structure for execution, as illustrated in Figure 3. This conversion process is
detailed in Section 2.2. If the newly created plan fails, the planner may again be invoked

116 F. Meneguzzi and M. Luck

Fig. 3. AgentSpeak(PL) reasoning cycle

+goal conj(Goals) : true ← plan(Goals).

Listing. 1. Planner invocation plan

to try to find another plan to achieve the desired state of affairs, taking into consideration
any changes in the beliefs.

Notethat theplanningactionisincludedinastandardAgentSpeak(L)planwiththesame
invocation condition as the plans generated by it. Moreover, new plans are always added to
the plan library before the plan that executes the planning action. With this arrangement,
previously-createdplansareconsultedfirstwhentheinterpretersearchesforrelevantplans,
hence having higher priority for execution. If no such plan is found to be applicable, the
plan containing the special planning action is invoked as the last remaining option.2

Translating AgentSpeak into STRIPS. Once the need for planning is detected, the
plan in Listing 1 is invoked so that the agent can tap into a planning component. The
process of linking an agent to a propositional planning algorithm includes converting
an AgentSpeak(L) plan library into propositional planning operators, declarative goals
into goal-state specifications, and the agent beliefs into the initial-state specification for
a planning problem. After the planner yields a solution, the ensuing STRIPS plan is
translated into an AgentSpeak(L) plan in which the operators resulting from the plan-
ning become subgoals. That is, the execution of each operator listed in the STRIPS

2 An important limitation imposed by our current implementation is that, since goal conjunctions
are represented as lists, different goal orderings correspond to different declarative goals and,
therefore, a goal to achieve [a, b] is not seen as the same goal to achieve [b, a].

Leveraging New Plans in AgentSpeak(PL) 117

 <− −at(A);

 : at(O, A) & not at(O, B)

+!move(O, A, B)

at(B)

at(A)

at(A) & not at(B)

move(O, A, B)

add:

del:

pre:

operator:

 +at(B).

Fig. 4. AgentSpeak plan versus STRIPS operator

plan is analogous to the insertion of the AgentSpeak(L) plan that corresponded to that
operator when the STRIPS problem was created.

In classical STRIPS notation, operators have four components: an identifier, a set of
preconditions, a set of predicates to be added (add), and a set of predicates to be deleted
(del). For example, the same move operator can be represented in STRIPS following
the correspondence illustrated in Figure 4, in which AgentSpeak(PL) converts the in-
vocation condition into a STRIPS operator header, a context condition into an operator
precondition, and the plan body is used to derive add and delete lists.

A relationship between these two definitions is not hard to establish, and Agent-
Speak(PL) uses the following algorithm for converting AgentSpeak(L) (low-level) plans
into STRIPS operators. Let e be a triggering event, b1& . . .&bm a conjunction of be-
lief literals representing a plan’s context, a1, . . . , an be belief addition actions, and
d1, . . . , do be belief deletion actions within a plan’s body. All of these elements can
be represented in a single AgentSpeak(L) plan. Moreover let opname be the operator
name and parameters, pre be the preconditions of the operator, add the predicate ad-
dition list, and del the predicate deletion list. In summary, mapping an AgentSpeak(L)
plan into STRIPS operators is thus accomplished as follows:

1. opname = e
2. pre = b1& . . . &bm

3. add = a1, . . . , an

4. del = d1, . . . , do

This deals with STRIPS operators, but we also need two other elements to create
a valid STRIPS problems, namely an initial state and a goal state. Previously, we
have introduced the representation of a conjunction of desired goals as the predicate
goal conj([b1, . . . , bn]). The list [b1, . . . , bn] of desires is directly translated into the
goal state of a STRIPS problem. Moreover, the initial state specification for a STRIPS
problem is generated directly from the agent’s belief database.

Executing Generated Plans. The STRIPS problem generated from the set of oper-
ators, initial state and goal state is then processed by a propositional planner. If the
planner fails to generate a propositional plan for that conjunction of literals, the plan in
Listing 1 fails immediately and the goal is deemed unachievable, otherwise the resulting
propositional plan is converted into an AgentSpeak(L) plan and added to the intention
structure. In order to convert this plan back to an AgentSpeak(L) representation, we
consider that a propositional plan from a STRIPS planner is in the form of a sequence

118 F. Meneguzzi and M. Luck

+goal conj(Goals) : true

←!op1; . . . ; !opn.

Listing. 2. AgentSpeak plan generated from a STRIPS plan

op1, . . . , opn of operator names and instantiated parameters. AgentSpeak(PL) creates a
new plan as in Listing 2, where goal conj(Goals) is the event that caused the planner
to be invoked.

Immediately after adding the new plan to the plan library, the event
goal conj(Goals) is reposted to the agent’s intention structure, causing the gener-
ated plan to be executed. The abstract language of AgentSpeak(L) does not include
constructs for plan library modification, but this type of functionality is generally ac-
complished through internal actions by many interpreters, including Jason [10]. As a
consequence, there is no commonly agreed semantics for the addition of new plans into
an agent’s plan library. The method we use is that of the Jason interpreter, which con-
sists of inserting the new plan either at the beginning of the plan library or at its end.
Plans generated in this fashion are admittedly simple, and in order for an agent to take
full advantage of the planning module, we need to consider how plans should be added
to the plan library for future reference.

2.3 Limited Plan Reusability

The addition of the new plan to the intention structure raises the problem of how newly
formed plans can be integrated into the agent’s existing plan library, or indeed if they
should be integrated into the plan library at all. Modifying the plan library at runtime
through the addition of new plans effectively changes agent behaviour in at least two
ways: first, new plans may cause undesired interactions with the plans that are already
part of the plan library, possibly jeopardising the agent’s viability in the long term; and
second, adding a large number of plans with the same invocation condition may impair
the agent’s ability to respond in adequate time.

In order for a plan to be usefully added to the plan library, therefore, the context in
which this plan is relevant must be carefully described. If the context is too restrictive,
for example by using the entire belief base at the time of planning, the inclusion of a
number of irrelevant beliefs will severely limit the future applicability of the new plan.
On the other hand, if the context is minimised to only the preconditions of the first
operator, the plan may fail later on due to the requirements of subsequent operators. In
consequence, an algorithm that generates the minimum context condition necessary for
a newly generated plan to be reused usefully is required.

3 Leveraging New Plans

In order to address the need for a minimum context condition for newly created plans,
we have developed an algorithm to extract the minimum necessary context condition

Leveraging New Plans in AgentSpeak(PL) 119

Fig. 5. A planning graph example

from a planner-generated plan that ensures that if the context is true when the plan is
adopted, it will succeed if no external interference takes place.

3.1 Data Structure

We base our context-generation algorithm on a modified version of the planning graph
data structure from Graphplan [11], which is a graph-based planning algorithm. The
properties of this method of plan representation are key to our algorithm and, therefore,
before describing the algorithm, we introduce the planning graph. Since a plan is com-
posed of temporally ordered actions, and these actions alter propositions in the interme-
diate world states, graph levels are divided into alternating proposition and action levels,
making it a directed and levelled graph. A graphical representation of one such graph is
shown in Figure 5, in which oval shapes denote propositions and boxes denote actions.
Proposition levels are composed of proposition nodes labelled with propositions, and
are connected to the actions in the subsequent action level through precondition arcs.
Here, action nodes are labelled with operators and are connected to the nodes in the
subsequent proposition nodes by effect arcs, and both added and deleted propositions
are possible effects of an operator.

Every proposition level denotes literals that are possibly true at a given moment, so
that the first proposition level represents the literals that are possibly true at time t1 (the
initial time), the next proposition level represents the literals that are possibly true at
time t2 and so on. Similarly, action levels denote operators that can be executed at a
given moment in time in such a way that the first action level represents the operators
that may be executed at time t1, the second action level represents the operators that
may be executed at time t2 and so on.

The process of building a graph in Graphplan consists of initialising it with a propo-
sition level containing the initial state of the planning problem, and adding all actions
that have their entire set of preconditions present in that proposition level. New propo-
sition levels are then created, including all the effects of the preceding action level. In
order to guarantee a static frame for all actions in the graph (that is, to ensure propo-
sitions not affected by plan operators remain unchanged between points in time), no
operation (or noop) edges are inserted between propositions to represent the possibility
that these propositions are not changed between two proposition levels (i.e. points in

120 F. Meneguzzi and M. Luck

time). The planning graph used in Graphplan has a number of other characteristics that
we do not explain in this paper because they are not relevant to our algorithm, but are
discussed in [11].

3.2 Generating Context Information

Intuitively, the preconditions of any given plan step must have either been made true
during the execution of previous plan steps or must have been true from the start of the
plan. Therefore, the minimum context condition for any generated plan must specify the
preconditions of the first operator, plus the preconditions of any subsequent operators
that are not included in the effects of previous operators. We consider this process in
more detail in Algorithm 1, which describes the generation of such a context condition.

Algorithm 1. Propagation of preconditions
Require: Plan ∆ = {a1, . . . , an}, with n steps
Require: Action descriptions O = {〈a1, P re1, P ost1〉, 〈an, P ren, P ostn〉}
1. create a proposition level P0 with no propositions;
2. for all ai ∈ ∆ do
3. create an action level Ai containing a node ai;
4. add the preconditions of ai to proposition level Pi−1;
5. connect all p ∈ Pi to ai−1 with precondition edges;
6. create a proposition level Pi containing the effects of ai;
7. connect all p ∈ Pi to ai with effect edges;
8. end for
9. for i = n to 1 do

10. for all p ∈ Pi−1 do
11. if p is not connected to any node in level Ai then
12. create an action noop(p) in level Ai;
13. connect noop(p) to p through an effect edge;
14. if p �∈ Pi then
15. create a node p in Pi;
16. end if
17. connect p to noop(p) with a precondition edge;
18. end if
19. end for
20. end for
21. return P0

The algorithm initially builds a planning graph populated with the actions of the plan
we wish to create a context for, as well as the preconditions and effects of these actions,
with edges connecting actions to their preconditions in the previous level, and their
effects in the subsequent level. Once the initial graph is generated, proposition levels
are iterated backwards and, for each proposition that is connected with a precondition
edge to a subsequent action level and not connected with an effect edge to the previous
action level, a new noop action is created, allowing a proposition to be propagated to
the previous proposition level. As the graph is traversed, propositions that are required
at one action level are created at the preceding proposition levels until they are either

Leveraging New Plans in AgentSpeak(PL) 121

����
����
����
���� Processing

Unit 3

Belt
DepositFeed

Belt

Processing
Unit 2

Processing
Unit 4

Processing

L1

Unit 1

Fig. 6. Diagram of the production cell

connected to an original action of the plan, or they are propagated through noop actions,
ensuring that the first proposition level contains all of the preconditions that did not
result from the actions in the plan. In principle, this algorithm can be greatly simplified,
however using the planning graph approach allows us to extend this algorithm to richer
operator descriptions, for example, for operators with conditional effects.

3.3 Complexity

In terms of computational effort, this algorithm has similar complexity to the graph
expansion phase of Graphplan, which has polynomial complexity [7] in the size of the
planning problem for both the size of the graph and the time required to build it. If a plan
has m distinct steps, and n distinct propositions, the graph our algorithm creates will
have at most ((2 ∗n)+1) ∗m nodes, one node for each action and all possible noops at
each graph level, plus all possible propositions at each proposition level, indicating that
the size and time complexity of our algorithm is in the low polynomial scale. Regarding
the correctness of the algorithm and its termination guarantee, since the graph building
part of the algorithm is a subset of Graphplan, for which a proof of completeness and
termination exists, and the rest of the algorithm is an iteration in a directed acyclic
graph, it is trivial to show that the algorithm does terminate for any input.

3.4 A Production Cell Example

To illustrate how our algorithm derives a context condition, we introduce a production
cell scenario, shown in Figure 6, and consisting of a production cell composed of four
processing units (u1, u2, u3 and u4) and two conveyor belts controlled by our agent.
Parts enter the production cell through a feed belt, and are moved by the agent to dif-
ferent processing units, depending on the type of part being processed. Once a part has
been processed at the appropriate processing units, it is moved to the deposit belt to be
shipped. Even though there is no particular order specified for the processing of parts,
the order in which they are specified is generally followed. We consider three different
types of part for processing, in the following processing units:

122 F. Meneguzzi and M. Luck

Table 1. Operations in the production cell scenario

Operator Preconditions Effects
move(P,A,B) empty(B) ˜empty(B)

over(P,A) ˜over(P,A)
over(P,B)
empty(A)

process(P,A) over(P,A) processed(P)

1. Type one must be processed by processing units 1, 2 and 3;
2. Type two must be processed by processing units 2 and 4; and
3. Type three must be processed by processing units 1 and 3.

In addition, we assume two operations are available in this scenario, summarised in
Table 1.3 The first operator, move(P,A,B), moves a part from one device to another,
requiring the part to be over the initial device and the target device to be empty, and
causing the initial device to become empty, the part to be over the target device and the
deletion of the preconditions (note that while we represent explicitly negated proposi-
tions in the graph, we do not require the world to be described with explicitly negated
conditions). The second operator, process(P,A), causes a processing unit to process
a part located over it, requiring over(P,A) and causing processed(P).

Now let us consider in more detail the process of generating the context for this
example. Nodes in an action level are connected to nodes in a proposition level either
through precondition edges, denoting that a proposition is a precondition of a given
action, or through effect edges, denoting that a proposition is an effect of a given action.
In the example of Figure 7, the operator process(p1,u2) in Level 4 is connected by
a precondition edge to the proposition over(p1,u2) in Level 3, and by precondition
edges to the proposition processed(p1,u2) in Level 5. Besides the actions included
in the planning problem, the planning graph includes noop (or maintenance) actions,
which connect identical propositions between adjacent proposition levels representing
that their truth values remain unchanged between plan steps, an example of which can
be seen connecting the proposition empty(u3) from Levels 1 to 5.

Figure 7 shows the graph generated in the process of deriving the context con-
dition for a plan composed of three actions: move(p1,u1,u2), process(p1,u2)
and move(p1,u2,u3). The initial graph created by our algorithm contains no main-
tenance actions and no instances of empty(u3) in Levels 1 and 3. Then, while it-
erating the graph backwards, the algorithm detects that none of the preconditions of
move(p1,u2,u3) were caused by the immediately preceding action, and adds a noop
connecting the instances of over(p1,u3) in Levels 3 and 5. Furthermore, it creates in-
stances of empty(u3) in Levels 1 and 3, connecting them with maintenance operators
in Levels 2 and 4, thus propagating empty(u3) to the initial plan level. Since no action
in the plan resulted in empty(u3) being true, this must have been true before the plan

3 We use a Prolog-like notation, with variable names starting in uppercase and constants in
lowercase.

Leveraging New Plans in AgentSpeak(PL) 123

Fig. 7. A planning graph used in context extraction

was adopted to make the last action possible. These additions to the planning graph can
be seen in Figure 7 as the dashed oval shapes and lines.

4 Experiments and Results

Traditional AgentSpeak(L) agents require a plan library containing plans for every con-
ceivable situation an agent might find itself in, since no plans can be created at runtime
to deal with unexpected events. Therefore, the ability to generate new plans at runtime
both increases an agent’s flexibility and eases agent development. On the other hand,
state space planners are complex, and a decrease in runtime performance is expected
over standard AgentSpeak(L). With the addition of an effective plan reuse strategy,
however, the time spent in the planning process can be mitigated over time, since new
plans will have the same runtime efficiency as traditional AgentSpeak(L).

Our prototypes were implemented using modified versions of Jason [10], a Java-
based AgentSpeak(L) interpreter with a few additional constructs such as plan anno-
tations and plan failure handling. Experiments with traditional AgentSpeak(L) agents
were conducted in an unmodified Jason interpreter, whereas planning agents were cre-
ated using the open-source implementation of AgentSpeak(PL) [6], unmodified for ex-
periments without plan reuse; and extended with our algorithm for context generation.

The experiment consists of simulating the arrival of parts of three types in three pro-
duction cells, one controlled by a traditional AgentSpeak(L) agent (which we label AS),
another controlled by a naive version of AgentSpeak(PL) (which we label NaiveAS)

124 F. Meneguzzi and M. Luck

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

T
im

e

Parts

Runtime

ASPL
NaiveAS

AS

Fig. 8. Running times for the Production Cell scenario

Table 2. Comparison of initial plan library sizes

AS ASPL NaiveAS
plans 12 7 7

that does not reuse plans and one controlled by the complete AgentSpeak(PL) (which
we label ASPL) capable of reusing plans. Here, whenever a new part arrives for process-
ing at the cell controlled by NaiveAS, the full planning process is invoked to generate a
new plan, regardless of previous instances of the same problem having been considered
in the past. The time spent planning and achieving the final processing of every part is
measured for each agent for an increasing number of parts, ranging from 10 to 100 in
10 part increments.

The results of this experiment can be seen in the graph of Figure 8, which shows
that, though NaiveAS takes significantly more time to perform its reasoning cycle, this
overhead is constant. Now, when the plan reuse strategy is used by ASPL, runtime
performance improves considerably, approaching that of AS. With three different part
types, the number of possible world configurations at the time of planning is limited, and
most of the planning effort occurs at the beginning of the agent execution. As more parts
of the same type are introduced in the production cell, the plans generated previously
are invoked rather than the planning module, amortising the cost of the initial planning.
Evidence of this effect is provided by the ASPL curve approaching that of AS as the
number of total parts increases. Moreover, since the plans generated through planning
are a linear sequence of actions, which do not rely on the tests distributed throughout a
branching structure of plans in the plan library, they are inherently faster to be executed
than the equivalent AS representation, surpassing it in the long term.

It is important to note that, although ASPL can create plans for situations in which
AS would fail, we have avoided using these problems in our benchmark, focusing only
on runtime, by considering an AS agent with plans for all situations possible during
testing. By relying on a planning approach, we also diminish the size of the agent
specification, since we no longer need to create a procedural plan to cope with every

Leveraging New Plans in AgentSpeak(PL) 125

world configuration relevant to the accomplishment of an individual plan. The numbers
of plans necessary in the (initial) plan libraries are shown in Table 2.

5 Related Work

Work on using planning modules to augment existing architectures has been conducted
by several researchers, such as in Propice-Plan [12] and JADEX [13,14]. These efforts
provide some insight into many practical issues that may arise from the integration of
BDI with AI planners, such as how to modify a planning algorithm to cope with changes
in the initial state during planning [12], and how to cope with conflicts in concurrently
executing plans [13].

Propice-Plan [12] is a PRS-based system that includes planning capabilities through
a modified version of the IPP planner [15]. It includes refinements to allow an agent to
anticipate alternative execution paths for its plans, as well as the ability to update the
state of the planning process in order to cope with a highly dynamic world. Propice-
Plan is similar in principle to the architecture described here, but it differs in two key
aspects: its reliance on a modified PRS description formalism for agents, and its reliance
on a tailor-made planner implementation, limiting the choice of planners to be used in
tandem with the agent interpreter.

The work of Walczak et al.[13] is a recent approach to merging BDI reasoning with
planning capabilities, and is based on a continuous planning and execution frame-
work implemented in the JADEX agent framework [16]. The system uses a modi-
fied HTN state-based planner with domain-specific information to select the actions
to achieve goals or refine goals in an agent’s agenda. The emphasis in this system is
on performance and reaction time rather than generality, since JADEX uses a Java-
like representation for the agent’s data structures, such as goals and actions. Admit-
tedly, an HTN planner could be used to generate new plans following a task-oriented
approach (and hence not for declarative goals), but this is not what is accomplished
in JADEX.

Considering the many similarities between BDI programming languages and HTN
planning, Sardina et al.[14] formally define how HTN planners can be integrated into
a BDI architecture. Sardina shows that the HTN process of systematically substitut-
ing higher-level goal tasks until concrete actions are derived is analogous to the way
in which a PRS-based interpreter pushes new plans onto an intention structure, re-
placing an achievement goal with an instantiated plan. Taking advantage of this al-
most direct correspondence, an HTN planner is used to add lookahead capabilities
to an agent, allowing it to optimise plan selection and maximise an agent’s chance
of successfully achieving goals. By verifying beforehand the selection of plans for
achieving subgoals, the agent minimises the chance of failure as a result of poor plan
selection.

The idea of analysing one formalism to derive planning-like pre and post condi-
tions has been attempted previously in the context of web service composition through
planning. Initial efforts by McIlraith and Fadel [17] at a theoretical level, involved con-
verting web services described by hand using Golog into PDDL and ADL. However,
this lacked generality due to its heavy reliance on human intervention in the process,

126 F. Meneguzzi and M. Luck

preventing it from being used in a completely automated fashion, as is needed by our
work. Later, this idea was refined by Pistore et al.[18], converting web services defined
in BPEL4WS into PDDL, allowing for automation. However, BPEL is much more com-
plex than AgentSpeak(L), and understandably the conversion algorithm has polynomial
complexity, though on the exponential scale. In this respect, our approach compares
favourably by having non-exponential polynomial complexity.

6 Conclusions

In this paper we have described a plan reuse strategy for AgentSpeak(PL), a planning-
capable extension of AgentSpeak(L), able to reason about declarative goals. This stra-
tegy is based on the generation of the simplest context information necessary for newly
created plans to be successful when responding to the same event that triggered the
agent to plan. Since planning is a computationally intensive task, being able to effec-
tively reuse previously generated plans offsets time spent on the planning process, as
new plans are as efficient as AgentSpeak(L) procedural plans. This bridges the perfor-
mance gap between traditional AgentSpeak(L) agents and declarative goal-based agents
developed in AgentSpeak(PL), which is the primary contribution of this paper.

The strategy used in the generation of context information is based on the generation
of a greatly simplified planning graph analogous to the graph used in Graphplan [11].
Building this graph has low polynomial complexity in both time and space, and there-
fore the performance overhead imposed on the planning process is negligible. More-
over, we believe that the process used to generate initial context information can be
expanded to allow reasoning about interference from concurrent plans, and we intend
to explore this possibility as future work.

Acknowledgments. The first author is supported by Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior (CAPES) of the Brazilian Ministry of Education.

References

1. Meneguzzi, F., Zorzo, A.F., da Costa Móra, M., Luck, M.: Incorporating planning into BDI
agents. Scalable Computing: Practice and Experience 8, 15–28 (2007)

2. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: de
Velde, W.V., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer,
Heidelberg (1996)

3. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings of the First
International Conference on Multiagent Systems, San Francisco, pp. 312–319 (1995)

4. d’Inverno, M., Luck, M., Georgeff, M., Kinny, D., Wooldridge, M.: The dMARS Architec-
ture: A Specification of the Distributed Multi-Agent Reasoning System. Autonomous Agents
and Multi-Agent Systems 9(1 - 2), 5–53 (2004)

5. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the golden fleece of agent-oriented pro-
gramming. In: Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.) Multi-
Agent Programming: Languages, Platforms and Applications, pp. 3–37. Springer, Heidelberg
(2005)

Leveraging New Plans in AgentSpeak(PL) 127

6. Meneguzzi, F., Luck, M.: Composing high-level plans for declarative agent programming.
In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007. LNCS,
vol. 4897, pp. 115–130. Springer, Heidelberg (2008)

7. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Elsevier, Am-
sterdam (2004)

8. Bratman, M.E.: Intention, Plans and Practical Reason. Harvard University Press, Cambridge
(1987)

9. d’Inverno, M., Luck, M.: Engineering AgentSpeak(L): A formal computational model. Jour-
nal of Logic and Computation 8(3), 233–260 (1998)

10. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems in Agent-
Speak using Jason. Wiley, Chichester (2007)

11. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artificial Intelli-
gence 90(1-2), 281–300 (1997)

12. Ingrand, F., Despouys, O.: Extending procedural reasoning toward robot actions planning.
In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation,
Seoul, Korea, pp. 9–10 (2001)

13. Walczak, A., Braubach, L., Pokahr, A., Lamersdorf, W.: Augmenting BDI Agents with De-
liberative Planning Techniques. In: Proceedings of the Fifth International Workshop on Pro-
gramming Multiagent Systems (2006)

14. Sardina, S., de Silva, L., Padgham, L.: Hierarchical Planning in BDI Agent Programming
Languages: A Formal Approach. In: Proceedings of the Fifth International Joint Conference
on Autonomous Agents and Multiagent Systems, pp. 1001–1008 (2006)

15. Köhler, J.: Solving complex planning tasks through extraction of subproblems. In: Simmons,
R., Veloso, M., Smith, S. (eds.) Proceedings of the Fourth International Conference on Arti-
ficial Intelligence Planning Systems, Pittsburg, pp. 62–69. AAAI Press, Menlo Park (1998)

16. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In: Bordini, R.H.,
Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.) Multi-Agent Programming: Languages,
Platforms and Applications, pp. 149–174. Springer, Heidelberg (2005)

17. McIlraith, S.A., Fadel, R.: Planning with complex actions. In: Benferhat, S., Giunchiglia,
E. (eds.) Proceedings of the 9th International Workshop on Non-Monotonic Reasoning, pp.
356–364 (2002)

18. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated composition of web services
by planning at the knowledge level. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence, pp. 1252–1259 (2005)

Increasing Bid Expressiveness for Effective and
Balanced E-Barter Trading

Azzurra Ragone1,3, Tommaso Di Noia1, Eugenio Di Sciascio1,
and Francesco M. Donini2

1 SisInfLab, Politecnico di Bari, Bari, Italy
{t.dinoia,disciascio}@poliba.it

2 Università della Tuscia, Viterbo, Italy
donini@unitus.it

3 Artificial Intelligence Laboratory–University of Michigan, Ann Arbor, USA
aragone@umich.edu

Abstract. We present a novel knowledge-based approach for automated elec-
tronic barter trade systems. An e-barter is basically a closed e-marketplace, where
agents may exchange (buy/sell) goods –or equivalent trade dollars– only with
other participants to the e-barter. Obviously, in such systems one of the major is-
sues is keeping exchanges as balanced as possible. If the description of goods
or services to be exchanged is simple and limited to a well defined set, e.g.,
oil, wheat, transport, etc., then an exchange based only on price and quantity
is enough. But, what if goods or services to be exchanged are described in a
complex way? Is it a suitable exchange the one involving mobile phones support-
ing video streaming with a QWERTY keyboard if the agent is looking for smart
phones? Those two descriptions, although very different form a syntactic point of
view, are very similar with respect to their meaning (semantics). How could an
agent manage and exploit the knowledge on a given domain to deal with such a
semantic information and optimize exchanges?

We focus on how to find most promising matches, in a many-to-many match-
making process, between bids (supplies/demands), taking into account not only
the price and quantities as in classical barter trade systems, but also a semantic
similarity among bid descriptions while keeping exchanges balanced.

To this aim we use a logical language to express agent preferences, thereby
enhancing bid expressiveness. We also define a logic-based utility function that
allows to evaluate the semantic similarity between bids. Finally we illustrate the
optimization problem we solve in order to clear the market.

1 Introduction

An electronic marketplace can be basically described as a system that facilitates busi-
ness activities by providing users with one, or more, added value services, usually
including: discovery/matchmaking (finding partners to engage in a commercial inter-
action), negotiation and deal (establishing trust, negotiating and agreeing on terms of
business transaction), exchange (payment and actual execution of the business trans-
action) [29]. The main interest of the service provider is obviously to maximize suc-
cessful transactions (i.e., what is usually termed as clearing the market). The service

M. Baldoni et al. (Eds.): DALT 2008, LNAI 5397, pp. 128–142, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Increasing Bid Expressiveness for Effective and Balanced E-Barter Trading 129

provider revenues depend in fact either on charges placed on each successful trans-
action or on fixed fees paid for membership required to benefit of offered services.
Successful and renowned existing e-marketplaces are either person-to-person auction
sites such as EBay (www.ebay.com) or business-to-business (B2B) marketplaces such
as Covisint (www.covisint.com) or Alibaba.com (www.alibaba.com), or procurement
services such as CombineNet (www.combinenet.com).

In this paper we focus on a particular –and definitely ancient– form of commercial
interaction, namely barter trade exchange. Historically barter trade was a bilateral form
of exchange of goods and services without currency. Obviously, we refer here to a
modern multilateral barter trade [14], where traders do not exchange goods directly,
but use a form of private label currency, named trade dollar. Therefore if they sell a
good they receive credits in trade dollars, that can be used to purchase other goods.
An electronic barter trade system is then basically a closed B2B e-marketplace, where
the trade of goods/services among companies is managed by an intermediary (broker).
In automated e-barter exchange agents play the role of managers (acting on behalf of
companies) or brokers (acting on behalf of the trade exchange system).

Usually, commercial e-barter systems make money by charging a commission on
each transaction done, so the revenue of the system is higher the more the e-marketplace
is lively. Therefore the role of the broker agent is to stimulate trade exchanges, recom-
mending possible promising exchanges given a set of demands and supplies from the
barter pool (the set of companies involved in the e-marketplace).

One of the aims of the barter trade broker is maintaining exchanges as far as pos-
sible balanced, so that the total income of trade dollars by a company equals to the
amount bought by the company itself. In fact maintaining the balance of trade helps
the traders to make purchases in the future increasing the trade volume over the long
run [14]. Furthermore, given a demand (supply), there are typically several possible
supplies (demands) to choose from, so the pivotal question in an e-barter system is:
how can the broker choose and consequently suggest an exchange to the other agents?
The obvious answer is: by finding the most promising matches such that agents can be
equally satisfied by the exchange. Obviously, price cannot be the only parameter when
goods to be exchanged are not simply undifferentiated ones, and moreover traders do
not make their decision based only on price [14]. Usually price is negotiated later be-
tween buyer and seller, so price other than not being the only criterion, might not be the
most important one. Other parameters to take into account are, e.g., similarity between
demand and supply descriptions, quantity and trade balance.

We introduce logical languages, in particular Description Logics [4], to model bids.
In this way we enhance bid expressiveness, and are able to catch relations among fea-
tures, exploiting basic inference services such as satisfiability and subsumption. Yet our
aims are manifold and go well beyond simple matchmaking:

– Maximize utilities of each agent finding the best overall semantic match among
several demands and supplies;

– Maintain the balance of trade;
– Maximize the trade volume.

While achieving these goals separately can be straightforward, it is quite challeng-
ing trying to fulfill all of them at the same time; contributions of this paper therefore

130 A. Ragone et al.

include a many-to-many matchmaking process between bid descriptions modeling both
mandatory requirements and preferences, taking into account not only price and quan-
tities as in classical barter trade systems; a logic-based utility function that allows to
evaluate the semantic similarity between bids; the optimization problem we solve in or-
der to clear the market keeping exchanges balanced. The rest of the paper is structured
as follows: in the next section we illustrate features and motivations for e-barter trading
outlining the scenario we refer to; then we illustrate the logical language we adopt to
model agents bids. In Section 4 we define the logic-based utility function we introduce
to catch the semantic similarity between bids. Section 5 outlines the optimization prob-
lem we solve to clear the market, taking into account both quantity constraints (balance
of trade) and utility function. Related work and conclusion close the paper.

2 The Barter Trade Scenario

The World Trade Organization estimated in 2004 that 15% of international trade was
conducted on non-cash basis, and approximately $8.25 billion was traded through re-
ciprocal trade companies [16]. It should be noted that the interest for bartering does not
depend on the possibility to avoid/reduce value added taxes (VAT), as practically all
countries have long ago introduced specific legislation that make barter income equal
to cash-based income; the reciprocal trade among firms is considered appealing as it al-
lows the exchange of unproductive assets and surplus inventory for valuable products or
services, opening at the same time new outlets for excess inventory and unused capac-
ity [16]. Noteworthy examples of working e-barter marketplaces, among many others,
are www.tradia.net, www.U-Exchange.com, www.trashbank.com, www.
tradefirst.com, www.barterbart.com, and BizXchange1. The range of
products/services that it is possible to buy/sell is very wide; among many others: ad-
ministrative services, business consultation, legal and accounting services, automotive
services, computer and technology services, telephone and telecommunication systems,
commercial furniture.

Let us consider the following scenario2: A chain of hotels needs to buy mobile
phones for a large number of its employees. The company has two choices: the first
one is simply buy the mobile phones in the open market, the second one is pursuing an
exchange of accommodations for mobile phones. Their occupancy rate is about 60%.
The chain of hotels therefore may trade hotel stays for a complete mobile phone sup-
ply and increase its occupancy. This is accomplished without the use of cash, and with
mutually benefical results. Hence, the idea is that barter exchange enables a company
to use its excess capacity to finance its purchases.

An e-barter system shares several characteristics with generic B2B e-marketplace,
where agents enter their demands/supplies (bids) to search for potential commercial
partners. Differently from a peer-to-peer (P2P) e-marketplace, and similarly to an
auction-based market, there is a central entity, the broker, which finds, on behalf of
the company agents, most promising transactions based on some constraints, as will be

1 www.bizx.bz
2 This scenario is inspired by an example found on the web site http://www.tradia.net/

file:www.tradefirst.com
file:www.tradefirst.com

Increasing Bid Expressiveness for Effective and Balanced E-Barter Trading 131

discussed later on. In this paper we model the trade balance problem extending the ap-
proach by Haddawy et al. [14], who modeled the setting as a minimum circulation prob-
lem [2] on a network, considering expressive demand/supply descriptions referred to a
common ontology, similarity among goods, preferences and utilities of buyers/sellers.
As in [14] we consider the trade occurring in business cycles: agent’s bids are entered
in the system, a matching is determined and then the market is cleared, and the cycle
repeats.

In our proposed framework a transaction in the e-barter trade system is therefore
initiated by the following phases:

– Agents enter the e-marketplace and submit a bid description, modeled using a
logical language(supplies/demand).

– Supply and demand descriptions are effectively matched trying to maximize agent
utilities, taking into account (semantic) similarity between bid descriptions, the
market price of each good and the barter trade constraints.

– Given the quantities and the type of good supplied/requested as well as the market
price of each product, the broker tries to maintain the balance of trade, as requested
in an e-barter system, solving an optimization problem, see Section 5.

– The broker finds the most promising matches among bids and proposes them to the
agents in the e-marketplace. While finding the most promising matches, the broker
has to take into account the utility of each agent. Such a utility is related to prefer-
ences that each agent expresses using our logical language (see Section 3).

In such a way it is possible both to balance the trade (as required by a barter trade sys-
tem) and also find for each agent the most promising counterpart, based on the semantic
similarity between bids.

3 The Logical Setting

In the rest of the paper we refer, for the sake of clarity and without loss of generality,
to a mobile phone domain. Clearly, in an e-barter marketplace several categories of
goods/services will be traded, and an agent looking for mobile phones will probably
sell at the same time another good in the trade system. We assume the background
knowledge T (i.e., an ontology) be modeled using Description Logics (DL) [4].

3.1 Basic of Description Logics

Here, we provide a little survey on DLs, referring to [4] for a more comprehensive de-
scription. Description Logics (DLs) are a family of logic formalisms for Knowledge
Representation, whose basic syntax elements are concept names, properties and indi-
viduals. Concepts names stands for set of objects in the domain (WindowsMobile,
Bluetooth, WebBrowser) while properties link (sets of) objects in the domain
(hasOS, supportedNetwork, hasComponent). Individuals are used for special
named elements belonging to concepts (NokiaN80, MotorolaRazor).

Description Logics are usually endowed with a model theoretic formal semantics. A
semantic interpretation is a pair I = (∆I , ·I), where ∆I represents the domain and ·I

132 A. Ragone et al.

is the interpretation function. This function maps every concept to a subset of ∆I , and
every property to a subset of ∆I × ∆I . Then, given a concept name A and a property
name R we have:

AI ⊆ ∆I

RI ⊆ ∆I × ∆I

The two symbols � and ⊥ are used to represent the most generic concept and the most
specific one respectively. Hence their formal semantics correspond to �I = ∆I and
⊥I = ∅.

Properties and concept names can be combined using existential role quantifica-
tion, e.g., MobilePhone � ∃supportedNetwork.3G describing the set of mobile
phones supporting at least 3G (third generation) networks, and universal role quantifi-
cation e.g., MobilePhone� ∀hasOS.Symbian describing the set of mobile phones
having only Symbian operating system installed. The formal semantics of universal and
existential quantification is as follows:

∃R.C = {x ∈ ∆I | ∃y, (x, y) ∈ RI ∧ y ∈ CI}
∀R.C = {x ∈ ∆I | ∀y, (x, y) ∈ RI → y ∈ CI}

Well formed formulas in DLs (in DLs jargon knows as concept expressions) can be
written using constructors to write concept and property expressions. Based on the set
of allowed constructors we can distinguish different Description Logics. Basically, ev-
ery DL allows one to form a conjunction of concepts, usually denoted as �; some DL in-
clude also disjunction � and complement ¬ to close concept expressions under boolean
operations.

(C � D)I = CI ∩ DI

(C � D)I = CI ∪ DI

(¬C)I = ∆I\CI

The Description Logic closed under Boolean operators is referred as ALC. Depending
on the adopted Description Logic one is also allowed to use construct involving concrete
domains as Camera� ≥2 megaPixel describing a camera with at least 2 megapixel
of resolution. Notice that while properties, as hasOS, are mapped to a subset of of
∆I ×∆I , concrete properties, as megaPixel are mapped to a subset ∆I ×D where
D is a concrete domain.

(≤k R)I = {x ∈ ∆I |RI(x) ≤ k}
(≥k R)I = {x ∈ ∆I |RI(x) ≥ k}
(=k R)I = {x ∈ ∆I |RI(x) = k}

Actually, more espressive operators can be added to this logic as number restrictions,
transitive roles and inverse roles just to cite a few [4]. The expressiveness of a DL de-
pends on the type of constructors allowed; we point out that our approach is completely
independent of the particular DL chosen to describe the domain knowledge.

Increasing Bid Expressiveness for Effective and Balanced E-Barter Trading 133

In order to formally represent the domain knowledge and constraints intercurring
among elements of the domain, we can model an Ontology T (for Terminology) con-
taining axioms D � C where D and C are well formed formulas in the adopted
DL and R � S where both R and S are properties. The formal semantics of such
axioms is:

(C � D)I = CI ⊆ DI

(R � S)I = RI ⊆ SI

We can also write C ≡ D to represent both C � D and D � C.
In the rest of the paper we refer to the Ontology T depicted in Figure 1.

W-CDMA � 3G (1)

WindowsMobile � ¬Symbian (2)

MobileOS ≡ WindowsMobile	 Symbian (3)

Camera � Component

Display � Component

Keyboard � Component

Display � ¬Camera
Display � ¬Keyboard
Camera � ¬Keyboard
∃type � Component (4)

 � ∀hasComponent.Component (5)

SmartPhone ≡ MobilePhone� ∃hasSoftware.WebBrowser� (6)

∃hasComponent.(Display � ∃type �
∀type.Graphical) � ∃supportedNetwork.3G �
∃hasComponent.(Keyboard � ∃type.QWERTY)

∃hasOS.Symbian � ∃supports.MPEG4 (7)

Fig. 1. Reference Ontology

In axiom (1) a simple subclass relation is represented (W-CDMA is a 3G technology).
Axiom (4) forces the domain of type to be a Componentwhile axiom 5 forces the
range of hasComponent to be a Component. Noteworthy are also axiom (2) and
axiom (3). The first one represents a disjointness relation (a Symbian OS is not a Mi-
crosoft Windows Mobile OS and vice versa). Together with axiom (3) (Mobile operating
systems are Microsoft Windows Mobile or Symbian ones) they represent the complete
partition of MobileOS 3. Using axioms in the ontology we can also relate properties.
This is the case of axiom (7) where it is stated that a mobile phone equipped with Sym-
bian Operating System supports the MPEG-4 mutimedimedia format. Finally, axioms

3 This is a simplified model of the mobile phones domain where many other operating systems
exist.

134 A. Ragone et al.

can be used to define terms to be used as synonyms of complex descriptions as in ax-
iom (6) where a smart phone is defined as a mobile phone supporting web browsing,
provided with a graphical display, 3G connectivity and a QWERTY keyboard.

Using concepts and roles defined within the ontology T , it is possible to describe
items to be sold as well as items to be bought with corresponding preferences. As an
example, consider three agents in the e-marketplace selling mobile phones4 (for the
sake of conciseness we translate in DL only the first description):

[S1 – LG enV VX9900:] Mobile phone with a digital camera, 2 mega pixels and 4X
digital zoom, W-CDMA network technology, supported media format: MPEG-4,
3gp, MP3.

LG enV VX9900 =

MobilePhone� ∃hasComponent.(Camera�
=2 megaPixel� =4 zoom)�

∃supportedNetwork.W-CDMA � ∃supports.MPEG4�
∃supports.3GP � ∃supports.MP3

[S2 – Nokia N95:] Mobile phone with Digital Camera, 5.0 mega pixels and 10X
zoom, WCDMA and GSM network technology, supported media format: WMA,
AAC, MP3. Infrared, Wi-Fi and Bluetooth wireless technology, phone endowed
with Symbian OS.

[S3 – Samsung BlackJack SGH i607:] Smart phone with digital camera, 1.3 mega
pixels and 2X digital zoom, supporting the MP3 format. Bluetooth wireless tech-
nology, phone endowed with Microsoft Windows Mobile Operating System.

On the other hand, let us suppose an agent i enters the e-marketplace looking for a “mo-
bile phone with a digital camera with at least 2 mega pixel resolution and digital zoom
at least 4X, supporting MP3 format and optionally the MPEG-4, Bluetooth connec-
tion and infrared port, endowed preferably with a Symbian operating system, and a 3G
mobile telephony communications protocol”. Clearly, in such a bid it is possible to dis-
tinguish strict requirements, features the agent wants to be specified in the description
of the item to be bought, i.e., they have to be provided by the seller, and preferences,
features that, although not strictly necessary, make the agent more satisfied and happier.

Strict requirements: “mobile phone with a digital camera, supporting MP3 format,
Bluetooth, endowed with a 3G mobile telephony communications protocol”

Preferences: “ at least 2 mega pixel resolution and digital zoom at least 4X, supporting
MPEG-4 format, infrared port, endowed with a Symbian operating system”

We can represent both strict requirements and preferences as DLs formulas.

Bi = MobilePhone� ∃hasComponent.Camera�
∃supports.MP3 � ∃connections.Bluetooth�

4 The mobile phone descriptions we refer to have been taken from the web site:
http://shopping.yahoo.comCategory: Electronics → Cell-Phones.

Increasing Bid Expressiveness for Effective and Balanced E-Barter Trading 135

∃supportedNetwork.3G
(“mobile phone with a digital camera, supporting MP3 format, Bluetooth connec-
tion, endowed with a 3G mobile telephony communications protocol”)

P i
1 = ≥2 megaPixel� ≥4 zoom

(“at least 2 mega pixel resolution and digital zoom at least 4X”)
P i

2 = ∃supports.MPEG4
(“supporting the MPEG-4 format”)

P i
3 = ∃connections.Infrared

(“infrared port”)
P i

4 = ∀hasOS.Symbian
(“endowed with a Symbian operating system”)

Which will be the supply most suitable for the buyer’s agent? How can we determine
the items more appealing for the agent i? Looking at formulas, we can say that offer
S1 does not satisfy the strict requirement for Bluetooth, while S2 and S3 fulfill all the
strict requirements Bi. Hence offer S1 has not to be considered as a promising part-
ner for agent i. Notice that because of the axiom in the ontology ∃hasOS.Symbian �
∃supports.MPEG4we know that the mobile phone described by S2 supports MPEG-
4 format, even if this is not explicitely stated. Similarly, we know the same phone sup-
ports a 3G protocol because T |= W-CDMA � 3G. For what concerns S3 description,
thanks to the axiom in the ontology relative to smartphone we know that the phone
described by S3 supports a 3G communication protocol. Given the ontology T , in for-
mulas we have the following relations: T �|= S1 � Bi, T |= S2 � Bi, T |= S3 � Bi

Similarly to the one for strict requirements, we can establish a criterion to decide, be-
tween offers S2 and S3, which is the one better fulfilling the buyer preferences. In
other words we are going to define a logic-based utility function that allow to measure
the satisfaction degree of an agent (see Section 4.1).

4 Bid Expressiveness

Let L be a Description Logic and T an ontology expressed as a set of formulas over L.
We name the n agents of the e-barter as { 1,. . . ,n } , and use i as a variable over {

1,. . . ,n } . Hereafter, whenever we use indexes is with the following meaning: in •i
k, i

represents an agent, while k, the k-th element of a set. Each agent i looks for (“buys”)
some good Bi, and offers (“sells”) some other good Si. Both Bi and Si are formulas
in L. We also let min QBi, maxQBi, minQSi, and maxQSi be the minimum and
maximum quantities that agent i is willing to buy and to sell, respectively. For the sake
of simplicity, we assume that each agent “buys” only items of one type of good and
“sells” items of only one other type of good.

4.1 Preferences and Utility Functions

If the agent i is willing to buy a certain quantity of a good, then it can formulate its re-
quest setting some characteristics as strict and others as preferred. Strict characteristics
represent what has to be specified in a good description Sj in order to be considered by
i. Preferred characteristics make i happier if Sj exposes them. Hence, if i is looking for
some good to be traded, it expresses its request as a set of formulas:

136 A. Ragone et al.

Bi : a Description Logic formula representing strict requirements;
{P i

k} : a set of Description Logic formulas representing preferred requirements.

The preferences of each agent i are formalized by a utility function Ui : L → !+,
assigning a worth to Bi and to each formula in {P i

k}.
Of course, we assume that Ui is very sparse, and only a few number of formulas in L

have a non-zero utility, corresponding to those characteristics—single concept names,
or generic Description Logics formula—an agent considers important. P i

k are formulas
to which agent i assigns some worth (i.e., a non-zero utility). In formulas:

uij = Ui(Bi) +
∑

{Ui(P i) | T |= Sj � P i} (8)

where uij is the utility gained by agent i when buying good Sj from agent j, computed
as the sum of utilities set by i of characteristics which are fulfilled by good sold by j.

We now explain why we require agents to put a utility over their strict requirements.
In Classical Negotiation Theory [20], the existence of a disagreement payoff is always
hypothesized. Such a payoff is the minimum utility each agent requires to pursue the
negotiation, and usually represents both the attitude of an agent towards negotiation—a
high disagreement payoff models the fact that the agent is rather unwilling to negotiate
at all—and some fixed costs which be repaid by the agreement. Since the behavior of
our agents is that if at least the strict requirements are fulfilled, they may accept the
barter, it follows that such strict requirements should have a utility which is equal to, or
greater than, the disagreement payoff hypothesized by the theory.

4.2 Prices

Prices could be set in two ways: we call them exogenous prices and endogenous prices.
In exogenous prices, we suppose that every offered good—whoever offers it—has

a market price, given by the value of a global function p(Si) ∈ !+, in barter dollars.
This price is set by the barter autonomously with reference to the market price, and we
require that whenever two agents i and j sell the same good—that is, when T |= Si ≡
Sj—then p(Si) = p(Sj)5.

On the other hand, endogenous prices are fixed by the well-known result by Arrow
and Debreu [3] that states that there exists a unique price vector p such that if every
agent maximizes her own utility, the market clears, subject to the constraints that ev-
ery agent cannot spend more than the worth she initially owes. Deng et al. [8] proved
that the result can be extended to indivisible goods—as in our case—and that one can
find a price that minimizes the deficiency of the market, although that price is hard to
approximate.

We now discuss the two options. Endogenous prices are advisable for a closed mar-
ket; one in which no other agent can enter in the future, and that must find an equilib-
rium in itself. In fact, Arrow& Debreu’s result does not take into account any intrinsic
value of the bartered objects—e.g., their production cost. So it may happen that an agent

5 Observe that since in L there could be more than one way of describing the same good—
e.g., in the simplest case, two synonyms, made equivalent by a formula in T —we use logical
equivalence Si ≡ Sj to express the fact that agent i and agent j sell in fact the same good.

Increasing Bid Expressiveness for Effective and Balanced E-Barter Trading 137

selling a good which is not required by other agents at a given moment of the e-barter
marketplace gets a very low price for it, because the utility that the other agents assign
to the good is very low. However, the situation might change when another agent, re-
quiring exactly that good, enters the marketplace. These considerations suggest us to
opt for exogenous prices. Hence, from now on, we assume that every good has a price
which is fixed by the barter independently of the market status.

5 The Barter Trade Optimization

Our optimization problem is finding non-negative integral values for n2−n variables qij

i, j ∈ {1, . . . ,n}, i �= j, representing the quantity of good sold by agent j to agent i, at
the price of p(Sj) barter dollars. Each variable qij is subject to the following constraints:

minQBi ≤
∑

j qij ≤ maxQBi (9)

min QSj ≤
∑

i q
ij ≤ maxQSj (10)

These constraints express the fact that globally, the quantities traded by agents should
be within the range they specified. Intuitively, an agent might not want to exchange
a good below a given minimal quantity in order to, say, reduce its marginal costs, or
reduce packaging and shipping costs. Analogously, an upper bound on the quantity
could model production/consumption physical limits.

Moreover, we force qij = 0 if the strict characteristics of the good required by agent
i are not implied by the ones offered by agent j, i.e., if T �|= Sj � Bi.

To ease summations, we also let qii = 0 for n “fake” variables. Then, we let n new
variables bi, . . . , bn (“balances”) be defined by

bi =
∑

j

qji · p(Si) −
∑

j

qij · p(Sj) · (1/uij) (11)

We now explain Formula (11). The balance of an agent is usually made by the barter
dollars gained by giving (several items of) good Si minus the barter dollars it owes
the barter exchange to get (several items of) good Bi. Hence, one would expect the
balance for the agent i to be defined simply by bi =

∑
j qji · p(Si) −

∑
j qij · p(Sj)

However, we have to remember that the items that Agent i gets might not be exactly the
ones it looked for: some preferred characteristics might not be satisifed by the items it
buys. We have to weigh the barter dollars spent with “how bad” are the bought items
w.r.t. i preferences. This is the reason why, in Formula (11), barter dollars spent by i,
i.e.,

∑
j qij · p(Sj), are scaled by its corresponding utility. This allows us to compare

different matches and hence discover the most promising ones, as the higher is the value
of the logic-based utility function the higher will be the semantic similarity between the
two bids.

Let us clarify the idea behind the flow of barter dollars with the aid of a graph rep-
resentation. Starting from Bi and Sj, with i, j ∈ {1, . . . ,n}, i �= j, we can build a
weighted directed graph (see Figure 2) following these simple rules:

— for each agent, draw a node and label it with its name;
— given two nodes i and j, if T |= Sj � Bi then draw an edge from node i to node j;

138 A. Ragone et al.

1 2

3
4

q21 · p(S1)

q32 · p(S2)q23 · p(S3)

q21 · p(S1)

q31 · p(S1)

q14 · p(S4)

Fig. 2. The flow of barter dollars: Nodes correspond to agents, edges (i,j) to barter dollars agent
i will pay to agent j in exchange of qij items of Supply Sj

— assign to each edge from node i to node j, a label qij · p(Sj) representing the barter
dollars i will pay to j.

Given an agent i, the corresponding balance bi is computed as the summation of weights
asociated to the edges (i, j) and (j, i). Weights labelling (i, j) edges represent barter
dollars i pays to j —their value is considered negative in the summation in equation
(11)— while the ones labelling (j, i) edges represent barter dollars that i receives from
j —their value is considered positive in the summation in equation (11).

We impose that the balances are “close enough” to zero with the following
constraints:

− ε ≤ bi ≤ ε for i = 1, . . . ,n (12)

for a suitable value for ε. When the exchange of goods lasts several rounds (possibly,
forever) we record in each round the value of each agent’s balance pbi, and modify
(12) as −ε ≤ bi + pbi ≤ ε, in order to make compensations for unbalanced agents in
subsequent rounds.

Finally, our objective function is: max
∑

ij qij , in order to maximize the barter
capabilities of the barter exchange.

Taking the overall system of disequations (9)–(12), we get a Mixed-Integer Program-
ming, solvable with standard techniques [15].

We remark the fact that our framework is a true extension of the proposals for barter
exchange regarding fixed goods, as the one of Haddawy et al. [14]: in fact, it is sufficient
to set the utility of each Bi to 1, and to let every agent have no preferences. In this case,
Formula (11) becomes the usual balance for trade dollars.

6 Related Work

Literature on e-marketplaces is huge and ever increasing, we refer the interested reader
to [29,19] and focus this section on works having some relationship with our approach.

Increasing Bid Expressiveness for Effective and Balanced E-Barter Trading 139

With reference to logic-based matchmaking, there has been a growing interest, moti-
vated by the Semantic Web initiative. Matchmaking as satisfiability of concept conjunc-
tion in DLs was first proposed in the same venue by Gonzales-Castillo et al. [12] and by
Di Sciascio et al. [11], and precisely defined by Bartolini et al. [28]. A specific language
for agent advertisement in the framework of the Retsina Multiagent infrastructure was
proposed in [26]. A matchmaking engine was developed [27,22], which carries out the
process on five possible levels. Such levels exploit both classical text-retrieval tech-
niques and semantic match using Θ-subsumption. Nevertheless, standard features of a
semantic-based system, as satisfiability check were unavailable. It is noteworthy that in
this approach, the notion of plug-in match was borrowed from research on matching
software components [30], to overcome in some way the limitations of a matching ap-
proach based on exact matches. Two new levels for matching classification, along with
properties that a matchmaker should have in a DL-based framework, and algorithms
to classify and semantically rank matches within classes were introduced by Di Noia
et al. [10]. The Difference Operator in DLs for semantic matchmaking was proposed
by Benatallah et al. [5]. The approach uses Concept Difference, followed by a covering
operation optimized using hypergraph techniques, in the framework of web services dis-
covery. An initial DL-based approach adopting penalty functions ranking was proposed
by Calı́ et al. [6], in the framework of dating systems. An extended matchmaking ap-
proach, with negotiable and strict constraints in a DL framework has been proposed by
Colucci et al. [7], using both Concept Contraction and Concept Abduction [9]. Match-
making in DLs with locally-closed world assumption applying autoepistemic DLs has
been proposed by Grimm et al. [13]. The need to work in someway with approximation
and ranking in DL-based approaches to matchmaking has also recently led to adopting
fuzzy-DLs, as proposed by Ragone et al. [24] and in Smart [1] or hybrid approaches,
as in the OWLS-MX matchmaker [17]. Lukasiewicz and Schellhase propose [18] a
language able to express conditional preferences to matchmake in Description Logics
based on strength values (i.e., weights) assigned to preferences. A ranking procedure
was also proposed. The main aim of the approach was to retrieve a set of appealing
available resources with respect to a request.

Nevertheless in all such approaches the matchmaking process is defined according
to one player’s perspective, according to a different purpose. Namely, the purpose is
to rank a set of promising offers according to buyer’s preferences or viceversa. In our
framework we model the matchmaking process as a many-to-many one, taking into
account both buyers’ and sellers’ preferences.

As first pointed out by Segev and Beam [25] the role of an electronic mediator in mar-
ketplaces is becoming increasingly important, as the broker can help agents to search
for potential partners as well as to negotiate. Moreover, being a trusted third party, it
can collect information from the agents and then suggest to the parties win-win solu-
tions otherwise difficult to discover by agents themselves. Segev and Beam assumed in
their model that for each product the quantity requested/supplied is equal to one. The
negotiation process is based on price, basically the seller’s bid with a price lower than
the buyer’s one is chosen. So they do not consider in their analysis either the prob-
lem of different quantities that can be requested/supplied or the semantic similarity be-
tween bids. Haddawy et al. [14] modeled the trade balance problem as a minimum cost

140 A. Ragone et al.

circulation problem (MCC) on a network. They addressed the typical problem in a
barter exchange: matching buyers and sellers such that the trade volume is maximized
while the balance of trade is maintained as much as possible. Furthermore the matching
algorithm presented by Haddaway et al. is a quantitative one; they suppose that goods
requested/supplied in the e-marketplace are exactly the same. Therefore no semantic
relation among goods is taken into account, neither are agents’ preferences, while it
is intuitive that, as long as the market does not deal only with undifferentiated goods,
structured and complex descriptions should be taken into account, and preferences han-
dling allows one to find many more possible matches and business opportunities.

Núñez et al.[21] modeled an e-barter system using a hierarchical structure. Agents
are grouped in local markets and when, in turn, each market gets completed, an agent,
representing the whole market, is created and it is grouped in a new market. A utility
function models agents preferences on basket of goods, hence only quantitative prefer-
ences are taken into account and no semantic relations among attributes are modeled.
In our framework we define a logic-based utility function, thus taking into account
both qualitative and quantitative preferences. The use of a logical language enhances
the bid expressiveness and it allows one to catch semantic relations between attributes,
through basic inference services such as subsumptions and satisfiability. Ragone et al.
[23] modeled a negotiation process among agents in an open e-marketplace and se-
mantic relations among attributes are taken into account, using a propositional logic to
model preferences. Here we use much more expressive DLs and introduce an approach
to deal with quantities and to balance the (closed) barter market.

7 Conclusion

We presented a knowledge-based approach to e-barter trading, exploiting a broker. In
particular we focused here on an approach to find most promising matches, in a many-
to-many matchmaking process, between supplies and demands, taking into account not
only the price and quantities as in current barter trade systems, but also a semantic
similarity among bid descriptions, while keeping exchanges balanced.

We proposed the use of a logical language to express agent preferences, thereby en-
hancing bid expressiveness and defined a logic-based utility function that allows to eval-
uate the semantic similarity between bids. Finally we outlined the optimization problem
to be solved in order to clear the market.

A future development of this research is the adoption of a fuzzy DL for modeling the
partial fulfillment of a preference [24] as fuzzy subsumption. An evaluation, to numeri-
cally support our approach is currently under way with selected SMEs in the framework
of Apulia Region DIPIS project, while future research work will be devoted to extend
our framework to a call market, and generally speaking to auction-based markets.

Acknowledgements

We thank the three anonymous reviewers for comments that helped us improving the
paper. This paper was written while Azzurra Ragone was visiting the Artificial In-
telligence Laboratory of University of Michigan at Ann Arbor, which she thanks for

Increasing Bid Expressiveness for Effective and Balanced E-Barter Trading 141

hospitality. This research was funded in part by projects PS 092 DIPIS and EU-FP6-
IST-026896 TOWL.

References

1. Agarwal, S., Lamparter, S.: Smart - a semantic matchmaking portal for electronic markets.
In: Proceedings of the 7th International IEEE Conference on E-Commerce Technology CEC
2005, pp. 405–408 (2005)

2. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice-Hall, Englewood Cliffs (1993)
3. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Economet-

rica 22(3), 265–290 (1954)
4. Baader, F., Calvanese, D., Mc Guinness, D., Nardi, D., Patel-Schneider, P.: The Description

Logic Handbook. Cambridge University Press, Cambridge (2002)
5. Benatallah, B., Hacid, M.-S., Rey, C., Toumani, F.: Request Rewriting-Based Web Service

Discovery. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870,
pp. 242–257. Springer, Heidelberg (2003)

6. Calı̀, A., Calvanese, D., Colucci, S., Di Noia, T., Donini, F.M.: A description logic based
approach for matching user profiles. In: Proceedings of the 17th International Workshop on
Description Logics (DL 2004). CEUR Workshop Proceedings, vol. 104 (2004)

7. Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F., Mongiello, M.: Concept Abduction
and Contraction for Semantic-based Discovery of Matches and Negotiation Spaces in an
E-Marketplace. Electronic Commerce Research and Applications 4(4), 345–361 (2005)

8. Deng, X., Papadimitriou, C., Safra, S.: On the complexity of equilibria. In: Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing STOC 2002, pp. 67–71.
ACM, New York (2002)

9. Di Noia, T., Di Sciascio, E., Donini, F.: Semantic Matchmaking as Non-Monotonic Reason-
ing: A Description Logic Approach. Journal of Artificial Intelligence Research 29, 269–307
(2007)

10. Di Noia, T., Di Sciascio, E., Donini, F., Mongiello, M.: A system for principled matchmaking
in anelectronic marketplace. International Journal of Electronic Commerce 8(4), 9–37 (2004)

11. Di Sciascio, E., Donini, F., Mongiello, M., Piscitelli, G.: A Knowledge-Based System for
Person-to-Person E-Commerce. In: Proceedings of the KI 2001 Workshop on Applications
of Description Logics (ADL 2001). CEUR Workshop Proceedings, vol. 44 (2001)

12. Gonzales-Castillo, J., Trastour, D., Bartolini, C.: Description Logics for Matchmaking of
Services. In: Proceedings of the KI 2001 Workshop on Applications of Description Logics
(ADL 2001). CEUR Workshop Proceedings, vol. 44 (2001)

13. Grimm, S., Motik, B., Preist, C.: Matching Semantic Service Descriptions with Local
Closed-World Reasoning. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011,
pp. 575–589. Springer, Heidelberg (2006)

14. Haddawy, P., Cheng, C., Rujikeadkumjorn, N., Dhananaiyapergse, K.: Optimizing ad hoc
trade in a commercial barter trade exchange. Electronic Commerce Research and Applica-
tions 4(4), 299–314 (2005)

15. Hillier, F., Lieberman, G.: Introduction to Operations Research. McGraw-Hill, New York
(2005)

16. International Reciprocal Trade Association. Reciprocal trade statistics (2006),
http://irta.com/

17. Klusch, M., Fries, B., Khalid, M., Sycara, K.: Owls-mx: Hybrid owl-s service matchmaking.
In: Proceedings of 1st Intl. AAAI Fall Symposium on Agents and the Semantic Web (2005)

http://irta.com/

142 A. Ragone et al.

18. Lukasiewicz, T., Schellhase, J.: Variable-strength conditional preferences for matchmaking
in description logics. In: Proc. of KR 2006, pp. 164–174 (2006)

19. MacKie-Mason, J., Wellman, M.: Automated markets and trading agents. In: Tesfatsion, L.,
Judd, K.L. (eds.) Handbook of Computational Economics. Agent-Based Computational Eco-
nomics, vol. 2. North-Holland, Amsterdam (2006)

20. Nash, J.F.: The bargaining problem. Econometrica 18(2), 155–162 (1950)
21. Núñez, M., Rodrı́guez, I., Rubio, F.: Formal specification of multi-agent e-barter systems.

Science of Computer Programming 57(2), 187–216 (2005)
22. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic Matching of Web Services Ca-

pabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, p. 333. Springer,
Heidelberg (2002)

23. Ragone, A., Di Noia, T., Di Sciascio, E., Donini, F.: Extending propositional logic with con-
crete domains in multi-issue bilateral negotiation. In: Baldoni, M., Son, T.C., van Riemsdijk,
M.B., Winikoff, M. (eds.) DALT 2007. LNCS, vol. 4897, pp. 211–226. Springer, Heidelberg
(2008)

24. Ragone, A., Straccia, U., Di Noia, T., Di Sciascio, E., Donini, F.: Vague knowledge-bases
for matchmaking in p2p e-marketplaces. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC
2007. LNCS, vol. 4519, pp. 414–428. Springer, Heidelberg (2007)

25. Segev, A., Beam, C.: Brokering strategies in electronic commerce markets. In: Proc. of ACM
Conference on Electronic Commerce, pp. 167–176 (1999)

26. Sycara, K., Paolucci, M., Van Velsen, M., Giampapa, J.: The RETSINA MAS infrastructure.
Autonomous agents and multi-agent systems 7, 29–48 (2003)

27. Sycara, K., Widoff, S., Klusch, M., Lu, J.: LARKS: Dynamic Matchmaking Among Het-
erogeneus Software Agents in Cyberspace. Autonomous agents and multi-agent systems 5,
173–203 (2002)

28. Trastour, D., Bartolini, C., Priest, C.: Semantic Web Support for the Business-to-Business
E-Commerce Lifecycle. In: Proc. International World Wide Web Conference (WWW 2002),
pp. 89–98. ACM, New York (2002)

29. Wellman, M.: Online marketplaces. In: Singh, M.P. (ed.) Practical Handbook of Internet
Computing. CRC Press, Boca Raton (2004)

30. Zaremski, A.M., Wing, J.M.: Specification matching of software components. ACM Trans-
actions on Software Engineering Methodologies 6(4), 333–369 (1997)

Inductive Negotiation
in Answer Set Programming

Chiaki Sakama

Department of Computer and Communication Sciences
Wakayama University, Sakaedani, Wakayama 640-8510, Japan

sakama@sys.wakayama-u.ac.jp

Abstract. This paper provides a logical framework of negotiating
agents who have capabilities of evaluating and building proposals. Given
a proposal, an agent decides whether it is acceptable or not. If the pro-
posal is unacceptable as it is, the agent seeks conditions to accept it.
This attitude is captured as a process of making hypotheses by induc-
tion. If an agent fails to find a hypothesis, it would concede by giving
up some of its current belief. This attitude is characterized using default
reasoning. We provide a logical framework of such think-act cycle of an
agent, and develop a method for computing proposals using answer set
programming .

1 Introduction

Negotiation is a process of reaching agreement between different agents. In a
typical one-to-one negotiation, an agent makes a proposal on his/her request and
the opponent agent decides whether it is acceptable or not. If it is unacceptable,
the opponent tries to make a counter-proposal. Negotiation proceeds in a series
of rounds and each agent makes a proposal at every round until it reaches a
(dis)agreement. Our primary interest of this paper is a process of evaluation and
construction of proposals. A proposal is acceptable if it does not conflict with the
interest of an agent. When a proposal is unacceptable for an agent, he/she seeks
conditions to accept it. Those conditions would be found by updating his/her
current beliefs: in one way, by introducing new beliefs, and in another way, by
giving up some of his/her current belief.

Consider the following dialogue between a buyer B and a seller S (subscripts
represent rounds in negotiation).

B1: “I want an external HDD with 200GB”.
S1: “It costs 120USD”.
B2: “I want to get it at 100USD.”
S2: “We can provide it at the discount price if you pay by cash.”
B3: “I don’t want to pay by cash”.
S3: “We can provide an external HDD with 180GB at 100USD”.
B4: “OK, I accept it”.

M. Baldoni et al. (Eds.): DALT 2008, LNAI 5397, pp. 143–160, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

144 C. Sakama

In this dialogue, the buyer does not accept the initial offer S1 made by the seller.
Then, the buyer made a new proposal B2 for a discount price. In response to
this, the seller provides a condition to meet the request (S2). The buyer does
not accept it (B3), and the seller proposes downgrade of the product (S3). The
buyer accepts it, and negotiation ends.

In the second round, the seller seeks conditions to accept B2. The process
of finding a condition to accept a proposal is logically characterized as follows.
Suppose a knowledge base K represented by a first-order theory, and a proposal
G represented by a formula. Then, K could accept G under the condition H if
the next relation holds:

K ∪ H |= G .

Here, H is a set of formulas and bridges the gap between the current belief
K of an agent and the request G made by another agent. At this point, there
are structural similarities between the problem presented above and the prob-
lem of induction, a method of machine learning in artificial intelligence. In
fact, viewing G as an observed evidence, the problem of finding H is consid-
ered a process of building a hypothesis to explain G under K. Induction is
an ampliative reasoning and extends the original theory to explain observed
new phenomena. In negotiation, an agent also extends his/her original belief
to accommodate another agent’s request. Back to the negotiation dialogue, in
response to the proposal S3, the buyer concedes to accept it. This is done by
withdrawing her original request. The process of concession is also formulated
as follows. Given a knowledge base K of an agent and a proposal G by an-
other agent, K could conditionally accept G by concession if the next relation
holds:

(K \ J) ∪ H |= G .

Here, J is a part of belief included in K, which could be given up to
accept G.

In this paper, we provide a logical framework of negotiating agents who have
capabilities of evaluating and building proposals. We first consider an agent
who has a knowledge base represented by first-order logic and characterize a
process of making proposals using induction. We show that different types of
proposals are built in terms of induction. Next, we formulate a process of mak-
ing a concession in negotiation. We show that concession is done by inference
from a default theory. Finally, the proposed method is realized using answer set
programming [9], a logic programming framework for nonmonotonic reasoning.
The rest of this paper is organized as follows. Section 2 characterizes processes
of building proposals and making a concession in terms of induction and de-
fault inference. Section 3 provides methods for computing proposals in answer
set programming. Section 4 discusses related work, and Section 5 concludes the
paper. This is an extended version of the paper [18]. Section 3 and a part of
Section 4 are entirely new, and all proofs of technical results, which are not in
[18], are attached.

Inductive Negotiation in Answer Set Programming 145

2 Negotiation by Induction

2.1 Induction

A first-order theory is a set of formulas defined over the first-order language.
The definition of the first-order language is the standard one in the literature. A
first-order theory T entails a formula F (written as T |= F) if F is true in every
model of T . A first-order theory T is consistent if it has a model; otherwise, T
is inconsistent .

Induction in first-order logic is defined as follows. Let K be a consistent first-
order theory which represents the background knowledge base. Given a formula
G as an observation and K �|= G, induction produces a set H of formulas as a
hypothesis satisfying the condition:

K ∪ H |= G (1)

where K ∪H is consistent. When H satisfies the above condition, we say that a
hypothesis H covers (or explains) G with respect to K. This type of induction
is known as explanatory induction [4] and is popularly used in the context of
inductive logic programming [12].

Example 1. Suppose the knowledge base K and the observation G:1

K : swan(a) ∧ swan(b),
G : white(a) ∧ white(b).

Then,
H : ∀x (swan(x) → white(x))

covers G with respect to K.

Thus, induction extends a knowledge base to cover an observation. We use
induction to characterize the process of building proposals in the next section.

2.2 Building Proposal

We consider an agent who has a knowledge base K represented by a consistent
first-order theory.

Definition 1. (proposal) A proposal G is a formula. In particular, G is called
a critique if G = accept or G = reject where accept and reject are the reserved
propositions.

A critique is a response as to whether or not a given proposal is accepted. It is
decided by evaluating a proposal in a knowledge base of an agent.

1 Throughout the paper, we shall omit braces { } in examples to represent the sets K
and H of formulas, but the meaning is clear from the context.

146 C. Sakama

Definition 2. (acceptability) Given a knowledge base K and a proposal G,

– G is accepted in K if K |= G.
– G is acceptable in K if K ∪ {G} is consistent.
– G is unacceptable (or rejected) in K if K ∪ {G} is inconsistent.

If a proposal G made by an agent Ag1 is accepted/rejected by another agent Ag2,
Ag2 returns the critique accept/reject to Ag1. On the other hand, if a proposal
is acceptable, an agent seeks conditions to accept it.

Definition 3. (conditional acceptance) Given a knowledge base K and a pro-
posal G, G is conditionally accepted (with H) in K if

K ∪ H |= G (2)

holds for a set H of formulas such that K ∪H is consistent. A set H of formulas
is called an accepting set of conditions (with respect to K and G). In particular,
H is called a minimal accepting set of conditions if H is a minimal set (under
set inclusion) satisfying (2).

By the definition, it is easily seen that G is conditionally accepted in K if and only
if it is acceptable in K. The notion of acceptance in Definition 2 is a special case of
conditional acceptance with H = ∅. By Definition 3, we can see that the problem
of finding a condition H for accepting a proposal G is identical to the problem
of finding inductive hypothesis in (1). That is, by viewing a proposal G as an
observation, an accepting set H of conditions is considered a hypothesis which
covers G with respect to the background knowledge base K. This correspondence
is not only in the definition of formulas, but also in the ground of their usage. In
induction, when an agent observes a new evidence that cannot be explained in
its current knowledge base, the agent induces a hypothesis which well accounts
for the evidence and updates the knowledge base if necessary. In negotiation, on
the other hand, an agent also observes a new proposal that is not entailed by
its current knowledge base. Then, the agent constructs a hypothesis which well
accounts for the proposal. Among accepting sets of conditions, we are interested
in minimal accepting sets of conditions which represent minimal requirements for
accepting a proposal. For this reason, we hereafter consider minimal accepting
sets of conditions unless stated otherwise.

There are different types of accepting sets of conditions satisfying the rela-
tion (2). We provide some typical types of proposals in negotiation based on this
definition. Suppose that an agent Ag1 makes a proposal G and another agent
Ag2 who has a knowledge base K builds a counter-proposal in response to G.

Consent: When H = {G}, it holds that K ∪ H |= G. In this case, Ag2 accepts
a proposal G if it is acceptable. Then, Ag2 returns the critique G′ = accept
to Ag1.

Constraint: When H = {G ∧C }, it holds that K ∪ H |= G. In this case, Ag2
accepts a proposal G with a constraint C. Then, Ag2 returns the counter-
proposal G∧C to Ag1. For example, let on(weekday) → ¬ go(restaurant) be
a rule in K. Then, given G = go(restaurant), C = on(weekend) represents
a constraint for accepting G.

Inductive Negotiation in Answer Set Programming 147

Generalization: When H = {G′ } such that G′θ = G for some substitution θ,
it holds that K ∪ H |= G. In this case, Ag2 returns the counter-proposal G′

which is more general than G. For example, given G = show product(TV, b)
with some specific brand-name b, G′ = show product(TV, x) with a variable
x represents TV of any brand.

Subsumption: When H is a concept which subsumes G and K contains sub-
sumption knowledge between H and G, it holds that K ∪ H |= G. In
this case, Ag2 returns a counter-proposal H to Ag1. For example, let G =
go(bookstore) and K contains go(shopping-mall) → go(bookstore), then
go(shopping-mall) becomes a counter-proposal.

Implication: When H = {F → G } and K ∪ H |= G, F represents a condi-
tion to accept G. In this case, Ag2 returns the counter-proposal F to Ag1.
For example, let G = want(chocolate) and K contains want(biscuit), then
H = {want(biscuit) → want(chocolate) } represents exchange of sweets and
want(biscuit) becomes a counter-proposal.

In the above, Consent characterizes very generous attitude of an agent. Con-
straint and Generalization are considered special cases of Implication as both
G∧C → G and G′ → G′θ hold. Subsumption is also a special case of Implication
such that K contains a dependence relation between F and G. In case of sub-
sumption, abduction [8] is used for the purpose instead of induction. Abduction
is also hypothetical reasoning satisfying the relation (1). In contrast to induction
which constructs a rule F → G from K and G, abduction extracts a fact F from
G and a rule F → G which is derived from K.

2.3 Concession

An agent rejects a proposal if it is unacceptable. On the other hand, an agent can
take an action of concession if he/she wants to reach an agreement in negotiation.
To characterize agents who may concede in negotiation, we suppose agents who
have two different types of knowledge: the one is strong belief and the other
is weak belief. Strong belief is persistent belief or strong desire that cannot be
abandoned. By contrast, weak belief can be given up depending on situation.
Formally, a first-order theory K is divided into two disjoint sets:

K = Σ ∪ Γ

where Σ represents strong belief and Γ represents weak belief . We assume that
an agent gives up weak belief but not strong one when he/she makes a concession.

Definition 4. (acceptable by concession) Let K be a knowledge base such that
K = Σ ∪ Γ as above. Then, a proposal G is acceptable by concession in K if
there is a set J of formulas such that J ⊆ Γ and (K \ J) ∪ {G} is consistent.

Definition 5. (conditional acceptance by concession) Let K be a knowledge
base such that K = Σ ∪ Γ . Then, a proposal G is conditionally accepted by
concession (with H) in K if

(K \ J) ∪ H |= G (3)

148 C. Sakama

holds for some sets H and J of formulas such that J ⊆ Γ and (K \J)∪H is con-
sistent. A set J of formulas is called an accepting set of concessions (with respect
to K and G). In particular, J is called a minimal accepting set of concessions if
J is a minimal set (under set inclusion) satisfying (3).

Proposition 1 A proposal G is conditionally accepted by concession in K iff G
is acceptable by concession in K.

Proof. If G is acceptable by concession in K, (K \J)∪{G} is consistent for some
J ⊆ Γ . As (K \ J) ∪ {G} |= G, G is conditionally accepted by concession in K.
Conversely, if G is conditionally accepted by concession in K, (K \ J) ∪ H |= G
holds for some J ⊆ Γ and H such that (K \ J) ∪ H is consistent. Then, any
model M of (K \ J) ∪ H satisfies G, so M becomes a model of (K \ J) ∪ G.
Hence, (K \ J) ∪ G is consistent and G is acceptable by concession. ��

Comparing Definition 5 with Definition 3, concession may give up (a part of) the
current belief of an agent for accepting proposals. In particular, the relation (3)
reduces to (2) when J = ∅. We assume that an agent wants to give up his/her
current belief as little as possible, so we hereafter consider minimal accepting
sets of concessions as well as minimal accepting sets of conditions.

Example 2. ([13]) Suppose that an agent Ag1 has the knowledge base K:

f1 : have(mirror) ∧ have(nail) → hang(mirror),
f2 : have(mirror) ∧ have(screw) → hang(mirror),
f3 : give(nail) → ¬have(nail),
f4 : have(screw) → give(nail),
f5 : ∀x get(x) → have(x),
f6 : have(mirror),
f7 : have(nail),

where the strong belief Σ consists of f1–f6 and the weak belief Γ consists of f7.
The meaning of each formula is: f1 and f2 represent conditions to hang a mirror.
If Ag1 gives a nail, he/she does no longer have the nail (f3). If Ag1 has a screw,
he/she can give a nail (f4). If one gets an object, one has the object (f5). Ag1
has both a mirror (f6) and a nail (f7). Suppose that Ag1 has the intention of
hanging a mirror. Consider that another agent Ag2 makes the request

G : give(nail).

This proposal is unacceptable in K because K ∪ {G} is inconsistent. The agent
Ag1 may reject G with this reason, but he/she could look for conditions for
concession. Ag1 finds the solution

J : have(nail)

and
H : get(screw)

Inductive Negotiation in Answer Set Programming 149

where (K \J)∪H is consistent and satisfies the relation (K \J)∪H |= G. Then,
Ag1 offers a counter-proposal H to Ag2.

Our next question is how to distinguish different types of belief in both syntactic
and semantic ways. For this purpose, we use default logic [14] for representing
a knowledge base. Default logic distinguishes two types of knowledge as first-
order formulas and default rules. Formally, a default theory is defined as a pair
∆ = (D, W) where D is a set of default rules and W is a set of first-order
formulas. A default rule (or simply default) is of the form:

α : β1, . . . , βn

γ

where α, β1, . . . , βn and γ are quantifier-free formulas and respectively called
the prerequisite, the justifications and the consequent. A default is ground if it
contains no variable. Any default with variables represents the set of its ground
instances over the language of ∆. As defaults and first-order formulas are syntac-
tically distinguishable, we often put a default theory ∆ = W ∪D for convenience.
A set S of formulas is deductively closed if S = Th(S) where Th is the deductive
closure operator as usual. A set E of formulas is an extension of (D, W) if it
coincides with a minimal deductively closed set E′ of formulas satisfying the
conditions: (i) W ⊆ E′, and (ii) for any ground default α : β1, . . . , βn/γ from D,
α ∈ E′ and ¬βi �∈ E (i = 1, . . . , n) imply γ ∈ E′. An extension E is consistent
if E is a consistent set of formulas. A default theory may have none, one or
multiple extensions in general.

To represent weak belief of an agent, we use default rules of the form:

: γ

γ
. (4)

This type of rule is called super-normal and a super-normal default theory is a
default theory in which every default has the form (4). The rule (4) is read as
“if it is consistent to assume γ, then believe γ”. We represent weak belief of an
agent by super-normal defaults in D, and distinguish them from strong belief
represented by first-order formulas in W .

Definition 6. (default representation) Let K be a first-order theory such that
K = Σ ∪ Γ . Then, a default representation of K is defined as a super-normal
default theory ∆K = (D, W) such that D = { :γ

γ | γ ∈ Γ } and W = Σ.

Concession is characterized in a default theory as follows.

Theorem 2. Let K be a first-order theory such that K = Σ ∪ Γ .

(i) A proposal G is acceptable by concession in K iff ∆K ∪{G} has a consistent
extension.

(ii) A proposal G is conditionally accepted by concession with H in K iff ∆K∪H
has a consistent extension E such that G ∈ E.

150 C. Sakama

Proof. (i) Let ∆K = (D, W) be a default representation of K. When G is ac-
ceptable by concession in K, (K \J)∪{G} is consistent for a minimal set J ⊆ Γ .
As (K \ J) ∪ {G} = W ∪ (Γ \ J) ∪ {G}, put E = Th(W ∪ (Γ \ J) ∪ {G}). If E
is not a consistent extension of ∆K ∪ {G}, there is a minimal deductively closed
consistent set E′ = Th(W ∪ Γ ′ ∪ {G}) such that Γ ′ ⊆ Γ . In case of E′ ⊂ E,
Γ ′ ⊂ (Γ \ J). Put Ξ = (Γ \ J) \ Γ ′. Then, E = Th(W ∪ Γ ′ ∪Ξ ∪ {G}) becomes
inconsistent. This contradicts the assumption that E is consistent. In case of
E ⊂ E′, (Γ \ J) ⊂ Γ ′. Put Γ ′ = Γ \ J ′ for some J ′ ⊂ J . Then, (K \ J ′) ∪ {G}
becomes consistent. This contradicts the assumption that J is a minimal set
which makes (K \ J) ∪ {G} consistent. Hence, E becomes a consistent exten-
sion of ∆K ∪ {G}. Conversely, if E is an extension of ∆K ∪ {G}, E is a minimal
deductively closed set E = Th(W∪Γ ′′∪{G}) where Γ ′′ = { γ | :γ

γ ∈ D and ¬ γ �∈
E }. Then, there is a (minimal) set J ⊆ Γ such that Γ ′′ = Γ \ J . For this
J , it holds that (K \ J) ∪ {G} is consistent. Hence, G is acceptable by
concession.

(ii) If ∆K ∪{G} has a consistent extension, by putting H = {G}, ∆K ∪H has
a consistent extension E such that G ∈ E. Conversely, if for a set H of formulas
∆K ∪ H has a consistent extension E such that G ∈ E, E is also a consistent
extension of ∆K ∪ H ∪ {G} ([14, Theorem 2.6]). In this case, ∆K ∪ {G} has a
consistent extension. (If ∆K ∪{G} is inconsistent, ∆K ∪H ∪{G} is inconsistent
[14].) Thus, ∆K ∪ {G} has a consistent extension iff for a set H of formulas,
∆K ∪ H has a consistent extension E such that G ∈ E. Then, the result holds
by Proposition 1. ��

Theorem 2 represents that conditional acceptance by concession is characterized
in terms of default inference of G from ∆K ∪ H .

Example 3. (cont. Example 2) The knowledge base is represented by the default
theory ∆K = (D, W) where

W : have(mirror) ∧ have(nail) → hang(mirror),
have(mirror) ∧ have(screw) → hang(mirror),
give(nail) → ¬have(nail),
have(screw) → give(nail),
∀x get(x) → have(x),
have(mirror),

D :
: have(nail)
have(nail)

.

Given the request G = give(nail), G is included in a default extension of ∆K ∪
{ get(screw) }.

Inductive Negotiation in Answer Set Programming 151

3 Computing Proposals in Answer Set Programming

3.1 Answer Set Programming

Answer set programming (ASP) [9] represents incomplete knowledge in a logic
program and realizes nonmonotonic default reasoning. In ASP a logic program is
given by an extended disjunctive program (EDP). An EDP (or simply a program)
is a set of rules of the form:

L1 ; · · · ; Ll ← Ll+1 , . . . , Lm, not Lm+1 , . . . , not Ln (5)

(n ≥ m ≥ l ≥ 0) where each Li is a positive/negative literal, i.e., A or ¬A
for an atom A, and not is negation as failure (NAF). not L is called an NAF-
literal. The above rule is read “some of L1, . . . , Ll is believed if all Ll+1, . . . , Lm

are believed and all Lm+1, . . . , Ln are disbelieved”. The left-hand side of the
arrow is the head , and the right-hand side is the body. For each rule r of the
form (5), head(r), body+(r) and body−(r) denote the sets of literals {L1, . . . , Ll},
{Ll+1, . . . , Lm}, and {Lm+1, . . . , Ln}, respectively. Also, not body−(r) denotes
the set of NAF-literals {not Lm+1, . . . , not Ln}. A rule r is often written as
head(r) ← body+(r), not body−(r) or head(r) ← body(r) where body(r) = body+

(r)∪not body−(r). A rule r is disjunctive if head(r) contains more than one lit-
eral. A rule r is a constraint if head(r) = ∅; and r is a fact if body(r) = ∅. A
program is NAF-free if no rule contains NAF-literals. A program, rule, or literal
is ground if it contains no variable. A program P with variables is a shorthand
of its ground instantiation Ground(P), the set of ground rules obtained from
P by substituting variables in P by elements of its Herbrand universe in every
possible way.

The semantics of an EDP is defined by the answer set semantics [6]. Let Lit be
the set of all ground literals in the language of a program. Suppose a program
P and a set S of ground literals. Then, the reduct PS is the program which
contains the ground rule head(r) ← body+(r) iff there is a rule r in Ground(P)
such that body−(r)∩S = ∅. Given an NAF-free EDP P , let S be a set of ground
literals which is (i) closed under P , i.e., for every ground rule r in Ground(P),
body(r) ⊆ S implies head(r) ∩ S �= ∅; and (ii) logically closed, i.e., it is either
consistent or equal to Lit. An answer set of an NAF-free program P is a minimal
set S satisfying both (i) and (ii). Given an EDP P and a set S of ground literals,
S is an answer set of P if S is an answer set of PS . A program has none, one,
or multiple answer sets in general. The set of all answer sets of P is written as
AS(P). An answer set is consistent if it is not Lit. A program P is consistent if
it has a consistent answer set; otherwise, P is inconsistent.

A literal L is a consequence of cautious inference in a program P if L is
included in every answer set of P . On the other hand, a literal L is a consequence
of brave inference in a program P if L is included in some answer set of P .2 We
write P |=b L if a literal L is a consequence of brave inference in P .

2 Cautious/brave inference is also called skeptical/credulous inference.

152 C. Sakama

Example 4. The program:

tea ; coffee ←,

milk ← tea, not lemon,

lemon ← tea, not milk,

milk ← coffee,

has the three answer sets: { tea, milk }, { tea, lemon }, and { coffee, milk },
which represent possible options for drink.

3.2 Computing Proposals

As presented in Definition 6, weak beliefs are represented by super-normal de-
fault rules. In an EDP, a super-normal default rule

: L

L

with a literal L is represented as a rule

L ← not ¬L .

An EDP can represent other forms of default knowledge in terms of rules with
NAF. By contrast, persistent belief is represented by rules without NAF. Thus,
both weak and strong beliefs are uniformly represented in an EDP.

In what follows, we assume that a knowledge base is represented by an EDP
and a proposal is given as a ground literal. Based on Theorem 2, we rephrase the
notion of conditional acceptance by concession in the context of ASP as follows.

Definition 7. (conditional acceptance by concession) Let P be a program rep-
resenting a knowledge base, and G a ground literal representing a proposal.
Then, G is acceptable by concession in P iff P ∪ {G} is consistent. And G is
conditionally accepted by concession in P iff P ∪ H |=b G holds for some set H
of rules such that P ∪ H is consistent. In this case, a set H of rules is called a
solution for conditional acceptance by concession.

By Definition 7, given a program P and a ground literal G, our goal is to compute
a set H of rules satisfying

P ∪ H |=b G (6)

where P ∪H is consistent. This is the problem of brave induction [19], induction
based on brave inference. Note that in Section 2.2 conditional acceptance (2)
is related to induction in first-order logic. By incorporating concession (3), the
problem is characterized as brave inference from a default theory (Theorem 2).
The relation (6) represents this default inference in ASP. When P |=b G, H = ∅
becomes a solution of (6). This represents the situation that G is accepted by
concession with no additional condition. In this case, G is accepted in the present
knowledge base P and no hypothesis is required.

Inductive Negotiation in Answer Set Programming 153

The problem of our interest is the case of P �|=b G. We next consider a method
of constructing solutions in this case. Suppose a program P and a proposal G.
Then, consider the set R of rules such that

r ∈ R iff head(r) = {G} , body(r) �= ∅,
∅ ⊆ body+(r) ⊆ S , and
body−(r) ⊆ Lit \ S

where S ∈ AS(P) and there is no S′ ∈ AS(P) such that (S′ \ T) ∪ (T \ S′) ⊂
(S \ T) ∪ (T \ S) for an answer set T of P ∪ {G}.

By Definition 7, P ∪ {G} has a consistent answer set if G is acceptable by
concession. The condition (S′\T)∪(T \S′) ⊂ (S \T)∪(T \S) for no S′ ∈ AS(P)
presents that an answer set S of P is selected such that S is closest to an answer
set of P ∪ {G}. The set R provides a hypothesis space for solutions.

Theorem 3. Let P be a program and G a proposal such that P �|=b G. For any
non-empty subset H ⊆ R such that P ∪ H is consistent, P ∪ H |=b G holds.

Proof. First, (P ∪ H)S = PS ∪ HS holds for any answer set S of P . For any
non-empty subset H ⊆ R, body−(r)∩S = ∅ for any r ∈ H . Then, there is a rule
G ← body+(r) in HS such that ∅ ⊆ body+(r) ⊆ S. Since P ∪ H is consistent, a
consistent set S ∪{G} becomes a minimal closed set of PS ∪HS . Then, S ∪{G}
becomes a consistent answer set of P ∪ H . Hence, the result holds. ��

By Theorem 3, a possible solution H of (6) is selected from the set R of
a hypothesis space. Generally speaking, however, there are many candidates
of hypotheses satisfying the condition. We remark some methods of eliminating
hypotheses which are useless in the process of negotiation. First, we eliminate
hypotheses by syntactic restriction. Suppose that two rules r1 and r2 satisfy the
relation P ∪ {r1} |=b G and P ∪ {r2} |=b G. In this case, if body(r1) ⊂ body(r2)
holds, r2 is eliminated. This is because r1 provides a condition simpler than r2
for accepting G. A rule r in R is said minimal if there is no rule r′ in R such that
∅ ⊂ body(r′) ⊂ body(r). We can eliminate every non-minimal rule from R. More-
over, for any H1 ⊆ R and H2 ⊆ R, if both H1 and H2 satisfy the condition of
Theorem 3 and the relation H1 ⊆ H2 holds, the minimal set H1 of hypotheses is
preferred to non-minimal H2. Note that we are interested in any rule r ∈ R such
that body(r) �= ∅. If body(r) = ∅, r becomes a fact G ← and P ∪ {G ←} |=b G
immediately holds. This corresponds to “Consent” in Section 2.2 and is a trivial
solution. So in what follows we consider rules in R having non-empty bodies.

Second, we eliminate hypotheses by semantic restriction. Agents in negotiation
are involved in matters of mutual interests. For example, in negotiation between
a buyer and a seller, they are interested in buying or selling some designated
product. In this case, hypotheses are related to conditions for buying-selling the
objective product. They include price, service, quality of products, and so on.
Some belief with respect to one’s taste for foods is irrelevant to the buying-selling
activities (except for the case of buying-selling foods). Let C be a set of literals
and NAF-literals specifying specific context of negotiation. Then, any rule r in

154 C. Sakama

R is eliminated if body(r) �⊆ C. In other words, we are interested in getting
any rule having conditions in the specific context. We assume that negotiating
agents have their contexts in advance. This assumption appears natural because
no agent negotiates without any interest. Different agents could have different
contexts depending on their interests. These syntactic and semantic restrictions
help to reduce candidate hypotheses in R. Such restrictions on a hypothesis
space are called induction bias [12]. After applying these restrictions to R, there
could still exist multiple choices of proposals. In this case, we assume that an
agent nondeterministically selects a proposal from R.

Given a proposal G by an agent Ag1, another agent Ag2 evaluates G in its
knowledge base P . If P |=b G, it is accepted with concession and an agreement
is reached. Else if P �|=b G, Ag2 computes a hypothesis H to satisfy P ∪H |=b G
and builds a counter-proposal based on H . If no such H exists, the negotiation
ends in a disagreement. By iterating these steps, a negotiation proceeds until it
reaches an agreement/disagreement.

Example 5. Suppose a buying-selling situation in Section 1. A seller agent has
the knowledge base Ps which consists of the following rules:

product(hdd, 200G, 120$) ← not ¬ product(hdd, 200G, 120$), (7)
product(hdd, 180G, 100$) ← not ¬ product(hdd, 180G, 100$), (8)
← product(x, y, z), product(x, y, w), z �= w, (9)
¬ product(hdd, 200G, 120$) ← product(hdd, 200G, x), x < 120$, pay cash,(10)
pay cash ; pay card ← . (11)

Here, the rules (7) and (8) represent products and their normal prices. They
are represented by super-normal defaults because prices are subject to change.
The rule (9) represents a constraint that the same product cannot have different
prices at the same time. The rule (10) represents if discount is made by payment
with cash, the normal price is withdrawn. The rule (11) represents two options
for payment. Ps has two answer sets:

S1 : { product(hdd, 200G, 120$), product(hdd, 180G, 100$), pay cash },
S2 : { product(hdd, 200G, 120$), product(hdd, 180G, 100$), pay card },

which represent the seller’s initial belief.
A buyer agent has the knowledge base Pb which consists of rules:

product(hdd, 200G, 100$) ← not ¬ product(hdd, 200G, 100$), (12)
← product(hdd, x, y), y > 100$, (13)
← pay cash, (14)
product(hdd, 180G, 100$) ← not product(hdd, 200G, 100$), (15)
¬ product(hdd, 200G, 100$) ← product(hdd, 180G, 100$). (16)

The rule (12) represents the intention of getting a HDD of 200GB with 100USD.
It is represented by a super-normal default because the intention could be

Inductive Negotiation in Answer Set Programming 155

changed. The rule (13) represents a constraint that the budget is less than
100USD. The rule (14) represents a constraint that she does not pay by cash. The
rule (15) represents that if a HDD with 200G is unavailable under the budget,
the buyer would have an option of downgrading the specification. The rule (16)
represents that the original request is withdrawn if the specification changes. Pb

has two answer sets:

{ product(hdd, 200G, 100$) },
{¬ product(hdd, 200G, 100$), product(hdd, 180G, 100$) },

which represent the buyer’s initial belief. With this setting, negotiation starts.
(1st round) First, the buyer asks the price of a HDD with 200GB. As Ps |=b

product(hdd, 200G, 120$), the seller replies the price:

G1
s : product(hdd, 200G, 120$).

(2nd round) The buyer does not accept G1
s because it violates the constraint (13)

and Pb ∪ {G1
s} is inconsistent. As Pb |=b product(hdd, 200G, 100$), the buyer

returns the proposal

G2
b : product(hdd, 200G, 100$)

to the seller. The seller evaluates G2
b in its knowledge base Ps and knows that Ps∪

{ product(hdd, 200G, 100$) } is consistent. Hence, G2
b is acceptable by concession

in Ps. The seller then seeks a hypothesis H to accept G2
b and constructs the set

R satisfying the condition:

r ∈ R iff head(r) = {G2
b} , body(r) �= ∅,

∅ ⊆ body+(r) ⊆ S1 , and
body−(r) ⊆ Lit \ S1

where S1 is selected because S1 is closer to the answer set { product(hdd, 200G,
100$),¬ product(hdd, 200G, 120$), product(hdd, 180G, 100$), pay cash } of Ps ∪
{G2

b } than S2 is. The set R includes rules such that

r1 : product(hdd, 200G, 100$) ← product(hdd, 200G, 120$),
r2 : product(hdd, 200G, 100$) ← product(hdd, 180G, 100$),
r3 : product(hdd, 200G, 100$) ← pay cash,

r4 : product(hdd, 200G, 100$) ← not pay card,

r5 : product(hdd, 200G, 100$) ← product(hdd, 200G, 120$),
product(hdd, 180G, 100$),

r6 : product(hdd, 200G, 100$) ← product(hdd, 200G, 120$), pay cash,

· · · · · · · · ·

Among them, non-minimal rules, for instance, r5 and r6, are eliminated. The
seller also considers the context C as

C : { product(hdd, 200G, 120$), pay cash, pay card },

156 C. Sakama

because the present deal between the buyer and the seller is on the product
product(hdd, 200G, 120$) and its payment. Then, rules containing any literal L �∈
C, for instance r2, are eliminated. After the elimination, the seller selects rules
such that Ps ∪ {ri} is consistent. Since r1 violates the constraint (9), two rules
r3 and r4 remain as candidates. Then, the seller constructs possible hypotheses
as H1 = {r3} and H2 = {r4}. Both Ps ∪ H1 and Ps ∪ H2 have two answer sets:

{ product(hdd, 200G, 100$), ¬ product(hdd, 200G, 120$),
product(hdd, 180G, 100$), pay cash },

{ product(hdd, 200G, 120$), product(hdd, 180G, 100$), pay card },

so that Ps ∪Hi |=b product(hdd, 200G, 100$) for i = 1, 2. r3 provides a condition
to hold product(hdd, 200G, 100$), and Ps ∪ H1 |=b pay cash, the seller returns
the condition

G2
s : pay cash

as a counter-proposal.
(3rd round) The buyer does not accept G2

s because it violates the
constraint (14). The buyer then returns the critique

G3
b : reject

to the seller. As there is no way to meet the request of the buyer, the seller
makes a new proposal

G3
s : product(hdd, 180G, 100$)

which satisfies Ps |=b G3
s.

(4th round) As Pb |=b G3
s, the buyer accepts the proposal and an agreement

is reached.

3.3 Computational Complexity

We finally address computational complexity results. Throughout the section,
any knowledge base P is assumed to be a ground program and H is a set of
ground rules. A proposal G is a ground literal as before.

Theorem 4. Let P be a program and G a proposal. Then, the following
complexity results hold.

1. Deciding whether G is acceptable by concession in P is ΣP
2 -complete.

2. Deciding whether H is a solution for conditional acceptance by concession is
ΣP

2 -complete.

Proof. By Definition 7, G is acceptable by concession in P iff P ∪ {G} is con-
sistent. Deciding the existence of a consistent answer set is ΣP

2 -complete [3].
Hence, the result (1) holds. Next, by Definition 7, G is conditionally accepted
by concession in P iff P ∪H |=b G holds for a set H of rules such that P ∪H is
consistent. Deciding the existence of a consistent answer set in which G is true
is ΣP

2 -complete [3]. Hence, the result (2) holds. ��

Inductive Negotiation in Answer Set Programming 157

By Theorem 4, the task of building possible solutions is generally expensive. The
decision problems become NP-complete when P and H contain no disjunction.
One reason for the complexity of computing solutions is nonmonotonicity of
default reasoning that arises in making concession. If no concession is made,
proposals are built by induction only. In this limited problem setting, some
efficient induction algorithms that are developed in the field of machine learning
and ILP could be used. Detailed techniques of using efficient induction algorithms
are outside the scope of this paper.

4 Related Work

Several studies use logic-based abduction or abductive logic programming [8] as
a representation language of negotiating agents [10,15,17]. Kakas and Moraitis
[10] propose a negotiation protocol which integrates abduction within an argu-
mentation framework. In their negotiation protocol, an agent considers another
agent’s goal and searches for conditions under which the goal is acceptable.
They use abduction to seek conditions to support arguments. In their protocol,
counter-proposals are chosen among candidates based on preference knowledge
of an agent. In [15] an abductive logic program is used for specifying dialogue
primitives and negotiation protocol. Once a dialogue is uttered by an agent,
another agent that observed the utterance thinks and acts according to a given
observe-think-act cycle. There are two important differences between [10,15] and
our present work. First, those studies have no mechanism of constructing new
counter-proposals in response to a proposal made by an agent. The behavior of
an agent is completely pre-specified in either a knowledge base of an agent or
a negotiation protocol, and possible responses are prepared in advance. In our
framework, proposals are newly constructed using induction. It enables us to
build proposals that are independent of particular negotiation protocols. Most
theories of automated negotiation specify possible responses in advance, while
[17] is an exception. Sakama and Inoue [17] propose methods for building new
proposals by extended abduction and relaxation. Extended abduction is an exten-
sion of abduction proposed by Inoue and Sakama [7], which can not only intro-
duce hypotheses to a knowledge base but remove hypotheses from it to explain
an observation. Relaxation is a technique of weakening constraints in database
queries. They use extended abduction to compute conditional proposals and use
relaxation to compute neighborhood proposals. An essential difference from our
present work is that they use (extended) abduction for computing conditions of
accepting a proposal, while we use induction for that purpose.

Formally, extended abduction is defined as follows. An abductive framework
is a pair 〈K, Γ 〉 in which both K and Γ are first-order theories.3 Given an
observation G as a formula, a pair (E, F) is an explanation of G (with respect
to 〈K, Γ 〉) if (1) (K \ F) ∪ E |= G, (2) (K \ F) ∪ E is consistent, and (3)
both E and F consist of instances of elements from Γ . They also introduce the
3 The paper [7] introduces the framework in the context of autoepistemic logic, and

another paper [16] uses it in the context of abductive logic programming.

158 C. Sakama

notion of anti-explanations to unexplain negative observations. The above def-
inition appears similar to the notion of “conditional acceptance by concession”
which is defined as the relation (K \ J) ∪ H |= G in Definition 5 of this paper.
However, there is an important difference between two definitions. In extended
abduction, a hypothesis space Γ is given in advance. An explanation (E, F)
is selected from the direct product Γ × Γ . In our Definition 5, a set J is se-
lected as a subset of weak belief Γ in a knowledge base K, while a hypothesis
H is newly built by a knowledge base K and an observation G. This difference
comes from the inherent characteristics of abduction and induction [4]. In (ex-
tended) abduction, the goal is to compute causes of some observed events using
a background knowledge base. In this case, possible causes are extracted from
information in the knowledge base. In induction, on the other hand, the goal is
to discover unknown general rules that would lie between observed events and
the current belief in a knowledge base. We make use of this style of inference
in the context of negotiation. A proposal given by another agent is not always
explained using information included in a knowledge base only. In this case, an
agent tries to bridge the gap between the proposal and its current belief. The
method in [17] extracts conditions to satisfy a given proposal, which is useful
for making the “Subsumption” style of proposals in Section 2.2. By contrast,
our method proposed in this paper is useful for making the “Implication” style
of proposals, which is more general than the subsumption style. To the best
of our knowledge, no study characterizes the process of making proposals in
terms of induction. On the other hand, [17] proposes another method for build-
ing proposals based on relaxation, which is different from both abduction and
induction.

Meyer et al. [11] introduce a logical framework for negotiating agents. They
introduce two different modes of negotiation: concession and adaptation. Con-
cession weakens an initial demand of an agent, while adaptation expands an ini-
tial demand to accommodate a demand of another agent. They provide rational
postulates to characterize negotiated outcomes between two agents, and describe
methods for constructing outcomes. Compared with our present work, they con-
sider classical propositional theories and provide logical conditions for negotiated
outcomes to satisfy, but they do not provide a method of constructing proposals
in negotiation. Amgoud et al. [1] develop a formal theory of argumentation-based
negotiation. It provides a protocol that allows agents to exchange offers and ar-
guments, and to make concessions when necessary. In their framework, offers
that can be exchanged during a negotiation dialogue are given in advance, and
concessions are made by proposing/accepting less preferred offers. Preference
between offers is defined by the existence of arguments supporting them. So
it does not construct new offers nor modify the current belief in a knowledge
base. In the context of answer set programming, Foo et al. [2,5] formalize one-
to-one negotiation between two extended logic programs. In their framework,
two agents exchange answer sets to produce a common belief set. Their goal is
coordinating belief sets of two agents, and it has no mechanism of constructing
new proposals.

Inductive Negotiation in Answer Set Programming 159

5 Conclusion

This paper introduced a logical framework of negotiating agents. An agent eval-
uates a proposal and constructs a counter-proposal by building hypotheses using
induction, and concedes by abandoning a part of weak belief of its knowledge
base. Such behavior of an agent is formalized using default logic and realized in
answer set programming. The result of this paper shows that default reasoning
and induction as well as abduction, which are all developed as commonsense rea-
soning for a single agent in AI, are also useful for social reasoning in multi-agent
systems. They provide formal methodologies for reasoning about agents, and
are used as general inference mechanisms which are independent of particular
negotiation protocols.

Several issues remain for further work. We used default logic to distinguish
strong and weak beliefs. In realistic negotiation, however, there would be dif-
ferent degrees of preferences over beliefs, and simple distinction between strong
and weak beliefs might be insufficient. For further refinement, a logic for priori-
tized reasoning is needed, together with the capability of revising the preferences
attached to beliefs. We developed a method for computing proposals in answer
set programming, which enables us to realize automated negotiation on top of
the existing answer set solvers. Prototyping an implementation and evaluating
the proposed framework on practical negotiating tasks are in the next step.

References

1. Amgoud, L., Dimopoulos, Y., Moraitis, P.: A unified and general framework for
argumentation-based negotiation. In: Proc. 6th International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 1018–1025. ACM Press, New
York (2007)

2. Chen, W., Zhang, M., Foo, N.: Repeated negotiation of logic programs. In: Proc.
7th Workshop on Nonmonotonic Reasoning, Action and Change (2006)

3. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
propositional case. Annals of Mathematics and Artificial Intelligence 15, 289–323
(1995)

4. Flach, P.A., Kakas, A.C. (eds.): Abduction and Induction — Essays on their Re-
lation and Integration. Kluwer Academic Publishers, Dordrecht (2000)

5. Foo, N., Meyer, T., Zhang, Y., Zhang, D.: Negotiating logic programs. In: Proc.
6th Workshop on Nonmonotonic Reasoning, Action and Change (2005)

6. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385 (1991)

7. Inoue, K., Sakama, C.: Abductive framework for nonmonotonic theory change. In:
Proceedings of the 14th International Joint Conference on Artificial Intelligence,
pp. 204–210. Morgan Kaufmann, San Francisco (1995)

8. Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic programming.
In: Gabbay, D.M., et al. (eds.) Handbook of Logic in AI and Logic Programming,
vol. 5, pp. 235–324. Oxford University Press, Oxford (1998)

9. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelli-
gence 138, 39–54 (2002)

160 C. Sakama

10. Kakas, A.C., Moraitis, P.: Adaptive agent negotiation via argumentation. In: Proc.
5th International Joint Conference on Autonomous Agents and Multiagent Sys-
tems, pp. 384–391. ACM Press, New York (2006)

11. Meyer, T., Foo, N., Kwok, R., Zhang, D.: Logical foundation of negotiation: out-
come, concession and adaptation. In: Proceedings of the 19th National Conference
on Artificial Intelligence, pp. 293–298. MIT Press, Cambridge (2004)

12. Nienhuys-Cheng, S.-H., De Wolf, R.: Foundations of Inductive Logic Programming.
LNCS, vol. 1228. Springer, Heidelberg (1997)

13. Parsons, S., Sierra, C., Jennings, N.: Agents that reason and negotiate by arguing.
Journal of Logic and Computation 8(3), 261–292 (1988)

14. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
15. Sadri, F., Toni, F., Torroni, P.: An abductive logic programming architecture for

negotiating agents. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA
2002. LNCS, vol. 2424, pp. 419–431. Springer, Heidelberg (2002)

16. Sakama, C., Inoue, K.: An abductive framework for computing knowledge base
updates. Theory and Practice of Logic Programming 3(6), 671–715 (2003)

17. Sakama, C., Inoue, K.: Negotiation by abduction and relaxation. In: Proc. 6th
International Joint Conference on Autonomous Agents and Multiagent Systems,
pp. 1018–1025. ACM Press, New York (2007)

18. Sakama, C.: Negotiation by induction (short paper). In: Proc. 7th International
Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1459–1462.
ACM Press, New York (2008)

19. Sakama, C., Inoue, K.: Brave induction. In: Železný, F., Lavrač, N. (eds.) ILP 2008.
LNCS, vol. 5194, pp. 261–278. Springer, Heidelberg (2008)

Mental State Abduction of BDI-Based Agents�

Michal P. Sindlar, Mehdi M. Dastani, Frank Dignum,
and John-Jules Ch. Meyer

University of Utrecht
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

{michal,mehdi,dignum,jj}@cs.uu.nl

Abstract. In this paper we present mental state abduction, a technique
for inferring the mental states (beliefs, goals) of BDI-based agents from
observations of their actions. Abduced mental states are considered to
be explanations of observed behavior, which is assumed to be part of a
(goal-directed) plan. The observer, who attempts to explain an agent’s
behavior, is assumed to know all of the agent’s behavioral rules that
can account for observed actions. Three explanatory strategies are intro-
duced, based on different perceptory conditions.

1 Introduction

Intelligent computational agents implemented in BDI-inspired programming lan-
guages are suited for developing virtual (non-player) characters for computer
games and simulations [1]. In this work we tackle the problem of providing ex-
planations for the observed behavior of virtual characters implemented as BDI-
based agents in terms of their mental states.

Agents in BDI-inspired programming languages such as 2APL [2,3], Jack [4],
Jadex [5] and Jason [6], are programmed in terms of mentalistic notions like
beliefs, goals, and plans. In order for agents to deliberately cooperate with or
obstruct the plans of other agents, it is a prerequisite that they can draw (defea-
sible) conclusions about those other agents’ mental states, a capacity we refer to
as mental state inference. Because agent languages with declarative mental states
are often logic-based, and because a logical relation mental state ⇒ behavior can
(approximately) be identified, logical abduction — a way for inferring explana-
tions for an observed fact — is a promising approach to providing explanations
of agents’ observed behavior in terms of mental state descriptions.

We envision the use of techniques for mental state inference as a means of
designing characters that show a higher degree of believability [7]. Agents that
incorporate beliefs about the mental state of other agents into their plans can be
expected to show more socially aware behavior. When explaining the behavior
of others, they either correctly infer their goals or beliefs and act accordingly, or

� This research has been supported by the GATE project, funded by the Netherlands
Organization for Scientific Research (NWO) and the Netherlands ICT Research and
Innovation Authority (ICT Regie).

M. Baldoni et al. (Eds.): DALT 2008, LNAI 5397, pp. 161–178, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

162 M.P. Sindlar et al.

they arrive at incorrect conclusions based on explanations that are nonetheless
plausible, which gives rise to a form of erroneous behavior the user understands
and tolerates. Based on their hypotheses, agents can also form expectations with
respect to other agents’ future actions. Note that to actually use beliefs about
the mental state of others, agents would need mental models of the mental
states of other agents. Abduced explanations would have to be incorporated
into these mental models, requiring a revision mechanism and preservation of
integrity constraints. This is something we do not concern us with in this work;
instead we separate the agent from the observer, and focus solely on ways to find
plausible explanations, without worrying how these explanations will be used.

The structure of this paper is as follows. In Section 2 we sketch the outline of
our approach, and relate it to existing similar work. Basic notions are introduced
in Section 3, and put to use in the next Section 4 to define the technique of
mental state abduction. In Section 5 this technique is illustrated through a simple
example, and we conclude by discussing our results and pointing out possible
future work in the last Section 6.

2 Our Approach and Related Work

In this paper, we investigate an approach to inferring the mental state of BDI
agents based on their observed behavior, and take the agent programming lan-
guage 2APL [2,3] as a departure point for our investigations. We have tried to
make the framework as general as possible, though, in the hope that it will apply
to any agent programming language in which declarative mental states drive the
operation of the agent. It should be noted that our intention is not to capture the
full dynamics of current agent programming languages, and therefore we present
a simplified general language for programming BDI-based agents.

One assumption we make is that the actions of agents are observable as atomic,
unambiguous facts. Most of the accepted definitions of the concept ‘agent’ pre-
sume operation in some dynamic, uncertain environment. If this environment is
the real world, then the assumption that actions can be unambiguously observed
as discrete facts is disputable, to say the least. However, since we consider vir-
tual characters that operate in a game or simulation setting, the environment
and therefore also the information that virtual characters (agents) receive are
under our direct control. This means that we have the freedom to choose how
to represent actions, and also the perception of actions. In the present case, we
think of agents as performing atomic external actions, the execution of which is
presented to observers in the form of perceptional events.

Not all actions are necessarily perceived. The environment might determine
that the observer will not receive a perceptory event because the action occurs
outside its perception radius, or perception might simply fail with some prede-
termined or context-dependent probability. For our case, we assume that if an
action is perceived, this occurs as an event that is an unambiguous representa-
tion of this action, which still leaves open the possibility that the action isn’t
perceived at all.

Mental State Abduction of BDI-Based Agents 163

BDI agents operate by means of goal-directed behavioral rules, which are
selected and executed by way of some deliberation process. A strong restriction
we make is that the observing entity, which perceives an agent’s actions and
attempts to infer its mental state, has knowledge of the entire set of operational
rules of this agent. This assumption might seem unrealistic, but for the sake of
simplicity and clarity of presentation we have adopted it. In future work, we
hope to relax this requirement, which would mean that some observations might
not be explainable at all because no known rule can account for them, or that
erroneous conclusions are reached because some known rule was used to abduce
an explanation in a case where an unknown rule actually produced the action.
We believe, though, that it will become clear from this paper that things are
already complicated enough even with the restriction enforced.

The classical logical approach to explaining observations is abduction [8],
which is perhaps best described as reasoning from observation to explanation. In
our approach to the problem of explaining the actions of agents in terms of their
mental states we have drawn inspiration from work on abduction in propositional
logic. For this approach to be successful, we have made the assumption that
it is possible to describe the procedural rules of agents in the form of logical
implications. It is a debatable assumption, but one we think we can successfully
defend, as we will attempt to do in Section 3.2. Inferring the mental states of
agents based on their observed behavior is what we call mental state abduction.
Before going into the details of this technique, we will explain how the concept
of abduction is generally understood.

2.1 Abduction

Logicians agree about the existence of several distinct modes of reasoning, of
which deduction, induction, and abduction [9] are complementary. Deduction is
the classical syllogism of modus ponens {φ, φ → ψ} |= ψ, where ψ can be validly
inferred if both φ and φ → ψ are true. Induction can be generalized to the infer-
ence of φ → ψ as a rule from the observation of φ followed by ψ, and abduction
to the inference of φ from knowledge of the rule φ → ψ and the observation
ψ. Deduction is the only analytic form of inference, whereas induction and ab-
duction both are defeasible, meaning that new observations can invalidate prior
conclusions. With indefeasible inference we cannot use the classical entailment
relation between premise and conclusion, so instead we have to use some non-
monotonic relation, represented by �. The inductive and abductive syllogisms
are {φ, ψ} � (φ → ψ) and {φ → ψ, ψ} � φ, respectively.

The process of abduction is best described as reasoning from observation to
explanation. The fact that an observed phenomenon ψ (called the explanandum)
requires explanation, is taken to mean that this phenomenon does not follow
directly from a body of knowledge, the background theory Θ. In logical terms,
Θ �|= ψ. Moreover, for some fact φ to count as an explanation, a restriction is often
enforced that the so-called explanans φ does not account for the explanandum
on its own, so φ �|= ψ. There are also issues of consistency; the explanans φ
should not be contradicted by the theory, so Θ ∪φ �|= ⊥ (or some other criterion

164 M.P. Sindlar et al.

for consistency, allowing for revision of the background theory). The schema for
abductive reasoning, where φ explains ψ with respect to the background theory
Θ, can then be defined by the following conditions [10]:

Definition 1 (Abductive Explanation). The conditions which define when
a fact φ (the explanans) qualifies as a valid abductive explanation for an observed
fact ψ (the explanandum).

Θ ∪ φ |= ψ

Θ ∪ φ �|= ⊥
Θ �|= ψ and φ �|= ψ

Abductive inference, where observing ψ leads to inference of φ as an explanation
w.r.t. background theory Θ, is defined by these conditions.

Θ,ψ � φ iff the conditions in Definition 1 apply.

In logic programming, the restriction that explanations should belong to a special
set of so-called abducibles is often enforced, to prevent explaining observations
in terms of other effects instead of causes, and for reasons of computational
efficiency [11,12]. We will use this restriction in our approach as well, to limit
the space of candidate explanations.

It should be noted that the notion of abduction is a murky one, and there
is no general agreement on its definition [12,13,14]. Some logicians only discern
between deduction and induction, and see what we have called abduction as
belonging to the latter. What is important for this account, though, is not so
much complete knowledge of these inferential concepts, but a precise definition
of these concepts as we understand and use them. In Section 4 we define mental
state abduction, and link it to classical abduction as presented here.

2.2 Related Work

This work is largely related to work in the area of plan and intention recognition;
see [15] for an overview of this field. In plan recognition, a common dichotomy
is that of opposing keyhole recognition to intended recognition. The former deals
with the recognition of an agent’s plan through unobtrusive observation, imply-
ing that the agent is unaware of the fact that it’s being observed. In the latter
case the agent knows that it’s being watched, which allows for the agent to ac-
tively thwart the recognition of its intentions by performing misleading actions.

Keyhole recognition best describes our approach, as we don’t deal with de-
ception on part of the agent in the form of it deliberately performing misleading
actions. However, we would be able to deal with an agent that tries to hide its
actions from sight. The robustness of a plan recognition technique is described
in [15] as its ability to deal with incomplete observations. Incomplete perception
is what would occur if an agent were actively trying to prevent the observer from
perceiving its actions, and this is something we deal with explicitly by proposing
several explanatory strategies in Section 4.2.

Mental State Abduction of BDI-Based Agents 165

An approach which is related to ours is that of Albrecht et al. [16], who use a
Bayesian network to identify users’ plans and goals in an adventure game setting.
For this to work, extensive data of users’ actions and target quests is processed,
and probability distributions are extracted in the form of dynamic belief networks.
This kind of approach can work for applications where such data is available, but
often this is not the case, simply because logs of users’ actions and motivations
are not recorded. For inter-agent plan recognition it is easier to use the imple-
mentation of the agent as a starting point, which is possible using our approach.
Furthermore, if the behavior of the user is to be explained, a description of his or
her behavior can be naturally made in BDI terms, which is possible to do without
having prior knowledge of the way users solve quests, but instead by describing
natural goals in the scenario and ways to achieve them.

In [17], Appelt and Pollack present an approach to abductive reasoning called
weighted abduction, which they use to ascribe mental states to an agent based
on observed actions. Their approach makes use of inference weights to compare
competing explanations. The set of assumptions that leads to the lowest cost
proof is selected as explanation. Apart from the obvious similarity in the use
of abduction to infer mental states, their approach and ours differ significantly.
Our starting point is the inference of mental states of characters in games or
simulations, which are implemented in some variety of BDI agent programming
language. Appelt and Pollack’s work is not grounded in agent programming,
and they take a more conceptual approach. Moreover, using inference weights to
compare explanations does not readily apply in our case, as such weights would
depend on the procedural mechanism underpinning agents’ reasoning, and the
context in which observed actions took place. Nevertheless, weighted abduction
is an elegant way to choose among competing explanations, and the idea of using
(dynamic) weights on explanations is something we consider for future work.

One other approach that is grounded in an agent programming methodology is
that of Goultiaeva and Lespérance [18], which is based on the situation calculus,
and ConGolog specifically. It details a technique for recognizing the plan an agent
is performing, and corresponds to our approach insofar that inference is based
on observed actions and a library of known plans. It also supports incremental
recognition: each new perception narrows the space of possible explanations.
However, it is limited in the respect that it requires all actions to be observed, and
is therefore not robust in the terms of [15] mentioned earlier. Moreover, it stops
with recognizing plans, whereas we provide explanations (in terms of mental
states) that represent the reasons why an agent performed its actions. This
allows for more flexibility, because the observing party can actively intervene,
either cooperatively or obtrusively.

3 Basic Notions and Terminology

In this section, we present the syntax of a simplified logic-based agent program-
ming language, with programming constructs for implementing rational BDI
agents. Also, we present the syntax of a language for programming an abstract

166 M.P. Sindlar et al.

observer entity, which serves as a proof of concept for the inferential mechanism
we introduce. This separation of observer and agent serves to clarify, for ourselves
as well as the reader, the interaction between those two distinct roles. Ultimately,
though, we envision the possibility of integrating the abductive faculties of the
observer into the general reasoning mechanism of agents.

3.1 Plans and Behavioral Rules

Let L, with typical element φ, be a propositional language with negation ¬ and
the standard conjunctional connective ∧. Belief formulas β and goal formulas κ
are elements from L. Also, assume a set A of basic actions, with typical element
α. Agents’ plans are then represented as a sequence of basic actions α, tests on
propositional formulas, and an operator for non-deterministic choice.

Definition 2 (Plans). Plan expressions LΠ with typical element π are made up
of elementary actions α ∈ A, tests on propositional formulas φ, non-
deterministic choice between plans, or a sequential composition of plan elements.

π ::= α | φ? | π1 + π2 | π1;π2

In this work we are mainly concerned with the syntactical form of those plans,
and do not define the semantics of the agent’s operation. We do, however, make
some assumptions about how an agent executes plans. Only external actions can
be observed, and as we define all basic actions α ∈ A to be external, we therefore
deem them observable. Internal test actions φ? on propositional formulas of
type φ ∈ L are not observable. The choice operator + is a non-deterministic
choice operator, which has scope over two elements π ∈ LΠ . It can also be used
to represent deterministic instructions of the form if φ then π1 else π2 as
(φ?;π1) + (¬φ?;π2). For completeness we introduce an empty or null action ε,
such that (π; ε) ≡ (ε;π) ≡ π.

Agents’ behavioral (planning) rules, of the form κ ← β | π, state that a
plan π is appropriate for achieving a specific goal κ, given that some condition
β holds. The selection of these rules is done by the agent’s deliberation process.

Definition 3 (Rules). Rules LR with typical element r are defined as follows,
where β, κ ∈ L, and π ∈ LΠ .

r ::= κ ← β | π

We do not explicitly define the semantics of the agent’s deliberation process,
but instead adopt some assumptions about how this process operates. We refer
to [2,3] for a more precise treatment of those assumptions. We assume that an
agent selects a plan only if it is not actively dealing with some other plan. This
means that at no point an agent is executing more than one plan. Furthermore,
we assume that an agent only executes a plan to achieve some goal it explicitly
has. Also, plans may be discarded, either because the goal for which they were
selected has been achieved, or has been dropped.

Mental State Abduction of BDI-Based Agents 167

The reasons for postulating these assumptions is to ensure some properties
we require for the technique of mental state abduction to work. They make sure
that an agent always performs its actions to achieve the single goal it is pursuing
at that moment; in other words, an agent does not execute plans concurrently.
The requirement of the agent only performing actions to achieve some goal —
therefore not responding to external events — is to ensure that there is always
some explanation for an action, since every action is produced by some rule from
LR which has a mental state as precondition. We explicitly do allow for an agent
discarding its plan for whatever reason, as we see the ability to deal with such a
circumstance as a requirement for a plan recognition approach to be considered
robust.

3.2 Observables, Abducibles, and Rule Descriptions

The observer is defined as an abstract entity — insofar that it does not act upon
the environment — which perceives the actions of the agent, and attempts to
come up with a plausible explanation. The observer’s perception is a sequence
of actions as performed by the agent. Perception might be complete in the sense
that all the actions which the agent has performed are perceived, or some actions
might not be perceived and thus perception might be incomplete.

Definition 4 (Percepts). With α as the typical element of a set of basic ac-
tions A, the perception language L∆ with typical element δ defines the perception
of the observer.

δ ::= α | δ1; δ2

As mentioned in Section 2.1, in computational abduction candidate explanations
are constrained to a set of explicitly defined abducibles. In the present context,
because we want to abduce the mental states that underlie an agent’s actions,
these abducibles are the agent’s beliefs and goals. Abducible belief and goal
formulas are predicated by belief and goal, respectively. Because conjunction
between propositions is allowed in belief as well as goal formulas, this distinction
is needed to discern between beliefs and goals in the process of abduction.

Definition 5 (Abducibles). If β, κ ∈ L, let λ be the typical element of the
formulae of abducibles LΛ, and be defined as follows.

λ ::= belief(β) | goal(κ) | belief(β) ∧ goal(κ)

To reason about an agent’s mental state based on its observed behavior, the
observer needs a description of the agent’s rules of operation. Since the rules
as such have meaning only in their original agent programming context, and we
wish to use them in logic, a translation is needed. We present the translated rules
as implications which state that a plan is implied by its (mental) preconditions.
Note that preconditions are abducibles of type λ ∈ LΛ, where we allow for them
to consist of a conjuncted belief and goal expression, or single belief and goal
expressions. The latter would be the case if either the belief or goal condition

168 M.P. Sindlar et al.

would be empty (or true), which does not apply in the present case, where we
assume an agent always has a goal for which it performs its actions.

Definition 6 (Rule Descriptions). If λ ∈ LΛ and π ∈ LΠ , then rd ∈ LRD is
a rule description, and is defined as follows.

rd ::= λ → plan(π)

One might argue that such a description is imperfect with respect to the actual
execution of those rules by the agent, as it does not take the deliberation process
into account. This is absolutely true, because if some precondition would be
satisfied for multiple plans, then logically all these plans would have to be applied
simultaneously. It goes without saying that in actual agent execution this would
be disastrous! Moreover, a belief precondition β might cease to hold after the
plan has been selected and execution started.

However, in the context of explaining observed behavior, such a description
is sufficiently accurate. Better still, the generality which would be undesirable
with respect to execution, actually serves to benefit in the case of explanation.
This is because in the latter case the reasoning goes from observation to pre-
condition, and if multiple explanations (mental preconditions) can account for
some (partially) observed plan then this is all the more desirable, considering
that these preconditions could indeed apply from the viewpoint of the observer.

This is not to say that taking into account procedural specifics would not aid
mental state inference. If such specifics — which might for example entail that
some rule is more likely to have been applied because of the way the agent’s
underlying reasoning mechanism works — are available, then they can, and
probably should, be used. However, since our goal is to provide a general account,
we omit such specifics here.

4 Mental State Abduction

In this section, we provide the details of our framework for mental state abduc-
tion. Before moving on to more high-level concepts, we introduce some prereq-
uisite functions and relations which will be used later on to define the primary
notions of our approach.

4.1 Functions and Relations

First, we introduce a trace generator function τ , which takes a single plan expres-
sion π, as defined in Definition 2, as its input, and maps to a set of perception
expressions δ. These perception expressions can be thought of as the possible
observable traces of the execution of the plan π. Internal test actions on propo-
sitional formulas are discarded in the translation process (mapped to the empty
action ε) and do not appear in the trace. Where choice between plans occurs, two
traces are generated; one for each plan in the scope of the choice operator. The
operator ∪ is set union, and ◦ : ℘(L∆)×℘(L∆) → ℘(L∆) is a non-commutative
composition operator defined as Φ◦Ψ = {φ;ψ | φ ∈ Φ & ψ ∈ Ψ}, and Φ, Ψ ⊆ L∆ .

Mental State Abduction of BDI-Based Agents 169

Definition 7 (Trace Generator Function). The function τ : LΠ → ℘(L∆)
is a trace generator function that translates plan expressions π ∈ LΠ to sets of
perception expressions δ ∈ L∆ , and is defined as follows.

τ(α) = {α}
τ(φ?) = {ε}
τ(π1 + π2) = τ(π1) ∪ τ(π2)
τ(π1;π2) = τ(π1) ◦ τ(π2)

Not only are we interested in the observable traces of a plan, we are also in-
terested in partial traces that are structurally related to the original trace. To
identify these we specify the prefix, suffix, subsequence and dilution relations
in Def. 8 and 9 — �, �, �, and �, respectively — which are all partial orders
(reflexive, antisymmetric, transitive relations) on L∆ . Note that the subsequence
relation � subsumes the prefix relation � and the suffix relation �, and that
dilution � subsumes subsequence �.

Definition 8 (Prefix, Suffix, Subsequence Relations). The prefix relation
�, suffix relation �, and subsequence relation � are partial orders on the domain
L∆ , and are defined as follows.

� = { (δ1 , δ1; δ2) | δ1, δ2 ∈ L∆ }
� = { (δ1 , δ2; δ1) | δ1, δ2 ∈ L∆ }
� = { (δ2 , δ1; δ2; δ3) | δ1, δ2, δ3 ∈ L∆} ∪ � ∪ �

The dilution relation � is defined as the closure of the subsequence relation under
a special ‘dilution concatenation’ operator dc, which maps two tuples (δ1, δ2) and
(δ3, δ4) to the tuple (δ1; δ3, δ2; δ4).

Definition 9 (Dilution Relation). The dilution relation � is a partial order
on the domain L∆ , defined as the closure of � under the operator dc : (L∆ ×
L∆) × (L∆ × L∆) → L∆ × L∆ , such that � =

⋃
n∈IN

cln(�).

dc((δ1, δ2), (δ3, δ4)) = (δ1; δ3, δ2; δ4)
cl0(�) = �
cln(�) = cln−1(�) ∪ { dc((δ1, δ2), (δ3, δ4)) | (δ1, δ2), (δ3, δ4) ∈ cln−1(�) }

The dilution relation might be somewhat difficult to understand. What it (in-
formally) states is that a dilution of some expression can be obtained by ran-
domly removing any number of elements from the original perception expression,
whilst preserving the order. For example, α1;α3;α5 is a dilution of the expression
α1;α2;α3;α4;α5 with α2 and α4 removed and the order preserved, but α1;α5;α3
is not a dilution of this expression, nor is α1;α3;α5;α6.

In Definition 10 we use the structural relations to define so-called relational
functions, which map an expression that is given as input to the set of perception

170 M.P. Sindlar et al.

expressions related to it under one of the three structural relations. The output
is the set of all prefixes / subsequences / dilutions of the expression that was
given as input. Note that the suffix relation � is not used here explicitly, but
only serves as part of the definition of the subsequence relation.

Definition 10 (Relational Functions). The relational functions rf� : L∆ →
℘(L∆), rf� : L∆ → ℘(L∆), and rf� : L∆ → ℘(L∆) map perception expressions
δ ∈ L∆ to sets of perception expressions, and are defined as follows.

rf�(δ) = {δ′ | δ′ � δ}
rf�(δ) = {δ′ | δ′ � δ}
rf�(δ) = {δ′ | δ′ � δ}

4.2 Partial Traces for Explanatory Strategies

Now that the basic notions have been defined, it is time to put them to use in our
approach to finding explanations for observed behavior. First of all, though, three
perceptory conditions are considered, which the observer can assume to reflect
its beliefs about the nature of the environment in which the agent operates, or to
reflect its beliefs about its own status with respect to perception of the agent’s
actions. This will be explained in more detail later on.

Definition 11 (Perceptory Conditions). The following perceptory condi-
tions are distinguished, reflecting either the observer’s assumption about the na-
ture of the environment, or its status regarding perception of the agent’s actions.

– Complete observation: If complete observation is assumed, then the ob-
server expects to see every action the agent performs.

– Late observation: Late observation reflects the observer’s assumption that
it has possibly failed in seeing one or more of the initial actions the agent
performed. From the moment it starts observing the observer expects to see
every future action of the agent.

– Partial observation: In the case of partial observation, the observer as-
sumes that it might fail to see some of the actions the agent performs. Such
failure might occur due to some environmental circumstance, or due to the
agent deliberately obscuring its actions.

The perceptory conditions can be used to model the observer’s expectations with
respect to what it can and will perceive. Late observation, for instance, reflects
the fact that the observer believes it has arrived ‘late’, and has missed some
actions the agent has performed.1 Partial observation can reflect the fact that
the observer has to divide its attention among several tasks, on which it bases
its assumption that it will miss out on some perceptions.

But perceptory conditions can also reflect beliefs about properties outside of
the observer’s control. Partial observation, again, might reflect the observer’s
1 Note that ‘late’ refers to the observer possibly observing the plan after execution

has started, and not to some temporal delay in perception.

Mental State Abduction of BDI-Based Agents 171

belief that the agent is deliberately hiding its actions from sight, or it might
reflect incompleteness of perception due to some property of the environment.
It should be noted that complete and late observation have in common that the
observer expects to see every action of the agent.

The descriptions of the agent’s operational rules capture a logical connection
between the agent’s mental state and some plan. To abduce the mental state
based on those descriptions, the observer somehow has to compare the sequence
of actions it has perceived to some plan it believes the agent might be executing.
This is where the trace generator function and the relational functions come to-
gether. Combined, they allow for generating partial traces which are structurally
related, under one of the three relations �, �, and �, to the set of complete traces
of a plan as produced by the plan translation function τ .

Those partial traces fit in nicely with the perceptory conditions. In the case
of complete observation, the observer expects to see every action the agent per-
forms. This means the first action the observer has perceived should be the first
action of one or more of the traces of the plan the agent is executing, and of
which the observer should have information in its description of the agent’s rules.
Following the same line of reasoning, any sequence of actions the observer per-
ceives should be the prefix of one of those traces. Late observation presumes the
observer might have missed the initial actions of some plan, but has seen any
actions performed since it started observing. Therefore, any observed sequence
must be a subsequence of some plan trace. Partial observation presumes the
agent has seen some actions of a plan — in the same order as they occurred in
the plan — but might have missed others. It will be no surprise that in this case
the observed sequence is a dilution of some plan trace.

Putting all this together, we define the functions in Definition 12, which take
as input a plan expression, and generate the set of partial traces which capture
the previously mentioned perceptory conditions. For this reason, the functions
are indexed with c in the case of complete observation, l for late observation,
and p for partial observation.

Definition 12 (Partial Trace Generator Functions). The partial trace gen-
erator functions χc : LΠ → ℘(L∆), χl : LΠ → ℘(L∆), and χp : LΠ → ℘(L∆)
translate plan expressions π ∈ LΠ to sets of perception expressions, and are
defined as follows.

χc(π) =
⋃

{ rf�(δ) | δ ∈ τ(π) }

χl(π) =
⋃

{ rf�(δ) | δ ∈ τ(π) }

χp(π) =
⋃

{ rf�(δ) | δ ∈ τ(π) }

The output of χc(π) is the set containing every prefix of each trace of the plan
π. The output of χl(π) is the set of subsequences of each trace of π, and χp(π)
maps the plan expression π to the set of dilutions of each of its traces.

172 M.P. Sindlar et al.

4.3 Agent and Observer

Here we define the configurations of the agent and the observer. We intention-
ally don’t specify the semantics of the agent program formally, but present the
agent configuration using similar terminology as [2,3], where possible semantics
of agent operation are defined.

Definition 13 (Agent Configuration). 〈σ, γ,Π ,R〉 is an agent configura-
tion, defined as a tuple of a belief base σ ⊆ L, a goal base γ ⊆ L, the agent’s
plan base Π ⊆ L × LΠ , and a set of operational rules R ⊆ LR.

The configuration of an agent consists of three dynamic structures: the belief
base σ, consisting of propositional facts expressing the agents beliefs, the goal
base γ which consists of propositional facts that express the state of affairs the
agent wishes to realise, and a plan base Π consisting of a tuple of goals and plans,
which links a plan to the goal for which it has been generated. The only static
structure (meaning it does not change during agent execution), and the one we
are most interested in, is the agent’s set of operational rules R, as described in
Section 3.1. From this set R of the agent’s rules it is that the configuration of
the observer is generated.

Definition 14 (Observer Configuration). The configuration of the observer,
is a tuple 〈∆,RD , Λ,Ξc, Ξl, Ξp〉 of a perceptory base ∆ ∈ L∆×L∆ , rule descrip-
tions RD ⊆ LRD, pre-specified abducibles Λ ⊆ LΛ, and sets of partial plan traces
Ξc, Ξl, Ξp ⊆ L∆ × LΠ .

RD = { goal(κ) ∧ belief(β) → plan(π) | (κ ← β | π) ∈ R }
Λ = { λ | (λ → plan(π)) ∈ RD }
Ξc = { (δ, π) | (λ → plan(π)) ∈ RD & δ ∈ χc(π) }
Ξl = { (δ, π) | (λ → plan(π)) ∈ RD & δ ∈ χl(π) }
Ξp = { (δ, π) | (λ → plan(π)) ∈ RD & δ ∈ χp(π) }

We present the sets Ξ as static precomputed entities for the sake of theoretic
analysis, although in practice an algorithm which computes on-the-fly which
plans match the perceived sequence of actions would be preferred for the sake
of computability and resources. The only dynamic structure in the observer
configuration is the base of incoming perceptory events ∆, of which we will
speak more in the next section. The static structures can all be generated from
the agent’s set of rules R, because these rules contain the necessary information
for explaining the agent’s behavior.

4.4 Explanation of Observed Actions

In Definition 14, we mentioned the observer’s perceptory base ∆, without defin-
ing its actual content. Assume ∆ = (δ, α), by which we mean that ∆ is tuple of
some sequence of actions δ the observer has remembered, and the last perceived

Mental State Abduction of BDI-Based Agents 173

action α, which the observer receives as an event. We assume that memory can
hold a sequence of arbitrary length.

The occurrence of a perception event, signifying that action α has been ob-
served, is what triggers explanation. We now compare mental state abduction to
logical abduction as presented in Section 2.1, and consider the following schema
in analogy to the one in Definition 1.

Classical abduction Mental state abduction

Θ ∪ φ |= ψ (1) RD ∪ λ |= δ

Θ ∪ φ �|= ⊥ (2) RD ∪ λ �|= ⊥
Θ �|= ψ and φ �|= ψ (3) RD �|= δ and λ �|= δ

Most of the conditions that apply to classical abduction do not apply to the
specific case of mental state abduction. There is no danger of having (logically)
contradictory explanations, nor can the sequence δ of actions which have been
perceived directly follow from the rule descriptions or a lone abducible, as is the
case in (2) and (3), respectively. But — and this is more worrying — the per-
ceived action sequence can’t even be explained from the set of rule descriptions
RD and some abducible λ put together, as follows from (1). Fortunately, shown
in (1′), it is possible to explain something of the form plan(π).

Θ ∪ φ |= ψ (1′) RD ∪ λ |= plan(π)

To explain an observation, the only thing left to do now is to relate observed
actions of the form δ to a plan descriptor of the form plan(π). The mechanism
for this is already in place; we can use the tuples (δ, π) of partial plan traces
and plans in Ξ, as defined in Definition 14. The careful reader will have noticed
that the sets of partial plan traces are indexed with c, l, and p, and indeed these
correspond to the partial traces suited for relating observed sequences to plans,
under the conditions of complete, late, and partial observation, respectively.

To actually generate explanations based on some observation, we define three
explanatory functions explc, expll, and explp, which generate the set of explana-
tions that account for the observed sequence of actions, under the perceptory
conditions of complete, late, and partial observation. Thus, if some observed se-
quence of actions δ is a subsequence but not a prefix of one of the traces of plan
π, then the explanation λ ∈ Λ for which RD ∪λ |= plan(π) applies will be in the
set of explanations given by expll and explp, but not in the set given by explc (or
only as explanation based on another plan π′ of which δ is a prefix). In Def. 15
the formal definition of these explanatory functions is presented.

Definition 15 (Explanatory Functions). Explanatory functions explc : L∆×
℘(LRD)×℘(LΛ)×℘(L∆ ×LΠ) → ℘(LΛ), expll : L∆ ×℘(LRD)×℘(LΛ)×℘(L∆ ×
LΠ) → ℘(LΛ), and explp : L∆ × ℘(LRD)× ℘(LΛ)× ℘(L∆ ×LΠ) → ℘(LΛ), map

174 M.P. Sindlar et al.

to a finite set of abducibles λ ∈ Λ, given a finite perception δ ∈ L∆ , a finite set
of rule descriptions RD ⊆ LRD, and a finite set of abducibles Λ ⊆ LΛ.

explc(δ,RD , Λ,Ξc) = { λ ∈ Λ | (RD ∪ λ) |= plan(π) & (δ, π) ∈ Ξc }
expll(δ,RD , Λ,Ξl) = { λ ∈ Λ | (RD ∪ λ) |= plan(π) & (δ, π) ∈ Ξl }
explp(δ,RD , Λ,Ξp) = { λ ∈ Λ | (RD ∪ λ) |= plan(π) & (δ, π) ∈ Ξp }

These explanatory functions can be used as part of different explanatory strate-
gies, which reflect the conditions defined in Def. 11. For example, if an observer
believes it will perceive all actions of an agent which it believes to have started
execution of some plan, then the observer might consider only those explana-
tions provided by expll, and omit those provided by explc from the set of possible
explanations.

An observer might also try using strategies based on different perceptory
conditions, to see what works best. For example, it might be the case that
the presumption of complete observation yields no explanation for the observed
action sequence. The observer then might try explanation under some other
perceptory condition, and success or failure of this process can shape its ideas
about the behavior of the agent and/or the nature of the environment.

4.5 Propositions and Proofs

In this section we state some important properties of our technique, and provide
formal proof of their veracity. In Proposition 1 we claim that some explanatory
functions are guaranteed to yield more explanations than others, and in Propo-
sition 2 we claim that the number of explanations decreases monotonically, as
more actions are perceived. We also claim that a single action can always be ex-
plained, a proposition of which we do not give formal proof but which we justify
by referring to previously made assumptions.

Proposition 1. The number of explanations generated by the function explc is
less or equal to that of the function expll, which is in turn less or equal to that
of the function explp.

Proof. The explanatory functions explc, expll, and explp, as defined in Def. 15,
yield a finite set of elements λ ∈ LΛ, given some finite input. They differ only
in the fact that they are based on three different sets of tuples of perception
expressions and plan expressions; Ξc for explc, Ξl for expll, and Ξp for explp.
As follows from Def. 10, 12, and 14, the defining characteristic of these tuples
are the relations presented in Def. 8 & 9. From these definitions it follows that
(�) ⊆ (�) ⊆ (�), and because these relations define the sets of partial plan traces
Ξc, Ξl, and Ξp, respectively, it follows that Ξc ⊆ Ξl ⊆ Ξp and |Ξc| ≤ |Ξl| ≤ |Ξp|.
Given any finite perception expression δ, finite set of rule descriptions RD, and
finite set of abducibles Λ, let explc(δ,RD , Λ,Ξc) = C, expll(δ,RD , Λ,Ξl) = L,
and explp(δ,RD , Λ,Ξp) = P . It then follows that |C| ≤ |L| ≤ |P |. ��

Lemma 1. For any relation R ∈ {�,�,�}, if (δ′; δ′′, δ) ∈ R, then (δ′, δ) ∈ R.

Mental State Abduction of BDI-Based Agents 175

Proof. It follows from the definition of the relations that (δ′, δ′; δ′′) ∈ R, because
every relation subsumes �. If this is the case, then it follows by transitivity that
if (δ′, δ′; δ′′) ∈ R and (δ′; δ′′, δ) ∈ R, then (δ′, δ) ∈ R. ��

Proposition 2. The number of explanations under any single explanatory re-
lation decreases monotonically (either decreases or stays the same) when α is
explained as the next action of an already explained sequence of actions δ.

Proof. Take some explanatory function expl. Assume some perception δ has been
observed and explained, yielding a finite set of explanations X. The number of
explanations in X is |X |, the cardinality of X. An incoming observation α is
added to δ, yielding the new perception δ;α. The only way the cardinality of
the explanation set could increase with an incoming perception α, would be if
(δ, π) �∈ Ξ and (δ;α, π) ∈ Ξ, for some plan π and some set of partial traces
and plan tuples Ξ. We now consider Ξc, Ξl, and Ξp, specifically. By Lemma 1,
for any defining relation R, if (δ;α,δ

′) ∈ R, then (δ, δ′) ∈ R. If (δ;α, π) ∈ Ξc,
then δ;α � δ′ for some δ′ ∈ χc(π). If (δ;α, π) ∈ Ξl, then δ;α � δ′, for some
δ′ ∈ χl(π). If (δ;α, π) ∈ Ξp, then δ;α � δ′ for some δ′ ∈ χp(π). In all cases,
if (δ;α, π) ∈ Ξ then (δ, π) ∈ Ξ. Therefore |X | cannot increase with incoming
perceptions, and |X | must decrease monotonically. ��

One desirable property which we state but do not prove formally is the fact
that a single perceived action can always be explained. This follows from the
assumptions in Section 3.1, which can be summarized to the fact that any
action an agent executes is part of some plan belonging to a known rule. If
∆ = (δ, α) and δ;α cannot be explained (the explanatory function gives an
empty set), perhaps because the agent started working on another plan, then
it is always possible to explain the last perceived action using ∆ = (ε, α) using
explp, since α must be part of a known rule, and is the dilution of some plan
trace.

5 An Example

In this section, we present a brief example of the technique of mental state
abduction, situated in a role-playing game (RPG) setting. In RPGs, a player
is often accompanied by one or more non-player characters (NPCs), which act
autonomously and (most of the time) are not under the player’s direct con-
trol. In a utopian future where all characters are implemented as BDI agents,
the player and his or her NPC companions, on a quest to deliver an important
letter, are under attack by a band of brigands.2 One of the brigands some-
how knows the whereabouts of this letter, and has a plan for having it in his
possession.
2 The setting of a fight might seem rather violent, but it serves nicely to illustrate

various points which deserve attention. There can be multiple friendly and enemy
agents involved, as well as a human player. Moreover, the chaos of a fight warrants
the assumption of partial observation.

176 M.P. Sindlar et al.

κ︷ ︸︸ ︷
have(letter) ←

β︷ ︸︸ ︷
in(chest, letter) ∧ ¬guarded(chest) |

α1goto(chest); α2 inspect(chest);

(φ1 locked(chest)?;

(φ2sturdy(lock)?; α3sheath(sword); α4pick(lock))+

(¬φ2¬sturdy(lock)?; α5smash(lock)))+

(¬φ1¬locked(chest)?));
α6open(chest); α7take(letter)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

π

This specific plan for having the letter has as a condition that the letter is
believed to be in the chest, and the chest to be unguarded. The plan consists
of inspecting the chest, picking or smashing the lock (depending on its quality)
in case the chest is locked, then opening it and taking the letter. Notice that
actions and tests have been annotated with α and φ, respectively.

The rule can also be represented as follows, using the superscripted
annotations instead of the actual formulas.

κ ← β | α1;α2; (φ1?; (φ2?;α3;α4) + (¬φ2?;α5)) + (¬φ1?);α6;α7

In the chaos of the fight, nobody is guarding the chest in which the letter has
been stored. The brigand with the plan for stealing the letter takes notice of this.
Fortunately, one of the NPCs sees the brigand inspecting the chest, and also has
knowledge of the rule the brigand might use to achieve the goal of having the
letter in its possession.

Assume the NPC is abducing the brigand’s mental state using our technique
of mental state abduction. The set of possible plan traces τ(π) then looks as
follows, with overbraced conditions indicating a trace.

τ(π) = {
φ1∧φ2︷ ︸︸ ︷

α1;α2;α3;α4;α6;α7,

φ1∧¬φ2︷ ︸︸ ︷
α1;α2;α5;α6;α7,

¬φ1︷ ︸︸ ︷
α1;α2;α6;α7}

The NPC observing the brigand perceived that the brigand was inspecting the
chest. Assuming it didn’t perceive anything prior to this point means the per-
ception base was empty, and now ∆ = (ε, α2). Because of the tumultuous nature
of the fight, the NPC assumes it might miss perceptions and therefore uses
explp. In this case, if we take for granted that explp(α2,RD , Λ,Ξp) = X , then
{goal(have(letter))∧ belief(in(chest, letter)∧¬guarded(chest))} ⊆ X . Note that if
the explanatory function explc had been used, this mental state could not have
been abduced, as α2 is not a prefix of a trace of π. Of course, other plans might
involve opening the chest, and their mental state preconditions might also be
part of the set of explanations produced by any of the explanatory functions.

The NPC then diverts its attention because of a brigand charge, and the next
time it looks it sees the agent picking the lock, and since pick(lock) = α4, the
new perception is ∆ = (α2, α4). Since (α2;α4, π) �∈ Ξc and (α2;α4, π) �∈ Ξl, but

Mental State Abduction of BDI-Based Agents 177

(α2;α4, π) ∈ Ξp, only the explanatory function for partial observation explp can
explain the perceived action sequence α2;α4 in relation to the plan π.

Depending on its rules, the NPC can respond to the brigand trying to take
the letter. It might inform others, or actively intervene itself. Note that the plan
which is represented here is fictional and only shown for illustrative purposes,
although nothing prevents it from being the part of the rule of a BDI-based
virtual character in a game. Furthermore, it should be noted that in the ob-
servation of actions there is no indicator of which agent performed the action.
This is due to our presentation of an observer as separated from the agent
and the assumption of a single agent; in a setting with multiple agent such
an indicator would be required to distinguish between the actions of different
agents.

6 Conclusion and Future Work

In this paper we presented a technique called mental state abduction, which
allows for inferring the mental states of BDI agents based on their observed be-
havior, using an approach inspired by abduction in propositional logic. Three
explanatory strategies were presented, based on perceptory conditions reflect-
ing either properties under the observer’s influence, or properties of the en-
vironment beyond the observer’s control. Our technique was shown to work
for agents programmed in a simplified BDI-based programming language, as
demonstrated by formal proofs of some interesting properties, and a game-like
example.

In future research we mean to extend mental state abduction to deal with the
dynamics of a current agent programming language such as 2APL. Specifically,
we intend to make use of the internal actions inside plans, such as conditional
(belief) tests, as a guideline for better abduction. The observer itself can then
execute the test actions the agent executes, to select among plans involving
identical actions. This also opens the opportunity for the observer to have a
theory of mind of the agent, meaning the observer has a mental model of the
possible mental state of the agent. Such a model would have specific require-
ments, such as a revision procedure to deal with inconsistent information, and
possibly constructs for combining queries to the model of the agent’s mental
state with queries to the observer’s own mental state, in order to represent
reasoning in the line of “What would I have done if I were in this agent’s situ-
ation?”. Of course, such a model of the mental state of other agents is required
in the first place to represent the mental states inferred by mental state abduc-
tion, and for those explanations to be used by the observer in its capacity of
agent.

Furthermore, we see the possibility to incorporate institutional notions such
as roles to provide restrictions on specific clusters of rules an agent might be
expected to have. In line with this, we intend to relax the requirement of the
observing party having to know all of the agent’s rules.

178 M.P. Sindlar et al.

References

1. Norling, E., Sonenberg, L.: Creating interactive characters with BDI agents. In:
Proc. of the Australian Workshop on Interactive Entertainment, pp. 69–76 (2004)

2. Dastani, M., Meyer, J.-J.C.: A practical agent programming language. In: Dastani,
M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS,
vol. 4908, pp. 107–123. Springer, Heidelberg (2008)

3. Dastani, M.: 2APL: A practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16, 214–248 (2008)

4. Winikoff, M.: JACKTMIntelligent Agents: An industrial strength platform. In: Das-
tani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Programming, pp.
175–193. Springer, Heidelberg (2005)

5. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In:
Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Programming,
pp. 149–174. Springer, Heidelberg (2005)

6. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason. Wiley-Interscience, Hoboken (2007)

7. Doyle, P.: Believability through context. In: Proceedings of AAMAS 2002, pp.
342–349. ACM Press, New York (2002)

8. Flach, P.: Conjectures: An Inquiry Concerning the Logic of Induction. PhD thesis,
University of Tilburg (1995)

9. Hartshorne, C., Weiss, P. (eds.): Collected Papers of C.S. Peirce. Harvard Univer-
sity Press (1931-1958)

10. Aliseda, A.: A unified framework for abductive and inductive reasoning in phi-
losophy and AI. In: Proceedings of the ECAI 1996 Workshop on Abductive and
Inductive Reasoning (1996)

11. Kakas, A., Kowalski, R., Toni, F.: The Role of Abduction in Logic Programming.
In: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5, pp.
235–324. Oxford University Press, Oxford (1998)

12. Aliseda-Llera, A.: Seeking Explanations: Abduction in Logic, Philosophy of Sci-
ence, and Artificial Intelligence. PhD thesis, University of Amsterdam (1997)

13. Harman, G.: Inference to the best explanation. The Philosophical Review 74, 88–95
(1965)

14. Lipton, P.: Inference to the Best Explanation. In: Inference to the Best Explanation,
2nd edn., Routledge (2004)

15. Carberry, S.: Techniques for plan recognition. User Modeling and User-Adapted
Interaction 11(1-2), 31–48 (2001)

16. Albrecht, D.W., Zukerman, I., Nicholson, A.E.: Bayesian models for keyhole plan
recognition in an adventure game. User Modeling and User-Adapted Interac-
tion 8(1-2), 5–47 (1998)

17. Appelt, D.E., Pollack, M.E.: Weighted abduction for plan ascription. User Model-
ing and User-Adapted Interaction 2(1-2), 1–25 (1991)

18. Goultiaeva, A., Lespérance, Y.: Incremental plan recognition in an agent program-
ming framework. In: Working Notes of the AAAI Workshop on Plan, Activity, and
Intention Recognition (PAIR) (2007)

Iterated Belief Revision in the Face of Uncertain
Communication

Yoshitaka Suzuki1, Satoshi Tojo1, and Stijn De Saeger2

1 Japan Advanced Institute of Science and Technology
{syoshita,tojo}@jaist.ac.jp

2 National Institute of Information and Communications Technology
stijn@nict.go.jp

Abstract. This paper offers a formalization of iterated belief revision for multia-
gent communication using the logic of communication graphs introduced in [15].
In this study we consider an agent (i.e., information source) capable of sending
two types of message. In the first type, he tells that he knows a proposition, but in
the second type, he tells that he believes a proposition. Consequently, iterated be-
lief revision is brought about through a sequence of communication events (i.e.,
a history), and we propose a variation of the AGM rational postulates for history
based belief revision. As we will show, a representation theorem is verified only
for a class of restricted communication graphs. We consider this result to be a
weak point in the application of the AGM postulates to multiagent communica-
tion, and propose a viable alternative.

1 Introduction

Information processing in uncertain communication environments is one of the impor-
tant problems for the study of multiagent systems. When agents communicate, often
less than certain information passes between them. In such a case, we technically can-
not say that they acquire knowledge, even if the information in question eventually
turns out to be true. Here, we distinguish between two types of uncertain information
in multiagent communication. On the one hand, an agent may consider a given piece
of information correct even though in fact he obtains it from an unreliable information
source (via some insecure communication channel), and therefore his information may
in fact be incorrect. On the other hand, the agent may not be convinced that this infor-
mation is correct, but nonetheless consider it plausible. While he does not recognize it
in the first case, he is aware of his own uncertainty in the second case. Thus, making
an inquiry to some other agent, one agent finds two fallible answers. That is to say, the
other agent is firmly convinced of the information or not1. These two types of epistemic
attitudes, related to knowledge and belief, require a classification of rational processing
for uncertain information. Traditional study of belief revision ([1,7]) proposes rational

1 For the purpose of this paper, we take ‘conviction’ to be a technical notion that is epistemically
stronger than belief, excluding the possibility of error in the agent’s own mind. Thus, whereas
introspectively an agent does not distinguish between his convictions and knowledge, he would
consider his beliefs to be likely though not certain.

M. Baldoni et al. (Eds.): DALT 2008, LNAI 5397, pp. 179–196, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

180 Y. Suzuki, S. Tojo, and S. De Saeger

postulates for the change of an agent’s knowledge base called minimal change, and
prove a representation theorem that tells us that these postulates correspond to certain
revision operators. However, Gärdenfors ([7]) stated that the relation between knowl-
edge base and external environment is not essential for the study of belief revision, and
he did not distinguish knowledge from belief. Therefore, when a message comes from
the other agent, whether the other agent knows something or not is not important for
the general study of belief revision.

As an exception to the above characterization, Friedman and Halpern ([5,6]) defined
a belief operator in terms of both a knowledge operator and a conditional operator. Their
study proposed an expansion of the logic of knowledge for multiagent systems [4], and
therefore it can be applied to multiagent systems, although they were interested in it-
erated belief revision for single agents. However, they assumed that an agent acquires
an infallible information by the observation upon the external environment. As a result,
any given sequence of external inputs must be consistent, and possible worlds that are
inconsistent with the inputs already accepted are systematically eliminated. However,
as indicated by Rott’s study about conservatism in iterated belief revision [16], such
an idea is radical for fallible information. Moreover, since they were not interested in
communication, their model must not be related with the study of multiagent system.
Because multiple agents’ communication may give rise to uncertain information, such
a formalization is suitable for single agents, but not multiple agents. In fact, they did
not describe the application of the framework to multiagent system. Thus, the tradi-
tional study of belief revision usually assumed that epistemic input came from external
environment, and was generally not interested in multiagent communication.

Example 1. If Alice observes Dean putting on a white shirt, she knows he did so. How-
ever, if Alice hears from Bob that he believes Dean put on a white shirt, she does not
know for a fact that he did, although she may believe it regardless. Furthermore, when
Alice later learns from Charlie that he knows Dean did not put on a white shirt, she will
eliminate the previous belief in favor of this newly acquired knowledge.

Studying belief revision in multiagent communication, we utilize the logic of commu-
nication graphs from [15]. This logic expresses that information travels via communi-
cation channels that ensure its reliability. Only if an agent i can directly receive some
piece of information from another agent j and j has acquired this knowledge in a sim-
ilar fashion, i acquires this piece of knowledge from j. Nevertheless, this logic cannot
represent the situation where an agent believes some proposition but does not know it.
In order to solve the problem, we will not directly use the modal operator Ki for knowl-
edge. Instead, we introduce the operator Ci for conviction and →i for conditional, and
define knowledge Ki and belief Bi in terms of these two operators. Furthermore, we
will define some postulates for belief revision operations that accepts another agent’s
respective knowledge and beliefs as external inputs, and show that some revision oper-
ators are equivalent with these postulates when the communication graph satisfies some
condition.

In section 2, we introduce formal preliminaries and semantics for our logic of com-
munication graphs that pays attention to the other agent’s knowledge and belief. In
section 3, consulting moderate and radical belief revision in Rott [16], we define it-
erated revision operators for knowledge and belief. In section 4, rational postulates are

Iterated Belief Revision in the Face of Uncertain Communication 181

proposed, and we show the a representation theorem between the operators and the
postulates for those cases where the communication graph satisfies some particular con-
straints. In section 5, we discuss some remaining problems of our study and its perceived
advantages over related works, as well as indicate subsequent work to be done.

2 Preliminaries

In this section, we describe the semantics for our logic of communication graphs with
conditionals CC(G). This is based on the logic of communication graphs from [15],
expanded with a conditional operator like the study of belief revision by the logic of
knowledge for multiagents by [5,6]. Thus our logic not only allows reasoning about
the underlying communication channel, but also represents the plausibility of a given
proposition as far as the agents are concerned.

Let A be the set of agents. Then, a communication graph is described by GA =
〈A, E〉, where E ⊆ (A × A) \ {(i, i) | i ∈ A}. The edges in E represent whether an
agent can directly receive information from another agent or not, i.e., (i, j) ∈ E means
that agent i learns information from agent j directly.

We define that E is fully connected iff for all i, j ∈ A, if i �= j, then (i, j) ∈ E, and
E is existentially connected iff for all i ∈ A, for some j ∈ A, (i, j) ∈ E. In the former
case, any agent can communicate with any agent. In the latter case, for any agent, there
is an information source.

Suppose that all agents share the (finite) set of atomic propositions At and a spe-
cial propositional variable L. Intuitively, L means that any information exchange have
emerged via reliable communication channel. As already discussed, we introduce the
following modal operators; intuitively, Ciφ means that i is convinced that φ; φ →i ψ
means that, given φ, ψ is plausible for i; ♦φ means that, after some communications, φ
becomes true. Precise semantics of these symbols are given later. The set of well-formed
formulae consists of

φ := p | ¬φ | φ ∧ ψ | Ciφ | φ →i ψ | ♦φ.

We use the standard abbreviations for connectives∨, ⇒, ⇔, and propositional constants
true and false. Besides these we introduce the modal operators Ki and Bi as abbrevi-
ations, where as usual Kiφ means that i knows φ, and Biφ means that i believes φ.

Kiφ
def= L ∧ Ciφ

Biφ
def= Ci(true →i φ)

Thus, agent i knows φ iff any information exchange have emerged via reliable com-
munication channel and agent i is convinced that φ. Agent i believes φ iff agent i is
convinced that φ is plausible.

The definition of Bi is almost the same as Friedman and Halpern’s in [5,6], but in
their work belief is defined instead as

Biφ
def= Ki(true →i φ).

182 Y. Suzuki, S. Tojo, and S. De Saeger

That is to say, agent i believes φ iff agent i knows that φ is plausible. Their definition
of knowledge is not based on communication channel, but our definition depends on
the reliability of the communication channel, which is decided by an agent’s external
environment (See the definition of the semantics of L below)2. Thus, whether he knows
something or not is not decided by his internal state without external environment.
However, belief does not seem to depend on the external environment. Therefore, we
introduced modal operator Ci that does not depend on the real external environment,
but on the environments that cannot be distinguished from the real environment for the
agent i. For details, see the definition fo the semantics of Ci.

Let Ati ⊆ At be the set of atomic propositions of which agent i initially knows
the truth value (we do not assume all Ati (i ∈ A) to be disjoint). Furthermore, this
fact about i’s knowledge is common knowledge among all members of A. So another
agent knows that i knows the truth value of elements of Ati, though not what these
values actually are. Thus we introduce an information vector At = 〈At1, . . . , Atn〉
representing the initial knowledge of the agents. Given a set W , we say that v ∈ W is
a world, where v is a function v : At → {0, 1}.

When agent i learns some information φ from agent j’s knowledge or beliefs, we
represent this situation by (i, j, φ, e) and call it a communication event, where e = K
or e = B. Technically φ is restricted to formulae in disjunctive normal form (DNF),
i.e., φ is of the form

∨
i=1,...,k

∧
Ci, where each Ci is a consistent finite set of literals

in At. That is, (i, j, φ,K) is an event that agent i learns from agent j that j knows φ.
Given the set of all communication events ΣG , H ∈ Σ∗

G is a finite sequence of events
called a history, where the empty history is denoted ε. We define the temporal ordering
over all histories as follows: H � H ′ iff H ′ = H · H ′′ for some H ′′, where · is a
concatenation of communication events.

A history can be considered as a God’s eye record of past agent communications,
but an agent may only witness part of it. When the second agent j and the third agent
k communicate with each other, the first agent i has no access to their communication.
Therefore, we introduce i’s local history λi(H), in which i can only recognize those
events that concern himself, i.e., in which i receives some information from the other
agent. It is defined as follows.

λi(H · (m, j, φ, e)) =
{

λi(H) · (m, j, φ, e) if m = i
λi(H) otherwise

A pair (v,H) consisting of a system state v and a history H is called a point. Given two
points (w,H) and (v,H ′), we can imagine an agent i unable to distinguish between the
two. We can describe this situation in terms of an accessibility relation ∼i as follows,
where w|Ati is a restriction of w whose domain is Ati.

(w,H) ∼i (v,H ′) iff w|Ati = v|Ati and λi(H) = λi(H ′)

2 In the following discussion, predicate L is defined by communication channel. Whether an
agent knows something or not is justified by L. In other words, the source of the knowledge
lies outside of himself. Thus, in our formalization, an agent has no access to the ground of the
justification directly. Philosophically, such a view is called externalism about knowledge [2].

Iterated Belief Revision in the Face of Uncertain Communication 183

We use a total preorder ≤ 3 over W for the definition of conditional operator and we
call it a preference relation. We denote v ≤ w when v is at least as plausible as w.
v < w is the strict case of ≤, i.e., v ≤ w and w �≤ v. We assume that sets of states
are also comparable with ≤. Thus, A ≤ B iff for all v ∈ B, for some w ∈ A, w ≤ v.
The maximal worlds w.r.t. the preference relation are called implausible worlds. The
set of implausible worlds Im ⊆ W satisfies the following condition: for any w ∈ Im,
v ∈ W , v ≤ w, and if v /∈ Im, then w �≤ v. Let a preference assignment function
Pi for agent i be a mapping from (v,H) to (≤, Im), i.e., P(v,H) = (≤, Im), where
Im = {w ∈ W | for any H ′, (w,H ′) �∼i (v,H) or w,H ′ �|=M L} (|=M is defined
in the following discussion in this page). That is to say, implausible worlds can be
distinguished from the actual world in which agent i finds himself. In the following
discussion, we define Pi(v,H) = (≤i,v,H , Imi,v,H). That is, w ≤i,v,H w′ means that
w is at least as plausible as w′ for agent i at world v and history H . Thus, we will define
a communication graph model as a tuple M = 〈G,At,P,W 〉.

We will introduce the satisfiability relation of legality and truth as follows.

(Legality)

– w, ε |=M L
– w,H · (i, j, φ,K) |=M L iff w,H |=M L, (i, j) ∈ E, and w,H |=M Kjφ
– w,H · (i, j, φ,B) |=M L iff w,H |=M L and (i, j) ∈ E

(Truth)

– w,H |=M p iff w(p) = 1, where p ∈ At.
– w,H |=M ¬φ iff w,H �|=M φ
– w,H |=M φ ∧ ψ iff w,H |=M φ and w,H |=M ψ
– w,H |=M ♦φ iff ∃H ′ such that H � H ′, w,H ′ |=M L and w,H ′ |=M φ
– w,H |=M Ciφ iff ∃(v,H ′), (w,H) ∼i (v,H ′) and v,H ′ |=M L, and ∀(v,H ′), if

(w,H) ∼i (v,H ′) and v,H ′ |=M L, then v,H ′ |=M φ
– w,H |=M φ →i ψ iff |=M φ ⇔ false or [[φ ∧ ψ]]Mi,w,H <i,w,H [[φ ∧ ¬ψ]]Mi,w,H ,

where [[φ]]Mi,w,H = {v ∈ W |∃H ′, (w,H) ∼i (v,H ′), and v,H ′ |=M
L, and v,H ′ |=M φ}.

We will explain the meaning of the above definition. Legality is defined as follows. At
first, when a history is empty, the point is legal. Next, If there is some legal point, there
is some communication graph from agent j to agent i, and j knows φ, the pair of the
world and the concatenation of the history and the event (i, j, φ,K) is also legal. Finally,
if there is some legal point, and there is some communication channel from agent j to
agent i, then the pair of the world and the concatenation of the history and the event
(i, j, φ,B) is also legal. So legality means that there is some reliable communication
channel.

Note that agent j’s knowledge is related with the definition of legality, but not j’s
belief, since legality is a condition that ensures the truth of knowledge (see the definition

3 A total preorder ≤ is a total and transitive relation. ≤ is total iff w ≤ w′ or w′ ≤ w for any
w, w′ ∈ W . ≤ is transitive iff for any w, w′ ∈ W , if w ≤ w′ and w′ ≤ w′′, then w ≤ w′′.

184 Y. Suzuki, S. Tojo, and S. De Saeger

of Kiφ). While knowledge must be justified by a reliable information source, whether
belief needs such a source or not is a difficult epistemological problem for our current
study. Therefore, our current stance is that we do not require belief to be justified by
legality.

The truth condition of ¬ and ∧ is as usual. The formula ♦φ is satisfied when there
will be some future point that satisfies φ. The formula Ciφ is true when there is some
legal point that is indistinguishable with the real point for agent i, and for any indistin-
guishable legal point, φ is true. The formula φ →i ψ means that φ∧ψ is more plausible
for agent i than φ ∧ ¬ψ at the point.

The difference in definition between our Ci and Pacuit and Parikh’s Ki in [15] is
important. Their definition is as follows.

w,H |=M Kiφ iff ∀(v,H ′), if (w,H)∼i (v,H ′) and v,H ′ |=M L, then v,H ′ |=M φ

That is, their definition of knowledge does not assume that there is some legal point
that is not distinguished from the real points for agent i. This definition does not satisfy
the modal axiom D, which characterizes an essential property of belief the property
of belief (i.e., nobody believes a contradiction.), while the axiom T is known from the
logic of knowledge (i.e., veridicality of knowledge). Perhaps the real point may not be
legal, and we may not find any legal point that is not distinguished from the real points
for agent i. In such a case, Ki does not satisfy D. Therefore, we define Ci as already
mentioned.

Thus, the derived modal operators Ki and Bi, defined by L, Ci, and →i, satisfy the
following traditional axioms.

K: (Kiφ ∧ Ki(φ ⇒ ψ)) ⇒ Kiψ
T: Kiφ ⇒ φ.
4: Kiφ ⇒ KiKiφ.
5: ¬Kiφ ⇒ Ki¬Kiφ.
G: From φ infer Kiφ.

K: (Biφ ∧ Bi(φ ⇒ ψ)) ⇒ Biψ.
D: ¬Bifalse.
4: Biφ ⇒ BiBiφ.
5: ¬Biφ ⇒ Bi¬Biφ.
G: From φ infer Biφ.

Note that Ci also satisfies KD45 like Bi.

K: (Ciφ ∧ Ci(φ ⇒ ψ)) ⇒ Ciψ.
D: ¬Cifalse.
4: Ciφ ⇒ CiCiφ.
5: ¬Ciφ ⇒ Ci¬Ciφ.
G: From φ infer Biφ.

Furthermore, the conditional operator →i satisfies the following axioms of nonmono-
tonic reasoning in [12,13].

Iterated Belief Revision in the Face of Uncertain Communication 185

Fig. 1. Rewriting sphere by knowledge and belief

LLE: From φ ⇔ φ′ and φ →i ψ infer φ′ →i ψ.
RW: From ψ ⇒ ψ′ and φ →i ψ infer φ →i ψ′.

REF: φ →i φ.
AND: From φ →i ψ1 and φ →i ψ2 infer φ →i ψ1 ∧ ψ2.

OR: From φ1 →i ψ and φ2 →i ψ infer φ1 ∨ φ2 →i ψ.
CM: From φ →i ψ1 and φ →i ψ2 infer φ ∧ ψ1 →i ψ2.
RM: From φ →i ψ1 and not φ →i ¬ψ2 infer φ ∧ ψ2 →i ψ1.

Finally, our formalization satisfies the following interaction between knowledge and
beliefs characterized by [11].

KB1: Biφ ⇒ KiBiφ.
KB2: Kiφ ⇒ Biφ.

In the following discussion, we will suppose that if w|Ati = v|Ati , then ≤i,w,ε=≤i,v,ε,
although the above axioms are satisfied without the supposition.

3 Rewriting Rules for the Preference Relation

In this section we introduce our iterated belief revision operation by incorporating the
other agent’s knowledge (or correctly the information that the agent regards as knowl-
edge) and belief. Although this is basically identical to traditional sphere semantics by
[8,10], much of our idea depends on the radical/moderate approach to iterated belief
revision by [16]4, and therefore, we can not only revise one agent’s belief by one input,
but also by a sequence of inputs from the other agent’s knowledge and belief. Namely,
we revise an agent’s belief not only by an input but rather by a sequence of inputs.
The change of belief corresponds to that of preference relation. Thus, we will define
rewriting rules for the preference relation.

4 Rott studied the conservative approach to iterated belief revision in [16]. In this approach,
when ¬ψ ∈ K+̇φ, (K+̇φ)+̇ψ = K+̇ψ, where +̇ is a revision function for a set K of
formulae and a formula φ. The radical/moderate approach does not satisfy such a property.
For details, see [16].

186 Y. Suzuki, S. Tojo, and S. De Saeger

When we incorporate the information that states that j knows φ into i’s belief, we
consider that the worlds which satisfy ¬φ become implausible for agent i, because
knowledge must be true. Perhaps, this information may be false due to j’s misjudgment,
when his information was acquired from an unreliable information source. However, we
will consider that i relies on j’s information if i can assume that he finds himself at some
legal point and j has acquired the information in question from a reliable source. Thus,
we use the radical approach for the definition of revision by another agent’s knowledge.
This approach is also presupposed by the study of belief revision in modal logic [5,6],
where worlds that contradict the input are systematically deleted. Such a method is suit-
able for information that is known (i.e. guaranteed to be correct), because any situation
that contradicts it should be eliminated from the set of worlds still considered possible.

The basic idea can be intuitively described by systems of spheres like the left side
of figure 1. Spheres represent the various equivalence classes imposed on W by the
preference relation ≤i,v,H . Therefore, implausible worlds are at the outside of all the
spheres. Thus, change of preference relation by knowledge is explained as follows:
the most plausible worlds that satisfy φ (worlds of part 1 in the figure) become the most
plausible worlds after accepting the knowledge that φ, the second plausible worlds that
satisfy φ (worlds of part 2 in the figure) become the second-most plausible worlds in
the next step, but implausible worlds that satisfy φ and any worlds that do not satisfy φ
(worlds with black marks) become implausible worlds in the next step.

More formally, w ≤i,v,H·(m,j,φ,K) w′ iff

I. v,H �|=M L or (m, j) /∈ E or v,H |=M ¬Kjφ or
II. m �= i and w ≤i,v,H w′ or

III. m = i and
a. w′ ∈ Imi,v,H·(i,j,φ,K) or
b. w /∈ Imi,v,H·(i,j,φ,K) and w ≤i,v,H w′.

The meaning of the definition is as follows: w is at least as plausible as w′ for i at (v,H)
when the event (m, j, φ,K) occurs iff (I.) (v,H · (m, j, φ,K)) is already illegal (and
therefore, all worlds are implausible from the point of view at (v,H · (m, j, φ,K))) or
(II.) i cannot distinguish (v,H · (m, j, φ,K)) with (v,H) because of m �= i or (III.a.)
w′ is implausible at (v,H · (m, j, φ,K)) or (III.b.) w is at least as plausible as w′ for
i at the previous point (v,H). Thus, in the case of (I.) and (III.a.), any worlds become
implausible, and in the case of (II.), the preference relation is not changed, and therefore
only the case of (III.b.) requires belief revision by the knowledge.

We defined a revision operation for the preference relation by another agent’s knowl-
edge. We regard worlds that contradict the knowledge as implausible, when we incorpo-
rate the information that j believes φ into i’s belief. However, nothing prevents worlds
that satisfy ¬φ from becoming more plausible again upon learning new information
as a result of future communications. Thus, we employ the moderate approach for the
definition of revision by another agent’s belief, because belief may be false and can not
eliminate the information that is not known to be impossible.

The basic idea can also be characterized by systems of spheres like the right side
of figure 1. Change of preference relation by belief is explained as follows: the most
plausible worlds that satisfy φ (worlds of part 1 in the figure) become the most plausible

Iterated Belief Revision in the Face of Uncertain Communication 187

world in the next step of accepting the information that tells that φ is known, the second-
most plausible worlds that satisfy φ (worlds of part 2 in the figure) become the second-
most plausible worlds in the next step, the most plausible worlds that do not satisfy φ
(worlds of part 3 in the figure) become the third-most plausible worlds in the next step,
the second-most plausible worlds that do not satisfy φ (worlds of part 4) become the
fourth-most plausible worlds, and the third-most plausible worlds that do not satisfy
φ (worlds of part 5) become the fifth-most plausible worlds, but implausible worlds
(marked black) remain implausible.

Again, w ≤i,v,H·(m,j,φ,B) w′ iff

I. v,H �|=M L or (m, j) /∈ E or
II. m �= i and w ≤i,v,H w′ or

III. m = i and
a. w′ ∈ Imi,v,H or
b. w /∈ Imi,v,H and

1. w,H |=M φ, w′, H |=M φ, and w ≤i,v,H w′, or
2. w,H |=M φ, w′, H �|=M φ, or
3. w,H �|=M φ, w′, H �|=M φ, and w ≤i,v,H w′.

The meaning of the definition is as follows: w is at least as plausible as w′ for i at (v,H)
when the event (m, j, φ,B) occurs iff (I.) (v,H · (m, j, φ,B)) is already not legal (and
therefore, all worlds are implausible from the point of view at (v,H · (m, j, φ,B)))
or (II.) i cannot distinguish (v,H · (m, j, φ,B)) from (v,H) because of m �= i or
(III.a.) w′ is implausible at (v,H · (m, j, φ,B)) (i.e., at (v,H)) or (III.b.1.) both w and
w′ satisfy φ and w is at least as plausible as w′ for i at the previous point (v,H) or
(III.b.2.) w satisfies φ but w′ does not satisfy φ or (III.b.3.) neither w nor w′ satisfy φ
and w is at least as plausible as w′ for i at the previous point (v,H). Like the revision
for knowledge, in the case of (I.) and (III.a.), any worlds become implausible, and in the
case of (II.), the preference relation is not changed, and therefore, the case of (III.b.1.)
- (III.b.3) is a standard condition for belief revision by knowledge.

While we assumed that ≤i,w,ε=≤i,v,ε when w|Ati = v|Ati , this assumption now can
be generalized by the following theorem.

Theorem 1. If w,H |=M L and v,H ′ |=M L and (w,H) ∼i (v,H ′), then ≤i,w,H=
≤i,v,H′ .

Proof. The proof is separated into two cases: (i) w,H · (m, j, φ, e) |=M L and m �= i
and v,H ′ |=M L and (w,H · (m, j, φ, e)) ∼ (v,H ′), and (ii) w,H · (i, j, φ, e) |=M L
and v,H ′ · (i, j, φ, e) |=M L and (w,H · (i, j, φ, e)) ∼ (v,H ′ · (i, j, φ, e)). Then,
w,H |=M L and v,H ′ |=M L and (w,H) ∼ (v,H ′). In the case of (i), we can de-
rive w,H |=M L and (w,H) ∼ (v,H ′), and the conclusion that we want to show is
proved from ≤i,w,H=≤i,v,H′ by induction. In the case of (ii), after deriving w,H |=M
L and v,H ′ |=M L and (w,H) ∼ (v,H ′), we will conclude the theorem from
≤i,w,H=≤i,v,H′ and the definition of the rewriting rules for the preference relation.

Example 2. Suppose thatM=〈{{alice, bob, charlie},{(alice, bob),(alice, charlie)}},
〈∅, {p}, {q}〉,P,W 〉, where P is arbitrary except for some point (v, ε) for agent i. p

188 Y. Suzuki, S. Tojo, and S. De Saeger

means that Dean puts on the red cap, and q means that Dean puts on the white shirt. We
define the preference relation in (v, ε) for agent i as follows: let v, w, x, y ∈ W such
that v(p) = 0 and v(q) = 0, w(p) = 0 and w(q) = 1, x(p) = 1 and x(q) = 0,
and y(p) = 1 and y(q) = 1, and suppose that v, w, x, and y are equivalent(i.e.,
v ≤i,v,ε w, w ≤i,v,ε v, v ≤i,v,ε x, x ≤i,v,ε v, and so on). Then, v, (alice, bob, p∧q,B)·
(alice, charlie,¬q,K) |=M ¬Balicep, but v, (alice, bob, p, B) · (alice, bob, q, B) ·
(alice, charlie,¬q,K) |=M Balicep.

4 Postulates

In this section, we will construct rational postulates for our revision operation that fol-
low AGM’s paradigm [1] and show the representation theorem in the restricted com-
munication graph, which states that the above operation is essentially equivalent with
the postulates. Although some of them are changed from AGM’s original definition,
we will discuss the reason why our result is restricted, and we conclude that the result
is due to the fact that AGM’s definition neglects the case that an external input comes
from the other’s knowledge.

First, we revisit AGM rational postulates for a belief revision operator +̇ that accepts
a belief set and a formula, and returns a belief set. Given some consequence relation #,
belief set K is a set of sentences such that K = {φ|K # φ}, i.e., logically closed set.
Moreover, suppose that K + φ = {ψ|K ∪ {φ} # ψ}.

AGM1. For any sentence φ and any belief set K , K+̇φ is a belief set.
AGM2. φ ∈ K+̇φ.
AGM3. K+̇φ ⊆ K + φ.
AGM4. If ¬φ /∈ K , then K + φ ⊆ K+̇φ.
AGM5. K+̇φ = K⊥ iff # ¬φ.
AGM6. If # φ ⇔ ψ, then K+̇φ = K+̇ψ.
AGM7. K+̇(φ ∧ ψ) ⊆ (K+̇φ) + ψ.
AGM8. If ¬ψ /∈ K+̇φ, then (K+̇φ) + ψ ⊆ K+̇(φ ∧ ψ).

As the details of AGM postulates are well explained in [1], we will not recapitulate them
here. Instead, we will indicate a problem that arises when applying the AGM postulates
to our formalism. That is, the beliefs in K are treated uniformly, with no distinction
between truths and mere beliefs. Thus, an agent can not compare the knowledge that φ
is implausible with the belief that φ is implausible. He cannot accept the information
that φ is correct in the former case, while he can do so in the latter case. However,
when we utilize the framework of belief set K , such a difference is neglected. In other
words, an agent can not reject an input φ, even though he knows ¬φ. For this reason we
introduce a variation of the AGM postulates that addresses this problem.

1. If (w,H) ∼i (v,H ′), then w,H |=M Biφ iff v,H ′ |=M Biφ.
2. If w,H |=M ¬Ci¬φ, then w,H · (i, j, φ, e) |=M Biφ.
3. If w,H |=M Ci¬φ, then w,H · (i, j, φ, e) |=M Biψ iff w,H |=M Biψ.
4. If w,H · (i, j, φ, e) |=M Biψ, then v,H ′ |=M Bi(φ ⇒ ψ).
5. If w,H |=M ¬Bi¬φ and w,H |=M Bi(φ ⇒ ψ), then v,H ′ ·(i, j, φ, e) |=M Biψ.

Iterated Belief Revision in the Face of Uncertain Communication 189

6. w,H |=M ¬BiL iff w,H |=M ¬Biφ for any φ.
7. If |=M φ ⇔ ψ, then w,H · (i, j, φ, e) |=M Biχ iff w,H · (i, j, ψ, e) |=M Biχ.
8. If w,H · (i, j, φ ∧ ψ, e) |=M Biχ, then w,H · (i, j, φ, e) |=M Bi(ψ ⇒ χ).
9. If w,H |=M ¬Ci¬φ, w,H · (i, j, φ, e) |=M ¬Bi¬ψ and w,H · (i, j, φ, e) |=M

Bi(ψ ⇒ χ), then w,H · (i, j, φ ∧ ψ, e) |=M Biχ.
10.

10.a. If w,H |=M ¬Ci¬φ, w,H · (i, j, φ, e) |=M ¬Ci¬ψ and |=M ¬(φ ∧ ψ), then
w,H · (i, j, φ, e) · (i, k, ψ, e′) |=M Biχ iff w,H · (i, k, ψ,B) |=M Biχ.

10.b. Else if w,H |=M ¬Ci¬φ, w,H · (i, j, φ, e) |=M ¬Ci¬ψ and �|=M ¬(φ ∧ ψ),
then w,H ·(i, j, φ, e)·(i, k, ψ, e′) |=M Biχ iff w,H ·(i, k, φ∧ψ,B) |=M Biχ.

10.c. Else if w,H |=M Ci¬φ and w,H · (i, j, φ, e) |=M ¬Ci¬ψ, then w,H ·
(i, j, φ, e) · (i, k, ψ, e′) |=M Biχ iff w,H · (i, k, ψ,B) |=M Biχ.

10.d. Else if w,H |=M ¬Ci¬φ and w,H · (i, j, φ, e) |=M Ci¬ψ, then w,H ·
(i, j, φ, e) · (i, k, ψ, e′) |=M Biχ iff w,H · (i, k, φ,B) |=M Biχ.

10.e. Else if w,H |=M Ci¬φ and w,H · (i, j, φ, e) |=M Ci¬ψ, w,H · (i, j, φ, e) ·
(i, k, ψ, e) |=M Biχ iff w,H |=M Biχ.

The following mapping acts as the translation between our postulates and the AGM
ones.

φ ∈ K iff w,H |=M Biφ.

ψ ∈ K+̇φ iff w,H · (i, j, φ, e) |=M Biψ.

Some of them (4., 5., 7. and 8.) are equivalent with AGM postulates (AGM3., 4., 6.
and 7.)5. Postulates 2. and 9. are almost the same as AGM2. and AGM8., but they pre-
suppose that i is not convinced that input φ is false, i.e., he considers that φ is possible.
Otherwise, he neglects input φ by 3. Generally, belief revision that can reject external
input is called nonprioritized belief change [9]. In our study, the reason for eliminating
external input is the conviction that it is impossible. When histories cannot be distin-
guished by agent i, i’s belief is also not distinguished in postulate 1.

Since our approach is the combination of radical and moderate approach, we intro-
duce Postulate 10 for iterated belief revision. At first, suppose that information φ arrives
at the agent i. When φ is inconsistent with i’s knowledge, we should neglect the infor-
mation φ from the result of the iterated belief revision (10.c and 10.e). After φ arrives at
the agent i, suppose that ψ arrives at the agent i. When ψ is inconsistent with i’s current
knowledge, we should neglect this information ψ from the result of the iterated belief
revision (10.d). Suppose that ψ is inconsistent with i’s current knowledge. If the new in-
formation ψ is inconsistent with the old information φ, the new information eliminates
the old information, and the iterated belief revision is equal to the belief revision by
the new information (10.a). Otherwise, the iterated belief revision is equal to the belief
revision by the conjunction of the new information and the old information (10.b).

Now we show that the following theorem holds when communication graph is re-
stricted. The proof is shown in Appendix A.

5 For 4., 5. and 8., note that ψ ∈ K + φ iff φ ⇒ ψ ∈ K by the deduction theorem.

190 Y. Suzuki, S. Tojo, and S. De Saeger

World w World w′

Fig. 2. Example that does not satisfy postulate 5

Theorem 2. Suppose that E is fully connected. If a communication graph model M
satisfies the rewriting rules for the preference relation, then it also satisfies all the
postulates.

Inconveniently, this theorem cannot be generalized to the unrestricted communica-
tion graph. Suppose that M = 〈{{i, j, k, l}, {(i, j), (i, k)}}, 〈∅, {p}, {q}{r}〉,P,W 〉,
where P is arbitrary except for some point (v, ε) for agent i. We define the prefer-
ence relation in (v, ε) for agent i as follows: let w,w′ ∈ W such that w(p) = 0,
w(q) = 1, and w(r) = 1 (see the left side of figure 2), and w′(p) = 1, w′(q) = 0,
and w(r) = 0 (see the right side of figure 2), and suppose that w is more plausible than
w′ (i.e., w <i,v,ε w′) and for any w′′ ∈ W , if w′′ is equal to neither w or w′, then
w′ is more plausible than w′′ (i.e., w′ <i,v,ε w′′). Then, v, ε |=M ¬Bi¬(p ∨ q) and
v, ε |=M Bi((p∨q) ⇒ r), but v, (i, j, p∨q,K) |=M ¬Bir. The communication graph
in this example is not fully connected, and therefore, postulate 5 is violated.

We can show the converse of the above theorem when the communication graph is
restricted. The proof is shown in Appendix B.

Theorem 3. Suppose that E is existentially connected. If a communication graph
model M satisfies all the postulates, then there is some model M′ that satisfies the
rewriting rules for the preference relation, such that for any w, H and φ, w,H |=M φ
iff w,H |=M′ φ.

That is, we showed the following representation theorem in the restricted communica-
tion graph.

Theorem 4. Suppose that A has at least two agents and E is fully connected. There
is some communication graph model M satisfies all the postulates iff there is some
communication graph model M′, which satisfies the rewriting rules for the preference
relation, such that for any w, H and φ, w,H |=M φ iff w,H |=M′ φ.

Iterated Belief Revision in the Face of Uncertain Communication 191

5 Conclusion

The traditional AGM paradigm of belief revision does not distinguish belief from
knowledge in the way epistemic logic does. Even though AGM postulates are directly
translated into the possible world semantics, each agent still cannot see if he lives in
the actual world or not [8,10], i.e., there is no difference between belief and knowledge.
The modal logic approach to belief revision had the same problem, because modal op-
erator for knowledge was not introduced, which is distinguished from modal operator
for belief [3].

As already discussed, Friedman and Halpern [5,6] defined a belief operator with the
epistemic logic of multiagent systems in Fagin et al. [4]. They considered that an agent
i believed φ iff i knew that φ was plausible. Thus, their approach to iterated belief
revision can distinguish belief from knowledge.

Our study obviously depends on their result, because Pacuit and Parikh’s history is
equivalent with systems of runs in Fagin et al. [4] (See [14]). However, there is an
important difference w.r.t. the acquisition of knowledge. They assumed that an agent
acquires knowledge by observations from the external environment, and the information
cannot be false. Our approach considers that an agent acquires knowledge from another
agent by communication, and the information may be false. Therefore, our approach
requires legality of history.

In this paper, we proposed a belief revision model for two types of uncertain com-
munication. At first, when an agent as information source considers that he knows the
information, and we can consider that there is reliable communication, we tend to ac-
cept this information. Secondly, when the agent that is the source of the information is
himself less than certain, we are inclined to believe him, but at the same time we are less
than fully convinced. Thus, postulates for the model was introduced, and the restricted
representation theorem was shown.

However, there are four problems remaining with our study. Firstly, when we do not
assume a fully connected communication graph, it may not satisfy the postulates. In the
above example, we showed that an agent i may not believe ψ, when he believes that
φ ⇒ ψ, and j informs that he knows φ, although i believes that φ is not known to j, but
can be true in fact. In the AGM postulates, such a case is forbidden. AGM postulates do
not refer to the information source of external inputs. So when the first agent accepts
a piece of information φ that comes from the second agent’s knowledge, he will not
distinguish it from other information φ received from a third agent’s knowledge. How-
ever, these two situations can be regarded as different in our logic. Therefore, we do not
agree with this idea, and consider that their postulates should be rethought for the case
of multiagent communication, e.g., instead of our postulate 5., we use the following
postulate.

– If w,H |=M ¬Bi¬Kjφ and w,H |=M Bi(φ ⇒ ψ), then v,H ′ · (i, j, φ,K) |=M
Biψ.

– If w,H |=M ¬Bi¬φ and w,H |=M Bi(φ ⇒ ψ), then v,H ′·(i, j, φ,B) |=M Biψ.

Our model satisfies this postulate generally. Construction of rational postulates for
belief revision in multiagent communication will be our future subject.

192 Y. Suzuki, S. Tojo, and S. De Saeger

Secondly, we do not consider legality of belief. Therefore, a communication event
(i, j, φ,B) is not related with whether j believes φ actually or not. Since we consider
that i can believe it even if it is j’s lie, while i cannot know φ when j informs that j
knows φ but it is false in fact, we did not define the legality of belief. In future work,
we will study the problem of the representation of legality.

Thirdly, our definition of various concepts (e.g., the rewriting rules for the preference
relation) is complicated. We suspect that this problem is due to the introduction of a
legality predicate in the object language. Perhaps we may need to change the object
language and lift the concept of history legality to the meta-language.

Finally, we depend on many presuppositions, e.g., whether an atomic proposition
is known by someone or not is common knowledge, we use the moderate approach
for the belief and the radical approach for the knowledge, etc. We do not reject such
assumptions, since we are afraid of more complex formalization than this paper. We
should resolve the problem for the simplicity.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet
contraction and revision functions. Journal of Symbolic Logic 50, 510–530 (1985)

2. Audi, R.: Epistemology, 2nd edn. Routledge (2003)
3. Boutilier, C.: Unifying default reasoning and belief revision in a modal framework. Artificial

Intelligence 68(1), 33–85 (1994)
4. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about knowledge. The MIT Press,

Cambridge (1995)
5. Friedman, N., Halpern, J.Y.: Modeling belief in dynamic systems, part i: Foundations. Arti-

ficial Intelligence 95(2), 257–316 (1997)
6. Friedman, N., Halpern, J.Y.: Modeling belief in dynamic systems, part ii: Revision and up-

date. Journal of Artificial Intelligence Research 10, 117–167 (1999)
7. Gärdenfors, P.: Knowledge in flux: Modeling the dynamics of epistemic states. The MIT

Press, Cambridge (1988)
8. Grove, A.: Two modelings for theory change. Journal of Philosophical Logic 17, 157–170

(1988)
9. Hansson, S.O.: A textbook of belief dynamics. Kluwer Academic Publishers, Dordrecht

(1999)
10. Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal change.

Artificial Intelligence 52, 263–294 (1991)
11. Kraus, S., Lehman, D.: Knowledge, belief, and time. Theoretical Computer Science 58, 155–

174 (1988)
12. Kraus, S., Lehman, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cu-

mulative logics. Artificial Intelligence 44, 167–207 (1990)
13. Lehman, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelli-

gence 55, 1–60 (1992)
14. Pacuit, E.: Some comments on history based structures. Journal of Applied Logic 5, 613–624

(2007)
15. Pacuit, E., Parikh, R.: Reasoning about communication graphs. In: Augustus de Morgan

Workshop: Interactive Logic: Games and Social Software (2006)
16. Rott, H.: Coherence and conservatism in the dynamics of belief ii: Iterated belief change

without dispositional coherence. Journal of Logic and Computation 13(1), 111–145 (2003)

Iterated Belief Revision in the Face of Uncertain Communication 193

A The Proof of Theorem 2

Proof. 1., 2., 3., 4., 6., 7., and 8. are rather easy to show. The problematic cases are 5.,
9., and 10.

We show the case of 5. Let a communication graph model M = 〈G,At,P ,W 〉
satisfy the rewriting rules for the preference relation. Suppose that v,H ′ |=M ¬Bi¬φ
and v,H ′ |=M Bi(φ ⇒ ψ). Then, there is some (w,H) such that (w,H) ∼i (v,H ′)
and w,H |=M L, and for some w′ ∈ [[φ ⇒ ψ]]Mi,w,H , for all w′′ ∈ [[¬(φ ⇒ ψ)]]Mi,w,H ,
w′ <i,w,H w′′. Besides, for all w′ ∈ [[¬φ]]Mi,w,H , for some w′′ ∈ [[φ]]Mi,w,H , w′′ ≤i,w,H

w′. Thus, for some w′ ∈ [[φ ∧ ψ]]Mi,w,H , for all w′′ ∈ [[φ ∧ ¬ψ]]Mi,w,H , w′ <i,w,H

w′′. Therefore, for some w′ ∈ [[ψ]]Mi,w,H·(i,j,φ,e), for all w′′ ∈ [[¬ψ]]Mi,w,H·(i,j,φ,e),

w′ <i,w,H·(i,j,φ,e) w′′. (In the case of e = K , note that [[φ∧ψ]]Mi,w,H = [[Kjφ∧ψ]]Mi,w,H

and [[φ∧¬ψ]]Mi,w,H = [[Kjφ∧¬ψ]]Mi,w,H .) Thus, we showed v,H ′ ·(i, j, φ, e) |=M Biψ.
We show the case of 9. Suppose that w,H |=M ¬Ci¬φ, w,H · (i, j, φ, e) |=M

¬Bi¬ψ, w,H ·(i, j, φ, e) |=M Bi(ψ ⇒ χ). Then, for some w′∈ [[ψ ⇒ χ]]Mi,w,H·(i,j,φ,e),

for all w′′ ∈ [[¬(ψ ⇒ χ)]]Mi,w,H·(i,j,φ,e), w′ <i,w,H·(i,j,φ,e) w′′. Besides it, for some

w′ ∈ [[φ]]Mi,w,H·(i,j,φ,e), for all w′′ ∈ [[¬φ]]Mi,w,H·(i,j,φ,e), w′ <i,w,H·(i,j,φ,e) w′′.
Therefore, for some w′ ∈ [[φ ∧ (ψ ⇒ χ)]]Mi,w,H·(i,j,φ,e), for all

w′′ ∈ [[φ ∧ ¬(ψ ⇒ χ)]]Mi,w,H·(i,j,φ,e), w′ <i,w,H·(i,j,φ,e) w′′. Besides it, for all w′′ ∈
[[¬ψ]]Mi,w,H·(i,j,φ,e), for some w′ ∈ [[ψ]]Mi,w,H·(i,j,φ,e), w′ ≤i,w,H·(i,j,φ,e) w′′. It follows

that for some w′ ∈ [[φ∧ψ ∧χ)]]Mi,w,H·(i,j,φ,e), for all w′′ ∈ [[φ∧ψ ∧¬χ)]]Mi,w,H·(i,j,φ,e),

w′ <i,w,H·(i,j,φ,e) w′′. Thus, for some w′ ∈ [[φ ∧ ψ ∧ χ)]]Mi,w,H , for all w′′ ∈ [[φ ∧
ψ ∧ ¬χ)]]Mi,w,H , w′ <i,w,H w′′. Therefore, for some w′ ∈ [[χ]]Mi,w,H·(i,j,φ∧ψ,e), for all

w′′ ∈ [[¬χ]]Mi,w,H·(i,j,φ∧ψ,e), w′ <i,w,H·(i,j,φ∧ψ,e) w′′6. We showed w,H · (i, j, φ ∧
ψ, e) |=M Biχ.

About 10., We only show the case of 10.a. Suppose that w,H |=M ¬Ci¬φ, w,H ·
(i, j, φ, e) |=M ¬Ci¬ψ and |=M ¬(φ ∧ ψ). We want to show that w,H · (i, j, φ, e) ·
(i, k, ψ, e′) |=M Biχ iff w,H · (i, k, ψ,B) |=M Biχ. It suffices to show that w,H ·
(i, j, φ,B) · (i, k, ψ, e) |=M Biχ iff v,H ′ · (i, k, ψ,B) |=M Biχ. It is obvious from
the following point.

for some w′ ∈ [[χ]]Mi,w,H·(i,j,φ,B)·(i,k,ψ,e), for all w′′ ∈ [[¬χ]]Mi,w,H·(i,j,φ,B)·(i,k,ψ,e),
w′ <i,w,H·(i,j,φ,B)·(i,k,ψ,e) w′′.

$
for some w′ ∈ [[ψ ∧ χ]]Mi,w,H·(i,j,φ,B)·(i,k,ψ,e), for all

w′′ ∈ [[ψ ∧ ¬χ]]Mi,w,H·(i,j,φ,B)·(i,k,ψ,e), w
′ <i,w,H·(i,j,φ,B)·(i,k,ψ,e) w′′.

$
for some w′ ∈ [[ψ ∧ χ]]Mi,w,H·(i,j,φ,B), for all w′′ ∈ [[ψ ∧ ¬χ]]Mi,w,H·(i,j,φ,B),
w′ <i,w,H·(i,j,φ,B) w′′.

$
for some w′ ∈ [[ψ ∧ χ]]Mi,w,H , for all w′′ ∈ [[ψ ∧ ¬χ]]Mi,w,H , w′ <i,w,H w′′.

6 In the case of e = K, note that [[φ ∧ ψ ∧ χ]]Mi,w,H = [[Kj(φ ∧ ψ) ∧ χ]]Mi,w,H and [[φ ∧ ψ ∧
¬χ]]Mi,w,H = [[Kj(φ ∧ ψ) ∧ ¬χ]]Mi,w,H .

194 Y. Suzuki, S. Tojo, and S. De Saeger

$
for some w′ ∈ [[χ]]Mi,w,H·(i,k,ψ,B), for all w′′ ∈ [[¬χ]]Mi,w,H·(i,k,ψ,B),
w′ <i,w,H·(i,k,ψ,B) w′′.

We can show 10.b. to 10.e. in the same way.

B The Proof of Theorem 3

Proof. Suppose form(w) =
∧
{p ∈ At|w(p) = 1} ∧

∧
{¬p ∈ At|w(p) = 0}. Given

M = 〈G,At,P ,W 〉, suppose M′ = 〈G,At,P′,W 〉, where P ′
i(v,H) =≤i,v,H such

that
w ≤i,v,H w′ iff v,H �|=M L or w′ ∈ Imi,v,H

or v,H |=M Ci¬(form(w) ∨ form(w′))

or for some j,

v,H · (i, j, form(w) ∨ form(w′), B) |=M ¬Bi¬form(w).

We will show that for any w, H , and φ, w,H |=M φ iff w,H |=M′ φ. It suffices to
show that for any w, H , φ, and ψ, w,H |=M φ →i ψ iff w,H |=M′ φ →i ψ, when
w,H |=M L. It is obvious as follows.

v,H |=M′ φ →i ψ
$

for some w ∈ [[φ ∧ ψ]]M
′

i,v,H , for all w ∈ [[φ ∧ ¬ψ]]M
′

i,v,H , w <i,v,H w′.
$ (Note that E is existentially connected.)

for some w ∈ [[φ ∧ ψ]]Mi,v,H , for all w ∈ [[φ ∧ ¬ψ]]Mi,v,H , for some j,
v,H · (i, j, form(w) ∨ form(w′), B) |=M Biform(w).

$ (Note that E is existentially connected.)
for some w ∈ [[φ ∧ ψ]]Mi,v,H , for all w ∈ [[φ ∧ ¬ψ]]Mi,v,H , w <i,v,H w′.

$
v,H |=M φ →i ψ

Moreover, connectedness, transitivity, satisfiability of the rewriting rules for the prefer-
ence relations can be shown in the same way of the proof of the semantic version for
belief revision [10] as follows.

(Connectedness) Suppose w �≤i,v,H w′. We want to show that w′ ≤i,v,H w. Then,
v,H |=M L and w′ /∈ Imi,v,H and v,H |=M ¬Ci¬(form(w) ∨ form(w′)) and
v,H · (i, j, form(w) ∨ form(w′), B) |=M Bi¬form(w). From Postulate 2, v,H ·
(i, j, form(w) ∨ form(w′), B) |=M Bi(form(w) ∨ form(w′)). Since Bi satisfies
axiom K, v,H · (i, j, form(w) ∨ form(w′), B) |=M Biform(w′). Therefore, v,H ·
(i, j, form(w) ∨ form(w′), B) |=M ¬Bi¬form(w′).

(Transitivity) Suppose that w ≤i,v,H w′ and w′ ≤i,v,H w′′. We want to show that
w ≤i,v,H w′′. From the supposition, v,H �|=M L or w′ ∈ Imi,v,H or v,H |=M
Ci¬(form(w)∨form(w′)) or v,H ·(i, j, form(w)∨form(w′), B) |=M ¬Bi¬form
(w). Besides it, w′′ ∈ Imi,v,H or v,H |=M Ci¬(form(w′) ∨ form(w′′)) or v,H ·
(i, j, form(w′) ∨ form(w′′), B) |=M ¬Bi¬form(w′). Suppose that v,H |=M L

Iterated Belief Revision in the Face of Uncertain Communication 195

and w′ /∈ Imi,v,H and v,H |=M ¬Ki¬(form(w) ∨ form(w′′)). We want to show
that v,H · (i, j, form(w′) ∨ form(w′′), B) |=M ¬Bi¬form(w′). Since v,H |=M
¬Ki¬(form(w) ∨ form(w′′)), we can conclude v,H |=M ¬Ci¬(form(w) ∨ form
(w′)∨form(w′′)). From Postulates 2, v,H ·(i, j, form(w)∨form(w′)∨form(w′′),
B) |=M Bi(form(w) ∨ form(w′) ∨ form(w′′)).

We will show v,H �|=M Ci¬(form(w) ∨ form(w′)). Suppose that v,H |=M
Ci¬(form(w)∨form(w′)). Then, v,H ·(i, j, form(w)∨form(w′)∨form(w′′), B)
|=M Bi¬(form(w)∨form(w′)). From the axiom K, v,H ·(i, j, form(w)∨form(w′)
∨ form(w′′), B) |=M Biform(w′′). It follows that v,H |=M ¬Ci¬(form(w′) ∨
form(w′′)). From the suposition, v,H · (i, j, form(w′) ∨ form(w′′), B) |=M ¬Bi¬
form(w′). It contradicts the supposition. Therefore, v,H �|=M Ci¬(form
(w) ∨ form(w′)).

So, it suffices to show the result in the case of (i) v,H |=M Ci¬(form(w′) ∨
form(w′′)) or (ii) v,H |=M ¬Ci¬(form(w′) ∨ form(w′′)).

(i) Suppose that v,H |=M Ci¬(form(w′) ∨ form(w′′)). Then, v,H · (i, j, form
(w)∨form(w′′), B) |=M Bi¬form(w′′). From the axiom K, v,H · (i, j, form(w)∨
form(w′′), B) |=M Biform(w). It follows that v,H ·(i, j, form(w)∨form(w′′), B)
|=M ¬Bi¬form(w).

(ii) Suppose that v,H |=M ¬Ci¬(form(w′)∨form(w′′)). Then, v,H ·(i, j, form
(w)∨form(w′), B) |=M ¬Bi¬form(w) and v,H · (i, j, form(w′)∨form(w′′), B)
|=M ¬Bi¬form(w′). From Postulate 9, v,H · (i, j, form(w) ∨ form(w′) ∨ form
(w′′), B) |=M ¬Bi((form(w) ∨ form(w′)) ⇒ ¬form(w)). Therefore, v,H ·
(i, j, form(w) ∨ form(w′) ∨ form(w′′), B) |=M ¬Bi¬form(w). Since v,H · (i, j,
form(w) ∨ form(w′) ∨ form(w′′), B) |=M ¬Bi((form(w) ∨ form(w′′)) ⇒ ¬
form(w)), it follows from Postualte 8 that v,H ·(i, j, form(w)∨form(w′′), B) |=M
¬Bi¬form(w).

(Condition B ⇒) Suppose that w ≤i,v,H·(m,j,φ,B) w′. We want to show that

I. v,H �|=M L or (m, j) /∈ E or
II. m �= i and w ≤i,v,H w′ or

III. m = i and
a. w′ ∈ Imi,v,H or
b. w /∈ Imi,v,H and

1. w,H |=M φ, w′, H |=M φ, and w ≤i,v,H w′, or
2. w,H |=M φ, w′, H �|=M φ, or
3. w,H �|=M φ, w′, H �|=M φ, and w ≤i,v,H w′,

We can conclude from w ≤i,v,H·(m,j,φ,B) w′ that v,H · (m, j, φ,K) �|=M L or w′ ∈
Imi,v,H or v,H · |=M Ci¬(form(w) ∨ form(w′)) or v,H · (m, j, φ,B) · (i, j,
form(w)∨ form(w′), B) |=M ¬Bi¬form(w). When v,H �|=M L or w′ ∈ Imi,v,H ,
I. or III.a. is obvious. When m �= i, w ≤i,v,H w′ is obvious from Postulate 1. Therefore,
II. is satisfied. Suppose v,H |=M L and w′ /∈ Imi,v,H and m = i. We can conclude
v,H |=M ¬Ci¬(form(w)∨form(w′)) from w′ /∈ Imi,v,H . Thus, v,H ·(m, j, φ,B)·
(i, j, form(w) ∨ form(w′), B) |=M ¬Bi¬form(w). w /∈ Imi,v,H is obvious.

(i) In the case of v,H |=M Ci¬φ, we can deduce v,H ·(i, j, form(w)∨form(w′),
B) |=M ¬Bi¬form(w) from 10.c. Therefore, III.b.3. is satisfied.

196 Y. Suzuki, S. Tojo, and S. De Saeger

(ii) In the case of v,H |=M ¬Ci¬φ and |=M ¬(φ ∧ (form(w) ∨ form(w′))),
we can deduce v,H · (i, j, form(w)∨ form(w′), B) |=M ¬Bi¬form(w) from 10.a.
Therefore, III.b.3 is satisfied.

(iii) In the case of v,H |=M ¬Ci¬φ and �|=M ¬(φ ∧ (form(w) ∨ form(w′))), we
can deduce v,H ·(i, j, φ∧(form(w)∨form(w′), B)) |=M ¬Bi¬form(w) from 10.b.
When w,H |=M ¬φ and w′, H |=M φ, v,H · (i, j, form(w′), B) |=M ¬Bi¬form
(w) from 7., but it contradicts v,H · (i, j, form(w′), B) |=M Bi¬form(w). When
w,H |=M φ and w′, H |=M ¬φ, III.b.2. is satisfied. When w,H |=M φ and w′, H
|=M φ, v,H ·(i, j, form(w)∨form(w′), B) |=M ¬Bi¬form(w) from 7., and III.b.1.
is satisfied.

(Condition B ⇒) Suppose that

I. v,H �|=M L or (m, j) /∈ E or
II. m �= i and w ≤i,v,H w′ or

III. m = i and
a. w′ ∈ Imi,v,H or
b. w /∈ Imi,v,H and

1. w,H |=M φ, w′, H |=M φ, and w ≤i,v,H w′, or
2. w,H |=M φ, w′, H �|=M φ, or
3. w,H �|=M φ, w′, H �|=M φ, and w ≤i,v,H w′,

We want to show that w ≤i,v,H·(m,j,φ,B) w′. When I. or III.a. is satisfied, it is obvious.
When II. is satisfied, it is followed from Postulate 1. Suppose that I.-III.a. is not satisfied.

(i) In the case of III.b.1., w /∈ Imi,v,H , w,H |=M φ, w′, H |=M φ, and v,H ·
(i, j, form(w) ∨ form(w′), B) |=M ¬Bi¬form(w). From w /∈ Imi,v,H , v,H |=M
¬Ci¬φ. It folows from Postulate 7. and 10.b. that v,H · (i, j, φ,B) · (i, j, form(w) ∨
form(w′), B) |=M ¬Bi¬form(w). Therefore, w ≤i,v,H·(m,j,φ,B) w′.

(ii) In the case of III.b.2., w /∈ Imi,v,H , w,H |=M φ, w′, H �|=M φ. From Postu-
late 2., v,H · (i, j, form(w), B) |=M Biform(w). From Postulate 7., v,H · (i, j, φ∧
(form(w)∨form(w′)), B) |=M Biform(w). From Postulate 10.a., v,H ·(i, j, φ,B)·
(i, j, form(w) ∨ form(w′), B) |=M Biform(w). Thus, v,H · (i, j, φ,B) · (i, j,
form(w) ∨ form(w′), B) |=M ¬Bi¬form(w). Therefore, w ≤i,v,H·(m,j,φ,B) w′.

(iii) In the case of III.b.3., w /∈ Imi,v,H , w,H |=M ¬φ, w′, H |=M ¬φ, and v,H ·
(i, j, form(w) ∨ form(w′), B) |=M ¬Bi¬form(w). From w /∈ Imi,v,H , v,H |=M
¬Ki¬φ. It folows from Postulate 10.a. that v,H · (i, j, φ,B) · (i, j, form(w) ∨ form
(w′), B) |=M ¬Bi¬form(w). Therefore, w ≤i,v,H·(m,j,φ,B) w′.

The proof of (Condition K ⇒) and (Condition K ⇐) is almost as same as the proof
of (Condition K ⇒) and (Condition K ⇐).

Abstracting and Verifying Strategy-Proofness
for Auction Mechanisms

Emmanuel M. Tadjouddine, Frank Guerin, and Wamberto Vasconcelos

Department of Computing Science, King’s College,
University of Aberdeen, Aberdeen AB24 3UE, Scotland

Abstract. We are interested in finding algorithms which will allow an
agent roaming between different electronic auction institutions to au-
tomatically verify the game-theoretic properties of a previously unseen
auction protocol. A property may be that the protocol is robust to col-
lusion or deception or that a given strategy is optimal. Model checking
provides an automatic way of carrying out such proofs. However it may
suffer from state space explosion for large models. To improve the per-
formance of model checking, abstractions were used along with the Spin
model checker. We considered two case studies: the Vickrey auction and
a tractable combinatorial auction. Numerical results showed the limits of
relying solely on Spin. To reduce the state space required by Spin, two
property-preserving abstraction methods were applied: the first is the
classical program slicing technique, which removes irrelevant variables
with respect to the property; the second replaces large data, possibly
infinite values of variables with smaller abstract values. This enabled us
to model check the strategy-proofness property of the Vickrey auction
for unbounded bid range and number of agents.

1 Introduction

Trust is a major concern in agent-mediated eCommerce systems. To tackle this,
much research has been carried out to develop game theory mechanisms which
guarantee desirable properties for the system, even in the face of agents who are
willing to lie or cheat; for example, there are mechanisms which can guarantee
that a system is robust to agents bidding falsely or colluding. These mechanisms
work perfectly well in a closed Multi-Agent System (MAS) when designers can
program agents in full knowledge of the favourable properties of the mechanism.
However, it is not clear how such mechanisms could be used in open systems
where agents might have to interoperate between different institutions. A roam-
ing agent arriving at an institution where a new, previously unseen, protocol is
in use, will need to understand the rules of engagement in much the same way
human agents can.

In this paper we assume that there is some standard language in which the
rules of the auction can be written and published. By this we mean a low-
level protocol specifying who can bid, in what order, and how the winners and
prices are determined. We assume that institutions publish the specifications of

M. Baldoni et al. (Eds.): DALT 2008, LNAI 5397, pp. 197–214, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

198 E.M. Tadjouddine, F. Guerin, and W. Vasconcelos

their auction protocols in this way. A roaming agent who arrives at a foreign
institution can download a protocol and analyse it in order to make a decision
about whether or not to participate, and what strategy to use. The challenge
now is for the roaming agent, with bounded computing resources, to be able to
automatically check some of the game-theoretic properties of the protocol.

Auctions are usually designed to have certain desirable game theoretic prop-
erties such as incentive compatibility, encouraging agents to bid truthfully, or
collusion-proofness meaning agents cannot collude to achieve a certain outcome,
or false-name bidding free meaning agents cannot manipulate the outcome by
using fictitious names. We focus on dominant strategy equilibrium, which means
the game has the property of strategy-proofness ; this gives agents an incentive to
bid their true valuations. Game theoretic properties such as strategy-proofness
rely on very strong assumptions; it is required that the property be common
knowledge among the players. If the common knowledge of the equilibrium is
not achieved, then agents cannot expect it to be played [1].

Model checking provides an automatic way of carrying out the verification of
game-theoretic properties of a given auction mechanism. However it may suffer
from state space explosion for large models [2,3]. This work extends that of [3]
from model-checking single item auctions to combinatorial ones. In here, we have
considered two case studies: the Vickrey auction and a tractable combinatorial
auction termed Quantity-Restrained Multi-Object Auctions (QRMOA) in [4]
and then checked their strategy-proofness using the Spin model checker [5].
Numerical results showed the limits of relying solely on Spin. To reduce the
state space required by Spin, two property-preserving abstraction methods were
applied: the first is the classical program slicing technique [6], which removes
irrelevant variables with respect to the property; the second replaces large data,
possibly infinite values of variables with smaller abstract values. This enabled
us to model check the strategy-proofness property of the Vickrey auction for an
unbounded bid range and number of agents.

The remainder of this paper is organized as follows. In Section 2, we present
some preliminaries with respect to mechanism design and combinatorial auc-
tions. In Section 3, we use the Vickrey auction and the QRMOA to demonstrate
the limits of relying solely on a model checker to verify for example the strategy-
proofness property. In Section 4, we present two sound abstractions for improv-
ing the performance of model checking and illustrate their benefits in checking
strategy-proofness for the Vickrey auction. In Section 5, we discuss the related
work. Finally, Section 6 concludes and opens up with future work.

2 Preliminaries

This section provides the required background on combinatorial auctions and
mechanism design.

Mechanism Design: Game theory mechanism design [7, Chap. 1 & 2], consists
in finding decision procedures that determine the outcome for the game mech-
anism according to some desired objective. In open multi-agent systems where

Abstracting and Verifying Strategy-Proofness for Auction Mechanisms 199

auctions take place, an objective that is of interest is achieving incentive compat-
ibility (no bidder can benefit from lying provided all other agents are truthful)
or strategy-proofness (truth-telling is a dominant strategy). A Nash equilibrium
can be used to implement an incentive compatible mechanism. A dominant strat-
egy equilibrium can implement strategy-proofness, this is a stronger notion than
Nash equilibrium; i.e. every dominant strategy equilibrium is a Nash equilib-
rium, but the converse is not true. A well known class of auction mechanisms
that is efficient and strategy-proof is the Vickrey-Clarke-Groves (VCG), see for
example [8,7,9]. The VCG mechanism is performed by finding (i) the allocation
that maximises the social welfare and (ii) a pricing rule allowing each winner
to benefit from a discount according to his contribution to the overall value for
the auction. To formalise the VCG mechanism, let us introduce the following
notations:

– X is the set of possible valid allocations
– vi(x) is the true valuation of x ∈ X for bidder i

– bi(x) is the bidding value of x ∈ X for bidder i

– x∗ ∈ argmaxx∈X
∑n

i=1 bi(x) is the optimal allocation for the submitted bids.
– x∗

−i ∈ argmaxx∈X
∑n

j �=i bj(x) is the optimal allocation if agent i were not to
bid.

– ui is the utility function for bidder i.

The VCG payment pi for bidder i is defined as

pi(bi, b−i) = bi(x∗) −
(∑n

j=1 bj(x∗) −
∑n

j=1, j �=i bj(x∗
−i)

)
=

∑n
j=1, j �=i bj(x∗

−i) −
∑n

j=1, j �=i bj(x∗).
(1)

In this equation, the quantity
∑n

j=1, j �=i bj(x∗
−i) is called the Clarke tax. The

utility ui for agent i is simply its valuation on the received bundle minus the
price it has paid. The price paid is a function of its own bid, and the bids of
opponents. Therefore we can define the utility ui as a quasi-linear function of
three variables: agent i’s valuation vi for the received bundle and its own bid bi,
and the bids of the opponents b−i.

ui(vi, bi, b−i) = vi − pi(bi, b−i). (2)

The mechanism is strategy-proof if and only if the following property holds:

∀i, ∀vi, ∀bi, ∀b−i, ui(vi, vi, b−i) ≥ ui(vi, bi, b−i). (3)

This is a stronger property than Nash equilibrium. Nash equilibrium states that
for some given strategy profile b∗

∀i, ∀vi, ∀bi, ui(vi, b
∗
i , b

∗
−i) ≥ ui(vi, bi, b

∗
−i) (4)

Any strategy-proof mechanism has a Nash equilibrium with b∗i = vi for all i.

200 E.M. Tadjouddine, F. Guerin, and W. Vasconcelos

Combinatorial Auctions: In a combinatorial auction, there is a set M of
m items to be sold to a set N of n potential buyers. A bid is formulated as
a pair (B(x), b(x)) in which B(x) ⊆ M is a bundle of items and b(x) ∈ R+

is the price offer for the items in B. We are interested in the XOR formula-
tion of the combinatorial auction problem (CAP). This means that each bid-
der submits a set of bids, and a maximum of one bid can be accepted from
each bidder. Formally each bidder k ∈ N submits a set Bk of lk bids, Bk =
{(B(x1), b(x1)), (B(x2), b(x2)), . . . , (B(xlk), b(xlk))}. The auctioneer’s problem is
to find a set X0 ⊂

⋃
k∈N Bk of bids such that

∑
x∈X0

b(x) is maximal, subject
to the constraints that

1. For all xi, xj ∈ X0 : B(xi) ∩ B(xj) = ∅ meaning that an item can be found
in at most one accepted bid.

2. For all xi, xj ∈ X0, k ∈ N : {xi, xj} � Bk meaning that there are never two
bids accepted from the same bidder (i.e. one is the maximum).

We assume that items may remain unallocated at the end of the auction. The
CAP is NP-complete [10]. In here, we focus on a very simple type of combina-
torial auction: the Quantity-Restricted Multi-Object Auction (QRMOA), which
we describe in Section 3.2. The QRMOA is tractable [4] and therefore can be
solved efficiently using graph matching algorithms [11]. This means the incentive
compatibility or strategy-proofness of the QRMOA should be ensured since we
have an exact winner determination algorithm instead of using approximations
for the general CAP.

3 Verifying Properties by Model Checking

In previous work [12], we have detailed the use of the Alloy [13] model checker
based on first-order relational logic to verify strategy-proofness for auctions. The
game mechanism and the property are expressed as first-order logic formula and
the property is checked for a finite scope. This approach is elegant but does not
scale up very well. In this work, we used Spin [5] on the premiss that it can be
combined with powerful abstractions in order to check large-scale models. We
have considered a simple Vickrey auction, and a tractable instance of the CAP
(the QRMOA) to which we applied the VCG mechanism.

We formally specified the auctions using the Promela process modelling lan-
guage [5]; this required us to code both the optimal WDA (winner determination
algorithm) and the pricing rule according to a VCG implementation. We then
verified some game-theoretic properties of both auctions using the Spin model
checker. These properties are expressed as Promela assertions in a model pa-
rameterized by the range of the bids, the number of agents and the number of
items. In other words, we consider a finite set A of actions (bidding values) that
can be used by each agent, two numbers n of agents and m of items for sale; all
these parameters can be varied in order to check small as well as large models.
We have carried out the checking from the viewpoint of the participants. For a
given agent i, we evaluate its utility u∗

i when bidding its true valuation and its

Abstracting and Verifying Strategy-Proofness for Auction Mechanisms 201

utility ui otherwise; and check the assertion u∗
i ≥ ui in all the possible game

configurations specified by the property.
We illustrate this verification scheme by using the Vickrey auction as shown in

Figure 1 wherein the strategy-proofness property is verified from the viewpoint
of an agent, say Agent 1. In Figure 1, we are given the number of agents n, a bid
range representing integer values between 0 and upbound and a vector v of the
n agents’ valuations of the item in sale. The procedure vickrey implements
the winner determination algorithm for the Vickrey auction. It takes as inputs
the number of agents n, a vector of n agents’ valuations v, and a vector of n
agents’ bids x; then it determines the winner of the item and returns a vector of n
utilities u. The verification procedure basically scans all possible configurations
and for each one, it uses a Promela assertion to check that the utility of Agent 1
bidding its true valuation is greater or equal to that obtained by bidding any
other value regardless to what its opponents bid.

wloop:
do
:: !finished ->

vickrey(n,v,x,ul); /* Agent 1 lies; it bids x[0] */
tmp = x[0];
x[0] = v[0];
vickrey(n,v,x,ut); /* Agent 1 bids its true valuation */
x[0] = tmp;
assert(ul[0] <= ut[0]);

floop: { j = 0; /* generates all bid profiles between 0..upbound */
body: {
if
::(x[j] < upbound) ->
x[j] = x[j]+1;
goto wloop; /* break the for loop */

:: else -> if
:: (j!=n-1) -> x[j] = 0;
j=j+1; goto body;

::else -> finished = true;
fi

fi
}

}
:: else -> printf("ul[0] = %d, ut[0] = %d", ul[0], ut[0]);
break;

od

Fig. 1. Promela code verifying strategy-proofness for Vickrey auction

For the strategy-proofness property in equation (3), the number of possible
configurations represents all possible strategy profiles of the participants. This is
exponential in the number of agents and items. Consequently, the checking for
the strategy-proofness property is computationally expensive. If the assertion
u∗

i ≥ ui is not violated, then the property holds for the specified model. Notice
that this does not imply the property holds independently from the bid range or
the numbers of agents and items. Moreover, if the property does not hold, then
Spin will display a counter-example.

202 E.M. Tadjouddine, F. Guerin, and W. Vasconcelos

Table 1. Statistics for the strategy-proofness property in a Vickrey Auction (bids from
0 to 1000)

Number of players
100 300 500 600 700

Memory(Mb) 146.72 795.92 904.20 1083.30 –
CPU Time(s) 1.20 6.44 7.20 8.29 –

Tables 1 and 2 show runtime statistics for the checking of the strategy-
proofness property. These results were obtained by compiling and running the
models produced by Spin on a PC Pentium Dual Processor 2.99 GHz with 2GB
RAM, running Windows XP. We used the options -DBITSTATE -DVETORSZ
=m where m is the size of the state vector chosen according to the size of the
model at hand. As explained in [5, p. 206], the option -DBITSTATE triggers
the use of an algorithm allowing the checker to visit every reachable state of
the transition system at most once. For efficiency reasons, the states are stored
in a hashtable. This turns a rather exponential search into a linear one, thus
enhancing the performance of the checking procedure.

3.1 The Vickrey Auction Example

In a Vickrey auction, n agents bid for a single item. Each agent has a private
valuation v of the item. The highest bidder wins the item but pays the second
highest bid p, getting the utility u = v − p. A losing bidder pays nothing and
has a zero utility. Table 1 shows the results obtained by fixing the bid range
and varying the number of agents. We observe that beyond a certain number of
agents, the amount of the memory required by Spin explodes provoking a ‘ran
out of memory’ error. However, this mechanism is simple enough to carry out a
full space checking for up to 600 agents.

3.2 The QRMOA Example

The combinatorial auction termed as QRMOA in [4] can be described as follows.
Bidders place individual price offers for a number m of items, but will only accept
a restricted quantity q < m. A buyer will pay nothing for any item assigned to
him beyond the quantity q. This restricted type of combinatorial auction allows
a concise representation for bids. In this setting, a bid is a tuple of the form
(i1, p1, i2, p2, . . . , im, pm, q) where each pj is a price offer for object ij and q is
the maximum number of objects to be assigned to this bid.

This CAP is tractable in the following sense. An instance of the QRMOA can
be transformed to an instance of the assignment problem, and solved using the
Hungarian algorithm [14]. This is a 1-matching algorithm, which works for a
square matrix. To solve the QRMOA problem using the assignment algorithm,
we duplicate q times a given bid with a constraint q. Given n bids and m items
for sale, we construct a cost matrix C with m columns and n rows. The entry
Cij is the value which the ith bid places for the jth item. Fictitious bids or

Abstracting and Verifying Strategy-Proofness for Auction Mechanisms 203

Table 2. Statistics for the strategy-proofness property in a QRMOA with two items
and two items: Influence of the bid range (left) and number of players (right)

Bid range
0..5 0..10 0..15 0..16

Memory (Mb) 48.10 158.90 1164.60 –
CPU Time (s) 40.60 42.70 67.40 –

Number of players
2 3 4

Memory (Mb) 39.10 1157.10 –
CPU Time (s) 36.27 40.75 –

items may be added to render the matrix C square. If all q values are 1 then we
can immediately solve for the optimal allocation via the assignment algorithm.
If any row corresponds to a bid with a q-value greater than one then we simply
duplicate that row so that it occurs q times. Now it can be assigned up to q items.
After applying this procedure for all such bids, we have a matrix with k ≥ n
rows; k is the sum of all constraints q in the submitted bids. The assignment
algorithm computes an optimal allocation in O(k3) time complexity. Different
matching algorithms can be used to solve this problem, see [11] for an exam-
ple with ‘better’ time complexity. In here, we rather focus on model-checking
combinatorial auctions that have exact solutions and the QRMOA solved by the
tractable assignment algorithm is a good case study.

For the pricing rule, we used the VCG mechanism. This implies using the
above exact WDA to determine the prices and resulting utilities for the agents.
The Promela implementation of the entire mechanism consists of over six hun-
dred lines of code. The timing results obtained by Spin are presented in Table 2.
The results show the checking can be completed for very limited models of the
QRMOA. For example, model-checking strategy-proofness of a QRMOA com-
posed of four agents and two items failed to complete because of explosion of
memory requirement.

Moreover, we observe that increasing the number of items has the same effect
as increasing the number of players since the strategy space in the QRMOA
is Anm wherein n,m are the numbers of players and items respectively and
A, the set of actions (bid range) for each player. These results show that the
size of the model must be controlled in order to avoid an explosion of memory
requirement. To this end, we use abstraction techniques to build a less complex
model in which the property to be proved is preserved. We assume that in the
combinatorial auction, the number of items is fixed but the number of players
is unbounded. Then, we focus on building up an abstraction of the exponential
data domain An since this will allow us to completely model check at least single
item auctions such as the Vickrey auction.

4 Abstract Model Checking

In this section, we present a way of combining model checking with abstract
interpretation, enabling us to reduce the complexity of model checking by using
an appropriate choice of abstraction for our auctions.

204 E.M. Tadjouddine, F. Guerin, and W. Vasconcelos

The Spin model checker allows us to show that for a given model a game-
theoretic property holds. Unfortunately, the computational costs of this exercise
grow exponentially, thus prohibiting us from giving a definite answer for large
models as it is not possible to explore the entire search space. In such scenar-
ios, model checking will never produce false negatives but it may produce false
positives.

In order to reduce the costs involved in our checks, we propose to use abstract
interpretation to simplify the problem. Abstract interpretation [15,16] provides
a general theory for approximating the semantics of computer programs allow-
ing the analysis of possible/potential computations without actually executing
programs. We shall use abstract interpretation to find a property-preserving
approximation of the concrete domain, our effort consisting of the following:

1. Defining a suitable abstraction that maps the concrete domain (data objects
and associated operations) and properties onto their abstract counterparts,

2. Performing the checking using the abstract model, and
3. Deciding if the property holds in the concrete model.

It is worth noting that abstract interpretation never produces false positives but
may raise false negatives due to the use of approximations.

4.1 Definitions

An abstraction provides a mapping of the original (concrete) domain (and as-
sociated search space) onto a less complex (abstract) domain, enabling us to
eliminate irrelevant details. Since we represent games as computer programs,
our search space is the state domain, that is, the execution state of the program
containing the values of all its variables and the current point of the execution
flow.

Definition 1. A finite game is a transition system Σ = 〈N,A, S, θ, ρ, u〉 where

– N,A, S are non-empty sets of agents, strategies, and states respectively;
– θ : S → Boolean is true for at least one element of S (called initial state);
– ρ : S × S → Boolean is a transition relation, and
– η : S → Boolean is true for at least one element of S (called final state)

For each final state we associate a utility to each agent. A reachable state of Σ
is a state that can be reached following a finite sequence of transitions from an
initial state. A reachable transition is a transition from a reachable state.

We introduce the abstract version of the previous concept:

Definition 2. An abstract finite game Σ̂ = 〈N̂ , Â, Ŝ, θ̂, ρ̂, η̂〉 is an abstraction
of Σ=〈N,A, S, θ, ρ, η〉 if there exists a mapping α : S → Ŝ such that

– ∀s ∈ S, θ(s) → θ̂(α(s))
– ∀s, s′, ρ(s, s′) → ρ̂(α(s), α(s′))

Abstracting and Verifying Strategy-Proofness for Auction Mechanisms 205

The mapping α is called an abstraction map. Its inverse γ, associating an abstract
state ŝ ∈ Ŝ and transition ρ̂ to its corresponding concrete state s ∈ S and
transition ρ is called a concretization map.

Abstraction maps usually rely on over-approximations to produce, for every
point of the program, an abstract state ŝ such that γ(ŝ) contains all the concrete
reachable states at that location. Traditionally, these approximations are defined
over lattices.

Definition 3. A lattice (L,�,�,⊥,�) is a complete partial order on set L by
� in which any two elements x, y ∈ L have a greatest lower bound (x � y) ∈ L
and a least upper bound (x � y) ∈ L.

A lattice is complete if any two elements x, y ∈ L have a greatest element (x�y)
and a least element (x � y). An example of complete lattice is the power set
domain with the usual set operators.

The game-theoretic properties we are interested in are first-order logic formu-
lae (denoted as ϕ) that can be expressed in Σ and their abstract counterparts
ϕ̂ in Σ̂. It is important to ensure that whenever a property ϕ is violated in the
concrete domain Σ, its abstraction ϕ̂ is also violated in the abstract domain Σ̂.

Definition 4. An abstraction α : (Σ,ϕ) → (Σ̂, ϕ̂) is sound if whenever ϕ̂ holds
in Σ̂, then ϕ holds in Σ. An abstraction α : (Σ,ϕ) → (Σ̂, ϕ̂) is complete if
whenever ϕ holds in Σ, then ϕ̂ holds in Σ̂.

4.2 Building Abstractions for Auctions

Finding an abstraction map is not an easy task and depends on the property to
be checked. In our work, abstraction is a way of minimising the explosion on the
number of states of the concrete model as illustrated in Section 3. Bearing in
mind that an abstraction map must be at least sound, we propose the following
two abstractions.

Removal of Irrelevant Constructs. This abstraction amounts to the program
slicing technique used to remove portions of code in program analysis which are
not relevant to a given criterion [6]. A typical criterion is a line of the program
– the slice contains those commands which affect the variables in that line. An-
other criterion is a set of variables – the slice contains those commands affecting
these variables. Our slicing criterion is the property ϕ to be checked – the slice
contains those portions which influence the variables that are being checked in
the property.

The analysis of which programming constructs to include in (or exclude from)
a slice is based on the semantics of the programming language. This is used to
capture dependency relationships among variables: v1 ≺ v2, for variables v1, v2,
holds if the computation of v1 depends on the value of v2. For instance, the
command x := y + (z/2) of a C-like language assigning to x the result of
an expression which uses y and z, forges the relationships x ≺ y and x ≺ z. This

206 E.M. Tadjouddine, F. Guerin, and W. Vasconcelos

relationship between variables is transitive and its transitive closure is denoted
by ≺∗.

To perform program slicing, we first perform a dependency analysis on the
mechanism description to determine the set of variables that influence the for-
mula ϕ of the property to be checked. We then remove those constructs of the
mechanism which do not make use of any of these variables. This is carried out as
a backward analysis (from the program outputs to the program inputs) as follows:

1. Let V be the set of variables in ϕ;
2. For each variable vi ∈ V , compute the set of variables Vi on which vi depends

and merge it with V , that is, V ← V ∪ Vi – this step should compute the
transitive closure of variable dependency, that is, it must include all variables
in the dependency paths from the inputs to the calculation of vi.

3. Remove all constructs using only those variables that do not belong to V .

We regard a slice as an abstraction of the original program: a slice partially
computes what the original program does. All those constructs making use of
variables unrelated to the property are removed. Such slices do not alter the
property ϕ to be checked but can reduce the size of the state space to be model
checked, see for example [2]. Program slicing naturally provides a sound and
complete abstraction map.

To illustrate this abstraction, let us consider the Vickrey auction example for
two agents shown on the left-hand side of Figure 2. Let us suppose we want to

if
:: (x1 >= x2) ->

u1 = v1 - x2;
u2 = 0;

:: else ->
u2 = v2 - x1;
u1 = 0;

fi;

if
:: (x1 >= x2) ->

u1 = v1 - x2;

:: else ->

u1 = 0;
fi;

Fig. 2. Vickrey Auction (left) and its Slice (right)

check the assertion u1t ≥ u1 where u1t and u1 are, respectively, the utilities of
agent 1 when it bids its valuation and any other number. The variable depen-
dencies of the auction are x1 ≺ x2, x2 ≺ x1, u1 ≺ v1, u1 ≺ x2, u2 ≺ v2, u2 ≺ x1;
they describe the flow of data among the variables and (in the case of the if
test) how variables depend on one another to define the flow of execution. We
can obtain a slice of the original auction in which commands not referring to any
of the variables y, u1 ≺∗ y. We show on the right-hand side of Figure 2 a slice of
the Vickrey auction, in which all commands referring to u2 have been removed.

Redefining Strategy Space via Abstract Values. The principal cause of
the explosion in the number of states observed in Section 3 is the exponential in-
put data required by the strategy-proofness property. This input data describes
all the strategy profiles for n players and m items in the combinatorial auction.

Abstracting and Verifying Strategy-Proofness for Auction Mechanisms 207

Th ∨ Te ∨ Tl

Tl ∨ Te

����������
Te ∨ Th Th ∨ Tl

����������

Tl

�����������������������
Te

�����������
Th

�����������

∅

�������������

������������

Fig. 3. Lattice of Abstract Values

This detailed search space can be replaced by a less complex one by transforming
the concrete program into an abstract one. The variables in the abstract ver-
sion of the program store abstract values, thus we need to redefine all concrete
operations so as to manipulate the newly created values.

Given the valuation vi of an agent i for a given single item, we can distinguish
the following three strategies its opponents may adopt: (i) bid higher than vi,
(ii) bid exactly vi, and (iii) bid lower than vi. We define the following types for
agents competing with agent i, corresponding to the strategies above:

Th = {x ∈ R | x > vi ≥ 0}
Te = {x ∈ R | x = vi}
Tl = {x ∈ R | 0 ≤ x < vi}

All the configurations of the game involving agent i with respect to its opponents
can be described by agent i’s bid against the bids of the typed agents in the set
T = {Th, Te, Tl}. Consider the following three mappings with signature An−1 →
T and projecting each component of a vector x−i ∈ An−1 to a type t ∈ T :

projh(x−i) = {xj ∈ Th | j �= i}
proje(x−i) = {xj ∈ Te | j �= i}
projl(x−i) = {xj ∈ Tl | j �= i}

The mapping projh projects all components of the vector x−i that are greater
than vi to the data type Th. Similarly proje and projl are projections on Te and
Tl respectively. Let us consider f : An−1 → 2T mapping an element x−i ∈ An−1

to an element x̂−i = f(x−i) of the powerset 2T as follows:

x̂−i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Th if proje(x−i) = projl(x−i) = ∅
Te if projh(x−i) = projl(x−i) = ∅
Tl if proje(x−i) = projh(x−i) = ∅
Th ∨ Te if projl(x−i) = ∅
Th ∨ Tl if proje(x−i) = ∅
Tl ∨ Te if projh(x−i) = ∅
Th ∨ Te ∨ Tl otherwise

208 E.M. Tadjouddine, F. Guerin, and W. Vasconcelos

Table 3. Signature of Abstract Subtraction −abs

−abs xn xl xe xh

xn {xn, xl, xe, xh} xn xn xn

xl {xl, xe, xh} {xn, xl} xn xn

xe xh xl xl xn

xh xh {xl, xe, xh} {xl, xe, xh} {xn, xl, xe, xh}

By construction, f maps every vector of An−1 to its equivalent type in the
complete lattice L = (2T ,∨,∧, ∅,�). The mapping f induces an equivalence
relation whose equivalence classes represent state variables; these state variables
correspond to elements of the powerset 2T . In Figure 3 we show the lattice of
abstract values. It is isomorphic to the complete lattice L = (2T ,∨,∧, ∅,�).

Let xh, xe, xl be the equivalent classes associated to the types Th, Te, Tl re-
spectively. xh, xe, xl are abstract variables that will be used in the transformed
(abstract) program. Concrete arithmetic operations, e.g., +, -, *, <, and >, must
also be transformed so as to manipulate the abstract variables xh, xe, xl. More-
over, the variables xh, xe, xl cover real values that are greater than or equal to
zero. However, the arithmetic operation “-” forces us to consider negative values
as well, which we denote by xn. We can therefore partition the set R into the sub-
sets represented by the equivalence classes xn, xl, xe, and xh. The abstract vari-
ables xn, xl, xe, and xh represent the real-valued intervals (−∞, 0), [0, vi), [vi, vi],
and (vi,∞) respectively.

Table 3 shows the signature of the abstract operation −abs – it is the abstract
counterpart of the subtraction operation. The first column of the table shows
the values of the first parameter of the operation −abs; the top row contains the
values of the second parameter; the various outcomes of the operation are the
table cells. If the result of the abstract operation belongs to a set of equivalence
classes (as opposed to a single equivalence class) then this indicates a lack of
knowledge about the abstract variables since they over-approximate concrete
values in the original program. This inaccuracy is modelled by the model checker
Spin as a non-deterministic choice over the set of values in the set.

It follows that the mapping f : Σ → Σ̂ enables us to transform concrete
data and operations from the original program into corresponding abstract data
and operations in the transformed program. The states and transitions in the
abstract program are defined to be those induced by the states and transitions
in the abstract program. An important issue is whether the abstraction f is
sound for the game-theoretic property to be checked. For that purpose, we need
to express the property in the resulting abstract domain.

4.3 Abstracting Properties

For a given valuation vi of an agent i, the strategy-proofness property ϕ is defined
in equation (3). In the resulting abstract model, the valuations vi, bids bi ∈ Ai,
b−i ∈ A−i, payments pi and utilities ui of the agents become abstract variables
v̂i, b̂i ∈ Âi, b̂−i ∈ Â−i, p̂i and ûi respectively. All original operations are also

Abstracting and Verifying Strategy-Proofness for Auction Mechanisms 209

transformed into abstract operations manipulating the defined abstract types.
The strategy-proofness property ϕ in equation (3) becomes ϕ̂ as follows:

∀i, ∀v̂i, ∀b̂i, ∀b̂−i, ûi(v̂i, v̂i, b̂−i) ≥abs ûi(v̂i, b̂i, b̂−i). (5)

Using our abstraction f , we have Âi = {xh, xe, xl}, which is a partition of Ai

and Â−i is isomorphic to 2T (which we denote by Â−i ≡ 2T). We now need to
prove that our abstraction f is sound. This is established by the following:

Lemma 1. The abstraction map f : (Σ,ϕ) → (Σ̂, ϕ̂) is sound.

Proof: We need to prove that if the strategy-proofness property ϕ̂ holds in Σ̂,
then its equivalent version ϕ holds in Σ. Following Definition 2, an abstraction
f produces for every point of the program, an abstract state ŝ such that f−1(ŝ)
contains all the concrete reachable states at that location. We need to show
that for every configuration c of the abstract domain wherein Σ̂ holds, f−1(c)
contains all possible corresponding configurations in the concrete domain and
that we have Σ ⊆ ∪c∈Σ̂f−1(c). From the viewpoint of agent i, strategy-proofness
in the abstract domain means:

– If i has opponents of one type Th, Te, or Tl, then the inequality (5) must be
true for all b̂i ∈ Âi and b̂−i taking the values representing the equivalence
classes xh, xe, or xl of the abstraction f respectively.

– If i has opponents of two types {Th, Te}, {Th, Tl}, or {Te, Tl}, then the in-
equality (5) must be true for all b̂i ∈ Âi and b̂−i taking the values xh and
xe, xh and xl, or xe and xl of the abstraction f respectively.

– If i has opponents of three types {Th, Te, Tl}, then the inequality (5) must
be true for all b̂i ∈ Âi and b̂−i taking the values xh, xe, xl.

By construction, the inverse f−1 of the mapping f associates each element of
Â−i ≡ 2T to a subset of A−i and clearly

∪c∈Â−i
f−1(c) = A−i.

Furthermore, Âi is a partition of Ai. It follows that f is sound. �

4.4 An Abstract Model-Checking Algorithm

To check the strategy-proofness property for a given player amounts to checking
bidding xe gives the maximum utility in all the following settings:

1. Its opponents of single type can bid a single value xh, xe, or xl.
2. Its opponents of two types can bid the tuples (xh, xe), (xh, xl), or (xe, xl).
3. Its opponents of three types can bid the tuple (xh, xe, xl).

This reduces the strategy space from the size |A|nm initially to (3 × 7)m, three
for agent i and seven for its opponents. If the number of items m = 1 as, for
example, in the Vickrey auction, this is easy to check. Notice that our abstraction

210 E.M. Tadjouddine, F. Guerin, and W. Vasconcelos

is only sound – this means that if the property is true in the abstract domain,
then, it is true is the concrete domain. If, however, the property does not hold in
the abstract model, then Spin will generate a counter-example. The generated
counter-example may be due to spurious behaviour caused by approximations
in the abstract model or it may be genuine. Techniques have been developed to
cope with such scenarios, see for example [17,18].

We have implemented this algorithm for checking strategy-proofness in the
Vickrey auction. For this simple single item auction, we have designed and
implemented the abstract variables and related operations, thus building up
an abstract program modelling the auction. Then, we checked the abstracted
strategy-proofness property using our algorithm. In the results shown in Ta-
ble 4, AMCA stands for the abstract model checking algorithm hereby outlined
and Slicing stands for the application of the program slicing optimisation. These
results show that for the Vickrey auction, the number of players and the bid
range cease to be a factor of state space explosion and that strategy-proofness
can be checked using a small amount of computer resources. Moreover, the pro-
gram slicing technique improved slightly the checking as expected in this case.

Table 4. Statistics for the strategy-proofness property in a Vickrey Auction with an
unbounded number of players using the proposed two abstractions

AMCA AMCA & Slicing
Memory (Mb) 3.65 3.02
CPU Time (s) 0.31 0.25

For the QRMOA, which is a tractable combinatorial auction, the winner de-
termination algorithm represents around 400 lines of Promela code containing
data structures for matrices. Furthermore, the integration of the VCG mecha-
nism and the testing procedure represent an extra 200 lines of code. This is too
complex to hand-code an abstract program from. As a first attempt to model-
check this rather challenging system, we kept the Promela code for the QRMOA
unchanged and applied our abstraction only to the VCG procedure. Since QR-
MOA’s code works with concrete values, we have used a mapping from abstract
to concrete values and vice versa. In the forward mapping we converted abstract
data from the abstracted VCG procedure using a non determistic selection over
the corresponding concrete values. This enables us to run the WDA. In the
reverse mapping we fed the results (concrete values) of the WDA back to the
abstracted VCG procedure. Running our abstract verification algorithm for this
case led to a ”run out of memory” on the PC we have used. However, one can
assume the optimality of WDA is a priori established and therefore the code
that implements it can be trusted. In this case, we are left to checking the pric-
ing rule gives rise to a strategy-proof mechanism. This should reduce the state
space required by the model-checker. We set out our ideas on how to model-
check this combinatorial auction using this assumption and our abstraction in
the concluding section.

Abstracting and Verifying Strategy-Proofness for Auction Mechanisms 211

5 Related Work

The idea of agents automatically checking game-theoretic properties of a protocol
is relatively new, so there are not many results in this area as yet. However
earlier work explored similar ideas. Related work includes verification of MASs
and model checking using abstraction techniques.

5.1 Verification of MASs

Verification of MASs has been explored in [19]. The approach consists on au-
tomatically translating MAS programmed in AgentSpeak, a BDI language pro-
posed in [20] into Promela or Java. After this translation the approach uses
the Spin or JPF (Java PathFinder) [21] model checkers, respectively, to verify
whether a property (in linear temporal logic) holds. In the context of verifying
game equilibria, the work reported in [22] dealt with the verification of mech-
anisms that are specified in a WHILE programming language. Game-theoretic
properties for 2-player games with complete and ‘almost perfect’ information
using correctness assertions, via an extension of Hoare’s calculus were proved.
The main advantage of this approach is that it offers the possibility of verifying
large games without needing to explore every state that the system can reach;
the advantage of our model checking approach is that it offers the possibility of
agents checking mechanisms automatically.

In [23] a model checking approach was adopted in verifying mechanisms, and
the authors set forth their vision for how this approach can contribute to the
mechanism design problem of game theorists. The paper shows, as an example,
how a voting mechanism can be formalised and checked to see if a coalition of
agents can force a deadlock indefinitely. The main motivation was to provide
computing tools which can make mechanism specifications unambiguous, reveal
hidden assumptions and automate the verification of desirable properties. Our
work aims not to design new mechanisms, but to make existing ones useful
to agents in open systems, by giving agents an efficient way of checking the
properties of a previously unseen game specification.

In [24] the same issues as ours were explored, but from the perspective of
building trust in an agent system. To this end, the paper looks at verifying the
reputation of an agent as well as verifying that a protocol enforces truth-telling.
However it does not go as far as analyzing the potential utilities which partici-
pants could gain, as we have; our approach is more computationally expensive,
but this seems necessary to provide guarantees about truth-telling.

5.2 Model Checking and Abstraction

The use of abstraction in model checking derives from the seminal work on ab-
stract interpretation published in [16] three decades ago. Abstract interpretation
concerns static determination of dynamic properties of a system. Its principles
are based on a central paradigm common to many engineering activities. This
paradigm consists in modelling the system by a set of equations, solving those
equations and using the solutions to predict the runtime behavior of the system.

212 E.M. Tadjouddine, F. Guerin, and W. Vasconcelos

In model checking, abstract interpretation is a tool to cope with the state space
explosions suffered by model checkers.

In [2] the authors present an approach to slicing a multiagent system before
it is model-checked, (possibly) reducing its state-space complexity. That work
aims at slicing abstraction to agent protocols specified via a restricted form of
AgentSpeak(L) [20] in which only propositions are considered. They proposed an
algorithm which takes as input a set of agent programs, a property in a restricted
(propositional) BDI logic, and the environment abstracted as rules updating the
state of affairs. The algorithm builds a representation of the dependencies among
the agents’ programs and environment rules, then uses this representation to find
out plans which were not used. Although the example presented in that paper
illustrates well the benefits of program slicing, the authors fail to warn that, in
the worst case, their slicing algorithm may return the very same input MAS –
this happens if the property to be checked requires that all original parts be
preserved.

In [12], the Alloy model checker based on first order relational logic [13]
was used to verify strategy-proofness for auctions. This provided an elegant way
of modelling the auction and express the game-theoretic property but it does
not scale up very well since the Alloy analysis is intractable asymptotically.
Alloy’s analysis relies on the assumption that ”negative answers tend to occur
in small models already, boosting the confidence we may have in a positive
answer” [25, p. 143]. Tractability is therefore achieved by restricting the analysis
to a finite universe.

This work on abstraction in model checking is closely related to that of [26]
on detection of safety violations in software requirements specifications and that
of [17] on model checking Java source codes. In [26], program slicing and tailored
data abstractions were used along with the Spin model checker. In [17], an
integrated approach between the Bandera tool [27] and the Java Path Finder [21]
model checker is used to search for counter examples in the abstract model that
are feasible in the concrete model. Bandera implements a program slicer and
provides a set of abstract definitions of program data types. However, abstraction
is not a ’one size fits all’. Our work uses program slicing and presents a new
property-preserving abstraction for verifying game-theoretic property of auction
mechanisms. A shorter version of this work looking at only the case of single
item auctions is published in [3].

6 Conclusions and Future Work

In this paper, we have considered auction mechanisms expressed in a formal lan-
guage and automatically checked desirable properties such as strategy-proofness.
We have presented numerical results showing the computational limits of using
a plain (exhaustive) model checking approach. These limits are due to the state
space explosion problem. To enhance this approach, we have combined model
checking and abstract interpretation. We have proposed two property-preserving
abstractions. The first is the classical program slicing technique; the second is

Abstracting and Verifying Strategy-Proofness for Auction Mechanisms 213

novel and tailored to the problem of verifying game equilibria. This allowed
us to verify the Vickrey auction regardless of the number of bidders and their
bids range with a small amount of computer resources. This was not feasible
by exhaustive model checking, see Table 1. Note that although the abstraction
requires some creativity from the human designer, once the appropriate abstrac-
tion is found, it can be published as a trusted procedure to facilitate automatic
checking of the auction mechanism by agents.

For future work, we plan to apply our abstraction framework to the com-
binatorial auction QRMOA as follows. We will use the winner determination
algorithm as a trusted black box using Spin’s c code. This means implement-
ing the winner determination algorithm in the C programming language and
embedding it within Spin so that it is not checked by Spin but it behaves like
a simple state transformer [28]. This will further demonstrate the benefits of
our abstraction techniques and will enable us to assess the impact of increasing
the number of items for our checking algorithm. We will also investigate the
use of this abstraction in verifying Bayesian Nash equilibria. Computationally
verifiable mechanisms are useful for agent scenarios wherein trust in the system
must be guaranteed and entry-deterrence be tackled in order to attract more
participants.

Acknowledgement. We thank the UK EPSRC for funding this project under
grant EP/D02949X/1.

References

1. Guerin, F., Tadjouddine, E.M.: Realising common knowledge assumptions in agent
auctions. In: The IEEE/WIC/ACM Int’l Conf. on Intelligent Agent Technology,
Hong Kong, China, pp. 579–586 (2006)

2. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: State-space Reduction Tech-
niques in Agent Verification. In: AAMAS 2004, pp. 896–903. ACM Press, New York
(2004)

3. Tadjouddine, E.M., Guerin, F., Vasconcelos, W.: Abstractions for model checking
game-theoretic properties in auctions. In: AAMAS (accepted, 2008)

4. Tennenholtz, M.: Some tractable combinatorial auctions. In: AAAI, pp. 98–103
(2000)

5. Holzmann, G.J.: The SPIN Model checker: Primer and Reference Manual. Addison,
Boston (2004)

6. Tip, F.: A Survey of Program Slicing Techniques. Journal of Progr. Lang. 3, 121–
189 (1995)

7. Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. MIT Press, Cam-
bridge (2006)

8. Cavallo, R.: Optimal decision-making with minimal waste: strategyproof redistri-
bution of VCG payments. In: AAMAS, pp. 882–889 (2006)

9. Nisan, N., Ronen, A.: Computationally feasible VCG mechanisms. In: ACM Con-
ference on Electronic Commerce, pp. 242–252 (2000)

10. Rothkopf, M.H., Pekec, A., Harstad, R.M.: Computationally manageable combi-
natorial auctions. Management Science 44, 1131–1147 (1998)

214 E.M. Tadjouddine, F. Guerin, and W. Vasconcelos

11. Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for network problems. SIAM
J. Comput. 18, 1013–1036 (1989)

12. Tadjouddine, E.M., Guerin, F.: Verifying dominant strategy equilibria in auctions.
In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS
2007. LNCS, vol. 4696, pp. 288–297. Springer, Heidelberg (2007)

13. Jackson, D.: Automating first-order relational logic. In: SIGSOFT FSE, pp. 130–
139 (2000)

14. Taha, H.A.: Operations Research: An Introduction, 6th edn. Prentice-Hall, Engle-
wood Cliffs (1997)

15. Cousot, P.: Program Analysis: The Abstract Interpretation Perspective. ACM
Computing Surveys 28, 165 (1996)

16. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: The Fourth
Annual ACM SIGPLAN-SIGACT Symposium on POPL, Los Angeles, California,
pp. 238–252. ACM Press, New York (1977)

17. Pasareanu, C.S., Dwyer, M.B., Visser, W.: Finding feasible abstract counter-
examples. Soft. Tools for Tech. Transfer 5, 34–48 (2003)

18. Säıdi, H.: Model checking guided abstraction and analysis. In: Palsberg, J. (ed.)
SAS 2000. LNCS, vol. 1824, pp. 377–396. Springer, Heidelberg (2000)

19. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying Multi-Agent Pro-
grams by Model Checking. Autonomous Agents and Multi-Agent Systems 12, 239–
256 (2006)

20. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

21. Visser, W., Havelund, K., Brat, G., Park, S.J.: Model checking programs. In: Proc.
of the 15th IEEE International Conf. on Automated Software Engineering (2000)

22. Pauly, M.: Programming and verifying subgame-perfect mechanisms. J. Log. Com-
put. 15, 295–316 (2005)

23. Pauly, M., Wooldridge, M.: Logic for mechanism design—a manifesto. In: GTDT
2003 workshop, Hakodate, Japan, AAMAS 2003 (2003)

24. Osman, N., Robertson, D.: Dynamic verification of trust in distributed open sys-
tems. In: IJCAI, pp. 1440–1445 (2007)

25. Huth, M.R.A., Ryan, M.D.: Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, Cambridge (2000)

26. Heitmeyer, C., Kirby, J., Labaw, B., Archer, M., Bharadwaj, R.: Using abstraction
and model checking to detect safety violations in requirements specifications. IEEE
Transactions on Software Engineering 24, 927–948 (1998)

27. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Păsăreanu, C.S., Zheng,
H.: Bandera. In: Proceedings of the 22nd International Conference on Software
Engineering, pp. 439–448. ACM Press, New York (2000)

28. Holzmann, G.J.: Personal communication (2008)

Using Temporal Logic to Integrate Goals and
Qualitative Preferences into Agent

Programming�

Koen V. Hindriks1 and M. Birna van Riemsdijk2

1 EEMCS, Delft University of Technology, Delft, The Netherlands
2 LMU, Munich, Germany

Abstract. The core capability of a rational agent is to choose its next
action in a rational fashion, a capability that can be put to good use by a
designer to satisfy the design objectives of an agent system. In agent pro-
gramming languages for rational agents, such choices are derived from the
agent’s beliefs and goals. At any one time, an agent can typically choose
from multiple actions, which may all lead to goal achievement. Existing
approaches usually select one of those actions non-deterministically. In
this paper, we propose the use of goals as hard constraints and qualita-
tive preferences as soft constraints for choosing a most preferred action
among the available ones. We use temporal logic for the representation
of various kinds of goals and preferences, leading to a uniform framework
for integrating goals and preferences into agent programming.

1 Introduction

The core component of a rational agent is its capability to make rational choices
of action, in order to satisfy its design objectives. In agent programming lan-
guages for rational agents, such choices are derived from the agent’s beliefs and
goals. These goals are often achievement goals, i.e., goals that define states that
are to be achieved. Typically, agent programs consist of a number of rules (usu-
ally called action selection or plan rules) that provide the agent with the means
to choose actions that achieve its goals. Such rule sets, however, do not necessar-
ily completely determine the choice of action, and, at any one time, an agent can
typically choose from multiple actions, which may all lead to goal achievement.
Existing approaches usually select one of those actions non-deterministically.

Recent research in both the planning and agent programming field
[1,2,10,12,13,15] has shown that it can be useful to have additional mechanisms
for further constraining the choice of action in an agent program and thus to
reduce the non-determinism that would be present in an agent program without
such mechanisms. In [13], for example, we introduced an operational semantics
for so-called maintenance goals which express conditions that must remain true
throughout (some part of) the agent’s lifetime. Adding maintenance goals to

� This work has been sponsored by the project SENSORIA, IST-2005-016004.

M. Baldoni et al. (Eds.): DALT 2008, LNAI 5397, pp. 215–232, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

216 K.V. Hindriks and M.B. van Riemsdijk

agent programs provides a programmer with a tool to restrict the options for ac-
tion selection that an agent has, since the agent is programmed to avoid selecting
actions that would violate maintenance goals.

In this paper, we investigate such mechanisms for further constraining an
agent’s choice of action in agent programming languages in a more general and
uniform setting. We distinguish between hard constraints which must be sat-
isfied, and soft constraints or preferences which allow an agent to distinguish
preferred courses of action from those that are less preferred. The main contri-
bution of this paper consists of the layered rational action selection architecture
(RASA for short) that we propose as a conceptual framework for rational action
selection in agent programming. The RASA architecture introduces a uniform
framework based on temporal logic that integrates rule-based action selection
(based on beliefs and goals), hard constraints such as maintenance goals, and
soft constraints such as preferences.

We show how the proposed architecture can be operationalized using the
GOAL agent programming language [7]. For this purpose, we introduce an ex-
tension of the GOAL language that incorporates temporal logic operators used
to represent both goals as well as preferences. A key motivation for integrating
temporal logic into agent programming languages is the potential that the addi-
tional expressiveness thus introduced provides for defining a uniform framework
that naturally allows for the integration of hard and soft constraints, including
such concepts as achievement goals, maintenance goals, as well as temporally
extended preferences. The work reported is inspired among others by work in
planning where temporal logic is used to “guide” planners through the search
space [1] and to select preferred plans [2,10,15].

In Section 2, we discuss rational action selection in agent programming, and
informally present the rational action selection architecture. In Section 3, we
present the extension of GOAL with temporal logic, which forms the first layer
of our action selection architecture. Section 4 defines some technical preliminaries
with respect to temporal logic, which are needed in Sections 5 and 6 in which
we introduce the second and third layer, respectively, of the action selection
architecture. In Section 7 we conclude the paper.

2 Rational Action Selection Architecture

An agent program typically does not completely determine the behaviour of the
agent in each state as it allows multiple actions to be executed in such a state.
Agent programs thus typically underspecify an agent’s behaviour.1 For example,
consider a carrier agent that needs to bring parcels to two different locations
A and B. An agent program for such a carrier agent may instruct the agent to
goto(A) and goto(B) but leave unspecified in which order this should be done.
1 It may be the case that interpreters for agent programs are implemented such that

they produce the same sequence of actions each time the agent program is executed.
However, when read as specifications they typically do not dictate such a unique
course of action.

Using Temporal Logic to Integrate Goals and Qualitative Preferences 217

The underspecification of agent behaviour can have benefits from a design
point of view. If it does not matter whether the agent executes one action or
another for reaching a goal, one can argue that it is more natural to let the agent
program reflect this by leaving these choices open. However, recent research in
both the planning and agent programming field [1,2,10,12,13,15] has shown that
it can be useful to have additional mechanisms for finding courses of actions
to further constrain the choice of action in an agent program. The idea is that
additional selection mechanisms can be introduced on top of an existing agent
programming semantics which can be used by the agent to further restrict the
selection among actions. For example, one might wish to specify that going to
location A first before going to location B is to be preferred by the carrier
agent. Preferences such as these are difficult to code into an agent program,
and, we argue, are more naturally introduced as an additional constraint in the
agent program. In this particular example, an agent then should check whether a
selected (course of) action satisfies such constraints to optimize its performance.
In this section, we present a layered rational action selection architecture (RASA)
for adding such additional selection mechanisms on top of agent programs.

2.1 An Architecture for Rational Action Selection

Regarding the kinds of additional constraints that may be applied to select
among the possible courses of action, we distinguish between hard constraints
which must be satisfied, and soft constraints or preferences, by means of which
one can distinguish more preferred courses of action from less preferred ones (see
also [15,10,13]).

What one takes as hard constraints varies across approaches. In [15,10], and
more generally in planning, the (achievement) goals themselves are considered to
be hard constraints.2 In [13], maintenance goals are taken as hard constraints,
i.e., an agent may never violate a maintenance goal. Preferences can be used
to distinguish between optimal and suboptimal courses of action, e.g., in terms
of costs, but may also be used to distinguish courses of action with respect to
which goals are reached (if goals are not considered as hard constraints and not
all goals can be reached).

These considerations lead to the following layered rational action selection
architecture.

– Layer 1: The RASA generates options for courses of action, typically on
the basis of an agent’s beliefs and (achievement) goals.

– Layer 2: The RASA verifies whether the courses of action from layer one
satisfy hard constraints and discards those that do not.

– Layer 3: The RASA selects from the options remaining after the applica-
tion of layer two those courses of action that maximize satisfaction of soft
constraints.

2 That is, in that approach the initial goals are the basis for plan generation, while at
the same time being considered as hard constraints. The initial goals are thus not
used as an additional action selection mechanism.

218 K.V. Hindriks and M.B. van Riemsdijk

In this paper, we show how this architecture can be made concrete in the context
of the GOAL agent programming language.

2.2 Rational Action Selection in Agent Programming

This rational action selection architecture is inspired among others by research
on planning with preferences [10,15,4,2]. The classical AI planning problem is to
search for a plan (a sequence of actions) to get from the current state to a goal
state, given a set of action specifications [9,11]. In agent programming, on the
other hand, the behaviour of the agent is specified by means of a program [5].
One of the main differences between planning and programming approaches, is
that in planning one seeks a complete plan, the execution of which will result in
the agent achieving its goal (given certain assumptions on the environment). An
agent program, on the other hand, is executed step by step, typically without first
checking whether the executed actions will eventually lead to the agent reaching
its goal.3 That is, in our approach we want the agent to execute an action at
each step, even though it does not know for sure that the action is the best one
according to the hard and soft constraints. Nevertheless, we do want the agent
to take into account the constraints to select an action that is at least likely to
be a good one.

The way in which we propose to do this, is partly based on our previous work
on the incorporation of maintenance goals in agent programming languages [13].
The idea is that the agent has a fixed, usually finite, lookahead horizon, i.e.,
the agent can lookahead a certain number of execution steps. The agent then
evaluates the possible courses of action or paths it can take (up to the given
horizon) using its constraints, in order to determine which paths are the best. It
then takes one step along one of these paths, and the process is repeated.

It is important to note that, when the agent takes a step in a particular
direction, it does not have complete knowledge of the outcome of following that
path. It can only look forward until its lookahead horizon, but does not know
what happens beyond this horizon. This means that the agent may take a step
that is suboptimal, i.e., the agent uses its constraints as a heuristic for action
selection. Constraints are also used as a heuristic in some planning approaches
[1,2], in which they are used to guide the search for an optimal plan.

The technical tool we use for the representation of goals and preferences is
linear temporal logic (LTL) [8]. The idea is that if the agent has a temporal for-
mula as a goal, it should try to produce execution traces on which this temporal
formula holds, and similarly for preferences. This idea is inspired by work on the
representation of goals and qualitative preferences in the context of planning
[1,10,15,4,2]. While LTL formulas are typically evaluated on infinite traces, we
need to evaluate LTL formulas on finite traces, since we use a finite lookahead
3 If the programmer has written a program that is correct (with respect to some

specification), of course, the execution will indeed lead to goal achievement (cf. [7]
for a verification framework of the agent programming language GOAL.). Verifying
agent programs that are executed in dynamic, unpredictable environments, however,
is an unsolved problem and a non-trivial undertaking in practice.

Using Temporal Logic to Integrate Goals and Qualitative Preferences 219

horizon. It turns out that the 3-valued semantics of LTL as proposed in [3] pro-
vides a natural solution to this problem, and we use it to incorporate temporal
goals and preferences in GOAL.

3 RASA Layer 1: Temporalized GOAL

In this section, we define the first layer of the RASA architecture in the context
of the GOAL agent programming language [7,14]. We extend the original GOAL
language by allowing temporal formulas as goals, rather than only propositional
formulas.

3.1 The General Idea

In the GOAL language, an agent selects actions on the basis of its beliefs and
goals. A program consists of (1) a set of beliefs, collectively called the belief
base of the agent, (2) a set of goals, called the goal base, (3) an action specifi-
cation which consists of a specification of the pre- and post-conditions of basic
actions of the agent, and (4) a program section which consists of a set of actions
rules.

In the original GOAL language, the belief base and goal base are sets of
propositional formulas. The goals are interpreted as achievement goals. That
is, if a propositional formula φ is in the goal base, this informally means that
the agent wants to reach a situation in which φ is (believed to be) the case.
If a basic action is executed, the agent’s beliefs change as specified in the
pre- and postconditions of the action, and the achievement goals that are be-
lieved to be reached through the execution of the action are removed from
the goal base.4 As an example, an action goto(A) would update the belief
base to include at(A). An action rule consists of a basic action and a con-
dition on the agent’s beliefs and goals. Such a rule expresses that the basic
action may be executed, if the condition holds. An action rule might spec-
ify that the agent only goes to a location x if a parcel needs to be deliv-
ered to x (a goal) and the agent does not believe it is currently at x. Dur-
ing execution, a GOAL agent selects non-deterministically any of its enabled
action rules, i.e., an action rule of which the condition holds, and then exe-
cutes its corresponding basic action. At any one time, typically multiple ac-
tion rules are enabled, i.e., a GOAL program underspecifies an agent’s be-
haviour.

In [13], we have extended the GOAL language with maintenance goals. Just
like achievement goals, maintenance goals were also expressed by propositional
formulas. A maintenance goal φ expresses that the agent wants that φ holds
continuously throughout the execution of the agent. Both achievement goals

4 The idea is that the agent’s beliefs also represent the environment, and that basic
actions change this environment. However, the environment is not modeled in the
formal specification of GOAL, and consequently basic actions update only the belief
base.

220 K.V. Hindriks and M.B. van Riemsdijk

and maintenance goals express particular desired properties of the behaviour
of the agent. These properties can be expressed conveniently in LTL. LTL has
computation traces (sequences of states) as models. An achievement goal for
φ can be represented by the LTL formula ♦φ, specifying that φ should hold
eventually, i.e., in some state on the computation trace. A maintenance goal for
φ can be represented by �φ, specifying that φ should always hold. This idea
can be generalized by realizing that in fact any LTL formula can be used for
expressing goals. As an example, ♦at(A) may be used to represent the achieve-
ment goal of being at location A and �fuel(x) ∧ x > 30 may be used to
represent a maintenance goal of having always at least 30 units of fuel in the
tank.

In this paper, we make this idea concrete in the context of the GOAL language
by using LTL for the representation of goals. This increases the expressiveness of
the language by allowing the representation of all kinds of goals, and allows for
the representation of goals in a uniform way. For example, the goal φUφ′, which
expresses that the agent wants to ensure that φ while it is trying to achieve φ′,
can now be expressed easily.

3.2 Formalization

First, we define the LTL language that we use for representing goals. For reasons
of simplicity we do not extend the beliefs of an agent in the programming lan-
guage to temporal formulas. For example, it would be more involved to establish
when an agent should drop one of its goals.

The states of the traces on which the LTL formulas are evaluated are belief
bases, i.e., goals express how the belief base of the agent should evolve.5 We
assume a language L0 of propositional logic with typical element φ, and the
standard entailment relation |=. A belief base Σ ⊆ L0 is a set of propositional
formulas. Our LTL language contains the standard (temporal) operators of LTL.
The difference between our LTL language and standard LTL is that the states
of the traces are belief bases, rather than worlds as valuations of propositional
atoms. The semantics of non-temporal propositional formulas is thus defined on
belief bases. We specify that a propositional formula φ holds in a belief base Σ
if Σ |= φ.

Definition 1 (linear temporal logic (LTL))
Let φ ∈ L0. The set of LTL formulas LLTL with typical element χ is defined as
follows.

χ ::= � | φ | ¬χ | χ1 ∧ χ2 | ♦χ | ©χ1 | χUχ2

Let tb = Σ0, Σ1, . . . be an infinite trace of belief bases and let i ∈ N be a position
in a trace. The semantics of LTL formulas is defined on infinite traces tb as
follows.

5 As the idea is that the beliefs also represent the environment of the agent, goals also
express desired properties of the environment.

Using Temporal Logic to Integrate Goals and Qualitative Preferences 221

tb, i |=LTL �
tb, i |=LTL φ ⇔ Σi |= φ
tb, i |=LTL ¬χ ⇔ tb, i �|=LTL χ
tb, i |=LTL χ1 ∧ χ2 ⇔ tb, i |=LTL χ1 and tb, i |=LTL χ1
tb, i |=LTL ♦χ ⇔ ∃k ≥ i : tb, k |=LTL χ
tb, i |=LTL ©χ ⇔ tb, i + 1 |=LTL χ
tb, i |=LTL χ1Uχ2 ⇔ ∃k ≥ i : tb, k |=LTL χ2 and ∀i ≤ l < k : tb, l |=LTL χ1

As usual, the always operator is defined in terms of the eventually operator by:
�χ ≡ ¬♦¬χ.

The mental state of a GOAL agent consists of those components that change
during execution. That is, a mental state consists of a belief base and a goal
base. The goal base is typically denoted by Γ and in temporalized GOAL this
is a set of LTL formulas. Mental states should satisfy a number of rationality
constraints.

Definition 2 (Mental States)
A mental state of a GOAL agent, typically denoted by m, is a pair 〈Σ,Γ 〉 with
Σ ⊆ L0 and Γ ⊆ LLTL where Σ is the belief base, and Γ with typical element χ is
the goal base. Additionally, mental states need to satisfy the following rationality
constraints:

(i) The belief base is consistent: Σ �|= ⊥,
(ii) The goal base is consistent: Γ �|=LTL ⊥,
(iii) The goal base does not contain goals that have already been achieved.

The third rationality constraint is implemented by means of the progression
operator which will be introduced below (Definition 4).

A GOAL agent derives its choice of action from its beliefs and goals. In order
to do so, a GOAL agent inspects its mental state by evaluating so-called mental
state conditions. The syntax and semantics of these conditions is defined next.

Definition 3 (Mental State Conditions)
Let φ ∈ L0, χ ∈ LLTL. The language LM of mental state conditions, typically
denoted by ψ, is defined as follows.

ψ ::= Bφ | Gχ | ¬ψ | ψ1 ∧ ψ2

The truth conditions of mental state conditions ψ, relative to a mental state
m = 〈Σ,Γ 〉, are defined as follows.

m |=m Bφ iff Σ |= φ
m |=m Gχ iff Γ |=LTL χ
m |=m ¬ψ iff m �|=m ψ
m |=m ψ1 ∧ ψ2 iff m |=m ψ1 and m |=m ψ2

The semantics of Bφ is defined relative to a given belief base: Bφ holds iff φ follows
from the belief base under a standard propositional logic entailment relation. The

222 K.V. Hindriks and M.B. van Riemsdijk

semantics of the G operator is different from original GOAL, where the goal base
is a set of propositional formulas. Here, we use the LTL entailment relation to
generalize the operator to be able to express arbitrary types of goals. ¬B(at(x))∧
G(♦at(x)) is a simple example of a mental state condition that expresses that the
agent does not belief it is at location x although it wants to be. Such a condition
can be used to determine whether to goto a location x (see below).

Before we can move on to defining how the execution of a basic action changes
the agent’s mental state, we need to explain how the goal base is updated. In the
original GOAL language, achievement goals that are believed to be achieved after
the execution of a basic action are removed from the goal base. Checking whether
an achievement goal is achieved is simple if these are represented as propositional
formulas: an achievement goal φ is achieved in a mental state if it follows from
the belief base in that mental state. In temporalized GOAL, goals are temporal
formulas. In order to be able to evaluate the achievement of temporal formulas
in a mental state, we use a technique from [1] for “progressing” LTL formulas.

Progression of an LTL formula is a transformation of this formula, which should
be performed at each execution step. The idea is that the transformation yields a
new formula inwhich those“parts” of the formulawhichhave alreadybeenachieved
are set to �, leaving an LTL formula which expresses what still has to be satisfied.

For example, if the agent has a goal ♦φ (φ ∈ L0) in a particular mental state
and φ is achieved in that mental state, i.e., follows from the belief base, then the
progression of this formula is “�”, as the agent has produced an execution trace
on which the formula holds. If φ does not hold, then the progression is the formula
“♦φ” itself, since it still needs to be satisfied. If a formula has progressed to a
formula equivalent to �, it means the agent has produced an execution trace on
which the formula holds. Note that formulas of the form �χ can never progress
to �, since it needs to be checked continuously whether χ holds.

The progression operator can be defined inductively for general LTL formulas,
as specified in the next definition. We adapt the definition of [1] slightly, as we
want a formula which is reached in a mental state to be true already in that
state, rather than one mental state later. For this, we define the progression of
©χ′ as Progress(χ′), rather than as χ′.

Definition 4 (progression of LTL formulas)
Let Σ be a belief base, let χ ∈ LLTL be an LTL formula, and let φ ∈ L0. The
progression of χ in Σ, Progress(χ,Σ) is then defined as follows.

form of χ is Progress(χ,Σ) =
� �
φ � if Σ |= φ,⊥ otherwise
¬χ′ ¬Progress(χ′, Σ)

χ1 ∧ χ2 Progress(χ1, Σ) ∧ Progress(χ2, Σ)
♦χ′ Progress(χ′, Σ) ∨ χ
©χ′ Progress(χ′)

χ1Uχ2 Progress(χ2, Σ) ∨ (Progress(χ1, Σ) ∧ χ)
�χ′ Progress(χ′, Σ) ∧ χ

Using Temporal Logic to Integrate Goals and Qualitative Preferences 223

We lift the progression function of Definition 4 to sets of LTL formulas Γ ⊆ LLTL

as follows: Progress(Γ,Σ) =
⋃

χ∈Γ Progress(χ,Σ).

The next definition specifies how the execution of a basic action changes an
agent’s mental state. In the formal definition of GOAL, we use a transition
function T to model the effects of basic actions for technical convenience, rather
than a specification of pre- and postconditions. The function T maps a basic
action a and a belief base Σ to an updated belief base T (a, Σ) = Σ′. The
transition function is undefined if an action is not enabled in a mental state. For
example, the transition function may specify that an atom at(A) is added to the
belief base, if a basic action goto(A) is executed, while the action is undefined
if the agent is already at location A. The GOAL language also includes special
actions for adding and removing goals from the goal base, but we do not discuss
these actions here (see e.g. [7]). The change of the goal base is defined by means of
the progression operator. At each step, all goals of the goal base are progressed.

Definition 5 (Mental State Transformer M)
Let a be a basic action, φ ∈ L0 and T be a transition function for basic actions.
Then the mental state transformer function M is defined as a mapping from
actions and mental states to updated mental states as follows:

M(a, 〈Σ,Γ 〉) =
{
〈Σ′,Progress(Γ,Σ′)〉 if T (a, Σ) = Σ′

undefined otherwise

As is noted in [1], the progression operator has to a certain extent the ability
to model check formulas used here to express maintenance goals such as �χ. In
particular it is able to detect that a finite prefix of an execution path falsifies
such goals. The progression operator however is not complete and will not always
be able to detect for a particular goal that it can never be satisfied on extensions
of all finite prefixes of all execution paths generated by the agent program.
Similarly, it cannot be detected that an achievement goal ♦χ might never be
achieved on an extension of a course of actions taken so far, nor can we use
the operator to detect that a formula is unsatisfiable. The advantage, however,
of giving up this component of completeness is computational efficiency; the
progression of a formula can be computed in time linear in the size of the formula
[1]. In addition, in the context of agent programming the expressivity gained by
allowing temporal formulas arguably also provides for a more natural means of
designing declarative agent programs. We see the investigation of the properties
of the progression operator as an important issue for future research.

The specification of when a basic action may be executed, is done by means
of action rules. An action rule c has the form if ψ then a, with a a basic action.
This action rule specifies that a may be performed if the mental state condition
ψ holds and the transition function is defined for a. In that case we say that
action c is enabled. As an example, we can now formally write the action rule
to goto a location as: if¬B(at(x)) ∧ G(♦at(x)) then goto(x). Given that the
agent believes it is still at its base location at(Base) which implies ¬at(A) and
has a goal ♦at(A) the agent can derive from this rule that goto(A) is an action

224 K.V. Hindriks and M.B. van Riemsdijk

it might perform (is enabled). During execution, a GOAL agent selects non-
deterministically any of its enabled actions. This is expressed in the following
transition rule, describing how an agent gets from one mental state to another.

Definition 6 (Action Semantics)
Let m be a mental state, and c = if ψ then a be an action. The transition
relation c−→ is the smallest relation induced by the following transition rule.

m |= ψ M(a,m) is defined

m
c−→ M(a,m)

The execution of a GOAL agent results in a computation trace. We define a trace
as a sequence of mental states, such that each mental state can be obtained from
the previous by applying the transition rule of Definition 6. As GOAL agents
are non-deterministic, the semantics of a GOAL agent is defined as the set of
possible computations of the GOAL agent, where all computations start in the
initial mental state of the agent.

Definition 7 (Agent Computation). A computation trace, typically denoted by
t, is an infinite sequence of mental states m0,m1,m2, . . . such that for each i
there is an action ci and mi

ci−→ mi+1 can be derived using the transition rule
of Definition 6, or mi � ci−→ and for all j > i, mj = mi. The meaning RA(m0) of a
GOAL agent named A with initial mental state m0 is the set of all computations
starting in that state.

Observe that a computation is infinite by definition, even if the agent is not
able to perform any action anymore from some point in time on. Also note that
the concept of a computation trace is a general notion in program semantics
that is not particular to GOAL. The notion of a computation trace can be
defined for any agent programming language that is provided with a well-defined
operational semantics. The semantics RA(m0) thus consists of all traces that
may be generated by the agent program. These traces form the first layer of the
RASA architecture.

4 Evaluating Temporal Formulas on Prefixes of Traces

In Sections 5 and 6, we will show how to define the second layer (hard con-
straints) and third layer (soft constraints) on top of the first layer as defined in
the previous section. Both hard constraints and soft constraints will be repre-
sented using LTL. In standard LTL, formulas are evaluated on infinite traces. As
explained in Section 2.2, however, in our setting an agent can lookahead a finite
number of steps and we want to evaluate LTL formulas on such finite traces. We
thus need to define the semantics of LTL formulas on such finite traces. This
introduces several issues, one of which is the definition of the semantics of the
next operator ©. It is not immediately clear what the semantics of a formula
©φ should be if it is evaluated in the last state of a finite trace.

Using Temporal Logic to Integrate Goals and Qualitative Preferences 225

For explaining our approach, it is important to realize that the finite trace
on which we evaluate LTL formulas is only a prefix of a trace which will be
continued beyond the lookahead horizon. Intuitively, the truth of a formula ©φ
evaluated in the last state of such a finite prefix cannot be established. Its truth
depends on how the trace continues beyond the finite prefix under consideration.
A formula ♦φ, on the other hand, clearly holds on a finite prefix if φ holds on
some state of this prefix. Similarly, a formula �φ is clearly false on a finite prefix
if ¬φ holds in some state of this prefix.

From these examples, we can see that the truth of an LTL formula evaluated
on a finite prefix of a trace depends on how this trace progresses beyond the finite
prefix. If a formula is false on any progression, it is also false on the finite prefix.
Similarly, if it is true on any progression, it is true on the finite prefix. In all other
cases, we cannot determine the truth of the formula. This intuition is reflected
by a 3-valued semantics of LTL as presented in [3] in the context of monitoring.
In the 3-valued semantics, the truth value of an LTL formula evaluated on a
finite trace is � (true), ⊥ (false), or “?” (unknown). We use (a slightly adapted
version of) the definition of [3] for evaluating LTL formulas on finite prefixes.
We define the semantics of LTL formulas over traces of mental states in terms of
the semantics over belief bases as follows, where tb is derived from t by keeping
only the belief bases of each mental state: t, i |=LTL χ ⇔ tb, i |=LTL χ.

Definition 8 (3-valued LTL semantics)
Let M be a set of mental states. Finite traces over M are elements of M∗ and
infinite traces are elements of Mω. Both are typically denoted by t. Let t, t′ ∈
M∗ ∪Mω be (finite or infinite) traces. Concatenation of traces t, t′ is defined as
usual and simply denoted as tt′; we stipulate that if t ∈ Mω, then tt′ = t. The
truth value of an LTL3 formula ϕ with respect to a trace t ∈ M∗ ∪Mω, denoted
by [t |= χ], is an element of {�,⊥, ?} and defined as follows.

[t |= χ] =

⎧⎨
⎩

� if ∀t′ ∈ Mω : tt′ |=LTL χ,
⊥ if ∀t′ ∈ Mω : tt′ �|=LTL χ,
? otherwise.

Corollary 1. If t = ε, [t |= ϕ] = ? if ϕ �≡ ⊥ and ϕ �≡ �.

The only difference between our definition and the one of [3] is that in our
definition t can also be infinite. This allows us to investigate our semantics also
for an infinite lookahead horizon in a uniform way. In [3], a technique based on
the construction of a finite state machine from an LTL formula and a finite trace
is presented for determining the truth value of an LTL3 formula at runtime in
implemented systems, which provides a basis for implementing Layers 2 and 3
of our architecture explained in the next sections.

The need for a 3-valued semantics in our approach highlights an important
difference with the use of LTL in planning approaches such as [10,15]. In a
planning context, the plans under consideration are always complete. That is,
it is not taken into account that these plans might progress beyond their final
state. This means that, e.g., a formula ♦φ in those approaches is considered to

226 K.V. Hindriks and M.B. van Riemsdijk

be false if φ does not hold in some state resulting from execution of the plan,
and true otherwise. In our semantics, on the other hand, the truth value of the
formula is unknown if φ does not hold on some state of the finite prefix.

5 RASA Layer 2: Goals as Hard Constraints

Goals of an agent are temporal formulas. The semantics of agent programs pro-
vided in Section 3 accounts for the role such goals have in selecting actions using
action selection rules. Action selection rules allow an agent to derive actions
from its beliefs and goals in a reactive manner, but we argue that this layer in
the architecture does not yet account for the full role that such goals can have
in the action selection mechanism of a rational agent.

If an agent has the ability to lookahead a (finite) number of steps, it can also
use its goals to avoid selecting those actions that prevent the realization of (some
of) the agent’s goals. In this section we define the second layer of RASA which
accounts for this role of goals. Goals thus viewed introduce additional constraints
on action selection to the effect of excluding those actions of which the agent
foresees that they will not satisfy its goals. Here we consider such constraints to
be hard constraints, meaning that any foreseen violation of goals by performing
an action will force a rational agent to choose an alternative action (if possible)
or become inactive (in line with previous work, cf. [13]). That is, actions will
only be selected if for all that is known the action may still eventually allow
satisfaction of the goals of the agent.

In this view of goals as hard constraints, achievement goals of the form ♦φ per
se do not add any additional constraints on action selection since an agent with a
finite lookahead horizon will not be able to conclude that an action will prohibit
realizing such a goal. Achievement goals thus may be said to have no “selective
force” beyond the rule-based mechanism of the action selection architecture.
The role of a goal such as being at location A, ♦at(A), thus is mainly to guide
this selection process and, in order to avoid wasting resources, to remove such
goals as reasons for action when they have been achieved (see the Progress
operator of Section 3.2). Other types of goals such as maintenance goals do have
a selective force in this sense; for example, if �φ is a goal of the agent, an agent
can conclude that it is no longer possible to satisfy this goal if φ does not hold
in some state within the lookahead horizon. An agent thus can use such goals
to filter certain options for action generated by the rule-based layer one.6 For
example, the maintenance goal of having a minimum level of fuel in the tank of
an agent will prevent selection of an action goto(A) in case this would drop fuel
levels below this minimum, assuming that going somewhere consumes fuel.

6 One could argue that layer one should also make sure that such maintenance goals
are not violated. However, trying to account for such general constraints on agent
behaviour in the rules in an ad hoc manner will often lead to less understandable
programs, which is why we argue for the separation of concerns provided by the
proposed RASA.

Using Temporal Logic to Integrate Goals and Qualitative Preferences 227

Of course, the agent needs to consider possible future effects of a course of
action allowed by the agent program to check such constraints, which is why
a lookahead horizon needs to be defined to do so. The lookahead horizon is an
integer specifying the length of a prefix of a possible trace of the agent program.
Here the 3-valued semantics for LTL discussed in the previous section is par-
ticularly useful since it allows us to evaluate goals on finite prefixes of traces.
The fact that an achievement goal ♦φ does not have selective force, is reflected
by the fact that its truth value in the 3-valued LTL semantics will be “?” (the
“unknown” value).

The filtering of action options by means of verifying whether finite prefixes of
a trace of an agent program satisfy the goals of an agent changes the meaning of
that agent program. It does not change the fact that an agent can continue per-
forming actions infinitely. We next show how the semantics of an agent program
can be defined to capture the effects of the second layer of the RASA formally
in the context of GOAL. A prefix of a computation t is an initial finite sequence
of t or t itself. A prefix of length n of a computation t is denoted by t〈n〉 with
n ∈ N∪{∞}, where t〈∞〉 is defined as t. N is the set of natural numbers including
0, and ∞ is the first infinite ordinal. The lookahead horizon, i.e., the number of
execution steps that an agent can lookahead, is denoted by h. The idea is that
we take the set of possible execution traces RA that may be selected according
to the first layer, and filter out those traces that do not satisfy one or more of
the agent’s goals, when looking ahead h steps from some state on the trace.

We define a filter function σh
A inductively on the set of traces RA and on the

time point i on such a trace. An agent will use its goals to restrict selection
of actions from the start, i.e. time 0, which explains why the base case of the
inductive definition starts at −1. The base case defines the starting point of
traces RA that need to be filtered. For technical reasons the filter function is
defined as two different components, and in addition to σ we define a function
ς. The idea is that the filter function σh(i) returns all (infinite) traces that do
not violate the goals of the agent on a finite prefix of length h starting from
state i, while the function ςh(i) returns all (finite) prefixes of traces that do not
violate the goals of an agent given a lookahead capability of h until the end of
that prefix but that do violate some goal in any possible next state.

Definition 9 (Goal Filter Functions σ and ς)
Let A be some agent with meaning RA and let h ∈ N be a horizon. Let t[i] be
the tail of trace t starting in the i-th state of t. Then the goal filter functions σh

A
and ςh

A are defined by simultaneous induction as follows:

σh
A(−1) = RA,

σh
A(i) = {t ∈ σh

A(i − 1) | ∀χ ∈ Γ t
i : [t[i]〈h〉 |=LTL χ] �= ⊥}

ςh
A(−1) = ∅,

ςh
A(i) = ςh

A(i − 1) ∪ {t〈i〉 | t ∈ σh
A(i − 1),∃χ ∈ Γ t

i : [t[i]〈h〉 |= χ] = ⊥}, for i ≥ 0

228 K.V. Hindriks and M.B. van Riemsdijk

To avoid complicating the definition of the function ς it is defined slightly too
general and includes prefixes that do have continuations that satisfy all of an
agent’s goals. In order to eliminate these prefixes and keep only maximal prefixes
of traces that cannot be extended given the agent’s goals we additionally intro-
duce a function maxPrefix. Let t � t′ denote that t is a strict prefix of t′ and T
a set of (in)finite traces. Then t ∈ maxPrefix(T) iff there is no t′ ∈ T such that
t � t′. Using the definitions of the goal filter function(s), we can now provide a
simple definition of the semantics of traces induced by the second layer in the
action selection architecture. The meaning of an agent at this layer is denoted
by HA and defined as the maximal elements of the limit of the filter functions.

Definition 10 (Semantics of GOAL Agent with Goals as Hard Constraints)
The meaning of a GOAL agent HA that applies hard constraints in addition to
its rule-based action selection is defined by:

HA = maxPrefix
(∞⋂
i=−1

σh
A(i) ∪

∞⋃
i=−1

ςh
A(i)

)
It should be clear from the definition of the meaning of a GOAL agent that
the semantics introduced clearly distinguishes between the different layers of
RASA. Moreover, given the computational properties of LTL3 the semantics of
the second layer can be realized computationally if the initial prefixes of length
h of the traces induced by the first layer can be efficiently generated. In the
next section we introduce the third layer to complete our formal picture of the
informal RASA discussed in Section 2.

6 RASA Layer 3: Preferences as Soft Constraints

In the third layer of RASA an agent aims to select those traces that maximize
satisfaction of its preferences. Whereas the second layer eliminates any action
options that would lead to violation of a goal, the third layer only eliminates
action options if more preferred alternatives are available. An agent thus might
prefer to have 60 units of fuel minimally in its tank but in case there are no
actions enabled (as determined by the agent program) that would allow the
agent to satisfy this preference it would still select one of these actions; contrast
this with a maintenance goal which would prevent the agent from doing anything
at all in this case (in case there would not be an option to refuel). Similarly to
goals, preferences are expressed using LTL. For example, preferring to go first to
location A before going to location B can be expressed by ¬(¬at(A)Uat(B)) ∧
♦at(B). Since LTL formulas express properties of traces, this allows an agent
to express that it prefers one way of achieving a goal, i.e., one particular trace,
over another, if multiple courses of action for realizing the goal are available.
Such preferences are represented by a so-called preference structure. A preference
structure consists of a sequence of LTL formulas.

Definition 11 (Preference Structure)
A preference structure Ψ is a sequence (χ1, . . . , χn) of LTL formulas.

Using Temporal Logic to Integrate Goals and Qualitative Preferences 229

This preference structure expresses that traces on which some χi is satisfied are
preferred over traces on which χi is not satisfied, and the satisfaction of χi is
preferred over the satisfaction of χj for j > i. That is, if χ1 is satisfied on a
trace t but not on another trace t′, t is preferred over t′. If both t and t′ do not
satisfy χ1, but t satisfies χ2 and t′ does not, t is again preferred over t′, etc. This
interpretation of the preference structure thus induces a lexicographic ordering
on traces.

This ordering can formally be defined as follows. We use Ψt to denote the
sequence (b1, . . . , bn), where bi = [t |= χi] for 1 ≤ i ≤ n, i.e., bi ∈ {�,⊥, ?}; we
use Ψ i

t to denote bi. We now use the ordering ⊥ < ? < � to define a lexicographic
preference ordering on traces on the basis of a preferences structure. That is, if
for a χi of the preference structure we have [t |= χi] = �, this is better than
when [t |= χi] = ?, which is again better than when [t |= χi] = ⊥.

Definition 12 (Lexicographic Preference Ordering)
Let Ψ = (χ1, . . . , χn) be a preference structure and t, t′ ∈ M∗ ∪Mω be finite or
infinite traces. Then we say that trace t is (lexicographically) preferred over t′

with respect to Ψ , written t ≺ψ t′, iff:

∃1 ≤ j ≤ n : ∀1 ≤ i < m : (lit = lit′ and ljt < ljt′)

We also write t �ψ t′ if t ≺ψ t′ or ψt = ψt′ .

The main advantage of using a lexicographic preference order ≺ψ is that such a
preference order on traces is a total preorder, which means that any two traces
are either equally good with respect to the preference order, or one is better
than the other. Other kinds of preference orderings such as those discussed in
[6] may be considered, but investigating this is left for future research.

As an example, given that the preference to go first to location A before goint
to B is ranked higher than the preference to keep a minimum fuel level of 60,
even if refuelling would be possible while going to B and not while going to
A, the agent would choose to first go to A using the lexicographic preference
ordering.

Our use of a lexicographic preference order is inspired by the work of [10,15].
There are, however, many differences with [10,15] and our approach. Instead of
integrating preferences into the situation calculus as in [10] we propose a uni-
form framework for goals and preferences that is integrated into a programming
framework for rational agents, and instead of compiling preferences into certain
programs we have taken a more direct approach by defining a layered action
selection architecture that is made precise by means of a formal semantics. Fi-
nally, we use three-valued LTL to evaluate goals and preferences on (prefixes of)
traces.

Preferences are progressed or updated through time, just like goals. The idea
is that a preference such as p ∧ ©q ∧ ♦r has been satisfied when now p holds,
in the next state q and possibly sometime thereafter r holds. Such a preference
cannot be satisfied anymore when p is not true currently, and to express this we
use the Progression operator of Section 3.2 to keep track of such facts. Since

230 K.V. Hindriks and M.B. van Riemsdijk

preferences are progressed during execution of the agent, we extend mental states
of an agent with the agent’s preference structure.

Definition 13 (Mental State with Preferences)
Let m = 〈Σ,Γ 〉 be a mental state, and Ψ a preference structure. A mental state
with preferences then simply is the tuple 〈Σ,Γ, Ψ〉.

Definition 14 (Progression of Preference structure)
The progression of a preference structure Ψ = (χ1, . . . , χn) from a mental state
〈Σ,Γ, Ψ〉 to a new state 〈Σ′, Γ ′,Progress(Ψ,Σ′)〉 is simply defined as the pro-
gression of each of the individual preference in the structure, i.e.

Progress(Ψ,Σ′) = (Progress(χ1, Σ
′), . . . ,Progress(χn, Σ′))

The semantics of action execution of Definition 6 is changed accordingly as
follows, where m = 〈Σ,Γ, Ψ〉 and c = if ψ then a is an action:

m |= ψ M(a,m) = 〈Σ′, Γ ′〉
〈Σ,Γ, Ψ〉 c−→ 〈Σ′, Γ ′,Progress(Ψ,Σ′)〉

The main difference between goals and preferences in our approach is that goals
are used as hard constraints to guide action selection whereas preferences are
used as soft constraints. That is, an agent would like to satisfy all of its pref-
erences but if this is not possible it will simply choose to satisfy those that are
most preferred, if any can be satisfied at all. The preference order introduced
above can be used for this purpose. In the third layer of RASA those traces are
selected from the remaining ones (those that survived filtering by layer 2) that
are maximal elements in this order. As with the second layer, the third layer of
RASA modifies the meaning of an agent program. In order to specify the effects
of this layer on the semantics of agent programs, we introduce some notation
again. We use max (T,≺ψ) to denote the maximal elements of a set of traces T
under the lexicographic preference order ≺ψ, induced by the preference structure
Ψ . The preference filter function of layer 3 in our action selection architecture
can then be defined similarly to that of the goal filter function.

Definition 15 (Preference Filter Function ψ)
Let A be some agent using layer 2 goal filtering with meaning HA and let h ∈ N
be a horizon. Then the preference function ψh

A is defined by induction as follows:

ψh
A(−1) = HA,

ψh
A(i) = {t | t〈i+h〉 ∈ max ({t[i]〈h〉 | t ∈ ψh

A(i − 1)},≺ψ)}

Similar to Section 5, the semantics of an agent that uses all three layers of the
action selection architecture is defined as the limit of the preference filter function
over the traces obtained from layer 2. The definition is somewhat simpler since
an agent can always continue on a given trace since it only needs to select a
maximum continuation of its past action performance but does not have to stop
acting altogether due to a potential violation of a hard constraint. This is one
of the main differences between layer 2 and 3.

Using Temporal Logic to Integrate Goals and Qualitative Preferences 231

Definition 16 (Semantics of GOAL with Preferences)
The meaning of a GOAL agent PA that applies soft constraints with horizon h
in addition to the action selection mechanisms of layer 1 and 2 is defined by:

PA =
∞⋂

i=−1

ψh
A(i)

Definition 16 completes the specification of each of the three layers of the ratio-
nal action selection architecture. The informal discussion of the architecture in
which we distinguished three layers of action selection is mirrored in respectively
Definitions 7, 10, and 16. The formal approach has shown that it is feasible to
define a transparent and rich RASA into an agent programming language, that
integrates beliefs, goals and preferences as tools for choosing the right action. In
particular, the approach offers a uniform framework based on temporal logic to
express goals and preferences.

7 Conclusion and Related Work

In this paper, we have proposed a layered rational action selection architecture
which specifies a rational action selection mechanism in which hard and soft
constraints are integrated. We have shown how the proposed architecture can
be formalized in the context of the GOAL agent programming language and
how it modifies the semantics of agent programs. In order to obtain a uniform
framework that naturally allows for the integration of hard and soft constraints
including such concepts as achievement goals, maintenance goals, as well as
(temporally extended) preferences, we have used linear temporal logic for the
representation of goals and preferences.

The way in which we use temporal logic is inspired by work in planning where
temporal logic is used to “guide” planners through the search space [1] and to
select preferred plans [10,2,15]. One of the differences is that the RASA is de-
fined for agent programming languages and, in contrast with planners that would
compare complete plans against the available constraints, these constraints are
taken into account continuously during execution of an agent program. Techni-
cally, this has resulted in the use of 3-valued LTL for the realization of RASA
in GOAL.

The practical realizability of our approach is partly facilitated by the use of
techniques, in particular the progression algorithm of [1] and the implementa-
tion of 3-valued LTL of [3], that have been shown to be implementable. The
investigation of restrictions of the LTL language for representing goals to make
checking of entailment of a goal from the goal base feasible, is left for future
research.

Acknowledgements

We would like to thank Moritz Hammer for pointing us to [3].

232 K.V. Hindriks and M.B. van Riemsdijk

References

1. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowl-
edge for planning. Artificial Intelligence 166 (2000)

2. Baier, J.A., Bacchus, F., McIlraith, S.A.: A heuristic search approach to planning
with temporally extended preferences. In: IJCAI, pp. 1808–1815 (2007)

3. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Arun-
Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272. Springer,
Heidelberg (2006)

4. Bienvenu, M., Fritz, C., McIlraith, S.A.: Planning with qualitative temporal prefer-
ences. In: Proceedings of the 10th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 2006), pp. 134–144 (2006)

5. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.: Multi-Agent Pro-
gramming: Languages, Platforms and Applications. Springer, Berlin (2005)

6. Brewka, G.: A rank based description language for qualitative preferences. In: Pro-
ceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004),
pp. 303–307 (2004)

7. de Boer, F., Hindriks, K., van der Hoek, W., Meyer, J.-J.: A Verification Framework
for Agent Programming with Declarative Goals. Journal of Applied Logic 5, 277–
302 (2007)

8. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science. Formal Models and Semantics, vol. B, pp. 996–1072.
Elsevier, Amsterdam (1990)

9. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2, 189–208 (1971)

10. Fritz, C., McIlraith, S.A.: Decision-theoretic golog with qualitative preferences. In:
KR, pp. 153–163 (2006)

11. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann, San Francisco (2004)

12. Hindriks, K.: Modules as Policy-Based Intentions: Modular Agent Programming in
GOAL. In: Dastani, M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.)
ProMAS 2007. LNCS, vol. 4908, pp. 156–171. Springer, Heidelberg (2008)

13. Hindriks, K., van Riemsdijk, B.: Satisfying Maintenance Goals. In: Baldoni, M.,
Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007. LNCS, vol. 4897,
pp. 86–103. Springer, Heidelberg (2008)

14. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent Program-
ming with Declarative Goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL
2000. LNCS, vol. 1986, pp. 228–243. Springer, Heidelberg (2001)

15. Son, T.C., Pontelli, E.: Planning with preferences using logic programming. Theory
and Practice of Logic Programming 6(5), 559–607 (2006)

Strategic Agent Communication: An
Argumentation-Driven Approach

Jamal Bentahar1, Mohamed Mbarki2, John-Jules Ch. Meyer3,
and Bernard Moulin2

1 Concordia University, Concordia Institute for Information Systems Engineering
(CIISE), Canada

bentahar@ciise.concordia.ca
2 Laval University, Department of Computer Science and Software Engineering,

Canada
{mohamed.mbarki,bernard.moulin}@ift.ulaval.ca

3 Utrecht University, Department of Information and Computer Science,
The Netherlands
jj@cs.uu.nl

Abstract. This paper proposes a formal framework for agent commu-
nication where agents can reason about their goals using strategic rea-
soning. This reasoning is argumentation-based and enables agents to
generate a set of strategic goals depending on a set of constraints. Sub-
goals are generated using this reasoning and they can be cancelled or
substituted for alternatives during the dialogue progress. An original
characteristic of this framework is that agents can use this strategic rea-
soning together with a tactic reasoning to persist in the achievement
of their goals by considering alternatives depending on a set of con-
straints. Tactic reasoning is responsible of selecting the communicative
acts to perform in order to realize the strategic goals. Some constraints
are fixed when the conversation starts and others during the dialogue
progress. The paper also discusses the computational complexity of such
a reasoning.

Keywords: Agent Communication, Social Commitments, Argumenta-
tion, Strategic Reasoning, Complexity.

1 Introduction

In multi-agent systems, agents are designed to accomplish particular tasks and
they should be able to generate, adopt, drop and achieve their goals [22,35,37].
In the modern research into this field, agents are equipped with reasoning ca-
pabilities expressed in computational logics [4,15,19,31,33]. These agents often
have to interact with each other in order to achieve their goals that are subject
to a set of constraints, which can be revised during the dialogue. However, in
the most recent approaches of goals modeling (e.g. [1,10,27,28,37]) considering
constraints and their dynamics is often neglected.

M. Baldoni et al. (Eds.): DALT 2008, LNAI 5397, pp. 233–250, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

234 J. Bentahar et al.

The aim of this paper is to take further step toward strategic agent communi-
cation using argumentative reasoning. We propose a formal framework for com-
municating agents that are able to reason about goals using strategic reasoning.
These goals, called strategic goals, could be achieved by identifying some sub-
goals and prospective alternatives. In addition, using a tactic reasoning, agents
can select the communicative acts to perform in order to realize the strategic
goals considering a set of constraints. This reasoning is based, as for human
beings, on psychological and philosophical approaches which are not yet formal-
ized (see for example [5,34]). These approaches suppose that agents use strategic
reasoning, which guides their participation in dialogues. Such a reasoning helps
agents to create dialogue strategies. More precisely, our framework allows agents
to generate a set of sub-goals depending on a set of constraints and to find alter-
natives of these sub-goals if they cannot be achieved. These sub-goals must be
justified through argumentation using agents’ beliefs and the information made
public during the conversation.

The generation of goals and satisfaction of constraints are thus supported by
arguments. The motivation behind using argumentation is that this technique
has been proven to be efficient when reasoning about incomplete and inconsis-
tent information, which is generally the case in agent communication [6,9,13,32].
Also, argumentation is a kind of non-monotonic reasoning, and when new in-
formation arise through conversation, new arguments can be built and some
old arguments can become invalid (because attacked by the new arguments and
cannot be defended). The idea is to use argumentation in order to give agents
the possibility to modify or reject their sub-goals and follow up or revise the
strategy they identify. Alternative sub-goals can also be considered using argu-
mentation in order to enable agents to persist in the achievement of their goals,
even in the case where some sub-goals are canceled. Although persistence phe-
nomenon is important to ensure the conversation success, such a phenomenon
is not addressed by the current communication models (e.g. [1,14,18,26,27,28]).
The purpose of this paper is to address this issue.

In this paper, we illustrate our model by an example of negotiating cars be-
tween two agents. We suppose that an agent Ag1 (seller) tries to convince an
agent Ag2 (buyer) to buy a car. In this example, the seller’s goal, noted by B,
is the sale of a car. An example of constraint the seller should consider is: the
price must be higher than 10.000 dollars, and an example of constraint the buyer
should satisfy is the car should not be manufactured in the country X .

This approach is fundamentally different from hierarchical planning and pro-
cedural dynamic and continuous planning approaches such as those proposed in
[17,21], which are based on making plans by task decompositions, keeping and
incrementally modifying alternative plans during the execution, and switching to
an alternative plan when necessary. The main difference is that in our approach
the sub-goals are not plans but represent a strategy that agents can follow in
order to achieve their goals. This strategy is subject to a set of constraints the
agent should satisfy. Also, the mechanism behind generating sub-goals and alter-
natives and selecting constraints to be satisfied is argumentation-based, which

Strategic Agent Communication: An Argumentation-Driven Approach 235

allows agents to reason about the alternatives by considering these constraints.
Such an argumentation-based reasoning helps agents to decide about the strat-
egy to be followed and to readapt this strategy when new information arise.
This is more flexible than procedural planning-based approaches, and then more
suitable for autonomous agents. Our strategic reasoning is close to the antic-
ipation behavior [24]. This is similar to chess game in which players start by
some strategies that determine the first moves to play (generally between 5 and
9 moves), and the upcoming moves are decided by considering the current game
situation. Also, although this approach and planning with declarative goals seem
to be similar and have many features in common, they are different in the sense
that our proposal focuses more on strategy and tactic issues by using argumen-
tation. In our context of agent communication, this is achieved by reasoning on
the agent’s beliefs and what the addressee made public during the past states
of the conversation. In this context, argumentation is a suitable technique as it
guides the selection of new sub-goals and new constraints depending on the new
available information.

The contributions of this work are:

1. The proposal of a new declarative approach for agent communication al-
lowing agents to reason about the strategies they should follow before and
during the conversation. Such a strategic reasoning enables agents to calcu-
late a cognitive representation of the manner of achieving a goal in terms
of strategic goals. Also, the approach is argumentation-based, which allows
agents to reason about incomplete and inconsistent information and to select
justified goals and sub-goals.

2. The formalization of the goal persistence and the computing of the initial
constraints associated with each goal and the constraints which can be gen-
erated during the dialogue. This allows the persistence in achieving the goals
by using alternative goals.

3. A complexity analysis of the underlying reasoning.

The idea ultimately is to go beyond the current approaches into agent communica-
tion focusing more on protocols [3,14]. Our purpose is to advance research in this
field by moving from protocol specifications to strategy and tactic reasoning [8,18].

Paper Overview. This paper is organized as follows. In Section 2, we intro-
duce the fundamental ideas of our argumentation-based agent communication
approach. In particular, we define the strategic reasoning used by this approach.
In Section 3, we present our formal framework allowing reasoning about goals.
We present and discuss the notions of constraints, strategic goals and possible
alternatives. We also address the complexity issue of this framework. Before
concluding, we compare our approach to some related work in Section 4.

2 Agent Communication Approach

In our agent communication approach, we distinguish between the agent model
and the dialogue model (or the conversational model). The agent model is mainly

236 J. Bentahar et al.

based on the agents’ mental states. The conversational model is based on the
philosophical concept of social commitment (SC) [7,11,29,38] and argumentation.
This model enables agents to support their social commitments or to attack those
of the other participants using arguments. These two models are illustrated in
Fig.1 and are detailed later.

R
ea

so
ni

ng
 m

od
el

 (
A

rg
um

en
ta

tio
n

sy
st

em
)

The agent model

Cognitive layer
(Private mental states, social

relations, etc.)

Commitment/argument
layer

(Commitment types, arguments)

Conversation layer
(Speech acts)

The Conversationnel model

Mental model
(Beliefs, desires, intentions, etc.)

B

B2 B3

B22B21

B1

social model
(Powers, relations, conventions, etc.)

Commitment model
(Manipulation of commitments)

General knowledge
(concepts, patterns, etc.)

Fig. 1. The links between the agent architecture and communication model

2.1 Agent Model

Based on its mental states and other types of information (coming essentially
from the social context and the conversational context), an agent can have a
global vision about how to achieve its goals (here we are considering conversation
goals, which are goals an agent can achieve by communicating, for example
convincing another agent to adopt some opinions). This vision is considered as a
strategy. Our work is based on psychological and philosophical approaches which
are not yet formalized [5,34]. In philosophy, and according to van Dijk [34], a
dialogue strategy is defined as a global cognitive representation of the manner of
achieving some goals. The strategy concept was also dealt with by Bange [5] who
considers that a strategy enables one to associate the intentional element with
the cognitive element of the action. In his opinion, a strategy consists in choosing
a certain number of intermediate and subordinate goals whose realization through
partial actions may lead in an adequate way to the realization of the final goal.
This notion of intermediate and subordinate goals is similar to the concept of
landmarks proposed in [30].

Consequently, we define a dialogue strategy as a function associating a goal
to a set of sub-goals, which we call strategic goals. These sub-goals are se-
lected and arranged in order to achieve the conversation goal. The realization of
this goal is thus conditioned by the realization of its strategic sub-goals. Other

Strategic Agent Communication: An Argumentation-Driven Approach 237

sub-goals could be determined from the existing goals depending on the current
state of conversation. Let us consider our negotiation example introduced in the
introduction.

Example 1. The seller agent can choose the strategy of achieving three strategic
goals B1, B2 and B3 in order to realize the goal B, which is selling the car. These
sub-goals can be defined as follows and the method of choosing the strategic goals
is detailed in Section 3.

B1 = ”Know how much the buyer would like to invest in the purchase of a
car as well as his preferences”.

B2 = ”Propose a car which could interest the buyer”.

B3 = ”Convince the buyer to accept this proposal” .

To achieve the goals B1 and B3, the agent strategy consists of trying to achieve
the sub-goals B11, B12, B31, and B32. These new sub-goals are defined as follows.

B11 = ”Know the model of the car preferred by the buyer”.

B12 = ”Know how much the buyer would like to invest”.

B31 = ”Convince the buyer that the price of the proposed car is reasonable”.
B32 = ”Convince the buyer that the proposed car consumes like small cars

on the long distances”.

We represent the set of agent’s goals by a tree. The root of the tree represents
the main goal (designated by a square), the nodes represent strategic goals (also
designated by squares), and the leaves represent elementary goals (designated
by circles) which can be reached by performing speech acts. For each defined
strategic goal, it might be possible to generate some alternatives. Therefore, an
agent might have several strategies to achieve the same goal. In our example, we
suppose that the seller is unable to convince the buyer to accept its offer (i.e.
the seller is unable to achieve the goal B3 by using elementary actions) because
of a new constraint. In this case, the seller agent can persist in achieving its goal
by considering a prospective alternative of the goal B2. For example, the seller
agent may propose another car which could satisfy the new buyer’s interest, and
this new bid will be an alternative goal for B2, named B′

2.

Example 2. Moreover, if the seller agent finds during the dialogue progress that
the buyer agent is not interested in the fact that the car is economic, then it
may suggest an alternative to the strategic goal B32, denoted B′

32. For example,
the seller will try to convince the buyer that the spare parts for the proposed car
are available and not expensive. The strategic goals B′

2 and B′
32 may be defined

as follows.

B′
2 = ”Propose another car which could satisfy a new buyer’s interest”.

B′
32 = ”Convince the buyer that the spare parts of this car are available

and not expensive”.

238 J. Bentahar et al.

To achieve a same goal, an agent can have several alternative strategies de-
pending on the subset of constraints the agent decide to satisfy. The main goal,
sub-goals, and constraints can be expressed in a logical language. The set of
constraints may be inconsistent. However, the subset of constraints the agent
decide to satisfy should be consistent.

2.2 Dialogue Model

Our communication model is based on the agent architecture suggested in [7].
This model is composed of three layers: mental, social, and reasoning layers.
The mental layer includes beliefs, desires, goals, etc. The social layer captures
social concepts such as SCs, conventions, roles, etc. Agents use their reasoning
capabilities to reason about their mental states and the social concepts. The
agent’s reasoning capabilities are represented by the reasoning layer using an ar-
gumentation system (see Fig.1). Several argumentation theories and frameworks
have been proposed in the literature (see for example [9,12,20,25]). However,
only few frameworks do consider goals generation and strategic reasoning [2].
An adaptation of these frameworks is needed, particularly in terms of adding
sub-goals generation and constraints dynamics. In this paper, we use an argu-
mentation approach based on propositional logic like the one used in [7]. Such an
approach allows agents to reason about the internal structure of arguments in
terms of premises and conclusion. This approach comprises essentially a logical
language, a definition of the argument concept, a definition of the attack rela-
tion between arguments, and finally a definition of acceptability [6,13]. In our
approach, we distinguish between internal arguments and external arguments.
Internal arguments are used to manage the incoherences of the agent’s beliefs.
However, external arguments are used to manage the incoherences between the
agent’s beliefs and the information transmitted by the addressee. Thus, an agent
would be able to support the facts on which it is committed and to justify its
communicative acts. In this paper, argumentation is used within strategic and
tactic reasoning in terms of the generation of sub-goals to be achieved in order
to achieve the main goal and in terms of the constraints to be considered.

3 Formal Framework of the Strategic Reasoning and Its
Complexity

3.1 Argumentation-Based Strategic Goals

A strategic goal can have one or more alternatives, and the replacement of this
strategic goal by one of its alternatives enables agents to achieve the same main
goal (the conversation goal), but with different constraints. The subset of con-
straints to be satisfied and the subset of sub-goals to be realized in order to
achieve the conversation goal determine the adopted strategy. In our framework,
goals and constraints are propositional formulas expresed in some propositional
languages. The selection of a set of sub-goals to be achieved must be supported
by internal arguments. For this reason, we use the explanatory argument concept,

Strategic Agent Communication: An Argumentation-Driven Approach 239

inspired by Amgoud and Kaci [1], and we define a new concept: the realization
argument. A given goal can be supported by these two types of arguments. On
one hand, the explanatory arguments justify the choice of the strategic goals in
terms of agent’s beliefs and the information made public during the conversation.
On the other hand, the realization arguments determine the set of strategic goals
necessary to achieve a goal. We define in this section an argumentation-driven
framework to generate the set of constraints related to a strategic goal. We also
define the generation of the strategic goals and their alternatives in order to
achieve the conversation goal, while respecting the set of constraints related to
this goal. In the rest of the paper, Γ indicates a possibly inconsistent knowl-
edge base (beliefs, goals, ...) with no deductive closure, ∆ indicates a possibly
inconsistent constraint base with no deductive closure, and # stands for classical
inference.

Definition 1 (Explanatory Argument). An explanatory argument of an
agent Ag is a pair (H,GAgh) where GAgh is an Ag’s goal expressed as a formula
in a logical language L and H is a subset of Γ such that: i) H is consistent, and
ii) H # GAgh. H is called the support of the argument which justifies the choice
of the goal GAgh.

Definition 2 (Minimal Explanatory Argument). An explanatory argu-
ment of an agent Ag (H,GAgh) is minimal iff H is minimal (i.e. there is no
subset of H which satisfies i and ii of Definition 1.

Definition 3 (Realization Argument). A realization argument of an agent
Ag is a triplet (ΦAg

G , GAgh,C) where ΦAg
G is a finite set of Ag’s goals (ΦAg

G ⊆ Γ),
GAgh is an Ag’s goal, and C ⊆ ∆ is a finite set of constraints such that: i) all
the goals of ΦAg

G are supported by (minimal) explanatory arguments, ii) ΦAg
G ∪C

is consistent, and iii) ΦAg
G ∪C # GAgh. ΦAg

G is called the support of the argument
(i.e. the set of the strategic goals necessary to the realization of the goal GAgh).

Definition 4 (Minimal Realization Argument). A realization argument of
an agent Ag (ΦAg

G , GAgh,C) is minimal iff ΦAg
G ∪ C is minimal (i.e. there is no

subset of ΦAg
G ∪ C which satisfies i, ii and iii of Definition 3.

Definition 5 (Attack Relation between Explanatory Arguments). Let
(H,GAgh) and (H ′, GAg′h′) be two explanatory arguments of two agents Ag and
Ag′ respectively. (H,GAgh) attacks (H ′, GAg′h′) iff H # ¬GAgh.

Definition 6 (Attack Relation between Realization Arguments). Let
(ΦAg

G , GAgh,C) and (Φ′Ag′
G , GAg′h′, C′) be two realization arguments of agents

Ag and Ag′ respectively. (ΦAg
G , GAgh,C) attacks (Φ′Ag′

G , GAg′h′, C′) iff ΦAg
G ∪C #

¬GAg′h′.

The acceptability of these two types of arguments can be defined in the same
way as in [13]. Simply put, an argument is acceptable w.r.t a set of free-conflict
arguments S (i.e. a set of arguments that are not attacking each other) iff if this

240 J. Bentahar et al.

argument is attacked by another one, there exists an argument in the set S that
attacks the attacker. Other acceptability semantics are defined in [13] such as
grounded and preferred semantics, and using them will not change the core of
this work.

The set ΦAg
G represents the sub-goals that Ag can use to achieve the goal

GAgh while satisfying a set of constraints C (C ⊆ ∆). So, the problem is: given
an agent goal (GAgh) and a set of constraints C, what are the sub-goals ΦAg

G to
realize in order to achieve this goal. In the following propositions we consider
the complexity of this problem. For the concepts of complexity theory, refer to
[16,23].

Proposition 1. Given a subset H ⊆ Γ and an Ag’s goal GAgh. Deciding
whether (H,GAgh) is a non-necessarily minimal argument is in P ‖NP (P with
parallel queries to NP).

Proof. According to Definition 1, (H,GAgh) is a non-necessarily minimal argu-
ment iff H is consistent and H # h. Since consistency checking is NP-complete
and establishing proof in propositional logic is co-NP-complete, the problem is in
∆P

2 . Because the two conditions are independent, they can be checked in parallel.
Consequently the problem is in P ‖NP . �
Proposition 2. Let Γ be a knowledge base and GAgh a conclusion. Deciding if
there is an explanatory argument over Γ (H,GAgh) is in ΣP

2 .

Proof. The following algorithm resolves the problem: 1) guess a subset H ⊆ Γ ;
2) check if (H,GAgh) is an explanatory argument. From Proposition 1, this
problem is in ΣP

2 . �
Proposition 3. Let (H,GAgh) be an explanatory argument. Deciding whether
(H,GAgh) is minimal or not is in P ‖NP .

Proof. The following algorithm resolves the problem: ∀ subformula x ∈ H ,
check if H − {x} is consistent and H − {x} # h. If H consists of n symbols,
then it has no more than n sub-formulae. Thus, from Proposition 1 checking
the minimality can be done with a polynomial number of parallel calls to an
NP-oracle. It follows that this problem is in P ‖NP . �
As a consequence of Proposition 3, the minimality criterion is not an additional
source of complexity.

Proposition 4. Given a finite set of Ag’s sub-goals ΦAg
G , an Ag’s goal GAgh,

and a finite set of constraints C. Deciding if (ΦAg
G , GAgh,C) is a realization

argument is in P ‖ΣP
2 .

Proof. According to Definition 3, (ΦAg
G , GAgh,C) is a realization argument if All

the goals of ΦAg
G are supported by explanatory arguments. If |ΦAg

G | = n, then
from Proposition 2, n calls to a ΣP

2 -oracle are needed. Because each sub-goal
could be checked independently from the others, the n calls could be done in
parallel. From Propositions 1, 2, and 3, the other conditions could be checked in
P ‖NP . It follows that the decision problem is in P ‖ΣP

2 . �

Strategic Agent Communication: An Argumentation-Driven Approach 241

Theorem 1. Let Γ be a knowledge base, GAgh a conclusion, and C a set of
constraints. Deciding if there is a realization argument over Γ (ΦAg

G , GAgh,C)
is in ΣP

3 .

Proof. The following algorithm resolves the problem: 1) guess a subset (ΦAg
G ⊆ Γ ;

2) check if (ΦAg
G , GAgh,C) is a realization argument. From Proposition 4, this

problem is in ΣP
3 . �

By using explanatory and realization arguments, we can define the strategic goals
and their possible alternatives in order to achieve a given goal.

Definition 7 (Strategic Goal). Let ΦAg
G be a finite set of Ag’s goals, C be

a finite set of constraints, and StrG(GAgh) be a set of strategic goals (i.e.
sub-goals) necessary to realize a given goal GAgh. GAgh

′ is a strategic goal of
GAgh (GAgh

′ ∈ StrG(GAgh)) iff there is an acceptable realization argument
(ΦAg

G , GAgh,C) such that: GAgh
′ ∈ ΦAg

G .

The fact that ΦAg
G is minimal makes GAgh

′ necessary for the realization of GAgh.
However, GAgh

′ could be substituted for another sub-goal called alternative goal.

Definition 8 (Alternative Goal). Let ΦAg
G be a finite set of Ag’s goals, C be

a finite set of constraints, and AltG(GAghi/GAgh) be a set of alternative goals
of a strategic goal GAghi relative to a given goal GAgh. GAghj is an alternative
goal of GAghi (GAghj ∈ AltG(GAghi/GAgh)) iff:

1. (ΦAg
G , GAgh,C) is an acceptable realization argument such that GAghi ∈ ΦAg

G .

2. (ΦAg
G −{GAghi} ∪ {GAghj}, GAgh,C) is also an acceptable realization argu-

ment of GAgh.

Proposition 5. Let GAghj be an alternative goal of a strategic goal GAghi rel-
ative to a given goal GAgh. GAghj is also a strategic goal of GAgh.

Proof. According to the second condition of Definition 8, there is realization
argument (ΦAg

G , GAgh,C) of GAgh such that GAghj ∈ ΦAg
G . Consequently and

according to Definition 7, GAghj is a strategic goal of GAgh. �

Proposition 6. Deciding if there are strategic goals to achieve a given goal is
in ΣP

3 .

Proof. This result is a straightforward consequence of Theorem 1. �

Theorem 2. Deciding if there is an alternative goal of a given strategic goal is
in P ‖Σ2

P .

Proof. Let ΨAg
G = Γ − ΦAg

G be the set of Ag′s goals not used in the realiza-
tion argument of the given strategic goal GAgh. The following algorithm de-
cides the problem: For each goal GAghj ∈ ΨAg

G , decides if (ΦAg
G − {GAghi} ∪

{GAghj}, GAgh,C) is a realization argument. By Proposition 4, this can be done
with a polynomial number of calls to an ΣP

2 -oracle. Because these verifications
could be done in parallel, we are done. �

242 J. Bentahar et al.

3.2 Generation and Satisfaction of Goals and Constraints

The argumentation-based strategic reasoning presented above enables agents to
generate the strategic goals that ensure the realization of the conversation goal
while respecting, in each dialogue step, the set of constraints related to this
goal. The idea is that when the dialogue progresses, before adapting a new set of
strategic goals, agents should find an acceptable explanatory argument to justify
the selection of this set. Thereafter, they should find an acceptable realization
argument so that the new constraints associated to the identified strategic goals
along with the previous constraints are satisfied. As defined in Definition 3,
realization arguments need explanatory arguments. These acceptable arguments
should be built from the agent’s beliefs and the public information conveyed
by the addressee during the previous dialogue steps. Before discussing some
formal properties and the argumentative reasoning algorithm for generating and
satisfying goals and constraints, let us define the following notions:

Definition 9 (Elementary Goal). A goal φ is elementary iff it cannot be
decomposed into strategic goals.

Definition 10 (Super-Goal). Let (ΦAg
G , GAgh,C) be an acceptable realization

argument. GAgh is the super-goal of a strategic goal φ iff φ ∈ ΦAg
G .

We have the following proposition:

Proposition 7. Let φ, Cφ, and C be a new strategic goal, the associated con-
straints, and the previous constraints respectively. The consistency of Cφ and C
is a sufficient condition, but not a necessary one for the realization of φ.

Proof. Let φ′ be a goal. According to Definition 7, φ is a strategic goal of φ′ iff
there is a realization argument (ΦAg

G , φ′, C) such that φ ∈ ΦAg
G . Consequently,

and according to Definition 3, φ and C are consistent. If φ is elementary, it
could be realized. Otherwise, strategic goals of φ should be found. This means
that a new realization argument(Φ′Ag

G , φ, C ∪ Cφ) should be built. According to
Definition 3, the consistency of Φ′Ag

G and C∪Cφ is only one condition, the second
condition is the logical entailment of φ. Therefore, the consistency of C and Cφ

is necessary but not sufficient for the realization of φ. �

As a direct result of this proposition, if the new constraints are not consistent
with the previous ones, the identified strategic goal should be dropped, and
an alternative should be found. This sheds the light on two possible scenar-
ios when identifying strategic goals depending on the satisfaction of associated
constraints. The first scenario is following up the strategy, and the second one is
changing the strategy. The first scenario takes place when all the identified strate-
gic goals can be satisfied, which means that an acceptable realization argument
(ΦAg

G , φ, C ∪ Cφ) can be built for each strategic goal φ considering previous and
new constraints C∪Cφ. The second scenario takes place when at least one of the
strategic goals cannot be realized because the new constraints are not consistent
with the previous constraints or because the new constraints cannot be satisfied

Strategic Agent Communication: An Argumentation-Driven Approach 243

even if they are consistent with the previous constraints. In this case an alter-
native should be identified. Our solution is to reconsider the super-goal of the
non-realized strategic goal and try to find new strategic goals of this super-goal
using the same argumentative reasoning. This means that building a new real-
ization argument of the super-goal considering the new constraints. This process
is sketched in Algorithm 1. In this algorithm, the function SuperGoal(φ) returns
the super-goal of a given strategic goal φ.

Algorithm 1. Strategic goals identification
Input: The conversation goal GAgh and the associated constraints C
Initialization: Q: an empty FIFO queue
1: Given GAgh and C, compute ΦAg

G by building an acceptable realization
argument (ΦAg

G , GAgh,C)
2: ∀φ ∈ ΦAg

G , put φ in Q
3: while Q is not empty do
4: φ ← First(Q) % the first element of Q
5: Remove φ from Q
6: if φ is not elementary, then
7: C ← C ∪ Cφ % Cφ are the constraints associated to φ

8: Given φ and C, if ∃(ΦAg
G , φ, C) an acceptable realization argument

9: then ∀φ ∈ ΦAg
G , put φ in Q % Follow up the strategy

10: else % Change the strategy
11: while φ is different from the conversation goal do
12: φ ← SuperGoal(φ)
13: Remove from Q the sub-goals of φ previously computed
14: Given φ and C, if ∃(ΦAg

G , φ, C) an acceptable realization argument
15: then ∀φ ∈ ΦAg

G , put φ in Q
16: exit() % exit second while
17: end while
18: if φ is equal to the conversation goal then return false
19: end while
20: return true

We have the following two theorems about the termination, soundness and
completeness of Algorithm 1:

Theorem 3. Algorithm 1 terminates either by identifying the elementary strate-
gic goals for the realization of the conversation goal or by identifying the case
where this goal cannot be realized.

Proof. Algorithm 1 includes two embedded whiles. The second while always ter-
minates since its condition becomes true when SuperGoal function returns the
conversation goal. This is always possible because the number of strategic goals
is finite. In this case there is at least a strategic goal of the conversation goal that
can not be realized. The algorithm terminates by returning false. If the termina-
tion of this second while is forced by exit(), the first while always terminates since

244 J. Bentahar et al.

the number of strategic goals is finite and each time a strategic goal is dealt with,
this goal is get removed from the queue. In this case, the algorithm successfully
terminates by identifying the elementary strategic goals. �
Theorem 4. The conversation goal GAgh can be realized iff Algorithm 1 ter-
minates by identifying a set of elementary strategic goals for the realization of
GAgh.

Proof. On one hand, let us suppose that Algorithm 1 terminates by identifying
a set of elementary strategic goals. Therefore, the algorithm terminates when
the queue is empty. This means that all the strategic goals are supported by
acceptable realization arguments. Because the constraints related to the new
strategic goals are considered, building these acceptable realization arguments
means that the whole constraints are satisfied. Therefore, the conversation goal
can be realized by realizing the identified elementary goals.

On the other hand, let us suppose that the conversation goal GAgh which is
the input of Algorithm 1 can be realized. Therefore, it can be composed into a set
of elementary strategic goals that can be realized. However, this set is not nec-
essarily unique. Algorithm 1 will identify a possible set since many alternatives
are tried until this set is identified. This is possible thanks to the backtracking
processed in the second while using the SuperGoal function. Algorithm 1 will
then terminate when elementary strategic goals are identified. �
As indicated in Section 2, the set of the agent’s goals are represented by a
tree in which the root represents the conversation goal, the nodes represent
decomposable strategic goals, and the leaves represent elementary strategic goals
(i.e. strategic goals that cannot be decomposed). This tree is built progressively
while the dialogue progresses. To simplify the notation, an agent’s conversation
goal will be denoted by B and its strategic goals will be denoted by Bij . The
principal idea of the goals decomposition is that for each conversation or strategic
goal we have:

1. If the goal is elementary, then the agent tries to satisfy it by using a tactical
reasoning. This reasoning enables agents to choose the most relevant com-
municative act in order to achieve this goal. More details about this type of
reasoning can be found in [8].

2. If the goal is decomposable, then the agent must calculate, using the ar-
gumentative process described above, the sub-goals to achieve in order to
realize the initial goal. For each sub-goal, the agent can have several alter-
natives. The achievement of these alternatives can provide the same result
as that provided by the initial sub-goals. An alternative is identified when
the associated realization argument is built. However, if many alternatives
are possible, deciding which one is the best is out of the paper scope. Here,
an alternative is adopted once it is identified. The set of the strategic goals
which can be used to achieve the same goal are connected by a concave
arc, as indicated in Fig.2. In this figure, the goal B may be decomposed
into two goals B11 and B21. For the goal B11, we can have several alterna-
tives (B12, . . . , B1n) and realizing B requires the achievement of B11 or one

Strategic Agent Communication: An Argumentation-Driven Approach 245

B

B11 B12 B1n B21 B22 B2p

Fig. 2. Example of decomposition of a conversation or strategic goal

of its alternatives (there is thus a disjunction). In the same way, the real-
ization of B requires achieving B21 or one of its alternatives: B22, . . . , B2p.
The realization of B requires then the achievement of a goal from the set
{B11, B12, . . . , B1n} and a goal from the set {B21, B22, . . . , B2p} (there is
thus a conjunction).

In a general way, the definition of the set of constraints related to a set of strategic
goals is defined as follows:

Definition 11 (Constraint Definition). Let B be a conversation or strategic
goal and E be a function associating elementary goals to a set of constraints. The
constraints associated with the set of the strategic goals (StrG(B)) of the goal B
is given by the function C which is defined in Table 1.

In Definition 11, the function C takes as argument a set of goals (or a set of
graphs) and gives us a set of subsets of constraints representing the set of possible
scenarios (i.e. each subset represents a scenario). In the practice, this function
is implemented using the argumentation machinery explained above. α and β
are two sets of constraints. B(1) represents the set composed by the strategic
goal B1 of the goal B and its possible alternatives. B(1) represents the remaining
goals in the tree representing the goal B. In a general way, B(i) represents the set
including the ith strategic goal of the goal B and its possible alternatives and B(i)
represents the remaining goals of the tree representing the goal B. For example,
in Fig.2 we have: B(1) = {B11, B12, . . . , B1n} and B(1) = {B21, B22, . . . , B2p}.
Furthermore, we consider that the constraints related to an elementary goal are
generated from the speech act performed to achieve this goal. For example, for

Table 1. Constraint Generation Function

C(∅) = {∅}
C({B}) = E(B) if B is elementary
C({Bi}) =

⋃
α∈ C({B(i)})

⋃
β∈ C({B(i)})

{α ∪ β} if B is not elementary

C({B1, B2, . . . , Bn}) = C({B1}) ∪ C({B2}) ∪ . . . ∪ C({Bn})

246 J. Bentahar et al.

the speech act: ”I sell you my watch for 5 dollars”, the function E gives us the
set which contains the constraint: ”the price is equal to 5 dollars”. We have the
following proposition and its proof is straightforward.

Proposition 8 (Constraints Satisfaction). Let B be a conversation goal
and Ctr(B) be the set of its initial constraints. The set of constraints Ctr(B) is
satisfied if there is a set Ci ∈ C({B}) such that: Ctr(B) ∪ Ci is consistent.

As a result of this proposition, a conversation goal B cannot be achieved if there
is no set of constraints in the set C({B}) which is consistent with the set Ctr(B)
(set of constraints associated with the agent’s conversation goal). In other words,
an agent that is able to satisfy the constraints which appear during the dialogue
would be able to achieve its conversation goal. The reason is that this agent
will be able to build an acceptable realization argument supporting the strategic
goals of the conversation goal by considering the new constraints.

4 Discussion and Related Work

The framework proposed in this paper has many advantages. First, it provides a
technique for reasoning about communication strategies. Also, it enables agents
to reason about strategic goals and the dynamics of the associated constraints.
In fact, unlike existing frameworks [1,10,27,28,37]), our proposal allows agents
to adjust their strategies by considering the new constraints and identifying
possible alternatives using argumentation reasoning. In our negotiation example
(Examples 1 and 2), the existing frameworks do not guarantee the realization of
the conversation goal B (selling the car), if the goal B32 (convincing the buyer
by the fact that the car is economic), cannot be achieved. In our approach,
the goal B can still be achieved by reconsidering the decomposition of the goal
B when new constraints appear. For instance, let us assume that during the
dialogue the seller learns that the buyer does not need an economic car (for
example because he is currently working close to home). In this case, the seller
is unable to convince the buyer by achieving the goal B32, that the proposed
car is economic. Thereafter, the seller will give up the goal B32 and will try to
persist in the realization of his conversation goal which is selling the proposed
car by using the alternative goal B′

32. This goal aims at trying to convince the
buyer that the spare parts for the proposed car are available and not expensive.

Formalizing goals has attracted a special attention in the last decade within
multi-agent systems. Winikoff et al. [37] discuss the two aspects of goals: declar-
ative (a description of the state sought), and procedural (a set of plans for
achieving the goal). A framework integrating these two aspects is proposed.
Nigam and Leite [22] use dynamic logic programming to represent the agent’s
goals and their evolution. van Riemsdijk et al. [35,36] investigate the dynamics
of declarative goals in agent programming. In these proposals internal and exter-
nal motivations such as norms, obligations, and impositions about adopting and
dropping goals are considered. Our work is inline with these proposals by consid-
ering declarative goals, but the context, motivations and underlying techniques

Strategic Agent Communication: An Argumentation-Driven Approach 247

are different. Also, some interesting frameworks in the context of agent commu-
nication have been proposed by Amgoud and Kaci [1], Shapiro and Brewka [27],
Shapiro et al. [28], Sardina et al. [26], and Caelen [10].

The approach proposed by Amgoud and Kaci [1] considers the realization of
a goal as the realization of a plan which is composed of a set of sub-goals, called
conditions. In this approach, an initial goal is subject to some conditions (in
terms of agent’s beliefs) so that it is adopted or followed by the agent. Conse-
quently, this approach is interested in the generation of the initial goals (followed
by the agent) and of the conditional goals which compose the plans of the initial
goals. In fact, this approach considers the conditional goals as constraints to be
satisfied in order to achieve an initial goal. However, it is different from ours in
which we distinguish between the agents’ constraints and the goals. The agent’s
goals reflect its objectives, whereas the constraints reflect the limits encountered
to realize these objectives. Another fundamental difference is that our approach
considers strategic reasoning and strategic goals which are different from con-
versation goals. Indeed, a strategic goal may be achieved, substituted for one of
its alternatives, or rejected if the strategy is being changed, (i.e. if one of its con-
straints is not satisfied). In contrast, a conversation goal can only be realized or
failed. To achieve a conversation goal, the agent must have a strategic reasoning
which enables it to follow strategic sub-goals. The realization of a conversation
or strategic goal is conditioned mainly by the capability of the agent to convince
its addressee by using an argumentative process. More precisely, in our approach
we are interested in realizing a conversation goal in terms of the performance of
its strategic sub-goals by respecting the constraints (imposed beforehand on the
agent or generated by the agent for each goal according to its beliefs).

In the approach proposed by Shapiro and his colleagues [28], an agent adopts a
goal with reference to a request on behalf of another agent. An agent maintains
its goal as long as it did not receive a request for cancellation of this goal.
Furthermore, in [27], if an agent believes a goal is impossible to achieve, it is
dropped. However, if the agent later believes that it was mistaken about the
impossibility of achieving the goal, the agent might readopt the goal. Contrary
to this approach, we do not consider in this paper the problem of goal change,
but rather we deal with the problem of achieving conversation goals in terms of
sub-goals and constraints that should be satisfied. In other words, our approach
does not address goal change, but it tackles the realization of conversation goals
in terms of strategic sequences of actions and constraints. Readopting goals is a
form of persistence which is completely different from ours in which we consider
other strategies to achieve the same goal.

Goals and dialogue strategy concepts were also dealt with by Caelen [10].
He presents an approach for the logical modeling of dialogues in which each
interlocutor looks for achieving his goal by using the best possible strategies.
The author models a kind of interaction between the goals of each agent and the
dialogue strategy without considering agent reasoning. However, in our approach
we model strategic reasoning for each agent implied in the conversation using

248 J. Bentahar et al.

argumentation. This reasoning, which is non-monotonic, takes into account the
nature of dialogue which is a dynamic and a joint activity.

Finally, Sardina and his colleagues [26] propose an approach for the formaliza-
tion of goals based on the planning which is static in nature. However, dialogue
is purely a dynamic activity. Therefore, dialogues cannot be modelled by plans
to follow. Our proposal is different because it is based upon argumentation-
driven reasoning about strategic goals and constraints. Sub-goals are generated
and substituted for alternatives dynamically while the dialogue progresses. The
strategy can also be adjusted when other information becomes available.

5 Conclusion

In this paper, we proposed an argumentation-driven approach for interacting
agents in a multi-agent setting allowing them to reason about goals. This for-
malism is based on a strategic reasoning which provides a mechanism to calcu-
late a cognitive representation of the manner of achieving a conversation goal
in terms of strategic goals. Agents’ strategic goals are supported by two types
of arguments: explanatory arguments to justify the choice of the goals and real-
ization arguments which provide the set of sub-goals necessary to achieve these
goals given a set of constraints. The formalism also allows agents to persist in
achieving their conversation goals by using alternative goals.

As future work, we plan to address the relevance issue within strategic reason-
ing. Since an agent can have several dialogue strategies for the same conversation
goal, we are interested in proposing a method enabling agents to select the most
relevant and efficient strategy.

References

1. Amgoud, L., Kaci, S.: On the Generation of Bipolar Goals in Argumentation-
based Negotiation. In: Rahwan, I., Moräıtis, P., Reed, C. (eds.) ArgMAS 2004.
LNCS, vol. 3366, pp. 192–207. Springer, Heidelberg (2005)

2. Atkinson, K., Bench-Capon, T., McBurney, P.: Computational Representation of
Practical Argument. Synthese 152(2), 157–206 (2006)

3. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: Verification of Protocol Confor-
mance and Agent Interoperability. In: Toni, F., Torroni, P. (eds.) CLIMA 2005.
LNCS, vol. 3900, pp. 265–283. Springer, Heidelberg (2006)

4. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C.: Verifying Proto-
col Conformance for Logic-Based Communicating Agents. In: Leite, J., Torroni,
P. (eds.) CLIMA 2004. LNCS, vol. 3487, pp. 196–212. Springer, Heidelberg (2005)

5. Bange, P.: Analyse Conversationnelle et théorie de l’Action, Paris, Hatier (1992)
6. Bench-Capon, T.J.M.: Persuasion in practical argument using value based argu-

ment. Journal of Logic and Computation 13(3), 429–448 (2003)
7. Bentahar, J., Moulin, B., Meyer, J.-J.C., Lespérance, Y.: A New Logical Semantics

for Agent Communication. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006.
LNCS (LNAI), vol. 4371, pp. 151–170. Springer, Heidelberg (2007)

Strategic Agent Communication: An Argumentation-Driven Approach 249

8. Bentahar, J., Mbarki, M., Moulin, B.: Specification and Complexity of Strategic-
bsed Reasoning Using Argumentation. In: Maudet, N., Parsons, S., Rahwan, I.
(eds.) ArgMAS 2006. LNCS (LNAI), vol. 4766, pp. 142–160. Springer, Heidelberg
(2007)

9. Brewka, G.: Dynamic argument systems: A formal model of argumentation pro-
cesses based on stuation calculus. Journal of Logic and Computation 11(2), 257–
282 (2001)

10. Caelen, J.: Stratégies de dialogue. Modèles Formels d’Intéraction (MFI 2003),
Lille, CEPADUES Editions (May 2003)

11. Castelfranchi, C.: Commitments: from individual intentions to groups and orga-
nizations. In: International Conference on Multi Agent Systems, pp. 41–48 (1995)

12. Chesnevar, C.I., Maguitman, A., Loui, R.: Logical models of argument. ACM
Computing Surveys 32, 337–383 (2000)

13. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77, 321–357 (1995)

14. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Protocol conformance for logic-based
agents. In: Proceedings of the 18th International Joint Conference on Artificial
Intelligence, pp. 679–684 (2003)

15. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational logics and
agents: a roadmap of current technologies and future trends. Computational In-
telligence Journal (2006)

16. Johnson, D.S.: A Catalog of Complexity Classes. In: Handbook of Theoretical
Computer Science, ch. 2, Elsevier Science Publishers, Amsterdam (1990)

17. Hayashi, H., Tokura, S., Hasegawa, T., Ozaki, F.: Dynagent: An Incremental
Forward-Chaining HTN Planning Agent in Dynamic Domains. In: Baldoni, M.,
Endriss, U., Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904,
pp. 171–187. Springer, Heidelberg (2006)

18. Kakas, A.C., Maudet, N., Moräıtis, P.: Layered Strategies and Protocols for
Argumentation-Based Agent Interaction. In: Rahwan, I., Moräıtis, P., Reed, C.
(eds.) ArgMAS 2004. LNCS, vol. 3366, pp. 64–77. Springer, Heidelberg (2005)

19. Moreira, Á.F., Vieira, R., Bordini, R.H.: Extending the Operational Semantics of
a BDI Agent-Oriented Programming Language for Introducing Speech-Act Based
Communication. In: Leite, J., Omicini, A., Sterling, L., Torroni, P. (eds.) DALT
2003. LNCS (LNAI), vol. 2990, pp. 135–154. Springer, Heidelberg (2004)

20. Moulin, B., Irandoust, I., Bélanger, M., Desbordes, G.: Explanation and argu-
mentation capabilities: towards the creation of more persuasive agents. Artificial
Intelligence Review 17(3), 169–222 (2002)

21. Nau, D.S., Cao, Y., Lotem, A., Munoz-Avila, H.: SHOP: Simple Hierarchical
Ordered Planner. In: IJCAI 1999, pp. 968–975 (1999)

22. Nigam, V., Leite, J.: A Dynamic Logic Programming Based System for Agents
with Declarative Goals. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS
(LNAI), vol. 4327, pp. 174–190. Springer, Heidelberg (2006)

23. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading
(1994)

24. Pezzulo, G., Falcone, R., Hoffmann, J.: Anticipation and Anticipatory Behavior:
Editorial. Cognitive Processing 8(2), 67–70 (2007)

25. Prakken, H., Vreeswijk, G.: Logics for defeasible argumentation. In: Handbook of
Philosophical Logic, 2nd edn. (2000)

250 J. Bentahar et al.

26. Sardina, S., De Giacomo, G., Lesperance, Y., Levesque, H.: On the Limits of
Planning over Belief States under Strict Uncertainty. In: Proceedings of the KR
2006 Conference, June 2006, pp. 463–471 (2006)

27. Shapiro, S., Brewka, G.: Dynamic interactions between goals and beliefs. In: Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI
2007), Hyderabad, India, pp. 2625–2630 (2007)

28. Shapiro, S., Lesperance, Y., Levesque, H.: Goal change. In: Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI 2005), Denver,
CO, pp. 582–588 (2005)

29. Singh, M.P.: A social semantics for agent communication language. In: Dignum,
F., Greaves, M. (eds.) Issues in Agent Communication, pp. 31–45 (2000)

30. Smith, I., Cohen, P., Bradshaw, J., Greaves, M., Holmback, H.: Desiging Conver-
sation Policies using Joint Intention Theory. In: Proc. ICMAS 1998, pp. 269–276.
IEEE Press, Los Alamitos (1998)

31. Toni, F., Torroni, P.: Computational Logic in Multi-Agent Systems. In: Toni, F.,
Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900. Springer, Heidelberg
(2006)

32. Torroni, P., Gavanelli, M., Chesani, F.: Argumentation in the Semantic Web.
IEEE Intelligent Systems 22(6), 66–74 (2007)

33. van der Hoek, W., Jamroga, W., Wooldridge, M.: A logic for strategic reasoning.
In: Proceedings of the International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2005), pp. 157–164. ACM Inc., New York (2005)

34. van Dijk, T.A., Kintsch, W.: Strategies of Discourse Comprehension. Academic
Press, New York (1983)

35. van Riemsdijk, M.B., Dastani, M., Dignum, F.P.M., Meyer, J.-J.C.: Dynamics
of Declarative Goals in Agent Programming. In: Leite, J., Omicini, A., Torroni,
P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 1–18. Springer,
Heidelberg (2005)

36. van Riemsdijk, B., Dastani, M., Meyer, J.-J.: Semantics of declarative goals in
agent programming. In: AAMAS 2005, pp. 133–140 (2005)

37. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and Proce-
dural Goals in Intelligent Agent Systems. In: KR 2002. Morgan Kaufmann, San
Francisco (2002)

38. Yolum, P., Singh, M.P.: Reasoning about Commitments in the Event Calculus:
An Approach for Specifying and Executing Protocols. Annals of Mathematics and
Artificial Intelligence 42(1-3), 227–253 (2004)

Author Index

Bentahar, Jamal 233
Bordini, Rafael H. 29, 91
Broersen, Jan 47

Colombetti, Marco 1
Cranefield, Stephen 18

da Rocha Costa, Antônio Carlos 29
Dastani, Mehdi M. 60, 161
De Saeger, Stijn 179
Di Noia, Tommaso 128
Di Sciascio, Eugenio 128
Dignum, Frank 161
Dima, Catalin 75
Donini, Francesco M. 128

Fornara, Nicoletta 1

Guelev, Dimitar P. 75
Guerin, Frank 197

Hindriks, Koen V. 60, 215

Klapiscak, Thomas 91

Luck, Michael 111

Mbarki, Mohamed 233
Meneguzzi, Felipe 111
Meyer, John-Jules Ch. 161, 233
Moulin, Bernard 233

Novák, Peter 60

Okuyama, Fabio Y. 29

Purvis, Martin 18
Purvis, Maryam 18

Ragone, Azzurra 128

Sakama, Chiaki 143
Savarimuthu, Bastin Tony Roy 18
Sindlar, Michal P. 161
Suzuki, Yoshitaka 179

Tadjouddine, Emmanuel M. 197
Tinnemeier, Nick A.M. 60
Tojo, Satoshi 179

van Riemsdijk, M. Birna 215
Vasconcelos, Wamberto 197

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Papers
	Specifying and Enforcing Norms in Artificial Institutions
	Introduction
	The OCeAN Metamodel
	Regimentation vs. Enforcement
	Sanctions
	Norms
	The Construct of Norm
	Commitments with Sanctions

	Example
	Conclusions
	References

	Social Norm Emergence in Virtual Agent Societies
	Introduction
	Related Work on Norms
	Normative Multi-agent Systems
	Norm Spreading and Emergence

	Experimental Setup and Parameters
	Experiments and Results
	Role of Punishments with Low Enforcement Cost
	Role of Punishments with High Enforcement Cost
	Conditional Punishment Based on Common Knowledge

	Discussion and Future Work
	References

	A Distributed Normative Infrastructure for Situated Multi-agent Organisations
	Introduction
	Background
	The ELMS Language
	Modelling Agent Bodies
	Environment Modelling

	Normative Infrastructure
	Normative Objects
	Normative Places

	UsingNorms
	Norm Contextualisation
	Policy Language
	Library of Norm-Considering Plans

	Issues in Distributing Norms
	Norm Monitoring
	Organisations and Environments
	Implicit Role Adoption
	Perception-Bounded Norm Reasoning
	Distribution of Normative Objects
	Modular Design of Normative Places

	Related Work and Discussion
	Conclusions
	References

	Contributed Papers
	A Complete STIT Logic for Knowledge and Action, and Some of Its Applications
	Introduction
	A Temporal Epistemic STIT Logic
	More on ‘Knowingly Doing’
	A Discussion on Applications and Further Extensions
	Deliberate Action
	Autonomy and (In)Dependency
	Deontic Modalities
	STIT Versus Dynamic Logic

	Conclusions
	References

	Combining Multiple Knowledge Representation Technologies into Agent Programming Languages
	Introduction
	KR Technology
	Integrating Multiple KRTs into Rational Agents
	GOAL: Syntax and Semantics

	A Translation Approach to Combine KRT’s
	Intermediate KRT Translation Approach
	Direct KRT Translation Approach

	Integrating Multiple KRTs into a Belief Base
	Conclusion and Related Work
	References

	Model-Checking Strategic Ability and Knowledge of the Past of Communicating Coalitions
	Introduction
	Preliminaries
	Interpreted Systems
	ATL on Interpreted Systems

	ATL with Knowledge of the Past and Communicating Coalitions
	Cooperation Modalities for Communicating Coalitions
	Knowledge of the Past

	Encoding Knowledge of the Past in the Local State
	Some Properties of the \ATL^P_D Cooperation Modalities
	Model-Checking \ATL^P_D
	Conclusion
	References

	JASDL: A Practical Programming Approach Combining Agent and Semantic Web Technologies
	Introduction
	JASDL
	The General Architecture
	The “Takeaway” Case-Study
	More Expressive Queries to the Belief Base
	Belief Base Consistency Assurance
	Removal as Contraction
	Run-Time Class Definition
	Semantically-Enriched Inter-agent Communication
	Enhanced Plan Retrieval Flexibility
	$Jason$ Module Composition Architecture

	Related Work
	Conclusion and Future Work
	References

	Leveraging New Plans in AgentSpeak(PL)
	Introduction
	AgentSpeak(PL)
	AgentSpeak(L)
	Planning in AgentSpeak(PL)
	Limited Plan Reusability

	Leveraging New Plans
	Data Structure
	Generating Context Information
	Complexity
	A Production Cell Example

	Experiments and Results
	Related Work
	Conclusions
	References

	Increasing Bid Expressiveness for Effective and Balanced E-Barter Trading
	Introduction
	The Barter Trade Scenario
	The Logical Setting
	Basic of Description Logics

	Bid Expressiveness
	Preferences and Utility Functions
	Prices

	The Barter Trade Optimization
	Related Work
	Conclusion
	References

	Inductive Negotiation in Answer Set Programming
	Introduction
	Negotiation by Induction
	Induction
	Building Proposal
	Concession

	Computing Proposals in Answer Set Programming
	Answer Set Programming
	Computing Proposals
	Computational Complexity

	Related Work
	Conclusion
	References

	Mental State Abduction of BDI-Based Agents
	Introduction
	Our Approach and Related Work
	Abduction
	Related Work

	Basic Notions and Terminology
	Plans and Behavioral Rules
	Observables, Abducibles, and Rule Descriptions

	Mental State Abduction
	Functions and Relations
	Partial Traces for Explanatory Strategies
	Agent and Observer
	Explanation of Observed Actions
	Propositions and Proofs

	AnExample
	Conclusion and Future Work
	References

	Iterated Belief Revision in the Face of Uncertain Communication
	Introduction
	Preliminaries
	Rewriting Rules for the Preference Relation
	Postulates
	Conclusion
	References

	Abstracting and Verifying Strategy-Proofness for Auction Mechanisms
	Introduction
	Preliminaries
	Verifying Properties by Model Checking
	The Vickrey Auction Example
	The QRMOA Example

	Abstract Model Checking
	Definitions
	Building Abstractions for Auctions
	Abstracting Properties
	An Abstract Model-Checking Algorithm

	Related Work
	Verification of MASs
	Model Checking and Abstraction

	Conclusions and Future Work
	References

	Using Temporal Logic to Integrate Goals and Qualitative Preferences into Agent Programming
	Introduction
	Rational Action Selection Architecture
	An Architecture for Rational Action Selection
	Rational Action Selection in Agent Programming

	RASA Layer 1: Temporalized GOAL
	The General Idea
	Formalization

	Evaluating Temporal Formulas on Prefixes of Traces
	RASA Layer 2: Goals as Hard Constraints
	RASA Layer 3: Preferences as Soft Constraints
	Conclusion and Related Work
	References

	Strategic Agent Communication: An Argumentation-Driven Approach
	Introduction
	Agent Communication Approach
	Agent Model
	Dialogue Model

	Formal Framework of the Strategic Reasoning and Its Complexity
	Argumentation-Based Strategic Goals
	Generation and Satisfaction of Goals and Constraints

	Discussion and Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

