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Preface to the Second Edition

This second edition is completed by a number of additional examples and
exercises. In response of comments and questions of students using this book,
solutions of many exercises have been improved for a better understanding.
Some changes and enhancements are concerned with the treatment of skew-
symmetric and rotation tensors in the first chapter. Besides, the text and
formulae have thoroughly been reexamined and improved where necessary.

Aachen, January 2009 Mikhail Itskov



Preface to the First Edition

Like many other textbooks the present one is based on a lecture course given
by the author for master students of the RWTH Aachen University. In spite
of a somewhat difficult matter those students were able to endure and, as far
as I know, are still fine. I wish the same for the reader of the book.

Although the present book can be referred to as a textbook one finds only
little plain text inside. I tried to explain the matter in a brief way, neverthe-
less going into detail where necessary. I also avoided tedious introductions and
lengthy remarks about the significance of one topic or another. A reader in-
terested in tensor algebra and tensor analysis but preferring, however, words
instead of equations can close this book immediately after having read the
preface.

The reader is assumed to be familiar with the basics of matrix algebra
and continuum mechanics and is encouraged to solve at least some of numer-
ous exercises accompanying every chapter. Having read many other texts on
mathematics and mechanics I was always upset vainly looking for solutions to
the exercises which seemed to be most interesting for me. For this reason, all
the exercises here are supplied with solutions amounting a substantial part of
the book. Without doubt, this part facilitates a deeper understanding of the
subject.

As a research work this book is open for discussion which will certainly
contribute to improving the text for further editions. In this sense, I am very
grateful for comments, suggestions and constructive criticism from the reader.
T already expect such criticism for example with respect to the list of references
which might be far from being complete. Indeed, throughout the book I only
quote the sources indispensable to follow the exposition and notation. For this
reason, I apologize to colleagues whose valuable contributions to the matter
are not cited.

Finally, a word of acknowledgment is appropriate. I would like to thank
Uwe Navrath for having prepared most of the figures for the book. Fur-
ther, I am grateful to Alexander Ehret who taught me first steps as well
as some “dirty” tricks in ITEX, which were absolutely necessary to bring the
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manuscript to a printable form. He and Tran Dinh Tuyen are also acknowl-
edged for careful proof reading and critical comments to an earlier version
of the book. My special thanks go to the Springer-Verlag and in particular
to Eva Hestermann-Beyerle and Monika Lempe for their friendly support in
getting this book published.

Aachen, November 2006 Mikhail Itskov
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1

Vectors and Tensors in a Finite-Dimensional
Space

1.1 Notion of the Vector Space

We start with the definition of the vector space over the field of real numbers
R.

Definition 1.1. A vector space is a set 'V of elements called vectors satisfying
the following axioms.

A. To every pair,  and y of vectors in V there corresponds a vector x + y,
called the sum of  and y, such that

(A1) x +y =y + = (addition is commutative),

(A2) (x+vy)+2z==a+ (y+2) (addition is associative),

(A.3) there exists in V a unique vector zero 0, such that 0 +x = @, Vo € V,
(A.4) to every vector « in V there corresponds a unique vector —ax such that

z+ (—x)=0.
B. To every pair o and @, where « is a scalar real number and x is a vector in
V, there corresponds a vector ae, called the product of « and @, such that

(B.1) a(fz) = (af) x (multiplication by scalars is associative),
(B.2) lx = x,

(B.3) a(x+1y) = ax + ay (multiplication by scalars is distributive with
respect to vector addition),

(B4) (a+ )z = ax + Sz (multiplication by scalars is distributive with
respect to scalar addition),

Vo, € R, Ve, y € V.
Examples of vector spaces.

1) The set of all real numbers R.
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vector addition negative vector

2.5z

T
)
zero vector

multiplication by a real scalar

Fig. 1.1. Geometric illustration of vector axioms in two dimensions

2) The set of all directional arrows in two or three dimensions. Applying the
usual definitions for summation, multiplication by a scalar, the negative
and zero vector (Fig. 1.1) one can easily see that the above axioms hold
for directional arrows.

3) The set of all n-tuples of real numbers R:

aj
a2

2%

Indeed, the axioms (A) and (B) apply to the n-tuples if one defines ad-
dition, multiplication by a scalar and finally the zero tuple, respectively,
by

a1 + by aaq 0

as + by aas 0
a+b= : , aa= . , 0=

an + bn (070778 0

4) The set of all real-valued functions defined on a real line.
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1.2 Basis and Dimension of the Vector Space

Definition 1.2. A set of vectors x1,xa,...,x, is called linearly dependent if
there exists a set of corresponding scalars aq, s, ...,a, € R, not all zero,
such that

Xn:aiwi =0. (11)
i=1

Otherwise, the vectors 1, xs, ..., x, are called linearly independent. In this
case, none of the vectors x; is the zero vector (Exercise 1.2).

Definition 1.3. The vector

xTr = Zn:aﬁm (12)
i=1

is called linear combination of the vectors a1, s, ..., T,, where a; € R (i
=1,2,...,n).
Theorem 1.1. The set of n non-zero vectors xy, s, ..., T, is linearly depen-

dent if and only if some vector xy (2 < k < n) is a linear combination of the
preceding ones ¢; (i =1,...,k —1).

Proof. If the vectors @1, s, ..., x, are linearly dependent, then

n
E o;L; = 0,
i=1

where not all ; are zero. Let a (2 < k < n) be the last non-zero number, so
that oy =0(i =k +1,...,n). Then,
k k—1
oy

Z%‘%‘ZU = X = x;.

«
i=1 i=1 k

Thereby, the case k = 1 is avoided because ayx; = 0 implies that ; = 0
(Exercise 1.1). Thus, the sufficiency is proved. The necessity is evident.

Definition 1.4. A basis of a vector space V is a set G of linearly independent
vectors such that every vector in 'V is a linear combination of elements of G.
A wector space V is finite-dimensional if it has a finite basis.

Within this book, we restrict our attention to finite-dimensional vector spaces.
Although one can find for a finite-dimensional vector space an infinite number
of bases, they all have the same number of vectors.
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Theorem 1.2. All the bases of a finite-dimensional vector space V contain
the same number of vectors.

Proof. Let G = {g1,92,...,9n} and F = {f1, fa2,..., fm} be two arbitrary
bases of V with different numbers of elements, say m > n. Then, every vector
in V is a linear combination of the following vectors:

fl;glngv"'vgn' (1.3)

These vectors are non-zero and linearly dependent. Thus, according to The-
orem 1.1 we can find such a vector g, which is a linear combination of the
preceding ones. Excluding this vector we obtain the set G’ by

flaglvg%"'vgk*laglﬁrla'"7gn

again with the property that every vector in V is a linear combination of the
elements of G’. Now, we consider the following vectors

f1,f2,91.92, . Gk—1,Gk+1,- -, Gn

and repeat the excluding procedure just as before. We see that none of the
vectors f; can be eliminated in this way because they are linearly independent.
As soon as all g; (i =1,2,...,n) are exhausted we conclude that the vectors

fl;.f27"'afn+1

are linearly dependent. This contradicts, however, the previous assumption
that they belong to the basis F.

Definition 1.5. The dimension of a finite-dimensional vector space V is the
number of elements in a basis of V.

Theorem 1.3. Every set F = {f1, fa,..., fn} of linearly independent vec-
tors in an n-dimensional vectors space V forms a basis of V. Every set of
more than n vectors is linearly dependent.

Proof. The proof of this theorem is similar to the preceding one. Let G =
{91,92,...,9n} be abasis of V. Then, the vectors (1.3) are linearly dependent
and non-zero. Excluding a vector g, we obtain a set of vectors, say G’, with
the property that every vector in V is a linear combination of the elements
of G’. Repeating this procedure we finally end up with the set F with the
same property. Since the vectors f; (i =1,2,...,n) are linearly independent
they form a basis of V. Any further vectors in V, say f,4+1, fnit2,... are thus
linear combinations of F. Hence, any set of more than n vectors is linearly
dependent.

Theorem 1.4. Every set F = {f1, fa,..., fm} of linearly independent vec-
tors in an n-dimensional vector space V can be extended to a basis.
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Proof. If m = n, then F is already a basis according to Theorem 1.3. If
m < n, then we try to find n — m vectors f 41, fim+2,---, fn, such that all
the vectors f;, that is, f1, f2,.. ., fms fm+1,--., fn are linearly independent
and consequently form a basis. Let us assume, on the contrary, that only
k < n — m such vectors can be found. In this case, for all € V there exist
scalars o, a1, g, ..., i, not all zero, such that

ar+arfi+ofot+.. At ampkfmir =0,

where a # 0 since otherwise the vectors f; (i=1,2,...,m + k) would be
linearly dependent. Thus, all the vectors @ of V are linear combinations of
fi (i=1,2,....,m+ k). Then, the dimension of V is m + k < n, which con-
tradicts the assumption of this theorem.

1.3 Components of a Vector, Summation Convention

Let G = {g1,92,--.,9n} be a basis of an n-dimensional vector space V. Then,
T = ingi, Ve e V. (1.4)
i=1

Theorem 1.5. The representation (1.4) with respect to a given basis G is
unique.

Proof. Let

n n
T = Z r'g; and x = Z y'g;
i=1 i=1

be two different representations of a vector x, where not all scalar coefficients
2t and y* (i = 1,2,...,n) are pairwise identical. Then,

[M]=

0=xz+(—x) :ac—l—(—l)w:ingi—i—Z(—yi)gi = (xi—yi)gi;
i=1 i=1

i=1

where we use the identity —a = (—1) & (Exercise 1.1). Thus, either the num-
bers ' and y' are pairwise equal z° = y' (i = 1,2,...,n) or the vectors g; are
linearly dependent. The latter one is likewise impossible because these vectors
form a basis of V.

The scalar numbers 2% (i = 1,2, ...,n) in the representation (1.4) are called
components of the vector & with respect to the basis G = {g1,92,...,9n}

The summation of the form (1.4) is often used in tensor analysis. For this
reason it is usually represented without the summation symbol in a short form
by
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n
T = Zmlgi =2'g; (1.5)
i=1

referred to as Einstein’s summation convention. Accordingly, the summation is
implied if an index appears twice in a multiplicative term, once as a superscript
and once as a subscript. Such a repeated index (called dummy index) takes
the values from 1 to n (the dimension of the vector space in consideration).
The sense of the index changes (from superscript to subscript or vice versa)
if it appears under the fraction bar.

1.4 Scalar Product, Euclidean Space, Orthonormal Basis

The scalar product plays an important role in vector and tensor algebra. The
properties of the vector space essentially depend on whether and how the
scalar product is defined in this space.

Definition 1.6. The scalar (inner) product is a real-valued function x -y of
two vectors  and y in a vector space V, satisfying the following conditions.

C. (Cl) z-y=y-x (commutative rule),
(C2) - (y+2z) =z y+z -z (distributive rule),

(C3) a(x-y)=(ax) -y == (ay) (associative rule for the multiplica-
tion by a scalar), Va € R, Va,y,z € V,

(C4) z-x>0 Ve eV, x-x=0 if and only if = = 0.

An n-dimensional vector space furnished by the scalar product with properties
(C.1-C.4) is called Euclidean space E™. On the basis of this scalar product
one defines the Euclidean length (also called norm) of a vector @ by

el = Va - @ (1.6)
A vector whose length is equal to 1 is referred to as unit vector.

Definition 1.7. Two vectors & and y are called orthogonal (perpendicular),
denoted by xly, if

z-y=0. (1.7)
Of special interest is the so-called orthonormal basis of the Euclidean space.

Definition 1.8. A basis £ = {e1,ea,...,e,} of an n-dimensional Euclidean
space E™ is called orthonormal if

ei-ej:&j, i,j:1,2,...,n, (18)

where
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P (1.9)
Yo ST 0 fori#j '

denotes the Kronecker delta.

Thus, the elements of an orthonormal basis represent pairwise orthog-
onal unit vectors. Of particular interest is the question of the existence of
an orthonormal basis. Now, we are going to demonstrate that every set of
m < n linearly independent vectors in [E™ can be orthogonalized and nor-
malized by means of a linear transformation (Gram-Schmidt procedure).

In other words, starting from linearly independent vectors xi,xs,..., Ty
one can always construct their linear combinations ey, e, ..., e, such that
ei-e; =0;; (1,7 =1,2,...,m). Indeed, since the vectors ; (: = 1,2,...,m)

are linearly independent they are all non-zero (see Exercise 1.2). Thus, we can
define the first unit vector by

Ty

e = . (1.10)
[ ]|
Next, we consider the vector
e, =2 — (x2-e1)er (1.11)

orthogonal to e;. This holds for the unit vector es = e,/|e}| as well. Tt
is also seen that |eh| = \/€h - e} # 0 because otherwise €5 = 0 and thus
@y = (13- €1) e; = (T2 - 1) |||~ " 1. However, the latter result contradicts
the fact that the vectors @, and x5 are linearly independent.

Further, we proceed to construct the vectors

¢

es =x3— (r3-€2)ex— (x3-€e1)er, e3 (1.12)

les]]
orthogonal to e; and es. Repeating this procedure we finally obtain the set
of orthonormal vectors e, es, ..., e,,. Since these vectors are non-zero and
mutually orthogonal, they are linearly independent (see Exercise 1.6). In the
case m = n, this set represents, according to Theorem 1.3, the orthonormal
basis (1.8) in E™.

With respect to an orthonormal basis the scalar product of two vectors
x = 2'e; and y = y'e; in E" takes the form

x-y=zayt +2%P+ .+ a2y (1.13)
For the length of the vector & (1.6) we thus obtain the Pythagoras formula

||| = \/x1x1+m2x2+...+$"$"7 z e E". (1.14)
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1.5 Dual Bases

Definition 1.9. Let G = {g1,92,...,9n} be a basis in the n-dimensional Eu-
clidean space E"™. Then, a basis G' = {91,92, ces ,g"} of E™ s called dual to
g, if

gi-g’ =0, i,j=1,2,...,n (1.15)
In the following we show that a set of vectors G’ = {gl, g’ ... ,g”} satisfying
the conditions (1.15) always exists, is unique and forms a basis in E™.

Let &€ = {e1,es,...,e,} be an orthonormal basis in E”. Since G also
represents a basis, we can write

ei:aggj, gizﬁfej, i=1,2,...,n, (1.16)

where a{ and 53 (1=1,2,...,n) denote the components of e; and g;, respec-
tively. Inserting the first relation (1.16) into the second one yields

gi = Blakg,, = 0=<6§a§—6f)gk, i=1,2,....n. (1.17)

Since the vectors g; are linearly independent we obtain

Blak =6F, i k=1.2,..n (1.18)
Let further

g =die), i=1.2...n, (1.19)
where and henceforth we set e/ = e;(j = 1,2,...,n) in order to take the

advantage of Einstein’s summation convention. By virtue of (1.8), (1.16) and
(1.18) one finally finds

gi-g’ = (Brer)-(ofe') = Arajs, = Braf =], ij=1,2,....n. (1.20)

Next, we show that the vectors g* (i = 1,2,...,n) (1.19) are linearly indepen-
dent and for this reason form a basis of E™. Assume on the contrary that

aigi = 07
where not all scalars a; (i = 1,2, ..., n) are zero. Multiplying both sides of this
relation scalarly by the vectors g; (j = 1,2,...,n) leads to a contradiction.

Indeed, using (1.167) (see Exercise 1.5) we obtain
OZaigi-gj:aiéézaj, j:1,2,...,n.

The next important question is whether the dual basis is unique. Let G’ =
{g*,g% ....,9"} and H' = {h',h? ... h"} be two arbitrary non-coinciding
bases in E™, both dual to G = {g1,92,...,9n}. Then,
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h'=hlg/, i=12,...n

Forming the scalar product with the vectors g; (7 = 1,2,...,n) we can con-
clude that the bases G’ and H’ coincide:

§i=h'-g;=(hig")-g;=hiof =hi = h'=g' i=12...,n
Thus, we have proved the following theorem.

Theorem 1.6. To every basis in an Euclidean space E™ there exists a unique
dual basis.

Relation (1.19) enables to determine the dual basis. However, it can also be
obtained without any orthonormal basis. Indeed, let g* be a basis dual to
gi(i=1,2,...,n). Then

g =9g;, gi=gij9’, i=12,...,n. (1.21)
Inserting the second relation (1.21) into the first one yields

g =d9gig", i=1,2,... n (1.22)
Multiplying scalarly with the vectors g; we have by virtue of (1.15)

6l =g g0r = gYgu, i,1=1,2,...,n. (1.23)

Thus, we see that the matrices [gy;] and [gkj } are inverse to each other such
that

4] = fous] " (124

Now, multiplying scalarly the first and second relation (1.21) by the vectors
g’ and g; (j = 1,2,...,n), respectively, we obtain with the aid of (1.15) the
following important identities:

g

g”:gﬂzglgj7 gz]:g]z:glgj; 17]21,2,,77/ (125)
By definition (1.8) the orthonormal basis in E" is self-dual, so that
ei=e, e-e =0, i,j=12...,n (1.26)

With the aid of the dual bases one can represent an arbitrary vector in E™ by

x=1'g, = 9", Vx cE", (1.27)
where
=x-g', mm=x-9; i=12...,n (1.28)

Indeed, using (1.15) we can write
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x-gi=(v;9') gi=2;0] =x;, i=12,...,n
The components of a vector with respect to the dual bases are suitable for
calculating the scalar product. For example, for two arbitrary vectors * =
r'g; = ;9" and y = y'g; = y;g" we obtain
x-y =21y g =wyg" =2y =z (1.29)

The length of the vector & can thus be written by
lall = /a9 = Jaizigy; = Vasar. (1.30)

Example. Dual basis in E?. Let G = {g1,92,93} be a basis of the
three-dimensional Euclidean space and

9 =1[919293], (1.31)

where [o o o] denotes the mixed product of vectors. It is defined by
[abc] = (axb)-c=(bxc)-a=(cxa)-b, (1.32)

where “x” denotes the vector (also called cross or outer) product of vectors.
Consider the following set of vectors:

g' =g 'g2xg3, 9g°=9"gsxg1, g°=9 "'g1 xgo. (1.33)

It seen that the vectors (1.33) satisfy conditions (1.15), are linearly indepen-
dent (Exercise 1.11) and consequently form the basis dual to g; (i = 1,2, 3).
Further, it can be shown that

9> = lgijl, (1.34)

where |o| denotes the determinant of the matrix [e]. Indeed, with the aid of
(1.16)2 we obtain

9= [919293] = |Bieifle;fhex

= Bi3365 leieser] = BB A5 e = |85, (1.35)
where e, denotes the permutation symbol (also called Levi-Civita symbol).
It is defined by

€ijk = eijk = [eiejek]
1 if ijk is an even permutation of 123,
=< —1 ifijk is an odd permutation of 123, (1.36)

0 otherwise,



1.5 Dual Bases 11

where the orthonormal vectors e, es and e3 are numerated in such a way
that they form a right-handed system. In this case, [e;ezes] = 1.
On the other hand, we can write again using (1.16)s

3
gijzgz"gj:Z@kﬁf-
k=1

The latter sum can be represented as a product of two matrices so that

[9:5) = [[ﬂ [@jf. (1.37)

Since the determinant of the matrix product is equal to the product of the
matrix determinants we finally have

2
lgi| = |B!| =g (1.38)

With the aid of the permutation symbol (1.36) one can write

9:9;9k] = €ijr g, 1,5,k=1,2,3, (1.39)

which by (1.28)3 yields an alternative representation of the identities (1.33)
as

gixg;=eingg”, i,j=12,3. (1.40)

Similarly to (1.35) one can also show that (see Exercise 1.12)

9'9°9°] =97} (1.41)
and
|gij| =g 2 (1.42)
Thus,
lg'g’g"] = et i i k=1,2,3 (1.43)
g b 9y ) ? b ? .

which yields by analogy with (1.40)

S idk
g'xg = eg gk, 4,5=1,2,3. (1.44)

Relations (1.40) and (1.44) permit a useful representation of the vector prod-
uct. Indeed, let @ = a’g; = a;,g" and b= b'g; = b;g’ be two arbitrary vectors
in E2. Then,
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a' a? a?

axb=(da'g;) x (bg;) = a'Vergg" = g|b' b* 07|,
g' 9> g*

‘ ‘ - | |a1 a2 as

axb= (aigl) X (bjgj) = aibje”kgflgk = by by b3 |. (1.45)

g1 92 93

For the orthonormal basis in E? relations (1.40) and (1.44) reduce to

ei x ej = ey pet =eey, i,j=1,2,3, (1.46)
so that the vector product (1.45) can be written by

ap az ag
axb= bl b2 b3 5 (147)

€] €2 €3

where a = a;e’ and b = b;e’.

1.6 Second-Order Tensor as a Linear Mapping

Let us consider a set Lin™ of all linear mappings of one vector into another
one within E™. Such a mapping can be written as

y=Axz, yeE" VxecE" VA eLin" (1.48)

Elements of the set Lin™ are called second-order tensors or simply tensors.
Linearity of the mapping (1.48) is expressed by the following relations:

A(x+y)=Ax+Ay, Vx,ycE" VA c€Lin", (1.49)

A(ax)=a(Axz), YVreE', VacR, VA <€Lin" (1.50)

Further, we define the product of a tensor by a scalar number o € R as
(0A)x =a(Az) =A(ax), VxecE" (1.51)
and the sum of two tensors A and B as
(A+B)x=Ax+ Bz, VYVrcE" (1.52)

Thus, properties (A.1), (A.2) and (B.1-B.4) apply to the set Lin™. Setting in
(1.51) o« = —1 we obtain the negative tensor by

A= (-1)A. (1.53)

Further, we define a zero tensor 0 in the following manner
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0x =0, Vxek", (1.54)

so that the elements of the set Lin™ also fulfill conditions (A.3) and (A.4) and
accordingly form a vector space.
The properties of second-order tensors can thus be summarized by

A+B=B+ A, (addition is commutative),
A+(B+C)=(A+B)+C, (addition is associative),
0+A=A,

A+ (-A)=0,

a(BA) = (af) A, (multiplication by scalars is associative),

1A = A,

a(A +B)=aA+aB, (multiplication by scalars is distributive
with respect to tensor addition), (1.61)
(o + 0) A =aA + (A, (multiplication by scalars is distributive

with respect to scalar addition), VA,B,C € Lin", Vo, € R. (1.62)

Example. Vector product in E?. The vector product of two vectors in
E? represents again a vector in E?

z=wxz, zcE VwxcE> (1.63)
According to (1.45) the mapping & — z is linear so that

w X (ax) = a(w x x),

wx (x+y)=wxzr+wxy, Ywzx,yck VacR. (1.64)
Thus, it can be described by means of a tensor of the second order by

wxx=Wz, W cLin®, VrcE3. (1.65)

The tensor which forms the vector product by a vector w according to (1.65)
will be denoted in the following by w. Thus, we write

w X T = Wwe. (1.66)
Clearly
0=0. (1.67)

Example. Representation of a rotation by a second-order tensor.
A rotation of a vector a in E? about an axis yields another vector = in E3. It
can be shown that the mapping a — r (a) is linear such that
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Fig. 1.2. Finite rotation of a vector in E®

r(aa) =ar(a), r(a+b)=r(a)+r (), Va € R, Va,bec E>.  (1.68)
Thus, it can again be described by a second-order tensor as
r(a) =Ra, VYa cE3 R cLin’ (1.69)

This tensor R is referred to as rotation tensor.

Let us construct the rotation tensor which rotates an arbitrary vector a €
[E3 about an axis specified by a unit vector e € E3 (see Fig. 1.2). Decomposing
the vector @ by @ = a* + x in two vectors along and perpendicular to the
rotation axis we can write

a=a"+xcosw+ysinw=a"+ (a—a")cosw+ ysinw, (1.70)
where w denotes the rotation angle. By virtue of the geometric identities

a*=(a-e)e=(e®e)a, y=exx=ex(a—a*)=exa=ceéa, (1.71)

where “®” denotes the so-called tensor product (1.80) (see Sect. 1.7), we
obtain

a = coswa + sinwea + (1 — cosw) (e ® €) a. (1.72)
Thus the rotation tensor can be given by
R = coswI +sinwé + (1 — cosw) e Q e, (1.73)

where I denotes the so-called identity tensor (1.89) (see Sect. 1.7).
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Fig. 1.3. Cauchy stress vector

Another useful representation for the rotation tensor can be obtained uti-
lizing the fact that * = y x e = —e x y. Indeed, rewriting (1.70) by

a=a+x(cosw—1)+ysinw (1.74)
and keeping (1.71)2 in mind we receive

@ =a+sinwea + (1 — cosw) (&)*a. (1.75)
This leads to the expression for the rotation tensor

R =1I+sinwe + (1 — cosw) (&)° (1.76)
known as the Euler-Rodrigues formula (see, e.g., [9]).

Example. The Cauchy stress tensor as a linear mapping of the
unit surface normal into the Cauchy stress vector. Let us consider a
body B in the current configuration at a time ¢. In order to define the stress
in some point P let us further imagine a smooth surface going through P and
separating B into two parts (Fig. 1.3). Then, one can define a force Ap and
a couple Am resulting from the forces exerted by the (hidden) material on
one side of the surface AA and acting on the material on the other side of
this surface. Let the area AA tend to zero keeping P as inner point. A basic
postulate of continuum mechanics is that the limit

t— lim =P
T Ads0 AA

exists and is final. The so-defined vector t is called Cauchy stress vector.
Cauchy’s fundamental postulate states that the vector ¢ depends on the sur-
face only through the outward unit normal n. In other words, the Cauchy
stress vector is the same for all surfaces through P which have n as the nor-
mal in P. Further, according to Cauchy’s theorem the mapping n — t is linear
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provided t is a continuous function of the position vector & at P. Hence, this
mapping can be described by a second-order tensor o called the Cauchy stress
tensor so that

t=on. (1.77)

On the basis of the “right” mapping (1.48) we can also define the “left”
one by the following condition

(yA) - z=y-(Axz), YxecE", A cLin". (1.78)

First, it should be shown that for all y € E” there exists a unique vector yA €
E™ satisfying the condition (1.78) for all @ € E". Let G = {g1,92,...,9n}
and G’ = {91,92, e ,g"} be dual bases in E”. Then, we can represent two
arbitrary vectors ,y € E”, by * = z;9* and y = y;g’. Now, consider the
vector

yA =y [g' (Ag’)] g;.

It holds: (yA)-x = y;x; [g" - (Ag?)]. On the other hand, we obtain the same
result also by

y- (Az) =y- (2;A9°) = yiz; [¢' - (Ag’)].

Further, we show that the vector y A, satisfying condition (1.78) for all x € E™,
is unique. Conversely, let a,b € E™ be two such vectors. Then, we have

a-xz=b-x = (a—b)-x=0,Ve€E" = (a—b)-(a—b) =0,

which by axiom (C.4) implies that a = b.
Since the order of mappings in (1.78) is irrelevant we can write them
without brackets and dots as follows

Y- (Az) = (yA) = =yAz. (1.79)

1.7 Tensor Product, Representation of a Tensor with
Respect to a Basis

The tensor product plays an important role since it enables to construct a
second-order tensor from two vectors. In order to define the tensor product
we consider two vectors a, b € E™. An arbitrary vector & € E™ can be mapped
into another vector a (b- ) € E™. This mapping is denoted by symbol “®”
as a ® b. Thus,

(a@b)r=a(b-z), a,becE" VrecE". (1.80)
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It can be shown that the mapping (1.80) fulfills the conditions (1.49-1.51) and
for this reason is linear. Indeed, by virtue of (B.1), (B.4), (C.2) and (C.3) we

can write
(@a@b)(x+y)=alb-(x+y)=ab-xz+b-y)
=(a®b)x+ (a®b)y, (1.81)
(a®@b)(ax) =alb (ax)]=a(b-z)a
=a(a®@b)x, a,belk” Va,ycE" VacR. (1.82)

Thus, the tensor product of two vectors represents a second-order tensor.
Further, it holds

cR(a+b)=c®a+c®b, (a+b)c=axkc+b®ec, (1.83)

(va) ® (Bb) = aB(a®b), a,b,ceE" Va,BeR. (1.84)

Indeed, mapping an arbitrary vector & € E™ by both sides of these relations
and using (1.52) and (1.80) we obtain

cRa+b)r=cla-x+b-x)=c(a-x)+c(b-x)
=(c®a)z+ (c®br=(cRa+c®b)x,
[(a+b)@clr=(a+b)(c-x)=a(c-xz)+b(c-x)

=(a®c)x+(b®c)r=(a®@c+bc)x,

(aa) @ (Bb) x = (aa) (Bb- x)
=afab-z)=af(a®b)z, VrecE"

For the “left” mapping by the tensor a® b we obtain from (1.78) (see Exercise
1.20)

y(a®b)=(y-a)b, YyecE" (1.85)

We have already seen that the set of all second-order tensors Lin™ repre-
sents a vector space. In the following, we show that a basis of Lin™ can be
constructed with the aid of the tensor product (1.80).

Theorem 1.7. Let F = {f1,f2,..., fn} and G = {g1,92,...,gn} be two
arbitrary bases of E". Then, the tensors f; ® g; (1,5 =1,2,...,n) represent
a basis of Lin™. The dimension of the vector space Lin™ is thus n?.

Proof. First, we prove that every tensor in Lin" represents a linear combi-
nation of the tensors f; ® g; (4,7 =1,2,...,n). Indeed, let A € Lin" be an
arbitrary second-order tensor. Consider the following linear combination
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A= (f'Ad) fi®g;,

where the vectors f* and g° (i = 1,2,...,n) form the bases dual to F and G,
respectively. The tensors A and A’ coincide if and only if

Az = Az, VxcE" (1.86)
Let = z;¢’. Then

A'z = (f'Ag’) fi® g; (zrg") = (f'Ag’) fixk(sf =z; (f'Ag’) fi.
On the other hand, Az = z;Ag’. By virtue of (1.27-1.28) we can repre-
sent the vectors Agj‘ (j =1,2,...,n) with respect to the basis F by Agl =
[fl- (Agj)] fi= (fZAgJ) fi(j=1,2,...,n). Hence,

Thus, it is seen that condition (1.86) is satisfied for all & € E™. Finally,
we show that the tensors f; ® g; (1,7 = 1,2,...,n) are linearly independent.

Otherwise, there would exist scalars o (i,7 =1,2,...,n), not all zero, such
that
at fi® g; = 0.

The right mapping of g¥ (k= 1,2,...,n) by this tensor equality yields then:
a*fi =0 (k=1,2,...,n). This contradicts, however, the fact that the vec-
tors fr (k=1,2,...,n) form a basis and are therefore linearly independent.

For the representation of second-order tensors we will in the following use
primarily the bases g;®g;, g°'®g’, g'®g; or g;®¢g’ (i, =1,2,...,n). With
respect to these bases a tensor A € Lin" is written as

A=AVg 0g;=A;g ©g =A,g0g =A/g' ®g; (1.87)
with the components (see Exercise 1.21)

AV =g'Ag’, Aij=giAg;,

A =g'Ag;, A/ =giAg’, ij=12...n (1.88)
Note, that the subscript dot indicates the position of the above index. For
example, for the components A?'j, 1 is the first index while for the components
A iis the second index.

g
Of special importance is the so-called identity tensor I. It is defined by

Iz =x, Vxek™ (1.89)

With the aid of (1.25), (1.87) and (1.88) the components of the identity tensor
can be expressed by
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1V =g'lg’ =g'-g' =g, L;=glg;=9: 9;= 9
U,=1 =T =g'lg; =g1g’ =g' g, =9:- ¢’ = 5, (1.90)
where 7,5 = 1,2,...,n. Thus,
I=gi,9'®9 =¢79;09;=9'®g;=9, 09" (1.91)

It is seen that the components (1.90); 2 of the identity tensor are given by
relation (1.25). In view of (1.30) they characterize metric properties of the
Euclidean space and are referred to as metric coefficients. For this reason, the
identity tensor is frequently called metric tensor. With respect to an orthonor-
mal basis relation (1.91) reduces to

i=1

1.8 Change of the Basis, Transformation Rules

Now, we are going to clarify how the vector and tensor components transform
with the change of the basis. Let @ be a vector and A a second-order tensor.
According to (1.27) and (1.87)

x=2'g;, = ng, (1.93)

A=AVg;0g;=A,g'0g =Ajgi0g =Alg ®g; (1.94)
With the aid of (1.21) and (1.28) we can write

o =x-g' =z (97g;) = 259", wi=wm-gi=z (99°) =2 gji, (1.95)
where i = 1,2,...,n. Similarly we obtain by virtue of (1.88)

AV =g'Ag’ = g'A (¢""g)

= (9"91) A (¢""gr) = Alig™ = g" Aug™, (1.96)
Aij =giAg; = giA (9;19")

= (909") A (g;x9") = AL gr; = g A" g5, (1.97)
where i,7 = 1,2, ...,n. The transformation rules (1.95-1.97) hold not only for
dual bases. Indeed, let g; and g, (i = 1,2,...,n) be two arbitrary bases in
E™, so that

x=1'g; = 7'g,, (1.98)

A=Alg0g;=A"g,0g,. (1.99)
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By means of the relations

gi=alg;, i=12...,n (1.100)
one thus obtains

x=1'g;=alalg, = ' =d'al, j=12,...n (1.101)

A=AYg;®g; = AY (afg,) ® (d}g)) = AYafd\g, @ g,

= A’”:Aiﬂ'afag, k,1=1,2,...,n. (1.102)

1.9 Special Operations with Second-Order Tensors

In Sect. 1.6 we have seen that the set Lin™ represents a finite-dimensional
vector space. Its elements are second-order tensors that can be treated as
vectors in E"” with all the operations specific for vectors such as summation,
multiplication by a scalar or a scalar product (the latter one will be defined
for second-order tensors in Sect. 1.10). However, in contrast to conventional
vectors in the Euclidean space, for second-order tensors one can additionally
define some special operations as for example composition, transposition or
inversion.

Composition (simple contraction). Let A, B € Lin" be two second-
order tensors. The tensor C = AB is called composition of A and B if

Cz=A(Bx), VaeckE" (1.103)
For the left mapping (1.78) one can write

y(AB) = (yA)B, VvyeE". (1.104)
In order to prove the last relation we use again (1.78) and (1.103):

y(AB)z =y-[(AB)z] = y - [A (Bz)]

= (yA) - (Bz)=[(yA)B| -, VaxcE".

The composition of tensors (1.103) is generally not commutative so that AB #
BA. Two tensors A and B are called commutative if on the contrary AB =
BA. Besides, the composition of tensors is characterized by the following
properties (see Exercise 1.25):

A0=0A=0, AI=TA=A, (1.105)

AB+C)=AB+AC, (B+C)A=BA+CA, (1.106)

A (BC) = (AB)C. (1.107)
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For example, the distributive rule (1.106); can be proved as follows
[AB+C)lxz=A[B+C)x]=A(Bx+Czx)=A(Bx)+ A(Cx)
=(AB)xz+ (AC)z = (AB+ AC)z, VxecE".
For the tensor product (1.80) the composition (1.103) yields
(a®b)(c®d)=(b-c)a®d, a,bc,decE". (1.108)
Indeed, by virtue of (1.80), (1.82) and (1.103)
(@a®b)(cod)z =(a®b)[(ced)z|=(d z)(a@b)c
=(d-z)(b-c)a=(b-c)(axd)x
=[b-c)a®dx, VxecE"
Thus, we can write
AB=A*B/g;®g; = AyB"g' @ g;
= AL BYgi®g’ = AByg' ® ¢, (1.109)
where A and B are given in the form (1.87).

Powers, polynomials and functions of second-order tensors. On
the basis of the composition (1.103) one defines by

A" =AA.. A, m=1,23..., A’=1 (1.110)
N~ ~ -
m times

powers (monomials) of second-order tensors characterized by the following
evident properties

AFAL = ARH (Ak)l — AR (1.111)

(@A) = a"AF, k1=0,1,2... (1.112)
With the aid of the tensor powers a polynomial of A can be defined by

g(A) =agl + a1 A + as A% + ...+ ap A™ :ZakAk. (1.113)
k=0

g (A): Lin™ —Lin" represents a tensor function mapping one second-order
tensor into another one within Lin™. By this means one can define various
tensor functions. Of special interest is the exponential one
o0
Ak
exp (A) = (1.114)

N k!
k=0

given by the infinite power series.
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Transposition. The transposed tensor AT is defined by:

ATz =xzA, VrcE" (1.115)
so that one can also write

Ay =yA", zAy=yATz, Vz,ycE" (1.116)
Indeed,

z - (Ay)=(zA) - y=y- (ATw) —yATz ==z (yAT) , Ve, y € E™.
Consequently,

(AT)" = A. (1.117)
Transposition represents a linear operation over a second-order tensor since

(A+B)" = AT+ BT (1.118)
and

(aA)T = aAT, VaeR. (1.119)
The composition of second-order tensors is transposed by

(AB)" = BTAT. (1.120)
Indeed, in view of (1.104) and (1.115)

(AB)'z =z (AB) = (zA)B =B" (zA) =B"A"z, vV cE"

For the tensor product of two vectors a,b € E™ we further obtain by use of
(1.80) and (1.85)

(a®b)’ =b®a. (1.121)

This ensures the existence and uniqueness of the transposed tensor. Indeed,
every tensor A in Lin" can be represented with respect to the tensor product
of the basis vectors in E™ in the form (1.87). Hence, considering (1.121) we
have

AT =AVg;0g9i=Ayg’ ©g = A g g, =Alg; 09", (1.122)
or
AT =Nigiwg;=Aug' 09 =Alg ©g;=Algiog. (1.123)

Comparing the latter result with the original representation (1.87) one ob-
serves that the components of the transposed tensor can be expressed by
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(AT) = Ay, (AT)Y = A7, (1.124)

ij

(AT);. = Al = g" A gu, (AT)Z = A =gAlg". (1.125)
For example, the last relation results from (1.88) and (1.116) within the fol-
lowing steps

(AT), =g'ATg; =g;Ag’ = g; (A.’“zgk ® gl) g’ = girAlg".

According to (1.124) the homogeneous (covariant or contravariant) compo-
nents of the transposed tensor can simply be obtained by reflecting the matrix
of the original components from the main diagonal. It does not, however, hold
for the mixed components (1.125).
The transposition operation (1.115) gives rise to the definition of symmet-
ric MT = M and skew-symmetric second-order tensors W' = —W.
Obviously, the identity tensor is symmetric

IT=1 (1.126)
Indeed,

2ly=x-y=y = =yle =21y, Va,ycE"
One can easily show that the tensor w (1.66) is skew-symmetric so that

W' = —w. (1.127)
Indeed, by virtue of (1.32) and (1.116) on can write

zw'y = ywr =y (w x x) = [yw] = — [zwy]

=z - (wxy)=x(—w)y, Vyclk.
Inversion. Let
y=Ax. (1.128)

A tensor A € Lin" is referred to as invertible if there exists a tensor A~1 €
Lin™ satisfying the condition

x=A"ly VrcE" (1.129)

The tensor A~! is called inverse of A. The set of all invertible tensors Inv?® =
{A ¢ Lin" : EIA_l} forms a subset of all second-order tensors Lin".
Inserting (1.128) into (1.129) yields

z=A""'y=A""(Az)=(A"'A)z, VxecE"
and consequently

A'A =1 (1.130)
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Theorem 1.8. A tensor A is invertible if and only if Ax = 0 implies that
r=20.

Proof. First we prove the sufficiency. To this end, we map the vector equation
Az = 0 by A=, According to (1.130) it yields: 0 = A~'Az = Iz = z. To
prove the necessity we consider a basis G = {g1,9g2,...,gn} in E™. It can be
shown that the vectors h; = Ag; (i = 1,2,...,n) form likewise a basis of E™.
Conversely, let these vectors be linearly dependent so that a’h; = 0, where not
all scalars a’ (i = 1,2,...,n) are zero. Then, 0 = a’h; = a'Ag; = Aa, where
a = a'g; # 0, which contradicts the assumption of the theorem. Now, consider
the tensor A’ = g; ® h', where the vectors h? are dual to h; (i = 1,2,...,n).
One can show that this tensor is inverse to A, such that A’ = A~!. Indeed,
let = 2'g; be an arbitrary vector in E”. Then, y = Ax = 2'Ag; = z'h;
and therefore A'y = g; ® h' (27 h;) = giz? 8} = 2'g; = .

Conversely, it can be shown that an invertible tensor A is inverse to A~ and
consequently

AAT' =1 (1.131)

For the proof we again consider the bases g; and Ag; (i = 1,2,...,n). Let
y = y'Ag; be an arbitrary vector in E". Let further = A~y = y’g; in
view of (1.130). Then, Ax = y*Ag; = y which implies that the tensor A is
inverse to A1,

Relation (1.131) implies the uniqueness of the inverse. Indeed, if A~! and
A~ are two distinct tensors both inverse to A then there exists at least one
vector y € E™ such that A~ly # A~ly. Mapping both sides of this vector
inequality by A and taking (1.131) into account we immediately come to the
contradiction.

By means of (1.120), (1.126) and (1.131) we can write (see Exercise 1.38)

(AT = (AT =AT. (1.132)
The composition of two arbitrary invertible tensors A and B is inverted by

(AB)"' =B 'A"" (1.133)
Indeed, let

y = ABx.

Mapping both sides of this vector identity by A~! and then by B~!, we obtain
with the aid of (1.130)

x=B'Aly VacE"

On the basis of transposition and inversion one defines the so-called orthogonal
tensors. They do not change after consecutive transposition and inversion and
form the following subset of Lin™:
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Orth" = {QeLin”: Q=Q "}. (1.134)
For orthogonal tensors we can write in view of (1.130) and (1.131)

QQT=Q'Q =1 VvQ € Orth™. (1.135)

For example, one can show that the rotation tensor (1.73) is orthogonal. To
this end, we complete the vector e defining the rotation axis (Fig. 1.2) to
an orthonormal basis {e, q,p} such that e = ¢ x p. Then, using the vector
identity (see Exercise 1.15)

plg-x)—q(p-z)=(gxp)xx, VYacE? (1.136)
we can write
e=pRq-—qap. (1.137)
The rotation tensor (1.73) takes thus the form
R=coswl+sinw(p®q—-—q®p)+ (1l —cosw)(exe). (1.138)
Hence,
RRT = [coswI +sinw (p®q—q@p) + (1 — cosw) (e ® e)]
[coswI —sinw (p®qg—q®p)+ (1 —cosw) (e® e)]
=cos’wl +sinw(e®e) +sin*w(pOp+qaq) =1
Alternatively one can express the transposed rotation tensor (1.73) by
RT = coswl + sinwé™ 4 (1 —cosw)e® e
=cos(—w)I+sin(—w)é+ [l —cos(—w)|e®e (1.139)

taking (1.121), (1.126) and (1.127) into account. Thus, RT (1.139) describes
the rotation about the same axis e by the angle —w, which likewise implies
that RTRx = «, Va € E3.

It is interesting that the exponential function (1.114) of a skew-symmetric
tensors represents an orthogonal tensor. Indeed, keeping in mind that a skew-
symmetric tensor W commutes with its transposed counterpart WT = —W
and using the identities exp (A + B) = exp (A) exp (B) for commutative ten-
sors (Exercise 1.28) and (Ak)T = (AT)k for integer k (Exercise 1.36) we can
write

I=exp(0) =exp(W—W)=exp(W+WT)

= exp (W) exp (W) = exp (W) [exp wW)", (1.140)

where W denotes an arbitrary skew-symmetric tensor.
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1.10 Scalar Product of Second-Order Tensors

Consider two second-order tensors a®b and ¢®d given in terms of the tensor
product (1.80). Their scalar product can be defined in the following manner:

(a®@b):(c®d)=(a-c)(b-d), a,bc,decE". (1.141)
It leads to the following identity (Exercise 1.40):

c®d: A=cAd=dA"c. (1.142)
For two arbitrary tensors A and B given in the form (1.87) we thus obtain

A :B=A;BY =AYB;; = A B/ = A/B,. (1.143)
Similar to vectors the scalar product of tensors is a real function characterized
by the following properties (see Exercise 1.41)
D. (D.1) A: B =B: A (commutative rule),

(D.2) A: (B+C)=A":B+ A : C (distributive rule),

(D3) a(A:B)=(0A): B=A: (aB) (associative rule for multiplica-

tion by a scalar), VA,B € Lin", Va € R,
(D4) A:A>0 VAeLin”, A:A=0 ifandonlyif A=0.

We prove for example the property (D.4). To this end, we represent an ar-
bitrary tensor A with respect to an orthonormal basis of Lin" as: A =
AVe; ® e; = Ajje' @ e/, where AY = A, (i,5 =1,2,...,n), since e’ =
e;(i=1,2,...,n) form an orthonormal basis of E" (1.8). Keeping (1.143) in
mind we then obtain:

A:A=ATA; =Y ATAU =Y (AY) >0,

i,j=1 i,j=1

Using this important property one can define the norm of a second-order
tensor by:

IA] = (A:A)"?, AeLin". (1.144)

For the scalar product of tensors one of which is given by a composition we
can write

A: (BC)=(BTA) : C=(ACT) : B, (1.145)
We prove this identity first for the tensor products:
(@®b) : [(ced)(ex f)]=(d-e)[(a®b) : (c® f)]
=(d-e)(a-c)(b-f),



1.11 Decompositions of Second-Order Tensors 27
(cea)"@ab) : (eaf)=doe)(@b)] : (e@f)
=(a-0)[(db) : (& f)]
=(d-e)(a-c)(b- 7).
(@ob)(ew '] : (cod =[@nb)(fee): (cod)
=(b-Dlaee) : (cod)
=(d-e)(a-c)(b-f).

For three arbitrary tensors A, B and C given in the form (1.87) we can write
in view of (1.109), (1.125) and (1.143)

Al (chkj.) = (BfA?j) Cl = [(BT)iA?j} il
AL (BECE) = (ALCg) BE = AL (€7 | B, (1.146)
Similarly we can prove that

A:B=AT:B". (1.147)

On the basis of the scalar product one defines the trace of second-order tensors
by:

trA=A:L (1.148)
For the tensor product (1.80) the trace (1.148) yields in view of (1.142)

tr(a®b)=a-b. (1.149)
With the aid of the relation (1.145) we further write

tr(AB)=A: BT =AT . B. (1.150)
In view of (D.1) this also implies that

tr (AB) = tr (BA). (1.151)

1.11 Decompositions of Second-Order Tensors

Additive decomposition into a symmetric and a skew-symmetric
part. Every second-order tensor can be decomposed additively into a sym-
metric and a skew-symmetric part by

A = symA + skewA, (1.152)
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where
symA = ; (A+AT), skewA = ; (A—AT). (1.153)

Symmetric and skew-symmetric tensors form subsets of Lin™ defined respec-
tively by

Sym” = {M € Lin" : M=M"}, (1.154)

Skew" = {W € Lin" : W=-W"}. (1.155)

One can easily show that these subsets represent vector spaces and can be
referred to as subspaces of Lin™. Indeed, the axioms (A.1-A.4) and (B.1-B.4)
including operations with the zero tensor are valid both for symmetric and
skew-symmetric tensors. The zero tensor is the only linear mapping that is
both symmetric and skew-symmetric such that Sym™N Skew™ = 0.

For every symmetric tensor M = M“g;  g; it follows from (1.124) that
M¥% = M7* (i # j, 4,7 =1,2,...,n). Thus, we can write

M=> Mig,ogi+ Y M/(g;®g;+g;®g), MEeSym". (1.156)
i=1 ij—1
>

Similarly we can write for a skew-symmetric tensor

W=)> Wi(g®g —g;®g), W ESkew" (1.157)
l%J>31

taking into account that W* = 0 and WY = —WJ* (i # 5, 4,5 =1,2,...,n).
Therefore, the basis of Sym” is formed by n tensors g; ® g; and %n (n—1)
tensors g; ®g;+g; ®gi, while the basis of Skew" consists of én (n — 1) tensors
gi ®g; —g; ® gi, where ¢ > j = 1,2,...,n. Thus, the dimensions of Sym"
and Skew™ are yn (n + 1) and jn (n — 1), respectively. It follows from (1.152)
that any basis of Skew”™ complements any basis of Sym™ to a basis of Lin".

Taking (1.40) and (1.169) into account a skew symmetric tensor (1.157)
can be represented in three-dimensional space by

3
W= W (g -9 2g)
i,j=1
i
3 ..
= > Wig;xgi=w, W & Skew’, (1.158)
i,j=1
i>j

where
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3

w= Y Wig;xg= 2W]9j X gi= ,9; % (Wg’)
1,7=1
ij>j
1 ..

Thus, every skew-symmetric tensor in three-dimensional space describes a
cross product by a vector w (1.159) called axial vector. One immediately
observes that

Ww =0, W e Skew®. (1.160)

Obviously, symmetric and skew-symmetric tensors are mutually orthogo-
nal such that (see Exercise 1.45)

M:W =0, VM e Sym", YW € Skew". (1.161)

Spaces characterized by this property are called orthogonal.

Additive decomposition into a spherical and a deviatoric part.
For every second-order tensor A we can write

A = sphA + devA, (1.162)
where
1 1
sphA = tr(A)I, devA=A—- tr(A)I (1.163)
n n

denote its spherical and deviatoric part, respectively. Thus, every spherical
tensor S can be represented by S = al, where « is a scalar number. In turn,
every deviatoric tensor D is characterized by the condition trD = 0. Just like
symmetric and skew-symmetric tensors, spherical and deviatoric tensors form
orthogonal subspaces of Lin".

1.12 Tensors of Higher Orders

Similarly to second-order tensors we can define tensors of higher orders. For
example, a third-order tensor can be defined as a linear mapping from E™ to
Lin". Thus, we can write

Y =Az, Y cLin”, VxecE" VAecLin", (1.164)

where Lin™ denotes the set of all linear mappings of vectors in E™ into second-
order tensors in Lin™. The tensors of the third order can likewise be repre-
sented with respect to a basis in Lin" e.g. by
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A=AMg @g;0gy=Ajg @g ©g"

=AL 909 ®g" =N/ g @g;®g" (1.165)

For the components of the tensor A (1.165) we can thus write by analogy with
(1.146)

Aijk _ Az]ggsk _ A.istgsjgtk _ ArstgrigSjgtk;

Aijie = Aljgri = Al grigsj = A" G,iGsi Gtk- (1.166)

Exercises

1.1. Prove that if @ € V is a vector and o € R is a scalar, then the following
identities hold.

(a) —0=0, b)a0=0, (¢)0x=0, (d) —x=(—1=z, (e)if ax =0,
then either a = 0 or & = 0 or both.

1.2. Prove that ; # 0 (i = 1,2,...,n) for linearly independent vectors
T1,To, ..., Ty. In other words, linearly independent vectors are all non-zero.

1.3. Prove that any non-empty subset of linearly independent vectors @1, 2,
..., X, is also linearly independent.

1.4. Write out in full the following expressions for n = 3: (a) d%a?, (b) dija‘a?,
(c) 0, (d) O dax?.
1.5. Prove that

0-2=0, Ve cE" (1.167)

1.6. Prove that a set of mutually orthogonal non-zero vectors is always linearly
independent.

1.7. Prove the so-called parallelogram law: ||z + y||* = ||z||* + 2z - y + ||y|*.

1.8. Let G ={g1,92,...,9n} be a basis in E" and a € E" be a vector. Prove
that a-g;, =0 (i =1,2,...,n) if and only if a = 0.

1.9. Prove that a =bif and only if a - = b - x, Vo € E".

1.10. (a) Construct an orthonormal set of vectors orthogonalizing and nor-
malizing (with the aid of the procedure described in Sect. 1.4) the following
linearly independent vectors:

1 2 4

g1 = 1 y 92 = 1 , g3 = 2 s
0 —2

—_



1.12 Tensors of Higher Orders 31

where the components are given with respect to an orthonormal basis.

(b) Construct a basis in E? dual to the given above utilizing relations (1.16)2,
(1.18) and (1.19).

(c) As an alternative, construct a basis in E? dual to the given above by means
of (1.21), (1.24) and (1.25)s.

(d) Calculate again the vectors g* dual to g; (i = 1,2,3) by using relations
(1.33) and (1.35). Compare the result with the solution of problem (b).

1.11. Verify that the vectors (1.33) are linearly independent.

1.12. Prove identities (1.41) and (1.42) by means of (1.18), (1.19) and (1.24),
respectively.

1.13. Prove relations (1.40) and (1.44) by using (1.39) and (1.43), respectively.

1.14. Verify the following identities involving the permutation symbol (1.36)
for n = 3: (a) 6¥eijn = 0, (b) e* ek, = 25;, (c) e%e;p = 6, (d) €9 egym =
8L87 — 8167,

1.15. Prove the following identities

(axb)xc=(a-c)b—(b-c)a, (1.168)
axb=b®a—a®b, Ya,b cecE. (1.169)

1.16. Prove that A0 = 0A = 0, VA € Lin™.
1.17. Prove that 0A = 0, VA € Lin".
1.18. Prove formula (1.58), where the negative tensor —A is defined by (1.53).

1.19. Prove that not every second order tensor in Lin" can be represented as
a tensor product of two vectors a,b € E" as a ® b.

1.20. Prove relation (1.85).
1.21. Prove (1.88) using (1.87) and (1.15).
1.22. Evaluate the tensor W = @ = w x, where w = w'g;.

1.23. Evaluate components of the tensor describing a rotation about the axis
es by the angle a.

1.24.Let A =AYg; @ g; , where

A7) =

_ o O

0
0

o O O

and the vectors g; (i = 1,2, 3) are given in Exercise 1.10. Evaluate the com-
ponents A;;, A%, and A/
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1.25. Prove identities (1.105) and (1.107).

1.26. Let A = A?jgi@)gj, B = B?jgi@)gj, C= C?jgi@)gj and D = D?jgi@)gj,
where

‘ [020 ‘ 000 ‘ 123
[A4]=1000], [By]=]000], [C;]=|000
1000 001 010
(10 0
[D4]=(01/2 0
10 0 10

Find commutative pairs of tensors.

1.27. Let A and B be two commutative tensors. Write out in full (A + B)k7
where k = 2,3,...

1.28. Prove that
exp (A + B) =exp (A) exp (B), (1.170)
where A and B commute.
1.29. Prove that exp (kA) = [exp (A)]", where k= 2,3, ...
1.30. Evaluate exp (0) and exp (I).
1.31. Prove that exp (—A)exp (A) =exp (A)exp (—A) =1
1.32. Prove that exp (A +B) =exp (A) +exp(B) —1if AB=BA =0.
1.33. Prove that exp (QAQT) Qexp (A)QT, VQ € Orth™.

1.34. Compute the exponential of the tensors D = D’ 59i ®g’,E = E?‘jgi ®g’
and F = F?jgz ® g7, where

} 200 } 010 | 020
D] =|030|, [EL]=]000]|, [F;]=|000
001 000 001

1.35. Prove that (ABCD)" = DTCTBTAT.
1.36. Verify that (Ak)T = (AT)k, where £k =1,2,3,...

1.37. Evaluate the components B% Bij, B?j and Bﬂ of the tensor B = AT,
where A is defined in Exercise 1.24.

1.38. Prove relation (1.132).
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1.39. Verify that (A=1)" = (AF) ™' = A=, where k = 1,2,3, ...
1.40. Prove identity (1.142) using (1.87) and (1.141).

1.41. Prove by means of (1.141-1.143) the properties of the scalar product
(D.1-D.3).

1.42. Verify that [(a®b) (c®d)] : I=(a-d)(b-c).
1.43. Express trA in terms of the components A?‘j, Ayj, A,

1.44. Let W = W¥g, ® g; , where

B 0—-1-3
W7 =11 0 1
3-1

and the vectors g; (1 = 1,2,3) are given in Exercise 1.10. Calculate the axial
vector of W.

1.45. Prove that M : W = 0, where M is a symmetric tensor and W a skew-
symmetric tensor.

1.46. Evaluate trW¥, where W is a skew-symmetric tensor and k = 1,3, 5, ...
1.47. Verify that sym (skewA) = skew (symA) = 0, YA € Lin".

1.48. Prove that sph (devA) = dev (sphA) = 0, VA € Lin".
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Vector and Tensor Analysis in Euclidean Space

2.1 Vector- and Tensor-Valued Functions, Differential
Calculus

In the following we consider a vector-valued function @ (¢) and a tensor-valued
function A (t) of a real variable ¢. Henceforth, we assume that these functions
are continuous such that
flirgl [z (t) —x (t9)] = 0, flir? [A(t)—A(tg)]=0 (2.1)
t—1o t—to
for all to within the definition domain. The functions  (¢) and A (t) are called
differentiable if the following limits
dax x(t+s)—x(t) dA . A(t+s) —A(t)

= lim , = lim

2.2
dt s—0 S dt s—0 S ( )

exist and are finite. They are referred to as the derivatives of the vector- and
tensor-valued functions « (¢) and A (t), respectively.

For differentiable vector- and tensor-valued functions the usual rules of
differentiation hold.

1) Product of a scalar function with a vector- or tensor-valued function:

d du dx

G0 IO RO (23)

d du dA

gt [u(t)A ()] = gt A(t)+ul(t) gt (2.4)
2) Mapping of a vector-valued function by a tensor-valued function:

d dA dx

q [A(t)x(t)] = T (t)+ A(¢) e (2.5)
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3) Scalar product of two vector- or tensor-valued functions:

d _dex dy

IO RO B TOREI0 B (26)

d dA dB

y [A(t):B((t)] = gt B(t)+ A(t): gt (2.7)
4) Tensor product of two vector-valued functions:

d dx dy

Crheyn=T eynrane 29)
5) Composition of two tensor-valued functions:

d dA dB

gt [A(#)B(t)] = gt B(t)+A(t) gt (2.9)
6) Chain rule:

d dz du d dA du

a® =gy g a M OI= gy (2.10)
7) Chain rule for functions of several arguments:

d Oxdu Oz dv

A CLQRLIO) i e (2.11)

d OAdu 0A dv

th[u )0 ®) = Ou dt + ov dt’ (212)

where 0/0u denotes the partial derivative. It is defined for vector and
tensor valued functions in the standard manner by

O () _ @ (ut s0) — @ (uw) (2.13)
ou 5—0 S

OA (up) _ . Alu+tsv) = A(uv) (2.14)
ou 5—0 S

The above differentiation rules can be verified with the aid of elementary
differential calculus. For example, for the derivative of the composition of two
second-order tensors (2.9) we proceed as follows. Let us define two tensor-
valued functions by

A(t+s)—A(t) dA B(t+s)—B(t) dB

01 (S) = s — dt y 02 (8) = s - dt B (215)

Bearing the definition of the derivative (2.2) in mind we have

lim Oy (s) =0, lim Oy (s)=0.

s—0 s—0



2.2 Coordinates in Euclidean Space, Tangent Vectors 37

Then
G a@B@) = ATIBET D ZAOBO
= Iy {[A(t) +S(ZA + 501 (3)] [B(t)-F (11]? + 504 ( )}

{ + 0, )} :CL?B@HA@)%?.

2.2 Coordinates in Euclidean Space, Tangent Vectors

Definition 2.1. A coordinate system is a one to one correspondence between
vectors in the n-dimensional Fuclidean space E" and a set of n real numbers
(xt,22%,...,2"). These numbers are called coordinates of the corresponding
vectors.

Thus, we can write

gi=a2'(r) & r=r('2?.. 2", (2.16)
where » € E" and ' € R (i = 1,2,...,n). Henceforth, we assume that the
functions #* = 2’ (r) and 7 =7 (xl, 2, ..., x") are sufficiently differentiable.

Example. Cylindrical coordinates in E3. The cylindrical coordinates
(Fig. 2.1) are defined by

r=1r(p,z,1r)=rcospe; +rsinpes + zes (2.17)

and
2 2
7*:\/(7'-61) +(r-e)”, z=r-es,

r-e .
arccos if r-ey >0,

— r . 2.18
4 27 — arccos ree if r-ey <0, ( )
r

where e; (i = 1,2, 3) form an orthonormal basis in E3.
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xr =z
9o
//_———\\

\T )/91

el 7 99

€1

.CL'l

Fig. 2.1. Cylindrical coordinates in three-dimensional space

The vector components with respect to a fixed basis, say H = {h1, ha, .. .,
h,}, obviously represent its coordinates. Indeed, according to Theorem 1.5 of
the previous chapter the following correspondence is one to one

r=z'h; < zi=r-h', i=12,...,n, (2.19)

where r € E” and H' = {hl, h2, ..., h”} is the basis dual to H. The compo-
nents z' (2.19)y are referred to as the linear coordinates of the vector r.

Let #' = o' (r) and y* = ¢’ (r) (i = 1,2,...,n) be two arbitrary coordinate
systems in E™. Since their correspondences are one to one, the functions

zt =gt (yl,y2,...,y”) s Y=g (wl,x2,...,x"), i=1,2,...,n (2.20)

are invertible. These functions describe the transformation of the coordinate
systems. Inserting one relation (2.20) into another one yields

y' =9 (@ (v "),
72 (yl,yQ, .. ,y") s, at (yl,yz, .. ,y")) . (2.21)
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The further differentiation with respect to y? delivers with the aid of the chain

rule
0y’
oy?

B oy’ Ok

=0ij = g oyi’ 1= 1,2,...,n. (2.22)

The determinant of the matrix (2.22) takes the form

oy’ Ok oy’ || 0xF

Sl =1= | | 2.93

| :J| ‘axk ayj ‘8xk 82/] ( )
The determinant |0y’ /92*| on the right hand side of (2.23) is referred to as Ja-
cobian determinant of the coordinate transformation y* = §* (2!, 2%,...,2")
(i=1,2, ...,n). Thus, we have proved the following theorem.
Theorem 2.1. If the transformation of the coordinates y* = i (ml, 22, .., x")
admits an inverse form z* = &° (yl,y2, .. .,y") (1=1,2,...,n) and if J and

K are the Jacobians of these transformations then JK = 1.

One of the important consequences of this theorem is that

_|oy’
J= ‘(‘M’“ £0. (2.24)

Now, we consider an arbitrary curvilinear coordinate system
0'=0"(r) & r=r(0",6%....0"), (2.25)

where r € E" and ' € R (i = 1,2,...,n). The equations

0 =const, i =1,2,... . k—1,k+1,...,n (2.26)
define a curve in E” called #*-coordinate line. The vectors
or
9k = gpis k=1,2,...,n (2.27)

are called the tangent vectors to the corresponding #*-coordinate lines (2.26).
One can verify that the tangent vectors are linearly independent and form thus
a basis of E™. Conversely, let the vectors (2.27) be linearly dependent. Then,
there are scalars o' € R (i = 1,2,...,n), not all zero, such that a’g; = 0. Let
further ' = 2% (r) (i = 1,2,...,n) be linear coordinates in E" with respect
to a basis H = {h1, ha,...,h,}. Then,

0 i ; or ; Or 07 ;07 h
=ad'gi=a"' =o' " =ao _ hj.
9i=% 900 =~ owi i — “ 001
Since the basis vectors h; (7 = 1,2,...,n) are linearly independent
O
%t =0, j=1,2,....n.
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This is a homogeneous linear equation system with a non-trivial solution
a' (i=1,2,...,n). Hence, |8xj/89l| = 0, which obviously contradicts re-
lation (2.24).

Example. Tangent vectors and metric coefficients of cylindrical
coordinates in E3. By means of (2.17) and (2.27) we obtain

or .
g1 = 9 = —rsinpe; + rcos pes,
_or .
g2 = 9,
gs = gr = cos pe; + sin pes. (2.28)
,
The metric coefficients take by virtue of (1.24) and (1.25)2 the form
7200 7200
ij -1
lgis) =lgi-gsl=| 0 10|, [¢7]=[g;] =] 0 10]. (2.29)
001 0 01
The dual basis results from (1.21); by
! 1. 1
g = ,g1=— sinpe;+ Ccospes,
r r r
g’ =g2=es,
g° = g3 = cos pe; + sin pes. (2.30)

2.3 Coordinate Transformation. Co-, Contra- and Mixed
Variant Components

Let 0 = 0% (r) and 0 = 0" (r) (i =1,2,...,n) be two arbitrary coordinate
systems in E™. It holds

or  Or 07 007

g, = =" g% i=1,2,...,n. 2.31
9= o6 ~ o0i 09i ~ 9 oni " (2:31)
If g is the dual basis to g; (i = 1,2,...,n), then we can write
, 00¢
Gt — g7 L
g =g 905 1=1,2,...,n. (2.32)

Indeed,

L L 0F 00! . (00 09!
9795 =\9 ggr ) 9905 ) =9 "9\ o9 0pi
. ( 00" 9! ) 00 90% 90"

=3 ppr ogi ) = ook 055 = o =00 pI =12 (2.33)



2.3 Co-, Contra- and Mixed Variant Components 41

One can observe the difference in the transformation of the dual vectors (2.31)
and (2.32) which results from the change of the coordinate system. The trans-
formation rules of the form (2.31) and (2.32) and the corresponding variables
are referred to as covariant and contravariant, respectively. Covariant and
contravariant variables are denoted by lower and upper indices, respectively.

The co- and contravariant rules can also be recognized in the transforma-
tion of the components of vectors and tensors if they are related to tangent
vectors. Indeed, let

— — 7=

x=ux,9" =2'g;, =1,§' = x‘gi, (2.34)

A=A;g'0g =Ag;®g; = A?jgi ® g’

=A;g'0g =A"g,0g,=Ag,094. (2.35)
Then, by means of (1.28), (1.88), (2.31) and (2.32) we obtain
Ti=x-g,=x- (gj Zgj) =z ggz, (2.36)
Tr=x-g"=x- (gjgz;> :a:jgg;, (2.37)
Aij=9,Ag; = <9k gi—:) A (91 ggj) = gi—: ggj Ak, (2.38)
v ENAE) - EE o
A —giAg, = (Qk gg;) A (gl gg;) - ggz gg; Ak, (2.40)

Accordingly, the vector and tensor components z;, A;; and z, AY are called
covariant and contravariant, respectively. The tensor components A?j are re-
ferred to as mixed variant. The transformation rules (2.36-2.40) can similarly
be written for tensors of higher orders as well. For example, one obtains for
third-order tensors

A 0" 90° 90" _ 90" 507 9pk
ijk — ijk _ rst
ijk — 8@ 853 85’9 A’I"Stv A = 90" 90° 9ot A e (241)

From the very beginning we have supplied coordinates with upper indices
which imply the contravariant transformation rule. Indeed, let us consider

the transformation of a coordinate system 6 = 6 (01, 6%, .. ., 0") (1=1,2,
...,n). It holds:
90"
dot = doF, i=1,2,...,n. (2.42)

0ok
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Thus, the differentials of the coordinates really transform according to the
contravariant law (2.32).

Example. Transformation of linear coordinates into cylindrical
ones (2.17). Let 2* = z'(r) be linear coordinates with respect to an or-
thonormal basis e; (i = 1,2,3) in E3:

=r-e & r=21ae. (2.43)
By means of (2.17) one can write
zt =rcosp, z?=rsing, 2°=z (2.44)
and consequently
ozt , , Ozt 0 ozt x!
=—rsing = —x =cosp =
dp 7 T 0z T or 7 ’
o 2 o 2 o 2 2
;p =rcosp = a, ;z 0, ;ﬁ =sinp = xr , (2.45)
ox? _0, ox3 _1 ox? _o.
dp 0z or

The reciprocal derivatives can easily be obtained from (2.22) by inverting the

matrix [ %f; %w; %‘/’i } . This yields:
Op 1. x2 dp 1 x! Oy 0
=— sinp=-— = cosp = =
Ot S r2 92 PP T 2 g3 ’
0z 0z 0z
gl = 0, a2 = 0, a8 = 1, (2.46)
or _ml or . _x2 ar
Py =cosp= , 8x2—sln<p— . axB—O.

2.4 Gradient, Covariant and Contravariant Derivatives

Let & =@ (0',0%,...,0"), x =« (0,6%,...,0") and A = A (0',6%,...,0")
be, respectively, a scalar-, a vector- and a tensor-valued differentiable function
of the coordinates #* € R (i = 1,2,...,n). Such functions of coordinates are
generally referred to as fields, as for example, the scalar field, the vector field
or the tensor field. Due to the one to one correspondence (2.25) these fields
can alternatively be represented by

b=P(r), xz=uz(r),

A=A(r). (2.47)
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In the following we assume that the so-called directional derivatives of the
functions (2.47)

d@(r+sa) :Hm{lﬁ(r—ksa)—@(r)’

ds o 50 S

dw(r—i—sa) :Hmw(r—i—sa)—w(r)’

ds o 50 S

dA(rtsa) =imATTsa)-AM (2.48)
ds s—o 50 S

exist for all @ € E". Further, one can show that the mappings a —

fo(r+sa)| _,a— Lo(r+sa) _, anda— LA(r+sa)| _ arelin-

ear with respect to the vector a. For example, we can write for the directional
derivative of the scalar function @ = & ()

d
= _ &[r+s1a+ sb] , (2.49)

d
®[r+s(a+b) ds
s=0

ds

s=0

where s; and s9 are assumed to be functions of s such that s; = s and sy = s.
With the aid of the chain rule this delivers

d
dsé [r + s1a + s2b]

s=0

0 ds
88;15 [+ s10.+ s20] ds2 }

0 ds
{881@ [+ 810+ s2b] ds1 i

s=0
0 0
= d (r + s1a + s2b) + D (r + s1a + s2b)
881 s1=0,52=0 852 s1=0,s2=0
d d
ds (r+sa) - * 4 (r + sb) .
and finally
d@[r+s(a+b)] = d@(r—i—sa) + d@(r+sb) (2.50)
ds o ds oo ds a0 '
for all a,b € E". In a similar fashion we can write
d d d (as)
o3 = o3
ds (r + saa) " d(as) (r + saa) s |,
d
=a b (r + sa) , Va € E", Va € R. (2.51)
s s=0

Thus, comparing (2.50) and (2.51) with the properties of the scalar product
(C.2) and (C.3) we can represent the directional derivative by
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d

dg@ (r + sa)

=grad®-a, VacE", (2.52)
s=0

where the vector grad® € E™ is referred to as gradient of the function ¢ =
D (7).

Example. Gradient of the scalar function |r||. Using the definition
of the directional derivative (2.48) we can write

= js\/(r—i—sa)-(r—i—sa)

Ui+ sal
ds T sa

s=0 s=0

= js\/r-r+2s(r-a)+82(a-a)

s=0

T-a

L

1 2(r-a)+2s(a-a)

2r r+2s(r-a)+s2(a-a) o

Comparing this result with (2.52) delivers

grad ||r|| = (2.53)

r
Il

Similarly to (2.52) one defines the gradient of the vector function @ = x (r)
and the gradient of the tensor function A = A (7):

4s® (r+ sa) = (gradx)a, VYa cE", (2.54)
s=0

d n

dsA (r+ sa) = (gradA)a, Va eE". (2.55)
s=0

Herein, grade and gradA represent tensors of second and third order, respec-
tively.

In order to evaluate the above gradients (2.52), (2.54) and (2.55) we rep-
resent the vectors » and a with respect to the linear coordinates (2.19) as

r=z'h;, a=adh,. (2.56)

With the aid of the chain rule we can further write for the directional deriva-
tive of the function @ = & (r):

d d i N

dsé(r + sa) . = dsé [(z' + sa’) h;] .
B op  d(z'+ sa') 0D,
O (xt + saf) ds . ox?

od . 4 od . .
_ i\ (TR = i) . n
- (&Tih) (a’hj) <8xih) a, Vac€E"
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Comparing this result with (2.52) and bearing in mind that it holds for all
vectors a we obtain
od .
d¢ = _ . h" 2.57
gra i (2.57)
The representation (2.57) can be rewritten in terms of arbitrary curvilinear co-
ordinates r = r (91, 6%, ... ,9") and the corresponding tangent vectors (2.27).
Indeed, in view of (2.32) and (2.57)

op ., 0PIk . 0P .

do= _ h'= h'= _ g 2.58

BT g0 T gk 0 T 0079 (2.58)

According to the definition (2.52) the gradient is independent of the choice

of the coordinate system. This can also be seen from relation (2.58). Indeed,

taking (2.32) into account we can write for an arbitrary coordinate system

0'=0"(0',6%...,0m) (i=1,2,....,n):

ob , 0D, 0D .

! ! _.g. (2.59)

d@ - . = — ) =
gra 00'9 = 005 0009 T o0

Similarly to relation (2.58) one can express the gradients of the vector-valued
function & = x (r) and the tensor-valued function A = A (r) by

0A

g ©9" (2.60)

sc ®g', gradA =

grade = 201

Henceforth, the derivatives of the functions @ = ¢ (91, 6%, ... ,0"), r =
T (01, 6%, ..., 0") and A = A (01, 6%, ..., 0") with respect to curvilinear coor-
dinates 6 will be denoted shortly by

o ox 0A

b, = 90i° T, = 90i° A;i: o0

(2.61)

They obey the covariant transformation rule (2.31) with respect to the index
1 since
v 0P 00* ox  Ox 00k 0A _0A 00*
o0 00k 00" 00" 00k 067 00"  9O% 0O
and represent again a scalar, a vector and a second-order tensor, respectively.
The latter ones can be represented with respect to a basis as

(2.62)

z,;=12'|; g; = z;l; g’
Ai=A", gr0gi=Aulig"®g =A% |igr®4d, (2.63)

where (e)|; denotes some differential operator on the components of the vector
@ or the tensor A. In view of (2.62) and (2.63) this operator transforms with
respect to the index ¢ according to the covariant rule and is called covariant
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derivative. The covariant type of the derivative is accentuated by the lower
position of the coordinate index.

On the basis of the covariant derivative we can also define the contravariant
one. To this end, we formally apply the rule of component transformation
(1.95)1 as (e)|'= g% (e)|;. Accordingly,

xj|i: gikxj|k, xj|i: gik$j|k7

Akl|i: gz’mAkl|m, Akl|i: gimAkl|m, Al?l|i: gzmAkl|m ) (264)
For scalar functions the covariant and the contravariant derivative are defined
to be equal to the partial one so that:

D= P|'=,; . (2.65)

In view of (2.59-2.61), (2.63) and (2.65) the gradients of the functions ¢ =
D(01,6%,...,0"), . =x(0',6%,...,0") and A = A (0',6%, ...,0") take the

form
gradd = 9; g' = 9| g,
grade = 27|, g; @ g' =z ¢’ @ g' = 27" g; ® g; = 25|" ¢’ ® g,
gradA = AM|; g, 09109 = Aulig"0g @g' = A" igreg @g'

=AM g9 ®g9i=Aul'g"®g ®g;=A" | g2 g @ g
(2.66)

2.5 Christoffel Symbols, Representation of the Covariant
Derivative

In the previous section we have introduced the notion of the covariant deriva-
tive but have not so far discussed how it can be taken. Now, we are going to
formulate a procedure constructing the differential operator of the covariant
derivative. In other words, we would like to express the covariant derivative in
terms of the vector or tensor components. To this end, the partial derivatives
of the tangent vectors (2.27) with respect to the coordinates are first needed.
Since these derivatives again represent vectors in E”, they can be expressed
in terms of the tangent vectors g; or dual vectors g' (i = 1,2,...,n) both
forming bases of E™. Thus, one can write

9ij=Tijeg" =Tig, ,5=1,2,...,n, (2.67)

where the components I';;;, and Ff'j (i,j,k =1,2,...,n) are referred to as the
Christoffel symbols of the first and second kind, respectively. In view of the
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relation g* = g*'g; (k =1,2,...,n) (1.21) these symbols are connected with
each other by

F?j = gklrijl, 1,5,k=1,2,...,n. (2.68)
Keeping the definition of tangent vectors (2.27) in mind we further obtain

9ii=Tyuj =T ji=0j.i, ,j=12,...,n. (2.69)
With the aid of (1.28) the Christoffel symbols can thus be expressed by

Cijk = Ujik = Girj "Gk = Gjsi "Gks (2.70)

Iy =T%=g;9"=g;:9" ijk=12..,n (2.71)

For the dual basis g (i = 1,2,...,n) one further gets by differentiating the
identities g* - g; = &} (1.15):

0=(0) k=1(9"9) k=0"k9; + 9" gjrn
=g' ‘gj +g'- (Fé'kgl) =g g; + F;-k, 1,5, k=1,2,...,n.

Hence,

I =T =—g'w-g;=-9gr ijk=12...n (2.72)
and consequently

g' = —Fékgj = —F};jgj, LWwk=1,2,...,n. (2.73)
By means of the identities following from (2.70)

Gijok = (9i - G5) sk = Girk "Gj + Gi - Gjsk = Lirg + Ui, (2.74)

where 4, j,k = 1,2,...,n and in view of (2.68) we finally obtain

1
Lijr = 9 (Girj +9rjri —Gijok ) 5 (2.75)
r’f—l’”(»»+~—~) gk =1,2 (2.76)
ij — 29 Jlisg TG54 —YGigst ) IR =L 4,...,N. .

It is seen from (2.75) and (2.76) that all Christoffel symbols identically vanish
in the Cartesian coordinates defined with respect to an orthonormal basis as

Indeed, in this case
gvjzevej:(szja 17]21725571 (278)

and hence
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Cijr = Ffj =0, 4,5,k=12,...,n. (2.79)

Example. Christoffel symbols for cylindrical coordinates in E3
(2.17). By virtue of relation (2.29); we realize that g11,3 = 2r, while all other
derivatives gix,; (¢,j,k = 1,2,3) (2.74) are zero. Thus, eq. (2.75) delivers

Pisi =Tsnn=r, Tusg=-r, (2.80)

while all other Christoffel symbols of the first kind T';;x (4,4, k =1,2,3) are
likewise zero. With the aid of (2.68) and (2.29)s we further obtain

lej = gurijl = 7”7213‘]‘17 F?j = 9221“”»2 = T'y;0,
I3 =g%Tys =Tys, i,j=1,2,3. (2.81)
By virtue of (2.80) we can further write
1 1 1 3
iy =T5 = " Iy =-n (2.82)
while all remaining Christoffel symbols of the second kind I‘fj (i,j,k=1,2,3)

(2.76) vanish.

Now, we are in a position to express the covariant derivative in terms of
the vector or tensor components by means of the Christoffel symbols. For the
vector-valued function © = x (01, 0%, ..., 9") we can write using (2.67)

w;=(2'gi) ;=" 9i +5'gi,;
— xi,j gi + xif‘f'jgk = (mi,j +xkf‘};j) gi, (2.83)
or alternatively using (2.73)
T,;= (%‘Qi) 1 = Ting g + xigiaj
— xi,j gl — xzfﬁmgk = (xi;j —a:kI‘fJ) gi. (284)
Comparing these results with (2.63) yields

k
17

z' =1t —|—ku‘};§4, x| j= ®i,; —xil ,j=1,2,...,n. (2.85)
Similarly, we treat the tensor-valued function A = A (91, 0%, ..., 9"):
A= (AYg;®g;) x
=AY 9,29 +Ag;r®g; + AYg; @ gk
=AY, gi®g;+AY (Th9) ®@g; +Ag; @ (Th.q1)

- (Aii,k FAUTE 4 A“F{k) 9:® ;. (2.86)
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Thus,
AY|p= AV +AYTY + AT 05k =1,2,.. 0. (2.87)
By analogy, we further obtain
Aijle= Aij —AyTh — AT,

Aljlp= Al AT — ANTY, L i k=12, n. (2.88)

Similar expressions for the covariant derivative can also be formulated for
tensors of higher orders.

From (2.79), (2.85), (2.87) and (2.88) it is seen that the covariant derivative
taken in Cartesian coordinates (2.77) coincides with the partial derivative:

xi|j: xiaja xl|j: Lisg s
A”|k: Aijvkv Al]|k: Aijvkv Alj|k: Alj;k; Zajvk: 1,2,,71 (289)

Formal application of the covariant derivative (2.85) and (2.87-2.88) to the
tangent vectors (2.27) and metric coefficients (1.90)q,9 yields by virtue of
(2.67), (2.68), (2.73) and (2.75) the following identities referred to as Ricci’s
Theorem:

gilj=gi;—al};, =0, g'l;=g,;+9'T|;=0, (2.90)
9iilk= gijok =T — 9l = gijok —Tikj — Djri = 0, (2.91)
97 1k= 9" 5 +g"Thy, + ¢"Th = 6" 9" (—gimok ATt + Tikm) = 0, (2.92)
where i, 7,k = 1,2, ..., n. The latter two identities can alternatively be proved

by taking (1.25) into account and using the product rules of differentiation
for the covariant derivative which can be written as (Exercise 2.7)

Aij|k: ai|k bj + (Libj|k for Aij = (Ll‘bj, (293)
Aij|k: ai|k v+ aibj|k for AY =a't, (2.94)
Alle =d'|i bj +a'bjle  for Al =da'b;, ijk=12...,n (2.95)

2.6 Applications in Three-Dimensional Space:
Divergence and Curl

Divergence of a tensor field. One defines the divergence of a tensor field
S (r) by

. .1
divS = élglo v /SndA, (2.96)
A
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93

sH(0" + AGY)
92

dAM (91 + AGY)

A

01

Fig. 2.2. Derivation of the divergence in three-dimensional space

where the integration is carried out over a closed surface area A with the
volume V' and the outer unit normal vector n.

For the integration we consider a curvilinear parallelepiped with the edges
formed by the coordinate lines 81, 62, 6% and 6 + A6, 62 + A6, 6% + AG? (Fig.
2.2). The infinitesimal surface elements of the parallelepiped can be defined
in a vector form by

dAY = £ (d0'g;) x (d6"gr) = +gg'd0’6", i=1,2,3, (2.97)

where g = [g1g29g3] (1.31) and 4, j, k is an even permutation of 1,2,3. The cor-
responding infinitesimal volume element can thus be given by (no summation
over 1)

AV =dA" - (do'g;) = [do* g, d6?g> d9>gs]
= [g19293) d0*d6dO® = gdh*do*do>. (2.98)
We also need the identities
9ok = [919293] .k = Ty, [919293] + T, [919193] + T4, [919291]
=T, [919293] = Uiy, (2.99)
(99') i=9.i9"+99"i=Tl99' —Thgg' = 0, (2.100)
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following from (1.39), (2.67) and (2.73). With these results in hand, one can
express the divergence (2.96) as follows

divS = lim ! /SndA
v—oV
A

3
: 1 7 7 7 7 7 7 i 7
:élinovzg/ [S (0 + 20") 44D (67 + A0") + S (6) a4 () .

RAG

Keeping (2.97-2.98) in mind and using the abbreviation
s'(0°)=8S(0")g(0")g" ("), i=1,2,3 (2.101)

we can thus write
L3 0F+A0% 07+ AQ7
divS = lim Z / / (8" (0" + A07) — &' (67)] d#7de
=1 gk 63
AR PR YNIE YN
1 ost . .
lim " / / / .do'de’ do*

v—=oV 00
i 09 0
1< st
=1 " 2.102
Vlinon;/ ng, (2.102)
=tv

where 1, j, k is again an even permutation of 1,2,3. Assuming continuity of the
integrand in (2.102) and applying (2.100) and (2.101) we obtain

: L 1 i 1 i i i
g g g
which finally yields by virtue of (2.63)

Example. The momentum balance in Cartesian and cylindrical
coordinates. Let us consider a material body or a part of it with a mass
m, volume V and outer surface A. According to the Euler law of motion the
vector sum of external volume forces fdV and surface tractions td A results in
the vector sum of inertia forces &dm, where x stands for the position vector
of a material element dm and the superposed dot denotes the material time
derivative. Hence,

/ idm = / tdA + / fdv. (2.105)
m A 14

Applying the Cauchy theorem (1.77) to the first integral on the right hand
side and using the identity dm = pdV it further delivers
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/p:'ich = /andA-i—/de, (2.106)

\%4 A \%4

where p denotes the density of the material. Dividing this equation by V and
considering the limit case V' — 0 we obtain by virtue of (2.96)

px = dive + f. (2.107)

This vector equation is referred to as the momentum balance.
Representing vector and tensor variables with respect to the tangent vec-
tors g; (1 = 1,2, 3) of an arbitrary curvilinear coordinate system as

&=adg, o=0"g,0g;, f=7[g

and expressing the divergence of the Cauchy stress tensor by (2.104) we obtain
the component form of the momentum balance (2.107) by

pa' =o"; +f', i=1,2,3. (2.108)

With the aid of (2.87) the covariant derivative of the Cauchy stress tensor can
further be written by

O'ij|k: O—ijyk +0—le7[;]€ +O-il]-—‘{k7 iajvk = 17253 (2109)
and thus,

o= 0" ; 40T}, + oI

1, i=1,2,3 (2.110)

By virtue of the expressions for the Christoffel symbols (2.82) and keeping in
mind the symmetry of the Cauchy stress tensors 0¥ = ¢7¢ (i # j = 1,2,3) we
thus obtain for cylindrical coordinates:
) 3031
o, = oM 4o'2, +oB T
32

2j 21 22 23 g
0J|j:U o 1O e FO7 0 + r

33

3; 31 32 33 11, @

0; =0 +07" s +07 —ro + . (2.111)
r

The balance equations finally take the form

pa3 :U3la@+032az +033’T —roll 4 Ur —|—f3. (2.112)

In Cartesian coordinates, where g; = e; (i = 1,2, 3), the covariant derivative
coincides with the partial one, so that
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o= 0",;=0ij,;. (2.113)
Thus, the balance equations reduce to
pE1 = 011,1 +012,2 +013,3 + f1,

plo = 021,1 +022,2 +023,3 + [2,
pis = 031,1 +032,2 +033,3 +f3, (2.114)

where #; = a; (1 = 1,2, 3).

Divergence and curl of a vector field. Now, we consider a differ-
entiable vector field ¢ (01,92,93). One defines the divergence and curl of
t (91, 62, 03) respectively by

divt = im ‘1/ / (t-n)dA, (2.115)
A
t=1im - [(nxt)dd=—1lm = [ (txn)da (2.116)
curlt = lim - [ (n == lim n , )
A A

where the integration is again carried out over a closed surface area A with
the volume V' and the outer unit normal vector n. Considering (1.66) and
(2.96), the curl can also be represented by

.1 N s
curlt = — élino v /tndA = —divt. (2.117)
A

Treating the vector field in the same manner as the tensor field we can write

divt =t,;-g" =t|; (2.118)
and in view of (2.66)2

divt = tr (gradt) . (2.119)
The same procedure applied to the curl (2.116) leads to

curlt = g* x t,;. (2.120)

By virtue of (2.63); and (1.44) we further obtain (see also Exercise 2.8)
i o jite 1
curlt =t;|; g’ x g* = €% t|; gr. (2.121)
)

With respect to Cartesian coordinates with g; = e; (i = 1,2, 3) the divergence
(2.118) and curl (2.121) simplify to

divt = tiai = tlal +t2;2 +t3;3 = tlvl +t272 +t373 ) (2122)
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curlt = ejikti,j e

= (t3,2 —t2,3) €1 + (t1,3 —t3,1) e2 + (t2,1 —t1,2 ) es. (2.123)

Now, we are going to discuss some combined operations with a gradient, diver-
gence, curl, tensor mapping and products of various types (see also Exercise
2.12).

1) Curl of a gradient:

curlgrad® = 0. (2.124)
2) Divergence of a curl:

divcurlt = 0. (2.125)
3) Divergence of a vector product:

div (u x v) = v - curlu — u - curlv. (2.126)
4) Gradient of a divergence:

graddivt = div (gradt)” (2.127)

grad divt = curl curlt + div gradt = curl curlt + At, (2.128)
where the combined operator At = div gradt is known as the Laplacian.

5) Skew-symmetric part of a gradient

skew (gradt) = ;cu/r\lt (2.129)
6) Divergence of a (left) mapping

div (tA) = A : gradt + t - divA. (2.130)

7) Divergence of a product of a scalar-valued function and a vector-valued
function

div (Pt) = t - grad® + Pdivt. (2.131)

8) Divergence of a product of a scalar-valued function and a tensor-valued
function

div (PA) = Agrad® + PdivA. (2.132)

We prove, for example, identity (2.124). To this end, we apply (2.66)1, (2.73)
and (2.120). Thus, we write

curl grad® = g7 x ((15|i gi) = Duij g xg'+ &g x giaj
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taking into account that &,;; = &,;;, Pﬁj = I‘é.i and ¢' X g7 = —¢g’ x ¢
(7’ 7&]’ ZaJ = 1a273)

Example. Balance of mechanical energy as an integral form of
the momentum balance. Using the above identities we are now able to
formulate the balance of mechanical energy on the basis of the momentum

balance (2.107). To this end, we multiply this vector relation scalarly by the
velocity vector v = &

v-(p&) =v-dive +v- f.
Using (2.130) we can further write
v (pZk) + o : gradv = div (vo) + v - f.
Integrating this relation over the volume of the body V yields
d 1 .
A&t / <2v-v> dm+/a : gradvdV = /dw(va)dV—i—/v - fdV,
m v v v

where again dm = pdV and m denotes the mass of the body. Keeping in mind
the definition of the divergence (2.96) and applying the Cauchy theorem (1.77)
according to which the Cauchy stress vector is given by t = on, we finally
obtain the relation

d 1
dt/<2v-v>dm+/a:grad’udV:/v-tdA—i—/'o-de (2.134)
m 14 A 14

expressing the balance of mechanical energy. Indeed, the first and the second
integrals on the left hand side of (2.134) represent the time rate of the kinetic
energy and the stress power, respectively. The right hand side of (2.134) ex-
presses the power of external forces i.e. external tractions ¢ on the boundary
of the body A and external volume forces f inside of it.

Example. Axial vector of the spin tensor. The spin tensor is defined
as a skew-symmetric part of the velocity gradient by

w = skew (gradv) . (2.135)
By virtue of (1.158) we can represent it in terms of the axial vector
W =W, (2.136)

which in view of (2.129) takes the form:

1
w = 2curlv. (2.137)



56 2 Vector and Tensor Analysis in Euclidean Space

Example. Navier-Stokes equations for a linear-viscous fluid in
Cartesian and cylindrical coordinates. A linear-viscous fluid (also called
Newton fluid or Navier-Poisson fluid) is defined by a constitutive equation

o= —pl+2nd + A (trd) I, (2.138)
where
1 T
d = sym (gradv) = 5 [gradv + (grado) } (2.139)

denotes the rate of deformation tensor, p is the hydrostatic pressure while n
and A represent material constants referred to as shear viscosity and second
viscosity coefficient, respectively. Inserting (2.139) into (2.138) and taking
(2.119) into account delivers

o = —pl + 7 |gradv + (gradv)" | + A (dive) L. (2.140)

Substituting this expression into the momentum balance (2.107) and using
(2.127) and (2.132) we obtain the relation

pv = —gradp + ndiv gradv + (n + \) grad dive + f (2.141)

referred to as the Navier-Stokes equation. By means of (2.128) it can be rewrit-
ten as

pv = —gradp + (21 + ) grad dive — neurl curlv + f. (2.142)

For an incompressible fluid characterized by the kinematic condition trD =
dive = 0, the latter two equations simplify to

p¥ = —gradp + nAv + f, (2.143)

p0 = —gradp — ncurl curlv + f. (2.144)
With the aid of the identity Av = v,|" (see Exercise 2.14) we thus can write

pv = —gradp + v, +f. (2.145)
In Cartesian coordinates this relation is thus written out as
pU; = —p,i +1 (vi,11 Fvis22 +vis33) + fis 1=1,2,3. (2.146)

For arbitrary curvilinear coordinates we use the following representation for
the vector Laplacian (see Exercise 2.16)

Av = g7 (vF 5 42050t =Tk o 4T ot + TF Dot = TPTE o) gi.
(2.147)
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For the cylindrical coordinates it takes by virtue of (2.29) and (2.82) the
following form

2.1 1 1 1,1 3.3
Av = (r?v' 11 +vl oo +vlss +3r ol 5 +2r 0% ) gy
2,2 2 2 ~1,2
+ (r7*v% 1 +v? e +0? a3 +r7 0% 3 ) go
2.3 3 3 1,1 1,3 —2. 3
+ (7” 07,11 07,90 07,33 =2r" v 1 417 00,3 —r ‘v )gg.

Inserting this result into (2.143) and using the representations © = v'g; and
f = f'g; we finally obtain

1 . Op 1 9%t 9%t 9%t 300t 2 9l
po :f—&p U 7”25502+5Z2+37”2+7"37"+r3&p :
dp 1 0%202% 0%  0%% 100
2 2
prm =1 8z+n<r28@2+822+8r2+ré)r)’
UB_f3_8p+ ]-82U3+82U3+82U3_28U1+18U3_U3
pU= ar T\ 2 0?2 022 o2 rodp ror r2)°
(2.148)
Exercises

2.1. Evaluate tangent vectors, metric coefficients and the dual basis of spher-
ical coordinates in E? defined by

r (p,d,r) = rsinpsin pe; + r cos pes + 1 cos p sin pes. (2.149)
) o0 . .
2.2. Evaluate the coefficients (2.42) for the transformation of linear co-

00k
ordinates in the spherical ones and vice versa.

2.3. Evaluate gradients of the following functions of r:

(a) ”i”, () r-w, (c)rAr, (d) Ar, (¢) wxr,

where w and A are some vector and tensor, respectively.

2.4. Evaluate the Christoffel symbols of the first and second kind for spherical
coordinates (2.149).

2.5. Verify relations (2.88).
2.6. Prove identities (2.91-2.92) by using (1.91).

2.7. Prove the product rules of differentiation for the covariant derivative
(2.93-2.95).
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2.8. Verify relation (2.121) applying (2.104), (2.117) and using the results of
Exercise 1.22.

2.9. Write out the balance equations (2.108) in spherical coordinates (2.149).

2.10. Evaluate tangent vectors, metric coefficients, the dual basis and Christof-
fel symbols for cylindrical surface coordinates defined by

r(r,s,z) =rcos Sel + rsin 862 + zes. (2.150)
T T

2.11. Write out the balance equations (2.108) in cylindrical surface coordi-
nates (2.150).

2.12. Prove identities (2.125-2.132).

2.13. Write out the gradient, divergence and curl of a vector field ¢ (r) in
cylindrical and spherical coordinates (2.17) and (2.149), respectively.

2.14. Prove that the Laplacian of a vector-valued function t (r) can be given
by At = t,|*. Specify this identity for Cartesian coordinates.

2.15. Write out the Laplacian AP of a scalar field @ (r) in cylindrical and
spherical coordinates (2.17) and (2.149), respectively.

2.16. Write out the Laplacian of a vector field ¢ (7) in component form in
an arbitrary curvilinear coordinate system. Specify the result for spherical
coordinates (2.149).
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Curves and Surfaces in Three-Dimensional
Euclidean Space

3.1 Curves in Three-Dimensional Euclidean Space

A curve in three-dimensional space is defined by a vector function
r=r(t), rek’, (3.1)

where the real variable ¢ belongs to some interval: ¢; < t < t5. Henceforth, we
assume that the function r (¢) is sufficiently differentiable and

(317; £0 (3.2)

over the whole definition domain. Specifying an arbitrary coordinate system
(2.16) as

0 =6"(r), i=1,2,3, (3.3)
the curve (3.1) can alternatively be defined by

0'=6"(t), i=1,2,3. (3.4)

Example. Straight line. A straight line can be defined by

r(t)=a+bt, a,bcE> (3.5)

With respect to linear coordinates related to a basis H = {hq, ho, h3} it is
equivalent to

r(t) =a' +b't, i=1,2,3, (3.6)
where r = r*h;, a = a’h; and b = b'h;.

Example. Circular helix. The circular helix (Fig. 3.1) is defined by
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2me
es x?
€1
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Fig. 3.1. Circular helix
r(t) = Rcos(t)e; + Rsin (t) ea + ctes, ¢ #0, (3.7)

where e; (i = 1,2,3) form an orthonormal basis in E3. For the definition of
the circular helix the cylindrical coordinates (2.17) appear to be very suitable.
Indeed, alternatively to (3.7) we can write

r=R, p=t, z=ct (3.8)

In the previous chapter we defined tangent vectors to the coordinate lines. By
analogy one can also define a vector tangent to the curve (3.1) as

dr

9= 4 (3.9)

It is advantageous to parametrize the curve (3.1) in terms of the so-called arc
length. To this end, we first calculate the length of a curve segment between
the points corresponding to parameters t; and ¢ as
r(t)
s(t) = / Vdr - dr. (3.10)

T‘(tl)
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With the aid of (3.9) we can write dr = g;dt and consequently

8@=/ﬂ%m&=/wmﬁ=/¢w@&- (3.11)

Using this equation and keeping in mind assumption (3.2) we have

= Vou () 0. (3.12)

This implies that the function s = s (t) is invertible and

r _ r ds
t(s) = / lgell " ds = / Vo)’ (3.13)
S(tl) S(tl) Yut

Thus, the curve (3.1) can be redefined in terms of the arc length s as
r=r(t(s)=r(s). (3.14)

In analogy with (3.9) one defines the vector tangent to the curve 7 (s) (3.14)
as

A7 drdt gy

= = = 3.15
M= 4s T dtds g (8.15)
being a unit vector: ||aq| = 1. Differentiation of this vector with respect to s
further yields
da1 d2 ’/T'\
o dm _dr 3.16
o ds ds? (3.16)

It can be shown that the tangent vector a; is orthogonal to aq,s provided
the latter one is not zero. Indeed, differentiating the identity a1 - a; = 1 with
respect to s we have

a -al,s — 0. (317)
The length of the vector ai,s
#(s) = [la1,s || (3.18)

plays an important role in the theory of curves and is called curvature. The
inverse value

p(s) = (3.19)
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is referred to as the radius of curvature of the curve at the point 7 (s). Hence-
forth, we focus on curves with non-zero curvature. The case of zero curvature
corresponds to a straight line (see Exercise 3.1) and is trivial.

Next, we define the unit vector in the direction of a1,

ai, a
ag = o= Tbs (3.20)
lar,s || 2 (s)
called the principal normal vector to the curve. The orthogonal vectors a,
and ay can further be completed to an orthonormal basis in E? by the vector
a3 = a1 X a2 (321)

called the unit binormal vector. The triplet of vectors a1, as and as is referred
to as the moving trihedron of the curve.
In order to study the rotation of the trihedron along the curve we again

consider the arc length s as a coordinate. In this case, we can write similarly
to (2.67)

a;,s=TFay, =123, (3.22)
where I'¥, = a;,s-ay (i,k =1,2,3). From (3.17), (3.20) and (3.21) we imme-
diately observe that I'?, = s and I'l, = I'}, = 0. Further, differentiating the
identities

az-a3z =1, a;-az=0 (3.23)
with respect to s yields

as - as,s =0, ai,s-as+a;-as,s=0. (3.24)
Taking into account (3.20) this results in the following identity

a1 - a3,s= —Q1,s a3 = —xas - asz = 0. (3.25)
Relations (3.24) and (3.25) suggest that

az,s = —7(s) az, (3.26)
where the function

T(S) = —as,s "as (327)

is called torsion of the curve at the point 7(s). Thus, I}, = —7 and
I, = T3, = 0. The sign of the torsion (3.27) has a geometric meaning and
remains unaffected by the change of the positive sense of the curve, i.e. by
the transformation s = —s’ (see Exercise 3.2). Accordingly, one distinguishes
right-handed curves with a positive torsion and left-handed curves with a neg-
ative torsion. In the case of zero torsion the curve is referred to as a plane
curve.
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Finally, differentiating the identities
ag-ale, 02'02:1, 02'0320

with respect to s and using (3.20) and (3.27) we get

az,s a; = —az - aj,s = —»xAay - a4y = —x, (328)
az - a,s = Oa az,s a3 = —asz - az,s = T, (329)
so that '3, = —s¢, '3, = 0 and I'3, = 7. Summarizing the above results we
can write
' 0 »0
T =|-» or (3.30)
0-70
and
ay,s = xaz,
Q2,5 = —xa +Tas, (3.31)
as,s = —Tas.

Relations (3.31) are known as the Frenet formulas.

0,3(80)

Fig. 3.2. Rotation of the moving trihedron

A useful illustration of the Frenet formulas can be gained with the aid of a
skew-symmetric tensor. To this end, we consider the rotation of the trihedron
from some initial position at sy to the actual state at s. This rotation can be
described by an orthogonal tensor Q (s) as (Fig. 3.2)
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a;(s)=Q(s)a;(so), i=1,2,3. (3.32)
Differentiating this relation with respect to s yields
a;,s(s) =Q,s(s)a;(so), i=1,2,3. (3.33)

Mapping both sides of (3.32) by QT (s) and inserting the result into (3.33)
we further obtain

ais(s) =Q.s () Q" (s)ai(s), i=1,23. (3.34)
Differentiating the identity (1.135) Q (s) Q™ (s) = I with respect to s we have
Qs (5)QT (s) + Q(s)Q",s (5) = 0, which implies that the tensor W (s) =
Q. (s) QT (s) is skew-symmetric. Hence, eq. (3.34) can be rewritten as (see
also [3])

ai,s (s) =W (s)a;(s), W €Skew®, i=1,2,3, (3.35)
where according to (3.31)

A% (8) =T (S) (ag Xazx —az ® ag) + %(S) (CLQ XKa; —a1 X ag) . (336)
By virtue of (1.136) and (1.137) we further obtain

W = 1a; + »as (3.37)

and consequently

ais=dxa; =da;, i=123, (3.38)
where
d=rTa; + »xas (339)

is referred to as the Darboux vector.

Example. Curvature, torsion, moving trihedron and Darboux
vector for a circular helix. Inserting (3.7) into (3.9) delivers

d
gr = d: = —Rsin(t) e; + Rcos (t) ez + ces, (3.40)
so that
Git = gt - g¢ = R? + ¢® = const. (3.41)

Thus, using (3.13) we may set

t(s)

S

- \/RQ +02' (3-42)



3.1 Curves in Three-Dimensional Euclidean Space 65

Using this result, the circular helix (3.7) can be parametrized in terms of the
arc length s by

_ s s cs
T(s) = Rcos e1 + Rsin es + es.
(#) (\/R2+62> ' (\/RQ—FCQ) T VR 42
(3.43)
With the aid of (3.15) we further write
a; = dr_ ! —Rsin y e
"Tds T VR4 2 VRZ+c2) !
s
+ Rcos (\/R2 N CQ> es + ceg] , (3.44)
R 5 . s
ai,s = R4 [cos <\/R2 N 02) ey + sin (\/R2 N c2> 62:| . (3.45)
According to (3.18) the curvature of the helix is thus
R
H=pa 2 (3.46)

By virtue of (3.20), (3.21) and (3.27) we have

Qai,s

S S
as = = —cos e; —sin es, 3.47
T o <\/R2+02) ' <\/R2+62> ? (347)

1 . S
a3 = a1 X az = \/R2+02 |:CSID<\/R2—|—CQ>61

s
—ccos ez + Res| . 3.48
(vt ya)erems] o
c s , s
@35= py L 2 [cos <\/R2 N c2> e + sin (\/R2 N 02) eg] , (3.49)
c
T=pr. a2 (3.50)

It is seen that the circular helix is right-handed for ¢ > 0, left-handed for
¢ < 0 and becomes a circle for ¢ = 0. For the Darboux vector (3.39) we finally
obtain

1

\/RQ n 6263. (351)

d=rT1ai + »xa3 =
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3.2 Surfaces in Three-Dimensional Euclidean Space

A surface in three-dimensional Euclidean space is defined by a vector function

r=r(tt*), rek’ (3.52)

of two real variables t! and ¢2 referred to as Gauss coordinates. With the aid
of the coordinate system (3.3) one can alternatively write

o' =0 (t',¢*), i=1,23. (3.53)

In the following, we assume that the function r (tl, t2) is sufficiently differen-
tiable with respect to both arguments and

d
d,; #0, a=12 (3.54)

over the whole definition domain.

Example 1. Plane. Let us consider three linearly independent vectors
x; (i =0,1,2) specifying three points in three-dimensional space. The plane
going through these points can be defined by

r(th1?) = x4+t (w1 — @) + * (w2 — T0) - (3.55)

Example 2. Cylinder. A cylinder of radius R with the axis parallel to
e3 is defined by

r (tl,tz) = Rcostle; + Rsintles + t2es, (3.56)

where e; (i = 1,2, 3) again form an orthonormal basis in E*. With the aid of
the cylindrical coordinates (2.17) we can alternatively write

=t', z=t* r=R. 3.57
@

Example 3. Sphere. A sphere of radius R with the center at » = 0 is
defined by

r (t',1*) = Rsint'sint’e; + Rcost’es + Rcost' sint’es, (3.58)
or by means of spherical coordinates (2.149) as

p=t', ¢=t> r=R (3.59)

Using a parametric representation (see, e.g., [26])

th=t @), *=t*(@) (3.60)
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normal
section

normal plane

Fig. 3.3. Coordinate lines on the surface, normal section and tangent vectors

one defines a curve on the surface (3.52). In particular, the curves t* = const
and t? = const are called t? and t! coordinate lines, respectively (Fig. 3.3).
The vector tangent to the curve (3.60) can be expressed by

dr _ or dt' = Or di? dt! dt?

p— f— = . ].
9= "o ar Torda Ta T (3.61)
where
0
g()t = ag; = rﬂl 9 o = 1) 2 (362)

represent tangent vectors to the coordinate lines. For the length of an in-
finitesimal element of the curve (3.60) we thus write

(ds)? = dr-dr = (g¢dt)-(gedt) = (g1dt! + godt?)-(gidt" + g2dt?) . (3.63)
With the aid of the abbreviation

9o = 9a = 9Ga - 98, «,0=1,2, (3.64)
it delivers the quadratic form

(ds)? = gu1 (dt")? + 2g12dt*de® + gao (de?) (3.65)

referred to as the first fundamental form of the surface. The latter result can
briefly be written as

(ds)? = gapdtedt?, (3.66)

where and henceforth within this chapter the summation convention is implied
for repeated Greek indices taking the values from 1 to 2. Similar to the metric
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coefficients (1.90); 5 in n-dimensional Euclidean space gog (3.64) describe the
metric on a surface. Generally, the metric described by a differential quadratic
form like (3.66) is referred to as Riemannian metric.

The tangent vectors (3.62) can be completed to a basis in E? by the unit
vector

g1 X g2
gs =

— 3.67
g1 % gal (3.67)

called principal normal vector to the surface.

In the following, we focus on a special class of surface curves called normal
sections. These are curves passing through a point of the surface r (tl, t2) and
obtained by intersection of this surface with a plane involving the principal
normal vector. Such a plane is referred to as the normal plane.

In order to study curvature properties of normal sections we first express
the derivatives of the basis vectors g; (i = 1,2,3) with respect to the surface
coordinates. Using the formalism of Christoffel symbols we can write

dg

gia— 8t; - szkgk - Ffagk; 1= 17 2; 37 (368)
where
Fiak =43Gi5a "Gk, Ffa = Gisa 'gkv 1= 1; 27 3; o = 1; 2. (369)

Taking into account the identity gs = g* resulting from (3.67) we immediately
observe that

3
Fia3 = Fia 5

1=1,2,3, a=1,2 (3.70)
Differentiating the relations

9a-93=0, g3-g3=1 (3.71)
with respect to the Gauss coordinates we further obtain

G395 = —9a 935, 939 =0, aB=12 (3.72)
and consequently

% =T33, I5,=0, a,f=12 (3.73)
Using in (3.68) the abbreviation

bap = bpa = Tog = —T3ap = garp g3, @, f=1,2, (3.74)

we arrive at the relations

Gop = nggp +bapgs, o, B=1,2 (3.75)
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called the Gauss formulas.

Similarly to a coordinate system one can notionally define the covariant
derivative also on the surface. To this end, relations (2.85), (2.87) and (2.88)
are specified to the two-dimensional space in a straight forward manner as

fa|,3: fay,B +fp 2,87 fa|ﬁ: faaﬁ _fp]-—‘ggy (376)
FOOL=F  4FT0 + FOPT0 . Faply=Fagry —Fpsl%, — Faolh,
Uly=F%y +FOT0 —FOT5 . o, 8,y =1,2. (3.77)

Thereby, with the aid of (3.76)2 the Gauss formulas (3.75) can alternatively
be given by (cf. (2.90))

galp=bapgs, o, f=1,2. (3.78)
Further, we can write
b =g = —Tsapg” = -T5 . a,f=1,2. (3.79)

Inserting the latter relation into (3.68) and considering (3.73)s, this yields the
identities

93,0 = g3la= —00g,, a=1,2 (3.80)

referred to as the Weingarten formulas.

Now, we are in a position to express the curvature of a normal section. It
is called normal curvature and denoted in the following by »,. At first, we
observe that the principal normals of the surface and of the normal section
coincide in the sense that as = +g3. Using (3.13), (3.28), (3.61), (3.72); and
(3.74) and assuming for the moment that as = g3 we get

dt) g: o g g:
: = —g3,t-
ds) gl llge|l”

Y R T P TP e P
= g3;a dt 9s dt gt = bap At dt gt .

By virtue of (3.63) and (3.66) this leads to the following result

Hn

—az,s a1 = _9353 : ||zf|| = - (93)1‘,
t

bapdtedt?

where the quadratic form
bapdt®dt? = —dr - dgs (3.82)

is referred to as the second fundamental form of the surface. In the case
as = —gs the sign of the expression for s, (3.81) must be changed. Instead of
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that, we assume that the normal curvature can, in contrast to the curvature
of space curves (3.18), be negative. However, the sign of s, (3.81) has no
geometrical meaning. Indeed, it depends on the orientation of g3 with respect
to as which is immaterial. For example, g3 changes the sign in coordinate
transformations like ¢! = 2, 2 = t!.

Of special interest is the dependence of the normal curvature s, on the
direction of the normal section. For example, for the normal sections passing
through the coordinate lines we have

_bn by
%n|t2:const - ’ %n|t1:const -

. 3.83
g11 g22 ( )

In the following, we are going to find the directions of the maximal and mini-
mal curvature. Necessary conditions for the extremum of the normal curvature
(3.81) are given by

=0, a=1,2. (3.84)

Rewriting (3.81) as

(bap — #ngap) dt“dt? =0 (3.85)
and differentiating with respect to t* we obtain

(bap — #ngap)dt’ =0, a=1,2. (3.86)

Multiplying both sides of this equation system by ¢“? and summing up over
a we have with the aid of (3.79)

(bg - %ndg) AP =0, p=1,2. (3.87)
A nontrivial solution of this homogeneous equation system exists if and only
if

1 1
by — sy, by

=0. 3.88
R (3.88)

Writing out the above determinant we can also write
s — b3 + B3| = 0. (3.89)

The maximal and minimal curvatures s¢; and sz, resulting from this quadratic
equation are called the principal curvatures. One can show that directions of
principal curvatures are mutually orthogonal (see Theorem 4.5, Sect. 4). These
directions are called principal directions of normal curvature or curvature
directions (see also [26]).

According to the Vieta theorem the product of principal curvatures can
be expressed by
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b
K =50 = |b| = g2’ (3.90)
where
bi1 b12 2
b= |bag| = = by1bas — (b12)”, 3.91
|bas] bot boo 11022 — (b12) (3.91)
, |91 92 0 ,
9> = [919293]" = | 921 922 0| = g11922 — (912)" - (3.92)
0 01
For the arithmetic mean of the principal curvatures we further obtain
1 1
H = 9 (%1 + %2) = 2bg (393)

The values K (3.90) and H (3.93) do not depend on the direction of the
normal section and are called the Gaussian and mean curvatures, respectively.
In terms of K and H the solutions of the quadratic equation (3.89) can simply
be given by

so=H+\VH>— K. (3.94)

One recognizes that the sign of the Gaussian curvature K (3.90) is defined
by the sign of b (3.91). For positive b both 3¢ and s, are positive or negative so
that s, has the same sign for all directions of the normal sections at r (tl, t2).
In other words, the orientation of as with respect to gs remains constant. Such
a point of the surface is called elliptic.

For b < 0, principal curvatures are of different signs so that different normal
sections are characterized by different orientations of as with respect to gs.
There are two directions of the normal sections with zero curvature. Such
normal sections are referred to as asymptotic directions. The corresponding
point of the surface is called hyperbolic or saddle point.

In the intermediate case b = 0, s, does not change sign. There is only one
asymptotic direction which coincides with one of the principal directions (of
21 or »3). The corresponding point of the surface is called parabolic point.

Example. Torus. A torus is a surface obtained by rotating a circle about
a coplanar axis (see Fig. 3.4). Additionally we assume that the rotation axis
lies outside of the circle. Accordingly, the torus can be defined by

r (tl,t2) = (Ro + RcostQ) costley
+ (Ro 4+ Rcost®) sint'e; + Rsint’es, (3.95)

where R is the radius of the circle and Ry > R is the distance between its
center and the rotation axis. By means of (3.62) and (3.67) we obtain

g1 = — (RO + RcostQ) sintle; + (Ro + RcostQ) costleg,
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Fig. 3.4. Torus
g> = —Rcos t'sint?e; — Rsint'sint?es + R cos t263,
gs = cost! cost®e; +sint! costes + sint2es. (3.96)

Thus, the coefficients (3.64) of the first fundamental form (3.65) are given by
g1 = (Ro + Rcostz)z, g12 =0, g¢o2 = R2. (3.97)

In order to express coefficients (3.74) of the second fundamental form (3.82)
we first calculate derivatives of the tangent vectors (3.96); 2

gi,1 = — (Ro + Rcos t2) costte; — (Ro + Rcos t2) sintleg,

gi,2=0g2,1 = Rsint!sint?e; — Rcost! sin t2€2,

g2,0= —Rcost! cost’e; — Rsint' cost’e; — Rsint’es. (3.98)
Inserting these expressions as well as (3.96)3 into (3.74) we obtain

b1 = — (RO + Rcos t2) Ccos t2, bio =bo1 =0, by =—R. (399)

In view of (3.79) and (3.97) b? = b} = 0. Thus, the solution of the equation
system (3.88) delivers
b11 COS t2 bgg _
e 911 Ry + Rcost?’ 72 =02 922 ( )
Comparing this result with (3.83) we see that the coordinate lines of the torus

(3.95) coincide with the principal directions of the normal curvature. Hence,
by (3.90)
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cost?

. 3.101
R (R + Rcost?) ( )

Kz%l%g =

Thus, points of the torus for which —7/2 < t? < /2 are elliptic while points
for which m/2 < t? < 3m/2 are hyperbolic. Points of the coordinates lines
t? = —7/2 and t?> = 7/2 are parabolic.

3.3 Application to Shell Theory

Geometry of the shell continuum. Let us consider a surface in the three-
dimensional Euclidean space defined by (3.52) as

r=r(tt*), rek’ (3.102)

and bounded by a closed curve C' (Fig. 3.5). The shell continuum can then be
described by a vector function

r* =1 (112, 8%) = r (1, 17) + gst®, (3.103)

where the unit vector g3 is defined by (3.62) and (3.67) while —h/2 < ¢3 <
h/2. The surface (3.102) is referred to as the middle surface of the shell.
The thickness of the shell & is assumed to be small in comparison to its other
dimensions as for example the minimal curvature radius of the middle surface.

Every fixed value of the thickness coordinate * defines a surface r* (tl, t2)
whose geometrical variables are obtained according to (1.39), (3.62), (3.64),
(3.79), (3.80), (3.90), (3.93) and (3.103) as follows.

gL =1"0=ga+tg3.a= (62 —t*0) g,, a=12, (3.104)
« _ 91%Xg5 .

g95= ", S =r"3=gs, (3.105)
° gy x g3l
* % * 3 3\ 2 4 _

9as = G 95 = gap — 2°bap + (1°) " bapbly, @, 0=1,2, (3.106)

9" = l9ig593] = [(07 — °b7) g, (65 — £°b3) g-g5]
= (07 — °b7) (03 — °03) gepys = g |05 — 0]
—g[1-20m+ () K]. (3.107)
The factor in brackets in the latter expression

*

pn=" 1280+ (¥’ K (3.108)
g

is called the shell shifter.
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middle surface

Z___ boundary
curve C

Fig. 3.5. Geometry of the shell continuum

Internal force variables. Let us consider an element of the shell contin-
uum (see Fig. 3.6) bounded by the coordinate lines t* and t*+ At* (o« = 1,2).
One defines the force vector f¢ and the couple vector m® relative to the mid-
dle surface of the shell, respectively, by

h/2 h/2

fo = / pog*dt’, me = /ur*x(ag*a)dt?’, a=1,2, (3.109)
—h/2 —h/2
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f(12 + At

m?(t* + At?)

Fig. 3.6. Force variables related to the middle surface of the shell

where o denotes the Cauchy stress tensor on the boundary surface A(®)
spanned on the coordinate lines t3 and ¢ (3 # a). The unit normal to this
boundary surface is given by

*Q *Q *

n = 9 = = g Bra=12 (3.110)
llg*|] Vg \/ggg

where we keep in mind that g** - gj; = g** - g3 = 0 and (see Exercise 3.8)

g*aa _ gﬁl;’ ﬁ 7& o= 172 (3111)
g

Applying the Cauchy theorem (1.77) and bearing (3.108) in mind we obtain

h/2 h/2
oY 1 3 « 1 * 3
fo = \/g;,ﬁtdt, me = \/ggﬁ(r x t)dt3, (3.112)
g—h/2 g—h/2

where again § # « = 1,2 and t denotes the Cauchy stress vector. The force
and couple resulting on the whole boundary surface can thus be expressed
respectively by

tP+At° h/2 tP+At?

/tdA(a): / /t\/g;ﬁdthtﬁz / gfodt?, (3.113)

Ale) 5 —h/2 t5
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tP+ALt° h/2
/ (r* x t)dA©® = / / (r* x t) \/ggﬁdt3dtﬂ
Ale) 8 —h/2
tP+ALP
= / gm®dt’, B#a=1,2, (3.114)

s

where we make use of the relation
dA@) = g*\/graadtBds® = \/g;ﬁdtﬁdtB, BAa=1,2 (3.115)

following immediately from (2.97) and (3.111).
The force and couple vectors (3.109) are usually represented with respect
to the basis related to the middle surface as (see also [1])

F =195 +q%gs, m*=m*Pgsx gg=gess,m*’g". (3.116)
In shell theory, their components are denoted as follows.

faﬁ - components of the stress resultant tensor,

(03

q - components of the transverse shear stress vector,

meP - components of the moment tensor.

External force variables. One defines the load force vector and the load
moment vector related to a unit area of the middle surface, respectively by

p=0'gi;, c=cg3xg, (3.117)

The load moment vector ¢ is thus assumed to be tangential to the middle
surface. The resulting force and couple can be expressed respectively by

2 A2 L ALY 2 A L ALY
/ / pgdttde?, / / cgdttd®. (3.118)
2 t1 2 t1

Equilibrium conditions. Taking (3.113) and (3.118); into account the
force equilibrium condition of the shell element can be expressed as

P L AP
3 / [0 (1 + ALY £ (1% + AL®) — g (t2) £ (12)] dt
a,f=1 8

a3
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2 A2 ALY

+ / / pgdt'dt* = 0. (3.119)
t2 tt

Rewriting the first integral in (3.119) we further obtain

t2+AL2 ALt
[(9£%) o +gp] dt'dt? = 0. (3.120)

t2 ¢!
Since the latter condition holds for all shell elements we infer that
(9F) 0 +9p =0, (3.121)
which leads by virtue of (2.99) and (3.73)2 to
fla+p=0, (3.122)

where the covariant derivative is formally applied to the vectors f according
to (3.76);.

In a similar fashion we can treat the moment equilibrium. In this case, we
obtain instead of (3.121) the following condition

[g(m* +7r X f9],a+gr xp+gc=0. (3.123)
With the aid of (3.62) and keeping (3.122) in mind, it finally delivers
m?|o +ga X f*+c=0. (3.124)

In order to rewrite the equilibrium conditions (3.122) and (3.124) in compo-
nent form we further utilize representations (3.116), (3.117) and apply the
product rule of differentiation for the covariant derivative (see, e.g., (2.93-
2.95)). By virtue of (3.78) and (3.80) it delivers

(f*la =02 + 1) gp + (f*bap + ¢°|a +P°) g3 = 0, (3.125)

(Mm*lo —q” +¢”) g3 X gy + g capsfgs = 0 (3.126)
with a new variable

P =1 +6im, a,8=1,2 (3.127)

called pseudo-stress resultant. Keeping in mind that the vectors g; (i = 1,2, 3)
are linearly independent we thus obtain the following scalar force equilibrium
conditions

fla =bog® +p7 =0, p=1,2, (3.128)

basfP +q%a +0> =0 (3.129)
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and moment equilibrium conditions
m|e —¢"+c” =0, p=1,2, (3.130)

[P =P a,8=1,2, a#p. (3.131)

With the aid of (3.127) one can finally eliminate the components of the stress
resultant tensor f*° from (3.128) and (3.129). This leads to the following
equation system

Fla = (B2m™) |0 —boq™ +p" =0, p=1,2, (3.132)
fop B ¥ 4 o 3 _

bap ™ = bapbim?* +¢%|a +p° =0, (3.133)

m*|a —¢" +c¢" =0, p=1,2, (3.134)

where the latter relation is repeated from (3.130) for completeness.

Example. Equilibrium equations of plate theory. In this case, the
middle surface of the shell is a plane (3.55) for which

bap =3 =0, a,6=1,2. (3.135)

Thus, the equilibrium equations (3.132-3.134) simplify to

fPa+p”=0, p=12, (3.136)
¢*a+p° =0, (3.137)
m*,.—q¢" +c” =0, p=12, (3.138)

where in view of (3.127) and (3.131) f*# = f8« (a # 3= 1,2).

Example. Equilibrium equations of membrane theory. The mem-
brane theory assumes that the shell is moment free so that

m? =0, =0 «op=12. (3.139)

In this case, the equilibrium equations (3.132-3.134) reduce to

fap|04 +pp = Oa P = 1725 (3140)

bap P +p® =0, (3.141)

=0, p=12, 1
=0 2 3.142

where again f% = f8 (o # 5 =1,2).
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Exercises

3.1. Show that a curve 7 (s) is a straight line if s (s) =0 for any s .

3.2. Show that the curves 7 (s) and ' (s) = r (—s) have the same curvature
and torsion.

3.3. Show that a curve 7 (s) characterized by zero torsion 7 (s) = 0 for any s
lies in a plane.

3.4. Evaluate the Christoffel symbols of the second kind, the coefficients of
the first and second fundamental forms, the Gaussian and mean curvatures
for the cylinder (3.56).

3.5. Evaluate the Christoffel symbols of the second kind, the coefficients of
the first and second fundamental forms, the Gaussian and mean curvatures
for the sphere (3.58).

3.6. For the so-called hyperbolic paraboloidal surface defined by

t'?
r (tl,t2) =tle; + t?es + e3, ¢>0, (3.143)
c

evaluate the tangent vectors to the coordinate lines, the coefficients of the
first and second fundamental forms, the Gaussian and mean curvatures.

3.7. For a cone of revolution defined by
r (¢, t2) = ct’costle; + ct’sintles + t?es, ¢ #0, (3.144)

evaluate the vectors tangent to the coordinate lines, the coefficients of the
first and second fundamental forms, the Gaussian and mean curvatures.

3.8. Verify relation (3.111).

3.9. Write out equilibrium equations (3.140-3.141) of the membrane theory
for a cylindrical shell and a spherical shell.
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Eigenvalue Problem and Spectral
Decomposition of Second-Order Tensors

4.1 Complexification

So far we have considered solely real vectors and real vector spaces. For the
purposes of this chapter an introduction of complex vectors is, however, nec-
essary. Indeed, in the following we will see that the existence of a solution of
an eigenvalue problem even for real second-order tensors can be guaranteed
only within a complex vector space. In order to define the complex vector
space let us consider ordered pairs (x,y) of real vectors  and y € E™. The
sum of two such pairs is defined by [15]

(1, Y1) + (T2, Y2) = (T1 + T2, Y1 + Y2) - (4.1)

Further, we define the product of a pair (z,y) by a complex number « + i3
by

where a, 8 € R and i = v/—1. These formulas can easily be recovered assuming
that

(r,y) == +iy. (4.3)

The definitions (4.1) and (4.2) enriched by the zero pair (0, 0) are sufficient to
ensure that the axioms (A.1-A.4) and (B.1-B.4) of Chap. 1 are valid. Thus, the
set of all pairs z = (x,y) characterized by the above properties forms a vector
space referred to as complex vector space. Every basis G = {g1,92,...,9n}
of the underlying Euclidean space E™ represents simultaneously a basis of the
corresponding complexified space. Indeed, for every complex vector within
this space

z=x+1y, (4.4)

where ,y € E” and consequently
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©=1'g;, y=1v'gi (4.5)
we can write
z = (2" +1y") gi. (4.6)

Thus, the dimension of the complexified space coincides with the dimension
of the original real vector space. Using this fact we will denote the complex
vector space based on E™ by C". Clearly, E™ represents a subset of C™.

For every vector z € C™ given by (4.4) one defines a complex conjugate
counterpart by

z=x—ly. (4.7

Of special interest is the scalar product of two complex vectors, say z; =
x1 +iy; and z9 = @9 + iya, which we define by (see also [4])

(k1 +iy1) - (o +iy2) =1 -T2 —y1 - Y2 +i(T1 - Y2 + Y1 - T2). (4.8)

This scalar product is commutative (C.1), distributive (C.2) and linear in
each factor (C.3). Thus, it differs from the classical scalar product of complex
vectors given in terms of the complex conjugate (see, e.g., [15]). As a result,
the axiom (C.4) does not generally hold. For instance, one can easily imagine a
non-zero complex vector whose scalar product with itself is zero. For complex
vectors with the scalar product (4.8) the notions of length, orthogonality or
parallelity can hardly be interpreted geometrically.
However, for complex vectors the axiom (C.4) can be reformulated by

z-2>0, z-z=0 ifandonlyif z=0. (4.9)

Indeed, using (4.4), (4.7) and (4.8) we obtain z -z = @ - & + y - y. Bearing in
mind that the vectors & and y belong to the Euclidean space this immediately
implies (4.9).

As we learned in Chap. 1, the Euclidean space E" is characterized by
the existence of an orthonormal basis (1.8). This can now be postulated for
the complex vector space C" as well, because C" includes E™ by the very
definition. Also Theorem 1.6 remains valid since it has been proved without
making use of the property (C.4). Thus, we may state that for every basis in
C™ there exists a unique dual basis.

The last step of the complexification is a generalization of a linear mapping
on complex vectors. This can be achieved by setting for every tensor A € Lin"

A(z+iy) =Ax+i(Ay). (4.10)

4.2 Eigenvalue Problem, Eigenvalues and Eigenvectors

Let A € Lin" be a second-order tensor. The equation
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Aa=MXa, a#0 (4.11)

is referred to as the eigenvalue problem of the tensor A. The non-zero vector
a € C" satisfying this equation is called an eigenvector of A; A € C is called
an eigenvalue of A. It is clear that any product of an eigenvector with any
(real or complex) scalar is again an eigenvector.

The eigenvalue problem (4.11) and the corresponding eigenvector a can
be regarded as the right eigenvalue problem and the right eigenvector, respec-
tively. In contrast, one can define the left eigenvalue problem by

bA =)\b, b#0, (4.12)

where b € C" is the left eigenvector. In view of (1.115), every right eigenvector
of A represents the left eigenvector of AT and vice versa. In the following,
unless indicated otherwise, we will mean the right eigenvalue problem and the
right eigenvector.

Mapping (4.11) by A several times we obtain

Afa =Ma, k=1,2,... (4.13)
This leads to the following (spectral mapping) theorem.

Theorem 4.1. Let A\ be an eigenvalue of the tensor A and let g(A) =
Yo arAF be a polynomial of A. Then g (\) =Y, arAF is the eigenvalue
of g (A).

Proof. Let a be an eigenvector of A associated with A. Then, in view of (4.13)

g(A)a = ZakAka = Zak)\ka = <Z ak)\k> a=g(\a.
k=0 k=0 k=0
In order to find the eigenvalues of the tensor A we consider the following
representations:
A= A?‘jgi ®g’, a=adg; b=Dbg’, (4.14)

where G = {g1,92,...,9,} and G’ = {g',g?,...,g"} are two arbitrary mu-
tually dual bases in E™ and consequently also in C™. Note that we prefer here
the mixed variant representation of the tensor A. Inserting (4.14) into (4.11)
and (4.12) further yields

Aljdlgi = Xa'gi,  Albig’ = \bjg,
and therefore

(Aljd! —Xa') gi =0, (Al;bi—Xbj) g’ = 0. (4.15)
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Since both the vectors g; and g* (i = 1,2,...,n) are linearly independent
the associated scalar coefficients in (4.15) must be zero. This results in the
following two linear homogeneous equation systems

J 7 7 7 J

with respect to the components of the right eigenvector a and the left eigen-
vector b, respectively. A non-trivial solution of these equation systems exists
if and only if

AL = Ag[ =0, (4.17)

where |e| denotes the determinant of a matrix. Eq. (4.17) is called the char-
acteristic equation of the tensor A. Writing out the determinant on the left
hand side of this equation one obtains a polynomial of degree n with respect
to the powers of A

pa (V) = (=D)" A" 4 (=) a4
ERTE ) b s NSRS (O (4.18)

referred to as the characteristic polynomial of the tensor A. Thereby, it can
easily be seen that

IV = Al =wA, 1Y) =|A7. (4.19)
The characteristic equation (4.17) can briefly be written as
pa (A) =0. (4.20)

According to the fundamental theorem of algebra, a polynomial of degree n
has n complex roots which may be multiple. These roots are the eigenvalues
Ai (i=1,2,...,n) of the tensor A.

Factorizing the characteristic polynomial (4.18) yields

pa(N) =] =N (4.21)

i=1
Collecting multiple eigenvalues the polynomial (4.21) can further be rewritten
as

S

pa ) =] =N", (4.22)

=1

where s (1 < s < n) denotes the number of distinct eigenvalues, while r; is
referred to as an algebraic multiplicity of the eigenvalue \; (i =1,2,...,s). It
should formally be distinguished from the so-called geometric multiplicity ¢;,
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which represents the number of linearly independent eigenvectors associated
with this eigenvalue.

Example. Eigenvalues and eigenvectors of the deformation gradi-
ent in the case of simple shear. In simple shear, the deformation gradient
can be given by F = F';e; ® e’, where

‘ 140
[F,]=1010 (4.23)
001

and 7 denotes the amount of shear. The characteristic equation (4.17) for the
tensor F takes thus the form

1—-X 7~ 0
0 1I-Xx 0 |=0.
0 0 1—-2A

Writing out this determinant we obtain
(1-x"=0,

which yields one triple eigenvalue
AM=X=A3=1.

The associated (right) eigenvectors a = a’e; can be obtained from the equa-
tion system (4.16); i.e.

(F, = A6i)a? =0, i=1,2,3.
In view of (4.23) it reduces to the only non-trivial equation

a2fy =0.

Hence, all eigenvectors of F can be given by a = a'e; + a®es. They are linear
combinations of the only two linearly independent eigenvectors e; and es.
Accordingly, the geometric and algebraic multiplicities of the eigenvalue 1 are
t, = 2 and r; = 3, respectively.

4.3 Characteristic Polynomial

By the very definition of the eigenvalue problem (4.11) the eigenvalues are
independent of the choice of the basis. This is also the case for the coeffi-
cients IX) (i=1,2,...,n) of the characteristic polynomial (4.18) because they
uniquely define the eigenvalues and vice versa. These coeflicients are called
principal invariants of A. Writing out (4.21) and comparing with (4.18) one
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obtains the following relations between the principal invariants and eigenval-
ues

15;1) :)\1+)\2—|—...+An7
Ig) — )\1)\2 + A1A3 + ...+ )\n—lAnm

n

W= Y A,

01<02<...<0k

157 = Mg A, (4.24)

referred to as the Vieta theorem. The principal invariants can also be expressed
in terms of the so-called principal traces trA* (k= 1,2,...,n). Indeed, by use
of (4.13), (4.19); and (4.24); we first write

Then, we apply Newton’s formula (see e.g. [10]) relating coefficients of a poly-
nomial to its roots represented by the sum of the powers in the form of the
right hand side of (4.25). Taking (4.25) into account, Newton’s formula can
thus be written as

IX) = trA,
2 1/
IE&) = ) (Ig)trA — trAQ) ,
1 f
=, (If)trA —1{trA? +trA3) :
' 1/ (ke _ _
IXC) = (IXC DirA — IX€ DirA? + ..+ (—1)k ! trAk)
1< : v
= k Z (_1)Z71 Il(::il)trAl7
=1
18" = detA, (4.26)

where we set Ig)) =1 and
detA = |A%;| = |A]| (4.27)
is called the determinant of the tensor A.

Example. Three-dimensional space. For illustration, we consider a
second-order tensor A in three-dimensional space. In this case, the character-
istic polynomial (4.18) takes the form
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pa (\) = =23 +TaN? —TIa\ + 114, (4.28)
where

Ia =1V = trA,

1
IIA = Ifz) = 2 |:(tI'A)2 - trA2:| 5
3 1 3 3 2 1 3| _
IIIs =1, = 5 trA° — 2trA trA + 5 (trA)” | = detA (4.29)

are the principal invariants (4.26) of the tensor A. They can alternatively be
expressed by the Vieta theorem (4.24) in terms of the eigenvalues as follows

Ian =X+ A2+ A3, ITa = MA2+ X3 + Az, IIIa = M3, (4.30)
The roots of the cubic polynomial (4.28) can be obtained in a closed form by

means of the Cardano formula (see, e.g. [5]) as

1 1
A = 5 {IA—FZ\/Ii —3HAC083 [+ 27 (k — 1)]}, k=1,2,3, (4.31)

where

2% — 9IATIA + 271114

¥ = arccos .
[ 2 (13 — 3114) "

] , T4 — 3Tl #0. (4.32)

In the case Ii — 3IIa =0, the eigenvalues of A take another form
1 1 311/3 9 C (2
A = 3IA + 3 (27HI5 —Ta) " [cos (37k) +isin (37k)], (4.33)

where £k =1,2,3.

4.4 Spectral Decomposition and Eigenprojections

The spectral decomposition is a powerful tool for the tensor analysis and
tensor algebra. It enables to gain a deeper insight into the properties of second-
order tensors and to represent various useful tensor operations in a relatively
simple form. In the spectral decomposition, eigenvectors represent one of the
most important ingredients.

Theorem 4.2. The eigenvectors of a second-order tensor corresponding to
pairwise distinct eigenvalues are linearly independent.
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Proof. Suppose that these eigenvectors are linearly dependent. Among all pos-
sible nontrivial linear relations connecting them we can choose one involving
the minimal number, say r, of eigenvectors a; # 0 (i = 1,2,...,r). Obviously,
1 < r <n. Thus,

> aiai =0, (4.34)
i=1

where all ; (i =1,2,...,7) are non-zero. We can also write

Aai:)\iai, i:1,2,...,r, (435)
where \; # \;, (i #j=1,2,...,7). Mapping both sides of (4.34) by A and
taking (4.35) into account we obtain

ET:OQAO,Z‘ = ET: ai)\iai = 0. (436)
i=1 =1

Multiplying (4.34) by A, and subtracting from (4.36) yield

T r—1
0= ZO@' ()\1 — /\T)ai = ZO@' ()\1 — )\T)ai.
i=1 i=1

In the latter linear combination none of the coefficients is zero. Thus, we have
a linear relation involving only r» — 1 eigenvectors. This contradicts, however,
the earlier assumption that r is the smallest number of eigenvectors satisfying
such a relation.

Theorem 4.3. Let b; be a left and a; a right eigenvector associated with
distinct eigenvalues \; # \; of a tensor A. Then,

b;-a; =0. (4.37)
Proof. With the aid of (1.78) and taking (4.11) into account we can write
biAa; =b; - (Aa;) =b; - (\ja;) = \b; - a,.
On the other hand, in view of (4.12)
biAa; = (b;A)-a; = (bi\;) -a; = \;ib; - a;.
Subtracting one equation from another one we obtain
(Ai—Aj)bi-a; =0.

Since A\; # A; this immediately implies (4.37).
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Now, we proceed with the spectral decomposition of a second-order tensor
A. First, we consider the case of n simple eigenvalues. Solving the equa-
tion systems (4.16) one obtains for every simple eigenvalue A; the compo-
nents of the right eigenvector a; and the components of the left eigenvector

b; (i=1,2,...,n). n right eigenvectors on the one hand and n left eigen-
vectors on the other hand are linearly independent and form bases of C".
Obviously, b; - a; # 0(: =1,2,...,n) because otherwise it would contradict

(4.37) (see Exercise 1.8). Normalizing the eigenvectors we can thus write
bi-aj:&;j, i,j=1,2,...,n. (438)

Accordingly, the bases a; and b; are dual to each other such that a’ = b;
and b' = a; (i = 1,2,...,n). Now, representing A with respect to the basis
a;@b; (i,j=1,2,...,n) as A = AYa; ® b; we obtain with the aid of (1.88),
(4.11) and (4.38)

Aij = aiAbj = biAaj = bl‘ . (Aaj) = bl‘ . ()\jaj) = )\jdij,

where 4,5 = 1,2,...,n. Thus,

=1

Next, we consider second-order tensors with multiple eigenvalues. We assume,

however, that the algebraic multiplicity r; of every eigenvalue \; coincides with

its geometric multiplicity ¢;. In this case we again have n linearly independent

right eigenvectors forming a basis of C" (Exercise 4.3). We will denote these

eigenvectors by af;k) (i=1,2,...,5k=1,2,...,r;) where s is the number of
(k)

pairwise distinct eigenvalues. Constructing the basis bg-l) dual to a; "’ such

that
al? bl = 650", i =12, s k=12, =12, 15 (4.40)

we can write similarly to (4.39)

S -~ (k k
A=A aP wb. (4.41)
k=1

=1

The representations of the form (4.39) or (4.41) are called spectral decompo-
sition in diagonal form or, briefly, spectral decomposition. Note that not every
second-order tensor A € Lin" permits the spectral decomposition. The tensors
which can be represented by (4.39) or (4.41) are referred to as diagonalizable
tensors. For instance, we will show in the next sections that symmetric, skew-
symmetric and orthogonal tensors are always diagonalizable. If, however, the
algebraic multiplicity of at least one eigenvalue exceeds its geometric multi-
plicity, the spectral representation is not possible. Such eigenvalues (for which
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r; > t;) are called defective eigenvalues. A tensor that has one or more defec-
tive eigenvalues is called defective tensor. In Sect. 4.2 we have seen, for ex-
ample, that the deformation gradient F represents in the case of simple shear
a defective tensor since its triple eigenvalue 1 is defective. Clearly, a simple
eigenvalue (r; = 1) cannot be defective. For this reason, a tensor whose all
eigenvalues are simple is diagonalizable.

Now, we look again at the spectral decompositions (4.39) and (4.41). With
the aid of the abbreviation

P,=> a" b, i=12..s (4.42)
they can be given in a unified form by
A=) AP, (4.43)
i=1

The generally complex tensors P; (i = 1,2,...,s) defined by (4.42) are called
eigenprojections. It follows from (4.40) and (4.42) that (Exercise 4.4)

Pzpj :(S”P“ Z,jz 1,2,,8 (444)
and consequently
PZ‘A:APi :AiPia 1= ].,2,...,8. (445)

Bearing in mind that the eigenvectors agk) (i=1,2,....,8k=1,2,...,1y)

form a basis of C" and taking (4.40) into account we also obtain (Exercise
4.5)

S

> Pi=1L (4.46)

i=1
Due to these properties of eigenprojections (4.42) the spectral representation
(4.43) is very suitable for calculating tensor powers, polynomials and other

tensor functions defined in terms of power series. Indeed, in view of (4.44)
powers of A can be expressed by

AF =N NP, k=0,1,2,... (4.47)
i=1
For a tensor polynomial it further yields

g(A) = Z g (N)Pi. (4.48)
i=1
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For example, the exponential tensor function (1.114) can thus be represented
by

exp(A) =) exp(\;) Pi. (4.49)
i=1

For an invertible second-order tensor we can also write

AT =D "NP, AeIm” (4.50)
i=1
which implies that A\; # 0 (i = 1,2,...,s). The latter property generally char-
acterizes all (not necessarily diagonalizable) invertible tensors (see Exercise
4.7).

With the aid of (4.44) and (4.46) the eigenprojections can be obtained
without solving the eigenvalue problem in the general form (4.11). To this
end, we first consider s polynomial functions p; (A) (i = 1,2, ..., s) satisfying
the following conditions

Thus, by use of (4.48) we obtain

Pi (A) :Zpi ()\j)Pj :Z(Sl‘ij :Pi; i:1,2,...,8. (452)
7j=1 7j=1

Using Lagrange’s interpolation formula (see, e.g., [5]) and assuming that s # 1
one can represent the functions p; () (4.51) by the following polynomials of
degree s — 1:

Sy IR
= RIEPY
J#i

pi(\) i=1,2,...,s>1 (4.53)

Considering these expressions in (4.52) we obtain the so-called Sylvester for-
mula as

I |

Pi: )
Ai — Aj

i=1,2,...,5 > 1. (4.54)
j=1
J#i
Note that according to (4.46), P; = I in the the case of s = 1. With this
result in hand the above representation can be generalized by

A NI
P, =61 T i=1,2,...,s. 4.55
1 +j1:[1 A= v s (4.55)

i
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Writing out the product on the right hand side of (4.55) also delivers (see,
5. [43))

s—1
1 .
Pi = Dl pé_o 121 S_p_lAp, 1 = 1, 2, ey S, (456)

where 1,0 = 1,

bp= (=1 D> Ao A, (1= 8i0y) - (1= i)

1<01<<o0p<s

Di=d0i+[[i=X), p=12...,s-1, i=12.. s (4.57)
=1
;#

4.5 Spectral Decomposition of Symmetric Second-Order
Tensors

We begin with some useful theorems concerning eigenvalues and eigenvectors
of symmetric tensors.

Theorem 4.4. The eigenvalues of a symmetric second-order tensor M &€
Sym™ are real, the eigenvectors belong to E™.

Proof. Let X\ be an eigenvalue of M and a a corresponding eigenvector such
that according to (4.11)

Ma = )a.
The complex conjugate counterpart of this equation is
Ma=A\a.

Taking into account that M is real and symmetric such that M = M and
MT™ = M we obtain in view of (1.115)

aM=)\a.

Hence, one can write
0=aMa —aMa = a - (Ma) — (aM) - a
=A@a-a)-A(a-a)=(A-X)(a-a).
Bearing in mind that a # 0 and taking (4.9) into account we conclude that
a-a > 0. Hence, A = A. The components of a with respect to a basis G =

{91,92,...,9n} in E™ are real since they represent a solution of the linear
equation system (4.16); with real coefficients. Therefore, a € E™.
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Theorem 4.5. Figenvectors of a symmetric second-order tensor correspond-
ing to distinct eigenvalues are mutually orthogonal.

Proof. According to Theorem 4.3 right and left eigenvectors associated with
distinct eigenvalues are mutually orthogonal. However, for a symmetric tensor
every right eigenvector represents the left eigenvector associated with the same
eigenvalue and vice versa. For this reason, right (left) eigenvectors associated
with distinct eigenvalues are mutually orthogonal.

Theorem 4.6. Let \; be an eigenvalue of a symmetric second order tensor
M. Then, the algebraic and geometric multiplicity of \; coincide.

Proof. Let ar, € E™ (k=1,2,...,t;) be all linearly independent eigenvectors
associated with \;, while ¢; and r; denote its geometric and algebraic multi-
plicity, respectively. Every linear combination of aj is again an eigenvector
associated with ;. Indeed,

ti ti 1 ti
MZ Qrap = Z Qe (Mak) = Z ak)\iak = )\i Z ALag. (4.58)
k=1 k=1 k=1 k=1

According to Theorem 1.4 the set of vectors ay (k=1,2,...,¢;) can be
completed to a basis of E™. With the aid of the Gram-Schmidt procedure
described in Chap. 1 (Sect. 1.4) this basis can be transformed to an or-
thonormal basis e; (I =1,2,...,n). Since the vectors e; (j = 1,2,...,t;) are
linear combinations of ay (k= 1,2,...,t;) they likewise represent eigenvec-
tors of M associated with );. Further, we represent the tensor M with
respect to the basis e; ® e,, (I,m=1,2,...,n). In view of the identities
Me, = exM = \ei (k=1,2,...,t;) and keeping in mind the symmetry
of M we can write using (1.88)

t; n
M=)\ Z e, Qe+ Z M}, e @ €. (4.59)
k=1 I,m=t;+1
Thus, the characteristic polynomial of M can be given as

Py (A) = M, — Adin | (A = N (4.60)

which implies that r; > t;.
Now, we consider the vector space E" % of all linear combinations of the
vectors e; (I =t; +1,...,n). The tensor

M= Y M,een,

Iym=t;+1

represents a linear mapping of this space into itself. The eigenvectors of M’
are linear combinations of e; (I =t; + 1,...,n) and therefore are linearly in-
dependent of e (k=1,2,...,t;). Consequently, A; is not an eigenvalue of
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M'. Otherwise, the eigenvector corresponding to this eigenvalue \; would be

linearly independent of e, (k= 1,2,...,t;) which contradicts the previous as-

sumption. Thus, all the roots of the characteristic polynomial of this tensor
P (A) = [Miy,, = Adin |

differ from ;. In view of (4.60) this implies that r; = ¢, .

As a result of this theorem and in view of (4.41) and (4.43), the spectral
decomposition of a symmetric second-order tensor can be given by

M = Z A Z al® @ al" = Z AP;, M e Sym”, (4.61)
k=1

i=1 =1

in terms of the real symmetric eigenprojections
T
P,=> a" ®al, (4.62)
k=1

where the eigenvectors agk) form an orthonormal basis in E™ so that

a® _agl) = 5;;0M, (4.63)

3

where i, =1,2,...,8; k=1,2,...,r; [ =1,2,...,7;.
Of particular interest in continuum mechanics are the so-called positive-
definite second-order tensors. They are defined by the following condition

xAxz >0, VxeE", x#0. (4.64)

For a symmetric tensor M the above condition implies that all its eigenvalues
are positive. Indeed, let a; be a unit eigenvector associated with the eigenvalue
Ai (i=1,2,...,n). In view of (4.64) one can thus write

Ai=a;Ma; >0, i=1,2,...,n. (465)

This allows to define powers of a symmetric positive-definite tensor with a
real exponent as follows

M*=>"X'P;, a€R. (4.66)
i=1

4.6 Spectral Decomposition of Orthogonal
and Skew-Symmetric Second-Order Tensors

We begin with the orthogonal tensors Q € Orth™ defined by the condition
(1.135). For every eigenvector a and the corresponding eigenvalue A\ we can
write
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Qa =Xa, Qa=)\a, (4.67)

because Q is by definition a real tensor such that Q = Q. Mapping both sides
of these vector equations by QT and taking (1.115) into account we have

1

aQ=X\lta, aQ=)\ a. (4.68)

Thus, every right eigenvector of an orthogonal tensor represents its left eigen-
vector associated with the inverse eigenvalue. Hence, if A # A~! or, in other
words, A is neither +1 nor —1, Theorem 4.3 immediately implies the relations

a-a=0, a-a=0, XA\ (4.69)

indicating that a and consequently a are complex (definitely not real) vectors.
Using the representation

1
a= +iq), p,qcE" 4.70
/2 (p+iq), p.q (4.70)

and applying (4.8) one can write
lpll=llal =1, p-q=0. (4.71)

Now, we consider the product aQa. With the aid of (4.67); and (4.68)2 we
obtain

aQa=Xa-a)=)\(a-a). (4.72)
Since, however, a-a =1/2(p-p+q - q) = 1 we infer that
AN =1 (4.73)

Thus, all eigenvalues of an orthogonal tensor have absolute value 1 so that we
can write

A= el = cosw +isinw. (4.74)
By virtue of (4.73) one can further rewrite (4.68) as
aQ = Xa, aQ = )a. (4.75)

Summarizing these results we conclude that every complex (definitely not real)
eigenvalue A of an orthogonal tensor comes in pair with its complex conjugate
counterpart A = A~L. If a is a right eigenvector associated with A, then a is
its left eigenvector. For A, a is, vice versa, the left eigenvector and a the right
one.

Next, we show that the algebraic and geometric multiplicities of ev-
ery eigenvalue of an orthogonal tensor Q coincide. Let ax (k=1,2,...,¢;)
be all linearly independent right eigenvectors associated with an eigenvalue
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Ai. According to Theorem 1.4 these vectors can be completed to a basis
of C". With the aid of the Gram-Schmidt procedure (see Exercise 4.14)
a linear combination of this basis can be constructed in such a way that
ai - a; = 0k (k,1=1,2,...,n). Since the vectors ay (k=1,2,...,t;) are
linear combinations of ax (k= 1,2,...,t;) they likewise represent eigenvec-
tors of Q associated with \;. Thus, representing Q with respect to the basis
ap,®a; (k,1=1,2,...,n) we can write

ti n
Qz)\izak®ak+ Z Q@1 @ Q.

k=1 I,m=t;+1

Comparing this representation with (4.59) and using the same reasoning as
applied for the proof of Theorem 4.6 we infer that A; cannot be an eigenvalue of
Q' = sz:ti 41 Q},,@1 @ @y,. This means that the algebraic multiplicity r; of
A; coincides with its geometric multiplicity ¢;. Thus, every orthogonal tensor
Q € Orth™ is characterized by exactly n linearly independent eigenvectors
forming a basis of C". Using this fact the spectral decomposition of Q can be
given by

T41

r_q
k k 1 l
Q= Za() ;f—Zan@an
=1
iy {)\i S0 wal 10,3 0 agm} | (4.76)
=1 k=1 k=1

where r;1 and r_; denote the algebraic multiplicities of real eigenvalues +1
and —1, respectively, while a(fl) (k=1,2,...,741) and al) 1 (l=1,2,...,r_4)
are the corresponding orthonormal real eigenvectors. s is the number of com-
plex conjugate pairs of eigenvalues \; = cos w;+isinw; with distinct arguments

(k)

w; and the multiplicities ;. The associated eigenvectors a; ' and al(»k) obey

the following relations (see also Exercise 4.15)
af;k)-agfi =0, af;k)-a(f? =0, af;k)-a;l) T aEk)~a§m) =0, (4.77)

where i,7 = 1,2,...,8 k,m =1,2,...,r;; 1 =1,2,....15; 0 = 1,2,...,141;
p = 1,2,...,r_1. Using the representations (4.70) and (4.74) the spectral
decomposition (4.76) can alternatively be written as

r

Q= Z a(k) ® a+1 + Z Cos wj Z (Pf;k) ® pf;k) + qq(;k) ® qv(ik))
=1

k=1
- Za(,l)l ®al) + Zsmwz Z ( Meq —q ®P§k)) . (478)
=1

Now, we turn our attention to skew-symmetric tensors W € Skew" as defined
n (1.155). Instead of (4.68) and (4.72) we have in this case
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aW =—-Xa, aW =-)\a, (4.79)

aWa=MX(a-a)=—-\(a-a) (4.80)

and consequently
A=—A\ (4.81)

Thus, the eigenvalues of W are either zero or imaginary. The latter ones come
in pairs with the complex conjugate like in the case of orthogonal tensors.
Similarly to (4.76) and (4.78) we thus obtain

W = Zwii Z (agk) & agk) — af;k) ® agk))
i=1 k=1

=N wd (pgk) ¢ —q ® pﬁk)) : (4.82)
=1 k=1

where s denotes the number of pairwise distinct imaginary eigenvalues w;i
(k) (k)

while the associated eigenvectors a,” and a;"’ are subject to the restrictions

(4.77)3 4.

Orthogonal tensors in three-dimensional space. In the three-dimen-
sional case Q € Orth®, at least one of the eigenvalues is real, since complex
eigenvalues of orthogonal tensors appear in pairs with the complex conjugate.
Hence, we can write

M =+1, X =e“ =cosw+isinw, A3=e “ =cosw—isinw. (4.83)

In the case sinw = 0 all three eigenvalues become real. The principal invariants
(4.30) take thus the form

Iq =M +2cosw = %1+ 2cosw,

IIg =2\ cosw + 1 = A\ 1q = £lq,
Il = A = £1. (4.84)
The spectral representation (4.76) takes the form

Q==a; ®a; + (cosw +isinw)a ®a + (cosw —isinw) a ® a, (4.85)

where a; € E? and a € C3 is given by (4.70) and (4.71). Taking into account
that by (4.77)

a-a=a;-p=a;-q=0 (4.86)
we can set

a; =qxp. (4.87)
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Substituting (4.70) into (4.85) we also obtain
Q=4a1®a;tcosw(POP+q®Rq)+sinw(pqg—qp). (4.88)

By means of the vector identity (1.136) and considering (1.66), (1.92) and
(4.87) it finally leads to

Q = coswl + sinwd; + (£1 — cosw) a1 @ a;. (4.89)

Comparing this representation with (1.73) we observe that any orthogonal
tensor Q € Orth® describes a rotation in three-dimensional space if Illq =
A1 = 1. The eigenvector a; corresponding to the eigenvalue 1 specifies the
rotation axis. In this case, Q is referred to as a proper orthogonal tensor.

Skew-symmetric tensors in three-dimensional space. For a skew-
symmetric tensor W € Skew® we can write in view of (4.81)

)\1 = 0, )\2 = wL )\3 = —wi. (490)
Similarly to (4.84) we further obtain (see Exercise 4.16)
1
hw =0, Iw=, IW|? =w? Ilw =0. (4.91)
The spectral representation (4.82) takes the form

W=vi(a®a—-a®a)=w(p®q—qp), (4.92)

where a, p and g are again related by (4.70) and (4.71). With the aid of the
abbreviation

w=wa; =wq X p (4.93)
and bearing (1.169) in mind we finally arrive at the representation (1.158)
W = . (4.94)

Thus, the axial vector w (4.93) of the skew-symmetric tensor W (4.92) in
three-dimensional space represents its eigenvector corresponding to the zero
eigenvalue in accordance with (1.160).

4.7 Cayley-Hamilton Theorem

Theorem 4.7. Let pa (\) be the characteristic polynomial of a second-order
tensor A € Lin". Then,

pa(A) = (-1)"FIY Ak = 0. (4.95)
k=0



4.7 Cayley-Hamilton Theorem 99

Proof. As a proof (see, e.g., [12]) we show that

pa (A)x =0, VxecE" (4.96)
For = 0 it is trivial, so we suppose that & # 0. Consider the vectors

yi=A"le, i=12,.. .. (4.97)
Obviously, there is an integer number k such that the vectors y1,y2, ..., Yk

are linearly independent, but
a1y +axys + ... +aryr + AfFx = 0. (4.98)

Note that 1 < k < n. If k # n we can complete the vectors y; (i =1,2,...,k)
toabasisy; (1 =1,2,...,n) of E". Let A = A?‘jyi ® 47, where the vectors y*
form the basis dual to y; (i =1,2,...,n). By virtue of (4.97) and (4.98) we
can write

Yit1 ifi <k,
Ay, = k 4.99
yi Fx=— 3 ajy; ifi=Ek. (4.99)
j=1
The components of A can thus be given by

00...0 —ai

10...0 —ae
(A =['Ay]= |0 0w, (4.100)

00...1 —Aag

0 A//

where A’ and A” denote some submatrices. Therefore, the characteristic poly-
nomial of A takes the form

—A 0...0 —ax
1 =X...0 —a
pa(N) =par M| . .. (4.101)

0 0...1 —ap—A
where par (A) = det (A” — AI). By means of the Laplace expansion rule (see,

e.g., [5]) we expand the determinant in (4.101) along the last column, which
yields

AN =par N) (=D (a1 +azd + ...+ ap AT AR (4.102)
Bearing (4.97) and (4.98) in mind we finally prove (4.96) by
aA(A)z = (—1)"par (A) (@I + asA + ...+ ap AP+ AF) 2
= (—l)kpA,, (A) (a1 + azAx + ... + arAF e Akac)

= (—1)kpAu (A) (a1y1 + asys + ...+ aryr + Akw) = 0.
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Exercises

4.1. Evaluate eigenvalues and eigenvectors of the right Cauchy-Green tensor
C = FTF in the case of simple shear, where F is defined by (4.23).

4.2. Prove identity (4.29)3 using Newton’s formula (4.26).

4.3. Prove that eigenvectors agk) (i=1,2,...,8k=1,2,...,t;) of a second
order tensor A € Lin" are linearly independent and form a basis of C™ if for
every eigenvalue the algebraic and geometric multiplicities coincide so that
T, =1; (i: 1,2,...,8).

4.4. Prove identity (4.44) using (4.40) and (4.42).

4.5. Prove identity (4.46) taking (4.40) and (4.42) into account and using the
results of Exercise 4.3.

4.6. Prove the identity det [exp (A)] = exp (trA).

4.7. Prove that a second-order tensor is invertible if and only if all its eigen-
values are non-zero.

4.8. Let \; be an eigenvalue of a tensor A € Inv". Show that /\;1 represents
then the eigenvalue of A~!.

4.9. Show that the tensor MIN is diagonalizable if M[, N € Sym” and at least
one of the tensors M or N is positive-definite.

4.10. Verify the Sylvester formula for s = 3 by inserting (4.43) and (4.46)
into (4.55).

4.11. Calculate eigenvalues and eigenprojections of the tensor A = A;ei ®el,
where

4 222
[Al]=| 214
241

Apply the Cardano formula (4.31) and Sylvester formula (4.55).

4.12. Calculate the exponential of the tensor A given in Exercise 4.11 using
the spectral representation in terms of eigenprojections (4.43).

4.13. Calculate eigenvectors of the tensor A defined in Exercise 4.11. Express
eigenprojections by (4.42) and compare the results with those obtained by the
Sylvester formula (Exercise 4.11).

4.14. Let ¢; (i =1,2,...,m) € C™ be a set of linearly independent complex
vectors. Using the (Gram-Schmidt) procedure described in Chap. 1 (Sect. 1.4),
construct linear combinations of these vectors, say a; (i = 1,2,...,m), again
linearly independent, in such a way that a; - a; = d;; (i,7 =1,2,...,m).
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4.15. Let af;k) (k=1,2,...,t;) be all linearly independent right eigenvectors
of an orthogonal tensor associated with a complex (definitely not real) eigen-
value \;. Show that af;k) . agl) =0(k,l=1,2,...,t).

4.16. Evaluate principal invariants of a skew-symmetric tensor in three-
dimensional space using (4.29).

4.17. Evaluate eigenvalues, eigenvectors and eigenprojections of the tensor
describing the rotation by the angle a about the axis es (see Exercise 1.23).

4.18. Verify the Cayley-Hamilton theorem for the tensor A defined in Exercise
4.11.

4.19. Verify the Cayley-Hamilton theorem for the deformation gradient in the
case of simple shear (4.23).
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Fourth-Order Tensors

5.1 Fourth-Order Tensors as a Linear Mapping

Fourth-order tensors play an important role in continuum mechanics where
they appear as elasticity and compliance tensors. In this section we define
fourth-order tensors and learn some basic operations with them. To this end,
we consider a set Lin" of all linear mappings of one second-order tensor into
another one within Lin"™. Such mappings are denoted by a colon as

Y=A:X, AeckLin® Y eLin" VX € Lin". (5.1)

The elements of £in" are called fourth-order tensors.

Example. Elasticity and compliance tensors. A constitutive law of a
linearly elastic material establishes a linear relationship between the Cauchy
stress tensor o and Cauchy strain tensor e. Since these tensors are of the
second-order a linear relation between them can be expressed by fourth-order
tensors like

c=C:e or e=H:o0. (5.2)

The fourth-order tensors € and JH describe properties of the elastic material
and are called the elasticity and compliance tensor, respectively.

Linearity of the mapping (5.1) implies that
A (X4+Y)=A:X+A:Y, (5.3)

A:(aX)=a(A:X), VX, Y €Lin", Vo € R, A€ Lin". (5.4)

Similarly to second-order tensors one defines the product of a fourth-order
tensor with a scalar

(cA): X=a(A:X)=A: (aX) (5.5)
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and the sum of two fourth-order tensors by

(A+B): X=A:X+B:X, V¥XeLin". (5.6)
Further, we define the zero-tensor O of the fourth-order by

0:X=0, vXeLin". (5.7)

Thus, summarizing the properties of fourth-order tensors one can write simi-
larly to second-order tensors

A+B=B+ A, (addition is commutative), (5.8)
A+ (B+€C) =(A+3B)+ €, (addition is associative), (5.9)
0O+A=A, (5.10)
A+ (-A)=0, (5.11)
a(fA) = (af) A, (multiplication by scalars is associative), (5.12)
1A =A, (5.13)

a(A+B)=aA+aB, (multiplication by scalars is distributive
with respect to tensor addition), (5.14)
(a+0B)A=aA+ A, (multiplication by scalars is distributive
with respect to scalar addition), V.A,B,C € Lin", Va,F € R. (5.15)

Thus, the set of fourth-order tensors Lin"™ forms a vector space.
On the basis of the “right” mapping (5.1) and the scalar product of two
second-order tensors (1.143) we can also define the “left” mapping by

(Y:A):X=Y:(A:X), YeLn", VX eLn" (5.16)

5.2 Tensor Products, Representation of Fourth-Order
Tensors with Respect to a Basis

For the construction of fourth-order tensors from second-order ones we intro-
duce two tensor products as follows

AB:X=AXB, A6GB:X=A(B:X), VX e€Lin", (5.17)

where A,B € Lin". Note, that the tensor product “®” (5.17); applied to
second-order tensors differs from the tensor product of vectors (1.80). One
can easily show that the mappings described by (5.17) are linear and therefore
represent fourth-order tensors. Indeed, we have, for example, for the tensor
product “®” (5.17);
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AB:(X+Y)=A(X+Y)B
=AXB+AYB=A®B:X+A®B:Y, (5.18)
A®B: (aX)=A(aX)B=a(AXB)
=a(A®B:X), VXY €Lin", VaeR. (5.19)
With definitions (5.17) in hand one can easily prove the following identities
AB+C)=A®B+A®C, (B+C)eA=B®A+C®A, (5.20)

Ao>B+C)=A6B+A6C, (B+C)oA=B0OA+COA. (5.21)
For the left mapping (5.16) the tensor products (5.17) yield

Y:AeB=ATYBT, Y:A0B=(Y:A)B. (5.22)

As fourth-order tensors represent vectors they can be given with respect to a
basis in Lin™.

Theorem 5.1. Let F = {F1,Fsy,...,F 2} and G = {G1, Ga, ..., G2} be two
arbitrary (not necessarily distinct) bases of Lin™. Then, fourth-order tensors

F,0G; (i,j =1,2,.. .,n2) form a basis of Lin™. The dimension of Lin'* is

thus n*.

Proof. See the proof of Theorem 1.7.

A basis in £in" can be represented in another way as by the tensors
F;,©G; (i,j =1,2,..., nz). To this end, we prove the following identity

(ad) o b®c)=a®@brcxd, (5.23)
where we set
(a@b)R(crd)=a®bxcxd. (5.24)

Indeed, let X € Lin"™ be an arbitrary second-order tensor. Then, in view of
(1.142) and (5.17)2

(a®d)®(b®c): X=(bXc)(a®d). (5.25)

For the right hand side of (5.23) we obtain the same result using (5.17); and
(5.24)

a@bRcd: X=(a®b)®(cd): X=(bXc)(a®d). (5.26)
For the left mapping (5.16) it thus holds
Y:a®b®cod=(a¥Yd) (b®c). (5.27)

Now, we are in a position to prove the following theorem.
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Theorem 5.2. Let £ = {ej,ea,...,en}t, F = {f1,f2.-,fn}, § =
{91,92,.--,9n} and finally H = {hqy,ha,... h,} be four arbitrary (not nec-
essarily distinct) bases of E™. Then, fourth-order tensors e; ® f; ® gr @ hy
(4,4, k, 1 =1,2,...,n) represent a basis of Lin".

Proof. In view of (5.23)
eiRfjwgr@h = (e;@h) O (f;@gr).

According to Theorem 1.6 the second-order tensors e; @ by (i,1 =1,2,...,n)
on the one hand and f;®gs (4,k = 1,2,...,n) on the other hand form bases of
Lin". According to Theorem 5.1 the fourth-order tensors (e; ® hi) © (f; ® gi)
and consequently e;® f;®gr®h; (i,7,k,1=1,2,...,n) represent thus a basis
of Lin".

As a result of this Theorem any fourth-order tensor can be represented by

A= Aijklgi ®QG; gy ¥ g = -Az'jklgi & gj 0y Qk ® gl

:‘A?J:klgi®gj ®gk ®gl =... (5'28)

The components of A appearing in (5.28) can be expressed by

AM =g og A g ®g", Aju=gi0g :A:g;® g,

Afj:kl =g'®g:A:g@gr, i,5,kl=12...n (5.29)
By virtue of (1.109), (5.17); and (5.22); the right and left mappings with a
second-order tensor (5.1) and (5.16) can thus be represented by

A:X=(AMg,2g;®gr @ q1) : (Xgpg? ® g°") = A" Xjgi @ g,

X:A=Xpg!®g"): (Ag, 2 g; g1 ® 1) = A" X9, @ gi.
(5.30)

We observe that the basis vectors of the second-order tensor are scalarly mul-
tiplied either by the “inner” (right mapping) or “outer” (left mapping) basis
vectors of the fourth-order tensor.

5.3 Special Operations with Fourth-Order Tensors

Similarly to second-order tensors one defines also for fourth-order tensors some
specific operations which are not generally applicable to conventional vectors
in the Euclidean space.

Composition. In analogy with second-order tensors we define the com-
position of two fourth-order tensors A and B denoted by A : B as
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(A:B): X=A:(B:X), VXeLin" (5.31)
For the left mapping (5.16) one can thus write

Y:(A:B)=(Y:A):B, VY cLin"™ (5.32)

For the tensor products (5.17) the composition (5.31) further yields

(A®@B): (CeD)=(AC)® (DB), (5.33)
(A®B): (C®D)=(ACB)® D, (5.34)
(A@B): (C®D)=A0® (C"BD"), (5.35)
(A®B): (CoD)=(B:C)AGD, A,B,C,Dec Lin". (5.36)

For example, the identity (5.33) can be proved within the following steps
(A®B): (C®D): X =(A®B): (CXD)
= ACXDB = (AC)® (DB) : X, VX € Lin",

where we again take into account the definition of the tensor product (5.17).
For the component representation (5.28) we further obtain

A:B=(AMg, 29,29t @a1): (Bpgreg’ @97 ®g" @ g')

=AKB. 19 29I Rg g (5.37)

Note that the “inner” basis vectors of the left tensor A are scalarly multiplied
with the “outer” basis vectors of the right tensor B.

The composition of fourth-order tensors also gives rise to the definition of
powers as

Ak:\A:A\:f...:JL, k=1,2,..., A=39, (5.38)

k times

where J stands for the fourth-order identity tensor to be defined in the next
section. By means of (5.33) and (5.36) powers of tensor products (5.17) take
the following form

(AoB)" = A*eB* (AeoB)"=(A:B)f 'AGB, k=1,2,... (5.39)

Simple composition with second-order tensors. Let D be a fourth-
order tensor and A, B two second-order tensors. One defines a fourth-order
tensor ADB by

(ADB): X =A(D:X)B, VX e€Lin™ (5.40)
Thus, we can also write

ADB = (A®B):D. (5.41)
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This operation is very useful for the formulation of tensor differentiation rules
to be discussed in the next chapter.
For the tensor products (5.17) we further obtain

AB®C)D=(AB)®(CD)=(A®D): (B®C), (5.42)

ABoC)D=(ABD)6C=(A®D):(BoC). (5.43)
With respect to a basis the simple composition can be given by
ADB = (A,9" ® g) (D'Mg; © 9; © g1 ® g1) (Brog” © ¢°)

= Ay DM Big” © g; ® gr © g°. (5.44)

It is seen that expressed in component form the simple composition of second-
order tensors with a fourth-order tensor represents the so-called simple con-
traction of the classical tensor algebra (see, e.g., [42]).

Transposition. In contrast to second-order tensors allowing for the
unique transposition operation one can define for fourth-order tensors various
transpositions. We confine our attention here to the following two operations

T t
(e)" and (e) defined by

AT X=X:A, A":X=A:X" VXeLin" (5.45)
Thus we can also write
Y:A'=(Y:A". (5.46)

Indeed, a scalar product with an arbitrary second order tensor X yields in
view of (1.147) and (5.16)

(Y:At):X:Y:(.At:X):Y:(.A:XT)
=(Y:A):XT=(Y:A)": X, VXeLin"

Of special importance is also the following symmetrization operation resulting
from the transposition (e)":

F = ; (F+F). (5.47)
In view of (1.153)1, (5.45)2 and (5.46) we thus write

F:X=F:symX, Y:F=sym(Y:F). (5.48)
Applying the transposition operations to the tensor products (5.17) we have

(AeB)"=AT®BT, (AoB)'=BoA, (5.49)

(A®B)'=A6BT A BcLn" (5.50)
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With the aid of (5.26) and (5.27) we further obtain

(abocod) =bzavdac, (5.51)

(abocod)'=a®cbed. (5.52)
It can also easily be proved that
AT =, A=A, VAcLin" (5.53)

Note, however, that the transposition operations (5.45) are not commutative
with each other so that generally DT #+ DT

Applied to the composition of fourth-order tensors these transposition op-
erations yield (Exercise 5.6):

(A: B =BT 4% (A:B)'=A:B" (5.54)

For the tensor products (5.17) we also obtain the following relations (see
Exercise 5.7)

(A@B)': (CaD) = [(ADT) ® (CTB)]t : (5.55)

(A®B)': (CoD)=(AC'B) & D. (5.56)

Scalar product. Similarly to second-order tensors the scalar product of
fourth-order tensors can be defined in terms of the basis vectors or tensors.
To this end, let us consider two fourth-order tensors A ® B and C® D, where
A,B,C,D € Lin". Then, we set

(A®B):(CoD)=(A:C)(B:D). (5.57)
As a result of this definition we also obtain in view of (1.141) and (5.23)

(abcxd): (e fogoh)=(a-e)(b-f)(c-g)(d-h). (5.58)
For the component representation of fourth-order tensors it finally yields

A:B= (Aijklgi ®g; gk ®gl)

i (Bpgrig” ® g7 ® g ®g') = AT B . (5.59)

Using the latter relation one can easily prove that the properties of the scalar
product (D.1-D.4) hold for fourth-order tensors as well.

5.4 Super-Symmetric Fourth-Order Tensors
On the basis of the transposition operations one defines symmetric and super-

symmetric fourth-order tensors. Accordingly, a fourth-order tensor € is said
to be symmetric if (major symmetry)
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ef=e (5.60)
and super-symmetric if additionally (minor symmetry)

c'=¢. (5.61)

In this section we focus on the properties of super-symmetric fourth-order ten-
sors. They constitute a subspace of Lin" denoted in the following by 8sym”.
First, we prove that every super-symmetric fourth-order tensor maps an ar-
bitrary (not necessarily symmetric) second-order tensor into a symmetric one
so that

@:X)"=e:X, V€e8sym”, VX € Lin" (5.62)

Indeed, in view of (5.45), (5.46), (5.60) and (5.61) we have
T
(G:X)T:<X:€T) =(X:@'=Xx:'=x:¢=X:e"=¢:X.

Next, we deal with representations of super-symmetric fourth-order tensors
and study the properties of their components. Let F = {F;,Fa,...,F,2} be

an arbitrary basis of Lin" and F' = {Fl,FQ, .. .,F”z} the corresponding
dual basis such that

F,:F1=06% pqg=12,...,n° (5.63)
According to Theorem 5.1 we first write

C=CMF,0F,. (5.64)
Taking (5.60) into account and in view of (5.49)s we infer that

CP1=C¥”, p+#q pg=12,...,n° (5.65)
Let now F, =M, (p=1,2,...,m) and F; = W _,, (¢=m+1,...,n%) be

bases of Sym" and Skew” (Sect. 1.9), respectively, where m = Jn (n+1). In
view of (5.45)5 and (5.61)

1
e:W=e: (W) =—e:W'=0, t=12..., n(n-1) (566
so that
CFr=CP=FP:C:F" =0, p=12....n% r=m+1,...,n° (5.67)

and consequently

" 1
€= ) e"M,oM, m= g (n+1). (5.68)

p,q=1
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Keeping (5.65) in mind we can also write by analogy with (1.156)

€=> €M, OM,+ Y € (M,oM,+M,0M,). (5.69)
p=1 pz,)q>:ql

Therefore, every super-symmetric fourth-order tensor can be represented

with respect to the basis 5 (M, ® My + M, ® M,,), where M, € Sym™ and

p>q=12,..., én (n+1). Thus, we infer that the dimension of 8sym™ is
ym(m+1) = in?(n+ 1)% + an (n+1). We also observe that 8sym™ can be
considered as the set of all linear mappings within Sym™.

Applying Theorem 5.2 we can also represent a super-symmetric tensor by
C=Cikg,2g,®@gr®g;. In this case, (5.51) and (5.52) require that (Exercise
5.8)

Thus, we can also write
€=e"(g;2g1) ©(g;©gr)
1 ..
=, (9 2a+9:1©9)©(9; 29k + 91D 9;)
1 ..
= 4(2“’“ (9/®gr+9r®8;) O (i ®gI+9i®gi). (5.71)

Finally, we briefly consider the eigenvalue problem for super-symmetric fourth-
order tensors. It is defined as

C:M=AM, Cec8sym", M #0, (5.72)

where A and M € Sym” denote the eigenvalue and the corresponding eigen-
tensor, respectively. The spectral decomposition of € can be given similarly
to symmetric second-order tensors (4.61) by

€=> AM,0M,, (5.73)
p=1
where again m = Jn (n + 1) and

M, : M, =0p, pg=12,...,m. (5.74)

5.5 Special Fourth-Order Tensors

Identity tensor. The fourth-order identity tensor J is defined by

J:X =X, V¥XeLn" (5.75)
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It is seen that J is a symmetric (but not super-symmetric) fourth-order tensor
such that 97 = 9. Indeed,

X:3=X, VXeLin" (5.76)
With the aid of (5.17); the fourth-order identity tensor can be represented by

I=1I®L (5.77)
Thus, with the aid of (1.91) or alternatively by using (5.29) one obtains

I=g;®g'®g;2g". (5.78)

An alternative representation for J in terms of eigenprojections P; (i =
1,2,...,s) of an arbitrary second-order tensor results from (5.77) and (4.46)
as

S
I=> P,@P, (5.79)
ij=1
For the composition with other fourth-order tensors we can also write

J:A=A:TJ=A, VAE€cLin" (5.80)

Transposition tensor. The transposition of second-order tensors repre-
sents a linear mapping and can therefore be expressed in terms of a fourth-
order tensor. This tensor denoted by J is referred to as the transposition
tensor. Thus,

J:X=X"VvXecLin" (5.81)
One can easily show that (Exercise 5.9)
Y:T=Y" VYecLin" (5.82)

Hence, the transposition tensor is symmetric such that J = gt By virtue of
(5.45)2 and (5.75), I can further be expressed in terms of the identity tensor
by

J=7" (5.83)
Indeed,
9. X=9:XT=XT=9:X, VXeLn"

Considering (5.52) and (5.77-5.79) in (5.83) we thus obtain

T=(IeD)'=> (P,oP)) =g0g,0g @g. (5.84)

ij=1
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The transposition tensor can further be characterized by the following iden-
tities (see Exercise 5.10)

A:T=A" T:A=A"" T:7=9, VAcLin" (5.85)

Super-symmetric identity tensor. The identity tensor (5.77) is sym-
metric but not super-symmetric. For this reason, it is useful to define a special
identity tensor within 8sym™. This super-symmetric tensor maps every sym-
metric second-order tensor into itself like the identity tensor (5.77). It can be
expressed by

95 = ; I+T) = A1), (5.86)

However, in contrast to the identity tensor J (5.77), the super-symmetric iden-
tity tensor J° (5.86) maps any arbitrary (not necessarily symmetric) second-
order tensor into its symmetric part so that in view of (5.48)

PF:X=X:9 =symX, VX € Lin". (5.87)
Spherical, deviatoric and trace projection tensors. The spherical

and deviatoric part of a second-order tensor are defined as a linear mapping
(1.163) and can thus be expressed by

sphA = Pypn : A, devA = Pgey : A, (5.88)

where the fourth-order tensors Py, and Pgev are called the spherical and
deviatoric projection tensors, respectively. In view of (1.163) they are given
by

1 1
Poh= 101, Poev=3- 1061, (5.89)
n n
where I ® I represents the so-called trace projection tensor. Indeed,
Iol: X=ItrX, VX € Lin". (5.90)

According to (5.49)2 and (5.50), the spherical and trace projection tensors are
super-symmetric. The spherical and deviatoric projection tensors are further-
more characterized by the properties:

:Pdev : :Pdev = :Pdeva :Psph : :Psph = ?Sphv
:Pdev : :Psph = :Psph : :Pdev =0. (591)

Example. Elasticity tensor for the generalized Hooke’s law. The
generalized Hooke’s law is written as

2
o =2Ge+ Mr (€) I = 2Gdeve + </\ + SG) tr (e) I, (5.92)

where GG and A denote the so-called Lamé constants. The corresponding super-
symmetric elasticity tensor takes the form

€ =2GF + AL O 1 =2GP5, + (3\+ 2G) Peyn. (5.93)
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Exercises

5.1. Prove relations (5.20) and (5.21).

5.2. Prove relations (5.22).

5.3. Prove relations (5.42) and (5.43).

5.4. Prove relations (5.49-5.52).

5.5. Prove that AT £ AT for A=a@b®c®d.
5.6. Prove identities (5.54).

5.7. Verify relations (5.55) and (5.56).

5.8. Prove relations (5.70) for the components of a super-symmetric fourth-
order tensor using (5.51) and (5.52).

5.9. Prove relation (5.82) using (5.16) and (5.81).
5.10. Verify the properties of the transposition tensor (5.85).
5.11. Prove that the fourth-order tensor of the form
C=(M; ®M;+ My M,;)*
is super-symmetric if My, My € Sym".

5.12. Calculate eigenvalues and eigentensors of the following super-symmetric
fourth-order tensors for n = 3: (a) 3°(5.86), (b) Pspn (5.89)1, (¢) Pley (5.89)2,
(d) € (5.93).
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Analysis of Tensor Functions

6.1 Scalar-Valued Isotropic Tensor Functions

Let us consider a real scalar-valued function f(Aj,As,...,A;) of second-
order tensors Ay € Lin"™ (k= 1,2,...,1). The function f is said to be isotropic
if

f (QAlQTa QAQQTa ) QAZQT)
:f(xkl,xkg,,xkl)7 VQEOrth" (61)

Example. Consider the function f(A,B) = tr (AB). Since in view of
(1.135) and (1.151)

7(QAQ",QBQ") = tr (QAQTQBQ")
—r (QABQ") = r (ABQ"Q)

=tr(AB) = f(A,B), VQ € Orth”,

this function is isotropic according to the definition (6.1). In contrast, the func-
tion f (A) = tr (AL), where L denotes a second-order tensor, is not isotropic.
Indeed,

7(QAQT) = tr (QAQTL) # tr (AL).

Scalar-valued isotropic tensor functions are also called isotropic invariants
of the tensors Ay (k= 1,2,...,1). For such a tensor system one can construct,
in principle, an unlimited number of isotropic invariants. However, for every
finite system of tensors one can find a finite number of isotropic invariants
in terms of which all other isotropic invariants can be expressed (Hilbert’s
theorem). This system of invariants is called functional basis of the tensors
A, (k=1,2,...,1). For one and the same system of tensors there exist many
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functional bases. A functional basis is called irreducible if none of its elements
can be expressed in a unique form in terms of the remaining invariants.
First, we focus on isotropic functions of one second-order tensor

f (QAQT) — f(A), VYQeOrth", A € Lin". (6.2)

One can show that the principal traces trA*, principal invariants I(A]f) and
eigenvalues A, (k =1,2,...,n) of the tensor A represent its isotropic tensor
functions. Indeed, for the principal traces we can write by virtue of (1.151)

tr (QAQT)’c ~u{QAQ"QAQ"...QAQ" | — (QAkQT)

k times
=tr (A*QTQ) = trA*, VvQ € Orth™ (6.3)

The principal invariants are uniquely expressed in terms of the principal traces
by means of Newton’s formula (4.26), while the eigenvalues are, in turn, de-
fined by the principal invariants as solutions of the characteristic equation
(4.20) with the characteristic polynomial given by (4.18).

Further, we prove that both the eigenvalues A\, principal invariants Ig\lfl)
and principal traces trMF (k =1,2,...,n) of one symmetric tensor M €
Sym™ form its functional bases (see also [46]). To this end, we consider two
arbitrary symmetric second-order tensors M;, My € Sym" with the same
eigenvalues. Then, the spectral representation (4.61) takes the form

M, = Z Ain; @n;, My = Z Am; @ my, (64)
i=1 i=1

where according to (4.63) both the eigenvectors n; and m; form orthonormal
bases such that n; - n; = 0;; and m,; - m; = 6;; (4,5 =1,2,...,n). Now, we
consider the orthogonal tensor

i=1

Indeed,
QQT: (Zm7®nz> an®mj
i=1 j=1

= zn: 5ijmi®mj zzn:mﬂ@mizl.
i=1

4,j=1

By use of (1.121), (6.4) and (6.5) we further obtain
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QM, Q" = (Z m; ®@ m) Z A\ @ n; <Z ng ® mk)
i=1 j=1 k=1
= Z 5ij5jk)\jmi X my = Z Aim; @ m; = M. (6.6)
i,j,k=1 i=1
Hence,
fML) = £(QM, Q") = f (My). (6.7)

Thus, f takes the same value for all symmetric tensors with pairwise equal
eigenvalues. This means that an isotropic tensor function of a symmetric
tensor is uniquely defined in terms of its eigenvalues, principal invariants or
principal traces because the latter ones are, in turn, uniquely defined by the
eigenvalues according to (4.24) and (4.25). This implies the following repre-
sentations

FM) = f (I&),Iﬁ),...,ﬁ\?) = F O A M)

= f (trM,trtM?, ... ttM"), M € Sym". (6.8)

Example. Strain energy function of an isotropic hyperelastic ma-
terial. A material is said to be hyperelastic if it is characterized by the ex-
istence of a strain energy 1 defined as a function, for example, of the right
Cauchy-Green tensor C. For isotropic materials this strain energy function
obeys the condition

b (QCQT) =4 (C), VYQ € Orth®. (6.9)

By means of (6.8) this function can be expressed by

¥ (C) =1 (Ig, g, Ilg) = ¢ (A1, A2, Ag) = ¥ (trC, trC2, trC?) ,  (6.10)

where )\; denote the so-called principal stretches. They are expressed in
terms of the eigenvalues A; (i =1,2,3) of the right Cauchy-Green tensor
C = Zf:l AP; as \; = /A;. For example, the strain energy function of
the so-called Mooney-Rivlin material is given in terms of the first and second
principal invariants by

P (C) = (IC — 3) + c2 (HC — 3) s (6.11)

where ¢; and ¢y represent material constants. In contrast, the strain energy
function of the Ogden material [30] is defined in terms of the principal stretches
by

$(O) =3O8 4+ A5 - 3), (6.12)

r=1
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where p,, . (r=1,2,...,m) denote material constants.

For isotropic functions (6.1) of a finite number [ of arbitrary second-order
tensors the functional basis is obtained only for three-dimensional space. In or-
der to represent this basis, the tensor arguments are split according to (1.152)
into a symmetric and a skew-symmetric part respectively as follows:

M; = symA,; = ; (A;+Al), W, =skewA,; = ; (A, —A]).  (6.13)

In this manner, every isotropic tensor function can be given in terms of a

finite number of symmetric tensors M; € Sym? (i =1,2,...,m) and skew-
symmetric tensors W; € Skew” (i = 1,2,...,w) as
f=Ff(M,Ms,...,M,,, Wi, Wy,...,. W,). (6.14)

An irreducible functional basis of such a system of tensors is proved to be
given by (see [2], [33], [41])

trM;, trM?, trM?,

tr (M;M;), tr (M7M;), tr (M;M3), tr (M7M?3), tr (M;M;M,),
trW2, tr (W,W,), tr (W,W,W,),

tr (M;W2), tr (M;W2), tr (M{W.M;W,), tr (M;W,W,),

tr (M;W2W, ), tr (M;W,W2), tr (M;M;W,),

tr (M;W_M;W,), tr (M{M;W,), tr (M;M;W,,),
i<j<k=12,..m, p<qg<r=12... w (6.15)

For illustration of this result we consider some examples.

Example 1. Functional basis of one skew-symmetric second-order tensor
W ¢ Skew”. With the aid of (6.15) and (4.91) we obtain the basis consisting
of only one invariant

trW?2 = —2ITw = — W%, (6.16)

Example 2. Functional basis of an arbitrary second-order tensor A €
Lin®. By means of (6.15) one can write the following functional basis of A

trM, trM?, trM?,

trW2, tr (MW?) | tr (M*W?) | tr (M*W>MW) , (6.17)

where M = symA and W = skewA. Inserting representations (6.13) into
(6.17) the functional basis of A can be rewritten as (see Exercise 6.2)
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trA, trA2, 1A%, tr (AAT), tr (AAT)?, tr (A2AT),
tr[(AT)* AZATA — A2 (A7)’ AAT]. (6.18)

Example 3. Functional basis of two symmetric second-order tensors
M;,M, € Sym3. According to (6.15) the functional basis includes in this
case the following ten invariants

trMy, trM%7 trM?, trMo, tng, tng,

tr (M;My), tr (MiM,), tr (M;M3), tr (MIM3). (6.19)

6.2 Scalar-Valued Anisotropic Tensor Functions

A real scalar-valued function f (A1, As, ..., A;) of second-order tensors Ay, €
Lin" (k=1,2,...,1) is said to be anisotropic if it is invariant only with respect
to a subset of all orthogonal transformations:

f (QAlQTa QAQQTa cee QAZQT)
= f(A1,As,...,A)), VQ € Sorth” C Orth™. (6.20)

The subset Sorth™ represents a group called symmetry group. In continuum
mechanics, anisotropic properties of materials are characterized by their sym-
metry group. The largest symmetry group Orth® (in three-dimensional space)
includes all orthogonal transformations and is referred to as isotropic. In con-
trast, the smallest symmetry group consists of only two elements I and —I
and is called triclinic.

Example. Transversely isotropic material symmetry. In this case
the material is characterized by symmetry with respect to one selected direc-
tion referred to as principal material direction. Properties of a transversely
isotropic material remain unchanged by rotations about, and reflections from
the planes orthogonal or parallel to, this direction. Introducing a unit vector
l in the principal direction we can write

Ql==l, VQeg, (6.21)

where g, C Orth® denotes the transversely isotropic symmetry group. With
the aid of a special tensor

L=I®l, (6.22)
called structural tensor, condition (6.21) can be represented as

QLQT =L, vQeg,. (6.23)
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Hence, the transversely isotropic symmetry group can be defined by
g, ={QeOrth’: QLQ" =L} . (6.24)

A strain energy function ¢ of a transversely isotropic material is invariant with
respect to all orthogonal transformations within g,. Using a representation in
terms of the right Cauchy-Green tensor C this leads to the following condition:

v (QCQT) =v(C). Qe (6.25)

It can be shown that this condition is a priori satisfied if the strain energy
function can be represented as an isotropic function of both C and L so that

b (QCQT, QLQT) =4 (C,L), V¥Q € Orth®. (6.26)

Indeed,

$(C.L)=%(Qcq™,QLQ") =¥ (QCQ".L), vQeg.  (627)

With the aid of the functional basis (6.19) and taking into account the iden-
tities

LF=L, wLfF=1, k=1,2,... (6.28)

resulting from (6.22) we can thus represent the transversely isotropic function
in terms of the five invariants by (see also [43])

¢ = (C,L) = 4 [trC, trC?,trC?, tr (CL) , tr (C°L)] . (6.29)

The above procedure can be generalized for an arbitrary anisotropic sym-
metry group g. Let L; (¢ =1,2,...,m) be a set of second-order tensors which
uniquely define g by

g={QeOrth":QL,Q" =L;,i=1,2,...,m}. (6.30)

In continuum mechanics the tensors L; are called structural tensors since they
lay down the material or structural symmetry.
It is seen that the isotropic tensor function

£(QA,Q".QL;Q") = f(A;,Lj), VQ € Orth", (6.31)
where we use the abbreviated notation
f(A;Lj) = f(A1,As,...,A;, L, Lo, ..., Ly,), (6.32)

is anisotropic with respect to the arguments A; (i = 1,2,...,1) so that
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F(QA,Q") =f(A), VQeg. (6.33)
Indeed, by virtue of (6.30) and (6.31) we have

f(AL L) = f(QA,Q",QL;Q") = f(QA,QT,L;), VQeg. (6.34)

Thus, every isotropic invariant of the tensor system A; (i =1,2,...,), L;
(j =1,2,...,m) represents an anisotropic invariant of the tensors A,; (i =
1,2,...,1) in the sense of definition (6.20). Conversely, one can show that

for every anisotropic function (6.33) there exists an equivalent isotropic func-
tion of the tensor system A; (i =1,2,...,0), L; (j =1,2,...,m). In order to
prove this statement we consider a new tensor function defined by

fanx,) =f(QaQ”), (6.35)
where the tensor Q' € Orth™ results from the condition:

QAX,Q'=L;, j=12,...,m. (6.36)
Thus, the function f is defined only over such tensors X; that can be obtained
from the structural tensors L; (j = 1,2,...,m) by the transformation

X, =Q'L;Q, j=12,...,m, (6.37)

where Q' is an arbitrary orthogonal tensor.
Further, one can show that the so-defined function (6.35) is isotropic.
Indeed,

£(QA,Q",QX,Q") = (Q"QA,Q"Q""), VQ € Orth”, (6.38)
where according to (6.36)

Q'QX,Q"Q"" =L;, Q"€ Orth™ (6.39)
Inserting (6.37) into (6.39) yields

Q"QQ"L;Q'Q"Q"" =L, (6.40)
so that

Q =Q"QQ" cg. (6.41)

Hence, we can write
£(Q"QA;,QTQ") = f(Q*Q'AQ" Q™)
= 1(QAQT) =f(AiX))
and consequently in view of (6.38)
7(QA.Q",QX,Q") = f (A, X;), VYQ e Orth™ (6.42)
Thus, we have proved the following theorem [50].
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Theorem 6.1. A scalar-valued function f(A;) is invariant within the sym-
metry group g defined by (6.30) if and only if there exists an isotropic function

f(A;,Lj;) such that

f(A) =f(Ai L)), (6.43)

6.3 Derivatives of Scalar-Valued Tensor Functions

Let us again consider a scalar-valued tensor function f (A): Lin" — R. This
function is said to be differentiable in a neighborhood of A if there exists a
tensor f(A),a € Lin", such that

d

w AX)

=f(A),a:X, VX €Lin" (6.44)
t=0

This definition implies that the directional derivative (also called Gateaux

d
gt f (A +1tX) exists and is continuous at A. The tensor
t=0
f(A),a is referred to as the derivative or the gradient of the tensor func-
tion f(A).
In order to obtain a direct expression for f(A),a we represent the
tensors A and X in (6.44) with respect to an arbitrary basis, say g; ®

derivative)

g’ (i,7=1,2,...,n). Then, using the chain rule one can write
d d . ‘ , of i
A +tX = A +tX") g ® g’ = S X!
dtf( + ) -0 dtf [( J + ']) g ® g ] -0 8Azj J

Comparing this result with (6.44) yields

_of
- 9A

of

9 .
oA 9 ®g’ = f»gv:®gj- (6.45)

f(A)a oA

of
g ®g; = 8A»»gi®gj =
1j

If the function f (A) is defined not on all linear transformations but only
on a subset Slin” C Lin", the directional derivative (6.44) does not, however,
yield a unique result for f (A),a. In this context, let us consider for example
scalar-valued functions of symmetric tensors: f (M) : Sym™ — R. In this case,
the directional derivative (6.44) defines f (M) ,p only up to an arbitrary skew-
symmetric component W. Indeed,

FMMmM:X=[f(M),mM+W]:X, VYW € Skew", VX € Sym". (6.46)

In this relation, X is restricted to symmetric tensors because the tensor M+tX
appearing in the directional derivative (6.44) must belong to the definition
domain of the function f for all real values of t.
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To avoid this non-uniqueness we will assume that the derivative f (A),a
belongs to the same subset Slin” C Lin™ as its argument A € Slin". In
particular, for symmetric tensor functions it implies that

f(M),m€Sym™ for M € Sym™. (6.47)

In order to calculate the derivative of a symmetric tensor function satisfy-
ing the condition (6.47) one can apply the following procedure. First, the
definition domain of the function f is notionally extended to all linear trans-
formations Lin". Applying then the directional derivative (6.44) one obtains a
unique result for the tensor f,n which is finally symmetrized. For the deriva-
tive with respect to a symmetric part (1.153) of a tensor argument this pro-
cedure can be written by

f(A) syma=sym[f(A),a], A €Lin". (6.48)

The problem with the non-uniqueness appears likewise by using the com-
ponent representation (6.45) for the gradient of symmetric tensor functions.
Indeed, in this case M = M?" (i # j =1,2,...,n), so that only n (n+ 1) /2
among all n? components of the tensor argument M € Sym” are independent.
Thus, according to (1.156)

M=) M'giogi+» M/(gi®g;+g;©g), MEeSym". (649)
i=1 ij=1
jj<z'
Hence, instead of (6.45) we obtain

n

_ 1 Of (i it i i
f(M)M—zmz::laMij (gdo0g +9' @9
i<i

1 of
= ; ; ; i), M € Sym". 6.50
2 iZ_:l o, (9193 T 93 99) Y (6.50)
i<i
It is seen that the derivative is taken here only with respect to the independent
components of the symmetric tensor argument; the resulting tensor is then

symmetrized.

Example 1. Derivative of the quadratic norm ||A[ = VA : A:

d
(A +1tX) : (A +tX))"/?
dt —o
d 9 1/2
= [A:A—|—2tA:X—|—tX:X]
dt o
2A : X +2tX : X A
= 12 = - XL
2(A A +20A X +2X X2 (Al
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Thus,

A

1Al (6.51)

”AH A=

The same result can also be obtained using (6.45). Indeed, let A = A;;g°®g’.
Then,

||A|| = \/A A= \/(Aijgi ®gj) : (Aklg’“ ®gl) = \/AijAklgikgﬂ.
Utilizing the identity

OA;;
Yo=6P61 d,j =1,2,...
8qu 2 J) Z?]’p7q ) ) ’n

we further write
ON/AijApgit gt

A_ =
Al O, 9gp ® gq
1 .y o
= 901A (Arg™g’gi © g; + Aijg" ¢ gx © 91)
[A]
1 . 1 A
= 29" 9" g: © g; = Augt@g' = :
2| Al 7oAl Al

Example 2. Derivatives of the principal traces trA* (k=1,2,...):

d Lk d k d k
tr (A +tX = A+tX) 01 = A +1X 3 |
o LA )L:O ot (A1) ]t:o a A+ )LZO
d
= (A +tX) (A +1tX)... (A +tX) o |
dt |~ ~ -
L k times t=0
d B k—1
_ k Q k—1—1i 2 .
=4 |A +tZAXA +t...] .1
L =0 t=0
k—1 ) T
=) AXAMTTI=k (A X
1=0
Thus,
(trA%) o =k (AT (6.52)

In the special case k = 1 we obtain

(trA) .o =1. (6.53)
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Example 3. Derivatives of tr (A*L) (k =1,2,...) with respect to A:

d

E.oqT _d k 1T
Iy [(A—H‘X) L } T a [(A—HX) ] L
k—1 k—1 A
=S AXAMFTL LT =Y (AT) LT (AT)TTX
=0 i=0
Hence,
k—1 T
tr(AL) A= > (ALAFT) (6.54)
i=0
In the special case k = 1 we have
tr (AL),o = L™, (6.55)

It is seen that the derivative of tr (AkL) is not in general symmetric even if
the tensor argument A is. Applying (6.48) we can write in this case

k-1 k—1
tr (MkL) M = Sym [Z (MiLMkli)T‘| _ Z M (symL) MFE—1-E,

i= =0

(6.56)

where M € Sym".

Example 4. Derivatives of the principal invariants I(A]f) (k=1,2,
..,n) of a second-order tensor A € Lin". By virtue of the representations
(4.26) and using (6.52) we obtain
10 A= (trA),a =1,

1
WA=, (1A — rA?) A =101 AT,

IS)aA = ; (Ig)trA — Il(i)ter2 + trA3) A
= ; [trA (VT A7) + 101 (1rA%) T 210 AT 43 (A7)]
T
= [ar-0aiPn] (6.57)

Herein, one can observe the following regularity [46]

1) A Z 0 (AT) = 18D L AT 413 (6.58)
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where we again set IES) = 1. The above identity can be proved by mathematical
induction (see also [7]). Indeed, according to (4.26) and (6.52)

k

1 i— —1 i
1P 4 = MY S RATTN
=1
1g : , IR L : :
_ kz (_1)%1 iIXc—z) (AT)Z I kz (_1)%1 IXC_U,A trA’. (6.59)
=1 i=1
Now, let
Vi =Y ()15 (AT) = 10 A AT + 1L (6.60)
i=0

Inserting (4.26) and (6.59) into the latter expression (6.60) delivers

k—1 ] ) ) T
Vit = kZ 14 (A7) - [Z<—1>“115Mm~
=1
1[¢ (k—i)
i—1 —1 i
+ ;(—1) Iy trA].

Adding Yg41/k to both sides of this equality and using for Y41 the first
expression in (6.60) we further obtain

k+1 1 “ i a(k—i i 1 b i (k—i i
L Yin 3 (—1)" I (AT) +k;(—1) 1079 (AT)
k . .
Z (IR A AT 1) trAi] .

Now, let us assume that representation (6.58) holds at least until the number
k. Then, taking (6.59) again into account we can write

k —|— 1 k— 3
. Yk+1:kz ) (i 4+ 1)IY Y (AT)
& : : 1 k+1
3
i=1
Hence,

Y1 = IXCH)’A

3

which immediately implies that (6.58) holds for k+ 1 as well. Thereby, repre-
sentation (6.58) is proved.
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For invertible tensors one can get a simpler representation for the deriva-
tive of the last invariant IXL). This representation results from the Cayley-

Hamilton theorem (4.95) as follows

n

IV aAT = |3 (- T AT AT =3 () (AT
1=0

i=1

n

=S (e (A7) T =1L
1=0

1=

Thus,

I A=TPAT  AecTnv™ (6.61)

Example 5. Derivatives of the eigenvalues ;. First, we show that
simple eigenvalues of a second-order tensor A are differentiable. To this end,
we consider the directional derivative (6.44) of an eigenvalue \:

d

dt/\ (A +tX) . (6.62)

t=0

Herein, A (t) represents an implicit function defined through the characteristic
equation

det (A + X — \I) =p (A, t) = 0. (6.63)

This equation can be written out in the polynomial form (4.18) with respect
to powers of \. The coefficients of this polynomial are principal invariants of
the tensor A + tX. According to the results of the previous example these
invariants are differentiable with respect to A 4 tX and therefore also with
respect to t. For this reason, the function p (\,t) is differentiable both with
respect to A and ¢. For a simple eigenvalue \g = A (0) we can further write
(see also [27])

dp (A, 0)

p ()‘05 0) = 0)
2N N

£0. (6.64)

According to the implicit function theorem (see, e.g., [5]), the above condition
ensures the differentiability of the function A (¢) at ¢ = 0. Thus, the directional
derivative (6.62) exists and is continuous at A.

In order to represent the derivative A\;,o we first consider the spectral
representation (4.43) of the tensor A with pairwise distinct eigenvalues

A= AP, (6.65)
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where P; (i =1,2,...,n) denote the eigenprojections. They can uniquely be
determined from the equation system

AF=N"NP;, k=0,1,...,n—1 (6.66)

i=1

resulting from (4.47). Applying the Vieta theorem to the tensor Al (I =
1,2,...,n) we further obtain relation (4.25) written as

trA! = Z/\ =1,2,...,n. (6.67)
The derivative of (6.67) with respect to A further yields by virtue of (6.52)
Z(AT —zzx Nia, =12,

i=1

and consequently

n

AF=S"Nna)T, k=0.1,...n—1 (6.68)

i=1
Comparing the linear equation systems (6.66) and (6.68) we notice that
Xi,a =P}, (6.69)

Finally, the Sylvester formula (4.55) results in the expression

XA = 51nI+H N _A : (6.70)
J#v

It is seen that the solution (6.70) holds even if the remainder eigenvalues
A (j=1,2,...,i—1,i+1,...,n) of the tensor A are not simple. In this case
(6.70) transforms to

A1

Aioa = 011 + H A (6.71)
j=1
J#i

where s denotes the number of pairwise distinct eigenvalues \; (i =1,2,...,s).

Let us further consider a scalar-valued tensor function f(A) : Lin" — R,
where A = A (t) itself is a differentiable tensor-valued function of a real
variable ¢ (see Chap. 2.1). Of special interest is the derivative of the composite
function f (A (¢)). Using (2.15); we write
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df _ df(A(t+s))
dt ds

_df (A () + 59} +50 ()
s=0 B ds

s=0

Introducing auxiliary functions s1(s) = s and sa(s) = s and applying the
formalism of the directional derivative (6.44) we further obtain

df _ df (A(t) +51‘31‘? —|—810(82))

dt ds
s=0
— af (A (t) + 51 dd? + 810 (82)) d51
ds1 ds 70

Of (A(t) + 519 + 510 (s2)) dso

+
0ss ds o
of (At & + 50
= [ ro]| 4 MO0
dt J— 852
2 81:\92:0
_ . dA  Of (A1)
— faA~ dt + 852 "o
This finally leads to the result
df (A (t)) dA

= : . .72

S =t (6:72)

6.4 Tensor-Valued Isotropic and Anisotropic Tensor
Functions

A tensor-valued function g (A1, As, ..., A;) € Lin" of a tensor system Ay €
Lin" (k=1,2,...,1) is called anisotropic if

g (QAlQT7 QAQQT7 R QAIQT)
=Qg(A1,As,...,A)QT, VQ e Sorth™ C Orth™. (6.73)

For isotropic tensor-valued tensor functions the above identity holds for all
orthogonal transformations so that Sorth” = Orth".

As a starting point for the discussion of tensor-valued tensor functions we
again consider isotropic functions of one argument. In this case,

g (QAQT) = Qg(A)QT, VQ € Orth™. (6.74)

For example, one can easily show that the polynomial function (1.113) and
the exponential function (1.114) introduced in Chap. 1 are isotropic. Indeed,
for a tensor polynomial g (A) = ;" , arA¥ we have (see also Exercise 1.33)
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s(QaQ™) = > u (QaQ")’ Zak QAQ"QAQ"...QAQ"

k=0

k tlmes
-3 a (QAk ) -Q (Z akAk> Q"
k=0 k=0
=Qg(A)QT, VvQ € Orth™. (6.75)

Of special interest are isotropic functions of a symmetric tensor. First, we
prove that the tensors g (M) and M € Sym™ are coaxial i.e. have the eigen-
vectors in common. To this end, we represent M in the spectral form (4.61)
by

M =) \ib; @ b, (6.76)
i=1
where b; - b; = d;; (i,7 =1,2,...,n). Further, we choose an arbitrary eigen-

vector, say by, and show that it simultaneously represents an eigenvector of
g (M). Indeed, let
Q=2b, @b —T=b, @by +) (-1)b;®b; (6.77)
i=1
i#k

bearing in mind that I =" | b; ® b; in accordance with (1.92). The tensor
Q (6.77) is orthogonal since

QQ" = (2by, ® by, — I) (2by, @ by, — I) = 4b, @by —2b, Qb —2b, Dbp+1 = 1

and symmetric as well. One of its eigenvalues is equal to 1 while all the other
ones are —1. Thus, we can write

QM = (2b, @ b, —I) M = 2\;b;, ® by — M = M (2b;, ® b, — I) = MQ
and consequently

QMQ" =M. (6.78)
Since the function g (M) is isotropic

(M) = ¢ (QMQT) = Qg (M) Q"
and therefore

Qg (M) =g(M)Q. (6.79)

Mapping the vector by by both sides of this identity yields in view of (6.77)
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Qg (M) by, = g (M) by, (6.80)

It is seen that the vector g (M) by is an eigenvector of Q (6.77) associated
with the eigenvalue 1. Since it is the simple eigenvalue

g (M) by, = by, (6.81)

where 7 is some real number. Hence, by represents the right eigenvector of
g (M). Forming the left mapping of by by (6.79) one can similarly show that
by is also the left eigenvector of g (M), which implies the symmetry of the
tensor g (M).

Now, we are in a position to prove the following representation theorem
[36], [46].

Theorem 6.2. A tensor-valued tensor function g (M), M € Sym™ is isotropic
if and only if it allows the following representation

n—1
g (M) = @l + 1M + 2 M? + ... + @, 1M™™= ) "o, MY, (6.82)
=0

where @; are isotropic invariants (isotropic scalar functions) of M and can
therefore be expressed as functions of its principal invariants by

pi= i (W 10) =00, 01 (6.83)

Proof. We have already proved that the tensors g (M) and M have eigenvec-
tors in common. Thus, according to (6.76)

g (M) = vb; @b, (6.84)
i=1
where 7; = 7; (M). Hence (see Exercise 6.1(¢)),
g(QMQT) =% (QMQT) Qb @ b) Q™. (6.85)
i=1

Since the function g (M) is isotropic we have

=> %(M)Q(b; ®b;)QT, VQ € Orth™. (6.86)
Comparing (6.85) with (6.86) we conclude that

i (QMQT) =% (M), i=1,...,n, YQ € Orth™. (6.87)
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Thus, the eigenvalues of the tensor g (M) represent isotropic (scalar-valued)
functions of M. Collecting repeated eigenvalues of g (M) we can further
rewrite (6.84) in terms of the eigenprojections P; (i =1,2,...,s) by

g(M) = Z%Pi; (6.88)

where s (1 < s < n) denotes the number of pairwise distinct eigenvalues of
g (M). Using the representation of the eigenprojections (4.56) based on the
Sylvester formula (4.55) we can write

s—1
Pi=Y ol (A de, . MM, i=1,2, s, (6.89)
r=0

Inserting this result into (6.88) yields the representation (sufficiency):

s—1

g (M) => oM, (6.90)
i=0

where the functions ¢; (i =0,1,2,...,5s—1) are given according to (6.8)

and (6.87) by (6.83). The necessity is evident. Indeed, the function (6.82)
is isotropic since in view of (6.75)

g(QMQT) - S (aMQ™) m'Q”
i=0

n—1
=Q lz @i (M) Mi] QT = Qg (M) QT, vQ € Orth™.(6.91)
=0

Example. Constitutive relations for isotropic materials. For iso-
tropic materials the second Piola-Kirchhoff stress tensor S represents an
isotropic function of the right Cauchy-Green tensor C so that

S (QCQT) = QS(C)QT, VQ € Orth?. (6.92)
Thus, according to the representation theorem
S(C) = agl + a;C + a2C?, (6.93)

where a;; = a; (C) (i = 0, 1, 2) are some scalar-valued isotropic functions of C.
The same result can be obtained for isotropic hyperelastic materials by con-
sidering the representation of the strain energy function (6.10) in the relation
(see, e.g., [30])

o

SzZaC.

(6.94)
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Indeed, using the chain rule of differentiation and keeping in mind that the
tensor C is symmetric we obtain by means of (6.52)

3 - 3 -
oy 00 G 5h 0%
5=2 £ 0trCr 0C =2 Pt k@trC’“ e (6.95)

so that a; (C) = 2 (i + 1) 9 /dtrCi*! (i = 0,1,2).
Let us further consider a linearly elastic material characterized by a linear
stress-strain response. In this case, the relation (6.93) reduces to

S(C) = ¢ (C)I+cC, (6.96)

where ¢ is a material constant and ¢ (C) represents an isotropic scalar-valued
function linear in C. In view of (6.15) this function can be expressed by

¢ (C) =a+ btrC, (6.97)

where a and b are again material constants. Assuming that the reference con-
figuration, in which C =1, is stress free, yields a+3b+ ¢ = 0 and consequently

S(C)=(—c—3b+btrC)I+cC=>b(trC—-3)I+¢(C-1).
Introducing further the so-called Green-Lagrange strain tensor defined by

E = ; (C—-T1) (6.98)
we finally obtain

S (E) — 2 (m«]?:) I+ 2cE. (6.99)

The material described by the linear constitutive relation (6.99) is referred
to as St.Venant-Kirchhoff material. The corresponding material constants 2b
and 2c are called Lamé constants. The strain energy function resulting in the
constitutive law (6.99) by (6.94) or equivalently by S = 9v/9E is of the form

b (E) = btr?E + ctrE2. (6.100)

For isotropic functions of an arbitrary tensor system Aj € Lin" (k =
1,2,...,1) the representations are obtained only for the three-dimensional
space. One again splits tensor arguments into symmetric M; € Sym3 (i =
1,2,...,m) and skew-symmetric tensors W; € Skew® (j =1,2,...,w) ac-
cording to (6.13). Then, all isotropic tensor-valued functions of these tensors
can be represented as linear combinations of the following terms (see [33],
[41]), where the coefficients represent scalar-valued isotropic functions of the
same tensor arguments.
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Symmetric generators:
I,
M;, M7, MM;+M;M; M;M;+M;M;, MM+ MM,
W2, W,W,+W,W, WW,-WW. W,W.-W.W,,
MW, - W,M;, W,M;W,, MW, - W,M?,
W,M;W, - W M;W,,. (6.101)
Skew-symmetric generators:
W;Da WPW(I - W(IW;W
M;M; — M;M;, M;M; — M;M;, M;M; - MM,
M;M;M7 — M7M;M;, M;M;M; — M;M;M;,
M, M; M, + MMM, +M;;M;M; — M;M; M}, — M;; M;M,; — M; M, M},
MW, + W,M;, M;W> - W>M,,
i<ji=1,2,....m, p<q=12 ... w. (6.102)

For anisotropic tensor-valued tensor functions one utilizes the procedure
applied for scalar-valued functions. It is based on the following theorem [50]
(cf. Theorem 6.1).

Theorem 6.3. (Rychlewski’s theorem) A tensor-valued function g(A;) is
anisotropic with the symmetry group Sorth™ = g defined by (6.30) if and
only if there exists an isotropic tensor-valued function §(A;,L;) such that

9(Ai) =g(AiLy). (6.103)

Proof. Let us define a new tensor-valued function by
(AL X)) =Q"yg (Q’AiQ’T) Q, (6.104)

where the tensor Q' € Orth™ results from the condition (6.36). The further
proof is similar to Theorem 6.1 (Exercise 6.12).

Example. Constitutive relations for a transversely isotropic elas-
tic material. For illustration of the above results we construct a general
constitutive equation for an elastic transversely isotropic material. The trans-
versely isotropic material symmetry is defined by one structural tensor L
(6.22) according to (6.24). The second Piola-Kirchhoff stress tensor S is a
transversely isotropic function of the right Cauchy-Green tensor C. According
to Rychlewski’s theorem S can be represented as an isotropic tensor function
of C and L by
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S=S(C,L), (6.105)
such that
S (QCQT, QLQT) —QS(C,L)QT, vQ € Orth®, (6.106)

This ensures that the condition of the material symmetry is fulfilled a priori
since

$(QCQ".L) = $(QCQ™,QLQT) = QS (C,L)Q", ¥Q € g,. (6.107)
Keeping in mind that S, C and L are symmetric tensors we can write by
virtue of (6.28); and (6.101)

S (C, L) = ol + a1 L + a»C

+ a3C? + a4 (CL 4+ LC) + a5 (C’L + LC?). (6.108)

The coefficients «; (i =0,1,...,5) represent scalar-valued isotropic tensor
functions of C and L so that similar to (6.29)

@; (C,L) = & [trC, trC? trC? tr (CL), tr (C?L)] . (6.109)

For comparison we derive the constitutive equations for a hyperelastic trans-
versely isotropic material. To this end, we utilize the general representation
for the transversely isotropic strain energy function (6.29). By the chain rule
of differentiation and with the aid of (6.52) and (6.54) we obtain

Y 0 0 o
- 8trCI + 48‘51"02 C+ 68trC3 c
0y o
+28tr (CL)L + 28‘51" (C2L) (CL + LC) (6.110)
and finally
S :OéQI+OélL+OéQC+04302+Oé4 (CL+LC) (6.111)

Comparing (6.108) and (6.111) we observe that the representation for the
hyperelastic transversely isotropic material does not include the last term in
(6.108) with C?>L+LC?. Thus, the constitutive equations containing this term
correspond to an elastic but not hyperelastic transversely isotropic material.
The latter material cannot be described by a strain energy function.

6.5 Derivatives of Tensor-Valued Tensor Functions

The derivative of a tensor-valued tensor function can be defined in a similar
fashion to (6.44). A function g (A) : Lin" +— Lin" is said to be differentiable
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in a neighborhood of A if there exists a fourth-order tensor g (A),a € Lin"
(called the derivative), such that

d

GIAHIX)  =g(A)a:X, VXeLn" (6.112)

t=0

d
The above definition implies that the directional derivative a7 (A +tX)

t=0
exists and is continuous at A.

Similarly to (6.45) we can obtain a direct relation for the fourth-order
tensor ¢g (A),a. To this end, we represent the tensors A, X and G = g (A)
with respect to an arbitrary basis in Lin", say g; ® g7 (i,j = 1,2,...,n).
Applying the chain rule of differentiation we can write

d d ; .
avoo| = o [(a ) s gl g oo)
dtg( + )t:O ae 1 1TIAT)9r®g | 9i®g -
oG .
= IXFgi®gl. (6.113)
A",
In view of (5.30); and (6.112) this results in the following representations
oa="Cigog0ges - Cigegedey
Ak oA
- ededer="Ygsg0aay (6.114)
AR Ay~ T ' '

For functions defined only on a subset Slin” C Lin" the directional deriva-
tive (6.112) again does not deliver a unique result. Similarly to scalar-valued
functions this problem can be avoided defining the fourth-order tensor g (A) ,a
as a linear mapping on Slin". Of special interest in this context are symmet-
ric tensor functions. In this case, using (5.47) and applying the procedure
described in Sect. 6.3 we can write

g(A)syma=1[g(A),a]", A €Lin" (6.115)

The component representation (6.114) can be given for symmetric tensor func-
tions by

1 < 9G% .
gM),m = 9 Z 8M,€Jlgi® (gk®gl—|—gl®gk) ® g’

k=1
1<k

1 <. 9G% ,

~ 9 > 8M:lgi®(gk Rg+919gr) ©g, (6.116)

k,l=1 ’
1<k

where M € Sym".
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Example 1. Derivative of the power function A* (k= 1,2,...). The di-
rectional derivative (6.112) of the power function yields

k—1
jt (A+tX)" = i <Ak FEY CAXANIT )
=0 i=0 =0
k—1 ) ‘
=) AXAFT (6.117)
1=0

Bearing (5.17); and (6.112) in mind we finally obtain
k=1 ‘
AF A=) A'@ A" AcLin”. (6.118)
i=0

In the special case k = 1 it leads to the identity
Aa=3J, A cLn" (6.119)
For power functions of symmetric tensors application of (6.115) yields

k—1
MF =) (M @M 1)° M e Sym” (6.120)
=0

and consequently
Muy=9% M e Sym". (6.121)

Example 2. Derivative of the transposed tensor AT. In this case, we can

write
j A+x)T| = ¢ (AT +1xT)| =X,
¢ =0 At t=0
On use of (5.81) this yields
AT A=17. (6.122)

Example 3. Derivative of the inverse tensor A~!, where A € Inv". Con-
sider the directional derivative of the identity A=*A = I. It delivers:

d

y (A +tX) "' (A +tX)

=0.
t=0

Applying the product rule of differentiation (2.9) and using (6.117) we further
write

d

A+A'X=0
dt +

t=0

(A +1tX)"
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and finally

d

oAt X)) =-AT'XAL

t=0

Hence, in view of (5.17);
Al a=—A"1 AL (6.123)

The calculation of the derivative of tensor functions can be simplified by
means of differentiation rules. One of them is the following composition rule.
Let G = g(A) and H = h(A) be two arbitrary differentiable tensor-valued
functions of A. Then,

(GH) A=GAH+GH, . (6.124)

For the proof we again apply the directional derivative (6.112) taking (2.9)
and (5.40) into account

d
(GH) a: X = | [9(A+1X)h (A +1X)]
t=0
Yo BHreYhatsx
N dtg o dt o

— (Ga: X)H+G (H,a: X)
=(G,AH+GH,5): X, VX e€Lin".

Example 4. The right and left Cauchy-Green tensors are given in terms
of the deformation gradient F respectively by

C=F'F, b=FF"'. (6.125)

Of special interest in continuum mechanics is the derivative of these tensors
with respect to F. With the aid of the product rule (6.124) and using (5.42),
(5.77), (5.84), (5.85)1, (6.119) and (6.122) we obtain

Cr=F pF+FFr=9F+F9=(10F) +F oI, (6.126)

br=FpFl +FF g =IFT + FT =10 F  + (FoI)'. (6.127)

Further product rules of differentiation of tensor functions can be written
as

(G:H),AZH:G,A—I—G:H,A, (6.129)
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where f = f (A), G = g(A) and H = h (A) are again a scalar-valued and two
tensor-valued differentiable tensor functions, respectively. The proof is similar
to (6.124) (see Exercise 6.14).

Example 5. With the aid of the above differentiation rules we can eas-
ily express the derivatives of the spherical and deviatoric parts (1.163) of a
second-order tensor by

1 1
sphA, A = [n“ (A) 1} A= 10I=Py, (6.130)

devA,x = {A— 1tr(A)I} A=T— ToT="Pu. (6.131)
n n

Example 6. Tangent moduli of hyperelastic isotropic and trans-
versely isotropic materials. The tangent moduli are defined by (see, e.g.,
[30])

0S oS
¢ e 50" (6.132)

where E denotes the Green-Lagrange strain tensor defined in (6.98). For hy-
perelastic materials this definition implies in view of (6.94) the representation
0% 0%

€= e =Yoo (6.133)

For a hyperelastic isotropic material we thus obtain by virtue of (6.120),
(6.128), (6.10) or (6.95)

3 2 7
€=4> Kl 0% cloci

OtrCkotrC!
k=1
0P oY ;
+88tr023 +128trC3 (CI+I®C). (6.134)

For a hyperelastic transversely isotropic material the above procedure yields
with the aid of (6.110)
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3

=4 Kkl PV Gt 7y LoL
N ] OtrCkotrC! otr (CL) otr (CL)

0%
4 Otr (C2L) dtr (C2L) (CL+LC)® (CL+LC)

3

+4Zk 0%y

Ck71 L L Ck71
ouCron (cr) (€ OL+LOCT)

821; k—1 k—1
+42k:k8tr0k8tr(CQL) [C*'®(CL+LC) + (CL+LC) o CH 1]
0% 0P
4 (CL) 9t (C°L) [L®(CL+LC)+(CL+LO) oL +8, .3
, 00 ; o s
+12, 3 (COI+I®C) +4atr(02L) LoI+IoL)®.  (6.135)

6.6 Generalized Rivlin’s Identities
The Cayley-Hamilton equation (4.95)
A" —TUA T 1@ A2 ()" TT =0 (6.136)

represents a universal relation connecting powers of a second-order tensor
A with its principal invariants. Similar universal relations connecting several
second-order tensors might also be useful for example for the representation of
isotropic tensor functions or for the solution of tensor equations. Such relations
are generally called Rivlin’s identities.

In order to formulate the Rivlin identities we first differentiate the Cayley-
Hamilton equation (6.136) with respect to A. With the aid of (6.58), (6.118)
and (6.128) we can write

0= li(—n’qf@m—k] A

n k )
_ ( An k Z 1 1 I(k (AT)z—ll
k=1 =1
+ Z I(k) [Z An—k—i ® Ai—1‘| .
i=1

Substltutlng in the last row the summation index k + i by k and using (5.42)
and (5.43) we further obtain
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n k .
STATEY ()M 1o (AT) T —1e AT 0, (6.137)

Mapping an arbitrary second-order tensor B by both sides of this equation
yields an identity written in terms of second-order tensors [11]

n k
S AT (AR T BA 0 (s

This relation is referred to as the generalized Rivlin’s identity. Indeed, in the
special case of three-dimensional space (n = 3) it takes the form

ABA + A’B + BA? —tr (A) (AB + BA) — tr (B) A?
1
— [tr (AB) — trAtrB] A + 5 [tr”A — trA’] B

1
- {u« (A’B) — trAtr (AB) + ,B [tr® A — trA?] } I=0, (6.139)

originally obtained by Rivlin [35] by means of matrix calculations.
Differentiating (6.138) again with respect to A delivers

n—1n—~k
0= 35 (A0 A ) 3 (1 [ (A B) - BAT
k=1 j=1 i=1
n k—1
(D) ATE [tr (AT'B) T-BATY
k=2 i=1

k—i ‘
O[3 (1T (AT
=1

i—1

3

k
n Z( )k 1I(k i) An—k ® Z (Aj—lBAi—l—j)T
k=2 i=2 j=1
n k , ] i—1
- Z (_1)k—z I(Alj—z)Anka Z (A@;jq ® Ajfl)
k=2 i=2 j=1

Changing the summation indices and summation order we obtain

ZXH:Z kzj sz)An k{1®[tr(AJ 1B)A11

1=1 k=i+1 j=1

~ AT'BAYY -~ [ir (AT'B)I-BAT ! o (A7)

+160(A7'BAT) —BAT 0 AT 0. (6.140)
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The second-order counterpart of this relation can be obtained by mapping
another arbitrary second-order tensor C € Lin™ as [11]

E

zn: 3 DT AR L (ATB) CATY
1

HMT

u
Il

—~CA"'BA/' — [tr (A"'B)I-BA" '] tr (A’7'C)

+tr (AT'BA/T'C)I-BATICAT) = 0. (6.141)

In the special case of three-dimensional space (n = 3) equation (6.141) leads
to the well-known identity (see [28], [35], [37])

ABC + ACB + BCA + BAC + CAB + CBA — tr (A) (BC + CB)

—tr (B) (CA + AC) —tr (C) (AB +BA) + [tr (B) tr (C) — tr (BC)] A
+[tr (C) tr (A) — tr (CA)] B + [tr (A) tr (B) — tr (AB)] C
—[tr (A) tr (B) tr (C) — tr (A) tr (BC) — tr (B) tr (CA)

—tr (C)tr (AB) + tr (ABC) + tr (ACB)]I = 0. (6.142)

Exercises

6.1. Check isotropy of the following tensor functions:

(a) f (A) = aAb, where a,b € E",

(b) f(A) =AM + A2 4 A%,

(c) f(A) = A" + A+ A" where A represent the components of A e Lin®
with respect to an orthonormal basis e; (i = 1,2,3), so that A = Ae; ® e},
(d) f(A) =detA,

(e) f(A) = Amax, where Ay denotes the maximal (in the sense of the norm
VA\) eigenvalue of A € Lin”.

6.2. Prove the alternative representation (6.18) for the functional basis of an
arbitrary second-order tensor A.

6.3. An orthotropic symmetry group g, is described in terms of three struc-
tural tensors defined by L; = 1; ® I;, where l; - 1; = §;; (¢,j = 1,2,3) are unit
vectors along mutually orthogonal principal material directions. Represent the
general orthotropic strain energy function

v(QCQ") =v(C). vQeg, (6.143)

in terms of the orthotropic invariants.
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6.4. Using the results of Exercise 6.3, derive the constitutive relation for the
second Piola-Kirchhoff stress tensor S (6.94) and the tangent moduli € (6.132)
for the general hyperelastic orthotropic material.

6.5. Represent the general constitutive relation for an orthotropic elastic ma-
terial as a function S (C).

6.6. A symmetry group g of a fiber reinforced material with an isotropic
matrix is described in terms of structural tensors defined by L; = I; ® I;,
where the unit vectors l; (i = 1,2,...,k) define the directions of fiber families
and are not necessarily orthogonal to each other. Represent the strain energy
function

v(QcQT) =v(C), vQeg, (6.144)
of a fiber reinforced material with two families of fibers (k = 2).

6.7. Derive the constitutive relation S = 2091)/0C + pC~! and the tangent
moduli € = 29S/9C for the Mooney-Rivlin material represented by the strain
energy function (6.11).

6.8. Derive the constitutive relation for the Ogden model (6.12) in terms of
the second Piola-Kirchhoff stress tensor using expression (6.94).

6.9. Show that tr (CL;CL;), where L; (i = 1,2,3) are structural tensors de-
fined in Exercise 6.3, represents an orthotropic tensor function (orthotropic
invariant) of C. Express this function in terms of the orthotropic functional
basis obtained in Exercise 6.3.

6.10. The strain energy function of the orthotropic St.Venant-Kirchhoff ma-
terial is given by

3 3
~ ]_ ~ 5 ~ ~
v (E) = , D aitr (BL:) tr (BL;) + > Giytr (BLEL; ), (6.145)
i,j=1 i,j=1
i

where E denotes the Green-Lagrange strain tensor (6.98) and L; (i = 1,2,3)
are the structural tensors defined in Exercise 6.3. a;; = aj; (4,5 =1,2,3) and
Gij = Gj; (i1 #j=1,2,3) represent material constants. Derive the consti-
tutive relation for the second Piola-Kirchhoff stress tensor S (6.94) and the
tangent moduli € (6.132).

6.11. Show that the function ¢ (E) (6.145) becomes transversely isotropic if
1
asp =ags, aiz=aiz, Gi2==G3, Goz= 5 (ag2 — azs) (6.146)

and isotropic of the form (6.100) if

a12 = a13 = a3 = A, G2 =Gi3 = Gag =G,

a1 = age = aszz = X+ 2G. (6.147)
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6.12. Complete the proof of Theorem 6.3.

6.13. Express A% o, where k= 1,2, ....

6.14. Prove the product rules of differentiation (6.128) and (6.129).

6.15. Write out Rivlin’s identity (6.138) for n = 2.
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Analytic Tensor Functions

7.1 Introduction

In the previous chapter we discussed isotropic and anisotropic tensor func-
tions and their general representations. Of particular interest in continuum
mechanics are isotropic tensor-valued functions of one arbitrary (not neces-
sarily symmetric) tensor. For example, the exponential function of the velocity
gradient or other non-symmetric strain rates is very suitable for the formula-
tion of evolution equations in large strain anisotropic plasticity. In this section
we focus on a special class of isotropic tensor-valued functions referred here
to as analytic tensor functions. In order to specify this class of functions we
first deal with the general question how an isotropic tensor-valued function
can be defined.

For isotropic functions of diagonalizable tensors the most natural way is
the spectral decomposition (4.43)

A=3"\P;, (7.1)
i=1
so that we may write similarly to (4.48)
g(A) = ZQ (Ai) Py, (7.2)
i=1

where g ()\;) is an arbitrary (not necessarily polynomial) scalar function de-
fined on the spectrum \; (i =1,2,...,s) of the tensor A. Obviously, the so-
defined function g (A) is isotropic in the sense of the condition (6.74). Indeed,

0(QAQT) =3 0(A)QP.QT = Qy(A)QT, vQe O, (73)
1=1

where we take into account that the spectral decomposition of the tensor
QAQ" is given by
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QAQ" =3 AQP,QT. (7.4)

i=1

Example. Generalized strain measures. The so-called generalized
strain measures E and e (also known as Hill’s strains, [16], [17]) play an im-
portant role in kinematics of continuum. They are defined by (7.2) as isotropic
tensor-valued functions of the symmetric right and left stretch tensor U and
v and are referred to as Lagrangian (material) and Eulerian (spatial) strains,
respectively. The definition of the generalized strains is based on the spectral
representations by

U= zs:)\ipu v = i AiPi, (7.5)
i—1 im1

where \; > 0 are the eigenvalues (referred to as principal stretches) while P;
and p; (i=1,2,...,s) denote the corresponding eigenprojections. Accord-

ingly,
E=Y FO)P. e=) F(\)p. (76)
i=1 1=1

where f is a strictly-increasing scalar function satisfying the conditions f (1) =
0 and f’ (1) = 1. A special class of generalized strain measures specified by

il()\?—l)Pi for a # 0,

E(a) _ i=1a (77)
i: In(\)P; for a =0,
=1
> - 1)pi fora£0,

ola) _ Ji=1¢ (7.8)
ZS: In (\;) ps fora =0
i=1

are referred to as Seth’s strains [40], where a is a real number. For example, the
Green-Lagrange strain tensor (6.98) introduced in Chap. 6 belongs to Seth’s
strains as E().

Since non-symmetric tensors do not generally admit the spectral decompo-
sition in the diagonal form (7.1), it is necessary to search for other approaches
for the definition of the isotropic tensor function g (A) : Lin" — Lin". One of
these approaches is the tensor power series of the form

g(A) =aol + a1 A + axA® +... =) a,A". (7.9)
r=0
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Indeed, in view of (6.75)

g(QaQ") = S, (QaQ")’

r=0

=> a,QA'Q" =Qg(A)Q", VvQ e Orth™. (7.10)
r=0

For example, the exponential tensor function can be defined in terms of the
infinite power series (7.9) by (1.114).

One can show that the power series (7.9), provided it converges, repre-
sents a generalization of (7.2) to arbitrary (and not necessarily diagonalizable)
second-order tensors. Conversely, the isotropic tensor function (7.2) with g ()
analytic on the spectrum of A can be considered as an extension of infinite
power series (7.9) to its non-convergent domain if the latter exists. Indeed, for
diagonalizable tensor arguments within the convergence domain of the tensor
power series (7.9) both definitions coincide. For example, inserting (7.1) into
(7.9) and taking (4.47) into account we have

oo s

g(A)=> a, (Z MR;) => a, Y NP;= Zg()\i)Pi (7.11)
=0 i=1 T i=1 i=1

=0

with the abbreviation
g = a\, (7.12)
r=0

so that

_ 1079

Pl aAr (7.13)

Qr

A=0

The above mentioned convergence requirement vastly restricts the defini-
tion domain of many isotropic tensor functions defined in terms of infinite
series (7.9). For example, one can show that the power series for the logarith-
mic tensor function

o0 AT.
m(A+T) =Y (-1 7.14
a(A+D =3 (7.14)
converges for |\;| <1 (i =1,2,...,s) and diverges if [\g| > 1 at least for some

kE (1 <k<s) (see, eg., [13]).
In order to avoid this convergence problem we consider a tensor function
defined by the so-called Dunford-Taylor integral as (see, for example, [25])

g(A) = 1.]{;;@ (CT—A)'d¢ (7.15)

2mi
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taken on the complex plane over I', where I' represents a closed curve or
consists of simple closed curves, the union interior of which includes all the
eigenvalues \; € C (i =1,2,...,s) of the tensor argument A. g(¢) : C— C
is an arbitrary scalar function analytic within and on I

Omne can easily prove that the tensor function (7.15) is isotropic in the
sense of the definition (6.74). Indeed, with the aid of (1.133) and (1.134) we
obtain (cf. [34])

s(@aQ”) =, f 00 (- QAQ")

27l

- 1_7§g(o[Q<<I—A>QT]”d<
I

2mi

- 1.j§g(oQ<¢I—A>‘1QTd<
I

27l

=Qg(A)Q", VvQ € Orth™. (7.16)

It can be verified that for diagonalizable tensors the Dunford-Taylor integral
(7.15) reduces to the spectral decomposition (7.2) and represents therefore its
generalization. Indeed, inserting (7.1) into (7.15) delivers

1) =, 00 <<I - ZAp) a

s -1

i $.900 [Z ()2

i=1

d¢

1 - 1
iﬁQ(C)Z(C—Ai) P;d¢

27 -
=1

S 1 _ S
> [2 .fg@) (¢ =) 1d<} P,=> g(\)P; (7.17)
o1 L<mJr i=1

where we keep (4.46) in mind and apply the the Cauchy integral formula (see,
e.g. [5]). Using this result we can represent, for example, the generalized strain
measures (7.6) by

E=/f(U), e=f(v), (7.18)

where the tensor functions f (U) and f (v) are defined by (7.15).

Further, one can show that the Dunford-Taylor integral (7.15) also repre-
sents a generalization of tensor power series (7.9). For this purpose, it suffices
to verify that (7.15) based on a scalar function g (¢) = ¢* (k=0,1,2,...)
results into the monomial g (A) = A¥. To this end, we consider in (7.15) the
following identity [25]
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g(OI=(D" =T~ A+A)" =(T-A)+...+A" (7.19)

Thereby, all terms except of the last one have no pole within I" and vanish
according to the Cauchy theorem (see, e.g., [5]), so that

g(A) = Z;iﬁ[(gI—A)’HJr...JFA’“ (CI—A)’l} ac = Ak, (7.20)

Isotropic tensor functions defined by (7.15) will henceforth be referred to
as analytic tensor functions. The above discussed properties of analytic tensor
functions can be completed by the following relations (Exercise 7.3)

g(A)=af(A)+ph(A), if  g(A)=af(N)+Fh(N),
g(A)=f(A)r(A), it g\ =fNh), (7.21)
g(A)=f(h(A)), it g =)

In the following we will deal with representations for analytic tensor functions
and their derivatives.

7.2 Closed-Form Representation for Analytic Tensor
Functions and Their Derivatives

Our aim is to obtain the so-called closed form representation for analytic
tensor functions and their derivatives. This representation should be given
only in terms of finite powers of the tensor argument and its eigenvalues and
avoid any reference to the integral over the complex plane or to power series.

We start with the Cayley-Hamilton theorem (4.95) for the tensor (I — A

n

S DI, - A =0, (7.22)
k=0

With the aid of the Vieta theorem (4.24) we can write

n

a=1 A= Y C-2)C—Au) (C—Ay),  (7:23)

11 <ip<...<iy

where k = 1,2,...,n and the eigenvalues \; (i = 1,2,...,n) of the tensor A
are counted with their multiplicity.
Composing (7.22) with the so-called resolvent of A

R(()=(T-A)" (7.24)

yields
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n—1

1 n— n—k—

R(O) = 0 > ()" i, (r—-a) !
Ia A k=0
1 n—1

k n—k—1
= 2 lalata-a@rt (7.25)

(I—A k=0

Applying the binomial theorem (see, e.g., [5])

(A — 1) => (- ( )gl PAP 1=1,2,..., (7.26)
p=0
where
l !
- , 7.27
<p) p(l—p)! (7.27)
we obtain
1 ! n—k—1
n k—1— —h= n—k—1—
RO- D S, O ( )< k1p AP,
ICI A k=0 p
(7.28)

Rearranging this expression with respect to the powers of the tensor A delivers

n—1
=) o,A? (7.29)
p=0
with
n—p—1
LSy (PR e (7.30)
W= D I-A ’ '
CI-A k=0

where p = 0,1,...,n — 1. Inserting this result into (7.15) we obtain the fol-
lowing closed-form representation for the tensor function g (A) [21]

n—1
A) =) p,A”, (7.31)
p=0
where

fo©ade p=otno (7.32)
r

¥p = 2mi

The Cauchy integrals in (7.32) can be calculated with the aid of the residue
theorem (see, e.g.,[5]). To this end, we first represent the determinant of the
tensor (I — A in the form
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S

1) 4 =det (CT—A) =T (¢—2)", (7.33)

i=1

where )\; denote pairwise distinct eigenvalues with the algebraic multiplicities
r; (i=1,2,...,s) such that

Z Te =N (7.34)
i=1
Thus, inserting (7.30) and (7.33) into (7.32) we obtain
s 1 . dr,;—l .
=3 { ot 9602 6 =271}, (7.35)

where p=1,2,...,n— 1.

The derivative of the tensor function g (A) can be obtained by direct
differentiation of the Dunfod-Taylor integral (7.15). Thus, by use of (6.123)
we can write

9 A=y § 90 =46 (A=A (7.36)

and consequently

1

A =
g(A),a o

7§ J(OR(Q) ®R(C)dC. (7.37)

Taking (7.29) into account further yields

n—1
g(A) A= Z Npg AP @ A, (7.38)
p,q=0
where
1
Nlpg = Tlgp = o ]{*g (C) Qp (C) Qg (O d¢, p,gq=0,1,...,n—1. (7'39)

The residue theorem finally delivers

S d2r,; —1

=3 o, 1y 8 { s 1O @0 @ (6= 20" ]},

i=1

(7.40)

where p,g =0,1,...,n— 1.
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7.3 Special Case: Diagonalizable Tensor Functions

For analytic functions of diagonalizable tensors the definitions in terms of
the Dunford-Taylor integral (7.15) on the one side and eigenprojections (7.2)
on the other side become equivalent. In this special case, one can obtain
alternative closed-form representations for analytic tensor functions and their
derivatives. To this end, we first derive an alternative representation of the
Sylvester formula (4.55). In Sect. 4.4 we have shown that the eigenprojections
can be given by (4.52)

P, =p;(A), i=1,2,...,s, (7.41)

where p; (i = 1,2,...,s) are polynomials satisfying the requirements (4.51).
Thus, the eigenprojections of a second-order tensor can be considered as its
analytic (isotropic) tensor functions. Applying the Dunford-Taylor integral
(7.15) we can thus write

1 _
P, = ,%pi(()(CI—A) Ya¢, i=1,2,...,s. (7.42)
2mi Jp
Similarly to (7.31) and (7.35) we further obtain
n—1
P, = ZpipAp, i=1,2,...,s, (7.43)
p=0
where
s 1 . drk.—l .
po=3 o L din { g Qe €M) )
k=1 F PeTAk

and o (p=0,1,...,n— 1) are given by (7.30). With the aid of polynomial
functions p; (A) satisfying in addition to (4.51) the following conditions

d'f‘
ax PV

=0 4,j=1,2,....;8; r=1,2,...,m; — 1 (7.45)
A=

we can simplify (7.44) by

1 ) dmfl ""i
o=, Ly { el @€ 271 (7.46)

Now, inserting (7.43) into (7.2) delivers

g(A)=> g(\) i pipAP. (7.47)
i=1 p=0
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In order to obtain an alternative representation for g (A),a we again consider
the tensor power series (7.9). Direct differentiation of (7.9) with respect to A
delivers with the aid of (6.118)

o) 1
g(A)a=> a, Y AT'Fe AR (7.48)
0

<
|

ﬁ
Il
—
~
I

Applying the spectral representation (7.1) and taking (4.47) and (7.12) into
account we further obtain (see also [19], [49])

:Zarz Z AN, @ P

r=1 k=01,j=1

s oo )\r )\r
_ r—1 .
_ZZMW\ P®P+ZZ@T>\_)\ i ®P;
i=1r=1 i,j=1r=1
J#i
RN 2 g(Ni) =g ()
=> g\ P®P+Z e P, ®P;
i=1 i,7=1
J#i
= Z GijP; @ Py, (7.49)
i,j=1
where
g (\) if i = j,
Ai = Aj '

Inserting into (7.49) the alternative representation for the eigenprojections
(7.43) yields

s n—1
g(A),aA= Z Gij Z PipPjqAY @ Al (7.51)

1,5=1 p,q=0

Thus, we again end up with the representation (7.38)

n—1
g(A) A= Z Npg AP @ A, (7.52)
p,q=0
where
Nlpg = Nap = Z Gijpippigs ¢ =0,1,...,n—1. (7.53)

ij=1
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Finally, let us focus on the differentiability of eigenprojections. To this end,
we represent them by [25] (Exercise 7.4)

P— | 74 CI—A)"d¢, i=1,2,...5, (7.54)
I

T 2ri

where the integral is taken on the complex plane over a closed curve I; the
interior of which includes only the eigenvalue \;. All other eigenvalues of A lie
outside ;. I; does not depend on \; as far as this eigenvalue is simple and does
not lie directly on I;. Indeed, if \; is multiple, a perturbation of A by A +tX
can lead to a split of eigenvalues within I5. In this case, (7.54) yields a sum of
eigenprojections corresponding to these split eigenvalues which coalesce in \;
for ¢ = 0. Thus, the eigenprojection P; corresponding to a simple eigenvalue
A; is differentiable according to (7.54). Direct differentiation of (7.54) delivers
in this case

1 _ _
Pia=, . ]{ I-A)"'o@-A)""d, rn=1 (7.55)
2mi Jr,
By analogy with (7.38) we thus obtain
n—1
Pia= Y UpAP @ A", (7.56)
P,9=0
where
1
Vipg = Vigp = o 7{ ap(Q)ag (Q)d¢, p,g=0,1,...,n—1. (7.57)
1 I

By the residue theorem we further write

Vipg = (11{&11 {C?C |:O[p (g) Qg (g) (C - )\l)2:| } ) p,q= 07 ]-a cee, N — 1. (758)

With the aid of (7.49) one can obtain an alternative representation for the
derivative of the eigenprojections in terms of the eigenprojections themselves.
Indeed, substituting the function g in (7.49) by p; and taking the properties
of the latter function (4.51) and (7.45) into account we have

S

P,oP,+P,P;
Pia=). A{ B xj . (7.59)
j=1 o
J#i

7.4 Special case: Three-Dimensional Space

First, we specify the closed-form solutions (7.31) and (7.38) for three-dimen-
sional space (n = 3). In this case, the functions ay (¢) (k =0, 1,2) (7.30) take
the form
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¢ —Cler—a +1lcr-a

ao (¢) = My
_ GO A2 As) Ak + A2y + Ash
(€= A1) (€= A2) (C—A3) ’
Q(OZICI—A—QC: C—A—A—A3
' Maa (€= M) (€= A) (€= )’
as (¢) = ! ! (7.60)

Mea-a (¢ M) (€= A2) (¢ As)

Inserting these expressions into (7.35) and (7.40) and considering separately
cases of distinct and repeated eigenvalues, we obtain the following result [23].

Distinct eigenvalues: A1 # Aa # Az # A1,

Wo—zg /\/\k

pr=— D
=1
3
B g (i)
= 2:: b (7.61)
3 2
N9 XA AR g )—g(/\j)]
Moo = ; ;1 (i — A\ ) Dy )

i#]

3
Aj A+ Ae) AiAeg’ (N
770127710:_Z(j k)DZJ K

i=1

430 QA Mg ) =g ()

i,j=1 (Ai — )‘j)s Dy, 7

i#]

3 3

AjAeg" (Ai) ik [g (Ni) — g (A7)]

To2 = 7120 = - )

; DiQ 1]2::1 (X — )‘j)g Dy

i#j
3 3
=50 Qo EME ) 5 0520 (et M) o ) — 9 ()
2 3 )
i=1 D; i,j=1 (A = Aj)" D

i#j
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3 3
R S N OV PV AOY (i + k) [g (Ai) — g (A7)]
N2 =121 = ; D? ”zz:l (- /\j)g D )
i#j
3 3
N9 () gA)—g() ., ‘
22 = ; DZQ - ijZ:1 ()\l B )\J)3 Djk 5 1 7& J 7& k 7& 7, (762)
it
where
Di=M\—=XN)Ni—X), i#j#k#i=1,23. (7.63)

Double coalescence of eigenvalues: Ny # Xj = A\ = N, j # k,
Ag(Ni) —Aig(A) | Aig(A) ANig" (A)

70 =A (N —A)? A=A (=)’
o 9 =g )N+ A)
oL =2 (N — \)? A=A

Y2 = (A7—A)2 ()\i_>\)7

(2X2A7 = 6A%N:) [g (Ao) — g (V)]

oo = (A — )\)5

L A ) (2NN AXAT = AN+ ) o (V)
(Ni — )\)4

(20207 = X3A) g” (A)  A2A2g" (A
i —A)? 6N\ — A2

(3AT +7AN% = 202 [g (X)) — g (V)]

o1 = Mo = ()\i . /\)5

2X0%g" (Ai) + (A3 + TN = 202X) ¢’ ()
i —N)!

AR ENA=AD) ) XA+ N g ()
2(A =)’ 6 (A — )

Y
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(AF =3XMA =202 [g(\s) — g (V)]

Tlo2 = 120 = ()\i _ )\)5
A2g" () + ()\2 4+ 3N\ — /\72) g N

" (= M)

Y

(BA = A) g (A NAg” (\)
2 (A — ) 6 (A — A)?

Ai+3N g () =g W], A" () + A (N +20) 9" (A)

nm1 = —4 +

(N =N’ PV
AN+ A g (A N+ N g ()
(A —N)° 6N —A)°
N +7A) g (M) —g (M) 200" (M) + (A +5X0) g' (N)
7712 — 7721 — 5 - 4
(Ai =) (Ai —A)
3NN N+ (N
2\ — A)? 6(N—N)?
) — A //\i 3q’ (\ e\ Zae\
7722:_49( ) gg ) L9 i)+ 94( ) 9" )3+ 9" ( )2. (7.65)
(Ai =) (Ai =) (Ai —=A)" 6N —A)
Triple coalescence of eigenvalues: Ay = Ao = A3 = A,
1
po=g(\) = Ag' (N + , 3" (N),
p1=9" () =" (N,
1
02 = 40" (), (7.66)
)\29/// ()\) )\3gIV ()\) )\4gV ()\)

7 R -
noo =g (A) = Ag" (A) + 9 19 + 120

9" AN n MgtV (N AgV (N
o1 = 1o = 9 9 8 60 )

B B g///()\) B )\gIV (}\) )\2gV (}\)
No2 = 120 = 6 924 + 120 °

_ 9" AT . A2gY (M)
mi1 = 6 6 30 )

2 =721 = o4 60
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9" (N
120
where superposed Roman numerals denote the order of the derivative.

M22 = (7.67)

Example. To illustrate the application of the above closed-form solution
we consider the exponential function of the velocity gradient under simple
shear. The velocity gradient is defined as the material time derivative of the
deformation gradient by L = F. Using the representation of F in the case of
simple shear (4.23) we can write

, . , 00
L=Le;®e’, where [L,]=000]. (7.68)
000

We observe that L has a triple (r; = 3) zero eigenvalue
AM=X=X3=A=0. (7.69)

This eigenvalue is, however, defect since it is associated with only two (t; = 2)
linearly independent (right) eigenvectors

a; = ey, as = e3. (770)

Therefore, L (7.68) is not diagonalizable and admits no spectral decomposition
in the form (7.1). For this reason, isotropic functions of L as well as their
derivative cannot be obtained on the basis of eigenprojections. Instead, we
exploit the closed-form solution (7.31), (7.38) with the coefficients calculated
for the case of triple coalescence of eigenvalues by (7.66) and (7.67). Thus, we
can write

exp (L) = exp (\) K;V —>\+1) I+(1-ANL+ ;LQ] , (7.71)
exp (L), = exp (\) Kl -+ A; — i; + 124()) 9

IO WD LDt

— - LoI+I®L

+(2 5T g 6O>(®+®)
AN

(6 6+30)L®L

+ 1—A+A2 (L*®I+I®L?)
6 24 120

1A 1
- )(L2®L+L®L2)+ L>@L?|. (7.72)

24 60 120
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On use of (7.69) this finally leads to the following expressions
1
exp(L) =T+ L+ 2L2, (7.73)
1 1 1, 9
exp(L),L=9+ ) LeI+I®L)+ LOL+ (L*®I+I®L?)

1 1
2oL+ LoL? L2 L2 74
+24( QL+L® )+120 ® (7.74)

Taking into account a special property of L (7.68):
LF=0, k=23,... (7.75)

the same results can also be obtained directly from the power series (1.114)
and its derivative. By virtue of (6.118) the latter one can be given by

I
-

T

=1
exp(L) L= y L1 F o Lk (7.76)
r=1"" 0

b
Il

For diagonalizable tensor functions the representations (7.31) and (7.38)
can be simplified in the cases of repeated eigenvalues where the coefficients
pp and 7, are given by (7.64-7.67). To this end, we use the identities
A% = (\; + X)) A — NI for the case of double coalescence of eigenvalues
(N #Xj =X, =) and A = A, A2 = N?I for the case of triple coalescence
of eigenvalues (A1 = Aa = A3 = A). Thus, we obtain the following result well-
known for symmetric isotropic tensor functions [7].

Double coalescence of eigenvalues: \j # A\j = A\, = A, A? = (N FA) A=\

= Aig (A) — Ag (\i) g(\i)—g(N)

NoA ATy o =0 (7.77)
) 2 ./ . 2/
o — 28 ) =900 22 () + X2’ (),
(Ai = A) (Ai =)
g(Ai) —g(A)  Ag' (M) + Aig" (A)
= =N+ A X = ,
o1 = Mo = ( ) O A = 2)?
Ai) —g (A ")+ g (A
n11=—29( ) gg)Jrg( ) 92()7
(Ai —A) (A=)
No2 = 720 = M2 = N21 = 722 = 0. (7.78)

Triple coalescence of eigenvalues: A\ = Ag = Az = \, A = \I, A2 = \?1,

wo=9g(N), ©1=p2=0, (7.79)
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noo =9 (A),  Mo1 =N =m1 =102 =120 =2 =21 =122 = 0. (7.80)

Finally, we specify the representations for eigenprojections (7.43) and their
derivative (7.56) for three-dimensional space. The expressions for the functions
pip (7.46) and vipg (7.58) can be obtained from the representations for ¢,
(7.61), (7.77), (7.79) and n,q (7.62), (7.78), respectively. To this end, we set
there g (\i) =1, g (Aj) = g (M) = ¢' (M) = ¢' (A;) = ¢’ (Ax) = 0. Accordingly,
we obtain the following representations.

Distinct eigenvalues: \1 # Ao # A3 # A1,

AiA Aj+ A 1
Pio = ;)ik, Pi1 = — jDi k, piz = D,’ (7.81)
Vio0 = —2XiAj Ak A 3+ A 5 ,
A=) D (M=) Dj
iol = Vito = Ak Ai (/\j + i) + /\Bj N+ )\k)_"_)\j i (/\j + M) + /\; (i + )\j),
(Ai = Aj)” Dy, (N — Ax)° D
Vo2 = Vi2o = —Ak At A?f = At /\lg :
(XNi —X;)” Dy, (N —Xg)” D
vitn = =2 (Aj + Ax) Nt /\;f Nt /\g ;
(/\7 — /\j) Dy, (/\7 - )\k) Dj
Ai A+ 20 i 2N+ A
Ui12 = V21 = ! 3 ! 3 )
(N —=XN) "D (N — )’ D,
2 2
Vigg = — — , 1A jAER#£i=1,2,3. (7.82)

N —X)De (N =)’ D;

Double coalescence of eigenvalues: Ny # Xj = A\, = A, j # k,

A 1
pio = VY pi1 = AN pi2 =0, (7.83)
Vi — 20\ ot = Ui — i + A oy — 2
700 (A7 _ )\)3) 101 110 (A7 . A)37 711 (A7 _ )\)3;
Vi02 = Vi20 = Vi12 = Vi21 = Vo2 = 0. (7.84)

Triple coalescence of eigenvalues: Ay = Ao = A3 = A,
pio =1, p11=p12=0. (7.85)

The functions vipq (p,¢ = 0,1,2) are in this case undefined since the only
eigenprojection Py is not differentiable.
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7.5 Recurrent Calculation of Tensor Power Series and
Their Derivatives

In numerical calculations with a limited number of digits the above presented
closed-form solutions especially those ones for the derivative of analytic tensor
functions can lead to inexact results if at least two eigenvalues of the tensor
argument are close to each other but do not coincide (see [20]). In this case,
a numerical calculation of the derivative of an analytic tensor function on
the basis of the corresponding power series expansion might be advantageous
provided this series converges very fast so that only a relatively small number
of terms are sufficient in order to ensure a desired precision. This numerical
calculation can be carried out by means of a recurrent procedure presented
below.

The recurrent procedure is based on the sequential application of the
Cayley-Hamilton equation (4.95). Accordingly, we can write for an arbitrary
second-order tensor A € Lin"

n—1
A =N (1) TP AR, (7.86)
k=0
With the aid of this relation any non-negative integer power of A can be
represented by
n—1
AT =YW AR r=0,1,2,... (7.87)

Indeed, for r < n one obtains directly from (7.86)
W =6, W™ = (D)"Y k=01, n—1. (7.88)

Further powers of A can be expressed by composing (7.87) with A and rep-
resenting A™ by (7.86) as

ATt = Zw JARF = Zw“) AR W AT

k=1
n—1
—Zw Ao N (R IR AR,
k=0

Comparing with (7.87) we obtain the following recurrent relations (see also
[39])
w(()r+1) (r) ( 1)17,—1 IE:),

=Wp_1

) L P G ) nlued (GRS S T NN | (7.89)
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With the aid of representation (7.87) the infinite power series (7.9) can thus
be expressed by (7.31)

n—1
g(A) = AP, (7.90)
p=0
where
©p = Z aTwI(jT). (7.91)
r=0

Thus, the infinite power series (7.9) with the coefficients (7.13) results in
the same representation as the corresponding analytic tensor function (7.15)
provided the infinite series (7.91) converges.

Further, inserting (7.87) into (7.48) we obtain again the representation
(7.38)

n—1
g(A) A= Z Npg AP @ A, (7.92)
P,q=0
where
00 r—1
77pq :77%0 :Zaﬂ“ sz(filik)w((zk)v p7q:071;"'an_ ]- (793)
r=1 k=0

The procedure computing the coefficients 7,4 (7.93) can be simplified by means
of the following recurrent identity (see also [31])

r r—1
ZAr—k®Ak:Ar®I+ ZAr—l—k®Ak A
k=0 k=0
r—1
=AY ATFRAN +I0AT, r=12..., (T.94)
k=0
where
r—1 n—1
AT g AR = N (DAP @AY, r=1,2... (7.95)
k=0 p,q=0
Thus, we obtain
Tog = Y ar&ls), (7.96)
r=1

where [20]
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5;()? = gé;)) = w}()O)w((IO) = 6Op50q; p S q; P,q4 = Oa ]-7 cee, N — ]-;

T r—1) (n r—1
() _ g1 ) =),

fO gqo _581;1:11)+€0n n) :€1(v 1(3 (n)+w(r 1)
g(r) 5(7’) 5(7’ 1) g(T 1) (n g(r 1) 5(r 1) (n)

pq—1 p—1lgq n—1q%
p<q; pg=12,....n—1, r=223,... (7.97)

The calculation of coefficient series (7.89) and (7.97) can be finished as soon
as for some r

‘aTw[(,T) <eg Zatwé’f)
t=0
‘a{r) <e Zatgp , p,g=0,1,...,n—1, (7.98)

where € > 0 denotes a precision parameter.

Example. To illustrate the application of the above recurrent procedure
we consider again the exponential function of the velocity gradient under
simple shear (7.68). In view of (7.69) we can write

10— 1@ —® — g, (7.99)

With this result in hand the coefficients w,(f) and 51(72) (p,q = 0,1,2) appear-
ing in the representation of the analytic tensor function (7.90), (7.91) and
its derivative (7.92), (7.96) can easily be calculated by means of the above
recurrent formulas (7.88), (7.89) and (7.97). The results of the calculation are
summarized in Table 7.1.

Considering these results in (7.90), (7.91), (7.92) and (7.96) we obtain the
representations (7.73) and (7.74). Note that the recurrent procedure delivers
an exact result only in some special cases like this where the argument tensor
is characterized by the property (7.75).

Exercises

7.1. Let R (w) be a proper orthogonal tensor describing a rotation about some
axis e € E3 by the angle w. Prove that R® (w) = R (aw) for any real number
a.

7.2. Specify the right stretch tensor U (7.5); for simple shear utilizing the
results of Exercise 4.1.

7.3. Prove the properties of analytic tensor functions (7.21).
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Table 7.1. Recurrent calculation of the coefficients wér) and fz%)

0 o €

(r)

(r) ¢(r)

T Wy~ W 01 S02 S11° S12° S22° Or
0 1 0 0 1
1 0O 1 0 1 0 0O 0O 0 0 1
2 0 0o 1. 0 1 0 0 0 0 1/2
3 o 0 0 0 0O 1 1 0 0 1/6
4 o 0 0 0 O O O 1 o0 1/24
5 0o 0o 0 0 0 0O 0 O 1 1/120
6 o 0 0 0O O 0O O O o0 1/720
> a,«wér) 1 1 !
r=0 2
- 11 1 11

r 1

2 arkra 2 6 6 24 120

7.4. Prove representation (7.54) for eigenprojections of diagonalizable second-
order tensors.

7.5. Calculate eigenprojections and their derivatives for the tensor A (Exer-
cise 4.11) using representations (7.81-7.85).

7.6. Calculate by means of the closed-form solution exp (A) and exp (A) ,a,
where the tensor A is defined in Exercise 4.11. Compare the results for exp (A)
with those of Exercise 4.12.

7.7. Compute exp (A) and exp (A),a by means of the recurrent procedure
with the precision parameter ¢ = 1-107%, where the tensor A is defined in
Exercise 4.11. Compare the results with those of Exercise 7.6.
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Applications to Continuum Mechanics

8.1 Polar Decomposition of the Deformation Gradient

The deformation gradient F represents an invertible second-order tensor gen-
erally permitting a unique polar decomposition by

F = RU = VR, (8.1)

where R is an orthogonal tensor while U and v are symmetric tensors. In
continuum mechanics, R is called rotation tensor while U and v are referred to
as the right and left stretch tensor, respectively. The latter ones have already
been introduced in Sect. 7.1 in the context of generalized strain measures.

In order to show that the polar decomposition (8.1) always exists and
is unique we first consider the so-called right and left Cauchy-Green tensors
respectively by

C=F'F, b=FF"'. (8.2)

These tensors are symmetric and have principal traces in common. Indeed, in
view of (1.151)

tr (C*) =tr (FTF...F'F) = tr (FFT...FFT) = tr (b") . (8.3)
N~ ~ - N~ ~ -
k times k times
For this reason, all scalar-valued isotropic functions of C and b such as prin-
cipal invariants or eigenvalues coincide. Thus, we can write

C = zs: AiPi; b= zs: Aipi; (84)
i=1 =1

where eigenvalues A; are positive. Indeed, let a; be a unit eigenvector associ-
ated with the eigenvalue A;. Then, in view of (1.78), (1.104), (1.115) and by
Theorem 1.8 one can write
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A; = a;- (Aja;) = a; - (Ca;) = a; - (F'Fa;)
= (aiFT) . (Fai) = (Fal) . (Fai) > 0.

Thus, square roots of C and b are unique tensors defined by
U=VC=) VAP, v=vb=> VAp. (8.5)
i=1 =1

Further, one can show that
R=FU (8.6)
represents an orthogonal tensor. Indeed,
RR" =FU 'U 'FT =FU °FT =FC'F"
=F(F'F) 'FT=FF 'FTF" =1.

Thus, we can write taking (8.6) into account

F—=RU= (RURT) R. (8.7)
The tensor
RUR' = FR" (8.8)

in (8.7) is symmetric due to symmetry of U (8.5);. Thus, one can write
(RURT)2 ~ (RURT) (RURT)T ~ (FRT) (FRT)T

=FR"RF' = FF" =b. (8.9)

In view of (8.5)2 there exists only one real symmetric tensor whose square is
b. Hence,

RUR" = v, (8.10)

which by virtue of (8.7) results in the polar decomposition (8.1).

8.2 Basis-Free Representations for the Stretch and
Rotation Tensor

With the aid of the closed-form representations for analytic tensor functions
discussed in Chap. 7 the stretch and rotation tensors can be expressed directly
in terms of the deformation gradient and Cauchy-Green tensors without any
reference to their eigenprojections. First, we deal with the stretch tensors
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(8.5). Inserting in (7.61) g (A;) = v/A; = \; and keeping in mind (7.31) we
write

UZQDoI+LP10+LPQC2, V=(p01+§01b+502b2,

(8.11)
where [45]

oo = A1 A2As (A1 + A2 + A3)
O O+ A2) Mo+ A3) (A + M)

LN A2 A Ade A Aads + Ash

LT+ a) Qe Ag) s+ A1)
1

(A1 4+ X2) A2+ 23) (A3 + A1)’

Y2 =

(8.12)
These representations for ¢; are free of singularities and are therefore generally
valid for the case of simple as well as repeated eigenvalues of C and b.

The rotation tensor results from (8.6) where we can again write

Ul =¢I+¢C+qC2

(8.13)
The representations for g, (p =0, 1,2) can be obtained either again by (7.61)
where g (A;) = A;1/2 =\

; L or by applying the Cayley-Hamilton equation
(4.95) leading to

U~ =15 (U2 - Iy U +1Iyl)

TG [Ty — ¢olu) I+ (1 — ¢1ly) C — oIy C?] (8.14)
where

Iu =X+ X+ A3, Iy =XMA+ Ads + A3, Iy = A A, (8.15)
Both procedures yield the same representation (8.13) where

_ A1 + Aadg + A3\
0= Ao

(AL + Ao + A3)?
(A +X2) (A2 +A3) (A3 4+ A1)’
L (A3 AT e s £ Ash) (A1 + A + A)
PYPTYT A1 A2z (A1 + A2) (A2 + A3) (A3 4+ A1) ’
o= AL+ A2+ A3 .
A2z (A1 + A2) (A2 + As) (As + A1)

Thus, the rotation tensor (8.6) can be given by

S1

(8.16)

R =F (oI +aC+xC?),

(8.17)
where the functions ¢; (i = 0,1, 2) are given by (8.16) in terms of the principal

stretches \; = v/A;, while A; (i = 1,2,3) denote the eigenvalues of the right
Cauchy-Green tensor C (8.2).
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Example. Stretch and rotation tensor in the case of simple shear.
In this loading case the right and left Cauchy-Green tensors take the form (see
Exercise 4.1)

‘ ‘ ‘ 1 v 0
C=Cle;@el, [C)]=|71+720], (8.18)
0 0 1]
‘ ' ‘ 1++2 7 0]
b=bie;®e, [bj]= ¥y 10 (8.19)
0 0 1]
with the eigenvalues
2
24 /4y 4 + /4 2
Ayjp=1+" \/27 T =<7 \/2+7> . As=1. (8.20)
For the principal stretches we thus obtain
442 £
>\1/2=\/A1/2= % ; ’y’ A3 =+/Az=1. (8.21)
The stretch tensors result from (8.11) where
. 1++/72+4
0= )
2v/2 +4+92+4
oy 1 VA2 +4
1= )
2+ /1244
1
oy — . (8.22)
2/ 4+ +4
This yields the following result (cf. Exercise 7.2)
— 2 ,.y -
0
VAR SRVALEE
i j i 2
U=Uje; @€, [Uj]= v v+ 2 NE (8.23)
VAR SRVALEE
L O 0 1]
— ’y2 + 2 ’y -
0
VP4 /P44
v=vie,®e, [vi] = v 2 K (8.24)
VP4 /P44
L O 0 1]
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The rotation tensor can be calculated by (8.17) where

1

= 244— ,
©=V7 272 + 4492+ 4

) 34+ V2 +4+92
1= )

2+ /12 +4
2
@=, \/1v:+\/47+ :24+ . (8.25)
By this means we obtain
2 Y
VAR SRVALEE
R=Rje;®el/, [Ry]=|_ 7 2 . (8.26)
VAR SRVALEE
0 0 1

8.3 The Derivative of the Stretch and Rotation Tensor
with Respect to the Deformation Gradient

In continuum mechanics these derivatives are used for the evaluation of the
rate of the stretch and rotation tensor. We begin with a very simple represen-
tation in terms of eigenprojections of the right and left Cauchy-Green tensors
(8.2). Applying the chain rule of differentiation and using (6.126) we first write

Up=CY2¢:Cp=C/2% - [(I@F)t +FT eI (8.27)

Further, taking into account the spectral representation of C (8.4); and keep-
ing its symmetry in mind we obtain by virtue of (7.49-7.50)

C'c=> (Ni+A) " (PieP)). (8.28)

ij=1

Inserting this result into (8.27) delivers by means of (5.33), (5.47), (5.54)2 and
(5.55)

Ur=Y i+ )7 [(PioFP) + PFT 0 P;). (8.29)
i,j=1
The same procedure applied to the left stretch tensor yields by virtue of
(6.127)



170 8 Applications to Continuum Mechanics

s

vie= > i+ )" [ @ BT + (pF @) (8.30)

ij=1

Now, applying the product rule of differentiation (6.124) to (8.6) and taking
(6.123) into account we write

Rr=(FU ) rp=I0U '+FU 'y:Up

=IoU ' -F(U'@U ) : Us. (8.31)
With the aid of (7.2) and (8.29) this finally leads to

Rr=1I® (Z )\i‘lPi>

=1

—F Y I+ A) A {(Pi ®FP,)' + P,FT ® PJ} . (8.32)
ij=1
Note that the eigenprojections P; and p; (i = 1,2,...,s) are uniquely defined
by the Sylvester formula (4.55) or its alternative form (7.43) in terms of C and
b, respectively. The functions p;, appearing in (7.43) are, in turn, expressed
in the unique form by (7.81), (7.83) and (7.85) in terms of the eigenvalues
AN=X (i=1,2,...,5).

In order to avoid the direct reference to the eigenprojections one can obtain
the so-called basis-free solutions for U,r, v,r and R,p (see, e.g., [8], [14],
[18], [38], [47], [49]). As a rule, they are given in terms of the stretch and
rotation tensors themselves and require therefore either the explicit polar
decomposition of the deformation gradient or a closed-form representation for
U, v and R like (8.11) and (8.17). In the following we present the basis-free
solutions for U,g, v,r and R g in terms of the Cauchy-Green tensors C and
b (8.2) and the principal stretches A\; = v/A; (i = 1,2,...,s). To this end, we
apply the representation (7.38) for the derivative of the square root. Thus, we
obtain instead of (8.28)

2 2
C'c= Y my(C?P@CY", b= (b’ @b, (8.33)
p,q=0 p,q=0

where the functions 7,, result from (7.62) by setting again g (A;) = V/A; = \;.
This leads to the following expressions (cf. [18])

oo = ATHIGIIE — IHIG Ty + IHIIG
~I{ Iy (3I0g — 21113 + 3Tyl I — Iyl ,
no1 =m0 = AT IGIIy — Y1 — IH1ullly

+2I¢ (I1g + 1113y — AL I Ty + 2lu Ty Iy — 111 ]
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o2 = 120 = A [—IH 1Ty + IHIR; — I{Iylly — Iyllly]
mi = AT — A1y + 311y
HATHITR; — 615 Tullly + Tullly + 1],

M2 =11 = A7 [-I{ + 2[§ Ty — 204 Ty + Iyllly] ,

e = AT I3 + 1Ty, (8.34)
where
A =2 (Iylly — Hly)? Iy (8.35)

and the principal invariants Iy, IIy and IIly are given by (8.15).
Finally, substitution of (8.33) into (8.27) yields

2
Ur= > mpy [(C"@FCY)" + OFT @ €7 (8.36)
p,q=0
Similar we can also write

2
VE= Y [bp ® FTb? + (b’F © bq)t} . (8.37)
p,q=0

Inserting further (8.13) and (8.36) into (8.31) we get

2
Rrp=1®)» ¢C"

p=0

2
~F Y Gy {(cpw ©FCH)' £ CrET @ C(H_t} C (339)

p,q,7,t=0

where ¢, and 7,4 (p,q =0,1,2) are given by (8.16) and (8.34), respectively.
The third and fourth powers of C in (8.38) can be expressed by means of the
Cayley-Hamilton equation (4.95):

C? —1cC? +1IcC — IIcI = 0. (8.39)
Composing both sides with C we can also write

C* —1cC? +1IcC? — IcC = 0. (8.40)
Thus,

C? =1cC? — I C + 111,
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C* = (Ig - Iic) C? + (ll¢ — Icllc) C + IcIIcl. (8.41)

Considering these expressions in (8.38) and taking into account that (see, e.g.,
[44])

Ic =15 — 2y, llg = 11§ — 2yllly, Ml = I (8.42)

we finally obtain

2 2
Rr=18Y C"+F S g, [(cp © FCY)' + CPFT @ cq} L (3.43)
p=0 P,q=0

where

proo = T~ HIGII + 20 TG — 3IGITGIITy — TIGITGIIT,
TGS + STHITIINE, + 6T 1Ty — 315,111y
—6IG I I + 3Tullplllyy — I, + IIIY
po1 = prio = T IGIIY + IGIIG Ty — 110G — 61 IR + I Ty
F5IGIITY; + 2T T1Y; 4 ATHTIG I, — 6151 Ty
—6IG U IIIE + 6TuIIH I + Iullly — 210 1Y
foz2 = piog = 1 [IGIIIR; + IGIG Ty — IHITG — AIGITGIIIE,
+3IHII Iy + 4TI — STuIIGIIT, + yllTy]
pi1 =T HIGIy + IGIR, — 714 ITuIlly — 413113
+5I3 TG + 16TG Iy + 4T3 1T — 1615 Ty T
— 12T 1T 1Ty + 3IGIIY + 121G I, — 3ITuIIly ],
piiz = pio1 = =Y [IGIy + IHI — 5IG1IyITy — 21411

HATHIILY + 6151 Ty — 6TuIlyIIIg + 11 ],

pia2 = Ty [IHIy + I — 3Tullyllly + 31T ] (8.44)
and
T = —2(Iylly — Iy)® 11}, (8.45)

while the principal invariants Iy, Iy and IIly are given by (8.15).
The same result for R,g also follows from

Rrp=(FU ') p=I0U '+FU ' c:Cp (8.46)
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by applying for U1, ¢ (7.38) and (7.62) where we set g (A;) = (Ai)_l/2 =\t
Indeed, this yields

2
CV2c=U"lc= Y up(CPaCy, (8.47)
P,q=0

where ppq (p, g =0,1,2) are given by (8.44).

8.4 Time Rate of Generalized Strains

Applying the chain rule of differentiation we first write
E=Ec:C, (8.48)

where the superposed dot denotes the so-called material time derivative. The
derivative E,c can be expressed in a simple form in terms of the eigenprojec-
tions of E and C. To this end, we apply (7.49-7.50) taking (7.18) and (8.5)
into account which yields

Ec= il fij Pi@Py)°, (8.49)
fyr
where
f/z&” ifi=j,
fij = f(AAi;:J;;Aj) it (8.50)

A Dbasis-free representation for E,c can be obtained either from (8.49) by
expressing the eigenprojections by (7.43) with (7.81), (7.83) and (7.85) or
directly by using the closed-form solution (7.38) with (7.62), (7.78) and (7.80).
Both procedures lead to the same result as follows (cf. [22], [48]).

2
Ec= Y 7y (CP®C)". (8.51)

p,q=0

Distinct eigenvalues: \1 # Ao # A3 # A1,

SN () G AN () — f ()]

UOOZZ 2\, A2 - Z

i=1 i,j=1 ()‘12 - )‘?)3 Ay,

i#]

Y
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A A2 NN ()
Mo1 = Mo = — Z ( ! ;li;

=1
by AR ) = F ()
=1 (A2 = 22)% Ay
i#j
3 AQ)\Q ) 3 )\2>\2 )\i . )\
No2 = 720 = Z j2)\ A2 - Z ' Eg/\[gff Al)sii o)
7 J v

3

Y

i,j=1

i#]
g = 30 5D S0 S (033D 02 X [ ) =1 )
i—1 20 A? = (N2 = /\5)3 Ay 7

i#j

3 2 2\ £7 (Y. 3 2 2 N 4
Mo = -3 (5 +22) /) S (2 +20) 1 ) = F ()]

= AT S - x)’a,
i#j
(Ai) f j) o .
Z2AA2 Z Ak i#FJFk#A, (8.52)
with
A= (N =X (M =X)), i#jAkAi=123 (8.53)

Double coalescence of eigenvalues: N\j # Xj = A\, = A,

Moo = 2)\2/\2f( i) — (A )+)\5f,()\i)+)‘z5f/(/\)

(A2 - a2)° 2AA (A2 —a2)?
RN OO R SOV A OG) + N (N
o = mo = (A7 + %) (02— 22)? DA — 2
VIR IR WY
1 = 2
(A2 — )\2) 20 (A2 — \2)
No2 = 120 = M2 = N21 = N22 = 0. (8.54)

Triple coalescence of eigenvalues: Ay = Ao = A3 = A,
T\
2)\ 7

Insertion of (8.49) or alternatively (8.51) into (8.48) finally yields by (5.17);
and (5.48);

Moo = o1 = N0 = M1 = Moz = 720 = M2 = 21 = 122 = 0. (8.55)
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s 2

i,j=1 p,q=0

Example. Material time derivative of the Biot strain tensor E(!) =
U — I. Insertion of f(\) = A — 1 into (8.50) and (8.56); yields

s

1

O
ig=1 Ai A

P,CP;. (8.57)

Keeping (8.33) in mind and applying the chain rule of differentiation we can
also write

2
B U 0 G = Y 0ree, 859
p,q=0

where the coefficients 7,4 (p,¢ = 0,1,2) are given by (8.34) in terms of the
principal invariants of U (8.15).

8.5 Stress Conjugate to a Generalized Strain

Let E be an arbitrary Lagrangian strain (7.6);. Assume existence of the so-
called strain energy function ¢ (E) differentiable with respect to E. The sym-
metric tensor

T=4¢(E)E (8.59)

is referred to as stress conjugate to E. With the aid of the chain rule it can
be represented by

1
T = w (E) ,C - C,E: 2S : C,E, (860)

where S = 2¢) (E),c denotes the second Piola-Kirchhoff stress tensor. The
latter one is defined in terms of the Cauchy stress o by (see, e.g., [46])

S =det(F)F 'oF T, (8.61)
Using (8.59) and (7.7) one can also write

) ) 1. )

w:T:E:S:QC:S:E(Q). (8.62)

The fourth-order tensor C,g appearing in (8.60) can be expressed in terms of
the right Cauchy-Green tensor C by means of the relation

P =Eg=E,c:Cxg, (8.63)
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where the derivative E,¢ is given by (8.49-8.50). The basis tensors of the latter
representation are

P, o P;) if § = 4,
ij:{( O P:) S (8.64)

(PZ‘®PJ‘+PJ‘®PZ‘)S if 1 #£ j4.

In view of (4.44), (5.33) and (5.55) they are pairwise orthogonal (see Exercise
8.2) such that (cf. [48])

(8.65)

P ifi=kandj=lori=1[andj=Fk,
fPij :?kl = .
O  otherwise.

By means of (4.46) and (5.86) we can also write
Y Py= (Z Pi> (> P || =1 =2 (8.66)
ij=1 i=1 j=1

j>i

Using these properties we thus obtain

Ce= > f;'(P;@P))’, (8.67)

4,j=1

where fi; (4,7 =1,2,...,s) are given by (8.50). Substituting this result into
(8.60) and taking (5.22);, (5.46) and (5.47) into account yields [19]

1,
T=, > f;'PiSP;. (8.68)

4,j=1

In order to avoid any reference to eigenprojections we can again express them
by (7.43) with (7.81), (7.83) and (7.85) or alternatively use the closed-form
solution (7.38) with (7.62), (7.78) and (7.80). Both procedures lead to the
following result (cf. [48]).

2
T= ) n,CrSC. (8.69)

p,q=0

Distinct eigenvalues: A1 # Aa # Az # A1,

3 3
=3 MM S NZAZXL
Lo f AT A 2 (N = 02) [F (\) - £ ()] A
i)
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A2+ A2) N2AIN,
770127710:—2( Jf/()i))Ajzk

=1
(/\2 + A7) AIAZ
" Z )17 )~ F )] A
3 /\2/\2 3 )\?Ai
Z fr A %51 2(A7 = A3) [f () = F (M) Ay’
i#j

RN P Y R (A2 +22) (A2 4 22)

e ; Fr(N) A2 jz::l 2 (A2 = X2) [f (\) — F ()] Ay
i#j

IR N OV P PR A2 42

e ; F/(n) A2 *Z: 2 (A2 = 22) [f (A) — f ()] A
i#]
& Ai i 1
2 =2 pgar Z: 2 (2 = 22) [F (\) — f ()] A (8.70)
i#]
where i # j # k # i and A; are given by (8.53).
Double coalescence of eigenvalues: N\j # Xj = A\, = A,

- AZA2 LA { XN }
TOTTR )~ F N T 2= L) T ]

o AZ 4 A2 A [ A )\i]
ML= 5 (02— [F )~ SN 2 - L ow) T o)

_ 1 N 1 [ Ao }
TEZT R =) = F N 2= L) T ]
No2 = 120 = M2 = N21 = N22 = 0. (8.71)

Triple coalescence of eigenvalues: Ay = Ao = A3 = A,

A
Moo = frn Mo1 = 110 = 111 = 7o2 = 720 = M2 = N21 = 122 = 0. (8.72)
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8.6 Finite Plasticity Based on the Additive
Decomposition of Generalized Strains

Keeping in mind the above results regarding generalized strains we are con-
cerned in this section with a thermodynamically based plasticity theory. The
basic kinematic assumption of this theory is the additive decomposition of
generalized strains (7.6) into an elastic part E. and a plastic part E, as

E=E.+E,. (8.73)

The derivation of evolution equations for the plastic strain is based on the
second law of thermodynamics and the principle of maximum plastic dissipa-
tion. The second law of thermodynamics can be written in the Clausius-Planck
form as (see, e.g. [46])

D=T:E—1¢ >0, (8.74)

where D denotes the dissipation and T is again the stress tensor work conju-
gate to E. Inserting (8.73) into (8.74) we further write

D:(T— aw);Ee+T:Ep>0, (8.75)
0E,

where the strain energy is assumed to be a function of the elastic strain as

V=1 (E.). The first term in the expression of the dissipation (8.75) depends

solely on the elastic strain rate E., while the second one on the plastic strain

rate Ep. Since the elastic and plastic strain rates are independent of each other

the dissipation inequality (8.75) requires that

oY
T = . .
OE, (8.76)
This leads to the so-called reduced dissipation inequality
D=T:E, >0. (8.77)

Among all admissible processes the real one maximizes the dissipation (8.77).
This statement is based on the postulate of maximum plastic dissipation (see,

g., [29]). According to the converse Kuhn-Tucker theorem (see, e.g., [6]) the
sufficient conditions of this maximum are written as

B,=¢ 0, ée=0, ®<o, (8.78)
oT

where @ represents a convex yield function and ( denotes a consistency pa-

rameter. In the following, we will deal with an ideal-plastic isotropic material

described by a von Mises-type yield criterion. Written in terms of the stress

tensor T the von Mises yield function takes the form [32]
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2
& = ||devT| — \/30y, (8.79)

where oy denotes the normal yield stress. With the aid of (6.51) and (6.131)
the evolution equation (8.78); can thus be given by

E, = {|[|devT|

: . devT : devT
= (||devT|| ,qevT : dev T, =  Pdeyv = . 8.80
C || ev || ydevT ev T C”deVT” 1 C”deVT” ( )
Taking the quadratic norm on both the right and left hand side of this identity
delivers the consistency parameter as ¢ = ||E,||. In view of the yield condition
® = 0 we thus obtain
2 E
devT = \/30y e (8.81)
2t
which immediately requires that (see Exercise 1.48)
trE, = 0. (8.82)

In the following, we assume small elastic but large plastic strains and spec-
ify the above plasticity model for finite simple shear. In this case all three
principal stretches (8.21) are distinct so that we can write by virtue of (7.6)

3 3

E,=E=) f()APi+> (NP (8.83)

=1

By means of the identities trP; = 1 and trP; = 0 following from (4.62) and
(4.63) where r; =1 (i = 1,2, 3) the condition (8.82) requires that

Zf’ (Ai) Ai = 0. (8.84)

In view of (8.21) it leads to the equation
FF)=fF(AHAa?=0, VrA>0, (8.85)

where we set \; = A and consequently A\, = A~!. Solutions of this equations
can be given by [22]

1
(A= \7%)  for a#0,
fa(X) =4 2a (8.86)
In A for a = 0.

By means of (7.6); or (7.18); the functions f, (8.86) yield a set of new gen-
eralized strain measures
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1
2a

an:;InC for a =0,

1
(Ur-u = (C¥/2 —C™%/2) for a #0,

E® = (8.87)

among which only the logarithmic one (a = 0) belongs to Seth’s family (7.7).
Henceforth, we will deal only with the generalized strains (8.87) as able to
provide the traceless deformation rate (8.82). For these strains eq. (8.81) takes
the form

i (a)
dovT(@ — \/ 2oy BT (3.88)

where T{% denotes the stress tensor work conjugate to E(®. T{® ijtself has
no physical meaning and should be transformed to the Cauchy stresses. With
the aid of (8.60), (8.61) and (8.63) we can write

= FSF' = F(T® .9, )FT .
7= qetF D detF ( fp) ’ (8.89)
where

P, =2E ¢ (8.90)

can be expressed either by (8.49-8.50) or by (8.51-8.55). It is seen that this
fourth-order tensor is super-symmetric (see Exercise 5.11), so that T(® : P, =
P, : T{¥_ Thus, by virtue of (1.162) and (1.163) representation (8.89) can be
rewritten as

1
" detF

1
" detF

With the aid of the relation

o F (fPa : T<“>) FT

F [fPa : devT{® + ;trT<a> (P : I)] FT. (8.91)

d
P, I=2  E9(C+1
gt (C+1tI)

t=0

3
=Y DN (8.92)

t=0 =1

d 3
- 2dt;fa (\/A§+t) P,

following from (6.112) and taking (8.86) into account one obtains

F(P,:1)FT = ;F (Ca/Q—l n C—a/2—1) FT — ; (ba/Q n b—a/Q) .

Inserting this result into (8.91) yields
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1

77 detF

F (fPa : devT<“>) F' 46 (8.93)

with the abbreviation

trT(@
5 = b®/2 4 be/2) . 8.94
7 6 detF ( * ( )
Using the spectral decomposition of b by (8.4) and taking into account that
in the case of simple shear detF = 1 we can further write

1
b= 6trT<“> [(A*+ A7) (p1 + P2) + 2ps] (8.95)

where A is given by (8.21). Thus, in the 1-2 shear plane the stress tensor &
has the double eigenvalue étrT“‘> (A* 4+ A7%) and causes equibiaxial tension
or compression. Hence, in this plane the component & (8.94) is shear free and
does not influence the shear stress response. Inserting (8.88) into (8.93) and
taking (8.18) and (8.48) into account we finally obtain

2 PP, A .
o=/ oyF { } F' +6, (8.96)
\/3 |Pa: Al
where
. 0 1/20
A:2_C: 1/2 v 0| e;@ej. (8.97)
v 0 00

Of particular interest is the shear stress o'? as a function of the amount

of shear ~. Inserting (8.51-8.52) and (8.90) into (8.96) we obtain after some
algebraic manipulations

12 2\/(442) D202 (1) + 42 (D)

= 8.98
- e , (5.95)
where
4 2
r="4 Va+y (8.99)

2 2

and 7y = oy /v/3 denotes the shear yield stress. Equation (8.98) is illustrated
graphically in Fig. 8.1 for several values of the parameter a. Since the presented
plasticity model considers neither softening nor hardening and is restricted to
small elastic strains a constant shear stress response even at large plastic
deformations is expected. It is also predicted by a plasticity model based on
the multiplicative decomposition of the deformation gradient (see, e.g., [22]
for more details). The plasticity model based on the additive decomposition
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B 7 I I I I I I I
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Fig. 8.1. Simple shear of an ideal-plastic material: shear stress responses based on
the additive decomposition of generalized strains

of generalized strains exhibits, however, a non-constant shear stress for all
examined values of a. This restricts the applicability of this model to moderate
plastic shears. Indeed, in the vicinity of the point v = 0 the power series
expansion of (8.98) takes the form

012:14—1@2724- 1a4—3a2—1 74—|—O(76) (8.100)
Ty 4 16 4 ' '

Thus, in the case of simple shear the amount of shear is limited for the log-
arithmic strain (a = 0) by 7* < 1 and for other generalized strain measures
by 72 <« 1.

Exercises

8.1. The deformation gradient is given by F = F?‘jei ® e, where
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4 120
[F]=1-220
001

Evaluate the stretch tensors U and v and the rotation tensor R using (8.11-
8.12) and (8.16-8.17).

8.2. Prove the orthogonality (8.65) of the basis tensors (8.64) using (4.44),
(5.33) and (5.55).

8.3. Express the time derivative of the logarithmic strain E(®) by means of
the relations (8.48-8.50).
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Exercises of Chapter 1
1.1 (a) (A4), (A.3):
0=0+(-0)=-0.
(b) (A.2-A.4), (B.3):
a0 =0+ a0 = azx + (—azx) + a0
=a(0+z)+ (—azx) =azx + (—azx) = 0.
(c) (A.2-A.4), (B.4):
Ox =0x+ 0 =0x + 0x + (—0x) =0x + (—0x) =0, VxeV.
(d) (A.2-A.4), (B.2), (B.4), (¢):
(-Dz=(-lz+0=(-lz+xz+(—=x)
=(-1+l)x+(—x)=0x+(—x)=0+(—x) = —=x, VrecV.
(e) If, on the contrary, o # 0 and « # 0, then according to (b), (B.1), (B.2):
0=a'0=a"'(az) ==

1.2 Let, on the contrary, x; = 0 for some k. Then, > ! a;x; = 0, where
ar=1,0;,=0,0=1,....k—1,k+1,...,n.

1.3 If, on the contrary, for some k < n: Zle a;x; = 0, where not all
a;,(i=1,2,... k) are zero, then we can also write: Z?:l a;x; = 0, where
a;=0,fori=k+1,... n.

1.4 (a) 5§aj = 6tal + 8ia® + 6ia® = a,
(b) 5ijxixj =izt + Sprta? 4+ ..+ Sgg23a® = ola! + 22a? + 2323,

(c) 6] =61 + 65 + 63 = 3,
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af; i_ af; 1 af; 9 af; 3
(d) 8xjdx = &Eldx + 8x2dx + 8x3d$ )
1.5 (A.4), (C.2), (C.3), Ex. 1.1 (d):

0O-z=[z+(—2) z=z+(-lz].z=x-x—z =0

1.6 Let on the contrary Y .-, a;g; = 0, where not all o; (i =1,2,...,m)
are zero. Multiplying scalarly by g; we obtain: 0 = g; - (3", ag;). Since
gi - g; = 0 for i # j, we can write: a;g; -g; = 0(j = 1,2,...,m). The fact
that the vectors g; are non-zero leads in view of (C.4) to the conclusion that
a; =0(j =1,2,...,m) which contradicts the earlier assumption.

1.7 (1.6), (C.1), (C.2):

lz+y|* = (z+y) - (z+y)
=z ztz-yt+ty zt+y y=|z| +22-y+ |y’

1.8 Since G = {g1,92,...,9n} is a basis we can write a = a’g;. Then,
a-a=a'(g;-a). Thus,ifa-g; =0(i=1,2,...,n), then a-a = 0 and
according to (C.4) a = 0 (sufficiency). Conversely, if a = 0, then (see Exercise
1.5)a-g;=0(i=1,2,...,n) (necessity).

1.9 Necessity. (C.2):a-x=b-x = a-x—b-x=(a—b) - =0, Ve € E".
Let € = @ — b, then (a — b) - (a — b) = 0 and according to (C.4) a —b = 0.
This implies that a = b. The sufficiency is evident.

1.10 (a) Orthonormal vectors e;, e; and e can be calculated by means of
the Gram-Schmidt procedure (1.10-1.12) as follows

V2/2

e = ”91” =< Vv2/2 0,
g1 0
1/2 o V2/6
eh=gs—(ga-e)er =2 —1/2 3, ex= 2 =< —/2/6 5,
10/9 y 2/3
es=g3—(gs-ex)ex—(gs-er)er =4 —10/9 5, e; ’ -2/3

llesl

5/9 1/3

(b) According to (1.16)y the matrix [3?] is composed from the components of
the vectors g; (i = 1,2, 3) as follows:

11 o0
)= |21 -2
42 1

In view of (1.18)
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By (1.19) the columns of this matrix represent components of the dual vectors
so that

-1 1/5 2/5
g'=<% 25, g°=¢-1/53, g*=<-2/5
0 —2/5 1/5

(c) First, we calculate the matrices [g;;] and [¢”] by (1.25)2 and (1.24)

.36
230 : 36 2
9] =lgi-9;]= 398 |. [¢7] =l9:5] ' = 5 95 95 |
6821
6 2 9
5 25 25

With the aid of (1.21) we thus obtain

1
gt =g"g1 +9%g2+¢%gz3=4{ 2 },
0

1/5
9> =g%'g1 4+ g%Pg2+ g%Pgs ={ —1/5 },
—2/5
2/5
g° =991+ 9%g2 + ¢*°gs = { —2/5
1/5

(d) By virtue of (1.35) we write
11 0

g=pi|=]21-2| =5
42 1

Applying (1.33) we further obtain with the aid of (1.47)
2 1 -2

9129_192><93=—5 4 2 1 |=—ai+2as,
a; as as
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1 4 2 1
9229_1Q3><91=—5 110 :5(611—612—20,3)7
a; as as
1 1 1 0
@ =9'g: ><g2:—5 2 1 =2 :5(2a1—2a2+a3),
a] as as

where a; denote the orthonormal basis the components of the original vectors
gi (i =1,2,3) are related to.

1.11 Let on the contrary Z?Zl a;g' = 0, where not all ; are zero. Multi-
plying scalarly by g; we obtain by virtue of (1.15): 0 = g; - (Z?Zl aigi) =
S bt =a; (j=1,2,3).

1.12 Similarly to (1.35) we write using also (1.18), (1.19) and (1.36)

[99%9°] = [0je'aje’ aje’] = ajaja] [eiejek]
_ alatae = [ai] = 5] = g7,

(1.42) immediately follows from (1.24) and (1.34).

1.13 The components of the vector g; x g; with respect to the basis g" (k=
1,2,3) result from (1.28), and (1.39) as

(g7xgj)gk:[g7gjgk]:ezjkga iajvk:152735

which immediately implies (1.40). In the same manner one also proves (1.44)
using (1.43).

1.14 (a) 5ij€ijk = 511611k + 512612k + ...+ 533633k =0.

b) Writing out the term ehme . we first obtain
J

ik 111 112 133
e m@jkm =¢' €11 + e €j12 + ...+ e €433

i12 i21 i1 i31 32 i2
=e"ej10 + ePejor + eMPejiz + e lejs1 + € ejsn + € e 0.
For ¢ # j each term in this sum is equal to zero. Let further i = 7 = 1.
Then we obtain 67'12€j12 + el21ej21 + ell3ej13 + el3lej31 + e”2ej32 + el23ej23 =
el32e139 +e1%eq93 = (—1) (=1) +1-1 = 2. The same result also holds for the

cases ¢ = J = 2 and ¢ = j = 3. Thus, we can write ezkmejkm = 25

(c) By means of the previous result (b) we can write: e“/*e;;;, = 25! = 2(51 +
62 4 63) = 6. This can also be shown directly by

ijk 123 132 213 231 312 321
€%, = e “erag + € "Te1za + € Cears + e eas + €7 Tegio + €7 e

=114 (=) (=) + (1) (=) +1-1+1-14(=1)- (=1) =6.

(d) €9 eppm = elepn + e9%epn + e3ep3. It is seen that in the case i = j

or k = [ this sum as well as the right hand side 4, 5j 57(5] are both zero. Let
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further 7 # j. Then, only one term in the above sum is non-zero if k¥ = 7 and
I = j or vice versa |l =i and k = j. In the first case the left hand side is 1 and
in the last case —1. The same holds also for the right side 367 — ;67 Indeed,

Weobtainfork‘zi#l:j:525{—5f5i:1-1—0:1andforlzi;ékzj:
610 — 66 =0—-1-1=—1.

1.15 Using the representations a = a'g;, b = bjgj and ¢ = ¢;g' we can write
by virtue of (1.40) and (1.44)

(axb)xec= [(aigi) X (bjgj)} X c= (aibjeijkggk) X (clgl)
= aibjcleijkeklmgm = aibjcleijkelmkgm.
With the aid of the identity e?™eg,, = 5};5{ — 5{35% (Exercise 1.14) we finally
obtain

(@ x b) x ¢ =a'ble; (5,07 = 6705) g = a'V 1807 g — a'V 16789

=d'te;gj —a'Vejgi = (a-c)b— (b-c)a.
Relation (1.169) immediately follows from (1.168) taking into account the
definition of the operator (o) (1.66) and the tensor product (1.80).

1.16 (A.2-A.4), (1.49):

0=Ax+ (—Ax)=A(x+0)+ (—Azx) =Ax+ A0+ (—Ax) = AOD.
1.17 (1.50), Exercises 1.1(c), 1.16: (0A)z = A (0z) = A0 = 0, Yz € E™.
1.18 (1.62), Ex. 1.1T: A+ (-A)=A+(-1)A=(1-1)A=0A=0.

1.19 We show that this is not possible, for example, for the identity tensor.
Let, on the contrary, I = a ® b. Clearly, a # 0, since otherwise (a ® b) x =
0Vx € E". Let further « be a vector linearly independent of a. Such a vector
can be obtained for example by completing a to a basis of E”. Then, mapping
of @ by I leads to the contradiction: = (b- x) a.

1.20 Indeed, a scalar product of the right-hand side of (1.85) with an arbitrary
vector x yields [(y - a) b]-x = (y - a) (b - ). The same result follows also from
y-[(a@b)x|=(y-a)(b-z), Va,y € E" for the left-hand side. This implies
that the identity (1.85) is true (see Exercise 1.9).

1.21 For (1.88); we have for example
g'Ag’ =g’ (Aklgk ® Ql) g’ = A (gi . gk) (gz 'gj) = Akléiélj =AY,

1.22 For an arbitrary vector = z'g; € E® we can write using (1.28), (1.40)
and (1.80)
Wz =wxx= (wigi) X (xjgj)

= eijkgwixjgk = eijkgwi (93 : Qj) g~ = eijkgwi (Qk ® Qj) T.
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Comparing the left and right hand side of this equality we obtain
W = ejrgw'gt @ g7, (S.1)

so that the components of W = Vijg’C ® g’ can be given by Wy = eijkgwi
or in the matrix form as
0 —wd w?
Wiil=g [eijkwq =g| w? 0 —w!

—w? w0

This yields also an alternative representation for Wx as follows

Wz =g [(w2x3 _ w3x2) gl + (w3x1 _ wlx:&) g°+ (w1x2 _ w2x1) 93} .
It is seen that the tensor W is skew-symmetric because W' = —W.
1.23 According to (1.73) we can write

R =cosal +sinaes + (1 — cosa) (es ® e3) .

Thus, an arbitrary vector a = a’e; in E? is rotated to Ra = cosa (aiei) +
sinaes x (a'e;) + (1 — cos @) a®es. By virtue of (1.46) we can further write

Ra = cosa (aiei) + sina (aleg — a261) + (1 —cosa)a’es
= (al cosa — a’ sin a) e + (al sina + a? cos a) ey + a363.
Thus, the rotation tensor can be given by R = R7e; ® e;, where

N cosa —sina 0
[R”} = | sina cosa 0
0 0 1

1.24 With the aid of (1.88) and (1.97) we obtain

‘ ‘ | 0-10][23 6 —3-9-8
[A%] = [A%g] = [A%] g = [0 0 0] |398 | =] 0 0 0],
100 [6821] | 2 3 6
| 4 2367 [0-10] [6-2 0]
{Ag} - {gikAk]] — (9] [A’ﬂ —|39s8|]looo0|=|8-3 of,
6821 [100] |21-6 0]
[Ay] = [gikA{Cj} = [gix] [Akg} = [Azkgkj} = |:A1:| [gr;]
236 -3 -9 -8 6-2 0 236 6 020
=1({39 8 00 0=]8-3 0 398 | =] 7-324
6821 2 3 6 21-6 O 6821 24 978
1.25 By means of (1.54), (1.89), (1.103), Exercise 1.16 we can write
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(AO)z = A (0z) = A0 =0, (0A)z =0(Az)=
(Al)z = A (Iz) = Az, (IA)z =1I(Az) = Ax,
A (BC)z = A [B(Cz)] = (AB) (Cz) = [[AB)Clz, Va cE".

1.26 To check the commutativeness of the tensors A and B we compute the
components of the tensor AB — BA:

(AB - BA),| = [ALBY - By AL = [A%] [BY] - [B5] [A%]
(0207 [000 0007 [020 000
— 1000|000l =1]o00]]0o00|=1000
1000] [001 001|000 000
Similar we also obtain
. [0-20] | 0-10
{(AC—CA);}: 0 00, [(AD—DA)?J}: 0 00/,
0 00] 0 00
o [00-3] | 000
[(BC—CB)Z}: 00 o0, [(BD—DB)?J}: 000/,
01 0] 000
| 0 1-27
[(CD—DC)?J: 0 0 0
019/2 0

Thus, A commutes with B while B also commutes with D.

1.27 Taking into account commutativeness of A and B we obtain for example
for k=2

(A+B)’=(A+B)(A+B)=A?>+AB+BA+B?=A%2+2AB+B>

Generalizing this result for k = 2,3, ... we obtain using the Newton formula
"k k k!

A +B)f = A B’ wh = S S.2

(A+B) z_;(z) where <z> il (k — )] (5:2)

1.28 Using the result of the previous Exercise we first write out the left hand
side of (1.170) by

2 (A+B)F 1N (R i
exp(A+B) = Z ( il ) = Z ol <Z>Ak B
k= ’ T i=0
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i=k i=k
a /
e 4
r == r _7
S g o0 summation
area
3 summation 3
area
2 2 o9
1 1
0 0 ~
o |
o 1 2 3 00 k 0o 1 2 3 -- 00 k

Fig. S.1. Geometric illustration of the summation area and the summation order

Changing the summation order as shown in Fig. S.1 we further obtain

o o Ak—iBi
exp(A+B) = Zi'(k—i)"
i=0 k=i ’

By means of the abbreviation [ = k — i it yields

IR
exp(A+B) = ZZAZ';?

1=0 [=0

The same expression can alternatively be obtained by applying formally the
Cauchy product of infinite series (see e.g. [24]). For the right hand side of
(1.170) we finally get the same result as above:

exp (A) exp (B) = (i ﬁl> (Z ) Yy A

1=0 i=0 1=0 i=0
1.29 Using the result of the previous Exercise we can write
exp (kA) =exp[(k —1)A + Al =exp[(k—1)A]exp (A)
= oxp [(k — 2) Al [exp (A)]” =
— exp (&) fexp (A)" = exp (A)]"
1.30 Using the definition of the exponential tensor function (1.114) we get

* 0k

0
mp@)zE:k':I+0+O+“.:L
k=0
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—I" &I — 1
exp (I) = Z o Z x zlz il =exp(1)I=el.
k=0 k=0 k=0

1.31 Since the tensors A and —A commute we can write
exp (A)exp (—A) =exp(—A)exp (A) =exp[A + (—A)] =exp(0) =L
1.32 (1.114), (S.2):

oo

(A +B)F (A +B)F
exp(A+B) = Z + +

ﬁMg

O

1.33 (1.114), (1.135):

op(QaQ”) =3 | (@aQ7) =3 | @aqTaaQ™...qaQ?

k=0 k=0 k times

=> ,,QA"Q"T=Q (Z A’“) Q" = Qexp(A)Q".
k! k!
k=0 k=0
1.34 We begin with the power of the tensor D.
D’ =DD = (Di,g; ® ¢’) (D?“gk ®gl)
=D',Dhdélgi0g' =D\, D)jgi® g = (DQ) gi®g,

where {(Dz)?j] = [Dﬂ [DZ] . Generalizing this results for an arbitrary integer

exponent yields

N i1
(™)) = [D] . [Dy] = | 0 3™ 0
~ 0 0 1™
m times
We observe that the composition of tensors represented by mixed components
related to the same mixed basis can be expressed in terms of the product of
the component matrices. With this result in hand we thus obtain

(o]

exp(D)=)_ ' =exp(D)};g: 09,
m=0 :
where

S0 0
m=0 o e200
{exp (D)ZJ — 0o 2% 0 |=|0¢0
m=0 . 0 0e

0 0 !
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For the powers of the tensor E we further obtain
EF=0,k=2,3...

Hence,

o0 Em
exp (B) = ) o =I+E+0+0+.. =I1+E,

m=0
so that
‘ 110
Fxp(EyJ ~lo10
001

To express the exponential of the tensor F we first decompose it by F = X+Y,
where

‘ 000 ‘ 020
(X5]=1]000], [Y,]=|000
001 000

X and Y are commutative since XY = YX = 0. Hence,
exp (F) =exp(X+Y) =exp(X)exp (Y).

Noticing that X has the form of D and Y that of E we can write

‘ 100 ‘ 120
mexn}: 010/, meYn}: 010
00e 001
Finally, we obtain
4 | 4 1007 [120 120
{exp (F)?j} = [exp (X)?J} [exp (Y)f’j} =lo1o|]o1o|l=]010
00e| |001 00e

1.35 (1.120): (ABCD)" = (CD)" (AB)" = DTCTBTAT.
1.36 Using the result of the previous Exercise we can write

(AA.. AT = ATAT AT = (AT)".
ST ST T

k times k times

1.37 According to (1.124) and (1.125) BY = A7", B;; = Aj;, B/ = A/, and
B!; = A;" so that (see Exercise 1.24)

g 7 001 6 7 24
[B”] = [A”} =|-100|, [By]= [Aij]T =1 0-3 9},
000 20 24 78
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| . [-302 | o [6 82
B/ =[a5)" = [-903|, [B]=[a]] =|-2-3 -6
~806 00 0

1.38 (1.120), (1.126), (1.131):
1=1"=(AA ) = (A )" AT

1.39 (A’“)f1 is the tensor satisfying the identity (A’“)f1 AF = 1. On the
other hand, (A=) A¥ = ATTAL .. AT AA . A = L Thus, (A7) =
~

~
k times k times

(a5~

1.40 An arbitrary tensor A € Lin" can be represented with respect to a
basis for example by A = AYg; ® g;. Thus, by virtue of (1.141) we obtain:

cod:A=cwod: (AVg;2g;)=A"(c g:) (g, d)
=c(Ag;®g;)d=cAd=dA"c.

1.41 The properties (D.1) and (D.3) directly follow from (1.141) and (1.143).
Further, for three arbitrary tensors A, B = B¥g; ® gjand C =C g ® g;j
we have with the aid of (1.142)

A:(B+C)=A: [(BY+CY)(g;i®g))] = (BY+CY)(g:Ag))
=B (9iAg;) + C" (giAg;)
=A: (B”gi@)gj) + A (C”gi@)gj) =A:B+A:C,
which implies (D.2).
1.42 By virtue of (1.108), (1.89) and (1.142) we obtain
(ab)(cad)] T=[bc)(asd) I
=(b-¢)(ald) =(a-d)(b-c).
1.43 By virtue of (1.15), (1.25) and (1.149) we can write
trA = tr (A g, ®gj) A” (9i-g5) = AV g”
=t (Ayg' ©g’) = Ay (9" 97) = Ayyg”
= tr (Alg: @ g') = AL; (gi - g') = Ajjo] = AL
1.44 Using the results of Exercise 1.10 (c¢) and by means of (1.159) we obtain
w =g (W2g' + W3g? + W2g?)
=-5|—(—a1 +2as) — 3;) (a1 —ag —2a3) + ;) (2a1 — 2as + a3)
= —4a; +9a- — 7as.

145 (1.4 M: W=MT: Wr=M: (-W)=—-(M: W) =0.
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1.46 WPF is skew-symmetric for odd k. Indeed, (Wk)T = (WT)k
(—=W)" = (=1)* Wk = —W*. Thus, using the result of the previous Exercise
we can write: trW# = W* : T =0.

1.47 By means of the definition (1.153) we obtain

1 -
sym (skewA) = ) skewA + (skeWA)T}
11 1 T
= A-AT A-AT
s a-an e a-an]
11, 1 1o 1]
= _2A 2A +2A 2A}—O.

The same procedure leads to the identity skew (symA) = 0.
1.48 On use of (1.163) we can write

sph (devA) = sph {A - ltr (A) I} = ltr [A -
n n n

1
tr(A) I} I=0,
where we take into account that trI = n. In the same way, one proves that

dev (sphA) = 0.

Exercises of Chapter 2

2.1 The tangent vectors take the form:

r . . .
g1 = 9 = 7 COS @ sin ¢e; — rsin psin ges,
2

0
9= gy = 7 sin ¢ cos ge; — 1 sin gpes + r cos  cos pes,
or . . .
gs = , =singsin peq + cos gpes + cos psin pes. (5:3)

For the metrics coefficients we can further write:
g1-91 = (rcosysinge; — rsingsin ges)

- (1 cos psin pe; — rsin psin pes) = r2sin? ¢,

g1-g2= (rcosysinge; — rsingsin ges)
- (rsin ¢ cos gey — rsin pes + r cos @ cos pes)

72 (sin ¢ cos @ sin ¢ cos ¢ — sin @ cos @ sin ¢ cos @) = 0,

g1-9gs = (rcosysinge; — rsingsin ges)
- (sin p sin ¢eq + cos pes + cos @ sin ges)

r (sin @ cos psin? ¢ — sin ¢ cos @ sin? qS) =0,



g2-g2 = (rsingcosge; — rsindes + r cos p cos pes)
- (rsin ¢ cos pe; — r sin pes + 1 cos ¢ cos pes)
= r? (sin2 @ cos? ¢ + sin? ¢ + cos? @ cos? gb) =72
ga-gs = (rsingcosge; — rsindes + r cos p cos pes)
- (sin p sin peq + cos pes + cos @ sin ges)
=r (sin2 @ sin ¢ cos ¢ — sin ¢ cos ¢ + cos® @ sin ¢ cos qS) =0,
gs-gs = (sinpsingde; + cosdes + cospsin pes)
- (sin p sin ¢eq + cos pes + cos @ sin ges)
= sin? psin? ¢ + cos ¢ + cos® psin? ¢ = 1.
Thus,
r?sin®¢ 0 0
l9i5] = [gi - 9i] = 720
01
and consequently
0
‘ . 2 sin? ¢
[g”] =lgy] = 1 0
r2
01

Solutions

Finally, we calculate the dual basis by (1.21);:

1 cos ¢ sin ¢
1 -1 -1
g = 5.2, 91= er — . €3,
r?sin” ¢ in ¢ sin ¢
2 1 —1 —1 -1
g = ,g92=r" sinpcospe; — 1 singes +r- " Cospcos pes,
r

g° = g3 = sin psin ge; + cos pey + cos @ sin pes.

197

2.2 The connection between the linear and spherical coordinates (2.149) can

be expressed by
x! = rsinpsin ¢,
Thus, we obtain
ox!
dp
O0x?
dp
ox?
9

= r cos @ sin @,

:07

= —rsin e sin ¢,

3

2?2 =rcos¢, x°=rcosysing.

Oz’ = rsinycos ¢ O’ = sinysin ¢
o Tooor ’
2 2
a;qb = —rsin g, 8;71 = CO0S ¢,
3 3
a;qb = 7 COS (p COS ¢, 8;71 = cos psin ¢.
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Inverting the so-constructed matrix { Oz' Ox' Ox } further yields according
Jdp 0¢ Or
to (2.22)
dp  cosp dp _0 dp _ sing
Oxl  rsing’ 0x2 0x3  rsing’
0¢  singpcos¢ 0¢ _ sing 0¢  cospcosg
oxt r S S I r ’
88;1 = sin ¢ sin ¢, 88; = cos ¢, 88333 = cos @ sin ¢.

2.3 Applying the directional derivative we have

= 50y (r+sa)

d -1
(@): o lIr+sal .

s=0 s=0
d _
= [r-r—|—2sr-a—|—s2a-a} 1/2
ds 5—0
_ 1 2r-a+2sa-a _ T-a
2((r+sa)-(r+ sa)]B/2 “0 ||"°||3
Comparing with (2.52) finally yields
_ r
grad r| == 7.
([l
(b): d(r—i—sa) w = d(r w + sa - w) =a-w
. ds s=0 a ds s=0 a .
Hence, grad (r - w) = w.
d d 5
(¢): , (r+sa)A(r+sa)l = | (rAr+saAr+srAa+ s’aAa)
ds o ds <=0

=aAr+rAa=(Ar)-a+ (rA)-a=(Ar+rA)-a,
Thus, applying (1.115) and (1.153); we can write
grad (rAr) = Ar +r7A = (A+A")r =2 (symA)r.

(d): (?SA (r + sa) . = (i (Ar + sAa) . = Aa.

Comparing with (2.54) we then have

grad (Ar) = A.
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(e): In view of (1.65) and using the results of (d) we obtain
grad (w x r) = grad (Wr) = W.

With the aid of the representation w = w'g; we can further write (see Exercise
1.22)

W=Wi,g'®g, [Wyl=g| vw* 0 —w
—w? w0

2.4 We begin with the derivative of the metrics coefficients obtained in Ex-
ercise 2.1:

(000 2r2singcos¢ 00
ai‘ 8,
[gijal]:[agj]— 000 a[gijv2]:|:ag¢j:|: 0 001,
@ 1000 0 00
[ 2rsin?¢ 0 0
0Gij
[gz‘j,3]=[agj]= 0 2r 0
" 0 00

Thus, according to (2.75)

1
Ciji] = |, (grisj 9155 —Gijn )]

12
0 r?singcos¢ rsin’ ¢
= | r2sin¢gcos¢ 0 0 ,
rsin® ¢ 0 0
1 [ —r?singcosg 0 0
[Cije] = {2 (92ij +92j+i —Gij»2 )] = 0 0rf|,
i 0 r 0
_ o
1 —rsin“¢ 0 0
[Lijs] = {2 (93015 +9355i —Gij»>3 )] = 0 —r 0
i 0 0 0

With the aid of (2.68) we further obtain
L5 -
Il = g"'Tiji = g"'Tij1 + g*°Tijo + g™Tijs = ) .Jlg , 4,7 =1,2,3,
r28in” ¢

0 coteg rt
Th] = lcote 0 0 |, (S.5)
r~t 0 0
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I ..
I? = ¢*Ti = ¢°' Tij1 + g% Tijo + 9% Tijs = 7527 ni=123,
—sin¢gcos¢p 0 0
[I‘fj] = 0 0 r 1], (S.6)

0 10

F?j = ¢*'Tij = ¢*'Tiji + ¢ Tijo + ¢%Tijz = Tijs, 4,5 = 1,2,3,

—rsin®¢ 0 0
Myl=1 0o —roj. (8.7)
0 00

2.5 Relations (2.88) can be obtained in the same manner as (2.86). Indeed,
using the representation A = A;;g° ® g’ and by virtue of (2.73) we have for
example for (2.88);:

A7k = (Al]gl & gJ) 'k
=Aijg ©g +A5g L R9 + Aijg © g7k
= Aijng @97 + Ay (-Tha') @'+ Ayg' © (~Tg')
= (Ayx —AyTY, — Ailré‘k) g ®g.
2.6 (1.91), (2.63)a:
0=1:=1(9;;9'®9") v=0ilc 9 ®9° = (¢79: @ 9;) k= 9"|1 9: ® g;.
2.7 Using (2.88); we write for example for the left hand side of (2.93)
A= Agjoe —AyTY, — Ailré‘k~

In view of (2.85)z the same result holds for the right hand side of (2.93) as
well. Indeed,

ailk bj + abjly = (ai,k —alfék) b+ a; (bj,k —bﬂ‘;k)
= ik bj + aibj e —arb;Th, — a;bily,
= Ayje —AyT — Aully
2.8 By analogy with (S.1)
t= eijkgfltig;C ®g;.

Inserting this expression into (2.117) and taking (2.104) into account we fur-
ther write

curlt = —divt = — (eijkgfltigk & gj) .9
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With the aid of the identities (g’lgj) 2-g' = 0(j = 1,2,3) following from
(2.67) and (2.99) and applying the product rule of differentiation we finally
obtain

curlt = —eijkg_ltm‘ gi — eijkg_ltigkyj
ik g, g = —e* g g = g ), g

keeping (1.36), (2.69) and (2.85)2 in mind.

= —e

2.9 We begin with the covariant derivative of the Cauchy stress components
(2.110). Using the results of Exercise 2.4 concerning the Christoffel symbols
for the spherical coordinates we get

4 13
oll=ol —i—U”Fllj + U”I‘{j =o' 40 +o'3 3430 cotp + 4

3
25 25 . _ljT2 20
o|j =0, +0"T}; + 07Ty,
23
=021 +0%2 5402 3 —o'lsingcosp + 02 cot ¢ + 4 -

31— 3§ . ljiT3 3lpg
o =0",; 4+ + 07T,

33
=%+ 0 +0% 3 —otlrsin® ¢ — o?r + 0% cot ¢ + 2

The balance equations (2.108) take thus the form

13
o
pat = ot 40?5 +013 5 +30 2 cot p + 4 . +

23
o
2 21 22 2 11 22 2
pa’ = ot 4022 5 +0% 3 —clsingcos g + %2 cot p + 4 . + £,

33
pad = o3t 4032 5 +0% 5 —cllr sin? ¢ — 02%r + 02 cot ¢ + 2 . + f3.

2.10 The tangent vectors take the form:

or s s . S8 . s s s
g1 = = (cos + sin ) e + (sm —  cos ) eo,
or roor r roor r
or .8 s or
gs = = —smm ej;+cos es, gz= = es.
Os r r 0z

The metrics coefficients can further be written by

s s 1 0
L+, =0 3
7 —1
lgis)=lgi-gil=| _5 1 ¢of: [97] =lgs] 1+ 0
r r r
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For the dual basis we use (1.21);:

1 S s .8
g =gi1+ g2=cC0s e;+sin es,
r r r
2
s S
g’ = g1+<1+ 2>92
r r

.S S S s s . S8
= |(—smm -+ cos e+ (cos 4+ sin €s,
r r r r r r

gs =g’ =es.
The derivatives of the metrics coefficients become
2 2s 1
_25[ § 0 , —
P32 T T 000
lgigal=1 * ¢ ol lou2l=]_1 ¢ o] lgus]l={000
72 r 000
0 00 0O 0 O

For the Christoffel symbols we thus obtain by means of (2.75) and (2.68):
2

_S S 0
r3 r2 000 000
Cipl=| s _14], Mijal =000, [Fys] = [000,
r2 r 000 000
0 0 0
82 S 0 _83 82 0
S rd 3 000
Pl=1 ¢ 1ol MGl=] & _s | [5]=1]000
7“2 T 7’3 _7"2 000
0 0 0 0 0 0

2.11 First, we express the covariant derivative of the Cauchy stress compo-
nents by (2.110) using the results of the previous exercise:

s?2 o s
1j 11 12 13 11 12
olj=0" 0 s F+07,, —0 BT, + 20 20

3

2j 21 22 23 1195 22 S 128

olj=0" pto 540" -0 —0 L +20°
r r r

35 31 32 33

0J|j:J 7T+J ;S+0 'z .

The balance equations (2.108) become

1 2 3 1 s* 0% 25

1 1 1 1 1 1 1

pa’ =0 5T+J 78+J vz — O 3_ +2J 2+f )
r r r
s3 s 52

2 21 22 23 11 22 12 2

pa” = o, +0 40 —o  —0 207 o+ 7

r r r

3 31 32 33 3
pa” = 0" +0"" s +o ;z+f~
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2.12 (2.118), (2.120), (1.32), (2.73):
div curlt = (gi X t,i) 2 N (—I‘};jgk X t,;+g' x t,ij) g’
= — (Th,9’ xg") - ti+ (g’ xg') -1, =0,
where we take into consideration that t,;; = t,;;, Ff;j = F§7 and ¢g' x g/ =
(2.118), (2.120), (1.32):
div(u x v) = (u x v),;-g' = (U xv+uxv;) g
= (9" xu;) v+ (vixg') u=v-curlu —u-curlv.
(2.6), (2.66)1, (2.118):
graddivt = (t,;-g") ,;9° = (t.i;9") 9’ + (t.i-g';) g’
Using the relation
(ti-g'y)g’ = [ti- (-Tg")] g’
= (ti-g") (-Tig’) = (ti-g") g’ k= (ti-g’)g';  (S8)
following from (2.73) we thus write
graddivt = (t,ij -gi) g’ + (t,i -gj) giaj .
(2.120), (1.168):
curleurlt = g7 x (' x t,;) ,; =g’ x (9", xt,;) + g’ x (g" x t,;;)
(2.8), (2.60)1, (2.118), (1.121), (S.8):
divgradt = (t,i ®gi) W g’ = (tn’j ®Qi) g+ (tn: ®givj) g’
=gt +(g";9") . (S.9)
div (gradt)” = (t,,2g") " ;9" = (' ©t.i;) -9 + (g'; @t ) - g’

= (tij-9’) 9"+ (ti-g’) g
The latter four relations immediately imply (2.127) and (2.128).
(1.153)s, (1.169), (2.60)1, (2.120):

1

1 o |
skew (gradt) = ) (ti®g' —g'®t,;) = 59" X t; = 2curlt.

(2.5), (1.142), (2.104), (2.118), (2.60);:
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div (tA) = (tA) ;g = (t; A)-g' + (tA,) - g’
=A:t,;®g" +t - (A,;g') = A :gradt +t-divA.
(2.3), (2.59), (2.118):
=t (0,,9')+ P (t;-g') =t gradd + ddivt.
(2.4), (2.59), (2.104):
=A(2,:9")+P(A,;g') = Agradd + ddivA.
2.13 Cylindrical coordinates, (2.66)2, (2.85), (2.82):
gradt = t7|j gz [ gj = (ti;j —tkrfj) gz [ gj
=t ®g +rtzg' ©g' —r (gt g’ +g° ®g'),
or alternatively
gradt = t'; g; ® ¢/ = (t',; +1"T};) g: © ¢’
=t ;909 +r g g +t' (rgiog’ —rgs0g').
(2.29), (2.119):
divt = trgradt = t;,; g 4+ rtagtt — 2r 1t g"3
= ’1"72t1,1 +t2;2 +t3;3 +7’71t37
or alternatively
divt = trgradt = t'; +r 13 = ', +r 1ty = t1, +12,0 +3,5 +1 1.
(2.85), (2.121):

1
curlt = eﬂkgmj gk

=g " (tsla —t2]3) g1 + (t1]3 —ts|1) g2 + (t2]1 —t1l2) g3

=r " [(ts,2 —t2,3) g1 + (t1,3 —t3,1) g2 + (t2,1 —t1,2) gs) -
Spherical coordinates, (S.5-S.7):
gradt = (t;,; —tkl"f‘j) g og

= (t1,1 +t2singcos ¢ + tsrsin® @) g' @ g' + (ta,2 +t37) g° @ g°
+ t3,39° ® g% + (t1,2 —t1 cot ¢) g' ® g* + (t2,1 —t1 cot §) g° ® g'
+ (ts—tir ) g' ©g® + (tan —tir ") g’ @ g

+ (t2s —tor ") g° @ g° + (t3,2 —tar ') g° ® g%,
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or alternatively
gradt = (ti,j —l—tkf‘};j) gi®g = (tl,l +t% cot ¢ + t3r_1) g1ogt
+ (FPa+tr ) g2 @9’ +t3950g°
+ (t'2+t' cot¢) g1 ® g° + (%1 —t'singcosd) g2 ® g
+ (tl,g e ) g1 ®g°+ (t3,1 —thr sin? ¢) g3®g'
( 3+t )92 ®g°+ (t3,2 —7527”) g3 ® g,
(2.85), (2.119), (2.121), (S.3-S.7):

- t1,
divt = (t;,; —tx};) g7 = , D 1 2o a2 cot gty + 20 My
r?sin” ¢

=t DL, = t1 ) 125 12,3 + cot ¢t? 4 2013,

curlt = g7 [(t3]a —t2]3) g1 + (t1]3 —t3l1) g2 + (t2)1 —t1]2) g3]

1

= — t3,0 —12,: t1,3 —1 to,1 —1 .
2 sin o [(t3:2 —t2,3) g1 + (t1,3 —t3.1) g2 + (t2,1 —t1,2) g3]

2.14 According to the result (S.9) of Exercise 2.12
At = div gradt = gijt,ij + (gi,j -gj) t,;.
By virtue of (2.64), (2.73) and (2.85)2 we further obtain
At =gt —T5g 7t = g7 (b —Thits) = g7t =t .
In Cartesian coordinates it leads to the well-known relation
divgradt = t,11 +t,20 +1,33 .
2.15 Specifying the result of Exercise 2.14 to scalar functions we can write
AP = g7 (®,;; —TED) =, .

For the cylindrical coordinates it takes in view of (2.29) and (2.82) the fol-

lowing form

1 0% 00 0°0 109

AP =172P,11 +P oy + D33 +1 ' Py = :
TP + P2 + P33+ T Py3 r2 902 + 922 + o2 + - or

For the spherical coordinates we use (S.4-S.7). Thus,
cos ¢

1
AP = @ 2P 00 +& Do +2r P
r2gin2¢ M TP Pt sing 2 +2r Py
1 0*® 0*® 82<15 0P 0P
= + 72 + “2cot ¢ 2r~1

r2sin2 ¢ 9,2 06> T or? o0 T o
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2.16 According to the solution of Exercise 2.14
At = g% (t,i; —Tjitm) (S.10)
where in view of (2.63);
ti=t"; g, t,ij = t"i; gr.
By virtue of (2.85); we further write t*|;= t* ; +T}#! and consequently
t¥]ig= i, ATk ™ [i= t*,i5 ATt 4 Tt +T5 5™ s + T T

Substituting these results into the expression of the Laplacian (S.10) finally
yields

At = g7 (%55 +2T 5t —Tt" o +T5 1+ T Tt — DTG 1Y) gie.

Taking (S.4-S.7) into account we thus obtain for the spherical coordinates
(2.149)

th P t! PP 1
At = (7“2 sin? ¢ + r? e

3cot ¢ 2cosd o 4tt 263,
+ g+ 2+
r2sin®g ¥ r 3 sin? ¢ 91

2 cot, ¢t1 cot ¢t2 442, 263, 1 — cot? ¢t2
o2 2 r + r3 r2 92
3
2 P t ol + 3
r2sin® ¢ r2 o

r r 72 r r 72

Exercises of Chapter 3

3.1 (C4), (3.18): @1 = dr/ds = const. Hence, r (s) = b+ sa;.

3.2 Using the fact that d/d (—s) = —d/ds we can write by means of (3.15),
(3.18), (3.20), (3.21) and (3.27): @) (s) = —a1 (s), a5 (s) = a2 (s), a4 (s) =
—asz (s), ' (s) = »(s) and 7/ (s) = 7 (s).

3.3 Let us show that the curve r (s) with the zero torsion 7 (s) = 0 belongs to
the plane p (t',t2) = r (s0) + t'a1 (so) + t?az (s0), where ay (so) and az (so)
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are, respectively, the unit tangent vector and the principal normal vector at
a point so. For any arbitrary point we can write using (3.15)

r(s) (s0) / dr =7 (s0) /al( ) ds. (S.11)
r(so0)

The vector a; (s) can further be represented with respect to the trihedron at s
as ai (s) = a' (s) a; (so). Taking (3.26) into account we observe that as,; = 0
and consequently as (s) = a3 (sp). In view of (3.23)2 it yields a1 (s)-as (so) =
0, so that a; (s) = al(s)ai (so) + a?(s)az (so). Inserting this result into
(S.11) we have

S s

r(s) =r(so) + a1 (so)/oz1 (s)ds + as (so)/a2 (s)ds
50 50
=7 (s0) +tlay (so) + t2ay (so),
where we set t! = f al (i=1,2).
3.4 Setting in (2.29) r = R yields

[9as] = {%2 ﬂ :

By means of (2.82), (3.74), (3.79), (3.90) and (3.93) we further obtain

—RO —R710
[baﬁ]:|: 0 0:|ﬂ [bg}:|: 0 0:|7 ]-—‘aﬁ—]-—a,g—o Oé,ﬁ:]_,2,

1 1
= H= b*=—-_RL. 12
0. H=lw="!r (512)
3.5 Keeping in mind the results of Exercise 2.1 and using (S.5-S.7), (3.58),

(3.62), (3.67), (3.74), (3.79), (3.90) and (3.93) we write

Bl

ol

K|

g1 = Rcos t'sint?e; — Rsint'sin t263,
gs = Rsint! cost’e; — Rsint’es + Rcost! COSt2€3,

gs = — sint! sin ¢2 e] — cos t262 — cost!sin t2eg,
R2sin?¢2 0 Rsin?t? 0 Rt 0
O R N O B L P S R

11 0 cott? 2 1 | —sint?cost? 0
[FO"B} - [cott2 0 } ’ [Faﬁ} - { 0 0]’
K=W|=R? H= ;bng—l. (S.13)

3.6 (3.62), (3.67), (3.143):
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or

91= o =ey +1les,

or
=e +7?263, g2 = o2

g1 X gz
gs =

1 _
" gy x g2l o, (Pe—testey),
gxoll iy @) gy

ot
where t* = (i = 1,2). Thus, the coefficients of the first fundamental form

c
are

2 . 1\ 2
g11 =g1-91 = 1+(52) 912 =921 = g1g2 = 1'%, goo = g2:g2 = 1+(t1)
For the coefficients of the inversed matrix [go"g] we have

1

"I @y @

g

1+ () e
-2 1+ (2)?]

The derivatives of the tangent vectors result in
1
911=0, gi2=g2,1= €8 922 0.

By (3.74), (3.79), (3.90) and (3.93) we further obtain

1
bi1 =91,1:93=0, bia=ba =g1,2-g3= s
e\/1+ (@) + (@)

baa = g2,2-93 =0,

5] = 1 AP 1+(52)21
a- ] T 2 ’
c[1+({1)2+({2)2}3/2 L+ ()"~
-2
K= [bg] = - ' s= -2+ @7
e [+ (@) + ()]
1 e
H= by = s

e[1+ @)+ (@]
3.7 (3.62), (3.67), (3.144):
or

g1 = ot = —ct? sintlel + ct? costleg,
or 1 A

gs = o2 =ccost e; +csint ez + es,
g1 X g2

gs (cos tlel + sintleg — 063) .

g xgell V1+e2
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Thus, the coefficients of the first fundamental form are calculated as

2
g1=91-91=(t")", g12=021=91-92=0, goo=g>-g2 =1+,

so that
[9°°] = [(CtQ)_Q ; 1] .
0 (1 + 62)
The derivatives of the tangent vectors take the form
gi,1= —ct? costle; — ct? sintleg, gi,2=9g2,1 = —csintte; + ccos tleg7
g2,2=0.

By means of (3.74), (3.79), (3.90) and (3.93) this leads to

ct?
b1 =g1,1-93 = T4 bia =b1 =g1,2:93 =0, bax = g2,2-g3 =0,
' 0 1 1
Wl =1 c2V14¢2 . K=1[p’|=0, H= _1"=— .
[ ] 0 0 ‘ | 2 2ct24/1 + ¢2

3.8 Taking (3.105) into account we can write

911 912 0 - 1 1 932 —951 0
95] = 1919520, [9]=1g;] = ., |92 951 0],
0 01 Gl o 01

which immediately implies (3.111).

3.9 For a cylindrical shell equilibrium equations (3.140-3.141) take by means
of (3.77); and (S.12) the form

P2 4p =0, 2 42 4p? =0, —RfM4+p%=0.
For a spherical shell we further obtain by virtue of (S.13)

P20 3ot 2112 4 pl = 0,

20 +f%2, —sint?cost? f11 + cot 1222 + p? = 0,

Rsin? 2f1 + Rf2 + % = 0.



210 Solutions

Exercises of Chapter 4

4.1 In the case of simple shear the right Cauchy-Green tensor C has the
form:

, ' , 1~ 0
C=Cje;®el, [C)]=[Cy]l=|71+7%0
0 0 1

The characteristic equation can then be written by

1-A vy 0
7 1+97=A 0 =0 = (1-M{A-A2+9%)+1}=0.
0 0 1-A

Solving the latter equation with respect to A we obtain the eigenvalues of C
as

Aijp=1+

2
24 /492 A4 + /4 + 72
7 ‘/27 Y :(7 \/2+7> , As=1. (S.14)

The eigenvectors @ = a’e; corresponding to the first two eigenvalues result
from the equation system (4.16);

P F VA

2
=0
9 +vya )
2 4~2 4
val + ¢\/27 T =0,
VP FVIEA
a® =0.
2
Since the first and second equation are equivalent we only obtain
+ /4 + 2
a2=" Vaty a', a®=0,
2
so that a? = v/Aja' or a® = —y/Aza'. In order to ensure the unit length of

the eigenvectors we also require that
(") + (@) + (*)" = 1.

This yields

1 Aq 1 \/ Ao
_ _ _ . (S.15
a“ \/1+A161+\/1+A162’ @ \/]_-l-Agel 1+A262 ( )

Applying the above procedure for the third eigenvector corresponding to the
eigenvalue A3 = 1 we easily obtain: as = es.
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4.2 Using (4.26)1_3 we write

Ia = trA,
_ 1 2 2
IIp = 5 {(trA) —trA } ;

1
MMa = o [MatrA - IatrA? + trA®].

Inserting the first and second expression into the third one we obtain

1(1
s =, {2 [(trA)2 - trAQ} trA — trAtrA? + trA3}

1 3 1
=4 {trA3 — 2trAQtrA + 5 (trA)g} .
4.3 Since r; = t; for every eigenvalue \; we have exactly n = Y ;_, r; eigenvec-

tors, say a( ) (1=1,2,...,85k=1,2,...,r;). Let us assume, on the contrary,
that they are hnearly dependent so that

Z Z a® g —

i=1 k=1

(k . . N .
where not all «; (¥) are zero. Since linear combinations of the eigenvectors a; =

Sory a( )a( ) associated with the same eigenvalue \; are again eigenvectors
we arrive at

S
E gia; =0,
i=1

where ¢; are either one or zero (but not all). This relation establishes the
linear dependence between eigenvectors corresponding to distinct eigenvalues,
which contradicts the statement of Theorem 4.2. Applying then Theorem 1.3

for the space C™ instead of V we infer that the eigenvectors al(»k)

of C".
4.4 (4.40), (4.42):

~ k LA 1 A k !
Pin:<Za£)®b§ >> <Za§>®b§>> S dyotal @ b
=1

k=1 k=11=1

form a basis

s (k) ®b(k) P; ifi=yj,
v P 0 ifi#j.

4.5 By means of (4.40) and (4.42) we infer that P; a() = 5”a(l) Ev-
ery vector & in C" can be represented with respect the baele of thlb space

al® (t=1,2,...,8k=1,2,...,1y) byw:Zj S ;k) ) Hence,

’L
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PILAPES 3 SRR

j=1 k=1

s s Tj

= Z ngk Ua(k) Zx(k ®) — gz vaecCn
i=1 j=1 k=1

=1j7=1k= j=1k=1
which immediately implies (4.46).

4.6 Let A1, Ao, ..., A\, be eigenvalues of A € Lin". By the spectral mapping
theorem (Theorem 4.1) we infer that exp (A\;) (¢ =1,2,...,n) are eigenvalues
of expA. On use of (4.24) and (4.26) we can thus erte. det [exp (A)] =

n n
[T exp i = exp (E )\i> = exp (trA).
i=1 i=1
4.7 By Theorem 1.8 it suffices to prove that all eigenvalues of a second-
order tensor A are non-zero (statement A) if and only if Az = 0 implies
that @ = 0 (statement B). Indeed, if Az = 0 then either = 0 or x is an
eigenvector corresponding to a zero eigenvalue. Thus, if A is true then B is
also true. Conversely, if A is not true, the eigenvector corresponding to a zero
eigenvalues does not satisfies the statement B.

4.8 Let a; be a (right) eigenvector corresponding to an eigenvalue \;. Then,
Aa; = \;a;. According to (1.129) A~! (\;a;) = a;, which implies that \; '
the eigenvalue of A~!.

4.9 Let for example M be positive-definite. Setting in (4.66) « = 1/2 and « =
—1/2 we can define M'/2 and its inverse M~1/2, respectively. Now, consider a
symmetric tensor S = MY/2NM'/2 = ST with the spectral representation S =
S Ndi @ d;, where d; - dj = 65 (1,5 = 1,2,...,n). Then, a; = M'/2d; is
the right eigenvector of MIN associated with its eigenvalue \; (i = 1,2,...,n).
Indeed,

MNa; = MN (Ml/Qdi) — M!/28d; = \,M"2d; = \;a,;.

In the same manner, one verifies that b; = M~1/2d; (1t =1,2,...,n) is the cor-
responding left eigenvector of M, such that a; - b; = d;; (4,5 =1,2,...,n).
The eigenvectors d; (i = 1,2,...,n) of S € Sym"™ form a basis of E™. This
is also the case both for the vectors a; and b; (i = 1,2,...,n) since the ten-
sor M'/2 is invertible (see proof of Theorem 1.8). This implies the spectral
decomposition of MN by (4.39) as

MN = En:Al‘ai ® b;.
i=1

4.10 Let us consider the right hand side of (4.55) for example for ¢ = 1. In
this case we have
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H A-NT A AT A — AsT
Aj — X A1 — A3
J;ﬁl

On use of (4.43), (4.44) and (4.46) we further obtain

3

A_)\2IA_>\JI_1;1( 2) ]gl(j 3)

DYIED YD VI PR A1 — A2 A1 — A3

23: (/\7 - /\2) (/\j — )\3) 5ijPi Zi: ()\i — )\2) ()\i — )\3) P;

i,j=1

(A1 = Az) (A1 = A3) M=) (A= Ag)

_ (A1 —X2) (A1 — A3) Py
(A1 = A2) (M1 = A3)

In a similar way, one verifies the Sylvester formula also for i = 2 and i = 3.

=P;.

4.11 The characteristic equation of the tensor A takes the form:
—2—-X 2 2
2 1-X 4 |=0.
2 4 1-A
Writing out this determinant we get after some algebraic manipulations
AP — 27X — 54 =0.
Comparing this equation with (4.28) we see that
In =0, IIa=-27, IlIA =54. (S5.16)
Inserting this result into the Cardano formula (4.31) and (4.32) we obtain

5 — arocos lzﬁ; — OIATIA + 27IHA]

2 (1% — 3115)"
2754

= arccos
[2 (3-27)%2

] = arccos (1) =0,

1 , 1
A\ = 3 {IA+2\/IA—3IIACOS3 [19+27r(k—1)]}

2 2
:3\/3-27cos(377(k—1)>=6c0s( ) k=1,23.

Thus, we obtain two pairwise distinct eigenvalues (s = 2):
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A1 =6, X =A3=-3. (S.17)

The Sylvester formula (4.55) further yields

2 (122

P 9 9944

i#1 -

2 [ 8 —2 —2

A-)NI A-MI A—6I 1 ,

P, =11, /\J = Al = R (O

j=1 T 2T A -9 Y124 5

j#2 -

4.12 The spectral representation of A takes the form

A= Z \NP; = \{P; + \oPs = 6P — 3P5.

i=1
Thus,
expA = Zexp (\) Py
i=1
= exp (A1) P1 + exp (A2) P2 = exp (6) P1 + exp (—3) P>
6 [122 3 [ 8-2-2

244 e Re;+ 9 -2 54 e ®e;
244 —2—-4 5

€S+ 83 2e6 —2e73 2e6 — 23
= 2e0 — 2673 4e0 4+ 5e73 4 —4e73 | €; ® ey
200 — 2673 460 — 4¢3 48 + 5e3

4.13 Components of the eigenvectors a = a’e; result from the equation
system (4.16)

(Al =6iN)a’ =0, i=1,2,3. (S.18)
Setting A = 6 we obtain only two independent equations

—8a' +2a® 4243 =0,
2a' —5a? +4a3 = 0.

Multiplying the first equation by two and subtracting from the second one
we get a? = 2a' and consequently a® = 2a'. Additionally we require that the
eigenvectors have unit length so that

(@)’ + (a®)? + (a®)* =1, (S.19)
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which leads to

1+2 +2
a = _e e es.
L= g€1T g€ €3

Further, setting in the equation system (S.18) A = —3 we obtain only one
independent linear equation

a' +2a* +2a®> =0 (S5.20)

with respect to the components of the eigenvectors corresponding to this dou-
ble eigenvalue. One of these eigenvectors can be obtained by setting for ex-

ample a' = 0. In this case, a®> = —a® and in view of (S.19)
a(l): L €y — L €3
VY V2
Requiring that the eigenvectors aél) and agQ) corresponding to the double
eigenvalue A = —3 are orthogonal we get an additional condition a? = a® for

the components of a§2). Taking into account (S.19) and (S.20) this yields

4 1 1
o - —

With the aid of the eigenvectors we can construct eigenprojections without
the Sylvester formula by (4.42):

Pi=a1®a;

W N

122
3 63>= 244 e; ®e;j,

<1e —|—26 +2e)®<1e —|—26 +
- 1 2 3 1 2
3 3 3 3 944

1 1 1 1
Py = agl) 0y aél) + ag2) 0y af) = <\/262 - \/2€3> b2 (\/262 - \/263>

4 1 1 4 1 1
+ |- e+ e + ez | ®|(— e+ ez + e:
( 3v2 L 3v2 T 32 3) ( 3v2  3v2 T 3v2 3)
1 8§ -2 -2
29 -2 5—-4 e ®e,;.
—-2-4 5
4.14 Since linearly independent vectors are non-zero it follows from (4.9)
that ¢; - ¢; #0 (i = 1,2,...,m). Thus, the first vector can be given by
C1
\/Cl - C1 ’

such that a; - a1 = 1. Next, we set

a; =
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ay=cy— (cz-ay)ay,

so that a) - a1 = 0. Further, a}, # 0 because otherwise c2 = (¢c2-a1)a; =
(c2-a1)(e - 01)71/2 c1 which implies a linear dependence between ¢; and cs.
Thus, we can set as = ab/+/a) - ay. The third vector can be given by

/

a’
as= , ° |, where aj=c3—(c3-az)as—(cz-a1)ay,
Vajs - a;
so that as - a; = a3 - as = 0. Repeating this procedure we finally obtain the
set of vectors a; satisfying the condition a; - a; = 6;5, (¢, j =1,2,...,m). One

can easily show that these vectors are linearly independent. Indeed, otherwise
>t a;a; = 0, where not all a; are zero. Multiplying this vector equation
scalarly by a; (j =1,2,...,m) yields, however, a; =0 (j = 1,2,...,m).

4.15 Comparing (4.67); with (4.75); we infer that the right eigenvectors

af;k) (k=1,2,...,t;) associated with a complex eigenvalue \; are simulta-
neously the left eigenvalues associated with \;. Since A\; # A; Theorem 4.3
implies that al(.k) . al(.l) =0(k,l=1,2,...t).

4.16 Taking into account the identities trtW* = 0, where k =1, 3,5, ... (see
Exercise 1.48) we obtain from (4.29)

Iw = trtW = 0,

1
IIw = 9 |:(t1" W )2 —trWw 2:|
. 1 2 1 ) T _1 ) _1 2
—hewr oL wswn) = Lowowy = we,

My = ; {trWB - gtrw%rw + ; (trW)?| =0,
or in another way
w = detW = detW' = —detW " = —Illw = 0.
4.17 Eigenvalues of the rotation tensor (Exercise 1.23)
, ' , N cosa —sina 0
R= R?jei ®e’, where [R?j] = [R”] = |sina cosa 0
0 0 1
result from the characteristic equation
cosad— A  —sina 0

sinae  cosa—A O =0.
0 0 1-—A



Solutions 217
Writing out this determinant we have
(1=X) (A —2Xcosa+1) =0
and consequently
A1=1, Ay3=cosaxisina.

Components of the right eigenvectors a = a’e; result from the equation system
(4.16)

(R = 6N a’ =0, i=1,2,3. (S.21)
Setting first A = 1 we obtain a homogeneous equation system

a' (cosa —1) — a’sina = 0,
a'sina + a? (cosa — 1) = 0,

leading to a' = a? = 0. Thus, a1 = a®es, where a? can be an arbitrary real

number. The unit length condition requires further that
a; = es.

Next, inserting A = cos« % isin v into (S.21) yields

a® = Fia', «®=0.

Thus, the right eigenvectors associated with the complex conjugate eigenvalues
Ag/3 are of the form ay/3 = a' (e; Fiez). Bearing in mind that any rotation
tensor is orthogonal we infer that as;3 = ag/, = a' (e; Tieg) are the left
eigenvectors associated with Ay /3. Imposing the additional condition as-az =
as - az =1 (4.38) we finally obtain

V2 . V2 :
as = 9 (61—162), as = 9 (61+162).

The eigenprojections can further be expressed by (4.42) as

Pi=a,®a; =e3®es3,
2 ) 2 .
P;=ax®ar = \é (e —162)®\é (e +1iez)
1 1,
= 2(el®el+32®€2)+21(61®62_32®61)a
2 ) 2 .
P3;=a3®a3 = 9 (e1 +iez) ® 9 (e; —ieq)

1 1,
= 2(61®el+ez®ez)—21(61®ez—ez®61).
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4.18 First, we write

o [-222][-222 12 6 6
(A =] 214] | 214|=| 62112,
241 | 241 612 21
12 6 6] [-222 0 54 54
(A% =] 62112] | 214] = |54 81108
61221 | 241 54 108 81
Then,
0 54 54
pa(A) =A% —27TA — 541 = |54 81 108 | e; ®e;
54 108 81
222 100 000
—27 214|e;®e;—54(010]|e;®e;=(000] e; ®e;j.
241 001 000

4.19 The characteristic polynomial of F (4.23) can be represented by
pa (A) = (1 — )%, Hence,

0—~0 ~ [ooo ‘
pr(F)=I-F)P>=10 00| es@e’={000|e;®e’ =0.
0 00 000

Exercises of Chapter 5

5.1 By using (1.106);, (D.2) and (5.17) one can verify for example (5.20);
and (5.21); within the following steps

A®(B+C): X =AX(B+C)=AXB+AXC=(A®B+A®C):X,

AoB+C): X=A[(B+C):X]=A(B:X+C:X)
=AB:X)+A(C:X)
—(AGB+A®C): X, ¥XeLin"

The proof of (5.20)2 and (5.21); is similar.
5.2 With the aid of (5.16), (5.17) and (1.145) we can write

(Y:A®B): X=Y:(A®B:X)=Y:AXB=A"YB": X,

(Y:AGB): X=Y:(AeB:X)=Y:[A(B:X)]

=(Y:A)B:X)=[Y:A)B]: X, VX,Y € Lin".



Solutions 219

5.3 Using the definition of the simple composition (5.40) and taking (5.17)
into account we obtain

AB2C)D:X=A(B®C:X)D=A (BXC)D
= (AB)X (CD) = (AB) ® (CD) : X,
ABOC)D:X=AB6OC:X)D=A[B(C:X)|D
—ABD(C:X)=(ABD)®C:X, VX eLin".
5.4 By means of (1.147), (5.17), (5.22) and (5.45) we can write
(A@B)" :X=X:(A®B)=A"XB" = (AT @ B") : X,
(AoB)": X=X:(A®B)=(X:A)B=(BOA): X,
(A®B):X=(AeB): X"=A(B:X")
=AB":X)=(AeB"):X, VXeLn"

Identities (5.51) and (5.52) follow immediately from (1.121) (5.23), (5.24)
(5.49); and (5.50) by setting A =a®b,B=c®dorA=a®d, B=b®c,
respectively.

5.5 Using (5.51) and (5.52) we obtain for the left and right hand sides different
results:

(a®b®cad) =(avcabod) =c®axd®b,
(a@bocad) ' =boavdoe) =bodoa®ec.
5.6 (5.31), (5.32), (5.45):
(A:B):X=X:(A:B)=(X:A):B
:8T:(X:A):SBT:(.AT:X) :(SBT:.AT) X,
(A:B)":X=(A:B): X"=A:(B:X")
=A:(B":X)=(A:B"):X, VXeLn"

5.7 In view of (1.120), (5.17) and (5.45) we write for an arbitrary tensor
X € Lin"
(A®B)': (Ce®D): X =(A®B)": (CXD)=(A®B): (CXD)"

=(A®B): (D'X'C") = AD'X"C"'B

— [(AD") ® (C™B)] : X" = [(AD") @ (C™B)]" : X,
(A®B)': (COD): X=(A®B)":[(D:X)C]
=(A®B):[(D:X)C"] =(D:X)AC"B=(AC"B) oD :X.
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5.8 By virtue of (5.51) and (5.52) we can write
.. T ..
' = (g, 2g;®gr @) =Cg; 29,29 @ gy
= ej“kgi ®g; gk Dgi,
€' =(C*g,2g;,0g9:®q) =CMg0g,0g;®g
= eikﬂgi ®g; gk Dgi.

According to (5.60) and (5.61) €1 = €' = €. Taking also into account that
the tensors g; ® g; @ gr ® g; (i,7,k,1=1,2,...,n) are linearly independent
we thus write

eijkl _ ejilk _ eikjl

The remaining relations (5.70) are obtained in the same manner by applying
the identities € = €™*T and € = €.

5.9 With the aid of (1.147), (5.16) and (5.81) we get
(Y:7): X=Y:(T:X)=Y:XT=Y":X, VX, Y€ Lin"
5.10 On use of (5.31), (5.45)2 and (5.81) we obtain
A:T):X=A:(T:X)=A:XT=A":X, VXecLin"

The second identity (5.85) can be derived by means of (5.54), (5.80) and (5.83)
as follows

tT T T
AT = @A) = (A7) = (AT ) = (A7) =T A
The last identity (5.85) can finally be proved by
(T:7):X=T:(T:X)=7:X"=X=9:X, VvXcLin"

5.11 € possesses the minor symmetry (5.61) by the very definition. In order
to prove the major symmetry (5.60) we show that €: X =X : €, VX € Lin".
Indeed, in view of (5.17)1, (5.22); and (5.48)

C:X=M; My +M;@M;)": X =(M; @M+ Ms®M,): symX
= M, (symX) My + My (symX) M,

X:€C=X:(M;®M;+M;®M,;)*
=sym[X : (M; ® Ms + My ® M;)]

= sym (M1 XM, + MyXM;) = M; (symX) My + My (symX) Mj.

5.12 (a) Let e; (i = 1,2,3) be an orthonormal basis in E3. By virtue of (5.77),
(5.84) and (5.86) we can write
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3
S 1
I = Z 2€i®(ei®ej+ej®ei)®ej.

i,j=1
Using the notation

e1 e t+ex®e
V2 ’
er ez + ez e e3®ex+er®es

M; = / . Mg = v (S.22)

and taking (5.23) into account one thus obtains the spectral decomposition of
J° as

M, =e®e;, 1=1,2,3, My=

6
F=> M,oM,.
p=1

The only eigenvalue 1 is of multiplicity 6. Note that the corresponding eigen-
tensors M, (p=1,2,...,6) form an orthonormal basis of Lin?.

(b) Using the orthonormal basis (S.22) we can write

Psph = ; (M1 + Mz +Ms) © (M; + My + Ms)
111000
) 111000

1
= 3 M OM,,  where  [P]= |0
pa=t 000000
000000

Eigenvalues and eigenvectors of this matrix can be represented as

1
1
1
Al_la O )
0
0
—1 —1 0 0 0
1 0 0 0 0
0 1 0 0 0
Ao =A3=AN=A5 =As =0, 0(° o Y1('Yo(' Yo
0 0 0 1 0
0 0 0 0 1

Thus, the orthonormal eigentensors can be given by
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/\ 1 1 — V2 V2

M= (Mi+ Mo+ Mg)= I Mp=—") M+ ) My,

—~ 6 6 6 oV

Mg:_\g Ml—\éMg—F\éMg, M, =M,, p=4,56, (5.23)

where the tensors My, (¢ =1,2,...,6) are defined by (S.22).

(¢) For the super-symmetric counterpart of the deviatoric projection tensor
(5.89)2 (n = 3) we can write

r 2 1 1 .
—_—_000
3 3 3
1 2 1
- —_000
6 3 3 3
dov = Z PRI M, ®M,, where [PRI]=1| 1 1 2000
p,q=1 3 3 3
0 0 0100
0 0 0010
L 0 0 0001}

Thus, the eigenvalues of Pg., are Ay =0, Ay =1 (¢=2,3,...,6). The cor-
responding eigentensors are again given by (S.23).

(d) With respect to the orthonormal basis (S.22) the elasticity tensor (5.93)
can be represented by

6
€= ) €"M,oM,,

p,q=1
where

2G4+ X A A 0 0 O
A 2G+HAN A 0 0 O
ere] — A A 2G+X 0 0 O
o 0 0 0 2G 0 0
0 0 0 0 2G 0
0 0 0 0 0 2G

The eigentensors of € are the same as of Py, and P, and are given by (S.23).
The eigenvalues are as follows: Ay = 2G+3X, A, =2G (¢ =2,3,...,6). They
can be obtained as linear combinations of those ones of Py, and P

flev'
Exercises of Chapter 6

6.1 (a) f (QAQT) — aQAQ"b # aAb.
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(b) Since the components of A are related to an orthonormal basis we can
write

FA) =AM+ A% L A% = AL 4 A% + A% = A%, = trA.

Trace of a tensor represents its isotropic function.

(c) For an isotropic tensor function the condition (6.1) f(QAQ") = f(A)
must hold on the whole definition domain of the arguments A and VQ €
Orth?®. Let us consider a special case where

100 010
A=1000 e; ®ej, Q=1|-100 e ®e;.
000 001
Thus,
000
A'=QAQ"=|010]|e;®e;
000

and consequently
f(A):A11+A12+A13:1;&0:A’11—|—A'12+A’13:f(QAQT),

which means that the function f (A) is not isotropic.

(d) detA is the last principal invariant of A and represents thus its isotropic
tensor function. Isotropy of the determinant can, however, be shown directly
using the relation det (BC) = detBdetC. Indeed,

da(QAQT):(bﬂg¢%AdaQT::¢%QdaQT¢%A
= det (QQT) detA = detIdetA = detA, VQ € Orth™.

(e) Eigenvalues of a second-order tensor are uniquely defined by its principal

invariants and represent thus its isotropic functions. This can also be shown
in a direct way considering the eigenvalue problem for the tensor QAQT as

(QAQT)a:Aw

Mapping both sides of this vector equation by QT yields
(QTQAQT)a:AQTw

Using the abbreviation a’ = QTa we finally obtain

Ad = )\d'.
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Thus, every eigenvalue of QAQT is the eigenvalue of A and vice versa. In
other words, the eigenvalues of these tensors are pairwise equal which imme-
diately implies that they are characterized by the same value of A\.x. The
tensors obtained by the operation QAQ" from the original one A are called
similar tensors.

6.2 Inserting
1 T 1 AT
M=_(A+AY), W=_(A-A")
into (6.17) we obtain
trM = ; (trA + trAT) =trA,
2 1 T2
trM= = 4t1r(A—|—A )
= i [trA? + tr (AAT) + tr (ATA) + tr (AT)°]
= ; [trA? + tr (AAT)],
3 1 T3
trM® = 8tr(A+A )
1 3 2AT T T2
= o {AT +r (A%AT) 1 (AATA) +tr [A (AT)’]
+ tr (ATA?) + tr (ATAAT) + tr [(AT)* A] +or (AT)°}
= i [trA® + 3tr (A%AT)],

1 2
rW? = tr (A - AT)

i [trA? — tr (AAT) —tr (ATA) + tr (A7)’]

, [irA? — tr (AAT)],
tr (MW?) = ;tr [(A+AT) (A~ AT)"]
- ; {trA? — tr (A?AT) — tr (AATA) + tr [A (AT)’]

+ tr (ATA?) — tr (ATAAT) — tr [(AT)2 A] + tr (AT)g}
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= | [A? —tx (A%A7)],
tr (M2W?2) = 116tr [(A+AT)" (A-AT)’]
- 116tr {[A%+AAT+ATA + (A7)"] (A% - AAT - ATA + (A7)"]}
- 116tr [AT—APAT - AZATA + A% (AT)" + AATA? - AATAAT
~A(AT)’A+A (A7) + ATA® — ATA2AT — ATAATA
+ ATA (AT)’ + (AT)* A2 - (AT)’ AAT - (AT)° A+ (AT)]

- é [ra® — tr (AAT)"]

tr (M*W?MW)

1
= o [AT - APAT — AZATA + A% (A7)’ + AATA? — AATAAT

~AATYA+A(AT) £ ATA? — ATA2AT — ATAATA
+ATA(AT)’ + (AT)*AZ - (AT)’ AAT - (AT)° A+ (AT)']
A2 - AAT + ATA - (aT)]}

1 2 2
= ;U [(AT)" AZATA — A% (AT)" AAT].

Finally, trA* should be expressed in terms of the principal traces trA® (i
= 1,2, 3) presented in the functional basis (6.18). To this end, we apply the
Cayley-Hamilton equation (4.95). Its composition with A yields

A* —TAA3 +TI4A% —TIIA A =0,
so that
trA* = [atrA® — IIatrA? + 5 trA,

where Ia, IIao and IIIa are given by (4.29). Thus, all the invariants of the
functional basis (6.17) are expressed in a unique form in terms of (6.18).

6.3 By Theorem 6.1 ¢ is an isotropic function of C and L; (i =1,2,3).
Applying further (6.15) and taking into account the identities

LL;=0, LF=L; wLf=1,i#jij=123 k=12,... (S.24)
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we obtain the following orthotropic invariants

trC, trC2%, trC3,
tr (CLy) = tr (CL}), tr(CLy)=tr(CL3), tr(CL3) = tr(CL3),
tr (C?Ly) = tr (C°L}), tr (C?Ly) = tr (C°L3), tr (C?Ls) = tr (C°L3),

tr (LZCLJ) =tr (CLJLZ) =tr (LJLZC) = O, 1 75] = ]., 2, 3. (825)
Using the relation
3
> Li=1 (S.26)
i=1

one can further write

tr(C):CI:C(L1+L2—|—L3)
:CL1—|—CLg—i—CL3:tr(CL1)+tr(CL2)+tr(CL3)

In the same manner we also obtain
tr (C?) = tr (C°Ly) + tr (C?Ly) + tr (C°Ls) .

Thus, the invariants trC and trC? are redundant and can be excluded from
the functional basis (S.25). Finally, the orthotropic strain energy function can
be represented by

¢ = 1 [tr (CLy), tr (CLy) , tr (CLs),
tr (C?Ly) , tr (C*Ly) , tr (C°L3) , trC?] . (S.27)

Alternatively, a functional basis for the orthotropic material symmetry can be
obtained in the component form. To this end, we represent the right Cauchy-
Green tensor by C = CYl; ® ;. Then,

tr (CL;) = (c’”zk ® zl) Lol =C i=1,2,3,

tr (C2L;) = (C)* + (C2) + (C®)?, i=1,2,3,

tr (C°) = (C")" + (€)" + (€®)" +3(C?)° (" + ¢?)
+3(C1%) (CM 4 C¥) +3(C%)° (C*2 + CF) + 6012012 0%,

Thus, the orthotropic strain energy function (S.27) can be given in another
form as

b= {CH, 2 0%, (012)2 : (013)2 : (C23)2 : C12C13C23} .

6.4 (6.52), (6.54), (6.94), (6.120), (6.124), (6.128) (6.132), (S.27):
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0 e N~ U I

> O © T 2; o (CLy) ™ T 2; otr (2L, (CLi T 1O
= 0% 2 2 ’ %Y

€C=36, cspecsC ©C T+ 45;1 9t (CLy) ot (CLj)LZ OL;

9%

+4 Jz: otr (C2L;) dtr (CQLj) (CL, +L,C) ® (CL; + L;C)

021
[

12 Lz 2 2 Lz
+ 7,22;8‘51"(CLZ')8‘51"C3 ©C +C oL

0%y ) i
" 12; dtr (CL,) trC3 [C* ®(CL; + L;C) + (CL; + L;C) © C7]
8%y

+ 44%:1 Ot (CLy) dtr (C2L) [L; ® (CL; + L;C) + (CL; + L;C) © L;]

o
T (C2Ll)

G . 5 .
12 CI+I®C) +4 L;I+Ix®L;)" .
+ (®+®)+;8t (L; T +1®L;)

otrCs3

6.5 Any orthotropic function S(C) is an isotropic function of C and
L; (i =1,2,3). The latter function can be represented by (6.101). Taking
(S.24) and (S.26) into account we thus obtain

3
S = [aiL; + §; (CL; + L;C) + 7; (C°L; + L;C?)] ,
i=1

where «;, §; and ~; (i =1,2,3) are some scalar-valued orthotropic functions
of C (isotropic functions of C and L; (i = 1,2, 3)).

6.6 Applying (6.15) and taking into account the identities L7 = L;, trL" =
1(i=1,2;m=1,2,...) we obtain similarly to (S.25)

trC, trC? trC3,
tr (CL;) = tr (CL}), tr(CLy) = tr (CL3),
tr (L1 L) = tr (LyL3) = tr (L7Ly)
=l @h): (la®l) = (1 -1y)" = cos’ ¢,

tr (C?Ly) = tr (C°L}), tr (C?Ly) = tr (C°L3), tr (L1 CLy),
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where ¢ denotes the angle between the fiber directions I; and l5. Thus, we
can write

V=1 [trC, trC?, trC3, tr (CL1) , tr (CLy),

tr (C2L1) ,tI‘ (C2L2) 7tI‘ (Lng) ,tI‘ (Lchg)] B
6.7 Using (6.57), (6.121), (6.123) and (6.128) we obtain

S = 231(’[’: +pC~! = 2¢11¢,c +2¢1lc,c +pC1
=2¢114 2¢5 (IcI — C) + pC~! = 2(¢; + colc) I — 2¢,C + pC 1,
oS s
e=2 . =de,(IOI-F)-2p(C'aC!).

6.8 Using the abbreviation A; = \? (i = 1,2,3) for the eigenvalues of C we
can write

¥ (C) = i Z (A2 + A5 4 a5/ = 3)

r=1

Assuming further that Ay # Ay # As # Ay and applying (6.69) we obtain

N ar/2—1 ar/2—1 ar/2-1
S - 280 - ; :LLT’ (Al A17C +A2 A27C +A3 A3)C )

=S (AR ARy AT R = 3
r=1

r=1
Note that the latter expression is obtained by means of (7.2).
6.9 Using the identities

Q'LQ=QLQ"=L; vQeg,
and taking (1.151) into account we can write
tr (QCQTLiQCQTLj) — tr (CQTLiQCQTLjQ)
=tr (CL,CL;), VQ€g,.
Further, one can show that
tr (CL;CL;) = tr? (CL;), i=1,2,3, (S.28)

where we use the abbreviation tr2 () = [tr (¢)]*. Indeed, in view of the relation
tr (CL;) = C: (I; ® ;) = 1;Cl; we have
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tr (CL;CL;) = tr (Cl; ® I,Cl; ® I;) = I;Cl;tr (Cl; ® ;)
=1,Clitr (CL;) = tr* (CL;), i=1,2,3.
Next, we obtain

3
tr (C°L;) = tr (CICL;) = tr[C (Ly 4+ Ly + L3) CL;] = ) _ tr (CL;CL;)
j=1

and consequently

tr (CLyCL;) + tr (CL3CL;) = tr (C?Ly) — tr* (CLy),

tr (CL3CLy) + tr (CL;CLy) = tr (C?Ls) — tr* (CLy),

tr (CL;CL3) + tr (CL2CL3) = tr (C?Ls) — tr? (CL3) .
The latter relations can be given briefly by

tr (CL;CL;) + tr (CL;CL;)

=tr (C°L;) —tr*(CL;), i#j#k#1i;4,5,k=1,2,3.

Their linear combinations finally yield:

tr (CL,;CL;) = ; [tr (C°L;) + tr (C*L;) — tr (C°Ly) ]

1
- [tr? (CL;) + tr* (CL;) — tr* (CLy)] ,
where ¢ # j #k #14; 4,5,k =1,2,3.
6.10 We begin with the directional derivative of tr (ELZ']:]LJ»):

jttr [(B+X) Li (B +1X) L]

t=0

BL,EL; + t (XL;EL; + BL:XL; ) + *XL,XL;

(jlit [ t=0

(XLEL; + BLiXL; ) : T = (XLEL; + LELX) : 1
- - - - T
— (LBL; + LEL) : X" = (LEL; + L;EL;) : X.
Hence,
tr (ELiELJ‘) B = LZ‘ELJ‘ + LJ‘ELi.

For the second Piola-Kirchhoff stress tensor S we thus obtain
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S= g;é - ; 23: aij Lt (ELj) + ; Z a;;tr (EL7) L;

i,j=1 1,5=1

+ 23: Gy (LiBL; + L;EL )

i,j=1

J#i
3 ~ 3 ~
= Z aijLitr (ELJ) +2 Z Gl‘jLZ‘ELJ‘.
i,j=1 i,j=1

J#i
By virtue of (5.42), (6.121), (6.124) and (6.128) the tangent moduli finally
take the form

98 < ZB ;

C= _ = E aijL¢®Lj+2 Gm (L7®Lj) .
oE =
1,7=1 1,j=1
JFi

6.11 Setting (6.146) in (6.145) yields
v (B) = Jantr? (BLy) + ) ax [0 (BLy) + o (L)
¥ am [tr (ELl) tr (ELQ) +tr (ELl) tr (EL?,)}
+ agstr (ELQ) tr (ELg) + (azs — azs) tr (ELQELg)
4 2Gs [tr (EL1EL2) ¥ tr (ELlﬁLg)} .
Thus, we can write keeping in mind (S.28)
0 (E) = ;autrz (ELl) + ;agg {tr (ELQ) +tr (ELg)r
¥ apgtr (ELl) {tr (ELQ) +tr (ELg)}
+ ; (

Using the abbreviation L = L; and taking (S.26) into account one thus obtains

- - 2 - ~
ags — ags) tr (EL2 + ELg) +2Gotr [ELlE (Ly + Lg)] .

" (E) = ;antrz (EL) + ;agg [trE —tr (ELH2
+ aqatr (EL) [trE —tr (EL)} +2G12 [tr (EQL) — tr? (EL)}

1 _ i i
+ , (a2 — az) {trEQ " (EQL) + tr? (EL)} .
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Collecting the terms with the transversely isotropic invariants delivers

~ 1 . 1 B 3
( (E) = 2a23tr2E + 9 (a22 — az3) trE2 &+ (azs — aga + 2G1a) tr (EQL)

1 1 ~ - ~
+ (2(111 + 26122 — a1 — 2G12) tr? (EL) +(a12 — agg) trEtr (EL) .

It is seen that the function 1/}(]:3) is transversely isotropic in the sense of the
representation (6.29). Finally, considering (6.147) in the latter relation we
obtain the isotropic strain energy function of the form (6.100) as

AN S )
" (E) = 7B+ GurE.
6.12 The tensor-valued function (6.104) can be shown to be isotropic. Indeed,
9(QA,Q",QX;Q") = Q"¢ (Q"QA,QTQ") Q", VQ € Orth™,
where Q" is defined by (6.39). Further, we can write taking (6.41) into account
Q//Tg (Q”QAiQTQNT) Q// —_ Q//Tg (Q*Q/AiQ/TQ*T) Q//
— Q//TQ*g (Q/AlQ/T) Q*TQ// — QQ/Tg (Q/A@Q/T) QIQT
=QJ (A, X;)QT,
which finally yields
7(QA,Q",QX,Q") = Qg (A, X;)Q", VQ € Orth™
Thus, the sufficiency is proved. The necessity is evident.

6.13 Consider the directional derivative of the identity A=%A* = I. Taking
into account (2.9) and using (6.117) we can write
q k—1
AF+ATH <Z AiXAk‘1‘1> =0
t=0 i=0

A+tX)7F
dt( +tX)

and consequently

k—1
Carm | oA axa) Ak
dt o -
=) ATFXAT
1=0

Hence, in view of (5.17);
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k
A a==> A"1gA (S.29)

Jj=1

6.14 (2.4), (2.7), (5.16), (5.17), (6.112):

(fG)\a: X = jt [f(A+tX)g(A+tX)}

t=0

d . d
:dtf(A+tX)t:0G+fdtg(A+tX)t:O
=(fia: X)G+ f(Ga: X)
= (GO fia+fG,a): X,

(G:H),A:XZ;t[g(A-i-tX):h(A—i—tX)]
t=0
—dAtX :H G'dhA tX
—dtg( + )t:O. Gy (A+ )t:O

=(Ga:X):H+G:(H,a:X)
=H:Ga+G:H,5): X, VX e Lin",
where f = f(A), G = g(A) and H = h (A).
6.15 In the case n =2 (6.138) takes the form

2 k
0= A>3 ()Y [or (ATIB) T~ BAT]
k=1 i=1
= Aftr(B)I-B] —1{ [tr (B)I - B] + tr (AB)I — BA
and finally

AB+BA —tr(B)A —tr(A)B+[tr (A)tr(B) —tr (AB)]I=0. (S.30)

Exercises of Chapter 7

7.1 By using (4.83) and (4.85) we can write
R (w) =P +e“Py 4 e “Ps.
Applying further (7.2) we get
R (w) = 1Py + () Py + (e7)" Py
=Py + %Py +e P =R (aw) .
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7.2 (7.5)1, (S.14), (S.15):

U= zs:)\iPi :zs:\/Aiai®ai =e3®e3
i1 i—1

+ /A 1 e —|—\/ = e | ® 1 e —|—\/ = e
vi+a VA Vi4A VA
1 e 1 \/ e
A _ _
s 2<\/1+A261 \/1+A262>®<\/1+A261 1+A262>

2 242
= e1@e + (e1®@ex+ex®er)+ 7 es ® ey
VA2 4 VA2 4 VAR
+ e3 ® es.

7.3 The proof of the first relation (7.21) directly results from the definition
of the analytic tensor function (7.15) and is obvious. In order to prove (7.21),
we first write

FA) =y f FOE@=A)70 1 (A) = 1§ 1O CT-A) 7 C,

27l hald

where the closed curve I'” of the second integral lies outside I" which, in turn,
includes all eigenvalues of A. Using the identity

((@-A)" ((T-a) = -0 -8~ 1-a)"
valid both on I' and I"" we thus obtain

1 / —1 / -1 /
FAn@ = o f d rORe - a T A a

_ ! 1 h(¢') . 1

B 27r17€f(<) o jé g,_CdC (CI—A)" d¢
L N N (S IR

+Qﬁi%,h(g)QwiﬁC_C/dC(gI_A) d¢.

Since the function f (¢) (¢ — C’)fl is analytic in ¢ inside I" the Cauchy theorem
(see, e.g. [5]) implies that

1 f@Q
2 ]é ¢ — (/dg =0
Noticing further that
1 h(¢) 0
i B o LA = (O

we obtain
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AR =, 41 Zm;fc, a¢ (1~ A) g

1
i $HORO@=A) ac

= o $9OCT=A) =g (a).

Finally, we focus on the third relation (7.21). It implies that the functions
h and f are analytic on domains containing all the eigenvalues A\; of A and

h(X) (i=1,2,...,n) of B=h(A), respectively. Hence (cf. [25]),
FOA) = F(B) =, FOET-B) . (5:31)
i
where I" encloses all the eigenvalues of B. Further, we write
1

@-B) = (@-n(a) = - he)T T A

2mi
(S5.32)

where I includes all the eigenvalues \; of A so that the image of I'"” under h
lies within I". Thus, msertmg (S.32) into (S.31) delivers

A=, fff (C—h(C)HET-A) e

- (2;)2 4 roe=nentacer-ata

1
2mi

§ s Er-a)a

— i 9 OCT-A) =g (A).

7.4 Inserting into the right hand side of (7.54) the spectral decomposition in
terms of eigenprojections (7.1) and taking (4.46) into account we can write
similarly to (7.17)

-1
1

i (1= 2) 7 = Qif (a ZAP) ac

i

=1

1
1 - 1 - _
= o ]{ {Z (¢ - Aj)Pj} d¢=, . j{ ; (¢ =)~ Pyd¢
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In the case i # j the closed curve I; does not include any pole so that

1
2mi

]{ (C—N) tdC=6i5, i,j=1,2,...5.
I;
This immediately leads to (7.54).

7.5 By means of (7.43) and (7.83) and using the result for the eigenvalues of
A by (S.17), \; =6, A = —3 we write

2 A 1 1. 1
P, = AP = — I A= "1+ A
1 ,;)p”’ VRPN O VISVt S i
2. 1
2 1 3 9

Taking symmetry of A into account we further obtain by virtue of (7.56) and
(7.84)

2
PlvA = Z Ulpq (Ap & Aq)s

P,q=0
20\ s i + A s 2 s
= — 3 I+ s I®A+ARI) — ; (A®A)
(Ai =) (Ai =) (Ai = A)
= 4:JS+ L IoA+AQI) 2 (A®A)°
- 81 243 729 '
The eigenprojection P5 corresponds to the double eigenvalue A = —3 and for

this reason is not differentiable.

7.6 Since A is a symmetric tensor and it is diagonalizable. Thus, taking
double coalescence of eigenvalues (S.17) into account we can apply the repre-
sentations (7.77) and (7.78). Setting there A\, = 6, A = —3 delivers

eb 4 2¢3 e —e3

A) = I A
exp (A) 3 + 9 ,
13e8 +32e73 . 10e5 — 19¢73 .
exp(A),a = 81 JF+ 943 (ARI+I®A)
7eS + 11e™3 ,
A®A)F.
+ 729 (Ao A)
Inserting
-222
A= 214 e;® e;

241
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into the expression for exp (A) we obtain

1 e+ 873 2e0 —2¢73 26 — 2¢73
exp(A) = [ 2e0 —2e73 4eb +5e™3 46 —4de73 | e; ® ey,
2e0 —2¢73 46 — 4¢3 4e8 + 5e3

which coincides with the result obtained in Exercise 4.12.

7.7 The computation of the coefficients series (7.89), (7.91) and (7.96), (7.97)
with the precision parameter ¢ = 1- 1075 has required 23 iteration steps and
has been carried out by using MAPLE-program. The results of the compu-
tation are summarized in Tables S.1 and S.2. On use of (7.90) and (7.92) we
thus obtain

exp (A) = 44.969251 + 29.89652A + 4.974456A2,

exp (A),a = 16.205827° +6.829754 1 ® A + A @ I)® + 1.967368 (A ® A)®
+1.039719 (I® A? + A ® 1) +0.266328 (A ® A® + A*® A)°
+0.034357 (A% ® A?)°.

Taking into account double coalescence of eigenvalues of A we can further
write

A% = Ay + A\ A — A\ =3A + 18I

Inserting this relation into the above representations for exp (A) and exp (A) ;A
finally yields

exp (A) = 134.509461 + 44.81989A,

exp (A) ,a = 64.767379° + 16.59809 (I ® A + A ® I)* + 3.87638 (A ® A)*.

Note that the relative error of this result in comparison to the closed-form
solution used in Exercise 7.6 lies within 0.044%.

Exercises of Chapter 8

8.1 By (8.2) we first calculate the right and left Cauchy-Green tensors as

5-20 4 520 '
C=F'F=|-2 80|e;®e’, b=FF"'=[280|¢;,®é,
0 01 001

with the following eigenvalues A; = 1, Ay =4, Ag = 9. Thus, \; = VA, = 1,
Ao = VAy = 2, A3 = VA3 = 3. By means of (8.11-8.12) we further obtain
Yo = g? $1 = 152’ P2 = _610 and
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Table S.1. Recurrent calculation of the coefficients wz(,r)

(r) (r) (r)

T arWy ArWq ArWoy

0 1 0 0

1 0 1 0

2 0 0 0.5

3 9.0 4.5 0

4 0 2.25 1.125
5 12.15 6.075 0.45

6 4.05 4.05 1.0125

23(-10_6) 3.394287 2.262832 0.377134
©p 44.96925 29.89652 4.974456

Table S.2. Recurrent calculation of the coefficients 51(,2)

r ar€l)  al)  akly)  ay  atly)  angly)

1 1 0 0 0 0 0

2 0 0.5 0 0 0 0

3 0 0 0.166666 0.166666 0 0

4 4.5 1.125 0 0 0.041666 0

5 0 0.9 0.225 0.45 0 0.008333
6 4.05 1.0125 0.15 0.15 0.075 0

23(-10*6) 2.284387 1.229329 0.197840 0.623937 0.099319 0.015781

Npq 16.20582 6.829754 1.039719 1.967368 0.266328 0.034357
11 =2 0
3 5 1 .
U= 5I+ 120— 6002 = —2140|e®é,
0 05
11 20
3 5 1 .
v:5I+12b—60b2: 214 0| e; ® €.
005

Eqs. (8.16-8.17) further yield ¢9 = gg, G = —}1, G = 610 and

340
37. 1 1 1 ,

R=F I- C+  C?)= —430| e ®é.
300 4 60 005

8.2 (4.44), (5.33), (5.47), (5.55), (5.85);:
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fpij P = (P @QP; +P; ®PZ‘)S (PP +P;® Pk)s
=[(Pi®P; +P;®P;)": (Pr P + P, @Py)]°

1
2

{ [PZ‘ ® Pj + Pj ®P; + (PZ‘ ® Pj)t + (Pj & Pi)t}
: (P}C QP +P® Pk)}s

= (5ik5jl + 5il5jk) (Pi & Pj + Pj & Pi)s , 1#4, k#£L

In the case i = j or k = [ the previous result should be divided by 2, whereas
for i = j and k = [ by 4, which immediately leads to (8.65).

8.3 Setting f(A) =In A in (8.50) and (8.56); one obtains
: 1 - *LIn ) —In )
0) _ T CP. i J

E® = (InU) —ZZA?PlCPZ—F > 2

i=1 i,j=1
i#]

P,CP;.
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algebraic multiplicity of an eigenvalue,
85, 89, 93, 96

analytic tensor function, 149

anisotropic tensor function, 119

arc length, 60

asymptotic direction, 71

axial vector, 29, 55, 98

basis of a vector space, 3
binomial theorem, 150
binormal vector, 62

Biot strain tensor, 175

Cardano formula, 87
Cartesian coordinates, 47, 49, 52, 53, 56
Cauchy
integral, 150
integral formula, 148
strain tensor, 103
stress tensor, 15, 75, 103, 180
stress vector, 15, 55, 75
theorem, 16, 55
Cayley-Hamilton equation, 161, 167,
171
Cayley-Hamilton theorem, 99, 149
characteristic
equation, 84
polynomial, 84-86, 93, 98
Christoffel symbols, 46-48, 52, 57, 68,
79
coaxial tensors, 130
commutative tensors, 20
complex
conjugate vector, 82

number, 81

vector space, 81
complexification, 81
compliance tensor, 103
components

contravariant, 41

covariant, 41

mixed variant, 41

of a vector, 5
composition of tensors, 20
cone, 79
contravariant

components, 41

derivative, 46
coordinate

line, 39, 67

system, 37

transformation, 39
coordinates

Cartesian, 47, 49, 52, 53, 56

cylindrical, 37, 40, 42, 48, 52, 57

linear, 38, 42, 44, 57

spherical, 57
covariant

components, 41

derivative, 46

on a surface, 69

curl of a vector field, 53
curvature

directions, 70

Gaussian, 71

mean, 71

normal, 69
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of the curve, 61 Eulerian strains, 146
radius of, 62 exponential tensor function, 21, 91, 129,
curve, 59 158, 163
left-handed, 62
on a surface, 66 fourth-order tensor, 103
plane, 62 deviatoric projection, 113
right-handed, 62 spherical projection, 113
torsion of, 62 super-symmetric, 109
cylinder, 66 trace projection, 113
cylindrical coordinates, 37, 40, 42, 48, transposition, 112
52, 57 Frenet formulas, 63
functional basis, 115
Darboux vector, 64 fundamental form of the surface
defective first, 67
eigenvalue, 90 second, 69
tensor, 90
deformation gradient, 138, 158, 165 Gateaux derivative, 122, 136
derivative Gauss
contravariant, 46 coordinates, 66, 68
covariant, 46 formulas, 69
directional, 122, 136 Gaussian curvature, 71
Gateaux, 122, 136 generalized
determinant of a tensor, 86 Hooke’s law, 113
deviatoric Rivlin’s identity, 141
projection tensor, 113 strain measures, 146
tensor, 29 geometric multiplicity of an eigenvalue,
diagonalizable tensor, 89, 148, 152 85, 89, 93, 96
dimension of a vector space, 3, 4 gradient, 44
directional derivative, 122, 136 Gram-Schmidt procedure, 7, 93, 96, 100
divergence, 49 Green-Lagrange strain tensor, 133, 139,
dual basis, 8 146
dummy index, 6
Dunford-Taylor integral, 147, 152 Hill’s strains, 146
Hooke’s law, 113
eigenprojection, 90 hydrostatic pressure, 56
eigentensor, 111 hyperbolic
eigenvalue, 83 paraboloidal surface, 79
defective, 90 point, 71
problem, 83, 111 hyperelastic material, 117, 132, 139
left, 83
right, 83 identity tensor, 18
eigenvector, 83 invariant
left, 83 isotropic, 115
right, 83 principal, 85
Einstein’s summation convention, 6 inverse of the tensor, 23
elasticity tensor, 103 inversion, 23
elliptic point, 71 invertible tensor, 23, 91
FEuclidean space, 6, 81, 82 irreducible functional basis, 116

Fuler-Rodrigues formula, 15 isotropic



invariant, 115
material, 117, 132, 139
symmetry, 119

tensor function, 115

Jacobian determinant, 39
Kronecker delta, 7

Lagrangian strains, 146
Lamé constants, 113, 133
Laplace expansion rule, 99
Laplacian, 54
left
Cauchy-Green tensor, 138, 165
eigenvalue problem, 83
eigenvector, 83
mapping, 16, 17, 20, 104-107
stretch tensor, 146, 165
left-handed curve, 62
length of a vector, 6
Levi-Civita symbol, 10
linear
combination, 3
coordinates, 38, 42, 44, 57
mapping, 12, 28, 29, 103, 112, 113
linear-viscous fluid, 56
linearly elastic material, 103, 133
logarithmic tensor function, 147

major symmetry, 109
mapping
left, 16, 17, 20, 104-107
right, 16, 104, 106
material
hyperelastic, 117, 132, 139
isotropic, 117, 132, 139
linearly elastic, 103, 133
Mooney-Rivlin, 117
Ogden, 117
orthotropic, 142
St.Venant-Kirchhoff, 133
time derivative, 173, 175
transversely isotropic, 119, 134, 139
mean curvature, 71
mechanical energy, 55
membrane theory, 78
metric coefficients, 19, 68
middle surface of the shell, 73

Index

minor symmetry, 110

mixed product of vectors, 10

mixed variant components, 41

moment tensor, 76

momentum balance, 52

Mooney-Rivlin material, 117

moving trihedron of the curve, 62

multiplicity of an eigenvalue
algebraic, 85, 89, 93, 96
geometric, 85, 89, 93, 96

Navier-Stokes equation, 56
Newton’s formula, 86
normal

curvature, 69

plane, 68

section of the surface, 68

yield stress, 179

Ogden material, 117
orthogonal

spaces, 29

tensor, 25, 94, 97

vectors, 6
orthonormal basis, 6
orthotropic material, 142

parabolic point, 71
permutation symbol, 10
plane, 66
plane curve, 62
plate theory, 78
point
elliptic, 71
hyperbolic, 71
parabolic, 71
saddle, 71
polar decomposition, 165
positive-definite tensor, 94, 100
principal
curvature, 70
invariants, 85
material direction, 119, 142
normal vector, 62, 68
stretches, 146, 167, 168, 170
traces, 86
proper orthogonal tensor, 98
Pythagoras formula, 7

radius of curvature, 62
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rate of deformation tensor, 56
representation theorem, 131, 132
residue theorem, 150, 151
Ricci’s Theorem, 49
Riemannian metric, 68
right
Cauchy-Green tensor, 117, 120, 132,
138, 165
eigenvalue problem, 83
eigenvector, 83
mapping, 16, 104, 106
stretch tensor, 146, 163, 165
right-handed curve, 62
Rivlin’s identities, 140
rotation, 13
tensor, 14, 165
Rychlewski’s theorem, 134

saddle point, 71
scalar
field, 42
product, 6
of tensors, 26
second
Piola-Kirchhoff stress tensor, 132,
143, 175
viscosity coefficient, 56
second-order tensor, 12
Seth’s strains, 146
shear
viscosity, 56
yield stress, 181
shell
continuum, 73
shifter, 73
similar tensors, 224
simple shear, 85, 158, 163, 168
skew-symmetric
generator, 134
tensor, 23, 96, 98
spectral
decomposition, 89, 111
mapping theorem, 83
sphere, 66
spherical
coordinates, 57
projection tensor, 113
tensor, 29
spin tensor, 55

St.Venant-Kirchhoff material, 133
straight line, 59
strain energy function, 117
strain tensor

Biot, 175

Cauchy, 103

Green-Lagrange, 133, 139, 146
strains

Eulerian, 146

Hill’s, 146

Lagrangian, 146

Seth’s, 146
stress resultant tensor, 76
stress tensor

Cauchy, 15, 75, 103

second Piola-Kirchhoff, 132
stretch tensors, 146, 165
structural tensor, 119
summation convention, 6
super-symmetric fourth-order tensor,

109

surface, 66

hyperbolic paraboloidal, 79
Sylvester formula, 91, 152
symmetric

generator, 134

tensor, 23, 92, 94
symmetry

major, 109

minor, 110
symmetry group, 119

anisotropic, 120

isotropic, 119

of fiber reinforced material, 143

orthotropic, 142

transversely isotropic, 119, 134

triclinic, 119

tangent
moduli, 139
vectors, 39
tensor
defective, 90
deviatoric, 29
diagonalizable, 89, 148, 152
field, 42
function, 35
analytic, 149
anisotropic, 119



exponential, 21, 91, 129, 158, 163

isotropic, 115
logarithmic, 147
identity, 18
invertible, 23, 91
left Cauchy-Green, 138, 165
left stretch, 146, 165
monomial, 21, 148
of the fourth order, 103
of the second order, 12
of the third order, 29
orthogonal, 25, 94, 97
polynomial, 21, 90, 129
positive-definite, 94, 100
power series, 21, 146
product, 16
proper orthogonal, 98

right Cauchy-Green, 117, 120, 132,

138, 165

right stretch, 146, 165

rotation, 14, 165

skew-symmetric, 23, 96, 98

spherical, 29

structural, 119

symmetric, 23, 92, 94
tensors

coaxial, 130

commutative, 20

composition of, 20

scalar product of, 26
third-order tensor, 29
torsion of the curve, 62
torus, 71
trace, 27
trace projection tensor, 113
transposition, 22
transposition tensor, 112
transverse shear stress vector, 76

Index

transversely isotropic material, 119,
134, 139
triclinic symmetry, 119

unit vector, 6

vector
axial, 29, 98
binormal, 62
complex conjugate, 82
components, 5

Darboux, 64
field, 42
function, 35
length, 6
product of vectors, 10, 13
space, 1
basis of, 3

complex, 81
dimension of, 3, 4
Euclidean, 6
zero, 1
vectors
mixed product of, 10
orthogonal, 6
tangent, 39
velocity gradient, 145, 158, 163
Vieta theorem, 70, 86, 87, 149
von Mises yield function, 178

Weingarten formulas, 69
yield stress
normal, 179

shear, 181

zero tensor, 12
zero vector, 1
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