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Preface

This volume contains the proceedings of the 10th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI 2009), held
in Savannah, Georgia, USA, January 18–20, 2009.

VMCAI 2009 was the 10th in a series of meetings. Previous meetings were
held in Port Jefferson 1997, Pisa 1998, Venice 2002, New York 2003, Venice 2004,
Paris 2005, Charleston 2006, Nice 2007, and San Francisco 2008.

VMCAI centers on state-of-the-art research relevant to analysis of programs
and systems and drawn from three research communities: verification, model
checking, and abstract interpretation. A goal is to facilitate interaction, cross-
fertilization, and the advance of hybrid methods that combine two or all three
areas. Topics covered by VMCAI include program verification, program certifi-
cation, model checking, debugging techniques, abstract interpretation, abstract
domains, static analysis, type systems, deductive methods, and optimization.

The Program Committee selected 24 papers out of 72 submissions based on
anonymous reviews and discussions in an electronic Program Committee meet-
ing. The principal selection criteria were relevance and quality.

VMCAI has a tradition of inviting distinguished speakers to give talks and
tutorials. This time the program included three invited talks by:

– E. Allen Emerson (University of Texas at Austin) on “Model Checking:
Progress and Problems”

– Aarti Gupta (NEC Labs, Princeton) on “Model Checking Concurrent
Programs”

– Mooly Sagiv (Tel-Aviv University) on “Thread Modular Shape Analysis”

There were also two invited tutorials by:

– Byron Cook (Microsoft Research, Cambridge) on “Proving Program Termi-
nation and Liveness”

– Véronique Cortier (LORIA, CNRS, Nancy) on “Verification of Security Pro-
tocols”.

We would like to thank the members of the Program Committee and the subre-
viewers for their dedicated effort in the paper selection process that was crucial
for the quality of the conference. Our thanks go also to the Steering Commit-
tee members for helpful advice, in particular to Dave Schmidt and Lenore Zuck
for their invaluable efforts in the conference organization. VMCAI 2009 was co-
located with POPL 2009 and we thank Yitzhak Mandelbaum, who served as our
interface to the POPL organizers, for the good cooperation. We are also grateful
to Andrei Voronkov, whose EasyChair system was tremendously helpful for the
submission and paper selection process and compilation of the proceedings. We
thank Peter Lammich for his help in setting up the website.



VI Preface

VMCAI was held in cooperation with ACM (Association for Computing Ma-
chinery), who we wish to thank for help with local arrangements. VMCAI 2009
was sponsored by EAPLS (European Association for Programming Languages
and Systems) and Microsoft Research.

January 2009 Neil Jones
Markus Müller-Olm
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Synthesizing Switching Logic Using Constraint Solving . . . . . . . . . . . . . . . 305
Ankur Taly, Sumit Gulwani, and Ashish Tiwari

Extending Symmetry Reduction by Exploiting System Architecture . . . . 320
Richard Trefler and Thomas Wahl



Table of Contents XI

Shape-Value Abstraction for Verifying Linearizability . . . . . . . . . . . . . . . . . 335
Viktor Vafeiadis

Mixed Transition Systems Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Ou Wei, Arie Gurfinkel, and Marsha Chechik

Counterexample Generation for Discrete-Time Markov Chains Using
Bounded Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Ralf Wimmer, Bettina Braitling, and Bernd Becker

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381



Model Checking: Progress and Problems

E. Allen Emerson

University of Texas at Austin

Abstract. Model checking is an automatic method of verifying finite
state concurrent programs. The use of temporal logic and related frame-
works to specify correctness has greatly facilitated simply thinking about
the verification problem. Despite early worries about the intractability
of state explosion, nowadays it can often be ameliorated, permitting ver-
ification of enormously large systems in practice. Important techniques
include abstraction and compact (symbolic) representation.

Unfortunately, none of these techniques scale well beyond a certain
range. Nor is temporal logic universally viewed as a natural specification
framework. We will discuss some possible ways to enhance efficiency and
expressiveness of model checking.

N.D. Jones and M. Müller-Olm (Eds.): VMCAI 2009, LNCS 5403, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Model Checking Concurrent Programs

Aarti Gupta

NEC Laboratories America, Princeton
agupta@nec-labs.com

Abstract. With the growth of multi-core processing and concurrent
programming in modern computing systems, there is a great need to
develop effective verification techniques for concurrent programs. Static
analysis techniques have been shown effective for finding data races, but
suffer from a general problem of too many false alarms. Dynamic tech-
niques like testing have also shown promise, but provide limited coverage
over the state space including all possible thread interleavings. Model
checking alone cannot scale. However, it works better in combination
with these techniques, with the potential of finding real error traces on
one hand and better coverage on the other. In this talk, I will describe our
recent advances in concurrent dataflow analysis, symbolic model checking
with partial order reduction, and dynamic techniques for verifying con-
current programs. These techniques have been implemented in a unified
verification platform, currently targeted at multi-threaded C programs.
I will also report on our experiences on some challenging examples from
the public domain and the industry.

N.D. Jones and M. Müller-Olm (Eds.): VMCAI 2009, LNCS 5403, p. 2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Thread-Modular Shape Analysis

Mooly Sagiv

Tel-Aviv University

Abstract. Thread-modular static analysis of concurrent systems ab-
stracts away the correlations between the local variables (and program
locations) of different threads. This idea reduces the exponential com-
plexity due to thread interleaving and allows us to handle programs with
an unbounded number of threads.

Thread-modular static analyses face a major problem in simultane-
ously requiring a separation of the reasoning done for each thread, for
efficiency purposes, and capturing relevant interactions between threads,
which is often crucial to verify properties. Programs that manipulate the
heap complicate thread-modular analysis. Naively treating the heap as
part of the global state, accessible by all threads, has several disadvan-
tages since it still admits exponential blow-ups in the heap and is not
precise enough to capture things like ownership transfers of heap objects.
An effective thread-modular analysis needs to determine which parts of
the heap are owned by which threads to obtain a suitable thread-modular
state abstraction.

I will present new thread-modular analysis techniques and adaptations
of thread-modular analysis for programs which manipulate the heap.
It is shown that the precision of thread-modular analysis is improved
by tracking some correlations between the local variables of different
threads. I will also describe techniques for reducing the analysis time
for common situations. A key observation for handling the heap is using
notions of separation and more generally subheaps in order to abstract
away correlations between the properties of subheaps.

This is a joint work with Josh Berdine, Byron Cook, Alexey Gotsman,
Tal Lev-Ami, Roman Manevich, G. Ramalingam, and Michal Segalov.

N.D. Jones and M. Müller-Olm (Eds.): VMCAI 2009, LNCS 5403, p. 3, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Advances in Program Termination and Liveness

Byron Cook

Microsoft Research Cambridge

Abstract. Recent research advances now allow us to automatically
prove termination and other liveness properties of many industrial pro-
grams. In cases where the desired property does not hold for all inputs,
tools can be used to synthesize a precondition on the inputs under which
the property does hold. In this tutorial I will describe these recent ad-
vances and discuss our efforts to apply termination analysis to industrial
software.

N.D. Jones and M. Müller-Olm (Eds.): VMCAI 2009, LNCS 5403, p. 4, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Verification of Security Protocols�

Véronique Cortier

LORIA, CNRS, Nancy, France

1 Introduction

Security protocols are short programs aiming at securing communications over
a network. They are widely used in our everyday life. They may achieve var-
ious goals depending on the application: confidentiality, authenticity, privacy,
anonymity, fairness, etc. Their verification using symbolic models has shown its
interest for detecting attacks and proving security properties. A famous example
is the Needham-Schroeder protocol [23] on which G. Lowe discovered a flaw 17
years after its publication [20]. Secrecy preservation has been proved to be co-NP-
complete for a bounded number of sessions [24], and decidable for an unbounded
number of sessions under some additional restrictions (e.g. [3,12,13,25]). Many
tools have also been developed to automatically verify cryptographic protocols
like [8,21].

In this tutorial, we first overview several techniques used for symbolically verify-
ing security protocols that have led to the design of many efficient and useful tools.
However, the guarantees that symbolic approaches offer have been quite unclear
compared to the computational approach that considers issues of complexity and
probability. This later approach captures a strong notion of security, guaranteed
against all probabilistic polynomial-time attacks. In a second part of the tutorial,
we present recent results that aim at obtaining the best of both worlds: fully auto-
mated proofs and strong, clear security guarantees. The approach consists in prov-
ing that symbolic models are sound with respect to computational ones, that is,
that any potential attack is indeed captured at the symbolic level.

2 Symbolic Approach

In symbolic models, the implementation details of the primitives are abstracted
away, and the execution is modeled only symbolically. The central characteristics
of the symbolic approach is that messages are modeled using a term algebra T f .
Typically, the messages exchanged by parties are symbolic terms constructed
from symbols for nonces n, identities a, by applying abstract operations repre-
senting encryption enc(m, k), pairing 〈m1,m2〉, signature sign(m, k), etc. Specif-
ically, we consider the signature F = {enc, enca, sign, 〈 〉, pub, priv} together with
arities of the form ar(f) = 2 for the four first symbols and ar(f) = 1 for the two
last ones. The symbol 〈 〉 represents the pairing function. The terms enc(m, k)

� This work has been partially supported by the ARA project AVOTÉ and the ARA
SSIA FormaCrypt.

N.D. Jones and M. Müller-Olm (Eds.): VMCAI 2009, LNCS 5403, pp. 5–13, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



6 V. Cortier

and enca(m, k) represent respectively the message m encrypted with the sym-
metric (resp. asymmetric) key k. The term sign(m, k) represents the message
m signed by the key k. The terms pub(a) and priv(a) represent respectively
the public and private keys of an agent a. We fix an infinite set of variables
X = {x, y . . .}. Terms with variables are used to specify the intended behavior
of the protocol. The set T f of terms is defined inductively by

t ::= term
| x variable x
| a name a
| f(a) application of symbol f ∈ {pub, priv} on a name
| f(t1, t2) application of symbol f ∈ {enc, enca, sign, 〈 〉}

The set of variables occurring in a term t is denoted by V(t). The set of subterms
of a term t is denoted by st(t).

2.1 Intruder Deduction

Public network are insecure. We assume that a potential attacker, also called in-
truder, can not only listen to the network but also intercept, block and send new
messages. The way an intruder can learn and build new messages is typically
modeled through a deduction system. We give an example of such a deduc-
tion system in Figure 1. It corresponds to the usual Dolev-Yao rules. The first
line describes the composition rules, the two last lines the decomposition rules.
Intuitively, these deduction rules say that an intruder can compose messages
by pairing, encrypting and signing messages provided he has the corresponding
keys and conversely, he can decompose messages by projecting or decrypting
provided he has the decryption keys. For signatures, the intruder is also able to
verify whether a signature sign(m, k) and a message m match (provided he has
the verification key), but this does not give him any new message. That is why
this capability is not represented in the deduction system. We also consider a rule

S � sign(x, priv(y))
S � x

that expresses that an intruder can retrieve the whole message from his signa-
ture. This property may or may not hold depending on the signature scheme.

A term u is deducible from a set of terms S, denoted by S � u if there exists
a proof i.e. a tree such that the root is S � u, the leaves are of the form S � v
with v ∈ S (axiom rule) and every intermediate node is an instance of one of
the rules of the deduction system.

Example 1. The term 〈k1, k2〉 is deducible from the set S1 = {enc(k1, k2), k2}.
Indeed, a proof corresponding to that fact that S1 � 〈k1, k2〉 is:

S1 � enc(k1, k2) S1 � k2
S1 � k1 S1 � k2

S1 � 〈k1, k2〉
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S � x S � y

S � 〈x, y〉

S � x S � y

S � enc(x, y)

S � x S � y

S � enca(x, y)

S � x S � y

S � sign(x, y)

S � 〈x, y〉

S � x

S � 〈x, y〉

S � y

S � enc(x, y) S � y

S � x

S � enca(x,priv(y)) S � pub(y)

S � x

S � sign(x, priv(y))

S � x

Fig. 1. Intruder Deduction System

2.2 Protocols – Bounded Number of Sessions

Consider the famous Needham-Schroeder asymmetric key authentication proto-
col [23] designed for mutual authentication.

A→ B : enca(〈NA, A〉, pub(B))
B → A : enca(〈NA, NB〉, pub(A))
A→ B : enca(NB , pub(B))

The agent A sends to B his name and a fresh nonce (a randomly generated value)
encrypted with the public key ofB. The agentB answers by copyingA’s nonce and
adds a fresh nonce NB, encrypted by A’s public key. The agent A acknowledges
by forwarding B’s nonce encrypted by B’s public key. This protocol defines two
roles that specify the behavior of the initiator agent A and the behavior of the
responder agentB. Formally, the executions of a protocol are specified using terms
with variables. We consider for simplicity a scenario where A starts a session with
a corrupted agent I (whose private key is known to the intruder) and B is willing
to answer to A. The initial knowledge of the intruder is

T0 = {a, b, i, pub(a), pub(b), pub(i), priv(i)}.

The set T1
def= T0 ∪ {enca(〈na, a〉, pub(i))} represents the messages known to the

intruder once A has contacted the corrupted agent I. Then if a message of the
form enca(〈x, a〉, pub(b)) can be sent on the network, then B would answer to
this message by enca(〈x, nb〉, pub(a)), in which case the knowledge of the intruder
will turn to be

T2
def= T1 ∪ {enca(〈x, nb〉, pub(a))}.

Subsequently, if a message of the form enca(〈na, y〉, pub(a)) can be sent on the
network, then A would answer by enca(y, pub(i)) since A believes she is talking
to I and the knowledge of the intruder would be represented by

T3
def= T2 ∪ {enca(y, pub(i))}.

The run corresponds to an attack if (for example), the intruder is able to learn
the nonce nb.
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R1 C ∧ T � u � C if T∪{x | (T ′�x)∈C,T ′ � T} � u

R2 C ∧ T � u �σ Cσ ∧ Tσ � uσ if σ = mgu(t, u), t ∈ st(T ),
t �= u, t, u not variables

R3 C ∧ T � u �σ Cσ ∧ Tσ � uσ if σ = mgu(t1, t2), t1, t2 ∈ st(T ),
t1 �= t2, t1, t2 not variables

R4 C ∧ T � u � ⊥ if V(T, u) = ∅ and T �� u

Rf C ∧ T � f(u, v) � C ∧ T � u ∧ T � v for f ∈ { 〈 〉, enc, enca, sign}

Fig. 2. Simplification Rules

This execution can be formally modeled by a constraint system.

Definition 1. A constraint system C is a finite set of expressions Ti � ui,
where Ti is a non empty set of terms and ui is a term, 1 ≤ i ≤ n, such that:

- Ti ⊆ Ti+1, for all 1 ≤ i ≤ n− 1;
- if x ∈ V(Ti) then ∃j < i such that Tj = min{T | (T � u) ∈ C, x ∈ V(u)} (for

the inclusion relation) and Tj � Ti.

The first condition says that the intruder knowledge only increases. The second
condition ensures that variables are always first introduced on the right-hand
side of a constraint. This corresponds to the fact that the output of a protocol
depends deterministically on its entry.

A solution of a constraint system C is a substitution θ such that ∀(T � u) ∈ C,
Tθ � uθ holds.

Continuing our example, the set constraint corresponding to our scenario is:

T1
def= T0 ∪ {enca(〈na, a〉, pub(i))} � enca(〈x, a〉, pub(b)) (1)

T2
def= T1 ∪ {enca(〈x, nb〉, pub(a))} � enca(〈na, y〉, pub(a)) (2)

T3
def= T2 ∪ {enca(y, pub(i))} � nb (3)

Checking properties like confidentiality is thus reduced to finding a solution to
set constraints. In our running example, a solution to the above set constraints
corresponds to an attack on the confidentiality of the nonce nb.

A way to solve set constraints is to transform them step by step into simpler
ones [22]. A variant of the transformation rules, proposed by Hubert Comon-
Lundh, are displayed in Figure 2. Using transformation rules, it can be shown
that solving set constraints is an NP-complete problem [16,24]. It should be
noticed that solving set constraints corresponding to checking security for one
particular scenario. Once the number of sessions is fixed, there is finitely many
(polynomially guessable) number of scenarios. This yields NP-completeness of
secrecy for protocols for a bounded number of sessions.

2.3 Unbounded Number of Sessions

In the general case - when the number of sessions is not fixed - even a simple
property such as secrecy is undecidable [18]. A classical restriction is to consider
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a bounded number of nonces, meaning that the same nonce may be reused in
different sessions, while this does not hold in reality. Such an abstraction may
lead to false attack but allows to prove security properties [8,9] for an unbounded
number of sessions. Checking properties like secrecy remains undecidable [18] but
it enables to represent protocol execution using Horn clauses.

Typically, we consider a predicate I that represents the intruder knowledge.
For example, the initial knowledge of the intruder for the Needham-Schroeder
protocol can be modeled by the set

CI0 = {I(a), I(b), I(i), I(pub(a)), I(pub(b)), I(pub(i)), I(priv(i))}.

Abstracting nonces by constants, an unbounded execution of the Needham-
Schroeder protocol can be represented by the following set CNS of clauses:

⇒ I(enca(〈na, a〉, pub(i)))
I(enca(〈x, a〉, pub(b))) ⇒ I(enca(〈x, nb〉, pub(a)))
I(enca(〈na, y〉, pub(a))) ⇒ I(enca(y, pub(i)))

For simplicity, we have only described the clauses corresponding to the case
where A starts sessions with a corrupted agent I and B is willing to answer to
A. To have a complete description of the protocol, one should also consider the
case where A is willing to talk to B, B is willing to talk to I and symmetrically,
all cases where A plays the role of B and B plays the role of A.

The ability of the intruder to analyze and forge new messages can be rep-
resented by the following set of clauses CI . It is the simple translation of the
deduction system of Figure 1.

I(x), I(y) ⇒ I(〈x, y〉) I(x), I(y) ⇒ I(sign(x, y))
I(x), I(y) ⇒ I(enc(x, y)) I(x), I(y) ⇒ I(enca(x, y))
I(〈x, y〉) ⇒ I(x) I(〈x, y〉) ⇒ I(y)

I(enc(x, y)), I(y) ⇒ I(x) I(enc(x, pub(y))), I(priv(y)) ⇒ I(x)
I(enc(x, priv(y))) ⇒ I(x)

Then security of a protocol is reduced to checking satisfiability of a set of
clauses. For example, the confidentiality of the nonce Nb can be expressed by
the satisfiability of the set of clauses CNS ∪ CI ∪ {¬I(nb)}.

This modeling of protocols is the approach used for by the ProVerif tool [8,10],
which has been successfully used for analyzing many security protocols (see
e.g. [1,11]). Some decidable fragments of Horn clauses, well suited for protocols
have been proposed in [13,25].

3 Computational Approach

The abstraction of messages by terms and the limited adversary raise some
questions regarding the security guarantees offered by such proofs, especially
from the perspective of the computational model.



10 V. Cortier

3.1 Brief Presentation of Computational Models

In computational models, messages that are exchanged are bit-strings and de-
pend on a security parameter η which is used, for example to determine the
length of random nonces. In contrast to symbolic models, the attacker does not
perform predetermined actions for analyzing messages, but is modeled by any
probabilistic Turing machine running in polynomial-time w.r.t. the security pa-
rameter.

Security properties are also stated in a stronger way than in symbolic models.
For example, the confidentiality of a nonce does not only say that an attacker
should not be able to output the nonce but also require that the attacker should
not be able to get any partial information about the nonce. Formally, confiden-
tiality is expressed through a game. The game is parametrized by a bit b and
involves an adversary A. The input to the game is the security parameter η. It
starts by generating two random nonces n0 and n1. Then the adversary A starts
interacting with the protocol Π . It generates new sessions, sends messages and
receives messages to and from these sessions (as prescribed by the protocol). At
some point in the execution the adversary initiates a session and declares this
session under attack. Then, in this session, the confidential nonce is instantiated
with nb (i.e. one of the two nonces chosen in the beginning of the experiment,
the selection being made according to the bit b) and the adversary continues its
interaction with the protocol. In the end, the adversary is given n0 and n1 and
outputs a guess d. The nonce is computationally secret in Π if the probability
that d = b is the same than the probability that d �= b up to some negligible
function1 in the security parameter.

Under the computational approach, the security of protocols is based on the
security of the underlying primitives, which in turn is proved assuming the hard-
ness of solving various computational tasks such as factoring or taking discrete
logarithms. The main tools used for proofs are reductions : to prove a protocol se-
cure one shows that a successful adversary against the protocol can be efficiently
transformed into an adversary against some primitive used in its construction.
Here, quantification is universal over all possible probabilistic polynomial-time
(probabilistic polynomial time) adversaries and the execution model that is ana-
lyzed is specified down to the bit-string level. Two important implications stem
from these features: proofs in the computational model imply strong guaran-
tees (security holds in the presence of an arbitrary probabilistic polynomial-time
adversary). At the same time however, security reductions for even moderately-
sized protocols become extremely long, difficult, and tedious.

3.2 Bridging the Gap between Symbolic and Computational Models

Recently, a significant research effort aims at linking the two approaches via
computational soundness theorems for symbolic analysis [2,4,5,6,17]. Justifying
1 A function f is said to be negligible if it grows slower than the inverse of any

polynomial, that is, for any polynomial P , there exists n0 such that for any n ≥ n0,
|f(n)| ≤ 1

P (n)
.
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symbolic proofs with respect to standard computational models has significant
benefits: protocols can be analyzed and proved secure using the simpler, auto-
mated methods specific to the symbolic approach, yet the security guarantees
are with respect to the more comprehensive computational model.

For example, it has been shown in [15] that for protocols with asymmetric
encryption and signatures, any trace execution obtained by the interaction of a
concrete (computational) adversary is (with overwhelming probability) the im-
age of a symbolic execution trace obtained by executing a symbolic adversary. It
is also proved that symbolic secrecy implies the computational (indistinguisha-
bility based) secrecy. This statement holds under standard assumptions on the
security of the cryptographic primitives used in the concrete implementation,
namely provided that encryption is IND-CCA2 secure and that signature is ex-
istentially unforgeable. Intuitively, IND-CCA2 security is defined through a game
where the adversary should not be able to link cypher-texts to corresponding
plain-texts even if he is given access to encryption and decryption oracles. A sig-
nature is existentially unforgeable whenever an adversary cannot produce valid
signatures even being given access to a signature oracle.

One consequence of this result is that in the concrete model, the actions of
an adversary are limited to the actions of the symbolic adversary. This allows
to transfer trace-based security properties such as authentication and secrecy
properties from symbolic to computational models. In other words, as soon as a
protocol is proved secure for an authentication and secrecy property in symbolic
models (using e.g. an automatic tool) then it is deemed secure in the less abstract
computational model. This kind of results have then been extended e.g. to hash
functions (in the random oracle model) [14], non-malleable commitment [19] and
zero-knowledge proofs [7].

4 Conclusion

Symbolic approaches have proved their usefulness for analyzing security proto-
cols. Automatic tools have been often used for discovering previously unknown
flaws. Abstracting messages by terms seems to be a good level of abstraction
since it is possible to show that security proof in symbolic models actually im-
plies stronger guarantees in computational models under classical assumptions
under the implementation of the primitives.

There are still several open directions of research. Symbolic approaches
currently allow to check classical security properties such as confidentiality and
authentication. For more recent protocols such as e-voting protocols and
contract-signing protocols, the properties that should be achieved are more in-
volved and cannot be encoded in existing tools. In addition, these recent pro-
tocols make use of less classical primitives such as re-randomizable encryption
scheme or blind signatures. New decision techniques have to be developed for
these particular primitives and security properties.

Bridging the gap between symbolic and computation models is a promising
line a research since it enables to prove strong security guarantees, benefiting



12 V. Cortier

from the simplicity of symbolic models. However, current results require strong
assumptions on the security of the cryptographic primitives (e.g. IND-CCA2 en-
cryption schemes). Weaker security assumptions like IND-CPA secure encryption
schemes may not suffice to ensure security of protocols [26]. Using weaker en-
cryption schemes may thus require to adapt both symbolic models and protocols
accordingly.
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Abstract. The Rely-Guarantee approach is a well-known compositional
method for proving Hoare logic properties of concurrent programs. In
this approach, predicates in the proof must be proved invariant (or sta-
ble) under interference from the environment. We describe a framework,
and a prototype implementation, for automatically detecting and repair-
ing instability in such proofs. The method uses a combination of model
checking, abstract interpretation, SMT and flow-control refinement.

1 Introduction

Multi-core and multi-processor computing systems are now mainstream. Hence,
shared-memory concurrency, where multiple threads have read/write access to
the same memory space, is becoming increasingly common. Consequently, con-
current programs are the focus of much recent research on automatically prov-
ing program properties. Often, the assertions we would like to prove are not
amenable to existing automatic analyses. This paper studies one such scenario,
and shows how existing automatic techniques can nonetheless help the proof
process.

The main challenge in proving properties of concurrent programs, and indeed
in their design, is dealing with interference, i.e., the possibility that threads
may concurrently make changes to the same memory address. The concurrent
programming community has evolved several synchronisation schemes to avoid
interference. Most rely on some form of access denial, such as locks. Though
locks make it easy to reason about correctness, they may also cause loss of
efficiency as threads wait to acquire access to needed resources. Locking schemes
have thus become increasingly fine-grained, attempting to deny access to the
smallest possible size of resource, to minimise waiting and maximise concurrency.
The ultimate form of such fine-grained concurrency are programs that manage
without any synchronisation at all [17].

The finer the concurrency, the more involved the logic for avoiding interfer-
ence. This logic must implicitly or explicitly take the actions of other threads
into account. This is a problem for program proofs where we strive for modular-
ity, i.e., we wish to be able to reason about a piece of code in isolation from the
various environments in which it could execute.
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Rely-guarantee (RG) reasoning [16] offers a fairly widely used solution to this
problem within the framework of Hoare-style program proofs [14]. Broadly speak-
ing, RG encodes the environment into the proof: all pre- and post-conditions of
every Hoare triple must be shown to be unaffected (or stable) under the actions
of the environment. Once non-interference has been established, the proof can
be carried forward exactly as for a sequential program. Automatically ensuring
such non-interference can be problematic in many cases.

In this paper, we describe preliminary progress on a possible solution, that
relies critically on state-of-the-art tools from the model checking, abstract inter-
pretation and Satisfiability-modulo-Theories (SMT) research communities. Our
stability analysis engine can be integrated with a verification condition genera-
tor, allowing greater automation for Hoare logic proofs of concurrent programs.

The next section gives relevant background. We then describe our method,
and give examples to illustrate shortcomings and possible developments. We
assume some familiarity with program proofs in Hoare logic [14], and with model
checking [7].

2 Preliminaries

2.1 Rely-Guarantee Reasoning

Rely-guarantee (RG) is a compositional verification method for shared memory
concurrency introduced by Jones [16]. Interference between threads is described
using binary relations. In that treatment, post-conditions were relational, so
assertions could talk about the state before and after an action. Here, in line
with traditional Hoare logic, we shall use post-conditions of a single state, as this
usually makes for simpler proofs. In either case, the essence of RG is unaffected
by this choice.

Our command language will be the one used by Jones, i.e., with assignment,
looping, branching, sequential composition and parallel composition, using C-
like syntax. For parallel composition we assume standard interleaved execution
semantics, i.e., the threads of a program have access to some shared state, and
atomic instructions occur interleaved.

Program variables will range over N. It may seem odd to have program vari-
ables range over infinite types. In practice however, reasoning about numbers
with the aid of abstraction, has been found to be more tractable than reasoning
about finite but huge state spaces over machine words or bit-vectors, which are
harder to abstract due to overflow and underflow corner cases. We made this
choice primarily for ease of tool use while developing our prototype.

RG can be seen as a compositional version of the Owicki-Gries method [18].
The specification for a command C is a four-tuple (P,R,G,Q), where P and Q
are the usual Hoare logic pre- and post-condition assertions on a single state,
and R and G are binary relations on states (often called “two-store” predicates).
R and G summarise the properties of the individual atomic actions invoked

by the environment and the thread respectively. An action is given as a binary
relation on the shared state, and is written g � v̄ := ē. This notation indicates
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that, if the guard g is true, then the action simultaneously updates the vector of
shared state variables v̄ pointwise with the value of the expression vector ē, and
does nothing otherwise. Note that that update need not be atomic. For example,
the action corresponding to the command x = x + 1, that increments a shared
integer x, might be written as true� x := x+ 1. We will elide true guards.
C satisfies its specification, (P,R,G,Q) � C, if from a state satisfying P , and

under environmental interference at most R (the rely), C causes interference at
most G (the guarantee), and if it terminates, it does so in a state satisfying Q.
G is the relation given by the reflexive and transitive closure of all actions

of the thread being specified. R is similarly the reflexive and transitive closure
of all the actions of the environment, i.e., the actions comprising R are just the
G actions of all the other threads. We overload the notation for R and G to
indicate either relations or predicates, as convenient.

Taking reflexive and transitive closures has the effect of forgetting all control-
flow information. This has the disadvantage of overapproximating the behaviours
of the environment, but the advantage that any proof will hold for arbitrary
numbers of threads of the proved code (new code may of course break the proof).

The actions are given by manual annotation, as in general, automatic action
discovery is non-trivial. The reason is that actions can only mention shared state
variables, whereas in the code shared state variables may often be assigned the
value of an expression containing non-shared (or local) variables. Fully automatic
action annotation would thus require an iterative computation that may end up
exploring the full state space of the program, and this we wish to avoid. For the
toy programs we have looked at so far, this has not been a problem. For very
large programs, one can always annotate a procedure call with a single action,
and not descend into the call itself.

An assertion P on a single state is considered stable under interference from
a binary relation R if (P ;R) ⇒ P , i.e., if P (s) and (s, s′) ∈ R, then P (s′). More
specifically, if P is the pre-condition for some command C, then it must continue
to hold after any environment action, before the execution of C.

Jones gives a full proof system for the satisfaction relation, but we will not
need it for this work. However, we reproduce the two critical rules here, to make
our assumptions about RG concrete. The first rule is parallel composition, where
|| is the interleaving parallel composition operator.

(P1, R ∨G2, G1, Q1) � C1 (P2, R ∨G1, G2, Q2) � C2

(P1 ∧ P2, R,G1 ∨G2, Q1 ∧Q2) � C1||C2
(1)

For our purposes, we assume that a read or write of a single boolean or
integer is the highest level of hardware atomicity, e.g., writing two booleans is
not hardware atomic. This assumption is satisfied by most machine architectures.
The second rule tells us what it means for a command to be atomic,

(P, id, G,Q) � C P stable under R
(P,R,G,Q) � atomic(C)

(2)
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meaning that if a command satisfies a specification with an empty rely, and the
pre-condition is stable under some rely R, then the command may be treated
as if it executed atomically. Hardware atomic commands are of course trivally
atomic.

Note one departure from standard RG: the post-condition of the very last line
of code is not checked for stability. It is instantaneously true immediately after
execution of that line. At this point, either the thread terminates, so that we
do not care whether the environment interferes with the post-condition, or, the
thread resumes execution from some command the pre-condition of which will
be the same as this post-condition, and thus will be checked for stability.

2.2 Temporal Logic Model Checking

Let V be the set of program variables (or state variables) used in a program (with
appropriate scope management, which we ignore without loss of generality). Each
v ∈ V ranges over a non-empty set of valuesDv. The state space S of the program
is given by

∏
v∈V Dv. A single state of the program is then a value assignment

to each v ∈ V .
Suppose AP is the set of all those atomic propositions over V that we might

use in the specification of a program. Then we can turn the program into a
state machineM represented as a tuple (S, S0, T, L) where S is the set of states,
S0 ⊆ S is the set of initial states, T ⊆ S × S is the transition relation, and
L : S → 2AP labels each state with the subset of AP that is true in that state.

A temporal logic augments propositional logic with modal and fix-point opera-
tors. The semantics of a temporal logic formula in which the atomic propositions
range over AP can be expressed in terms of sets of states and/or sequences of
states of M . If we turn a program into a state machine, we can use temporal
logics to express temporal properties of the program.

The most common such property is the global invariant, i.e., a property that
holds in all reachable states of a state machine, or equivalently, always holds
during the execution of a program. We denote this by

M �Gf

where M is the state machine, f is the global invariant and G is the “Globally”
temporal logic operator. The semantics of Gf are simply that f must hold in
every state of M that is reachable from the initial states of M .
M � Gf can be checked automatically using proof procedures known as model

checkers, subject only to time and space constraints. More importantly, if the
proof attempt fails, the model checker can return a counterexample, which is an
execution path (sequence of transitions) leading from an initial state to a state
in which the invariant is not satisfied. See [7] for details.

The problem of model checking global invariants is in general undecidable
when the state space is infinite. However, the ability to produce counterexamples
has led to the development of counterexample guided abstraction refinement
(CEGAR) [8,19], where the state space is first abstracted to a simpler one,
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and if the constructed abstraction is too general it can often be automatically
iteratively refined until the desired property is verified.

We do not need to describe model checking or CEGAR in more depth, partic-
ularly as there are many different abstraction schemes and CEGAR techniques.
Further details may be found in [7,8,13,19].

3 The Problem of Instability Detection and Repair

Rule (2) of RG is used to establish a command as atomic. The command is then
free from interference, and can be reasoned about using standard Hoare logic
rules for sequential programs. The key requirement is to prove that the pre-
condition P of the command is stable under the relyR. This is a two-step process.
First, one detects whether or not P is stable. Second, if P is unstable, one repairs
it; the usual way is by weakening P . This stability analysis is thus the key to
reducing proofs about concurrent programs to proofs about sequential programs.

Instability can be detected either manually, or sometimes automatically using
syntactic checks [22]. Once detected, it is repaired by weakening P , either manu-
ally or using ad hoc abstraction heuristics if the underlying domain permits [6,9].

As a simple example, consider the assertion x = 10 that is unstable under the
environment consisting of the single action x := x+ 1. In general, detecting this
automatically is not straightforward.

To repair this, a common approach is to disjunctively add state based on the
action, starting with the states satisfying the assertion, i.e.,

(x = 10)
(x = 10 ∨ x = 11)
...

and hope to reach a fixpoint. Unfortunately, in this case such naive automatic
stabilisation will not terminate. To repair manually, we use the boolean abstrac-
tion α(x) ⇐⇒ x ≥ 10, where α is a total abstraction function [7]. Under this
abstraction the action above becomes the identity action (now on booleans) in
all cases except when x = 9, but in that case x = 10 does not hold anyway, so
we have stability immediately, and the assertion is stabilised to x ≥ 10.

Automatic instability detection and repair are thus both non-trivial problems.
Further, we observe that weakening P is not the only way to achieve stability.
From the definition of stability, strengthening the rely is also a possible solution.
We shall present a method that combines both approaches.

We have seen in §2.2 that this problem of finding exactly the right level of
abstraction also occurs in model checking. It is our hope that the model checking
solution (i.e., CEGAR) can be applied to stability analysis as well. If so, the vast
amount of model checking research on this topic can be brought to bear on the
problem.
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4 Automatic Stability Analysis

Our solution is to represent R and G as state machines MR and MG of actions.
Stability detection for a predicate P is then reduced to model checking that
P is a global invariant over MR. If the check fails, we use the counterexample
trace provided by the model checker to either strengthen R, or weaken P , and
then repeat the check until success or irreparable failure. The process can di-
verge because over an infinite state space there may be an infinite sequence of
successively weaker assertions, none of which is stable. For this reason, for now
we always prefer strengthing. A further novelty of our approach is that we per-
form weakening only with respect to the part of the environment that is causing
instability (rather than the full environment), thus reducing the risk that the
program proof will fail because the stabilised precondition was too weak.

4.1 Detection

The state machine for the guarantee condition Gt for a thread t, is Mt =
(St, S0t, Tt, Lt) and is constructed as follows. Let Vt be the set of all shared
program variables used in t. Then St is constructed like S in §2.2. S0t is those
states of St in which all v ∈ Vt are assigned their initial values if any. Let al

be the (possibly empty) set of actions associated with the command on line l of
the thread code (having a set of actions associated with a command allows us
to abstract procedure calls, and also to use auxilliary actions without violating
atomicity constraints). Then

Tt(s, s′) =
∨
l

( ∧
a∈al

a(s, s′)

)

Note that this transition relation is not tracking control-flow. Finally, Lt(s) =
{p ∈ AP | p(s) = true}. Lt is a technical requirement for defining the semantics
of temporal logics; it gives the set of states in which a given atomic proposition
p ∈ AP is true.

Now suppose we have the guarantee state machines for all threads of the
program. To do stability detection for some assertion P in the proof of some
thread, let the environment E be the set of all other threads (i.e., all threads
less the one for which the proof is being done). Then we construct the state
machine for R,MR = (SR, S0R, TR, LR) over variables VR =

⋃
t∈E Vt, as follows( ∏

v∈vR

Dv,
∏

v∈VR

init(v),
⊎
t∈E

Tt, λs.{p ∈ AP | p(s) = true}
)

where init(v) gives the set of possible initial values of v. Note that the transition
relation TR is simply a union of the transition relations of the environment’s
threads, so it is also not tracking control flow.

Concretely, the transition system of MR non-deterministically chooses a
thread t ∈ E, after which MR behaves like Mt for the duration of the execution
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of some action of t, after which it again picks a thread and repeats. Once we have
MR, the stability check is reduced to invoking a model checker to confirm that

MR � GP

Theorem 1. Ignoring valuations of P on unreachable states of MR, we have

MR � GP ⇒ (P ;R) ⇒ P

Proof. If MR � GP then P holds in all reachable states of MR. A state s is
reachable iff for s0 ∈ S0R R(s0, s). Now P holds in all states, so in particular in
s0 ∈ S0R, and all s and s′ such that R(s′, s). Since (P ;R) ⇒ P is equivalent to
∀ss′.P (s) ∧R(s, s′) ⇒ P (s′), we have our result. �

Note that ignoring valuations of P on unreachable states of MR is fine because
we do not care whether P is stable or unstable for situations that can never
happen. It is possible that P may be stable on all reachable states and unstable
only in some unreachable states, in which case the model checker may still fail the
stability check (since the reachable states ofMR over-approximate the reachable
states of the environment). This is a completeness issue, and is dealt with by a
refinement-based solution in §4.2.

So if P is a global invariant ofMR then P is stable under R. If not, the model
checker will supply a counterexample, which will be a sequence of actions leading
to a state in which P is not satisified.

A global invariant is a safety property in the sense that a violation of the
property is caused by the explicit occurrence of an observable event. We note
here that rule (1) of RG, which appears to be performing circular reasoning, is
sound for safety properties [1].

We use the software model checker blast [5], to check that MR � GP . For-
getting control flow considerably simplifies MR, easing the model checker’s task.
Our prototype implementation generates a C program corresponding to MR,
annotated with a blast assertion corresponding to P . The non-deterministic
thread selection is easily constructed from the blast boolean non-deterministic
choice primitive. We denote bymc(M,P ) a call to the model checker, that checks
whether assertion P is a global invariant over state machine M . This returns
either true or a counterexample trace π as a sequence of actions.

Indirectly, the stability check relies on the model checker’s underlying SMT
solver’s ability to check assertions in combinations of various theories. Thus,
we can do instability detection in any theory supported by blast (or some
software model checker), and so are able to always use state-of-the-art software
model checking techniques for free. At this point we are already ahead of the
game by not being limited to requiring syntactic stability checks.

4.2 Repair

As mentioned earlier, the standard approach to instability repair is by weakening
P , but an alternative is to strengthen R. The latter approach can be useful if
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weakening P would make it impossible to prove the Hoare logic property we are
interested in. Also, as noted in §4.2, too weak an R can lead to incompleteness
in stability detection. We now present a method that combines both approaches.

In standard RG, R and G are the reflexive transitive closures of their con-
stituent actions. This representation corresponds to state machines that can
perform any action from any state. Indeed, MR above is precisely this state
machine (since the transition relation is not tracking control-flow).

The obvious way to strengthen R is to re-introduce control-flow information
into MR. If the stability of P depends on the sequencing of actions, then such a
refinement of R will allow us to stabilise P without weakening it. We shall see
an example of this later. On the other hand, by introducing control-flow in R,
we begin losing scalability in the sense that the model checker’s task becomes
harder, and the overall proof need not hold for arbitrary numbers of threads of
the same piece of code, but only for the number that is model-checked.

To do this strengthening, we need to be able to track control-flow in each
thread. Four preliminary steps are required:

1. We add, for each action a of each t ∈ E, the set of all actions of t that may
execute immediately after a. We call this the successor set of a, denoted by
succ(a).

2. We attach to each action a a boolean flag pin(a). If pin(a) is true, then we
say that a is pinned, i.e., intuitively, we are now tracking control flow for a.

3. For each thread t, we add a special dummy action startt, which is never
executed, but for which succ(startt) is the set of all actions of t that can be
the very first action executed when t starts.

4. We maintain a function last(t), which returns the most recent action exe-
cuted by t, or startt if t has not executed any action yet.

Till now, after the non-deterministic choice of thread in TR, the action to
execute was chosen non-deterministically as well. Now, let choose(n) for n > 0
be the function that non-deterministically chooses a number between 0 and
n− 1, and let |t| be the number of distinct actions of a thread t. Suppose thread
t is picked as the next thread to run. The choice of next action in MR is then
determined as follows:

procedure pick action(t)
1. tmp← choose(|t|)
2. if (pin(tmp)) then
3. if tmp /∈ succ(last(t)) then goto 1
4. return tmp

The intuition is that an unpinned action can execute at any time, whereas a
pinned action is only allowed to execute if it is in the successor set of the
most recently executed action of that thread. This allows fine-grained control
over adding execution sequencing information to MR. This code is never exe-
cuted, only model-checked, so non-determinism and infinite loops are perfectly
acceptable.
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The rely control-flow refinement then works as follows (recall that mc is a call
to the model checker, return either true or a counterexample trace π):

procedure mcr(MR, P )
1.∀a.pin(a) ← false
2.match mc(MR, P )
3. case true : return SUCCESS
4. case π : let 〈a0, a1, . . . , am〉 = π
5. if ∀a ∈ π.pin(a) then return FAIL
6. tmp← ai ∈ π s.t. ¬pin(ai) ∧ ∀j > i.aj ∈ π ⇒ pin(aj)
7. pin(tmp) ← true
8.goto 2

The rely refinement loop works by adding control-flow information for actions
in the counterexample trace until either the model checker reports success, or
returns a counterexample trace in which we are already tracking control-flow
for all actions of the trace. In the latter case, it is clear that there is at least
one execution sequence where stability fails even when nothing executes out of
sequence.

We must ensure that rule (1) of RG is still sound since the rely may now not be
the reflexive transitive closure of the environment’s actions. The other rules are
not affected. The key is to ensure that the guarantee of each thread is stronger
than the rely of every other thread. This is indeed the case: since our refinement
only re-introduces control-flow information, the refined state machine will never
under-approximate the actual program, and so the guarantees will allow all valid
program executions.

With mcr, we simply fail if further control-flow refinement of the rely cannot
repair instability. We now add weakening of P . For this, we amend mcr to
return π instead of FAIL in line 5. Further, we assume access to a procedure
weaken(M) which infers invariants on variable occurrences at various control
points in a given state machine, and returns the list of invariants thus found.

We use the interproc tool [15] for this functionality, as it provides an easy
to use interface to state-of-the-art abstract interpretation libraries for numerical
domains. Since we are ignoring the heap for now, our case studies use mainly
arithmetic and static arrays. The input of interproc is a program in an aca-
demic imperative language that supports numerical types. The underlying engine
of interproc consists of a generalised fixpoint computation which in turn uses
abstraction interpretation libraries such as apron [3]. Since these work over nu-
merical domains only, our current examples are also limited to assertions over
number-valued variables.

The output is the program code annotated with invariants on program variable
occurrences at various control points in the code. Invariants at the same control
point hold simultaneously and can be conjoined. Those at distinct control points
do not hold simultaneously and can be disjoined. Thus we can summarise the
information from interproc as a formula in disjunctive normal form.
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We denote the call to interproc and the invariant parser by weaken(M),
and add assertion weakening to our method as follows

procedure mcrw(MR, P )
1.match mcr(MR, P )
2. case SUCCESS : return SUCCESS
3. case π : let 〈a0, . . . , am〉 = π
4. dnf ← weaken(MR � π)
5. if (P ⇒ P ∨ dnf) ∧ ¬(P ∨ dnf ⇒ P )
6. then P ← P ∨ dnf
7. else return FAIL
8.goto 1

The call to mcr may statefully refineMR. In line 4,MR � π is the state machine
that is exactly as MR but restricted to the actions in π (so it automatically
inherits any control-flow refinement). Line 5 uses the cvc3 SMT solver [4] to
evaluate the test. If an assertion strictly weaker than P cannot be found, the
stability repair attempt declares failure.

The call to weaken operates only on the part of the environment that is
causing instability. This ensures that we do not weaken P unnecessarily, and also
eases the abstract interpreter’s task. The call to mcr resets all pins. This slows
down convergence, but also decreases the likelihood of returning an unnecessarily
strong R. As noted earlier, the weaker the R and the stronger the P , the better.

Fig. 1. Overview of Framework
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An overview of the framework is given in Figure 1. Solid arrowheads indicate
positive branches at decision points. Shaded boxes indicate manual work: first,
the user must annotate code with actions, from which R can be automatically
constructed (it is manual for now); second, the assertion to stabilise must be
supplied.

5 Examples

We give a few simple examples to illustrate the framework and the limitations
of our current implementation.

Example 1. Let the environment be

1. int x = 1
2. x = x+ 1
3. x = x− 1
4.goto 2

and suppose we wish to check the stability of the stable assertion P ≡ x ≥
1 ∧ x ≤ 2. In standard RG, the actions of this environment are x := x + 1 and
x := x − 1 (the initialisation of x is absorbed into the initial state). P is not
stable under R, which is the reflexive transitive closure of these actions, e.g., R
could consecutively execute the increment twice.

Invoking the stability analysis, the model checker fails, and the counterexam-
ple shows either x > 2 because of the first action or x < 1 because of the second
action. The offending action is then pinned, but the second run of the model
checker will fail again, because the remaining unpinned action can again occur
thrice consecutively. The analysis pins this action as well, and now the check suc-
ceeds because both actions must now alternate. This example also shows how
our method can prove stronger properties than are possible in standard RG,
despite being automatic.

Example 2. We now see a case which requires weakening for success. Suppose
the environment is

1. int x = 1
2. x = x+ 1
3.goto 2

and we wish to check the stability of the assertion P ≡ x = 1. This is unstable,
because of the increment.

The model checker fails, and the counterexample points to x := x+1. Pinning
this, the model checker fails again. Now the counterexample trace contains no
unpinned actions, so the analysis concludes that there is at least one way to
destabilise the assertion even with full control-flow tracking. It calls the abstract
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interpretation engine for help, which in this case returns the invariants x−1 = 0
for line 1, and x ≥ 1 for line 3. The analysis then uses an SMT solver to confirm
that P ∨ (x − 1 = 0 ∨ x ≥ 1) is strictly weaker than P , and weakens P to
x− 1 = 0 ∨ x >= 1. The model checker now succeeds even with all pins reset.

This example illustrates the use of weakening, but also exposes one of the
shortcomings of the method as currently implemented. There is a tradeoff be-
tween weakening P and strengthening R, and the current approach always pri-
oritises the latter. We are currently investigating more sophisticated algorithms
that attempt to efficiently find the strongest P and weakest R for which stability
is provable.

Example 3. The above examples may have given the impression that we always
end up with full control-flow tracking. But consider the environment

1. int x = 10, y = 10
2. x = 10
3. y = 10
4. if x ≤ y then x = x+ 1
5. if y ≤ x then y = y + 1
6.goto 4

and let P ≡ x− y ≤ 1 ∧ y − x ≤ 1. The actions are

1. x := 10
2. y := 10
3. x ≤ y � x := x+ 1
4. y ≤ x� y := y + 1

and P is not stable under the initial R (which does not track any control-flow),
because the first two actions can execute any time. However, the order of the
last two actions does not matter, and indeed the analysis does pin the first two
only.

Example 4. We now consider a concrete example that occurred in our own re-
search. During the construction of a correctness proof of Simpson’s 4-slot algo-
rithm [20], the second author devised the algorithm of Figure 2. This simulates a
lock-free one-place buffer that is concurrently accessed by a single writer thread
and a single reader thread. The implementation uses as shared state a 2-place
array b and two integers l and c, and manages reads and writes without corrup-
tion and in sequence (but reader starvation is possible). Reads and writes are
atomic at bit level only, so in particular the read and write of b are not atomic.

Safety (i.e., reader never returns a corrupt value) can be model-checked. Less
obvious is freshness. This states that the reader must always read a value that
is either the same as or occurs later in the sequence of written values, than the
latest such value when the reader thread started.
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write(x : T ) read() returns y : T
local t:int local t:int
c = 1 do c = 0
t = 1− l t = l
b[t] = x y = b[t]
l = t t = c

until t == 0
return y

Fig. 2. Lock-free one-place buffer

For freshness, we can assume without loss of generality that the values writ-
ten to b are the serial numbers of the written values. Then we construct the
environment from the user supplied writer actions (i.e., c := 1, b[¬l] := b[l] + 1
and l := ¬l), supply the reader pre-condition v = b[l] and the post-condition
y ≥ v, and do a standard strongest-postconditions forward analysis, using the
algorithm for stability checking. Both the environment construction and forward
analysis can be automated, and we plan to do so in due course.

We expect that automatically proving this can also be done with an infinite
state model checker that can handle parallel composition. It would need manual
code instrumentation with observer variables (effectively simulating serial num-
bers), since temporal logic cannot otherwise capture this property. However,
this approach is unlikely to scale as thread sizes grow, whereas our approach
completely sidesteps state space explosion in the thread being verified, and will
only possibly encounter state space explosion in the environment if the cause of
instability is unrelated to control-flow.

6 Related Work

We do not know of any other work that uses model checking and abstraction
for stability analysis in Hoare-style RG proofs. There is work underway at MSR
Cambridge [12] that also represents R and G as state machines, but their aim
is to deal with questions of liveness. Other than that we know only of the work
on automatic stabilisation for a fragment of separation logic [6,21], which uses
weakening only and is restricted to syntactic checking for instability.

There has been work on modular verification using model checking, where
the component being verified is distinguished from its environment (which can
be abstracted and refined, e.g., [2]). Our work is both less powerful in that it
requires the user to provide the environment (i.e., the rely) manually, and more
powerful in that it is able to use Hoare logic, thus sidestepping the state explosion
problem within the component being verified.

The work on thread-modular verification by Flanagan et al [11] is more rel-
evant. They also use a rely-guarantee style approach, but in which executions
of the rely are inserted throughout the code of the thread being verified, and
at each step, it is checked that the guarantee of the thread holds. Their work is
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more mature, with support for procedure calls and connections with sequential
program checkers. However, their approach can be seen as a special case of our
framework: the case where proof fails if it fails for the initial environment and
specification.

7 Concluding Remarks

This paper only establishes proof-of-concept. For a start, we would like to con-
struct the environment automatically from the annotations, so that we do not
have do our proofs one thread at a time. To handle possible environment state-
space explosion in the stability detection phase, we propose the use of abstract
separation logic to carve out irrelevant state. Separation logic and RG have al-
ready been combined [22]. We may also use interproc supplied invariants to
help the model checker with abstraction refinement.

The algorithm has other important limitations. It may not terminate. There
are proof scalability issues (see §4.2). It inherits from RG the limitation to paral-
lel composition (no forks/joins), and to proving safety properties only. Further,
we completely ignore the heap.

Nonethless, the current implementation is useful (e.g., §5), and, apart from
possible non-termination, the limitations are not permanent [10,12].

Acknowledgement. The first author would like to thank Viktor Vafeiades for
permission to reproduce excerpts from the description of RG in his Ph.D. thesis.
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Abstract. We present a lightweight type-and-effect system for Java pro-
grams that features two major innovations over extant object-oriented
effects systems: initialization effects, which are writes to an object’s state
while it is being constructed, and quiescing fields, which are fields that
are never written after an object is constructed. We also present a novel
taxonomy of degrees of method purity in object-oriented programs, which
characterizes methods whose effects are confined to their receiver object.
Finally, we find significant amounts of mostly-functional behavior in re-
alistic Java programs: in the benchmarks we analyzed, between 48–53%
of declared fields were identifiable as quiescing and between 24–78% of
dynamic field reads were from quiescing fields.

Keywords: Java, Program Analysis, Type-and-effect Systems.

1 Introduction

Effect systems extend classical type systems with information about the com-
putational effects exhibited by expressions, statements, and methods. Just as
type signatures characterize the range of values an expression may assume, ef-
fect signatures can provide concise, useful summaries of the potential effects
of a particular method invocation. Because of this capability, effect systems
currently enjoy widespread application in several problem domains, including
program analysis, semantics-preserving program transformation, software un-
derstanding, verification, and compile-time memory management.

In this paper, we present two innovations that can increase the expressivity
and precision of effect signatures. Initialization effects are writes that occur to
the state of an object while it is being constructed but before it is available
to the rest of the program; quiescing fields are instance variables of an object
whose values remain constant after its constructor returns. We present these in
the context of a fairly simple effects system for Java, but these novel features
are based on concepts orthogonal to the underlying effects system and could be
adapted to more expressive systems.

We also present a notion of function purity that exploits the engineering
properties of object-oriented programs: namely, that mutable state is typically
accessed through the interface of the object that contains it. We describe instance
methods that are pure with respect to all mutable state outside of their receiver
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object as externally pure; we refer to methods that may read (but not write)
external mutable state as externally read-only.

Perhaps most surprisingly, we show that realistic Java programs exhibit a
substantial degree of mostly-functional behavior. “Mostly-functional,” as coined
by Knight [1], describes a programming discipline in which the presence and
extent of computational effects are limited as much as possible. In the context
of Java, this includes both accesses to quiescing fields — which are read-only
after the object is available to the rest of the program — and the prevalence
of externally-pure and externally read-only methods, whose updates to mutable
state are only visible via an object’s interface.

These results have several consequences for program analysis, verification,
and understanding. Annotations on (externally-) pure or read-only methods aid
interprocedural dependence analysis, serve as part of a method’s specification,
and provide documentation to human programmers. Furthermore, some such
methods may be amenable to aggressive code scheduling optimizations, including
asynchronous execution on multicore processors.

1.1 Overview

In the remainder of this paper, we will introduce object-oriented effects systems
(Section 3) and present the simple effects system and inference rules for Java
that will form the basis for our subsequent developments (Section 3.2). After
this preliminary discussion, we shall introduce our major contributions:

1. The concept of initialization effects, which are writes that occur to a field of
an object while it is being constructed, and rules to infer these (Section 4);

2. The concept of quiescing fields, which are never written after their containing
object is constructed, and a rule to infer such fields (Section 5); and

3. A novel taxonomy of degrees of method purity, which extend conventional
definitions of function purity to account for methods whose effects are con-
fined to their receiver object (Section 6).

We conclude by placing our work in the context of related research efforts
(Section 7) and suggesting future investigations.

2 Evaluation Infrastructure

We evaluated the applicability and feasibility of our extensions to effect systems
by identifying the static and dynamic prevalence of quiescent fields in Java pro-
grams selected from the DaCapo benchmark suite [2] and by characterizing the
purity of the methods in these programs. The characteristics of the benchmarks
we used as inputs for our analyses are given in Figure 1; note that these counts
include reachable library classes.

We analyzed these programs with version 0.92 of the GNU Classpath library,
using the Soot compiler framework [3] and the dimple+ version of our dimple
static analysis tool [4], running on version 5.1.3 of the Yap Prolog system [5]. We
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Program Statements Classes Fields Methods

antlr 1390456 3729 14082 32709
bloat 1413919 3827 14524 33609
eclipse 1384719 3895 15161 33408
hsqldb 1593586 4190 17566 38504
jython 1452433 4058 14737 35604
luindex 1350107 3903 14511 32759
pmd 1509108 4265 15489 36393

Fig. 1. Characteristics of the benchmark programs and transitively reachable library
code, including total statement counts, number of analyzed classes, and numbers of
declared fields and methods

timed our analyses by running them on one core of a 2 ghz Opteron workstation
with 16 gb of ram. Finally, we evaluated the dynamic prevalence of quiescing
fields by instrumenting the Jikes rvm to record effects on instance fields.

3 Effects and Objects

Type-and-effect systems [6] extend classical type systems so that they character-
ize not only the values that expressions may assume but also the computational
effects (reads or writes to shared state) exhibited by evaluating expressions or
executing statements and the (abstract) regions of the store in which these effects
might occur. Lucassen and Gifford’s original work on effects systems focused on
finding expressions with noninterfering effects in ML-family languages for paral-
lel scheduling, but effects systems have since found a wide range of applications,
some of which we review in Section 7.

3.1 Background

Greenhouse and Boyland [7] developed an effects system for object-oriented lan-
guages like Java. Their effects system describes read and write effects that
may occur in a hierarchy of regions:

1. The global region All contains all mutable state for an entire program,
2. All contains static regions that model the state of static fields and instance

regions that contain part or all of the state of individual objects (an object
may have several instance regions), and

3. Individual instance regions contain regions corresponding to the state of
individual instance fields.

The state of an object may contain the entire state of another object as part of its
internal representation. For example, a dictionary object may contain a search
tree object that is only accessible from the instance methods of the dictionary
object. To address this possibility, Greenhouse and Boyland also provide an
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unshared annotation on reference-valued fields. This annotation indicates that
any object referred to by an unshared field may only be referred to by that field
and thus may be considered logically part of the state of its containing object.

Greenhouse and Boyland present an intraprocedural algorithm to check
user-provided effects signatures of methods and to check user-provided unshared
annotations on object fields, but they do not present an algorithm for recon-
structing effect, region, and sharing information for unannotated programs.

3.2 A Lightweight Object-Oriented Effects System

We now present a straightforward effects system and inference algorithm for
Java programs. This system is based on that of Greenhouse and Boyland and
is deliberately simple in order to clarify subsequent presentation of our novel
techniques. While this system is not intended to be particularly sophisticated,
our contributions are easily adaptable to more expressive effects systems.

We assume that the Java bytecodes of an input program and its libraries
have been preprocessed to generate a conservative approximation of the call
graph, a conservative may-alias relation, and the intermediate representation
given in Figure 2. In Figure 2, metavariables beginning with s range over state-
ments; S over sets of statements, l over local variables; τ over types; κ over class
names; and ν over field names. (We also follow the convention that metavariables
with distinct subscripts are assumed to refer to distinct object-level entities.)
Note that, as in Java bytecodes, all field names are qualified with the name of
their declaring class. Following Greenhouse and Boyland, we treat array loads
and stores as accesses to a special field called []. We treat static field loads
and stores as accesses to instance fields of a distinguished local lω; since we
record the declaring class and field name of all field accesses, this sacrifices no
precision.

Relation Description

formal(l, i, m) Holds when local l respresents the formal parameter at position i
(either this or a natural number) in method m.

actual(s, l, i) Holds when statement s invokes some method with local l as the
actual parameter at position i.

assign(ll, lr) Holds when the assignment ll = lr occurs in the program.
load(s, l, lh, κ.ν) Holds when a heap load statement s reads the value of the κ.ν

field from the object referred to by lh and copies it to l.
store(s, lh, κ.ν, l) Holds when a heap store statement s replaces the value of the κ.ν

field in the object referred to by lh with the value of l.
pt(l,O) Holds when O is the set of abstract objects possibly aliased by l.
s ∈ m Holds when statement s is part of method body m.
s → m Holds when statement s contains a call that may select m, that

is, if there is an edge from s to m in the call graph.

Fig. 2. Intermediate representation for simple object-oriented effects inference
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The effects annotation on some statement, ϕ(s), consists of read and write
sets of abstract locations. Abstract locations denote sets of concrete locations in
which an effect may occur and consist of a pair 〈ρ, κ.ν〉, where ρ is an abstract
region in which an effect may occur and κ.ν describes a field reference qualified
by the declaring class of the field. (Because Java is a typed language, a given
heap location may be referred to by exactly one kind of field reference.)

Abstract regions consist of (possibly-empty) sets of abstract object identifiers
(as given by the may-alias relation pt), the distinguished abstract region�, which
includes all possible abstract object identifiers, or special region variables ρthis

or ρ0···n denoting the regions reachable from formal parameters; these variables
are used to expand method summaries at call sites. In this simple system, we
summarize the effects of methods on objects referred to by their parameters but
lose precision for objects reachable from the fields of method parameters.

Effect annotations, as pairs of sets, form a semilattice. The join of two effect
annotations consists of the read set of abstract locations formed by unifying
the read sets from each annotation and the write set formed by unifying the
write sets from each annotation. Unifying two sets of abstract locations A1 and
A2, as in a read or write set, proceeds as follows.

Divide each set Ai into the two disjoint sets Vi and Ci so that Vi is the set of
all abstract locations from Ai whose regions are region variables, so that Ci is
the set of all abstract locations from Ai whose regions are sets of abstract object
identifiers or �, and so that Vi ∪Ci = Ai. V1 �V2 is defined simply as the union
of the two sets. C1 � C2 consists of the union of the following:

1. The set of locations whose field identifiers appear in C1 or C2, but not both:

{〈ρ, κ.ν〉 : (〈ρ, κ.ν〉 ∈ C1∧¬∃〈ρ′, κ.ν〉 ∈ C2)∨(〈ρ, κ.ν〉 ∈ C2∧¬∃〈ρ′, κ.ν〉 ∈ C1)}

2. The set of locations formed by unifying the regions of each abstract location
whose field identifier appears in C1 and C2:

{〈ρ ∪ ρ′, κ.ν〉 : 〈ρ, κ.ν〉 ∈ C1 ∧ 〈ρ′, κ.ν〉 ∈ C2}

We can then define A1 � A2 as V1 ∪ V2 ∪ (C1 � C2).
We present the effects inference rules in Figure 3. The relation rpt relates a

local variable to its associated region: a region variable for formal parameters,
the global region� for globals, and the set of abstract objects aliased by the local
in other cases. The rules read and write, which establish lower bounds on the
effect annotations for load and store statements, are straightforward. summary
gives the annotation summary for a method body; it is this summary that is
instantiated at call sites.

The function pmap transforms effects annotations by substituting regions (or
region variables) for region variables in a method summary at the point of a call
to that method. pmap replaces every region variable with the region variable or
explicit region associated with the local of the corresponding actual parameter,
as given by the rpt relation.
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r-formal
formal(l, i, m)

rpt(l, ρi)

r-global

rpt(lω,)

r-other
l �= lω ¬formal(l, i, m) pt(l, ρ)

rpt(l, ρ)

read
load(s, l, lh, κ.ν) rpt(lh, ρ)

ϕ(s) � read : {〈ρ, κ.ν〉}〉

write
store(s, lh, κ.ν, l) rpt(lh, ρ)

ϕ(s) � write : {〈ρ, κ.ν〉}〉

summary
s0, · · · , sn ∈ m

ϕ(m) � ϕ(s0) � · · · � ϕ(sn)

call
s → m′

ϕ(s) � pmap(s, ϕ(m′))

Fig. 3. Lightweight effects inference rules

4 Initializers and Initialization Effects

Type-and-effect systems identify read and write effects that code may exhibit
upon shared state. (Some, but not all, type-and-effect systems also identify ad-
ditional effects, such as allocation, exception raising, or taking references.) If the
goal of effect systems is to identify potentially interfering computational effects,
this taxonomy is rather impoverished: it does not identify initializations, which
are a special kind of write that will not interfere with any other effects.

4.1 Background and Definitions

We will introduce the notion of initializations with a simple example, but first
we provide some background on some properties of Java programs and objects.

Java objects are created via the new operator, which performs three tasks
before returning a reference to the newly-allocated object: memory allocation,
zero-filling object fields, and constructor method invocation. Constructors may
invoke other constructors declared in the same class (via the this() syntax) or in
superclasses (implicitly or explicitly via the super() syntax), but there is no way
to invoke a constructor on an object after the dynamic lifetime of its constructor
invocation completes. There is also no way to create and use an object without
invoking its constructor. (This is the case in Java source because new, which is
the only way to create an object, includes both object allocation and constructor
invocation. These tasks correspond to distinct Java bytecode instructions – new
and invokespecial – but the Java Virtual Machine will signal an error if code
attempts to access an object that has been allocated but not constructed.) As a
consequence, each object will be constructed exactly once before it is accessible
to the code that created it.

Consider the String class in the Java standard library. String is an im-
mutable class; once an instance of String has been created, its contents cannot
be modified. A constructor for the String class, in setting up the state of an
individual instance, will exhibit write effects on that object’s fields. However,
these write effects will never interfere with other effects, since the only write
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effects on a String will occur during its constructor and the code that creates
a String will not be able to read its state until after the constructor completes.

Immutable classes present an extreme example, but write effects on an object
— even a mutable one — by its constructor will not interfere with other effects on
that object that occur after the constructor completes. Classical type-and-effect
systems do not discriminate between writes that occur to an object during its
constructor and writes that occur after an object creation has completed. Such a
system may spuriously identify write effects occurring on an object during its
creation as interfering with write effects occurring on that object (or on other
objects) that have already been created.

We will present a way to discriminate between write effects to objects that
have been created and initializations, which are writes that occur to an object
while it is being constructed. However, we will first introduce the notion of an
initializer method and present a algorithm for identifying which methods are
initializers for given objects.

4.2 Initializer Methods

Informally, an initializer method (or simply an initializer) on some object o is a
method that executes on o during the dynamic lifetime of its constructor. Since
we would like to use the notion of initializer methods to identify write effects
that are guaranteed to occur on an object while it is being constructed, we are
not interested in any method that merely may initialize part of an object’s state;
rather, we are interested in methods that may only execute on an object during
the dynamic lifetime of its constructor.

If we can assume a closed world, we can identify such methods with a simple
extension to a conservative static approximation of the program’s call graph. We
define the receiver-sensitive call graph (rscg) as a setM of nodes corresponding
to method bodies, a distinguished start node mmain ∈M , and a set C of labeled
call-site edges. An edge is of the form m →ρ m

′, indicating that m contains a
call site that may transfer control to the beginning of m′ with a receiver of ρ,
which is either this, indicating that m′ is an instance method that is invoked on
the same object as m, or �, indicating that m′ may be invoked on some other
method or is not an instance method.

We can thus define a conservative overapproximation of the initializer methods
in a program inductively as follows:

1. m is an initializer on o if m is a constructor that may be executed on o (that
is, a constructor declared in the class of o or in one of its superclasses).

2. m is an initializer on o if every edge to m in the rscg is this-labeled and
originates from an initializer on o.

In the remainder of this paper we will assume a closed world. We note, how-
ever, that this technique is still applicable in an open-world situation — that
is, in which the entire program and libraries are not available to be analyzed. It
is still possible to identify initializers in an open world as long as the rscg is
constructed in such a way as to include conservative, sound assumptions about



36 W.C. Benton and C.N. Fischer

open parts of the program. For example, private methods could still soundly
be identified as initializers even in an open world, since they can only be invoked
from within their declaring class.

4.3 Initialization Effects

An initialization effect is a write to an object’s state that occurs during the
dynamic lifetime of its constructor. Since we have already defined an initializer
on some object o as a method that is only transitively invoked through zero or
more this-edges in the rscg from a constructor on o, we can identify initialization
effects rather straightforwardly: An initialization effect is a write effect that
occurs from within an initializer and on some field of its receiver. We denote
sets of initialization effects as an init set in an effects annotation and present
updated inference rules for initializer methods and for write and init effects in
Figure 4. (The write rule from Figure 4 supercedes that from Figure 3.)

If we can assume that an object will not be used until after the dynamic
lifetime of its constructor, then we can guarantee that a method exhibiting init
effects in some region ρ will not interfere with methods exhibiting other effects
in ρ. This assumption, that uses of an object o by code outside of its constructor
will come strictly after the dynamic lifetime of its constructor, is sound only if
a reference to o cannot leak to code (say, in another thread) that could effect
o before it is fully created. Such leaks are rare (and unidiomatic), so the un-
sound assumption is perhaps justifiable as a practical matter. For the sake of
completeness, though, we briefly sketch a sound treatment of self-leaks:

A value-flow analysis could be used to indicate those constructors that might
leak a reference to the constructed object. (In fact, some effect systems track
reference leaking explicitly.) The classes containing such constructors could then
be considered to not have initializers; as a consequence, write effects occurring
during the dynamic lifetime of a constructor on an object of such a class would
be conservatively (and soundly) regarded as potentially interfering with write
effects that occur strictly after the completion of an object’s constructor.

Initialization effects are a useful addition to the expressivity of object-oriented
effects systems. Since the initializations of a field during an object’s creation will
not interfere with any reads conducted after the dynamic lifetime of the ob-
ject’s constructor, initialization effects allow effect systems to statically identify

imeth-immed
m is a constructor

imeth(m)

imeth-trans
(∀m′, ρ)m′ →ρ m |= imeth(m′) ∧ ρ = ρthis

imeth(m)

write
store(s, lh, κ.ν, l) rpt(lh, ρ)

s ∈ m ¬(ρ = ρthis ∧ imeth(m)))

ϕ(s) � write : {〈ρ, κ.ν〉}〉

init
store(s, lh, κ.ν, l) s ∈ m
imeth(m) rpt(lh, ρthis)

ϕ(s) � init : {〈ρthis, κ.ν〉}〉

Fig. 4. Inference rules for initialization methods and initializer effects
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a greater range of static effects as noninterfering. As we shall see, inferring ini-
tialization effects also enables us to identify quiescing fields.

5 Quiescing Fields

Some storage is mutable for its entire lifetime, but the lifetimes of many locations
can be divided into two phases: an initialization phase, in which the contents of a
location are mutable, and a read-only phase, in which the contents of a location
will not change. We call such fields quiescing fields when the phase transition
happens at a statically identifiable and semantically useful place. In this section,
we introduce the concept of quiescing fields, explain how we can identify them,
and describe why they are useful; compare quiescing fields to Java’s final fields;
and identify the static and dynamic prevalence of quiescing fields in the Java
programs from the DaCapo benchmark suite.

5.1 Quiescing Fields Defined and Identified

We define a quiescing field as an instance field (i.e. an object member) that is
mutable while the object it contains is being constructed but that is immutable
for the entire period of program execution strictly after the dynamic lifetime
of its containing object’s constructor. As a consequence, a quiescing field will
have the same value for the entire period that the object containing the field is
accessible to the code that created it (and to the rest of the program, modulo
the no-leaks assumption of the previous section).

Because a quiescing field is guaranteed not to change after the object that
contains it is fully constructed, quiescing fields represent a useful kind of run-
time constant. If quiescing fields are prevalent in a program, identifying them
can greatly simplify analyses and transformations that require accurate inter-
procedural data dependence information.

Given sound effects annotations including initialization effects, it is quite
straightforward to identify quiescing fields: κ.ν is quiescing if and only if no
effect annotation in the whole program contains an abstract location implicat-
ing κ.ν (e.g. 〈ρ, κ.ν〉) in its write set. (If κ.ν is not implicated in the init or
write sets of any effects annotation, then it is never written after allocation
and is trivially a quiescing field.)

Because we need only examine every effect in the whole program once in order
to determine which fields are implicated in write effects — and we need not
even unify method summaries at call sites in order to do so — quiescing field
inference scales linearly with the number of statements in the program.

5.2 Final Fields and Quiescing Fields

The Java language [8] provides the final keyword and the semantic guarantee
that instance variables declared as final will be assigned to exactly once for any
given containing object. The final keyword thus provides both documentation
for programmers and a constraint for use by analyses and transformations.
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However, because the guarantee of finality is enforced by a rather coarse flow
analysis (identifying “definite assignment,” that is, that each final field is on the
left-hand side of exactly one assignment along every possible path through each
constructor of the object containing it), final is of limited applicability. To give
one example, since all assignments to final fields must occur in the body of
a constructor, it is impossible to share initialization code common to several
constructors in a private instance method.

While it is often possible to restructure the code in a class so that a quiescing
field meets the criteria for final, such a rewrite may be inconvenient. Further-
more, rewriting code so that a quiescing field is final may well obscure the clear
meaning of the program for a human reader. Since many programmers will not
immediately realize the benefits of having as many fields as possible declared
final, manual code transformations to expose more fields as final are likely to
be regarded as insufficiently profitable.

On the contrary, quiescing fields may be written arbitrarily many times dur-
ing the dynamic lifetime of an object’s constructor, not strictly in the static
body of the constructor and exactly once along each path of each constructor.
Quiescing fields may be read and written freely during the dynamic lifetime of
their containing object’s constructor, so long as they are not written to after
their containing object is fully constructed. Finally, no programmer annotations
are necessary to identify quiescing fields, since we present a straightforward and
efficient technique for automatically inferring quiescing fields.

5.3 Static and Dynamic Prevalence of Quiescing Fields

We evaluated our definition of quiescing fields on seven of the programs from
the DaCapo benchmark suite [2].

We identified the static prevalence of final and quiescing fields by determin-
ing what percentage of all fields implicated in any effect were declared final

Static Dynamic
Input Time % FF % QF % FF % QF

antlr 3.11 19.89 49.25 3.65 24.13
bloat 3.16 22.30 53.01 64.05 70.05
eclipse 3.23 21.50 51.56 77.69 78.53
hsqldb 3.73 18.67 47.97 20.12 58.75
jython 3.61 18.74 52.99 19.17 50.30
luindex 3.06 20.82 51.06 43.87 47.43
pmd 3.35 19.48 48.47 0.78 24.93

Fig. 5. Static and dynamic prevalence of final and quiescing fields in select DaCapo
benchmarks. Time represents analysis time in seconds; static numbers show the per-
centage of fields implicated in at least one static effect that are final (FF) and quiescing
(QF); dynamic numbers indicate the percentage of dynamic reads in a benchmark ex-
ecution that are of final (FF) and quiescing (QF) fields.
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and what percentage were inferred to be quiescing. (Since final fields are, by
definition, quiescing, counts of quiescing fields include counts of final fields.)
We also instrumented the Jikes RVM in order to get a trace of all instance field
reads from a benchmark execution. From this trace, we derived the percentages
of dynamic instance field reads that access final and quiescing fields; again, the
count of quiescing field reads includes final field reads.

Figure 5 gives our complete results; in summary, we found that between 18.7%
and 22.3% of fields implicated in any static effects annotation were declared
final; between 48% and 53% of fields implicated in any static effects annotation
were identifiable as quiescing. Between 0.78% and 77.7% of dynamic reads were
from final fields, and between 24.13% and 78.53% of fields were from quiescing
fields. The authors of the bloat, eclipse, and luindex benchmarks seem to have
declared a high percentage of frequently-read quiescing fields as final; in the
other benchmarks, the disparity between the number of dynamic reads of final
and quiescing fields is much greater.

6 Degrees of Purity

Methods may be pure. The classic definition identifies a method that exhibits
no effects on mutable state as pure. However, this definition fails to admit idem-
potent methods that create and modify objects in order to complete their work.

A less restrictive definition, due to Leavens et al. [9,10] and applied for static
analysis by Sălcianu and Rinard [11], characterizes a method as pure if and only
if it does not modify any state that exists immediately before method entry. This
definition of purity captures a notion of method purity as the absence of potential
interference with other code: a method may have effects on mutable state that
does not exist before it executes. Other definitions of purity are also possible;
the concepts we present in this section are generally orthogonal to a base notion
of purity and can be straightforwardly adapted to different definitions.

In accepting a definition of purity, we also decide which effects constitute
“impure” behavior. Perhaps all side effects are “impure,” as in the classical
definition. Alternatively, following Leavens et al., we could ignore certain read
or write effects on objects that did not exist at a method’s entry. We can then
identify some methods as read-only – these are methods that may have “impure”
read effects (but not “impure” write effects) on mutable state. (Note that all
pure methods are also read-only methods.)

If we are to characterize the purity of methods in typical object-oriented
programs, we may wish to characterize instance methods by the effects that
they have on mutable state that exists outside of the receiver object.

An externally-pure method is one whose “impure” read or write effects on
mutable state occur only to the receiver object (that is, in the ρthis region). Put
another way, an externally-pure method is pure, for some definition of “pure,”
with respect to all state outside of the instance it is operating upon. All pure
methods are also externally-pure.



40 W.C. Benton and C.N. Fischer

Externally
Input Time % Pure % RO

antlr 4.47 79.19 81.16
bloat 4.63 77.05 78.40
eclipse 4.63 79.21 80.73
hsqldb 5.44 76.87 78.26
jython 5.25 77.02 78.31
luindex 4.39 80.30 81.89
pmd 4.88 79.05 80.50

Fig. 6. Percentage of all instance methods that are externally- pure or read-only

An externally-read-only method is one whose “impure” write effects on
durable state occur only to the receiver object or to state that did not exist
immediately before method entry. Such a method is read-only with respect to
all state outside of the instance it is operating upon. All externally-pure methods
are also externally-read-only.

We can combine these notions of purity with initialization effects and quiescing
fields by masking init effects (which represent writes to the state of newly-
allocated objects) and masking read effects on quiescing fields. If we do so,
we can identify a vast preponderance of instance methods as externally-pure or
externally-read-only, as in Figure 6.

7 Related Work

Work related to our contributions in this paper falls into two broad categories:
work on effects systems and work on inferring fields or memory locations that
are immutable for at least some part of their lifetime.

7.1 Effects Systems

Lucassen and Gifford’s foundational paper on polymorphic effect systems [6]
focused on identifying scheduling constraints for execution of implicitly-parallel
programs, but later work has established applications of effects systems in region-
based memory management [12], and in automatically providing annotations for
a model checker or specification language [11]. We note that our contributions,
by improving the precision of effects analyses, can also improve the precision of
analyses and transformations that depend on effects annotations.

The natural compatibility of effects and objects has led to a great deal of
excellent work; as we discussed in Section 3, Greenhouse and Boyland [7] de-
vised an idiomatic, object-oriented treatment of regions and effects, but did not
provide an inference algorithm. Bierman and Parkinson [13] extended the work
of Greenhouse and Boyland with a semantic treatment of effects and an effects
inference algorithm for a subset of Java; their work left region annotations as
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a responsibility for the programmer. (Effect and region reconstruction for func-
tional languages [14] is a better-studied problem.) Most recently, Cherem and
Rugina [15] presented a parameterized framework for compact effect signatures,
which allows clients of effect annotations to trade precision for annotation size.

Given a notion of effects, it is possible to talk about the purity of functions.
Barnett et al. [16] present several definitions of purity in the context of object-
language methods that may appear in checkable specifications: observational
purity (which admits memoization), strong purity (the classic definition), and
weak purity (in which methods may modify newly-allocated state). Sălcianu
and Rinard [11] present an analysis to identify weakly-pure methods. Barnett et
al. [17] extend the Sălcianu-Rinard analysis to support iterators and the addi-
tional features, such as pass-by-reference, of the .NET runtime.

Because it masks init effects, our analysis can be used to identify the subset
of weakly-pure methods that only exhibit init effects on newly-allocated objects;
other analyses [11,17] can identify a broader range of weakly pure methods. Con-
sider, for example, a method that constructs a StringBuffer and then invokes
its append method several times before returning a String constructed from the
buffer; this is weakly pure, but would not be identified as such by our analysis
because it exhibits write effects as well as init effects. In addition, our purity
analysis does not specifically treat iterators.

In general, the work described in this paper is intended to enhance the expres-
sivity and precision of effect systems and purity analyses. It would certainly be
possible to extend the system we present with more expressive features, like the
information flow effects of Cherem and Rugina or the weak purity of Sălcianu
and Rinard. (In particular, treating iterators demands care and a more expres-
sive system.) In addition, one could use the results of a field uniqueness analysis
(like that of Ma and Foster [18]) or object inlining transformation in order to
automatically generate unshared annotations on object fields. Conversely, we
believe that initialization effects, quiescing fields, and external purity can be
introduced to an extant effect system as crosscutting concerns.

7.2 Inferring Eventual Immutablity

Several analyses (notably Porat et al. [19]) identify Java fields that are im-
mutable, even if the fields are not declared as final. Most directly related to
our concept of quiescing fields, however, is the stationary fields analysis of Unkel
and Lam [20], which we shall focus on in the remainder of this review. Unkel
and Lam use a flow- and context-sensitive pointer analysis to identify fields for
whom every dynamic read must come after every dynamic write.

While both stationary fields and quiescing fields are capable of identifying
eventually-immutable fields that are not declared final, and both identify about
half of all fields in some set of realistic Java programs as eventually-immutable,
there are several interesting differences between our approaches. Our approach
is substantially more lightweight: we use a flow- and context- insensitive analysis
that completes in seconds; their approach uses a flow- and context-sensitive anal-
ysis that takes between 7 and 106 minutes to analyze a realistic Java program.
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However, their approach identifies stationary fields and can also track their ref-
erents with greater precision; we merely identify quiescing fields. Therefore, both
analyses can be used to improve the precision of side-effect and related analyses;
theirs is better-suited to improving the precision of alias analyses.

We note that the definitions of quiescing and stationary fields are subtly in-
compatible: while it seems most likely that the intersection of the sets of quiescing
and stationary fields for any given program would be large, there are quiescing
fields that are not stationary fields (e.g. those that might be read in the con-
structor before a write), and there are stationary fields that are not quiescing
fields (e.g. those that are written after the dynamic lifetime of a constructor,
but before any use of an object). We believe that investigating the relationships
between these kinds of fields — and between the analyses and transformations
enabled by identifying each — represents a fruitful avenue for future work.

8 Conclusion

This paper has presented three major contributions that enhance the expressiv-
ity and precision of effects systems, purity analyses, and related analyses and
transformations: the concepts of initialization effects, quiescing fields, and exter-
nal method purity, as well as analyses to infer these automatically. In so doing,
we have identified great amounts of mostly-functional behavior in the real-world
Java programs from the DaCapo benchmark suite. Most notably, our techniques
are novel, lightweight, and readily composable with extant systems and analyses.

Acknowledgments. We are grateful to Nicholas Kidd and the anonymous
referees for helpful comments on an earlier draft of this paper.

References

1. Knight, T.: An architecture for mostly functional languages. In: LFP 1986: Pro-
ceedings of the 1986 ACM conference on LISP and functional programming, pp.
105–112. ACM, New York (1986)

2. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T.,
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Abstract. We present a multi-pass interprocedural analysis and trans-
formation for the functional aggregate update problem. Our solution
handles untyped programs, including unrestricted closures and nested
arrays. Also, it can handle programs that contain a mix of functional and
destructive updates. Correctness of all the analyses and of the transfor-
mation itself is proved.

1 Introduction

The update of aggregate data structures like arrays is expensive in a func-
tional language because it involves copying the whole data structure. Naively
adding destructive update to a functional language does not solve the prob-
lem, because the combination loses the compositional properties of functional
languages.

A series of papers [1,4,5,7,8,9,12] have pursued the idea of destructive update
transformation: an optimization that transforms functional updates into assign-
ments whenever a flow analysis reveals that the array value being updated is
dead following the update.

In this paper we present and prove the correctness of an algorithm for destruc-
tive update transformation that allows arrays to be nested in arrays and stored
in closures. It allows destructive updates and functional updates to coexist in the
source program if desired. Furthermore, it does not rely on any type information
from the underlying program. To our knowledge, this is the first algorithm with
all these features.

The transformation is based on a multi-pass inter-procedural program analy-
sis. We first perform a control-flow analysis, which is used to construct a reacha-
bility analysis. We then perform a liveness analysis. The results of these analyses
are combined to obtain a live variable analysis.

In section 2 we present a simple example to demonstrate the problem and
show the use of our method. In section 3, we give the syntax and the semantics
of our language. In section 4, we describe the architecture of our framework,
the intermediate layers of analyses and their properties. In section 5 we define
the transformation and sketch its correctness proof. Section 6 reviews previous
research results in the field.
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2 Examples

Consider the following program where each expression is marked with a unique
label, the NEW(n, v) operator creates a new array with n cells of value v and the
UPD(l, i, v) operator functionally updates the i-th cell of the array l with the new
value v.

0( 1λx.2UPD(3x, 41, 5x)
6 (7λy.8UPD(9y, 101, 11444)

12 (13λf.14(15f 16333)
17λz.18NEW(194, 20z))))

By constructing the control-flow graph of the program, we observe that
the UPD-expression with label 8 is applied on l1 which is created by the NEW-
expression. At the time of the evaluation of the UPD-expression, l1 is is not
reachable from any closures or arrays in the continuation of the UPD-expression.
Also, l1 is not reachable from the new array l2 that the UPD-operation will re-
turn to the program. Thus l1 is not live after the execution of the UPD-operator.
So, replacing the functional update with a destructive one does not change the
semantics of the program.

The UPD-expression with label 2 is applied on variable y which is bound to
l2. The result of the UPD-operation l3 contains l2. Thus l2 is live after the eval-
uation of the UPD-expression and the functional update cannot be replaced by a
destructive one. If the UPD-expression was replaced by a destructive update then
the original and the transformed program would not agree on the contents of l2.

From the above, we can conclude that the original program can be transformed
to the following one without changing its semantics:

0 (1λx.2UPD(3x, 41, 5x)
6 (7λy.8UPD!(9y, 101, 11444)

12 (13λf.14(15f 16333)
17λz.18NEW(194, 20z))))

Each time we replace a functional update with a destructive update we avoid
copying the array, making our programs more efficient in terms of time. Our
framework aims to provide a method that can be used to detect such plausible
replacement points in programs by statically predicting if a program variable is
live or not.

3 The Language

Our language is a variant of the call-by-value untyped lambda calculus with
operators for array manipulation.

Every expression and value comes with a unique label θ. Values v are either ba-
sic values c, function closures (λx.E, ρ), or memory locations l of arrays of values.
Expressions include conditionals, primitive operators p, and array operators g. See
figure 1 for details. Our language is untyped, so it can express recursive procedures.
Our analysis would of coursework if the languagewere restricted to a typed subset.
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E ::= θT

T ::= x | c | l | λx.E | (E1 E2) | g(E1, . . . ) | p(E1, . . . )
| if E0 then E1 else E2

where x ∈ Var, θ ∈ Lab, c ∈ Scalar, p ∈ Prim, g ∈ {UPD, UPD!, NEW, REF}.

Fig. 1. Language Syntax

S ::= 〈halted, v, Σ〉 | 〈α, ρ, G, K, Σ〉

G ::= E | v

R ::= θ(E θ[ ]) | θ(θ[ ] v)
| θg(v1, . . . , vi−1,

θ[ ], Ei+1, . . . , En) | θp(v1, . . . , vi−1,
θ[ ], Ei+1, . . . , En)

| θif θ[ ] then E1 else E2

K ::= halt | 〈α, ρ,R, K〉

v ∈ V ::= θc | θl | (θλx.E, ρ)

A ::= α.θ〈v1, . . . , vn〉

Loc ::= α.θ

where α, θ ∈ N∗, l ∈ Loc, ρ ∈ Var→−fin V , Σ ∈ Loc→−fin A.

Fig. 2. Machine Configurations

We use small-step operational semantics with environments ρ, continuations
K, and stores Σ [2]. The configurations of our machine and the continuation
frames also include a structured computational address that serves as a time
stamp [12]. Time stamp α.i marks the beginning of the evaluation of the i-th
subexpression of the expression being evaluated at time stamp α. The body of an
n-ary procedure is evaluated at time α.(n+1). When a NEW operator is executed,
a new location is created using the time stamp. The new location is added in the
store domain and points to an array containing the specified values. The new
array has a label that is equal to the computational address of the new location.
This label has two parts: a dynamic one originating from the time-stamp and the
label of the NEW expression. The last one is also the label of the newly created
location, which is returned as the result of the operator. The REF operator is
also straightforward. The two update operators UPD and UPD! are the heart of
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〈α, ρ, θg(θ1T1,
θ2T2, . . . ,

θnTn), K, Σ〉
→ 〈α.1, ρ, θ1T1, 〈α, ρ, θg(θ1 [ ], θ2T2, . . . ,

θnTn), K〉, Σ〉

〈α.i, ρi, vi, 〈α, ρ, θg(v1, . . . , vi−1,
θi [ ], θi+1Ti+1,

θi+2Ti+2, . . . ,
θnTn), K〉, Σ〉

→ 〈α.(i + 1), ρ, θi+1Ti+1, 〈α, ρ, θg(v1, . . . , vi−1, vi,
θi+1 [ ], θi+2Ti+2, . . . ,

θnTn), K〉, Σ〉

〈α.2, ρ2, v, 〈α, ρ, θNEW(θnn, θv [ ]), K〉, Σ〉
→ 〈α, ρ, θα.θ, K, Σ[α.θ → α.θ〈v, . . . , v〉]〉

〈α.2, ρ2,
θj j, 〈α, ρ, θREF(θl l, θj [ ]), K〉, Σ〉

→ 〈α, ρ, vj , K, Σ〉
where Σ(l) = α′.θl 〈v1, . . . , vn〉

〈α.3, ρ3, v, 〈α, ρ, θUPD(θl l, θj j, θv [ ]), K〉, Σ〉
→ 〈α, ρ, θα.θ, K, Σ[α.θ → α.θ〈v1, . . . , vj−1, v, vj+1, . . . , vn〉]〉
where Σ(l) = α′.θl 〈v1, . . . , vi−1, vi, vi+1, . . . , vn〉

〈α.3, ρ3, v, 〈α, ρ, θUPD!(θl l, θj j, θv [ ]), K〉, Σ〉
→ 〈α, ρ, θl l, K, Σ[l → α.θl〈v1, . . . , vj−1, v, vj+1, . . . , vn〉]〉
where Σ(l) = α′.θl 〈v1, . . . , vi−1, vi, vi+1, . . . , vn〉

Fig. 3. Machine Reduction Rules

our problem. The UPD primitive is similar to the NEW primitive and creates a new
location and a new array. The only difference is that the content of the new array
is the updated content of the old array. The UPD! primitive does not create a new
location. It updates the contents of the array to which the location points and
returns the location and its label unchanged. But the label of the array that the
location points to changes: the dynamic part of the label is modified to match
the time-stamp of the machine state. This way, we can discriminate between two
destructive updates to the same array. Figures 2 and 3 present the details of the
behavior of the most interesting operators of our language. The rest follow the
standard semantics of left-to-right call-by-value evaluation.

Throughout the rest of this paper, we work within a finite universe of expres-
sions U closed under subexpressions and containing the initial program E0. The
initial configuration 〈ε, ∅, E0, halt, ∅〉 consists of the initial program in the empty
environment and store. Reachable configurations are those reachable from this
initial configuration. Note that if E0 ∈ U , then in any reachable configuration,
every expression that appears in the configuration will be drawn from U .

4 The Analysis

Our goal is to identify expressions of the form UPD(x, E1, E2) and replace them
with UPD!(x, E1, E2), if we can prove that this does not affect the semantics of
the program. A sufficient correctness condition is that there is no alias to x that
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is subsequently accessible from other parts of the program. The existence of
higher-order functions and nested arrays in our language implies that closures
and arrays can hide aliases of locations from the context. For this purpose we
use a reachability analysis, which tracks how variables, closures and locations
are connected with each other. To build the reachability analysis, we begin with
a flow analysis [10].

4.1 The Control Flow Analysis

0-CFA is an analysis for constructing the flow graph of a program with higher
order functions based on standard abstract interpretation techniques. Each ex-
pression is assigned a unique label. These labels are used as abstract values V̂ .

The result of the 0-CFA analysis is a function φ from labels of expressions
and variables to sets of abstract values, i.e. labels of the possible results and
bindings. However, the existence of stores demands the extension of the analysis
to predict the possible contents of each location in the store. We accomplish
that by developing another prediction function σ that describes the shape of the
store.

Definition 1 (Store Shape Analysis). A store shape analysis is a map σ:
Lab →−fin P(V̂ ), mapping a label for an array to a set of abstract values.

We say σ describes a store Σ, σ |= Σ, iff ∀l ∈ dom(Σ). (Σ(l) = α.θ〈v1, . . . , vn〉
=⇒ ∀1 ≤ i ≤ n. lab(vi) ∈ σ(θ)).

Definition 2 (Control Flow Analysis). A control flow analysis is a map φ:
(Lab ∪Var) →−fin P(V̂ ), from labels and variables to a set of abstract values.

We say φ describes an environment ρ, φ |= ρ, iff ∀x ∈ dom(ρ). lab(ρ(x)) ∈
φ(x) ∧ (ρ(x) = (θλy.E, ρ′) =⇒ φ |= ρ′).

We say 〈φ, σ〉 describes an expression θT ∈ U , 〈φ, σ〉 |= θT , iff for all ρ, Σ, if
φ |= ρ, σ |= Σ, 〈α, ρ, θT,K,Σ〉 is a reachable configuration and 〈α, ρ, θT,K,Σ〉
∗→ 〈α′, ρ′, v,K,Σ′〉 , then

1. lab(v) ∈ φ(θ)
2. if v = (θ′

λx.E, ρ′′), then φ |= ρ′′
3. φ |= ρ′
4. σ |= Σ′

We say 〈φ, σ〉 is sound for U iff ∀E ∈ U , 〈φ, σ〉 |= E.

Note that in the reduction 〈α, ρ, θT,K,Σ〉 ∗→ 〈α′, ρ′, v,K,Σ′〉, in the above def-
inition, K is the same in both sides. This reduction represents the evaluation of
θT to the value v.

We can find a sound analysis for a universe of expression U by solving the
set constraints C[U ] presented in figure 4. These constraints are all Horn clauses,
and so are solvable by standard techniques. The most interesting are the con-
straints that apply to the UPD, UPD! operators. Given a UPD expression
θUPD(θaTa,

θjTj,
θvTv), if θ′ ∈ φ(θa), then the new array contains all the values
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θλx.E ∈ U
(θ ∈ φ(θ)) ∈ C[U ]

(a)
θl ∈ U

(θ ∈ φ(θ)) ∈ C[U ]
(b)

θc ∈ U
(θ ∈ φ(θ)) ∈ C[U ]

(c)

θx ∈ U
(φ(x) ⊆ φ(θ)) ∈ C[U ]

(d)

θ(θ1T1
θ2T2) ∈ U θ′

λx.θλTλ ∈ U
(θ′ ∈ φ(θ1) =⇒ (φ(θ2) ⊆ φ(x))) ∈ C[U ]
(θ′ ∈ φ(θ1) =⇒ (φ(θλ) ⊆ φ(θ))) ∈ C[U ]

(e)

θif θ0T0 then θ1T1 else θ2T2 ∈ U
((φ(θ1) ∪ φ(θ2)) ⊆ φ(θ)) ∈ C[U ]

(f)
θp(θ1T1, . . . ,

θnTn) ∈ U
(θ ∈ φ(θ)) ∈ C[U ]

(g)

θNEW(θnTn, θv Tv) ∈ U
((φ(θv) ⊆ σ(θ) ∧ θ ∈ φ(θ)) ∈ C[U ]

(h)

θREF(θaTa, θaTa) ∈ U
(θ′ ∈ φ(θa) ⇒ (σ(θ′) ⊆ φ(θ))) ∈ C[U ]

(i)

θUPD(θaTa, θj Tj ,
θv Tv) ∈ U

(θ′ ∈ φ(θa)⇒ (σ(θ′) ⊆ σ(θ) ∧ φ(θv) ⊆ σ(θ) ∧ θ ∈ φ(θ))) ∈ C[U ]
(j)

θUPD!(θaTa, θj Tj ,
θv Tv) ∈ U

(θ′ ∈ φ(θa) ⇒ (φ(θv) ⊆ σ(θ′) ∧ θ′ ∈ φ(θ))) ∈ C[U ]
(k)

Fig. 4. Set Constraints for 0-CFA Analysis 〈φ, σ〉

that are possibly contained in the old array, (σ(θ′) ⊆ σ(θ)), plus possible results
of the last operand (φ(θv) ⊆ σ(θ)). Since the result of the operation is a new loca-
tion with static label θ, the label is added to the possible results of the operation,
(θ ∈ φ(θ)). On the other hand, given a UPD! expression, θUPD!(θaTa,

θjTj,
θvTv),

no new location is created so the constraints just have to add the possible values
of the third operand to the possible values of the existing array , (φ(θv) ⊆ σ(θ′))
and add the static label of the updated location to the possible results of the
operation (θ′ ∈ φ(θ)).

Theorem 1 (Soundness of 〈φ, σ〉). If 〈φ, σ〉 satisfies the constraints C[U ] in
figure 4 then 〈φ, σ〉 is sound for U .

Proof. Following [13], we extend the constraints from constraints on expressions
to constraints on configurations S. The most interesting new constraints are
presented in figure 5. We write X ∈ S iff X occurs in S. lab[ ](R) denotes the
label of the hole of R, lab(R) denotes the label of the expression of the frame R,
and lab[ ](K) denotes the label of the hole of the top frame of K. We show that
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ρ ∈ Σ x ∈ dom(ρ)
(φ(lab(ρ(x))) ⊆ φ(x)) ∈ C[S]

(l)

Σ ∈ S l ∈ dom(Σ)
Σ(l) = α.θ〈v1, . . . , vn〉 ∈ Σ

(∀i ≤ n.φ(lab(vi)) ⊆ σ(θ)) ∈ C[S]
(m)

〈α, ρ, R, K〉 ∈ S

(φ(lab(R)) ⊆ φ(lab[ ](K))) ∈ C[S]
(n)

〈α, ρ,E, 〈α′, ρ′, R, K〉, Σ〉 ∈ S

(φ(lab(E)) ⊆ φ(lab[ ](R))) ∈ C[S]
(o)

Fig. 5. Extended Set Constraints for Constraints 0-CFA Analysis 〈φ, σ〉

if S → S′, the constraints for S imply the constraints for S′. Then we obtain
the desired result by induction on the length of reduction 〈α, ρ, θT,K,Σ〉 ∗→
〈α′, ρ′, v,K,Σ′〉.

Consider the example from section 2. The only constraints relevant to φ(y) are:
18 ∈ φ(18) ⊆ φ(14) ⊆ φ(12) ⊆ φ(y). So the smallest solution for φ gives
φ(y) = {18}. Similarly, in the smallest solution σ(18) = {20}, φ(8) = {8},
φ(x) = {8} and φ(2) = {2}.

4.2 The Reachability Analysis

The control flow analysis does not describe how values and expressions are as-
sociated through the store. In order to describe this relation we use the notion
of reachability.

Definition 3 (Reachable Value). A value w is reachable from a value v in a
store Σ, reach(w, v,Σ), iff either:

1. v = w, or
2. v = θl′ and Σ(l′) = α.θ〈v1, . . . , vn〉 and ∃i s.t. reach(w, vi, Σ), or
3. v = (θλx.θ

′
T , ρ) and ∃y ∈ fv (λx.θ

′
T ) s.t. reach(w, ρ(y), Σ).

Following the same path as before, we build an analysis that returns a function
R that associates an expression with the labels of all values reachable from its
value.

Definition 4 (Reachability Analysis). A reachability analysis is a map R:
(Lab∪Var) →−fin P(V̂ ), mapping each label or variable to a set of abstract values.

We say R describes a store Σ, R |= Σ, iff ∀l∈dom(Σ).(Σ(l)=α.θ〈v1, . . . , vn〉
=⇒ ∀1 ≤ i ≤ n.(reach(w, vi, Σ) =⇒ lab(w) ∈ R(θ))).

We say R describes an environment ρ under a store Σ, R |=Σ ρ, iff ∀x ∈
dom(ρ). (reach(w, ρ(x), Σ) =⇒ lab(w) ∈ R(x)).

We say R describes an expression θT ∈ U , R |= θT , iff for all ρ, Σ, if
R |=Σ ρ, R |= Σ, 〈α, ρ, θT,K,Σ〉 is a reachable configuration and 〈α, ρ, θT,K,Σ〉
∗→ 〈α′, ρ′, v,K,Σ′〉, then
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1. reach(l, v, Σ′) implies lab(l) ∈ R(θ)
2. if v = (θ′

λx.E, ρ′′), then R |=Σ′
ρ′′

3. R |=Σ′
ρ′

4. R |= Σ′

We say R is sound for a universe of expressions U , iff ∀E ∈ U , R |= E.

In order to build a sound R, we use a sound control flow analysis to compute
the possible values that an expression may be evaluated to or a variable may
be bound to. Then, we perform a sort of transitive closure operation inside the
environments and the store.

Theorem 2 (Soundness of R). Given a sound control flow analysis 〈φ, σ〉 for
U , define R to be the smallest function (in the partial function ordering) that
satisfies the equations

– R(t) = φ(t) ∪M(t) ∪N (t)
– M(t) = {θ′|θ′′ ∈ σ(t) ∧ θ′ ∈ R(θ′′)}
– N (t) = {θ′|θ′′ ∈ φ(t) ∧ θ′′

λx.E ∈ U ∧ y ∈ fv(θ′′
λx.E) ∧ θ′ ∈ R(y)}

where t ∈ Lab ∪ V ar.Then R is sound for U .

Proof. By induction on the definition of reach(w, v,Σ) using the soundness of
〈φ, σ〉.

The most interesting part of the definition of R is the auxiliary set N that
talks about λ-terms, θλx.E. Then the possibly reachable locations from this
term are the locations hidden in all the possible environments that are used for
the evaluation of the term. Thus, the reachable locations from the term are the
reachable locations from all its free variables, ∀y ∈ fv(θλx.E).R(y) ⊆ R(θ).

Consider the example from section 2. The only constraints relevent to R(y)
are: 18 ∈ R(18) ⊆ R(12) ⊆ R(y). So the smallest solution for R gives R(y) =
{18}. Also, the only constraints relevant to R(8) are: {8} ⊆ {8} ∪ R(16) ⊆
R(8). So in the smallest solution R(8) = {8}. Similarly in the smallest solution
R(x) = {8} and R(2) = {2, 8}.

4.3 The Liveness Analysis

In order to define the liveness of a location in a machine configuration, we need
first to extend the notion of reachability to continuations K.

A value w is reachable from a continuation K in a store Σ if it is reachable
in Σ from a value v or variable x of the top frame of the continuation stack or
if it is reachable in Σ by a lower frame of the continuation stack.

Definition 5 (Reachable Value from a Continuation). Given a store Σ,
reachability from a continuation K, reach(w,K,Σ), is defined as follows.

– No value is reachable from halt in any store Σ.
– w is reachable from 〈α, ρ,R,K〉 iff either:
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1. ∃v that occurs in R s.t. reach(w, v,Σ), or
2. ∃x ∈ fv (R) s.t. reach(w, ρ(x), Σ), or
3. reach(w,K,Σ).

A location is live in a configuration iff it is reachable after the evaluation of
the current expression. If the expression is a value, this means simply that it is
reachable from the value itself or from the current continuation.

Definition 6 (Live Location in a Configuration). Let l = αl.θl and lab(l)
= θl. Liveness in a configuration is defined as follows:

– 〈halted, v,Σ〉, l ∈ dom(Σ) is live iff reach(θl l, v, Σ)
– 〈α, ρ, v,K,Σ〉, l ∈ dom(Σ) is live iff reach(θl l, v, Σ), or reach(θl l,K,Σ)
– 〈α, ρ, θT,K,Σ〉, l ∈ dom(Σ) is live iff (〈α, ρ, θT,K,Σ〉 ∗→ 〈α′, ρ′, v,K,Σ′〉 ⇒
l live in 〈α′, ρ′, v,K,Σ′〉.

Definition 7 (Liveness Analysis). A liveness analysis Z is a map from
expression labels θ to sets of labels. Z is sound iff for each label θ and for
all reachable configurations 〈α, ρ, θT,K,Σ〉, l live in the configuration implies
lab(l) ∈ Z(θ) where l = αl.θl and lab(l) = θl.

Given an expression θT , we wish to enumerate the labels of all the locations that
could be live following an evaluation of θT . Assume that θT occurs in a context
E = θ′

g(θ1T1, . . . ,
θi−1Ti−1,

θT, θi+1Ti+1, . . . ,
θnTn).

Every evaluation of θT occurs as part of a sequence of reduction steps

〈α, ρ,E,K,Σ〉
∗→ 〈α.i, ρ, θT, 〈α, ρ, g(v1, . . . , vi−1, [ ], θi+1Ti+1, . . . ,

θnTn),K〉, Σ′〉
∗→ 〈α.i, ρ, v, 〈α, ρ′, g(v1, . . . , vi−1, [ ], θi+1Ti+1, . . . ,

θnTn),K〉, Σ′′〉

We need to enumerate the labels of all locations reachable from v or fromK ′ =
〈α, ρ, g(v1, . . . , vi−1, [ ], θi+1Ti+1, . . . ,

θnTn,K〉. By the definition of reachability,
there are exactly four ways in which a location l could be reachable from v or K ′:

1. l could be reachable from v. This leads to the constraint R(θ) ⊆ Z(θ).
2. l could be reachable from one of v1,...,vi−1. Since each of these vj is the value

of θjTj , this leads to the constraint R(θj) ⊆ Z(θ) (1 ≤ j ≤ i− 1).
3. l could be reachable from the value that a free variable is bound to in

θi+1Ti+1, · · · , θnTn. This leads to the constraint
x ∈ fv (θjTj) =⇒ R(x) ⊆ Z(θ) (i+ 1 ≤ j ≤ n).

4. l could be reachable from K. This leads to the constraint Z(θ′) ⊆ Z(θ).

A similar analysis applies if θT appears as an argument of a primitive op-
erator p or as the operator or operand of an application or as the test of an
if-expression. If θT appears as the body of a λ-expression θλλx.θT or as a
branch of an if-expression only cases 1 and 4 apply. If θT is the expression in
the initial configuration, then only case 1 applies. This is summarized in figure 6.

Theorem 3 (Soundness of Z). Given a control flow analysis 〈φ, σ〉 and a
reachability analysis R, both sound for U , if Z satisfies the constraints in figure 6
then Z is sound for U .
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θT is the initial expression

(R(θ) ⊆ Z(θ)) ∈ C[U ]
(a)

θλλx.θT ∈ U θ′
(θ1T1

θ2T2) ∈ U θλ ∈ φ(θ1)

(R(θ) ⊆ Z(θ)) ∈ C[U ]
(Z(θ′) ⊆ Z(θ)) ∈ C[U ]

(b)

θ(θ1T1
θ2T2) or

θp(θ1T1, . . . ,
θi−1Ti−1,

θiTi,
θi+1Ti+1, . . . ,

θnTn) or
θg(θ1T1, . . . ,

θi−1Ti−1,
θiTi,

θi+1Ti+1, . . . ,
θnTn) ∈ U

∀i, 1 ≤ i ≤ n.(R(θi) ⊆ Z(θi)) ∈ C[U ]
∀i, 1 ≤ i ≤ n, 1 ≤ j ≤ i− 1.(R(θj) ⊆ Z(θi)) ∈ C[U ]
∀i, 1 ≤ i ≤ n, i + 1 ≤ j ≤ n.x ∈ fv(θj Tj) =⇒ (R(x) ⊆ Z(θi)) ∈ C[U ]
∀i, 1 ≤ i ≤ n.(Z(θ) ⊆ Z(θi)) ∈ C[U ]

(c)

θif θ1T1 then θ2T2 else θ3T3 ∈ U
∀i, 1 ≤ i ≤ 3.(R(θi) ⊆ Z(θi)) ∈ C[U ]
∀j, 2 ≤ j ≤ 3.x ∈ fv(θj Tj) =⇒ (R(x) ⊆ Z(θ1)) ∈ C[U ]
∀i, 1 ≤ i ≤ 3.(Z(θ) ⊆ Z(θi)) ∈ C[U ]

(d)

Fig. 6. Set Constraints for Liveness Analysis Z

〈α, ρ,R, K〉 ∈ S

(Z(lab[ ](K)) ⊆ Z(lab(R))) ∈ C[S]
(e)

〈α, ρ, E, 〈α′, ρ′, R, K〉, Σ〉 ∈ S

(Z(lab[ ](R)) ⊆ Z(lab(E))) ∈ C[S]
(f)

Fig. 7. Extended Set Constraints for Liveness Analysis Z

Proof. We apply the same technique used for the proof of the soundness of the
control flow analysis. The most interesting extended constraints are presented
in figure 7.

The goal of the live variable analysis is to determine which variables of an ex-
pression will be bound to live locations.

Definition 8 (Live Variable Analysis). A live variable analysis L is a map
from expression labels θ to sets of variables. L is sound iff for all reachable
machine configurations 〈α, ρ, θT,K,Σ〉, ρ(x) live in the configuration implies x
∈ L(θ).

Theorem 4 (Soundness of L). Given a flow analysis 〈φ, σ〉 for U and a live-
ness analysis Z, both sound for U , L(θ) = {x ∈ fv(θ)|(φ(x) ∩ Z(θ)) �= ∅} is
sound for U .
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Proof. Straightforward by the definitions of live variable analysis and soundness
of Z.

Consider the example from section 2. The constraints relevant toR(8) are:Z(6)∪
R(8) ⊆ Z(8), {8} ⊆ R(8). But in the smallest solution Z(6) = ∅, Z(8) = {8}
and φ(y) = {18}. So L(8) = ∅. Similarly, Z(0) ∪ R(2) ⊆ Z(2). Again in the
smallest solution, Z(0) = ∅, R(8) = {2, 8}, φ(x) = {8}. So L(2) = {x}.

5 Replacing Functional with Destructive Updates

5.1 The Transformation

The soundness of the live variable analysis guarantees that if a free variable x
occurs in an expression θT and ρ(x) is live after the evaluation of θT in some
configuration, then x ∈ L(θ). In the case where θT = θUPD(θxx, θ1T1,

θ2T2), we
infer that if x /∈ L(θ), then x is bound to a location l that is not live after
the evaluation of θT . So we can replace the functional update, UPD, with a
destructive one, UPD!, without affecting the meaning of the program that θT
appears in, because l is not accessible by any other part of the program.

Definition 9 (The Transformation (−)∗). Let E ∈ U and L a sound live
variable analysis for U . Also let Θ be a set of labels s.t. every θ ∈ Θ labels an
update of the form θUPD(θxx, E1, E2), where x /∈ L(θ). Then E∗ is the result of
replacing θUPD(θxx, θ1T1,

θ2T2) by θUPD!(θxx, θ1T1
∗, θ2T2

∗) for each θ ∈ Θ.

In the example from section 2, from the results of the live variable analysis on
the program, we concluded that y /∈ L(8). So Θ = {8} and the transformation
gives us the expected result from section 2.

5.2 Correctness Proof

We claim that the initial and the transformed program have the same observable
behavior.

In order to prove our claim, we define a similarity relation ∼ between two
configurations. The similarity relation is parameterized by a one-to-one function
f that records the correspondence between locations on the left and locations
on the right. The relation ∼f is defined by induction on the various structures
involved. The function f avoids the need for a coinductive definition. The key
portions of the definition of ∼ are shown in figure 8.

Two configurations are similar iff there is a one-to-one function f that makes
each of their components similar mod f . Similarity of environments is always
done relative to a set of variables Y ; ρ and ρ∗ are similar mod f iff for each x ∈ Y ,
their values are similar mod f . Two stores Σ and Σ∗ are similar mod f iff for
each (l, l∗) ∈ f , Σ(l) and Σ∗(l∗) are arrays of the same length whose components
are similar mod f . Two locations are similar mod f iff they are related by the
function f . All the other cases are defined by the obvious structural recursion,
except that an UPD-term is similar to an UPD!-term if they have the same label
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– 〈α, ρ, E, K, Σ〉 ∼ 〈α∗, ρ∗, E∗, K∗, Σ∗〉 iff α = α∗ and there exists a one-to-one
function f : (D ⊆ dom(Σ))→ dom(Σ∗) such that ρ ∼f

fv(E) ρ∗, Σ ∼f Σ∗, E ∼f E∗,
and K ∼f K∗

– ρ ∼f
Y ρ∗ iff ∀x ∈ Y . ρ(x) ∼f ρ∗(x)

– Σ ∼f Σ∗ iff (l, l∗) ∈ f implies Σ(l) = 〈v1, . . . , vn〉, Σ∗(l∗) = 〈v∗
1 , . . . , v∗

n〉 and
∀i ≤ n. vi ∼f v∗

i .
– θc ∼f θ∗

c∗ iff c = c∗.
– θl ∼f θ∗

l∗ iff f(l) = l∗.
– θUPD(El, Ej , Ev) ∼f θUPD!(E∗

l , Ej , E
∗
v) iff El ∼f E∗

l , Ej ∼f E∗
j , Ev ∼f E∗

v and
θ ∈ Θ

Fig. 8. The Similarity Relation ∼ (selected cases)

θ ∈ Θ and their subterms are similar. Similar expressions always have the same
label, unless they are ∼f -related locations.

Clearly, the initial states of the original and the transformed program are
similar, using the empty function for f . We then prove, by induction on the length
of the computation, that as the original and transformed program compute, they
stay in similar configurations. Therefore, the machines halt with similar values:
if the values are constants, then they must be the same constant.

There are two non-trivial cases: when the machines are at an (UPD!, UPD!)
pair (lemma 2), and when they are at a (UPD, UPD!) pair (lemma 6). The for-
mer illustrates why f must be injective, and the latter is a point at which the
transformation has been applied.

In the first case, we use the one-to-one property of f to show that the destruc-
tive updates do not disturb the similarity relation of the produced configurations.

Consider the two following configurations:

S = 〈α.3, ρ3, v, 〈α, ρ, θUPD!(θl l, j, θv [ ]),K〉, Σ〉,
S∗ = 〈α.3, ρ∗3, v∗, 〈α, ρ∗, θUPD!(θl∗ l∗, j∗, θv [ ]),K∗〉, Σ∗〉.

Assume that S ∼f S∗. By the semantics of the language we know that S → S′

and S∗ → S∗′ where

S′ = 〈α, ρ, θl l,K,Σ′〉,
S∗′ = 〈α, ρ∗, θl∗ l∗,K∗, Σ∗′〉
where Σ′ = Σ [l → α.θl〈v1, . . . , vj−1, v, vj+1, . . . , vn〉],

Σ∗′ = Σ∗[l∗ → α.θl∗ 〈v∗1 , . . . , v∗j−1, v
∗, v∗j+1, . . . , v

∗
n〉]

Lemma 1. Σ′ ∼f Σ∗′.

Proof. From S ∼f S∗, we know that θl l ∼f θl∗ l∗, ∀0 ≤ i ≤ n. vi ∼f v∗i
and v ∼f v∗. Furthermore, f is an one-to-one function. So there is no other
l′ ∈ dom(Σ) or l∗′ ∈ dom(Σ∗) such that l′ ∼f l∗ or l ∼f l∗′. Since Σ ∼f

Σ∗ we can conclude that Σ[l → α.θl〈v1, . . . , vj−1, v, vj+1, . . . , vn〉] ∼f Σ∗[l∗ →
α.θl∗ 〈v∗1 , . . . , v∗j−1, v

∗, v∗j+1, . . . , v
∗
n〉].
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Lemma 2. S′ ∼f S∗′.

Proof. Straightforward by S ∼f S∗ and lemma 1.

In the second case, we take advantage of the definition of the transformation
and the fact that this case arises only when the updated location is not live. We
define a new one-to-one function f ′ which makes the two resulting configurations
similar.

Consider the two following configurations:

S = 〈α, ρ, θUPD(x, Ej , Ev),K,Σ〉,
S∗ = 〈α, ρ∗, θUPD!(x, E∗

j , E
∗
v ),K∗, Σ∗〉

where x /∈ L(θ) and S ∼f S∗. Assume that S ∗→ S′′ and S∗ ∗→ S∗′′, where
S′′ = 〈α, ρ, θα.θ,K,Σ′′〉,
S∗′′ = 〈α, ρ, θl∗ l∗,K∗, Σ∗′′〉
and where ∀1 ≤ i ≤ n. vi ∈ Σ′(l), ∀1 ≤ i ≤ n. v∗i ∈ Σ∗′(l∗),

Σ′′ = Σ′ [α.θ → α.θ〈v1, . . . , vj−1, v, vj+1, . . . , vn〉],
Σ∗′′ = Σ∗′[l∗ → α.θl∗ 〈v∗1 , . . . , v∗j−i, v

∗, v∗j+1, . . . , v
∗
n〉].

Then there must be configurations

S′ = 〈α.3, ρ3, v, 〈α, ρ, θUPD(θl l, θjj, θv [ ]),K〉, Σ′〉,
S∗′ = 〈α.3, ρ∗3, v∗, 〈α, ρ∗, θUPD!(θl∗ l∗, θj j, θv [ ]),K∗〉, Σ∗′〉

such that S ∗→ S′ → S′′ and S∗ ∗→ S∗′ → S∗′′. Assume that S′ ∼f S∗′.
Consider now the following f ′:

– f ′(α.θ) = l∗

– if l′ live in S′′ and l′ �= α.θ then f ′(l′) = f(l′).

Lemma 3. f ′ is a one-to-one function.

Proof. By S′ ∼f S∗′, f(l) = l∗. f is a one-to-one function. Let g be the function
defined by the second branch of the definition of f ′. g is a subset of f . Since
l is not live in in S′′, g is a one-to-one function that does not include the pair
(l, l∗). Also, there is no l′ ∈ dom(Σ′) such that l′ �= l and f(l′) = l∗. So there is
no l′ ∈ dom(Σ′) such that g(l′) = l∗. The extension of g with the pair (α.θ, l∗)
defines f ′. From the above we can conclude that f ′ is a one-to-one function.

Lemma 4. ∀w,w∗ if reach(w,K,Σ′′) and w ∼f w∗ then w ∼f ′
w∗.

Lemma 5. Let Σ′′(α.θ) = α.θ〈w1, . . . , wn〉.
∀1 ≤ i ≤ n,w,w∗ if reach(w,wi, Σ

′′) and w ∼f w∗ then w ∼f ′
w∗.

Proof. We prove these two lemmas by induction on the depth of w. The inter-
esting part is in the base case of the inductive proof, when w is a location, where
we proceed by case analysis on whether w is the updated location l.

Lemma 6. S′′ ∼f ′
S∗′′.

Proof. By lemmas 4 and 5, we can conclude that all the values that are reachable
from S′′ are related through f ′ with the corresponding values that occur in S∗′′.
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Thus by lemma 3 and the definition of the similarity relation all the elements of
the two resulting configurations are similar.

Observe that these lemmas imply that similar configuration either both halt or
both take a step to similar configurations. Combining these lemmas gets us:

Theorem 5 (Correctness of (−)∗ - The main theorem). Let E0 be the
initial program, and let E∗

0 be the result of applying the transformation on E0.
Then 〈ε, ∅, E0, halt, ∅〉 n→ 〈halted, v,Σ〉 iff 〈ε, ∅, E∗

0 , halt, ∅〉
n→ 〈halted, v∗, Σ∗〉

where for some one-to-one function f v ∼f v∗ and Σ ∼f Σ∗.

6 Related Work

Our effort is strongly related to previous work on inter-procedural aggregate
update analysis. Hudak and Bloss [4,5] propose an aggregate update analysis for
strict first-order languages with flat arrays. Their approach combines abstract
interpretation with conventional flow analysis. In their turn, Draghicescu and
Purushothaman [1] presented an aggregate optimization for non-strict first-order
languages with flat arrays. The transformation is based on a liveness analysis.

The analysis of Wand and Clinger [12], which extends the analysis of [7,8],
presents a modular framework. They build a propagation analysis, and on top
of that an alias analysis and finally a live variables analysis. The transformation
replaces functional updates of dead variables with destructive updates. Their
analysis deals only with first-order languages with arrays of scalar values and
they prove the soundness of their analysis using environmental semantics and
store erasure.

Shankar [9] proposed a method for safe destructive update in strongly-typed
higher-order functional languages with eager order of evaluation. The structure
of his framework is very similar to that of [12]: it uses an alias analysis to create
a live variable analysis and then uses the results of the analysis to perform the
transformation. The analysis handles higher-order programs by means of a fixed
point calculation of the live variables. However the analysis cannot handle nested
arrays.

From a different perspective, efforts like [3,6] are influenced by the gener-
alization of linear type systems [11] and try to solve the problem using type
annotations. None of these can handle untyped programs as our does.

Our optimization is based on the analysis of [12]. We share the spirit of a
modular framework which consists of layers with different analysis in each layer
computed symbolically. But our analysis differs from that of [12] in a number of
ways. Instead of a propagation and an alias analysis we use control-flow analysis
[10]. This makes our framework capable of handling higher-order languages and
arrays of any kind of values. Also, we can handle source code with both func-
tional and destructive updates. Finally we use a different proof technique for the
correctness of the transformation by constructing a bisimulation of the initial
and the transformed program based on store shape properties.
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Abstract. There has been a lot of recent research on transaction-based
concurrent programming, aimed at offering an easier concurrent
programming paradigm that enables programmers to better exploit the
parallelism of modern multi-processor machines, such as multi-core mi-
croprocessors. We introduce Transactional State Machines (TSMs) as an
abstract finite-data model of transactional shared-memory concurrent
programs. TSMs are a variant of concurrent boolean programs (or con-
current extended recursive state machines) augmented with additional
constructs for specifying potentially nested transactions. Namely, some
procedures (or code segments) can be marked as transactions and are
meant to be executed “atomically”, and there are also explicit commit
and abort operations for transactions. The TSM model is non-blocking
and allows interleaved executions where multiple processes can simulta-
neously be executing inside transactions. It also allows nested transac-
tions, transactions which may never terminate, and transactions which
may be aborted explicitly, or aborted automatically by the run-time en-
vironment due to memory conflicts.

We show that concurrent executions of TSMs satisfy a correct-
ness criterion closely related to serializability, which we call stutter-
serializability, with respect to shared memory. We initiate a study of
model checking problems for TSMs. Model checking arbitrary TSMs is
easily seen to be undecidable, but we show it is decidable in the follow-
ing case: when recursion is exclusively used inside transactions in all (but
one) of the processes, we show that model checking such TSMs against
all stutter-invariant ω-regular properties of shared memory is decidable.

1 Introduction

There has been a lot of recent research on transaction-based concurrent program-
ming, aimed at offering an easier concurrent programming paradigm that enables
programmers to better exploit the parallelism of modern multi-processor ma-
chines, such as multi-core microprocessors. Roughly speaking, transactions are
marked code segments that are to be executed “atomically”. The goal of such
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research is to use transactions as the main enabling construct for shared-memory
concurrent programming, replacing more conventional but low-level constructs
such as locks, which have proven to be hard to use and highly error prone. High-
level transactional code could in principle then be compiled down to machine
code for the shared memory-machine, as long as the machine provides certain
needed low-level atomic operations (such as atomic compare-and-swap). Already,
a number of languages and libraries for transactions have been implemented (see,
e.g., [18] which surveys many implementations).

Much of this work however lacks precise formal semantics specifying exactly
what correctness guarantees are provided by the transactional framework. In-
deed, there often appears to be a tension between providing strong formal
correctness guarantees and providing an implementation flexible and efficient
enough to be deemed useful, the latter being usually the main concern of the
transactional-memory (TM) research community. When formal semantics is dis-
cussed, it is usually to offer an abstract characterization of some specific low-level
TM implementation details: such semantics are distinguishing low-level seman-
tics in the sense that they typically distinguish some newly proposed implemen-
tation from all other previous implementations. Even if transactional constructs
were themselves given clear semantics, there would remain the important task
of verifying specific properties of specific transactional programs.

The aim of this paper is to provide a state-machine based formal model of
transactional concurrent programs, and thus to facilitate an abstract framework
for reasoning about them. In order for such a model to be useful, firstly, it must
be close enough to existing transactional paradigms so that, in principle, such
models could be derived from actual transactional programs via a process of
abstraction akin to that for ordinary programs. Secondly, the model should be
simple enough to enable (automated) reasoning about such programs. Thirdly,
the model should be abstract enough to allow verification of properties of trans-
actional programs independently of any specific TM implementation; the model
should thus capture a unifying high-level semantics formalizing the view of trans-
actional programmers (unlike most distinguishing low-level semantics discussed
in the TM research literature, which represent views of TM implementers).

So, what is a “transaction”? Syntactically, transactions are marked code seg-
ments, e.g., demarcated by “atomic {. . .}”, or, more generally, they are certain
procedures which are marked as transactional. (Simple examples of trans-
actional concurrent shared-memory programs are given in Figure 1. These ex-
amples will be discussed later.) But what is the semantics? The most common
unifying high-level semantics is the so-called “single-lock semantics” (see, e.g.,
[18]), which says that during concurrent execution each executed transaction
should appear “as if” it is executing serially without any interleaving of the op-
erations of that transaction with other transactions occurring on other processes.
In other words, it should appear “as if” executing each transaction requires every
process to acquire a single global transaction lock and to release that lock only
when the transaction has completed. The problem with this informal semantics
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has to do with precisely what is meant by “as if”. A semantics which literally
assumes that every concurrent execution proceeds via a single lock, rules out any
interleaving of transactions on different processes. It also violates the intended
non-blocking nature of the transactional paradigm, and ignores other features,
such as the fact that transactions may not terminate, and that typically trans-
actions can be aborted either explicitly by the program or automatically by the
run-time system due to memory conflicts.

Of course, designers of transactional frameworks would object to this literal
interpretation of “as if”. Rather, a weaker semantics is intended, but phrasing
a simple unifying high-level formal semantics which captures precisely what is
desired and leaves sufficient flexibility for an efficient implementation is itself
a non-trivial task. Standard correctness notions such as serializability, which
are used in database concurrency control, are not directly applicable to this
setting without some modification. This is because in full-fledged concurrent
programming it is no longer the case that every operation on memory is done
via a transaction consisting of a block of (necessarily terminating) straight-line
code. The “transactional program” running on each process may consist of a
mix of transactional and non-transactional code, transactions may be nested,
and moreover some transactions (which are programs themselves) may never
halt. When adapting correctness criteria to this setting, one needs to take careful
account of all these subtle differences.

The key role that aborts play in transactional programming should not be un-
derestimated. Consider a transactional program for reserving a seat on a flight.
The program starts a transaction, reads shared memory to see if seats are avail-
able and if so, attempts to write in shared memory to reserve a specific seat. If
the flight is full or if there is a runtime memory conflict to reserve that specific
seat, the transaction must be aborted, and the transactional program must be
notified of this abort in order to take appropriate recovery actions. In particu-
lar, always forcing each abort to trigger a retry is not a viable option in practice
(if the flight is full there is no point retrying forever to book a seat on that
flight). So there must be some abort mechanism, either through explicit aborts
or automatic aborts (or both), which is not equivalent to a retry. In other words,
those aborts must be visible to the transactional programmer and therefore they
must be given a semantics. As another example, consider transactional programs
operating under stringent timing constraints. The programmer may not wish to
do arbitrarily many retries after an automatic abort, depending on the current
program state. We emphasize these points because earlier feedback we have re-
ceived suggests that some people in the TM community believe it is adequate
to provide the transactional programmer with a high-level semantic model (e.g.,
single-lock semantics) which does not at all expose them to the possibility of
aborts. We believe this is an oversimplification that will only lead to greater
confusion for programmers.

In this paper, we propose Transactional State Machines (TSMs) as an ab-
stract finite-data model of transactional shared-memory concurrent programs.
The TSM model is non-blocking and allows interleaved executions where multiple
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processes can simultaneously be executing inside transactions. It also allows
nested transactions and transactions which may never terminate.

Using TSMs as a formalization vehicle, we propose a new abort-aware unify-
ing high-level semantics which extends the traditional single-lock semantics by
allowing the modeling of transactions aborted either explicitly in the program or
automatically by the underlying TM implementation. Our abort-aware seman-
tics exposes both explicit and automatic aborts, but it can easily be adjusted to
treat automatic aborts as retries.

We define stutter-serializability, which we feel captures in a clean and simple
way a desired correctness criterion, namely serializability with respect to commit-
ted transactions, which is (trivially) enjoyed by the single-lock semantics (since
no transactions ever abort). We show that our abort-aware TSM semantics pre-
serves this property, while also accommodating aborted transactions.

Finally, we also study model checking of TSMs. We show that, although model
checking for general TSMs is easily seen to be undecidable, it is decidable for an
interesting fragment. Namely, when recursion is exclusively used inside transac-
tions in all (but one) of the processes, we show that model checking such TSMs
against all stutter-invariant ω-regular properties of shared memory is decidable.
This decidability result also holds for several other variants of the abort-aware
TSM semantics.

2 Overview of the Abort-Aware TSM Semantics

Our abort-aware TSM semantics is based on two natural assumptions which are
close in spirit to assumptions used in transactional memory systems. First, we im-
plicitly assume the availability of an atomic (hardware or software implemented)
multi-word compare-and-swap operation, CAS(x̄, x̄′, ȳ, ȳ′), which compares the
contents of the vector of memory locations x̄ to the contents of the vector of
memory locations x̄′, and if they are the same, it assigns the contents of the
vector of memory locations ȳ′ to the vector of memory locations ȳ. How such an
atomic CAS operation is implemented is irrelevant to the semantics. (It can, for
instance, be implemented in software using lower-level constructs such as locks
blocking other processes.) Second, we assume a form of strong isolation (strong
atomicity). Specifically, there must be minimal atomic operation units on all
processes, such that these atomic units are indivisible in a concurrent execution,
meaning that a concurrent execution must consist precisely of some interleaved
execution of these atomic operations from each process. Thus “atomicity” of
operations must hold at some level of granularity, however small. Without such
an assumption, it is impossible to reason about asynchronous concurrent com-
putation via an interleaving semantics, which is what we wish to do.

Based on these two assumptions, we can now give an informal description of
the abort-aware TSM semantics. TSMs are concurrent boolean programs with
procedures, except that some procedure calls may be transactional (and such
calls may also be nested arbitrarily). Transactional calls are treated differently
at run time. After a transactional call is made, the first time any part of shared
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Initially, x = 0

Process 1 Process 2

atomic { r1 = x;

x = 1;

x = 2;

}
Can r1 == 1? No.

Initially, x = y = 0

Process 1 Process 2

atomic { r1 = y;

y = 1; atomic {
if (x == 0) x = 1;

abort; }
}

Can r1 == 1? No.

Initially, x = y = 0

Process 1 Process 2

atomic { r1 = x;

x = 1; r2 = y;

y = 1;

}
Can r1 == 1, r2 == 0? No.

Fig. 1. Examples

memory is used in that transaction, it is copied into a fixed local copy on the
stack frame for that transaction. A separate, mutable, copy (valuation) of shared
variables is also kept on the transactional stack frame. All read/write accesses
(after the first use) of shared memory inside the transaction are made to the
mutable copy on the stack, rather than to the universal copy. Each transaction
keeps track (on its stack frame) of those shared memory variables that have been
used or written during the execution of the transaction. Finally, if and when the
transaction terminates, we use an atomic compare-and-swap operation to check
that the current values in (the used part of) the universal copy of shared memory
are exactly the same as their fixed copy on the stack frame, and if so, we copy
the new values of written parts of shared memory from the mutable copy on the
stack frame to their universal copy. Otherwise, i.e., if the universal copy of used
shared memory is inconsistent with the fixed copy for that transaction, we have
detected a memory conflict and we abort that transaction.

The key point is this: if the compare-and-swap operation at the end of a
transaction succeeds and the transaction is not aborted, then we can in fact
“schedule” the entire activity of that transaction inside the “infinitesimal time
slot” during which the atomic compare-and-swap operation was scheduled. In
other words, there exists a serial schedule for non-aborted transactions, which
does not interleave the operations of distinct non-aborted transactions with each
other. This allows us to establish the stutter-serializability property for TSMs.

The above description is over-simplified because, e.g., TSMs also allow nested
transactions and there are other technicalities, but it does describe some key
aspects of the model. We describe the model in a bit more detail in Section 3. Due
to space constraints, the full formal model is described in the tech report [12]. We
show that TSMs are stutter-serializable in Section 4. We study model checking
for TSMs in Section 5, and show that, although model checking for general TSMs
is undecidable, there is an interesting fragment for which it remains decidable.

Examples. Figure 1 contains simple example transactional programs (adapted
from [13]). Transactions are syntactically defined using the keyword atomic.
With each example, we describe the possible effect, in our TSM model, on the
variables r1 (and r2) at the end of the example’s execution. As mentioned, in the
TSM model the execution of transactions on multiple processes can interleave,
and moreover the execution of transactional and non-transactional code can also
interleave. So, in the leftmost example, what happens if the non-transactional
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code executed by Process 2 executes before the transaction on Process 1 has
completed? In the TSM model, Process 2 would read the value of the shared
variable x from a universal copy of shared memory which has not yet been
touched by the executing transaction on Process 1. If Process 1 completes its
transaction and commits successfully, then the final value 2 is written to this
universal copy of x, and thereafter Process 2 could read this copy and thus it
is possible that r1 == 2 after this program has finished. However, r1 == 1 is
not possible. We note that r1 == 1 would be possible at the end under forms
of weak atomicity, e.g., if atomic was implemented as a synchronized block in
Java (see [13]). The middle example in Figure 1 contains an explicit abort.
In the TSM model, all write operations on shared variables performed by a
transaction only have an effect on (the universal copy of) shared memory if the
transaction successfully commits. Otherwise they have no effect, and are not
visible to anyone after the transaction has been aborted. Thus r1 == 1 is not
possible at the end of this program. This is a form of deferred update as opposed
to direct update ([18]), where writes in an aborted transaction do take effect, but
the abort overwrites them with the original values. In that case, such a write
might be visible to non-transactional code and r1 might have the value 1 at
the end of execution of this example. Note that our semantics for TSMs does
not take into account possible re-orderings that may be performed by standard
compilers or architectures. For instance, compilers are usually allowed to re-
order read operations, such as those performed by Process 2 in the rightmost
example in Figure 1. Such reordering issues [13] are not addressed in this paper.
One could extend TSMs to incorporate notions of reordering in the model, but
we feel that would complicate the model too much and detract from our main
goal of having a clean abstract reference model which brings to light the salient
aspects of transactional concurrent programs.

3 Definition of Transactional State Machines

In this section we define Transactional State Machines (TSMs). The definition re-
sembles that of (concurrent) boolean programs and (concurrent) extended recur-
sive state machines (see, e.g., [2,3,5]), but with additional constructs for transac-
tions. Our definition will use some standard notions (e.g., valuations of variables,
expressions, types, etc.) which are defined formally in the full tech report [12].

3.1 Syntax of TSMs

A Transactional State Machine A is a tuple A = 〈S, σinit, (Pr)n
r=1〉, where S is a

set of shared variables, σinit is an initial valuation of S, and P1, . . . , Pn, are pro-
cesses. Each process is given by Pr = (Lr, γ

r
init, pr, (Ar

i )
kr

i=1) where Lr is a finite
set of (non-shared) thread-local 1 variables for process r, γr

init is an initial valu-
1 We note that these thread-local variables are used by all procedures running on the

process. For simplicity, we do not include procedure-local variables, and we assume
procedures take no parameter values and pass no return values. This is done only
for clarity, and we lose nothing essential by making this simplification.
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ation of Lr, pr ∈ {1, . . . , kr} specifies the index of the initial (main) procedure,
Ar

pr
, for process r (where runs of that process begin). The Ar

i ’s are the proce-
dures (or components in the RSM terminology) for process r. We assume that
the first dr of these are ordinary and the remaining kr−dr are transactional pro-
cedures. The two types of procedures have a very similar syntax, with the slight
difference that transactional procedures have access to an additional abort node,
abi. Specifically, each procedure Ar

i is formally given by: 〈N r
i , en

r
i , ex

r
i , ab

r
i , δ

r
i 〉,

whose parts we now describe (for less cluttered notation, we omit the process
superscript, r, when it is clear from the context):

– A finite set Ni of nodes (which are control locations in the procedure).
– Special nodes: eni, exi ∈ Ni, known respectively as the entry node and exit

node, and (only for transactional components) also an abort node abi ∈ Ni.
– A set δi of edges, where an edge can be one of two forms:

• Internal edge: A tuple (u, v, g, α). Here u and v are nodes in Ni, g ∈
BoolExp(S ∪Lr) is a guard, given by a boolean expression over variables
from S ∪ Lr (see the full tech report [12]). α ∈ Assign(S ∪ Lr) is a
(possibly simultaneous) assignment over these variables (again, see [12]
for formal definitions). We assume that u is neither exi nor abi (because
there are no edges out of the exit or abort nodes), and that v is not the
entry node eni. Intuitively, the above edge defines a possible transition
that can be applied if the guard g is true, and if it is applied the simulta-
neous assignments are applied to all variables (all done atomically), and
the local control node (i.e., program counter) changed from u to v. The
set of internal edges in procedure Ai is denoted by δIi .

• Call edge: A tuple (u, v, g, c). u and v are nodes in Ni, g ∈ BoolExp(S ∪
Lr) is a guard, c ∈ {1, 2, . . . , k} is the index of the procedure being called.
Again, we assume u �∈ {exi ∪ abi}, and v �= eni. Calls are either trans-
actional or ordinary, depending on whether the component Ac that is
called is transactional or not (i.e., whether c > dr or c ≤ dr). Intuitively,
a call edge defines a possible transition that can be taken when its guard
g is true, and the transition involved calling procedure Ac (which of
course involves appropriate call stack manipulation, as we’ll see). Upon
returning (if at all) from the call to Ac, control resumes at control node
v. The set of call edges in component i is denoted by δCi .

3.2 Abort-Aware Semantics of TSMs

A full formal semantics of TSMs is given in [12] (due to space constraints). Here
we give an informal description to facilitate intuition and describe salient fea-
tures. TSMs model concurrent shared memory imperative procedural programs
with bounded data and transactions. A configuration of an TSM consists of a call
stack for each of the r processes, a current node (the program counter) for each
process, as well as a universal valuation (or universal copy), U , of shared variables.
Crucially, during execution the “view” of shared variables may be different for
different processes that are inside transactions. In particular, different processes,
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when executing inside transactions, will have their own local copies (valuations)
of shared variables on their call stack, and will evaluate and manipulate those
valuations in the middle of transactions, rather than the single universal copy.

A transaction keeps track (on the stack) of what shared variables have been
used and written. If a shared variable is written by one of the processes inside the
scope of one of the transactions, the universal copy U is not modified. Instead,
an in-scope mutable copy of that shared variable is modified. The mutable copy
resides on the stack frame of the innermost transaction on the call stack for that
process. The first time a shared variable is read (i.e., used) inside a transaction,
unless it was already written to in the transaction, its value is copied from U to
a fixed local copy for that transaction and also to a separate mutable local copy,
both on the stack. Thereafter, both reads and writes inside the transaction will
be to this mutable copy.

At the end of a transaction, the written values will either be committed or
aborted. The transaction is automatically aborted if a shared memory conflict
has arisen, which is checked using an atomic compare-and-swap operation as
follows. We compare the values of variables in the fixed copy of shared memory
with the values of those same shared variables in the universal copy U , and if
these are all equal, then for the written variables, we copy their valuations in
the mutable copy on the stack frame to the universal copy U . If, on the other
hand, the compare-and-swap fails, i.e., the compared values are not all equal
then we abort the transaction, discard any updates to shared variables, pop the
transactional stack frame and restore the calling context. (How this all works is
described in detail in [12]).

If we have nested transactions, and values are committed inside an inner
nested transaction, then their effect will only be immediately visible in the next
outer nested transaction (i.e., this follows the semantics of closed nested trans-
actions), and the committed values will only be placed in the mutable copy of
shared variables of the next outer transaction. Otherwise, if the inner transac-
tion aborts, then its effect on shared variables is discarded before control returns
to the calling context.

Again, see [12] for detailed semantics. We highlight here some other salient
features of the semantics which will be pertinent in other discussions:

– The universal valuation U is only updated upon a successful commit of out-
ermost (non-nested) transactions, not of inner (nested) transactions.

– There are two distinct ways in which an abort can occur. One is an ex-
plicit abort, which occurs if a transaction reaches a designated abort node.
The other is an automatic abort, carried out by the memory system due to
conflicts with universal memory. (For nested transactions, the only possible
abort is an explicit one, because no conflict is possible.)

4 Correctness: Stutter-Serializability

In this section we discuss a correctness property that TSMs possess. Informally,
the correctness property relates to “atomicity” and serializability of transactions,



An Abort-Aware Model of Transactional Programming 67

but such notions have to be defined carefully with respect to the model. What we
wish to establish is the following fact: if there exists any run π of a TSM which
witnesses a (possibly infinite) sequence of changes to the universal copy (valua-
tion) of memory, there must also exist a run π′ which witnesses exactly the same
sequence of changes to the universal copy, but such that all transactions which
start and which do not abort and do terminate in π′ must execute entirely seri-
ally without any interleaving of steps on other processes in the execution of the
terminating transaction. Formally, this requires us to consider stutter-invariant
temporal properties over atomic predicates that depend only on the universal
valuation of shared variables in a state of the TSM, and stutter-equivalence (see
[12] for definitions).

We say a run ρ of a TSM contains only serialized successful transactions
if every transaction on any process in the run ρ that starts and successfully
commits, executes serially without any interleaving of steps by other processes.
In other words, the entire execution of each successful transaction occupies some
contiguous sequence ρiρi+1 . . . ρi+m in the run. For a run ρ of A, let ρ[U ] denote
a new word, over the alphabet of shared variable valuations, such that ρ[U ] is
obtained from ρ by retaining only the universal valuation of shared variables at
every position of the run (i.e., replacing each state ρ by the universal valuation in
that state). We say that a TSM, A, is stutter-serializable if: for every run ρ of A,
there exists a (possibly different) run ρ′ of A such that ρ[U ] is stutter-equivalent
to ρ′[U ], and such that ρ′ contains only serialized successful transactions.

Theorem 1. All TSMs are stutter-serializable.

Proof. (Sketch) A full proof is [12]. Here we sketch the basic intuition. If at the
end of a non-nested transaction which is about to attempt to commit, the atomic
compare-and-swap operation succeeds, then at exactly the point in “time” when
the compare-and-swap operation executed, the values in the universal copy of
shared variables used inside the transaction are exactly the same as the values
that were read from the universal copy the first time these variables were encoun-
tered in the transaction. Each shared variable is read from the universal copy
at most once inside any transaction. All subsequent accesses to shared variables
are to the local mutable copy on the transactional stack frame. Consequently,
since the values of shared variables are the only input to the transaction from
its “environment” (i.e., from other processes), the entire execution of that trans-
action can be “delayed” and “rescheduled” in the same “infinitesimal time slot”
just before the atomic compare-and-swap operation occurred, and the resulting
effect of the transaction on the universal copy of memory after it commits would
be identical (because it would have identical input). The only visible effect on
the universal copy of memory during the run that this rescheduling has is that
of adding or removing “stuttering” steps, because the rescheduled steps do not
change values in the universal copy of shared memory. ��

Note that TSMs can reach new states due to transactions being aborted by the
run-time environment due to memory conflicts. In other words, even aborted
transactions have side effects. For instance, a TSM can use a thread-local variable
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to test/detect that its last (possibly nested) transaction was aborted, and take
appropriate measures accordingly, including reaching new states that are reach-
able only following such an abort. This fact does not contradict the above cor-
rectness assertion about TSMs, because the correctness assertion does not rule
out the possibility that in order for a certain feasible sequence of changes to
universal memory U to be realized some transactions might necessarily have to
abort during the run. In general, it does not seem possible to devise a reason-
able model of imperative-style transactional programs where transactions that
are aborted will have no side effects. Anyway, there are good reasons not to want
this. One useful consequence of side effects is that one can easily implement a
“retry” mechanism in TSMs which repeatedly tries to execute the transaction
until it succeeds. Some transactional memory implementations offer “retry” as
a separate construct (see [18]).

5 Model Checking

It can be easily observed (via arguments similar to, e.g., [23]) that model checking
for general TSMs, even with 2 processes, is at least as hard as checking whether
the intersection of two context-free languages is empty. We thus have:

Proposition 1. Model checking arbitrary TSMs, even those with 2 processes,
even against stutter-invariant LTL properties of shared memory is undecidable.

On the other hand, we show next that there is an interesting class of TSMs for
which model checking remains decidable. Let the class of top-transactional TSMs
be those TSMs with the property that the initial (main) procedure for every
process makes only transactional calls (but inside transactions we can execute
arbitrary recursive procedures). Let us call a TSM almost-top-transactional if
one process is entirely unrestricted, but all other processes must have main
procedures which make only transactional calls, just as in the prior definition.

Theorem 2. The model checking problem for almost-top-transactional TSMs
against all stutter-invariant linear-time (LTL or ω-regular) properties of (uni-
versal) shared memory is decidable.

Proof. Given a TSM, A, our first task will be to compute the following infor-
mation. For each process r (other than the one possible process, r′, which does
not have the property that all calls in its main procedure are transactional) we
will compute, for every transactional procedure, Ac on process r, certain gen-
eralized summary paths. A generalized summary path (GSP) for a transactional
procedure Ac is a tuple G = (γstart, R, γfinish, status, σ). γstart and γfinish are
valuations of the thread-local variables Lc. status is a flag that can have either
the value commit or abort. σ is a partial valuation of shared variables, meaning
it is a set of pair (x,w) where x is a shared variable and w is a value in x’s
domain (and there is at most one such pair in σ for every shared variable x).
R = R1, . . . , Rd is a sequence of distinct partial valuations of shared variables,
where furthermore, different Ri’s do not evaluate the same variable. In other
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words, for each shared variable x, there is at most one pair of the form (x,w) in
the entire sequence R. Such a sequence R yields a partial valuation σR = ∪d

i=1Ri

(and we shall need to refer both to the sequence R and to σR).
We now define what it means for a GSP, G, to be valid for the transactional

procedure Ac. Informally, this means that G summarizes one possible terminat-
ing behavior of the transactionAc if it is run in sequential isolation (with no other
process running). More formally, we call a GSP, G=(γstart, R, γfinish, status, σ),
valid for the transactional procedureAc, if it satisfies the following property. Sup-
pose a call to Ac is executed in sequential isolation (i.e., with no other process
running). Suppose, furthermore that in the starting state ψ0 in which this call is
made γstart is the valuation of thread-local variables Lr on process r, and that
the universal copy of shared memory U is consistent with the partial valuation
σR (in other words it agrees with σR on all variables evaluated in σR). Then
there exists some sequential run of Ac from such a start state ψ0 where during
this run:

1. The sequence of reads of the universal copy of shared memory variables
executed during the run corresponds precisely to the d partial valuations
R1, . . . , Rd. For example, if R3 = {(x1, w1), (x2, w2)}, then the third time
during the run in which the universal copy of shared memory is accessed
(i.e., third time when shared variables are used that have not been used or
written before) requires a simultaneous read2 of shared variables x1 and x2
from the universal copy U , and clearly the values read will be w1 and w2,
because U is by definition consistent with σR. (Note that U does not change
in the middle of the sequential execution of Ac, because it is run in sequential
isolation, with no other process running.)

2. After these sequences of reads, the run of Ac terminates in a state where the
valuation of local variables is γfinish and either commits or aborts, consistent
with the value of status.

3. Moreover, if it does commit, then the partial valuation of shared variables
that it writes to the universal copy U (via compare-and-swap) at the commit
point is σ. (And otherwise, σ is by default the empty valuation.)

Let Gc denote the set of all valid GSPs for transactional procedure Ac. It is
clear that for any transactional procedure, every GSP G is a finite piece of data,
and furthermore that there are only finitely many GSPs. This is because the
universal valuation of every shared variable can be read at most once during the
life of the transaction, and of course there are only finitely many variables, and
each variable can have only finitely many distinct values.

Lemma 1. The set Gc is computable for every transactional procedure Ac.

See [12] for a proof of the Lemma. We shall compute the set Gc for every transac-
tional procedure Ac and use this information to construct a finite-state summary
2 Again, recall that the reason there may be simultaneous reads from universal shared

variables is an artifact of the strong isolation assumption combined with our formu-
lation of (potentially simultaneous) assignment statements.



70 K. Etessami and P. Godefroid

state-machine Br, for every process r, which summarized that process’s behav-
ior. We will also describe the behavior of the single unrestricted process r′ using
a a Recursive State Machine (RSM), B′

r′ . We shall then use these Br’s and B′
r′

to construct a new RSM B = (⊗r �=r′Br) ⊗ B′
r′ which is an appropriate asyn-

chronous product of all the Br’s and B′
r′ . The RSM B essentially summarizes (up

to stutter-equivalence) the behavior of the entire TSM with respect to shared
memory. The construction of the Br’s, B′

r′ , and B is described in [12].
It follows from the construction that B has the following properties. For every

run ρ of the entire TSM, A, there is a a run π of B such that π is stutter-
equivalent to the restriction ρ[U ] of the run ρ to its sequence of universal shared
memory valuations. And likewise, for every run π of B, there is a run ρ of A such
that ρ[U ] is stutter-equivalent to π. (Again, see [12] for definitions pertaining to
stutter-equivalence.) Thus, once the RSM B is constructed, we can use the model
checking algorithm for RSMs ([2]) on B to check any given stutter-invariant LTL,
or stutter-invariant ω-regular, property of universal shared memory of A. ��

We remark that the complexity of model checking can be shown to be singly-
exponential in the encoding size of the TSM, under a natural encoding of TSMs.
(Note that TSMs are compactly encoded: they are extended concurrent recursive
state machines, with variables that range over bounded domains. )

Finally, we note that a similar decidability result can be obtained with other
variant semantics where (1) automatic aborts are systematically considered as
retries, (2) terminating transactions nondeterministically commit or abort, or
(3) never more than one transaction executes concurrently (this is equivalent to
the single-lock semantics). Indeed, those variant semantics are simpler to define
and can be viewed as particular cases of the abort-aware TSM semantics.

6 Related Work

There is an extensive literature on Transactional Memory and there are already
many prototype implementations (see the online bibliography [8], and see the
recent book by Larus and Rajwar [18]). Most of this work discusses how to
implement transactional memory either in hardware or software, from a systems
point of view with the main emphasis on performance. Some researchers have
formalized and studied the semantics of transactional memory implementations,
in order to clarify subtle semantics distinctions between various implementations
and the interface between these implementations and higher-level “transactional
programs” running on top of them. Such distinguishing low-level semantics are
quite complicated, and are not suitable for higher-level transactional program
verification.

Recent work [1,20] discuss transaction semantics in the difficult setting of
weak isolation/atomicity, where implementations do not detect conflicting ac-
cesses to shared memory between non-transactional and transactional code, and
thus these may interfere unpredictably. By contrast, we assume a form of strong
isolation, as described earlier. We aim for a clean model that can highlight the
issues which are specific to transactions, and we do not want to obfuscate them
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with difficult issues that arise by introducing weak memory models, weak con-
sistency, out-of-order execution, and weak isolation. Such notions are somewhat
orthogonal, and are problematic semantically even in settings without trans-
actions. Our goal is to define an abstract, idealized, yet relevant, model of
transactional programming that could in principle serve as a foundation for
verification. There are various design choices in the implementation of a trans-
actional memory framework (see [18] for a taxonomy of choices), and our TSM
model reflects several such choices. For instance, our definition of nested trans-
actions is a form of closed nested transactions. We do not consider so-called open
nested transactions, where an inner transaction may commit while an outer one
aborts (because we can not see any sensible semantics for them, even in the
single-process purely sequential setting). Some of these choices are adjustable in
the model, as discussed in the previous section.

Independently, [14] has recently proposed the notion of “opacity” as an al-
ternative semantics criterion for transactions. Loosely speaking, opacity also
requires serializability of aborted transactions in addition to serializability of
committed transactions, with the goal of preventing aborted transactions from
reading “inconsistent” values. In contrast, our abort-aware semantics does not
require the stronger opacity criterion. Instead, it assumes that programmers can
deal with automatically aborted transactions as they currently handle runtime
exceptions in other programming languages. Of course, opacity could be formal-
ized using an alternate TSM semantics.

Mechanisms other than transactions, such as locks, have been proposed to
enforce “atomicity” and have been studied from a verification point of view. For
instance, concurrent reactive programs where processes synchronize with locks
were studied in [22] where a custom procedure exploiting “atomicity” (based
on Lipton’s reduction) is used to simplify the computation of “summaries” for
such programs. Also, several verification problems are shown to be decidable
in [16] for a restricted class of programs where locks are nested. Several other
restrictions of concurrent pushdown processes for which verification problems
are decidable have also been identified (e.g., [9], among others). There are some
high-level similarity between these prior results and our results in Section 5, but
the details are substantially different due to the specifics of the TSM model.

Other related work discusses how to check the correctness of implementations
of transactional memory, based on lower level constructs, using testing ([19]) or
model checking ([10]). By contrast, we do not address the problem of analyzing
the correctness of implementations of transactional memory, but rather the cor-
rectness of transactional programs running on top of (correct) implementations.

Notions of serializability have been studied in database concurrency control
for decades ([6]). However, there are subtle distinctions between the semantics
of serializability in different setting. [4] systematically studied automata-based
formalization of serializability and other related concepts. We formulate a clean
and natural notion of stutter-serializability for TSMs, and show it is satisfied by
them. The notion arose from our considerations of the abort-aware TSM model,
and does not appear to have been studied before in the literature.
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7 Conclusions

This work initiates a study of transactional programming from a program anal-
ysis and verification point of view. Our goal is to provide a formal foundation for
high-level reasoning about transactional programs, which nevertheless does not
ignore the meaning of manual aborts nor automatic aborts in such programs,
and facilitates building program analysis and verification tools for transactional
programs. In contrast with prior semantics work on transactional memory sys-
tems, we do not consider the (lower-level) verification of transactional-memory
implementations but instead focus on the (higher-level) abstract semantics of
transactional programs running on top of those implementations. The paper
makes two main contributions.

– We propose Transactional State Machines as an abstract finite-data model
for transactional programs. TSMs are essentially concurrent extended re-
cursive state machines augmented with constructs to specify transactions.
Their significant expressiveness allows the modeling of interleaved executions
of concurrent and potentially nested and/or non-terminating transactions.
However, we show that, provided recursion is confined to occurring inside
transactions, the expressiveness of TSMs is reduced and model checking of
a large class of properties becomes decidable.

– We offer a critique of the current dominant high-level semantics for transac-
tional programming, namely the single-lock semantics, and extend it with an
alternative abort-aware semantics which captures important features of real
transactional programs such as explicit and automatic aborts. We identify
stutter-serializability as a key formal property (enjoyed, e.g., under single-
lock semantics), and we show that our abort-aware semantics still enjoys
this property and provides a clean and precise high-level semantics also for
explicit and automatic aborts.

TSMs are concurrent state machines so it is natural to study them under
fairness assumptions that insure progress on all processes. Note that for model
checking, such fairness assumptions can be specified within LTL specifications.
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Abstract. This paper presents a case study in modelling and verifying
the Linux Virtual File System (VFS). Our work is set in the context of
Hoare’s verification grand challenge and, in particular, Joshi and Holz-
mann’s mini-challenge to build a verifiable file system. The aim of the
study is to assess the viability of retrospective verification of a VFS
implementation using model-checking technology. We show how to ex-
tract an executable model of the Linux VFS implementation, validate
the model by employing the simulation capabilities of SPIN, and analyse
it for adherence to data integrity constraints and deadlock freedom using
the SMART model checker.

1 Introduction

Hoare has proposed a 15-year grand challenge which calls on the program verifi-
cation community to collaborate on building verifiable programs [16]. Joshi and
Holzmann have subsequently provided a mini-challenge [19] of building a verifi-
able file system as a stepping stone towards meeting Hoare’s challenge. Neither
challenge overly constrains the verification approach. On the one hand, for ex-
ample, there is the constructive approach in which formal reasoning is employed
to first establish the validity of a specification and then the correctness of an
implementation with respect to the specification. On the other hand, the analyt-
ical approach aims to build a valid abstract model of an existing implementation
and then to show that this model satisfies some correctness criteria.

This paper applies the analytical approach to verifying an implementation of
the Virtual File System (VFS) layer [4] within the Linux kernel, using model-
checking technology. This layer is of particular interest since it provides sup-
port for implementing concrete file systems such as EXT3 and ReiserFS, and
encapsulates the details on top of which C POSIX libraries are defined; such li-
braries in turn provide functions, e.g., open and remove, that facilitate file access
(cf. Sec. 2). The aim of our case study is to assess the feasibility of analytical
program verification to Joshi and Holzmann’s mini-challenge. In particular, we
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are interested in whether and how an appropriate model of the VFS implemen-
tation can be constructed, and if meaningful verification results can be obtained
given the limitations of current model-checking technology.

Our first contribution is in modelling the complex Linux VFS implementation
that consists of more than 65k lines of C code, based on an analysis of the
data structures and algorithms employed in VFS (cf. Sec. 3). Despite the recent
advances in software model checking — as exemplified by the BLAST model
checker [15] and Microsoft’s Static Device Verifier (www.microsoft.com/whdc/dev
tools/tools/SDV.mspx ) which, under the hood, automatically extract models
from C code —, one quickly reaches their limits when applying them to operating
systems code, such as the VFS code. This is because such code makes use of
dynamic memory allocation, function pointers, macros and inlined assembly [21].
Until techniques addressing these shortcomings have matured, building models
from operating systems code remains largely a manual task.

Our VFS model is the result of slicing away and abstracting some details of the
VFS data structures and algorithms. This is done in a way that makes the model
amenable to modern model checkers while maintaining all details necessary for
checking non-trivial data-integrity properties. The model is expressed abstractly
in a subset of C, so that it can easily be reused by others. While building the
model took several weeks, its validation via reviewing and simulation consumed
several months. The simulation was carried out in the SPIN model checker [17]
since SPIN has rich simulation capabilities, with support for run-time assertions,
and an input language into which our model can be cast straightforwardly. How-
ever, since our model is sufficiently close to the VFS implementation and thus
exhibits a large state space with wide state vectors, we were unable to run SPIN
in verification mode, even when disallowing concurrent access to VFS functions.
Also, the VFS model cannot be verified by model checkers that do not support
concurrency, such as BLAST.

The paper’s second contribution is the formal verification of our VFS model
by using model checking to analyse low-probability scenarios, thereby increas-
ing confidence in the correctness of the Linux kernel (cf. Sec. 4). In particular,
we were looking for, and not expected to find, the corruption of the underlying
data state and deadlocks. The challenge here is to identify data-integrity prop-
erties from the rather shallow VFS documentation. To conduct the verification,
we translated our model into Petri nets and used the model checker SMART [6]
which implements efficient, decision-diagram-based algorithms for analysing con-
current systems. SMART was chosen here because of our familiarity with the tool
and its proven record for analysing complex models, including NASA’s Runway
Safety Monitor [22] and the SPIDER clock synchronisation and self-stabilisation
protocols [20]. While the VFS model pushes SMART to its limits, we were able
to successfully prove all considered properties.

Our case study is novel because of its approach and scope. It tests the fea-
sibility of reverse-engineering a model of an existing file system, including data
structures and locking mechanisms, and of checking such a model for adherence
to healthiness properties. This contrasts with other work in the field (cf. Sec. 5)
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which employs either the constructive approach to verification [2, 11], or model-
checking as a run-time verification technique for driving a test-harness for the
implementation [23, 24]. Our file system model is of particular interest to NASA
which is currently developing, together with JPL, a pilot project to help build a
reliable file system for flash memory.

2 The Linux Virtual File System

This section introduces the Linux file system architecture and, in particular,
the Virtual File System layer. For a more detailed description, we refer the
reader to [4] and www.cse.unsw.edu.au/˜neilb/oss/linux-commentary/vfs.html.
An overview of the VFS internals and data structures is presented in Fig. 1.

Fig. 1. Illustration of the VFS environment and data structures

Architecture. The Linux file system architecture consists of six layers. The
most abstract is the application layer which refers to the user programs; this is
shown as Process 1 to 3 in Fig. 1. Its functionality is constructed on top of the
file access mechanisms offered by the C POSIX library, which provides functions
facilitating file access as defined by the POSIX Standard [14], e.g., open open(),
delete remove(), make directory mkdir() and remove directory rmdir(). The
next lower layer is the system call interface which propagates requests for system
resources from applications in user space to the operating system kernel.

The Virtual File System layer is an indirection layer, providing the data struc-
tures and interfaces needed for system calls related to a standard Unix file sys-
tem. It defines a common interface that allows many kinds of specific file systems
to coexist, and enables the default processing needed to maintain the internal
representation of a file system. The VFS runs in a highly concurrent environment
as its interface functions may be invoked by multiple, concurrently executing ap-
plication programs. Therefore, mechanisms implementing mutual exclusion are
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widely used to prevent inconsistencies in VFS data structures, such as atomic
values, mutexes, reader-writer semaphores and spinlocks. In addition, several
global locks are employed to protect the global lists of data structures while en-
tries are appended or removed. To serve a single system call, typically multiple
locks have to be obtained and released in the right order. Failing to do so could
drive the VFS into a deadlock or an undefined state.

Each specific file system, such as EXT2, EXT3 and ReiserFS, then implements
the processing for supporting the file system and operates on the data structures
of the VFS layer. Its purpose is to provide an interface between the internal
view of the file system and physical media by translating between the VFS data
structures and their on-disk representations. Finally, the lowest layer contains
device drivers which implement access control for physical media.

Data structures. The most relevant data structures are superblocks, dentries
and inodes, whose names are used in different contexts outside the VFS; we em-
ploy the VFS-related definitions rather than their file-system-specific meanings
or their on-disk representations (cf. Fig. 1). The super block data structure de-
scribes the abstract properties of the file system, such as its type (e.g., EXT3),
the physical device on which it resides, its total size, its mount point and a pointer
to the root dentry. The struct super_block is defined in include/linux/fs.h.

The dentry data structures collectively describe the structure of the file sys-
tem. Each dentry contains a file’s name, a link to the dentry’s parent, the list
of subdirectories and siblings, hard link information, mount information, a link
to the relevant super block, and locking structures. It also carries a reference
to its corresponding inode, and a reference count that reflects the number of
processes currently using the dentry. Dentries are hashed to speed up access; the
hashed dentries are referred to as the Directory Entry Cache, or dcache, which
is frequently consulted when resolving path names embedded within function
calls. The dentry struct is defined in include/linux/dcache.h.

The inode data structure carries information specific to a file, whether it is a
regular file, directory or device. This includes a link to the relevant super block,
backward links to the dentries referencing the inode, file permissions, file type,
file size, operations for use on inodes by the VFS, callbacks to the specific file sys-
tem, device-specific information, and information about how the file is memory-
mapped, e.g., it links to file objects which capture the data needed to support file
descriptors in user space. The struct inode is defined in include/linux/fs.h.

Implementation. The public interface of the Linux 2.6.18 VFS consists mainly
of the header files fs.h, namei.h and dcache.h residing in include/linux. The
implementation of system calls can be found in the fs subdirectory of the kernel
source tree. Here, the files dcache.c, namei.c, inode.c, stat.c and open.c are
notable; they contain the logic for the system calls featured in our model.

To explain the interaction between the different parts of the VFS, we take the
creat() system call as an example. The functions involved comprise roughly
5k lines of source code, not including data structure definitions and macro ex-
pansions. In POSIX, the signature of creat() is defined as:
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int creat(const char *pathname, mode_t mode);

providing the full path to the file to be created and the desired file permissions.
In the following we discard all permission handling. The VFS entry point for
creat() is the function sys_creat() defined in open.c which redirects to

sys_open(pathname, O_CREAT | O_WRONLY | O_TRUNC, mode);

Therefore, creat() is handled as a special case of the open() system call.
sys_open() then triggers do_sys_open() that calls do_filp_open(), which in
turn invokes open_namei(). This last function resides in namei.c and represents
the main part of the open routine. It first uses do_path_lookup() to traverse
the dentry directory tree. This involves increasing and decreasing usage coun-
ters by calling dget()/dput() from dcache.c and obtaining locks for dentries
belonging to the path. If at least the parent directory of the file to be created
exists, do_path_lookup() returns successfully, passing a pointer to the parent’s
dentry. If the target file for the creat() operation does not yet exist, the path
lookup function will return a dentry that is not yet associated with an inode. In
that case, open_namei() invokes vfs_creat() to propagate the creation of an
inode down to the specific file system and link the newly created inode to the
dentry. At this point, the file creation is complete.

Additionally, the process of creating a file involves obtaining and releasing
several reader-writer semaphores as well as the i_mutex of the parent’s inode.
It also has to obtain global spinlocks protecting complete lists of dentries and
inodes, in case the execution of the system call is preempted by the scheduler.

Properties. One aim of our study is to show the absence of two principal types
of error in the VFS implementation. Firstly, since locking mechanisms are a
key part of the implementation, we are interested in the existence of scenarios
that might cause deadlock. Secondly, since some fields of the data structures are
logically dependent, we wish to establish integrity properties implying that the
file system is being maintained in a consistent state. These properties encapsu-
late relationships between the data structures that ought to hold universally or
between calls to VFS functions. These integrity properties are of three types:

(a) Allocation properties, expressing that the information pointed to by the
fields of assigned nodes is allocated;

(b) Reference properties, expressing that reference counters are maintained in
a healthy way by the functions operating on the VFS;

(c) Structural properties, expressing static relationships between the data struc-
tures of the VFS, which ought to be maintained by the functions operating
on these structures.

3 Extracting and Validating Our VFS Model

This section presents our model of the Linux VFS implementation, discusses
our adopted methodology for extracting the model, justifies our key modelling
decisions, and summarises our approach to validating the model.
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Initial considerations. The Linux VFS implementation is very large in size:
approximately 65k lines of C code are directly relevant to the VFS and must be
analysed thoroughly, whilst roughly 80k lines of code which include details of,
e.g., memory and scheduling, are less directly relevant but require consideration
nonetheless. Concurrency mechanisms and the use of macros also add to the
complexity. Therefore, automation of the modelling process is a key concern.

To this end, we initially explored Modex [18] which can be used to extract
high-level SPIN models directly from C source code. The aim was to use Modex
in the initial phase of modelling to produce a slice of the VFS implementation.
Unfortunately, despite attempts to simplify the task by, e.g., preprocessing the
source code, Modex failed to parse the kernel source. This was likely due to non-
standard and compiler-dependent source code fragments. We also considered
software model checkers, such as BLAST [15], but found them to be ineffective
for similar reasons. In the end, the only recourse was to use automation less
directly, to support an essentially manual modelling process.

To facilitate this, we needed to carefully analyse the VFS implementation to
identify the data structures that have to be captured by the model, and the
integrity properties that these structures ought to satisfy. Despite the wealth of
available information on the Linux VFS, these usually comprise English language
descriptions of the data structures together with associated operation signatures.
In contrast, [11] provides a formal specification of part of the POSIX interface.
However, this is too abstract for our purposes as it avoids VFS-level consid-
erations such as the maintenance of internal data structures and how locking
mechanisms are employed. Because we required precision in order to produce an
accurate model, our model had to be derived from the source code itself.

Modelling decisions. Since our case study is embedded within a research
project, the scope of our VFS model had to be adjusted so as to fit the project’s
schedule. Therefore, we chose to incorporate only the basic operations on objects
in the file system: creating files and directories, and deleting files and directories.
Other POSIX commands, e.g., regarding mounting and links, were deferred; this
means that only a single superblock structure is necessary. In addition, we treat
files as atomic entities, thus abstracting from file content.

For practical purposes, it is necessary to impose a limit on the size of the
file system that the model is to maintain. To keep state spaces tractable, we set
this limit to eight nodes including root. The choice of eight nodes means that
we were able to investigate operations on non-trivial configurations of the file
system whilst remaining within the bounds imposed by current model-checking
technology. In particular, we avoided modelling the dentry hash table as it is
an unnecessary cost given the eight-nodes limit; the hash table look-up function
can instead be modelled efficiently as a search over all dentries.

A final modelling decision underlying this case study embraces a dynamic file
structure where links are explicit, rather than a fixed structure where links are
implicit and inferable from each node; this means that we were able to remain
more faithful to the implementation.
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Representing the VFS data structures. Central to the VFS implementa-
tion are the logical structures of the file system (including parents, siblings and
subdirectories) and the locking mechanisms (including spinlocks, mutexes and
reader-writer semaphores). Consequently, the superblock, dentry and inode data
structures of the VFS implementation must be represented in our model, and the
most significant issue becomes which of the structures’ fields should be included,
how to represent them, and which fields can be omitted.

The process of identifying the fields of interest must be based on the informa-
tion contained in the header files and consider how each field is used by the VFS
implementation. Full details of our engagement in this lengthy process can be
found in a technical report [13]. For example, for the dentry table, the key fields
are: (i) d lock, since locking is essential for concurrency; (ii) d inode, d parent,
d child and d subdirs, since these capture the structure of the file system; (iii)
d count, which records whether a dentry is assigned and the number of processes
accessing the dentry. Additionally, an is allocated boolean flag was introduced
to model dynamic data allocation.

The next decision is how to represent each field and estimate the number of
bits required. Our parameters for the dentry table are: (i) d lock is assigned
three bits: one for the status of the lock, one for the process holding the lock
(up to two processes), and one indicating a waiting process; (ii) d inode and
d parent are assigned three bits each, allowing one to reference a maximum of
eight inodes and dentries, whereas d child and d subdirs are allocated eight bits
each, allowing up to eight siblings and children of a dentry to be marked rather
than stored as a linked list; (iii) d count is allocated three bits, permitting up to
two processes to access a dentry at a time, with one bit contingency. In addition,
d iname is allocated three bits, allowing for eight different names and giving a
maximum directory structure width of seven (plus the root).

Extracting the VFS model. The aim of the extraction process was to isolate
the algorithms operating on the identified VFS data structures, and to express
these in C syntax in an abstract way. The choice of using C as the modelling
language also simplified the validation of our model, since it eases comparisons
between model and implementation and since it can easily be fed into simulators.

As indicated earlier, the task of extracting a model from the VFS imple-
mentation was made difficult by a number of factors, including the size of the
implementation and the heavy use of dynamic memory allocation and function
pointers. Concurrency issues also contributed to the complexity of the exercise.
To provide at least some automated support for the task, we generated call
traces from kernel executions, which allowed us to obtain a series of algorithmic
“snapshots” and thus an accurate impression of functionality and ordering. For
example, by analysing the traces for sys_creat(), it was possible to confirm its
behaviour that we presented in Sec. 2.

To obtain traces from a running Linux kernel we adopted the Kernel Func-
tion Trace tool (KFT, tree.celinuxforum.org/CelfPubWiki/KernelFunction) to
work with Linux 2.6.18, implemented a few simple test drivers that initialised
KFT for a particular system call such as sys_creat(), executed the call and



Model-Checking the Linux Virtual File System 81

obtained the trace. KFT itself employs the finstrument-functions (gcc.gnu.org/
onlinedocs/gcc/Code-Gen-Options.htm) capability of the compiler to add instru-
mentation call-outs to every function entry and exit, which are used to dump
the jump and return addresses to a trace log. With the help of the kernel’s sym-
bol table, the log entries can be translated into their respective function names.
However, the view of the VFS we obtained from call traces is necessarily incom-
plete, and a great deal of effort still had to be spent manually inspecting the
code. This is due to several reasons: (i) call traces do not reveal how a partic-
ular function operates on the VFS data structures of interest; (ii) macros are
not instrumented; (iii) several important function calls are missing in each trace
since some functions cannot be instrumented; this is because they have to be
called from an atomic context in which performing blocking I/O operations, i.e.,
writing out a log message, is not permitted.

Using call traces and manual inspection we were able to model the core be-
haviour of the VFS within several person weeks. Table 1 presents the model
fragment which we extracted for the creat() function discussed above. Simi-
lar fragments were produced for the system calls sys_unlink(), sys_mkdir(),
sys_rmdir() and sys_rename(), for various additional VFS functions such as
path_lookup() and path_release(), as well as for functions that belong to
other parts of the kernel’s infrastructure. Due to space constraints — the com-
plete model is about 3k lines — we cannot show it in full here. However, the
final model can be downloaded from research.nianet.org/˜radu/VFS/.

Validating the VFS model. In the absence of full automation, we adapted two
classic techniques for validation: (a) our final model was extensively reviewed and
cross-checked against the implementation, with an overall effort of two person
months; (b) a similar effort was spent in simulating our model.

For conducting the simulation runs, we employed the SPIN verifier [17] for
two reasons. Firstly, the syntax of SPIN’s input language Promela is close to
the C syntax adopted by our model. Therefore, the translation could be per-
formed quickly and with little risk of introducing errors. Secondly, SPIN’s rich
simulation capabilities, along with the ability to add assertions, allowed for a
rigorous testing regime to be implemented. To aid simulation, our SPIN model
was confined to a single process, thereby eliminating the complexity introduced
by concurrency. More than 100 different simulation runs were conducted on the
SPIN model that was heavily injected with assertions; about 3% of the model’s
lines are assertion statements. Each run was performed as a simulation of one
of the system calls from a recognised ‘healthy’ state, involving creating/deleting
existing/non-existing files/directories at various levels, attempting to delete the
root and copying a directory onto itself, etc. Several early errors in our VFS
model were identified and corrected by these means.

Part of the model validation was also carried out during the verification phase,
which involved the model checker SMART [6] as described below. Indeed, sev-
eral errors were eliminated as part of the SMART modelling process where, in
the first instance, model discrepancies such as unexpected verification results,
property violations and deadlocks were treated as potential signs of an invalid
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Table 1. Model fragment for sys creat()

int sys_creat (string path) {

lookup_res_t l;

inode_t itmp;

dentry_t parent, file;

l = path_lookup (path);

parent = *l.parent;

file = *l.file;

if (!parent.is_allocated)

{

if (file.is_allocated)

/* deals with root look up */

{ dput(file); }

return (ERROR);

}

down (parent.d_inode->i_mutex);

if (file.is_allocated &&

!is_directory (file))

{ up (parent.d_inode->i_mutex);

path_release (file);

return (SUCCESS); }

if (file.is_allocated &&

is_directory (file))

{ up (parent.d_inode->i_mutex);

path_release (file);

return (ERROR); }

spin_lock (dcache_lock);

file = allocate_dentry(

last_component(path), parent);

if (!file.is_allocated)

{ spin_unlock (dcache_lock);

up (parent.d_inode->i_mutex);

dput (parent);

return (ERROR); }

dget (file);

spin_lock (inode_lock);

itmp = allocate_inode(file);

file.d_inode = &itmp;

spin_unlock (inode_lock);

if (!file.d_inode->is_allocated)

{ atomic_write (file.d_count, 0);

dput (parent);

spin_unlock (dcache_lock);

up (parent.d_inode->i_mutex);

return (ERROR); }

update_parent(

*((dentry_t *)file.d_parent));

path_release (file);

spin_unlock (dcache_lock);

up (parent.d_inode->i_mutex);

return (SUCCESS);

}

abstraction. For each discrepancy, the VFS model was re-checked against the
VFS implementation and, if appropriate, revised.

4 Verifying Our VFS Model Using SMART

The next step in our case study was to verify our validated VFS model for
absence of deadlock and adherence to data-integrity constraints using model-
checking technology. To do so, we initially attempted to run SPIN in verification
mode on the (single-process) SPIN model and established freedom from asser-
tion violations. However, the analysis on a modern PC failed for all but the
most trivial configurations that involve two or three nodes only, since the sizes
of the state vector and the reachable state spaces are simply too large to be rep-
resented explicitly, even using advanced features such as collapse compression.
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Also model checkers such as BLAST [15] cannot deal with our VFS model, due
to the presence of concurrency in the VFS environment.

We therefore shifted our focus to SMART, which is a state-of-the-art sym-
bolic model-checker for concurrent systems [6] with which we are most familiar.
SMART implements the Saturation algorithm [8] which exploits properties of
interleaving semantics for manipulating decision diagrams and can be signifi-
cantly more time- and memory-efficient than SPIN [7]. As SMART provides a
notation based on Petri nets rather than a software modelling language, we had
to rephrase our VFS model into a Petri net. This involved introducing a program
counter and circumventing the unavailability of advanced (and recursive) data
structures. In addition, our SMART model had to comply with a restriction im-
posed by Saturation which, informally, demands that Petri net places that are
functionally dependent on others be grouped in the same net partition [8].

Our VFS model as a Petri net. As for the VFS model in C, the SMART
model is parameterised by the maximum number of dentries (ND), inodes (NI),
and concurrent processes (NP). The encoding employed for translating the VFS
model to SMART is rather straightforward: variables are represented as Petri
net places, and instructions are represented as Petri net transitions. Moreover,
the fields of the dentry and inode data structures are represented as arrays, i.e.,
the d parent field of dentry k is the element d parent [k].

In constructing the SMART model, the VFS algorithms and data structures
were abstracted in a number of minor ways to make it possible to capture the
required behaviour without introducing incidental complexity. One example is
the need to represent path arguments to system calls and the traversal of the
dentry tree structure. Lists, as used in VFS, are not native to the SMART lan-
guage, and introducing them artificially would have incurred unacceptable over-
heads. Instead, our SMART model indexes the fully qualified filenames present
in the system with natural numbers. This means that the d iname field could
be dropped, which also simplifies the path_lookup() function.

Another aspect involves the deallocation of unused nodes, which in the VFS
implementation is performed separately by a garbage collection process. Our
SMART model assumes an “as early as possible” deallocation in order to se-
quentialise deallocation and minimise complexity. Further abstractions concern
the d_subdirs field that is used to record whether the dentry is a directory,
rather than the identity of its sub-directories, and the d_child field that is used
to record the number of siblings, rather than the identity of the siblings.

Again, the resulting VFS model cannot be reproduced here due to space
constraints — e.g., the SMART code for the creat() function alone is 650 lines
—, but is available for download from research.nianet.org/˜radu/VFS/. The VFS
model ranks with the most complex systems ever modelled in SMART. This
perspective is not only reflected by the sheer size of the model (2,900 lines of
SMART code), but also by the inherent complexity of the VFS. For comparison,
two other similar industrial-size applications modelled in SMART are NASA’s
Runway Safety Monitor [22] (1,850 lines) and NASA’s clock synchronisation and
self-stabilisation protocols [20] for the SPIDER architecture (1,190 lines).
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Integrity properties. As stated in Sec. 2, we wished to verify that the VFS
model is free of deadlock and that it maintains integrity properties on its data
structures. For the latter, we concentrated on the following three properties:

(a) If a node is assigned, then its parent is allocated. Here, ‘assigned’ means that
the node itself is allocated and marked as in use (i.e., d count > 0). This is an
allocation property that may be formalised by:

∀d1, d2 : Dentry • d1.is allocated>0 ∧ d1.d count>0 ∧ d1.d parent=d2⇒
d2.is allocated>0.

(b) When the system is stable, i.e., between file system operations, all allocated
nodes’ d counts are either 0 or 1. This means that a node’s reference counter
does not imply that the node is in the process of inspection or alteration between
operations. This is a reference property that may be formalised by:

∀d : Dentry • stable ∧ d.is allocated>0 ⇒ d.d count=0 ∨ d.d count=1,

where predicate stable is defined using the value of the program counter.

(c) The only cycle in the parent relation is the one on root. (By default, the
parent of the root is itself.) This is a structural property that, for a file system
of at most eight nodes, may be formalised by:

∀d1, d2, d3, d4, d5, d6, d7, d8 : Dentry •
d1.is allocated>0 ∧ d1.d count>0 ∧ . . . ∧ d8.is allocated>0 ∧ d8.d count>0 ∧

d1.d parent=d2 ∧ . . . ∧ d7.d parent=d8 ⇒ d8=root .

Formulating the required properties in SMART, including deadlock freedom,
amounts to re-expressing them as simple operations over decision diagrams. This
is straightforward except for the cycle-freedom property which we capture as a
set of properties: “no cycles of length one, except for root”; “no cycles of length
two”; “no cycles of length three”, etc.

Verification results. Before verifying the properties of interest, it was necessary
to construct the state space of the model. Various instantiations of ND, NI and
NP were examined. Table 2 lists the results when conducting our experiments
using the 64bit version of SMART on a 3.2GHz machine with 8GB of memory
running Redhat Enterprise Linux version 2.6.9-5ELsmp. The most significant

Table 2. State-space generation results for SMART

ND NI states time (sec) mem. (MB) ND NI states time (sec) mem. (MB)
1 process 2 processes
2 2 325 1.02 1 2 2 222,715 258.49 223
3 3 12,077 9.94 12 2 3 222,715 318.77 233
4 4 1,085,247 77.27 131 3 2 - - >8,000
5 5 173,247,829 1,056.88 2,147 3 3 - - >8,000
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contributor to the complexity is the number of concurrent processes, with NP≥3
unanalysable, and NP=2 with ND>2 also exceeding memory.3

The integrity properties formalised above were checked successfully against
the generated state space, for each instantiation of ND, NI, and NP. Additionally,
we verified the following properties: “root is always allocated”; “root is always
in use”, i.e., d count>0 is an invariant; and “the parent of an assigned node is
in use”. Each property was checked for each configuration in negligible time of
less than one second, and shown to hold. Collectively the properties imply that
every node currently in use is connected to the root.

We also checked each configuration for deadlocks. Initially, the model con-
tained deadlocked states, for the truly concurrent setting (NP=2). Further anal-
ysis revealed that this was due to the implementation’s critical use of a structure
that had been abstracted away, the dcache. An extra bit was added to the Dentry
structure to represent the missing information, and the model was revised ac-
cordingly. The model was then shown to be deadlock free, taking negligible time
of less than one second for each configuration.

A livelock scenario was also uncovered by SMART when two processes at-
tempt to unlink() the same file simultaneously. After an extensive analysis
of the source code, this was attributed to the abstraction of protocols and
scheduling policy designed to ensure fairness over the way spinlocks were ac-
cessed. Unfortunately, little documentation exists on the actual implementation
of the scheduler for us to be able to give a firm verdict on whether the sce-
nario is a false positive. However, this shows that modern model checkers can
check more than safety properties on our VFS model. Indeed, from a model-
checker’s standpoint, we investigated three categories of properties: (i) safety
properties which, once the reachable state space is constructed, require a sin-
gle decision-diagram operation; (ii) deadlock which requires a single backward
image computation on the reachable state space; (iii) livelock which requires a
fixed-point computation.

5 Related Work

While [9, 10] provide techniques for verifying the correct use of file system in-
terfaces represented as finite-state machines, work on verifying properties of file
system implementations is relatively scarce.

An ongoing research project on verifying a POSIX-compliant file store, from
the application interface down to the data representation on a physical medium,
is outlined in [12]. Current work focuses on the construction of formal models of
NAND flash memory and the commands that are used to operate it.

A correctness proof for a basic file system with standard data structures and
fixed-sized disk blocks is presented in [2]. It uses the Athena theorem prover and
employs the constructive approach to verification (as does [11]). The Athena
3 The state spaces for two processes and ND=2 are indeed identical for NI=2 and

NI=3. This is because the third inode is never used in this configuration, since
ND<NI and because the allocation policy always returns the first available index.
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model involves some of the data structures covered here and also their respec-
tive media representation. The work differs from ours in that it does not deal
with concurrency-related issues and does not consider a ‘real’ file system imple-
mentation, thereby avoiding the process of model extraction.

Actual file system implementations are studied by Engler et al. in [23, 24].
In [24], model checking is used within the systematic testing of EXT3, JFS and
ReiserFS. The verification system consists of an explicit-state model checker
running the Linux kernel, a file system test driver, a permutation checker which
verifies that a file system can always recover, and a recovery checker using the
fsck recovery tool. The system starts with an empty file system and recursively
generates successive states by executing system calls affecting the file system.
After each step, the system is interrupted and fsck is used to check whether
the file system can recover to a valid state. This approach is combined in [23]
with symbolic execution for generating pathological test cases. In contrast to our
work, [23, 24] employ run-time verification techniques that cannot exhaustively
explore the implementation’s state space. However, an advantage over our work
is that these techniques do not require manual model extraction.

Verification approaches that model-check the source code of operating system
components are presented in [3, 5, 15]. In theory, these are able to prove a file
system implementation to be, e.g., free of deadlock. However, as shown in [21],
the model checkers employed in [3, 5, 15] also require manual preprocessing
of source code. An approach to verifying the implementation of a microkernel’s
paging mechanism, including a hard disk driver implemented in a fully formalised
subset of C and inline assembly, is presented in [1].

6 Conclusions and Future Work

In response to Joshi and Holzmann’s mini challenge, we have constructed and
verified a small model of several key components of the Linux Virtual File Sys-
tem (VFS). This proved to be a challenging task since current automated tech-
niques for extracting models from C source code cannot deal with important as-
pects of operating systems code, including macros, dynamic memory allocation,
architecture- and compiler-specific code, and inlined assembly. Extracting our
model by hand was made especially difficult and time-consuming by the VFS im-
plementation’s concurrency mechanisms, uncommon coding styles, and the sheer
volume of code. Much time was spent in validating our model via reviews and
simulation runs in SPIN. Using the SMART model checker, this model was then
shown to respect data-integrity properties and to be deadlock free. The three vari-
ants of our VFS model, in C syntax, SPIN’s Promela language and SMART’s
Petri nets, are available for download from research.nianet.org/˜radu/VFS/.

Our case study clearly demonstrates the feasibility of abstracting data struc-
tures and algorithms from a complex file-system implementation, analysing their
behaviour via simulation and model checking, and inferring conclusions about
the implementation’s correctness. However, automated extraction of faithful
models is paramount in analytical software verification and must be a continuing
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focus for research. This must involve not just program slicing but also represen-
tational changes in data structures and algorithms.

Some take-away messages. Here is what this VFS case study has taught us
personally, in general terms and regarding various aspects of our work:

Goal: It makes a big difference whether one targets “bug discovery” (debugging)
or “bug absence” (verification).

Automation: There is a stringent need for automating model extraction, but
no existing tool is mature enough to have served our purpose.

Soundness: Building multiple models is important for fully understanding the
underlying system; however, our ‘staged’ approach could be strengthened by
checking the links between the stages formally.

Complexity: Certain aspects of the system, such as the operating system’s
scheduler which is external to the VFS code, cannot be faithfully modeled
without dramatically increasing the size and complexity of the model.

Scalability: The fact that modern model checkers cannot handle larger param-
eters of our model should not be seen as a deterant since model checking
technology is improving quickly.

Future work. It would be valuable to extend the scope of our case study. For in-
stance, considering more functionality such as the specific file system layer would
enable more direct comparisons with other approaches to the mini-challenge,
e.g., [12]. An alternative way to extend the scope would be to incorporate an
abstract model of the scheduler which, e.g., would allow one to adequately check
for the absence of livelocks.

Acknowledgments. We thank the reviewers for their insightful comments, and
in particular for suggesting the inclusion of ‘take-away’ messages.
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Abstract. Given a 3-valued abstraction of a program (possibly generated using
static program analysis and predicate abstraction) and a temporal logic formula,
generalized model checking (GMC) checks whether there exists a concretiza-
tion of that abstraction that satisfies the formula. In this paper, we revisit gen-
eralized model checking for linear time (LTL) properties. First, we show that
LTL GMC is 2EXPTIME-complete in the size of the formula and polynomial in
the model, where the degree of the polynomial depends on the formula, instead
of EXPTIME-complete and quadratic as previously believed. The standard def-
inition of GMC depends on a definition of concretization which is tailored for
branching-time model checking. We then study a simpler linear completeness
preorder for relating program abstractions. We show that LTL GMC with this
weaker preorder is only EXPSPACE-complete in the size of the formula, and can
be solved in linear time and logarithmic space in the size of the model. Finally,
we identify classes of formulas for which the model complexity of standard GMC
is reduced.

1 Introduction

Generalized model checking [BG00] is a way to improve precision when reasoning
about partially defined systems. Such systems can be modeled as 3-valued Kripke struc-
tures where atomic propositions are either true, false or unknown, denoted by the third
value⊥. Three-valued models are a natural representation of program abstractions gen-
erated automatically [GHJ01, GWC06] using static program analysis and predicate ab-
straction [GS97] for software model checking [BR01].

Given a 3-valued modelM and a temporal-logic formula φ, the generalized model-
checking problem is to decide whether there exists a complete systemM ′ that is consis-
tent withM and that satisfies the formula φ. From a practical point of view, generalized
model checking (GMC) can sometimes [GH05, GC05] improve verification of program
abstractions. From a theoretical point of view, studying GMC is arguably interesting in
its own right since GMC generalizes both model checking (when all proposition val-
ues in the model are known) and satisfiability checking (when all proposition values
are unknown), probably the two most studied problems related to temporal logic and
verification.

In this paper, we revisit GMC for linear-time temporal-logic (LTL) formulas. First,
we show that LTL GMC is 2EXPTIME-complete in the size of the formula and polyno-
mial in the model, where the degree of the polynomial depends on the formula, instead
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of EXPTIME-complete and quadratic as previously stated erroneously in [BG00]. The
definition of GMC depends on the exact notion of abstraction, and is usually tailored for
branching-time model checking [BG00]. We then study a simpler linear completeness
preorder for relating program abstractions. We show that LTL GMC with this weaker
preorder is only EXPSPACE-complete in the size of the formula, and can be solved in
linear time and logarithmic space in the size of the model. Finally, we identify classes of
formulas for which the model complexity of GMC defined with the standard branching-
time completeness preorder is reduced.

Example. Consider the program P :

program P() {
x,y = 1,0;
x,y = 2*f(x),f(y);
x,y = 1,0;

}

where x and y denote int variables, f : int -> int denotes some unknown
function, and the notation “x,y = 1,0” means variables x and y are simultane-
ously assigned values 1 and 0, respectively. Let φ1 denote the LTL formula Fqy ∧
G(qx ∨ ¬qy) with the two predicates qx : “is x odd?” and qy : “is y odd?”, and where
F means “eventually” while G means “always”, and let φ2 denote the LTL formula
Xqy∧G(qx∨¬qy), whereX means“next” (see the next section for formal definitions).

Given such a program and knowing the predicate of interests qx and qy , predicate ab-
straction can be used to automatically generate the following 3-valued Kripke structure
M (or “Boolean program” [BR01]) abstracting P [GHJ01]:

initial state s0: qx = true, qy = false
next state s1: qx = false , qy = ⊥
next state s2: qx = true, qy = false
loop forever in s2

As shown in [GJ02] and discussed later, model checking1 φ1 and φ2 against M re-
turns the value “unknown,” while generalized model checking can prove that no con-
cretization ofM can possibly satisfy either φ1 or φ2, i.e., no matter how function f is
implemented.

Although φ2 = Xqy∧G(qx∨¬qy) is an LTL safety formula and hence is within the
scope of predicate-abstraction-based software model checkers such as SLAM [BR01]
or BLAST [HJMS02], these tools cannot prove that φ2 does not hold regardless of the
definition of function f: this result can only be obtained through generalized model
checking. Instead, when confronted with such a program P , these tools would attempt
to iteratively refine the abstractionM by analyzing the code of function f if it is avail-
able. This process is in general exponential in the size of the abstraction, since adding a
single predicate in each iteration may double the size of the abstraction. Moreover, this
process may not terminate. For the above abstractionM and formula φ2, the expensive
and unpredictable abstraction-refinement process can thus be avoided thanks to GMC.
Although the worst-case complexity of GMC is expensive in the size of the (usually

1 In model checking, we mean normal 3-valued model checking in the sense of [BG99].
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short) formula (but so is traditional LTL model checking which is already PSPACE-
complete), GMC can always be done in time polynomial in the size of the model (lin-
ear or quadratic in many cases as shown later), in contrast with abstraction refinement
which is typically exponential in the (usually large) model. ��

2 Preliminaries

A partial Kripke structure (PKS for short) [BG99] is M = 〈S,R,L, sin〉 where S is a
nonempty set of states, R ⊆ S × S is a total image-finite transition relation (i.e., every
state has a non-zero finite number of immediate successor states), L : S × AP → 3
is a labeling of states that associates a truth value in 3 = {true,⊥, false} to each
atomic proposition in a finite set AP , and sin ∈ S is an initial state. For a state s and
proposition p, we say that p is true in s if L(s, p) = true, it is false in s if L(s, p) =
false , and it is unknown ⊥ otherwise. A PKS is complete if the range of L is 2 =
{true, false}. We call a complete PKS a Kripke Structure or KS. When we want to
stress that a PKS M is complete, we denote it by M . Given a state s, we denote by
L(s) the function σ : AP → 3 such that σ(p) = L(s, p). We use the notations 3AP =
{σ : AP → 3} and 2AP = {σ : AP → 2}. For s ∈ S, we denote by (M, s) the PKS
〈S,R,L, s〉.

A computation of M is s0, s1, . . . such that s0 = sin and forall i ≥ 0 we have
(si, si+1)∈R. A computation π = s0, s1, . . . induces a traceL(π) = L(s0)L(s1) · · · ∈
(3AP )ω . The set of computations of M is denoted C(M) and the set of traces of M
is denoted L(M). In general, L(M) ⊆ (3AP )ω. Given a PKS M = 〈S,R,L, sin〉,
the unwinding of M into a tree is the PKS M+ = 〈S+, R′, L′, sin〉, where S+ is
the set of nonempty sequences over S, R′ = {(s1 · · · sn, s1 · · · sn · sn+1) ∈ (S+ ×
S+) | (sn, sn+1) ∈ R}, and L′(π · s) = L(s). We restrict the set S+ to the set of
sequences reachable from sin. IfM is a Kripke structure then so isM+.

To interpret temporal logic formulas on PKSs, we extend Kleene’s strong 3-valued
propositional logic [Kle87]. Conjunction∧ in this logic is defined as the minimumMin
of its arguments with respect to the truth ordering ≤T where false ≤T ⊥ ≤T true.
We extend this function to sets in the obvious way, with Min(∅) = true. Negation
¬ is defined using the function ‘Comp’ that maps true to false , false to true, and
⊥ to ⊥. Disjunction ∨ is defined as usual using De Morgan’s laws: p ∨ q = ¬(¬p ∧
¬q). Propositional modal logic (PML) is propositional logic extended with the modal
operator AX (which is read “for all immediate successors”). Formulas of PML have
the following abstract syntax: φ ::= p | ¬φ | φ1 ∧ φ2 | AXφ, where p ranges over
AP . The following 3-valued semantics generalizes the traditional 2-valued semantics
for PML.

Definition 1. The value of a formula φ of 3-valued PML in a state s of a PKS M =
〈S,R,L, sin〉, written [(M, s) |= φ], is defined inductively as follows:

[(M, s) |= p] = L(s, p)
[(M, s) |= ¬φ] = Comp([(M, s) |= φ])

[(M, s) |= φ1 ∧ φ2] =Min({[(M, s) |= φ1], [(M, s) |= φ2]})
[(M, s) |= AXφ] =Min({[(M, s′) |= φ] | (s, s′) ∈ R})
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We write [M |= φ] for [(M, sin) |= φ]. This 3-valued logic can be used to define a pre-
order � on PKSs that reflects their degree of completeness. Let ≤I be the information
ordering on truth values where ⊥ is the least element and true and false are maximal
uncomparable elements: ⊥ ≤I true, false . For two PKS Mi = 〈Si, Ri, Li, s

in
i 〉 with

i = 1, 2 the completeness preorder is the greatest relation � ⊆ S1 × S2 such that
s1 � s2 implies all the following:

1. For every p ∈ AP , we have L1(s1, p) ≤I L2(s2, p).
2. For every (s1, s′1) ∈ R1, there exists (s2, s′2) ∈ R2 such that s′1 � s′2.
3. For every (s2, s′2) ∈ R2, there exists (s1, s′1) ∈ R1 such that s′1 � s′2.

We say thatM2 is more complete thanM1, denotedM1 � M2, if sin1 � sin2 . It can be
shown that 3-valued PML logically characterizes the completeness preorder.

Theorem 1. [BG99] LetM1 andM2 be partial Kripke structures, and letΦ be the set of
all formulas of 3-valued PML. ThenM1 �M2 iff (∀φ ∈ Φ : [M1 |= φ] ≤I [M2 |= φ]).

In other words, partial Kripke structures that are “more complete” with respect to �
have more definite properties with respect to ≤I , i.e., have more properties that can
be established true or false by model checking. Moreover, any formula φ of 3-valued
PML that evaluates to true or false on a partial Kripke structure has the same truth
value when evaluated on any more complete structure.

2.1 Model Checking and Generalized Model Checking

The sets of LTL and CTL formulas are defined as follows.

LTL ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕUϕ

CTL ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | AXϕ | AϕUϕ | EϕUϕ
We assume familiarity with the semantics of LTL and CTL and with their model check-
ing. As usual, we denote true Uϕ by Fϕ, ¬F¬ϕ by Gϕ and ¬((¬ψ)U(¬ϕ ∧ ¬ψ))
by ϕRψ. The above grammar includes a complete set of operators and other operators
can be expressed in the usual way. Given a set of propositionsAP and an LTL formula
ϕ, the language of ϕ, denoted L(ϕ) is the set of models of ϕ in (2AP )ω. Formally,
L(ϕ) = {w ∈ (2AP )ω | w |= ϕ}. The 3-valued semantics of LTL and CTL path
formulas extend Definition 1 as expected. For instance, given a 3-valued infinite word
w = a0a1a2 · · · ∈ (3AP )ω, [w |= Xϕ] = [w′ |= ϕ] with w′ = a1a2 · · · ∈ (3AP )ω,
while [w |= ϕ1Uϕ2] = Max({Min({[ai |= ϕ1]|i < k} ∪ {[ak |= ϕ2]})|k ≥ 0}).
For partial Kripke structureM and a CTL formula φ, we denote the value of φ at state
s by [(M, s) |= φ] ∈ 3AP . For the initial state sin ofM we denote [(M, sin) |= φ] by
[M |= φ]. If M is a Kripke structure we simply write M, s |= ϕ for [(M, s) |= ϕ] =
true and M, s �|= ϕ for [(M, s) |= ϕ] = false . For a Kripke structure M and an LTL
formula ϕ, we say thatM satisfies ϕ, denotedM |= ϕ if L(M) ⊆ L(ϕ).

In practice, the size of the Kripke structure M can be prohibitively expensive or
even infinite. Instead, a smaller (finite) abstractionM ′ can be used: ifM ′ is generated
in such a way thatM ′ � M , then all the properties φ that can be proved (true) or dis-
proved (false) onM ′ will also hold onM , by Theorem 1. With static program analysis
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and predicate abstraction, generating such abstractions with respect to the complete-
ness preorder � can be done at the same computational cost as computing standard
abstractions that merely simulate (over-approximate) the concrete systemM [GHJ01].
Moreover, 3-valued model checking can itself be done at the same computational cost
as regular 2-valued model checking [BG00].

In some cases, precisely characterized in [GH05] and also independently studied
in [GC05], all the completions of an abstractionM agree on the satisfaction of a formula
ϕ, yet 3-valued model checking is not accurate enough to identify this and still returns
⊥. For instance, this is the case for the formula p ∨ ¬p if p is ⊥. This observation
suggests a more precise version of 3-valued model checking [BG00]: the value of a
formula ϕ in a PKS M should be unknown only if some completions of M satisfy
ϕ and some completions of M falsify ϕ [BG00]. We denote the value of ϕ on M
according to this thorough semantics by [M |= ϕ]t ∈ 3.

Generalized model checking (GMC) can determine the value of [M |= ϕ]t [BG00].
Given a PKS M and a formula ϕ, the GMC problem for M and ϕ is to determine
whether there exists a Kripke structureM ′ that completesM and satisfies ϕ. Formally,
we have the following.

M |=� ϕ iff there existsM ′ �M such thatM ′ |= ϕ

The value [M |= ϕ]t can be evaluated with two GMC questions. First, we check
whetherM |=� ϕ. If the answer is no, then all completions ofM do not satisfy ϕ and
[M |= ϕ]t = false . If the answer is yes, we next check whether M |=� ¬ϕ. If that
answer is no, then we know that all completions ofM satisfy ϕ and [M |= ϕ]t = true.
Otherwise, [M |= ϕ]t = ⊥.

It can be shown that 3-valued model checking is sound with respect to the thorough
semantics.

Theorem 2. [BG00] LetM be a PKS and ϕ an LTL or CTL formula.
1. [M |= ϕ] = true implies [M |= ϕ]t = true.
2. [M |= ϕ] = false implies [M |= ϕ]t = false .

In this paper we revisit LTL generalized model checking and show that its complexity is
greater than what was previously believed. We also consider specifications (both in LTL
and CTL) for which the model complexity of generalized model checking is simpler
than the general case.

2.2 Automata over Infinite Words

We assume familiarity with the basic notions of alternating automata on infinite words,
cf. [GTW02]. We also refer to tree automata, however, we do not define them formally.

For an alphabet Σ, the set Σ∗ is the set of finite sequences of elements from Σ.
For x ∈ Σ∗, we denote the length of x by |x|. Given an alphabet Σ and a set D of
directions, a Σ-labeled D-tree is a pair 〈T, τ〉, where T ⊆ D∗ is a tree over D and
τ : T → Σ maps each node of T to a letter in Σ.

For a finite set X , let B+(X) be the set of positive Boolean formulas over X (i.e.,
Boolean formulas built from elements inX using∧ and∨), where we also allow the for-
mulas true and false . An alternating word automaton is A = 〈Σ,Q, qin, δ, α〉, where
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Σ is the input alphabet, Q is a finite set of states, δ : Q × Σ → B+(Q) is a transition
function, qin ∈ Q is an initial state, andα specifies the acceptance condition. A run ofA
on w = σ0σ1 · · · is aQ-labeledD-tree, 〈T, τ〉, where τ(ε) = qin and, for every x ∈ T ,
we have {τ(x · γ1), . . . , τ(x · γk)} |= δ(τ(x), σ|x|) where {x · γ1, . . . , x · γk} is the set
of children of x. A run of A is accepting if all its infinite paths satisfy the acceptance
condition. For a path π, we denote the set of automaton states visited infinitely often
along this path by inf(π). We consider the following three acceptance conditions:

– A path π satisfies a Büchi condition α ⊆ Q iff inf(π) ∩ α �= ∅.
– A path π satisfies a co-Büchi condition α ⊆ Q iff inf(π) ∩ α = ∅.
– A path π satisfies a parity condition α = 〈F0, . . . , Fk〉 where F0, . . . Fk form a

partition of Q iff for some even i we have inf(π) ∩ Fi �= ∅ and forall i′ < i we
have inf(π) ∩ Fi′ = ∅. We call k the number of priorities of α.

For the three conditions, an automaton accepts a word iff there exists a run that accepts
it. We denote by L(A) the set of all Σ-words that A accepts.

Below we discuss some special cases of alternating automata. The alternating au-
tomaton A is nondeterministic if for all the formulas that appear in δ are disjunctions
over the states Q. The automaton A is deterministic if all formulas that appear in δ are
states from Q. For a nondeterministic automaton we write δ : Q× Σ → 2Q and for a
deterministic automaton we write δ : Q×Σ → Q.

We denote each of the different types of automata by an acronym in {D,N,A} ×
{W,B,C, P} × {W,T }, where the first letter describes the branching mode of the au-
tomaton (deterministic, nondeterministic, or alternating), the second letter describes the
acceptance condition (Weak,2 Büchi, co-Büchi, or parity), and the third letter describes
the object over which the automaton runs (words or trees). For example, an ABW is an
alternating Büchi word automata and a DPW is a deterministic parity word automata.

We state the following well known results about automata and their relation to LTL.

Theorem 3. For every LTL formula ϕ of length n there exist an NBW Nϕ with 2O(n)

states [VW94] and a DPWDϕ with 22O(n logn)
states and 2O(n) priorities [Saf88, Pit07]

such that L(ϕ) = L(Nϕ) = L(Dϕ).

Theorem 4. [Jur00] Given an APW A over a 1-letter alphabet with n states and k
priorities, we can decide whether L(A) = ∅ in time proportional to nO(k).

Theorem 5. [SVW87] Given two NBW N1, N2 we can decide whether L(N1) ⊆
L(N2) in space logarithmic in N1 and polynomial in N2.

3 LTL Generalized Model Checking

We show that, contrary to previous beliefs, GMC with respect to linear time logic is
2EXPTIME-complete. Our upper bound combines a DPW for the LTL property with
the PKS to get an APW over a 1-letter alphabet. The APW is not empty iff the GMC
problem holds. For the lower bound, we show a reduction from LTL realizability to

2 We delay the definition of weak automata to Section 5.
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generalized model checking. LTL realizability is 2EXPTIME-hard [PR89] establish-
ing 2EXPTIME-hardness of generalized model checking. The two together establish
2EXPTIME-completeness of generalized model checking for LTL.

Theorem 6. LTL generalized model checking M |=� ϕ can be solved in polynomial
time in the size ofM and double exponential time in the size of ϕ.

Proof. Consider an LTL formula ϕ. Let |ϕ| = n. According to Theorem 3 there exists
a DPW Dϕ with 22O(n log n)

states and 2O(n) priorities such that L(ϕ) = L(Dϕ).
Let Dϕ = 〈2AP , T, t0, ρ, α〉 andM = 〈S,R,L, sin〉. Consider the following APW

A over a 1-letter alphabet that is obtained from the combination of M and Dϕ. We
define A = 〈{a}, T × S, (t0, sin), η, α′〉 such that

η((t, s), a) =
∨

σ�L(s)

∧
(s,s′)∈R

(ρ(t, σ), s′)

and α′ = 〈F ′
0, . . . , F

′
k〉 is obtained from α = 〈F0, . . . , Fk〉 by setting F ′

j = Fj × S.

Lemma 1. A accepts aω iffM |=� ϕ.

According to Theorem 4 the emptiness of A can be determined in time proportional to
(22O(n log n)

)2
O(n)

= 22O(n log n)
. ��

Note that, ifDϕ was nondeterministic in the previous proof, it could not precisely track
simultaneously different matching states s such that s � sn in the proof, and therefore
M |=� ϕ would not necessarily imply that A accepts aω. This is in essence the error
in the proof of Theorem 25 of [BG00], which led to the overly optimistic EXPTIME
upper-bound.

We now proceed to the lower bound. We start with a definition of LTL realizability.
Consider a set of propositionsAP = I∪O of input and output signals, respectively. Let
L be a language of infinite words over alphabet 2AP . The realizability problem for L is
to decide whether there exists a strategy f : (2I)+→2O such that all the computations
generated by f are in L. A computation π = (i0, o0), (i1, o1), . . . is generated by f if
for all j ≥ 0 we have oj = f(i0i1 · · · ij). The realizability problem for an LTL formula
ϕ is the realizability problem for L(ϕ).

Theorem 7. [PR89] The realizability problem for an LTL formula ϕ is 2EXPTIME-
hard in the size of ϕ.

Theorem 8. LTL Generalized model checkingM |=� ϕ is 2EXPTIME-hard in the size
of ϕ.

Proof. We show how to solve realizability of an LTL formula using the generalized
model checking problem. The idea behind the reduction is that the PKS includes deter-
mined values of the inputs and undetermined values of the outputs. The branching of
the PKS forces all possible assignments to inputs as possible successors of every state.
Thus, every completion of the PKS associates an assignment to the outputs with every
possible assignment to inputs and is in essence a strategy. If the completion satisfies the
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LTL formula, then so does the strategy. The PKS has 2I different states, each labeled
by the appropriate assignment to the input variables and with transitions between every
two possible states. We then show how to reduce the PKS to one with a constant number
of states and |O|+ 2 propositions. ��

4 Linear Completeness Preorder

The completeness preorder� used to define generalized model checking |=� is stronger
than necessary for reasoning only about the linear behaviors of partial Kripke structures.
Indeed, the completeness preorder reduces to a bisimulation relation in the case of com-
plete Kripke structures, and Kripke structures that satisfy the same LTL formulas are
not necessarily bisimilar.

In this section, we study a simpler linear completeness preorder �L, first suggested
in [BG00], that relates partial Kripke structures using only their sets of (3-valued) traces.
Then we show that generalized model checking |=�L defined with respect to this linear
preorder is “only” EXPSPACE-complete.

Given any two infinite 3-valued traces w=L(s0)L(s1) · · · and w′=L(s′0)L(s′1) · · ·
in (3AP )ω, we write w ≤I w

′ if ∀i ≥ 0 : ∀p ∈ AP : L(si, p) ≤I L(s′i, p).

Definition 2. For two PKS Mi = 〈Si, Ri, Li, s
in
i 〉 with i = 1, 2, the linear complete-

ness preorder�L is the greatest relation�L ⊆ S1×S2 such that (s1, s2) ∈ �L implies
all the following.
1. For every w ∈ L(M1, s1) there exists w′ ∈ L(M2, s2) such that w ≤I w

′.
2. For every w′ ∈ L(M2, s2) there exists w ∈ L(M1, s1) such that w ≤I w

′.

It is easy to show that 3-valued LTL logically characterizes the linear completeness
preorder.

Theorem 9. For any two PKS M1 and M2, we have M1 �L M2 iff for every LTL
formula ϕ we have [M1 |= ϕ] ≤I [M2 |= ϕ].

Proof. Assume M1 �L M2 and consider any LTL formula ϕ. If [M1 |= ϕ] = ⊥, we
always have [M1 |= ϕ] ≤I [M2 |= ϕ].

If [M1 |= ϕ] = true, then for all w ∈ L(M1), [w |= ϕ] = true. By point 2 of
Definition 2, for every w′ ∈ L(M2) there exists w ∈ L(M1) such that w ≤I w

′. But
since ∀w ∈ L(M1) : [w |= ϕ] = true, we have ∀w′ ∈ L(M2) : [w′ |= ϕ] = true, and
hence [M2 |= ϕ] = true.

If [M1 |= ϕ] = false , then ∃w ∈ L(M1) : [w |= ϕ] = false . By point 1 of
Definition 2, we have ∃w′ ∈ L(M2) : w ≤I w

′ and hence [w′ |= ϕ] = false . Thus
[M2 |= ϕ] = false , and the first direction of the theorem holds.

Conversely, let s1 � s2 denote ∀ϕ ∈ LTL : [(M1, s1) |= ϕ] ≤I [(M2, s2) |= ϕ].
Assume that s1 � s2 but that s1 ��L s2: thus, either point 1 or 2 of Definition 2 is
violated.

Assume point 1 is violated: ∃w ∈ L(M1, s1) : ∀w′ ∈ L(M2, s2) : w �≤I w
′. Let

w = s01s
1
1s

2
1 · · · with s01 = s1. Let S0

2 = {s2} and for k > 0, let Sk
2 = {s ∈ S2 | s′ ∈

Sk−1
2 ∧ (s′, s) ∈ R2 ∧ (∀p ∈ AP : L1(sk1 , p) ≤I L2(s, p))}. Since ∀w′ ∈ L(M2, s2) :
w �≤I w

′, then there must exist a value of k such that Sk
2 = ∅. In other words, the
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corresponding sk1 in M1 denote the first state in M1 reachable from s1 along w whose
label cannot be “matched” (according to the previous formal definition) by any state of
M2 (hence also reachable in k steps from s2). By abusing notation, let Sk

2 = {s ∈ S2 |
s′ ∈ Sk−1

2 ∧ (s′, s) ∈ R2} (by construction, we know Sk−1
2 �= ∅ and since every state

has at least one successor state, Sk
2 is nonempty as well). Thus, for each state s ∈ Sk

2 ,
there exists a proposition p ∈ AP such that L1(sk1 , p) �≤I L2(s, p). Let ϕ(s) = p
if L1(sk1 , p) = false and let ϕ(s) = ¬p otherwise (i.e., when L1(sk1 , p) = true; if
L1(sk1 , p) = ⊥, then trivially L1(sk1 , p) ≤I L2(s, p)). Consider the LTL formula

ψ = (
∧
i<k

(X i(
∧

L(si
1,p)=true

p ∧
∧

L(si
1,p)=false

¬p))) ⇒ Xk
∨

s∈Sk
2

ϕ(s)

We have [(M1, s1) |= ψ] = false (as we know [w |= ψ] = false) while [(M2, s2) |=
ψ] �= false (since the antecedent of the logical implication is true exactly for finite
paths leading to states in Sk−1

2 and the consequent is either true or ⊥ for all states in
Sk

2 ). A contradiction with s1 � s2.
Assume point 2 is violated: ∃w′ ∈ L(M2, s2) : ∀w ∈ L(M1, s1) : w �≤I w

′. Using
the same line of reasoning as in the previous case, let sk2 denote the first state in M2
reachable from s2 along w′ whose label cannot be matched by any state in Sk

1 ofM1 as
defined above. Thus, for each state s ∈ Sk

1 , there exists a proposition p ∈ AP such that
L1(s, p) �≤I L2(sk2 , p). Let ϕ(s) = p if L1(s, p) = true and let ϕ(s) = ¬p otherwise.
Consider the LTL formula

ψ = (
∧
i<k

(X i(
∧

L(si
2,p)=true

p∧
∧

L(si
2,p)=false

¬p∧
∧

L(si
2,p)=⊥

(p∧¬p)))) ⇒ Xk
∨

s∈Sk
1

ϕ(s)

We have [(M1, s1) |= ψ] = true (since the antecedent of the logical implication is
either true or⊥ exactly for the finite paths leading to states in Sk−1

1 and the consequent
is true for all states in Sk

1 ) while [(M2, s2) |= ψ] �= true (since [w′ |= ψ] �= true). A
contradiction with s1 � s2. ��

Given a PKS M and an LTL formula ϕ, generalized model checking with respect to
the linear completeness preorder �L means checking whether every 3-valued trace
of M can be completed to a 2-valued trace that satisfies ϕ. Formally, we have the
following.

M |=�L ϕ iff ∀w ∈ L(M) : ∃ a complete w′ such that w ≤I w
′ and w′ |= ϕ

As observed in [GJ02], computing the value of [M |= ϕ]t for an LTL formula ϕ
can be reduced to one normal (2-valued) model checking problem and one generalized
model checking problem, regardless of which completeness preorder is used. One can
start by checking whether there exists a completion w′ of any trace w in M such that
w′ �|= ϕ. To do this, one can build a Kripke structure M c that guesses all possible
completions of labelings of states ofM and thus accepts all the possible completions of
traces ofM . Then, one checks whetherM c |= ϕ using traditional 2-valued LTL model
checking, which is a PSPACE-complete problem. IfM c |= ϕ, all possible completions
of M satisfy ϕ, which means [M |= ϕ]t = true and we stop. Otherwise, one needs
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to solve a second, more expensive generalized model checking problem to determine
whether there exists some completionM ′ ofM whose traces all satisfy ϕ.

If one considers the completeness preorder�, checking for such a completionM ′ �
M such thatM ′ |= ϕ, i.e., computingM |=� ϕ, is 2EXPTIME-complete as shown in
the previous section. However, if one considers instead the linear completeness preorder
�L, we now show that computingM |=�L ϕ is only EXPSPACE-complete.

Theorem 10. LTL generalized model checking M |=�L ϕ with respect to the linear
completeness preorder �L can be solved in space logarithmic in the size of M and
exponential in the size of ϕ.

Proof. Consider an LTL formula ϕ. According to Theorem 3 there exists an NBW
Nϕ = 〈2AP , Q, q0, ρ, F 〉 where |Q| = 2O(|ϕ|) such that L(Nϕ) = L(ϕ).

We modify the NBW above to an NBW over the alphabet 3AP that accepts partial
traces that have a completion in L(Nϕ). Formally, we have the following.

We denote letters in 2AP by σ and letters in 3AP by τ . Let N ′ be the automa-
ton obtained from Nϕ by guessing a completion of the read letter. Formally, N ′ =
〈3AP , Q, q0, ρ

′, F 〉 where

ρ′(s, τ) =
∨
σ�τ

ρ(s, σ)

Now, all that we have to check is whether L(M) ⊆ L(N ′). From Theorem 5, we know
that this problem can be solved in space logarithmic in M and polynomial in N ′. As
N ′ is exponential in ϕ, the upper bound follows. ��

We now show that using this definition of GMC we can solve an EXPSPACE-hard tiling
problem [vEB97]. In tiling problems we get a finite set of different types of tiles and
we have to tile a floor of a given dimension. We may use as many tiles as we want from
every given type, however, there are rules that tell us which tiles are allowed to be next to
each other according to vertical and horizontal rules. There are many different flavors of
tiling problems with different complexities. Here we introduce the EXPSPACE version
of the tiling problem. In order to prove the lower bound, we build a PKS M whose
traces are all the possible arrangements of tiles. A trace has a completion that satisfies
our LTL formula ϕ if the arrangement of tiles is not valid, i.e., it violates one of the
tiling rules. That is, M |=�L ϕ iff all possible arrangements of tiles are not valid, i.e.,
the tiling problem does not have a solution.

A tiling problem is 〈T,H, V, s, t, n〉, where T is a finite set of tiles, H,V ⊆ T × T
are horizontal and vertical consistency rules, s, t ∈ T are initial and final tiles, and n
is a number (in unary). The decision problem is whether there exists a number m and
a function f : [2n] × [m] → T such that f(1, 1) = s, f(2n,m) = t, and forall i, j
we have (f(i, j), f(i + 1, j)) ∈ H and (f(i, j), f(i, j + 1)) ∈ V . That is, arrange
the tiles in a 2n times m rectangle such that s is in the bottom left corner, t in the top
right corner, and all neighbors (vertical/horizontal) satisfy the horizontal and vertical
consistency rules. This problem is EXPSPACE-complete [vEB97].

Theorem 11. LTL generalized model checkingM |=�L with respect to the linear com-
pleteness preorder �L is EXPSPACE-hard in the size of ϕ.
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Proof. We start by representing the rectangular arrangement of tiles by a linear se-
quence of tiles. An (infinite) linear sequence of tiles represents a valid tiling if it starts
with s, has t in location m2n for some m, every adjacent locations (except multiples
of 2n and their successors) satisfy H , and every two locations whose distance is 2n

satisfy V .
We construct a simple system that produces all possible sequences of tiles. The

partial propositions are going to number every tile in the sequence with a number in
[0..(2n − 1)]. The LTL formula checks two things. First, that the truth assignments to
partial propositional variables behave like a counter (it is always possible to complete
the values of these propositions in this way). Second, that every possible sequence of
tiles contains one of the following problems: either (a) it does not start in s, or (b) all
locations that are multiples of 2n are not t, or (c) the horizontal rule is violated before
t appears in a 2n-multiple location, or (d) the vertical rule is violated before t appears
in a 2n-multiple location. If one of these problems occurs, then the tiling is not valid.
If all possible arrangements of tiles are not valid, then the tiling problem does not have
a solution. As before, we show also how to reduce the structure to one with a constant
number of states. ��

The next theorem states that � is a stronger relation than �L, which in turn helps
explain why checking |=� is more expensive than checking |=�L .

Theorem 12. For any partial Kripke structures M,M ′ and LTL formula ϕ,M � M ′

impliesM �L M
′, and thereforeM |=� ϕ impliesM |=�L ϕ.

Proof. Immediate from the definitions of � and �L. ��

Note that � is strictly stronger than �L, as the converse of the theorem does not hold.
To illustrate this, consider the LTL formula ϕ = (p ∧Xp) ∨ (¬p ∧X¬p) and the par-
tial Kripke structure M = 〈{s0, s1, s2}, {(s0, s1), (s0, s2), (s1, s1), (s2, s2)}, L, s0〉
labeled with a single atomic proposition p such that L(s0, p) = ⊥, L(s1, p) = true
and L(s2, p) = false . It is easy to see that [(M, s0) |= ϕ] = ⊥. Moreover, we have
(M, s0) |=�L ϕ, as every 3-valued trace generated from (M, s0) can be completed by
some 2-valued trace that satisfies ϕ. However, (M, s0) �|=� ϕ as there does not exist a
completionM ′ such that M � M ′ and M ′ |= ϕ, as state s0 where p = ⊥ cannot be
completed to a single state s such that every trace from s satisfies ϕ: if L(s, p) = true,
then the trace ssω2 violates ϕ, and if L(s, p) = false , then the trace ssω1 violates ϕ.

5 Model Complexity

We have seen that LTL generalized model checking defined with the stronger
branching-time preorder � is polynomial in the size of the model. The degree of the
polynomial, however, is unbounded, and depends on the deterministic automaton cre-
ated for the formula. Here we show that for interesting classes of properties, the model
complexity can be restricted to linear or quadratic. The resemblance pointed out be-
tween generalized model checking and realizability in the proof of Theorem 8 contin-
ues here. Indeed, the same classes of formulas are used to suggest tractable fractions of
LTL for realizability (cf. [RW89, AMPS98, PPS06]).
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We start with a few additional definitions and known results regarding automata. Let
A = 〈Σ,Q, qin, δ, α〉 be a Büchi automaton. We say thatA is weak if there is a preorder
≤ on the state set Q such that the following two conditions hold:

1. For every q ∈ Q and σ ∈ Σ, if q′ appears in δ(q, σ) then q ≤ q′.
2. For every q ∈ Q, if q ∈ α then forall q′ such that q ≤ q′ and q′ ≤ q we have q′ ∈ α.

We use the acronyms mentioned previously for weak automata. For instance, an AWT
is an alternating weak tree automaton and an DWW is a deterministic weak word au-
tomaton.

We specialize Theorem 4 to our needs as follows.

Theorem 13. Given an APW A over a 1-letter alphabet, we can decide whether L(A)
= ∅ in linear time if A is AWW [KVW00] and in quadratic time if A is an ABW, ACW,
or an APW with three priorities [VW86, Jur00].

Consider an LTL formula ϕ. We say that ϕ is a safety property if for every word
w /∈ L(ϕ) there exists a prefix u such that forall v′ we have uv′ /∈ L(ϕ). Let p
and q be Boolean combinations of propositional formulas. Formulas of the form GFp
orG(q → Fp) are called response properties, and formulas of the form FGp are called
persistence properties [MP92]. If ϕ is of the form (ϕa

s ∧ ϕa
r ) → (ϕg

s ∧ ϕg
r) where ϕa

s

andϕg
s are conjunctions of safety properties andϕa

r andϕg
r are conjunctions of response

properties is called generalized reactivity[1] [KPP03]. Alternatively, we classify LTL
properties according to the type of deterministic automaton that accepts the same lan-
guage. We say that ϕ is a weak property if there exists a DWW that accepts the language
of ϕ. We say that ϕ is a DBW property if there exists a DBW that accepts the language
of ϕ. Similarly, we say that ϕ is a DCW property if there exists a DCW that accepts the
language of ϕ. The following theorem links the different types of LTL properties to the
deterministic automata that accept them.

Theorem 14
1. For every safety property ϕ, there exists a DWW D such that L(D)= L(ϕ).
2. For every response property ϕ, there exists a DBWD such that L(D) = L(ϕ).
3. For every persistence property ϕ, there exists a DCW D such that L(D) = L(ϕ).
4. For every generalized reactivity[1] property ϕ, there exists a DPW D with three

priorities such that L(D) = L(ϕ).

The following is a consequence of Theorems 13 and 14 and the proof of Theorem 6.

Theorem 15. LTL generalized model checkingM |=� ϕ is linear inM for weak and
safety properties, and quadratic inM for response, persistence, and generalized reac-
tivity[1] properties.

Proof. From the proof of Theorem 6 it follows that we combine a deterministic au-
tomaton for the property with the model to get an APW over a 1-letter alphabet. From
Theorem 14 it follows that if the LTL property is a safety or obligation property the
DPW, and the resulting APW, are weak. If the LTL property is a response property, the
DPW is in fact a DBW. If the LTL property is a persistence property, the DPW is in fact
a DCW. If the LTL property is a generalized reactivity[1] property, the DPW has three
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priorities. Recall that the APW is the product of the DPW and the model. Thus, the
APW is linear in the size of the model. The desired upper bound now follows directly
from Theorem 13. ��

Note that LTL GMC for persistence properties can be solved in quadratic time in the size
of the model, instead of in linear time as incorrectly stated in Theorem 5 of [GJ02]. The
root cause of this error is the same as the one for Theorem 25 of [BG00], as the proofs
of both theorems rely on the same product construction, now corrected in Theorem 6 of
this paper.

Finally, we clarify a subtle misconception regarding generalized model checking of
CTL properties. Given a CTL property, we can construct directly an NBT that is at
most exponential in the size of the property that accepts all trees that satisfy the property
[KVW00]. Generalized model checking can then be solved by combining this NBT with
the model to obtain an ABW over a 1-letter alphabet [BG00]. According to Theorem 13
the emptiness of this ABW can be established in quadratic time. Thus, the complexity of
GMC with respect to CTL properties is exponential in the formula and quadratic in the
model, which is optimal [BG00]. As with LTL the quadratic complexity in the model
follows from the type of acceptance condition used by the automaton for the formula.
We are interested in classes of properties for which automata require simpler acceptance
conditions. If the CTL property can be recognized by an NWT, the complexity in the
size of the model reduces to linear. In the proof of Theorem 7 of [GJ02] it is assumed
that if a CTL property can be recognized by an NCT then it can also be recognized by
an NWT. However, it is currently unknown whether this is the case (cf. Section 6) and
the proof of that theorem is therefore incomplete.

6 Conclusions

We study generalized model checking for linear time properties. We show that the clas-
sical definitions of GMC is 2EXPTIME-complete in the size of the formula and poly-
nomial in the structure. We study a linear version of the completeness preorder and
show that this preorder induces a GMC problem that is EXPSPACE-complete in the
size of the formula. We then proceed to show that for interesting classes of properties
the model complexity can be restricted to a low order polynomial.

We have presented our work in the framework of partial Kripke structures. Other
equally expressive 3-valued models [GJ03] include Modal Transition Systems [LT88]
and Kripke Modal Transition Systems [HJS01]. The complexity bounds given in this
paper carry over to those closely related modeling formalisms.

The proof of Theorem 8 reduces realizability of LTL to GMC. The similarity actually
goes in both directions. A GMC problem can be translated to a 2-person game where the
specification (in LTL or in branching-time logic) can be translated to the winning con-
dition. In a 2-person game players verifier and refuter alternate in moving a token along
the edges of a graph. If the infinite path made by the token satisfies an LTL formula,
verifier wins and otherwise she loses. If the winning condition is expressed in terms of
branching-time logic, instead of considering a path in the graph, we consider the infinite
unwinding of the game graph and prune the unwinding so that nodes that correspond to
decisions of verifier have exactly one successor. The translation of the GMC problem
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to such a game is as follows. The game graph itself is similar to the model, where deci-
sions of the refuter correspond to the branching of the original model and decisions of
the verifier correspond to the values given to undetermined propositions. The formula
to be checked on the model is translated to the winning condition in the game. Much
like the proofs of the lower bounds above, this straightforward translation may result
in a game graph that is exponential in the number of propositions whose value is un-
known. We can further reduce the number of nodes in the game graph to a product of
the number of propositions whose value is unknown and the size of the model using the
techniques in the proofs of Theorems 8 and 10. It may be possible to reduce the number
of nodes in the game graph to a constant times the number of states of the model.

We have seen that for interesting classes of LTL and CTL properties the complexity
in term of the model can be restricted to linear or quadratic. We classify the proper-
ties according to deterministic word automata and nondeterministic tree automata that
match these formulas. While most popular types of properties are covered above, char-
acterization of the exact classes of formulas that can be translated to these types of
automata is an interesting problem. That is, what are the exact subsets of LTL that can
be translated to DWW and to DBW? Is there a simple syntactic way to express these
subsets? The same problem for CTL (and other branching-time logics) involves tree
automata. For every CTL property there exist an NBT and an AWT recognizing the
same set of trees [KVW00]. What CTL properties can be translated to NWT? Is there a
syntactic way to express these subsets? We know that if a word language can be recog-
nized by a DBW and by a DCW, then it can be recognized by a DWW [KMM04]. This
suggests the following natural question: Given a tree language that is accepted by an
NCT and by an NBT, can it be recognized by an NWT? From a practical point of view,
it could be interesting to study the specific case of CTL properties that are recognized
by NCT.

Acknowledgements. We thank Michael Huth for comments on an earlier version and
Orna Kupferman for a discussion of the relative expressive power of NBT and NCT.
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Monitoring the Full Range of ω-Regular
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Abstract. We present highly accurate deterministic, probabilistic and
hybrid methods for monitoring the full range of ω-regular properties,
specified as Streett automata, of stochastic systems modeled as Hid-
den Markov Chains. The deterministic algorithms employ timeouts that
are set dynamically to achieve desired accuracy. The probabilistic algo-
rithms employ coin tossing and can give highly accurate monitors when
the system behavior is not known. The hybrid algorithms combine both
these techniques. The monitoring algorithms have been implemented as
a tool. The tool takes a high level description of an application with
probabilities and also a Streett automaton that specifies the property
to be monitored. It generates a monitor for monitoring computations of
the application. Experimental results comparing the effectiveness of the
different algorithms are presented.

1 Introduction

In the verification of concurrent and distributed programs, both safety and live-
ness properties play important roles. Liveness properties are proved correct as-
suming certain fairness/liveness properties of the environment that influence the
execution of the concurrent programs. In the simplest of the cases, the environ-
ment is a scheduler that schedules the execution of the computation steps of the
different processes, and one makes the weakest necessary fairness assumptions
on the scheduler to prove the liveness properties. There are many other such
assumptions one makes about fair delivery of messages in a distributed system,
or about the failure of processes or about the release of acquired resources by
users, etc. At run time, the verified liveness properties are going to be satis-
fied only if the assumed fairness properties are maintained. Thus, one has to
either monitor for the violation of the assumed fairness properties, or monitor
for the violation of liveness properties at run time. Monitoring the violations of
the fairness properties may not be possible since the required information is not
usually visible. As a consequence, monitoring the violation of liveness properties
becomes necessary and important.

Monitoring of both safety and liveness properties also becomes necessary when
one uses an existing off-the-shelf component that may not guarantee satisfaction
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of these properties in all executions; a prior verification of such components
is not feasible due to unavailability of source code. Even in the cases where
the component is found to be defective, we may want to use it hoping that
the incorrect computations occur rarely. To handle the situation where such
incorrect computation may occur, we need to monitor for such computations.
Existing works [7,8,16] propose an approach for customizing such components
to user requirements using a conservative run time monitor. In this scheme, one
identifies a safety property that implies the given property f (in general, f is
the intersection/conjunction of a safety and a liveness property).

In recent work [15], systems modeled as Hidden Markov Chains (HMC) were
considered and conservative monitors were given for them. (HMCs are widely
used formalisms to model systems whose state, at any time during an execu-
tion, can not be completely observed). A measure of accuracy was defined for
conservative monitors called acceptance accuracy which is the probability that
a good computation of the system (i.e., one satisfying the given property f) is
accepted by the monitor. The method given in [15] only monitors for violations
of properties specified by deterministic Buchi automata.

In this paper, we give conservative monitors that monitor for violations of
properties specified by deterministic Streett automata which are more expressive
than deterministic Buchi automata. (For example, for monitoring violations of
liveness properties, such as strong fairness, we need Streett automata.) In a
Streett automata each acceptance condition is given by a pair of sets of states
(RED,GREEN). Our method simulates the automaton on the output sequence
generated by the system; it uses a counter/timeout with each acceptance pair.
The timeout is reset whenever a GREEN state appears; it is decremented when
ever a RED state occurs. We show that by using a reset value for the counter
that increase linearly with the number of GREEN states, seen thus far, we
can achieve accuracy arbitrarily close to 1. When the HMC is fully visible this
monitor has accuracy 1. This result is quite surprising since earlier works [16]
demonstrated that such a scheme, of using one counter with each accepting pair,
is not complete for monitoring non-stochastic systems.

We also give a randomized monitor for monitoring HMCs for violations of
properties given by Streett automaton. In these methods, whenever a RED
state is seen then the computation is rejected with some low probability p. This
probability of rejection remains constant until a GREEN state is seen, and is
reduced by a constant factor with each occurrence of a GREEN state; thus,
the probability of rejection decreases in geometric progression with the number
of GREEN states. We show that by choosing an appropriate initial probability
and by choosing appropriate factor of reduction, we can achieve an accuracy that
is arbitrarily close to 1. This result is quite interesting since earlier approaches
had shown that, in general when the system behavior is non-stochastic and is not
known in advance, then one cannot have a randomized monitor (called strong
monitors) that accepts every good computation with non-zero probability.

Finally, we give a hybrid monitor that employs both counters as well as ran-
domization. Such a monitor uses the counter not only as a time out for invoking
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the random rejections, but also for generating extremely low values of probabil-
ities. The method increments the reset value of the counter after each GREEN
state is seen. This monitor can also be tuned to achieve a desired accuracy as
close to 1 as required.

In summary, the following are the main contributions of the paper:

– A conservative deterministic monitor employing counters, for monitoring
violations of properties specified by deterministic Streett automata, for sys-
tems modeled as HMCs. These monitors can be designed to achieve a desired
accuracy and have accuracy 1 when the HMC is fully visible.

– A probabilistic monitor which can also be tuned to achieve any desired ac-
curacy, but requires generation of low probabilities.

– A hybrid monitor that uses counters as well as probabilistic rejections. It can
also be designed to achieve any given accuracy. It generates low probabilities
by using unbiased coin tosses.

– Experimental results showing the effectiveness of the methods.

We have developed a tool, called SM (Stochastic Monitor), that takes a high
level description of a probabilistic synchronous concurrent program and a prop-
erty specified as deterministic Streett automaton and that monitors if a given
sequence of inputs violates the property specified by the automaton. The tool im-
plements the three different monitoring algorithms one of which can be invoked
through an appropriate option. The high level description of the concurrent pro-
gram is only used to check for early acceptance or rejection of an input sequence.

The paper is organized as follows. Section 2 contains definitions. Section 3
presents a highly accurate deterministic monitor. Section 4 and 5 describe prob-
abilistic and hybrid methods respectively. Section 6 presents experimental re-
sults. Section 7 has concluding remarks and comparison to related work. Proofs
of theorems are left out and can be obtained from a full version of the paper on
the last author’s web site.

2 Definitions and Notation

Sequences. Let S be a finite set. Let σ = s0, s1, . . . be a possibly infinite sequence
over S. The length of σ, denoted as |σ|, is defined to be the number of elements
in σ if σ is finite, and ω otherwise. For any i ≥ 0, σ[0, i] denotes the prefix of
σ up to si. If α1 is a finite sequence and α2 is either a finite or an ω-sequence
then α1α2 denotes the concatenation of the two sequences in that order. We let
S∗, Sω denote the set of finite sequences and the set of infinite sequences over
S. If C ⊆ Sω and α ∈ S∗ then αC denotes the set {αβ : β ∈ C}.

Automata. A Streett automaton (SA for short)A on infinite strings is a quintuple
(Q,Σ, δ, q0, F ) where Q is a finite set of states; Σ is a finite alphabet of symbols;
δ:Q×Σ → 2Q is a transition function; q0 ∈ Q is an initial state; F ⊆ 2Q × 2Q

is a set of pairs of subsets of states. Each pair (RED,GREEN) ∈ F is called
an accepting pair of A. The generalized transition function δ∗:Q × Σ∗ → 2Q
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is defined in the usual way, i.e., for every state q, δ∗(q, ε) = {q}, and for any
σ ∈ Σ∗ and a ∈ Σ, δ∗(q, σa) = ∪q′∈δ∗(q,σ)δ(q′, a). If for every (q, a) ∈ Q×Σ,
|δ(q, a)| = 1, thenA is called a deterministic Streett automaton. Unless otherwise
stated, we only consider deterministic automata. Let σ : a1, . . . be an infinite
sequence over Σ. A run r of A on σ is an infinite sequence r0, r1, . . . over Q
such that r0 = q0 and for every i > 0, ri ∈ δ(ri−1, ai). The run r of a Streett
automaton is accepting if for every accepting pair (RED,GREEN) in F the
following condition holds: if there exists an infinite set I of indices such that, for
each i ∈ I, ri ∈ RED then there also exists an infinite set J of indices such that
for each i ∈ J, ri ∈ GREEN . The automaton A accepts the ω-string σ if its
unique run over σ is an accepting run. The language accepted by A, denoted by
L(A), is the set of ω-strings that A accepts. A language L′ is called ω-regular if
it is accepted by some Streett automaton.

Hidden Markov Chains. We assume that the reader is familiar with basic prob-
ability theory and random variables and Markov chains. We consider stochastic
systems given as Markov Chains [9] and monitor their computations for satis-
faction of a given property specified by an automaton or a temporal formula.
A Markov chain G = (S,R, φ) is a triple satisfying the following: S is a set
of countable states; R ⊆ S × S is a total binary relation (i.e., for every s ∈ S,
there exists some t ∈ S such that (s, t) ∈ R); and φ : R→ (0, 1] is a probability
function such that for each s ∈ S,

∑
(s,t)∈R φ((s, t)) = 1. Note that, for every

(s, t) ∈ R, φ((s, t)) is non-zero. Intuitively, if at any time the system is in a
state s ∈ S, then in one step, it goes to some state t such that (s, t) ∈ R with
probability φ((s, t)). A finite path p of G is a sequence s0, s1, ..., sn of states such
that (si, si+1) ∈ R for 0 ≤ i < n. We extend the probability function to such
paths, by defining φ(p) =

∏
0≤i<n φ((si, si+1)).

We assume that there is a finite set P of atomic propositions that represent
conditions on system states. Let Σ denote 2P , the power set of P . Each member
of Σ denotes the set of atomic propositions that are true in a state of the system.
From here onwards, we assume that Σ is the input alphabet of the property
automata that we consider. If the property is given by a temporal formula then
the atomic propositions appearing in the formula are drawn from P . For any
C ⊆ Σω, let C̄ denote the set Σω − C. For an atomic proposition P ∈ P ,
when used in a sequence, P represents the set of elements of Σ that contain P ;
similarly ¬P represents the set of elements that do not contain P .

A Hidden Markov Chain (HMC) [2] H = (G,O, r0) is a triple where G =
(S,R, φ) is a Markov chain, O : S → Σ is the output function and r0 ∈ S is
the initial state. Intuitively, for any s ∈ S, O(s) is the output generated in state
s and is the set of atomic propositions true in s; this output is generated when
ever a transition entering state s is taken. The generated symbols become inputs
to the monitor. H is called Hidden Markov chain because, one only observes the
outputs generated in each state but not the actual state. We extend the output
function O to paths of G as follows. For any finite path p = s0, s1, ..., sn in G,
O(p) = O(s0), O(s1), ..., O(sn). The probability distribution on the single step
state transition of G induces a probability distribution on the sets of sequences of
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outputs generated. To define these distributions formally, let E be the smallest
class of subsets of Σω satisfying the following properties: for every α ∈ Σ∗,
αΣω ∈ E ; E is closed under countable union (i.e., if C0, ...Ci, ... is a finite or
infinite sequence of elements in E , then

⋃
i≥0 Ci is also in E); it is closed under

complementation (i.e., for every C ∈ E , C̄ is also in E). The elements of E are
called measurable subsets of Σω. It is not difficult to see that E is also closed
under countable intersections. It can be shown that, for any automaton A with
input alphabet Σ, L(A) is measurable [17].

Now, for any system state r ∈ S, we define a probability function Fr defined
on E as follows. Intuitively, for any C ∈ E , Fr(C) denotes the probability that
an output sequence generated from the system state r, is in C. Fr is the unique
probability measure satisfying all the probability axioms [9], such that for every
α ∈ Σ∗ and C = αΣω, Fr(C) is the sum of φ(p), for all finite paths p of G
starting from the state r such that O(p) = α. For the HMC chain given in
figure 1 and for α = ({Q}, {Q}, {Q}), there are three paths p, i.e., s0, s0, s0 and
s0, s0, s2 and s0, s2, s2 such that O(p) = α and hence Fs0(C) = 5

9 .
Let D ∈ E be such that Fr(D) �= 0. We let Fr|D denote the conditional

probability function given D; formally, for any C ∈ E , Fr|D(C) = Fr(C∩D)
Fr(D) . For

any LTL formula g, we let Fr|g denote the conditional distribution Fr|D where D
is the set of input sequences that satisfy g. For any α ∈ Σ∗ and C = αΣω, we let
Fr(α) denote the probability Fr(C) and Fr|α denote the conditional probability
function Fr|C . For a set C ⊆ Σ∗, we let Fr(C) denote Fr(CΣω).

Example 1. Consider the HMC S1 given in figure 1. Here the set of atomic
propositions P = {P,Q}. It should be easy to see that Fs0(♦P ) = 1

2 .

0

1

2

1

Q

P,Q

Q

1/3

1/3

1/3

s

s

s

1

Fig. 1. System S1

Deterministic Monitors. A monitor M : Σ∗ → {0, 1} is a computable function
with the property that, for any α ∈ Σ∗, if M(α) = 0 then M(αβ) = 0 for every
β ∈ Σ∗. For an α ∈ Σ∗, we say that M rejects α, if M(α) = 0, otherwise we say
M accepts α. Thus ifM rejects α then it rejects all its extensions. For an infinite
sequence σ ∈ Σω, we say that M rejects σ iff there exists a prefix α of σ that is
rejected by M ; we say M accepts σ if it does not reject it. Let L(M) denote the
set of infinite sequences accepted by M . It is not difficult to see that L(M) is
a safety property and is measurable. The acceptance accuracy of M for A with
respect to the HMC H is defined to be the probability Fr0|L(A)(L(M)) where
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r0 is the initial state of H . Intuitively, it is the conditional probability that a
sequence generated by the system is accepted by M , given that it is in L(A).
Roughly speaking, it is the fraction of the sequences in L(A), generated from
r0, that are accepted by M . Let C,D be the complements of L(A) and L(M)
respectively, i.e., C = Σω − L(A) and D = Σω − L(M). Then the rejection
accuracy of M for A (also for L(A)) with respect to H is defined to be the
probability Fr0|C(D). This is the probability that a sequence generated by the
system is rejected by M , given that it is not in L(A).

We say that M is a conservative monitor for a language L′ ⊆ Σω, if L(M) ⊆
L′, i.e., it rejects every sequence not in L′. We say that M is a conservative
monitor for an automaton A (resp., for a LTL formula φ) if it is a conservative
monitor for L(A) (resp., for C where C is the set of sequences that satisfy φ).
Note that the rejection accuracy of a conservative monitor is 1.

Example 2. Consider the following conservative monitor M1 for the LTL for-
mula ♦P . It accepts all finite sequences of length ≤ 2. It accepts a finite sequence
of length greater than two only if it has a P in the first three symbols. Clearly,
L(M1) = {(¬P )iPβ : i ≤ 2, β ∈ Σω}. Now consider the system HMC of Exam-
ple 1. The first input produced by S1 from state s0 is ¬P , the probability that
either the second or the third symbol is a P is 4

9 . From this, it should be easy
to see that Fs0|♦P (L(M1)) = 8

9 . Hence the acceptance accuracy of M1 for ♦P
with respect to the system S1 is 8

9 .

Probabilistic Monitors. We also define probabilistic monitors. A probabilistic
monitor M : Σ∗ → [0, 1] is a function that associates a probability M(α) with
each α ∈ Σ∗ such that for every α, β ∈ Σ∗, M(αβ) ≤ M(α). Intuitively, M(α)
denotes the probability that α is accepted by M . We extend M to infinite se-
quences as follows. For any σ ∈ Σω, M(σ) = limi→∞M(σ[0, i]). M(σ) repre-
sents the probability of acceptance of σ by M . We say that M is a probabilistic
monitor for a language L′ if M(σ) = 0 for all σ ∈ Σω − L′. That is every se-
quence not in L′ is rejected with probability 1. Although we defined monitors
as functions, many times monitors are given by algorithms (deterministic or
probabilistic) that take inputs and reject some input sequences. With each such
algorithm there is an implicitly defined unique monitor function.

The definition of acceptance accuracy for probabilistic monitors is a little
more involved. LetM be a probabilistic monitor for an automaton A with input
alphabet Σ. Let Fr0|L(A) be the conditional probability distribution function
on the set of input sequences generated by the system. For any n > 0, let
Yn =

∑
α∈Σn(Fr0|L(A)(α)M(α)); note Σn is the set of all sequences of length n.

Because of the monotonicity of the function M , it is easy to see that Yn ≥ Yn+1
for all n > 0. We define the acceptance accuracy of M for A with respect to the
given system to be limn→∞ Yn. The rejection accuracy of M for A with respect
to the HMC H , is defined to be the limn→∞ Zn where Zn is obtained from the
expression for Yn by replacing L(A) by its complement and M(α) by 1−M(α).

Example 3. Consider the following probabilistic monitor M2 for ♦P . M2 looks
at the current symbol. If it is a P it accepts and it will accept all subsequent



Monitoring the Full Range of ω-Regular Properties of Stochastic Systems 111

inputs. If the current symbol is ¬P and it has not seen a P since the beginning,
then it rejects with probability 1

3 and accepts with probability 2
3 . Formally,

M2((¬P )n−1Pβ) = (2
3 )n−1 for all n ≥ 1 and for all β ∈ Σ∗. Now consider the

HMC S1 given in Example 1. It can be shown by simple probabilistic analysis
that Yn = 2

∑n−1
1 (2

3 )i(1
3 )i. From this, we see that the accuracy of M2 for ♦P

with respect to system S1 , which is limn→∞ Yn, is 4
7 . In general if the rejection

probability at each step used is p, it can be shown that the acceptance accuracy
of M2 for ♦P with respect to S1 is 2 1−p

2+p . Thus the acceptance accuracy can be
increased arbitrarily close to 1 by decreasing p.

3 Accurate Deterministic Monitors

In this section we give methods for designing highly accurate deterministic moni-
tors that monitor the executions of a system, given as a HMC, against a property
specified by a deterministic finite state Streett automaton. Here we assume that
we know the initial system state and the output sequence generated by the sys-
tem, but we can not observe the system state. All the monitors presented in the
rest of the paper have a rejection accuracy of one. In the rest of the paper, we
use the term accuracy of a monitor to simply refer to its acceptance accuracy.

LetH = (G,O, r0) be a HMC whereG = (S,R, φ) is a finite Markov chain and
A = (Q,Σ, δ, q0, F ) be the given deterministic finite state Streett automaton.
Let (REDj , GREENj), for j = 1, .., l be the acceptance pairs in F . For any
q ∈ Q, let Aq be the automaton obtained by changing the initial state of A to
q. Let (s, q) ∈ S × Q. We call each such pair a product state. Note that, for
any such (s, q), Fs(L(Aq)) is the probability that an infinite output sequence
generated from the system state s is accepted by the automaton A when started
in the state q. We say that (s, q) is an accepting product state if Fs(L(Aq)) = 1.
We say that it is a rejecting product state if Fs(L(Aq)) = 0. Later we show how
the accepting and rejecting product states can be determined.

Our monitoring algorithm works as follows. As the monitor gets inputs from
the system, it simulates the automaton A on the input sequence using the vari-
able a state. It also keeps a set s states which is the set of states the system
can be in. If at any time all states in s states × {a state} are accepting prod-
uct states then it accepts. If all these states are rejecting product states then
it rejects. Otherwise, it continues. In addition, for each acceptance pair, i.e., for
each j = 1, ..., k, it maintains a counter, denoted by counterj variable, which is
initialized to some value; it also maintains a variable ij that gives the number
of times a GREENj state is encountered. In each iteration, for each j, counterj
is decremented if the automaton state belongs to REDj −GREENj . If the au-
tomaton state is a state in GREENj then the counterj is reset. For any j, if
counterj is zero before a GREENj state is reached then, it rejects. The variable
counterj is initialized and reset to a value given by the function fj() as shown in
the algorithm. The formal description of the algorithm for the monitor is given
in figure 2. The procedure GetInput-and-Update() updates the automaton state,
gets next input and updates the variable s states. It also checks if the input can
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a state := q0; s states := {r0};
for j := 1 to l {ij := 1; counterj := fj(s states, i, a state)};
x := O(r0);
Loop forever
{ GetInput-and-Update();

for j := 1 to l
If a state ∈ REDj −GREENj then counterj := counterj − 1;
If counterj = 0 and a state /∈ GREENj then reject();
If a state ∈ GREENj then

{ij := ij + 1; counterj := fj(s states, ij , a state)}
}
Procedure GetInput-and-Update()
{ a state := δ(a state, x);

x := get nextinput();
s states := {s′ : (s, s′) ∈ R, s ∈ s states, O(s′) = x};
If every state in s states× {a state} is an accepting product state

then accept();
If every state in s states× {a state} is a rejecting product state

then reject();
}

Fig. 2. Deterministic Algorithm

be accepted or rejected immediately as explained earlier. The variable x denotes
the current input symbol and the variable ij records the number of times the
counterj has been reset. Here r0 is the initial state of the system. Whenever the
monitor rejects (or accepts) then it immediately stops; in this case, it is assumed
that it rejects (or accepts) all future inputs.

It is easy to see that the monitor rejects any input sequence that is not in
L(A) since after a certain point, for some j, a state is in REDj infinitely often,
but is not in GREENj from that point and counterj counts down to zero.

The accuracy of the monitor is highly dependent on the functions fj used in
resetting the counter. One possibility is to reset it to a constant k. In this case,
it can be shown that the accuracy of the resulting monitor is going to be zero
many times (figure 3 is one such example). The following theorem shows that by
increasing the reset value of counterj linearly with ij , we can achieve a desired
accuracy.

Theorem 1. For any given rational y such that 0 ≤ y ≤ 1, for each j = 1, ..., k,
there exists a constant aj such that if fj(X, i, q) = aj · i, for every X ⊆ S and
q ∈ Q, then the accuracy of the above monitor given in figure 2 is at least y.
Further more such constant aj is computable in time polynomial in the sizes of
H,A.

For an interesting subclass of HMCs, called fully visible HMCs, we can obtain a
much simpler monitoring algorithm that only executes the procedure GetInput-
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and-Update in the loop body. This simpler algorithm has accuracy 1 [15]. ( HMC
H = (G,O, r0) is said to be fully visible if O is a one-one function).

Example 4. Now consider the example of a HMC given in figure 3. In this
example, initially the system is in state s which is a non-critical region (labeled
by the propositionN). From s, it may loop there or go to s′ or go to state t which
is the trying region where the user sends a request for the resource, labeled by
T . From here, the system may loop, or go to state v denoting that the resource
server crashed or go to state w where the resource is granted. Note both states
t, v are labeled by T . Thus we can not tell whether the system is in state t or
in v. In state s′, it can loop or go to t′ where it requests for the resource. In
t′, it may loop or go to w′. In state w′ the resource is allocated. Note that the
resource server does not crash when requested from t′. This is because, here,
a more reliable server is employed. Now our monitoring algorithm can be used
to monitor for the desired LTL property g = �♦T → �♦C. We express this
property using a Streett automaton with an acceptance condition consisting of
one pair.

Let G(x) be the function given by G(x) =
∏∞

i≥1(1− 1
xi ). It is easy to show that

G(x) > 0 for all integer x ≥ 2 and monotonically increases with x approaching 1
as x goes to ∞. Let y, 0 ≤ y ≤ 1, be the desired accuracy and a be the smallest
integer such that a ≥ 2 and G(a) ≥ y. It can be shown that, when we use a · i to
be the function f1(X, i, q), the monitor given in figure 2 has an accuracy greater
than or equal to y for the HMC given in figure 3.

Fig. 3. Resource Acquisition

4 Probabilistic Monitors

In this section, we present a probabilistic monitor that monitors a system mod-
eled as a HMC for violations of properties specified by deterministic Streett au-
tomata. As given in section 3, let H = (G,O, r0) be a HMC where G = (S,R, φ)
is a finite Markov chain and A = (Q,Σ, δ, q0, F ) be the given deterministic finite
state Streett automaton. Let (REDj , GREENj), for j = 1, .., l be the acceptance
pairs in F . For any q ∈ Q, let Aq be the automaton obtained by changing the
initial state of A to q.
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As before, our algorithm simulates the automaton A on the output sequence
generated by the system. For each j, 1 ≤ j ≤ l, it rejects with some probability
whenever it sees a state in REDj − GREENj ; this probability of rejection
remains constant until a GREENj node is seen at which point this probability of
rejection is decreased by a constant factor c. Thus, it is easy to see that if we have
infinite number of REDj automaton states but only a finite number of GREENj

states (for some j) then the algorithm rejects with the same probability infinitely
often and hence computation is eventually rejected with probability 1. This
algorithm may reject some good computations with some non-zero probability.
However, as we show, the accuracy of the algorithm can be made as close to 1 as
possible by choosing an appropriate value of c ≥ 2 and by choosing appropriate
initial probabilities.

The detailed description of the algorithm is given below. The function
GetInput-and-Update() is as given in section 3. The algorithm maintains vari-
ables p1, ..., pl which are the probabilities of rejection one for each of the accep-
tance pairs. These values are decreased by a constant factor c, each time the
corresponding GREEN state is seen.

a state := q0; s states := {r0};
for j := 1 to l initialize pj to µj ;
x := O(r0);
Loop forever
{ GetInput-and-Update();

for j := 1 to l
If a state ∈ REDj − GREENj then reject with probability pj ;
If a state ∈ GREENj then pj := pj

c

}

Fig. 4. Probabilistic Algorithm

In the probabilistic algorithm shown in Figure 4, it is possible that the com-
putation may be rejected after an input with different probabilities for different
values of j.

Theorem 2. For each y ∈ (0, 1), there exists a constant c ≥ 2, and an initial
probability value µj for each j, 1 ≤ j ≤ l, so that the accuracy of the algorithm
in figure 4 is at least y. Further more, the above constants can be computed
efficiently from G and A.

5 Hybrid Monitors

The hybrid algorithm is a combination of the deterministic and probabilistic
algorithms. As before, for each j = 1, ..., l, we maintain a variable counterj
corresponding to the acceptance pair (REDj, GREENj). The algorithm also
maintains a variable prevj which denotes the current reset counter value.
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a state := q0; s states := {r0};
for j := 1 to l {flagj := true; initialize counterj ; prevj := counterj};
x := O(r0);
Loop forever
{ GetInput-and-Update();

for j := 1 to l
If a state ∈ REDj −GREENj then

counterj := counterj − 1;
Toss a fair coin and if “tails” then set flagj to false;

If counterj = 0 and a state /∈ GREENj then
If flagj then reject()
else

counterj := prevj ;flagj := true;
If a state ∈ GREENj then

{flagj := true; counterj := prevj := prevj + 1}
}

Fig. 5. Hybrid Algorithm

In addition, for each such j, we also maintain a boolean variable flagj. This
variable is initially set to true and is also set to true whenever a state from
GREENj is seen. Whenever a state in REDj − GREENj is seen, counterj
is decremented and an unbiased coin is tossed to set the flagj to false if the
coin turns “tails”. When a GREENj state is seen, the corresponding counter is
reset to the next higher value (which is greater than the previous value by 1).
Whenever the value of counterj is zero and the current state is not a GREENj

state and flagj is true then the algorithm rejects. Note that when counterj
has value zero then the value of flagj is true only if the last kj coin tosses,
corresponding to the jth acceptance pair, have all turned “heads”; the probability
of this happening is 1

2kj
; here kj is the latest reset value to which counterj was

reset. The formal description of the algorithm is given in figure 5. The function
GetInput-and-Update is as given in section 3.

Theorem 3. For every y ∈ (0, 1), there exists an initial counter value such that
the accuracy of the algorithm given in figure 5 is at least y.

6 Experimental Results

We have developed a tool, called SM (Stochastic Monitor), that implemented
all the three monitoring algorithms one of which can be invoked by an input
option with appropriate parameters. The proposed monitoring algorithms re-
quired us to compute accepting and rejecting product states. These two sets of
states are computed by SM as follows. SM takes the high level description of the
synchronous probabilistic concurrent program P whose outputs SM is supposed
to monitor. From P , SM constructs a HMC M modeling its operation. This
construction is achieved using the PRISM [13] tool. After this, it constructs the
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product of M and A, giving a product Markov chain M′. Recall, from section
3, that the product state (s, q) is an accepting product state if Fs(L(Aq)) = 1
and is a rejecting product state if Fs(L(Aq)) = 0. We can consider the product
Markov chain as a directed graph. A Strongly Connected Component (SCC) C
of M′ is called an accepting SCC if for each accepting pair (RED,GREEN)
of A the following condition holds: if C has a product state of the form (s, q)
for some q ∈ RED then it also has a product state of the form (s′, q′) for some
q′ ∈ GREEN . A SCC is called a terminal SCC if no other SCC is reachable
from it. It can be shown that a product state is an accepting product state
(resp., rejecting product state) iff all terminal strongly connected components
reachable from it are accepting (resp., non-accepting) strongly connected com-
ponents. Using these properties, the accepting and rejecting product states are
computed using the standard graph algorithms that take only time linear in the
size of M′. The computed accepting, rejecting product states are used in the
procedure GetInput-and-Update() given in the algorithms.

We have tested all three algorithms with different parameters on a system that
implemented a modified version of the classic Peterson’s mutual exclusion algo-
rithm. This system consists of two processes 0, 1 that repeatedly try to get into
the mutual exclusion region. The system we considered operates in two modes. In
the first mode, we allowed process 1 to die in the critical section. We modeled the
operation of the algorithm as a HMC. The output of each state indicates whether
process 0 is in non-critical section, in trying section or in critical section. From
any global state one of the processes is chosen for executing the next step with
probability 1

2 ; however when process 1 is in critical section, we add an additional
failure transition to a failure state with some small probability, say 0.1. In addi-
tion, when both the processes are in non-critical section the system can change
from the first mode to the second mode with probability 0.4. Once in the second
mode, the system remains in that mode. In the second mode, both processes
operate as before except that neither of the processes fail in this mode. For this
system we monitored the following property specified as a Streett automaton: if
process 0 is in trying section infinitely often then it should be in critical section
infinitely often. Note that this property holds with probability less than 1.

We formulated the above system as a synchronous system with two user pro-
cesses and a scheduler. At each step the scheduler probabilistically schedules one
of the two processes with equal probability and the scheduled process executes
one step. The scheduler transitions are fused with the transitions of the user
processes so that effectively we only have two processes. The resulting processes
are specified using the input language of PRISM.

We tested all the three monitoring algorithms on this example and computed
their accuracies. We generated the input sequences to the monitoring algorithms
by simulating the HMC. Each input sequence is of length 105. If the sequence
is not rejected during the whole input sequence then it is considered as ac-
cepted. A sequence can also be accepted explicitly as given in the monitoring
algorithm. Any rejection due to the expiry of a counter (in the deterministic al-
gorithm) or due to a probabilistic choice (in the probabilistic/hybrid algorithm)
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Table 1. Peterson’s Mutal Exclusion Algorithm

Deterministic Probabilistic Hybrid

Counter Accuracy Time Prob. Accuracy Time Counter Accuracy Time
( %) (ms) (%) (ms) (%) (ms)

4 16 130.27 0.25 23 151.30 4 80 1580.21
8 33 386.43 0.13 30 408.69 8 96 2816.90
16 50 770.02 0.06 50 827.06 16 100 3179.77
32 53 771.65 0.03 63 1796.08 24 100 2909.28

Table 2. The Bounded Retransmission Protocol with N=2 and Max=4

Deterministic Probabilistic Hybrid

Counter Accuracy Time Prob. Accuracy Time Counter Accuracy Time
( %) (ms) (%) (ms) (%) (ms)

12 10 0.31 0.13 16 0.14 3 50 0.39
16 63 0.45 0.06 40 0.34 4 80 0.40
20 93 0.47 0.03 66 0.44 6 96 0.51
24 96 0.51 0.02 76 0.44 8 100 0.62

is considered as a false rejection. The accuracies are computed using these statis-
tics. We computed the accuracy by taking 30 such sequences and taking their
average accuracy. These accuracies are reported in table 1. For this example, the
monitored property can also be specified by a deterministic Buchi automaton.
We also tested our tool with another mutual exclusion example in which two
processes repeatedly try to enter a critical section using semaphores. For this
example, we needed deterministic Streett automaton for specifying the property
to be monitored. Experimental results for this example are similar and are left
out. We also evaluated the Bounded Retransmission Protocol[3] using our SM
tool. This is a network transmission protocol, where a file or message can be sent
in a few chunks and each chunk can be retransmitted only in a fixed number of
times. The retransmission would be required in case of any packet loss in the
channel. We monitored the behavior of the sender. The property that, eventually
the sender successfully sends the file (or message) is monitored. We modified the
specification of the PRISM input so that we can monitor only the sender. The
results are shown in the following table 2. In bot the examples, for all the three
monitoring algorithms, we see that as the accuracies increase the time taken by
the monitor also increases. We also see that the Hybrid algorithm gives high
accuracy even with small counter values. It may appear that the monitor time,
i.e., the overhead, for the hybrid algorithm is higher. On a close examination, we
see that for the same accuracy, the overhead for the hybrid algorithm is similar
to that of the other algorithms. For example in bounded retransmission protocol,
the deterministic algorithm gives an accuracy of 96 for a counter of 24 and it
takes 0.51 ms to monitor. Similarly, the Hybrid algorithm gives 96% accuracy
for a counter of 6, but the time it takes is same as that of deterministic.
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Our experiments indicate that hybrid algorithms achieve high levels of accu-
racy using small counter values with slightly higher overhead due to
randomization.

7 Conclusion and Related Work

As has been indicated in the introduction, earlier works [7,8,16] gave different
techniques for synthesizing conservative deterministic monitors for monitoring
temporal properties. Deterministic monitors for monitoring Buchi properties of
HMCs are given in [15]. In this paper, we have given deterministic, probabilistic
and hybrid monitors for monitoring properties of HMCs specified by Streett au-
tomata. We have also shown that any given accuracy less than 1 can be achieved,
and have given efficient techniques for initializing the parameters of the monitor
to achieve that accuracy. As part of future work, we need to check the effective-
ness of these algorithms on real world problems.

Deterministic liberal monitoring algorithms have been proposed in [1]. Run time
monitoring has also been used for interface synthesis in [10] where the interactions
between the module and the interface are considered as a two person game.

In [5,6] Larsen et al. propose a method which, given a context specification
and an overall specification, derive a temporal safety property characterizing the
set of all implementations which, together with the given context, satisfy the
overall specification. There has been much work in the literature on monitoring
violations of safety properties in distributed systems. In these works, the safety
property is typically explicitly specified by the user. A method for monitoring
and checking quantitative and probabilistic properties of real-time systems has
been given in [14]. These works take specifications in a probabilistic temporal
logic (called CSL) and monitors for its satisfaction. The probabilities are deduced
from given the repeated occurrence of events in a computation.

None of the above works employ accuracy measures for monitors and none
of them use randomization for monitoring liveness properties as we do. Our
techniques are entirely new and have been experimentally validated.

Model checking probabilistic systems modeled as Markov chains was consid-
ered in the works of [4,11,12,17]. Some of these works construct a product of the
Markov chain and the automata/tableaux associated with the LTL formula for
performing the verification. PRISM [13] and ETMCC [4] are two popular tools
that can be used for model checking finite state Markov chains, Continuous time
Markov chains and Markov Decision Processes. While all of them concentrate on
verification, we concentrate on the corresponding monitoring problem. Further
more, we assume that during the computation the state of the system is not
fully visible.

References

1. Amorium, M., Rosu, G.: Efficient monitoring of omega-languages. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–378. Springer,
Heidelberg (2005)



Monitoring the Full Range of ω-Regular Properties of Stochastic Systems 119

2. Cappe, O., Moulines, E., Riden, T.: Inferencing in Hidden Markov Models.
Springer, Heidelberg (2005)

3. Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof-checking a data link pro-
tocol. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp.
127–165. Springer, Heidelberg (1994)

4. Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., Siegle, M.: A markov chain model
checker. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp.
347–362. Springer, Heidelberg (2000)

5. Larsen, K.: Ideal Specification Formalisms = Expressivity + Compositionality +
Decidability + Testability +... In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR
1990. LNCS, vol. 458. Springer, Heidelberg (1990)

6. Larsen, K.: The expressive power of implicit specifications. In: Leach Albert, J.,
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Abstract. This paper describes a constraint-based invariant generation
technique for proving the validity of safety assertions over the domain of
predicate abstraction in an interprocedural setting. The key idea of the
technique is to represent each invariant in bounded DNF form by means
of boolean indicator variables, one for each predicate p and each disjunct
d denoting whether p is present in d or not. The verification condition of
the program is then encoded by means of a boolean formula over these
boolean indicator variables such that any satisfying assignment to the
formula yields the inductive invariants for proving the validity of given
program assertions.

This paper also describes how to use the constraint-based methodol-
ogy for generating maximally-weak preconditions for safety assertions.
An interesting application of maximally-weak precondition generation
is to produce maximally-general counterexamples for safety assertions.
We also present preliminary experimental evidence demonstrating the
feasibility of this technique.

1 Introduction

Predicate abstraction [1] is a commonly used technique for proving program prop-
erties. This involves over-approximating the set of reachable states of the pro-
gram using formulas with boolean structure over a given set of predicates. This
over-approximation is usually computed using fixed-point based techniques like
abstract interpretation or model checking. One of the main advantages of the pred-
icate abstraction domain is that it can represent disjunctions as opposed to other
abstract domains like polyhedron domain. However, this expressiveness comes
with disadvantages: First, the abstract state can have size exponential in the num-
ber of predicates. Second, the abstract domain has exponential height. The naive
fixed-point computation process seems expensive especially when the final induc-
tive invariants required to prove a given property are typically simple and small
in size compared to the potential worst-case exponential representation.
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In this paper, we describe a technique for discovering inductive invariants over
predicate abstraction that exploits the observation that the inductive invariants
required for proving a given assertion typically require a small representation,
instead of the worst-case exponential representation. In particular, we describe
the inductive invariants using a bounded boolean structure over a given set of
predicates, say DNF formulas with at most k disjuncts, where k is some small
constant.1 To achieve completeness, we can iteratively increase the value of k.

Our technique is based on the following observation: Any DNF formula with
k disjuncts over a set of n predicates can be described by a truth-value as-
signment to k × n boolean (indicator) variables, one for each predicate p and
each disjunct d denoting whether predicate p is in disjunct d. The key idea of
our technique is to establish boolean constraints between the boolean indicator
variables corresponding to the invariants at neighboring program locations by
using the predicate cover operation2 (The predicate cover of a formula F is the
weakest formula over a set of predicates that implies F ). The boolean constraint
thus obtained encodes the verification condition of the program. A satisfying
assignment to this boolean formula yields the inductive invariants sufficient to
establish the validity of given assertions. Unsatisfiability of the boolean formula
denotes that there are no inductive invariants over our choice of template struc-
ture (DNF formula with k disjuncts over the given set of predicates) to validate
the assertions in the program. The size of the generated boolean formula is linear
in the size of the program and the size of the predicate cover, and polynomial
in the number of the predicates. Finding a satisfying assignment to the boolean
formula can take exponential time in the worst-case and in theory we have still
not gotten rid of the exponential factor. However, this methodology allows a
direct way to leverage the engineering advances of the SAT solvers. It is note-
worthy that the last decade has witnessed a revolution in SAT solvers enabling
solving of industrial sized satisfiability instances.

Our constraint-based technique may offer some advantages over traditional
fixed-point computation based methods. First, it does away with the iterative
process of computing fixed-points, which is expensive, especially when performed
on abstractions with exponential-height lattices, like predicate abstraction. Sec-
ond, it cleanly splits the reasoning required of SMT formulas generated during
predicate abstraction into two parts: Theory-based reasoning using predicate
cover operation over small and mostly conjunctive formulas (this encodes the
abstract program semantics) and SAT-based reasoning over a polynomially-sized

1 It may appear that this observation can also be used to obtain a PTIME abstract in-
terpretation [2] based algorithm for discovering inductive invariants with k disjuncts.
However, this is not true. The domain of k-DNF formulas does not form a lattice as
there is no unique LUB. The domain of formulas whose CNF representation contains
at most k disjuncts in each conjunct does form a lattice of polynomial height. How-
ever, in that case, each abstract interpretation operation requires reasoning about
an SMT formula in CNF form, which is NP-hard.

2 A fundamental operation used in abstract transformers while performing abstract
interpretation over predicate abstraction [1].
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boolean formula3 (this encodes the fixed-point).4 Third, it is goal-directed and
hence has the potential to be more efficient.

Our technique complements abstraction refinement techniques (such as coun-
terexample guided abstraction refinement [4], interpolation based methods [5],
forward-backward combination [6]) by equipping them with a more robust invari-
ant generation procedure. Abstraction refinement techniques alleviate the cost
involved in abstraction by iteratively refining the abstraction until an inductive
invariant can be expressed. Our technique alleviates the cost of reasoning over
a given predicate abstraction by off-loading the cost of boolean reasoning and
fixed-point computation to a SAT query.

We further show how to generate maximally-weak preconditions using the
constraint-based methodology. The key idea is to treat the precondition as an
unknown relation and repeatedly search for a precondition that is weaker than
the current solution until none exists. We prove that this process requires at most
n satisfiability queries, where n is the number of predicates. We then describe an
interesting application of maximally-weak precondition generation, namely gen-
erating maximally-general counterexample in case the assertions in the program
are not valid.

This paper makes the following technical contributions:

– We show how to model the problem of discovering inductive invariants over
predicate abstraction as the problem of finding a satisfying assignment to a
boolean formula (Section 3). We also show how to extend this modeling to
a context-sensitive interprocedural analysis, which is provably harder than
intraprocedural analysis (Section 3.2).

– We show how to model the problem of maximally-weak precondition gener-
ation over predicate abstraction as the problem of finding satisfying assign-
ments to (at most) n boolean formulas (Section 4). This procedure can be
used to find maximally-general counterexamples to safety assertions, assum-
ing program termination (Section 4.1).

2 Preliminaries

2.1 Program Model

We consider programs with assignments of the form x := e, where x denotes
some variable and e denotes some expression. (Note that memory reads/writes
can be modeled using this formalism by using select-update expressions.) We also

3 It is not difficult to extend our approach to model the process of inductive invariant
generation as solving only one polynomially-sized SMT query. However, the result
that we present is stronger. It shows how to reduce the problem of inductive in-
variant generation to the problem of solving several small SMT queries over mostly
conjunctive formulas and one polynomially sized SAT query.

4 [3] presents a related technique where theory based reasoning is used to generate
a boolean abstraction of the system, which is then explored using a fixed-point
computation technique.
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allow for assume and assert statements of the form assume(p) and assert(p),
where p is some predicate. Since we allow for assume statements, without loss of
generality, we assume that all conditionals in the program are non-deterministic.

2.2 Generating Verification Conditions from a Program

A cut-set of a program is a set of program locations (called cut-points) such
that each cycle in the control flow graph of the program passes through some
program location in the cut-set. One simple way to choose a cut-set is to include
all targets of back-edges in any depth first traversal of the control-flow graph. (In
case of structured programs, where all loops are natural loops, this corresponds
to choosing the header node of each loop.) A simple path is any path that starts
at a cut-point or program entry πentry and ends at a cut-point or program exit
πexit without passing through any other cut-point.

We associate the program entry and exit locations as well as each cut-point
π with a relation Rπ over program variables that are live at π. The verification
condition VC(τ) of any simple path τ between end-points π1 and π2 is given by
the following formula:

VC(τ) = Rπ1 ⇒ ω(τ, Rπ2)

The notation ω(τ, R) denotes the weakest precondition of path τ (which is a
sequence of program instructions) with respect to R and is as defined below:

ω(x := e,R) = R[e/x]
ω(τ1; τ2, R) = ω(τ1, ω(τ2, R))

ω(assume p,R) = p⇒ R
ω(assert p,R) = p ∧R

where the notation [e/x] denotes substitution of x by e and may not be eagerly
carried out across unknown relations R. Observe that the verification condition
for any simple path τ between π1 and π2 simplifies to the following form:

VC(τ) = Rπ1 ⇒ (G1 ⇒ (G2 ∧Rπ2σ)) (1)

where σ is some substitution, and G1 and G2 are known formulas obtained
from the predicates that occur in assume and assert statements (on path τ),
respectively, after appropriate substitutions. The following claim holds.

Claim 1. The assertions in the given program are valid iff when we set Rπentry =
Rπexit = true then there exist relations Rπ for all cut-points π such that the
verification conditions VC(τ) hold for every simple path τ .

3 Program Verification

Given a program with some assertions, the program verification problem is to
verify whether or not the assertions are valid. The challenge in program verifica-
tion is to discover the appropriate inductive invariants Rπ at different program
points π such that the verification conditions VC(τ) in Eq. 1 holds for all simple
paths τ , which implies the validity of the given assertions (Claim 1). (The issue
of discovering counterexamples, in case the assertions are not valid, is addressed
in Section 4.1.)
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loop (int m) {
1 assume(m > 0);
2 x := 0; y := 0;
3 while (x < m) {
4 x++;
5 y++;
6 }
7 assert(y = m)

}
assert(y = m)

y
n

R

x := 0; y := 0

assume(m > 0)

x++; y++

x < m

x++; y++

R

y n

assume(m > 0)

assert(y = m)

assume(x < m) assume(x ≥ m)

1

3

2

x := 0; y := 0

∗

(a) (b) (c)

1 → 2 : m > 0 ⇒ R[y → 0, x → 0]
2 → 3 : R ∧ x ≥ m ⇒ y = m
2 → 2 : R ∧ x < m ⇒ R[y → y + 1, x → x + 1]

S =

8<
:

x ≤ y, x ≥ y, x < y,
x ≤ m, x ≥ m, x < m
y ≤ m, y ≥ m, y < m

9=
;

(d) (e)

Fig. 1. (a) Iteration over x with an auxiliary variable y. (b) The control flow graph
(CFG) with the loop invariant marked as R. (c) The CFG as modeled in our system.
(d) VC(τ ) corresponding to each simple path τ . (e) The set of predicates S.

Example. We first illustrate our constraint-based approach to invariant gener-
ation by means of a simple example. Consider the program in Figure 1(a). The
program loop iterates using the loop counter x and increments an auxiliary vari-
able y as well. Its control flow graph (CFG) is shown in Figure 1(b). The program
is modeled in our system as Figure 1(c). There are three simple paths going from
program entry to loop header ( 1 → 2 ), around the loop ( 2 → 2 ), and loop
header to program exit ( 2 → 3 ), respectively, and the verification conditions
they generate (using Eq. 1) are shown in Figure 1(d). The set of predicates S
over which we seek to discover our inductive invariant is shown in Figure 1(e).
Let π be the program point at the loop header just after the join point. Suppose
we make the simplifying assumption that the inductive loop relation R at π is a
conjunction of some predicates from S, and we seek to discover those predicates.

The first step is to associate with each predicate p ∈ S a boolean indicator
variable bp indicating p’s presence or absence in R. Then we consider each veri-
fication condition VC(τ) (derived from a simple path τ using Eq. 1) in turn and
generate constraints on the indicator variables:

– Loop entry ( 1 → 2 ): The verification condition is m > 0 ⇒ R[y → 0, x→
0], for which we generate the constraint

¬bx<y ∧ ¬bx≥m ∧ ¬by≥m (Ex-1)

denoting that the predicates x < y and x ≥ m and y ≥ m cannot be in R
since they are not implied by the verification condition for loop entry.
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– Loop exit ( 2 → 3 ): The verification condition is R ∧ x ≥ m ⇒ y = m, for
which we generate the constraint

(by≥m ∧ by≤m) ∨ bx<m ∨ (bx≤y ∧ by≤m) (Ex-2)

denoting that either both y ≥ m and y ≤ m belong to R, or x < m belongs
to R, or both x ≤ y and y ≤ m belong to R. Observe that these are the
only three (maximally-weak) ways in which we can prove y = m under the
assumption x ≥ m. In general, these different ways are computed by using
the predicate cover operation.

– Inductive ( 2 → 2 ): The verification condition is R ∧ x < m ⇒ R[y →
y + 1, x→ x+ 1], for which we generate the constraint

(by≤m ⇒ (by<m ∨ by≤x)) ∧ ¬bx<m ∧ ¬by<m (Ex-3)

denoting that if y ≤ m belongs to R, then either y < m or x ≤ y ∧ y ≤ x
should also belong to R, and that the predicates x < m and y < m cannot be
in R. The reader can easily check that this verification condition allows any
other predicate p to be in R because p ∧ x < m⇒ p[y → y + 1, x→ x+ 1].
These constraints are generated by considering each predicate p, finding the
weakest conditions δ(p) over the set of predicates under which p∧ x < m⇒
p[y → y + 1, x→ x+ 1] and then generating the constraint that bp ⇒ δ(p).
For the predicate bx<m and by<m, δ(p) is false and hence we generate the
constraints ¬bx<m and ¬by<m. For the predicate by≤m, δ(p) is by<m ∨ by≤x.
For all other predicates, δ(p) is true.

Putting Eq. (Ex-1), (Ex-2), (Ex-3) together we get a SAT formula (over the
boolean indicator variables) that encodes the verification condition of the pro-
gram. The reader can verify that bx≥y = bx≤y = by≤m = true (and all others
false) is a satisfying solution. This corresponds to R being (x = y ∧ y ≤ m).

3.1 Formal Constraint Generation

We now formally present our constraint-based methodology for discovering the
inductive invariants Rπ when they can be described using a k-DNF formula over
a given set of predicates S. (We use k-DNF form for simplicity. Our methodol-
ogy can also be applied to other boolean structures that are representable by a
bounded number of boolean variables.) In such a case, we can represent Rπ by
k × n boolean indicator variables bπi,p (where 1≤i≤k, p ∈ S, n = |S|), where the
boolean variable bπi,p denotes whether predicate p is present in the ith disjunct
of the invariant Rπ at program point π. We show how to encode the verification
condition of the program as a boolean formula ψ over the boolean indicator vari-
ables bπi,p. The boolean formula ψ is satisfiable iff there exist inductive invariants
(in k-DNF form) strong enough to prove the validity of the assertions—this is
the key result of the paper.

We first show how to encode the verification condition of any simple path τ
as a boolean formula ψ(τ). The following three cases arise, which we consider in
increasing order of difficulty:
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Case 1: Path between program entry and a cut-point. The verification condition
in Eq. 1 simplifies to the following form after substituting Rπ1 = true and

expanding Rπ2 as
k∨

j=1
Rπ2

j , where each Rπ2
j is conjunction of some predicates

from S.

G1 ⇒

⎛⎝G2 ∧
k∨

j=1

Rπ2
j σ

⎞⎠
The above constraint restricts how strong Rπ2 can be. In particular, if p1 ∈

Rπ2
1 , . . . , pk ∈ Rπ2

k , then it must be the case that G1 ⇒
k∨

j=1
pjσ. Hence, we can

rewrite the above constraint as:

(G1 ⇒ G2) ∧
∧

p1,..,pk∈S

⎛⎝(
k∧

j=1

bπ2
j,pj

) ⇒ (G1 ⇒
k∨

j=1

pjσ)

⎞⎠ (2)

This can be encoded as the following boolean constraint ψ(τ) over boolean in-
dicator variables bπ2

i,p.

ψ(τ) = D(G1, G2) ∧
∧

p1,..,pk∈S

⎛⎝(
k∧

j=1

bπ2
j,pj

) ⇒ D(G1,
k∨

j=1

pjσ)

⎞⎠ (3)

whereD(A,B) denotes the boolean formula true ifA⇒ B and false otherwise.

Case 2: Path between a cut-point and program exit. The verification condition
in Eq. 1 simplifies to the following form after substituting Rπ2 = true and

expanding Rπ1 as
k∨

j=1
Rπ1

j , where each Rπ1
j is conjunction of some predicates

from S.(
k∨

i=1

Rπ1
i

)
⇒ (G1 ⇒ G2) or, equivalently,

k∧
i=1

(Rπ1
i ⇒ (G1 ⇒ G2))

The above constraint restricts how weak Rπ1
i can be. We can encode the

above constraint as a boolean formula over the variables bπi,p by considering
the predicate cover5 of G1 ⇒ G2. To recall, the predicate cover of a formula
F over a set of predicates S, denoted by CS(F ), is the weakest formula over
predicates from S that implies F . Let φS(F, i, π) denote the boolean formula
over boolean variables bπi,p obtained after replacing each predicate p in CS(F )
by bπi,p. The verification condition above can now be encoded as the following
boolean constraint ψ(τ) over boolean indicator variables bπ1

i,p.

ψ(τ) =
k∧

i=1

φS(G1 ⇒ G2, i, π1) (4)

5 It is a fundamental operation used in the abstract transformers while performing
abstract interpretation over predicate abstraction [1].
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Case 3: Path between two adjacent cut-points. We now combine the key ideas
that we used in the above two cases to handle this more general case. The
verification condition in Eq. 1 has the following form (after expanding Rπ1 as
k∨

i=1
Rπ1

i and Rπ2 as
k∨

j=1
Rπ2

j , where each Rπ1
i and Rπ2

j is a conjunction of some

predicates from S). (
k∨

i=1

Rπ1
i

)
⇒

⎛⎝G1 ⇒ (G2 ∧
k∨

j=1

Rπ2
j σ

⎞⎠
or, equivalently,

k∧
i=1

⎛⎝Rπ1
i ⇒

⎛⎝G1 ⇒ (G2 ∧
k∨

j=1

Rπ2
j στ )

⎞⎠⎞⎠ (5)

The above constraint can be rewritten as (using the same logic used in gen-
erating the constraint in Eq. 2):

k∧
i=1

∧
p1,..,pk∈S

⎛⎝(
k∧

j=1

bπ2
j,pj

) ⇒

⎛⎝Rπ1
i ⇒ (G1 ⇒ (G2 ⇒

k∨
j=1

pjστ ))

⎞⎠⎞⎠
The verification condition above can be encoded as the following boolean con-
straint ψ(τ) over boolean indicator variables bπ1

i,p and bπ2
i,p (using the same logic

used in generating the constraint in Eq. 4):

ψ(τ) =
k∧

i=1

∧
p1,..,pk∈S

⎛⎝(
k∧

j=1

bπ2
j,pj

) ⇒ φS

⎛⎝(G1 ⇒ (G2 ∧
k∨

j=1

pjσ)), i, π1

⎞⎠⎞⎠ (6)

Observe that the constraints are generated locally from the verification condi-
tion of each simple path. Hence, the constraint based technique has the potential
for efficient incremental verification (verification of a modified version of an al-
ready verified program) with support of an incremental SAT solver.

Example. The full version [7] gives examples of all the above cases over Fig-
ure 1(a).

The desired boolean formula ψ is now given by the conjunction of formulas
ψ(τ) for all simple paths τ in the program. Since ψ encodes the entire verification
condition of the program, it is easy to see that the following claim holds.

Claim 2. The boolean formula ψ is satisfiable iff there exist inductive invariants
(in k-DNF form) strong enough to prove the validity of the given assertions.

3.2 Interprocedural Analysis

The ω computation described in Section 2.2 is applicable only in an intrapro-
cedural setting. In this section, we show how to extend our constraint-based
method to perform a precise (i.e., context-sensitive) interprocedural analysis.

Precise interprocedural analysis is challenging because the number of different
calling contexts can potentially be exponential in the number of predicates over
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program inputs. A standard way is to compute procedure summaries, which are
relations between procedure inputs and outputs. These summaries are usually
structured as sets of pre/postcondition pairs (Ai, Bi), where Ai is some relation
over procedure inputs and Bi is some relation over procedure inputs and outputs.
A pair (Ai, Bi) denotes that whenever the procedure is called in a context that
satisfies Ai, the procedure ensures that the outputs satisfy the constraint Bi.
However, the efficient construction of relevant pre/postcondition pairs is unclear.

In this section, we show that the constraint-based approach is particularly
suited to discovering useful pre/postcondition (Ai, Bi) pairs. The key idea is to
observe that the desired behavior of most procedures can be captured by a small
number of such (unknown) pre/postcondition pairs. We then replace the proce-
dure calls by these unknown behaviors and assert that the procedure, in fact, has
such behaviors in an assume-guarantee style reasoning. Our encoding requires the
summary to be only as precise as is required for verification of the given assertions.

Procedure bodies: Without loss of generality, let us assume that a procedure
does not read/modify any global variables; instead all global variables that are
read by the procedure are passed in as inputs, and all global variables that are
modified by the procedure are returned as outputs. Suppose there are q inter-
esting calling contexts for the procedure P (x){S; return y; } with the vector of
formal arguments x and vector of return values y. (In practice, the value of q
can be iteratively increased until the constraint system is satisfiable.) We can
summarize the behavior of procedure P for these q interesting calling contexts
using q tuples (Ai, Bi) for 1 ≤ i ≤ q, where Ai is some (unknown) relation over
x, and Bi is some (unknown) relation over x and y. We ensure this by generating
constraints for each i as below:

assume(Ai); S; assert(Bi) (7)

Procedure calls: For simplicity, we assume that the cut-set includes all program
locations before any procedure call. For any simple path τ that starts with a
procedure call v := P (u), let τi denote the simple path in which the procedure
call is replaced by the following code fragment, where t is a fresh set of variables.

assert(Ai[u/x]); assume(Bi[u/x, t/y]); v := t; (8)

The boolean formula ψ(τi) that encodes the verification condition of the simple
path τi can be computed using the method described in Section 3. The formula

that encodes the verification condition corresponding to τ is ψ(τ) =
q∨

i=1
ψ(τi).

Example. In the full version [7] we illustrate the technique over some examples.

4 Maximally-Weak Precondition Inference

Given a program with some assertions, the problem of weakest precondition gener-
ation is to infer the weakest preconditionRπentry such that whenever the program is
run in a state that satisfiesRπentry , the assertions in the programhold. This weakest
precondition inference problem is harder than program verification, and relatively
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few techniques exist for it. Since a precise solution is undecidable, we work with a
relaxed notion of weakest precondition. For a given template structure, we say that
A is a maximally-weak precondition ifA is a precondition that fits the template and
there does not exist a weaker precondition than A with similar properties.

In this section, we present a constraint-based approach to inferring maximally-
weak preconditions under a given template. Specifically, we show how to
generate a conjunctive maximally-weak precondition for a given program with as-
sertions. A k-DNF maximally-weak precondition can then be obtained by taking
disjunctions of k disjoint conjunctive maximally-weak preconditions, generated
iteratively. Our constraint-based approach permits an elegant maximally-weak
precondition inference technique based on the monotonicity of implication for
CNF formulae over a given set of predicates.

The first step is to treat the precondition Rπentry as an unknown relation in
Eq. 1, unlike in program verification where we set Rπentry to be true. However,
this small change merely encodes that any consistent assignment to Rπentry is a
valid precondition, not necessarily maximally-weak. In fact, when we run our
tool with this small change, it returns false as a solution for Rπentry . Note that
false is always a valid precondition, but not necessarily maximally-weak.

We use an iterative approach to generating a conjunctive maximally-weak pre-
condition as follows. We add the constraint that the precondition Rπentry should
be weaker than the current solution T (which is initialized to false) to the ver-
ification condition (in Eq. 1). This constraint is encoded by the boolean formula
(γ1 ∧ ¬γ2), where γ1 and γ2 are boolean formulae over the boolean variables
b
πentry
p that encode the constraints T ⇒ Rπentry and Rπentry ⇒ T , respectively and

are computed using the technique described in Section 3.
Once a maximally-weak conjunctive precondition has been found, we repeat

the process to generate other maximally-weak conjunctive preconditions. In or-
der to ensure that we get a precondition that is disjoint from maximally-weak
preconditions already found, we add an additional constraint ¬γ3, where γ3 is
the boolean formula over the boolean variables bπentry

p that encodes the constraint
Rπentry ⇒

∨
i

Ti, where Ti are the conjunctive maximally-weak preconditions that

have already been discovered.

Example. We again consider Figure 1(a) but with line 1 (x := 0; y := 0) re-
moved and infer maximally-weak preconditions between x, y,m using the pred-
icate set S shown in Figure 1(e). We generate two conjunctive maximally-weak
preconditions: (y = m ∧ x ≥ m) and (x = y ∧ x < m); their disjunction yields
the disjunctive maximally-weak precondition.

4.1 Maximally-General Counterexample Inference

Since program analysis is an undecidable problem, we cannot have tools that can
prove correctness of all correct programs or find bugs in all incorrect programs.
Hence, to maximize the practical success rate of verification tools, it is desirable
to search for both proofs of correctness as well as counterexamples in parallel.
Earlier, we showed how to find proofs of correctness of given assertions. In this
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section, we show how to find maximally-general counterexamples to given asser-
tions (under a given template structure).

The problem of generating a maximally-general counterexample for a given
set of safety assertions involves finding a maximally-general characterization of
inputs that leads to violation of some reachable safety assertion. Generating a
maximally-general counterexample is more desirable than generating a concrete
counterexample, and can aid in, say, program debugging. For example, it is more
useful to know that there is an assertion failure whenever x < y as opposed to
knowing that there is an assertion failure when x = 0 ∧ y = 3.

We show next how to find a maximally-general counterexample using the
techniques discussed in Section 4 under the assumption that the given program
is terminating, i.e., the program exit is always reached. The basic idea is to reduce
the problem to that of finding a maximally-weak precondition for some safety
property. This reduction involves constructing another program from the given
program Prog using the following transformation, Terr(Prog): We introduce a
new variable error that is set to 0 at the beginning of the program. Whenever
violation of the given safety property occurs (i.e., the negation of any of the
safety assertions holds), the variable error is set to 1 and the control jumps to
the end of the program. We assert that error = 1 at the end of the program,
and remove the original safety assertions from the program.

Claim 3. Let Prog be a terminating program with some safety assertions. Then,
Prog has an assertion violation iff the assertions in program Terr(Prog) hold.

The significance of Claim 3 is that now we can use maximally-weak precondition
inference (Section 4) on the transformed program to discover maximally-general
characterization of inputs under which there is a safety violation in the original
program. We need to track the new boolean variable error in the transformed
program and therefore add error = 1 and error = 0 to the predicate set.
Example. Consider the program shown in Figure 2(a), which we instrument
with the error variable to obtain the program in Figure 2(b). Our maximally-
weak precondition inference generates (x < m∧y ≥ x) as the maximally-general

err (int m) {
1 while (x < m) {
2 x++;
3 y++;
4 assert(y < m)

5 }
}

err (int m) {
1 error := 0;
2 while (x < m) {
3 x++; y++;
4 if (y ≥ m)

5 error := 1; goto L;

6 }
7 L: assert(error = 1)
}

(a) (b)

Fig. 2. (a) Example with safety assertion y < m. (b) Instrumented program. We com-
pute (x<m ∧ y≥x) as a maximally-general counterexample that violates the assertion.
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counterexample that violates the assertion y < m. Note that we need k to be
at least 2 since the inductive invariant (at the loop header) for establishing the
counterexample is (x < m ∧ y ≥ x) ∨ (error = 1 ∧ y ≥ x)).

Observe the importance of introducing the error variable. An alternative that
one might consider is to simply negate the original safety assertion instead of
introducing an error variable. This is incorrect for two reasons: (a) It is too
stringent a criterion because it insists that in each iteration of the loop the
original assertion does not hold, (b) It does not ensure reachability and allows for
those preconditions under which the assert statement is never executed. In fact,
running our tool with such an alternative transformation yields two conjunctive
maximally-weak preconditions—(x ≥ m) and (x < m∧ y ≥ m− 1) of which the
former does not describe a counterexample, while the latter does not describe a
conjunctive maximally-general counter-example.

5 Experiments

In this section we demonstrate the viability of a constraint-based approach
by uniformly discovering invariants for programs for which specialized tech-
niques [8,9,10] have been proposed.

The results of invariant generation for program verification are shown in
Table 1(a). The first set of columns indicate the programs6, the parameters (num-
ber of disjuncts k, and size of predicate set n), and the number of variables and
clauses in the CNF formula. The second set indicates the time (in seconds) on
generating the program constraints (CG), generating the CNF formula (CNF)
and solving the resulting SAT instance (SAT). We use Z3 [11] as our SAT solver.

The first set of examples require conjunctive invariants (k = 1). The first
program (counter) is a loop iteration with a counter from 1 . . .m. The second
(lockstep, shown in Figure 1) is also a counter iteration but with another variable
counting in lock-step. The third (nested) consists of two nested counter loops.
The next program (twoloop) consists of two counter loops one after the other.
The last two examples need two invariants, one at each loop header.

Table 1. Results

Program
counter
ex1a [8]
lockstep
nested
twoloop

ex2 [9]
ex1b [8]
ex3 [10]

Number of Time for
n k vars clauses CG CNF SAT
12 1 12 21 0.23 0.14 0.04
12 1 12 22 0.23 0.15 0.04
5 1 5 8 0.23 0.11 0.03
16 1 32 62 0.23 0.26 0.04
20 1 40 79 0.23 0.36 0.04
12 2 24 72 0.23 0.14 0.04
20 2 40 1704 0.23 10.68 0.06
20 2 40 1782 0.23 8.53 0.06

Number of Time for
n k vars clauses sol CG CNF SAT
12 1 24 1345 1 0.23 0.44 0.05
14 1 28 1857 2 0.25 0.67 0.07
9 1 18 584 2 0.23 0.29 0.05
18 1 54 2866 2 0.23 1.52 0.09
20 1 60 3778 3 0.23 1.86 0.16
12 2 36 4588 1 0.23 1.16 0.11
20 2 60 7548 1 0.23 14.22 0.09
13 2 39 2031 4 0.23 3.90 0.14

(a) Program Verification (b) Precondition Inference

6 Available at http://research.microsoft.com/users/sumitg/benchmarks/pa.html
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The second set requires disjunctive invariants (k = 2) and are from recent work
on sophisticated invariant generation techniques like CFG elaboration (ex2 [9]),
probabilistic inference (ex3 [10]), and sophisticated widening (ex1b [8]).

Our technique uniformly discovers invariants over predicate abstraction for all
these examples. Our base predicates are difference constraints over the program
variables with small constants. Program parsing and constraint generation takes
0.23s. Our preliminary tool uses an unoptimized implementation of predicate
cover and therefore spends most of its time in CNF generation, which can be
improved easily. Solving the resulting CNF constraints takes 0.04s on average.
Our preliminary tool also shows a noticeable overhead when a disjunctive in-
variant at the loop header causes case enumeration during CNF generation (in
ex3 [10] and ex1b [8]). However, even for large SAT instances in these cases,
solutions are generated by the solver in very reasonable time, demonstrating the
viability of a constraint-based approach.

5.1 Maximally-Weak Precondition Inference

The SAT solver that we used tends to generate a maximally-false satisfying
assignment to a satisfiable boolean formula, as a result of which we obtained
conjunctive maximally-weak preconditions in the first query and did not have to
iterate n times. A satisfying assignment A to a boolean formula is maximally-
false if by changing the truth values of any of the boolean variables from true
to false in assignment A transforms A to an unsatisfying assignment.

We exploit this property by adding an additional constraint to the system,
which in practice improves performance. The added clauses constrains the
maximally-weak precondition to be saturated, i.e., for all predicates p1, p2, p3, if
p1 ∧ p2 ⇒ p3, we add the constraint:

b
πentry
p1 ∧ bπentry

p2 ⇒ b
πentry
p3 (9)

Claim 4. A maximally-false satisfying assignment to the boolean formula ψ (that
encodes the verification condition of the program) along with the constraint in
Eq. 9 yields a conjunctive maximally-weak precondition.

The results for precondition inference are shown in Table 1(b). Our tool gener-
ates all maximally-weak preconditions when multiple incomparable ones exist.
Therefore, in addition to the number of predicates n, disjuncts k, variables and
clauses in the CNF, we also report the number of solutions generated. In such
cases, we report the cumulative time required for generating all solutions.

Due to the tendency of the SAT-solver to generate a maximally-false assign-
ment, our tool produced valid maximally-weak preconditions in the first iteration
for all but two programs, ex2 [9] and twoloop, which required two iterations.

6 Related Work

Constraint-based techniques have been recently used for discovering linear arith-
metic invariants (conjunctive invariants [12,13,14,15] as well as disjunctive invari-
ants [16] in the context of verifying safety properties as well as discovering ranking
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functions for proving termination [17,18]). Constraint-based techniques have also
been applied for discovering non-linear polynomial invariants [14,19] and invari-
ants in the combined theory of linear arithmetic and uninterpreted functions [20].
In contrast, this paper extends the applicability of constraint-based methodology
to the important domain of predicate abstraction, where the predicates can be
from any theory. There are two key technical differences between the earlier work
that focused on arithmetic invariants and the current work based on predicate
abstraction: (a) The key principle behind a constraint-based methodology is to
convert universal quantification into existential quantification in the verification
condition. In this respect, the earlier work uses Farkas’ lemma, while the cur-
rent work uses the predicate cover operation. (b) The earlier work translates the
problem of discovering arithmetic invariants into solving polynomial constraints7,
while in contrast the proposed technique translates the problem of discovering in-
variants over a given set of predicates into solving a SAT constraint. The latter
is more desirable since we have good off-the-shelf SAT solvers.

Constraint-based techniques, being goal-directed, work naturally in program
verification mode where the task is to discover inductive loop invariants for verifi-
cation of given assertions. As a result, earlier work on constraint-based techniques
(with the exception of [16]) has been limited to program verification as opposed
to other program analysis problems such as precondition generation. This paper
demonstrates the applicability of constraint-based methodology to the problem
of maximally-weak precondition generation, which in turn can be used for gen-
eration of maximally-general counterexamples (assuming program termination).
The technique used for precondition generation in [16] is based on encoding
locally-pointwise weakest property for linear arithmetic constraints, while the
technique used for precondition generation in this paper relies on monotonicity
of implication of a conjunctive set of predicates.

SATURN [21] also uses SAT-solving, but for bug-finding in loop-free pro-
grams. (Programs with loops are modeled by unrolling loops.) Theoretically,
it is well known that loop-free programs can be modeled as Boolean circuits.
SATURN’s contribution is primarily engineering-based; it illustrates that the
SAT queries that are generated from real programs with complicated constructs
can be efficiently solved in practice. In contrast, we focus on invariant inference
for correctness proofs and show how programs with loops can be abstracted as
Boolean circuits. Additionally, our work finds maximally-general bugs in pro-
grams with loops.

7 Conclusions and Future Work

We present a constraint-based technique for discovering inductive program
invariants over predicate abstraction. Our technique pushes the burden of fixed-
7 [16] further proposes solving the quadratic inequalities using bit-vector modeling,

thus effectively translating into SAT constraints; however, this reduction to SAT is
artificial in that it is used only to approximate the SMT query, because current solvers
cannot generate models for SMT queries that involve multiplication.
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point computation and boolean reasoning to a SAT-solver by encoding program
verification conditions as SAT-constraints over boolean indicator variables. A
solution to the SAT instance maps directly to inductive program invariants that
prove the validity of given program assertions. We lift the verification procedure
to interprocedural setting and additionally infer maximally-weak preconditions
that can be used for maximally-general bug finding. We present encouraging pre-
liminary results using a prototype implementation. Experimentation with large
programs and comparison with alternative techniques remains future work.
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Abstract. There is an intimate link between program structure and
behaviour. Exploiting this link to phrase program correctness problems
in terms of the structural properties of a program graph rather than
in terms of its unfoldings is a useful strategy for making analyses more
tractable. This paper presents a characterisation of behavioural program
properties through sets of structural properties by means of a transla-
tion. The characterisation is given in the context of a program model
based on control flow graphs of sequential programs with possibly re-
cursive procedures, and properties expressed in a fragment of the modal
µ-calculus with boxes and greatest fixed-points only. The property trans-
lation is based on a tableau construction that conceptually amounts to
symbolic execution of the behavioural formula, collecting structural con-
straints along the way. By keeping track of the subformulae that have
been examined, recursion in the structural constraints can be identified
and captured by fixed-point formulae. The tableau construction termi-
nates, and the characterisation is exact, i.e., the translation is sound and
complete. A prototype implementation has been developed. We discuss
several applications of the characterisation, in particular compositional
verification for behavioural properties, based on maximal models.

1 Introduction

The relationship between a program’s syntactical structure and its behaviour is
fundamental in program analysis. For example, type systems analyse the struc-
ture of a program to deduce properties about its behaviour, while program syn-
thesis studies how to realise a program structure for a desired program behaviour.
The relationship is often exploited to phrase program correctness problems in
terms of the structure of a program rather than in terms of its behaviour, in
order to make analyses more tractable. If program data is abstracted away, and
only the control flow of programs with (possibly recursive) procedures is con-
sidered, the relation between structure and behaviour is well-understood in one
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direction: program structure, essentially a finite “program graph”, can be repre-
sented by a pushdown system that induces program behaviour as an “unfolding”
of the structure in a context-free manner. This representation has been exploited
widely, for example for interprocedural dataflow analysis (e.g., in [17]) and for
model checking of behavioural properties (e.g., in [8]). However, in the other
direction, this relationship is much less understood: given a program behaviour,
how can one capture the program structures that admit this behaviour?

Both program structure and behaviour can be specified by temporal logic
formulae: structural properties are concerned with the textual sequencing of in-
structions in a program, while behavioural properties consider their executional
sequencing. The relationship between structure and behaviour is naturally ex-
pressed at the logic level through the following two questions:

(1) when does a structural property entail a behavioural one and,
(2) can a behavioural property be characterised by a finite set of structural ones?

This extended abstract (the accompanying report [11] contains proofs and more
examples) addresses this characterisation problem in the context of a program
model based on control flow graphs of sequential programs with procedures (i.e.,
program data is abstracted away), for properties expressed in a fragment of the
modal µ-calculus with boxes and greatest fixed-points only. This temporal logic is
suitable for expressing safety properties (cf. [4]) in terms of sequences of method
invocations, such as security policies restricting access to given resources by
means of API method calls (cf. [18]). In previous work [12], we showed how this
logic can be used for the specification and compositional verification of safety
properties, both on the structural and on the behavioural level, and provided
tool support and case studies. In particular, we derived an algorithmic solution
to problem (1) stated above (see [12, p. 855]). Here, we give a precise solution to
the (more complex) problem (2), showing that every disjunction-free behavioural
formula can be characterised by a finite set of structural formulae: a program
satisfies the behavioural formula if and only if it satisfies some structural formula
from the set. For example, the results of this paper allow to derive that the
behavioural property “method a never calls method b” is characterised by the
(singleton set) structural property “in (the text of) method a, every call–to–
b instruction is preceded by some call–to–a instruction” (and hence, due to
recursion, control never reaches a call–to–b instruction).

Our solution is constructive, by means of a translation Π from behavioural
properties into sets of structural properties. The translation has been imple-
mented in Ocaml and can be tested online [10]. It conceptually amounts to
a symbolic execution of the behavioural formula, collecting induced structural
constraints along the way. A considerable difficulty is presented by (greatest
fixed-point) recursion in the behavioural formula, which has to be captured by
recursion in the structural ones (in the absence of recursion it is considerably
easier to define such a translation, as we show in [14]). We handle recursion
by means of a tableau construction that maintains (during the symbolic execu-
tion) a symbolic “call stack” indicating which subformulae have been explored
for which method. We use this stack to (1) identify when a (sub)formula has
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been sufficiently explored, so that a branch of the tableau can be finished, and
(2) to identify recursion in the collected structural constraints and capture this
by fixed-point formulae. We prove that the construction terminates. Moreover,
we show that the construction is sound, and in case the behavioural formula is
disjunction-free, also complete, by viewing the tableau system as a proof system.
Applications. In addition to its foundational value, the characterisation is use-
ful in various ways. In earlier work, we defined a maximal model construction for
the logic considered here, and adapted it to the construction of maximal program
structures from structural properties [12]. The combination of this construction
with the property translation Π provides a solution to the problem of computing
maximal program structures from behavioural properties. As Section 4 shows,
this can be exploited to extend the compositional verification technique of [12],
where local assumptions are required to be structural, to local behavioural prop-
erties. Further, the translation can be used to reduce infinite-state verification of
behavioural control flow properties to finite-state verification of structural prop-
erties. Thus, tools supporting structural properties only can in effect be used for
verifying behavioural properties. Moreover, in a mobile code deployment scheme,
where the security policies of the platform are given as behavioural control flow
properties, translating these into structural properties of the loaded applications
enables efficient on-device conformance checking via static analysis.
Related Work. Our property translation has been motivated by our previous
work on adapting Grumberg and Long’s approach of using maximal models for
compositional verification [9] in the context of control flow properties of sequen-
tial programs with procedures [12]. Maximal models can also be constructed for
the full µ-calculus, but require representations beyond ordinary labelled tran-
sition systems, such as the focused transition systems proposed by Dams and
Namjoshi [7]. Our research is also related to previous work on tableau systems for
the verification of infinite-state systems [6,19], model checking based on push-
down systems [5,8] or recursive state machines [2], temporal logics for nested
calls and returns [1,3], interprocedural dataflow analysis [17], and abstract inter-
pretation (cf. e.g., the completeness result of [16]). However, these analyses infer
from the structure of a given program facts about its behaviour; in contrast, our
analysis infers, for all programs satisfying a certain behaviour, facts about the
structure from facts about that behaviour.
Organisation. Section 2 formally defines the program model and logic. Next,
Section 3 defines the translation, by means of the tableau construction. Section 4
uses the characterisation to develop a sound and complete compositional verifi-
cation principle for local behavioural properties, while Section 5 concludes with
a discussion of possible extensions and optimisations.

2 Preliminaries: Program Model and Logic

This section summarises the definitions of program model, logic and satisfac-
tion. These are first defined generally, and then instantiated at structural and
behavioural level. We refer the reader to [12] for more details.
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2.1 Specification and Logic

First, we define the general notions of model and specification.

Definition 1. (Model, Specification) A model is a (Kripke) structure M =
(S,L,→, A, λ), where S is a set of states, L a set of labels, → ⊆ S × L × S a
labelled transition relation, A a set of atomic propositions, and λ : S → P(A) a
valuation, assigning to each state s the set of atomic propositions that hold in s.
A specification S is a pair (M, E), with M a model and E ⊆ S a set of entry
states.

As property specification language, we use the fragment of the modal µ-calcu-
lus [15] with boxes and greatest fixed-points only. This fragment is suitable for
expressing safety properties and is capable of characterising simulation (cf. [12]).
Throughout, we fix a set of labels L, a set of atomic propositions A, and a set
of propositional variables V .

Definition 2. (Logic) The formulae of our logic are inductively defined by:
φ ::= p | ¬p | X | φ1 ∧φ2 | φ1 ∨φ2 | [a]φ | νX.φ, where p ∈ A, a ∈ L and X ∈ V .

Satisfaction on states (M, s) |= φ (also denoted s |= Mφ) is defined in the
standard fashion [15]. For instance, formula [a]φ holds of state s in model M
if φ holds in all states accessible from s via a transition labelled a. A specification
(M, E) satisfies a formula if all its entry states E satisfy the formula. The
constant formulae true (denoted tt) and false (ff) are definable. For convenience,
we use p⇒ φ to abbreviate ¬p∨φ. In our translation of simulation logic formulae
we allow sequences α of labels to appear in box modalities, with the obvious
translation .̂ to standard formulae: [̂ε]ψ = ψ and ̂[l · α]ψ = [l] [̂α]ψ, where ε
denotes the empty sequence, and ψ is already a standard formula.

2.2 Control Flow Structure and Behaviour

Our program model is control–flow based and thus over–approximates actual
program behaviour. This approach is sound, since we focus on safety properties.
We define two different views on programs: a structural and a behavioural view.
Both views are instantiations of the general notions of model and specification.
Notice in particular that these instantiations yield a structural and a behavioural
version of the logic.
Control Flow Structure. As we abstract away from all data, program struc-
ture is defined as a collection of control flow graphs (or flow graphs), one for each
of the program’s methods. Let Meth be a countably infinite set of method names.
A method specification is an instance of the general notion of specification.

Definition 3. (Method specification) A flow graph for m ∈ Meth over a set
M ⊆ Meth of method names is a finite model Mm = (Vm, Lm,→m, Am, λm),
with Vm the set of control nodes of m, Lm = M ∪ {ε}, Am = {m, r}, and
λm : Vm → P(Am) so that m ∈ λm(v) for all v ∈ Vm ( i.e., each node is tagged
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      if (n == 0)
   public static boolean even(int n){

         return true;
      else 
         return odd(n−1);
   }

   public static boolean odd(int n){
      if (n == 0)

      else 
         return even(n−1);  

   }}

         return false;

class Number {

Fig. 1. A simple Java class and its flow graph

with its method name). The nodes v ∈ Vm with r ∈ λm(v) are return points. A
method specification for m ∈ Meth over M is a pair (Mm, Em), s.t. Mm is a
flow graph for m over M and Em ⊆ Vm a non–empty set of entry points of m.

Next, we define flow graph interfaces. These ensure that control flow graphs can
only be composed if their interfaces match.

Definition 4. (Flow graph interface) A flow graph interface is a pair I =
(I+, I−), where I+, I− ⊆ Meth are finite sets of names of provided and required
methods, respectively. The composition of two interfaces I1 = (I+1 , I

−
1 ) and I2 =

(I+2 , I
−
2 ) is defined by I1 ∪ I2 = (I+1 ∪ I+2 , I−1 ∪ I−2 ). An interface I = (I+, I−) is

closed if I− ⊆ I+.

The flow graph of a program is essentially the (disjoint) union of its method
graphs. To formally define the notion flow graph with interface, we use the notion
of disjoint union of specifications S1 S2, where each state is tagged with 1 or 2,
respectively, and (s, i) a−→S1�S2 (t, i), for i ∈ {1, 2}, if and only if s a−→Si t.

Definition 5. (Flow graph with interface) A flow graph G with interface I,
written G : I, is defined inductively by

– (Mm, Em) : ({m},M) if (Mm, Em) is a method specification for m ∈ Meth
over M , and

– G1  G2 : I1 ∪ I2 if G1 : I1 and G2 : I2.

A flow graph is closed if its interface is closed (i.e., it does not require any
external methods), and is clean if return points have no outgoing edges. In the
sequel, we shall assume, without loss of generality, that flow graphs are clean.
Satisfaction, instantiated to flow graphs, is called structural satisfaction |=s.

Example 1. Figure 1 shows a Java class and its (simplified) flow graph with
interface ({even, odd}, {even, odd}). This contains two method specifications,
for method even and for method odd, respectively. Entry nodes are depicted
as usual by incoming edges without source. For this flow graph, the structural
formula νX. [even] r∧ [odd] r∧ [ε]X expresses the property that “on every path
from a program entry node, the first encountered call edge leads to a return
node”, in effect specifying that the program is tail-recursive.
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Control Flow Behaviour. Next, we instantiate specifications on the
behavioural level. We use transition label τ to designate internal transfer of con-
trol, label m1 callm2 to designate an invocation of method m2 by method m1,
and label m2 retm1 for a corresponding return from the call.

Definition 6. (Behaviour) Let G = (M, E) : I be a closed flow graph where
M = (V, L,→, A, λ). The behaviour of G is defined as model b(G) = (Mb, Eb),
where Mb = (Sb, Lb,→b, Ab, λb), such that Sb = V × V ∗, i.e., states (or con-
figurations) are pairs of control points v and stacks σ, Lb = {m1 k m2 | k ∈
{call, ret}, m1,m2 ∈ I+}∪{τ}, Ab = A, λb((v, σ)) = λ(v), and →b⊆ Sb×Lb×Sb

is defined by the rules:

[transfer] (v, σ) τ−→b (v′, σ) if m ∈ I+, v ε−→m v
′, v |= ¬r

[call] (v1, σ)
m1 call m2−−−−−−→b (v2, v′1 · σ) if m1,m2∈I+, v1

m2−−→m1 v
′
1, v1 |=¬r,

v2 |= m2, v2 ∈ E
[return] (v2, v1 · σ)

m2 ret m1−−−−−−→b (v1, σ) if m1,m2∈I+, v2 |= m2 ∧ r, v1 |= m1

The set of initial states is defined by Eb = E × {ε}.
Flow graph behaviour can alternatively be defined in terms of pushdown au-
tomata (PDA) [12, Def. 34]. This can be exploited by using PDA model checking
for verifying behavioural properties (see for instance [5,8]).

Also on the behavioural level, we instantiate the definition of satisfaction:
we define G |=b φ as b(G) |= φ. The resulting behavioural logic is sufficiently
powerful to express the class of security policies that can be defined by means
of finite-state security automata (cf. e.g. [18]).

Example 2. Consider the flow graph from Example 1. Because of possible un-
bounded recursion, it induces an infinite-state behaviour. One example run (i.e.,
linear execution) through this behaviour is represented by the following path
from an initial to a final configuration:

(v0, ε)
τ−→b (v1, ε)

τ−→b (v2, ε)
even call odd−−−−−−−→b (v5, v3)

τ−→b (v6, v3)
τ−→b (v7, v3)

odd call even−−−−−−−→b

(v0, v9 · v3)
τ−→b (v1, v9 · v3)

τ−→b (v4, v9 · v3)
even ret odd−−−−−−→b (v9, v3)

odd ret even−−−−−−→b (v3, ε)

For this flow graph, the behavioural formula even ⇒ νX. [even call even] ff ∧
[τ ]X expresses the property “in every program execution that starts in method
even, the first call is not to method even itself”.

More example properties and realistic program specifications can be found in [12].

3 Mapping Behavioural into Structural Properties

This section defines a mapping Π from interfaces and behavioural properties
to sets of structural properties. As mentioned above, the implementation of
the mapping can be tested online. Throughout the section we assume that be-
havioural properties are disjunction-free; in Section 5 we discuss how Π can be
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extended to behavioural formulae with disjunction, though at the expense of
completeness. We show that Π computes, from a behavioural property φ and
closed interface I, a set of structural formulae that characterises φ and I. That
is, for any (closed) flow graph G with interface I and any behavioural formula φ
that only mentions labels that are in the behaviour of G (i.e., Lb in Definition 6):

G |=b φ ⇔ ∃χ∈ΠI(φ).G |=s χ (1)

To deal with the fixed-point formulae of the logic, mapping Π is defined
with the help of a tableau construction. A behavioural formula φ gives rise to a
(maximal) tableau that induces a set of structural formulae through its leaves.
The constructed tableau is finite, i.e., tableau construction terminates.

3.1 Tableau Construction

Our translation is based on a symbolic execution of the behavioural property by
means of a tableau construction. When tracing a symbolic execution path, we
tag all subformulae of the formula with unique propositional constants from a
set Const. We use a global map S : φ → Const to map formulae to their tags.
We consider S as an implicit parameter of the tableau construction. The tableau
construction operates on sequents of the shape �H,U,C φ parametrised on:

– a non-empty history stack H ∈ (I+ × (I− ∪ {ε} ∪ Const)∗)+, where each
element is a pair (i, F ) consisting of a method name i ∈ I+ (called the
current method) and a sequence F ∈ (I− ∪ {ε} ∪ Const)∗ of edge labels
and propositional constants abbreviating subformulae of φ (called frame).
For any frame F , we use F̃ to denote this frame cleaned from propositional
constants X ∈ Const:

ε̃ = ε m̃ · σ = m · σ̃ ε̃ · σ = ε · σ̃ X̃ · σ = σ̃

– a fixed-point stack U , defining an environment for propositional variables
by means of a sequence of definitions of the shape X = νX.ψ. An open
formula φ in a sequent parametrised by U can then be understood via a
suitable notion of substitution, based on the standard notion of substitution
ψ{θ/X} of a formula θ for a propositional variable X in a formula ψ: the
substitution of φ under U is inductively defined as follows:

φ[ε] = φ φ[(X = νX.ψ) · U ] = (φ{νX.ψ/X})[U ]

– a store C, used for accumulating structural constraints during symbolic ex-
ecution.

We use ∅H,m, ∅U and ∅C to denote the single-element history stack (m, ε) and
the empty fixed-point stack and store, respectively.

For a given closed behavioural formula φ and method m, we construct a max-
imal tableau with root �∅H,m,∅U ,∅C φ that induces a set of structural formulae
through its leaves, as described below. We denote the set of induced structural
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formulae for φ and m with πm(φ). We then define the translation of φ w.r.t. a
given interface I:

ΠI(φ) = {
∧

m∈I+ χm | χm ∈ πm(φ) }

During tableau construction, the history stack, fixed-point stack and store are
updated as follows, provided the current sequent is not a repeat of an earlier
sequent (see below):

1. First, if φ is not a fixed-point formula, the propositional constant S(φ) tag-
ging the behavioural property φ of the current sequent is appended to the
end of the frame of the top element of H ;

2. Next,
– if the behavioural property φ prescribes an internal transfer, then ε is

appended to the end of the frame of the top element of H ;
– if φ prescribes a call from a to b, and the top element ofH is in method a,

then b is added at the end of the frame of the top element of H , and a
new element (b, ε) is pushed onto H ;

– if φ prescribes a return from a to b, the top element of H is in method a
and the next element is in method b, then a new structural constraint is
added to the store, reflecting the possibility of currently not being at a
return point, and the top element is popped from H ; and

– if φ is a fixed-point formula νX.φ, then a new equation X = νX.φ is
pushed onto the fixed-point stack U , if not already there; this conditional
appending is denoted by (X = νX.φ) ◦ U .

Notice that non-emptiness of the history stack and closedness of φ[U ] are invari-
ants of the tableau construction.
Tableau System. The tableau system is given in Figure 2 as a set of goal-
directed rules. Axioms are presented as rules with an empty set of premises,
denoted by ’−’. The condition Ret(i, a, b,H) used in the return rules is defined
as i = a ∧H �= ε∧ ∃F,H ′.H = (b, F ) ·H ′, i.e., control is currently in method a,
the call stack is not empty, and the control point on the top of the stack is in
method b. Formally, a tableau T = (T, λ) is a tree T equipped with a labelling
function λ mapping each tree node to a triple consisting of a sequent, a rule
name (of the rule applied to this sequent), and a set of triples of shape (i, F, q)
where q are literals (that is, atomic propositions in positive or negated form or
propositional variables). The triple sets are non-empty only at applications of
axiom rules; such leaves are termed contributing, and the set of triples is depicted
(by convention) as a premise to the rule. A tableau for formula φ and method m
is a tree with root �∅H,m,∅U ,∅C φ obtained by applying the rules. A tableau is
termed maximal if all its leaves are axioms.

If in a tableau there is a leaf node �(i,F )·H,U,C φ for which there is an internal
node �(i,F ′)·H′,U ′,C′ φ such that F ′ is a prefix of F , U ′ is a suffix of U , and C′ is
a subset of C, we term the former node a pseudo-repeat ; any node of the latter
kind we term a companion. An internal tableau node is said to be stable if all its
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p
�(i,F )·H,U,C p

{(i,F,p)}∪{(i′,F ′,ff)|(i′,F ′)∈H}∪C
¬p

�(i,F )·H,U ¬p

{(i,F,¬p)}∪{(i′,F ′,ff)|(i′,F ′)∈H}∪C

νX
�(i,F )·H,U,C νX.φ

�(i,F )·H,(X=νX.φ)◦U,C X
X unf

�(i,F )·H,U,C X

�(i,F ·S(X))·H,U,C φ
(X = νX.φ) ∈ U

∧ �(i,F )·H,U,C φ1∧φ2
�(i,F ·S(φ1∧φ2))·H,U,C φ1 �(i,F ·S(φ1∧φ2))·H,U,C φ2

τ
�(i,F )·H,U,C [τ ]φ

�(i,F ·S([τ]φ)·ε)·H,U,C φ

call0
�(i,F )·H,U,C [a call b]φ

− i �= a call1
�(i,F )·H,U,C [a call b]φ

�(b,ε)·(i,F ·S([a call b]φ)·b)·H,U,C φ
i = a

ret0
�(i,F )·H,U,C [a ret b]φ

− ¬Ret(i, a, b, H) ret1
�(i,F )·H,U,C [a ret b]φ

�H,U,C∪{(i,F,¬r)}φ
Ret(i, a, b, H)

IRep
�(i,F )·H,U,C φ

{(i,F,S(φ))}∪C
IntRep(S(φ), (i, F )·H) CRep

�(i,F )·H,U,C φ

− CallRep(S(φ), (i, F )·H, c)

RRep
�(i,F )·H,U,C φ

− RetRep(S(φ), (i, F ) ·H, c)

Fig. 2. Tableau system

descendant leaves are axioms or pseudo-repeats. A tableau is stable if its root
node is stable.
Tableau construction proceeds as follows. First, a minimal stable tableau is com-
puted, i.e., if a node is a pseudo-repeat, it is not further explored. If all pseudo-
repeats in this tableau satisfy some repeat condition for any of their companions
(see below), the tableau is maximal and construction is complete. Otherwise,
all pseudo-repeats that are not satisfying any of the repeat conditions are si-
multaneously unfolded, using a breadth-first exploration strategy, and tableau
construction continues until the tableau is stable again, upon which the checking
for the repeat conditions is repeated. This process is guaranteed to terminate,
as we state later, resulting in a finite maximal tableau.
Repeat Conditions. We now formulate the three repeat conditions used in the
tableau system, giving rise to three types of repeat nodes. Only repeats of the
first type, i.e., internal repeats, contribute to triples, giving rise to recursion in
structural formulae. In contrast, the other two repeat conditions only recognise
that a similar situation has been reached before, and thus no new information will
be obtained by further exploration. The first repeat condition requires merely
the examination of the top frame of the history stack of the current sequent;
the second requires the examination of the whole path from the root to the
pseudo-repeat; while the third requires the examination of all remaining paths.
Internal repeat. Tableau construction guarantees that every tableau node of
shape �H′·(i,F ′·S(φ)·F ′′)·H′′,U,C φ possesses an ancestor node �(i,F ′)·H′′,U ′,C′ φ
such that U ′ is a suffix of U and C′ is a subset of C. As a consequence, every
node of shape �(i,F ′·S(φ)·F ′′)·H,U,C φ is a pseudo-repeat (with some ancestor
node of shape �(i,F ′)·H,U ′,C′ φ as companion); such pseudo-repeats are termed
internal repeats. Intuitively, an internal repeat indicates that a regularity in the
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structure of method i has been discovered, and thus this regularity should be
reflected in the structural formulae. Therefore, in this case (i, F ′ ·S(φ)·F ′′,S(φ))
is added to the triple set of the IRep axiom. (Notice that in fact the propositional
constant S(φ) is mapped to a fresh propositional variable, here, and in the
construction of the structural formulae. However, for clarity of presentation, we
overload the symbols themselves, as their intended meaning should be clear from
the context.)

Call repeat. A pseudo-repeat �(i,F )·H,U,C φ, which has an ancestor node as
companion but is not an internal repeat, is a call repeat if H matches the call
stack of the companion upto the latter’s return depth (where matching means
that the same methods are on the stack, with identical frames); in the special case
where both stacks are shorter than the return depth, they have to be identical.

The return depth of a node is only defined if the subtableau of the companion
is complete (i.e., the pseudo-repeat is the only open branch). When we construct
a tableau for a formula with multiple fixed-points, it can happen that two pseudo-
repeats occur in the subtableaux of their respective companions. In this case, if
both nodes are call repeats exploration terminates (for the current return depth);
otherwise, by virtue of the tableau construction, the pseudo-repeat that is not
a call repeat will never become one when continuing the tableau construction.
Therefore, we can explore this node further, and break the mutual dependency.

The return depth of a tableau node n, denoted ρ(n), is defined as the maximal
difference between the number of applied return rules and the number of applied
call rules on any path from n to a descendant node. Formally, where r and δ
range over rule names and sequences of rule names, respectively, while rules(π)
denotes the sequence of rule names along a tableau path π:

ρ′(ε) = 0 ρ′(r · δ) =

⎧⎨⎩ρ
′(δ) + 1 if r ∈ {ret0, ret1}
ρ′(δ)− 1 if r ∈ {call0, call1}
ρ′(δ) otherwise

ρ(n) = max {ρ′(rules(π)) | π a path from n to a descendant node} ∪ {0}

Return repeat. A pseudo-repeat is called a return repeat if it has a companion
on a different path from the root, such that its history stack is identical to the
one of the companion.

Formally, the repeat conditions are defined as follows, where X is S(φ), and c
is the companion node of the pseudo-repeat with history stack Hc.

IntRep(X, (i, F ) ·H) ⇔ X ∈ F
CallRep(X, (i, F ) ·H, c) ⇔ X �∈ F∧ take(ρ(c) + 1, (i, F )·H)= take(ρ(c) + 1, Hc)
RetRep(X, (i, F ) ·H, c) ⇔ (i, F ) ·H = Hc

Termination. The repeat conditions ensure termination of tableau construc-
tion.

Theorem 1. Maximal tableaux are finite.

The proof of this and the remaining results can be found in [11].
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3.2 Structural Formulae Induced by a Tableau

A maximal tableau for φ and m induces, through the sets of triples accumulated
in the leaves, a set of structural formulae πm(φ) in the following manner:

1. Let L be the set of non-empty triple sets collected from the leaves of the
tableau. Build a collection of choice sets Λ(L), by choosing one triple from
each element in L.

2. For each choice set λ ∈ Λ(L),
(a) Group the triples of λ according to method names: for each i ∈ I, define

Ξi = {(F, q) | (i, F, q) ∈ λ}

(b) For each i ∈ I such that Ξi �= ∅, build a formula i⇒ Ω(Ξi), where

Ω(Ξ) =
V

φ∈Ω′(Ξ) φ

Ω′(Ξ) = {[a] Ω(Ξ ′) | a ∈ I− ∧Ξ ′ = {(F, q) | (a · F, q) ∈ Ξ} ∧Ξ ′ �= ∅}∪
{νX.Ω(Ξ ′) | X ∈ Const ∧ Ξ ′ = {(F, q) | (X · F, q) ∈ Ξ}∧Ξ ′ �= ∅}∪
{q | (ε, q) ∈ Ξ}

(c) The induced formula χ for λ is the conjunction of the formulae obtained
in the previous step.

3. The set πm(φ) is the set of induced formulae for λ ∈ Λ(L).

For example, the choice set λ = {(a,X · b,¬r), (a,X · b,X)} induces (by step 2)
the structural formula a ⇒ νX. [b] (¬r ∧ X). Notice that all induced formulae
are closed and guarded whenever the original behavioural one is.

Example 3. Consider formula φ = νX. [a call b]X ∧ [b ret a] (¬r ∧ X), i.e., for
every program execution consisting of consecutive sequences of calls from a to b
followed by a return, the points at which control resumes in a are never return
points themselves. Figure 3 shows the mapping S from the subformulae of φ
to propositional constants, and the tableau that is constructed for this formula.
The first node where a triple is produced is the one labelled ret1; the triples then
propagated to the two leaves that result from application of the rule for atomic
propositions, and simple repeat, respectively. The tableau has two leaves with
non-empty triple sets; L thus consists of two sets of two triples each.

Thus, to construct the set of structural formulae, we compute structural for-
mulae for the four choice sets resulting from L:

{(a,X4 ·X1 ·X2 · b ·X5,¬r), (a,X4 ·X1 ·X2 · b ·X5, X4)}
{(a,X4 ·X1 ·X2 · b ·X5,¬r), (b,X4 ·X1,¬r)}
{(b,X4 ·X1,¬r), (a,X4 ·X1 ·X2 · b ·X5, X4)}
{(b,X4 ·X1,¬r)}

The first set gives rise to the structural formula a⇒ νX4.νX1.νX2. [b] νX5.(¬r∧
X4), which simplifies to χ1 = a ⇒ νX.[b](¬r ∧ X): in the text of a, no initial
sequence of consecutive call-to-b instructions ends in a return instruction. The
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X0 νX. [a call b] X ∧ [b ret a] (¬r ∧X) X2 [a call b] X X4 X X6 ¬r

X1 [a call b] X ∧ [b ret a] (¬r ∧X) X3 [b ret a] (¬r ∧X) X5 ¬r ∧X

�(a,ε),∅U ,∅C
νX. [a call b] X ∧ [b ret a] (¬r ∧ X)

νX

*�(a,ε),X=φ,∅C
X

X unf

�(a,X4),X=φ,∅C
[a call b] X ∧ [b ret a] (¬r ∧ X)

∧
�(a,X4 ·X1),X=φ,∅C

[a call b] X
call1

�(b,ε)·(a,X4 ·X1·X2·b),X=φ,∅C
X

X unf

�(b,X4)·(a,X4·X1·X2·b),X=φ,∅C
[a call b] X ∧ [b ret a] (¬r ∧ X)

∧
�(b,X4 ·X1)·(a,X4 ·X1·X2·b),X=φ,∅C

[a call b] X
call0

−

(*)

�(a,X4 ·X1),X=φ,∅C
[b ret a] (¬r ∧ X)

ret0

−

(*)
∧

�(b,X4·X1)·(a,X4 ·X1·X2·b),X=φ,∅C
[b ret a] (¬r ∧ X)

ret1

�(a,X4·X1·X2·b),X=φ,{(b,X4·X1,¬r)} ¬r ∧ X

∧
�(a,X4 ·X1·X2·b·X5),X=φ,{(b,X4·X1,¬r)} ¬r

¬r

(a, X4 · X1 · X2 · b · X5, ¬r)
(b, X4 · X1, ¬r)

�(a,X4·X1·X2·b·X5),X=φ,{(b,X4·X1,¬r)} X
IRep(∗)

(a, X4 · X1 · X2 · b · X5, X4)
(b, X4 · X1, ¬r)

Fig. 3. Tableau for νX. [a call b] X ∧ [b ret a] (¬r ∧ X) and a, giving rise to {a ⇒
νX. [b] (¬r ∧X), b ⇒ ¬r}

last set gives rise to the formula χ2 = b ⇒ ¬r (again after simplification): the
text of b does not begin with a return instruction. The formulae constructed
from the second and third set are subsumed by χ2, and hence πa(φ) = {χ1, χ2}.
For φ and method b there is a single tableau, which has no leaf triples, and hence
πb(φ) = {tt}. Thus, Π(φ) = {χ1, χ2}.

More property translations and example tableaux illustrating the various repeat
conditions can be found in [11].

3.3 Correctness of the Translation

Because of space limitations, we cannot present here the full soundness and
completeness proofs; instead, we refer to the accompanying report [11]. The main
idea is the construction of a proof system that allows to show that a structural
formula χ implies a behavioural formula φ. The rules of the proof system stand
in a one-to-one correspondence with the rules of the tableau system, except for
the handling of fixed-point formulae, which are unfolded (so proof trees can
be infinite). The proof tree that corresponds to the unfolding of a tableau for
behavioural formula φ inducing structural formula χ, constitutes a legal proof
of χ implying φ (i.e., soundness of Π). Moreover, any formula χ′ that implies φ
is subsumed by a formula induced by the tableau (i.e., completeness of Π).

Theorem 2. Translation Π from behavioural to structural formulae is sound
and complete.
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4 Application: Compositional Verification

The original motivation for the present work has been the wish to extend an ear-
lier developed compositional verification method [12] to behavioural properties.
The compositional verification method is based on the computation of maximal
models: a model is said to be maximal for a given property φ, if it satisfies φ
and simulates (w.r.t. a property-preserving simulation relation) all other models
satisfying φ. Due to the close connection between simulation and satisfaction in
our logic, we obtain the following compositional verification principle: showing
G1  G2 |= ψ can be reduced to showing G1 |= φ (i.e., component G1 satisfies a
local assumption φ) as long as Gφ  G2 |= ψ (i.e., component G2, when composed
with the maximal flow graph Gφ for φ, satisfies the global guarantee ψ).

Thus, the compositional verification problem is reduced to finding maximal
flow graphs. However, given a property φ over a flow graph (behaviour), there
is no guarantee that the maximal model of φ is a valid flow graph (behaviour).
At the structural level this problem can be solved, because we can precisely
characterise legal flow graphs w.r.t. an interface I by a structural formula θI in
our logic. Then, if φ is an arbitrary structural formula, the maximal model of
the formula φ ∧ θI is a flow graph Gφ,I which represents all flow graphs with
interface I that satisfy φ.

However, there is no such way to precisely characterise flow graph behaviour
in our logic (cf. [12]), and thus one cannot directly apply the above compositional
verification principle to behavioural properties. In [12], we proposed a “mixed”
rule where global guarantees are behavioural, but local assumptions are struc-
tural. With the results of the present paper, however, this rule can be combined
with the characterisation (1) to yield the following sound and complete compo-
sitional verification principle, where both the global guarantee (required to be
disjunction-free) and the local assumption are behavioural.

G1 |=b φ
{
Gχ,IG1

 G2 |=b ψ
}

χ∈ΠIG1
(φ)

G1  G2 |=b ψ
G1 closed

Notice that when applying the rule, instead of showing G1 |=b φ it suffices to
show G1 |=s χ for some χ ∈ ΠIG1

(φ). Completeness of the principle guarantees
that no false negatives are possible: if the second premise fails, then there is
indeed a legal flow graph G with interface IG1 such that G |=b φ but G G2 �|=b ψ.

An alternative way of using characterisation (1) for compositional verification
is to apply it to the global guarantee (see [11]).

5 Conclusions and Future Work

This paper presents a precise characterisation of (disjunction-free) behavioural
formulae as sets of structural formulae, in a context where programs are ab-
stracted as flow graphs, and properties are expressed in a fragment of the modal
µ-calculus with boxes and greatest fixed points only. As one significant appli-
cation, we state a sound and complete compositional verification principle for
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behavioural properties based on maximal models. Another possible application is
the reduction of infinite-state verification of behavioural control flow properties
to finite-state verification of structural properties.
Extensions. Unlike the other connectives of the logic, validity of sequents is
not compositional w.r.t. disjunction in our tableau system. Disjunction can still
be handled, though at the expense of completeness, by adding two symmetric
tableau rules that simply “drop” the right respectively the left disjunct. A be-
havioural formula and a method will thus give rise to a set of tableaux, for which
we take the union of their induced sets of structural formulae. Alternatively, to
potentially obtain a complete translation (if such exists), we plan to generalise
the sequent format, e.g., in the style of Gentzen sequents, and then also tableau
construction and formula extraction. We also plan to study whether the charac-
terisation can be extended for the logic with diamonds and least fixed points, and
for richer program models (e.g., with exceptions, or multithreading, as in [13]),
and whether the compositional verification principle can be generalised to open
components. For the last extension, two different approaches will be considered:
(i) the translation is generalised to formulae over open interfaces, requiring the
generalisation of Definition 6 for open flow graphs, and (ii) every open compo-
nent is “closed” by composing it with a most general environment before the
characterisation is applied.
Implementation. An implementation of the translation has been developed
in Ocaml, and is available via a web-based interface [10]. It returns a tableau
per method, plus a set of structural formulae (after applying some basic logi-
cal simplifications, e.g., removing unused fixed-points, to make the output more
readable). It has been applied on all examples in the paper and the accompa-
nying technical report [11]. In all cases, the output is produced within seconds.
Various optimisations of the translation are possible. For instance, since logi-
cally subsumed formulae are redundant in the characterisation, the construction
of choice sets can be optimised as follows: if a triple is picked from a contribut-
ing leaf, then the same triple must be selected from all other contributing leaves
containing it.

In future work, the complexity of the tableau construction will be studied by
finding upper bounds for the size of generated tableaux, and for the number and
size of generated formulae.
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Abstract. We present a new approach to program testing which enables the pro-
grammer to specify test suites in terms of a versatile query language. Our query
language subsumes standard coverage criteria ranging from simple basic block
coverage all the way to predicate complete coverage and multiple condition cov-
erage, but also facilitates on-the-fly requests for test suites specific to the code
structure, to external requirements, or to ad hoc needs arising in program un-
derstanding/exploration. The query language is supported by a model checking
backend which employs the CBMC framework. Our main algorithmic contribu-
tion is a method called iterative constraint strengthening which enables us to
solve a query for an arbitrary coverage criterion by a single call to the model
checker and a novel form of incremental SAT solving: Whenever the SAT solver
finds a solution, our algorithm compares this solution against the coverage crite-
rion, and strengthens the clause database with additional clauses which exclude
redundant new solutions. We demonstrate the scalability of our approach and its
ability to compute compact test suites with experiments involving device drivers,
automotive controllers, and open source projects.

1 Introduction

In industrial software engineering, program testing is to remain the pivotal debug-
ging and validation technology. While randomized and directed testing are important
to achieve global assurance about software quality, and model-based testing helps to
verify the conformance of the program with a high-level specification, there is practi-
cal need for a source code oriented white box testing methodology which assists the
programmer in the software engineering cycle. Such a methodology should provide
seamless support for code-driven testing, i.e., exploration of code under development,
and requirement-driven testing for systematic quality assertion.

To address this need, we introduce a query language which combines easy naviga-
tion in real life C code with the ability to formulate complex coverage criteria. Provid-
ing straightforward queries for standard coverage criteria, our language FQL (FSHELL

query language) aims to strike the right balance between expressiveness and simplicity.
In FQL, a program query asks for a test suite following the general form

> in prefix cover goals passing scope

where the optional prefix directs the query to a specific program part, e.g., a source file
or a function, goals describes the coverage criterion to be fulfilled by the test suite, and

� Supported by DFG grant FORTAS – Formal Timing Analysis Suite for Real Time Programs
(VE 455/1-1).

N.D. Jones and M. Müller-Olm (Eds.): VMCAI 2009, LNCS 5403, pp. 151–166, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



152 A. Holzer et al.

Listing 1. C source code of example bla.c
with program counters

1 int cmp(int x, int y) {
2 int 1value = 0;
3 if 2(x > y) 3value = 1;
4 else if 4(x < y) 5value = −1;
5

6return value;
6}

8 int main(int argc , char∗ argv []) {
9 int x, y, z, xy, yz, xz;

10
8x = 7input();

11
10y = 9input();

12
12z = 11input();

13
14xy = 13cmp(x, y);

14
16yz = 15cmp(y, z);

15
18xz = 17cmp(x, z);

16 if 22(19xy == 1 && 20yz == 1
17 && 21xz != 1)
18 ERROR: 23err();
19

24return 0;
20}

an optional scope restricts test cases to pass through certain program paths only. For
example, the query

> in /bla.c/cmp/ cover @blocks passing @call(err)

calls for a test suite which covers all blocks in function cmp of file bla.c, such that
in all test cases, a call to err inside cmp is performed1. Other important and classical
coverage criteria such as predicate coverage, condition coverage, decision coverage,
modified condition/decision coverage, predicate complete coverage [1] etc. can also be
expressed by natural queries in our language.

The added value of our language lies in the ability to define the query scope and the
query goals in a quite flexible manner. Suppose for instance that in Listing 1 we want
to cover (1) all calls to cmp and (2) all decisions inside cmp. This amounts to a coverage
criterion which combines basic block coverage for (1) and decision coverage for (2).
There are two different possibilities for this combination: either we want to cover the
union of all call positions and all decisions, and write the query

> in /bla.c/ cover @call(cmp), cmp/@decisions

or we want to cover all possible combinations of calls to cmp and subsequent decisions
inside cmp, i.e., the Cartesian product of the individual test goals:

> in /bla.c/ cover @call(cmp) -> cmp/@decisions

To ensure that, for each call site, each of the decisions is reached before the body of cmp
is left, we write

> in /bla.c/ cover @call(cmp) -[@func(cmp)\@exit]> cmp/@decisions

Solutions to these queries are test suites. In case of Listing 1, these can be most
easily described as sets of triples with input values for the variables x,y,z. For the first
query, the singleton test suite {(1,0,1)} covers all blocks and decisions in Listing 1;
for the second and third case, possible solutions are {(1,0,1),(2,0,1),(1,0,2)} and
{(1,0,0),(0,1,0),(0,0,1)} respectively. Note that the first test suite does not satisfy
the second and third queries and the second suite does not satisfy the last query; the
third solution, however, satisfies all three queries.

1 Expressions starting with “@”, such as @blocks, typically denote sets of program locations,
see Section 3.1 for a detailed explanation.
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In Section 2 we build the mathematical foundation to formulate testing requirements
as queries. In particular, we show how to state a query as a pair 〈A,Q〉 of automata over
predicates. In this pair, the observation automaton A corresponds to the scope to be
explored, and the test goal automaton Q specifies the goals to be covered. In Section 3,
we provide an overview of our query language FQL and show how to translate FQL
queries into such a pair 〈A,Q〉. Thus, the language reduces to a simple mathematical
core in which we are able to formulate all relevant coverage criteria in a uniform way.

The second major contribution of this paper is an efficient query engine which in-
tegrates our theoretical framework, code instrumentation, bounded model checking,
and SAT enumeration into a tool of high efficiency. Our query engine employs and
adopts the software model checking framework of Kroening’s CBMC [2]. Given a
query 〈A,Q〉, our tool performs the following conceptual steps, cf. Figure 1:

C Source
P

Query 〈A,Q〉

Observation
aut. to C

Test goal
aut. to C

Automaton injection

CBMC

Iterative constraint strengthening

Test suite minimization

Test suite Γ

Fig. 1. Query processing

(1) We instrument the source code with monitors
derived from the observation automaton A and the test
goal automaton Q in such a way that the states of the
monitors reflects the automata states.

(2) We use the code base of CBMC to obtain a SAT
instance φ whose solutions correspond to the program
paths π in the scope given by A. The instrumentation
of step (1) guarantees that for each solution, we can
easily determine which goals of Q are covered.

(3) We use the SAT solver to enumerate test cases
as solutions to the SAT instance until we satisfy the
coverage criterion defined by the query. The iterative
constraint strengthening technique (ICS) used in this
step is discussed below.

(4) To remove redundant test cases, we perform a
test suite minimization. In our current implementa-
tion, we only do a simple post-processing; in future
work, we plan to implement more aggressive mini-
mization strategies. Note that the ICS enumeration in (3) involves nondeterministic
choices which may give leverage to accelerate the algorithm with suitable heuristics.

Iterative Constraint Strengthening. A naive implementation of step (3) above would
either use SAT enumeration to compute an enormous number of test cases until the test
goals are reached, or it would call the SAT solver for each query goal anew. In iter-
ative constraint strengthening (ICS), we circumvent both problems by modifying the
clause database of the SAT solver on-the-fly. Whenever the SAT solver halts to output
a solution, we compare the test case obtained from this solution against the test goals.
Then we add new clauses to the clause database in such a way that the next solution is
guaranteed to satisfy at least one hitherto uncovered test goal. In this way, we exploit
incremental SAT solving to quickly enumerate a test suite of high quality: Since we
only add new clauses to the clause database, the SAT solver is able to reuse information
learned in prior invocations. A similar strategy is used in groupwise constraint strength-
ening (GCS), a further refinement of ICS. In GCS, we address coverage criteria such
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as multiple condition coverage or predicate complete coverage which have a nominally
exponential number of test goals by partitioning these goals into a small number of
groups characterized by a common compound goal.

We show that FSHELL has better practical performance than BLAST’s test case gen-
eration facility [3]: On comparable hardware, our test suites are computed faster, and
contain fewer test cases. Due to the minimization step, our results also improve on those
reported in our previous tool paper [4].

Note that our choice of CBMC and bounded model checking as a query solving back-
end has advantages which come at a price: On the one hand, we achieve excellent per-
formance and have the guarantee that the model-checker respects ANSI-C, which is im-
portant for low level code, our primary application area. On the other hand, a bounded
model checking approach may be unable to compute certain test cases involving paths
larger than the constant bound. It is easy to come up with examples where this situation
will happen, but it is is detectable by CBMC and accounted for in our implementation; it
has neither occurred in the experiments we did for comparison with BLAST, nor in our
experiments based on real-life controller code. In future work, we plan to complement the
CBMC backend with abstraction-based and randomized test case generation backends.

Related Work. Beyer et al. [3] use the C model checker BLAST [5] for test case
generation, focusing on basic block coverage only. BLAST has a two level specifica-
tion language [6]. On a low level they specify trace properties by observer automata
written in a C-like manner. On a high level they relate these automata by reachability
queries. In contrast to FSHELL, their language is tailored towards verification. Fur-
thermore, BLAST is based on predicate abstraction whereas CBMC is a SAT-based
bounded model checker. As our experiments show, we outperform BLAST regarding
test case generation. Lee et al. [7,8] investigate test case generation with model check-
ers giving coverage criteria in temporal logics. Java PathFinder [9] and SAL2 [10] use
model checkers for test case generation, but they do not support C semantics.

2 A Formal Testing Framework

Given a program P , we consider the possibly infinite transition system T = 〈S ,R ,I 〉
induced by P which consists of the state space S , a transition relation R ⊆ S ×S , and
a non-empty set of initial states I ⊆ S .

Definition 1 (State Sequences and Paths). Given a transition system T = 〈S ,R ,I 〉, a
state sequence is a finite and non-empty word π = 〈s1, . . . ,sn〉 ∈ S+ of states si ∈ S . The
sequence π is a path, if 〈si,si+1〉 ∈ R holds for all 1 ≤ i < n and if s1 ∈ I . For a state
s ∈ S , we write s ∈ π, iff s = si holds for some 1≤ i≤ n, and we denote with ΠT ⊆ S+

the set of paths of T .

We use state predicates to describe properties of individual program states and we use
path and path set predicates in the description of individual test goals and coverage
criteria.

Definition 2 (State, Path, & Path Set Predicates). Given a transition system T =
〈S ,R ,I 〉, we define a state predicate p as a predicate on the state space S , a path
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predicate φ as a predicate over the set ΠT , and a path set predicate Φ as a predicate

over the sets of paths 2ΠT
. We write s |= p iff a state s ∈ S satisfies p, π |= φ iff a path

π ∈ΠT satisfies φ, and Γ |= Φ iff a path set Γ⊆ΠT satisfies Φ.

We call a state predicate p, a path predicate φ, or a path set predicate Φ feasible over
T , iff, respectively, there exists a state s ∈ S with s |= p, there exists a path π ∈ ΠT

with π |= φ, and there exists a path set Γ⊆ΠT with Γ |= Φ. Frequently, we are looking
for a path (path set) which contains a state (a path) which satisfies a given state (path)
predicate—leading to an implicit existential quantification:

Definition 3 (Implicit Existential Quantification). To evaluate a state predicate p
over a path π, we implicitly interpret p to be existentially quantified, i.e., π |= p stands
for ∃s ∈ π.s |= p. Analogously, a path predicate φ is existentially evaluated over a path
set Γ, i.e., Γ |=φ iff ∃π ∈ Γ.π |=φ.

Remark 1. Note that a path π can satisfy a state predicate p and its negation¬p, if there
exist two states s,s′ ∈ π with s |= p and s′ |= ¬p. Moreover, a state predicate p can also
be interpreted over a path set Γ in the natural way, i.e., Γ |= p iff ∃π ∈ Γ.∃s ∈ π.s |= p.

Program Observations. We use sequences of state predicates (traces) to specify pro-
gram paths. A trace matches a state sequence if each state in the sequence satisfies
the corresponding predicate. A trace automaton is an automaton accepting traces; each
trace in turn specifies a set of program paths.

Definition 4 (Traces and Trace Automata). Let P be a finite set of state predicates
and S be a state space. Then a trace is a finite non-empty word t = 〈t1, . . . ,tn〉 ∈ P+. A
trace matches a state sequence π = 〈s1, . . . ,sn〉 ∈ S+ (denoted with π |= t), iff si |= ti for
all 1≤ i≤ n.

A trace automaton over P is a nondeterministic finite state automaton A accepting
traces over the alphabet P. We write L(A) to denote the set of traces accepted by A and
acc(A) to denote the set of accepting states of A. A trace automaton A over P matches
a state sequence π (denoted with π |= A), iff there exists a trace t ∈ L(A) with π |= t.

Remark 2. Although we have – for the sake of simplicity – defined trace automata as
finite state automata, our framework naturally extends to other types of automata such
as push-down automata for which we can construct C monitors, cf. Section 4.1.

We will use traces and trace automata as a natural tool for defining path predicates in
the language FQL. In particular, we will employ trace automata for two distinct ends:
First, as observation automata which restrict the paths in T to those required in a query;
and second, as test goal automata which specify the individual test goals of a coverage
criterion.

Definition 5 (Path Restriction by Observation Automata). Let T be a transition sys-
tem and A a trace automaton. Then we define the set of paths in T restricted by obser-
vation automaton A as ΠT

A = {π ∈ΠT | π |= A}.
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Coverage Criteria. In the framework of this paper, we define a test case to be a single
path in ΠT

A and a test suite as a subset of ΠT
A . Correspondingly, a coverage criterion

imposes a predicate on test suites:

Definition 6 (Test Case & Test Suite). Let T be a transition system and let A be an
observation automaton for T . Then a test case for the set of paths ΠT

A is a single path
π ∈ΠT

A and a test suite Γ is a finite subset Γ⊆ΠT
A of the paths in ΠT

A .

Definition 7 (Coverage Criterion). A coverage criterion Φ is a mapping from a tran-

sition system T and an observation automaton A to a path set predicate ΦT
A over 2ΠT

.
We say that Γ⊆ ΠT

A satisfies the coverage criterion Φ on T under the restriction A iff
Γ |=ΦT

A holds.

While our definition of coverage criteria is very general, most coverage criteria used in
practice are based on lists of test goals which need to be satisfied. The test goals them-
selves are typically either state or path predicates. This prototypical setting is accounted
for in the next definition.

Definition 8 ((State) Regular Coverage Criterion and Test Goals). A regular cover-
age criterion Φ is a coverage criterion constructed in the following way:

(i) There is a mapping Φ(T ,A) which maps T and A to a list of test goals Φ(T ,A) =
{Ψ1, . . . ,Ψk}.

(ii) This mapping induces the coverage criterion ΦT
A as follows:

Γ |= ΦT
A iff

k̂

i=1

ΠT
A |= Ψi ⇒ Γ |= Ψi

Intuitively, this amounts to the following coverage criterion: “For each test goal which
is feasible in ΠT

A , the test suite Γ must contain a concrete test case.”
Φ is a state regular coverage criterion, if Φ(T ,A) contains only state predicates.

As an example, consider basic block coverage BBT
A , which is a state regular coverage

criterion: induced by the test goals BB(T ,A)= {block1, . . . ,blockk}. Here k denotes the
number of basic blocks in T , and each predicate blocki holds true at the first statement
of the i-th basic block in the program.

We will now define test goal automata which are used to specify the test goals needed
in regular coverage criteria.

Definition 9 (Test Goal Automaton). A test goal automaton Q is a trace automaton
where each accepting state a gives rise to a test goal Ψa:

π |= Ψa iff ∃t.π |= t and Q accepts t in state a

Thus, the test goal Ψa requires a path matched by a trace which Q accepts in state a.
The test goal automaton Q naturally induces a regular coverage criterion cov[Q] based
on the set cov[Q](T ,A) = {Ψa | a ∈ acc(Q)} of test goals.
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Note that a single path may match more than one test goal simultaneously: First, each
path is matched by a number of different traces, and second, more than one accepting
state may be reached through a trace in Q.

We conclude this section with a formal definition of program queries, as introduced
in Section 1.

Definition 10 (Program Query & Result). A program query 〈A,Q〉 consists of an ob-
servation automaton A and a test goal automaton Q. A valid result to the query 〈A,Q〉
on transition system T is a test suite Γ⊆ΠT

A with Γ |= cov[Q]TA .

3 Syntax and Semantics of FQL

The FSHELL query language FQL facilitates the specification of test suites over C
source code. To decouple the language from the algorithmic details of the query engine,
and to provide leeway for different query solving backends, we designed FSHELL as
a declarative language. FQL contains three layers which reflect the formal model of
Section 2:

(i) state predicates over program variables and the program counter,
(ii) trace automata to express both observation automata and test goal automata, and

(iii) program queries to express coverage criteria.

In the following subsections, we will describe these layers along with examples re-
ferring to Listing 1. Due to length restrictions, the presentation of FQL is kept informal;
we refer the reader to [11] for more details. Section 4 describes our query solving engine
based on bounded model checking.

3.1 State Predicates

We have seen in Section 2 that sets of state predicates are at the center of our formal
model. For instance, basic block coverage is induced by the set of test goals BB(T ,A) =
{block1, . . . ,blockk}. FQL is therefore equipped with predicate generators to extract
sets of predicates from the C source code, and to create new sets of predicates. For
example, the predicate generator @blocks yields the set {block1, . . . ,blockk} of predi-
cates. Note that each blocki has the form pc = const where pc is the program counter.
Syntactically, all predicate generators are prefixed with “@”. Semantically, a predicate
generator either yields a set of predicates over the program counter pc, or a set of pred-
icates over the program variables.

Many predicate generators are used to extract sets of predicates from the source
code. Examples of such predicate generators include @file(bla.c) which captures all
program counter values of statements in the source file bla.c, @func(main) which
captures the statements in function main, @line(3) to capture the statements in line 3,
@call(cmp) to match all function calls of cmp, and @entry as well as @exit which
capture all function entry and exit points respectively. In case of Listing 1 we get, e.g.,
@call(cmp) = {pc = 13,pc = 15,pc = 17}.

To introduce new predicates not present in the source code, we use the predicate
generator @new-pred(cond), where cond is an arbitrary side-effect free C expression.
For example, @new-pred(x <= 7) generates a singleton set {x≤ 7} of state predicates.



158 A. Holzer et al.

For certain coverage criteria such as MC/DC, we also need the predicate generator
@grouped-conditions which generates a set of sets, where each inner set captures
the program counter values of the individual predicates which constitute a decision.
Returning to Listing 1, we have @grouped-conditions = {{pc = 2},{pc = 4},{pc =
19,pc = 20,pc = 21}}. To support the succinct formulation of most relevant coverage
criteria, FQL contains a rich variety of predicate generators and can be easily extended
with further ones without conceptual changes to the language [11].

Operations on Sets of State Predicates. Given two sets A and B of state predicates,
FQL provides the following set-theoretic operations:

(and) A&B≡ {a∧b | a ∈ A,b ∈ B} A,B≡ A∪B (union)

(or) A|B≡ {a∨b | a ∈ A,b ∈ B} A\B≡ A\B (difference)

(negation) !A≡ {¬a | a ∈ A} 2ˆA≡ {A′|A′ ⊆ A} (powerset)

We add big-and(A) ≡ V

a∈A a and big-or(A) ≡ W

a∈A a to describe the conjunction
and disjunction of all elements of a set of state predicates. To apply an operation to
each element in a set, or to each set in a set of sets, we introduce the set() operator.
Moreover, union() forms a single set from a set of sets. Given a set S of sets and an
operation o(s) on a set s of state predicates, we define:

set(o(s) : s in S)≡ {o(s) | s ∈ S} union(S) ≡
[

s∈S

s

Operations on Conditions. In describing coverage criteria, conditions occurring in the
source code play a crucial role. A condition is an atomic expression which is possibly
combined with other conditions using &&, || , and ! to compute the decision involved
in executing an if , for, while, switch or ?: statement. The generator @pred-wo-loc()
extracts conditions from source code locations identified by program counter values.
In addition, @predicate() and @neg-predicate() conjoin the extracted conditions
with the corresponding predicate over the program counter. For example, let C = {pc =
19,pc = 20,pc = 21} be such a set, referring to Listing 1. Then we have

@pred-wo-loc(C) = {xy = 1,yz = 1,xz �= 1}
@predicate(C) = {pc = 22∧ xy = 1,pc = 22∧ yz = 1,pc = 22∧ xz �= 1}

@neg-predicate(C) = {pc = 22∧ xy �= 1,pc = 22∧ yz �= 1,pc = 22∧ xz = 1}

Note that pc = 22 refers to the location of the decision inside which the conditions in C
occur.

State Regular Coverage Criteria. Besides simple test goals such as @blocks, FQL can
can also describe more complex coverage criteria. We illustrate this feature on the ex-
ample of multiple condition coverage. Recall that multiple condition coverage requires
a test suite to cover—for each decision—all Boolean combinations of all conditions
occurring in the respective decision. The test goals are therefore given by

union( set(
union( set( big-and(@predicate(I) & @neg-predicate(D\I)) : I in 2ˆD ) ):
D in @grouped-conditions ) )
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Hierarchical Navigation. In practical queries, the predicate generators @file(bla.c),
@line(3), @func(foo), as well as @entry and @exit occur quite frequently. We there-
fore allow the following abbreviations which facilitate hierarchical navigation in the
source code:

/bla.c/ = @file(bla.c) /bla.c/42 = @file(bla.c) & @line(42)

foo/ = @func(foo) /bla.c/foo/ = @file(bla.c) & @func(foo)

foo/ˆ= @entry(foo) foo/$ = @exit(foo)

foo/SP = @func(foo) &SP /bla.c/SP = @file(bla.c) &SP

In the last line, SP is to be replaced by any state predicate expression. Note that FQL
also supports macros for frequently used expressions such as complex coverage criteria.
Due to space restrictions we do not describe the macro feature in detail.

3.2 Trace Automata

Recall that trace automata are used to define path predicates, and to act as both ob-
servation automata and test goal automata. By implicit existential quantification, every
state predicate can also be viewed as a path predicate, and it is easy to construct the
corresponding automaton. Moreover, a set of state predicates naturally gives rise to
an automaton with one accepting state for each state predicate in the set. For exam-
ple, @blocks corresponds to an automaton with |@blocks| accepting states, one for
each basic block. The following list exemplifies the most important automata theoretic
operations of FQL which enable the user to manipulate and combine trace automata
explicitly: Let A1,A2,A3 be trace automata:

A1,A2 ≡ A1∪A2 (union)

A1->A2 ≡ A1 ◦ true∗ ◦A2 (sequencing)

A1-[A3]>A2 ≡ A1 ◦A∗3 ◦A2 (restricted sequencing)

Consider for example main/ˆ->main/$ over Listing 1: the traces of this automaton
will match those program executions which pass the exit of main (line 19). In contrast,
main/ˆ-[@file(bla.c)\@label(ERROR)]>main/$ requires that between the entry
and the exit of main only locations other than those labeled “ERROR” (line 18) are
seen. Note that each of these operations corresponds to a specific automata theoretic
construction. Due to the special role of accepting states in defining test goals, we cannot
use the standard automata theoretic minimization techniques, cf. [11].

3.3 Program Queries

We are now ready to define the program queries introduced in Section 1. Let A and B be
FQL expressions which can be interpreted as trace automata (i.e., either trace automata,
or sets of predicates as explained in the previous section). Then cover Q passing
A expresses the program query 〈A,Q〉 with the semantics given in Definition 10.

Recall from Section 1, that FQL queries can also have a prefix. This prefix restricts
all state predicates to a certain program part, e.g., a certain file. It is easy to see that the
prefix can be moved into A and Q. For example, a query such as
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> in /bla.c/ cover @line(4),@call(cmp)
passing @file(bla.c)\@call(not implemented)

which states that both, line 4 and a function call to cmp in file bla.c must be covered
without ever calling not_implemented(), is equivalent to

> cover /bla.c/4,/bla.c/@call(cmp)
passing @file(bla.c)\@call(not implemented)

4 Query Processing Algorithms

In this section we describe the query processing algorithms. We first outline how pro-
gram source code and a query are mapped to a SAT instance, and then detail on iterative
and groupwise constraint strengthening in Section 4.2.

4.1 Program Instrumentation and Interfacing with CBMC

Bounded model checkers such as CBMC reduce questions about program paths to
Boolean constraints in conjunctive normal form (CNF) which are solved by standard
SAT solvers. Our query solving algorithms ICS and GCS employ the functionality
of CBMC to obtain SAT instances suitable for test case generation. Recall that on
input of a program annotated with assertions, CBMC outputs a SAT instance whose
solutions describe program paths leading to assertion violations. To make this func-
tionality useful for test case generation, we first instrument the program with the
observation automaton A such that the resulting program reaches a failing asser-
tion in the course of an execution, iff this program execution is matched by A. We
therefore implement A as a C function that monitors program execution. To this
end, the program P is instrumented to contain a logging layer, which reports the
matching predicates after each executed step to the monitor. Moreover, we inject
the test goal automaton as a second monitor, which only keeps track of the states
of the test goal automaton in a distinguished variable, but does not cause assertion
violations. Then, using CBMC, the instrumented program is transformed into the
CNF-formula φ[π∈ΠT

A ] which is satisfied by all program executions which reach an
accepting state of A within a bounded number of steps. By construction, φ[π ∈ΠT

A ]
contains distinguished Boolean variables referring to the state of the query automa-
ton Q; these variables can be used to express the individual test goals. Therefore, a
constraint of the form φ[π ∈ΠT

A ]∧φ[a] will satisfy those program executions which
(i) respect observation automaton A and (ii) satisfy test goal Ψa. In the rest of this
section, we will for simplicity write this constraint as π∈ΠT

A ∧ π |= Ψa, and tacitly
assume the translation to CBMC described above.

4.2 Guided SAT Enumeration

To generate a test suite Γ for a transition system T matching the query 〈A,Q〉, i.e.,
to achieve Γ |= cov[Q]TA , we introduce iterative constraint strengthening (ICS). In ICS,
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we build a test suite Γ iteratively from a sequence of test suites Γ0 ⊂ Γ1 ⊂ ·· · ⊂ Γm with
Γ0 = /0 and Γq =

{
π1, . . . ,πq

}
for 1 ≤ q ≤ m. In the m-th iteration, we reach a fixpoint

when no more new goals can be covered.

Algorithm Overview. In the q-th iteration we build the path constraint ICSPCq (Equa-
tion (1)) and obtain the test case πq+1 as one of its solutions. Here, ICSPCq describes
those paths in ΠT

A which cover a hitherto uncovered test goal. If no such test goal exists
any more, ICSPCq becomes unsatisfiable. Having determined a new test case πq+1, we
build ICSPCq+1 and continue the procedure with the (q + 1)-st iteration until we reach
an iteration m where ICSPCm becomes unsatisfiable.

In order to fit the framework of incremental SAT solving (cf. [12]), we rewrite
ICSPCq (Equation (2)) in such a way that we are able to describe ICSPCq+1 incremen-
tally in terms of ICSPCq by only adding new constraints without removing or chang-
ing previously added constraints (Equation (3)). Using this incremental formulation of
ICSPCq, we describe iterative constraint strengthening (ICS) based upon an incremen-
tal SAT solver in Listing 2. The m paths finally collected by ICS constitute indeed a
covering test suite (Theorem 1).

Path Constraints. The initial path constraint ICSPC0 requires that a path is in ΠT
A and

covers at least one of the test goals Ψa for a ∈ acc(Q). Subsequently, in ICSPCq, we re-
quire the path to cover at least one test goal Ψa which remained uncoveredby the test suite
Γq. Since Γq+1 must cover at least one more test goal than Γq, it suffices to strengthen
the constraint ICSPCq to obtain ICSPCq+1. Below, we write uncovq =

{
a ∈ acc(Q) | Γq

�|= Ψa} for the set of accepting states which correspond to test goals not covered in Γq.
Note that uncov0 = acc(Q) since Γ0 = /0 covers no test goals at all. Then, for 0≤ q≤m,
we search for a solution πq+1 to the q-th constraint

ICSPCq(π) := π ∈ΠT
A ∧

_

a∈uncovq

π |= Ψa (1)

Note that the empty disjunction is equivalent to false, i.e., if uncovq = /0, then ICSPCq ≡
false. Thus, ICSPCq is satisfied by exactly those paths in ΠT

A which satisfy at least one
feasible test goal still uncovered by Γq. If no such test goal exists, i.e., if Γq achieves
coverage, then ICSPCq is unsatisfiable.

Incremental Path Constraints. In incremental SAT solving, we use a single persistent
clause database for consecutive solver invocations. When the SAT solver finds a solu-
tion, we add new clauses to the clause database, but do not remove any clauses. When
the execution of the SAT solver is continued, the learned clauses obtained during ear-
lier invocations remain valid and help to guide the search of the solver. Therefore, we
have to construct ICSPCq+1 from ICSPCq by only adding further constraints to the
clause database. Observe that uncovq+1 ⊂ uncovq holds for 0≤ q≤m−1. Thus in go-
ing from ICSPCq to ICSPCq+1, we have to remove all test goals Ψa with a ∈ uncovq \
uncovq+1 from the disjunction

W

a∈uncovq
π |= Ψa occurring in Equation (1). To do so, we
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introduce a new Boolean variable Sa for each accepting state a ∈ acc(Q) and write
ICSPCq equisatisfiable as

ICSPCq(π) :=

⎡⎣π ∈ΠT
A ∧

_

a∈acc(Q)

(Sa∧π |= Ψa)

⎤⎦∧ ^

a/∈uncovq

¬Sa (2)

Thus ICSPCq consists of (a) an initial expression, shown above in square brackets,
which remains unchanged throughout all iterations, and (b) a conjunction which is ex-
panded from one iteration to the next. Adding ¬Sa to the constraint renders the cor-
responding disjunct Sa ∧ π |= Ψa unsatisfiable, and therefore only the disjuncts for
a ∈ uncovq remain enabled. Note that for ICSPC0 we have true≡V

a/∈uncov0
¬Sa. Thus,

in each iteration step, we use

ICSPCq+1(π) := ICSPCq(π)∧
^

a∈uncovq\uncovq+1

¬Sa (3)

to obtain ICSPCq+1 from ICSPCq. Since we only add further constraints conjunctively,
this approach fits the requirements of incremental SAT solving.

Iterative Constraint Strengthening. In our presentation of the algorithm, we assume a
SAT solver which supports the following methods: (a) Adding constraints with add(φ):
The method takes an arbitrary constraint φ over variables from arbitrary finite domains.
While we use such a general interface to simplify the presentation of our algorithm, our
implementation is based upon the SAT instance φ[π ∈ΠT

A ] which we described in Sec-
tion 4.1. (b) Checking for satisfiability with satisfiable(): The method returns true iff there

Listing 2. Iterative ConstraintStrengthening (ICS)

1 func ICS(ΠT
A , 〈A,Q〉)

2 begin
3 q := 0; Γ0 := /0; uncov0 := acc(Q);
4 add(π ∈ΠT

A ∧
W

a∈acc(Q) (Sa∧π |= Ψa));
5 while satisfiable () do begin
6 πq+1 := solution();
7 Γq+1 := Γq∪{πq+1}; uncovq+1 := /0;
8 forall a ∈ uncovq do
9 if πq+1 |= Ψa then add(¬Sa);

10 else uncovq+1 := uncovq+1∪{a};
11 q := q+1;
12 end;
13 return Γq;
14 end;

exists a solution to the constraints
added to the clause database so
far. If a call to satisfiable() returns
true, a witness is cached. (c) Ob-
taining a solution with solution():
The method returns the last wit-
ness cached in a call to satisfiable().

The resulting procedure ICS is
shown in Listing 2. In line 3 we
initialize the iteration counter q,
the first test suite Γ0, and the set of
test goals uncov0 uncovered by Γ0.
Then in line 4, we add the initial
expression from Equation (2) and
start the search for the first solu-
tion in line 5. If a solution is found,
it is obtained from the solver, as-

signed to πq+1, and added to Γq+1. Then, after initializing uncovq+1, we update the
clause database following Equation (3) and fill the set uncovq+1 in lines 8 to 10: For
each yet uncovered state a ∈ uncovq, we check whether πq+1 satisfies Ψa. If this is the
case, a ∈ uncovq \uncovq+1 holds, and thus we add ¬Sa in line 9. Otherwise a remains
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uncovered by Γq+1 and hence we add a to uncovq+1 in line 10. Once no further solution
is found in line 5, the accumulated suite Γq is returned.

Theorem 1 (Correctness of Iterative Constraint Strengthening). The test suite Γ
returned by the algorithm ICS(ΠT

A ,〈A,Q〉) in Listing 2 satisfies Γ |= cov[Q]TA .

Remark 3 (Nondeterminism in Choosing πq+1). Our algorithm leaves the particular
choice of πq+1 open to the underlying SAT solver (line 6). Potential optimizations could
control this choice to minimize the number of test cases necessary to obtain coverage.

Groupwise Constraint Strengthening. Certain regular coverage criteria, such as pred-
icate complete or multiple condition coverage, require an exponential number of test
goals. For example, recall that multiple condition coverage (Section 3.1) has one test
goal for each basic block and each possible evaluation of all conditions involved in
deciding which edge to choose in leaving the basic block. Hence, the number of test
goals is exponential in the number of conditions in each decision. For this reason, the
disjunction in ICSPC0 will be of exponential size—thus rendering iterative constraint
strengthening hard for such coverage criteria.

To mitigate this situation, we introduce groupwise constraint strengthening (GCS) as
an optimization of iterative constraint strengthening. GCS can be combined with ICS
and allows to handle all test goals which are state predicates. Let us thus for simplicity
assume that all test goals Ψa for a ∈ acc(Q) are state predicates. To apply GCS, we
require the test goals to be partitioned into k distinct groups Gi = {Ψ1

i , . . . ,Ψ
ki
i } of

mutually exclusive test goals for 1 ≤ i ≤ k, i.e., we require that there exists no state s
with s |=Ψg

i and s |=Ψh
i for all 1≤ g �= h≤ ki and 1≤ i≤ k.

In the GCS algorithm, we avoid the construction of the initial and very large dis-
junction

W

a∈uncovq
π |= Ψa, as it appears in ICSPCq (Equations (1) and (2)): Instead

of individual test goals, we use a small number of compound test goals compi, where
each compound test goal represents the goals of the whole group Gi = {Ψ1

i , . . . ,Ψ
ki
i }

of individual test goals Ψ j
i . To represent group Gi, its compound test goal compi has to

be semantically equivalent (but usually not identical) to
Wki

j=1 Ψ j
i . It is important to note

however that in many practical cases, compi can be formulated much more succinctly
than

Wki
j=1 Ψ j

i . For example, in case of multiple condition coverage, we partition the
goals into groups according to the blocks they relate to. Then, s |= compi holds for a
state s iff s visits the i-th basic block, i.e., compi has the form pc = const.

Starting with the compound test goal compi, we add for each covered test goal Ψ j
i

of group Gi, i.e., for each Ψ j
i ∈ Gi \ uncovq, its negation ¬Ψ j

i to the corresponding
compound test goal. This approach yields for each group Gi an aggregate test goal

aggr
q
i := compi∧

^

Ψ j
i∈Gi\uncovq

¬Ψ j
i (4)

Since we use aggr
q
i to represent the remaining uncovered test goals Gi∩uncovq of the

group Gi in iteration q, we will rely on the equivalence

aggr
q
i ≡

_

Ψ j
i ∈Gi∩uncovq

Ψ j
i (5)
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which follows from the construction and the mutual exclusiveness of the test goals
within each group Gi. Written in the form of Equation (5), aggr

q
i does not explicitly

refer to any infeasible test goals and only involves feasible test goals as subexpressions.
This significantly reduces the size of the constructed constraint.

Having defined aggr
q
i in this way, GCS proceeds like ICS but with Equation (1)

replaced by

GCSPCq(π) := π ∈ΠT
A ∧

k
_

i=1

π |= aggr
q
i (6)

Similar to ICS we also adopt GCSPCq to fit incremental SAT solving: More precisely,
we leave the overall constraint (Equation (6)) unchanged and replace aggr

q
i (Equa-

tion (4)) by an equisatisfiable and incrementally expandable expression. Thus, we can
incrementally strengthen aggr

q
i for each group individually.

The effectiveness of GCS as an optimization of ICS relies on three conditions: (a)
The overall number of groups must be small, since we maintain for each group Gi a
constraint aggr

q
i . (b) The compound test goal compi must be available in a succinct

formulation. (c) The fraction of feasible test goals Ψ j
i in each group Gi must be small,

since the negation of each feasible test goal is added to aggr
q
i in some iteration q. Con-

ditions (a) and (b) hold for important coverage criteria such as multiple decision or
predicates complete coverage. If condition (c) does not hold, then the number of re-
quired test cases will be large – but this is inherent in the coverage criterion and not an
artefact of GCS.

Remark 4 (Mutual Exclusiveness: State vs. Path Predicates). It is tempting to assume
that the mutual exclusiveness defined in terms of states is easily generalized to the level
of path predicates. However, this is not the case as mutually exclusive state predicates
do not result in mutually exclusive path predicates because of their implicit existential
quantification, cf. Definition 3 and Remark 1.

5 Experimental Results

In our experiments we investigated test case generation for basic block (BB) and condi-
tion coverage (CC). We performed our experiments on a 3.0 GHz AMD64 system with 8
GB RAM. The table below summarizes our results with respect to BLAST. The column
“Min” shows the number of test cases removed by our test suite minimization algorithm.
Our current implementation of FSHELL is an optimized version of that presented in [4].
It generates fewer test cases, and, after test case generation for basic block coverage,
FSHELL minimizes an obtained test suite. The results for BLAST are taken literally
from [3], because the version of BLAST performing test case generation is currently
unavailable. Beyer et al. performed their experiments on a 3.06 GHz Dell Precision 650
with 4 GB RAM. FSHELL outperforms BLAST, as we achieve coverage with fewer test
cases faster. Besides the experiments on the device drivers from BLAST we conducted
experiments on an engine controller (matlab.c) provided by an industrial collabora-
tor from the automotive industries. It is generated from a MATLAB/Simulink model.
Furthermore, we ran our tool on preprocessed sources (autopilot.i) generated from
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BLAST (BB) BB CC
Source file LLOC #cases Time[s] #cases Time[s] Min∗ #cases Time[s]

kbfiltr.i 4879 39 300 26 18 6 98 24
floppy.i 6435 111 1500 63 1041 10 175 1259
cdaudio.i 8022 85 1500 71 1240 7 161 1243
parport.i 20698 213 5460 134 1859 21 351 2915
parclass.i 45283 219 2520 156 1324 16 392 2070

matlab.c 2033 - - 5 30 1 16 31
autopilot.i 3141 - - 206 894 14 450 1358

source code in PapaBench2. The results show that FSHELL scales well when moving
from basic block coverage to condition coverage. Experiments concerning more sources
and more complex queries can be found in [11].

6 Conclusion

In this paper, we introduced a query language for test case specification together with a
query solving backend based on bounded model checking. Our backend is based on two
new algorithms which guide the SAT solver to efficiently enumerate a test suite. Our
implementation FSHELL demonstrates the effectiveness and versatility of our approach.
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Abstract. We study price-per-reward games on hybrid automata with
strong resets. They generalise priced games previously studied and have
applications in scheduling. We obtain decidability results by a translation
to a novel class of finite graphs with price and reward information, and
games assigned to edges. The cost and reward of following an edge are
determined by the outcome of the edge game that is assigned to it.

1 Introduction

Hybrid Systems and Automata. Systems that exhibit both discrete and con-
tinuous behaviour are referred to as hybrid systems. Continuous changes to the
system’s state are interleaved with discrete ones, which may alter the constraints
for future continuous behaviours. Hybrid automata are a formalism for model-
ing hybrid systems [1]. Hybrid automata are finite automata augmented with
continuous real-valued variables. The discrete states can be seen as modes of
execution, and the continuous changes of the variables as the evolution of the
system’s state over time. The mode specifies the continuous dynamics of the
system, and mode changes are triggered by the changes in variable’s values.

Reachability [2,3,4,5] and optimal reachability [6,7] analysis for hybrid au-
tomata have been studied. In [6,8] the optimality of infinite behaviours is also
addressed.

Optimal Schedule Synthesis. Hybrid systems have been successfully applied to
modeling scheduling problems [9]. In this setting, an execution of the automaton
is a potential schedule. In [8], the authors equip timed automata, a subclass
of hybrid systems, with price and reward information. Each schedule comes at
a price, but provides a certain reward. The price-over-reward ratio can be seen as
a measure of how cost-effective the schedule is. A natural example of a reward is
time. In this case, price-per-time unit is being optimised. The problem that arises
is the synthesis of an optimal schedule, i.e., a schedule that minimises the price-
over-reward ratio. Reachability-price-per-reward analysis is used in the synthesis
of finite optimal schedules. When dealing with reactive behaviour, optimality of
infinite schedules becomes more important. Average-price-per-reward analysis,
where the average price-over-reward ratio of a single step in the execution is
optimised, is used in this context [8].
� This research was supported in part by EPSRC project EP/E022030/1.
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We follow this direction and study the problem in the context of hybrid au-
tomata with strong resets. Our research shares the same motivation, but both
the model and the techniques used differ. In [8] timed automata, a different
class of hybrid automata, is considered, and an abstraction technique, known
as “corner-point abstraction”, is used. We, on the other hand, use an abstrac-
tion, that was first proposed in [6], to reduce to price-reward graphs, that are
introduced in this paper.

Controller Synthesis. The designer of a system often lacks full control over its
operation. The behaviour of the system is a result of an interaction between
a controller and the environment. This gives rise to the controller synthesis
problem (first posed by Church [10]), where the goal is to design a program such
that, regardless of the the environment’s behaviour, the system behaves correctly
and optimally. A game-based approach was proposed in [11], and was applied
to hybrid automata [12,13] and timed automata [14]. There are two players,
controller and environment, and they are playing a zero-sum game. The game is
played on the hybrid automaton and consists of rounds. As usual, we use player
Min to denote the controller and player Max to denote the environment. In each
round, Min proposes a transition. In accordance with the game protocol, Max
can choose to perform this or another transition.

Determinacy and decidability are important properties of zero-sum games. A
determined zero-sum game has a value, and admits almost-optimal controllers
(strategies). A determined game is decidable if, given some some rational num-
ber, we can decide whether the value of the game is greater than the number.

Hybrid Games with Strong Resets. We are considering a subclass of hybrid
automata: hybrid automata with strong resets (HASR). In order to represent
the automaton finitely, we require that all the components of the system are
first-order definable over the ordered field of reals. The term “strong resets”
comes from the property of the system that all continuous variables are non-
deterministically reset after each discrete transition. As opposed to timed
automata, where flow rates are constant, and reseting of the variables upon
a discrete transition is not compulsory [2], HASR allow for rich continuous dy-
namics [4,12,13].

In the game setting, we allow only for alternating sequences of timed and
discrete transitions [12,13]. A timed transition followed by a discrete one will
be called a timed action. Allowing an arbitrary number of continuous transi-
tions prior to a discrete one, without the requirement of o-minimality, renders it
impossible to construct a bisimulation of finite index [15,16].

Contributions. We are considering average-price-per-reward games, where play-
ers are trying to optimise the average price-over-reward ratio of a timed action.
Our main result is that average-price-per-reward games are determined and de-
cidable. It is obtained through a reduction to games on finite price-reward graphs
(PRGs) introduced in this paper.

To reduce hybrid average-price-per-reward games to their counterparts on
PRGs we use the same equivalence as in [6]. However, there are two significant
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contributions with respect to [6]. Firstly, we are considering the average price-
over-reward ratio, whereas only average price per transition was considered in [6].
The first is significantly more complex. Secondly, we introduce a novel class of
finite graphs with price and reward information, and games assigned to edges
(PRG). In this paper we show that average-price-per-reward games on PRGs are
determined and decidable.

We believe that our results and technical developments concerning PRGs are
interesting in their own right. To characterise game values we use a technique,
referred to as optimality equations [6,14]. What is novel is that we use the values
of edge games to express optimality criteria in these equations. The proof that
solutions to the optimality-equations exist (and hence the games are determined)
relies on the properties of the equations, not of a particular game (on a PRG).
This makes us believe that our technique is robust, and can be used to solve
related games such as, reachability-price-per-reward. To show determinacy and
decidability we only need to express optimality criteria, for a given game on a
PRG, in terms of edge games’ values.

It is worth noting that our results can be easily extended to relaxed hybrid
automata [5], where the strong reset requirement is replaced by a requirement
that every cycle in the control graph has a transition that resets all the variables.
This extension can be achieved by a refinement of the equivalence relation and
a minor modification of the finite graph obtained from it. For clarity, we decided
against considering this more general model.

Organisation. Sec. 2 introduces the basic notions used throughout the paper, i.e.,
definability and decidability, zero-sum games, price-reward graphs, and average-
price-per-reward games together with their optimality-equation characterisation.
Sec. 3 contains the main technical contribution of the paper: that finite average-
price-per-reward games are determined, and that almost optimal controllers
exist. In Sec. 4 we state our main results: determinacy and existence of almost-
optimal controllers for hybrid average-price-per-reward games.

2 Preliminaries

Here, we introduce key notions that will be used further in the paper, such as
definability, decidability, and two-player zero-sum games on price-reward graphs.
In Sec. 2.3, we introduce average-price-per-reward games, and optimality equa-
tions as means of characterisation (Thm. 4).

Throughout the paper, R∞ denotes the set of real numbers augmented with
positive and negative infinities, and R+ and R⊕ denote the sets of positive and
non-negative reals, respectively. If G = (V,E) is a graph, then for a vertex v, we
write vE to denote the set {v′ : (v, v′) ∈ E} of its successors.

2.1 Definability and Decidability

Definability. Let M = 〈R, 0, 1,+, ·,�〉 be the ordered field of reals. We say that
a set X ⊆ Rn is definable in M if it is first-order definable in M. The first-order
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theory of M is the set of all first-order sentences that are true in M. A well-
known result by Tarski [17] is that the first-order theory of M is decidable.

Computability and Decidability. For a finite set A, we will say that (a, x) ∈ A×Rn

is rational if x ∈ Qn. Let f : X → R be a partial function, that is defined on
a set D ⊆ X ⊆ Rn. We say that f is approximately computable if there is an
algorithm that for every rational x ∈ D, and every ε > 0, computes a y ∈ Q
such that |y − f(x)| < ε. It is decidable if the following problem is decidable:
given a rational x ∈ D and rational c, decide whether f(x) � c.

We extend the notions of approximate computability, and decidability to func-
tions f : A×Rn → R, where A is finite, by requiring that f(a, ·) is respectively:
approximately computable, and decidable for every a ∈ A.

Proposition 1. If a function is decidable then it is approximately computable.

Proposition 2. If a real partial function is definable in M then it is decidable.

The purpose of the above definitions is to enable us to state conclusions of our
definability results. By no means should they be treated as a formalisation of
computation over the reals. For models of computing over the reals we refer the
reader to [18,19,20].

2.2 Zero-Sum Games

In this section we introduce zero-sum games in strategic form, price-per-reward
game graphs, and zero-sum price-reward games. Fundamental concepts such as:
game value, determinacy, decidability, and optimal strategies are introduced in
the context of games in strategic form, and are later lifted to price-reward games.
Although our results concern games on price-reward game graphs, the notion of
a game in strategic form will be important throughout the paper (for instance,
in the formulation of the optimality equations in Sec. 2.3).

Games in Strategic Form. A zero-sum game is played by two players: Min and
Max. Let ΣMin, ΣMax be the sets of strategies for players Min and Max respec-
tively. Let O be the set of outputs, and let ξ : ΣMin ×ΣMax → O be a function
that, given strategies of players Min and Max, determines the output of the
game. Finally let P : O → R, be the payoff function, which given an output deter-
mines the payoff. Player Min wants to minimise the payoff, whereas player Max
wants to maximise it. A zero-sum game � in a strategic form is given as 〈ΣMin,
ΣMax,O, ξ,P〉. We say that � is definable if all its components are definable. Re-
call that definability of a component implicitly implies that it is a subset of Rn.

We define the lower value Val∗(�) = supχ∈ΣMax infµ∈ΣMin P(ξ(µ, χ)) and the
upper value Val∗(�) = infµ∈ΣMin supχ∈ΣMax P(ξ(µ, χ)). Note that Val∗(�) �
Val∗(�), and if these values are equal, then we will refer to them as the value
of the game, denoted by Val(�). We will also say that the game is determined.
Note that, in the definitions above, we allow only pure strategies (i.e., elements
of strategy sets).

For all µ ∈ ΣMin, we define Valµ(�) = supχ′∈ΣMax P(ξ(µ, χ′)). Analogously,
for χ ∈ ΣMax we define Valχ(�) = infµ′∈ΣMin P(ξ(µ′, χ)). For ε > 0, we say
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that µ ∈ ΣMin is ε-optimal if we have that Valµ(�) � Val∗(�) + ε. We define
ε-optimality of strategies for Max analogously.

There are cases in which the desired payoff function is only partially defined
on the set of outputs. To remedy this, lower P∗ : O → R and upper P∗ : O → R
payoff functions are used. It is required that P∗ � P∗. Due to this generalisation,
the lower value, and the value of player Max’s strategy are defined using the lower
payoff, whereas the analogous definitions for the upper value and the value of
player Min’s strategy use the upper payoff.

Price-Reward Game Graphs. Let 〈S,E〉 be a directed graph and let SMin  SMax

be a partition of S. Let I be the set of inputs, and let ΘMin, ΘMax : E → 2I be
functions that to every edge, assign the sets of valid inputs. Finally, let π : E ×
I2 → R be a price function, and κ : E×I2 → R⊕ be a reward function. A price-
reward game graph Γ is given as a tuple 〈SMin, SMax,E, I, ΘMin, ΘMax, π, κ〉. It is
said to be definable if all its components are definable. When the payoff functions
are given, we will refer to Γ as a price-reward game.

Intuitively the game is played by moving a token, along the edges, from one
state to another. The states are partitioned between players Min and Max. The
owner of the state decides along which edge to move the token. The price (re-
ward) of an edge depends on the supplied inputs, one of each is chosen by Min
and the other one by Max. The game is played indefinitely. A payoff function
determines how the prices (rewards) of individual moves contribute to the over-
all value of a particular play. The players Min and Max are trying to minimise
and maximise (respectively) the value of the payoff function.

We write s→θ s
′ to denote a move, where e = (s, s′) ∈ E and θ ∈ ΘMin(e)×

ΘMax(e). The price of the move is π(e, θ) and the reward is κ(e, θ). A run is
a (possibly infinite) sequence of moves ρ = s0 →θ1 s1 →θ2 s2 · · · . The set of
all valid runs of Γ is denoted by Runs, and its subset of all valid finite runs by
Runsfin.

A state strategy of player Min is a partial function µS : Runsfin → E which is
defined on all runs ending in s ∈ SMin. A strategy is called positional if it can
be viewed as a function µS : SMin → E. Given an edge e, an e-strategy of player
Min is an element x ∈ ΘMin(e). An edge strategy µE of player Min is a function,
that to every edge e assigns an e-strategy.

A strategy µ of player Min is a pair (µS, µE) of state and edge strategies. We
denote the set of all strategies by ΣMin. We say that µ is positional if µS is
positional. We denote the set of all positional strategies by ΠMin. Strategies of
player Max are defined analogously.

Given strategies µ and χ of players Min and Max and some state s, we write
Run(s, χ, µ) to denote the run starting in s resulting from players playing ac-
cording to their strategies µ and χ.

Determinacy. Let P∗ : Runs → R and P∗ : Runs → R be the upper and lower
payoff functions. Typically, payoff functions are expressions involving prices and
rewards of individual transitions.

Given a state s, let �s = 〈ΣMin, ΣMax,Runs,Run(s, ·, ·),P∗,P∗〉. We say that
the game Γ is determined from s if Val∗(�s) = Val∗(�s), and positionally deter-
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mined if Val(�s) = infµ∈ΠMin Valµ(�s) = supχ∈ΠMax Valχ(�s). We say that Γ is
determined if it is determined from every state.

For simplicity we will write Val(s) rather then Val(�s), in the context of price-
reward games, so Val can be viewed as a partial function S → R.

Decidability. We will say that a price-reward game Γ is decidable if the partial
function Val : S → R is decidable. We emphasise that Val is a partial function
because Γ does not have to be determined from every state.

2.3 Average-Price-per-Reward Games

In this section, we introduce average-price-per-reward games, and provide a char-
acterisation of game values using a set of equations, referred to as optimality
equations. The key result is Thm. 4, which states that solutions to optimality
equations coincide with game values.

The results presented here are general, and will be applied to finite average-
price-per-reward games (Sec. 3) as well as to their hybrid counterparts (Sec. 4).
The fact that, in both cases, the game values are characterised using optimality
equations will be used in the proof of the reduction from hybrid games to finite
games (Sec. 4). Notions and arguments similar to those introduced here have
been used in the past [6,14]. We decided to state them in full detail, because
they form an important part of our reasoning and provide valuable insight.

The goal of player Min in the average-price-per-reward game Γ is to minimise
the average price-over-reward ratio in a run, and the goal of player Max is to
maximise it. We define the upper and lower payoff functions in the following
way:

P∗(ρ) = lim sup
n→∞

∑n
i=0 π(ei+1, θi+1)∑n
i=0 κ(ei+1, θi+1)

and P∗(ρ) = lim inf
n→∞

∑n
i=0 π(ei+1, θi+1)∑n
i=0 κ(ei+1, θi+1)

,

where ρ is an infinite run, si →θi+1 si+1 and ei = (si, si+1) for all i � 0.
To guarantee that the payoffs, as introduced above, are always well-defined

we introduce the notions of reward divergence and price-reward boundedness.
We say that Γ is Ω(f(n))-reward divergent if, for every run ρ, the function

n &→
∑n

i=0 κ(si, θi+1) is in Ω(f(n)). We assume that Γ is Ω(n)-reward divergent.
Linear (i.e., Ω(n)) reward divergence is required in the proof of Thm. 4. In the
remainder of the paper c > 0 will be the largest number such that, for every run
ρ, we have n &→

∑n
i=0 κ(si, θi+1) � c · n.

Additionally, we require that Γ is price-reward bounded, i.e., |π| < M and
|κ| < M for some M . This is necessary to assure that edge games, as introduced
below, are determined. Moreover, without loss of generality, we assume that the
games are non-blocking, i.e., there are no sink states.

The divergence requirement can be seen as a generalisation of the
non-zenoness requirement to rewards (as in [8]); we want to prevent runs that
admit finite rewards. Note that if the reward is simply time, then we get the
non-zenoness condition. Also note that one can can guarantee Ω(n)-reward di-
vergence by claiming that κ > c for some c > 0.
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Optimality Equations. Let Γ be a price-per-reward game. For every edge e,
we introduce a game �e(g) = 〈ΘMin(e), ΘMax(e), ΘMin(e) × ΘMax(e), id,Pe(g)〉,
where g is a real-valued parameter, and Pe(g) = π(e)− κ(e) · g. We will refer to
it as an edge game. Note that, for every e ∈ E and g ∈ R, we have that �e(g) is
determined and definable.

Let G,B : S → R such that the range of G is finite, and B is bounded.
We say that a pair of functions (G,B) is a solution of optimality equations for
Γ , denoted by (G,B) |= Opt(Γ ), if the following conditions hold for all states
s ∈ SMin:

G(s) = min
(s,s′)∈E

{G(s′)} (1)

B(s) = inf
(s,s′)∈E

{Val(�(s,s′)(G(s′))) +B(s′) : G(s) = G(s′)} (2)

and if analogous two equations hold for all states in SMax, with the only difference
that min is substituted by max and inf by sup. The two functions G and B are
called gain and bias respectively.

Remark 3. If Γ is definable then Opt(Γ ) is first-order expressible in M.

Theorem 4. If (G,B) |= Opt(Γ ) then for every state s ∈ S, the average-price-
per-reward game Γ from s is determined and we have Val(s) = G(s). Moreover,
for every ε > 0, positional ε-optimal strategies exist for both players.

Corollary 5. If there exists definable (G,B) such that (G,B) |= Opt(Γ ) and Γ
is definable, then positional ε-optimal strategies are definable.

The theorem and corollary follow from the following two lemmas and their proofs,
which imply that for all states s ∈ S, we have Val∗(s) ≤ G(s) and Val∗(s) ≥ G(s),
respectively.

Lemma 6. Let (G,B) |= Opt(Γ ). Then for all ε > 0, there is µε ∈ ΠMin such
that for all χ ∈ ΣMax and for all s ∈ S, we have P∗(Run(s, µε, χ)) ≤ G(s) + ε.

Lemma 7. Let (G,B) |= Opt(Γ ). Then for all ε > 0, there is χε ∈ ΠMax such
that for all µ ∈ ΣMin and for all s ∈ S, we have P∗(Run(s, µ, χε)) ≥ G(s) − ε.

We omit the proof of Lem. 7 as it is similar to the proof of Lem. 6.

Proof. We prove Lem. 6 by observing that, for every ε′ > 0, g ∈ R, and an edge e,
player Min can choose xe

ε′ ∈ ΘMin(e) such that Valx
e
ε′ (�e(g)) � Val(�e(g)) + ε′.

Moreover, for every state s ∈ SMin, player Min can choose an edge e = (s, s′)
such that:

G(s) = G(s′)
B(s) � Pe(G(s′))(xe

ε, y) +B(s′)− ε′, for all y ∈ ΘMax(e).

We will call this choice, of an edge and an edge strategy, ε′-optimal. It remains
to show that if, in every s ∈ SMin, µε(s) is a (c · ε)-optimal choice, then µε is
ε-optimal.
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Let ε > 0 and µε ∈ ΠMin be ε-optimal for every state, and let χ ∈ ΣMax

be arbitrarily chosen. If si →θi+1 si+1 is the i+ 1-th step of Run(s, µε, χ), then
G(si) � G(si+1). The range of G is finite, hence there is K ∈ N such that, for
all i � K, G(si) = g, where g = G(sK).

Let N � K. For i = K, . . . , N , the following holds, B(si) � Pe(g)(θi+1) +
B(si+1) − c · ε. If we sum up the N −K + 1 inequalities (Pe(g)(θ) = π(e, θ) −
κ(e, g) · g), we get:

N−1∑
i=K

B(si) �
N∑

i=K+1

π(ei, θi)− g ·
k∑

i=l+1

κ(ei, θi) +
N∑

i=K+1

B(si)− (N −K + 1) · c · ε

That simplifies to:

B(sK)−B(sN )∑N
i=K+1 κ(ei, θi)

+ g �

∑N
i=K+1 π(ei, θi)− (N −K + 1) · c · ε∑N

i=K+1 κ(ei, θi)

� P∗(Run(s, µε, χ))− ε

Recall that B is bounded, and that Γ is Ω(n)-reward divergent with a constant c
(which implies that ((N −K + 1) · c · ε)/

∑N
i=K+1 κ(ei, θi) � ε). This yields the

desired result. ��

3 Finite Average-Price-per-Reward Games

In this section we state (Thm. 8) and prove (Cor. 13) our technical results, i.e.,
that finite average-price-per-reward games are determined and decidable1.

To guarantee uniqueness of the constructions, and for technical convenience,
we fix a linear order on the states of the game graph. Given a subgraph S ⊆ Γ ,
min(S) denotes the smallest state in S.

Theorem 8. Finite average-price-per-reward games are positionally determined
and decidable.

We prove the theorem using the optimality-equation characterisation from
Sec. 2.3, and by showing that, in the case of finite price-reward graphs, solu-
tions to optimality equations exist.

Note that we can apply the results from Sec. 2.3 to finite graphs, because gain
and bias always have finite ranges.

Strategy Subgraphs. Let Γ be a price-reward game graph. Let µS be a positional
state strategy for player Min. Such a strategy induces a subgraph of Γ , where the

1 By finite we mean, that the directed graph 〈S, E〉 is finite.
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E relation is substituted by Eµ defined as Eµ = {(s, s′) : s ∈ SMin and µE(s) =
s′, or s ∈ SMax}. We denote this game graph by ΓµS .

A finite connected price-reward game graph of out-degree one is called a sun.
Such a graph contains a unique cycle, referred to as the rim. States which are
on the rim are called rim states and the remaining ones are called ray states.

Remark 9. If µ ∈ ΠMin, χ ∈ ΠMax, and Γ is a price-reward game graph,
then ΓµSχS is a set of suns.

Game Graphs of Out-Degree One. In price-reward game graphs of out-degree
one, strategies of both players are reduced to edge-strategies only. Without loss
of generality, we can assume that the price-reward game Γ is defined on a single
sun. We now provide a characterisation of upper and lower game values using
the values of the rim edge games.

Lemma 10. Let Γ be a price-reward game defined on a sun, and let e1, . . . , ek
denote the edges that form the rim of that sun. Given a parameter p ∈ R, the
following is true for every state s:

– If
∑k

i=1 Val(�ei(p)) � 0 then p � Val∗(s),
– If

∑k
i=1 Val(�ei(p)) � 0 then p � Val∗(s).

Strict inequalities on the left hand side imply strict inequalities on the right hand
side.

Proof. The proof is similar to that of Lemmas 6 and 7. We only sketch the proof
of the first statement, as the other is symmetric.

Let χ be a strategy of player Max such that it is c · ε-optimal for every edge
game �ei(p), for some ε > 0 and i = 1, . . . , k. If µ is a strategy of player Min,
then for every edge ei:

π(ei, χ(ei), µ(ei))− κ(ei, χ(ei), µ(ei)) · p+ ε � Val(�ei(p))

if we add up the k inequalities we get:

k∑
i=1

π(ei, χ(ei), µ(ei))−
k∑

i=1

κ(ei, χ(ei), µ(ei)) · p+ k · c · ε � 0

which gives: ∑k
i=1 π(ei, χ(ei), µ(ei))∑k
i=1 κ(ei, χ(ei), µ(ei))

+ ε � p

This, due to the arbitrary choice of ε and µ, finishes the proof. ��

Theorem 11. Solutions to optimality equations for average-price-per-reward
games on graphs of out-degree one exist.
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Proof. a finite average-price-per-reward game on a graph of out-degree one, and
let S be one of the suns. For every state, both the upper and lower values
are finite (recall that Γ is price-reward bounded and linearly reward divergent).
Using binary search, together with Lem. 10, it follows that they are indeed equal.

Let g be the value of the game on sun S. We set the gain of all states to g, and
the bias of min(S) to zero. The bias of the remaining states is set to the weight of
the shortest path to min(S), assuming Val(�e(g)) to be the weight on the edge e.
Gain and bias functions defined this way satisfy optimality equations. ��

General Case. We have proved that games on graphs of out-degree one are
determined. We will now use this result to prove determinacy in the general
case.

Let µS and χS be state strategies for players Min and Max respectively, and
let (G,B) be gain and bias functions such that (G,B) |= Opt(ΓµSχS). Given
s ∈ SMin and e = (s, s′) ∈ E \EµSχS , we say that e is an improvement of µS, with
respect to χS, if G(s) > G(s′), or G(s) = G(s′) and B(s) > Val(�e(G(s))+B(s′).
A strategy µ′S is an improvement of µS with respect to χS if for every state s,
either µS(s) = µ′S(s), or µ′S(s) = s′ and (s, s′) is an improvement of µS with
respect to χS. An improvement is strict if µS �= µ′S. An improvement of χS is
defined similarly.

We say that χS, a state strategy for player Max, is a best response to µS,
a state strategy of player Min, if there are no possible improvements of χS with
respect to µS.

To prove the existence of best response strategies we apply Thm. 12 and the
fact that the set of edge strategies is finite, to average-price-per-reward games,
in which all the states belong to only one player.

Theorem 12. Let µS be a state strategy of player Min, χS a best response strat-
egy of player Max, and (G,B) gain and bias such that (G,B) |= Opt(ΓµSχS).
If µ′S is an improvement of µS with respect to χS, χ′S is a best response to µ′S,
and (G′, B′) |= Opt(Γµ′Sχ′S), then the following holds for every state s:

1. G(s) < G′(s), or
2. G(s) = G′(s) and B(s) � B′(s).

Moreover, if µS �= µ′S then (G,B) �= (G′, B′).

Proof. Consider the game graph Γµ′Sχ′S . For every edge e = (s, s′), either i)
G(s) > G(s′), or ii) G(s) = G(s′) and B(s) � Val(�e(G(s))) +B(s′).

Using the same argument as in Lem. 6, we show that G � G′ for all cycles
in Γµ′Sχ′S , and that G > G′ for cycles that did not exist in ΓµSχS . This proves (1).

Let s be a vertex such that G(s) = G′(s), and let S be a sun in Γµ′Sχ′S such
that, s ∈ S. If s0, . . . , sk is the path from s to min(S) then, for every (si, si+1),
B(si) � Val(�(si,si+1)(G(s))) +B(si+1). If we sum up, the k inequalities, we get
that B(s) is no less then the weight of s0, . . . , sk, assuming Val(�(si,si+1)(G(s)))
to be the weight of edge (si, si+1), which in turn is equal to G′(s). ��

Corollary 13. Solutions to optimality equations for average-price-per-reward
games exist.
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Proof. The set of edge strategies for both players is finite. This, together with
Thm. 12, guarantees the existence of mutual best response edge strategies. The
rest follows from Thm. 11. ��

Theorem 14. Finite definable average-price-per-reward games are decidable.

Proof. Opt(Γ ) is finite hence (G,B) such that (G,B) |= Opt(Γ ), is definable
(by Rem. 3). ��

4 Games on Hybrid Automata with Strong Resets

We introduce hybrid automata with strong resets and define price-reward hybrid
games on these automata. The main result is that the hybrid average-price-per-
reward games are determined and decidable (Thm. 16). To obtain the result, we
reduce hybrid average-price-per-reward games to finite average-price-per-reward
games.

Our definition of a hybrid automaton varies from that used in [12,13], as we
hide the dynamics of the system into guard functions. This approach allows for
cleaner and more succinct notation and exposition, without loss of generality [6].

Price-Reward Hybrid Automata with Strong Resets. Let L be a finite set of
locations. Fix n ∈ N and define the set of states S = L × Rn. Let A be a finite
set of actions, and define the set of times T = R⊕. We refer to action-time
pairs (a, t) ∈ A × T as timed actions. A price-reward hybrid automaton with
strong resets (PRHASR) H = 〈L,A,G,R, π, κ〉 consists of finite sets L of locations
and A of actions, a guard function G : A → 2S×T, a reset function R : A → 2S,
a continuous price function π : S × (A × T) → R, and a continuous reward
function κ : S × (A × T) → R⊕. We say that H is a definable PRHASR if the
functions G,R, π, and κ are definable.

For states s, s′ ∈ S and a timed action (a, t) ∈ A × T, we write s a−→t s
′ iff

(s, t) ∈ G(a) and s′ ∈ R(a). If s, s′ ∈ S, τ = (a, t) ∈ A × T, and s a−→t s
′ then we

write s τ−→ s′. We define the move function M : S → 2A×T by M(s) = {(a, t) :
(s, t) ∈ G(a)}. Note that M is definable if G is definable. A run from state s ∈ S
is a sequence 〈s0, τ1, s1, τ2, s2, . . .〉 ∈ S × ((A × T) × S)ω such that s0 = s, and
for all i ≥ 0, we have si

τi+1−−−→ si+1.

Hybrid Games with Strong Resets. A hybrid game with strong resets (HGSR)
Γ = 〈H,MMin,MMax〉 consists of a PRHASR H = 〈L,A,G,R, π, κ〉, a Min-move
function MMin : S → 2A×T and a Max-move function MMax : S × (A × T) →
2A×T. We require that for all s ∈ S, we have MMin(s) ⊆ M(s), and that for all
τ ∈ MMin(s), we have MMax(s, τ) ⊆ M(s). W.l.o.g., we assume that for all s ∈ S,
we have MMin(s) �= ∅, and that for all τ ∈ MMin(s), we have MMax(s, τ) �= ∅.
If H and the move functions are definable, then we say that Γ is definable.

In the reminder of the paper, we consider price-reward HGSRs. For simplicity,
we refer to them as hybrid price-reward games or, when the price-reward aspect
is irrelevant, just hybrid games.
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A hybrid game is played in rounds. In every round, the following three steps
are performed by the two players Min and Max from the current state s ∈ S.

1. Player Min proposes a timed action τ ∈ MMin(s).
2. Player Max responds by choosing a timed action τ ′ = (a′, t′) ∈ MMax(s, τ).

This choice determines the price and reward contribution of the round
(π(s, τ ′) and κ(s, τ ′) respectively).

3. Player Max chooses a state s′ ∈ R(a′), i.e., such that s τ ′
−→ s′. The state s′

becomes the current state for the next round.

A play of the game Γ from state s is a sequence 〈s0, τ1, τ ′1, s1, τ2, τ ′2, s2, . . .〉 ∈
S× ((A×T)× (A×T)× S)ω , such that s0 = s, and for all i ≥ 0, we have τi+1 ∈
MMin(si) and τ ′i+1 ∈ MMax(si, τi+1). Note that if 〈s0, τ1, τ ′1, s1, τ2, τ ′2, s2, . . .〉 is a
play then the sequence 〈s0, τ ′1, s1, τ ′2, s2, . . .〉 is a run of the hybrid automaton H.

A hybrid game with strong resets can be viewed as a game on an infinite price-
reward game graph, with fixed costs and rewards assigned to edges. The set of
states S′ is a subset of: S ∪ (S× (A× T)) ∪ ((A× T)). The E′ relation is defined
as follows: (s, (s, τ)) ∈ E′ iff τ ∈ MMin(s), and ((s, τ), τ ′) ∈ E iff τ ′ ∈ MMax(s, τ),
and ((a′, t′), s′) ∈ E′ iff s′ ∈ R(a′).

We define Γ ′ = 〈S, S′ \ S,E′, π′, κ′〉, where for an edge e = ((s, τ), (a′, t′)), we
set π′(e) = π(s, t′) and κ′(e) = κ(s, t′), and for all other edges we set them to 0.
Additionally, we require that S′ \S contains all states reachable from S and does
not contain those that are not. In the defintion of Γ ′, we omitted the inputs, as
neither the prices nor the rewards depend on them.

Remark 15. For all (a, t), (a′, t′) ∈ S′, if a = a′ then (a, t)E′ = (a′, t′)E′. This is
a consequence of the strong reset property of H.

It is clear that plays of Γ directly correspond to runs on Γ ′. Moreover, any run
of Γ ′ uniquely determines a run of H. We will use this fact to, lift the concepts
introduced for price-reward games to hybrid price-reward games. We will say
that the hybrid game Γ has a property P if Γ ′ has this property.

Hybrid Average-Price-per-Reward Games. In the following, we lift the concept
of average-price-per-reward games, as defined in Sec. 2.3, to hybrid price-reward
games. We state and prove the main result of the paper:

Theorem 16. Average-price-per-reward hybrid games are positionally deter-
mined and decidable.

We prove the theorem through a reduction to finite average-price-per-reward
games. To obtain the corresponding finite price-reward graph we use an equiva-
lence relation on the state space of the hybrid automaton.

We define the lower and upper payoffs as follows. For a run ρ = 〈s0, τ1s1, τ2 . . .〉
of H, we define the lower payoff P∗ and the upper payoff P∗ by

P∗(ρ) = lim inf
n→∞

∑n−1
i=0 π(si, τi+1)∑n−1
i=0 κ(si, τi+1)

P∗(ρ) = lim sup
n→∞

∑n−1
i=0 π(si, τi+1)∑n−1
i=0 κ(si, τi+1)
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Note that these payoffs are exactly the same, as the average-price-per-reward
payoffs for runs starting in S ⊆ S′ in Γ ′ (we therefore require that Γ is Ω(n)-
divergent and price convergent). This enables us to use the optimality equation
characterisation and results from Sec. 2.3. Using Rem. 15 and the fact that A is
a finite set, we guarantee that gain has a finite range, and that bias is bounded.

We will also say that Opt(Γ ′) is the set of optimality equations for the hybrid
game Γ , denoted by Opt(Γ ). Let G,B : S ∪

(
S × (A × T)

)
∪ A → R. The

optimality equations for Γ ′ take the following form: if s ∈ S, then

G(s) = min
τ∈MMin(s)

{G(s, τ)}, (3)

B(s) = inf
τ∈MMin(s)

{B(s, τ) : G(s, τ) = G(s)}; (4)

if s ∈ S and τ ∈ MMin(s), then

G(s, τ) = max
(a′,t′)∈MMax(s,τ)

{G(a′)}, (5)

B(s, τ) = sup
(a′,t′)∈MMax(s,τ)

{π(s, a′, t′)− κ(s, a′, t′) ·G(a′) +B(a′) :

G(a′) = G(s, τ)}; (6)

and if a ∈ A

G(a) = max
s∈R(a)

{G(s)}, B(a) = sup
s∈R(a)

{B(s) : G(s) = G(a)}.

The last pair of equations is a generic pair of equations for all states (a, t) ∈ S′.
This is valid by Rem. 15. We have written the equations taking into account the
fixed price and rewards in Γ ′.

Solving Hybrid Average-Price-per-Reward Games. We show that hybrid average-
price-per-reward games are determined and decidable.

In order to establish our results, we use an equivalence relation over the state
space of the hybrid game Γ , as introduced in [6]. This relation is of finite in-
dex, and its equivalence classes are used to construct a finite price-reward game
graph Γ̂ .

We characterise the game values using optimality equations from Sec. 2.3,
and prove that solutions to Opt(Γ̂ ) coincide with the solutions to Opt(Γ ). This,
together with the results from Sec. 3 proves that hybrid average-price-per-reward
games are determined.

Recall the definition of equivalence relation ∼, and the details of the fi-
nite graph construction from [6]. We obtain the finite price-reward game graph
Γ̂ = (ŜMin, ŜMax, Ê, Î, Θ̂Min, Θ̂Max, π̂, κ̂) from Γ = (H,MMin,MMax) the follow-
ing way. The finite graph (Ŝ, Ê) is given by:

Ŝ = A ∪ S/∼ ∪ {(Q, a,A′) : Q ∈ S/∼ and (a,A′) ∈ AMinMax(Q,T)},
Ê = {(a,Q) : Q ⊆ R(a)} ∪ {

(
Q, (Q, a,A′)

)
: (a,A′) ∈ AMinMax(Q,T)}

∪ {
(
(Q, a,A′), a′

)
: a′ ∈ A′},
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and the partition of Ŝ is given by ŜMin = S/∼ and ŜMax = Ŝ \ ŜMin. The set of
inputs is Î = {�}∪ [S → A×T]∪S× [A×T → A×T] (� serves as a special input
for edges that will bear a fixed 0 price and reward). For an edge e = (Q, a,A′), let
Θ̂Min(e) ⊆ [Q→ A× T] be such that for every s ∈ Q and f ∈ Θ̂Min(e), we have
that f(s) ∈ MMin(s), and let Θ̂Max(e) ⊆ Q× [A × T → A × T] be such that for
every s ∈ Q, τ ∈ MMin(s) and (s, f) ∈ Θ̂Max(e), we have that f(τ) ∈ MMax(s, τ).
Let f ∈ Θ̂Min(e) and (s, f ′) ∈ Θ̂Max(e), we define the price (reward) of that
edge as π̂(e)(f, (s, f ′)) = π(s, f ′(f(s)) (κ̂(e)(f, (s, f ′)) = κ(s, f ′(f(s))). For the
remaining edges we set Θ̂Min and Θ̂Max to {�}, and their price (reward) to 0.

Theorem 17. Let Γ be a hybrid average-price-per-reward game and let (Ĝ, B̂) |=
Opt(Γ̂ ). If G,B : S ∪

(
S × (A × T)

)
∪ A → R are such that G(a) = Ĝ(a) and

B(a) = B̂(a) for all a ∈ A, and satisfy equations (3–6), then (G,B) |= Opt(Γ ).

Corollary 18. Definable average-price-per-reward hybrid games with strong re-
sets are decidable.
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Abstract. We present a methodology and implementation for verifying
ANSI-C programs that exhibit probabilistic behaviour, such as failures or
randomisation. We use abstraction-refinement techniques that represent
probabilistic programs as Markov decision processes and their abstrac-
tions as stochastic two-player games. Our techniques target quantitative
properties of software such as “the maximum probability of file-transfer
failure” or “the minimum expected number of loop iterations” and the
abstractions we construct yield lower and upper bounds on these prop-
erties, which then guide the refinement process. We build upon state-
of-the-art techniques and tools, using SAT-based predicate abstraction,
symbolic implementations of probabilistic model checking and compo-
nents from GOTO-CC, SATABS and PRISM. Experimental results show
that our approach performs very well in practice, successfully verifying
actual networking software whose complexity is significantly beyond the
scope of existing probabilistic verification tools.

1 Introduction

Software model checking techniques have become increasingly sophisticated in
recent years. Witness for example the success of the SLAM project, used to
identify bugs in Windows device drivers. This technology is based on predicate
abstraction [1] and counterexample-guided abstraction-refinement (CEGAR) [2],
which are used to construct increasingly precise finite-state abstractions of pro-
grams to either demonstrate the violation of a safety property (e.g. a buffer
overflow) or guarantee the absence of such faults.

In this paper, we present novel techniques for verification of software that
exhibits probabilistic behaviour, for example due to interaction with components
prone to failures or due to the use of randomisation. We target ANSI-C programs,
extending the language with two probabilistic functions: coin(p), which returns
1 with probability p and 0 with probability 1−p; and prob(n), which returns
an integer between 0 and n−1 uniformly at random. These provide a natural
way of modelling both failures (e.g. a function call to open a network connection
which fails with probability p) and randomisation (e.g. selecting a random pivot
to sort a list of n items). We also provide functions to model nondeterministic
behaviour, such as calls to underspecified procedures or program input.

Our approach is based on probabilistic model checking, a generalisation of
model checking for systems that exhibit stochastic behaviour. It is applied to
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Fig. 1. Abstraction-refinement loop for probabilistic programs

state transition systems augmented with probabilistic information, such as
Markov decision processes (MDPs). The properties to be verified are quantitative
in nature and, since MDPs model both probability and nondeterminism, relate
to best- or worst-case bounds on behaviour, e.g. “the maximum probability of
file-transfer failure” or “the minimum expected number of loop iterations”. Vari-
ous tools are available for probabilistic model checking, such as PRISM, MRMC
and LiQuor, and the techniques have been successfully applied to a wide range
of applications from security to biological modelling. They have yet, however, to
be used in the context of real programming languages.

We present a quantitative analogue of the well-known CEGAR loop (see Fig-
ure 1), which successively refines an abstraction of a concrete model until it is
sufficiently precise. The combination of probabilistic and nondeterministic be-
haviour is naturally modelled with MDPs. The underlying theory is based on
representing abstractions of MDPs as two-player stochastic games [3], which use
the two players to distinguish the nondeterminism of the concrete system and
that introduced during abstraction. We use SAT-based predicate abstraction
[4] to construct, from a concrete probabilistic program, an abstraction in the
form of a Boolean probabilistic program, whose semantics is the stochastic game
abstraction. Model checking the game [3] yields lower and upper bounds on a
quantitative property of the original MDP (such as “the minimum probability
that the program terminates successfully” or “the maximum expected number
of function calls during program execution”) and strategies (for the two players)
that achieve the bounds. Although the analysis does not yield counterexamples
(in the sense of a trace to an error state), the bounds and strategies provide both
a quantitative measure of the precision of the abstraction and, when necessary,
provide a means of refining the abstraction.

Related work. The closest work is [5], which proposes a CEGAR framework
for predicate abstraction of MDPs described in a simple guarded-command lan-
guage. This verifies or refutes properties of the form “the maximum probability
of error is at most p” for a probability threshold p. In [5], abstractions are also
MDPs (as proposed in [6]), and only upper bounds on maximum probabilities
are computed. So, to refute a property, probabilistic counterexamples [7] (com-
prising multiple paths whose combined probability exceeds p) are generated. If
these paths are spurious, they are used to generate further predicates using inter-
polation. Perhaps the most important distinguishing feature of our work is the
use of two-player games as abstractions. These provide lower and upper bounds,
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which avoids enumerating a set of paths, which can be large or even infinite
(resulting in non-termination). The bounds also enable a quantitative approach:
we target properties without thresholds such as “what is the maximum proba-
bility of error?”. A second important difference is that we use real programming
languages, rather than guarded-commands. Lastly, we also consider rewards.

Other abstraction-refinement techniques for probabilistic systems have been
proposed. In [6], abstractions of MDPs are refined by state-space partitioning
but, like [5], this yields only one-sided bounds. Magnifying lens abstraction [8]
partitions an MDP and analyses each one separately but, since it relies on build-
ing the full concrete model, even a symbolic implementation [9] is unlikely to
scale to real software. In [10], a counterexample-based abstraction-refinement
technique for planning problems is proposed; however, there is no implementa-
tion to test this on practical examples.

In [11], a framework is described for analysing probabilistic programs based
on expectation transformers, but this is not applied to real software and does
not include an automated step for refining abstractions. Another approach to
abstracting probabilistic models is to label transitions with intervals, e.g. [12],
but this has only been applied to models without nondeterminism. In earlier
work [13], we applied the game-based abstraction of [3] to predicate abstraction,
but not for source code and without refinement.

Another important direction for the verification of probabilistic software is
the extension of abstract interpretation to the probabilistic setting [14,15,16],
although these approaches have yet to be combined with refinement. Other ap-
proaches to the probabilistic verification of imperative languages include APEX
[17], which performs equivalence checking for a simple procedural language, and
the tool LiQuor [18], whose modelling language Probmela includes imperative
language style constructs. Neither approach uses abstraction.

Contributions. The precise contributions of this paper are the following:

– we present the first abstraction-refinement techniques for probabilistic sys-
tems that are specifically targeted at real programming languages;

– we describe a complete implementation of these techniques, built using state-
of-the-art tools and techniques, and demonstrate its applicability on several
real software case studies that cannot be verified with existing tools;

– we improve upon existing approaches by using game-based abstraction to
obtain both lower and upper bounds on quantitative properties.

2 Background

A probability distribution over a set S is a function λ : S → [0, 1] satisfying∑
s∈S λ(s)=1. Let dist(S) denote the set of all distributions over S. We use the

notation p1 : s1+· · ·+pn : sn for the distribution λ ∈ dist(S) such that λ(si) = pi.
For a set X , x ∈ X , λ ∈ dist(S) and Λ ∈ P(dist(S)), let x	λ ∈ dist(X×S) denote
the distribution where (x	λ)(x, s)=λ(s) and x	Λ denote the set {x	λ |λ ∈ Λ}.
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Definition 1 (Markov decision process). A Markov decision process (MDP)
is a tuple M = 〈S, Si, δ〉, where S is a set of states, Si ⊆ S are initial states and
δ : S → P(dist(S)) is a probabilistic transition function, which maps each state
to a finite, non-empty set of probability distributions over states.

An MDP’s behaviour is both probabilistic and nondeterministic. A transition
s−λ→s′ from state s is made by first nondeterministically selecting a distribution
λ ∈ δ(s), and then selecting a successor state s′ with probability λ(s′). A path is a
sequence of transitions. A state is reachable if there is a path to it from an initial
state. Under an adversary, which resolves all nondeterminism, we can define a
probability measure over paths [19]. For a target set F ⊆ S, we then define the
minimum and maximum probability, under any adversary, of reaching F from
state s, denoted p−

s (F) and p+
s (F) respectively. By also associating rewards

(non-negative real values) with transitions, we can also define the minimum and
maximum expected reward of reaching F .

Definition 2 (Abstract MDP). An abstract MDP is a tuple M̂ = 〈Ŝ, Ŝi, δ̂〉,
where Ŝ is a set of abstract states, Ŝi ⊆ Ŝ are initial abstract states and δ̂ :
Ŝ → P(P(dist(Ŝ))) is an abstract probabilistic transition function, which maps
each state to a set of sets of distributions over states.

The underlying semantics of an abstract MDP is a two-player stochastic game
[20]. A transition ŝ−〈Λ, λ〉→ ŝ′ includes two successive nondeterministic choices:
first, a set of distributions Λ ∈ δ̂(ŝ) is chosen by player 1; then, an element λ ∈ Λ
is selected by player 2. The successor ŝ′ is chosen with probability λ(ŝ′). Similarly
to MDPs, under strategies for players 1 and 2, which resolve all nondeterminism,
we can define a probability measure over paths. For target F̂ ⊆ Ŝ, we define
both the probability and expected reward of reaching F̂ from a state ŝ or choice
Λ when both players minimise, player 1 minimises and 2 maximises, player 1
maximises and 2 minimises and both maximise. For reachability probabilities,
we denote these p−−

ŝ (F̂), p−+
ŝ (F̂), p+−

ŝ (F̂) and p++
ŝ (F̂) respectively.

As proposed in [3], abstract MDPs are used to represent abstractions of MDPs.
The key idea is to separate the two forms of nondeterminism: the first choice
in a transition (player 1) represents nondeterminism caused by abstraction; the
second choice (player 2) corresponds to the nondeterminism of the original MDP.
For an MDP M, the construction of its abstraction is based on an abstraction
function α : S → Ŝ from concrete to abstract states. We lift α to distributions
and sets and in the obvious way, e.g. α(λ)(ŝ) =

∑
α(s)=ŝ λ(s).

Definition 3 (Abstraction of MDPs [3]). Given an MDP M = 〈S, Si, δ〉 and
abstraction function α : S → Ŝ, the abstraction of M under α is the abstract
MDP α(M) = 〈Ŝ, α(Si), δ̂〉 where for any ŝ ∈ Ŝ we have that Λ ∈ δ̂(ŝ) if and
only if there exists s ∈ S such that α(s)=ŝ and Λ=α(δ(s)).

The abstraction α(M) of M yields lower and upper bounds on probabilities and
expected rewards of M [3]. For example, for any s ∈ S and F ⊆ S:
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p−−
α(s)(α(F)) � p−

s (F) � p+−
α(s)(α(F))

p−+
α(s)(α(F)) � p+

s (F) � p++
α(s)(α(F))

Algorithms for computing these measures for MDPs and abstract MDPs can be
found in e.g. [21] and [22], respectively.

3 Probabilistic Programs

In this section, we define probabilistic programs . Since these are both probabilistic
and nondeterministic in nature, their semantics are given in terms of MDPs.

Let U denote a data universe, that is, the set of all possible data valuations.
Given an expression E over U and a valuation u ∈ U , E(u) denotes the evaluation
of E on u. For an l-value x and an expression E, u[x &→E] denotes the valuation
derived from u by setting x to E(u) and Type(x) the set of all values of the same
type as x. The set of commands CU over U consists of: conditional statements
[B], deterministic assignments x=E, probabilistic assignments i=coin(p) and
i=prob(n), nondeterministic assignments i=ndet(n) and i=ndet(), where B is
a Boolean expression over U , E is an expression over U , x is an l-value, i is
an integer l-value, p ∈ (0, 1) and n ∈ N. We use GOTO-CC [23] to transform
programs such that all expressions are side-effect free and all assignments are
type-consistent. The l-values in deterministic assignments can be of any valid
type, including pointers, structures and arrays.

Definition 4 (Probabilistic program). A probabilistic program P is a tuple
〈U , 〈V,E〉, vi,L〉 where U is a data universe, 〈V,E〉 is a finite directed (control-
flow) graph with initial vertex vi and L : E → CU labels edges with commands.

We assume that if an outgoing edge from a vertex v is labelled with a conditional,
then so are all other outgoing edges from v and, for each u ∈ U , precisely one
of these conditions holds. Any other vertex has only a single outgoing edge.
Therefore, each vertex is associated with a single type of command.

During program extraction function calls are inlined; thus we do not support
unbounded recursion. We also do not consider dynamic memory allocation or
floating point arithmetic. We assume a conventional model checker guarantees
the absence of any undefined behaviour, e.g. a null-pointer dereference, during
the evaluation of expressions and l-values. We deal with pointers through static
points-to analysis augmented with (dynamic) information using predicates [4].
The semantics of non-probabilistic commands are captured with transitions that
occur with probability 1.

Definition 5 (Probabilistic program semantics). Let P=〈U , 〈V,E〉, vi,L〉
be a probabilistic program. The semantics of P is the MDP [[P]]=〈V ×U , {vi}×
U , δ〉 where for any 〈v, u〉 ∈ V×U :

δ(v, u) =
{
v′	λ

∣∣ 〈v, v′〉 ∈ E, λ ∈ [[L〈v, v′〉]](u)
}
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bool fail = false;
int c = 0;

int main() {
1: c = num_to_send();
2: while (!fail && c>0) {
3: fail = send_msg();
4: c--;

}
5: assert(!fail);

}
int num_to_send() {

return ndet(3);
}
bool send_msg() {

return (coin(0.1)==1);
}

(a) (b) (c)

Fig. 2. Simple example: (a) C code; (b) probabilistic program; (c) MDP semantics.

and [[cmd]] : U→P(dist(U)) is the semantics of command cmd such that for u ∈ U :

[[[B]]](u) = {1 : u} if B(u) and ∅ otherwise
[[x=E]](u) = {1 : u[ x &→E(u) ]}

[[i=coin(p)]](u) = {(1−p) : u[i &→0] + p : u[i &→1]}
[[i=prob(n)]](u) = { 1

n : u[i &→0] + · · ·+ 1
n : u[i &→n−1]}

[[i=ndet(n)]](u) = {1 : u[i &→0], . . . , 1 : u[i &→n−1]}
[[i=ndet()]](u) = {1 : u[x &→val] | val ∈ Type(x)} .

Example 1. Figure 2 shows a fragment of C code, corresponding probabilistic
program and MDP semantics. The code comprises a loop which tries to send
c messages, c being obtained by calling num to send(), which nondeterministi-
cally returns 0, 1 or 2. A message is sent by calling send msg(), which fails with
probability 0.1. Once a transmission fails, the loop terminates. The maximum
probability of any transmission failing (i.e. of reaching control-flow location 5
with fail equal to true) is 0.19 and occurs when c is set to 2.

4 Abstraction of Probabilistic Programs

In practice, constructing the concrete semantics of all but the simplest programs
is intractable. Hence, in order to verify real programs, it becomes essential to
consider abstraction. We adopt the approach of [24] and use Boolean probabilistic
programs , which retain the same control-flow structure as their concrete coun-
terpart but abstract the concrete data universe U to a finite Boolean abstraction
induced by set of predicates (Boolean expressions) over U [1].

Definition 6 (Boolean probabilistic program). A Boolean probabilistic
program B is a tuple 〈Φ, 〈V,E〉, vi, T 〉 where Φ is a set of n (quantifier-free)
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predicates, 〈V,E〉 is a directed (control-flow) graph with initial vertex vi and
T : E→(Bn→P(P(dist(Bn)))) is an abstract probabilistic transition function.

The semantics of a concrete probabilistic program is an MDP; the semantics
of its abstraction, a Boolean probabilistic program, is an abstract MDP. Con-
ventional (non-probabilistic) Boolean programs are typically used to represent
existential abstractions [25] where both concrete and abstract semantic models
are labelled transition systems. In this case, a Boolean program can be seen as a
special instance of a (concrete) program. In our setting this does not hold since
the semantic models of concrete and abstract programs differ. Hence, we define
Boolean probabilistic programs directly in terms of a mapping T rather than
through commands (as we did with L for probabilistic programs).

Definition 7 (Boolean probabilistic program semantics). The seman-
tics of a Boolean probabilistic program B=〈Φ, 〈V,E〉, vi, T 〉 is the abstract MDP
[[B]]=〈V ×Bn, {vi}×Bn, δ̂〉 where n = |Φ| and for any 〈v, a〉 ∈ V×Bn :

δ̂(v, a) =
{
v′	Λ

∣∣ 〈v, v′〉 ∈ E, Λ ∈ T (v, v′)(a)
}
.

Given a probabilistic program P=〈U , 〈V,E〉, vi,L〉 and predicates Φ={φ1, . . . ,
φn} over the data universe U , we now show how to construct the corresponding
abstract Boolean probabilistic program. The abstraction function α : U → Bn

is given by α(u)=〈φ1(u), . . . , φn(u)〉; we lift α to distributions and sets and to
V×U by letting α〈v, u〉=〈v, α(u)〉. For any a = 〈b1, . . . , bn〉 ∈ Bn, let a[i] = bi.

Definition 8 (Abstraction of probabilistic programs). Given a probabilis-
tic program P=〈U , 〈V,E〉, vi,L〉 and set of predicates Φ with abstraction function
α, the abstraction of P under Φ is given by the Boolean probabilistic program
α(P)=〈Φ, 〈V,E〉, vi, T 〉 where for any e ∈ E and a ∈ Bn: Λ ∈ T (e)(a) if and
only if there exists u ∈ U such that α(u)=a and Λ=α([[L(e)]](u))�=∅.
Applying MDP abstraction (Definition 3) to the semantics of a concrete program
(Definition 5) yields the same abstraction as the Boolean program (Definitions 8
and 7). This is because, although Definition 8 applies the abstraction per control-
flow edge, there is no nondeterminism between edges in the concrete program.

Example 2. Figure 3(a) shows a representation of the Boolean probabilistic pro-
gram obtained by abstracting the program from Example 1 using predicates
fail and (c==0). We use φ=∗1 and φ=∗2 to describe the abstract probabilis-
tic transition function in which the value of the predicate φ is determined by
player 1 or player 2, respectively. For example, if a=〈b1, b2〉 ∈ B2 and λf , λt be
the distributions 1:(b1, f) and 1:(b1, t), then (c==0)=∗1 on edge e indicates that
T (e)(a) = {{λf}, {λt}}, whereas (c==0)=∗2 means that T (e)(a) = {{λf , λt}}.
Figure 3(b) shows the abstract MDP semantics of the Boolean probabilistic pro-
gram. Each abstract state is labelled with lower/upper bounds on the maximum
probability of reaching control-flow location 5 with variable fail equal to true.

SAT-based abstraction. In order to construct the abstraction of a probabilis-
tic program, we adopt the SAT-based techniques of [4], in which the basic idea is
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(a) (b) (c)

Fig. 3. Abstractions for Example 1: (a) & (b) Boolean probabilistic program and ab-
stract MDP for initial abstraction; (c) abstract MDP for refined abstraction

to construct the abstract transition relation for each edge of a program’s control-
flow graph by formulating it as a Boolean satisfiability problem. Each satisfiable
instance corresponds to an element of the transition relation; all such instances
can be enumerated efficiently by a SAT-solver. An important advantage of this
approach is that it allows a detailed bit-level semantics of the source code.

Our setting is slightly different: our abstractions are Boolean probabilistic
programs and so we construct abstract probabilistic transition functions, rather
than abstract transition relations. Despite this, fundamental similarities remain:
the use of Boolean programs means that the abstraction for each command can
be built in isolation; and the definition of abstraction can be phrased as an
existential satisfiability problem.

Consider a probabilistic program P=〈U , 〈V,E〉, vi,L〉 and set of n predicates
Φ. To construct the abstraction we need only construct the abstract probabilistic
transition function T (e) for each edge e ∈ E. Recall from Definition 8 that,
for each a ∈ Bn, T (e)(a) returns a set of probability distributions over Bn

where Λ ∈ T (e)(a) if and only if there exists u ∈ U such that α(u)=a and
Λ=α([[L(e)]](u))�=∅. We now formulate T (e) as a satisfiability problem whose
structure is dependent on the command labelling e.

Conditionals. If e is labelled [B], then [[L(e)]](u) equals {1:u} if B(u) and ∅ oth-
erwise, and hence Λ ∈ T (e)(a) if and only if Λ={1 :a} and:

∃u ∈ U .
(
α(u)=a ∧ B(u)

)
Deterministic Assignments. If e is labelled x=E, then [[L(e)]](u)={1:u[x &→E(u)]},
and hence Λ ∈ T (e)(a) if and only if Λ={1 : a′} for some a′ ∈ Bn such that:

∃u ∈ U .
(
α(u)=a ∧ α(u[ x &→E(u) ])=a′

)
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Probabilistic assignments. If e is labelled i=coin(p), then [[L(e)]](u)={(1−p) :
u[i &→0] + p : u[i &→1]}, and Λ ∈ T (e)(a) if and only if Λ={(1−p):a0 + p:a1} for
some a0, a1 ∈ Bn such that:

∃u ∈ U .
(
α(u)=a ∧ α(u[i &→0])=a0 ∧ α(u[i &→1])=a1

)
The case when e is labelled i=prob(n) follows similarly.

Nondeterministic assignments. If e is labelled i=ndet(n), then [[L(e)]](u) =
{1:u[i &→0], . . . , 1:u[i &→n−1]}, and therefore Λ ∈ T (e)(a) if and only if Λ={1 :
a0, . . . , 1 : an−1} for some a0, . . . , an−1 ∈ Bn such that:

∃u ∈ U .
(
α(u)=a ∧ α(u[i &→0])=a0 ∧ . . . ∧ α(u[i &→n−1])=an−1

)
Computing T (e) in this way for i=ndet(n) with large n can result in intractable
SAT formulas. The same is true if we adopt a similar approach for assignments
x=ndet(). So, for such commands, we make the assumption that T (e)(a) con-
tains a single set, Λ say. Since [[L(e)]](u) = {1 : u[x &→val] | val ∈ Type(x)}, we
have λ ∈ Λ if and only if λ=1 : a′ for some a′ ∈ Bn such that:

∃u ∈ U . ∃ val ∈ Type(x) .
(
α(u)=a ∧ α(u[ x &→val ])=a′

)
The above assumption holds if Φ can be partitioned into {Φx, Φ\Φx}, where
predicates in Φx refer only to x, and those in Φ\Φx are not influenced by x.
Fortunately, this case turns out to be sufficient in practice. Assignments of the
form x=ndet() typically model operating system calls that nondeterministically
succeed or fail and the actual values being assigned are irrelevant to the property
under consideration. The same assumption is used for i=ndet(n) with large n.

5 Abstraction Refinement

In order to make our abstraction techniques practically applicable, it is essen-
tial to develop refinement techniques that can automatically construct an ab-
straction which is sufficiently precise for verification but also small enough for
efficient analysis. In conventional CEGAR approaches, this is based on the gen-
eration of counterexamples (paths to an error state), which are either feasible
(i.e. a concretisation exists and the safety property is refuted) or spurious (in
which case, the counterexample is used to generate additional predicates for
refinement).

The crucial difference in our setting is that model checking is quantitative: our
aim is not just to establish the absence/existence of a path to a target, but rather
to compute quantitative properties, e.g. the minimum probability or maximum
reward of reaching a target. The abstraction-refinement loop we propose (as
illustrated earlier in Figure 1) is based on iterative refinement of an abstraction
(an abstract MDP) until the lower and upper bounds for the property of interest
differ by less than some threshold ε. In this section, we describe how the abstract
MDP yields predicates that can be used to refine the abstraction.
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Predicate discovery. We describe the case for maximum probabilities (the
process for minimum probabilities and expected rewards is identical). Therefore
suppose we have a probabilistic program P = 〈U , 〈V,E〉, vi,L〉, target F ⊆ V×U
and predicates Φ with abstraction function α such that α(P) is not sufficiently
precise for some initial state, i.e. there exists a ∈ Bn such that:

p++
〈vi,a〉(α(F)) − p−+

〈vi,a〉(α(F)) > ε . (1)

Recall that model checking the abstraction α(P) also yields strategies that
achieve the lower and upper bounds. A strategy tells us how nondeterminism
is resolved, i.e. it gives for each abstract state 〈v, a〉 an element Λ of δ̂〈v, a〉 in
the abstract MDP. Each such choice Λ encodes a subset of the concrete states
represented by 〈v, a〉, namely the set {〈v, u〉 ∈ V×U |α(u)=a, α(δ〈v, u〉)=Λ}.

Based on results from [3,26], the inequality in (1) guarantees that there exists
an abstract state 〈s�, a�〉 and distinct choices Λ− and Λ+ made by lower and
upper bound strategies in 〈s�, a�〉 such that either p−+

Λ− (α(F)) < p−+
Λ+ (α(F))

or p++
Λ− (α(F)) < p++

Λ+ (α(F)). We call 〈s�, a�〉 a refinable state. Our aim is to
eliminate the choice between Λ− and Λ+, through a predicate that separates the
concrete states corresponding to these two choices. For example, if p−+

Λ− (α(F)) <
p−+

Λ+ (α(F)), then choosing Λ+ makes the lower bound higher. Hence we can
improve the lower bound of the states encoded by Λ+ by eliminating the choice.

Below, we describe how to generate a new predicate, based on the command
associated with the control location of the refinable state 〈v�, a�〉. By construc-
tion, v� either has one or more outgoing edges labelled with conditionals or a
single outgoing edge 〈v�, v〉 labelled with an assignment.

Conditionals. If the outgoing edges of v� are conditionals, then Λ−={1:〈v−, a�〉}
and Λ+={1:〈v+, a�〉} for some distinct v− and v+ such that 〈v�, v−〉 and 〈v�, v+〉
are labelled with conditionals ([B−] and [B+] say). We add B− to Φ. By assump-
tion on probabilistic programs, at most one of B− and B+ is satisfiable in the
concretisations of an abstract state, eliminating the choice between Λ− and Λ+.

Deterministic Assignments. If 〈v�, v〉 is labelled x=E, then Λ−={1:〈v, a−〉} and
Λ+={1:〈v, a+〉} for some a−, a+ ∈ Bn. Since Λ− and Λ+ are distinct there exists
a predicate φi ∈ Φ such that a−[i]�=a+[i]. We add the predicate WP(φi, x=E).
By definition, this predicate is satisfied if, after executing the assignment x=E,
φi holds, i.e. WP(φi, x=E)(u) if and only if φi(u[ x &→E ]). If 〈v�, u−〉 is encoded
by Λ−, then α(u−[ x &→E ])=Λ−, and hence φi(u−[ x &→E ]) if and only if a−[i].
A similar argument holds for states encoded by Λ+. As a−[i]�=a+[i], the new
predicate is either satisfied by all states encoded by Λ− and none by Λ+ or vice
versa, and therefore WP(φi, x=E) eliminates the choice between Λ− and Λ+.

Probabilistic assignments. If 〈v�, v〉 is labelled i=coin(p), then, Λ− and Λ+ are
of the form {(1−p):〈v, a−0 〉 + p:〈v, a−1 〉} and {(1−p):〈v, a+0 〉 + p:〈v, a+1 〉}. Since
Λ− �=Λ+, there exists φi ∈ Φ such that a−j [i]�=a+j [i] for some 0�j�1 and we add
WP(φi, x=j) to Φ which, by similar arguments to above, removes the choice be-
tween Λ− and Λ+. The case when 〈v�, v〉 is labelled i=prob(n) follows similarly.
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Nondeterministic assignments. By construction an assignment x=ndet() consists
of a single choice, hence 〈v�, v〉 cannot be labelled x=ndet(). If 〈v�, v〉 is labelled
i=ndet(n), then Λ− and Λ+ are of the form {1:〈v, a−0 〉, . . . , 1:〈v, a−n−1〉} and
{1:〈v, a+0 〉, . . . , 1:〈v, a+n−1〉} respectively. Since Λ− �=Λ+, there exists φi ∈ Φ such
that a−j [i]�=a+j [i] for some 0�j�n−1 and we add the predicate WP(φi, x=j).

As in conventional CEGAR, our method is incomplete due to the use of WP-
based abstraction refinement [27]. However, as we will show later, our approach
successfully finds suitable abstractions in practice.

Example 3. Consider the program of Example 1 and the abstraction from Ex-
ample 2 (Figures 3(a) and 3(b)). The abstract state (4 f,f) is the only one with
both a player 1 choice and differing bounds (0 if branching right to (2 f,t)
and 0.1 if branching left to (2 f,f)), i.e. it is the only possible refinable state.
The command for control-flow vertex 4 is the deterministic assignment c=c−1
and the predicate (c==0) differs between (2 f,t) and (2 f,f) so our new predi-
cate is WP((c==0), c=c−1), i.e. (c==1). The abstraction under the predicates
fail, (c==0), (c==1) is shown in Figure 3(c). We see that the bounds on the
maximum probability for the initial state have tightened from [0.1, 1] to [0.19, 1].
A further refinement (on the same control-flow vertex) would result in an ab-
straction equivalent to the original MDP, yielding exact bounds [0.19, 0.19].

Extensions. We investigate several extensions to the refinement loop.

Refinable state selection. Our refinement scheme can be applied to any refinable
state 〈v�, a�〉. Hence, we consider two heuristics for choosing a refinable state:
“maximum error” (pick a state with the greatest difference in lower and upper
bounds, aiming to refine the abstraction where it is least precise); “nearest”
(pick a state closest to the initial states). In addition, since model checking an
abstract MDP (which determines the refinable states) is relatively expensive, we
consider refining multiple states within a single iteration of the refinement loop.

Avoiding unreachable states. Although a refinable state 〈v�, a�〉 is always reach-
able in the abstract MDP, there is no guarantee that any concretisation of 〈v�, a�〉
is reachable in the concrete MDP. Hence, refining 〈v�, a�〉 could add unneces-
sary complexity to the abstraction. To avoiding this, we employ spurious path
removal : we find an abstract path to 〈v�, a�〉 and use SAT-based symbolic sim-
ulation to check if a concretisation of the path exists. If not, in addition we use
conventional weakest precondition-based refinement to eliminate the path.1

Predicate initialisation. Conventional (non-probabilistic) CEGAR can be used to
check the existence of a path to the target. The predicates generated during this
process are likely to form a subset of those found by our refinement approach and
can potentially be discovered more efficiently in this fashion. Hence, we consider
employing existing efficient CEGAR tools to generate an initial set of predicates.

1 This approach cannot guarantee to detect if 〈v�, a�〉 is unreachable, since doing so
amounts to fully verifying a safety property with conventional CEGAR tools.
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Predicate localisation. It is well known that successful implementations of predi-
cate abstraction compute abstractions efficiently because they keep the number
of relevant predicates small, e.g. by exploiting locality [28]. We apply similar ideas
to our approach, only adding discovered predicates to locations where they are
required, based on a backwards control-flow traversal from the refinable state.
This also allows us to take an incremental approach to building the abstraction,
reusing the previous abstraction for locations with no new predicates.

6 Implementation and Results

We have built a complete implementation of the techniques described. Model
extraction from C code is done using an extension of GOTO-CC [23]. Predicate
abstraction was implemented using components from the SATABS tool [29] and
MiniSAT SAT solver. Model checking of stochastic games is done with extensions
of the symbolic engines of the probabilistic model checker PRISM [30].

We illustrate the practicality of our approach by studying its performance on
several case studies. We consider two networking utilities: an ICMP ping client
and a TFTP client.2 Both are approximately 1KLOC in size and feature complex
programming constructs such as arrays, pointers and function pointers. Low-
level kernel and networking functions are replaced with stubs whose behaviour is
either probabilistic (e.g. opening a socket) or nondeterministic (e.g. user input).
We also consider ANSI-C versions of several protocols used as probabilistic model
checking benchmarks: Herman’s self-stabilisation (from APEX [17]), Zeroconf
and the Bounded Retransmission Protocol. All programs are available3 and the
properties verified for each are listed in Figure 4.

We ran experiments for several different configurations of the options de-
scribed in the previous section (“maximum error” and “nearest” refinable state
selection; with and without spurious path removal and predicate initialisation).
Table 1 presents detailed statistics for the fastest verification run on each ex-
ample; Table 2 compares the different configurations. All experiments were run
on an Intel Core Duo 2 (T7200) with 2GB RAM. The CEGAR loop terminated
when the (relative) error was below ε=10−4. All timings are in seconds.

Overall performance. The results demonstrate that our method verifies a wide
range of programs and quantitative properties in an efficient and fully auto-
matic manner. This is particularly impressive for the more complex ping and
TFTP utilities. The tables show that the number of refinement iterations and
predicates are relatively low. The difference between the total and average num-
bers of predicates indicates that the use of predicate localisation is essential.
With regards to timings (Table 1), we see that abstraction and refinement are
in most cases efficient, whereas the model checking phase is the most expensive.
One reason for this is that the numerical solution process is relatively expen-
sive (compared to the model checking required in conventional, non-probabilistic

2 Based on based on GNU Inetutils 1.5 and TFTP-HPA 0.48, respectively.
3 All programs are available at www.prismmodelchecker.org/files/vmcai09/.
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Fig. 4. List of properties verified

Table 1. Experimental results: detailed results for fastest verification run

refinement predicates timing breakdown total
iterations total (avg.) init. abstr. check refine time

pi
ng

A 4 33 (7.82) 56% 15% 27% 2% 15.5
B 31 45 (9.27) - 48% 45% 7% 87.2
C 12 16 (2.73) - 17% 68% 15% 5.37

tf
tp

A 11 39 (10.7) 32% 15% 48% 5% 57.8
B 28 51 (12.0) - 46% 45% 9% 96.5
C 22 35 (9.22) - 17% 75% 8% 64.4

he
r A 18 24 (7.08) - 17% 82% 1% 33.5

B 2 40 (11.1) 7% 2% 91% <1% 259

zc
nf A 9 11 (3.94) - 9% 85% 6% 1.97

B 9 10 (3.81) 4% 10% 77% 9% 1.43

br
p A 5 6 (6.00) - 50% 31% 19% 0.71

B 7 7 (7.00) - 44% 44% 12% 1.34

CEGAR) and is performed twice (for the lower and upper bound). Also, due to
predicate localisation, abstractions can be constructed incrementally.

Extensions. Table 2 shows the performance of the configurable options of our
implementation. 4 For refinable state selection, although neither policy for choos-
ing a refinable state is consistently better, “nearest” seems the sensible default
as there are several cases where it is significantly faster. In particular, the “max-
imum error” policy for property B of the ping utility takes over an hour due
to repeatedly choosing refinable states with no reachable concretisations. This
problem is successfully resolved using spurious path removal. However we see
that, in several cases, this produces a significant slow-down. This is because, al-
though symbolic simulation itself is relatively fast, the predicates it adds result
in slower model checking times. The situation is worse for the “maximum error”
policy as the generated paths are longer and give more predicates. Employing

4 Since refining multiple refinable states did not yield significant improvements in
performance, we have omitted the results for this extension.
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Table 2. Experimental results: comparison of techniques. Timeout ‘-’ is 1 hour.

predicate initialisation (through SATABS), increases efficiency on several exam-
ples. Often in cases where it performs best (e.g. property A of the ping and
TFTP utilities), there are relatively few paths to the target state, so refining
based on a single path is productive. On examples with a large number of such
paths, using the game-based refinement alone performs better. In particular, for
property B of BRP, predicate initialisation is very slow because the target is
only reachable through very long paths but our method only needs to consider
a small number of loop iterations for sufficiently tight bounds.

Related tools. Finally, we briefly compare our implementation with some related
tools. Although a direct comparison with [5] is not possible (due to the difference
in input language), we note that property A of BRP (called p4 in [5]) takes under
a second here and about 5 seconds in [5] on a comparable machine. Also, we
obtain sufficiently tight bounds discovering 6 predicates, compared to 25 in [5]. In
[17], the Herman case study is tested on the APEX tool but the focus is different
(contextual equivalence) and no times are given. PRISM [30] can be applied to
the last three case studies and is faster, but only by using manually constructed
abstractions. The more complex programs, the ping and TFTP utilities, are
significantly beyond the scope of PRISM.

7 Conclusions

We have presented a novel abstraction-refinement method for verification of
software with probabilistic behaviour. Our approach uses two-player stochastic
games, SAT-based predicate abstraction and probabilistic model checking. The
use of game-based abstractions allows us to compute lower and upper bounds on
quantitative properties, which form the basis of our abstraction-refinement loop.
We have demonstrated the applicability of our approach by successfully verifying
a selection of case studies, including several complex programs well beyond the
reach of state-of-the-art probabilistic model checkers such as PRISM.
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We plan to extend this work in several directions. These include investigating
the use of imprecise abstractions, an approach frequently take in conventional
software verification to improve efficiency, and developing techniques to handle
probabilistic choices over larger ranges. We also hope to improve the way in
which loops are dealt with. Currently, the abstractions we construct include an
explicit representation of the loop, which is required to compute, for example,
the probability of the loop terminating. We plan to investigate the use of existing
techniques such as ranking functions to improve efficiency in this area.
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Abstract. This paper describes the methods used in Empire, a tool
to detect concurrency-related bugs, namely atomic-set serializability vi-
olations in Java programs. The correctness criterion is based on atomic
sets of memory locations, which share a consistency property, and units
of work, which preserve consistency when executed sequentially. Empire
checks that, for each atomic set, its units of work are serializable. This
notion subsumes data races (single-location atomic sets), and serializ-
ability (all locations in one atomic set).

To obtain a sound, finite model of locking behavior for use in Em-
pire, we devised a new abstraction principle, random isolation, which
allows strong updates to be performed on the abstract counterpart of
each randomly-isolated object. This permits Empire to track the sta-
tus of a Java lock, even for programs that use an unbounded number of
locks. The advantage of random isolation is that properties proved about
a randomly-isolated object can be generalized to all objects allocated at
the same site. We ran Empire on eight programs from the ConTest
benchmark suite, for which Empire detected numerous violations.

1 Introduction

This paper describes the methods used in Empire, a tool to detect atomic-set
serializability violations in concurrent Java programs. Atomic-set serializability
[1] is a data-centric correctness criterion for concurrent programs. It is based
on the notion of an atomic set of memory locations, which specifies the exis-
tence of an invariant or consistency property. Associated with atomic sets are
units of work, which preserve atomic-set consistency when executed sequentially.
Atomic-set serializability means that, for each atomic set, its units of work are
serializable, where an execution is serializable if it is equivalent to a serial exe-
cution in which each thread’s units of work are executed with no interleavings
from other threads.

Atomic-set serializability subsumes other correctness criteria for concurrent
systems, such as data-race freedom (single-field atomic sets), and serializability
(all fields in one atomic set). Such other criteria ignore the intended relationships
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that may exist between shared memory locations, and thus may not accurately
reflect the intentions of the programmer about correct behavior.

Empire is a tool to statically detect atomic-set serializability violations
(henceforth referred to as “violations”) in concurrent Java programs. A key chal-
lenge that we faced was how to create a sound, finite model of a Java program’s
locking behavior that is capable of tracking the status of a Java lock, for pro-
grams that use an unbounded number of locks. To address this issue, we devised
a new abstraction principle, random isolation, which has two key advantages:

1. It allows strong updates to be performed on the abstract counterparts of each
randomly-isolated object, which permits Empire to track the status of the
Java lock associated with a randomly-isolated object.

2. It allows properties proved about a randomly-isolated object to be general-
ized to all objects allocated at the same site.

Empire is based on the result that executions that are not atomic-set serial-
izable can be characterized by a set of problematic interleaving scenarios [1]: an
execution that is free of all of these scenarios is guaranteed to be atomic-set se-
rializable.1 In Empire, a problematic interleaving scenario with respect to a set
of shared memory locations is used as an input specification to a model checker.
Specifically, Empire translates a concurrent Java program into a communicat-
ing pushdown system (CPDS) [2,3], and translates the scenario into a violation
monitor that checks for the occurrence of the scenario, and runs concurrently
with the other CPDS processes. Once the translation is performed, the generated
CPDS is fed into a CPDS model checker [3].

Previous work [1] addressed the inference of synchronization and appropriate
placement of locks, given annotations for atomic sets and units of work. A second
paper [4] focused on legacy code and checking whether an existing multi-threaded
program is appropriately synchronized, by dynamically detecting the occurrence
of problematic interleaving scenarios. The work on Empire complements these
other approaches by providing a method to statically check Java programs for
problematic interleaving scenarios. Empire’s checking algorithm uses the CPDS
model checker’s semi-decision procedure to (symbolically) consider multiple exe-
cutions of the program. This is in contrast with the dynamic-detection approach
[4], which only looks at one execution at a time.

Empire has two modes of operation. For code that satisfies certain proper-
ties,1 it can verify the absence of violations. If the properties are not met, then
it can miss errors, and thus operates as a bug detector, rather than a verification
tool. The contributions of our work can be summarized as follows:

– We introduce a new abstraction principle, random isolation, which allows
strong updates to be performed on the abstract counterparts of each
randomly-isolated object. With this approach, properties proved about a
randomly-isolated object can be generalized to all objects allocated at the

1 This result relies on an assumption that programs do not always satisfy: a unit of
work that writes to one location of an atomic set, writes to all locations in that
atomic set.
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same site. Random-isolation is a generic abstraction that should be appli-
cable in many other contexts, such as typestate verification [5] and other
temporal-safety analyses for object-oriented programs.

– We present a static technique for detecting atomic-set serializability vio-
lations in concurrent Java programs. The method uses random isolation to
obtain a sound, finite model of locking behavior that, in many circumstances,
is able to track the status of a Java lock precisely, even for programs that
use an unbounded number of locks.

– We implemented these techniques in Empire, and ran Empire on eight
programs from the ConTest benchmark suite[6], for which Empire detected
numerous violations, including ones involving multiple locations.

2 Overview

Fig. 1 is a simple Java program inspired by one of the ConTest programs [6].
There are two classes, Shop and Client. The intention of the programmer is
that the method Client.buy() executes atomically, so that when getItem()
is called on the parameter Shop s, s is non-empty. However, this intention is
not implemented correctly: method buy() is synchronized on this and not on
s, hence multiple clients of the same shop could interleave. Fig. 1 shows an
interleaved program execution illustrating this concurency-related bug. After
thread 2 finishes the call to getItem(), the field items is −1, which leads thread
1 to access the array storage with a negative index. This problem can be fixed
by taking a lock on s in the body of buy(). Notice that there is no data race in
this program, so traditional race detectors would not catch this bug.

This concurrency-related bug is an instance of an atomic-set-serializability
violation. In this code, fields items and storage form an atomic set: they are
meant to be updated atomically due to a consistency property. Each method
of class Shop is a unit of work for this atomic set: when executed sequentially,
it preserves the consistency property. In addition, the buy() method of Client
must manipulate the parameter Shop s atomically. It is therefore a unit of work
for the atomic set of s. The interleaved execution of Fig. 1 shows that the
two units of work representing the method buy() are not serializable: i.e., the
execution may produce a final state different from that of any serial execution
of the two methods.

Atomic-set serializability is characterized by a set of problematic interleaving
scenarios: i.e., an execution that does not contain any of the scenarios is atomic-
set-serializable. In the example, the interleaved execution contains the following
problematic scenario: R1(l1),W2(l2),W2(l1), R1(l2), where l1 (l2) is bound to
i (s). (See [1] for a complete list of these scenarios.) Notice that atomic-set-
serializability is finer-grained than most notions of serializability because it is
per atomic set, rather than embracing the whole heap.

Empire detects atomic-set-serializability violations by statically checking for
problematic interleaving scenarios. The user provides a concurrent Java program
Prog, and specifies an allocation site ψ for a class T in Prog. (This is exemplified
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class Shop {
Object[] storage = new Object[10];
int items = -1;
public static Shop makeShop(){

return newψ Shop(); // ←− ψ
}
public synchronized Object getItem(){

Object res = storage[items];
storage[items--] = null;
return res;

}
public synchronized void put(Object o){

storage[++items] = o;
}
public synchronized boolean empty(){

return (items == -1);
}

}

class Client {
public synchronized boolean buy(Shop s){
if(!s.empty()) { s.getItem(); return true; }
else return false;

}
public static Client makeClient(){
return new Client();

}
public static void main(String[] args){
Shop shop1 = Shop.makeShop();
Shop shop2 = Shop.makeShop();
Client client1 = makeClient();
Client client2 = makeClient();
new Thread("1") { client1.buy(shop1); }
new Thread("2") { client2.buy(shop1); }

}
}

1:

buy()
z }| {

empty()
z }| {

R1(i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

getItem()
z }| {

R1(i)R1(s)R1(i)W1(s)W1(i)

2: . . . . . . . . R2(i)
| {z }

empty()

R2(i)R2(s)R2(i)W2(s)W2(i)
| {z }

getItem()
| {z }

buy()

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. 1. Example Program. R and W denote a read and write access, respectively. i and
s denote fields item and storage, respectively. Subscripts are thread ids.

by the newψ statement in Fig. 1 for the class Shop.) Empire uses the default
assumptions of [4]: T has one atomic set containing all of T ’s declared fields (one
atomic set per object), and every public method of T is a unit of work for that
atomic set. Additionally, any method that takes a T object as a parameter is
also a unit of work. Empire then performs violation detection, focusing on the
atomic sets of objects that can be allocated at ψ.

Empire performs violation detection in four stages. First, a source-to-source
transformation is applied to the (potentially) infinite-data program Prog to pre-
pare it for abstraction, obtaining a program Prog∗ (§3). Second, a finite-data
abstraction is created for translating Prog∗ into Empire’s intermediate model-
ing language EML (§4). Third, from this EML program, Empire generates CPDSs
to model the program and monitor for problematic interleaving scenarios (§5).
Fourth, state-space exploration is carried out on the generated CPDSs.

The challenge is to design a finite-data abstraction such that (i) the set of
behaviors of the abstracted program is a sound overapproximation of the set of
behaviors of the original Java program, and (ii) the abstraction is able to disallow
certain thread interleavings by modeling the program’s synchronization.

A natural choice for a finite-data abstraction is the allocation-site abstrac-
tion [7]. Given an allocation site ψ for class T , let Conc(ψ) denote the set of
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all concrete objects of type T that can be allocated at ψ. The allocation-site
abstraction uses a single abstract object ς�ψ to summarize all of the concrete
objects in Conc(ψ). Thus, for each field f defined by T , field ς�ψ .f is a summary
field for the set of fields {ς.f | ς ∈ Conc(ψ)}. Because the program has a finite
number of program points, and each class defines a finite number of fields, this
results in a finite-data abstraction.

For such an approach to be sound, an analysis generally has to perform weak
updates on each summary object. That is, information for the summary object
must be accumulated rather than overwritten. A strong update of the abstract
state generally can only be performed when the analysis can prove that there is
exactly one object allocated at ψ, i.e., |Conc(ψ)| = 1.

Violation detection is concerned with tracking reads and writes to the fields of
the T objects allocated at ψ. The allocation-site abstraction is a sound overap-
proximation for modeling reads and writes because a read (write) to the abstract
field ς�ψ.f corresponds to a possible read (write) to ς.f , for all ς ∈ Conc(ψ).

Violation detection must also model program synchronization. Empire ac-
complishes this by defining locks in the EML program that correspond to the
objects of Prog∗. There are two possibilities for defining the semantics of an EML
lock. The first is to interpret a lock acquire as a strong update, i.e., the program
has definitely acquired a particular lock. This would correspond to acquiring the
locks of all possible instances in Conc(ψ), which in most circumstances would be
unsound. In the example of Fig. 1, this interpretation of locking combined with
the allocation-site abstraction would preclude the interleaved program execution
that contains the bug, because the two Client objects would effectively get the
same lock, and the two buy() methods would execute without interleaving. The
second possibility for defining the semantics of EML locks is to interpret lock
acquire as a weak update, i.e., the program may have acquired a particular lock.
This semantics is sound, but the analysis gains no precision on locking behavior,
since all lock operations are possible rather than definite. In general, this possi-
bility would greatly increase the number of false positives. For instance, in the
example of Fig. 1, if we were to fix the code by adding an additional synchro-
nization block on s inside the body of buy(), analysis would still report a bug
because locking behavior was modeled imprecisely.

Our solution is to use a new abstraction: random-isolation abstraction, which
is a novel extension of allocation-site abstraction. The extension involves ran-
domly isolating one of the concrete objects allocated at allocation site ψ and
tracking it specially in the abstraction. Whereas allocation-site abstraction would
associate one summary object to ψ, random isolation associates two objects to ψ:
one summary and one non-summary. Because one is a non-summary object, it is
safe to perform strong updates to its (abstract) state. The EML model will have
an EML lock for each non-summary object, on which strong updates—definite
lock acquires and releases—are performed. In constrast, because sound tracking
of the lock state for a summary object generally would result in �, our mod-
els have no locks on summary objects: their modeled behaviors are not restricted
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by synchronization primitives. This provides a sound, finite model of the locking
behavior of Prog∗. (It is an over-approximation because the absence of locks on
summary objects causes them to gain additional behaviors.)

The essence of random isolation can be captured via a simple source-to-source
transformation. Consider the following code fragment.

public static Shop makeShop() { return newψ Shop(); } (1)

Random isolation involves transforming the allocation statement into

(rand() && test-and-set(Gψ)) ? newψ� Shop() : newψ Shop();. (2)

The site ψ from code fragment (1) is transformed into a conditional-allocation
site, where the conditional “tests-and-sets” a newly introduced global flag Gψ .
The global flag Gψ ensures that only one object can ever be allocated at the
generated site ψ�. This has two benefits: (i) because abstract object ς�ψ�

is a
non-summary object, strong updates can be performed on it, and (ii) because
concrete object ςψ� is chosen randomly, every property proven to hold for ς�ψ�

must also hold for every concrete object ςψ ∈ Conc(ψ).

3 Random-Isolation Abstraction

The random-isolation abstraction is motivated by the following observation:

Observation 1. The concrete objects that can be allocated at a given allocation
site ψ, Conc(ψ), cannot be distinguished by the allocation-site abstraction.

Obs. 1 says that if one chooses to isolate a random concrete object ς from the
summary object ς�ψ , the allocation-site abstraction would not be able to dis-
tinguish the randomly-chosen concrete object from any of the other concrete
objects that are summarized by ς�ψ.

Random isolation extends allocation-site abstraction in two ways. First,
whereas allocation-site abstraction uses one abstract object ς�ψ to summarize
the concrete objects Conc(ψ), random-isolation abstraction associates two ab-
stract objects with ψ: ς�ψ and ς�ψ�

. Second, the global boolean flag Gψ records
whether the randomly-isolated object has been allocated or not. This eliminates
the possibility that the concretization of the special abstract object ς�ψ�

is the
empty set, and enforces isolation, which gives us Random-Isolation Principle 1:

Random-Isolation Principle 1 (Updates). Let ς� ∈ Conc(ψ) be a
randomly-isolated concrete object. Because ς� is modeled by a special abstract ob-
ject ς�ψ�

, the random-isolation abstraction enables an analysis to perform strong
updates on the state of ς�ψ�

.

Random isolation also provides a powerful methodology for proving properties
of a program: a proof that a property φ holds for ς�ψ�

proves that φ holds for all
ς ∈ Conc(ψ). Consider a concrete trace of the program in which a concrete object
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ς ′ is allocated at a dynamic instance of ψ, and φ does not hold for ς ′. Because
of random isolation, the randomly-isolated object ςψ� is just as likely to be ς ′ as
it is to be any other concrete object. Thus, the prover must consider the case
that ςψ� is ς ′. Because the property holds for ς�ψ�

, and because ς�ψ�
represents ς ′

in the trace under consideration, then the property must also hold for ς ′, which
is a contradiction. This gives us Random-Isolation Principle 2:

Random-Isolation Principle 2 (Proofs). Given a property φ and site ψ, a
proof that φ holds for the randomly-isolated abstract object ς�ψ�

proves that φ
holds for every object that is allocated at ψ. That is, φ(ς�ψ�

) → (∀ς∈Conc(ψ).φ(ς)).

Before describing the technical details of how we implemented random isolation,
we highlight the benefits of random isolation for performing violation detection.
Because of random isolation, the state of the Java lock that is associated with
the random instance ςψ� can be modeled precisely by the state of the special
abstract object ς�ψ�

. That is, the acquiring and releasing of the lock for ςψ� by a
thread of execution can be modeled by a strong update on the state of ς�ψ�

, thus
allowing the analyzer to disallow certain thread interleavings when performing
state-space exploration on the generated EML program.

3.1 Implementing Random Isolation

We implemented random isolation via the source-to-source transformation out-
lined in §2. To keep the source-to-source transformation semantics-preserving,
and to ensure that only one concrete object can be allocated at ψ�, an atomic
“test-and-set” operation must be performed on the boolean flag Gψ .2 Without
the use of an atomic “test-and-set”, the source-to-source transformation intro-
duces a race condition that allows multiple objects to be allocated at ψ�. This
in turn would invalidate Random-Isolation Principles 1 & 2.

While the use of a source-to-source transformation is not strictly necessary
to implement random isolation, it allows existing object-sensitive analyses to
be used with minimal changes. For example, let Pts be the points-to relation
computed via a flow-insensitive, object-sensitive points-to analysis in the style
of [8], and CG be an object-sensitive call graph.3 Because these two analysis
artifacts are object-sensitive, their respective dataflow facts make a distinction
between those for ψ� and those for ψ. For example, if T defines a method T.m,
then CG will contain at least two nodes for T.m: one for object context ψ�, and
one for object context ψ. Thus, inside of the control-flow graph for T.m with

2 We use “test-and-set” to emphasize that random isolation is not particular to Java.
For Java, we use the method AtomicBoolean.compareAndSwap.

3 An object-sensitive call graph CG models the interprocedural control flow of a pro-
gram: there is a node in CG for each method of the program for each context in which
it can be invoked [8]. An object-sensitive points-to analysis associates points-to facts
with the nodes of CG, thus computing different points-to facts for different object
contexts of the same method.
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object context ψ�, an analysis is able to take advantage of the fact that the
special Java this variable is referring to the non-summary object ς�ψ�

. That is, a
unique context of T.m has been created for ς�ψ�

without modifying the analyses!
In some situations, however, a CG node’s context is not enough to distinguish

between ς�ψ�
and ς�ψ. Consider the code fragment “synchronized(t) { t.m() }”,

where t is defined as in code fragment (2), and Pts(t) = {ς�ψ�
, ς�ψ}. For performing

violation detection, we require the ability to reason precisely about the state of a
lock. Thus, in the program abstraction, we must be able to distinguish between
the case when t references ς�ψ�

and when t references ς�ψ .
We solve this via a second source-to-source transformation that dispatches on

the set of objects that are in Pts(t).

if (is ri(t)) { synchronized(t) { t.m() } } else { synchronized(t) { t.m(); } }

In the source program, the method “is ri” is defined as the identity function,
and thus has no effect on the meaning of the program. However, the points-to
analysis uses semantic reinterpretation of is ri that performs a case analysis on
Pts(t). Specifically, the reinterpreted is ri performs the abstract test “t == ς�ψ�

”,
which allows the points-to analysis to perform assume statements on the branch-
ing paths (e.g., when following the true branch of the condition, the points-to
analysis performs an “assume Pts(t) = {ς�ψ�

}”). One can view this as a way to
achieve object-sensitivity at the level of a program block instead of just at the
method level. Although we presented this second transformation in the context
of violation detection, it is a generic approach that can be applied wherever an
analysis needs to distinguish between ς�ψ�

and ς�ψ to perform a strong update.

4 Translation to the Empire Modeling Language (EML)

We now describe how Empire defines an EML program.

4.1 Empire Modeling Language

An EML program E consists of (i) a finite number of shared-memory locations;
(ii) a finite number of reentrant locks; and (iii) a finite number of concurrently
executing processes.

An EML lock is reentrant, meaning that the lock can be reacquired by an EML
process that currently owns the lock, and also that the lock must be released
the same number of times to become free. EML restricts the acquisition and
release of an EML lock to occur within the body of a function, i.e., an EML
lock cannot be acquired in a function f and released in another function f ′.
In addition, the acquisition of multiple EML locks by an EML process must be
properly nested: an EML process must release a set of held locks in the order
opposite to their acquisition order. The two restrictions are naturally fulfilled by
Java’s synchronized blocks and methods.
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Table 1. Example Java statements, their corresponding EML statements, and the
condition necessary to generate the EML statement

Java EML Condition

x = o.f ; o.f = x read mf ; write mf ς
ψ�
∈ Pts(o)

sync(o){. . . } lock ς
ψ�

;. . . ;unlock ς
ψ�

Pts(o) = {ς
ψ�
}

sync(o){. . . } skip;. . . ;skip Pts(o) �= {ς
ψ�
}

o.start() start Pψθ
Pψθ

∈ Pts(o), Thread.start() invoked.
o.u() unitbegin;call u; unitend ς

ψ�
∈ Pts(o), u() is a unit of work

o.m() call m

An EML process is defined by a set of (possibly) recursive functions, one of
which is designated as the main function of the process. Each function consists
of a sequence of statements, each of which is either a goto, choice, skip, call f ,
label lab, return, read m, write m, alloc l, lock l, unlock l, unitbegin, unitend, or
start P . The statement “start P” starts the EML process named P . This is used
to model the fact that when a Java program begins, only one thread is executing
the main method, and all other threads cannot begin execution until they have
been started by an already executing thread. (The other kinds of statements
should be self-explanatory.)

4.2 EML Generation

Empire defines the EML program E as follows. To model the randomly-isolated
abstract object ς�ψ�

, E defines a shared memory location mf for each field f of
the class T , and also an EML lock ς�ψ�

to model the lock associated with ς�ψ�
.

The status of the global flag Gψ is modeled by the EML lock ς�ψ�
being allocated

or not. Let Threads be the set of all subclasses of java.lang.Thread. For each
θ ∈ Threads, and for each allocation site ψθ that allocates an instance of θ, E
defines an EML process Pψθ

that models the behavior of one instance of θ that
is allocated at ψθ. Finally, E defines an EML process Pmain that models the Java
thread that begins execution of the main method. Each EML process P defines
a function for each method that is reachable from P ’s entry point in CG. The
translation from Java statements to EML statements is straightforward, with
example translations given in Tab. 1.

5 Translation to Communicating Pushdown Systems

In this section, we describe the translation of EML programs into CPDSs.

5.1 Communicating Pushdown Systems

Definition 1. A pushdown system (PDS) is a four-tuple P = (Q,Act, Γ,∆),
where Q is a finite set of states, Act is a finite set of actions, Γ is a finite
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Table 2. The encoding of a call graph’s and CFG’s edges as PDS rules. The action a
denotes the abstract behavior of executing that edge.

Rule Control flow modeled

〈q, n1〉 a
↪−→ 〈q, n2〉 Intraprocedural edge n1 → n2

〈q, c〉 a
↪−→ 〈q, ef r〉 Call to f from c that returns to r

〈q, xf 〉 a
↪−→ 〈q, ε〉 Return from f at exit node xf

stack alphabet, and ∆ is a finite set of rules of the form 〈q, γ〉 a
↪−→〈q′, u′〉, where

q, q′ ∈ Q, a ∈ Act, γ ∈ Γ , and u′ ∈ Γ ∗. A configuration of P is a pair c = 〈q, u〉,
where q ∈ Q and u ∈ Γ ∗ is the stack contents. A set of configurations C is
regular if for each q ∈ Q the language {u ∈ Γ ∗ | 〈q, u〉 ∈ C} is regular.

We assume that associated with each PDS P is an initial configuration cinit. For
all u ∈ Γ ∗, a configuration c = 〈q, γu〉 can make a transition to a configuration
c′ = 〈q′, u′ u〉 if there exists a rule r ∈ ∆ of the form 〈q, γ〉 a

↪−→〈q′, u′〉. We denote
this transition by a−→ and extend it to a1···an−−−−−→ in the obvious manner. For a
set of configurations C, we define the target language of P with respect to C as
Lang(P , C) = {w | ∃c ∈ C,w ∈ Act∗, cinit

w−−→ c}.
Because PDSs maintain a stack, they naturally model the interprocedural

control flow of a thread of execution. The translation from a call graph and set
of control-flow graphs (CFGs) into a PDS is shown in Tab. 2.

Definition 2. A communicating pushdown system (CPDS) is a tuple CP =
(P1, . . . ,Pn) of PDSs. The action set Act of CP is equal to the union of the
action sets of the Pi, along with the special action τ : τ has the property that
for all a ∈

⋃n
1 Acti, τa = aτ = a. The rules ∆i for PDS Pi are augmented to

include {〈q, γ〉 a
↪−→〈q, γ〉 | q ∈ Qi, γ ∈ Γi, a ∈ (Act \Acti)}.

Given n sets of configurations S = (C1, . . . , Cn), we define the target language
of a CPDS CP with respect to S as Lang(CP, S) =

⋂
1≤i≤n Lang(Pi, Ci), where

intersection enforces that all the Pi synchronize on the global actions. The goal
of the CPDS model checker [3] is to determine if Lang(CP, S) is empty. Be-
cause each language Lang(Pi, Ci) can be, in general, a context-free language,
and the problem of checking their intersection for emptiness is known to be un-
decidable, the CPDS model checker algorithm is only a semi-decision procedure.
The semi-decision procedure may not terminate, but is guaranteed to termi-
nate if there exists a finite-length sequence of actions, w = a1 . . . an, such that
w ∈ Lang(CP, S). Additionally, in some cases, the semi-decision procedure can
determine that Lang(CP, S) = ∅. We refer the reader to [3] for more details.

5.2 CPDS Generation

An EML program has a set of shared-memory locations, SMem, a set of EML
locks, SLocks, and a set of EML processes, SProcs. Empire generates a number of
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R1(i) R1(s)W2(s) W2(i) F i
i.alloc

U
i.lock

i.unlock

(a) (b)

…
…

Fig. 2. (a) Race automaton for interleaving scenario 12 for example program in Fig. 1.
(b) Lock automaton template. There is a state “i” for each EML process in SProcs.

CPDSs for a given EML program: a CPDS is generated for each pair (mf ,mg) ∈
SMem × SMem for the fourteen interleaving scenarios. Pairs are used because the
interleaving scenarios are defined in terms of at most two locations from an
atomic set [4]. In total, Empire generates O(14 ∗ (|SMem|2)) CPDSs for an EML
program.

For a generated CPDS CP, there is a PDS for each global component of the
EML program: CP contains a PDS that monitors for a violation, a PDS for each
lock, and a PDS for each EML process. We now describe the generation technique
for each component in turn. When the target language of a PDS is regular, we
define it in terms of a finite-state machine (FSM). (An FSM is a single-state PDS
with no push or pop rules; the initial configuration describes the initial state;
and the final set of configurations describes the accepting state(s) of the FSM.)

The violation monitor detects when one of the interleaving scenarios occurs
during a unit of work. The violation monitor is defined by a race automaton [4],
which is a finite automaton that contains one state for each access defined by
the scenario; transitions between states that reflect that an access has occurred;
and self-transitions on states for accesses that do not make the scenario progress.
Fig. 2(a) shows the race automaton that accepts the violation of scenario 12 for
the example program.

Because an EML lock is reentrant, the language of the PDS that describes such
behavior is context-free. However, previous work by the authors [9] developed
a technique that safely removes reentrant acquisitions from an EML process,
enabling the EML lock to be modeled as an FSM. Fig. 2(b) depicts a template
FSM for one EML lock. The FSM begins in the Unallocated state, transitions
to the Free state upon being allocated, and alternates between an “acquired-
by-process-i” state and the Free state. Transitioning from Unallocated to Free
denotes setting the global flag Gψ associated with ς�ψ�

.
Generating a PDS P for an EML process P is performed in two stages. First,

a single-state PDS P1 = (Q1,Act1, Γ1, ∆1) is generated using the rule templates
depicted in Tab. 2, with Act1 being the set of all distinct EML statements used
by P. P1 captures the interprocedural control flow of P.

Second, PDS P2 = (Q2,Act2, Γ2, ∆2) is defined as follows: Q2 = 2SLocks ×Q1,
Act2 = {P.a | a ∈ (Act1 \ start)} ∪ {P ′.alloc ς�� | P ′ ∈ (SProcs \ {P})}, Γ2 =
Γ1 ∪{guess}, and ∆2 is defined from ∆1 as shown in Tab. 3. Attaching the EML
process’s name P to the actions in Act2 enables the violation monitor and locks
to know which EML process performs an action. In Tab. 3, row 2 ensures that
no lock is allocated more than once; row 3 ensures that a lock is not used before
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Table 3. Each row defines a set of PDS rules that are necessary for modeling the
allocation of locks (see §5.2)

Action a Rule 〈q, γ〉 a
↪−→〈q′, w〉

τ , start P ′ { 〈(s, q), γ〉 a
↪−→〈(s, q′), w〉 | s ∈ 2SLocks }

alloc ς
� { 〈(s, q), γ〉 P.a

↪−→〈(s′, p′), w〉 | s ∈ 2SLocks ∧ ς
� /∈ s∧ s′ = s∪ {ς

�} }
lock/unlock ς

� { 〈(s, q), γ〉
P.a
↪−→〈(s, q′), w〉 | s ∈ 2SLocks ∧ ς

� ∈ s }
read/write mf { 〈(s, q), γ〉

P.a
↪−→〈(s, q′), w〉 | s ∈ 2SLocks ∧ ς

ψ�
∈ s }

ubegin/uend { 〈(s, q), γ〉 P.a
↪−→〈(s, q′), w〉 | s ∈ 2SLocks ∧ ς

ψ�
∈ s }

� { 〈(s, q), γ〉 τ
↪−→〈(s, q), guess γ〉 | s ∈ 2SLocks }

� { 〈(s, q), guess〉
P ′.alloc ς


�
↪−→ 〈(s′, p), ε〉 | s ∈ 2SLocks ∧ ς

� /∈ s ∧ s′ = s ∪ {ς
�}

∧ P ′ ∈ (SProcs \ {P}) }

being allocated; and rows 4 and 5 ensure that the shared-memory locations are
not accessed before ς�ψ�

has been allocated. Row 6 defines rules that invoke the
“guessing” procedure for each configuration of P2. Guessing is necessary because
an EML process cannot know when another EML process allocates a lock. Row 7
defines rules that implement the guessing procedure: from state (s, q), s ⊆ SLocks,
guess that EML process P ′ ∈ (SProcs \ {P}) allocates a lock ς�� ∈ (SLocks \ s), and
return back to the caller in the new state (s∪ {ς��}, q). The guessing rule is then
labeled with action P ′.alloc ς��.

Once CP has been generated, a language-emptiness query is passed to the
CPDS model checker. This requires defining the target set of configurations for
each PDS Pi. For a PDS whose target language is regular, the target set of
configurations is defined by the FSM. For a PDS that describes an EML process,
the target set of configurations is any configuration (i.e., {〈q, u〉 | q ∈ Q, u ∈
Γ ∗}). Let S be the configuration sets for the PDSs. The language-emptiness
query as defined is such that Lang(CP, S) = ∅ is true if-and-only-if the EML
program cannot generate a trace accepted by the violation monitor.

6 Experiments

Empire is implemented using the WALA [10] program-analysis framework. Ran-
dom isolation uses WALA’s support for rewriting the abstract-syntax tree of a
Java program. The default object-senstive call graph construction and points-to
analyses are modified to implement the semantic reinterpretation of “is ri”, as
described in §3.1.

We evaluated Empire on eight programs from the ConTest suite [6], which
is a set of small benchmarks with known non-trivial concurrency bugs. All ex-
periments were run on a dual-core 3 GHz Pentium Xeon processor with 16 GB
of memory. The analyzed programs are modified versions of those in the Con-
Test suite. To reduce the size of the generated models, we removed all use of
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Table 4. Marked entries denote violations reported by Empire, with 
 being a verified
violation and � 
 a false positive. Scenarios 6-11 involve two memory locations.

Nr Program CPDSs 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 account 352 
 
 
 

2 airlinesTckts 630 
 
 
 
 
 

3 AllocationV 15 
 

4 BuggyProgram 68 

5 BugTester 435
6 PingPong 460 
 
 
 
 � 
 � 
 � 
 � 
 � 
 � 
 � 
 � 

7 ProdConsumer 291 
 
 
 
 
 
 
 
 
 
 
 

8 Shop 542 
 
 
 
 
 
 


Totals 2793

file I/O from the programs. When a benchmark used a shared object of type
java.lang.Object as a lock, the type was changed to java.lang.Integer be-
cause our implementation uses selective object-sensitivity, for which the use of
java.lang.Object as a shared lock removes all selectivity and severely de-
grades performance. The programs AllocationV and Shop define a thread’s
run() method that consists of a loop that repeatedly executes one unit of work.
For these programs, the code body of the loop was extracted out into its own
method so that the default unit-of-work assumptions would be correct. Finally,
many benchmarks allocate threads in a loop. We manually unrolled these loops
to make the programs use a finite number of threads.

For 6 of the 8 benchmarks listed in Tab. 4, Empire found multiple viola-
tions. The false positives reported for PingPong are due to an overapproxima-
tion of a thread’s control flow—exceptional control paths are allowed in the
model that cannot occur during a real execution of the program. The program
ProducerConsumer has an atomic set with mutiple fields and uses no synchro-
nization. While not interesting for violation detection, it validates that our ap-
proach is able to detect each of the problematic interleaving scenarios. Overall,
the initial results are encouraging for applying Empire to larger programs. Fu-
ture work on Empire includes a thread-escape analysis—determining the allo-
cation sites that allocate shared objects—which would allow Empire to analyze
the escaping allocation sites using the default assumptions.

7 Related Work

Strong updates on an isolated non-summary object. The idea of isolating
a distinguished non-summary node that represents the memory location that will
be updated during a transition, so that a strong update can be performed on it,
has a long history in shape-analysis algorithms [11,12,13]. When these methods
also employ the allocation-site abstraction, each abstract memory configuration
will have some bounded number of abstract nodes per allocation site.

Like random-isolation abstraction, recency abstraction [14] uses no more than
two abstract blocks per allocation site ψ: a non-summary block MRAB[ψ], which
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represents the most-recently-allocated block allocated at ψ, and a summary
block NMRAB[ψ], which represents the non-most-recently-allocated blocks al-
located at ψ. As the names indicate, recency abstraction is based on tracking a
temporal property of a block b: the is-the-most-recent-block-from-ψ(b) property.

With counter abstraction [15,16,17], numeric information is attached to sum-
mary objects to characterize the number of concrete objects represented. The
information on summary object u of abstract configuration S describes the num-
ber of concrete objects that are mapped to u in any concrete configuration that
S represents. Counter abstraction has been used to analyze infinite-state systems
[15,16], as well as in shape analysis [17].

In contrast to all of the aforementioned work, random-isolation abstraction is
based on tracking the properties of a random individual, and generalizing from
the properties of the randomly chosen individual according to Random-Isolation
Principle 2.

Detection of concurrency-related bugs. Traditional work on error detection
for concurrent programs has focused on classical data races. Static approaches
for detecting data races include type systems, where the programmer indicates
proper synchronization via type annotations (see e.g., [18]), model checking (see
e.g., [19]), and static analysis (see e.g., [20]). Dynamic analyses for detecting data
races include those based on the lockset algorithm [21], on the happens-before
relation [22], or on a combination of the two [23]. A data race is a heuristic in-
dication that a concurrency bug may exist, and does not directly correspond to
a notion of program correctness. In our approach, we consider atomic-set serial-
izability as a correctness criterion, which captures the programmer’s intentions
for correct behavior directly.

High-level data races may take the form of view inconsistency [24], where
memory is read inconsistently, as well as stale-value errors [25], where a value
read from a shared variable is used beyond the synchronization scope in which
it was acquired. Our problematic interleaving scenarios capture these forms of
high-level data races, as well as several others, in one framework.

Several notions of serializability (or atomicity) and associated detection tools
have been presented, including [26,27,28,29]. These correctness criteria ignore
relationships that may exist between shared memory locations, and treat all
locations as forming one atomic set. Therefore, they may not accurately reflect
the intentions of the programmer for correct behavior. Atomic-set-serializability
takes such relationships into account and provides a finer-grained correctness
criterion for concurrent systems. For a detailed discussion and comparison of
different notions of serializability see [4].

Atomic-set serializality was proposed by Vaziri et al. [1]. That work focused
on inference of locks. A dynamic violation-detection tool was proposed in [4] to
find errors in legacy code. Our tool is a static counterpart with the benefit that
it (symbolically) considers multiple executions of a program, instead of just one
execution like the dynamic tool.



212 N. Kidd et al.

References

1. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data in
an object-oriented language. In: POPL (2006)

2. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: POPL (2003)

3. Chaki, S., Clarke, E., Kidd, N., Reps, T., Touili, T.: Verifying concurrent message-
passing C programs with recursive calls. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 334–349. Springer, Heidelberg (2006)

4. Hammer, C., Dolby, J., Vaziri, M., Tip, F.: Dynamic detection of atomic-set-
serializability violations. In: ICSE (2008)

5. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhanc-
ing software reliability. In: TSE (1986)

6. Eytani, Y., Havelund, K., Stoller, S.D., Ur, S.: Towards a framework and a bench-
mark for testing tools for multi-threaded programs. Conc. and Comp.: Prac. and
Exp. 19(3), 267–279 (2007)

7. Jones, N., Muchnick, S.: A flexible approach to interprocedural data flow analysis
and programs with recursive data structures. In: POPL (1982)

8. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for Java. TOSEM 14(1) (2005)

9. Kidd, N., Lal, A., Reps, T.: Language strength reduction. In: Alpuente, M., Vidal,
G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 283–298. Springer, Heidelberg (2008)

10. Watson Libraries for Analysis (WALA), T.J.:
http://wala.sourceforge.net/wiki/index.php

11. Horwitz, S., Pfeiffer, P., Reps, T.: Dependence analysis for pointer variables. In:
PLDI (1989)

12. Jones, N., Muchnick, S.: Flow analysis and optimization of Lisp-like structures. In:
Program Flow Analysis: Theory and Applications. Prentice-Hall, Englewood Cliffs
(1981)

13. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems 24(3) (2002)

14. Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. In: Yi,
K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006)

15. McMillan, K.: Verification of infinite state systems by compositional model check-
ing. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 219–237.
Springer, Heidelberg (1999)

16. Pnueli, A., Xu, J., Zuck, L.: Liveness with (0, 1,∞)-counter abstraction. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 107. Springer,
Heidelberg (2002)

17. Yavuz-Kahveci, T., Bultan, T.: Automated verification of concurrent linked lists
with counters. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS,
vol. 2477, pp. 69–84. Springer, Heidelberg (2002)

18. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Pre-
venting data races and deadlocks. In: OOPSLA (2002)

19. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. In: PLDI (2004)
20. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In:

POPL (2007)
21. von Praun, C., Gross, T.R.: Object race detection. In: OOPSLA (2001)
22. Min, S.L., Choi, J.D.: An efficient cache-based access anomaly detection scheme.

In: ASPLOS (1991)

http://wala.sourceforge.net/wiki/index.php


Finding Concurrency-Related Bugs Using Random Isolation 213

23. O’Callahan, R., Choi, J.D.: Hybrid dynamic data race detection. In: PPoPP (2003)
24. Artho, C., Havelund, K., Biere, A.: High-level data races. In: Proc. NDDL/VVEIS

2003 (2003)
25. Burrows, M., Leino, K.R.M.: Finding stale-value errors in concurrent programs.

Conc. and Comp.: Prac. and Exp. 16(12) (2004)
26. Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multi-

threaded programs. In: POPL, pp. 256–267 (2004)
27. Sasturkar, A., Agarwal, R., Wang, L., Stoller, S.D.: Automated type-based analysis

of data races and atomicity. In: PPoPP (2005)
28. Lu, S., Tucek, J., Qin, F., Zhou, Y.: AVIO: Detecting atomicity violations via

access interleaving invariants. In: ASPLOS (2006)
29. Wang, L., Stoller, S.D.: Accurate and efficient runtime detection of atomicity errors

in concurrent programs. In: PPoPP (2006)



An Abstract Interpretation-Based Framework for
Control Flow Reconstruction from Binaries

Johannes Kinder1, Florian Zuleger1,2,�, and Helmut Veith1

1 Technische Universität Darmstadt, 64289 Darmstadt, Germany
2 Technische Universität München, 85748 Garching, Germany

Abstract. Due to indirect branch instructions, analyses on executables com-
monly suffer from the problem that a complete control flow graph of the program
is not available. Data flow analysis has been proposed before to statically deter-
mine branch targets in many cases, yet a generic strategy without assumptions on
compiler idioms or debug information is lacking.

We have devised an abstract interpretation-based framework for generic low
level programs with indirect jumps which safely combines a pluggable abstract
domain with the notion of partial control flow graphs. Using our framework, we
are able to show that the control flow reconstruction algorithm of our disassembly
tool Jakstab produces the most precise overapproximation of the control flow
graph with respect to the used abstract domain.

1 Introduction

One of the main problems when analyzing low level code, such as x86 assembly lan-
guage, are indirect branch instructions. These correspond to goto statements where the
target is calculated at runtime, or the use of function pointers combined with pointer
arithmetic in high level languages. In executables, any address in the code is a poten-
tial target of an indirect branch, since in general there are no explicit labels. Failure to
statically resolve the target of an indirect branch instruction thus leads to an either in-
complete or grossly overapproximated control flow graph. Often, data flow analysis can
aid in resolving such indirect branches; however, data flow analysis already requires a
precise control flow graph to work on. This seemingly paradox situation has been re-
ferred to as an inherent “chicken and egg” problem in the literature [1,2].

In this paper, we show that this notion is overly pessimistic. We present a framework
to construct a safe overapproximation of the control flow graph of low level programs
by effectively combining control and data flow analysis by means of abstract interpre-
tation. Existing approaches to control flow extraction from binaries usually either make
a best effort attempt and accept possible unsoundness [3,4], or they make optimistic as-
sumptions on clean code layout [5] or on the presence of additional information such as
symbol tables or relocation information [2]. Our approach is designed to be generic in
the sense that it does not require any additional information besides the actual instruc-
tions and is still able to compute a sound and precise overapproximation of the control
flow graph. In particular, our paper makes the following contributions:
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– We define an abstract interpretation that reconstructs the control flow graph and is
parameterized by a given abstract domain. We achieve this by extending the given
abstract domain with a representation of the partial control flow graph. To this end,
we define the notion of a control flow graph for a low level assembly-like language
based on a concrete semantics in Section 3.2. We construct a resolve operator, based
on conditions imposed on the provided abstract domain, for calculating branch tar-
gets. Using this operator, our analysis is able to safely overapproximate the control
flow graph (Section 3.3).

– We present a general extension of the classical worklist algorithm met in program
analysis which empowers control flow reconstruction by data flow analyses under
very general assumptions. The algorithm overcomes the “chicken and egg” problem
by computing the a priori unknown edges on the fly by using the resolve operator.
We prove that the algorithm always returns the most precise overapproximation of
the program’s actual control flow graph with respect to the precision of the provided
abstract domain used by the data flow analysis (Section 3.4).

– In earlier work, we presented our disassembly tool JAKSTAB [6], which employs
constant propagation for an iterative disassembly strategy. JAKSTAB uses an ab-
stract domain which supports symbolic memory addresses to achieve constant prop-
agation through local variables and yielded better results than the most widely used
commercial disassembler IDA Pro. We describe in Section 4 how the control flow
reconstruction algorithm implemented in JAKSTAB instantiates our newly defined
abstract interpretation. Thus, without the need to restart constant propagation, it
always computes a safe overapproximation of the control flow graph.

2 Overview

In this section we describe current disassembly techniques and their shortcomings. We
explain why proposed augmentations of disassembly with data flow analysis suffer from
imprecision and we motivate how to overcome these difficulties by an intertwined con-
trol and data flow analysis.

2.1 Disassembly

Disassembly is the process of translating a sequence of bytes into an assembly language
program. Simple linear sweep disassemblers, such as GNU objdump, sequentially map
all bytes to instructions. Especially on architectures with varying instruction length (e.g.
Intel x86) this leads to erroneous assembly programs, as these disassemblers easily lose
the correct alignment of instructions because of data or padding bytes between code
blocks. Recursive traversal disassemblers interpret branch instructions in the program
to translate only those bytes which can actually be reached by control flow. The disas-
sembler, however, cannot always determine the target of a branch instruction and can
thus miss parts of the program.

To avoid this problem, disassemblers usually augment recursive traversal by heuris-
tics to detect potential pieces of code in the executable. These heuristics exploit the
presence of known compiler idioms, such as recurring procedure prologues or common
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patterns in the calculation of switch-jumps from jump tables [4]. While this works well
for the majority of compiler generated code, the presence of hand-crafted assembly
code and the effects of aggressive compiler optimizations can thwart heuristic methods.
Moreover, heuristics in disassembly are prone to creating false positives, i.e., to mis-
interpret data as code. Because of these well known problems, improved methods of
disassembly that incorporate data flow analysis have been subject to research.

2.2 Augmenting Disassembly with Data Flow Analysis

Data flow analysis statically calculates information about the program variables from a
given program representation. Earlier work [1,5,3,7,6] has shown that data flow analysis
can be used to augment the results of disassembly, but no conclusive answer was given
on the best way to handle states with unresolved control flow successors during data
flow analysis. Further, updating the control flow graph could render previous data flow
information invalid, which would require backtracking and could cause the analysis to
diverge.

De Sutter et al. [7] suggested to initially connect all indirect jumps to a virtual un-
known node for indirect jumps, which effectively overapproximates the control flow
graph. In an iterative process, they use constant propagation on the overapproximated
graph to show infeasibility of most overapproximated edges, which can then be re-
moved. This approach is inspired by the solution of Chang et al. [8] to the similar
problem of treating unknown external library functions in the analysis of C programs.
We exemplify De Sutter et al.’s method by applying it to the snippet of pseudo-assembly
code shown in the left of Figure 1. The center of the figure depicts the corresponding
initial control flow graph, where the indirect jump at line 2 is connected to the unknown
node (�). There are outgoing edges from the unknown node to all statements, since
every address is a potential jump target in the general case of stripped code without
relocation information. Calculating the possible values of x, we see that x can in fact
take the concrete values 5, 3, 1,−1, . . . at the entry of line 2 in the overapproximated
program. Thus a program analysis operating on this initial overapproximation can only
conclude that addresses 2 and 4 are no targets of the jump, but cannot remove the over-
approximated edges to addresses 1 and 3. The final CFG reconstructed by this method,

1: x := 5
2: jmp x
3: x := x− 2
4: jmp 2
5: halt

1

2

3

4

5



1

2

3

4

5

Fig. 1. Overapproximation of the CFG by adding an unknown node () leads to additional pos-
sible values for x at the indirect jump
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shown on the right of Figure 1, consequently contains the infeasible edges (2,1) and
(2,3) (drawn in bold).

This example shows that integration of data flow algorithms with control flow recon-
struction is non-trivial and can lead to suboptimal results. In the rest of this paper we
will demonstrate how to successfully design program analyses which reconstruct the
control flow of a disassembled low level program.

2.3 Integrating Fixed Point Equations for Control and Data Flow Analysis

Our approach to control flow reconstruction is based on the idea of executing data flow
analysis and branch resolution simultaneously. A data flow problem is characterized by
a constraint system derived from an overapproximation of the program semantics. The
solution to a data flow problem is calculated by iteratively applying the constraints until
a fixed point is reached. These constraints encode the complete control flow graph (by
an edge relation), which, however, is unavailable as our task exactly is the control flow
reconstruction.

The intuition of our approach is that we can grow the edge relation during the fixed
point iteration, until a simultaneous least fixed point of both data and control flow is
reached. For growing the edge relation, we introduce a resolve operator that uses data
flow information to calculate branch targets of instructions. In our combined analysis,
we will ensure that

– the quality of the fixed point, and thus of the reconstructed control flow graph, does
not depend on the order in which the constraints are applied.

– the fixed point of control and data flow is a valid abstraction of the concrete program
behavior.

3 Abstract Interpretation of Low Level Languages

In this section we formally define our combined analysis and prove the above proper-
ties. First, we introduce our low level language, then its concrete semantics, and finally
we state our abstract interpretation framework. Our notation follows standard program
analysis literature [9].

3.1 A Simple Low Level Language

We restrict ourselves to a simple low level language, JUMP, which captures the specifics
of assembly language. JUMP uses the program counter pc, a finite set of integer vari-
ables V = {v1, . . . , vn}, and a store m[·]. For generality we do not further specify the
expressions in JUMP, even though we explicitly note that expressions may contain the
program counter, the variables and the store. We denote the set of expressions by Exp.
A statement in JUMP can be either

– a variable assignment v := e, where v ∈ V and e ∈ Exp, which assigns the value
of an expression e to the variable v,

– a store assignment m[e1] := e2, where e1, e2 ∈ Exp, which assigns the value of
e2 to the store location specified by e1,
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– a guarded jump statement jmp e1, e2, with e1, e2 ∈ Exp, which transfers control
to the statement at the address calculated from expression e2 if the expression e1
evaluates to 0,

– or the program exit statement halt, which terminates execution of the program.

We denote the set of statements by Stmt. The set of program addresses A ⊆ Z is a
finite subset of the integers. A program in JUMP is a finite partial mapping of addresses
to statements. The idea is that every program has a fixed finite representation. At first
we will assume that all addresses in A correspond to statements of the program. After
we finish control flow reconstruction, we establish that some statements are not reach-
able and we can conclude that they are not part of the program (e.g., pieces of data
intermixed with code blocks or misaligned statements on architectures with variable
length instructions). Every program in our language JUMP has a unique starting address
start. The mapping between addresses and statements is expressed by [stmt ]a, where
stmt ∈ Stmt and a ∈ A. We present the formal semantics of JUMP in the next section.

JUMP is representative for assembly languages, since the most problematic features
of machine code, indirect jumps and indirect addressing, are fully supported. Intu-
itively, it forms a minimalist intermediate representation for machine code. For sim-
plicity JUMP does not implement explicit call and return instructions as these can be
implemented by storing the program counter and jumping to the procedure, and jump-
ing back to the stored value, respectively.

3.2 Semantics of JUMP

The semantics of JUMP is defined in terms of states. The set of states State := Loc×
Val×Store is the product of the location valuations Loc := {pc} → A, the variable
valuations Val := V → Z and the store valuations Store := Z → Z. We refer to
the part of a state that represents an element of Store by a functionm[·]. As a state s
is a function, we denote by s(pc) the value of the program counter, by s(vi) the value
of a variable vi, and by s(m[c]) the value of the store mapping for an integer c ∈ Z.
We denote by s[· &→ ·] the state we obtain after substituting a new value for either the
program counter, a variable, or a store mapping in s. We assume the existence of a
deterministic evaluation function eval : Exp → State → Z (→ is right-associative,
i.e., Exp → State → Z stands for Exp → (State → Z)). We now define the
operator post : Stmt → State → State:

post�v := e�(s) := s[v &→ eval�e�(s)][pc &→ s(pc) + 1]
post�m[e1] := e2�(s) := s[m[eval�e1�(s)] &→ eval�e2�(s)][pc &→ s(pc) + 1]

post�jmp e1, e2�(s) :=
{
s[pc &→ eval�e2�(s)] if eval�e1�(s) = 0
s[pc &→ s(pc) + 1] otherwise

Remark 1. For the ease of explanation we have chosen to assume that all statements are
of length 1, and therefore the program counter is increased by 1 for fall-through edges.
Note that it would make no conceptual difference to introduce a length function that
calculates the appropriate next location for every statement.
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For later use in the definition of control flow graphs and in control flow reconstruc-
tion we define a language Stmt# derived from the language Stmt, which consists of
assignments v := e, m[e1] := e2 and labeled assume statements assumea(e = 0),
assumea(e �= 0), where e, e1, e2 ∈ Exp, a ∈ A, but which does not contain guarded
jump statements. The intuition is that the assume statements correspond to resolved
jump statements of the language Stmt, where the labels specify resolved target ad-
dresses of the jump statements. We overload the operator post : Stmt# → 2State →
2State to work on statements of the derived language and sets of states S ⊆ State:

post�v := e�(S) := {post�v := e�(s) | s ∈ S},
post�m[e1] := e2�(S) := {post�m[e1] := e2�(s) | s ∈ S},
post�assumea(e = 0)�(S) := {s[pc &→ a] | eval�e�(s) = 0, s ∈ S},
post�assumea(e �= 0)�(S) := {s[pc &→ a] | eval�e�(s) �= 0, s ∈ S}.

Note that the definition of the post operator over sets makes use of the post operator
for single elements in the case of assignments. We will need Stmt# and the transfer
function post when stating the conditions we require from the abstract domain for our
control flow reconstruction in Section 3.3.

A trace σ of a program is a finite sequence of states (si)0≤i≤n, such that s0(pc) =
start, stmt is not halt for all [stmt ]si(pc) with 0 ≤ i < n, and si+1 = post�stmt�(si)
for all [stmt ]si(pc) with 0 ≤ i < n. Note that we do not impose conditions on variable
or store valuations for state s0. We denote the set of all traces of a program by Traces.
Further, we assume the program counter of all states in all traces to only map into the
finite set of addresses A, as every program has a fixed finite representation.

The definition of control flow graphs of programs in JUMP is based on our definition
of traces and uses labeled edges. We define the set of labeled edges Edge to be A ×
Stmt# ×A.

Definition 1 ((Trace) Control Flow Graph). Given a trace σ = (si)0≤i≤n, the trace
control flow graph (TCFG) of σ is

TCFG(σ) = {(si(pc), stmt , si+1(pc)) |
0 ≤ i < n with [stmt ]si(pc), where stmt is v := e orm[e1] := e2}

∪ {(si(pc), assumesi+1(pc)(e1 = 0), si+1(pc)) |
0 ≤ i < n with [jmp e1, e2]si(pc) and eval�e1�(si) = 0}

∪ {(si(pc), assumesi+1(pc)(e1 �= 0), si+1(pc)) |
0 ≤ i < n with [jmp e1, e2]si(pc) and eval�e1�(si) �= 0}.

The control flow graph (CFG) is the union of the TCFGs of all traces

CFG =
⋃

σ∈Traces

TCFG(σ).

As stated in the above definition, the CFG of a program is a semantic property, not a
syntactic one, because it depends on the possible executions.
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3.3 Control Flow Reconstruction by Abstract Interpretation

For the purpose of CFG reconstruction we are interested in abstract domains (L,⊥,�,
�,�,�, p̂ost, êval, γ), where

– (L,⊥,�,�,�,�) is a complete lattice,
– the concretization function γ : L→ 2State is monotone, i.e.,

"1 � "2 ⇒ γ("1) ⊆ γ("2) for all "1, "2 ∈ L,

and maps the least element to the empty set, i.e., γ(⊥) = ∅,
– the abstract operator p̂ost : Stmt# → L → L overapproximates the concrete

transfer function post, i.e.,

post�stmt�(γ(")) ⊆ γ(p̂ost�stmt�(")) for all stmt ∈ Stmt#, " ∈ L, and

– the abstract evaluation function êval : Exp → L → L overapproximates the
concrete evaluation function, i.e.,

eval�e�(γ(")) ⊆ γ(êval�e�(")) for all e ∈ Exp, " ∈ L.

In the following we define a control flow analysis based on an abstract domain
(L,⊥,�,�,�,�, p̂ost, êval, γ). Our control flow analysis works on a Cartesian ab-
stract domain D : A → L and a partial control flow graph F ⊆ Edge. The fact
that edges are labeled with statements from Stmt# enables us to combine the abstract
domain with the control flow reconstruction nicely.

A control flow analysis must have the ability to detect the (possibly overapproxi-
mated) set of targets of guarded jumps based on the knowledge it acquires. To this end,
we define the operator resolve : A → L → 2Edge, using the functions available in
the abstract domain. For a given address a and a lattice element ", resolve returns a set
of labeled control flow graph edges. If " is the least element ⊥, the location a has not
been reached by the abstract interpretation yet, therefore no edge needs to be created
and the empty set is returned. Otherwise, resolve labels fall-through edges with their
respective source statements, or it calculates the targets of guarded jumps based on the
information gained from the lattice element " and labels the determined edges with their
respective conditions:

resolvea(") :=

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if " = ⊥
{(a, stmt, a+ 1)} if " �= ⊥ and ([stmt]a is [v := e]a

or [m[e1] := e2]a)
{(a, assumea′(e1 = 0), a′) |
a′ ∈ γ

(
êval�e2�

(
p̂ost�assumea(e1 = 0)�(")

))
∩A}

∪{(a, assumea+1(e1 �= 0), a+ 1)} if " �= ⊥ and [jmp e1, e2]a

The crucial part in the definition of the resolve operator is the last case, where the
abstract operator p̂ost and the abstract êval are used to calculate possible jump targets.
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Note that the precision of the abstract domain influences the precision of the control
flow analysis.

We are now ready to state constraints such that all solutions of these constraints
are solutions to the control flow analysis. The first component is the Cartesian abstract
domainD : A → L, which maps addresses to elements of the abstract domain. The idea
is thatD captures the data flow facts derived from the program. The second component
is the set of edges F ⊆ Edge which stores the edges we produce by using the resolve
operator. Finally, we provide initial abstract elements ιa ∈ L for every location a ∈ A.
Then the constraints are as follows:

F ⊇
⋃

a∈A

resolvea(D(a)) (1)

D(a) (
⊔

(a′,stmt,a)∈F

p̂ost�stmt�(D(a′)) � ιa (2)

Note how it pays off that edges are labeled. The partial control flow graph F does not
only store the a priori unknown targets on the guarded jumps, but also the conditions
(assume statements) which have to be satisfied to reach them. This information can be
used by the abstract p̂ost to propagate precise information.

The system of constraints (1) and (2) corresponds to a function

G :
(
(A → L)× 2Edge

)
→

(
(A → L)× 2Edge

)
G(D,F ) &→ (D′, F ′), where

F ′ =
⋃

a∈A

resolvea(D(a)),

D′(a) =
⊔

(a′,stmt,a)∈F

p̂ost�stmt�(D(a′)) � ιa.

The connection between constraints (1) and (2) and control flow analysis is stated in
the following theorem (detailed proof in Appendix A1), whereby correctness notably
depends on ιstart ∈ L:

Theorem 1. Given a program in the language JUMP and a trace σ = (si)0≤i≤n, such
that s0(pc) = start and s0 ∈ γ(ιstart), every solution (D,F ) of the constraints (1)
and (2) satisfies sn ∈ γ(D(sn(pc))) and TCFG(σ) ⊆ F .

The proof is a straightforward induction on the length of traces using the properties we
require from the abstract domain. We immediately obtain:

Corollary 1. Given a program in the language JUMP and a solution (D,F ) of the
constraints (1) and (2), where {s ∈ State | s(pc) = start} ⊆ γ(ιstart), F is a
superset of the CFG.

The Cartesian abstract domain A → L, equipped with pointwise ordering, i.e., D1 �
D2 :⇔ ∀a ∈ A. D1(a) � D2(a), is a complete lattice, because L is a complete

1 Appendices included in the full version of this paper, available on http://jakstab.org

http://jakstab.org
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lattice. The power set 2Edge ordered by the subset relation ⊆ is a complete lattice. The
product lattice (A → L)× 2Edge, equipped with pointwise ordering, i.e., (D1, F1) �
(D2, F2) :⇔ D1 � D2 ∧ F1 ⊆ F2, is complete as both A → L and 2Edge are
complete. It can be easily seen that G is a monotone function on (A → L) × 2Edge.
As (A → L) × 2Edge is a complete lattice, we deduce from the Knaster-Tarski fixed
point theorem [10] the existence of a least fixed point µ of the function G. Therefore,
the following proposition immediately follows:

Proposition 1. The combined control and data flow problem, i.e., the system of con-
straints (1) and (2), always has a unique best solution.

3.4 Algorithms for Control Flow Reconstruction

For the purpose of algorithm design we will focus on abstract domains L satisfying the
ascending chain condition (ACC). We now present two CFG-reconstruction algorithms.
The first algorithm (Algorithm 1) is generic and gives an answer to the “chicken and
egg” problem as it computes a sound overapproximation of the CFG by an intertwined
control and data flow analysis. We stress the fact that the order in which the CFG re-
construction is done may only affect efficiency but not precision. The second algorithm
(Algorithm 2) is an extension of the classical worklist algorithm and is geared towards
practical implementation.

The generic algorithm maintains a Cartesian abstract domain D : A → L and a
partial control flow graph F ⊆ Edge. D(a) is initialized by ιstart for a = start (line
3) and by ⊥ for a �= start (line 2). As we do not know anything about the control
flow graph of the program yet, we start with F as the empty set (line 4). The algorithm
iterates its main loop as long as it can find an unsatisfied inequality (line 7, 8). Thus
the algorithm essentially searches for violations of constraints (1) and (2). If the generic
algorithm finds at least one not yet satisfied inequality, it nondeterministically picks a
single unsatisfied inequality and updates it (lines 9 to 14).

We now state the correctness of Algorithm 1 for abstract domains L that satisfy the
ascending chain condition (detailed proof in Appendix B):

Theorem 2. Given a program in the language JUMP, where {s ∈ State | s(pc) =
start} ⊆ γ(ιstart), the generic CFG-reconstruction algorithm (Algorithm 1) com-
putes a sound overapproximation of the CFG and terminates in finite time. Furthermore
it returns the most precise result with respect to the precision of the abstract domain L
regardless of the non-deterministic choices made in line 9.

Proof (sketch). The algorithm terminates because (A → L) × 2Edge′
, where Edge′

is the finite subset of Edge that consists of all the edges that are potentially part of
the program, satisfies the ascending chain condition. The fact that the algorithm always
computes the most precise result heavily depends on the existence of the unique least
fixed point µ ofG. It is easy to show that the generic algorithm computes this least fixed
point µ. As the least fixed point is the best possible result with respect to the precision
of the abstract domain, it is always the most precise regardless of the non-deterministic
choices made in line 9.
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Input: a JUMP-program, its set of addresses A including start, and the abstract domain
(L,⊥,,�,�,�, p̂ost, êval, γ) together with an initial value ιstart

Output: a control flow graph
begin1

forall a ∈ A \ {start} do D(a) := ⊥;2

D(start) := ιstart;3

F := ∅;4

while true do5

Choices := ∅;6

if ∃(a′, stmt, a) ∈ F. p̂ost�stmt�(D(a′)) �� D(a) then Choices := {do p};7

if ∃a ∈ A. resolvea(D(a)) 	 F then Choices := Choices ∪ {do r};8

if ∃u ∈ Choices choose u ∈ U /* non-deterministic choice */9

switch u do10

case do p choose (a′, stmt, a) ∈ F where11

p̂ost�stmt�(D(a′)) �� D(a)
D(a) := p̂ost�stmt�(D(a′)) �D(a);12

case do r choose a ∈ A where resolvea(D(a)) 	 F13

F := resolvea(D(a)) ∪ F ;14

else15

return F;16

end17

Algorithm 1. Generic CFG-reconstruction Algorithm

The worklist algorithm (Algorithm 2) is a specific strategy for executing the generic
algorithm, where the partial control flow graph F ⊆ Edge is not kept as a variable, but
implicit in the abstract values of the program locations. The initialization of D (lines
2, 3) is the same as in the generic algorithm. The algorithm maintains a worklist W ,
where it stores the edges for which data flow facts should be propagated later on. Every
time the algorithm updates the informationD(a) at a location a (lines 3, 8), it calls the
resolve operator (lines 4, 9) to calculate the edges which should be added to W . In
every iteration of the main loop (lines 5 to 9) the algorithm non-deterministically picks
an edge from the worklist by calling choose (line 6), and then shortens the worklist by
calling rest (line 6). Subsequently, it checks for the received edge (a′, stmt, a), if an
update is necessary (line 7), and in the case it is, it proceeds as already described.

From the correctness of the generic algorithm (1) we obtain the correctness of the
worklist algorithm (proof in Appendix C):

Corollary 2. Given a program in our language JUMP, where {s ∈ State | s(pc) =
start} ⊆ γ(ιstart), the worklist CFG-reconstruction algorithm (Algorithm 2) com-
putes a sound overapproximation of the CFG and terminates in finite time. Furthermore
it returns the most precise result with respect to the precision of the abstract domain L
regardless of the non-deterministic choices made in line 6.
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Input: a JUMP-program, its set of addresses A including start, and the abstract domain
(L,⊥,,�,�,�, p̂ost, êval, γ) together with an initial value ιstart

Output: a control flow graph
begin1

forall a ∈ A \ {start} do D(a) := ⊥;2

D(start) := ιstart;3

W := resolvestart(D(start));4

while W �= ∅ do5

((a′, stmt, a), W ) := (choose(W ),rest(W ));6

if p̂ost�stmt�(D(a′)) �� D(a) then7

D(a) := p̂ost�stmt�(D(a′)) �D(a);8

W := add(W, resolvea(D(a)));9

F := ∅;10

forall a ∈ A do11

F := F ∪ resolvea(D(a));12

return F;13

end14

Algorithm 2. Worklist CFG-Reconstruction Algorithm

Proof (sketch). The worklist terminates because L satisfies the ascending chain condi-
tion. As the generic algorithm can always simulate the updates made by the worklist
algorithm, the result computed by the worklist algorithm is always less or equal to the
result of the generic algorithm, which is the least fixed point of G. On the other hand it
can be shown that if the algorithm terminates, the result is greater or equal to the least
fixed point of G.

Note that if the abstract domain L does not satisfy the ascending chain condition, it is
possible to enhance the algorithms by using a widening operator to guarantee termi-
nation of the analysis. Such an algorithm would achieve a valid overapproximation of
the CFG but lose the best approximation result stated in the above theorems, due to the
imprecision induced by widening.

4 Instantiation of the Framework in the JAKSTAB Tool

We implemented the worklist algorithm for control flow reconstruction (Algorithm 2) in
our disassembly and static analysis tool JAKSTAB [6]. JAKSTAB works on X86 executa-
bles, and translates them into an intermediate language that is similar in style but more
complex than JUMP. We designed an abstract domain supporting constant propagation
through registers (globally) and indirect memory locations (local to basic blocks) to
parameterize the analysis, which yielded better results than the most widely used com-
mercial disassembler IDA Pro. In this section we demonstrate how JAKSTAB integrates
with our framework and sketch its abstract domain.

For supporting memory constants, JAKSTAB has to maintain an abstract representa-
tion of the store. When only dealing with memory accesses through constant addresses
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x y m[x + 2]
start: x := x + 2 (x + 2)  

2: m[x] := 5 (x + 2)  5
3: x := x + 1 (x + 3)  5
4: x := x + 3 (x + 6)  5
5: y := m[x− 4] (x + 6) 5 5
6: halt (x + 6) 5 5

Fig. 2. Simple example for constant propagation through symbolic store locations. Abstract val-
ues calculated by the analysis are shown on the right.

(which is the case for global variables), this is trivial, since the store then behaves just
like additional variables/registers. In compiled code, however, local variables are laid
out on the stack, relative to the top of the current stack frame. They are manipulated
by indirect addressing through the stack base pointer. For example, the instruction mov
[ebp - 4], 0 assigns 0 to the local variable at the top of the current stack frame. The
exact value of the stack pointer, however, is only determined at runtime. Therefore, to
successfully propagate constants through stack variables, our analysis must be able to
handle indirect memory accesses symbolically, i.e., use symbolic store mappings from
expressions to arbitrary expressions. The same holds true for fields in dynamically al-
located memory structures, whose addresses are not statically known, either.

Support for symbolic store locations requires symbolic constants. Consider the sim-
ple program in Figure 2. The value of x is non-constant (because it is part of the input)
and thus initialized to �. To still propagate the assignment of 5 to the store location
pointed to by x from line 2 to 5, the value of x has to be propagated symbolically,
by forward substituting and partially evaluating the expressions. To this end, the lat-
tice of abstract variable values contains symbolic expressions as an additional level of
abstraction between integers and �. Consequently, the mapping from store indices to
integers has to be extended to a mapping Exp → Exp. The join � of the lattice for two
elements with distinct values of the program counter is implemented by removing all
symbolic mappings, retaining only mappings of variables to integers and from integer
store locations to integers. This causes the scope of symbolic constant propagation to
be limited to a single basic block. It also has the effect that the lattice L, which is of
infinite height and satisfies the ascending chain condition; join points in loops always
cause removal of mappings, thus every abstract state can only hold a finite number of
mappings. Since ascending chains in the lattice remove one mapping per height level,
the chains will always reach � after a finite number of steps.

The use of symbolic values has other implications as well. For updating symbolic
values, the abstract p̂ost uses a substitution function that substitutes variables and
memory expressions recursively with symbolic values from the abstract state. For sub-
stituting memory values, an aliasing check of store indices has to be performed. The
abstract evaluation function êval, which is used by our framework to resolve branch
targets, uses substitution of symbolic store locations as well but ignores resulting sym-
bolic values and only returns either integers, �, or ⊥. The concretization function γ
maps each element of L to all concrete valuations matching the integer constants, dis-
regarding symbolic mappings.
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Using this abstract domain, JAKSTAB has already achieved good precision in re-
constructing the control flow of executables [6]. Note that in the analysis of compiled
applications, there are some cases when calls cannot be resolved by our current imple-
mentation. Most of the instances of unresolved control flow are due to function pointers
inside structures being passed as parameters through several procedure calls. The local
propagation of memory values in the abstract domain is currently not precise enough to
capture such cases. Improvement of the propagation of memory values is a particular
focus of ongoing work. The number of function pointer structures greatly depends on
the implementation language of the program and the API functions used. In low level
C code, the overwhelming majority of indirect calls result from compiler optimizations
storing the addresses of frequently used API functions in registers, which JAKSTAB can
reliably resolve.

5 Related Work

The problem of extracting a precise control flow graph from binaries has risen in several
different communities of computer science. An obvious area is reverse engineering and
in particular decompilation, where one aims to recover information about the original
program, or preferably a close approximation of the original source code, from a com-
piled binary [11,12,13]. The compiler literature knows the concept of link-time- and
post-link-optimizers [7,14], which exploit the fact that the whole program including li-
braries and hand-written assembly routines can be analyzed and optimized at link-time,
i.e., after all code has been translated to binary with the symbol information still present.
Precise tools for determining worst case execution time (WCET) of programs running
on real time systems also have to process machine code, since they need to take com-
piler optimizations into account, and thus face similar problems of reconstructing the
control flow [1,5,15]. Other applications of binary analysis include binary instrumenta-
tion [16], binary translation [17], or profiling [4].

Another prominent area of research that requires executable analysis is advanced
malware detection. While classical malware detection relied on searching executables
for binary strings (signatures) of known viruses, more recent advanced techniques fo-
cus on detecting patterns of malicious behavior by means of static analysis and model
checking [18,19]. In this application domain, independence of the analysis from symbol
information and compiler idioms is imperative, since malicious code is especially likely
to have its symbols removed or to even be specially protected from analysis.

Due to the interest from these different communities, there has been a number of con-
tributions to improving the results from disassembly. The literature contains a number
of practical approaches to disassembly, which do not try to formulate a generalizable
strategy. Schwarz et al. [2] describe a technique that uses an improved linear sweep
disassembly algorithm, using relocation information to avoid misinterpreting data in a
code segment. Subsequently, they run a recursive traversal algorithm on each function
and compare results, but no attempt is made to recover from mismatching disassembly
results. Harris and Miller [4] rely on identifying compiler idioms to detect procedures
in the binary and to resolve indirect jumps introduced by jump tables. Cifuentes and
van Emmerik [20] present a method to analyze jump tables by backward slicing through
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register assignments and computing compound target expressions for the indirect jumps.
These compound expressions are then matched against three compiler-specific patterns
of implementing switch statements.

There have also been several proposals for more general frameworks for reconstruct-
ing the control flow from binaries. In Section 2.2, we already discussed the approach by
De Sutter et al. [7], which targets code with symbol and relocation information and uses
an overapproximating unknown-node for unresolved branch targets. In his bottom-up
disassembly strategy, Theiling [1] assumes architectures in which all jump targets can
be computed directly form the instruction, effectively disallowing indirect jumps. For
extending his method to indirect jumps, he also suggests the use of an overapproximat-
ing unknown node.

Kästner and Wilhelm [5] describe a top-down strategy for structuring executables
into procedures and basic blocks. For this to work, they require that code areas of pro-
cedures must not overlap, that there must be no data between or inside procedures,
and that explicit labels for all possible targets of indirect jumps are present. Compilers,
however, commonly generate procedures with overlapping entry and exit points, even
if the control flow graphs of the procedures are completely separate, so their top-down
structuring approach cannot be used in general without specific assumptions about the
compiler or target architecture.

The advanced executable analysis tool Codesurfer/X86, presented by Balakrishnan
and Reps [3], extracts information about relations between values and computes an ap-
proximation of possible values based on the abstract domain of value sets. For disassem-
bly, they rely on the capabilities of the commercial disassembler IDA Pro. While they
are able to resolve missing control flow edges through value set analysis, their separa-
tion from disassembly prevents that newly discovered code locations can be disassem-
bled. Furthermore, CodeSurfer/X86 is vulnerable to errors introduced by the heuristics
based disassembly strategy of IDA Pro.

Although operating at higher language levels, the decompilation approach of Chang
et al. [13] is similar in spirit to our framework. They connect abstract interpreters op-
erating at different language levels, executing them simultaneously. One can interpret
our data flow analysis and control flow reconstruction as separate decompilation stages
of their framework. However, we do not restrict the execution order but allow nonde-
terministic fixed point iteration over both analyses and are still able to prove that the
resulting control flow graph is optimal.

6 Conclusion

We have built a solid foundation for the concept of disassembling binary code by defin-
ing a generic abstract interpretation framework for control flow reconstruction. While
analysis of machine code often requires ad hoc solutions and has many pitfalls, we be-
lieve that it greatly helps in the design of disassemblers and binary analysis tools to
know that data flow guided disassembly does not suffer from a “chicken and egg” prob-
lem. Based on our framework, we plan to further extend our own disassembler JAKSTAB

with an improved abstract domain to further reduce the need for overapproximation of
control flow.
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Abstract. We introduce Subpolyhedra (SubPoly) a new numerical ab-
stract domain to infer and propagate linear inequalities. SubPoly is as
expressive as Polyhedra, but it drops some of the deductive power to
achieve scalability. SubPoly is based on the insight that the reduced prod-
uct of linear equalities and intervals produces powerful yet scalable anal-
yses. Precision can be recovered using hints. Hints can be automatically
generated or provided by the user in the form of annotations.

We implemented SubPoly on the top of Clousot, a generic abstract in-
terpreter for .Net. Clousot with SubPoly analyzes very large and complex
code bases in few minutes. SubPoly can efficiently capture linear inequal-
ities among hundreds of variables, a result well-beyond state-of-the-art
implementations of Polyhedra.

1 Introduction

The goal of an abstract interpretation-based static analyzer is to statically infer
properties of the execution of a program that can be used to check its spec-
ification. The specification usually includes the absence of runtime exceptions
(division by zero, integer overflow, array index out of bounds . . . ) and program-
mer annotations in the form of preconditions, postconditions, object invariants
and assertions (“contracts” [23]). Proving that a piece of code satisfies its spec-
ification often requires discovering numerical invariants on program variables.

The concept of abstract domain is central in the design and the implementa-
tion of a static analyzer [9]. Abstract domains capture the properties of interest
on programs. In particular numerical abstract domains are used to infer numer-
ical relationships among program variables. Cousot and Halbwachs introduced
the Polyhedra numerical abstract domain (Poly) in [11]. Poly infers all the linear
inequalities on the program variables. The application and scalability of Poly has
been severely limited by its performance which is worst-case exponential (easily
attained in practice). To overcome this shortcoming and to achieve scalability,
new numerical abstract domains have been designed either considering only in-
equalities of a particular shape (weakly relational domains) or fixing ahead of the
analysis the maximum number of linear inequalities to be considered (bounded
domains). The first class includes Octagons (which capture properties in the form
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class StringBuilder {

int ChunkLen; char[] ChunkChars;

public void Append(int wb, int count) {

Contract.Requires(wb >= 2 * count);

if (count + ChunkLen > ChunkChars.Length)

(*) CopyChars(wb, ChunkChars.Length - ChunkLen);

// ... }

private void CopyChars(int wb, int len) {

Contract.Requires(wb >= 2 * len);

// ... }

Fig. 1. An example extracted from mscorlib.dll. Contract.Requires(. . . ) expresses
method preconditions. Proving the precondition of CopyChars requires propagating an
invariant involving three variables and non-unary coefficients.

±x± y ≤ c) [24], TVPI (a ·x+ b ·y ≤ c) [29], Pentagons (x ≤ y∧a ≤ x ≤ b) [22],
Stripes (x + a · (y + z) > b) [14] and Octahedra (±x0 · · · ± xn ≤ c) [7]. The
latter includes constraint template matrices (which capture at most m linear
inequalities) [28] and methods to generate polynomial invariants e.g. [25,26].

Although impressive results have been achieved using weakly relational and
bounded abstract domains, we experienced situations where the full expressive
power of Poly is required. As an example, let us consider the code snippet of
Fig. 1, extracted from mscorlib.dll, the main library of the .Net framework.
Checking the precondition at the call site (∗) involves (i) propagating the con-
straints wb ≥ 2 · count and count + ChunkLen > ChunkChars.Length; and (ii)
deducing that wb ≥ 2 · (ChunkChars.Length− ChunkLen). The aforementioned
weakly relational domains cannot be used to check the precondition: Octahedra
do not capture the first constraint (it involves a constraint with a non-unary co-
efficient); TVPI do not propagate the second constraint (it involves three vari-
ables); Pentagons and Octagons cannot represent any of the two constraints;
Stripes can propagate both constraints, but because of the incomplete closure it
cannot deduce the precondition. Bounded domains do the job, provided we fix
before the analysis the template of the constraints. This is inadequate for our
purposes: The analysis of a single method in mscorlib.dll may involve hun-
dreds of constraints, whose shape cannot be fixed ahead of the analysis, e.g. by
a textual inspection. Poly easily propagates the constraints. However, in the gen-
eral case the price to pay for using Poly is too high: the analysis will be limited
to few dozens of variables.
Subpolyhedra. We propose a new abstract domain, Subpolyhedra (SubPoly),
which has the same expressive power as Poly, but it drops some inference power
to achieve scalability: SubPoly exactly represents and propagates linear inequal-
ities containing hundreds of variables and constraints. SubPoly is based on the
fundamental insight that the reduced product of linear equalities, LinEq [17],
and intervals, Intv [9], can produce very powerful yet efficient program analyses.
SubPoly can represent linear inequalities using slack variables, e.g. wb ≥ 2 ·count
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is represented in SubPoly by wb−2 ·count = β∧β ∈ [0,+∞]. As a consequence,
SubPoly easily proves that the precondition for CopyChars is satisfied at the call
site (∗). In general the join of SubPoly is less precise than the one on Poly, so that
it may not infer all the linear inequalities. Hints, either automatically generated
or provided by the user, help recover precision.

Cardinal operations for SubPoly are: (i) the reduction, which propagates the
information between LinEq and Intv; (ii) the join, which derives a compact yet
precise upper approximation of two incoming abstract states; and (iii) the hint
generator, which recovers information lost at join points.

void Foo(int i, int j) {

int x = i, y = j;

if (x <= 0) return;

while (x > 0) { x--; y--; }

if (y == 0) Assert(i == j); }

Fig. 2. An example from [27]. SubPoly
infers the loop invariant x − i = y −
j∧ x ≥ 0, propagates it and proves the
assertion.

Reduction. Let us consider the exam-
ple in Fig. 2, taken from [27]. The pro-
gram contains operations and predicates
that can be exactly represented with Oc-
tagons. Proving that the assertion is not
violated requires discovering the loop in-
variant x − y = i − j ∧ x ≥ 0. The loop
invariant cannot be fully represented in
Octagons: it involves a relation on four
variables. Bounded numerical domains are
unlikely to help here as there is no way to
syntactically figure out the required tem-
plate. The LinEq component of SubPoly

infers the relation x− y = i− j. The Intv component of SubPoly infers the loop
invariant x ∈ [0,+∞], which in conjunction with the negation of the guard im-
plies that x ∈ [0, 0]. The reduction of SubPoly propagates the interval, refining
the linear constraint to y = j− i. This is enough to prove the assertion (in con-
junction with the if-statement guard). It is worth noting that unlike [27] SubPoly
does not require any hypothesis on the order of variables to prove the assertion.
Join and Hints. Let us consider the code in Fig. 3, taken from [15]. The loop
invariant required to prove that the assertion is unreached (and hence that the
program is correct) is x ≤ y ≤ 100 · x ∧ z = 10 · w. Without hints, SubPoly can
only infer z = 10 · w. Template hints, inspired by [28], are used to recover linear
inequalities that are dropped by the imprecision of the join: In the example the
template is x − y ≤ b, and the analysis automatically figures out that b = 0.
Planar Convex hull hints, inspired by [29], are used to introduce at join points
linear inequalities derived by a planar convex hull: In the example it helps the
analysis figure out that y ≤ 100 · x. It is worth noting that SubPoly does not
need any of the techniques of [15] to infer the loop invariant.

2 Abstract Interpretation Background

We assume the concrete domain to be the complete Boolean lattice of en-
vironments, i.e. C = 〈P(Σ),⊆, ∅, Σ,∪,∩〉, where Σ = [Vars → Z]. An ab-
stract domain A is a tuple 〈D, γ,�,⊥,�,�,�,�, ρ〉. The set of abstract elements
D is related to the concrete domain by a monotonic concretization function
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int x = 0, y = 0, w = 0, z = 0;

while (...) {

if (...) { x++; y += 100; }

else if (...) { if (x >= 4) { x++; y++; } }

else if (y > 10 * w && z >= 100 * x) { y = -y; }

w++; z += 10; }

if (x >= 4 && y <= 2) Assert(false);

Fig. 3. An example from [15]. SubPoly infers the loop invariant x ≤ y ≤ 100·x∧z = 10·w,
propagates it out of the loop, and proves that the assertion is unreached.

γ ∈ [D → C]. With an abuse of notation, we will not distinguish between an ab-
stract domain and the set of its elements. The approximation order � soundly
approximates the concrete order: ∀d0, d1 ∈ D. d0�d1 =⇒ γ(d0) ⊆ γ(d1). The
smallest element is ⊥, the largest element is �. The join operator � satisfies
∀d0, d1 ∈ D. d0�d0�d1 ∧ d1�d0�d1. The meet operator � satisfies ∀d0, d1 ∈
D. d0�d1�d0 ∧ d0�d1�d1. The widening � ensures the convergence of the fix-
point iterations, i.e. it satisfies: (i) ∀d0, d1 ∈ D. d0�d0�d1 ∧ d1�d0�d1; and
(ii) for each sequence of abstract elements d0, d1, . . . dk the sequence defined by
d�
0 = d0, d

�
1 = d�

0�d1 . . . d
�
k = d�

k−1�dk is ultimately stationary. In general, we
do not require abstract elements to be in some canonical or closed form, i.e.
there may exist d0, d1 ∈ D, such that d0 �= d1, but γ(d0) = γ(d1). The reduction
operator ρ ∈ [D → D] puts an abstract element into a (pseudo-)canonical form
without adding or losing any information: ∀d. γ(ρ(d)) = γ(d) ∧ ρ(d)�d. We do
not require ρ to be idempotent. New abstract domains can be systematically
derived by cartesian composition or functional lifting [10]. Following [8], we use
the dot-notation to denote point wise extensions.

Intervals. The abstract domain of interval environments is 〈Intv, γIntv,�Intv,
⊥Intv,�Intv,�Intv,�Intv,�Intv〉. The abstract elements are maps from program vari-
ables to open intervals. The concretization of an interval environment i is γIntv(i)
= {s ∈ Σ | ∀x ∈ dom(i). i(x) = [a, b]∧ a ≤ s(x) ≤ b}. The order is interval inclu-
sion, the bottom element is the empty interval, the top is the interval [−∞,+∞],
the join is the smallest interval which contains the two arguments, the meet is
interval intersection, and the widening keeps the stable bounds. The reduction
is the identity function. All the domain operations can be implemented to take
linear time.

Linear Equalities. The abstract domain of linear equalities is 〈LinEq, γLinEq,
�LinEq,⊥LinEq,�LinEq,�LinEq,�LinEq〉. The elements are sets of linear equalities,
their meaning is given by the set of concrete states which satisfy the constraints,
i.e. γLinEq = λl. {s ∈ Σ | ∀(

∑
ai · xi = b) ∈ l.

∑
ai · s(xi) = b}. The order

is sub-space inclusion, the bottom is the empty space, the top is the whole
space, the join is the smallest space which contains the two arguments, the
meet is space intersection. LinEq has finite height, so the join suffices to ensure
analysis termination. The reduction is Gaussian elimination. The complexity of
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the domain operations is subsumed by the complexity of Gaussian elimination,
which is cubic.
Polyhedra. The abstract domain of linear inequalities is 〈Poly, γPoly,�Poly,⊥Poly,
�Poly,�Poly,�Poly,�Poly〉. The elements are sets of linear inequalities, the con-
cretization is the set of concrete states which satisfy the constraints i.e. γPoly =
λp. {s ∈ Σ | ∀(

∑
ai · xi ≤ b) ∈ p.

∑
ai · s(xi) ≤ b}, the order is the polyhedron

inclusion, the bottom is the empty polyhedron, the top is the whole space, the
join is the convex hull, the meet is just the union of the set of constraints, and
the widening preserves the inequalities stable among two successive iterations.
The reduction infers the set of generators and removes the redundant inequali-
ties. The cost of the Poly operations is subsumed by the cost of the conversion
between the algebraic representation (set of inequalities) and the geometric rep-
resentation (set of generators) used in the implementation [1]. In fact, some
operations require the algebraic representation (e.g. �Poly), some require the ge-
ometrical representation (e.g. �Poly), and some others require both (e.g. �Poly).
The conversion between the two representations is exponential in the number of
variables, and it cannot be done better [18].

3 Subpolyhedra

We introduce the numerical abstract domain of Subpolyhedra, SubPoly. The
main idea of SubPoly is to combine Intv and LinEq to capture complex linear
inequalities. Slack variables are introduced to replace inequality constraints with
equalities.
Variables. A variable v ∈ Vars can either be a program variable (x ∈ VarP)
or a slack variable (β ∈ VarS). A slack variable β has associated information,
denoted by info(β), which is a linear form a1 · v1 + · · · + ak · vk. Let κ ≡∑
ai · xi +

∑
bj · βj = c be a linear equality: sκ =

∑
xi∈VarP ai · xi denotes the

partial sum of the monomials involving just program variables; VarP(κ) = {xi |
ai ·xi ∈ κ, ai �= 0} and VarS(κ) = {βj | bj ·βj ∈ κ, bj �= 0} denote respectively the
program variables and the slack variables in κ. The generalization to inequalities
and sets of equalities and inequalities is straightforward.
Elements. The elements of SubPoly belong to the reduced product LinEq ⊗
Intv [10]. Inequalities are represented in SubPoly with slack variables:

∑
ai ·xi ≤

c ⇐⇒
∑
ai · xi − c = β ∧ β ∈ [−∞, 0] (β is a fresh slack variable with the

associated information info(β) =
∑
ai · xi).

Concretization. A subpolyhedron can be interpreted as a polyhedron by pro-
jecting out the slack variables: γPoly

S ∈ [SubPoly → Poly] is γPoly
S = λ〈l; i〉. πVarS(l∪

{a ≤ v ≤ b | i(v) = [a, b]}), where π denotes the projection of variables in Poly.
The concretization γS ∈ [SubPoly → P(Σ)] is then γS = γPoly ◦ γPoly

S .

Approximation Order. The order on SubPoly may be defined in terms of
order over Poly. Given two subpolyhedra s0, s1, the most precise order relation
�∗

S is s0�∗
Ss1 ⇐⇒ γPoly

S (s0)�Polyγ
Poly
S (s1). However, �∗

S may be too expensive to
compute: it involves mapping subpolyhedra in the dual representation of Poly.
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if(...)

{ assume x - y <= 0; }

else

{ assume x - y <= 5; }
(a)

if(...)

{ assume x == y; assume y <= z; }

else

{ assume x <= y; assume y == z; }
(b)

Fig. 4. Examples illustrating the need for Step 1 in the join algorithm

This can easily cause an exponential blow up. We define a weaker approximation
order relation which first tries to find a renaming θ for the slack variables, and
then checks the pairwise order. Formally (· inj−→ · denotes an injective function):

〈l0; i0〉�S〈l1; i1〉 ⇐⇒ ∃θ. VarS(〈l0; i0〉)
inj−→ VarS(〈l1; i1〉).

∀β ∈ VarS(〈l0; i0〉). info(β) = info(θ(β)) ∧ θ(〈l0; i0〉)�̇〈l1; i1〉.

In general �S � �∗
S . In practice, �S is used to check if a fixpoint has been

reached. A weaker order relation means that the analysis may perform some
extra widening steps, which may introduce precision loss. However, we found
the definition of �S satisfactory in our experience.
Bottom. A subpolyhedron is equivalent to bottom if after a reduction one of
the two components is bottom: s = ⊥S ⇐⇒ ρ(s) = 〈l, i〉∧ (i = ⊥̇Intv ∨ l = ⊥LinEq).
Top. A subpolyhedron is top if both components are top: s = �S ⇐⇒ s =
〈l, i〉 ∧ i = �Intv ∧ l = �LinEq.
Linear form Evaluation. Let s be a linear form: �s� ∈ [SubPoly → Intv]
denotes the evaluation of s in a subpolyhedron after the reduction has inferred
the tightest bounds: �

∑
ai · vi� 〈l; i〉 = let 〈l∗; i∗〉 = ρ(〈l; i〉) in

∑
ai · i∗(vi).

Join. The join �S is computed in three steps. First, inject the information of
the slack variables into the abstract elements. Second, perform the pairwise join
on the saturated arguments. Third, add the constraints that are implied by the
two operands of the join, but that were not preserved by the previous step. The
join, parameterized by the reduction ρ, is defined by the Algorithm 1 (We let
0 = 1, 1 = 0). We illustrate the join with examples. We postpone the discussion
of the reduction to Sect. 4.

Example 1 (Steps 1 & 2). Let us consider the code in Fig. 4(a). After the assump-
tion, the abstract states on the true branch and the false branch are respectively:
s0 = 〈x− y = β0; β0 ∈ [−∞, 0]〉 and s1 = 〈x− y = β1; β1 ∈ [−∞, 5]〉. The infor-
mation associated with the slack variables is info(β0) = info(β1) = x − y. At
the join point we apply Algorithm 1. Step 1 refines the abstract states by intro-
ducing the information associated with the slack variables: s′0 = 〈x − y = β0 =
β1; β0 ∈ [−∞, 0]〉 and s′1 = 〈x− y = β1 = β0; β1 ∈ [−∞, 5]〉. Step 2 requires the
reduction of the operands. The interval for β1 (resp. β0) in s′0 (resp. s′1) is refined:
ρ(s′0) = 〈x−y = β0 = β1; β0 ∈ [−∞, 0], β1 ∈ [−∞, 0]〉 and ρ(s′1) = 〈x−y = β1 =
β0; β0 ∈ [−∞, 5], β1 ∈ [−∞, 5]〉. The pairwise join gets the expected invariant:
s� = ρ(s′0)�̇ρ(s′1) = 〈x − y = β0 = β1; β0 ∈ [−∞, 5], β1 ∈ [−∞, 5]〉. ��
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Algorithm 1. The join �S on Subpolyhedra
input 〈li; ii〉 ∈ SubPoly, i ∈ {0, 1}

let 〈l′i; i
′
i〉 = 〈li; ii〉

{Step 1. Propagate the information of the slack variables}
for all β ∈ VarS(li) \ VarS(li) do

〈l′i; i
′
i〉 := 〈l′i �LinEq {β = info(β)}; i′i〉

{Step 2. Perform the point-wise join on the saturated operands}
let 〈l�; i�〉 = ρ(〈l′0; i

′
0〉)�̇ρ(〈l′1; i

′
1〉)

{Step 3. Recover the lost information }
let Di be the linear equalities dropped from l′i at the previous step
for all κ ∈ Di do

let isκ = �sκ�〈l′i; i
′
i〉

if κ contains no slack variable then
if isκ �= Intv then

let β be a fresh slack variable
〈l�; i�〉 := 〈l� �LinEq {β = κ}; i� �Intv {β = isκ �Intv [0, 0]}〉

else if κ contains exactly one slack variable β then
if isκ �= Intv then

〈l�; i�〉 := 〈l� �LinEq {κ}; i� �Intv {β = isκ �Intv ii(β)}〉
return 〈l�; i�〉

Example 2 (Non-trivial information for slack variables). Let us consider the
code snippet in Fig. 4(b). The abstract states to be joined are 〈x−y = 0, y−z =
β0;β0 ∈ [−∞, 0]〉 and 〈y − z = 0, x − y = β1;β1 ∈ [−∞, 0]〉. The associated
information are info(β0) = y− z and info(β1) = x− y. Step 1 allows to refine
the abstract states with the slack variable information, and hence to infer that
after the join x ≤ y and y ≤ z. ��

The two examples above show the importance of introducing the information
associated with slack variables in Step 1 and the reduction in Step 2. Without
those, the relation between the slack variables and the program point where they
were introduced would have been lost.

The join of LinEq is precise in that if a linear equality is implied by both
operands, then it is implied by the result too. The same for the join of Intv. The
pairwise join in LinEq⊗ Intv may drop some inequalities. Some of those can be
recovered by the refinement step. The next example illustrates it.

Example 3 (Step 3). Let us consider the code in Fig. 5(a). The analysis of the two
branches of the conditional produces the abstract states: s0 = 〈x−3·y = 0; �Intv〉
and s1 = 〈x = 0, y = 1; x ∈ [0, 0], y ∈ [1, 1]〉. The reduction ρ does not refine the
states (we already have the tightest bounds). The point-wise join produces the
abstract state �S . Step 3 identifies the dropped constraints: D0 = {x−3 ·y = 0}
and D1 = {x = 0, y = 1}. The algorithm inspects them to check if they are
satisfied by the “other” branch. The constraint in D0 is also satisfied in the false
branch: �x− 3 · y�(s1) = [−3,−3] (�= �Intv). Therefore it can be safely added to
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Algorithm 2. The widening �S on Subpolyhedra
input 〈li; ii〉 ∈ SubPoly, i ∈ {0, 1}

let 〈l′i; i
′
i〉 = 〈li; ii〉

{Step 1. Propagate the information of the slack variables}
for all β ∈ VarS(l0) \ VarS(l1) do

〈l′0; i
′
0〉 := 〈l′0 �LinEq {β = info(β)}; i′0〉

{Step 2. Perform the point-wise widening}
let 〈l�; i�〉 = 〈l′0; i

′
0〉�̇ρ(〈l′1; i

′
1〉)

{Step 3. Recover the lost information }
let D0 be the linear equalities dropped from l′0 at the previous step
for all κ ∈ D0 do

let isκ = �sκ�〈l′1; i
′
1〉

if κ contains no slack variables then
if isκ �= Intv then

let β be a fresh slack variable
〈l� ; i�〉 := 〈l� �LinEq {β = κ}; i� �Intv {β = [0, 0]�isκ}〉

else if κ contains exactly one slack variable β then
if isκ �= Intv then
〈l� ; i�〉 := 〈l� �LinEq {κ}; i� �Intv {β = i0(v)�isκ}〉

return 〈l�; i�〉

the result. The constraints of D2 do not hold on the left branch and they are
discarded. The abstract state after the join is s� = 〈x−3·y = β; β ∈ [−3, 0]〉. ��

Meet. The meet �S is simply the pairwise meet on LinEq⊗ Intv.
Widening. The definition of the widening (Algorithm 2) is similar to the join,
with the main differences that: (i) the information associated to slack variables is
propagated only in one direction; (ii) only the right argument is saturated; and
(iii) the recovery step is applied only to one of the operands. Those hypotheses
avoid the well-known problems of interaction between reduction, refinement and
convergence of the iterations [24].

Example 4 (Refinement step for the widening). Let us consider the code snippet
in Fig. 5(b). The entry state to the loop is s0 = 〈i − k = 0; �Intv〉. The state
after one iteration is s1 = 〈i − k = 1; �Intv〉. We apply the widening operator.
Step 1 does not refine the states as there are no slack variables. The pairwise
widening of Step 2 loses all the information. Step 3 recovers the constraint k ≤ i:

if(...) { assume x == 3 * y; }

else { x = 0; y = 1; }
(a)

i := k;

while(...) i++;

assert i >= k;
(b)

Fig. 5. Examples illustrating the need for the Step 3 in the join and the widening
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D0 = {i − k = 0} contains no slack variables and �i − k�(s1) = [1, 1] so that
s� = 〈i − k = β; β ∈ [0,+∞]〉. ��

Theorem 1 (Fixpoint convergence). The operator defined in Algorithm 2
is a widening. Moreover, �S can be used to check that the fixpoint iterations
eventually stabilize.

4 Reduction for Subpolyhedra

The reduction in SubPoly infers tighter bounds on linear forms and hence on
program variables. Reduction is cardinal to fine tuning the precision/cost ratio.
We propose two reduction algorithms, one based on linear programming, ρLP ,
and the other on basis exploration, ρBE . Both of them have been implemented
in Clousot, our abstract interpretation-based static analyzer for .Net [4].
Linear Programming-Based Reduction. A linear programming problem is
the problem of maximizing (or minimizing) a linear function subject to a fi-
nite number of linear constraints. We consider upper bounding linear problems
(UBLP) [6], i.e. problems in the form (n is the number of variables, m is the
number of equations):

maximize c · vk k ∈ 1 . . . n, c ∈ {−1, +1}

subject to
n

X

j=1

aij · vj = bj (i = 1, . . . m) and lj ≤ vj ≤ uj (j = 1, . . . n).

The Linear programming-based reduction ρLP is trivially an instance of
UBLP: To infer the tightest upper bound (resp. lower bound) on a variable vk in
a subpolyhedron 〈l; i〉 instantiate UBLP with c = 1 (resp. c = −1) subject to the
linear equalities l and the numerical bounds i. UBLP can be solved in polynomial
time [6]. However, polynomial time algorithms for UBLP do not perform well
in practice. The Simplex method [12], exponential in the worst-case, in practice
performs a lot better than other known linear programming algorithms [30]. The
Simplex algorithm works by visiting the feasible bases (informally, the vertexes)
of the polyhedron associated with the constraints. At each step, the algorithm
visits the adjacent basis (vertex) that maximizes the current value of the objec-
tive by the largest amount. The iteration strategy of the Simplex guarantees the
convergence to a basis which exhibits the optimal value for the objective.

The advantages of using Simplex for ρLP are that: (i) it is well-studied and opti-
mized; (ii) it is complete in R, i.e. it finds the best solution over real numbers; and
(iii) it guarantees that all the information is propagated at once: ρLP ◦ρLP =ρLP .

The drawbacks of using Simplex are that (i) the computation over machine
floating point may introduce imprecision or unsoundness in the result; and (ii)
the reduction ρLP requires to solve 2 ·n UBLP problems to find the lower bound
and the upper bound for each of the n variables in an abstract state. We have
observed (i) in our experiences (cf. Sect. 6). There exist methods to circum-
vent the problem at the price of extra computational cost, e.g. using arbitrary
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Algorithm 3. The reduction algorithm ρBE , parametrized by the oracle δ
input 〈l; i〉 ∈ SubPoly, δ ∈ P({ζ | ζ is a basis change})

Put l into row echelon form. Call the result l′

let 〈l∗, i∗〉 = 〈l′, i〉
for all ζ ∈ δ do

l∗ := ζ(l∗)
for all vk + ak+1 · vk+1 + · · ·+ an · vn = b ∈ l∗ do

i∗ := i∗[vk �→ i∗(vk) �Intv �b− ak+1 · vk+1 + · · ·+ an · vn�(i∗)]

return 〈l∗, i∗〉

precision rationals, or a combination of machine floating arithmetic and precise
arithmetic. Even if (i) is solved, we observed that (ii) dominates the cost of the
reduction, in particular in the presence of abstract states with a large number
of variables: the 2 · n UBLP problems are disjoints and there is no easy way to
share the sequence of bases visited by the Simplex algorithm over the different
runs of the algorithm for the same abstract state.

Basis Exploration-Based Reduction. We have developed a new reduction
ρBE , less subject to the drawbacks from floating point computation than ρLP ,
which enables a better tuning of the precision/cost ratio than the Simplex. The
basic ideas are: (i) to fix ahead of time the bases we want to explore; and (ii) to
refine at each step the variable bounds. The reduction ρBE , parametrized by a
set of changes of basis δ, is formalized by Algorithm 3. First, we put the initial
set of linear constraints into triangular form (row echelon form). Then, we apply
the basis changes in δ and we refine all the variables in the basis. With respect
to ρLP , ρBE is faster: (i) the number of bases to explore is statically bounded;
(ii) at each step, k variables may be refined at once.

In theory, ρBE is an abstraction of ρLP , in that it may not infer the optimal
bounds on variables (it depends on the choice of δ). In practice, we found that
ρLP is much more numerically stable and it can infer better bounds than ρLP .
The reason is in the handling of numerical errors in the computation. Suppose we
are seeking a (lower or upper) bound for a variable using the Simplex. If we detect
a numerical error (i.e., a huge coefficient in the exact arithmetic computation),
the only sound solution is to stop the iterations, and return the current value
of the objective function as the result. On the other hand, when we detect a
numerical error in ρBE , we can just skip the current basis (abstraction), and
move to the next one in δ.

We are left with the problem of defining δ. We have two instantiations for it:
a linear explorer and combinatorial explorer. The algorithm in Sect. 9.3.3 of [13]
may also be used when the all the variables are known to be positive.

Linear Explorer (δL). The linear bases explorer is based on the empirical
observation that in most cases having some variable v0 in the basis and some
other variable v1 out of the basis is enough to infer good bounds. The explorer
generates a sequence of bases δL with the property that for each unordered pair of
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distinct variables 〈v0, v1〉, it exists ζ ∈ δL such that v0 is in the basis and v1 is not.
The sequence δL is defined as δL = {ζi | i ∈ [0, n], vi . . . v(i+m−1)mod n are in
basis for ζi}.

Example 5. (Reduction with the linear explorer) Let the initial state be s =
〈v0 + v2 + v3 = 1, v1 + v2 − v3 = 0; v0 ∈ [0, 2], v1 ∈ [0, 3]〉, so that δL =
{{v0, v1}, {v1, v2}, {v2, v3}, {v3, v0}}. The reduction ρBE (s) contains the tightest
bounds for v2, v3: 〈v2 + 1

2 · v0 + 1
2 · v1 = 0, v3 + 1

2 · v0− 1
2 · v1 = 0; v0 ∈ [0, 2], v1 ∈

[0, 3], v2 ∈ [0, 5
2 ], v3 ∈ [− 1

2 , 1]〉. ��

Properties of δL are that: (i) each variable appears exactly m times in the basis;
(ii) it can be implemented efficiently as the basis change from ζi to ζi+1, i ∈
[0, n− 1] requires just one variable swap; (iii) in general it is not idempotent: it
may be the case that ρL ◦ ρL �= ρL; (iv) the result may depend on the initial
order of variables, as shown by the next example.

Example 6 (Incompleteness of the linear explorer). Let us consider an initial
state s = 〈v0 + v1 + v2 = 0, v3 + v1 = 0; v2 ∈ [0, 1], v3 ∈ [0, 1]〉. The reduced
state ρBE (s) = 〈v3 + v1 = 0, v2 + v0 − v1 = 0; v1 ∈ [−1, 0], v2 ∈ [0, 1], v3 ∈ [0, 1]〉
does not contain the bound v0 ∈ [−1, 1]. ��

Combinatorial Explorer (δC). The combinatorial explorer δC systematically
visits all the bases. It generates all possible combinations of m variables trying to
minimize the number of swaps at each basis change. It is very costly, but it finds
the best bounds for each variable: it visits all the bases, in particular the one
where the optimum is reached. The main advantage with respect to the Simplex
is a better tolerance to numerical errors. However it is largely impractical because
of (i) the huge cost; and (ii) the negligible gain of precision w.r.t. the use of δL
that it showed in our benchmark examples.

5 Hints

The inference power of SubPoly can be increased using hints. Hints are linear
functionals associated with a subpolyhedron s. They represent some linear in-
equality that may hold in s, but that it is not explicitly represented by a slack
variable, or that it is not been checked to hold in s yet.

Hints increase the precision of joins and widenings. Let h be an hint, let s0
and s1 two subpolyhedra, and let b = �h�(s0)�Intv �h�(s1). If b �= �Intv, then h ∈ b
holds in both s0 and s1, so that the constraint can be safely added to s0 �S s1.
That helps recovering linear inequalities that may have been dropped by the
Algorithm 1. The situation for widening is similar, with the main difference that
the number of hints should be bounded, to ensure convergence. Hints can be
automatically generated during the analysis or they can be provided by the user
in the form of annotations. In our current implementation, we have three ways
to generate hints, inspired by existing solutions in the literature: program text,
templates and planar convex hull. They provide very powerful hints, but some
of them may be expensive.
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Program Text Hints. They introduce a new hint each time a guard or assume
statement (user annotation) is encountered in the analysis. This way, properties
that are obvious when looking at the syntax of the program will be proved. Also,
every time a slack variable β is removed, info(β) is added to the hints. This
is useful in the realistic case when SubPoly is used in conjunction with a heap
analysis which may introduce unwanted renamings.

Template Hints. They consider hints of fixed shape [28]. For instance, hints
in the form x0 − x1 guarantee a precision at least as good as difference bounds
matrices [24], provided that the reduction is complete.

Planar Convex Hull Hint. It materializes new hints by performing the pla-
nar convex hull of the subpolyhedra to join [29]. First, it projects the interval
components on every two-dimensional plane (there are a quadratic number of
such planes). Then it performs the convex hull of the resulting pair of rectangles
(in constant time, since the number of vertexes is at most eight). The resulting
new linear constraints are a sound approximation by construction. They can be
safely added to the result of the join.

6 Experience

We have implemented SubPoly on top of Clousot, our modular abstract inter-
pretation-based static analyzer for .Net [3]. A stand-alone version of the SubPoly
library is available for download [19]. Clousot directly analyzes MSIL, a bytecode
target for more than seventy compilers (including C#, Managed C++, VB.NET,
F#). Prior to the numerical analysis Clousot performs a heap analysis and an
expression recovery analysis [21]. Clousot performs intra-procedural analysis
and it supports assume-guarantee reasoning via Foxtrot annotations [4]. Con-
tracts are expressed directly in the language as method calls and are persisted
to MSIL using the normal compilation process of the source language. Classes
and methods may be annotated with class invariants, preconditions and post-
conditions. Preconditions are asserted at call sites and assumed at the method

Bounds SubPoly with ρLP SubPoly with ρBE Max
Assembly Methods Checked Valid % Time Valid % Time Vars

mscorlib.dll 18 084 17 181 14 432 84.00 73:48 (3) 14 466 84.20 23:19 (0) 373
System.dll 13 776 11 891 10 225 85.99 58:15 (2) 10 427 87.69 14:45 (0) 140

System.Web.dll 22 076 14 165 13 068 92.26 24:41 (0) 13 078 92.33 6:33 (0) 182
System.
Design.dll 11 419 10 519 10 119 96.20 26:07 (0) 10 148 96.47 5:18 (0) 73

Average 89.00 89.51

Fig. 6. The experimental results of checking array creation and accesses in representa-
tive .Net assemblies. SubPoly is instantiated with two reductions: ρLP and ρBE . Time
is in minutes. The number of methods that reached the timeout (two minutes) is in
parentheses. The last column reports the maximum number of variables simultaneously
related by a SubPoly abstract state.
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entry point. Postconditions are assumed at call sites and asserted at the method
exit point. Clousot also checks the absence of specific errors, e.g. out of bounds
array accesses, null dereferences, buffer overruns, and divisions by zero.

Figure 6 summarizes our experience in analyzing array creations and accesses
in four libraries shipped with .Net. The test machine is an ordinary 2.4Ghz
dual core machine, running Windows Vista. The assemblies are directly taken
from the %WINDIR%\Microsoft\Framework\v2.0.50727 directory of the PC.
The analyzed assemblies do not contain contracts (We are actively working to
annotate the .Net libraries). On average, we were able to validate almost 89.5%
of the proof obligations. We manually inspected some of the warnings issued
for mscorlib.dll. Most of them are due to lack of contracts, e.g. an array is
accessed using a method parameter or the return value of some helper method.
However, we also found real bugs (dead code and off-by-one). That is remarkable
considering that mscorlib.dll has been tested in extenso. We also tried SubPoly
on the examples of [11,27,15,16], proving all of them.

Reduction Algorithms. We run the tests using the Simplex-based and the
Linear explorer-based reduction algorithms. We used the Simplex implementa-
tion shipped with the Microsoft Automatic Graph Layout tool, widely tested
and optimized. The results in Fig. 6 show that ρLP is significantly slower than
ρBE , and in particular the analysis of five methods was aborted as it reached
the two minutes time-out. Larger time-outs did not help.

SubPoly with the reduction ρLP validates less accesses than ρBE . Two reasons
for that. First, it is slower, so that the analysis of some methods is aborted and
hence their proof obligations cannot be validated. Second, our implementation
of the Simplex uses floating point arithmetic which induces some loss of preci-
sion. In particular we need to read back the result (a double) into an interval
of ints containing it. In general this may cause a loss of precision and even
worse unsoundness. We experienced both of them in our tests. For instance the
39 “missing” proof obligations in System.Web.dll and System.Design.dll (val-
idated using ρBE , but not with ρLP ) are due to floating point imprecision in
the Simplex. We have considered replacing a floating point-based Simplex with
one using exact rationals. However, the Simplex has the tendency to generate
coefficients with large denominators. The code we analyze contains many large
constants which cause the Simplex to produce enormous denominators.

SubPoly with ρBE instantiated with the linear bases explorer perform very well
in practice: it is extremely fast and precise. Our implementation uses 64 bits Ratio-
nals. When an arithmetic overflow is detected, we abstract away the current com-
putation, e.g., by removing the suitable row in the matrix representation. On the
negative side, the result may depend on the variables order. A “bad” variable or-
der may cause ρBE not to infer bounds tight enough. One solution is to iterate the
applicationofρBE (it isnot idempotent).Other solutions are: (i) to reduce thenum-
ber of variables by simplifying a subpolyhedron (less bases to explore); (ii) to mark
variables which can be safely kept in the basis at all times: In the best case, only
one basis needs to be explored. In the general case, it still makes the reduction more
precise because the bases explored are more likely to give bounds on the variables.
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Max Variables. It is worth noting that even if Clousot performs an intra-
procedural analysis, the methods we analyze may be very complex, and they
may require tracking linear inequalities among many abstract locations. Ab-
stract locations are produced by the heap analysis [20], and they abstract stack
locations and heap locations. Figure 6 shows that it is not uncommon to have
methods which require the abstract state to track more than 100 variables. One
single method of mscorlib.dll required to track relations among 373 distinct
variables. SubPoly handles it: the analysis with ρBE took a little bit more than a
minute. To the best of our knowledge those performances in presence of so many
variables are largely beyond current Poly implementations. For instance, in some
preliminary study we tried to instantiate Clousot with the Poly library included
in Boogie [2]. The results were quite disappointing: under the same experimental
conditions (except for a 5 minutes time out), the analysis of System.dll took 257
minutes, and the time out was reached more than 20 times. We did not notice
any remarkable gain of precision using Poly. Furthermore, Poly is concerned by
floating points soundness issues, too [5].

7 Conclusions

We introduced SubPoly, a new numerical abstract domain based on the com-
bination of linear equalities and intervals. SubPoly can track linear inequalities
involving hundreds of variables. We defined the operations of the abstract do-
main (order, join, meet, widening) and two reduction operators (one based on
linear programming and another based on basis exploration). We found Simplex-
based reduction quite unsatisfactory for program analysis purposes: because of
floating point errors the result may be too imprecise or worse, unsound. We
introduced then the basis exploration-based reduction, in practice more precise
and faster.

SubPoly precisely propagates linear inequalities, but it may fail to infer some of
them at join points. Precision can be recovered using hints either provided by the
programmer in the form of program annotations; or automatically generated (at
some extra cost). SubPoly worked fine on some well known examples in literature
that required the use of Poly. We tried SubPoly on shipped code, and we showed
that it scales to several hundreds of variables, a result far beyond the capabilities
of existing Poly implementations.

Acknowledgments. Thanks to L. Nachmanson for providing us the Simplex
implementation. Thanks to M. Fähndrich, J. Feret, S. Gulwani, C. Popeea and
J. Smans for the useful discussions.
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7. Clarisó, R., Cortadella, J.: The octahedron abstract domain. In: Giacobazzi, R.

(ed.) SAS 2004. LNCS, vol. 3148, pp. 312–327. Springer, Heidelberg (2004)
8. Cousot, P.: The calculational design of a generic abstract interpreter. In: Calcula-

tional System Design. NATO ASI Series F. IOS Press, Amsterdam (1999)
9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: POPL 1977
(1977)

10. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL 1979 (1979)

11. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL 1978 (1978)

12. Dantzig, G.B.: Programming in linear structures. Technical report, USAF (1948)
13. Feret, J.: Analysis of mobile systems by abstract interpretation. PhD thesis
14. Ferrara, P., Logozzo, F., Fähndrich, M.A.: Safer unsafe code in. Net. In: OOPSLA

2008 (2008)
15. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically re-

fining abstract interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)

16. Gulwani, S., Mehra, K., Chilimbi, T.: Speed: Precise and efficient static estimation
of program computational complexity. In: POPL 2009 (2009)

17. Karr, M.: On affine relationships among variables of a program. Acta Informat-
ica 6(2), 133–151 (1976)

18. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K.M., Gurvich, M.: Generating all
vertices of a polyhedron is hard. In: SODA 2006 (2006)

19. Laviron, V., Logozzo, F.: The Subpoly Library,
http://research.microsoft.com/downloads

20. Logozzo, F.: Cibai: An abstract interpretation-based static analyzer for modular
analysis and verification of java classes. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 283–298. Springer, Heidelberg (2007)

21. Logozzo, F., Fähndrich, M.A.: On the relative completeness of bytecode analysis
versus source code analysis. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp.
197–212. Springer, Heidelberg (2008)

22. Logozzo, F., Fähndrich, M.A.: Pentagons: A weakly relational abstract domain for
the efficient validation of array accesses. In: SAC 2008 (2008)

23. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Professional Technical
Reference. Prentice-Hall, Englewood Cliffs (1997)
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Abstract. Vectors and bags are basic collection data structures, which are used
frequently in programs and specifications. Reasoning about these data structures
is supported by established algorithms for deciding ground satisfiability in the
theories of arrays (for vectors) and multisets (for bags), respectively. Yet, these
decision procedures are only able to reason about vectors and bags in isolation,
not about their combination.

This paper presents a decision procedure for the combination of the theories
of vectors and bags, even when extended with a function bagof bridging between
vectors and bags. The function bagof converts vectors into the bags of their el-
ements, thus admitting vector/bag comparisons. Moreover, for certain syntacti-
cally restricted classes of ground formulae decidability is retained if the theory
of vectors is extended further with a map function which applies uninterpreted
functions to all elements of a vector.

1 Introduction

Vectors and bags are basic collection data structures, which are used frequently in pro-
grams and specifications. Reasoning about these data structures is supported by decision
procedures for deciding the satisfiability of quantifier-free formulae in the theories of
arrays (for vectors) and multisets (for bags), respectively. However, known decision pro-
cedures are essentially only able to reason about vectors and bags in isolation, whereas
practical software verification problems often require non-trivial combinations.

Let us illustrate this problem with an example. Figure 1 shows a Java method
sendBulk taking a message text msg, a group of recipients group (represented as
an array of phone numbers) and a resource manager mgr holding (symbolic represen-
tations of) the resources required to send text messages to the recipients. As the cost of
sending text messages may vary depending on the recipient, the state of a resource man-
ager cannot be simply the number of messages that may be sent; instead it should be a
multiset of resources, representing exactly how many messages may be sent to whom.
In order to enforce the resource limit, at least at run-time, actual use of resources must
be preceded by a call to the resource manager’s use method, which checks whether the
required resource is present and if so, deduces it, otherwise aborts the program. This is
what’s happening in the body of method sendBulk, which iterates over group, send-
ing msg to each member by calling SMS.send, but only after checking for and using
up the associated resource by calling mgr.use. This approach to run-time monitoring
of resources via explicit resource managers has been described in [1], for example.

N.D. Jones and M. Müller-Olm (Eds.): VMCAI 2009, LNCS 5403, pp. 245–259, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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void sendBulk(String msg, PhoneNum[] group, ResourceMgr mgr) {
for (int i=0; i < group.length; i++) {

mgr.use(MessageResource(group[i]));
SMS.send(msg, group[i]);

}
}

PreCond ≡ bagof(mapMessageResource(group)) ⊆ mgr

PostCond ≡ \old(mgr) = mgr � bagof(mapMessageResource(group))

LoopInv ≡ 0 ≤ i ≤ group.length ∧
bagof(mapMessageResource(group[i:group.length])) ⊆ mgr ∧
\old(mgr) = mgr � bagof(mapMessageResource(group[0:i]))

VC ≡ LoopInv ∧ ¬LoopInv [i+ 1/i,mgr′/mgr] ∧ i < group.length ∧
count(mgr,MessageResource(group[i])) > 0 ∧
mgr = mgr′ � �MessageResource(group[i])�(1)

Fig. 1. Java bulk messaging example: code and specification of send loop

Run-time monitoring provides dynamic guarantees of resource safety, as abuse of re-
sources will be trapped. However, aborting a program midway is not always a desirable
solution; it would be better if we could guarantee statically that a program will never
even attempt to abuse resources. This is done in [2], which presents a type system for
proving static resource safety in a programming language with explicit resource man-
agers. When proving resource safety of a method like sendBulk, whether it is done
via a type system as in [2] or in the more traditional way by generating verification
conditions, the hard part is reasoning about constraints between the program variables.
Ideally, we’d like to have fully automated theorem provers for this task.

Let us take a look at the constraints required to express invariants and pre- and post-
conditions for sendBulk, see the bottom half of Figure 1. Informally, the precondition
states that mgr is a super-multiset of the vector group, when the latter is viewed as a
multiset of resources. To express this view, we first need to convert group into a vec-
tor of resources (by applying the map function) and then into a multiset of resources
(by applying the bagof function). The postcondition states that the old mgr splits into
two multisets: the new mgr and the multiset of resources corresponding to the vector
group. The loop invariant essentially combines pre- and postcondition, but for dif-
ferent slices of the vector group. The first conjunct bounds the loop variable i, the
second is the precondition for the remainder of the loop, i. e., for the subvector from
index i to the end, and the third is the effect of the loop so far, i. e., the postcondi-
tion for the subvector from index 0 up to (but excluding) i. The (negated) verification
condition conjoins the loop invariant before, the negated loop invariant after the execu-
tion of the loop (arising by substituting the variables i and mgr), the loop condition,
and the precondition (mgr has some resources corresponding to number group[i])
and effect (mgr′ holds one unit of resource less than mgr) of the loop body. Hence, to
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verify the loop invariant of an example even this simple we must prove unsatisfiabil-
ity of constraints about bags, vectors, subvectors, the map function for transforming
vectors pointwise, and the bagof function for transforming vectors into multisets.

Decision procedures for vectors (or arrays) exist for quite some time; early work
goes back to the late 1970s [6, 10]. Recently, [4] and [3] found expressive yet decidable
extensions of the theory arrays by injectivity predicates and by restricted quantification
over array indices, respectively. Decision procedures for bags (or multisets) have been
published recently in [12] and [7, 8], where the latter supports a cardinality operator.
However, decision procedures combining vectors and bags and linking them via the
bagof function (or something similar) do not exist.

The main contribution of this paper is a decision procedure for ground satisfiabil-
ity in the combination of the theories of vectors and bags extended with the function
bagof. For certain syntactically restricted classes of ground formulae decidability is re-
tained if the theory of vectors is extended further with a mapf function for transforming
vectors pointwise by applying the uninterpreted function f . The decision procedure re-
duces formulae containing bagof(·) to formulae without by instantiating universally
quantified variables in the axiomatisation of the bagof function, eventually reducing
the problem to the theories of vectors and bags. It relies on a decision procedure for
the Array Property Fragment described in [3] and on a decision procedure for multisets
with cardinality described in [7, 8].

Plan. Section 2 introduces some basic notation. Section 3 presents the theories of bags,
vectors, map and bagof functions. Section 4 utilises known results to construct a deci-
sion procedure for the combination of the theories of bags and vectors (including map).
Section 5 presents our main result: an extension of the decision procedure (and its proof
of correctness) to cope with bagof.

2 Preliminaries

We work in the framework of many-sorted first-order logic with equality, assuming
familiarity with the basic syntactic and semantic concepts. Below we fix some notation.

Throughout the paper, we fix three countably infinite and pairwise disjoint universes:
a set S of sorts, a set F of function symbols and a set X of variable symbols. By S+ we
denote the set of non-empty words over a set S.

Signatures. A decorated variable xs is a pair consisting of a variable x ∈ X and a
sort s ∈ S. A decorated function symbol fw is a pair consisting of a function symbol
f ∈ F and an arity w ∈ S+. A decorated function symbol cs of arity s ∈ S is called a
decorated constant. For the sake of readability, we may write decorated constants and
function symbols in the form c : s and f : s1×. . .×sn→s0 instead of cs and fs0s1...sn ,
respectively. We may drop decorations entirely if they are clear from the context.

A (many-sorted) signature Σ is a pair Σ = 〈S, F 〉 where S ⊆ S is a non-empty fi-
nite set of sorts and F ⊆ F × S+ is a set of decorated function symbols. We may write
ΣS andΣF to refer to S and F , respectively. IfΣ1 andΣ2 are signatures then the union
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Σ1 ∪ Σ2 = 〈ΣS
1 ∪ΣS

2 , Σ
F
1 ∪ΣF

2 〉 and intersection Σ1 ∩ Σ2 = 〈ΣS
1 ∩ΣS

2 , Σ
F
1 ∩ΣF

2 〉
are signatures, too. Two signaturesΣ1 andΣ2 are disjoint ifΣF

1 ∩ΣF
2 = ∅, i. e., disjoint

signatures do not share decorated function symbols but may share sorts.
Union and intersection induce a lattice structure on signatures. We denote the in-

duced partial order by ⊇, where Σ2 ⊇ Σ1 (in words: Σ2 extends Σ1) if ΣS
2 ⊇ ΣS

1
and ΣF

2 ⊇ ΣF
1 . The constant expansion of Σ, denoted by Σ̂, is the greatest signature

extending Σ such that Σ̂S = ΣS and all function symbols in Σ̂F \ ΣF are constants,
i. e., Σ̂ provides infinitely many constants per sort.

Terms and Formulae. Let Σ be a signature.Σ-terms are well-sorted terms constructed
from decorated function symbols in ΣF and decorated variables in X ×ΣS. A ground
Σ-term is a variable-freeΣ-term. IfΣ is clear from the context, we may drop the prefix
and write “term” instead of “Σ-term”. We may refer to terms of sort s ∈ ΣS as s-terms.

A Σ-atom is an equality1 t = t′, where t and t′ are Σ-terms of the same sort. A
Σ-literal is a Σ-atom t = t′ or its negation ¬(t = t′), often written as t �= t′. If we
want to stress that the sort of left- and right-hand sides of a Σ-atom (resp.-literal) is
s, we may refer to the atom (resp. literal) as s-atom (resp. s-literal). Σ-formulae are
formed from Σ-atoms by the usual connectives (¬, ∧, ∨, ⇒) and quantifiers (∀, ∃) of
first-order logic, inducing the usual notion of bound and free variables. A Σ-sentence
is aΣ-formula without free variables, and aΣ-theory is a set ofΣ-sentences. Note that
a Σ-theory T is also a Σ′-theory, for all Σ′ extending Σ. A ground Σ-formula is a
quantifier-freeΣ-sentence.

Algebras and Satisfiability. Let Σ = 〈S, F 〉 be a signature. A Σ-algebra A is a pair
〈SA, FA〉where SA is a S-indexed family of carrier sets and FA is a F -indexed family
of functions on the carrier sets. More formally, SA = {sA|s ∈ ΣS} is a family of
non-empty and pairwise disjoint sets sA, and FA = {fAs0s1...sn

|fs0s1...sn ∈ F} is a
family of functions fAs0s1...sn

from sA1 ×· · ·× sAn to sA0 . We extend the interpretation of
function symbols in a Σ-algebra A homomorphically to ground Σ-terms t in the usual
way, denoting the resulting element of the algebra by tA. Note that for allΣ′ extending
Σ, a Σ′-algebra A can also be viewed as a Σ-algebra.

The truth of a Σ-sentence φ in a Σ-algebra A, denoted by A |= φ, is defined in the
usual way. A is a model of a Σ-theory T , also denoted by A |= T , if A |= φ for all
φ ∈ T . Given aΣ-algebraA, the theory T (A) is the greatestΣ-theory which has A as
a model. Given a class∆ ofΣ-algebras, T (∆) =

⋂
A∈∆ T (A) is the greatestΣ-theory

which has all algebrasA ∈ ∆ as models.
Let T be a Σ-theory. A Σ-algebra A is a T -model if A |= T . A Σ̂-sentence φ is

T -satisfiable if there is a T -model A which is a model of φ; note that A must be a
Σ̂-algebra. Two Σ̂-sentences φ and ψ are T -equisatisfiable if both are T -satisfiable or
neither is.

Given a subset S′ ⊆ ΣS of sorts, aΣ-theory T is stably infinite w. r. t. S′ if every T -
satisfiable ground Σ̂-formula φ has a T -modelA such that sA is infinite for all s ∈ S′.
T is stably infinite if it is stably infinite w. r. t. the set of all sorts ΣS.

1 We consider equality the only predicate symbol of the logic. Other predicates can be encoded
as functions with a non-trivial codomain.
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3 Theories

We introduce the signatures and theories used throughout this paper, see also Figure 2.

Elements. TE is a given theory of elements (of vectors and bags). Its signature ΣE is
arbitrary but must be disjoint from all other signatures introduced in this section. The
theory TE is arbitrary, too, but must be decidable and stably infinite so it can be coupled
with the theory of multisets, see Section 4.1.

Presburger arithmetic. ΣINT is the signature of Presburger arithmetic, with one sort,
two constants and four binary function symbols (for addition, subtraction, minimum
and maximum). We introduce the binary predicate symbols ≤ and < as abbreviations;
we may write s ≤ t instead of min(s, t) = s and s < t instead of s ≤ t ∧ s �= t.

The theory TINT of Presburger arithmetic is defined as the set of all ΣINT-sentences
which are true inAINT, the standardΣINT-algebra which interprets the sort INT as the
integers and constants and function symbols by their usual meaning.

Multisets. The signature ΣBAG of multisets (with cardinality) extends the signature
of Presburger arithmetic with element sorts and multiset sorts BAGs, one per element
sort s. For each element sort, ΣBAG extends ΣINT with a constant �� for the empty
multiset, a singleton constructor �·�(·) (taking an element and its multiplicity), the usual
binary operations ∩, ∪,  for intersection, union and sum, a destructor count(·, ·) for
counting the frequency of an element in a multiset, and a destructor |·| for measuring
the cardinality (i. e., the number of elements, taking into account their multiplicities)
of a multiset. We introduce the binary predicate symbol ⊆ as an abbreviation; we may
write s ⊆ t instead of s ∩ t = s.

Due to the cardinality function, the theory of multisets cannot be finitely axioma-
tised in our logic.2 Therefore, the theory TBAG of multisets is defined as the set of all
ΣBAG-sentences that are true of ∆BAG, the class of standard ΣBAG-algebras. A is a
standard ΣBAG-algebra if it interprets the sort INT as the integers, the sorts BAGs as
the finite multisets over the interpretations of the sorts s, and the constants and func-
tion symbols by their usual meanings. Note that the theory TINT is contained in TBAG;
stable infiniteness will be relevant in Section 4.1.

Lemma 1. TBAG is stably infinite.

Vectors. We represent vectors by finite arrays of elements indexed by consecutive in-
tegers. The signature ΣVEC of vectors extends the signature of Presburger arithmetic
with element sorts and vector sorts VECs, one per element sort s. For each element
sort, ΣVEC extends ΣINT with two destructors fst(·) and end(·) for accessing the first
and last (more precisely, the first beyond the last) index of a vector, a destructor ·[·] for
reading an element of a vector, a constructor const(·, ·, ·) for creating a vector filled
with a multiple occurrences of the same element, a constructor ·[·:·] for slicing the sub-
vector in between two indices out of a vector, and a constructor ·{· ← ·} for updating a
vector at an index.

2 See [7] for an axiomatisation in a first-order logic extended with an infinite sum quantifier.
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ΣE-theory TE of elements
ΣE arbitrary signature disjoint from all signatures below,
TE arbitrary stably infinite theory with decidable ground TE-satisfiability problem.
ΣINT-theory TINT of Presburger arithmetic
ΣS

INT = {INT}
ΣF

INT =
˘

0, 1 : INT,
+,−, min, max : INT× INT→ INT

¯

TINT = T (AINT) where AINT is the standard ΣINT-algebra.
ΣBAG-theory TBAG of multisets with cardinality
ΣS

BAG = ΣS
INT ∪ΣS

E ∪ {BAGs | s ∈ ΣS
E}

ΣF
BAG = ΣF

INT ∪
˘

|·| : BAGs → INT,
count : BAGs × s→ INT,
�� : BAGs,

�·�(·) : s× INT→ BAGs,

∩,∪,� : BAGs × BAGs → BAGs

˛

˛ s ∈ ΣS
E

¯

TBAG = T (∆BAG) where ∆BAG is the class of standard ΣBAG-algebras.
ΣVEC-theory TVEC of vectors
ΣS

VEC = ΣS
INT ∪ΣS

E ∪ {VECs | s ∈ ΣS
E}

ΣF
VEC = ΣF

INT ∪
˘

fst, end : VECs → INT,
·[·] : VECs × INT→ s,
const : s× INT× INT→VECs,
·[·:·] : VECs × INT× INT→VECs,
·{· ← ·} : VECs × INT× s→VECs

˛

˛ s ∈ ΣS
E

¯

TVEC =
˘

∀u, v : fst(u) = fst(v) ∧ end(u) = end(v) ∧
(∀k : fst(u) ≤ k < end(u)⇒ u[k] = v[k]) ⇒ u = v,

∀x, i, j : fst(const(x, i, j)) = i ∧ end(const(x, i, j)) = j,
∀x, i, j, k : i ≤ k < j ⇒ const(x, i, j)[k] = x,
∀v, i, j : fst(v[i:j]) = max(i, fst(v)) ∧ end(v[i:j]) = min(j, end(v)),
∀v, i, j, k : fst(v[i:j]) ≤ k < end(v[i:j]) ⇒ v[i:j][k] = v[k],
∀v, i, x : fst(v{i ← x}) = fst(v) ∧ end(v{i ← x}) = end(v),
∀v, i, x : fst(v) ≤ i < end(v)⇒ v{i ← x}[i] = x,
∀v, i, x, k : fst(v) ≤ k < end(v) ∧ i �= k ⇒ v{i ← x}[k] = v[k]

¯

ΣBAGOF-theory TBAGOF of bagof function on vectors
ΣS

BAGOF = ΣS
VEC ∪ΣS

BAG

ΣF
BAGOF = ΣF

VEC ∪ΣF
BAG ∪ {bagof : VECs → BAGs | s ∈ ΣS

E}
TBAGOF =

˘

∀v : |bagof(v)| = max(end(v)− fst(v), 0),
∀v : end(v)− fst(v) = 1⇒ bagof(v) = �v[fst(v)]�(1),
∀x, i, j : i ≤ j ⇒ bagof(const(x, i, j)) = �x�(j−i),
∀v, k : fst(v) ≤ k ≤ end(v)⇒

bagof(v) = bagof(v[fst(v):k]) � bagof(v[k:end(v)])
¯

ΣMAP-theory TMAP of map function on vectors
ΣS

MAP = ΣS
VEC

ΣF
MAP = ΣF

VEC ∪ {f : s→ s′ | (f :s→ s′) ∈ ΣF
MAP ∧ s, s′ ∈ ΣS

E} ∪
{mapf : VECs →VECs′ | (f :s→ s′) ∈ ΣF

MAP ∧ s, s′ ∈ ΣS
E}

TMAP =
˘

∀v : fst(mapf (v)) = fst(v) ∧ end(mapf (v)) = end(v),
∀v, k : fst(v) ≤ k < end(v)⇒ mapf (v)[k] = f(v[k])

˛

˛ mapf ∈ ΣF
MAP

¯

Fig. 2. Theories of vectors and bags; see Section 3 for details
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The theory TVEC axiomatises vectors. The first axiom is extensionality, equating
all vectors that behave equally under the destructors. The remaining axioms define the
constructors (uniquely due to extensionality) in terms of the destructors. Note ΣVEC
provides no append(·, ·) because TVEC forces vector concatenation to be partial.

Given a signatureΣ extendingΣVEC, aΣ-algebraA is called vector complete if for
all element sorts s ∈ ΣS

E, all integers i, and all finite sequencesx0, . . . , xk−1 ∈ sA there
is a vector v ∈ VECA

s such that fst(v)A = i and end(v)A = i+ k and v[i+ l]A = xl

for all integers l with 0 ≤ l < k. AΣ-theory T is vector complete if every T -satisfiable
ground Σ̂-formula has a vector complete model.

Bagof function. The signature ΣBAGOF extends the union of the signature ΣVEC and
ΣBAG with functions bagof(·) mapping vectors to the multisets of their elements. The
theory TBAGOF axiomatises these functions. The first axiom equates the length of the
argument vector with the cardinality of the resulting multiset. The next two axioms de-
fine bagof(·) for the special cases that the argument vector is of length one or constant.
The last axiom admits recursive computation of bagof(·) by splitting the argument into
two subvectors and summing the results.

Map function. The signatureΣMAP extendsΣVEC by adding a set F of unary functions
on elements (i. e., (f :s→ s′) ∈ F implies s, s′ ∈ ΣS

E) and a set Fmap of map functions
on vectors such that (mapf : VECs →VECs′) ∈ Fmap if and only if (f :s→ s′) ∈ F .
Note that Figure 2 specifies ΣMAP by a fixpoint equation which has infinitely many
solutions.3

The theory TMAP axiomatises the functions mapf , in terms of the vector destruc-
tors, thus uniquely defining these functions. Note that TMAP does not define the unary
functions on elements; these functions are intended to be free.

Base theory. We define the Σ-theory TBASE = TE ∪ TBAG ∪ TVEC ∪ TMAP as the
union of the above theories excluding TBAGOF, where Σ = ΣE ∪ ΣBAG ∪ ΣVEC ∪
ΣMAP∪ΣBAGOF is the union of the above signatures (includingΣBAGOF, i. e., TBASE
leaves the bagof functions uninterpreted). The following model-theoretic properties
will become relevant in Section 5.

Lemma 2. TBASE is vector complete and stably infinite.

4 Known Decision Procedures Applied to Bags and Vectors

This section employs known results to obtain a decision procedure for ground satisfia-
bility in the combination of the theories of elements, multisets and vectors (including
the theory of map functions). We will make repeated use of the following result on the
combination of arbitrary theories with free functions.

Proposition 3 (Sofronie-Stokkermans 2005 [9]). Let Σ′ ⊇ Σ be signatures and
let T be a Σ-theory. If T -satisfiability is decidable for ground Σ̂-formulae then T -
satisfiability is decidable for ground Σ̂′-formulae.

3 Extremal solutions are uninteresting. The least solution would yield ΣMAP = ΣVEC, and the
greatest solution would likely violate the requirement that ΣE and ΣMAP be disjoint.
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The decision procedure behind Proposition 3 reduces a ground Σ̂′-formula in nega-
tion normal form4 (NNF) to a T -equisatisfiable ground Σ̂-formula in NNF; the reduc-
tion may cause a quadratic blowup.

4.1 Combining the Theories of Elements and Multisets

A decision procedure for the theory TBAG of multisets with cardinality is known [7].
We combine this decision procedure with an arbitrary decision procedure for the theory
TE of elements, using the Nelson-Oppen combination method [6, 11]. This is possible
because TE and TBAG are stably infinite theories (cf. Figure 2 and Lemma 1) over
disjoint signatures.

Proposition 4. Ground (TE ∪ TBAG)-satisfiability is decidable.

4.2 Deciding the Theory of Vectors (Including Map)

We use a decision procedure for the Array Property Fragment [3] to decide ground
satisfiability in the union of the theories of vectors and map functions. The procedure
reduces the satisfiability problem to ground satisfiability in the combination of the the-
ories of Presburger arithmetic, uninterpreted functions and an unspecified theory of
vector elements.

Proposition 5. Let T0 be a Σ0-theory where the signature Σ0 shares no non-constant
function symbols withΣVEC∪ΣMAP except for the function symbols inΣINT, formally
Σ0 ∩ (ΣVEC ∪ ΣMAP) ⊆ ˆΣINT. Let Σ1 = Σ0 ∪ ΣINT ∪ ΣVEC ∪ ΣMAP and T1 =
T0 ∪ TINT ∪ TVEC ∪ TMAP. If (T0 ∪ TINT)-satisfiability is decidable for ground Σ̂-
formulae, where Σ extends Σ0 ∪ ΣINT, then T1-satisfiability is decidable for ground
Σ̂1-formulae.

Proof. Let φ be a ground Σ̂1-formula (in NNF). Perform the following reductions.

1. Eliminate disequalities and updates: Normalise φ w. r. t. the rewrite rules NOTEQ

and UPDATE from Figure 3. NOTEQ expresses disequalities s �= t using extension-
ality and Skolemisation. UPDATE is based on expressing equations v = u{i← x}
by splitting u and v into three subvectors each (a prefix up to index i, a middle
part of length 1 at index i and a suffix from index i + 1) and equating these ac-
cordingly (in particular, equating the middle part of v to a constant vector). The
resulting ground Σ̂1-formula φ′ is T1-equisatisfiable to φ but contains no vector
disequalities and updates.

2. Purify w. r. t. vector sorts: In a bottom up manner, rewrite φ′
[
t
]

to φ′
[
c
]
∧ c = t,

where c is a fresh constant and t a non-constant vector term. The result of normal-
ising φ′ w. r. t. the above rule is a T1-equisatisfiable Σ̂1-formula φ′′ such that

– for all terms of the form fst(u) or end(u) or u[i], u is a constant, and
– all vector atoms are of the form u = v or v = u[i:j] or v = const(x, i, j) or
v = mapf (u), where u and v are constants.

4 The procedure in [9] expects input in clause form; however, the reduction works just as well
for formulae in NNF.
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[NOTEQ]
φ

ˆ

u �= v
˜

φ

»

fst(u) �= fst(v) ∨ end(u) �= end(v) ∨
(fst(u) ≤ k < end(u) ∧ u[k] �= v[k])

– if u, v vectors ∧ k fresh

[READ]
φ

ˆ

u[i]
˜

φ
ˆ

x
˜

∧ u[i:i + 1] = const(x, i, i + 1)
if x fresh

[UPDATE]
φ

ˆ

u{i ← x}
˜

φ
ˆ

v
˜

∧ ψ(v, u, i, x)
if v fresh

where ψ(v, u, i, x) ≡

8

>

>

<

>

>

:

`

fst(u) ≤ i < end(u) ∨ u = v
´

∧
`

i < fst(u) ∨ end(u) ≤ i ∨
`

fst(v) = fst(u) ∧ end(v) = end(u) ∧
v[fst(u):i] = u[fst(u):i] ∧ v[i:i + 1] = const(x, i, i + 1) ∧
v[i + 1:end(u)] = u[i + 1:end(u)]

´´

[BAGOF]
φ

ˆ

bagof(u)
˜

φ
ˆ

b
˜

∧ b = bagof(u)
if b fresh

[SUBCONST]
φ

ˆ

v = u[k:l] ∧ u = const(x, i, j)
˜

φ
ˆ

v = const(x, max(k, i), min(l, j)) ∧ u = const(x, i, j)
˜

[MAPCONST]
φ

ˆ

v = mapf (u) ∧ u = const(x, i, j)
˜

φ
ˆ

v = const(f(x), i, j) ∧ u = const(x, i, j)
˜

Fig. 3. Vector transformations; see sections 4.2 and 5.1 for details

[EQ]
φ

ˆ

u = v
˜

φ
ˆ

fstu = fstv ∧ endu = endv ∧ ∀k : fstu ≤ k < endu ⇒ u[k] = v[k]
˜

[SUB]
φ

ˆ

v = u[i:j]
˜

φ

»

fstv = max(i, fstu) ∧ endv = min(j, endu) ∧
∀k : fstv ≤ k < endv ⇒ v[k] = u[k]

–

[CONST]
φ

ˆ

v = const(x, i, j)
˜

φ
ˆ

fstv = i ∧ endv = j ∧ ∀k : fstv ≤ k < endv ⇒ v[k] = x
˜

[MAP]
φ

ˆ

v = mapf (u)
˜

φ
ˆ

fstv = fstu ∧ endv = endu ∧ ∀k : fstv ≤ k < endv ⇒ v[k] = f(u[k])
˜

Fig. 4. Translating to the Array Property Fragment; see Section 4.2 for details

3. Eliminate all subterms of the form fst(u) and end(u) in φ′′ by replacing them with
INT-constants fstu and endu, respectively, introducing two new INT-constants
fstu, endu per vector constant u. Then normalise φ′′ w. r. t. all rewrite rules in
Figure 4. This results in a T1-equisatisfiable Σ̂1-formula φ′′′, which falls into the
Array Property Fragment [3].
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4. Use decision procedure for the Array Property Fragment outlined in [3]:
– Instantiate universal quantifiers in φ′′′.
– Replace all constants u of sort VECs by unary functions fu : INT → s, and

replace all terms of the form u[i] by fu(i).
The resulting ground Σ̂-formula φ′′′′ is (T0 ∪ TINT)-satisfiable if and only if φ′′′ is
T1-satisfiable, where Σ extendsΣ0 ∪ΣINT with the above unary functions fu and
with the unary functions f on element sorts from signatureΣMAP. ��

4.3 Deciding the Base Theory

Finally, we pull the results of the previous subsections together to obtain a decision pro-
cedure for TBASE, the union of all theories introduced in Section 3 excluding TBAGOF.
Recall that the signature Σ of TBASE includes ΣBAGOF, i. e., TBASE treats the bagof
functions as free.

Proposition 6. Ground TBASE-satisfiability is decidable.

Proof. Let φ be Σ̂-formula (in NNF).

1. Reduce φ to a T -equisatisfiable ground Σ̂′-formula φ′ whereΣ′ = ΣE ∪ΣBAG ∪
ΣVEC ∪ΣMAP, using the decision procedure for free functions (Proposition 3).

2. Reduce φ′ to a ground Σ̂′′-formula φ′′ using the decision procedure for vectors
(Proposition 5; the Σ0-theory T0 there is TE ∪ TBAG here). The resulting signature
Σ′′ extendsΣE ∪ΣBAG by free unary functions on element sorts (stemming from
signatureΣMAP) and free unary functions from INT to element sorts (arising from
encoding arrays as unary functions). The formula φ′′ is (TE ∪ TBAG)-satisfiable iff
φ′ is T -satisfiable.

3. Reduce φ′′ to a (TE ∪TBAG)-equisatisfiable ground Σ̂′′′-formula φ′′′ whereΣ′′′ =
ΣE ∪ΣBAG, using the decision procedure for free functions (Proposition 3).

4. Check (TE∪TBAG)-satisfiability of φ′′′ using the combined decision procedure for
elements and multisets (Proposition 4). ��

5 A Decision Procedure for Bags, Vectors and Bagof Functions

Recall the Σ-theory TBASE, defined in Section 3 as the union of all theories excluding
TBAGOF, where Σ is the union of all signatures (includingΣBAGOF). For this section,
let T = TBASE ∪ TBAGOF be the Σ-theory extending TBASE with the axioms for the
bagof functions.

5.1 Decision Procedure

The decision procedure relies on reducing ground T -satisfiability to ground TBASE-
satisfiability by instantiating axioms of TBAGOF. The reduction is shown in Figure 5.
Termination is obvious. Soundness is established by the lemma below.
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Input: Ground Σ̂-formula φ0 (in NNF).
Output: Ground Σ̂-formula φ6.
Algorithm:

1. Eliminate definable vector operators, purify and simplify:
(a) Construct φ1 by normalising φ0 w. r. t. the rule NOTEQ (Figure 3).
(b) Construct φ2 by normalising φ1 w. r. t. the rules READ, UPDATE and BAGOF

(Figure 3).
(c) Construct φ3 by purifying φ2 w. r. t. vector sorts: In a bottom up manner, rewrite

φ2

ˆ

t
˜

to φ2

ˆ

c
˜

∧ c = t, where c is a fresh constant and t a non-constant vector
term.

(d) Construct φ4 by converting φ3 into disjunctive normal form (DNF).
(e) Construct φ5 by normalising φ4 w. r. t. the rules SUBCONST and MAPCONST

(Figure 3).
2. Determine the sets of vector constants C, element terms E and index terms I :

C = {v | v vector constant occurring in φ5}
E = {x | ∃i, j : const(x, i, j) occurs in φ5} and
I = {fst(u), end(u) | u ∈ C} ∪

{i, j | ∃x : const(x, i, j) occurs in φ5 ∨ ∃u : u[i:j] occurs in φ5}.

3. Instantiate (variants of) the TBAGOF axioms with terms generated from C, E and I :

φ6 ≡ φ5 ∧
^

u∈C;i,j∈I

Axu,i,j
1 ∧

^

x∈E;i,j∈I

Axx,i,j
3 ∧

^

u∈C;i,j,k∈I

Axu,i,j,k
4

where Axu,i,j
1 ≡ fst(u) ≤ i ≤ j ≤ end(u)⇒ |bagof(u[i:j])| = j − i

Axx,i,j
3 ≡ i ≤ j ⇒ bagof(const(x, i, j)) = �x�(j−i)

Axu,i,j,k
4 ≡ fst(u) ≤ i ≤ k ≤ j ≤ end(u)⇒

bagof(u[i:j]) = bagof(u[i:k]) � bagof(u[k:j])

Fig. 5. Reduction to base theory by instantiating TBAGOF axioms

Lemma 7 (Soundness). If φ0 is T -satisfiable then φ6 is TBASE-satisfiable.

Proof. As φ0 and φ5 are T -equisatisfiable, it suffices to show that every T -model is
a model of the instances Axu,i,j

1 , Axx,i,j
3 and Axu,i,j,k

4 , for all u ∈ C, x ∈ E and
i, j, k ∈ I .

– Axu,i,j
1 follows from the first TBAGOF axiom (after instantiating v with u[i:j]) as in

TVEC, fst(u) ≤ i ≤ j ≤ end(u) implies max(end(u[i:j])− fst(u[i:j]), 0) = j− i.
– Axx,i,j

3 is an instance of the third TBAGOF axiom.
– Axu,i,j,k

4 follows from the fourth TBAGOF axiom (after instantiating v with u[i:j]
and k with k) because in TVEC, the antecedent fst(u) ≤ i ≤ k ≤ j ≤ end(u)
implies u[i:j][fst(u[i:j]):k] = u[i:k] and u[i:j][k:end(u[i:j])] = u[k:j]. ��

Before we show completeness of the reduction, we point out that step 1 converts the
input formula φ0 to a ground DNF formula φ5 such that

– bagof occurs only in atoms of the form b = bagof(u), where b and u are constants,
– all vector atoms are of the form u = v or v = u[i:j] or v = const(x, i, j) or
v = mapf (u), where u and v are constants,
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– all other vector terms are of the form fst(u) or end(u), where u is a constant, and
– the arguments of mapf are non-constant, i. e., whenever mapf (u) occurs in a dis-

junct ψ then there are no terms x, i and j such that the atom u = const(x, i, j)
would logically follow from ψ in theory TBASE. Note that this last property is
achieved by conversion to DNF and propagation of constant vectors within each
disjunct (steps 1d and 1e in Figure 5).

5.2 Completeness in the Absence of Map Functions

We call the signatureΣMAP trivial ifΣMAP = ΣVEC, i. e., there are no unary functions
on elements and no map functions. By model-theoretic arguments, we prove complete-
ness of the reduction shown in Figure 5, given that ΣMAP is trivial.

Lemma 8 (Completeness without map). Assume ΣMAP trivial. If φ6 is TBASE-satis-
fiable then φ0 is T -satisfiable.

Proof. Assume a Σ̂-algebraAwhich is a TBASE-model of φ6; w. l. o. g. we assume that
A is vector complete (cf. Lemma 2). It suffices to construct a Σ̂-algebra A′ which is a
T -model of one disjunct ψ of φ5; we assume that A |= ψ.

Recall that C is the set of vector constants occurring in φ5. We choose A′ so that

1. A and A′ agree on the interpretations of all sorts, all constants except vector con-
stants occurring in φ5, and all function symbols except the bagof functions,

2. A′ interprets bagof : VECs → BAGs as functions mapping vectors in VECA′
s to

the multisets of their elements in BAGA′
s ,

3. A′ interprets vector constants u occurring in φ5 such that A and A′ agree
(a) on the interpretations of the ground terms fst(u) and end(u), and
(b) on the interpretations of the ground term bagof(u).

We have to explain how the interpretations of vector constants can be chosen in such a
way that item (3b) holds, i. e., how to keep the interpretations of ground terms bagof(u)
invariant even though the interpretations of the bagof functions change.

Recall the set of index terms I defined in step 2 of the reduction (Figure 5). Let
〈i1, . . . , in〉 be an enumeration of I such that A orders their interpretations in ascend-
ing sequence iA1 ≤ · · · ≤ iAn . Items (1) to (3a) ensure that A and A′ agree on the
interpretations of index terms ij ∈ I , hence A′ orders their interpretation iA

′
j in the

same sequence.
Item (3b) is achieved by an inductive process. Let j < n be minimal such that there

is u ∈ C with fst(u)A ≤ iAj ≤ iAj+1 ≤ end(u)A and bagof(u[ij :ij+1])A differing from
the multiset of elements in u[ij:ij+1]A. Note that there can be no x ∈ E — recall the
set E of element terms occurring in φ5 — such that const(x, ij , ij+1)A = u[ij:ij+1]A.
For if there were such x ∈ E then the TBAGOF instance Axx,ij ,ij+1

3 (appearing as a
conjunct in φ6) would ensure that bagof(u[ij :ij+1])A equals the multiset of elements
in u[ij:ij+1]A. Now let Cu be the set of vector constants whose slice between ij and
ij+1 happens to equal u[ij:ij+1] in A, formally

Cu = {v ∈ C | A |= fst(v) ≤ ij ≤ ij+1 ≤ end(v) ∧ u[ij:ij+1] = v[ij :ij+1]}.
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Let 〈x0, x1, . . . , xk−1〉 be an enumeration of the multiset bagof(u[ij:ij+1])A. Note

that the TBAGOF instance Axu,ij ,ij+1
1 constrains the size of the multiset so that k =

iAj+1 − iAj . As A is vector complete, we can choose the interpretations of all v ∈ Cu

such that for all l < k, vA
′

stores xl at index iA
′

j +l. This ensures thatA′ |= u[ij:ij+1] =
v[ij :ij+1]. The construction proceeds from there by induction on j.

After the construction is completed, one can show that A and A′ do in fact agree on
the interpretation of bagof(u), for all u ∈ C. The proof is by induction on the length
end(u) − fst(u) of u and uses the TBAGOF instances Axu,i,j,k

4 , for all i, j, k ∈ I such
that A |= fst(u) ≤ i ≤ k ≤ j ≤ end(u).

Obviously,A′ is a model of TBAGOF (and thus of T ) as that is how the interpretation
of the bagof functions was chosen. To show that A′ |= ψ, it suffices to show that A′

satisfies every vector atom thatA satisfies (becauseA andA′ agree on the interpretation
of non-vector literals and all vector literals occurring in ψ are positive). In the case of
atoms of the form v = const(x, i, j) this is so because the construction does not change
the interpretation of v. In the case of atoms of the form u = v or v = u[i:j], the
construction alters the interpretations of corresponding slices of u and v uniformly. ��
The decidability of ground satisfiability in the theories of elements, multisets, vectors
(excluding map functions) and the bagof function follows from soundness and com-
pleteness of the reduction (lemmas 7 and 8) and from decidability of the base theory
(Proposition 6).

Theorem 9. Assume ΣMAP trivial. Then ground T -satisfiability is decidable.

We remark that the conversion to DNF (step 1d in Figure 5) during the reduction is not
necessary if ΣMAP is trivial; NNF is all that’s required in that case.

5.3 Completeness in the Presence of Map Functions

To prove completeness of the reduction from Figure 5 when ΣMAP is not trivial, we
need syntactic restrictions on the occurrences of map functions in the input formula.

Given a set of element sorts S ⊆ ΣS
E, we say a term t is a S-term (resp. VECS-term)

if t is a s-term (resp. VECs-term) for some s ∈ S. A ground Σ̂-formula φ is stratified
if there is a partition {S1, . . . , Sm} of the set of element sorts ΣS

E such that

– for every subterm mapf (u) of φ there are strata Si and Si+1 such that u is a
VECSi-term and mapf (u) is a VECSi+1-term, and

– all arguments of bagof(·) in φ are uniformly VECSm-terms.

The verification condition VC from Figure 1 is an example of a stratified formula.
Given the strata S1 = {String} and S2 = {Resource}, it is easy to check that
mapMessageResource maps vectors of strings to vectors of resources, and that all argu-
ments of bagof(·) are vectors of resources. On the other hand, a formula containing a
function symbol mapf : VECs → VECs′ fails to be stratified if s = s′, for instance.

Lemma 10 (Completeness for stratified input). Assume φ0 stratified. If φ6 is TBASE-
satisfiable then φ0 is T -satisfiable.

Proof (Sketch). Let S1, . . . , Sm be the strata for φ0. As stratification is preserved by
step 1 of the reduction, φ5 is stratified w. r. t. the same strata. Recall the set C of
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vector constants defined in step 2 of the reduction. Stratification induces a partition
{C1, . . . , Cm} of C such that each Ci contains the VECSi-constants occurring in φ5.
We modify step 3 of the reduction slightly by generating instances of Axu,i,j

1 and
Axu,i,j,k

4 only for u ∈ Cm.
Now, assume a Σ̂-algebraA (which due to Lemma 2 can be assumed vector complete

and stably infinite5) which is a TBASE-model of φ6. The construction of a T -modelA′

of a disjunct ψ of φ5 is similar to the one in Lemma 8 except for the fact that now A′

may not only change the interpretations of bagof(·) and of vector constants but also the
interpretations of function symbols from signature ΣMAP. The construction proceeds
inm phases, yielding a sequence 〈Am,Am−1, . . . ,A1〉 of Σ̂-algebras.

The first phase constructs a Σ̂-algebra Am fixing the interpretations of the bagof
functions and the vector constants in Cm; this construction is analogous to the proof of
Lemma 8. Changing the interpretation some constant v ∈ Cm may falsify some atom
of the form v = mapf (u). To rectify this, the second phase constructs a Σ̂-algebra
Am−1 fixing the interpretations of vector constants in Cm−1 (and possibly changing
the interpretations of functions in ΣMAP) in order to restore the truth of v = mapf (u).
This in turn may falsify some other map atom, whose truth is restored by constructing
Am−2, and so on.

We present the construction of Am−1 in more detail; recall that we assume that
A |= ψ, and that ψ is a conjunction of literals. Let 〈i1, i2, . . . , in〉 be the ascending enu-
meration of index terms as defined in the proof of Lemma 8. Let j < n be minimal such
that ψ contains some atom v = mapf (u) with Am �|= v[ij :ij+1] = mapf (u[ij :ij+1]).
Because A and Am essentially differ in the interpretations of vector constants in Cm,
we conclude that v ∈ Cm, hence u ∈ Cm−1 due to stratification. In Am−1, we change
the interpretation of u (and of all u′ with Am |= u′[ij:ij+1] = u[ij:ij+1]) such that
the elements of u[ij:ij+1]Am−1 are fresh and pairwise distinct. Freshness means that
the elements of u[ij:ij+1]Am−1 occur neither in the A- nor in the Am-interpretation of
any element or vector constant. Because A and Am (which features the same carriers)
are stably infinite and vector complete, we can always find enough fresh elements and
create arbitrary vectors from them. Next, we change the interpretation of the free func-
tion f . Define fAm−1 such that fAm−1(uAm−1 [l]) = vAm−1 [l], for all integers l with
i
Am−1
j ≤ l < iAm−1

j+1 . Due to freshness of the elements in u[ij:ij+1]Am−1 , the function
fAm−1 is well-defined. The construction proceeds by induction on j.

It is obvious that Am−1 |= v[ij :ij+1] = mapf (u[ij:ij+1]). What remains to be
shown is that the construction preserves the truth of other vector atoms occurring in ψ.
In the case of atoms of the form u′ = u or u′ = u[i:j], the argument is the same as in
the proof of Lemma 8: Both sides are altered uniformly. Finally, the case of atoms of the
form u = const(x, i, j) cannot arise because if it did then step 1e of the reduction would
have propagated the constant vector through mapf , replacing the atom v = mapf (u)
with v = const(f(x), i, j). ��

The decidability of satisfiability of stratified ground formulae in the theories of ele-
ments, multisets, vectors, map functions and the bagof function follows; the proof is
similar to Theorem 9.

5 By abuse of notation, we call a Σ-algebra A stably infinite if all its carriers are infinite.
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Theorem 11. Ground T -satisfiability is decidable for stratified ground Σ̂-formulae.

Relation to Local Theory Extensions. The way the reduction in Figure 5 instantiates
universal quantifiers with selected ground terms is reminiscent of local theory exten-
sions [5], and one may wonder whether the theory T can be viewed as a local extension
of the theory TBASE. However, our model construction does not fit entirely into the
framework of local theory extensions because not only does it extend partial extension
functions (like the bagof functions) to total ones but also changes the interpretations of
base constants and free base functions. It remains to be seen whether the framework of
local theory extensions can be suitably generalised to encompass our construction.
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Abstract. An abstract interpretation’s resource-allocation policy (e.g.,
one heap summary node per allocation site) largely determines both
its speed and precision. Historically, context has driven allocation poli-
cies, and as a result, these policies are said to determine the “context-
sensitivity” of the analysis. This work gives analysis designers newfound
freedom to manipulate speed and precision by severing the link between
allocation policy and context-sensitivity: abstract allocation policies may
be unhinged not only from context, but also from even a predefined cor-
respondence with a concrete allocation policy. We do so by proving that
abstract allocation policies can be made non-deterministic without sac-
rificing correctness; this non-determinism permits precision-guided allo-
cation policies previously assumed to be unsafe. To prove correctness, we
introduce the notion of a posteriori soundness for an analysis. A proof of
a posteriori soundness differs from a standard proof of soundness in that
the abstraction maps used in an a posteriori proof cannot be constructed
until after an analysis has been run. Delaying construction allows them
to be built so as to justify the decisions made by non-determinism. The
crux of the a posteriori soundness theorem is to demonstrate that a
justifying abstraction map can always be constructed.

1 Introduction

When engineering a static analysis, better speed and higher precision are prin-
cipal goals. In abstract interpretation, speed and precision are a function of the
abstract allocation policy. By abstract allocation policy, we mean the procedure
by which an abstract interpretation chooses a resource from a pool of abstract
resources during the transition from one abstract state to another. To ground
this discussion with some specifics, examples of an abstract resource include ab-
stract environment bindings (for environment analyses [17,18,19,21]), abstract
heap addresses (for alias and shape analyses [2,4,22]), abstract contours (for
flow analyses [1,15,16,19,23,24,25]), and abstract time-stamps (for frame-string
analyses [11,17,18,20]).
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The abstract allocation policy determines how the abstract state-space parti-
tions the concrete state-space; likewise, a given partitioning uniquely determines
an abstract allocation strategy. (More directly, this policy determines the rela-
tionship between the concrete and abstract instances of objects like stores, heaps
and environments.) A fast, precise analysis needs an allocation policy which sum-
marizes concrete resources that behave alike to the same abstract resource, but
which summarizes concrete resources that behave differently to separate abstract
resources.

The original motivation for this work came from frustration with context-
sensitive policies: for the best result, one must choose the context-sensitive policy
whose heuristic is geared toward the behavior of the program under consider-
ation. We wanted to know whether abstract allocation policies could be made
sensitive to precision rather than context—whether it is sound to make allo-
cations based purely on precision, or not. Thus, this work begins by asking a
general question: what are the fundamental, necessary constraints which all ab-
stract allocation policies must obey. Specifically, we want to know whether an
abstract allocation policy must directly simulate the concrete allocation policy
in order to prove soundness.

Our pursuit of the constraints on abstract allocation policies ends with an
unanticipated result: there are no such constraints. To demonstrate complete-
ness, we prove that even the allocation policy which is fully non-deterministic
is safe. Central to this result is the criterion of and a proof technique for “a
posteriori soundness.”

1.1 A Priori Soundness and Context-Sensitivity

Frequently, abstract resources are selected as a function of the context of the
current state, e.g., the current program counter [3], the last k call sites [24], the
let-polymorphism of the current function [25], the Cartesian product of argu-
ment types [1]. Context has been popular in designing allocation policies because
context serves as a reasonably good heuristic for data usage: data structures al-
located in the same context (e.g., the same call site, the same stack frame)
tend to have similar usage patterns. Context-sensitive policies bleed precision
and speed to the extent that they tend to split like resources across several ab-
stract resources, e.g., 1CFA [24], or tend to associate unlike resources as a single
abstract resource, e.g., CPA [1].

In an attempt at better performance, one might ask whether allocation poli-
cies can be hybridized and proven sound, so that the strengths of the two policies
can be combined. For simplistic hybrids, such as the natural “Cartesian product”
of two policies, the answer is yes; however, such a hybridization also combines
their weaknesses—the splitting tendencies of the two policies multiply: precision
goes up, but so does analysis time. If an analysis designer were to compensate for
this splitting by making the allocation policy adaptive, then proving soundness
is suddenly murkier, and the answer seems to be no. By adaptive, we mean that
the allocation policy is allowed to directly consider the ramifications upon the
precision or speed of the analysis when selecting an abstract resource to allocate
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during a transfer function; adaptive behavior is in contrast to the standard be-
havior of choosing an abstract resource based on context.

The reason that adaptive behavior seems unsafe is that, under the standard
correctness regime, abstract allocation policies have to be a simulation of a con-
crete allocation policy. Thus, if an abstract allocation policy is informed by the
precision of the analysis, that information must be available to the concrete al-
location policy, so that the two may remain in sync. In general, of course, this
is not possible; the concrete execution has perfect precision, and abstractions of
it can have myriad degrees of coarseness.

Example. Consider a concrete store σ and two abstractions thereof, σ̂ and σ̂′:

σ(1) = 0 σ̂("̂1) = {0, 3} σ̂′("̂1) = {0, 3}
σ(2) = 3

σ(3) = 4 σ̂("̂2) = {4} σ̂′("̂2) = {4, 5, 7}

Suppose that, in an effort to improve precision, an abstract allocation policy
always chose the abstract address with the smallest set of abstract values (as
opposed to, for instance, picking the label of the current call site). Under this
policy, the next abstract address for allocation would be "̂2 if the simulation has
σ̂ as its current store, and "̂1 if the simulation has σ̂′ as its current store. It
is impossible to define a concrete policy that justifies this behavior, because it
cannot know whether to pick a concrete address that abstracts to "̂1 or to "̂2. �

The inability of the abstract allocation policy to deviate from the concrete allo-
cation policy (or, vice versa) is embedded in the established process for proving
soundness in an abstract interpretation. It is an artifact of the standard process,
which is as old as the Cousots’ original framework [6,7]. We can abbreviate this
soundness process as follows:

1. Define a concrete state-space, L.
2. Define a concrete semantics, f : L→ L.
3. Define an abstract state-space, L̂.
4. Define an abstraction map, α : L→ L̂.
5. Define an abstract semantics, f̂ : L̂→ L̂.
6. Prove abstract semantics f̂ simulates concrete semantics f under map α.

For the duration of this work, we term this process the a priori soundness pro-
cess, because the abstraction map α is constructed before the analysis is run.

1.2 A Posteriori Soundness and Non-determinism

This work presents a more flexible soundness process—the a posteriori sound-
ness process—in which the abstraction map, and hence the soundness of the
analysis, is not constructed until after the analysis has been computed. We do
so in order to circumvent the excessive strictness that is the byproduct of the a
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priori soundness process. With a posteriori soundness, one can hybridize alloca-
tion policies and make them adaptive. Most generally, we will be able to make
abstract allocation policies non-deterministic; the immediate consequence—that
there are no unsound abstract allocation policies—is an unexpected result.

The a posteriori soundness process can be summarized as follows:

1. Define a concrete state-space, L.
2. Define a concrete semantics, f : L→ L.
3. Define an abstract state-space, L̂.
4. Define a non-deterministic abstract semantics, f̂ : L̂→ P(L̂).
5. Execute the abstract semantics to produce an abstract transition graph.
6. Construct an abstraction map, α : L→ L̂, such that the abstract transition

graph simulates the concrete semantics f under the map α.

Proving a posteriori soundness then reduces to proving that no matter how
the abstract transition graph evolves from the abstract semantics, it is always
possible to construct a justifying abstraction map.

1.3 Contributions

This work makes the following contributions:

1. The concept of allocation-policy-factored semantics.
2. A framework for non-deterministic abstract interpretation.
3. The correctness proof technique of a posteriori soundness.
4. An instance of the framework for higher-order control flow analysis: ∃CFA.
5. A discussion of allocation policies outside the bounds of context-sensitivity.

2 Policy-Factored Concrete Semantics

The goal in this work is to reason about the limits of allocation policies. The
first step, then, is to isolate and factor out allocation policies from semantics.
Given a concrete state-space Σ, a semantics can be defined by means of a small-
step transition relation (⇒) ⊆ Σ × Σ, or congruently, as a transfer function,
g : Σ ⇀ Σ. A policy-factored transfer function accepts a state and produces a
partial function that takes a concrete “locative” from a set L to the next state:
f : Σ → L ⇀ Σ. The set of locatives L denotes a pool of allocatable objects. We
use the term locative to generalize over entities such as environment bindings,
store locations, contours and time-stamps. Given a concrete semantics g and a
factored semantics f , the allocation policy is any function π : Σ → L constrained
so that:

g(ς) = f(ς)(π(ς)).

Example. Consider the one-instruction (Turing-incomplete) language Malloc
described by the following grammar:

s ∈ Stmt ::= lab : var := malloc()
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where lab ∈ Lab denotes labels on instructions and var ∈ Var denotes variables.
A state consists of a list of statements, an environment and a store:

ς ∈ Σ = Stmt∗ × Env × Store
η ∈ Env = Var⇀ N
σ ∈ Store = N⇀ {0, 1}.

And the state-to-state transfer function g : Σ ⇀ Σ just makes allocations:

g([[lab : var := malloc()]] : s, η, σ) = (s, η[var &→ n′], σ[n′ &→ 0]),

where the address n′ is the lowest unused value in the store: max(dom(σ)) + 1.
The policy-factored formulation of this semantics is the function f :

f([[lab : var := malloc()]] : s, η, σ)(") =

{
(s, η[var &→ "], σ[" &→ 0]) " �∈ dom(σ)
undefined " ∈ dom(σ).

Setting f(ς)(π(ς)) = g(ς) and solving, we find the set of locatives, L = N, and
the allocation policy function π : Σ → L:

π(s, η, σ) = max(dom(σ))+1. �

A concrete semantics must also specify an initial state ς0. The output of an
unfactored semantics is a (possibly infinite) sequence of states ς = 〈ς0, ς1, . . .〉,
such that ςi+1 = g(ςi). The output of a factored semantics is a (possibly infinite)
sequence of states ς = 〈ς0, ς1, . . .〉 coupled with a sequence of locatives � =
〈"0, "1, . . .〉, such that ςi+1 = f(ςi)("i).

3 Policy-Factored Abstract Semantics

Now that we have created a policy-factored concrete semantics, we can create
the machinery central to the subject of this work: the policy-factored abstract
semantics. Given an abstract state-space Σ̂, an abstract semantics can be defined
through a transition relation (�) ⊆ Σ̂× Σ̂, or congruently, an abstract transfer
function ĝ : Σ̂ → P

(
Σ̂
)
. Generalizing the abstract transfer function, we can

create a policy-factored abstract transfer function, f̂ : Σ̂ → P
(
L̂→ Σ̂

)
. The

factored function takes an abstract state to a set of functions; each of these
functions takes an abstract locative to a subsequent abstract state.

The factored abstract f̂ semantics and the abstract allocation policy function
π̂ : Σ̂ → L̂ are constrained by the equation:

ĝ(ς̂) =
⋃

ĥ∈f̂(ς̂)

ĥ(π̂(ς̂)).

An abstract semantics, factored or otherwise, must also specify an initial abstract
state ς̂0 ∈ Σ̂.
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Example. Using the Malloc language from before, we can create an abstract se-
mantics. An abstract state is a sequence of statements, an abstract environment,
and an abstract store:

ς̂ ∈ Σ̂ = Stmt∗ × Ênv × Ŝtore
η̂ ∈ Ênv = Var ⇀ Lab

σ̂ ∈ Ŝtore = Lab → P ({0, 1}) .

A standard abstract-address-per-point, context-sensitive transfer function is the
function ĝ : Σ̂ → P

(
Σ̂
)
:

ĝ([[lab : var := malloc()]] : s, η̂, σ̂) = {(s, η̂[var &→ lab], σ̂ � [lab &→ {0}])}.

Policy-factoring this function yields f̂ : Σ̂ → P
(
L̂→ Σ̂

)
:

f̂([[lab : var := malloc()]] : s, η̂, σ̂) = {λ"̂.(s, η̂[var &→ "̂], σ̂ � ["̂ &→ {0}])}.

(Both ĝ and f̂ return the empty set for empty statement sequences.) Solving for
the abstract allocation policy function π̂ : Σ̂ → L̂, we get:

π̂([[lab : var := malloc()]] : s, η̂, σ̂) = lab,

and for the set of abstract locatives, we have that L̂ = Lab. �

4 Non-deterministic Abstract Interpretation

Factoring out allocation policies makes it possible to describe a framework for
abstract interpretation that encompasses all conceivable allocation policies—by
making the abstract allocation policy “function” non-deterministic. Of course,
the adaptive or precision-sensitive allocation policies we mentioned in the intro-
duction are included under the label all conceivable. More specifically, with each
application of the transfer function, this framework chooses the abstract locative
non-deterministically.

The result of a non-deterministic abstract interpretation is an abstract-
locative-labeled transition graph between abstract states:

Definition 1. An abstract transition graph is a labeled graph (Ŝ,�) where:

– Ŝ ⊆ Σ̂ is a subset of states, and
– (�) ⊆ Ŝ × L̂× Ŝ is a set of edges labeled by abstract locatives.

In lieu of defining an algorithm for computing a non-deterministic abstract in-
terpretation, we define the result of such an abstract interpretation as a closed
abstract transition graph. A transition graph is closed if it accounts for all ab-
stract transitions from each state:
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Definition 2. An abstract transition graph (Ŝ,�) is closed under a policy-
factored transfer function f̂ : Σ̂ → P

(
L̂→ Σ̂

)
iff for each state ς̂ ∈ Ŝ, for each

state-generator ĥ ∈ f̂(ς̂), there exists a locative "̂ such that:

ς̂
�̂� ĥ(ς̂)("̂).

A least closed graph, which contains no closed subgraphs, is preferred (but not
required) as the result of a static analysis.

With non-deterministic abstract interpretation defined, our new intermediate
task is to define simple, liberal criteria that must hold between concrete and
abstract policy-factored transfer functions, so that when this condition holds,
any closed abstract transition graph represents a simulation of the concrete ex-
ecution. The next section reviews the standard criteria for the correctness of
context-sensitive policies, in preparation for this generalization.

5 The A Priori Simulation Criterion

On the road to constructing criteria for policy-factored abstract transfer func-
tions that guarantee simulation, it is illustrative to review the inductive step of
an a priori proof of soundness. Proving the soundness of an ordinary abstract
interpretation reduces to showing that its abstract transfer function simulates
the concrete transfer function with respect to some abstraction map α : Σ → Σ̂.
More formally:

Definition 3 (Transfer function simulation). The abstract transfer func-
tion ĝ : Σ̂ → P

(
Σ̂
)

simulates the concrete transfer function g : Σ ⇀ Σ with

respect to the abstraction map α : Σ → Σ̂ iff

α(ς) � ς̂

implies
{α(g(ς))} � ĝ(ς̂).

For context-sensitive analyses, it is standard to have a lemma while proving
simulation that shows that the abstract allocation policy function is a simulation
of the concrete allocation policy function, or more formally:

Definition 4 (Policy simulation). The abstract policy function π̂ : ς̂ → L̂
simulates the concrete policy function π : Σ → L with respect to the abstraction
maps α : Σ → Σ̂ and αL : L→ L̂ iff

α(ς) � ς̂

implies
αL(π(ς)) � π̂(ς̂).

In some frameworks, such as Shivers’s formulation of k-CFA [24], this policy
simulation lemma is an explicit requirement.
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Example. Considering the running Malloc example again reveals much about
how analysis designers tinker with the concrete semantics to “engineer” the cor-
rectness of their abstract allocation policies. With the semantics as formulated,
we would have to define a locative abstraction map αL : N → Lab that can
satisfy the policy function simulation requirement. At first glance, this seems
awkward—how can we map from a natural number, used as a concrete address,
to the label that was used during the abstract interpretation? There doesn’t
seem to be enough information within the natural number to do so. (Later, we’ll
show how this can be done with a posteriori soundness.) The long-time solution
for analysis designers has been to encode the requisite information inside con-
crete locatives. In this case, the concrete semantics would be modified to use the
Cartesian product of labels and naturals for the set of locatives: L = Lab × N,
yielding:

π([[lab : var := malloc()]] : s, η, σ) = (lab, 1 + max{n : ( , n) ∈ dom(σ)}).

With this reformulation of the concrete semantics, a suitable locative-abstraction
map is easily defined:

αL(lab, n) = lab.

Now the a priori policy-simulation requirement is easy to prove.
A side benefit of proving a posteriori soundness is that the concrete semantics

do not require reformulation, thereby obviating the need for a proof of equiva-
lence between the original and the re-engineered concrete semantics. �

6 Policy-Factored Abstraction Map

We are closing on our intermediate task of defining a condition on policy-factored
semantics that guarantees simulation under non-determinism. Before we can
state this condition formally, we need to create a policy-factoring of abstraction
maps.

An ordinary proof of soundness for abstract interpretation requires a state-
wise abstraction map α : Σ → Σ̂ to express the relationship between the concrete
and abstract domains. In order to allow a non-deterministic abstract interpre-
tation, the proof delays the construction of this map until after the analysis has
run. Instead, non-deterministic abstract interpretation employs a policy-factored
abstraction map β : (L→ L̂) → Σ → Σ̂; this function takes an abstraction map
over locatives to produce an abstraction map over states.

No further policy-factoring of the semantics is required at this point. Note
that the lattice relations and operations on states—(�), (�) and (�)—do not
require factoring since they operate purely in the abstract state-space.

Example. Returning to the Malloc example once again, the factored abstrac-
tion map on states is β : (L→ L̂) → Σ → Σ̂:
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β(αL)(s, η, σ) = (s, βEnv (αL)(η), βStore(αL)(σ))
βEnv (αL)(η) = λvar .αL(η(var ))

βStore(αL)(σ) = λ"̂.
⊔

αL(�)��̂

{σ(")}.

Dropping in the locative-abstraction map from the previous example yields the
expected unfactored abstraction map on states: α = β(αL) �

7 The Dependent Simulation Condition

We finally have the machinery required in order to describe a general, liberal
condition under which a non-deterministic abstract interpretation is correct: the
dependent simulation condition.

Definition 5. The policy-factored abstract transfer function f̂ : Σ̂ → P(L̂ →
Σ̂) is a dependent simulation of the policy-factored concrete transfer function
f : Σ → L ⇀ Σ under the factored abstraction map β : (L→ L̂) → Σ → Σ̂ iff,
for all locative abstraction maps αL : L→ L̂, if

β(αL)(ς) � ς̂,

then for any locative " and any abstract locative "̂, there exists a state-generator
ĥ ∈ f̂(ς̂) such that:

β(αL[" &→ "̂])(f(ς)(")) � ĥ("̂).

8 The A Posteriori Soundness Theorem

Having defined the dependent simulation condition, it is now possible to prove
that a non-deterministic abstract interpretation satisfying this condition is cor-
rect, thereby demonstrating that there is no such thing as an illegal abstract
allocation policy. A standard proof of soundness is not possible in this case:
the abstract allocation policy must simulate the concrete allocation policy, but
we cannot describe the abstraction map in advance when the abstract policy is
non-deterministic.

First, we must define the concept of a sound simulation for abstract transition
graphs over concrete executions.

Definition 6. An abstract transition graph (Ŝ,�) is a sound simulation of
a sequence of states ς = 〈ς0, ς1, . . .〉 under the abstraction map α : Σ → Σ̂ iff

– for each i ≤ length(ς):
{α(ςi)} � Ŝ, and

– for each i < length(ς):

{(α(ςi), α(ςi+1))} � (�).
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In other words, each concrete state and each concrete transition is represented
in the abstract graph by an abstract state and an abstract edge.

Next, we prove the a posteriori soundness theorem. It states that, when the
dependent simulation condition is met, a locative-abstraction map that makes a
closed abstract transition graph a simulation of a concrete execution must exist.

Theorem 1 (A posteriori soundness). If:

– (ς, �) is a concrete execution for factored transfer function f , and
– f̂ is a dependent simulation of f under factored map β, and
– (Ŝ,�) is a closed abstract transition graph for f̂ where ς̂0 ∈ Ŝ, and
– for all maps αL : L→ L̂, β(αL)(ς0) � ς̂0,

then there exists a map αL : L → L̂ such that the graph (S,�) is a sound
simulation of the sequence ς under the abstraction map β(αL).

Proof. The proof proceeds by construction of the locative abstraction map. We
do so by defining a sequence of abstract states ς̂ = 〈ς̂0, ς̂1, . . .〉, a sequence of
abstract locatives �̂ = 〈"̂0, "̂1, . . .〉 and a sequence of partial locative abstraction
maps α = 〈α0, α1, . . .〉 through recurrence equations. We show by induction that
β(αi)(ςi) � ς̂i.

Let N be the length of the concrete execution sequence ς = 〈ς0, ς1, . . .〉. For
later use, fix a choice function choose : P

(
L̂× Σ̂

)
→ (L̂ × Σ̂). The initial

abstraction map α0 is defined to be ⊥L̂ at every point: α0 = λ".⊥L̂.
We construct the abstract locative "̂i and the abstract state ς̂i+1 simultane-

ously. Let the set of candidate transitions Ci ⊆ L̂× Σ̂ be:

Ci = {("̂, ς̂) : ς̂i
�̂� ς̂ and β(αi["i &→ "̂])(ςi) � ς̂}.

The set Ci must be non-empty because the graph is closed and the dependent
simulation criterion is satisfied. So, we set ("̂i, ς̂i+1) = choose(Ci) and αi+1 =
αi["i &→ "̂i]. The satisfying locative abstraction map is then:

αL = lim
i→N

αi.

Example. We will now construct a posteriori locative-abstraction maps for the
following Malloc program:

L1: x := malloc()
L2: y := malloc()
L3: z := malloc()

Using natural numbers for concrete addresses yields the following final state:

ςf = (〈〉, [[[x]] &→ 1, [[y]] &→ 2, [[z]] &→ 3], [1 &→ 0, 2 &→ 0, 3 &→ 0]).

If a non-deterministic abstract interpretation allocated the abstract locative "̂1,
then "̂2, then "̂2, then the locative-abstraction map αL : L→ L̂ would be:

αL(1) = "̂1 αL(2) = "̂2 αL(3) = "̂2.



270 M. Might and P. Manolios

If, instead, it had allocated "̂1, then "̂2, then "̂1, then the locative-abstraction
map would be:

αL(1) = "̂1 αL(2) = "̂2 αL(3) = "̂1.

In each case, the locative-abstraction map leads to simulation. �

9 Example: ∃CFA

To demonstrate the applicability of the a posteriori soundness theorem, we
construct the generalized, non-deterministic higher-order control-flow analysis
(∃CFA) by policy-factoring k-CFA [23,24]. This leads to a factored concrete
transfer function, f : Σ → L ⇀ Σ, a factored abstract transfer function,
f̂ : Σ̂ → P

(
L̂→ Σ̂

)
and a factored abstraction map, β : (L→ L̂) → (Σ → Σ̂).

An interesting side effect of constructing ∃CFA is that it doubles as a proof of
correctness for all existing CFAs (e.g., 0CFA, k-CFA, poly/CFA, CPA) and all
future CFAs.

For simplicity, we operate over continuation-passing style (CPS), as described
in the following grammar:

v ∈ Var is a set of identifiers
λ ∈ Lam ::= (λ (v1 · · · vn) call)

f, e ∈ Exp = Var + Lam
call ∈ Call ::= (f e1 · · · en).

A concrete state consists of a call site, a binding environment over variables and
a value environment over bindings:

ς ∈ ΣCPS = Call× BEnv ×VEnv

ρ ∈ BEnv = Var ⇀ L
b ∈ Bind = Var × L

ve ∈ VEnv = Bind ⇀ D
d ∈ D = Clo

clo ∈ Clo = Lam× BEnv .

The policy-factored concrete transfer function f is:

f([[(f e1 · · · en)]], ρ, ve)(") = (call , ρ′′, ve ′),

defined only if no variable v exists so that (v, ") ∈ dom(ve) and where:

([[(λ (v1 · · · vn) call)]], ρ′) = A(f, ρ, ve)
di = A(ei, ρ, ve)
ρ′′ = ρ′[vi &→ "]
ve ′ = ve[(vi, ") &→ di],
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where the argument evaluator is A : Exp → BEnv ⇀ D :

A(λ, ρ, ve) = (λ, ρ)
A(v, ρ, ve) = ve(v, ρ(v)).

The abstract state-space is:

ς̂ ∈ Σ̂CPS = Call× B̂Env × V̂ Env

ρ̂ ∈ B̂Env = Var ⇀ L̂

b̂ ∈ B̂ind = Var × L̂

v̂e ∈ V̂ Env = B̂ind→ D̂

d̂ ∈ D̂ = P
(
Ĉlo

)
ĉlo ∈ Ĉlo = Lam× B̂Env.

According to this, the abstract locatives correspond to the abstract contours of
higher-order control-flow analysis.

The policy-factored abstract transfer function f̂ is:

f̂([[(f e1 · · · en)]], ρ̂, v̂e) = {λ"̂.F(ĉlo)("̂) : ĉlo ∈ Â(f, ρ̂, v̂e)},

where the state finalizer F : Ĉlo→ L̂→ Σ̂ is:

F([[(λ (v1 · · · vn) call)]], ρ̂′)("̂) = (call , ρ̂′′, v̂e ′), where:

d̂i = Â(ei, ρ̂, v̂e)

ρ̂′′ = ρ̂′[vi &→ "̂]

v̂e ′ = v̂e � [(vi, "̂) &→ d̂i],

where the abstract argument evaluator is Â : Exp → B̂Env → D̂:

Â(λ, ρ̂, v̂e) = {(λ, ρ̂)}
Â(v, ρ̂, v̂e) = v̂e(v, ρ̂(v)).

The appropriate policy-factored abstraction map β : (L → L̂) → Σ → Σ̂
walks component-wise over the state-space:

β(αL)(call , ρ, ve) = (call , βBEnv (αL)(ρ), βVEnv (αL)(ve))
βBEnv (αL)(ρ)(v) = αL(ρ(v))

βVEnv (αL)(ve))(v, "̂) =
⊔

αL(�)=�̂

{βClo(αL)(ve(v, "))}

βClo(αL)(λ, ρ) = (λ, βBEnv (αL)(ρ)).
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10 Adaptive Allocation Policies

One of the payoffs for proving all conceivable allocation policies correct is in the
ability to make allocation policies adaptive, or more precisely, precision-sensitive.
A precision-sensitive abstract allocation policy makes allocation decisions based
on the perceived effect upon the precision of the analysis.

One way to make a context-sensitive allocation policy into a greedy precision-
sensitive policy is to augment it with a reserve pool of m abstract locatives,
where m is a fixed cap. Abstract locatives in the reserve pool are not associated
with a particular context; they are allocated as necessary to prevent excessive
merging. For example, if the default abstract locative to be allocated would cause
a closure over λ42 to coexist in the same abstract store slot as a closure over
λ314, then an adaptive analysis can allocate from the reserve pool of abstract
locatives to prevent the merge, so long as the reserve pool is not yet exhausted.
Adding a reserve pool of abstract locatives to an existing context-sensitive anal-
ysis is a simple way to alleviate the damage to precision from places where the
context-sensitive heuristic causes excess merging. Enlarging the reserve pool is
an effective way of gradually improving the precision of the analysis.

Adaptive analysis alleviates excess splitting by looking for abstract locatives
which, upon allocation, cause the least change to the abstract store. For example,
if the default abstract locative would give a fresh slot to a closure over λ42, when
another slot already contains a closure over λ42, the adaptive analysis may opt
to allocate the locative already in use.

Adaptive allocation policies, which are not provably correct under a priori
soundness, highlight the practical advantages of non-determinism in abstract
interpretation.

11 Related Work

This work taps into the foundations of the Cousots’ work on abstract interpre-
tation [6,7]. The standard soundness recipe we presented is a simplification of
the soundness regime presented throughout their work [5,8]. The use of a poste-
riori abstraction maps is a simple way of extending their framework to allow a
practical degree of non-determinism in abstract interpretation.

This work should not be confused with the body of work on the (deterministic)
abstract interpretation of non-deterministic systems [9,13]. However, it is likely
that non-deterministic abstract interpretation of non-deterministic systems will
lead to considerable gains in precision. This work should also not be confused
with random interpretation [10], which is unsound. Our work is related in that
we enable probabilistic abstract interpretation, but our work retains soundness.

This work impacts the large body of work on alias and shape analysis
[2,3,4,12,22] by liberating these analyses from the needless rigidity imposed by
a priori abstraction maps.

This work also directly impacts higher-order relatives of alias and shape analy-
sis, environment analysis [14,17,18,19,21] and control-flow analysis [15,16,23,24],
by expanding the set of contour-allocation schemes.
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12 Conclusions and Future Work

We have presented a framework for enabling sound non-deterministic abstract in-
terpretations. We introduced non-determinism into allocation policies in order to
free analyses from the rigidity of a priori abstraction maps. By proving the cor-
rectness of the non-deterministic framework using the novel proof technique of a
posteriori abstraction maps, we have proven that all conceivable abstract alloca-
tion policies are correct. We discussed a practical benefit: that allocation policies
may be made adaptive with respect to analytic precision, a behavior which can-
not be proven sound under the Cousots’ standard correctness framework. And, we
instantiated this framework to create a non-deterministic flow analysis: ∃CFA.

For future work, we plan to explore precision-sensitive allocation where ab-
stract locatives are allocated probabilistically, according to evolving distributions
that tend toward “do not allocate” in the limit. We also plan to investigate the
issue of optimality. For example, for an alias analysis, a good metric would be the
average size of an abstract value set in the abstract store; the equivalent metric
for a CFA would be the average size of a flow set. For a fixed set of n abstract
locatives and a given program, there must exist optimal allocation policies which
minimize this metric. With a notion of optimality, we can begin to ask whether
there are fundamental bounds on precision, and whether an optimal allocation
policy can be computed without resorting to exhaustive search.
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An Automata-Theoretic Dynamic Completeness
Criterion for Bounded Model-Checking
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Abstract. Bounded model-checking is a technique for finding bugs in
very large designs. Bounded model-checking by itself is incomplete: it
can find bugs, but it cannot prove that a system satisfies a specification.
A dynamic completeness criterion can allow bounded model-checking to
prove properties. A dynamic completeness criterion typically searches for
a “beginning” of a bug or bad behavior; if no such “beginning” can be
found, we can conclude that no bug exists, and bounded model-checking
can terminate. Dynamic completeness criteria have been suggested for
several temporal logics, but most are tied to a specific bounded model-
checking encoding, and the ones that are not are based on nondetermin-
istic Büchi automata. In this paper we develop a theoretic framework for
dynamic completeness criteria based on alternating Büchi automata. Our
criterion generalizes and explains several existing dynamic completeness
criteria, and is suitable for both linear-time and universal branching-time
logic. We show that using alternating automata rather than nondeter-
ministic automata can lead to much smaller completeness thresholds.

1 Introduction

Bounded model-checking (BMC) is a model-checking method that has gained
popularity due to its ability to handle large industrial designs [4],[5]. Bounded
model-checking is an iterative process in which one searches for a bug of in-
creasing bounded length. In each iteration, one searches for a bug of size k, by
constructing a Boolean formula which is satisfiable iff such a bug exists. A SAT
solver is then used to determine whether or not the formula is satisfiable. If it is,
then a bug has been found; otherwise, one increases the bound k and searches
for a bug of greater size.

There are many BMC encodings for various fragments of linear-time logic
and automata on words; e.g., [4] for LTL, [10] for PLTL, [11] for weak alter-
nating Büchi automata. Many are based, directly or indirectly, on the idea of
constructing a product automaton M × A for the model M in question and an
automaton A which describes all the undesirable behaviors. Any accepting run
of the product automaton M × A corresponds to a bad behavior of the model;
thus, to check if the model contains a bug, we can search for an accepting run of
the product automaton. Using automata as specification mechanisms can lead to
simple and generic encodings. Even encodings based on temporal logic (e.g., [10]
and [12]) can often be viewed as simulating the run of the product automaton,
although they do not construct it directly.
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Bounded model-checking is typically a semi-decision procedure: it is able to
find bugs, but not to prove the correctness of properties. A completeness threshold
is an upper bound on the size of k, such that if no bug has been found when the
bound reaches k, then no bug exists. Thus, if a completeness threshold for the
property and model in question is known, bounded model-checking can halt if
the completeness threshold is reached and no bug was found, and conclude that
the model satisfies the property.

Completeness thresholds can be broadly divided into two classes, although
the division is not clear-cut. Static completeness thresholds ([5], [6]) attempt to
over-approximate the size of the “longest shortest bug” the system can contain.
For example, if a model does not satisfy an invariant p, then there exists a
shortest path from an initial state of the model to a state that does not satisfy
p. A static completeness threshold for invariant properties is therefore given by
the length of the longest shortest path in the model (the diameter).

In contrast, dynamic completeness thresholds are based on a dynamic com-
pleteness criterion, which attempts to determine whether the current bound is
already large enough to allow full exploration of the relevant part of the model.
Dynamic completeness criteria typically check for the existence of a “beginning”
of a counter-example (or bug). If such a beginning of size k cannot be found,
then there cannot exist a counter-example of size greater than k, and there is no
need to increase the bound. For example, the LTL property ϕ = pUq describes
a path in which q holds at some point, and until that point, p holds. Suppose ϕ
describes the bad behaviors of a system. A dynamic completeness criterion for
ϕ might check if there exists a simple (loop-free) path of length k, such that all
states along the path are labeled with p. Such a path represents a “beginning” of
a witness for ϕ. If we cannot find a witness of length k for ϕ, and we cannot find
a simple path of length k as described above, then there cannot exist a witness
of length greater than k for ϕ. Therefore, in this case bounded model-checking
can terminate and conclude that the system contains no path that satisfies ϕ.

The effectiveness of dynamic completeness criteria has been shown in exper-
imental results ([10], [22], [24]). However, designing completeness criteria that
are both sound and effective can be challenging. For instance, the completeness
criterion in [22] contains a subtle flaw: a constraint introduced to cause earlier
termination and increase the effectiveness of the criterion causes the criterion to
be unsound. For details, see [17]. In addition, existing completeness criteria are
often custom-designed to fit one particular encoding. For example, the dynamic
completeness criteria of [22], [18] and [24] are all based on ideas similar to the
ones on which the current paper is based, but they each develop the completeness
criterion anew to fit the particular encoding.

In this work we present an automata-theoretic dynamic completeness crite-
rion for alternating Büchi automata. Our criterion generalizes several existing
completeness criteria by formalizing the notion of a “beginning” of an accepting
computation. The criterion we suggest is independent of a particular encoding;
in addition to serving as a theoretical framework for existing completeness crite-
ria, it can be instantiated to fit automata-based BMC encodings for which there
is currently no dynamic completeness criterion, such as [11].
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To our knowledge, the criterion we suggest is the first completeness criterion
that can handle alternating automata. The choice of alternating Büchi automata
as a specification mechanism is motivated by two factors. First, alternating Büchi
automata are powerful enough to express all ω-regular properties. [11] developed
an encoding for weak alternating Büchi automata, and showed that the increased
expression power did not carry significant performance penalties.

The second factor is the succintness of alternating automata. It is well-known
that an alternating automaton can be exponentially smaller than any equiva-
lent nondeterministic automaton [20]. In this paper we show another compelling
reason to use alternating automata as a specification mechanism: they can have
much smaller completeness thresholds than the corresponding nondeterminis-
tic automata. This result is related to, but does not follow directly from, the
exponential gap in the number of states.

In addition to linear-time logic, several BMC encodings and accompanying
completeness criteria have been suggested for universal branching-time logic
([19], [23], [22], [18]). Our completeness criterion is based on automata on infinite
words, which express linear-time properties. However, the criterion is also appli-
cable to universal automata on infinite trees, which express universal branching-
time properties. This is because our criterion is based on the product of the
model and the automaton. The product of a model and a alternating automaton
on infinite trees is an alternating automaton on infinite words [14]; thus, our
dynamic completeness criterion, which is based on alternating automata on infi-
nite words, is applicable to branching-time logic as well. Note, however, that in
a branching-time setting, a Büchi acceptance condition is not expressive enough
to express all ω-regular tree properties. Our criterion can therefore only handle
the alternation-free fragment of universal µ-calculus.

The rest of the paper is organized as follows. In Section 3 we review the
automata-theoretic approach to linear-time logic and define notation and ter-
minology. In Section 4 we present the dynamic completeness criterion and the
resulting completeness threshold. We show that the criterion is sound, and char-
acterize its completeness. In Section 5 we show that there is an exponential
ratio between the completeness thresholds of alternating and nondeterministic
automata. We conclude in Section 6.

2 Related Work

In the original work on BMC ([4], [5]), the diameter of the model is suggested
as a completeness threshold for formulas of the form EFp (“p is reachable”). [5]
also shows a pessimistic completeness threshold of |M | × 2|ϕ| for general LTL
formulas ϕ. In [6], tighter completeness thresholds are shown for various classes
of temporal properties, among them the class of all ω-regular properties, based
on automata-theoretic methods. The completeness threshold suggested in [6]
for general ω-regular properties is an over-approximation of the length of the
shortest lasso-shaped accepting run of the product automaton. Our own work is
based on similar ideas; however, the automata we consider are alternating, while
[6] bases its threshold on nondeterministic automata. As we show in Section 5,
using nondeterministic automata as a specification mechanism can increase the



278 R. Oshman

completeness threshold significantly. In addition, the completeness threshold of
[6] does not take the form of a dynamic completeness criterion which is evaluated
at different bounds to determine whether or not the completeness threshold has
been reached. In [2], the authors apply similar ideas to [6], this time in a form
closer to a dynamic completeness criterion: to check whether the completeness
threshold has been reached, one can check the satisfiability of several Boolean
formulas, which roughly speaking describe the existence of loop-free fragments
of an accepting run in the product automaton. Unlike our own work, the com-
pleteness criteria of [2] check for the existence of both a “beginning” and an
“ending” of an accepting run (forward and backward traversal). However, [2] is
still restricted to nondeterministic automata. In [3], the authors of [2] extend
their termination criterion to generalized nondeterministic Büchi automata, in
which the acceptance criterion can consist of several accepting sets, and show
that using generalized automata can lead to smaller completeness thresholds.
The completeness threshold we suggest in this paper is easily extended to gen-
eralized Büchi automata.

In [10], an incremental encoding is presented for PLTL, along with a dynamic
completeness criterion based on the idea of searching for a “beginning” of a
witness. In an incremental scheme, the encoding is composed of two parts –
a k-invariant part, containing constraints that are retained when the bound
is increased, and a k-dependent part containing constraints that are discarded
when the bound is increased. The formula used in [10] to determine whether
the completeness threshold has been reached is obtained from the formula used
to search for a witness by removing the k-dependent constraints and adding a
simple-path constraint. Removing the k-dependent constraints has the effect of
dropping eventuality requirements (e.g., when searching for a witness for Fp, the
requirement that p be satisfied at some point along the path is a k-dependent
constraint). The completeness formula of [10] is highly specific to the incremental
scheme and the particular encoding used in [10]. Our completeness criterion can
be extended to handle temporal logic with past operators by extending it to
two-way automata on words [21].

Several bounded model-checking encodings have been suggested for universal
branching-time temporal logic [18], [19], [22], [23]. [22] and [18] show accompany-
ing dynamic completeness criteria for their respective encodings, and a dynamic
completeness criterion for the encoding of [19] is presented in [24]. The criteria
of [22], [18] and [24] are again highly encoding-specific, and all use a similar idea
of searching for a “beginning” of a witness.

A related SAT-based technique which can prove properties is temporal in-
duction [7], which can prove invariants. General safety and liveness properties
can be transformed into invariants, but such translations increase the size of the
model and may increase the depth necessary for bounded model-checking.

Our work is also closely related to [8], which discusses extensions of LTL
that can be used to reason about truncated paths. Our notion of a partial run
corresponds to the weak semantics of LTL for truncated paths described in [8],
and can be taken as an automata-theoretic formulation of the weak semantics.
We are interested in investigating this connection.
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3 Preliminaries

Given a setX , we denote by B+(X) the set of positive Boolean formulas obtained
by applying the connectives ∧ (conjunction) and ∨ (disjunction) to elements of
X , as well as the formulas true and false. We say that a subset Y ⊆ X satisfies
a formula α ∈ B+(X), and denote Y |= α, if the assignment vY , defined by
vY (x) = 1 if x ∈ Y and vY (x) = 0 if x �∈ Y , satisfies the formula α.

An alternating Büchi automaton on infinite words is a tuple A = (Σ,Q, q0,
δ, F ), where Σ is the automaton’s alphabet, Q is the set of automaton states,
q0 ∈ Q is the initial state of the automaton, δ : Q×Σ → B+(Q) is a transition
relation, and F ⊆ Q is the set of accepting (or fair) states. A nondeterministic
automaton is an alternating automaton which has only disjunctions in all its
transitions. We use Σω to denote the set of infinite words over the alphabet Σ,
and we use xω to denote the infinite word obtained by iterating the finite word
x infinitely often.

To model the runs of A we use Q-trees. A Q-tree is a pair t = (N, "), where
N ⊆ N∗ is a prefix-closed set of tree nodes, and " : N → Q labels each node
of the tree with an automaton state. The root of the tree is the empty word
ε, and given a node n ∈ N , the set of children of n in the tree is given by
children(n) = {n′ | n′ = n · i for some i ∈ N}. We denote by |n| the length of
the finite word n, and for an infinite word n we denote |n| = ω. For a tree node
n, the length |n| is also the distance of n from the root of the tree (ε). A branch of
the tree is a maximal sequence n0n1n2 . . . (which can be either finite or infinite),
such that n0 = ε, and for all i ≥ 0, ni+1 ∈ children(ni). If t = (N, ") is a finite
tree, the front of t is defined by front(t) = {n ∈ N | children(n) = ∅}, and the
height of t is the length of the longest branch in t. Note that we measure height
by the number of edges, not the number of nodes.

A run (or run-tree) of an automaton A on an infinite word w = w0w1w2 . . . ∈
Σω is a Q-tree r = (N, "), such that for all n ∈ N , children(n) |= δ("(n), w|n|).
We say that a run r is accepting if for every branch n0n1n2 . . . of r, some ac-
cepting state q ∈ F appears infinitely often on the branch (that is, "(ni) = q for
infinitely many values of i). If A has some accepting run on a word w, we say
that A accepts w. The language of A, denoted L(A), is the set of words w ∈ Σω

such that A accepts w. Note that runs can be finite or infinite trees, and even
in an infinite run there can be finite branches. However, finite branches must
always end in a node n such that δ(n,w|n|) = true.

To model programs, we use Kripke structures. Given a set AP of atomic
propositions, a Kripke structure (or model) over AP is a tupleM = (S, s0, R, L),
where S is the state-space of the model, s0 ∈ S is the initial state, R ⊆ S×S is a
transition relation, and L : S → 2AP is a labeling function which assigns to each
model state a set of atomic propositions from AP . A path of M is a maximal
sequence π = s0s1s2 . . . starting at s0, such that for all i ≥ 0, (si, si+1) ∈ R.
The labeling of a path π = s0s1s2 . . . is the word L(π) = L(s0)L(s1)L(s2) . . ..

Two parameters are often used to measure the complexity of a Kripke struc-
ture. The diameter dM of a structure M is the length of the longest shortest
path in M . The recurrence diameter rM is the length of the longest loop-free
path in M . The diameter of a model is no greater than its recurrence diameter,
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since a shortest path is always loop-free, but the recurrence diameter is easier
to compute than the diameter.

We say that a model M = (S, s0, R, L) satisfies an (existentially-interpreted)
automaton A = (2AP , Q, q0, δ, F ), and denote M |= A, if there is a path π of
M such that L(π) ∈ L(A). The path π is then called a witness. In bounded
model-checking (and linear-time model-checking in general), the automaton A
describes the bad behaviors of the system, and a witness, if one exists, represents
a bug in the system.

One way to check if M |= A is to construct the product of M and A [20],
an alternating automaton which, informally, describes all the runs that A can
have on paths of M . The product automaton is defined by M × A = ({a} , S ×
Q, (s0, q0), δM , S × F ). The transition relation δM of the product automaton is
defined by δM ((s, q), a) =

∨
s′:(s,s′)∈R αq,s,s′ , where αq,s,s′ is the formula obtained

from δ(q, L(s)) by replacing every atom q′ ∈ Q with (s′, q′). (For example, if
δ(q, {b}) = q1 ∧ q2, L(s) = {b}, and the only transitions from s are to s1 and to
s2, then δM ((s, q), a) = ((s1, q1) ∧ (s1, q2)) ∨ ((s2, q1) ∧ (s2, q2)).)

It can be shown thatM |= A iff L(M ×A) �= ∅. Therefore, to check ifM |= A,
we can construct M × A and check whether or not its language is empty [20].
Note that the product automatonM×A is over a unary alphabet {a}, and thus,
if L(M ×A) �= ∅, then M ×A must accept the word aω.

Throughout the paper we will be interested in prefixes of words and trees.
We denote x ≺ y if x is a prefix of y. Given a finite or infinite word x =
x0x1 . . . and a number h ≤ |x|, we denote prefh(x) = x0 . . . xh. We use pref(x)
(witout the subscript) to denote the set of prefixes of x, that is, pref(x) =
{prefh(x) | 0 ≤ h ≤ |x|}. Similarly, given a finite or infinite tree t = (N, "), we use
prefh(t) to denote the tree prefh(t) = (Nh, "h) defined byNh = {n ∈ N | |n| ≤ h}
and "h(n) = "(n) for all n ∈ Nh. We also denote pref(t) = {prefh(t) | h ∈ N}.
Finally, for an automaton A, we denote by prefh(A) = {prefh(r)|r is a run of A}
the set of all prefixes of height h of runs of A. For a model M , we denote
prefh(M) = {prefh(π) | π is a path of M}.

4 A Dynamic Completeness Criterion for Alternating
Automata

In this section we define a dynamic completeness criterion, which checks whether
the automaton has a “beginning” of an accepting computation of length k. If
there is no such “beginning”, bounded model-checking can terminate and return
M �|= A when the bound reaches k.

To formalize the notion of a “beginning” of an accepting computation, we
define canonical partial runs of the automaton. Informally, a partial run is a
truncated run-tree; it is a finite tree in which only the inner nodes are required
to satisfy the transition relation. A canonical partial run is a partial run that
contains no “useless” loops. We will later discuss another restriction on partial
runs that may lead to smaller completeness thresholds.

Fix an alternating Büchi automaton on infinite words A = (2AP , Q, q0, δ, F ).

Definition 1. A partial run of height h of A on a word w = w0w1 . . . is a Q-tree
r = (N, ") of height h satisfying the following conditions.
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1. "(ε) = q0.
2. For all n ∈ N such that |n| < h, children(n) |= δ("(n), w|n|).

The definition of a partial run of height h is distinguished from the definition
of an accepting run of the same height by the requirement on the leaves (nodes
n with |n| = h): in an accepting run, if n is a leaf then δ(n,w|n|) = true; in a
partial run, there is no such requirement. Consequently, every accepting run is
also a partial run, but the converse is not true.

Lemma 1. If r is an accepting run on w, then for all h ∈ N, prefh(r) is a
partial run of height h on w.

Clearly, if A has an accepting run of height h or greater on a word w, then A
has a partial run of height h′ on w for all h′ ≤ h. However, there may exist
partial runs of height h for all h ∈ N even if there is no accepting run, as in the
following example.

Example 1. Consider the nondeterministic automaton A shown in Fig. 1(a). A
accepts the language of words over the alphabet Σ = {∅, {a}} which contain a
finite number of occurrences of the letter {a}. A run of A stays in q0 until A
“guesses” it has seen the last {a}, and then moves to q1, which is an accepting
state; if an {a} is read from state q1, the run gets stuck (that is, the transition
is false).

The model M shown in Fig. 1(b) is not accepted by the automaton: the only
path in M is π = (s0)ω, whose labeling, L(π) = ({a})ω, contains infinitely many
occurrences of {a}. However, for all h ∈ N, the sequence rh = qh0 represents a
partial run of height h of A on π.

q0 q1
∅, {a}

∅, {a} ∅

(a) The automaton A

a
s0

(b) The model M

Fig. 1. The automaton and model from Example 1

Notice that for h > 2, rh is not a “good” partial run on π: after one step we
enter a loop in both r and π in which no accepting state of A appears. Thus, rh
for h > 1 contains unnecessary padding which increases its height. Intuitively,
a “good” partial run will contain no unnecessary loops. We now formalize this
notion.

Definition 2. Given a partial run r = (N, ") of height h,

1. A loop in r is a pair (n1, n2) ∈ N2 such that n1 ≺ n2 and "(n1) = "(n2).
2. We say that an automaton state q ∈ Q occurs in (n1, n2) if there is a node
n ∈ N such that n1 ≺ n ≺ n2 and "(n) = q.



282 R. Oshman

3. A loop (n1, n2) is said to be useless if no state q ∈ F occurs in (n1, n2).
4. We say that r is canonical if there are no useless loops in r.

Lemma 2. If an automaton A over a unary alphabet {a} accepts the word aω,
then A has a canonical accepting run on aω.

Proof sketch. The existence of a canonical accepting run follows from the ex-
istence of a memoryless winning strategy, shown in [9] for alternating parity
automata, a more general class of automata than alternating Büchi automata.
The accepting run that corresponds to a memoryless winning strategy for the
word aω has no useless loops: if it had a useless loop, then the run-tree would
contain a branch along which the loop repeats forever, because each time the
automaton would reach each state in the loop it would be obliged by the mem-
oryless strategy to make the same move. Since the loop contains no accepting
state, this branch would contain only finitely many accepting states, and the run
would not be accepting. ��

The definition of a canonical partial run captures the notion of a “beginning” of
a counter-example used in the dynamic completeness criteria of, e.g., [2], [22],
[24]. The threshold we suggest is as follows.

Definition 3. Given an automaton A and a model M , the dynamic complete-
ness threshold CT(M,A) is the minimal number h such that M × A does not
have a canonical partial run of height h (on aω), or ∞ if there is no such number.

Next we show that the dynamic completeness threshold is sound — that is, it
does not cause termination too early.

Theorem 1. If M |= A, but for all h′ < h the product automaton M × A has
no accepting run of height h′, then CT(M,A) ≥ h.

Proof. From Lemma 2, since M |= A, the product automaton M × A has a
canonical accepting run r on aω. The run r is of height at least h, because
M ×A has no accepting runs of height smaller than h. Let r′ = prefh(r). From
Lemma 1, r′ is a partial run, and since r has no useless loops, neither does r′.
Thus, r′ is a canonical partial run of height h of M ×A, and CT(M,A) > h.

Remark 1. Consider the case of a nondeterministic automaton A. A canonical
partial run of A is a sequence of states — that is, a tree with a single branch.
If the run contains a loop, then an accepting state must appear in the loop,
implying the existence of an infinite accepting run of A.

Thus, for a nondeterministic automaton, the existence of a canonical partial
run of height k indicates the existence of either an accepting run or a loop-free
run of height k. However, the dynamic completeness criterion is only applied
after we fail to find an accepting run at the current bound k; thus, we can rule
out the first case, and simply search for a loop-free run of length k. This yields
the length of the longest loop-free path in the product automaton as an upper
bound on the completeness threshold of nondeterministic automata, as already
observed in [6]. This is also the basis for the forward-traversal termination criteria
of [2].
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Table 1. The transition of the automaton from Example 2

q δ(q, a) δ(q, b) δ(q, c)
q0 q0 ∧ qa q0 ∧ qb q0

qa qa qa true
qb qb qb false

4.1 Eliminating Bad Prefixes

As a consequence of Theorem 1, if no accepting run of M × A has been found
when the bound reaches CT(M,A), then bounded model-checking can halt and
return M �|= A. Conversely, we would expect that while k < CT(M,A) — that
is, if there exists a canonical partial run of height k — then there should be “a
reason” to increase the bound and search for an accepting run of height greater
than k. However, the following example shows that this is not always the case.

Example 2. Consider the automaton A = ({a, b, c} , {q0, qa, qb} , q0, δ, {q0, qb}),
where the transition relation δ is given in Table 1. A accepts only words that do
not contain both an a and a b: when an a is read, A moves to state qa, where it
waits to read a c; and when a b is read, A moves to state qb, in which it must not
read a c. Thus, any word in which both an a and a b appear will not be accepted.
However, A still has a canonical partial run r of height 1 on any word w which
has pref1(w) = ab. The partial run r cannot be extended into an accepting run
regardless of the rest of w, but its existence may cause BMC not to terminate
with a bound of 1 if the termination criterion from Definition 3 is used.

A prefix which cannot be extended into a word in the language, like ab in Ex-
ample 2, is called a bad prefix [8]. One way to avoid bad prefixes is to construct
a prefix automaton Apref for A — an automaton which accepts a finite word iff
it can be extended into an infinite word in the language of A — and to use it
in the completeness criterion. This option is suitable for criteria based on non-
deterministic automata (e.g., [2]), where a prefix automaton is constructed by
simply removing any states from which there is no accepting run on any word
and making all remaining states accepting. For alternating automata, however,
this option is not suitable: [1] shows that for alternating automata the size of a
prefix automaton can be exponential in the size of the original automaton. Next
we present an alternative, which does not require the use of the prefix automaton
in the dynamic criterion.

Definition 4. Given an automaton A = (Σ,Q, q0, δ, F ), a set of automaton
states Q′ ⊆ Q is said to be A-consistent if

⋂
q∈Q′ L(Aq) �= ∅, where the automa-

ton Aq is defined by Aq = (Σ,Q, q, δ, F ) (with q replacing q0 as initial state).

Now we augment the definition of canonical partial runs as follows.

Definition 5. A partial run r of M × A is said to be prefix-canonical if r is
canonical and the set R = {q ∈ Q | there exists s ∈ S such that (s, q)∈ front(r)}
is A-consistent.
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To compute the sets of A-consistent (or A-inconsistent) sets in an automaton A,
we can build an equivalent nondeterministic automaton A′ using the Miyano-
Hayashi construction [16], which is a modified subset construction, and check
which states of A′ have some accepting computation. We do not go into the
details of the construction for lack of space. The construction is exponential in
the size of A, but it involves only the automaton and not the model. In addition,
identifying the A-consistent sets is a preprocessing step which only needs to
be performed once per automaton, and does not need to be repeated in every
iteration of BMC.

The completeness threshold can be strengthened by adding the new require-
ment, and defining the prefix completeness threshold CTP (M,A) to be the small-
est number h such that M × A does not have a prefix-canonical partial run of
height h. It is easy to show the equivalent of Theorem 1 for CTP (M,A). In
addition, we can now also show the following lemma and corollary, which give
us a a reason why bounded model-checking should continue if the threshold has
not been reached.

Lemma 3. If A has a prefix-canonical partial run on a finite word w ∈ Σh,
then there exists an infinite word w′ ∈ L(A) such that prefh(w′) = w.

Corollary 1. If M �|= A and CTP (M,A) ≥ h, then there exists a model M ′
such that prefh(M ×A) ⊆ prefh(M ′ ×A) and M ′ |= A.

Corollary 1 shows that as long as the threshold has not been reached, there is
a model M ′ which does satisfy A, such that any computation of M × A is also
a computation of M ′ × A. Informally, the fragment of M that A “can see” to
depth h also exists in M ′, but M ′ |= A, and so we cannot stop searching for a
witness just yet.

4.2 The Limitations of Existential Dynamic Completeness Criteria

It might seem better to require, instead of Corollary 1, that if CTP (M,A) ≥ h
then there should exist a model M ′ such that prefh(M × A) = prefh(M ′ × A)
(equality instead of containment) and M ′ |= A. This stronger requirement, if
satisfied, would imply that the completeness threshold uses all the information
that is available in prefh(M): if the threshold has not been reached, then there
is a model which is indistinguishable from M to a depth of h as far as A is
concerned, which A accepts. However, the following example shows that no sound
completeness criterion of the form “there exists a path π ∈ prefh(M) which
satisfies ψ”, where ψ is some condition on paths of length h, can satisfy the
stronger requirement.

Example 3. Consider the modelM shown in Fig. 2(b) , and the nondeterministic
automaton A shown in Fig. 2(a). A accepts paths in which there is exactly one
state labeled with b, and all the states before that state are labeled with a.
M �|= A, since all infinite paths of M contain at least two states labeled with b.

Suppose C is a dynamic completeness threshold of the form: “C(M,A) is the
smallest number h such that there does not exist a path π ∈ prefh(M) satisfying
the condition ψ”, where ψ is some condition on paths of length h. Suppose by
way of contradiction that C also satisfies the following two conditions:
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q0 q1

q2

{a}

{b} , {a, b}

∅, {a}

∅

∅, {a} , {b} , {a, b}

(a) The automaton A

a b

b

s0 s1

s2 s3 s4

(b) The model M

Fig. 2. The automaton and model from Example 3

1. (Soundness) If M |= A, but M × A has no accepting run of height h′ < h,
then C(M,A) ≥ h,

2. If C(M,A) ≥ h then there exists a model M ′ such that prefh(M × A) =
prefh(M ′ ×A) and M ′ |= A.

In our case,M �|= A. However, for h = 2, there exists a modelM ′, obtained from
M by changing the labeling of s4 to L′(s4) = ∅, such that prefh(M) = prefh(M ′)
and M ′ |= A. Any accepting run of M ′ × A must be infinite (since A has no
true transitions). Therefore, for M ′, A, and h = 2, the terms of condition 1 are
satisfied, and hence C(M ′, A) ≥ 2. From our assumption about the structure of
C, there must exist a path π ∈ pref2(M ′) = pref2(M) = {s0s1s0, s0s2s3} which
satisfies the condition ψ. We show that this contradicts condition 2.

If π1 = s0s1s0 satisfies the condition ψ, then the modelM1 shown in Fig. 3(a)
also has C(M1, A) ≥ 2, since π1 ∈ pref2(M1). Similarly, if π2 = s0s2s3 satisfies
ψ, then the model M2 shown in Fig. 3(b) has C(M2, A) ≥ 2. However, for both
i = 1, 2, there does not exist a modelM ′

i such that pref2(Mi×A) = pref2(M
′
i×A)

and M ′
i |= A. This is because in both cases, any attempt to extend Mi into a

model satisfying A must add a transition from either s0 (for M1 or M2) or from
s1 (for M1), which will create a new path of length 2 in M and a new partial
run in pref2(M ′

i × A). We thus have that any model M ′
i such that M ′

i |= A
and pref2(Mi × A) ⊆ pref2(M ′

i × A) must also have pref2(M ′
i) �⊆ pref2(Mi),

contradicting condition 2.

a b

s0 s1

(a) The model M1

a

b

s0

s2 s3 s4

(b) The model M2

Fig. 3. The models M1 and M2 from Example 3
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It is easy to extend Example 3 to conditions which talk about the existence of
a path of arbitrary (but predetermined) length satisfying some condition ψ, not
just paths of length h. The limitation we have shown is inherent to dynamic
completeness thresholds based on existentially-interpreted automata.

5 The Gap between the Completeness Threshold for
Alternating and Non-deterministic Automata

It is well known that although alternating automata are equivalent in expression
power to nondeterministic automata, they are exponentially more succint: there
exist languages recognized by an alternating automaton comprising n states,
which cannot be recognized by a nondeterministic automaton that has less than
2n states [20]. In this section we show that the ratio between the completeness
thresholds for alternating and nondeterministic automata can also be exponen-
tial in the number of states of the alternating automaton.

In [16] it is shown that for any alternating automaton A with n states, there
exists an equivalent nondeterministic automaton A′ with n′ = 22n states, such
that L(A) = L(A′). The following upper bound result follows in a straightfor-
ward manner, because an exponential blow-up in the number of states implies
at worst an exponential blow-up in the size of loops in the run-tree.

Theorem 2. For any alternating automaton A with n states and model M with
diameter d, there is a nondeterministic automaton A′ with L(A) = L(A′) such
that CT(A′) ≤ 22n · d ·CT(A).

In addition to the upper bound on the number of states, [20] shows a matching
exponential lower-bound: there exists an alternating automaton with n states
such that any equivalent nondeterministic automaton must have at least 2n

states. However, this does not immediately imply a corresponding lower bound on
the completeness thresholds nondeterministic automata, because a large number
of states does not necessarily translate to long loops in the runs of the automaton.
For example, the family of languages used in [20] to show the exponential lower
bound can be recognized by altnernating and nondeterministic automata that
have the same completeness threshold on any given model (even though the
nondeterministic automaton would require exponentially more states than the
alternating automaton).

The lower bound we will show stems from the fact that in an alternating
automaton we require that each branch of the run-tree not contain unnecessary
loops. Thus, we can detect “hopeless situations” as soon as one branch cannot
be extended without creating an unnecessary loop, even if other branches in the
run-tree are loop-free. In contrast, the runs of a nondeterministic automaton
only have one branch, and we show that this branch can be made to grow
exponentially long without closing a loop. Our result is related to the ability of
alternating automata to count to 2n using only n states, while nondeterministic
automata require 2n states to accomplish the same task [13].

Theorem 3. There is a model M over a single atomic proposition AP = {p},
and a family of languages {Ln}∞n=1 over 2AP , such that for all n ≥ 1,
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1. There is an alternating automaton A with O(n) states such that L(A) = Ln

and CT(M,A) = 1, and
2. Any nondeterministic automaton A′ such that L(A′) = Ln must have

CT(M,A′) ≥ 2n − 1.

Proof. We will use the model M = ({s} , s, {(s, s)} , L), where L(s) = ∅. For
simplicity we will represent 2AP = {∅, {p}} by the binary alphabet Σ = {a, b},
where a stands for ∅ and b stands for {p}. We now construct the family {Ln}∞n=1.

Let n ≥ 1. Consider the finitary language Hn =
{
bw | w ∈ Σ2n−1

}
, which

contains words of length 2n that start with b. Hn can be recognized by a nonde-
terministic automaton with 2n states. Consequently, by a result from [15], there
exists an alternating automaton A1 = ({a, b} , Q1, q

1
0 , δ1, F1) with n states which

recognizes the reverse language HR
n =

{
wb | w ∈ Σ2n−1

}
.

Let Gn = {uav | u ∈ Σ∗, v ∈ Σω}, and let Ln = (HR
n · Σω) ∩ Gn. Ln is the

language of infinite words in which the letter b appears in position 2n and the
letter a appears anywhere in the word. Ln can be recognized by an alternating
automaton AL, defined by AL = ({a, b} , Q1 ∪ {q0, qa} , q0, δL, F1), where we
assume w.l.o.g. that q0, qa �∈ Q1, and δL is defined as follows:

– For all q ∈ Q1 and σ ∈ {a, b}, δ(q, σ) = δ1(q, σ). (This part of the automaton
behaves exactly like A1.)

– δ(q0, a) = δ1(q10 , a). (When reading an a from the initial state, the obligation
that amust eventually be seen is discharged immediately, and the automaton
behaves like A1 from that point onward.)

– δ(q0, b) = qa ∧ δ1(q10 , b). (When reading a b from the initial state, the au-
tomaton splits into two parts, one that behaves like A1 and one that waits
to see an a.)

– δ(qa, a) = true and δ(qa, b) = qa. (In qa, the automaton waits to see an
a. Note that since qa �∈ F1, a branch along which only qa appears is not
accepting. Thus, an a must appear eventually in order for the word to be
accepted.)

The automaton AL has n + 2 states. Let r be a partial run of height h of
M × A. The only path in M is π = sω, labeled L(π) = bω. From the definition
of δL, the run r contains a branch of the form (s, q0)(s, qa)h. But qa is not an
accepting state in AL, and therefore (s, qa) is not accepting in M ×AL. Thus, if
h > 1, then the branch (s, q0)(s, qa)h contains an unnecessary loop, and r is not
canonical. Consequently we have that M × AL has no canonical partial run of
length 2 or greater, and CT(M,AL) = 1.

Now suppose that A′ is a nondeterministic automaton which recognizes Ln.
Then A′ accepts the word w = b2

n

aω ∈ Ln. Let t = q0q1 . . . be an accepting run
of A′ on w, and consider the path π = sω in M . Note that pref2n−1(L(π)) =
pref2n−1(w) = b2

n

, and hence it is easy to verify that the sequence tM =
(s, q0)(s, q1) . . . (s, q2n) is a partial run of height 2n − 1 of M ×A′.

Suppose by way of contradiction that CT(M,A′) < 2n−1, that is,M×A′ has
no canonical partial runs of height 2n−1. Then the run tM cannot be canonical,
since its height is 2n − 1. We therefore have that tM contains a useless loop; in
particular, there exist i < j ≤ 2n such that qi = qj . It is easily shown that the run



288 R. Oshman

t′ = q0 . . . qi−1qjqj+1 . . . is an accepting run of A′ on the word w′ = b2
n−(j−i)aω.

But because i < j, the letter b does not appear in position 2n of w′, and w′ �∈ Ln.
This contradicts our assumption that L(A′) = Ln. ��

Note that the completeness threshold of the alternating automaton from The-
orem 3 remains constant as n grows, while the completeness threshold of the
corresponding nondeterministic automaton grows exponentially with n.

6 Conclusion

We developed a dynamic completeness criterion for bounded model-checking,
which we believe explains and generalizes several dynamic completeness criteria
that were developed for various encodings and temporal logics. By using au-
tomata as the specification mechanism we were able to abstract away the details
of the specific temporal logic and encoding, and obtain a notion of a “beginning”
of a bad behavior which is applicable to the full class of ω-regular properties.

We also showed that alternating automata are better suited to serve as a basis
for completeness criteria than nondeterministic automata: alternating automata
can “separate concerns” and track different requirements in different branches
of the run-tree, which can lead to termination as soon as we verify that at least
one of the requirements cannot be fulfilled. We are interested in developing an
encoding for our completeness criterion based on the encoding from [11] for weak
alternating Büchi automata.

Acknowledgements. The author is grateful to Orna Grumberg, Yoram Moses
and Avi Yadgar for many fruitful discussions.
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Abstract. Because of its critical importance underlying all other software, low-
level system software is among the most important targets for formal verification.
Low-level systems software must sometimes make type-unsafe memory accesses,
but because of the vast size of available heap memory in today’s computer sys-
tems, faithfully representing each memory allocation and access does not scale
when analyzing large programs. Instead, verification tools rely on abstract mem-
ory models to represent the program heap. This paper reports on two related in-
vestigations to develop an accurate (i.e., providing a useful level of soundness
and precision) and scalable memory model: First, we compare a recently intro-
duced memory model, specifically designed to more accurately model low-level
memory accesses in systems code, to an older, widely adopted memory model.
Unfortunately, we find that the newer memory model scales poorly compared to
the earlier, less accurate model. Next, we investigate how to improve the sound-
ness of the less accurate model. A direct approach is to add assertions to the code
that each memory access does not break the assumptions of the memory model,
but this causes verification complexity to blow-up. Instead, we develop a novel,
extremely lightweight static analysis that quickly and conservatively guarantees
that most memory accesses safely respect the assumptions of the memory model,
thereby eliminating almost all of these extra type-checking assertions. Further-
more, this analysis allows us to create automatically memory models that flexibly
use the more scalable memory model for most of memory, but resorting to a more
accurate model for memory accesses that might need it.

1 Introduction

Because of its critical importance underlying all other software, low-level system soft-
ware is among the most important targets for formal verification. For example, the cor-
rect execution of even the most mundane software relies on a vast array of supporting
system software: the compiler and linker during development, of course, but also all
the OS services at runtime: application-level memory management and the underlying
virtual memory system, context swaps and the underlying OS scheduler, device drivers
for all I/O, etc. With the emergence of virtualization, the hypervisor becomes an even
lower-level, even more critical layer that needs verification (e.g., [27]), as even the op-
erating system relies on its correctness.

All formal software analysis must model memory in some way. At one extreme,
the entire memory space could be modeled as a single, giant array of bytes/words
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(e.g., [10, 11, 14], early versions of VCC [27] also supported byte-level reasoning).
Doing so makes the verification completely accurate (sound and precise with respect
to the effect of any memory access), but does not scale beyond very small segments of
code. At the other extreme, we can restrict our analysis to handle only code that has no
dynamic memory allocation and is completely type-safe (e.g., [6])1. Such an approach
has scaled to millions of lines of code [6], but obviously precludes verification of typ-
ical mainstream software. Most software verification tools (e.g., [2, 8, 18, 20, 21]) try
to strike a balance, assuming some degree of type-safety, e.g., assuming that pointers
to different types of objects do not alias. Note that most tools do not check these as-
sumptions — if the code violates the assumption, the tool might report wrong answers
without any warning.

The choice of memory model is particularly challenging for low-level systems soft-
ware, because such software must sometimes make type-unsafe memory accesses. For
example, common idioms include casting a data structure from/into an array of bytes
or integers for efficiency or to interface to hardware, and accessing a structure via
differently-typed pointers as a way to implement sub-typing in C. Address arithmetic is
also common, usually to offset before or after a given pointer in order to access a nearby
data field. Verification tools for low-level software must find an intermediate memory
model that assumes some type information to provide scalability, yet accurately cap-
tures the effects of lower-level, type-unsafe memory accesses.

In this paper, we develop such a model. The paper consists of two separate, but
related parts. In the first part (Section 2), we compare a recently introduced memory
model, specifically designed to more accurately model low-level memory accesses in
systems code, to an older, widely adopted memory model. We find that the newer mem-
ory model scales poorly compared to the earlier, less accurate model. In the second part
(Section 3), we investigate how to improve the soundness of the less accurate model.
We first consider adding assertions to the code that each memory access does not break
the assumptions of the memory model, but this causes verification complexity to blow-
up. Then, we develop a novel, extremely lightweight static analysis that quickly and
conservatively guarantees that most memory accesses safely respect the assumptions of
the memory model, thereby eliminating almost all of these extra type-checking asser-
tions. Furthermore, this analysis allows us to create automatically memory models that
flexibly use the more scalable memory model for most of memory, but resort to a more
accurate model for memory accesses that might need it. Experimental results show that
the static analysis is very fast, maintaining the scalability of the less accurate memory
model. Along the way, our tool found four bugs in real Linux device drivers, three of
which were previously unreported.

2 Comparing Two Memory Models

Because of the vast size of available memory in today’s computer systems, faithfully
representing each memory allocation and access in a static verifier does not scale.
Therefore, verification tools rely on memory models that trade precision for scalability,
and in turn, they define programming language operational semantics with respect to

1 Astrée now supports type casts, but still does not support dynamically allocated memory [24].
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the chosen memory model. In this section, we introduce two memory models that are
typically used in modular deductive verification tools, describe their advantages and
drawbacks in the context of low-level code verification, and present empirical results
on using the models to verify a number of Linux device drivers.

2.1 Monolithic Memory Model

Our first memory model is heavily influenced by the one used in early versions of
HAVOC [9], and also similar to the one used in the first incarnation of VCC [27]. The
main idea behind this memory model is to divide the memory into disjoint objects (or
regions). Each object is identified by its reference, and has a fixed size determined when
the object is allocated. A pointer in the memory model is therefore a pair, consisting of a
reference and an offset; the reference uniquely defines the object into which the pointer
points; the byte offset defines the byte in the object being pointed to.

To be able to translate a program into a representation that uses a memory model,
we have to define the semantics of its source language with respect to the chosen mem-
ory model. In the monolithic memory model, the semantics of programs depends on
three fundamental types: the uninterpreted type ref of object references, the type int
of integers, and the type ptr= ref×int of pointers. For notational convenience, each
variable in a program, regardless of its declared type, contains a pointer value: a pointer
is a pair containing an object reference and an integer offset, and an integer value is en-
coded as a pointer value whose first component is the special constant null of type ref.
Note that because of the integer offset component, the memory model can precisely cap-
ture byte offsets and low-level pointer arithmetic inside an object. On the other hand,
since object references are uninterpreted, the objects are essentially “infinitely apart”,
and the memory model cannot model pointer arithmetic between objects.

The heap of a program is modeled using two map variables, Mem and Alloc, and a
map constant Size:

Mem : ptr→ ptr
Alloc : ref→{UNALLOCATED, ALLOCATED}
Size : ref→ int

The variable Mem maps pointers to pointers and represents the contents of memory at
a location. The variable Alloc maps object references to the set {UNALLOCATED,
ALLOCATED} and is used to model memory allocation. The constant Size maps ob-
ject references to positive integers and represents the size of the object. For instance,
the procedure call malloc(n) for allocating a memory buffer of size n returns a
pointer Ptr(o,0) where o is an object reference such that Alloc[o] = UNALLOCATED
and Size[o]≥ n before the call, and Alloc[o] = ALLOCATED after the call (ignoring the
possibility of memory allocation failure, which could also be easily modeled).

2.2 Burstall’s Memory Model

Our second memory model is a type-indexed memory model (also known as Burstall’s
memory model [7]) that has been commonly used in the deductive verification of type-
safe languages [5, 19]. The main idea behind this model is that, apart from dividing
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memory into disjoint objects as in the previous model, we also split the memory ac-
cording to a set of possible types of memory locations. To achieve this splitting, a set of
unique type constants of type type is introduced, which represent types in the original
program. The common types found in a language, such as int, int*, char, etc., are
going to be translated as type constants $int, $intP, $char, etc. Usually, apart from
all of the commonly found types, the set of type constants also contains a unique type
constant for each structure field. For instance, the structure

struct {
int x;
int y;

} foo;

introduces unique type constants $foo#x and $foo#y. It turns out that this “type-
awareness” in the model, caused by adding type constants and splitting the memory
according to those, is exactly what gives this model an edge when it comes to scalability
over the monolithic model.

Our map Mem from the previous memory model is therefore, instead of mapping
pointers to pointers, going to map type-pointer pairs to pointers. We also introduce in
the model an additional map constant Type that maps pointers (memory locations) to
types and represents the allocation type of memory locations. Each type in the memory
model is a unique constant distinct from all other types. The type-indexed memory
model therefore has four maps:

Mem : (type×ptr)→ ptr
Alloc : ref→{UNALLOCATED, ALLOCATED}
Size : ref→ int
Type : ptr→ type

Adding types to the memory model makes proving programs easier and faster:

– One can conclude that updates to different fields of a structure don’t influence each
other without reasoning about integer offsets and pointer arithmetic, as would be
needed in the monolithic memory model. Such reasoning is often hard in the pres-
ence of quantifiers.

– Memory locations of different fields of two distinct objects usually don’t alias,
which is nicely captured by this memory model. This also greatly simplifies the
task of proving many interesting assertions.

– When a field is being updated, based on its type, only the corresponding submap of
Mem changes, which simplifies proving frame axioms.

2.3 Experimental Results

We have implemented the preceding memory models as part of our tool SMACK (Static
Modular Assertion ChecKer [26]), which is a modular, annotation-based, extended
static property checker of C programs. In the spirit of modular verification, SMACK ver-
ifies programs annotated with procedure specifications and loop invariants. It uses the
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Table 1. Running times for checking correct locking behavior in device drivers from the Linux
kernel. The column “LOC” given the number of lines of code; “Monolithic” gives the total run-
ning time of BOOGIE using the monolithic memory model; “Burstall” gives the total running time
of BOOGIE using Burstall’s memory model with assumed types; “Speedup” compares the run-
ning times. The * indicates that BOOGIE timed out on two procedures from the applicom driver
(time out is set to 1200s).

Driver LOC
Memory Model

Speedup
Monolithic (s) Burstall (s)

ib700wd 346 45.7 14.6 3.1
w83877f wdt 421 59.5 16.1 3.7
sc520 wdt 443 50.2 16.5 3.0
machzwd 494 71.0 18.1 3.9
wdt977 519 46.4 19.3 2.4
ds1286 633 70.8 20.3 3.5
efirtc 815 62.2 16.3 3.8
applicom 934 *3368.8 161.2 20.9

LLVM compiler framework [22] to parse input programs and annotations. The LLVM
output is translated by SMACK into a BoogiePL [16] program based on the operational
semantics of C memory accesses according to the selected memory model. BoogiePL
is the input language of the BOOGIE verifier [3], which, in turn, generates a verifica-
tion condition (VC) from the input program whose validity implies partial correctness
of the input. The VC generation in BOOGIE is performed using a variation [4] of the
standard weakest precondition transformer [17]. We check the generated VC using the
accompanying Z3 theorem prover [15]. We report only the running times of BOOGIE

required to verify the examples since the transformation SMACK performs takes only a
small fraction of that time.

We applied SMACK to check correct locking behavior of several device drivers from
the Linux kernel. The source code of the examples, the models and stubs of the relevant
kernel routines, and the test harness are taken from the DDVERIFY suite [1, 29]. Ensur-
ing correct locking behavior amounts to checking that locks are initialized before they
are used and that locks are alternately acquired and released. Table 1 lists the drivers and
gives the running times for the verification using the monolithic and Burstall’s memory
models. All experiments were executed on an Intel Pentium D at 2.8Ghz.

Seven of the drivers were arbitrarily picked character device drivers that contain
spinlocks, usually as one or two global variables. In addition, we handpicked the ap-
plicom driver, since this driver has a global array of structures where each structure is
protected by its own spinlock. This makes it much more interesting and challenging to
verify (see Figure 1), requiring from a tool the ability to reason precisely about such
unbounded data structures. Current tools that are typically used in the verification of
device drivers [2, 8, 10, 11, 20, 21] have trouble handling unbounded data structures.
One of the goals of SMACK is to address that weakness.

From the running times, it can be seen that Burstall’s memory model is the clear
winner. It always outperforms the monolithic memory model on easier examples, and
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1 struct applicom_board {
2 unsigned long PhysIO;
3 void __iomem *RamIO;
4 wait_queue_head_t FlagSleepSend;
5 long irq;
6 spinlock_t mutex;
7 } apbs[MAX_BOARD];
8

9 irqreturn_t ac_interrupt(int vec, void *dev_instance) {
10 for (i = 0; i < MAX_BOARD; i++) {
11 if (!apbs[i].RamIO) continue;
12 spin_lock(&apbs[i].mutex);
13 if(readb(apbs[i].RamIO + RAM_IT_TO_PC)) {
14 spin_unlock(&apbs[i].mutex);
15 i--;
16 } else {
17 spin_unlock(&apbs[i].mutex);
18 }
19 }

Fig. 1. Simplified code excerpt from the applicom Linux device driver illustrating the complexity
of checking correct locking behavior. The loop on line 10 iterates over array elements. If the
field RamIO of the element at index i is not null (line 11), the lock (field mutex) is acquired
on line 12 and then later released. The verification requires checking complex invariants over all
elements of the array (i.e. quantified) that involve values of the RamIO fields as well as the status
of locks (initialized, locked, unlocked).

the speedup factor is from 2.4 to 3.9. Furthermore, using Burstall’s memory model, we
managed to verify the applicom example, which we couldn’t do using the monolithic
memory model since it timed out on two procedures. The example requires proving
complex quantified invariants over fields from an array of structures. The key to suc-
cessful verification of this example is structure field disambiguation: Burstall’s mem-
ory model provides this for free, whereas in the monolithic model, it requires reasoning
about offsets and pointer arithmetic.

However, the much better running times of Burstall’s memory model come at a price:
it relies on the assumption that memory is strongly typed. In the examples, when we use
Burstall’s model, we are assuming the type of a memory location before each memory
access, which is unsound and can cause bugs to be missed in a type-unsafe setting such
as C. In the next section, we describe how to deal with this problem.

3 Ensuring Soundness with Burstall’s Memory Model

Burstall’s memory model relies on the assumption that memory is strongly typed, as
in type-safe languages such as Java. That means that a type of the object is established
when it is created, via a call to new, and the object is always accessed using that original
type. However, low-level languages like C allow reinterpretation of the original type and
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1 typedef struct {
2 int x;
3 } S1;
4

5 typedef struct {
6 int a;
7 int b;
8 } S2;
9

10 void main() {
11 S2* s2 =
12 (S2*)malloc(sizeof(S2));
13 S1* s1 = (S1*)s2;
14

15 s2->a = 3;
16 s1->x = 4;
17

18 assert(s2->a == 3);
19 }

1 const unique $S1#x:type;
2 const unique $S2#a:type;
3 const unique $S2#b:type;
4

5 procedure main() {
6 var s1:ptr, s2:ptr;
7 call s2 := malloc(Ptr(null,8));
8 s1 := s2;
9

10 Mem[$S2#a,s2] := Ptr(null,3);
11 Mem[$S1#x,s1] := Ptr(null,4);
12

13 assert(Mem[$S2#a,s2] ==
14 Ptr(null,3));
15 }

Fig. 2. Example illustrating a simple upcasting in C that causes unsoundness in Burstall’s mem-
ory model. The right column shows simplified BoogiePL code of the translation of the function
main, assuming Burstall’s model. Because of the assumption of type safety, the two assignments
on BoogiePL lines 10 and 11 do not alias, resulting in the assertion incorrectly passing.

therefore type-unsafe memory accesses. Such operations are not uncommon in systems
code and are typically done in C using casts or unions2. Often, casts don’t reinterpret
memory at the byte level, but are used to simulate object-oriented language features,
such as inheritance, that are not supported directly in C. In fact, according to empirical
studies [13, 28], more than 90% of the structure casts in C fall into that category.

Figure 2 gives a simple example illustrating “upcasting” in C. The structure S2 is a
subtype of the structure S1, and the cast on line 13 represents an upcast. The example
shows how such a simple cast can cause Burstall’s memory model to become unsound:
the field update on line 16 overwrites the value that was written to the same memory
location on line 15, and the assertion on line 18 fails. However, in Burstall’s model
this overwrite does not happen, since different field names (i.e. different unique types)
denote different memory locations in the model: the write to s2->a is translated as the
write to Mem[$S2#a,s2] on line 10 of the BoogiePL translation in the right column,
while the write to s1->x is translated at the write to Mem[$S1#x,s1] on line 11,
and doesn’t overwrite the location Mem[$S2#a,s2] although the pointers s1 and s2
are equal.

A simple way of ensuring soundness in the presence of such casts is to syntactically
analyze the source code and just give up on the verification if we find one (e.g., [18]).
Our goal is to go a step further and verify the code even in the presence of type-unsafe
structure casts, while preserving soundness. In the following sections, we’ll describe
three different techniques of how to achieve that goal.

2 We can consider union a special case of cast.



A Scalable Memory Model for Low-Level Code 297

1 const unique $S1#x:type;
2 const unique $S2#a:type;
3 const unique $S2#b:type;
4

5 procedure main() {
6 var s1:ptr, s2:ptr;
7 call s2 := malloc(Ptr(null,8));
8 assume(Type[s2] == $S2#a && Type[s2 + 4] == $S2#b);
9 s1 := s2;

10

11 assert(Type[s2] == $S2#a);
12 Mem[$S2#a,s2] := Ptr(null,3);
13 assert(Type[s1] == $S1#x); // Fails!
14 Mem[$S1#x,s1] := Ptr(null,4);
15

16 assert(Type[s2] == $S2#a);
17 assert(Mem[$S2#a,s2] == Ptr(null,3));
18 }

Fig. 3. Translation of the example from Fig. 2 with type-check assertions added before each
memory access (lines 11, 13, and 16). The type-check assertion on line 13 will fail, indicating a
violation of the assumption of type safety.

3.1 Guarding Memory Accesses with Type Assertions

A straightforward way of preventing unsoundness described in the previous section
from happening in Burstall’s memory model is to add type checks before each mem-
ory access. The checks are added in the form of assertions on the Type map. Every
access to a memory location x with type $t is going to be preceeded with the assertion
assert(Type(x) == $t) that will have to be discharged.

Figure 3 shows the translation of the example in Figure 2 with the inserted type
checks. The map Type represents the compile-time allocation type of memory loca-
tions, and therefore the correct allocation type has to be assumed on line 8 after the
allocation. Then, type check assertions are inserted before each memory access (lines
11, 13, and 16). The type check assertion on line 13 clearly will fail: s1= s2, and the
type of s2 is $S2#a, not $S1#x. Whenever a memory location is accessed through
a type that is not the allocation type of the memory location, the added type check
assertion will fail. This preserves the soundness of the verification in Burstall’s model.

However, proving such type check assertions for each memory access in the program
is a big overhead, as we’ll show later on in the experiments in Section 3.4. Furthermore,
discharging those assertions often requires adding more manual annotations to the code
which poses an additional burden on the user. Both of these drawbacks are an unac-
ceptable burden that is not justified since most parts of the code usually obey the type
restrictions imposed by Burstall’s memory model. Therefore, in the next section, we
introduce a lightweight static analysis that eagerly removes most of the required type-
check assertions by conservatively guaranteeing that those memory accesses safely re-
spect the assumptions of the model.
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%struct.ddv_genhd
 genhd_registered

                    

%struct.gendisk

                                

%struct.block_device
 block_device

    

void

%struct.block_device_operations

          

%struct.request_queue

            

operations

void void void void void
%struct.mutex

  

device

Fig. 4. An example of a Data Structure Graph. The graph shows a simplified part of the glob-
als DS graph for the applicom device driver. Oval nodes in the graph are pointer variable
nodes (e.g. device and operations); rectangle nodes are heap nodes (e.g. genhd registered and
block device). Each heap node has a type. For instance, the type of the genhd registered node is
struct.ddv genhd, the type of the block device node is struct.block device, etc. Pointer fields of
heap nodes have outgoing edges, while fields of other types are just empty boxes.

3.2 Eagerly Eliminating Type Check Assertions

We’ll start this section by giving some background information on the pointer analysis
that is the starting point of our technique for eagerly eliminating type check assertions.
Then, we’ll describe our algorithm for eliminating type checks.

Data Structure Analysis (DSA). DSA [23] is a highly scalable and fast, context-
sensitive (with full heap cloning), field-sensitive (even in a type-unsafe setting), con-
servative pointer analysis. The term “heap cloning” refers to a property important for
achieving true context-sensitivity — heap objects are not distinguished just by alloca-
tion site, but also by (acyclic) call paths leading to their allocation, i.e. the calling con-
text in which they were created. Support for data structure operations is often going to
be encapsulated in a library used throughout the code, and therefore context-sensitivity
is important to be able to handle such cases precisely.

DSA constructs a representation of the heap in the form of Data Structure Graphs
(DS graphs); it creates one DS graph per procedure plus an additional one for global
storage. The separate globals graph is a key optimization allowing procedure graphs
to contain only the parts of global storage reachable from that procedure. A DS graph
consists of a set of nodes (DS nodes) and a set of edges. As an example, a simplified
part of the globals DS graph for the applicom device driver is shown in Figure 4. We
distinguish two types of DS nodes: heap nodes with a number of fields at different
offsets (e.g. rectangle nodes in the example graph), and pointer variable nodes that point
into heap nodes (e.g. oval nodes in the example graph). A pointer variable node is named
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after the pointer variable it represents and has one edge. A heap node has one outgoing
edge per pointer field. Each heap node has a type and represents a potentially unbounded
number of objects in memory of that type. A DS graph edge is defined by its source node
and offset (i.e. offset of the respective pointer field in the source node), and its end node
and offset. For instance, if the word size is 4 bytes, the second edge coming out of the
genhd registered node is defined by 〈genhd registered,8〉→ 〈block device,0〉.

Instead of just providing the usual pairs of references that may alias (points-to/alias
information), the explicit heap representation DSA constructs can be used to identify
different instances of data structures and provide structural and type information for
each identified instance. The key feature of DSA we take advantage of is the conser-
vative type information for each heap object. In particular, if all accesses to objects
that a node represents obey a consistent type, such node is called “type-homogeneous”.
Accesses are defined as operations on pointers that point into the node and actually in-
terpret the type: load and store operations, and structure and array indexing operations
on pointers. Operations such as memory allocation and pointer casts (e.g. from void*)
are not counted as accesses and don’t influence a node type. If accesses with incompati-
ble types are found, the type of the node is marked as Unknown. Therefore, DSA tracks
types precisely in the type-safe parts of the heap/program, while in the presence of
type-unsafe operations it conservatively treats nodes as having an unknown type.

Eager Type Check Elimination Algorithm. The algorithm is relatively simple and
straightforward, but as we’ll show in the experiments in Section 3.4, extremely effec-
tive. First, we run the DSA on the code we are analyzing, outputting a DS graph for
each procedure and the globals graph. Then, for each memory read or write through a
pointer, we find the type of the memory location it points to using the appropriate DS
graph. If the computed type is the same as the actual type of the pointer, we omit the
type check (assertion) that would be otherwise generated. If the types are not the same
or if the type of the node the pointer points to is Unknown, we will generate the type
check assertion to preserve soundness.

Figure 5 illustrates the benefits of our technique, removing two type-check assertions
compared to the code in Figure 3. However, the soundness is preserved, since the as-
sertion on line 12 couldn’t be safely eliminated and is going to fail again: According to
DSA, pointer s1 is going to point to the field a of structure S2, and therefore its type
is going to be $S2#a and not $S1#x as expected by the memory access.

The algorithm essentially compares compile-time pointer types used by Burstall’s
memory model with the sound over-approximation of the run-time types that DSA gen-
erates: if the two agree, we can safely omit the type check; if not, which could happen
either because of actual type-unsafe casts or because of the imprecision of DSA, the
type check stays. To sum up, using the extremely fast, cheap, and yet relatively precise
Data Structure Analysis, we are eagerly getting rid of most of the type checks that are
usually hard and expensive to prove later on.

In order for the remaining assertions to be discharged, either the user has to provide
additional manual annotations that will essentially unify the types, which is the ap-
proach taken in some related work [12, 25], or such types can be unified automatically,
which is our approach described in the next section.
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1 const unique $S1#x:type;
2 const unique $S2#a:type;
3 const unique $S2#b:type;
4

5 procedure main() {
6 var s1:ptr, s2:ptr;
7 call s2 := malloc(Ptr(null,8));
8 assume(Type[s2] == $S2#a && Type[s2 + 4] == $S2#b);
9 s1 := s2;

10

11 Mem[$S2#a,s2] := Ptr(null,3);
12 assert(Type[s1] == $S1#x); // Fails!
13 Mem[$S1#x,s1] := Ptr(null,4);
14

15 assert(Mem[$S2#a,s2] == Ptr(null,3));
16 }

Fig. 5. Translation of Fig. 2 using the eager type check elimination algorithm. Compared to Fig. 3,
the unneeded type checks have been eliminated, but the type-safety violation will still be caught.

3.3 Eager Type Unification

The type check elimination algorithm from the previous section doesn’t remove the
type check assertion for which the compile-time type of a pointer and the one computed
by DSA don’t agree. Proving those left-over assertions might still require the addition
of manual annotations by a user. Instead, we describe a simple, completely automatic
technique that will soundly remove the left-over assertions.

For each memory access for which the type check elimination algorithm couldn’t
agree on types, we unify the two types. Unification simply means that the type constants
are not unique anymore, which is in BoogiePL achieved by removing the keyword
unique. There is an obvious tradeoff between the type check elimination algorithm
and the type unification algorithm: the first one might require additional running time
and manual annotations from a user to discharge the left-over assertions; the second
one is completely automatic, but with each unification, the memory model is closer to
the monolithic one and the performance might suffer (in the worst case, all types are
unified and we essentially have the monolithic model).

Figure 6 shows the translation using the eager type unification algorithm. Instead of
the type-check assertion on line 12 in Figure 5, the types $S1#x and $S2#a are unified
and are not unique constants any more (lines 1 and 2). Now, Mem[$S2#a,s2] and
Mem[$S1#x,s1] possibly refer to the same location, which is sound, and therefore
the assertion on line 14 will fail. Note that only the types $S1#x and $S2#a involved
in the actual type-unsafe access got unified, while the type $S2#b not involved in
type-unsafe operations didn’t. Therefore, the overapproximation caused by unification
is localized only to the places that actually need it in order to preserve soundness. In
the limit, eager type unification degenerates into the monolithic memory model, but for
code that is mostly type-safe, it should have most of the efficiency of Burstall’s model
and the soundness of the monolithic model.



A Scalable Memory Model for Low-Level Code 301

1 const $S1#x:type;
2 const $S2#a:type;
3 const unique $S2#b:type;
4

5 procedure main() {
6 var s1:ptr, s2:ptr;
7 call s2 := malloc(Ptr(null,8));
8 assume(Type[s2] == $S2#a && Type[s2 + 4] == $S2#b);
9 s1 := s2;

10

11 Mem[$S2#a,s2] := Ptr(null,3);
12 Mem[$S1#x,s1] := Ptr(null,4);
13

14 assert(Mem[$S2#a,s2] == Ptr(null,3));
15 }

Fig. 6. Translation of Fig. 2 using the eager type unification algorithm. Instead of flagging the
type-safety violation, this translation handles type unsafety by allowing $S1#x and $S2#a to
be possibly the same type. Thus, the verifier will correctly catch the assertion violation on line 14.

3.4 Experimental Results

The results in Table 2 compare the running times for checking correct locking behav-
ior while ensuring soundness using the three different approaches: guarding memory
accesses with type assertions, eagerly eliminating type check assertions, and eagerly
unifying types. The algorithm that inserts type checks for each memory access is a
simple linear scan of the code and is extremely fast. Also, DSA scales to hundreds

Table 2. Total running times for checking correct locking behavior while ensuring soundness in
Linux device drivers. The column “Every Access” gives the total running time of BOOGIE when
checking type assertions on every access; “Eager Elimination” gives the total running time of
BOOGIE when our eager elimination technique is used to soundly remove most of the required
type checks; “Eager Unification” gives the total running time of BOOGIE when our eager uni-
fication technique is used to ensure soundness; “Speedup EA/EE” compares the running times
of Every Access vs Eager Elimination; “Speedup EA/EU” compares the running times of Every
Access vs Eager Unification. The * indicates that BOOGIE timed out on four and the memory
blew up on one procedure from the applicom driver (time out is set to 1200s).

Driver
Assuring Soundness Speedup Speedup

Every Access (s) Eager Elimination (s) Eager Unification (s) EA/EE EA/EU

ib700wd 448.7 14.2 14.1 31.6 31.8
w83877f wdt 683.5 15.3 15.2 44.7 45.0
sc520 wdt 632.5 16.7 16.0 37.9 39.7
machzwd 761.4 18.2 17.8 41.8 42.8
wdt977 466.2 18.1 18.3 25.8 25.5
ds1286 823.5 20.7 25.5 39.8 32.4
efirtc 576.2 15.5 15.3 37.2 37.7
applicom *7487.4 173.5 172.0 43.2 43.5
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of thousands of lines of code in less than 4s [23]. Therefore, total running times are
dominated by the verification done by BOOGIE, and those are the times we report.

As expected, blindly generating type check assertions for each memory access sim-
ply does not scale — verification times after using both eager techniques are roughly
30-40 times faster. Furthermore, both eager techniques give roughly the same verifica-
tion times afterwards. The reason is, to our surprise, that none of the analyzed device
drivers actually has type-unsafe structure casts. Therefore, both of the algorithms end
up generating the same BoogiePL code. In the future, as we verify increasingly complex
examples, we will be able to evaluate the trade-off between the two methods.

Bugs Found. While doing the experiments, we found a total of four bugs in the eight
device drivers we checked from the Linux kernel. One bug is the rediscovered incor-
rect locking pattern in the ds1286 driver that was also found earlier by the DDVERIFY

checker. The other three bugs are previously unreported buffer-overflow bugs. We sub-
mitted the bugs to the Linux kernel development team, who confirmed all three bugs
and issued patches to the standard Linux kernel.

A natural question is how the different memory models affected the detectability of
these bugs. The answer is not straightforward:

– First, as mentioned above, these device drivers turned out to be type-safe, in the
sense that Burstall’s model would be as accurate as the monolithic model. Thus,
one might argue that the more accurate models are unnecessary. However, the type-
safety is not at all obvious — this is C code, with type casts, pointer arithmetic,
etc. With Burstall’s model, we assume type safety and might catch some bugs, but
we don’t know whether the code is truly type-safe; with the monolithic model, we
don’t assume type safety, but the verification complexity blows up, so we can’t
catch any bugs anyway. Our new models ensure type safety but also scale well.

– The other issue is that, of the four bugs we found, only the previously discovered
one was a direct violation of the locking-unlocking properties we were checking.
The other three bugs were buffer-overflow bugs that were caught because of the
type-checking assertions. These bugs perhaps could have been caught by a variety
of methods, using many different memory models.

The key point is that our new memory models can ensure, rather than assume, type-
safety, yet are scalable enough to handle real code that is sufficiently complex to contain
significant bugs that have eluded previous detection.

4 Conclusion and Future Work

In the first part of the paper, we presented our experience with two memory models
for low-level code. We introduced the monolithic memory model, which can handle
soundly many common low-level idioms. Then, we presented Burstall’s memory model,
which has typically been used in the verification of type-safe languages. We imple-
mented both models as part of our verification tool SMACK. In the experiments, we
checked correct locking behavior of a number of Linux device drivers, and showed
that the performance using Burstall’s model is much better than using the monolithic
memory model, especially on more complex examples.
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However, a straightforward translation of a program using Burstall’s memory model
cannot preserve soundness of type-unsafe operations found in low-level code. There-
fore, in the second part of the paper, we describe three different techniques for ensuring
soundness with Burstall’s model: insertion of soundness checks before each memory
access, our novel eager type check elimination algorithm based on a lightweight pointer
analysis, and our novel eager type unification technique. We showed in the experiments
that naively inserting checks is an unnecessary verification overhead, since most of the
checks can be eagerly removed using our algorithms. During the verification effort, we
found three previously unreported bugs.

In an upcoming paper [12], Condit et al. describe a novel memory model for low-
level code that includes type information. Types can be checked using an SMT solver,
and they also provide a decision procedure for checking type safety. Using these tech-
niques, they type-checked a number of Windows device drivers. Their work is comple-
mentary to ours: we conservatively and eagerly remove as many type checks as possible,
whereas they provide an efficient technique to prove type checks. Obvious future work
is to combine the best of both approaches: quickly eliminating most type checks using
our methods, and solving the remaining ones efficiently using theirs.
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Abstract. A new approach based on constraint solving techniques was
recently proposed for verification of hybrid systems. This approach works
by searching for inductive invariants of a given form. In this paper, we
extend that work to automatic synthesis of safe hybrid systems. Starting
with a multi-modal dynamical system and a safety property, we present
a sound technique for synthesizing a switching logic for changing modes
so as to preserve the safety property. By construction, the synthesized
hybrid system is well-formed and is guaranteed safe. Our approach is
based on synthesizing a controlled invariant that is sufficient to prove
safety. The generation of the controlled invariant is cast as a constraint
solving problem. When the system, the safety property, and the con-
trolled invariant are all expressed only using polynomials, the generated
constraint is an ∃∀ formula in the theory of reals, which we solve using
SMT solvers. The generated controlled invariant is then used to arrive
at the maximally liberal switching logic.

1 Introduction

Formal verification is beginning to play an important role in the process of build-
ing reliable and certifiable complex engineered systems. A different approach to
building correct systems is to automatically synthesize safe systems. The synthe-
sis approach is attractive since it generates correct systems by design. However,
computationally, the synthesis problem appears to be much harder than the
verification problem and there are few general approaches for solving it.

Recently, Gulwani and Tiwari [7] introduced an approach for verification of
(hybrid) systems that reduces the safety verification problem to satisfiability of
∃∀ formulas over some theory (the theory of reals). Their method is based on
finding an inductive invariant that proves the safety of the system. The “un-
bounded” search for invariants is “bounded” by fixing some templates for the
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invariants. The existence (∃) of an appropriate instance of the template that
is also an inductive invariant (∀) naturally maps to an ∃∀ formula. If the ∃∀
formula is valid (over the underlying theory), then it means that there exists an
inductive invariant (of the form of the chosen template) that proves safety.

In theory, the constraint-based approach for verification described in Gulwani
and Tiwari [7] can be generalized to solving the synthesis problem as well. Given
an under-specified system, we can choose templates for the unknown parts of the
system and the unknown inductive invariant. We can then obtain a ∃∀ formula
where all the unknowns are existentially quantified. The constraint solver then
searches for instances of all these unknowns so that the resulting system is proved
safe by the resulting invariant. In practice, however, this naive approach does not
work well for synthesis because the constraint solver often chooses values that
result in a degenerate system (such as, a zeno system, or a deadlocked system)
where the safety property is vacuously true. Moreover, the above method does
not take advantage of the correlations that exist between the various unknowns
and uses a separate template for each unknown. Having too many templates
contributes to the incompleteness and reduces the effectiveness of the approach.

In this paper, we define a specific instance of the synthesis problem, called
the switching logic synthesis problem. We present a constraint-based approach,
inspired by [7], to solve the switching logic synthesis problem. The novelty in
our approach here is that we do not search for the switching conditions di-
rectly. Instead we use constraint solving to find an inductive controlled invariant
set. Hence we only have to choose a single template – for the inductive control
invariant – and none for the unknown switching conditions. In a final postpro-
cessing step, we use the generated controlled invariant to synthesize the actual
switching logic. This postprocessing step generates the weakest (most general)
possible controller from the controlled invariant. Our approach is guaranteed to
synthesize a non-blocking hybrid system that is also safe.

Inductive Controlled Invariant. An invariant for a system is any superset of
the set of reachable states of that system. Safety properties can be proved by
finding suitable invariants. However, invariance is difficult to check in general.
A better alternative is to search for inductive invariants. Inductive invariants
are attractive because inductiveness is a “local” property – for each state in
the inductive set, we only need to check that the immediate next states reached
from that state (rather than all reachable states) are also in the inductive set.
Fortunately, the set of reachable states is always inductive and hence, the use of
inductive invariants is a sound and complete method for safety verification.

In this paper, we consider systems that contain controllable choices, that is,
the user/controller can make selections to achieve some safety goal. For such
systems, the notion corresponding to invariant sets is called controlled invariant.
A controlled reach set is the set of reachable states obtained for some choice
of the controller. A controlled invariant is a superset of some controlled reach
set. As before, the computationally interesting notion is that of an inductive
controlled invariant. We can, therefore, synthesize safe controllers by generating
the correct inductive controlled invariant. In this paper, we pursue this idea in
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the context of hybrid systems, though the idea of inductive controlled invariant
is applicable more generally.

Contribution and Outline of the Paper. In this paper, we present a formaliza-
tion of the notion of inductive controlled invariants for multi-modal systems and
describe a sound and complete approach for synthesizing switching logic from
an inductive controlled invariant. (Section 3). Our synthesis technique relies on
the deductive verification approach and does not use the usual game theoretic
approach for controller synthesis, or the controlled reachability approach (See
Section 7 for more discussion). We also describe several sufficient conditions for
a set to be an inductive controlled invariant set. These conditions enable practi-
cal implementations for synthesizing controllers using template-based techniques
(Section 4). Finally, we describe some heuristics to generate large controlled in-
variant sets, that lead to synthesis of the weak controllers (Section 5). We have
performed preliminary experimental evaluation of our approach and presented
some of the results as examples in the paper. We start by formally describing
and motivating the problem in Section 2.

2 The Switching Logic Synthesis Problem

In this section, we describe the synthesis problem considered in this paper. We
motivate our formal definitions with informal descriptions of the problem.

We are interested in controlling multi-modal continuous dynamical systems.
A dynamical system is defined by its state-space, which is the set of all possible
configurations/states of the system, and its dynamics, which defines how the
system changes states (with time). Formally, a continuous dynamical system is
a tuple 〈X, f〉 where X is a finite set of real-valued variables that define the
state space RX and f : RX &→ RX is a vector field that specifies the continuous
dynamics (as dx

dt = f(x)). We assume that f is Lipschitz, which guarantees the
existence and uniqueness of solutions to the ordinary differential equations.

Proposition 1 (Theorem 2.3.1, p80 [4]). Consider a Lipschitz vector field
f and the differential equation dF (t)

dt = f(F (t)), F (t) = x0. The solution of this
differential equation, denoted by F (x0, t), always exists and is unique. Moreover,
F (x0, t) depends continuously on the initial state x0.

Often a single ordinary differential equation is insufficient to describe the sys-
tem. Many systems have multiple modes and they have different dynamics in
each mode. This happens, for example, when we introduce actuators inside phys-
ical devices that change the device’s dynamics. In such cases, the dynamics of a
system is described by a collection of differential equations. We call such system
multi-modal dynamical systems. A multi-modal system has a finite number of
different modes and in each mode, it behaves like a different continuous dynami-
cal system. For instance, consider the water level in a tank with an inflow valve.
Such a system has two dynamics – one when the valve is closed and one when it
is open. Formally, we define a multi-modal continuous dynamical system (MDS)
and its semantics as follows.
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Definition 1 (Multi-modal Continuous Dynamical System). A multi-
modal continuous dynamical system, MDS, is a tuple 〈X, f1, f2, . . . , fk, Init〉,
where 〈X, fi〉 is a continuous dynamical system (representing the i-th mode) and
Init ⊆ RX is the set of initial states. Given an initial state x0 ∈ Init, we
say that a function x(t) : [0,∞) → RX is a trajectory for MDS, if there is an
increasing sequence 0 ≤ t1 < t2 < · · · (either finite or diverging to ∞) such that

– x(0) = x0 and x(t) is continuous over t ≥ 0, and
– for each interval (ti, ti+1), there is a mode j ∈ I such that x(t) is smooth

and dx(t)
dt (t′) = fj(x(t′)) for all t in the range ti < t < ti+1. When i = 0,

then we require j = 1; that is, mode 1 is the initial mode.

Following Definition 1, a multi-modal system can nondeterministically switch
between its modes. However, switching between the different modes in a multi-
modal dynamical system is often controllable. The goal of controlling a system
is to achieve safe operation with some desired performance. For instance, in the
water tank example, the transition between the two modes can be controlled by
opening and closing the valve. The controller may be required to guarantee that
the water level in the tank remains between two thresholds. There are several
controllers that can achieve this property. A controller that opens the valve just
when the water level reaches the lower threshold and closes it soon thereafter,
will keep the level closer to the lower threshold, but it is very restrictive as it
prevents the system from reaching several possible safe states. We are interested
in designing controllers that guarantee safety, but that also do not unnecessarily
restrict the system from reaching safe states.

A controller for a multi-modal system is specified as a switching logic.

Definition 2 (Switching Logic). A switching logic SwL for a multi-modal
dynamical system MDS := 〈X, (fi)i∈I , Init〉 is a tuple 〈(gij)i�=j;i,j∈I , (Invi)i∈I〉,
containing guards gij ⊆ RX and state (location) invariants Invi ⊆ RX .

Informally, the guard gij specifies the condition under which the system could
switch from mode i to mode j and the state invariant Invi specifies the condition
which must be respected while in mode i.

A multi-modal system MDS can be combined with a switching logic SwL to
create a hybrid system HS := HS(MDS, SwL) in the following natural way: the
hybrid system HS has ‖I‖ modes with dynamics given by dX

dt = fi in mode i,
and with gij being the guard on the discrete transition from mode i to mode j
and Invi being the state invariant in mode i. The initial states are {1} × Init.
The discrete transitions in HS have identity reset maps, that is, the continuous
variables do not change values during discrete jumps. The semantics of hybrid
systems that define the set of reachable states of hybrid systems are standard [1].

Though semantically well-defined, some hybrid systems have undesirable be-
haviors. For example, it can happen that a hybrid system, in mode i, reaches a
point x on the boundary of Invi, but there is no valid trajectory from x; that is,
there is no discrete transition enabled at x, and following mode i dynamics takes
the system out of Invi. The non-blocking requirement disallows such cases. We
are interested in synthesizing non-blocking hybrid systems.
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Definition 3. A hybrid system HS is said to be non-blocking if for every mode
i, and for every point x on the boundary of the state invariant for mode i, there
exists a mode j (may be same as i) and ε > 0 such that (i) x ∈ gij whenever
i �= j, and (ii) the dynamics of mode j keeps the system within the state invariant
of mode j for at least ε time.

A hybrid system HS is safe with respect to a safety property Safe ⊆ RX if the
set of its reachable states is contained in Safe. Formally, we define the logic
synthesis problem as follows:

Definition 4 (Switching Logic Synthesis Problem). Given a multi-modal
dynamical system MDS := 〈X, f1, f2, . . . , fk, Init〉 and a safety property Safe ⊆
RX , the switching logic synthesis problem seeks to synthesize a switching logic
SwL such that the hybrid system HS(MDS, SwL) is safe with respect to Safe.

3 The Synthesis Procedure

In this section we present a high-level procedure for solving the switching logic
synthesis problem described in Definition 4. We fix our notation and denote the
given multi-modal dynamical system by MDS, its initial set of states by Init and
the given safety property by Safe.

We first define the notion of a controlled invariant set.

Definition 5 (Controlled Invariant). A set CInv is said to be a controlled
invariant for a MDS := 〈X, (fi)i∈I , Init〉 if for all x0 ∈ Init, there exists a
trajectory (Definition 1) x(t) such that x(0) = x0 and for all t ≥ 0, x(t) ∈ CInv.

Note that an invariant requires that every trajectory (starting from an initial
state) remains inside the invariant. In contrast, a controlled invariant only re-
quires some trajectory remains inside the controlled invariant.

Example 1. Let ẋ denote dx
dt . Consider a multi-modal system with two modes.

In mode 1, ẋ = 1, ẏ = 0, while in mode 2, ẋ = 0, ẏ = 1. If x = 0, y = 0 is the
only initial state, then x ≥ 0 ∧ y ≥ 0 is an invariant, whereas x ≥ 0 ∧ y = 0 is a
controlled invariant that is not an invariant. The set x+y ≤ 0 is not a controlled
invariant.

Definition 5 does not suggest any easy way to compute nontrivial controlled
invariants. Hence, we define the notion of inductive controlled invariants. Since
the dynamics are continuous here, we first need to define a few notions. Recall
that the vector fields fi’s are Lipshitz and hence, by Proposition 1, we have
a unique trajectory Fi(x0, t) in mode i. By Fi(x0, (0, ε)) we denote the set of
all points reached in the time interval (0, ε); that is, Fi(x0, (0, ε)) := {x | x =
Fi(x0, t), 0 < t < ε}. For a set S ⊆ Rn, let ∂S denotes the boundary of S in the
topological sense. We are now ready to define inductive controlled invariants.

Definition 6 (Inductive Controlled Invariant). A closed set CInv is an
inductive controlled invariant for MDS := 〈X, (fi)i∈I , Init〉 if

(A1) Init ⊆ CInv and
(A2) ∀x ∈ ∂CInv : ∃i ∈ I : ∃ε > 0 : Fi(x, (0, ε)) ⊆ CInv
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SynthSwitchLogic(MDS, Safe) :

1. Find a closed set CInv that satisfies Conditions (A1) and (A2)

from Definition 6 and Condition (A3) below

(A3) CInv ⊆ Safe

If no such set is found, return failure

2. Let bdryi := {x ∈ ∂CInv | ∃ε > 0 : Fi(x, (0, ε)) ⊆ CInv} for all i ∈ I
3. Let Invi := CInv for all i ∈ I
4. Let gij := bdryj ∪ Interior(CInv) for all i �= j; i, j ∈ I,

Return SwL := 〈(gij)i	=j;i,j∈I , (Invi)i∈I〉

Fig. 1. Procedure for synthesizing switching logic presented at a semantic level

Intuitively, Condition (A2) in Definition 6 says that for every point on the bound-
ary of CInv, there is a vector field fi that points inwards and brings the system
(instantaneously) inside the set CInv, see also [3]. Just as inductive invariants
are also invariants, inductive controlled invariants are also controlled invariants.

Proposition 2. If a closed set CInv is an inductive controlled invariant for MDS,
then it is also a controlled invariant for MDS.

The complete procedure, at a semantic level, for solving the switching logic
synthesis problem is presented in Figure 1. The key idea behind the synthesis
procedure is to find an inductive controlled invariant set CInv and then design
the guarded transitions so that the resulting hybrid system always remains in
CInv. Conditions (A1), (A2), and (A3) imply that CInv is an inductive con-
trolled invariant that proves safety. It follows from the definition of CInv that
its boundary ∂CInv can be written as a union

∂CInv =
⋃
i∈I

bdryi (1)

such that ∀x ∈ bdryi, it is the case that ∃ε > 0 : Fi(x, (0, ε)) ⊆ CInv. This fact
is used to define the sets bdryi in Line 2. In Line 4, we use the sets bdryi and
CInv to define the guards for the various discrete transitions.

We next state and prove some properties of the procedure SynthSwitchLogic
in Figure 1. We show that the synthesized hybrid system is always non-blocking
and safe (soundness). Furthermore, if there is a safe hybrid system, then under
some fairly general conditions, the procedure SynthSwitchLogic will return a
switching logic SwL and synthesize a safe system HS(MDS, SwL) (completeness).

Theorem 1 (Soundness). For every switching logic SwL returned by procedure
SynthSwitchLogic, the hybrid system HS(MDS, SwL) is non-blocking and safe.

We prove completeness under a technical assumption. We say a hybrid system
HS has the min-dwell-time property if there exists a fixed time duration ta such
that for all reachable states x, if the hybrid system permits a mode switch from
i to j at x, then there must exist a mode k such that the hybrid system permits
a mode switch from i to k at x and the system can stay in mode k for at least ta
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units of time starting at x. The min-dwell-time property implies that successive
mode switchings can be forced to be ta units apart.

Theorem 2 (Completeness). For any switching logic SwL, if a hybrid system
HS = HS(MDS, SwL) is safe, HS satisfies the min-dwell-time property and Safe is
a closed set, then procedure SynthSwitchLogic will return a switching logic.

Although the above procedure is sound and complete, it is not computationally
feasible as there is no easy way to check for Condition (A2). In the next section we
will replace Condition (A2) by something stronger that can be easily computed.
This causes loss of completeness, but it preserve soundness.

4 Implementing the Procedure

The procedure for solving the switching logic synthesis problem was described
at a semantic level in the previous section. In this section, we show how that
procedure can be concretely implemented.

Recall that a set CInv is an inductive controlled invariant if it satisfies Con-
ditions (A1) and (A2). Condition (A2) is not easy to check as Fi’s are solutions
of differential equations. We solve this problem by replacing this condition by a
stronger condition, (B2), which, as we show later, can be tested without explic-
itly computing Fi. Let Interior(CInv) := CInv− ∂CInv. We ensure that CInv
is an inductive controlled invariant (that proves safety) by checking:

(B1) Init ⊆ CInv

(B2) ∀x ∈ ∂CInv : ∃i ∈ I : ∃ε > 0 : Fi(x, (0, ε)) ⊆ Interior(CInv)
(B3) CInv ⊆ Safe

We will now present a condition that is equivalent to (B2) and that can be easily
computed. We first need to fix a representation for CInv.

We use semi-algebraic sets as candidates for CInv ⊆ RX . Since CInv is un-
known, we use the idea of templates. A template is a formula (in the theory of
reals) with free variables X ∪ U . Here U are the (real-valued) unknown coeffi-
cients that need to be instantiated to yield the desired CInv. We use boolean
combinations of polynomial equalities and inequalities (semi-algebraic sets) as
the formulas. Once a template is fixed, we can write Conditions (B1), (B2)
and (B3) as an ∃∀ formula over the theory of reals [7]. Concretely, let p(U,X)
be a polynomial and p(U,X) ≥ 0 be the chosen template for searching for CInv.
We restrict ourselves to the case of a single inequality p(U,X) ≥ 0 for simplicity
of presentation. For example, u1x1 + u2x2 ≥ u3 is a linear template over 2 vari-
ables X = {x1, x2} and 3 unknown coefficients U = {u1, u2, u3}. The following
formula states that there is a choice of values for U such that the resulting set,
p(U,X) ≥ 0, is a controlled invariant sufficient to prove safety.

∃U : ∀X : (X ∈ Init⇒ p(U,X) ≥ 0) ∧ (p(U,X) ≥ 0 ⇒ X ∈ Safe) ∧
(p(U,X) = 0 ⇒

∨
i∈I

Lfip(U,X) > 0) (2)
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Here Lfip denotes the derivative of p with respect to time t and is called the
Lie derivative of p with respect to the vector field fi. It can be symbolically
computed using the chain rule as,

Lfip :=
∑
x∈X

∂p

∂x

dx

dt
.

Note that we have used a test on the Lie derivatives to encode Condition (B2).
This test is equivalent to (B2) and allows us to verify it without requiring Fi.

Remark 1. It is tempting to think that replacing > by ≥ in Formula (2) will
make the formula equivalent to checking Condition (A2), but this is not true.

If each of the vector fields, fi, is specified using polynomials (i.e., in each mode,
dX
dt is a vector of polynomials), then Lfip is simply a polynomial. If Init and
Safe are semi-algebraic sets, then the membership tests (X ∈ Init and X ∈
Safe) can also be written as formulas using only polynomials. Thus Formula (2)
is a ∃∀ formula consisting only of polynomial expressions.

Corollary 1. If Formula (2) is valid in the theory of reals, then there is a
controlled invariant CInv that proves safety.

Corollary 1 immediately gives us a sound procedure that reduces the switching
logic synthesis problem to solving of an ∃∀ constraint in the theory of reals. We
illustrate the procedure on the following example.

Example 2. Consider a train gate controller with two modes: In the about to
lower mode (1), distance x of the train from the gate decreases according to
ẋ = −50 and the gate angle g does not change. In the gate lowering mode (2),
we have ẋ = −50 and ġ = −10. The initial state is g = 90∧x = 1000. We wish to
synthesize the switching logic so that the system always stays in the safe region
x > 0∨ g ≤ 0. We assume a template of the form x+ a1g ≥ a2 for the controlled
invariant. Writing out Formula (2), we get:

∃a1, a2 : ∀x, g :
(x = 1000∧ g = 90 ⇒ x+ a1g ≥ a2)∧ (Condition (B1))
(x+ a1g ≥ a2 ⇒ x > 0 ∨ g ≤ 0)∧ (Condition (B3))
(x+ a1g = a2 ⇒ −50 + 0 > 0 ∨ −50− 10a1 > 0) (Condition (B2))

Our solver returns a1 = −10, a2 = 50; that is, we get x − 10g ≥ 50 as the
controlled invariant. The resulting hybrid system has x − 10g ≥ 50 as the state
invariant for each mode. The guards for transitions are g12 = x − 10g ≥ 50 (as
dynamics for mode 2 points inwards everywhere on the boundary) and g21 =
x− 10g > 50 (dynamics for mode 1 never points inwards on the boundary, so no
boundary point gets assigned to g21). So, if the system starts in mode 1, it can
continue in 1 until x− 10g = 50 is true, whence the system will have to shift to
mode 2. The resulting hybrid system is safe and non-blocking.
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4.1 A Variant Procedure

In the previous section, we approximated the semantic condition (A2) by the
constraint p = 0 ⇒

∨
i∈I Lfip > 0. As Corollary 1 shows, this is a sound approx-

imation. However, the requirement that a vector field points strictly inwards,
which is captured by Lfip > 0, is too strong and leads to incompleteness, which
leads to failure in finding suitable controlled invariant sets in practice. In this
section, we weaken Formula (2) so that it can be used to handle more examples.

We weaken Condition (B2) and use the following weaker version of For-
mula (2) to test if p(X,U) ≥ 0 is an inductive controlled invariant:

∃U∀X : (X ∈ Init⇒ p(U,X) ≥ 0) ∧ (p(U,X) ≥ 0 ⇒ X ∈ Safe) ∧
p(U,X) = 0 ⇒

∨
i∈I

(Lfip > 0 ∨ (Lfip = 0 ∧
∧
j �=i

Lfjp < 0)) (3)

Formula (3) says that at the boundary (p = 0) of the controlled invariant (p ≥ 0),
either some vector field, say fi, points strictly inwards (Lfip > 0), or exactly one
vector field is tangential (Lfip = 0) and all others point strictly outside (Lfjp <
0). The counterintuitive condition – vector fields pointing strictly outwards –
helps in proving that the tangential vector field will keep the system inside the
controlled invariant.

We can now replace the constraint in Step (1) of the procedure in Figure 2 by
Formula (3) and get a new and more powerful procedure for solving the switching
logic synthesis problem. We can again prove soundness of the technique.

Corollary 2. If Formula (3) is valid in the theory of reals, then there is a
controlled invariant CInv that proves safety provided ‖I‖ > 1.

Remark 2. The procedure could be unsound when ‖I‖ = 1. This unsoundness
is related to the comment in Remark 1.

We illustrate the advantage of weakening the constraint for the inductive test
by using the following example.

Example 3. Consider a system with continuous variable x and y and two modes.
In mode 1, ẋ = 0, ẏ = −1 and in mode 2, ẏ = 0, ẋ = −1. The initial state

SynthSwitchLogicImpl(MDS,Init,Safe)

0. Choose template for controlled invariant, say p(U,X) ≥ 0
1. Generate ∃∀ constraint for template to be a controlled invariant

∃U : ∀X : (X ∈ Init⇒ p ≥ 0) ∧ (p ≥ 0 ⇒ X ∈ Safe) ∧ (p = 0 ⇒
W

i∈I Lfip > 0)
1. Solve the ∃∀ constraint and get values u for U
2. Let bdryi := (p(u, X) = 0 ∧ Lfip > 0) for all i ∈ I
3. Let Invi := (p(u, X) ≥ 0) for all i ∈ I
4. Let gij := bdryj ∨ (p(u, X) > 0) for all i �= j; i, j ∈ I,

Return SwL := 〈(gij)i	=j;i,j∈I , (Invi)i∈I〉

Fig. 2. A sound procedure for solving the switching logic synthesis problem
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is x = 10, y = 10 and the desired safety property is y ≥ 0. We start with the
template a1x+ a2y ≥ a3. Formula (3) then becomes:

∃a1, a2, a3 : ∀x, g :
(x = 10 ∧ y = 10 ⇒ a1x+ a2y ≥ a3)∧ (Condition (A1))
(a1x+ a2y ≥ a3 ⇒ y ≥ 0)∧ (Condition (A3))
(a1x+ a2y = a3 ⇒ −a1 > 0 ∨ (−a1 = 0 ∧−a2 < 0)∨

−a2 > 0 ∨ (−a2 = 0 ∧−a1 < 0)) (Condition (A2))

We get a solution a1 = 0, a2 = 1, a3 = 1. So the invariant obtained is y ≥ 1.
Note that on the boundary of the controlled invariant, the dynamics in mode 2
moves along the boundary and that of mode 1 points outwards. The previous
method fails to find a controlled invariant for this example.

Example 4. Consider the train gate controller model from Example 2. Observe
that the controller synthesized is very conservative and forces the system to
switch from mode 1 to 2 in t ≤ 1 units. Applying the variant procedure on this
example, we get the following ∃∀ formula:

∃a1, a2 : ∀x, g :
(x = 1000∧ g = 90 ⇒ x+ a1g ≥ a2)∧ (A1)
(x + a1g ≥ a2 ⇒ x > 0 ∨ g ≤ 0)∧ (A3)
(x + a1g = a2 ⇒ −50 > 0 ∨ (−50 = 0 ∧−50− 10a1 < 0)∨

−50− 10a1 > 0 ∨ (−50− 10a1 = 0 ∧ −50 < 0)) (A2)

This time the solver returned a1 = −5, a2 = 50 as the solution, which gives
x − 5g ≥ 50 as the controlled invariant. So the resulting hybrid system has
x−5g ≥ 50 as the state invariant for each mode and the guards g12 = x−5g ≥ 50
and g21 = x − 5g > 50 are computed. In this case, the switch from mode 1 to
mode 2 could be delayed by as much as 10 units.

5 Synthesizing a Good Controller

In the previous section, two sound approaches were presented for solving the
switching logic synthesis problem. Neither method gives any guarantee on the
quality of the generated controller. A controller that minimally restricts the
dynamics – and consequently results in a system with a maximal reach set – is
preferable since it provides more opportunities for being refined later for other
requirements. In this section, we present heuristics that improve the quality of
solution generated by the two approaches presented in Section 4.

The size of the generated controlled invariant is a good measure of the quality
of the solution. We desire to synthesize the largest possible inductive controlled
invariant CInv because this would allow the maximal possible behaviors. It is
not immediately clear how this can be achieved in our approach. Intuitively, the
problem of finding the largest inductive controlled invariant is naturally seen
as an optimization problem, whereas in our approach of using constraints, we
are casting the problem as a satisfiability problem that asks for some solution
and not the “best” solution. We now present three different ways to address the
above problem.
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5.1 Binary Search

The first solution for finding good controllers is based on iteratively searching for
larger controlled invariants. In the first iteration, we use one of the methods from
Section 4 to compute CInv. In each subsequent iteration, we add an additional
constraint that forces search for a larger set CInv. For example, if we use the
template p(U,X) ≥ 0, and the first iteration returns the controlled invariant
p(u, X) ≥ 0, then in the next iteration we use the template p′(v,X) := p(u, X) ≥
v (containing only one parameter v) and add an additional constraint v ≤ −1.
If the second iteration is successful, then the controlled invariant generated in
the second iteration will necessarily contain the controlled invariant generated
in the first iteration. In the case when we know a lower bound on v, say lb < 0,
then we can search for the optimal v by using a binary search in the interval
[lb, 0]. This approach can be used to find the largest controlled invariant in the
set {p(u, X) ≥ v | v ∈ [lb, 0], v an integer} in O(log ‖lb‖) iterations.

5.2 Encoding Optimality Constraints Directly

We now present a different technique for capturing the optimality requirement.
It is based on adding more constraints to the ∃∀ formula. Intuitively, the new
constraints say that at least one of the implications in the ∃∀ formula is tight.

A reasonable heuristic for identifying if CInv is maximally large is to test if
the boundary of CInv touches the boundary of the unsafe set Safe. Hence, we
introduce the following additional constraint in the original ∃∀ formula:

∂CInv ∩ ∂Cl(Safe) �= ∅

This constraint can be written as an ∃ formula. Since we assume the sets CInv
and Safe are given using polynomial inequalities, the boundaries of these sets can
be expressed using polynomial equations and inequalities. The above constraint
corresponds to tightening Condition (A2).

Example 5. Consider the train gate controller from example 4. The controlled
invariant obtained by using the variant procedure on this example is x−10g ≥ 50.
Observe that this is not the largest controlled invariant possible because when
x = 0, this invariant implies g ≤ −5, whereas safety just requires g ≤ 0. If we
add an additional constraint for tightening condition A2, which in this case is
∃x1, g1 : x1 +a1g = a2∧x = 0 ⇒ g = 0, to the ∃∀ formula, we get x−10g ≥ 0 as
the controlled invariant. This is the largest controlled invariant for the template
x− 10g ≥ v.

Tightening Condition (A3). Before we describe the constraint for encoding
tightness of Condition (A3), we need a few details on the procedure we use to
solve the ∃∀ formulas from [7]. The ∃∀ formulas are solved in two steps. In the
first step, the ∀ quantifier is eliminated and replaced by new ∃ quantifiers. The
result of the first step is a purely existentially quantified formula which is solved
using SMT solvers in the second step. The first step is achieved using a variant
of Farkas Lemma – which is a technique for replacing ∀ by ∃ quantification.
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Lemma 1. It is the case that Formula (4) is implied by Formula (5).

∃U : ∀X : ((
∧
j

pj = 0) ∧ (
∧
k

qk > 0) ⇒ p ≥ 0) (4)

∃U, νj, λk, λ, µ : λk ≥ 0 ∧ λ ≥ 0 ∧ µ > 0 ∧
(∀X : (

∑
p

νjpj +
∑

k

λkqk + λ− µp = 0)) (5)

Lemma 1 can be used to eliminate the internal ∀X quantifier by noting that the
polynomial in Formula (5) is zero for all X , if and only if, all coefficients of all
power products of X in that polynomial are identically 0. We note that the term
λ in Formula (5) is a “slack” term. If Formula (5) is satisfied when λ = 0, then
we say that the implication of Formula (4) is tight.

Now consider Condition (A3) which encodes the boundary condition. In Sec-
tion 4, this condition was approximately captured in Formula (2) and For-
mula (3). Using elementary logical manipulations, we can rewrite these formulas
in the form

∃U :
∧
i

(∀X : (
∧
j

pij = 0) ∧ (
∧
k

qik > 0) ⇒ pi ≥ 0). (6)

Apply Lemma 1 to each outer conjunct and let λi be the slack term for the i-th
conjunct.

Now we are ready to state the constraint that enforces tightness on Condi-
tion (A3). This new constraint is not added to the ∃∀ formula. It is added to the
existential formula generated after the ∀ quantifiers have been eliminated using
Lemma 1. The constraint we add is the following:

φopt :=
∨
i

(λi = 0) (7)

If the existential formula, with φopt added, is satisfiable and we get a controlled
invariant p(u, X) ≥ 0, then we can show the obtained controlled invariant is the
“best possible” among the set {p(u, X) ≥ α | α ∈ R}.

Theorem 3 (Correctness). Let u be a set of values for variables U that satisfy
the existential formula φ∃ ∧ φopt , where φ∃ is the existential formula generated
from Formula (2) (or Formula (3)) using Lemma 1. Then, there is no controlled
invariant p(u, X) ≥ α for any α < 0 that also satisfies the existential formula
generated from Formula (2) (or Formula (3)) using p(u, X) ≥ α as a template.

6 Extensions and Future Work

In our presentation so far, we have restricted all discussion, for simplicity, to sim-
ple templates of the form p(U,X) ≥ 0. However, the two procedures described in
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Section 4 can be generalized to the case when the template is a boolean combi-
nation of nonstrict polynomial inequalities. When the template is a conjunction,
say p1 ≥ 0 ∧ p2 ≥ 0, then Formula (2) generalizes to

∃U∀X : (X ∈ Init⇒ p1 ≥ 0 ∧ p2 ≥ 0) ∧ (p1 ≥ 0 ∧ p2 ≥ 0 ⇒ X ∈ Safe) ∧
(p1 = 0 ∧ p2 > 0 ⇒

∨
i∈I

Lfip1 > 0) ∧ (p1 > 0 ∧ p2 = 0 ⇒
∨
i∈I

Lfip2 > 0) ∧

(p1 = 0 ∧ p2 = 0 ⇒
∨
i∈I

Lfip1 > 0 ∧ Lfip2 > 0)

When the template is a disjunction, say p1 ≥ 0 ∨ p2 ≥ 0, then Formula (2)
generalizes to

∃U∀X : (X ∈ Init⇒ p1 ≥ 0 ∨ p2 ≥ 0) ∧ (p1 ≥ 0 ∨ p2 ≥ 0 ⇒ X ∈ Safe) ∧
(p1 = 0 ∧ p2 < 0 ⇒

∨
i∈I

Lfip1 > 0) ∧ (p1 < 0 ∧ p2 = 0 ⇒
∨
i∈I

Lfip2 > 0) ∧

(p1 = 0 ∧ p2 = 0 ⇒
∨
i∈I

Lfip1 > 0 ∨ Lfip2 > 0)

We can similarly generalize Formula (3) for the case when the template is a
disjunction or conjunction of polynomial inequalities. The following example
illustrates this case.

Example 6. Consider a thermostat controller with two continuous variables tem-
perature (t) and power (p) and two modes on and off. In the on mode, the dy-
namics is ṗ = +1 ∧ ṫ = p − 10 and in the off mode, it is ṗ = −1 ∧ ṫ = p − 10.
The initial state is p = 10, t = 75 and the mode is on. The desired safety prop-
erty is 70 ≤ t ≤ 80. We start with the following conjunctive template for the
controlled invariant: a1p2 + a2p + a3t + a4 ≥ 0 ∧ b1p2 + b2p + b3t + b4 ≤ 0.
Using the generalization of Formula (3) to conjunctive templates, we get a ∃∀
formula. Solving this formula, we get a1 = −1, a2 = 20, a3 = 2, a4 = −172, b1 =
1, b2 = −20, b3 = 100, b4 = 23 as one possible solution. This gives the invariant
−(p−10)2

2 + t ≥ 72 ∧ (p−10)2

2 + t ≤ 77. The switching conditions can be obtained
from the controlled invariant by using the procedure SynthSwitchLogic. It is
easy to see that this is a safe controller. However it is not the most liberal con-
troller. If we add an additional constraint to tighten the Condition (A2) (make
the controlled invariant touch the boundary of the unsafe set), then we obtain
−(p−10)2

2 + t ≥ 70 ∧ (p−10)2

2 + t ≤ 80 as the controlled invariant. In fact, this is
the most liberal controller for this system.

The methods discussed in Section 5 can also be extended to the case of conjunc-
tive and disjunctive templates, but we do not discuss the details here.

Our basic approach can be adapted to handle natural variants of the switching
logic synthesis problem. First, note that we have assumed that each mode of the
multi-modal system has the complete state space as its given state invariant.
If the given modes have nontrivial state invariants, we can use them in our
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constraints and the synthesized controller can potentially refine them. Second,
our synthesized controller could have zeno behaviors. It appears that making
the constraints stronger (as done in Section 4) already reduces the possibility of
synthesizing zeno hybrid systems. This aspect needs further investigation.

We have a preliminary implementation of the approaches described in Sec-
tion 4, along with the optimality variants of Section 5. The input is a multi-modal
system, a safety property, and a template – all specified using only polynomi-
als – and the output is a switching logic, if it exists. This implementation was
used to solve the examples in the paper and their variants. We currently use the
technique from [7] for solving the ∃∀ constraints. Future work involves improving
this technique using a symbolic nonlinear solver. This will enable applicability to
larger and more complex examples. Our constraint-based technique relies heav-
ily on the choice of the template. We currently start with linear or quadratic
templates that have 1 to 4 conjuncts or disjuncts. It will be interesting to find
classes of systems for which a given class of templates is complete.

7 Related Work

Constraint-based techniques have been used for safety verification of hybrid sys-
tems [7, 11, 12], wherein ∃∀ constraints are generated from the user-provided
invariant templates. The various approaches differ in the form of the invariants
considered, the technique used to generate the ∃∀ formula, and the approach for
solving it. In this paper, we present a constraint-based technique for the synthesis
problem that also involves generating and solving a ∃∀ formula from template
controlled invariants. The novelty of our work lies in the formalization of in-
ductive controlled invariant approach for solving synthesis problem and showing
that it can be reduced to solving ∃∀ constraints.

There is a lot of work on synthesis of controllers for hybrid systems, which
can be broadly classified into two categories. The first category finds controllers
that meet some liveness specifications, such as synthesizing a trajectory to drive
a hybrid system from an initial state to a desired final state [8, 9]. The second
category finds controllers that meet some safety specification. Our work falls in
this category. For a detailed discussion on the related work in this category, we
refer the reader to Asarin et al. [2]. There are two main approaches for synthesis:
direct approaches that compute the controlled reachable states in the style of
solving a game [2, 13], and abstraction-based approaches that do the same,
but on an abstraction or approximation of the system [6, 10]. Some of these
approaches are limited in the kinds of continuous dynamics they can handle.
They all require some form of iterative fixpoint computation. Our work here,
based on synthesizing inductive controlled invariants, is an entirely different
approach for controller synthesis that does not require any fixpoint computation.

There is a large body of work in the area of program synthesis. These works
differ in the kind of program synthesized and the techniques used. The only
work that uses a constraint-based approach is that of Colón, who synthesizes
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imperative programs computing polynomial functions from partially specified
programs and their invariants [5].

8 Conclusion

This paper formalized the notion of inductive controlled invariants and showed
that inductive controlled invariants can be used to synthesize controllers that
satisfy some safety requirements. Theoretically, this approach is sound and com-
plete. We adapted this approach to the problem of synthesizing switching logic
for multi-modal systems. We presented several sufficient conditions for a set to be
an inductive controlled invariant set for a multi-modal dynamical system. These
sufficient conditions were used to synthesize controllers using template-based
techniques, which were then adapted to generate optimal controlled invariants.
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Abstract. Symmetry reduction is a technique to alleviate state explo-
sion in model checking by replacing a model of replicated processes with
a bisimilar quotient model. The size of the quotient depends strongly on
the set of applicable symmetries, which in many practical cases allows
only polynomial reduction. We introduce architectural symmetry, a con-
cept that exploits architectural system features to compensate for a lack
of symmetry in the system model. We show that the standard symmetry
quotient of an architecturally symmetric and well-architected model pre-
serves arbitrary Boolean combinations and nestings of reachability prop-
erties. This quotient can be exponentially smaller than the model, even
in cases where traditional symmetry reduction is nearly ineffective. Our
technique thus extends the benefits of symmetry reduction to systems that
are in fact not symmetric. Finally, we generalize our results to all architec-
turally symmetric models, including those that are not well-architected.
We illustrate our method through examples and experimental data.

1 Introduction

Symmetry is a feature of many multi-process systems that can be exploited in or-
der to alleviate state explosion in model checking. A symmetry is a permutation
of process indices that leaves the system model invariant. The idea of symmetry
reduction is to replace the model by a smaller and bisimilar quotient that con-
tains only one of the many states from the original model that are identical up
to permutations. When the set of symmetries is large, the quotient model can
be significantly smaller than the model under verification. In particular, under
full symmetry the system model is invariant under all permutations of the pro-
cess indices. This scenario is attractive for symmetry reduction as it allows an
exponential reduction in model size.

Unfortunately, a system model may not be fully symmetric even when the
system consists of replicated processes that execute the same parametrized pro-
gram. Consider, for instance, protocols that assume a ring-like communication
structure, in the style of the Dining-Philosophers resource allocation scheme.
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The fact that a process may only communicate with its neighbor to the “right”
breaks full symmetry, as neighborhood is not preserved by arbitrarily rearranging
processes. Similarly, consider the cache coherence problem in a modern multi-
core hardware design. As the number of cores continues to grow, they will likely
not be pairwise connected, but instead exhibit lean communication topologies,
permitting only few process symmetries. As a result, symmetry reduction of a
significant magnitude cannot be expected.

In this paper we address this lack of reduction by generalizing existing
symmetry-based techniques for multi-process programs. More precisely, we show
that full symmetry reduction is applicable to systems that are not fully symmetric,
provided (i) the system model is architecturally symmetric, (ii) the system model
is well-architected, and (iii) the property of interest is expressible in a rich subset of
CTL called Safety CTL. Under these conditions, which we explain below, architec-
tural symmetry reduction produces a quotient structure that is an exact abstraction
and can be exponentially smaller than the traditional symmetry quotient.

Conditions (i) through (iii) form the core of our approach. An architectural
symmetry of a structure M is a permutation of the process indices that leaves
the positive transitive closure of M ’s transition relation R invariant, i.e. M ’s
reachability relation R+. In contrast, traditional symmetry reduction requires
more strictly that R itself be invariant under permutations. A system model
is well-architected if it provides, at all reachable system states, the possibil-
ity of return to an initial state. This property is common in reactive protocols
that continuously respond to user requests, and in many non-terminating sys-
tems as a means to counter the effects of resource leaks. Finally, Safety CTL
consists of all formulas built out of Boolean connectives and CTL’s EF opera-
tor, including arbitrary nestings. We show that the standard symmetry quotient
of a well-architected and architecturally symmetric system preserves—in both
directions—Safety CTL properties. We formalize this preservation property in
the notion of safety bisimulation, a relationship between structures that allows
transitions in one system to be simulated by finite-length paths in the other and
is therefore weaker than traditional bisimulation.

In summary, the contribution of this paper is to extend a well-known and pop-
ular technique, symmetry reduction, to a class of systems that the technique was
previously considered inapplicable to. Given conditions (i) through (iii), any exist-
ing symmetry reduction technique can be applied to the model—no new reduction
algorithm is required. This makes our technique combine effortlessly with existing
tools. We finally extend our results to programs that are not well-architected: we
show that architectural symmetry alone is enough to give rise to an exponentially
smaller quotient thatpreserves—again inbothdirections—reachabilityproperties.

2 Background

2.1 Kripke Structures

We use the standard nomenclature. Let AP be a finite set of atomic propositions.
A Kripke structure is a tuple M = (S,R,L, I), where S is a finite set of states,
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R ⊆ S×S is a set of transitions (state changes) of M , L : S → 2AP is a labeling
function that assigns to each state a set of atomic propositions considered true
in that state, and finally I ⊆ S is a set of designated initial states of M . A path
in M from s to t is a sequence (pi)k

i=0 of states such that k ≥ 0, p0 = s, pk = t
and (pi, pi+1) ∈ R for all i with 0 ≤ i < k. The length of a path is the number of
transitions in it. For instance, path (pi)k

i=0 has length k. A state t is reachable
in M if there is a path in M from some initial state to t. We write R+ for the
positive transitive closure of R, i.e. R+ is the smallest set such that

1. R ⊆ R+, and
2. whenever (u, v) ∈ R+ and (v, w) ∈ R+, then also (u,w) ∈ R+.

We have (s, t) ∈ R+ exactly if there is a path inM from s to t of length at least 1.

Bisimulation. Let M1 = (S1, R1, L1, I1) and M2 = (S2, R2, L2, I2) be Kripke
structures over AP . A relation ≈⊆ S1 × S2 is a bisimulation if s1 ≈ s2 implies:

1. L1(s1) = L2(s2),
2. for every t1 ∈ S1 such that (s1, t1) ∈ R1, there exists t2 ∈ S2 such that
t1 ≈ t2 and (s2, t2) ∈ R2, and

3. for every t2 ∈ S2 such that (s2, t2) ∈ R2, there exists t1 ∈ S1 such that
t1 ≈ t2 and (s1, t1) ∈ R1.

If ≈ is a bisimulation, and for each s1 ∈ I1 there exists s2 ∈ I2 such that s1 ≈ s2,
and for each s2 ∈ I2 there exists s1 ∈ I1 such that s1 ≈ s2, then M1 and M2 are
bisimilar. Bisimilarity implies that the structures satisfy the same properties of
the temporal logic CTL. CTL is the smallest set of formulas that comprises false ,
true, the atomic propositions (AP), and is closed under Boolean connectives and
the temporal modalities EX, AX, EF, EG, EU, etc.

Canonical Quotients. Many existential abstractions are based on the forma-
tion of a canonical quotient of the given Kripke structure, as follows. Let M =
(S,R,L, I) and ≡ be an equivalence relation on S such that s ≡ t implies
L(s) = L(t), with equivalence classes written as [s]. The canonical quotient
of M is given by the structure M ′ = (S′, R′, L′, I ′) such that

S′ = { [s] : s ∈ S },
R′ = { ([s], [t]) ∈ S′ × S′ : ∃s0 ∈ [s], t0 ∈ [t] : (s0, t0) ∈ R },
L′([s]) = L(s), and
I ′ = {[s] : s ∈ I} .

The requirement that s ≡ t imply L(s) = L(t) ensures that L′ is well-defined.
As an example, let ≡L be the labeling equivalence with respect to L, i.e. the
relation on S defined by s ≡L t iff L(s) = L(t). Relation ≡L is the coarsest
equivalence relation that allows L′ to be well-defined.

2.2 Symmetry in Multi-process Systems

The term “process” is used in this paper generically for a component of a con-
current system. A state (&g, l1, . . . , ln) in such a system consists of the values &g
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of all global variables (not associated with any process) and the local state li of
each process i ∈ {1, . . . , n} (values of all local variables of process i).

Symmetries of a Kripke model M are defined with respect to permutations
(bijections) π : S → S on the state space S; we describe such permutations in
more detail in the next paragraph. We extend π to a mapping π : R→ R on the
transition level by defining π((s, t)) = (π(s), π(t)).
Definition 1. A permutation π on S is said to be a symmetry of Kripke struc-
ture M = (S,R,L, I) if

1. R is invariant under π: π(R) = R, and
2. L is invariant under π: L(s) = L(π(s)) for any s ∈ S, and
3. I is invariant under π: π(I) = I.

The symmetries ofM form a group under function composition. ModelM is said
to be symmetric if its symmetry group G is non-trivial; we speak of symmetry
with respect to G.

For an n-process system, a symmetry π is derived from a permutation on
{1, . . . , n} and acts on a state s = (&g, l1, . . . , ln) as π(s) = (&g π, lπ(1), . . . , lπ(n)).
That is, the local states of the processes are permuted by permuting their posi-
tions in the state vector. Further, π acts on &g by acting component-wise on each
global variable g. The action of π on g depends on the nature of g; we refer the
reader to [9] for details.

Exploiting symmetry. Given a group G of symmetries, the relation s ≡o t iff
∃π ∈ G : π(s) = t defines an equivalence between states and is known as the
orbit relation; the equivalence classes it entails are called orbits [5], written [s]
for s ∈ S. Observe that s ≡o t implies L(s) = L(t), since L is invariant under
permutations in G (definition 1). Let thereforeM be the canonical quotient ofM
with respect to ≡o. Quotient M turns out to be bisimilar to M [5]. As a result,
for two states s ∈ S, s ∈ S with s ∈ s and any CTL formula f over AP whose
atomic propositions are invariant under permutations in G,

M, s |= f iff M, s |= f. (1)

Depending on the size of G, M can be up to exponentially smaller than M .
For example, for full symmetry in n-process systems, all n! many permutations
of a global state with pairwise distinct local states are orbit-equivalent and can
be collapsed into a single abstract state.

3 Safety Bisimulation

The goal of this paper is to dramatically reduce the verification complexity for
certain systems with only little symmetry. The quotients that we obtain can
therefore not be expected to be bisimilar to the original system model. Instead,
we will use the following weaker notion.

Definition 2. Let M1 = (S1, R1, L1, I1) and M2 = (S2, R2, L2, I2) be Kripke
structures over AP. Relation ≈r⊆ S1×S2 is a safety bisimulation if s1 ≈r s2
implies:
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1. L1(s1) = L2(s2),
2. for every t1 ∈ S1 such that (s1, t1) ∈ R1, there exists t2 ∈ S2 such that
t1 ≈r t2 and (s2, t2) ∈ R+

2 , and
3. for every t2 ∈ S2 such that (s2, t2) ∈ R2, there exists t1 ∈ S1 such that
t1 ≈r t2 and (s1, t1) ∈ R+

1 .

If ≈r is a safety bisimulation, and for each s1 ∈ I1 there exists s2 ∈ I2 such that
s1 ≈r s2, and for each s2 ∈ I2 there exists s1 ∈ I1 such that s1 ≈r s2, then M1
and M2 are safety-bisimilar.

Safety bisimilarity is identical to bisimilarity except for the occurrences ofR+
2 and

R+
1 in conditions 2 and 3. Figure 1 shows pairs of safety-bisimilar structures that

are not bisimilar. The safety bisimulation relates states with identical labels.

C B

C

AA

B(a)

A

B C

D

D

A

B C

D

(b)

Fig. 1. Examples of safety-bisimilar structures

As with bisimilarity and CTL, there is a temporal logic that cannot distinguish
safety-bisimilar structures.

Definition 3. Safety CTL, denoted by EF-CTL, is the smallest set of formu-
las satisfying the following conditions:

base formulas: The Boolean constants false and true are EF-CTL formulas.
For P ∈ AP, P is an EF-CTL formula.

closure under Boolean connectives: If f is an EF-CTL formula, so is ¬f .
If g and h are EF-CTL formulas, so are g ∧ h, g ∨ h, etc.

closure under EF: If f is an EF-CTL formula, so is EF f .

By definition, EF-CTL is a strict subset of CTL: neither next-time nor until
operators can be expressed in (or generally translated into) EF-CTL. On the
other hand, as common in CTL we use AG f as an abbreviation for ¬EF¬f .
Thus, a CTL formula belongs to EF-CTL if any modality occurring in it is
EF or AG. For instance, consider a system with two processes i and j and the
property that it always be possible to reach a state in which the processes are
synchronized. This property, which is neither of the classical safety nor liveness
type, is expressed in EF-CTL as AG EF synch(i, j).

Since EF-CTL is a sub-logic of CTL, we can define its semantics by resorting
to CTL. We write M, s |= f to mean that the EF-CTL formula f evaluates to
true over structure M and state s, which in turn is to mean that with CTL
semantics, M, s |= f .
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We now establish the relationship between safety bisimilarity and EF-CTL:

Theorem 4. Let M1 = (S1, R1, L1, I1) and M2 = (S2, R2, L2, I2) be Kripke
structures over AP and ≈r a safety bisimulation between them. Let further s1,
s2 be states with s1 ≈r s2 and f be an EF-CTL formula. Then M1, s1 |= f
exactly if M2, s2 |= f .

Proof. We show the ⇒ direction; the inverse direction follows since the inverse
relation ≈−1

r ⊆ S2×S1 is a safety bisimulation as well. The proof is by induction
on the structure of f .

(base formulas)
The interpretations of false and true are independent of M1, s1, M2, s2.
Let f ∈ AP . From s1 ≈r s2, it follows that L1(s1) = L2(s2) and therefore
M1, s1 |= f implies f ∈ L1(s1), hence f ∈ L2(s2) and thus M2, s2 |= f .

(closure under Boolean connectives)
The result follows immediately from the induction hypothesis and the se-
mantics of ¬, ∧, ∨.

(closure under EF)
Suppose M1, s1 |= EF g. This means that there is a path p := (pi)k

i=0 in
M1 with p0 = s1 and M1, p

k |= g. We now claim that there exists a state
q ∈ S2 that is reachable from s2 and satisfies pk ≈r q. Given this claim and
M1, p

k |= g, we apply the induction hypothesis to conclude that M2, q |= g.
Since q is reachable from s2, this proves M2, s2 |= EF g.

To show the claim, we proceed by induction on k. If k = 0, then pk =
p0 = s1. Choosing q := s2 satisfies all requirements.

Assume now p has the form (pi)k+1
i=0 , and consider the prefix (pi)k

i=0 of p.
By the induction hypothesis (of the claim), there exists a state q′ ∈ S2 that
is reachable from s2 and satisfies pk ≈r q

′. Further, (pk, pk+1) ∈ R1. Since
≈r is a safety bisimulation between M1 and M2, there is a state q ∈ S2 with
(q′, q) ∈ R+

2 and pk+1 ≈r q. In particular, q is reachable from q′ and thus
reachable from s2 and satisfies all requirements of the claim. �

Figure 1 demonstrates that the addition of CTL’s next-time (X) or until (U)
operators is enough to distinguish safety-bisimilar structures. The CTL formula
EXB is true of the first structure in (a), but not of the second. Likewise, the
CTL formula E((EFC)UD) is true of the first structure in (b), but not of the
second. In contrast, the two structures in (a) satisfy the same EF-CTL formulas,
as do the two structures in (b).

4 Architectural Symmetry

We are now ready to define architectural symmetry and show that, under certain
conditions, it permits a safety-bisimilar quotient. Looking back at definition 1
(symmetry), the crucial property of a symmetric model is its invariance under
permutations. Since safety bisimilarity is weaker than bisimilarity, we can afford
a weaker invariance notion, thus capturing a larger class of systems.
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Definition 5. A permutation π on S is said to be an architectural symmetry
of the Kripke structure M = (S,R,L, I) if

1. R+ is invariant under π: π(R+) = R+,
2. L is invariant under π: for any s ∈ S, L(s) = L(π(s)), and
3. I is invariant under π: π(I) = I.

The architectural symmetries of M form a group under function composition.
StructureM is said to be architecturally symmetric if its architectural symmetry
group G is non-trivial; we speak of architectural symmetry with respect to G.

Note the difference to definition 1: in item 1, instead of requiring R to be per-
mutation invariant, we require R+ to be. Consider a finite path p between two
states s and t. Under symmetry, the permuted sequence π(p) is a valid path as
well, connecting π(s) and π(t). Under architectural symmetry, all we can say is
that π(s) and π(t) are connected in M as well, since (π(s), π(t)) ∈ π(R+) = R+.

Comparing the two types of symmetry, we confirm that architectural symme-
try is weaker than symmetry:

Lemma 6. If M is symmetric with respect to a group G, then M is architec-
turally symmetric with respect to G.

Proof. We have to show that each symmetry is an architectural symmetry. Let
π ∈ G be a permutation on S. Requirements 2 and 3 are identical in definitions 1
and 5. Regarding requirement 1, suppose π(R) = R, we show π(R+) ⊆ R+ (the
other inclusion follows with a symmetric argument; note that R+ is a finite set).

To this end, consider (s1, t1) ∈ π(R+), i.e. (s1, t1) = π((s2, t2)) for some pair
(s2, t2) ∈ R+. Let p2 be a path in M that connects s2 to t2. Each transition of
p2 belongs to R. Therefore, each transition of p1 := π(p2) belongs to π(R) = R,
so p1 is a valid path. Since p1 connects π(s2) = s1 to π(t2) = t1, it follows that
(s1, t1) ∈ R+. �

Example. In the following we demonstrate that lemma 6 can in general not
be strengthened is not an equivalence. Consider a token ring model where the
shared token regulates access to some resource. Such rings occur in hardware
models and in communication protocols. Figure 2 shows the local transition
diagram of process i. The process may be in one of the local states N , N+, T ,
T+, C; there are no global variables. Intuitively, N , T and C indicate that the
process is “not trying” to access the resource, “trying” to do so, or is “currently”
accessing it. The superscript + indicates ownership of the token. The process
can move freely between local states N and T , and also between N+ and T+.
To acquire the token, it must currently be possessed by the left neighbor, process
i − 1 (i − 1 and i + 1 are defined cyclically within the index range {1, . . . , n}),
and that neighbor must be willing to release the token. This is indicated by
the simultaneous transition N+

i−1 → Ni−1 in figure 2. Analogously, to release
the token it must be received by process i + 1, which must be ready to do so
(indicated by Ni+1 or Ti+1). Let finally

I := {(s1, . . . , sn) : ∃i : si = N+ ∧ ∀j : j �= i : sj = N}
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N+
i

T+
i

Ci

Ni

Ti

N+
i−1 → Ni−1

Ni+1 → N
+
i+1 ∨ Ti+1 → T

+
i+1

N+
i−1 → Ni−1

Fig. 2. Token ring example for resource allocation lacking full symmetry

be the set of initial states: every process is non-trying, and any one of them owns
the token.

It is easy to prove that the Kripke structureM induced by the parallel compo-
sition of n processes running the program in figure 2 enjoys rotational symmetry:
permutations of the cycle form (1 2 . . . n) leave the structure invariant. M is
not, however, fully symmetric: consider n = 3 and the transition

τ := (N+
1 , T2, T3) → (N1, T

+
2 , T3) .

Applying the transposition (1 2) to τ results in the two states (T1, N
+
2 , T3) and

(T+
1 , N2, T3). The transition from T1 to T+

1 is not allowed by figure 2 in the
context of state (T1, N

+
2 , T3). In fact, consider any permutation π such that

π(i−1)+1 �= π(i). Then π is not a symmetry ofM , by the same argument. As a
consequence, for a symmetry π the condition π(i− 1)+ 1 = π(i) is necessary for
all i, and it is also sufficient. Thus, the rotation group is the largest symmetry
group of M , and one cannot expect more than linear savings due to standard
symmetry reduction for this structure.

On the other hand, applying definition 5, we see thatM is fully architecturally
symmetric. We first show that π(R) ⊆ R+. The only interesting cases are the
transitions where process i acquires the token from its left neighbor i− 1. After
permuting such a transition, the process π(i− 1) releasing the token is generally
someone other than the left neighbor. The resulting invalid transition can be
simulated by a path that passes the token from π(i − 1) successively to that
process’ right neighbors until it eventually reaches process π(i) (some temporary
moves from T to N may be required to enable the passing of the token). To show
that π(R+) = R+, one applies this idea to each transition of a permuted path
and connects the resulting paths to a (long) final path. Also, I is invariant under
arbitrary permutations, and L can be defined to be so. In conclusion,M features
an exponential-size architectural symmetry group, but only a small polynomial-
size standard symmetry group. �
Before we demonstrate the benefits of reducing architecturally symmetric sys-
tems in the next section, we show the following property.

Lemma 7. Let M be architecturally symmetric with respect to G and Reached
be the set of reachable states of M . Then, for all π ∈ G, π(Reached ) = Reached.
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Proof. We show π(Reached ) ⊆ Reached (the other inclusion follows with a sym-
metric argument; note that Reached is a finite set). Assume π(R+) = R+, and
consider t ∈ π(Reached ), i.e. t = π(r) for some r ∈ Reached. Then there is
some initial state s ∈ I such that (s, r) ∈ R+, i.e. π(s, r) = (π(s), π(r)) =
(s′, t) ∈ π(R+) = R+, where s′ := π(s). Since, by definition 5, I is invariant
under π, it follows that s′ ∈ I. Thus, t is reachable in M (namely, from s′), i.e.
t ∈ Reached . �

5 Well-Architected Systems

Architectural symmetry alone is not yet enough to permit a safety-bisimilar
quotient. We therefore now consider models satisfying the following condition:

Definition 8. A system model M = (S,R,L, I) is well-architected if

1. M ’s initial states are all reachable from each other, and
2. for every reachable state s, there is an initial state that is reachable from s.

The possibility of returning to the initial state at any time is common in reac-
tive systems to prevent resource leaks in long-running executions, for instance
through micro-reboots [3]. Communication protocols in the IP and telephony
communities regulate the coexistence of interacting features. Each feature is a
finite-state terminating process; overall behavior is described by continuously
selecting an appropriate feature based on current input, executing the feature
to completion, issuing appropriate output and then returning to some (often the
unique) initial state.

As a concrete example, the model of the resource allocation scheme shown in
figure 2 is well-architected: first, the initial states are reachable from each other,
since the token can be passed around until it reaches which ever process requested
to have it. Second, every initial state can be reached from any reachable state
by letting each process individually return to its initial local state (N or N+);
the token may again have to be passed around to whoever held it initially.

From the definition of well-architectedness, we conclude:

Observation 9. Let M = (S,R,L, I) be well-architected and u and v be reach-
able states. Then u and v are reachable from each other.

Proof. Since M is well-architected, there is a path from u to some s ∈ I. Since
v is reachable, there is a path from some t ∈ I to v. Again since M is well-
architected, s and t are mutually reachable. Putting it all together, there is a
path from u to v. The reachability of u from v follows symmetrically. �

Architectural Symmetry Quotients of Well-Architected Systems
We now present the main result of this paper: From a well-architected and archi-
tecturally symmetric model M , one can derive a safety-bisimilar quotient struc-
ture M ′. Quotient M ′ is obtained as the canonical quotient (see section 2.1)
ofM with respect to the orbit relation ≡o on S. In other words, EF-CTL formu-
las can be verified reliably over the standard symmetry quotient, although the
underlying model is not symmetric.
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Theorem 10. Let M be well-architected and architecturally symmetric with re-
spect to G. Let further ≡o be the orbit relation on S, i.e. s ≡o t iff ∃π ∈ G :
π(s) = t. Let finally M ′ be the canonical quotient of structure M with respect
to ≡o. Then M ′ is safety-bisimilar to M .

Proof. We first remark that the labeling function of the quotient is well-defined:
Let s ≡o t. Then there exists π ∈ G such that π(s) = t. SinceM is architecturally
symmetric, L is invariant under π, which implies L(s) = L(t).

We now define a suitable relation ≡r between S and S′, namely:

s1 ≡r [s2] iff s1 ≡o s2 .

In particular, s ≡r [s] for any s ∈ S. We claim that ≡r is a safety bisimulation.
The theorem then follows, since the initial states ofM andM ′ are appropriately
related: for any s ∈ I, it is s ≡r [s] ∈ I ′. Further, for any [s] ∈ I ′, it is [s] ≡r s ∈ I.
To show the claim, let s1 ≡r [s2], hence s1 ≡o s2 and thus [s1] = [s2]. We prove
the three conditions of definition 2. We restrict our attention to the reachable
part ofM , which is commonly achieved by exploringM and building the quotient
on the fly. That is, s1 is an actually reached and, therefore, reachable state ofM .

1. By the remark above about ≡o, we obtain L(s1) = L(s2), and by the defini-
tion of M ′, L(s2) = L′([s2]). Thus L(s1) = L′([s2]).

2. Let t1 be such that (s1, t1) ∈ R. We choose t2 := t1 and consider [t2]:
It is t1 ≡r [t1] = [t2]. Further, from (s1, t1) ∈ R we conclude ([s1], [t1]) =
([s2], [t2]) ∈ R′ ⊆ R′+.

3. Let [t2] be such that ([s2], [t2]) ∈ R′. By definition of R′, there exist s ∈ [s2],
t ∈ [t2] such that (s, t) ∈ R. We conclude t ≡r [t2]. Further, from s1 ≡o s2
and s ≡o s2, we conclude s1 ≡o s. By lemma 7 and the reachability of s1,
it follows that s is also reachable in M . Therefore t is reachable in M . Since
s1 is also reachable inM , by observation 9 there is a path from s1 to t, which
implies (s1, t) ∈ R+. We now choose t1 := t to obtain t1 = t ≡r [t2] and
(s1, t1) = (s1, t) ∈ R+.

Note that well-architectedness was used only in the form of observation 9. �

We summarize this section in the following statement:

Corollary 11. M andM ′ as in theorem 10 satisfy the same EF-CTL properties.

We emphasize again that, assuming G is the full symmetry group, M ′ is ex-
ponentially smaller than M , although standard symmetry may allow only an
insignificant reduction. Note, however, that in order to apply full architectural
symmetry reduction, the EF-CTL properties of interest must have fully sym-
metric atomic propositions.

Considering again the example in figure 2, which allows only polynomial sym-
metry reduction: Since it is both well-architected and architecturally symmetric
with respect to the full symmetry group, we can apply full symmetry reduction
to it when verifying EF-CTL formulas, giving rise to an exponentially smaller
quotient. In section 7 we underpin this result with quantitative data.
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6 Generalization: Non-Well-Architected Systems

We briefly demonstrate that well-architectedness is not even required if one
restricts the set of eligible formulas further, namely to reachability properties:

Theorem 12. Let M = (S,R,L, I) be architecturally symmetric with respect to
group G, and let M ′ be the canonical quotient of M with respect to the orbit
relation. For any state s ∈ S and an atomic proposition q,

M, s |= EF q iff M ′, [s] |= EF q .

Analogously, the theorem can be stated as M, s |= AG q iff M ′, [s] |= AG q.
In other words, for architecturally symmetric systems, safety properties such
as the unreachability of an error state can be equivalently formulated over the
quotientM ′. To prove the theorem, we first show a stronger path correspondence
result. It addresses the “disconnect problem” of existential abstractions, namely
that in general a path in the abstract system may not be liftable to one in the
concrete system. It turns out that under architectural symmetry, it is.

Lemma 13. Let M and M ′ be as above and (p′i)k
i=0 be a path in M ′. Then, for

any s ∈ p′0, there is a path in M from s to some element t ∈ p′k.
Proof. By induction on k. If k = 0, choose t := s to get a path in M of length 0.
Now consider path (p′i)k+1

i=0 , and let s ∈ p′0. By the induction hypothesis, there
is a path p in M from s to some state tk ∈ p′k. Further, (p′k, p′k+1) ∈ R′

implies that there is a transition (x, y) ∈ R such that x ∈ p′k, y ∈ p′k+1. Then
x ≡o t

k, so let π ∈ G be a permutation such that π(x) = tk. By architectural
symmetry, (x, y) ∈ R ⊆ R+ = π(R+), thus (π(x), π(y)) = (tk, π(y)) ∈ R+.
Concatenating path p and the path from tk to π(y) results in a path in M from
s to tk+1 := π(y) ∈ p′k+1. �

Proof. [Theorem 12]:
“⇒”: Any path in M from s to t satisfying q can be mapped to a path in M ′

from [s] to [t]. By the definition of L′, q ∈ L(t) = L′([t]).
“⇐”: Suppose M ′, [s] |= EF q, i.e. there is a path p′ in M ′ with p′0 = [s] and

q ∈ L′(p′k) for some k. By lemma 13, since s ∈ [s] = p′0, there is a path in M
from s to some element t ∈ p′k. Thus, q ∈ L′(p′k) = L(t) by requirement 2 of
definition 5, proving M, s |= EF q. �

7 Experiments and Further Examples

In this section we present some quantitative data to support our proposed tech-
nique. We consider the token ring example from section 4 and show the difference
between model checking this system by exploiting standard symmetry, and by
exploiting architectural symmetry. We have already established that the Kripke
structure induced by the system is rotationally symmetric, and that it is also
both well-architected and architecturally symmetric with respect to the full sym-
metry group.
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Table 1. Space and time requirements for the token ring example

Rotational Symmetry Architectural Symmetry
Numb. of BDD nodes Numb. of Numb. of
processes Trans. Rel. BDD nodes

Time
BDD nodes

Time

40 1,647 46,103 0:07m 5,612 0:02m
50 2,067 70,448 0:23m 7,052 0:06m
60 2,487 99,893 0:53m 8,492 0:11m
70 2,907 134,438 1:36m 9,932 0:21m
80 3,327 174,083 2:48m 11,372 0:35m
90 3,747 218,828 4:33m 12,812 0:58m

100 4,167 268,673 6:59m 14,252 1:24m

We conducted experiments using the Sviss symbolic verifier [2], an exper-
imental platform for symmetric systems. Sviss is based on the Cudd BDD
library [16] and supports various symmetry groups, in particular the rotational
and the full group, which are relevant for our example. We ran the example on
a 2GB main memory dual-core 2.2GHz system. The property we verified is mu-
tually exclusive occupancy of the C local state. This property is satisfied on this
system, so that Sviss generates the full reachable state space (up to symmetry
reduction).

The table shows, for a growing number of processes executing the protocol,
the size of the BDD for the transition relation, the maximum number of live BDD
nodes (“Numb. of BDD nodes”) during the verification run, and the running
time. This example, although small, does impart the difference an exponential
reduction makes over a polynomial one, namely the potential to scale up to large
examples, especially regarding memory, the classical bottleneck of BDDs.

Architectural symmetry and multi-core memory consistency. With the advent
of multi-core hardware designs, pairwise connected communication topologies
will be too costly to support. Instead, hardware and software communication
topologies based on rings, tori, trees, hypercubes, and specially designed patterns
will likely abound [1]. No matter what the exact topology, it will be necessary
to ensure some form of data consistency among the various cores accessing a
shared memory segment. That is, for a particular memory location accessed by
several cores, and possibly several internal core-level caches, the values stored in
those processor locations should be consistent.

Violation of multi-core memory consistency can be stated using a formula of
the form EF(∃i, j : v(pi) �= v(pj)), expressing the reachability of a state where
two processors pi, pj have different values for a single memory location v. This
formula has fully symmetric atomic propositions, so that architectural symme-
try reduction techniques can be applied in a straightforward manner. As a con-
sequence, the property can be verified over architecturally symmetric systems
(whether well-architected or not), enjoying the same reduction as fully symmet-
ric ones, namely with an exponentially smaller quotient.
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FlexRay, Time-triggered architectures. In the automotive electronics industry,
the FlexRay consortium has been formed by major car manufacturers to design
a communication protocol for the control logic in vehicles [10]. Bus and star net-
works are supported, as well as any hybrid topology resulting from a combination
of bus and stars. Many dozens of nodes can be connected in a FlexRay network,
making full interconnection too expensive. Similar structures with little conven-
tional symmetry are supported by the time-triggered protocol, where the network
is a broadcast bus, often equipped with dual channels for fault tolerance [11].

8 Conclusion and Outlook

We have described a new notion of architectural symmetry, which extends at-
tractive benefits of symmetry reduction to many systems with little symmetry.
The result is a potential for an exponentially more effective reduction in model
size. The price we pay is an architectural requirement of well-architectedness and
a specification language with less expressive power than CTL, namely EF-CTL.
We have given examples of multi-process systems that can be fully symmetry-
reduced, although the model under verification is only rotationally symmetric.
We have finally shown that the requirement of well-architectedness can be traded
in for a restriction to reachability properties.

Relation to previous work. Symmetry reduction for model checking was intro-
duced in [5,7], and in [12] using scalarsets for fully symmetric systems. These
works demonstrate the potential of symmetry for an exponential reduction in
system size. This potential can in practice be thwarted if the symmetry is only
“approximate”: some permutations in the targeted symmetry group do not leave
the model invariant. The work of [8,6,18] generalized symmetry reduction to sys-
tems where, despite the imprecision in the symmetry, a bisimilar quotient can be
constructed. The results in [15,17] allow in principle arbitrary deviations from
symmetry, but the reduction of course dwindles with the divergence from perfect
symmetry. Our work, in contrast, deals with a different reason for limited effect
of symmetry reduction: an insignificant symmetry group. To the best of our
knowledge, our work is the first to apply symmetry reduction based on a large
(say, the full) group to a model featuring a small (say, the rotational) group.

Our notion of safety bisimulation bears some resemblance with that of weak
bisimulation [13]. The latter relates systems that are bisimilar up to externally
unobservable actions, often called τ -transitions. Our setting is in a sense lower-
level, as we do not distinguish between visible and invisible system steps and
thus do not have τ -transitions.

Unrelated to symmetry, [4] defines an implementation relation that compares
sets of executions rather than computation trees. In addition, unlike our notions
of safety simulation and bisimulation, that notion does not seem to generalize to
equivalence of structures. In particular, it does not guarantee that if an abstract
model fails to satisfy a property, then so does the concrete model.
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Future work. We plan to investigate precisely how to detect well-architectedness
and architectural symmetry. If a system model is well-architected, it is usu-
ally not so by coincidence, but by design. For such systems, suspected well-
architectedness can perhaps be verified at a high-level abstraction layer, akin
to symmetry being verified or enforced at the program text level. As a last
resort, well-architectedness can also be verified at the structure level, using a
reachability pass from I forward, resulting in a set Reached , and one from I
backward, resulting in a set Reached−1. The structure is well-architected ex-
actly if Reached ⊆ Reached−1. Contrast the cost of this check with verifying
symmetry, which is graph-isomorphism complete.

Regarding architectural symmetry, our approach to detecting it is based on the
observation sketched earlier that π(R+) = R+ iff π(R+) ⊆ R+ iff π(R) ⊆ R+.
That is, a model is architecturally symmetric exactly if every permuted transition
can be simulated by a finite-length path.

An open question is how symmetry reduction based on process counters [8,14]
can be applied to a system architecturally symmetric with respect to the full sym-
metry group. Since our approach does not require full symmetry, a translation
of the program text as described in [9] is not quite applicable.

Acknowledgments. The authors wish to thank E. Allen Emerson for his inspira-
tional comments on this work, and Georg Weissenbacher for suggesting practical
motivations and for revisions on early drafts.
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Shape-Value Abstraction for
Verifying Linearizability

Viktor Vafeiadis

Microsoft Research, Cambridge, UK

Abstract. This paper presents a novel abstraction for heap-allocated
data structures that keeps track of both their shape and their con-
tents. By combining this abstraction with thread-local analysis and rely-
guarantee reasoning, we can verify a collection of fine-grained blocking
and non-blocking concurrent algorithms for an arbitrary (unbounded)
number of threads. We prove that these algorithms are linearizable,
namely equivalent (modulo termination) to their sequential counterparts.

1 Introduction

Linearizability [1] is the standard correctness criterion for high-performance li-
braries of concurrent data structures, such as java.util.concurrent and Intel’s
TBB (thread building blocks). Linearizability is a safety property. Informally, a
library is linearizable if calling any of its exported operations appears to execute
atomically at some instant between its invocation and its return. This instant
when the entire observable effect of a method is deemed to occur is known as
the linearization point. Equivalently, a concurrent library is linearizable if every
concurrent execution consisting of calls to its exported operations is equivalent
to a sequential execution that preserves the order of non-overlapping operations.
Therefore, a linearizable library can be fully specified by its sequential interface;
any interesting concurrency is hidden inside the library.

One can easily achieve this atomicity with global lock, but concurrency experts
use multiple fine-grained locks and non-blocking instructions, such as compare
and swap (CAS), to get better performance and scalability. However, even these
experts make mistakes, and it is not unusual for published concurrent algorithms
to have subtle errors. Our aim is to provide automated verification tools to these
experts so that they can formally verify the correctness of their algorithms.

The literature contains several hand-crafted linearizability proofs [2,3,4,5],
but until recently nobody had automated the derivation of such proofs. Amit
et al. [6] used shape analysis to verify linearizability for a fixed (small) number
of threads. More recently, Manevich et al. [7] and Berdine et al. [8] extended
this analysis, so that it works for a larger (fixed) number of threads and for an
unbounded number of threads respectively. These works require a specialized
abstract domain, do not handle memory deallocation, and do not prove that the
linearization point occurred exactly once for each method call.

In contrast, we check that that the specified linearization points are sound,
and we allow complex linearization points that occur in a different thread than
the one being verified.

N.D. Jones and M. Müller-Olm (Eds.): VMCAI 2009, LNCS 5403, pp. 335–348, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Our prototype implementation is based on RGSep [9], a program logic that
combines rely-guarantee [10] and separation logic [11]. As a result, it deals with
an unbounded number of threads, can reason about memory deallocation, which
affects linearizability in subtle ways (see Sect. 2), and can prove the absence of
memory leaks (where applicable).

Main Results. The contributions of this paper are summarised below:

– We present a simple proof method for verifying linearizability given a spec-
ified set of linearization points (see Sect. 3). Our method can handle lin-
earization points occuring in a different thread than the one being verified.

– Our shape analysis can remember an adjustable amount of information about
the values stored in a data structure (see Sect. 4). The amount of information
can be adjusted by selecting a different backend value abstraction.

– We replace the complex RGSep atomic proof rule with two rules, thereby
simplifying the presentation and enabling concise actions specifications for
operations such as CAS (see Sect. 5).

– Our tool compares favourably to the other known tools, and succeeded in
proving that several concurrent algorithms are linearizable (see Sect. 6).

Limitations. (1) We assume a sequentially consistent memory model; this means
that parallel composition can be understood as trace interleaving. (2) The pro-
gram must be accurately analysable by (sequential) shape analysis: this currently
restricts our analysis to programs operating on linked lists. (3) The programmer
must annotate the locations of the linearization points. (4) The programmer
must describe the interference imposed by the module.

2 A Simple Example: Treiber’s Stack

Figure 1 contains C-like pseudocode for Treiber’s stack [12], one of the simplest
non-blocking concurrent algorithms. The stack is represented as a singly linked
list rooted at S->Top, which is updated using CAS (compare and swap). CAS is
a primitive operation that reads a word from a memory adress and conditionally
writes to the same address in one atomic step. In particular, CAS(&S->Top,t,x)
atomically compares the value of S->Topwith the value of t and if the two match,
the CAS succeeds: it stores the value of x in S->Top and returns 1. Otherwise,
the CAS fails: it returns 0 and does not change the value of S->Top.

This algorithm leaks memory: we cannot free popped nodes because of the
following scenario. Assume the stack initially consists of the nodes α and β.
First, thread T calls pop, executes lines 21–25 and is then descheduled. At this
point, T ’s local state is t = α and x = β. Now, suppose some other thread comes
along and pops α off the stack and then pushes γ onto the stack. If pop were to
dispose node α, it is possible for a new node to be allocated at the same address
α and pushed on the stack. Hence, the stack can reach a configuration consisting
of the nodes α, γ, and β. If T is rescheduled at this point, the CAS at line 26
will succeed, but will remove two nodes from the stack instead of one. This is
known as the ‘ABA’ problem in the literature.
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struct node {
struct node *next;

value t data;

};

struct stack {
struct node *Top;

};

struct stack *S;

void init() {
S = alloc();

S->Top = NULL;

/* ABS->val = ε; */

}

[10] void push(value t v) { struct node *t, *x;

[11] x = alloc();

[12] x->data = v;

[13] do {
[14] t = S->Top;

[15] x->next = t;

[16] } while (¬CAS(&S->Top,t,x)); // @1

[17] }

[20] value t pop() { struct node *t, *x;

[21] do {
[22] t = S->Top; // @2

[23] if (t == NULL)

[24] return EMPTY;

[25] x = t->next;

[26] } while (¬CAS(&S->Top,t,x)); // @3

[27] return t->data;

[28] }

Fig. 1. Treiber’s non-blocking stack algorithm

Linearization Points. The linearization points are annotated with comments at
the right-hand side. All of them are conditional: @1 and @3 are linearization
points if and only if the respective CAS succeeds; @2 is a linearization point if
and only if the value stored to t is NULL. (@2 is the linearization point of a failed
pop operation: at this point we know that the stack is empty.) To carry out the
verification, we expect the programmer to annotate these points with auxiliary
code asserting that they are linearization points.

Actions. In order to verify the given algorithm, we also require the user to
specify a set of precondition-postcondition pairs (a.k.a. actions) that summarize
the possible atomic effects of the algorithm. For Treiber’s stack, we need:

action APush() [S�→Top:n ∗ ABS�→val:A]

[S�→Top:y ∗ y �→data:e,next:n ∗ ABS�→val:〈e〉·A]

action APop() [S�→Top:y ∗ y �→data:e,next:n ∗ ABS�→val:〈e〉·A]

[S�→Top:n ∗ y �→data:e,next:n ∗ ABS�→val:A]

These actions use separation logic notation1 and (ignoring the ABS part) describe
the effect of a successful CAS at lines 16 and 26 respectively. The italicized
variables (e.g. n) are logical variables and are implicitly quantified over both
assertions of an action. The other lines, as well as failed CASes do not change
any state visible to other threads.

ABS is an auxiliary variable representing the abstract stack that the algorithm
supposedly implements. This is formalized as a mathematical sequence. We write
1 S�→Top:n denotes that S is a pointer to a structure whose Top field contains n. The
∗ operator is similar to conjunction, but P ∗ Q also asserts that P and Q describe
disjoint parts of the memory.
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ε for the empty sequence, 〈e〉 for the singleton sequence consisting of e, and · for
sequence concatenation. Action APush adds e to the beginning of the abstract
stack. Conversely, APop removes e from the beginning of the abstract stack. If
we initialise ABS->val to ε in the constructor init(), our tool is able to infer
the following invariant:

J
def= ∃nv. S &→Top:n ∗ lseg(n, NULL, v) ∗ ABS&→val:v,

which says that the concrete singly linked list represents the same value as is stored
in the auxiliary variable ABS. (The predicate lseg(n, NULL, v) asserts that there is
a singly list segment starting from n and ending with NULL that represents the
sequence value v.) This invariant, also known as the abstraction map, is crucial
for the linearizability proof, and is used as the precondition of push and pop.

3 Verifying Linearizability

Proving linearizability can be reduced to proving that one transition system
simulates another transition system (e.g. [2,4]). The reduction is straightforward,
but expensive: it converts a difficult problem into an even harder problem. Proofs
done this way have involved significant human labour, especially in constructing
the appropriate simulation relations between the two automata. In one case,
Colvin et al. [4] even had to invent an intermediate automaton and construct
two simulation relations.

Instead, we employ a simpler –but equally general– proof technique based
on auxiliary code annotations. We assume that the programmer knows the lin-
earization point of each method and he annotates this point in the source code.
For simple algorithms, such as Treiber’s stack, this task is straightforward and
could perhaps be automated. More complicated algorithms generally require
more annotations, but these are still manageable and, in any case, simpler than
the corresponding simulation relations. For such examples, see [13, Chapter 5].

In order to prove that a method is linearizable, we need a specification describ-
ing the intended atomic effect of the method. In our examples, this specification
is supplied by the user. If, however, the user does not provide such a specification
explicitly, we can extract it from the code itself: we just symbolically execute the
code in an isolated (sequential) environment. Usually this simplifies the source
code quite dramatically. For example, the two CASes in Fig. 1 always succeed in
an isolated environment.

Hence, we can assume that the concrete program is annotated with its lineariza-
tion points and its specification given as abstract code. To verify linearizability:
we infer an abstraction map, J ; we inline the specification at the annotated lin-
earization points; and check the following four properties:

1. J is an invariant of the system: the concrete and the abstract data structures
are always related by J .

We satisfy this property by construction. When inferring J , we start with
the inferred postcondition of the constructor init() and do a fixpoint calcu-
lation to compute a weaker assertion that is stable under interference from
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the given actions. This fixpoint calculation is also known as stabilization.
For more details about how stabilization is done, see [14]. As the actions
soundly overapproximate the system, this implies that the inferred assertion
is an invariant of the system.

2. In every trace representing the execution (whether terminating or not) of a
method, there is at most one linearization point of that method call.

3. Every terminating execution trace of a method has at least one linearization
point.

4. Whenever a method terminates, it returns the same result as the specification
embedded at the linearization point.

Putting (2) and (3) together means that terminating executions must have
exactly one linearization point. In cases where the abstract code specifying a
method has no side-effects (e.g. when pop returns EMPTY), we can drop condition
(2). Dropping (2) typically reduces the annotation overhead for read-only meth-
ods because we do not need to ensure that the abstract effect of the method was
executed exactly once.

Checking conditions (2) and (3) may seem trivial for Treiber’s stack, but can
be quite difficult in general because the linearization point along some execution
paths of a method may be within code performed by another concurrently exe-
cuting thread. This case arises frequently in methods that have no side-effects,
and in algorithms that use ‘helping.’

We verify conditions (2), (3), and (4) with a simple intentional encoding.
For each method call, we create an auxiliary descriptor record with one field
containing the name of the method, one field for each argument of the method,
and one additional field, ABS RESULT, which is assigned at the linearization point.
At the beginning of each method, we add auxiliary code that allocates a new
such record in the heap and initializes its fields. To check that the linearization
point happens at most once, we initialize ABS RESULT with a certain reserved
value UNDEF. At the linearization points we check that ABS RESULT still contains
this special value and update it with the result of the abstract operation. At
the method’s return point, we check that the value returned is the same as
the one stored in ABS RESULT (and different than UNDEF). This ensures that the
linearization point occurred exactly once.

As the auxiliary record is stored in the heap, it can be shared, and hence,
a different thread can execute the auxiliary code that updates the ABS RESULT
field. Thus, we are able to handle methods whose linearization points along some
executions are in a different thread.

Our use of the reserved value UNDEF encodes whether the linearization point
has occurred or not. Alternatively, the same information can be recorded by a
boolean variable. Gao et al. [3] instead keep a counter initially set to 0, incre-
mented at each linearization point, and prove that it contains 1 at the end of
the method. Besides using more state than necessary, their approach does not
imply property (2) for non-terminating executions.
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4 Shape-Value Abstraction

Most shape analyses abstract away the values stored in the data structures.
This renders them practically useless for proving linearizability because the cru-
cial invariant needed in order to prove linearizability is that the concrete data
structure represents the same value as the abstract state.

A possible solution to this problem is to develop a specialized abstract domain
that can express this invariant. This approach was followed by Amit et al. [6],
who presented an abstract domain tracking graph isomorphism. Here, we will
consider a different, possibly more general, solution.

Our abstraction follows a two step approach. First we abstract the shapes
of the data structures, and then we abstract the values stored in those data
structures. These two steps are independent to each other, and hence we can
combine any suitable shape abstraction with any suitable value abstraction.
Formally, our abstraction function is the composition of two abstractions:

αtotal = αvalue ◦ αshape

The function αshape handles shape-related issues, whereas the function αvalue

handles value-related issues. Correspondingly, the concretization function is the
composition of the two corresponding concretization functions:

γtotal = γshape ◦ γvalue

This setup simplifies proving correctness of the analysis: we can prove separately
that the two abstraction functions are correct.

In the following, the abstract domains are just subsets of the concrete domain;
hence, the γ-functions are the corresponding inclusion (i.e. the identity) functions.

4.1 Shape Abstraction

Given a shape analysis based on separation logic, deriving the shape abstrac-
tion (αshape) is straightforward. The shape analysis’s abstraction function can be
decomposed in two more primitive functions: one that abstracts shape informa-
tion, but treats values precisely, and a second one that abstracts all value-related
information.

We proceed with a concrete example. We derive a value-remembering shape ab-
straction from the shape analysis of Distefano et al. [15]. Distefano’s analysis is
based on separation logic, and handles singly linked data structures. Their abstract
domain is a subset of separation logic assertions that includes ∗-conjunction, dis-
junction, &→, emp, junk, lseg, equalities anddisequalities. The assertion empdenotes
the empty heap (in which nothing is allocated); junk is true for any heap, whether
empty or consisting of some allocated nodes. Finally, the predicate lseg(x, y) de-
notes a singly linked list segment starting at addressx and ending at y. For technical
reasons (see [14] for details), we prefer a slightly different version of the list segment
predicate, whose inductive definition is given below:

lseg(x, y) def= (x = y ∧ emp) ∨ (∃bz. Node(x, z, b) ∗ lseg(z, y))

where Node(x, y, v) def= x &→ {.next = y, .data = v}.
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Node(y, z, b) =⇒ junk
Node(x, y, a) ∗ Node(y, z, b) =⇒ lsegnew(x, z, 〈a〉·〈b〉)

lsegnew(x, y, a) ∗ Node(y, z, b) =⇒ lsegnew(x, z, a·〈b〉)
lsegnew(y, z, b) =⇒ junk

Node(x, y, a) ∗ lsegnew(y, z, b) =⇒ lsegnew(x, z, 〈a〉·b)
lsegnew(x, y, a) ∗ lsegnew(y, z, b) =⇒ lsegnew(x, z, a·b)

Fig. 2. Shape abstraction rules

We can extend the list segment predicate with an additional argument record-
ing the sequence of values represented by the list.

lsegnew(x, y, a) def= (x = y ∧ a = ε ∧ emp)
∨ ∃bcz. a = 〈b〉·c ∗ Node(x, z, b) ∗ lsegnew(z, y, c)

Distefano’s abstraction function consists of applying a set of rewrite rules as
much as possible. Each rewrite rule is a valid separation logic implication, and
eliminates one existentially quantified variable from the input assertion. This
ensures that the abstraction function is sound and always terminates. Distefano
also proves that his abstract domain is finite; hence, fixpoints in the abstract
domain converge.

Our abstraction has the same structure, but we have modified the rewrite rules
to record value-related information accurately (see Fig. 2). For example, our last
rule is a direct adaptation of Distefano’s rule for merging two list segments:

lseg(x, y) ∗ lseg(y, z) =⇒ lseg(x, z).

Abstraction applies these rules aggressively whenever y is an existentially quan-
tified variable that does not appear in the rest of the formula. Abstraction is
sound, because each rewrite rule is a valid separation logic implication.

In essence, we have decomposed Distefano’s abstraction function αDistefano

into two steps, αDistefano = αforget values ◦ αshape, where αforget values maps every
lsegnew(x, y, v) into lseg(x, y). Shape-value abstraction will keep the αshape part,
but replace the αforget values function with something more appropriate.

4.2 Value Abstraction

Now we turn to the abstraction of values appearing in a formula. Recall that the
basic invariant in a linearizability proof is that two data structures represent the
same value. Therefore, we want an abstraction that remembers some correlations
between equal values. To be concrete, consider we want to abstract the values
in the following assertion:

lseg(k, 0, b·c·d·e) ∗ lseg(l, 0, a·b) ∗ lseg(m, 0, a·b) ∗ lseg(n, 0, e).

There are three natural choices as to what abstraction should do:
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A. Keep track of the equalities between top-level expressions (such as a·b):

∃uvw. lseg(k, 0, u) ∗ lseg(l, 0, v) ∗ lseg(m, 0, v) ∗ lseg(n, 0, w)

B. Also keep track of the correlations between a top-level expression and subex-
pressions of another expression (such as e).

∃uvw. lseg(k, 0, u·w) ∗ lseg(l, 0, v) ∗ lseg(m, 0, v) ∗ lseg(n, 0, w)

C. Also keep track between any two subexpressions (such as b).

∃tuvw. lseg(k, 0, u·v·w) ∗ lseg(l, 0, t·u) ∗ lseg(m, 0, t·u) ∗ lseg(n, 0, w)

It turns out that choice A is too weak for linearizability proofs, and that we need
one of the other two choices. In particular, choice A can prove the linearizability
of push, but not of pop. In the proof outline of pop, one of the disjuncts of the
assertion between lines 15 and 16 of pop is

∃αβ. S&→Top:t ∗ t&→data:α,next:x ∗ lseg(x, 0, β) ∗ ABS&→val:〈α〉·β

In this case, the first choice would forget the correlation between the value be-
tween the concrete data structure and ABS->val, which would make it impossible
to prove that the concrete pop returns the same result as the abstract pop.

In our example programs, choice B was sufficient for proving linearizability.
Choice C also works, but as it distinguishes more abstract states, it is potentially
slower. A benefit of choice C is that it is more robust against more aggressive
shape abstractions. Considering syntactic subexpressions is not sufficient, but
one has to take the properties (such as associativity and commutativity) of the
value constructors into account.

Our general approach for performing value abstraction works as follows. First,
we collect the set T of all values appearing in the formula. From that set, we
deduce a set of values, S, that we will ‘forget’ (i.e. existentially quantify over).
For each value vi in S, we introduce a fresh existentially quantified variable xi,
and we (back-)substitute xi for vi in the assertion. This abstraction is sound
irrespective of S, because P (v1, . . . , vn) =⇒ ∃x1, . . . , xn. P (x1, . . . , xn).

The way we select S is crucial for the precision of the analysis. To get choice
A, simply choose S = T . To get the other two choices, more work is necessary.
Below, we consider this additional work for two kinds of values: (i) sets and
multisets, and (ii) strings/sequences.

Sets & Multisets. Consider expressions denoting sets or multisets constructed us-
ing the operations: empty set/multiset, singleton set/multiset, and set/multiset
union. (We shall ignore intersection and difference operators.) To take care of the
associativity and commutativity of ∪, we represent set expressions canonically
as a union of a set of expressions and we have a special constructor for singleton
sets. For example, the set expression {1, 2} ∪ (x ∪ y) would be represented as
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{singleton(1), singleton(2), x, y}. Then, in order to get choice C, we compute the
set S of set expressions according to the following algorithm:

S := T \ {∅};
while ∃x, y ∈ S. x �= y ∧ x ∩ y �= ∅ do
S := (S \ {x, y}) ∪ ({x \ y, x ∩ y, y \ x} \ {∅})

We start with T , the set of all (set) values appearing in the formula. In the loop,
while there exist overlapping sets in S, we remove them from S and add the
three partitions. At the end, all the elements S will be disjoint, and any element
of T denoting a set will be expressible as a union of elements in S. Notice that
these rewrites are confluent: the choice of x and y at each loop iteration does
not affect the final result.

Here is our algorithm as applied to a small example:

Initial configuration: {1, 2, 3}, {1, 4, 5}, {2, 3, 6}.
Choosing x = {1, 2, 3} and y = {1, 4, 5} yields {1}, {2, 3}, {4, 5}, {2, 3, 6}.
Choosing x = {2, 3} and y = {2, 3, 6} yields {1}, {2, 3}, {4, 5}, {6}.
No further loop iterations are possible.

To get choice B, we also require that either x ⊆ y or y ⊆ x.

Sequences. Sequences are strings over the alphabet of expressions. They are
built out of three operations: the empty sequence (ε), the singleton sequence
(which we write 〈x〉) and concatenation (denoted x·y). Analogously to sets, the
analysis represents sequence expressions as a sequence of expressions that are
concatenated together. To get choice C, we compute S as follows:

S := T \ {ε};

while
(
∃x ∈ S, y ∈ S. ∃z, x1, x2, y1, y2.

x �= y ∧ z �= ε ∧ x = x1·z·x2 ∧ y = y1·z·y2

)
do

S := (S \ {x, y}) ∪ ({x1, x2, y1, y2, z} \ {ε})

We start with T , the set of all values in the formula. In the loop, while there
exists a non-empty common subsequence (z) in two elements of S, we remove
those elements from S, and replace them with the partitions x1, x2, y1, y2, and
z. To get choice B, we also require that either x � y or y � x, where x � y holds
if and only if there exist w1 and w2 such that y = w1·x·w2. Equivalently, to get
choice B, we require that either x1 = x2 = ε or y1 = y2 = ε.

Unlike the set/multiset algorithm, different instantiations of the existential
variables can lead to different final results. This is problematic because some
results are better than others (we want to minimize the cardinality of the final S
so that we do not accidentally miss any abstraction opportunites). Fortunately,
a simple condition ensures that the best result is found: the z selected must be a
(local) maximum. Formally, for all z′, if z � z′, then z′ �� x or z′ �� y. Ensuring
this condition is an easy programming task.
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5 Extensions to RGSep

We have implemented our abstraction function in a static analyzer based on
RGSep [13,14]. In this section, we will briefly go over the key concepts of RGSep,
and show how we modified its atomic rule to deal with instructions such as CAS.

In RGSep, the state of the program is logically divided into a static number
of (disjoint) partitions, which are called regions. Each thread of the system owns
one region for its local data, and there are also regions containing data that is
shared among threads.

The program logic permits each thread to access local state directly, and
restricts shared state accesses to use some form of synchronisation (e.g. mutexes,
atomic reads, CAS). At synchronisation points, the thread can re-adjust the
boundaries between local and shared state. Whenever a thread modifies the
shared state (or the partitioning of the shared state), the logic ensures that the
correctness of the other threads is resistant to the modification. This is achieved
with rely/guarantee reasoning.

In particular, the concurrent behaviour of each thread is abstracted by a set
of precondition-postcondition pairs, known as actions. These actions summarise
what modifications the atomic statements of a thread can perfom on the shared
state.

For each atomic statement of a thread, Calcagno et al. [14] check that there
is an action abstracting its entire effect. This is sufficient if all the atomic blocks
consist of a single memory access, but is awkward for larger atomic statements
such as CAS. CAS has a conditional effect: if it reads the expected value, then it
modifies the state; else it does nothing. We can write an action that captures this
complex effect, but it will be quite complex itself. For instance, the Apush action
from Sect. 2 would have to use a postcondition with a disjunction, encoding the
two possibilities of the CAS:

x==0 ∗ S�→Top:y ∗ y �→data:e,next:n ∗ ABS�→val:〈e〉·A
|| x!=0 ∗ S�→Top:n ∗ ABS�→val:A

Not only is the action unnecessarily long (and therefore difficult to specify or to
infer), but it also slows down stabilization. Stabilization is an expensive compu-
tation that is executed after the symbolic execution of every atomic command.
Given an assertion, it does a fixpoint calculation to compute a weaker asser-
tion that it stable under the set of given actions. Its execution time is roughly
proportional to the size of the action definitions.

Instead we allow actions to specify parts of an atomic statement. For example,
the actions of Section 2 describe only the effects of successful CASes. We change
the input language of Calcagno et al. [14] by dropping action annotations from
atomic statements and adding a new form of statement for action annotation
(the ‘do...as’ block). We impose a syntactic restriction that these ‘do...as’
blocks can appear only inside atomic blocks.

In the proof rules below, the judgement {P0 | P1} C {Q0 | Q1} says that the
program C has local precondition P0, shared precondition P1 local postcondition
Q0 and shared postcondition Q1. (In reality, we have an indexed family of shared
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preconditions and shared postconditions, but we will describe our rules as if
there was only one for simplicity.) Symbolic execution takes P0, P1, and C as
arguments and computes (strongest)Q0 andQ1. Normally, commands can access
only the local state P0. As an exception, memory reads inside an atomic block
can also access the shared state:

{P | e &→ field:e′ ∗Q} x = e->field; {x = e′ ∗ P | e &→ field:e′ ∗Q}

Unlike Calcagno et al., our symbolic execution does nothing at entries to atomic
blocks. At exits, it computes a weaker shared postcondition that is resistant to
interference from other threads.

{P0 | P1} C {Q0 | Q1}
{P0 | P1} atomic C {Q0 | stabilize(Q1)}

When symbolic execution encounters an action annotation, it has more work to
do. At the beginning of the block, it removes the precondition P of the action
from the shared state, and adds it to the local state. Correspondingly, at the end
of the block it removes the postcondition Q of the action from the local state
and adds it to the shared state.

{P0 ∗ P | P2} C {Q0 ∗Q | Q2}
{P0 | P ∗ P2} do C asP�Q {Q0 | Q ∗Q2}

This ensures that the annotated action accounts for any change that C makes
to the shared state. Therefore, as the shared state can be changed only within
do...as blocks, the set of annotated actions covers every possible shared state
change that the program can make.

Experience suggests that writing these action annotations is straightforward
and that the process of figuring out the correct actions has a very local, syntactic
nature. It is possible that in many simple cases these annotations can be inferred
automatically, but we have not investigated this possibility yet.

6 Evaluation

Table 1 presents our experimental results. We verify a number of concurrent
algorithms from the literature.

The first four algorithms do not leak memory. The DCAS stack is similar to
Treiber’s stack (presented in Section 2), but pop uses a double compare-and-swap
instruction instead of a single CAS. The two-slot buffer is an obstruction-free im-
plementation of an atomic register with a single reader and a single writer. The
two-lock queue is due to Michael and Scott [16] and uses two locks: one for protect-
ing the head of the list, and one for the tail of the list. The lock-coupling list [5]
represents a set of integers as a sorted linked list with one lock per node. When
traversing the list, locks are acquired in a hand-over-hand fashion. The available
operations are single element addition, removal, and test of membership. As we
have not implemented an abstraction for sorted lists, we currently verify that when
these operations succeed, they are the correct multiset operations.
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Table 1. Verification times for a collection of concurrent algorithms

Data structure Shape analysis Linearizability Berdine et al. [8]
DCAS stack 0.2s 0.2s –
Two-slot buffer 0.4s 1.2s –
Two-lock queue [16] 0.5s 0.6s 17s
Lock-coupling list [5] 0.3s 0.5s –
Treiber stack [12] 0.2s 0.3s 7s
Non-blocking queue [16] 2.6s 5.1s –
Non-blocking queue [2] 2.6s 4.8s 252s
RDCSS [17] 1.6s 87.7s –

The next four algorithms have memory leaks and depend on a garbage col-
lector for correctness. Treiber’s stack was presented in Sect. 2. The first non-
blocking queue algorithm is the well-known Michael and Scott’s queue [16]. The
second non-blocking queue algorithm is a slight variation which was verified by
Doherty et al. [2]. Finally, RDCSS [17] is a lock-free implementation of restricted
double-compare single-swap primitive. Proving linearizability of RDCSS is chal-
lenging because some of its linearization points are executed by different threads,
and specifying them requires an auxiliary prophecy variable.

Each column records verification time in seconds. Our tests were conducted on
a 3.4GHz Pentium 4 processor running Windows Vista. In all cases, memory con-
sumption was under 5 megabytes. The first column measures the time required
by the underlying shape analysis. This infers the shape of the data structures
used in the heap and checks that there are no memory errors (e.g. null pointer
dereferences). For the first four algorithms, it also checks that there are also no
memory leaks. The second column measures the total time required to prove lin-
earizability using the techniques described in this paper. The difference between
these two columns represents the additional amount of work that is needed in
order to prove linearizability.

Finally, the last column displays the results of Berdine et al. [8]. Comparison
with this work is purely indicative; direct comparison is unfair because the tools
are quite different. We used the same shape abstraction for all the examples, but
require actions to be annotated. In contrast, Berdine et al. do not require any
action annotations, but use slightly different abstractions for each algorithm and
require an user-supplied heap decomposition.

We have also performed tests where we inserted errors in the algorithms. In
all these cases, our tool failed to prove linearizability.

7 Related Work

Automatic Verification. Wang and Stoller [18] present a static analysis that veri-
fies linearizability for an unbounded number of threads. Their analysis essentially
detects certain coding patterns, which are known to be atomic irrespective of
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the environment. Algorithms such as Michael and Scott’s non-blocking queue
that do not follow these coding patterns have to be rewritten.

Amit et al. [6] presented a shape difference abstraction that tracks the differ-
ence between two heaps. This approach works well if the concrete heap and the
abstract heap have almost identical shapes during the entire algorithm. If, how-
ever, we are verifying a concurrent tree algorithm that rebalances the tree every
so often, then the concrete heap and the abstract heap may differ dramatically
regarding their shape, but not the values stored. In such cases, any abstraction
requiring that the two heaps are isomorphic will fail completely. More recently,
Manevich et al. [7] and Berdine et al. [8] have presented some improvements to
this analysis, which are orthogonal to the task of verifying linearizability.

Finally, Yahav and Sagiv [19] and Calcagno et al. [14] use shape analysis to
check simple safety properties of list-based concurrent algorithms, but cannot
verify linearizability.

Semi-automatic Verification. In [2,3,4], the PVS theorem prover was used to
check hand-crafted linearizability proofs. These papers prove linearizability using
different techniques than the one used here. See Sect. 3 for details.

8 Conclusion

We have demonstrated that RGSep and shape-value abstraction enable effective
automatic linearizability proofs. The examples verified are typical of the research
literature 5–10 years ago. The techniques can also cope with more complex al-
gorithms, but the shape analyses must be powerful enough to describe the data
structures used in the algorithms. As shape analyses based on separation logic
are relatively new, they are still restricted to linked-list data structures.

We believe that both further instances of shape-value abstraction as well as
the presented value abstractions apply equally to other verification problems,
but we have not investigated this possibility yet.

In the future, we plan to improve the underlying shape analyses to handle
other kinds of data structures such as arrays, and to attempt to infer the neces-
sary action annotations automatically.

Acknowledgments. We would like to thank Alan Mycroft, Hongseok Yang
and the anonymous referees for providing helpful feedback on earlier drafts of
this work.
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Abstract. Partial models support abstract model-checking of complex temporal
properties by combining both over- and under-approximating abstractions into a
single model. Over the years, three families of such modeling formalisms have
emerged, represented by Kripke Modal Transition Systems (KMTSs), with restric-
tions on necessary and possible behaviors, Mixed Transition Systems (MixTSs),
with relaxation on these restrictions, and Generalized Kripke MTSs (GKMTSs),
with hyper-transitions, respectively. In this paper, we compare the three fami-
lies w.r.t. their expressive power (i.e., what can be modeled, what abstraction
can be captured), and the cost and precision of model-checking. We show that
these families have the same expressive power (but do differ in succinctness),
whereas GKMTSs are more precise (i.e, can establish more properties) for model-
checking than the other two families. However, the use of GKMTSs in practice has
been hampered by the difficulty of encoding them symbolically. We address this
problem by developing a new semantics for temporal logic of partial models that
makes the MixTS family as precise for model-checking as the GKMTS family.
The outcome is a symbolic model-checking algorithm that combines the efficient
symbolic encoding of MixTSs with the model-checking precision of GKMTSs.
Our preliminary experiments indicate that the new algorithm is a good match for
predicate-abstraction-based model-checkers.

1 Introduction

Abstraction is the key to scaling model-checking to industrial-sized problems. Typi-
cally, a large (or infinite) concrete system is approximated by a smaller abstract system
via abstracting the concrete states, analyzing the resulting abstract system, and lifting
the result back to the concrete system. Two common abstraction schemes are over-
approximation – the abstract system contains more behaviours than the concrete one
and is sound for universal properties (e.g., absence of errors), and under-approximation
– the abstract system contains less behaviours than the concrete one and is sound
for existential properties (e.g., presence of errors). Abstractions that are sound for
arbitrary properties such as full µ-calculus Lµ [14], must combine over- and under-
approximation into a single model [4, 15]. This can be done by using a model with
two types of transitions, may and must, representing possible (or over-approximating),
and necessary (or under-approximating) behaviours, respectively. We call such mod-
els partial. Temporal properties over partial models are interpreted using the 3-valued
semantics: a property can be either true, false, or unknown.

Existing partial modeling formalisms are divided into three separate families. The
first is Kripke Modal Transition Systems (KMTSs) [13] and their equivalent variants,
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Modal TSs [15], Partial Kripke Structures (PKSs) [1], and 3-valued KSs [2]. KMTSs
require that every must transition is also a may transition. They were introduced as com-
putational models for partial specifications of reactive systems [15] and then adapted
for model-checking [1, 2, 13]. The second is Mixed Transition Systems (MixTSs) [4],
and equivalently, Belnap TSs [11]. MixTSs extend KMTSs by allowing must only
transitions (i.e., transitions that are must but not may). MixTSs were introduced in [4]
as abstract models for Lµ, and have been used for predicate abstraction and software
model-checking in [10]. The third is Generalized KMTSs (GKMTSs) [19], and
equivalently, Abstract TSs [6] and Disjunctive MTSs [16]. GKMTSs extend MixTSs by
allowing must hyper-transitions, (i.e., transitions into sets of states).

In this paper, we compare the three families w.r.t. their suitability as the “right”
formalism for symbolic model-checking of partial models. Our basis of comparison is
(i) the expressive power of the formalisms (i.e., what can be modeled, what abstraction
can be captured), and (ii) analyzability of the formalisms (i.e., the cost and precision of
model-checking).

Expressive Power. We show that MixTSs, KMTSs and GKMTSs are equally expres-
sive: for any partial modelM expressed in one formalism, there exists a partial model
M ′ in the other s.t. M and M ′ approximate the same set of concrete systems. That
is, neither hyper-transitions nor restrictions on may and must transitions affect expres-
siveness. They do, however, affect the size of the models: GKMTSs and KMTSs can
be converted to semantically equivalent MixTSs of (possibly exponentially) smaller or
equal size. Dams and Namjoshi have shown that all of the above partial models are less
expressive than tree automata [5]. We complete the picture by showing the expressive
equivalence between those formalisms.

Model Checking. We call a semantics of temporal logic inductive if it is defined induc-
tively on the syntax of the logic. We refer to the typical inductive semantics of Lµ on
partial models as standard inductive semantics (SIS). This is the semantics most widely
used in practice. A GKMTS G can prove/disprove more properties under SIS than ei-
ther a corresponding MixTSM or KMTSK obtained fromG by semantics-preserving
translations. However, while both MixTSs and KMTSs have been used in practical sym-
bolic model-checkers (e.g., [2, 10, 12]), the direct use of GKMTSs has been hampered
by the difficulty of encoding hyper-transitions into BDDs. To address this problem, we
develop a new semantics, called reduced (RIS), that is inductive (and tractable) but is
more precise than SIS. We show that GKMTSs and MixTSs are equivalent w.r.t. RIS,
and give an efficient symbolic model-checking procedure for RIS. The outcome is an
algorithm that combines the benefits of the efficient symbolic encoding of MixTSs with
the model-checking precision of GKMTSs.

To show the practicality of the above result, we develop a symbolic model-checking
algorithm w.r.t. to RIS and apply it to MixTS models constructed using predicate ab-
straction. We evaluate our implementation empirically against a SIS-based algorithm.

The rest of the paper is organized as follows. Sec. 2 reviews the necessary back-
ground on partial models and abstraction. In Sec. 3, we prove that KMTSs, MixTSs and
GKMTSs are equally expressive by developing semantics-preserving translations from
GKMTSs to MixTSs, and from MixTSs to KMTSs. In Sec. 4, we introduce reduced



Mixed Transition Systems Revisited 351

inductive semantics (RIS) for Lµ. In Sec. 5, we present a symbolic model-checking
algorithm w.r.t. RIS in the context of predicate abstraction. We report on our experi-
ence with this algorithm in Sec. 6. Sec. 7 concludes the paper with a summary and
comparison with related work.

2 Preliminaries

In this section, we review several modeling formalisms, and their use for abstraction.

2.1 Complete and Partial Models

A statespace of a partial transition system is a tuple 〈S,�S〉, where S is a set of states,
and �S is a partial order on S. Intuitively, s1 �S s2 means that s1 is less informative
(more partial) than s2. For brevity of notation, we denote a statespace using the set S.

Definition 1 (Partial TSs). [4, 8, 13, 19] A Generalized Kripke Modal Transition
System (GKMTS) is a tuple M = 〈S,Rmay, Rmust〉, where S is the statespace, and
Rmay ⊆ S×S, Rmust ⊆ S×2S are the may and must transition relations, respectively.
A Mixed TS (MixTS) is a GKMTS s.t. Rmust ⊆ S × S. A Kripke Modal TS (KMTS) is
a MixTS s.t. Rmust ⊆ Rmay. A Boolean TS (BTS) is a KMTS s.t. Rmay = Rmust.

We write s
may−−→ t for (s, t) ∈ Rmay, s

must−−→ t, and s
must−−→ Q for (s, t) ∈ Rmust and

(s,Q) ∈ Rmust, respectively. Intuitively, may and must transitions represent possible and
necessary behaviours, respectively. For example, a BTS is complete (i.e., not partial)
since every may behaviour is also a must behaviour.

Let AP be a set of atomic propositions,Lit(AP ) be a set of literals ofAP , and S be
a statespace. A state labeling is a function L : S → 2Lit(AP ) that assigns to each state
s a set of literals that are true in s. For a proposition p, if p ∈ L(s), we say that p is true
in s; if ¬p ∈ L(s) — p is false in s; otherwise, the value of p is unknown. We require
that a state labeling is locally consistent, i.e., at most one of p and ¬p belongs to L(s);
and monotone w.r.t. �S , i.e., s1 �S s2 ⇒ L(s1) ⊆ L(s2). A pair 〈M,L〉 of a TS M
and a labeling L is called a model.

The modal µ-calculus [14] (Lµ) is defined as the set of all formulas satisfying the
following grammar: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | µZ · ϕ(Z), where p is an atomic
proposition, and Z a fixpoint variable. Furthermore, Z in µZ · ϕ(Z) must occur under
the scope of an even number of negations. Additional operations are defined as abbre-
viations: ϕ ∨ ψ � ¬(¬ϕ ∧ ¬ψ), �ϕ � ¬♦¬ϕ, νZ · ϕ(Z) � ¬µZ · ¬ϕ(¬Z). Let
M = 〈M,L〉 be a model, where M = 〈S,Rmay, Rmust〉, and ϕ be an Lµ formula. An
interpretation (or semantics) of ϕ over M, denoted ‖ϕ‖M, is given by a pair 〈U,O〉,
where U,O ⊆ S. Intuitively, U is the set of states that satisfy ϕ, and O is the set of
states that do not refute ϕ. Thus, ϕ is true in U , false in S \ O and unknown in O \ U .
We call U and O the under- and the over-approximation of ϕ, respectively.

A semantics of Lµ is called inductive if it is inductive on the syntax of the logic.
We refer to the commonly used inductive semantics as standard (SIS). We need the
following notation. Let e = 〈U,O〉. We write U(e) and O(e) to denote U and O,
respectively; we use operators ∼ and � defined as follows: ∼〈U,O〉 � 〈O,U〉, and
〈U1, O1〉 � 〈U2, O2〉 � 〈U1 ∩ U2, O1 ∩O2〉.
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Definition 2 (SIS). [4, 8, 13, 19, 11] Let M = 〈M,LM 〉 be a model, M =
〈S,Rmay, Rmust〉, Var a set of fixpoint variables, and σ : Var → 2S × 2S . The stan-
dard inductive semantics (SIS) of ϕ ∈ Lµ is:

||p||Mc,σ � 〈{s | p ∈ LM (s)}, {s | ¬p /∈ LM (s)}〉
||¬ϕ||Mc,σ � ∼||ϕ||Mc,σ ||ϕ ∧ ψ||Mc,σ � ||ϕ||Mc,σ � ||ψ||Mc,σ ||Z||Mc,σ � σ(Z)
||♦ϕ||Mc,σ � 〈preU(U(||ϕ||Mc,σ)), preO(O(||ϕ||Mc,σ))〉

||µZ · ϕ||Mc,σ � 〈lfp⊆ `

λQ · U(||ϕ||Mc,σ[Z �→Q])
´

, lfp⊆ `

λQ ·O(||ϕ||Mc,σ[Z �→Q])
´

〉

where Z ∈ Var, lfp is the least fixpoint, and the pre-image operators preU and preO are
defined as follows:

preU(Q) �
(

{s | ∃t ∈ Q · s must−−→ t} if M is a MixTS

{s | ∃U ⊆ Q · s must−−→ U} if M is a GKMTS

preO(Q) � {s | ∃t ∈ Q · s may−−→ t}

2.2 Partial Models and Abstraction

Abstract Statespace. A concrete statespace C is a set of states s.t. for any c ∈ C and
state labeling L, p ∈ L(c) ⇔ ¬p /∈ L(c). An abstract statespace approximating C is a
set of states S together with a soundness relation ρ : C×S, where (c, s) ∈ ρmeans that
s ρ-approximates c. ρ induces a concretization function γ(s) � {c | (c, s) ∈ ρ}, and an
approximation ordering �a⊆ S × S defined as s �a t ⇔ γ(s) ⊇ γ(t). That is, γ(s)
is the set of all concrete states approximated by s, and s �a t if s is less precise (more
approximate) than t. For a set Q ⊆ S, we define γ(Q) � ∪s∈Qγ(s). Following [3], we
require that�a be a partial order (i.e., the order�S), and that S satisfy “the existence of
a best approximation”: ∀c ∈ C · ∃s ∈ S · (ρ(c, s)∧∀s′ ∈ S · ρ(c, s′) ⇒ γ(s′) ⊇ γ(s)).
We use an abstraction function α : C → S to map each concrete element to its best
approximation. The image of α is denoted by α[S] � {α(c) | c ∈ C}.

Predicate Abstraction. Let n be a natural number, and P = {p1, . . . , pn} be a set of
quantifier-free first-order boolean predicates. A monomial is a conjunction of literals
of P ; a minterm is a monomial in which each variable pi appears exactly once (either
positively or negatively). We write Mon(P ) and MT(P ) for the set of all monomials and
minterms of P , respectively. The set Mon(P ) is the domain of predicate abstraction.
The soundness relation ρP is defined s.t. (c, s) ∈ ρP iff c |= s, i.e., c satisfies all
predicates in s; the abstraction αP (c) � (

∧
c|=pi

pi) ∧ (
∧

c �|=pi
¬pi); αP [Mon(P )] =

MT(P ); and the approximation ordering is reverse implication, s �a t iff s⇐ t.

Simulation. An approximation relation is extended from a statespace to transition sys-
tems using the concept of mixed simulation.

Definition 3 (Mixed Simulation). [4] LetM1 = 〈S1, R
may
1 , Rmust

1 〉 and M2 =
〈S2, R

may
2 , Rmust

2 〉 be two MixTSs. H ⊆ S1 × S2 is a mixed simulation between M1
andM2 if for any (s1, s2) ∈ H , the following two conditions hold:
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∀t1 ∈ S1 · s1
may−−→ t1 ⇒ ∃t2 ∈ S2 · s2

may−−→ t2 ∧ (t1, t2) ∈ H

∀t2 ∈ S2 · s2
must−−→ t2 ⇒ ∃t1 ∈ S1 · s1

must−−→ t1 ∧ (t1, t2) ∈ H

In this case, we sayM2 H-simulatesM1, writtenM2 �H M1.

Intuitively,M2 simulatesM1 wheneverM2 is less precise about its behaviour thanM1.
This definition generalizes to GKMTSs (c.f., [19]).

Let C and S be a concrete and abstract statespaces, respectively, and ρ ⊆ C × S
be the soundness relation. A partial TS M over S approximates a BTS B over C (or,
equivalently B refines M ) iff M ρ-simulates B, M �ρ B. Let LM and LB be state-
labellings for S and C, respectively. LM approximates LB, denoted LM �ρ LB , iff
ρ(c, s) ⇒ LM (s) ⊆ LB(c). A partial model M = 〈M,LM 〉 approximates a concrete
model B = 〈B,LB〉 (or, equivalently, B refines M) iffM �ρ B, and LM �ρ LB .

Theorem 1. [4] Let B = 〈B,LB〉 be a concrete model that refines a partial model
M = 〈M,LM 〉, and ϕ ∈ Lµ. Then, γ(U(‖ϕ‖Mc )) ⊆ U(‖ϕ‖Bc ), and O(‖ϕ‖Bc ) ⊆
γ(O(‖ϕ‖Mc )).

That is, if ϕ is true (false) at a state a of M, then it is true (false) at all states γ(a) of B.
Let C[M] be the set of all concrete refinements of M. Intuitively, C[M] is the

semantic meaning of M. An interpretation of Lµ based on the semantic meaning
of a partial model was introduced in [1] as thorough semantics. It is defined as fol-
lows: ‖ϕ‖Mt = 〈U,O〉 iff a ∈ U ⇔ ∀B ∈ C[M] · γ(a) ⊆ U(‖ϕ‖Bc ), and
a �∈ O ⇔ ∀B ∈ C[M] · γ(a) ⊆ U(‖¬ϕ‖Bc ).

To compare different interpretations of Lµ, we introduce two ordering relations on
2S × 2S . Let e1 = 〈U1, O1〉 and e2 = 〈U2, O2〉. We say that e1 is less informative than
e2, written e1 �i e2 iff U1 ⊆ U2 and O2 ⊆ O1. We say that e1 is semantically less
precise than e2, written e1 �a e2, iff γ(U1) ⊆ γ(U2) and γ(O1) ⊆ γ(O2).

3 Expressiveness

We show that GKMTSs, MixTSs, and KMTSs are expressively equivalent. Two partial
TSs M and M ′ are semantically equivalent, M ≡a M

′, iff they have the same set
of concrete refinements. Two modeling formalisms are expressively equivalent iff for
every TSM from one formalism, there exists a TS M ′ from the other, s.t.M ≡a M

′.
The equivalence of the three formalisms is proved by defining semantics-preserving
translations from GKMTSs to MixTSs, and from MixTSs to KMTSs. Since GKMTSs
syntactically subsume KMTSs, the translation from KMTSs to GKMTSs is basically
an identity map.

3.1 GTOM: Translation from GKMTSs to MixTSs

We present the translation GTOM that converts a GKMTS into a semantically equiv-
alent MixTS. First, we illustrate the translation on a GKMTS G1 in Fig. 1. G1 is
not a MixTS because of must hyper-transition a1

must−−→ {a2, a3}. This transition en-
sures that in every concrete BTS refining G1, all states in γ(a1), i.e., those satisfying
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x ≤ 0
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x ≤ 0
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odd(x) M1

a1 a4a5
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x ≤ 0
evn(x) x > 0 x ≤ 0
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x > 0
evn(x)

x > 0
odd(x) G2

a1 a4

a3

a2

x ≤ 0
evn(x)

x ≤ 0
odd(x)

x > 0

x > 0
odd(x) M2

a1 a4

a3

a2

x ≤ 0
evn(x)

x ≤ 0
odd(x)

x > 0

x > 0
odd(x)

M3

a1 a4
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x > 0
odd(x)
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odd(x)

x > 0
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a1 a4
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x > 0
odd(x)
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x > 0
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odd(x)

x > 0
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a1 a4a5
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x > 0
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x > 0
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x > 0
odd(x)
y ≤ 0

odd(x)

x > 0

Fig. 1. Two GKMTSs: G1, G2; three MixTSs: M1, M2, M3; two KMTSs: K3, K4. Solid and
dashed lines represent must and may transitions, respectively.

(x ≤ 0∧ even(x)), must have a transition to a state in γ({a2, a3}), i.e., satisfying
(x > 0). No single state of G1 represents (x > 0). Thus, this requirement can only be
captured either by a hyper transition (as done in G1), or by extending G1 with a new
state, say a5, such that γ(a5) = (x > 0). In the latter case, the must hyper-transition

a1
must−−→ {a2, a3} can be replaced by (regular) must transition a1

must−−→ a5. The result is
a MixTSM1 in Fig. 1. Since a5 replaces a “hyper-state” {a2, a3}, a5 needs to preserve

its may behaviours. This is done by adding a5
may−−→ a4 and a5

may−−→ a2 corresponding
to a2

may−−→ a4 and a3
may−−→ a2, respectively. There are no outgoing must transitions

from a5 since the existing must transitions from a2 and a3 are sufficient. G1 and M1
are semantically equivalent: any BTS that refines G1 also refinesM1, and vice versa.

In our example, a new state was added to encode a hyper-transition by a regular one.
This isn’t always necessary. For example, TSs G2 and M2 in Fig. 1 are semantically
equivalent. The hyper-transition a1

must−−→ {a2, a3} is encoded by a1
must−−→ a3 in M2

since the hyper-state {a2, a3} is equivalent to an existing state a3, i.e., γ({a2, a3}) =
γ(a3) = (x > 0).

In summary, a GKMTS G is translated to a MixTS M in two steps: (i) every must

hyper-transition a
must−−→ U ofG is replaced by a regular must transition a

must−−→ b, where
b is a (possibly new) state s.t. γ(b) = γ(U); (ii) may transitions are added for every
state introduced in the first step, if any. We formalize this below.

Definition 4 (GTOM). Let G = 〈SG, R
may
G , Rmust

G 〉 be a GKMTS. The translation
GTOM(G) is a MixTSM = 〈SM , R

must
M , Rmay

M 〉, such that

SM � SG ∪ S+ S+ � {a | ∃(s, U) ∈ Rmust
G · γ(a) = γ(U) ∧ (∀t ∈ SG · γ(t) �= γ(U))}

Rmay
M � Rmay

G ∪ {(a, b) | a ∈ S+ ∧ b ∈ SG ∧ ∃s ∈ SG · (s, b) ∈ Rmay
G ∧ γ(s) ⊆ γ(a)}

Rmust
M � {(a, b) | a ∈ SG ∧ b ∈ SM ∧ ∃U ⊆ SG · (a, U) ∈ Rmust

G ∧ γ(b) = γ(U)}

The translation GTOM is semantics-preserving.

Theorem 2. Let G be a GKMTS, and M = GTOM(G). Then, M is a MixTS, and G
andM are semantically equivalent.
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A corollary of Theorem 2 is that GKMTSs and MixTSs are equivalent w.r.t. thor-
ough semantics. Let LG be a labeling function for G. We extend the translation
GTOM to a GKMTS model 〈G,LG〉 such that GTOM(〈G,LG〉) � 〈M,LM 〉, where
M = GTOM(G), and LM is a labeling function for SM defined as follows:

LM (a) �
(

LG(a) if a ∈ SG
T

{s∈SG|γ(s)⊆γ(a)} LG(s) if a ∈ S+

Then, LM is well-defined and approximates the same labellings as LG. This ensures
that 〈G,LG〉 and 〈M,LM 〉 satisfy the same properties under thorough semantics.

Corollary 1. Let 〈G,LG〉 be a GKMTS model and 〈M,LM 〉 = GTOM(〈G,LG〉).
Then, 〈G,LG〉 and 〈M,LM 〉 are equivalent w.r.t. thorough semantics.

Complexity. We show that the translation GTOM does not increase the size of the model.
Let G be a GKMTS with the statespace SG, and M = GTOM(G). The size of G is at
most |SG × 2SG |. Each new state added by GTOM corresponds to a subset of SG, i.e.,
|S+| ≤ |2SG |. Furthermore, no transitions between the states in S+ are added. Thus,
the size ofM is also at most |SG × 2SG |.

Sometimes GTOM can reduce a GKMTS exponentially. For example, assume that
SG is a disjunctive completion [3], i.e., for every subset U of SG there exists an equiva-
lent element s in SG such that γ(U) = γ(s). In this case, GTOM does not add any new
states, i.e., S+ = ∅. This makes the size of the output MixTSs be |SG × SG|, which is
exponentially smaller than that of the input GKMTS.

3.2 MTOK: Translation from MixTSs to KMTSs

We present the translation MTOK that converts a MixTS into a semantically equivalent
KMTS. First, we illustrate the translation using a MixTS M3 in Fig. 1. M3 is not a
KMTS because of the two must only transitions a1

must−−→ a2 and a2
must−−→ a4. One way

to turnM3 into a KMTS is to add may transitions a1
may−−→ a2 and a2

may−−→ a4, resulting
inK3 in Fig. 1. This naive transformation is not semantics-preserving, i.e.,K3 �≡a M3.
For example, the concrete system1

((y > 0) ∧ (x > 0) ∧ odd(x) ∧ x′ = x + 1 ∧ y′ = y) ∨
((x > 0) ∧ odd(x) ∧ x′ = x ∧ y′ = −1× x) ∨

((x > 0) ∧ ¬odd(x) ∧ x′ = x + 1 ∧ y′ = −1× x)

refines K3, but not M3: the transition 〈x = 1, y = 1〉 → 〈x = 2, y = 1〉 cannot be
simulated by any may transition ofM3.

The must only transition a1
must−−→ a2 ofM3 ensures that in any concrete BTS refining

M3, all states in γ(a1), i.e., those satisfying (x > 0∧ odd(x)∧ y > 0), must have a
transition to a state in γ(a2), i.e., satisfying (x > 0). This is further restricted by the
may transitions from a1 that ensure that states in γ(a1) have transitions only to states in
γ({a1, a3}). Hence, in any BTS refiningM3, every state in γ(a1) must (and may) have a
transition to a state in γ(a2)∩γ({a1, a3}). That is, the restrictions posed by a must only

1 Unprimed and primed variables represent current- and next-state valuations, respectively.
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transition from a1 are further restricted by the set of all of the may transitions from a1.

In general, for abstract states b0, . . . , bk, a must only transition b0
must−−→ b1, and a set

of may transitions b0
may−−→ b2, . . . , b0

may−−→ bk ensure that every state in γ(b0) has a
transition to a state in γ(b1) ∩ γ({b2, . . . , bk}).

The must only transition a2
must−−→ a4 in M3 is equivalent to a pair of may and must

transitions from a2 to a4, since γ(a4) ∩ γ({a1, a2, a3}) = γ(a4). The must only

transition a1
must−−→ a2 can be equivalently represented by (a) adding a new state a5 such

that γ(a5) = γ(a2) ∩ γ({a1, a3}) = (x > 0∧ odd(x)), and (b) adding a must and a
may transition from a1 to a5. Moreover, since a5 approximates some of the same states
as a2, i.e., γ(a5) ⊆ γ(a2), a5 inherits the transitions from a2: a5

may−−→ a1, a5
may−−→ a2,

a5
may−−→ a3, a5

must−−→ a4, a5
may−−→ a4. The final result is the KMTS K4 in Fig. 1, which

is semantically equivalent toM3.
In summary, a MixTSM is translated to a KMTS K in two steps. First, every must

only transition a
must−−→ b ofM is replaced by a pair of must and may transitions a

must−−→
â→ b and a

may−−→ â→ b, where â→ b is a (possibly new) abstract state such that
γ(â→ b) = γ(b) ∩ γ(Rmay

M (a)). Second, may and must transitions are added for all
states introduced in the first step. We formalize this below.

Definition 5 (MTOK). Let M = 〈SM , R
may
M , Rmust

M 〉 be a MixTS. The translation
MTOK(M) is a KMTS K = 〈SK , R

may
K , Rmust

K 〉, s.t.

SK � SM ∪ S+ S+ � {â → b | ∃(a, b) ∈ (Rmust
M \Rmay

M ) · ∀s ∈ SM · γ(s) �= γ(â → b)}
Rmay

K � Rmay
M ∪ REPL ∪ IMAY ∪ IMO

Rmust
K � (Rmust

M ∩ Rmay
M ) ∪ REPL ∪ IMUST ∪ IMO,

where
REPL � {(a, â → b) | ∃(a, b) ∈ (Rmust

M \ Rmay
M )}

IMAY � {(â → b, b′) | ∃a, b, b′ ∈ SM ·
(a, b) ∈ (Rmust

M \Rmay
M ) ∧ (b, b′) ∈ Rmay

M ∧ â → b ∈ S+}
IMUST � {(â → b, b′) | ∃a, b, b′ ∈ SM ·

(a, b) ∈ (Rmust
M \Rmay

M ) ∧ (b, b′) ∈ (Rmust
M ∩Rmay

M ) ∧ â → b ∈ S+}
IMO � {(â → b, b̂ → b′ | ∃a, b, b′ ∈ SM · (a, b), (b, b′) ∈ (Rmust

M \ Rmay
M ) ∧ â → b ∈ S+}

In Definition 5, REPL denotes transitions that replace must only transitions, and IMAY,
IMUST and IMO denote transitions from newly added states in S+ that correspond to
may, must, and must only transitions of the original system, respectively. In our ex-
ample of MTOK(M3), we have S+ = {a5},REPL = {(a1, a5), (a2, a4)}, IMUST =
∅, IMO = {(a5, a4)}, and IMAY = {(a5, a1), (a5, a2), (a5, a3)}. The result of the
translation MTOK is a KMTS: every must transition is matched by a may transition.

Theorem 3. Let M be a MixTS, and K = MTOK(M). Then K is a KMTS, and M
andK are semantically equivalent.

A corollary of Theorem 3 is that MixTSs and KMTSs are equivalent w.r.t. thorough
semantics. Let LM be a labeling function forM . We extend MTOK to 〈M,LM 〉 such
that MTOK(〈M,LM 〉) � 〈K,LK〉, where K = MTOK(M), and LK is a labeling
function for SK defined as follows:
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LK(a) �
(

LM (a) if a ∈ SM
S

{s∈SM |γ(a)⊆γ(s)} LM (s) if a ∈ S+

Then, LK is well-defined and approximates the same labellings as LM . This is suffi-
cient to ensure that 〈M,LM 〉 and 〈K,LK〉 satisfy the same properties under thorough
semantics.

Corollary 2. Let 〈M,LM 〉 be a MixTS model and 〈K,LK〉 = MTOK(〈M,LM 〉).
Then, 〈M,LM 〉 and 〈K,LK〉 are equivalent w.r.t. thorough semantics.

Complexity. Let M = 〈SM , R
may
M , Rmust

M 〉 be a MixTS, and K be a KMTS such that
K = MTOK(M). The size ofM is bounded by O(|SM × SM |). In the worst case, the
translation adds a new state for each must only transition in Rmust

M \ Rmay
M . Therefore,

the number of new states |S+| is bounded by |SM × SM |, and |K| is bounded by
O(|SM × SM |2).

MixTSs are more succinct than KMTSs: for a fixed statespace S, the set of MixTSs
over S is strictly more expressive than the set of KMTSs over S. This holds because
for every state t added by MTOK, there exists a subset U ⊆ S s.t. γ(t) = γ(U).

4 Reduced Inductive Semantics

GKMTSs and MixTSs are equally expressive: a GKMTS model and its equivalent
MixTS model satisfy the same properties under thorough semantics. However, thor-
ough model-checking is expensive. In practice, model-checking of partial models is
done w.r.t. a more tractable inductive semantics SIS. GKMTSs are more precise than
MixTSs w.r.t. SIS: for any ϕ ∈ Lµ, model-checking ϕ in a GKMTS model G w.r.t.
SIS is more precise than model-checking it in the MixTS model M = GTOM(G).
However, the direct use of GKMTSs in symbolic model checkers has been hampered
by the difficulty of encoding hyper-transitions into BDDs. In this section, we propose a
new semantics, called reduced inductive semantics (RIS), that is inductive while being
strictly more precise than SIS. We show that GKMTSs and MixTSs are equivalent w.r.t.
RIS. In the next section, we provide an efficient symbolic model checking procedure
for computing RIS over MixTSs. The outcome is an algorithm that combines the bene-
fits of the efficient symbolic encoding of MixTSs with the model-checking precision of
GKMTSs.

In Sec. 4.1, we illustrate the differences between GKMTSs and MixTSs w.r.t. SIS;
define RIS in Sec. 4.2; and show how to effectively model-check w.r.t. RIS in Sec. 4.3.

4.1 Example

Let p and q denote predicates (x > 0) and odd(x), respectively. Consider the
model G1 = 〈G1, LG1〉, where G1 is shown in Fig. 1, and LG1 is a labeling
function that labels each abstract state as shown in Fig. 1. Let M1 = 〈M1, LM1〉
be the model obtained from G1 by GTOM, where M1 is shown in Fig. 1 and
LM1(s) � if s = a5 then {p} else LG1(s).
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Compare the value of ϕ � ♦(q ∨ ¬q) under SIS on G1 and M1:

‖ϕ‖G1
c = 〈{a1, a2, a3}, {a1, a2, a3, a4}〉 ‖ϕ‖M1

c = 〈{a2, a3}, {a1, a2, a3, a4, a5}〉

According to G1, in all states corresponding to a1, ϕ is true . According to M1, the
value of ϕ is unknown in exactly the same states. SinceM1 = GTOM(G1), G1 ≡a M1.
Thus, although M1 and G1 are semantically equivalent, M1 is less precise than G1 for
model-checking w.r.t. SIS.

Let us reexamine the above example. First, there is no precision loss during the
evaluation of q ∨ ¬q:

e1 = ‖q ∨ ¬q‖G1
c =〈{a1, a2, a3, a4}, {a1, a2, a3, a4}〉 (�)

e2 = ‖q ∨ ¬q‖M1
c =〈{a1, a2, a3, a4}, {a1, a2, a3, a4, a5}〉

Since γ(U(e1)) = γ(U(e2)) and γ(O(e1)) = γ(O(e2)) = γ(∅), e1 ≡a e2. However,
there is a subtle difference between e1 and e2. In state a5 ofM1, q∨¬q is unknown even
though it is true in both a2 and a3, and γ(a5) = γ(a2)∪ γ(a3). This minor imprecision
is then magnified by the ♦ operator.

This loss of precision is not limited to tautologies. For example, µZ · (¬p∧ q)∨♦Z ,
i.e, EF (¬p ∧ q) in CTL, is true in state a1 of G1, but is unknown in a1 of M1.

4.2 Reduced Inductive Semantics for Partial Models

In this section, we define the reduced inductive semantics (RIS). The new semantics is
inductive and is strictly more precise than SIS. The key idea is to eliminate any local
imprecision by using a special reduction operator.

Let S be an abstract statespace, and e, e′ ∈ 2S × 2S be two abstract elements.
Recall that in the information order e is less than e′, i.e., e �i e

′, if U(e) is con-
tained in U(e′), and O(e) contains O(e′). We define the reduction operator as fol-
lows: RED(e) � 〈REDU(U), REDO(O)〉, where REDU(U) � {s | γ(s) ⊆ γ(U)}, and
REDO(O) � {s | γ(s) 	 γ(O)}. Intuitively, RED(e) increases U(e) and decreases O(e)
as much as possible without affecting the semantic meaning of e. That is, RED(e) is
the largest element w.r.t. information ordering that is semantically equivalent to e. For
example, consider RED(e2), where e2 is as defined by (�) above. Then,

e3 = RED(e2) = 〈{a1, a2, a3, a4, a5}, {a1, a2, a3, a4, a5}〉 (��)

e3 differs from e2 only in the addition of a5 to U(e3). Since γ(U(e2)) = γ(U(e3)) and
γ(O(e2)) = γ(O(e3)) e2 ≡a e3; but e3 is more informative since U(e2) ⊂ U(e3).

An element e = 〈U,O〉 ∈ 2S × 2S is monotone iff

s1  S s2 ⇒ (s1 ∈ U ⇒ s2 ∈ U ∧ s1 /∈ O ⇒ s2 /∈ O)

RED(e) is monotone for any e, and commutes with propositional operations on mono-
tone elements. That is, let e and e′ be monotone elements of 2S × 2S. Then, ∼e ≡a

∼RED(e), and e � e′ ≡a RED(e) � RED(e′).
RIS is defined by applying the RED operator before and after ♦ to prevent it from

propagating imprecision.

Definition 6 (RIS). Let M = 〈M,LM 〉 be a model, s.t. M = 〈S,Rmay, Rmust〉 and
σ : V ar → 2S × 2S . The reduced inductive semantics of ϕ ∈ Lµ is defined as follows:
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||p||Mr,σ � 〈{s | p ∈ LM (s)}, {s | ¬p /∈ LM (s)}〉
||¬ϕ||Mr,σ � ∼||ϕ||Mr,σ ||ϕ ∧ ψ||Mr,σ � ||ϕ||Mr,σ � ||ψ||Mr,σ ||Z||Mr,σ � σ(Z)
||♦ϕ||Mr,σ � RED(〈preU(REDU(U(||ϕ||Mr,σ))), preO(REDO(O(||ϕ||Mr,σ)))〉)

||µZ · ϕ||Mr,σ � 〈lfp `

λQ · U(||ϕ||Mr,σ[Z �→Q])
´

, lfp `

λQ ·O(||ϕ||Mr,σ[Z �→Q])
´

〉

The only difference between RIS (Definition 6) and SIS (Definition 2) is the seman-
tics of ♦. Since we assume that state-labellings are monotone, applying RED to other
operators as well does not improve precision.

Returning to our running example, RIS of ϕ on M1 is computed as follows: RIS of
q, ¬q, and q ∨ ¬q is the same as SIS. Thus, ‖q ∨ ¬q‖M1

r = e2. To compute ♦, recall
from (��) that RED(e2) = e3; thus, ‖ϕ‖M1

r = 〈{a1, a2, a3, a5}, {a1, a2, a3, a4, a5}〉.
Hence, ‖ϕ‖M1

r is more precise than ‖ϕ‖M1
c .

Theorem 4. RIS is more precise than SIS: ‖ϕ‖c �a ‖ϕ‖r.

The previous example illustrates another important point: GKMTSs and MixTSs are
equivalent w.r.t. RIS. For example, ‖ϕ‖M1

r is equivalent to ‖ϕ‖G1
r . The following theo-

rem formalizes this.

Theorem 5. Let G be a GKMTS, andM = GTOM(G). Then, G andM are equivalent
w.r.t. RIS: ∀ϕ ∈ Lµ · ‖ϕ‖Gr ≡a ‖ϕ‖Mr.
Our new semantics RIS is both inductive and precise enough to make GKMTSs and
MixTSs equivalent. However, the definition of RED operator is based on concretization,
γ, of abstract elements. In practice, reasoning directly about concrete elements may be
undecidable or inefficient. We address this limitation next.

4.3 Reduced Inductive Semantics for Monotone Models

We study the reduction operator RED of RIS in the context of monotone models. Mono-
tone models, formally defined below, are as expressive as their regular counterparts [11]:
for any model there exists an equivalent monotone one. The monotonicity condition
simply ensures that all information that can be derived from existing may and must
transitions is made explicit in the model. Furthermore, models built by automated pred-
icate abstraction [10] are monotone by construction. Thus, restricting RED to monotone
models is neither a theoretical nor a practical restriction.

Definition 7. A MixTSM=〈S,Rmay, Rmust〉 is monotone iff for any s1�S s2, t2�S t1,

((s2, t2) ∈ Rmay ⇒ (s1, t1) ∈ Rmay) ∧
`

(s1, t1) ∈ Rmust ⇒ (s2, t2) ∈ Rmust´

A model M = 〈M,LM 〉 is monotone iff the MixTSM is monotone.

For monotone models, RED can be computed effectively, as we show below.
For a state s ∈ S, the upset of s is defined as ↑s � {t ∈ α[S] | s �a t}. Thus, ↑s

is the set of all those states in α[S] that are more precise than s. For example, let S1
be the statespace ofM1 in Fig. 1. Then, α[S1] = {a1, a2, a3, a4}, and ↑a5 = {a2, a3}.
Note that the state s and the set ↑s approximate the same set of concrete states, i.e.,
γ(s) = γ(↑s). For example, γ(↑a5) = γ(a5) = (x > 0).
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Let e = 〈U,O〉 be a monotone element of 2S × 2S, and s ∈ S. By monotonicity,
γ(s) ⊆ γ(U) iff ↑s ⊆ U . Dually, γ(s) �⊆ γ(O) iff ↑s �⊆ O. We define a new operator
red as follows: red(e) � 〈redU(U), redO(O)〉, where redU(U) � {s | ↑s ⊆ U}, and
redO(O) � {s | ↑s 	 O)}.

Theorem 6. Let S be an abstract statespace, and e be a monotone element in 2S × 2S.
Then, red(e) = RED(e).

red can be computed effectively since it does not reason about concrete elements
directly.

In this section, we have introduced a new inductive semantics RIS, shown that it is
more precise than SIS, and that GKMTSs and MixTSs are equivalent w.r.t. RIS. RIS can
be computed effectively on monotone models, which is not a limitation since monotone
models are as expressive as their non-monotone counterparts.

5 Symbolic Model-Checking of RIS Using BDDs

In this section, we describe a symbolic algorithm RIS that implements the RIS seman-
tics for monotone models constructed using predicate abstraction. These are the models
used by existing software model-checkers [12].

Our implementation is based on the following observation. Let S be an abstract
statespace. Then, for any monotone element of 2S × 2S there exists a semantically
equivalent element in 2α[S] × 2α[S].

Theorem 7. Let e1 = 〈U1, O1〉 be a monotone element of 2S × 2S , and e2 = 〈U2, O2〉
be in 2α[S] × 2α[S]. If U1 ∩ α[S] = U2 and O1 ∩ α[S] = O2, then e1 ≡a e2.

This theorem allows us to restrict the algorithm to sets over α[S] instead of sets over S.
Another consequence of Theorem 7 is that the transition relations can be simplified as
well, since we only need the result of the pre-image in the states of α[S].

1: global var Rmay, Rmust : BDD

2: func RIS(Expr ϕ) : BDD

3: match ϕ with
4: ATOMIC(p) : return ABSV(BDDVAR(“p”),

BDDVAR(“p”))
5: ¬ψ : return ABSNOT(RIS(ψ))
6: ψ1 ∧ ψ2 : return ABSAND(RIS(ψ1), RIS(ψ2))
7: ψ1 ∨ ψ2 : return ABSOR(RIS(ψ1), RIS(ψ2))
8: ♦ψ : return ABSPRE(Rmay, Rmust, RIS(ψ))
9: µψ : return RISlfp(ψ)

10: νψ : return RISgfp(ψ)
11:
12: func ABSV(BDD u, BDD o) : BDD

13: sel := BDDVAR(“sel”)
14: return BDDITE(sel, u, o)
15:
16: func ABSO(BDD v) = v[0/sel]
17: func ABSU(BDD v) = v[1/sel]

18: func ABSAND(BDD v1, BDD v2) = BDDAND(v1, v2)
19: func ABSOR(BDD v1, BDD v2) = BDDOR(v1, v2)
20: func ABSEQ(BDD v1, BDD v2) = BDDEQ(v1, v2)
21:
22: func ABSNOT(BDD v) : BDD

23: o := ABSO(v), u := ABSU(v)
24: return ABSV(BDDNOT(o), BDDNOT(u))
25:
26: func ABSREDU(BDD v) : BDD

27: if (BDDISCONST(v)) return v

28: b := BDDROOTVAR(v), h := UVAR(b)
29: T := ABSREDU(v[1/b]), F := ABSREDU(v[0/b])
30: tmp := BDDITE(b, T, F )
31: return BDDITE(h, BDDAND(T, F ), tmp)
32:
33: func ABSPRE(BDD Rmay, BDD Rmust, BDD v) : BDD

34: o := ABSO(V), u := ABSREDU(ABSU(V))
35: return ABSV(BDDPRE(Rmust, u), BDDPRE(Rmay, o))

Fig. 2. The RIS algorithm and its supporting functions
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Theorem 8. Let Rmay ⊆ S × S and Rmust ⊆ S × S be the may and must transition
relations of a monotone MixTS, respectively, and e = 〈U,O〉 be a monotone element
of 2S × 2S . Define Û � U ∩ α[S], Ô � O ∩ α[S], R̂must � Rmust ∩ (α[S] × S), and
R̂may � Rmay ∩ (α[S]× α[S]). Then,

〈pre[Rmust](REDU(U)), pre[Rmay](REDO(O))〉 ≡a 〈pre[R̂must](REDU(Û)), pre[R̂may](Ô)〉

The algorithm RIS is shown in Fig. 2. It uses BDDs to symbolically represent and
manipulate sets of states and transition relations. Functions that are prefixed with “BDD”
are the standard BDD operations. The algorithm works recursively on the structure of
the input formula ϕ. The fixpoints are computed in the usual way, by iterating until
convergence. We describe the details of the implementation below.

Let P = {p1, . . . , pn} be a set of n predicates. Recall that Mon(P ) denotes the
set of monomials over P , and MT(P ) — the set of minterms over P . Furthermore,
α[Mon(P )] = MT(P ). The input to the algorithm is a MixTS model 〈M,LM 〉, s.t.
M = (S,Rmay, Rmust), S = Mon(P ), and LM (s) = Lit(s), and an Lµ property ϕ.
Without loss of generality, by Theorem 8, we assume that the transition relations are
restricted s.t. Rmay ⊆ MT(P )×MT(P ), and Rmust ⊆ MT(P )×Mon(P ).

The algorithm uses the following sets of BDD variables: B = {bi | pi ∈ P} – the
current state Boolean variables, B′ = {b′i | bi ∈ B} – the next state Boolean variables,
H = {hi | pi ∈ P} – the current state unknown variables, and H ′ = {h′i | hi ∈ H}
– the next state unknown variables. In what follows, we do not distinguish between the
BDDs and the corresponding propositional formulas.

A set of minterms X ⊆ MT(P ) is encoded by a propositional formula over B, as
usual. For example, let P = {p1, p2, p3}. Then b1 ∧ ¬b2 encodes the set {p1 ∧ ¬p2 ∧
p3, p1 ∧ ¬p2 ∧ ¬p3}. A set of monomialsX ⊆ Mon(P ) is encoded by a formula over
B ∪H . Intuitively, for a monomialm, a variable hi indicates whether pi is present in
m, and a variable bi specifies the polarity of the occurrence. Formally, the encoding is

_

m∈X

„

(
^

pi∈Lit(m)

¬hi ∧ bi) ∧ (
^

¬pi∈Lit(m)

¬hi ∧ ¬bi) ∧ (
^

pi∈P\Term(m)

hi)
«

For example, (¬h1 ∧ b1) ∧ (¬h2 ∧ ¬b2) ∧ h3 represents a singleton set {p1 ∧ ¬p2}.
An abstract value e = 〈U,O〉 is encoded in a single BDD by a formula (sel∧U) ∨

(¬sel∧O), where sel is a designated BDD variable. This encoding is implemented by
function ABSV. The U andO elements of value e are extracted using ABSU and ABSO,
respectively. Abstract intersection (ABSAND), union (ABSOR), and equality (ABSEQ)
are done using the corresponding BDD operations. Abstract negation (ABSNOT) is im-
plemented following its definition in Sec. 2.

The may transition relation Rmay ⊆ MT(P )×MT(P ) is encoded by a formula over
B ∪ B′ as usual. Similarly, the must relation Rmust ⊆ MT(P ) × Mon(P ) is encoded
by a formula over B ∪ B′ ∪ H ′, where the primed variables are used to encode the
destination state. For example, a must transition from a state (p1 ∧ p2 ∧ p3) to a state
(p1 ∧ ¬p2) is represented by (b1 ∧ b2 ∧ b3) ∧ ((¬h′1 ∧ b′1) ∧ (¬h′2 ∧ ¬b′2) ∧ h′3).

Function ABSREDU implements the redU reduction operator of Sec. 4.3 using the
following observation: let Q ⊆ Mon(P ) be a monotone subset, and a ∈ Mon(P ). If
a ∈ MT(P ), then ↑a ⊆ Q ⇔ a ∈ Q; otherwise, ↑a ⊆ Q iff ↑(a ∧ p) ⊆ Q and
↑(a ∧ ¬p) ⊆ Q, where p is a term not occurring in a. ABSREDU applies this reasoning
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recursively on the input diagram, using function UVAR to find a variable hi ∈ H for
each variable bi ∈ B. Function ABSPRE implements the pre-image computation based
on Theorem 8.

Theorem 9. For a monotone MixTS M and ϕ ∈ Lµ, algorithm RIS(ϕ) in Fig. 2
returns the symbolic representation of ‖ϕ‖Mr .

The main difference between the symbolic implementations of SIS and our RIS is the
extra ABSREDU operation in function ABSPRE (line 29 in Fig. 2). ABSREDU is similar
to existential quantification (BDDEXISTS) of BDDs, with one exception: BDDEXISTS

uses BDDOR in each iteration, but ABSREDU uses one BDDAND and two BDDITE

operations. Thus, ABSREDU has the same complexity as BDDEXISTS, and symbolic
implementations of RIS and SIS also have the same complexity. This means that the
extra precision of RIS comes “for free”, without penalty in complexity.

6 Experiments

To empirically evaluate the cost and performance of RIS versus SIS, we have imple-
mented symbolic algorithms for computing both of them using CUDD [21] library, and
analyzed reachability and non-termination properties over a realistic model. While our
algorithm in Fig. 2 can analyze any µ-calculus formula, our experiments considered
just reachability and non-termination properties because of their practical interest.

For the model, we used a template program built out of n blocks, each based on an
example from [19] and having one integer variable. The method of [10] was applied to
build an abstract MixTS via predicate abstraction. We checked one reachability (least
fixed-point) property, Prop1, and two non-termination (greatest fixed-point) properties,
Prop2, and Prop3, computing the standard and reduced semantics of the properties.
In both cases, we measured the size of the abstract models using the number of BDD
nodes, the total analysis time, the number of iterations of the fixpoint computation,
and the time spent in the ABSREDU operation for RIS. To compare the precision of
the results, we considered two sets of initial states, I1 and I2, and checked whether
conclusive results can be obtained over them.

The results are summarized in Fig. 3. The top part of the table shows that RIS mod-
els enjoy significantly smaller encodings than their SIS counterparts, due to restricted
transition relations (see Theorem 8). RIS is more precise than SIS: for the two sets of
initial states, RIS produces conclusive results for both of them w.r.t. the three prop-
erties being checked, whereas SIS cannot decide whether Prop1 and Prop2 hold in
I2. As expected, the extra precision of RIS does not cause a complexity penalty: the
experiments show that the increases of the analysis time w.r.t. the size of the mod-
els for both RIS and SIS are comparable. In all of the cases, the time spent in AB-
SREDU, which represents the main difference between the two semantics, comprises
roughly 20% - 25% of the total time.

Note that RIS and SIS may require different numbers of iterations of fixpoint compu-
tation depending on the structure of the models and the type of the fixpoint computed.
For example, RIS required more iterations than SIS for Prop1, whereas it converged in
just two steps (vs. the number of iterations proportional to the model size for SIS) for
Prop2 over the same model.
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n SIS RIS
M

od
el

S
iz

e 100 370,070 216,689
200 1,460,270 853,389
250 2,275,196 1,329,215

Prop. n Analysis (sec.) Iter. I1 I2 Analysis (sec.) ABSREDU (sec.) Iter. I1 I2

P
r
o
p
1 100 2.20 301

T U
3.60 0.74 401

T T200 15.36 601 27.77 6.45 801
250 28.92 751 55.19 13.40 1001

P
r
o
p
2 100 3.60 203

T U
0.03 < 10−4 2

T T200 27.16 403 0.12 < 10−4 2
250 54.62 503 0.19 < 10−4 2

P
r
o
p
3 100 33.96 400

F F
21.24 4.5 400

F F200 395.24 800 258.72 42.44 800
250 1108.67 1000 546.88 101.20 1000

Fig. 3. Experimental results (T, F and U denote True, False and Unknown, respectively)

These experiments suggest that using the more precise RIS semantics improves the
overall performance of model checking, making it a viable alternative to SIS in practice.

7 Related Work and Conclusion

Godefroid and Jagadeesan [8], and Gurfinkel and Chechik [9] proved that the models
in the KMTS family have the same expressive power and are equally precise for SIS.
Dams and Namjoshi [5] showed that the three families considered in this paper are
subsumed by tree automata. We complete the picture by proving that the three families
are equivalent as well. Specifically, we showed that KMTSs, MixTSs and GKMTSs are
relatively complete (in the sense of [5]) with one another.

We did not consider Hyper TSs (HTSs) [20] which allow for both must and may
hyper-transitions. As pointed out in [20], may hyper-transitions can be eliminated by
increasing the abstract statespace, making HTSs exactly as expressive as GKMTSs.

Both GKMTSs and MixTSs support monotonic abstraction refinement under
SIS [4, 11, 19]. The same result holds under RIS, because for any two partial model
M and M ′ over the same abstract statespace, if M ′ is less precise than M under SIS,
i.e., ∀ϕ ∈ Lµ · ‖ϕ‖M ′

c �a ‖ϕ‖M
c ,M ′ is also less precise thanM under RIS.

Our reduction operator RED is an instance of normalization from Abstract Interpre-
tation [3] that is sometimes used to provide a canonical representation of equivalent
abstract properties. Our symbolic implementation ABSREDU is similar to the semantic
minimization of 3-valued propositional formulas [18].

Since RIS is inductive, its precision lies between SIS and thorough semantics. Thus,
existing results comparing SIS and thorough semantics, e.g., [7, 9, 17], apply to RIS as
well. We leave open the question of whether the additional precision enjoyed by RIS
can be used to improve the above results.

In this paper, we compared three families of partial modeling formalisms: KMTSs,
MixTSs and GKMTSs. We showed that they are equally expressive – a model from
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one formalism can be transformed into a semantically equivalent model from the other.
Thus, neither hyper-transitions nor restrictions on may and must transitions affect ex-
pressiveness. They do, of course, affect the succinctness of the models.

We further introduced a new inductive semantics, RIS, for partial models. RIS is
more precise than SIS, making MixTSs and GKMTSs equivalent w.r.t. model-checking.
We also described a symbolic implementation of model-checking w.r.t. RIS. The out-
come is an algorithm that combines the efficient symbolic encoding of MixTSs with the
model-checking precision of GKMTSs. The symbolic algorithm was evaluated empiri-
cally. Our experiments suggest that RIS should be a good alternative to SIS for predicate
abstraction-based model-checkers. We leave further investigations along this research
direction to future work.

Acknowledgments. We thank Sagar Chaki, Orna Grumberg, and Yael Meller for com-
ments on the paper; and Laurie Lugrin for her help with the experiments.
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Abstract. Since its introduction in 1999, bounded model checking has
gained industrial relevance for detecting errors in digital and hybrid
systems. One of the main reasons for this is that it always provides
a counterexample when an erroneous execution trace is found. Such a
counterexample can guide the designer while debugging the system.

In this paper we are investigating how bounded model checking can
be applied to generate counterexamples for a different kind of model—
namely discrete-time Markov chains. Since in this case counterexamples
in general do not consist of a single path to a safety-critical state, but of
a potentially large set of paths, novel optimization techniques like loop-
detection are applied not only to speed-up the counterexample compu-
tation, but also to reduce the size of the counterexamples significantly.
We report on some experiments which demonstrate the practical appli-
cability of our method.

1 Introduction

Nowadays, formal verification plays a crucial role in the design process of digital
circuits. In particular model checking, i. e., the proof that a system exhibits a set
of properties, which are part of the specification, has gained great importance in
industry. The reasons for its success are that it can be performed automatically
and—in case a property is violated—that it is often able to generate a counterex-
ample, which guides the designer when debugging the system. By using symbolic
methods (e. g. ordered binary decision diagrams, OBDDs [1]) model checking can
be applied to fairly large systems. Nevertheless, there are many practically impor-
tant systems which cannot be verified using OBDDs (e. g., if they contain multi-
pliers), because the size of the OBDD representations may explode.

To overcome this problem, Clarke et al. [2] suggested a method called Bound-
ed Model Checking (BMC). It aims at the refutation of invariant properties.
The reachability of a state within a fixed number of steps which violates an
invariant is thereby formulated as a satisfiability problem in conjunctive normal
form (CNF). The advantage is that the size of this CNF is linear in the number
� This work was partly supported by the German Research Council (DFG) as part
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of gates of the digital circuit. Due to the enormous improvements in solving such
satisfiability problems during the last two decades, BMC has successfully been
applied to industrial systems.

On the other hand, on a higher modelling level, the designer often has to cope
with uncertainties. They can result from unpredictable behavior of the environ-
ment, component failures, user interaction, . . . One of the most common models
for this scenario are discrete-time Markov chains (DTMCs). Model checking,
which has been extended to DTMCs, is not as successful as model checking
for digital circuits for three reasons: (1) The size of the systems which can be
handled by state-of-the-art tools is still quite limited compared to the size of
verifiable circuits, (2) all state-of-the-art model checkers use inexact arithmetic
for efficiency reasons (i. e., using IEEE 754 floating point arithmetic and iterative
solution methods for linear equation systems). This can cause numerical insta-
bilities which themselves may lead to wrong results [3]. (3) The model checker is
not able to provide a counterexample for violated properties, since the check is
done by solving a linear equation system and not by traversing the state space.

In this paper we tackle the latter two problems. We propose an extension to
bounded model checking such that we can use it to certify that invariant prop-
erties of the form “The probability to reach a state which violates the invariant
is at most p” do not hold. For this purpose we provide counterexamples which
can be checked easily for correctness by using exact arithmetic.

Related work. The generation of counterexamples for various kinds of properties
has been studied extensively for non-stochastic models (see e. g. [4,5,6,7]). How-
ever, little research has been done on counterexamples for stochastic models.
Aljazzar et al. [8,9] apply informed search methods like Best First Search or A*
to generate counterexamples for continuous-time Markov chains, whereas Han
and Katoen [10] propose a different method to obtain counterexamples: They
apply a k-shortest-paths algorithm to a Markov chain. Therewith they compute
a counterexample consisting of a minimal number of paths. Although Han and
Katoen do not provide any experimental results in their paper, we suppose that
their method—as well as the method by Aljazzar et al.—does not scale well to
large systems due to the explicit state representation it relies on. Further on both
approaches do not apply any method to reduce the size of the counterexamples.
As our experiments will show, it is crucial to reduce the size of the counterexam-
ples in order to get useful counterexamples in reasonable time. We will overcome
both problems by using a symbolic representation and effective techniques to
reduce the size of counterexamples via loop detection.

The necessity of reducing the size of counterexamples has also been recognized
by Damman et al. [11]. They compute regular expressions describing a sufficiently
large set of paths from the initial state to a target state. This can be considered
as a generalization of the loop-detection technique we will present later, but is
restricted to explicitly represented state spaces.

In the paper [12] by Andrés et al. abstract away the details of strongly con-
nected components of Markov chains by replacing the SCCs by edges that are
labeled with the probability to walk through the SCC. On the resulting acyclic
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Markov chain, counterexamples are computed which are more compact by col-
lapsing the SCCs, but lack the details how the SCCs can be traversed.

Recently, Hermanns et al. extended counterexample-guided abstraction re-
finement (CEGAR) to Markov decision processes (MDPs) [13]. In this scenario
a counterexample is an adversary which resolves the nondeterminism in each
state, such that the probability of reaching a set of states exceeds some bound.
For the computation of counterexamples in the abstract system, they apply the
shortest-paths algorithm of [10], but they could also use our method.

Organization of this paper. In the next section, we will briefly review the founda-
tions of discrete-time Markov chains and bounded model checking. In Section 3
we will show how to bring together DTMCs and BMC. Its practical applica-
bility will be demonstrated experimentally in Section 4, before we conclude in
Section 5.

2 Foundations

In this section we will briefly review the basics of discrete-time Markov chains
and bounded model checking for digital systems.

2.1 Discrete-Time Markov Chains and Reachability Properties

Definition 1. Let AP be a set of atomic propositions. A discrete-time Markov
chain (DTMC) is a tuple M = (S, sI , P, L) such that S is a finite, non-empty set
of states; sI ∈ S, the initial state; P : S × S → [0, 1], the matrix of the one-step
transition probabilities; and L : S → 2AP , a labeling function that assigns each
state the set of atomic propositions which hold in that state.

We require the matrix P to be a stochastic matrix, i. e.,
∑

s′∈S P (s, s′) = 1 for
all s ∈ S. A path π is a (finite or infinite) sequence π = s0s1 . . . of states such
that P (si, si+1) > 0 for all i ≥ 0. For a finite path π = s0s1 . . . sn, |π| = n
denotes its length. The ith state of π is denoted by πi, i. e., πi = si. Furthermore
let π↑i be the ith prefix of π (π↑i= s0s1 . . . si). The set of infinite paths starting
in state s is denoted by Paths.

Definition 2. Let M = (S, sI , P, L) be a DTMC and s ∈ S. We define a prob-
ability space Ψs = (Paths, ∆s,Prs) such that

– ∆s is the smallest σ-algebra generated by Paths and the basic cylinders that
are subsets of Paths. Thereby, for a finite path π, the basic cylinder over π
is defined as ∆(π)={π′ ∈ Paths |π′ ↑|π|=π}.

– Prs is the uniquely defined probability measure that satisfies the following
constraints: Prs(Paths)=1 and for all basic cylinders ∆(ss1s2 . . . sn) over S:

Prs(∆(ss1s2 . . . sn)) = P (s, s1) · P (s1, s2) · · · · · P (sn−1, sn).

Many investigations can be carried out on even simpler systems, namely Kripke
structures, which are obtained by omitting the transition probabilities of the
Markov chain:
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Definition 3. Let M = (S, sI , P, L) be a discrete-time Markov chain. The un-
derlying Kripke structure is a labeled graph G = (S, sI , T, L) such that (s, s′) ∈ T
iff P (s, s′) > 0.

The properties under consideration are PCTL formulae [14] of the form
P≤p(aUb) with a, b ∈ AP , meaning that the probability to walk along a path
from the initial state to a state which satisfies b, passing only states in which a
holds, is less or equal p. More formally:

Definition 4. Let π be a path in a Markov chain M = (S, sI , P, L). It satisfies
the formula aUb (written π � aUb) iff

∃i ≥ 0 :
(
b ∈ L(πi) ∧ ∀ 0 ≤ j < i : a ∈ L(πj)

)
.

A state s satisfies the formula P≤p(aUb) (written s � P≤p(aUb)) iff

Prs

(
{π ∈ Paths |π � aUb}

)
≤ p.

If such a property is violated in the initial state sI , i. e., if the actual probability
is greater than p, there is a finite set of finite paths, starting in sI and satisfying
aUb, whose probability measure is greater than p [10].

Definition 5. Let M = (S, sI , P, L) be a discrete-time Markov chain for which
the property P≤p(aUb) is violated in state sI . A counterexample is a set C of
paths which start in sI and satisfy aUb, such that PrsI (C) > p.

Our goal is to provide the user with such a set of paths which testifies that the
probability indeed exceeds the bound p.

2.2 Bounded Model Checking for Digital Systems

Bounded model checking [2] is an automatic technique to prove that some invariant
is violated in a transition system, i. e., that a state in which the invariant does not
hold is reachable from the initial state of the system. The reachability of such a
state in a fixed number k of steps is thereby formulated as a satisfiability problem.

Let I(s) be a predicate which is true if s is the initial state and false otherwise.
Accordingly, let P (s) be a predicate for the states violating the invariant. The
transition relation is encoded by a predicate T (s, t) which is true iff there is a
transition from s to t. The existence of a run of length k starting in an initial
state and ending in a state in which the invariant does not hold can then be
described by the following formula:

BMC (k) = I(s0) ∧
k−1∧
i=0

T (si, si+1) ∧ P (sk). (1)

If this formula is unsatisfiable for the current unrolling depth k, there is no
path of length k from an initial state to a safety-critical state. Otherwise we get
a satisfying assignment which directly corresponds to a run of the system. It can
be considered a counterexample for the invariant property.
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The predicates are constructed in conjunctive normal form (CNF) from a
digital circuit by applying Tseitin transformation [15]. It works by introducing
auxiliary variables for internal signals. Then only local operations are necessary
to get a satisfiability equivalent CNF: If G is an AND gate with inputs a, b
and output c, then we construct the formula c ↔ (a ∧ b), which is equivalent
to (¬c ∨ a) ∧ (¬c ∨ b) ∧ (c ∨ ¬a ∨ ¬b). A CNF for the whole circuit is given by
the conjunction over the equivalences for each gate. Since this CNF is satisfied
for an assignment iff it assigns consistent values to the signals in the circuit, we
have to add a unit clause which sets the value of the output signal to true.

The advantage of applying Tseitin transformation is that the size of the pred-
icates is linear in the size of the circuit. In contrast to that, the size, e. g., of
OBDD representations, which are often used for symbolic model checking, might
explode during the model checking process.

3 Bounded Model Checking for DTMCs

In this section we will turn our attention to how bounded model checking can
be applied to discrete-time Markov chains in order to compute counterexamples
for violated safety properties.

The differences to traditional bounded model checking are the following: (1) In
general, it is not sufficient to compute a single path to a state which violates
the invariant. Even the probability of the most probable path may be too small
to exceed the bound p. Instead, we need a potentially large set of paths whose
probability measure exceeds the given bound. (2) We normally cannot start from
a circuit description of the system. Stochastic systems are usually modelled us-
ing a process algebraic description language from which the state space and the
transition probabilities can be computed using techniques like parallel composi-
tion. An example for this formalism is the input language of the stochastic model
checker PRISM [16], which we will later use for our experiments. Among other
tools, PRISM is able to generate symbolic representations of the Markov chains.
In particular, the transition probabilities are represented using Multi-terminal
binary decision diagrams (MTBDDs) [17].

Since the matrix is normally sparse and well-structured, the symbolic repre-
sentation using MTBDDs is in many cases much more compact than explicit
representations. For this reason, we start with an MTBDD P(s, t) for the transi-
tion probability matrix, an OBDD I(s) for the initial state and an OBDD La(s)
for each atomic proposition a ∈ AP such that La(s) = 1 iff a ∈ L(s).

In the following, we will first describe some preprocessing steps, before we
continue with the formula generation from OBDDs and the bounded model
checking itself.

3.1 Preprocessing

Before we start the bounded model checking process, we reduce the computation
of paths satisfying aUb to computing arbitrary paths ending in a b-state. Since we
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do not need the probabilities for the path computation, we can use the associated
Kripke structure for this operation. The OBDD-representation1 T (s, t) of its
transition relation can be obtained from the transition probability matrix P(s, t)
by a threshold operation, i. e., T (s, t) = 1 iff P(s, t) > 0.

Removing Edges. We have to ensure that we will never find a path of which a
proper prefix satisfies the path formula aUb. This can be guaranteed if the b-states
do not have any out-going edges. Furthermore we remove all out-going edges from
states in which neither a nor b hold. This makes sure that all paths ending in a b
state satisfy aUb. Therefore we will call the b-states the target states of the system.

Often we can cut even more edges of the resulting graph: Only those a- (and
target) states are relevant which can be reached from the initial state and from
which a target state can be reached. These states can be determined using well-
known symbolic graph traversal algorithms.

While the first edge cutting is mandatory for the correctness of the stochastic
BMC algorithm, the latter is only an optimization. It may be skipped if the time
or memory consumption of the reachability analysis is too high or if the resulting
OBDD of the transition relation is considerably larger than the original one.

3.2 CNF Generation

From the OBDD representations I(s), T (s, t), and Lb(s), we have to generate
the predicates in conjunctive normal form (CNF). They will be denoted by I(s),
T (s, t), and Lb(s). Since OBDDs can be considered as a special form of circuits
such that each node corresponds to a multiplexer, we can apply Tseitin transfor-
mation to obtain a CNF as already described in Section 2.2. The transformation
results in (at most) four clauses per OBDD-node. Our experiments have shown
that it is beneficial to reduce the size of the CNFs as much as efficiently possible.
We apply the following ideas:

– To avoid unnecessary auxiliary variables when both successor nodes are
leaves. This situation results in equivalences of the form (n1 ↔ x), where n1
is the auxiliary variable associated with an internal signal and x the label of
an OBDD node. Then every occurrence of n1 can be replaced by x.

– To use reordering (e. g., sifting [18]) to reduce the size of the OBDD for the
transition relation.

3.3 Bounded Model Checking

Recall that for a given unrolling depth k the formula describing paths starting
in the initial state sI and ending in a target state is given by (cf. Eq. (1)):

BMC(k) = I(s0) ∧
k−1∧
i=0

T (si, si+1) ∧ Lb(sk).

1 In the following, we use calligraphic letters L,P ,T , . . . for OBDDs and MTBDDs.
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We feed it into a SAT-solver and try to find a satisfying solution. If the
formula is unsatisfiable, there is no path of length k from the initial state to a
target state. Otherwise, the satisfying assignment we get from the SAT-solver
corresponds to a path in the original Markov chain which satisfies aUb.

In contrast to model checking for digital or hybrid systems, we cannot stop
once we have found a satisfying solution. Instead we have to continue until we
have found enough paths such that their probability measure exceeds the given
bound p.

For a boolean variable a, let a1 denote the positive literal a and a0 the negative
literal ¬a. Let si,0, . . . , si,n be the variables of the state visited at time step i,
and vi,0, . . . , vi,n their values assigned by the SAT-solver. To prevent the solver
from finding the same solution again, we add the following clause to its clause
database: ⎛⎝ k∨

i=1

n∨
j=0

s
1−vi,j

i,j

⎞⎠ (2)

Thereby, we can ignore the auxiliary variables introduced by the Tseitin trans-
formation, because their values are implied by the values of the original state
variables. Furthermore we may start with step i = 1 instead of 0. Since the CNF
contains unit literals which enforce that all solutions start in the initial state,
the literals in the exclusion clause (2) which correspond to step 0 would be false
and can therefore be left out completely. The same applies to step k if there is
a unique target state.

We iterate the solution process until we have either found enough paths or
the formula becomes unsatisfiable. If the latter is the case before we have found
enough paths, we increase the unrolling depth k by one and continue.

Theorem 1. If sI �� P≤p(aUb), the algorithm described above terminates and
returns a set of paths whose probability measure is greater than p.

Proof. (1) All paths which are found by the SAT-solver satisfy aUb: Since all
states which satisfy neither a nor b do not have any out-going edges anymore,
the target state cannot be reached from such a state.

(2) The algorithm terminates after a finite number of steps: If P≤p(aUb) is
violated, there is a finite counterexample C (see [10]). This is found after at most
k = max

{
|π|

∣∣ π ∈ C} iterations. Since there is only a finite number of paths
with length ≤ k, the SAT-solver is only called a finite number of times.

(3) The probabilities are computed correctly: In our counterexample, no path
is a prefix of another path. Hence the total probability is the sum of the proba-
bilities of the single paths. ��

3.4 Optimizing the BMC Process

Having all the paths computed by a SAT-solver is a time-consuming task, in par-
ticular when the counterexample consists of a large number of paths. Therefore
we need to reduce the number of calls to the SAT-solver.
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Minimal Distance Initial State → Target State. We would like to avoid
unnecessary calls to the SAT-solver of which we can know in advance that they
return UNSAT. This is the case if the current unrolling depth k is smaller than
the length of the shortest path from the initial state to a target state. We there-
fore compute the minimal distance from sI to a target state using the OBDD
representation.

Algorithm 3.1: MinDist
(
Initial state I(s), Target states Lb(s)

)
Begin

R(s) ← I(s), old(s) ← ∅, dist← 0 (1)
While R(s) �= old(s) And Lb(s) ∧R(s) = ∅ Do (2)

old(s) ←R(s) (3)
R(s) ←R(s) ∨ renameVariables

(
t→ s in ∃s : R(s) ∧ T (s, t)

)
(4)

dist← dist+ 1 (5)
End While (6)
If Lb(s) ∧R(s) �= ∅ Then Return dist (7)
Else Return ∞ (8)

End

Later we will start with the minimal distance as the initial unrolling depth of
the bounded model checking process.

Incomplete Assignments. Modern SAT-solvers detect satisfiability when all
variables have been assigned a boolean value without resulting in a conflict.
But often all clauses are satisfied before the solver has assigned each variable a
boolean value.

If we are able to obtain a partial satisfying assignment in which n state vari-
ables are unassigned, this assignment corresponds to 2n different paths. Further-
more, to exclude all these paths from the solution space only a single clause is
necessary, which is shorter than a clause only excluding a single path.

Loop Detection. Let us assume we have found a path on which a state occurs
twice, e. g., π = sI

p1−→ s1
p2−→ s2

p3−→ s3
p4−→ s2

p5−→ s4; sI is the initial state, s4 a
target state. We can easily detect that there is a loop s2

p3−→ s3
p4−→ s2. This loop

can be taken arbitrarily often. Instead of returning a set of “flat” paths—one
path for each unrolling of the loop—we construct counterexamples which consist
of acyclic paths whose states may be annotated with loops (see Fig. 1).

Definition 6. Let L be a set of loops, i. e., of paths σ such that σ(0) = σ(|σ|)
and for all 0 < i < |σ|: σ(i) �= σ(0). An annotated path π̂ is a pair π̂ = (π, l)
such that π is an acyclic path and l : {0, . . . , |π|} → 2L assigns each position on
the path a set of loops with ∀i ∈ {0, . . . , |π|} ∀σ ∈ l(i) : π(i) = σ(0) = σ(|σ|).

Such an annotated path π̂ represents an infinite set of “flat” paths. For instance,
the probability measure of the annotated path in Fig. 1 is

Prs0(π̂) =
∞∑

i=0

p1 · p2 · (p3 · p4)i · p5 = p1 · p2 ·
1

1− (p3 · p4)
· p5.
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p4p3

p5p2p1

s3

s2s1 s4sI

Fig. 1. A Path that is annotated with a loop

We have to take into account that this probability includes the probability of
the path with 0 unrollings of the loop. This acyclic path has been found by the
SAT-solver in one of the previous iterations.

If we have attached m different loops with probabilities p1, p2, . . . , pm to the
same state, we can increase the probability of the underlying acyclic path by the
following factor:

p = 1 + (p1 + p2 + · · · pm) + (p21 + p1p2 + p2p1 + p22 + p1p3 + · · ·+ p2m) + · · ·

=
∞∑

n=0

∑
i1,i2,...,im∈N

i1+i2+···+im=n

(
n

i1 i2 · · · im

)
pi1
1 p

i2
2 · · · pim

m

=
∞∑

n=0

(p1 + p2 + · · ·+ pm)n =
1

1− (p1 + p2 + · · ·+ pm)
. (3)

The advantages of generating sets of annotated paths are: (1) The user learns
more about the structure of the system. This makes the diagnosis of faults easier.
(2) The size of the counterexample can become considerably smaller since an
infinite number of paths is represented by one annotated path. (3) The number
of calls to the SAT-solver is reduced and thereby also the runtime of the bounded
model checking process.

Path exclusion. Before calling the SAT-solver, we have to exclude all those paths
from the solution space of the SAT-problem which originate from unrolling an-
notated paths we have already found in previous iterations and whose length is
identical to the current unrolling depth k.

Assume, we have an annotated path π̂ = (π, l), which is annotated with loops
π1, . . . , πp. We have to decide how often we have to unroll which loop in order
to obtain a path of total length k. These unrollings correspond to the solutions
of the following constraint with r1, . . . , rp ∈ N:

|π|+ |π1| · r1 + |π2| · r2 + · · ·+ |πp| · rp = k. (4)

We solve this constraint system using a simple enumeration algorithm. More
sophisticated methods are certainly available.

If there are several loops attached to the same state, we need to exclude them
in all possible orders. This can result in a large number of long clauses which need
to be added to the SAT-solver’s clause database. All paths generated by a single
solution have the literals corresponding to the acyclic base path in common. The
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remaining literals can be grouped according to the state of the base path their
loop corresponds to. Let Π be the set of paths corresponding to a single solution
of Eq. 4. They all have the acyclic base path s0s1 . . . sn−1 in common, and the
states si occur at the same positions for all π ∈ Π . Each clause which excludes
a path π ∈ Π can therefore be split into Cbase—the literals to exclude the base
path—and Csi

π for i = 0, . . . , n− 2—the sets of literals to exclude the unrolling
of the loops attached to si. Using the naive approach, the clauses to exclude the
paths in Π are given by {Cbase} × {Cs0

π |π ∈ Π} × · · · × {Csn−2
π |π ∈ Π}.

By introducing auxiliary variables, this set can be reduced using the following
observation: Assume we have two clauses (C ∨ S1) ∧ (C ∨ S2), whereby C, S1,
and S2 are disjunctions of literals and C are the literals which both clauses have
in common. We introduce a new auxiliary variable a and replace the two clauses
by (C ∨ a) ∧ (¬a ∨ S1) ∧ (¬a ∨ S2). Applied to our path exclusion problem this
leads to the following set of clauses:

{
Cbase ∪̇ {as0 , . . . , asn−2}

}
∪̇

n−2⋃
i=0

{
Csi

π ∪̇ {¬asi} |π ∈ Π
}
. (5)

The variables asi are the auxiliary variables used to split off the loop unrolling
at state si of the base path. The following lemma counts the number of clauses
and literals for both approaches:

Lemma 1. Let L be a set of loops; π̂ = (π, l), an annotated path over L; π =
s0s1 . . . , sn−1; and k, the current unrolling depth. Furthermore let u : L→ N be a
solution of Eq. (4). Let u(L′) =

∑
l′∈L′ u(l′) for L′ ⊆ L and l(si) = {li1, . . . , lini

}
the loops attached to state si. The number of clauses of the naive path exclusion
vs. the optimized path exclusion is given by

#naive
c =

n−2∏
i=0

(
u(l(si))

u(li1) · · ·u(lini
)

)
vs. #opt

c ≤ 1 +
n−2∑
i=0

(
u(l(si))

u(li1) · · ·u(lini
)

)
.

If bps denotes the number of bits per state, the total number of literals for both
approaches is

#naive
l = #naive

c · (k + 1) · bps

#opt
l ≤ (|π|+ 1) · bps+ |π|+

n−2∑
i=0

((
u(l(si))

u(li1) · · ·u(lini
)

)(
1 + bps ·

∑
l′∈l(si)

|l′| · u(l′)
))
.

Correctness issues. We have to guarantee that we do not count the same path
twice when we compute the probability measure of the set of annotated paths.
This happens if the same path can be generated by unrolling loops in different
ways.

Example 1. Let us assume the SAT-solver returns the path s0
p1−→ s1

p2−→ s2
p3−→

s1
p2−→ s2

p4−→ s3. In principle, we could detect two loops: s1 → s2 → s1 and s2 →
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p4

p2
p1

p3
s0 s1 s2 s3

(a) A path with only one
loop . . .

p2 p2

p4p2p1

s2 s1

s0 s1 s2 s3

p3 p3

(b) . . . but we might detect
two loops if we are not careful
enough

Fig. 2. A Path with an embedded loop

s1 → s2, which would result in the annotated path depicted in Fig. 2(b). One
might think the probability of this annotated path was p1 · 1

1−(p2·p3) ·p2 ·
1

1−(p3·p2) ·
p4, but this is not correct. The reason is that the same paths are generated by
unrolling the first loop as by the second loop. The correct probability is therefore
only p1 · 1

1−(p2·p3)
· p2 · p4. ��

We can avoid to over-estimate the probability measure with the following two
observations:

(1) On each path returned by the SAT-solver, there can be at most one loop
which we may attach to a state of the underlying acyclic path. If it was a path
with two loops, the solver would have returned two shorter paths—each with
only one of the loops—in previous iterations. But then, we would have excluded
the path with both loops in advance. If the path contains more than one state
twice, this means that either the loop itself consists of sub-loops or that we have
the situation depicted in Fig. 2(a). Both problems can be solved if we attach the
loop to the first state which occurs twice on the path.

(2) We only attach loops to that position on the current path where the loop
has been found by the SAT-solver. If the SAT-solver returns a path with a loop
we can conclude that this path cannot be generated by unrolling any existing
annotated path in our collection. So we may attach the loop to the corresponding
basic path without over-estimating the correct probability measure.

The pseudocode of the optimized algorithm with loop detection is sketched in
Algorithm 3.2. Starting with the minimal distance from the initial state to a
target state, we iterate lines 1–14 until either the counterexample exceeds the
probability bound p or the maximal unrolling depth has been finished. First, we
generate the CNF for the current unrolling depth k (line 2), then we exclude all
paths of length k, which originate from unrolling loops (line 3).

As long as the resulting formula is satisfiable, we exclude the newly found
path from the solution space of the CNF. Furthermore we test if the path that
corresponds to the satisfying assignment contains a cycle. If this is the case, split
the path into the acyclic base path and the loop which we attach to the base
path that is already contained in the counterexample (lines 8–10). Otherwise
we insert the (acyclic) path into the counterexample (line 11). The algorithm
terminates as soon as the probability measure of C is larger than p.
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Algorithm 3.2: StochBMC
`

CNF I , CNF T , CNF Lb, Probability p
´

Begin
For k ← minDist To maxDist Do (1)

φ ← CreateCNF(I, T, Lb, k) (2)
φ ← φ ∧ ExcludePrecomputedPaths(C, k) (3)
While φ is satisfiable Do (4)

π ← Solution2Path(φ) (5)
φ ← φ ∧ ExcludePath(π) (6)
If π contains a cycle Then (7)

(πbase, πloop)← split(π) (8)
b← findBasePath(C, πbase) (9)
C ←

`

C \ {b}
´

∪̇
˘

attachLoop(b, πloop)
¯

(10)
Else C ← C ∪ {π} (11)
If PrsI (C) > p Then Return C (12)

End While (13)
End For (14)
Return “I could not generate a counterexample!” (15)

End

4 Experiments

We have implemented the BMC algorithm in C++ with the optimizations that
were presented above. We use Cudd [19] for the OBDDs and Minisat [20] as
state-of-the-art SAT-solver. We ran all our experiments on a Dual Core AMD

Table 1. Experimental results for the leader election protocol

without loop detection with loop detection
N K bound paths depth SAT-calls time [s] paths loops depth SAT-calls time [s]
3 2 0.99 66 16 79 0.15 6 12 8 23 0.05
3 3 0.99 143 12 152 0.39 24 66 8 95 0.20
3 4 0.99 276 8 281 0.72 60 202 8 267 0.51
3 5 0.99 589 8 594 3.08 120 451 8 576 2.41
3 6 0.99 1040 8 1045 3.97 210 808 8 1023 3.76
3 8 0.99 1979 8 1984 8.31 504 1455 8 1964 5.42
3 10 0.99 990 4 991 5.63 990 0 4 991 5.16
3 12 0.99 1711 4 1712 8.82 1711 0 4 1712 8.20
4 2 0.99 — TL — 8 64 10 78 0.23
4 3 0.99 — TL — 60 1215 10 1281 9.22
4 4 0.90 3903 12 3909 79.52 216 3223 10 3445 61.84
4 5 0.90 2123 10 2129 99.01 560 1483 10 2049 85.45
4 6 0.90 1167 5 1168 30.80 1167 0 5 1168 28.13
4 8 0.90 3687 5 3688 113.95 3687 0 5 3688 102.58
5 2 0.90 — TL — 10 204 12 221 1.06
5 3 0.90 9585 12 9592 382.00 180 7508 12 7695 272.06
5 4 0.90 23019 12 23026 2948.00 900 20270 12 21177 2438.50
5 5 0.90 2813 6 2814 1102.67 2813 0 6 2814 1044.63
6 2 0.90 — TL — 12 606 14 626 6.56
7 2 0.90 — TL — 14 1571 16 1594 31.46
8 2 0.90 — TL — 16 3796 18 3822 137.46
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Table 2. Experimental results for the contract signing protocol

N L states prob. bound SAT-calls paths depth time [s]
5 3 53041 0.515625 0.50 513 512 31 49.67
5 4 73211 ” ” 513 512 41 158.53
5 5 93381 ” ” 513 512 51 278.90
5 6 115710 ” ” 513 512 61 441.64
6 2 159742 0.5078125 0.50 2049 2048 25 127.12
6 3 258046 ” ” 2049 2048 37 293.14
6 4 356350 ” ” 2049 2048 49 758.91
6 5 454654 ” ” 2049 2048 61 1778.75
7 2 737278 0.50390625 0.50 8193 8192 29 668.51
7 3 1196030 ” ” 8193 8192 43 2231.64

OpteronTM processor with 2.4 GHz and 4 GB of main memory. For all exper-
iments we set a time limit of 2 hours and a memory limit of 1 GB. The results
of the experiments are listed in Table 1. Experiments which were aborted due
to the time limit are marked with “—TL —”. We used the probabilistic model
checker PRISM [16] to generate symbolic representations for benchmarks, all of
which are available from the PRISM website http://prismmodelchecker.org.

The first benchmark we used is the synchronous leader election protocol by
Itai and Rodeh [21]. It models a ring of N processors with a common clock.
The goal is to elect a leader, i. e. a uniquely designated processor, by sending
messages around the ring. The protocol proceeds in rounds. During each round
the processors draw a random number from the range {1, . . . ,K} as an id. If
there is a unique maximal id, the processor with this id becomes the leader.
Otherwise a new round is initiated. The Markov chains consist of a few hundred
(for N = 3) up to 12 500 states (for N = 5, K = 5). We checked the property
that finally a leader is elected. Since this happens with probability 1.0 when
starting in the initial state, we generated paths to provide a certificate that the
given bounds (0.99 and 0.90, respectively) are indeed exceeded.

One can see that the version with loop detection always performs better than
the version without. In those cases where the counterexample does not contain
any loops, both versions of the algorithm perform similarly. For other instances
loop detection turns out to be essential for counterexample generation. E. g.,
for the leader-benchmark with N = 4 and K = 2, the algorithm without loop
detection found 239 138 paths (maximal length: 29) with a total probability
measure of 0.980 077 2 before the time limit was exceeded. In contrast to this,
the optimized algorithm only needed 8 paths with 64 loops and an unrolling
depth of 10 to reach the probability bound of 0.99.

In addition to the leader election protocol, we applied BMC to a contract
signing protocol [22,23]. Its purpose is to exchange pieces of information (e. g.
digital signatures) between two parties A and B over a network. One important
property that such a protocol should exhibit is fairness. This means, whenever
B has obtained A’s commitment, B cannot prevent A from getting B’s commit-
ment. For the variant of the protocol we used, the actual probability to reach
an unfair state is slightly larger than 0.5. The violated property for which we

http://prismmodelchecker.org
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generated counterexamples is P< 1
2
(true U unfair). Since the optimized algorithm

did not find any loops before reaching the probability bound and since the re-
sults for both variants do not differ substantially, we only show the results of
the algorithm without loop detection in Table 2. N denotes the number of data
pairs to exchange; and L, the size of each piece of data.

The results for the contract signing protocol show that we are able to handle
quite large Markov chains with more than 106 states. More states are possible if
we decrease the probability bound for the counterexample.

5 Conclusion

In the previous sections we have shown how bounded model checking can suc-
cessfully be applied to generate counterexamples when invariant properties of
Markov chains are violated. By returning not simply “flat” paths, but paths
which are annotated with loops, we make not only the algorithm more efficient,
but also the counterexamples more useful for the designer: (1) In many cases
fewer paths are needed such that the given probability bound is exceeded and
(2) the structured counterexamples provide more information about the system:
Each annotated path represents an acyclic execution trace together with possi-
ble deviations from this direct path in the form of loops. Additionally, bounded
model checking returns a counterexample which consist of shortest possible paths
(although they might be not the most probable ones).

Points for further research are to make the detection of loops more powerful
such that loops themselves may consist of loops. This will reduce the size of
the counterexample further. Other optimizations aim at reducing the number
of SAT-calls, e. g. by re-using loops on different annotated paths. Furthermore,
optimization techniques known from conventional bounded model checking
should be transferred to the stochastic world to speed-up the solution of the
SAT-instances. The extension of bounded model checking to Markov decision
processes (MDPs) will be another topic of our future research.
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