Understanding Complex Systems %En{%{l&ﬁl; :

Bruce Edmonds
Ruth Meyer Editors

Simulating
Social Complexity

A Handbook

@ Springer

Springer Complexity

Springer Complexity is an interdisciplinary program publishing the best research and
academic-level teaching on both fundamental and applied aspects of complex systems
— cutting across all traditional disciplines of the natural and life sciences, engineering,
economics, medicine, neuroscience, social and computer science.

Complex Systems are systems that comprise many interacting parts with the ability to
generate a new quality of macroscopic collective behavior the manifestations of which are
the spontaneous formation of distinctive temporal, spatial or functional structures. Models
of such systems can be successfully mapped onto quite diverse “real-life” situations like the
climate, the coherent emission of light from lasers, chemical reaction-diffusion systems,
biological cellular networks, the dynamics of stock markets and of the internet, earthquake
statistics and prediction, freeway traffic, the human brain, or the formation of opinions in
social systems, to name just some of the popular applications.

Although their scope and methodologies overlap somewhat, one can distinguish the
following main concepts and tools: self-organization, nonlinear dynamics, synergetics,
turbulence, dynamical systems, catastrophes, instabilities, stochastic processes, chaos,
graphs and networks, cellular automata, adaptive systems, genetic algorithms and compu-
tational intelligence.

The three major book publication platforms of the Springer Complexity program are the
monograph series “Understanding Complex Systems” focusing on the various applications
of complexity, the “Springer Series in Synergetics”, which is devoted to the quantitative
theoretical and methodological foundations, and the “SpringerBriefs in Complexity”
which are concise and topical working reports, case-studies, surveys, essays and lecture
notes of relevance to the field. In addition to the books in these two core series, the program
also incorporates individual titles ranging from textbooks to major reference works.

Editorial and Programme Advisory Board

Henry Abarbanel, Institute for Nonlinear Science, University of California, San Diego, USA

Dan Braha, New England Complex Systems Institute and University of Massachusetts Dartmouth, USA
Péter Erdi, Center for Complex Systems Studies, Kalamazoo College, USA and Hungarian Academy of
Sciences, Budapest, Hungary

Karl Friston, Institute of Cognitive Neuroscience, University College London, London, UK

Hermann Haken, Center of Synergetics, University of Stuttgart, Stuttgart, Germany

Viktor Jirsa, Centre National de la Recherche Scientifique (CNRS), Université de la Méditerranée,
Marseille, France

Janusz Kacprzyk, System Research, Polish Academy of Sciences,Warsaw, Poland

Kunihiko Kaneko, Research Center for Complex Systems Biology, The University of Tokyo, Tokyo,
Japan

Scott Kelso, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton,
USA

Markus Kirkilionis, Mathematics Institute and Centre for Complex Systems, University of Warwick,
Coventry, UK

Jiirgen Kurths, Nonlinear Dynamics Group, University of Potsdam, Potsdam, Germany

Andrzej Nowak, Department of Psychology, Warsaw University, Poland

Linda Reichl, Center for Complex Quantum Systems, University of Texas, Austin, USA

Peter Schuster, Theoretical Chemistry and Structural Biology, University of Vienna, Vienna, Austria
Frank Schweitzer, System Design, ETH Zurich, Zurich, Switzerland

Didier Sornette, Entrepreneurial Risk, ETH Zurich, Zurich, Switzerland

Stefan Thurner, Section for Science of Complex Systems, Medical University of Vienna, Vienna, Austria

Understanding Complex Systems

Founding Editor: S. Kelso

Future scientific and technological developments in many fields will necessarily
depend upon coming to grips with complex systems. Such systems are complex in
both their composition - typically many different kinds of components interacting
simultaneously and nonlinearly with each other and their environments on multiple
levels — and in the rich diversity of behavior of which they are capable.

The Springer Series in Understanding Complex Systems series (UCS) promotes
new strategies and paradigms for understanding and realizing applications of
complex systems research in a wide variety of fields and endeavors. UCS is
explicitly transdisciplinary. It has three main goals:

First, to elaborate the concepts, methods and tools of complex systems at all
levels of description and in all scientific fields, especially newly emerging areas
within the life, social, behavioral, economic, neuro- and cognitive sciences (and
derivatives thereof); second, to encourage novel applications of these ideas in
various fields of engineering and computation such as robotics, nano-technology
and informatics; third, to provide a single forum within which commonalities and
differences in the workings of complex systems may be discerned, hence leading to
deeper insight and understanding.

UCS will publish monographs, lecture notes and selected edited contributions
aimed at communicating new findings to a large multidisciplinary audience.

For further volumes:
http://www.springer.com/series/5394

Bruce Edmonds ¢ Ruth Meyer
Editors

Simulating
Social Complexity

A Handbook

@ Springer

Editors

Bruce Edmonds

Ruth Meyer

CPM - Centre for Policy Modelling
Manchester Metropolitan University
Manchester

United Kingdom

ISSN 1860-0832 ISSN 1860-0840 (electronic)
ISBN 978-3-540-93812-5 ISBN 978-3-540-93813-2 (eBook)
DOI 10.1007/978-3-540-93813-2

Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013934710

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

Part I Introductory Material

1

Introduction to the Handbook 3
Bruce Edmonds and Ruth Meyer

Historical Introduction 13
Klaus G. Troitzsch

Types of Simulation. 23
Paul Davidsson and Harko Verhagen

Part I Methodology

4

Informal Approaches to Developing Simulation Models. 39
Emma Norling, Bruce Edmonds, and Ruth Meyer

A Formal Approach to Building Compositional Agent-Based
Simulations. 57
Catholijn M. Jonker and Jan Treur

Checking Simulations: Detecting and Avoiding Errors

and Artefacts. 95
José M. Galan, Luis R. Izquierdo, Segismundo S. Izquierdo, José 1. Santos,
Ricardo del Olmo, and Adolfo Lopez-Paredes

Documenting Social Simulation Models: The ODD Protocol
asaStandard. e 117
Volker Grimm, Gary Polhill, and Julia Touza

Validating Simulations 135
Nuno David
Understanding Simulation Results 173

Andrew Evans, Alison Heppenstall, and Mark Birkin

vi Contents

10 Participatory Approaches.
Olivier Barreteau, Pieter Bots, Katherine Daniell, Michel Etienne,
Pascal Perez, Cécile Barnaud, Didier Bazile, Nicolas Becu,
Jean-Christophe Castella, William’s Daré, and Guy Trebuil

11 Combining Mathematical and Simulation Approaches to
Understand the Dynamics of Computer Models.
Luis R. Izquierdo, Segismundo S. Izquierdo, José M. Galan,
and José 1. Santos

12 Interpreting and Understanding Simulations: The Philosophy
of Social Simulation. L.
R. Keith Sawyer

Part II' Mechanisms

13 Utility, Games, and Narratives.
Guido Fioretti

14 Social Constraint.
Martin Neumann

15 Reputation..........,
Francesca Giardini, Rosaria Conte, and Mario Paolucci

16 Social Networks and Spatial Distribution.
Frédéric Amblard and Walter Quattrociocchi

17 Learning. e
Michael W. Macy, Stephen Benard, and Andreas Flache

18 Evolutionary Mechanisms.
Edmund Chattoe-Brown and Bruce Edmonds

Part IV Applications

19 Agent-Based Modelling and Simulation Applied to
Environmental Management
Christophe Le Page, Didier Bazile, Nicolas Becu, Pierre Bommel,
Francois Bousquet, Michel Etienne, Raphael Mathevet,
Véronique Souchere, Guy Trébuil, and Jacques Weber

20 Assessing Organisational Design.
Virginia Dignum

21 Distributed Computer Systems.
David Hales

Contents vii

22 Simulating Complexity of Animal Social Behaviour. 581
Charlotte Hemelrijk

23 Agent-Based Simulation as a Useful Tool for the Study
of Markets. 617
Juliette Rouchier

24 Movement of Peopleand Goods 651
Linda Ramstedt, Johanna Tornquist Krasemann, and Paul Davidsson

25 Modeling Power and Authority: An Emergentist View from
Afghanistan. 667
Armando Geller and Scott Moss

26 Human Societies: Understanding Observed Social Phenomena. ... 709
Bruce Edmonds, Pablo Lucas, Juliette Rouchier, and Richard Taylor

Index ... e 749

Part I
Introductory Material

Chapter 1
Introduction to the Handbook

Bruce Edmonds and Ruth Meyer

Why Read This Chapter? To understand some of the background and motivation
for the handbook and how it is structured.

1.1 Simulating Social Complexity

As the title indicates, this book is about Simulating Social Complexity. Each of
these three words is important.

Simulating — the focus here is on individual- or agent-based computational simulation
rather than analytic or natural language approaches (although these can be involved).
In other words, this book deals with computer simulations where the individual
elements of the social system are represented as separate elements of the simulation
model. It does not cover models where the whole population of interacting
individuals is collapsed into a single set of variables. Also, it does not deal with
purely qualitative approaches of discussing and understanding social phenomena, but
just those that try to increase their understanding via the construction and testing of
simulation models.

Social — the elements under study have to be usefully interpretable as interacting
elements of a society. The focus will be on human society, but can be extended
to include social animals or artificial agents where such work enhances our
understanding of human society. Thus this book does not deal with models of
single individuals or where the target system is dealt with as if it were a single
entity. Rather it is the differing states of the individuals and their interactions that
are the focus here.

B. Edmonds (0<) « R. Meyer

Manchester Metropolitan University, Centre for Policy Modelling, Manchester Metropolitan
University Business School, All Saints Campus, Oxford Road, M15 6BH Manchester, UK
e-mail: bruce@edmonds.name; meyer.ruth@gmail.com

B. Edmonds and R. Meyer (eds.), Simulating Social Complexity, 3
Understanding Complex Systems, DOI 10.1007/978-3-540-93813-2_1,
© Springer-Verlag Berlin Heidelberg 2013

mailto:bruce@edmonds.name
mailto:meyer.ruth@gmail.com

4 B. Edmonds and R. Meyer

Complexity — the phenomena of interest result from the interaction of social actors in
an essential way and are not reducible to considering single actors or a representative
actor and a representative environment. It is this complexity that (typically) makes
analytic approaches infeasible and natural language approaches inadequate for
relating intricate cause and effect. This complexity is expressed in many different
ways, for example: as a macro/micro link; as the social embedding of actors within
their society; as emergence. It is with these kinds of complexity that a simulation
model (of the kind we are focussing on) helps, since the web of interactions is too
intricate and tedious to be reliably followed by the human mind. The simulation
allows emergence to be captured in a formal model and experimented upon.

Since this area is relatively new it involves researchers from a wide variety of
backgrounds, including: computer scientists, sociologists, anthropologists, geographers,
engineers, physicists, philosophers, biologists and even economists. It is only in the past
few years that the elements and shape of the field are starting to be discernable. It is for
this reason that a handbook is particularly timely. We hope that it will help to introduce
and guide newcomers into the field so as to involve more minds and effort in this
endeavour, as well as inform those who enter it from one perspective to learn about other
sides and techniques.

1.2 The Context, Going Back to Herbert Simon

This handbook is in memory of Herbert Simon, since he initiated several key
strands that can be found in the work described here.

He observed how people behave in a social system instead of following some
existing framework of assumptions as to how they behave (Simon 1947). That is, he
tried to change the emphasis of study from a normative to a descriptive approach —
from how academics think people should be behaving to how people are observed to
behave. Famously he criticised “arm chair” theorising, the attempt to make theories
about social phenomena without confronting the theory with observation. There is
still a lot of “arm chair” theorising in the field of simulating social complexity, with a
“Cambrian Explosion” of simulation models, which are relatively unconstrained by
evidence from social systems. If the development of this work is seen as a sort of
evolutionary process then the forces of variation are there in abundance but the
forces of selection are weak or non-existent (Edmonds 2010).

Importantly for the simulation of complex social systems, Simon observed that
people act with a procedural rather than substantive rationality — they have a proce-
dure in the form of a sequence of actions that they tend to use to deal with tasks and
choices rather than try to find the best or ideal sequence of actions (Simon 1947,
1976). With the advent of computational simulation it is now fairly common to
represent the cognition of agents in a model with a series of rules or procedures.
This is partly because implementing substantive rationality is often infeasible due to
the computational expense of doing do, but more importantly it seems to produce
results with a greater “surface validity” (i.e. it looks right). It turns out that adding

1 Introduction to the Handbook 5

some adaptive or learning ability to individuals and allowing the individuals to
interact can often lead to effective “solutions” for collective problems (e.g. the entities
in Chap. 21). It is not necessary to postulate complex problem solving and planning
by individuals for this to occur.

Herbert Simon observed further that people tend to change their procedure only if it
becomes unsatisfactory; they have some criteria of sufficient satisfaction for judging a
procedure and if the results meet this they do not usually change what they do. Later
Simon (1956) and others (e.g. Sargent 1993) focused on the contrast between
optimisers and satisficers, since the prevailing idea of decision making was that
many possible actions are considered and compared (using the expected utility of
the respective outcomes) and the optimal action was the one that was chosen.
Unfortunately it is this later distinction that many remember from Simon, and not
the more important distinction between procedural and substantive rationality.
Simon’s point was that he observed that people use a procedural approach to tasks;
the introduction of satisficing was merely a way of modelling this (Sent 1997).
However, the idea of thresholds, that people only respond to a stimulus when it
become sufficiently intense, is often credible and is seen in many simulations (for
some examples of this, see Chaps. 22 and 25).

Along with Alan Newell, Simon made a contribution of a different kind to the
modelling of humans. He produced a computational model of problem solving in the
form of a computer program, which would take complex goals and split them into
sub-goals until the sub-goals were achievable (Newell and Simon 1972). The
importance of this, from the point of view of this book, is that it was a computational
model of an aspect of cognition, rather than one expressed in numerical and analytic
form. Not being restricted to models that can be expressed in tractable analytic forms
allows a much greater range of possibilities for the representation of human individ-
ual and social behaviour. Computational models of aspects of cognition are now
often introduced to capture behaviours that are difficult to represent in more tradi-
tional analytic models. Computational power is now sufficiently available to enable
each represented individual to effectively have its own computational process,
allowing a model to be distributed in a similar way to that of the social systems we
observe. Thus the move to a distributed and computational approach to modelling
social phenomena can be seen as part of a move away from abstract models divorced
from what they model towards a more descriptive type of representation.

This shift towards a more straightforward (even ‘natural’) approach to modelling
also allows for more evidence to be applied. In the past anecdotal evidence, in the
form of narrative accounts by those being modelled was deemed as “unscientific”.
One of the reasons that such evidence was rejected is that it could not be used to help
specify or evaluate formal models; such narrative evidence could only be used within
the sphere of rich human understanding and not at the level of a precise model.
Computational simulation allows some aspects of individual’s narratives to be used to
specify or check the behaviour of agents in a model, as well as the results being more
readily interpretable by non-experts. This has let such computational simulations to be
used in conjunction with stakeholders in a far more direct way than was previously
possible. Chapter 10 looks at this approach.

http://dx.doi.org/10.1007/978-3-540-93813-2_21
http://dx.doi.org/10.1007/978-3-540-93813-2_22
http://dx.doi.org/10.1007/978-3-540-93813-2_25
http://dx.doi.org/10.1007/978-3-540-93813-2_10

6 B. Edmonds and R. Meyer

Herbert Simon did not himself firmly connect the two broad strands of his work:
the observation of people’s procedures in their social context and their algorithmic
modelling in computer models. This is not very surprising as the computational
power to run distributed AI models (which are essentially what agent-based
simulations are) was not available to him. Indeed these two strands of his work are
somewhat in opposition to each other, the one attempting to construct a general
model of an aspect of cognition (e.g. problem solving) and the other identifying quite
specific and limited cognitive procedures. I think it is fair to say that whereas Simon
did reject the general economic model of rationality, he did not lose hope of a general
model of cognitive processes, which he hoped would be achieved starting from good
observation of people. There are still many in the social simulation community who
hope for (or assume) the existence of an “off-the-shelf” model of the individuals’
cognition which could be plugged into a wider simulation model and get reasonable
results. Against any evidence, it is often simply hoped that the details of the
individuals’ cognitive model will not matter once embedded within a network of
interaction. This is an understandable hope, since having to deal with both individual
cognitive complexity and social complexity makes the job of modelling social
complexity much harder — it is far easier to assume that one or the other does not
matter much. Granovetter (1985) addressed precisely this question arguing against
both the under-socialised model of behaviour (that it is the individual cognition that
matters and the social effects can be ignored) and the over-socialised model (that it is
the society that determines behaviour regardless of the individual cognition).

Herbert Simon did not have at his disposal the techniques of individual- and agent-
based simulation discussed in this handbook. These allow the formal modelling of
socially complex phenomena without requiring the strong assumptions necessary to
make an equation-based approach (which is the alternative formal technique) analyti-
cally tractable. Without such simulation techniques modellers are faced with a
dilemma: either to “shoe-horn” their model into an analytically tractable form,
which usually requires them to make some drastic simplifications of what they are
representing, or to abandon any direct formal modelling of what they observe. In the
later case, without agent-based techniques, they then would have two further choices:
to simply not do any formal modelling at all remaining in the world of natural
language, or to ignore evidence of the phenomena and instead model their idea
concerning the phenomena. In other words, to produce an abstract but strictly analog-
ical model — a way of thinking about the phenomena expressed as a simulation. This
latter kind of simulation does not directly relate to any data derived from observation
but to an idea, which, in turn, relates to what is observed in a rich, informal manner.
Of course there is nothing wrong with analogical thinking, it is a powerful source of
ideas, but such a model is not amenable to scientific testing.

The introduction of accessible agent-based modelling opens up the world of social
complexity to formal representation in a more natural and direct manner. Each entity in
the target system can be represented by a separate entity (agent or object) in the model,
each interaction between entities as a set of messages between the corresponding
entities in the model. Each entity in the model can be different, with different
behaviours and attributes. The behaviour of the modelled entities can be realised in

1 Introduction to the Handbook 7

terms of readily comprehensible rules rather than equations, rules that can be directly
compared to accounts and evidence of the observed entities’ behaviour. Thus the
mapping between the target system and model is simpler and more obvious than when
all the interactions and behaviour is “packaged up” into an analytic or statistical model.
Formal modelling is freed from its analytical straight jacket, so that the most appropri-
ate model can be formulated and explored. It is no longer necessary to distort a model
with the introduction of overly strong assumptions simply in order to obtain analytic
tractability. Also, agent-based modelling does not require high levels of mathematical
skill and thus is more accessible to social scientists. The outcomes of such models can
be displayed and animated in ways that make them more interpretable by experts and
stakeholders (for good and ill).

It is interesting to speculate what Herbert Simon would have done if agent-based
modelling was available to him. It is certainly the case that it brings together two of the
research strands he played a large part in initiating: algorithmic models of aspects of
cognition; and complex models that are able to take into account more of the available
evidence. We must assume that he would have recognised and felt at home with such
kinds of model. It is possible that he would not have narrowed his conception of
substantive rationality to that of satisficing if he had other productive ways of formally
representing the processes he observed in the way he observed them occurring.

It is certainly true that the battle he fought against “armchair theorising” (working
from a neat set of assumptions that are independent of evidence) is still raging. Even in
this volume you will find proponents (let’s call them the optimists) that still hope that
they can find some short-cut that will allow them to usefully capture social complexity
within abstract and simple models (theory-like models), and those (the pessimists) that
think our models will have to be complex, messy and specific (descriptive models) if
they are going to usefully represent anything we observe in the social world. However,
there is now the possibility of debate, since we can compare the results and success of
the optimistic and pessimistic approaches and indeed they can learn from each other.

It seems that research into social complexity has reached a cusp, between the
“revolutionary” and “normal” phases described by Kuhn (1962). A period of explor-
atory growth, opposed to previous orthodoxies, has occurred over the last 15-20 years,
where it was sufficient to demonstrate a new kind of model, where opening up new
avenues was more important than establishing or testing ideas about observed systems.
Now attention is increasingly turning to the questions such as: how to productively and
usefully simulate social complexity; how to do it with the greatest possible rigour; how
to ensure the strongest possible relation to the evidence; how to compare different
simulations; how to check them for unintentional errors; how to use simulation
techniques in conjunction with others (analytic, narrative, statistical, discourse analy-
sis, stakeholder engagement, data collection etc.). The field — if it is that — is maturing.

This handbook is intended to help in this process of maturation. It brings together
summaries of the best thinking and practice in this area, from many of the top
researchers. In this way it aims to help those entering into the field so that they do
not have to reinvent the wheel. It will help those already in the field by providing
accessible summaries of current thought. It aims to be a reference point for best current
practice and a standard against which future methodological advances are judged.

8 B. Edmonds and R. Meyer
1.3 The Structure of the Handbook

The material in this book is divided into four sections: Introductory, Methodology,
Mechanisms and Applications. We have tried to ensure that each chapter within these
sections covers a clearly delineated set of issues. To aid the reader each chapter starts
with a very brief section called “Why read this chapter?” that sums up the reasons
you would read it in a couple of sentences. This is followed by an abstract, which
summarises the content of the chapter. Each chapter also ends with a section of
“Further Reading” briefly describing things that a newcomer might read next if they
are interested. This is separate from the list of references, which contains all the
references mentioned in the chapter.

1.3.1 Introductory Section

The introductory section includes three chapters: this chapter, a historical introduc-
tion (Chap. 2) that reviews the development of social simulation providing some
context for the rest of the book, and an overview of the different kinds of simulation
(Chap. 3).

1.3.2 Methodology Section

The next section on methodology consists of nine chapters that aim to guide the
reader through the process of simulating complex social phenomena. It starts with
two approaches to designing and building simulation models: formal (Chap. 5) and
informal (Chap. 4). The former being more appropriate where the goals and
specification of the proposed simulation are known and fixed, the latter more
appropriate in the case where possible models are being explored, in other words
when the simulation model one wants cannot be specified in advance.

However carefully a modeller designs and constructs such simulations they are
complex entities, which are difficult to understand completely. The next chapter (6)
guides the reader through the ways in which a simulation model can be checked to
ensure that it conforms to the programmer’s intentions for it. All of the approaches
described in these three chapters are aided by good, clear documentation. Chapter 7
describes a way of structuring and performing such documentation that helps to
ensure that all necessary information is included without being an overly heavy
burden.

Three chapters in this section are concerned with the results of simulations.
Chapter 8 concentrates on the validation of simulation models: the many ways in
which a model and the possible outputs from simulation runs can be related to data as
a check that it is correct for its purpose. Chapter 9 explores ways of analysing and

http://dx.doi.org/10.1007/978-3-540-93813-2_2
http://dx.doi.org/10.1007/978-3-540-93813-2_3
http://dx.doi.org/10.1007/978-3-540-93813-2_5
http://dx.doi.org/10.1007/978-3-540-93813-2_4
http://dx.doi.org/10.1007/978-3-540-93813-2_6
http://dx.doi.org/10.1007/978-3-540-93813-2_7
http://dx.doi.org/10.1007/978-3-540-93813-2_8
http://dx.doi.org/10.1007/978-3-540-93813-2_9

1 Introduction to the Handbook 9

visualising simulation results, which is vital if the programmer or a wider audience is
to understand what is happening within complex simulations. Chapter 12 looks at the
wider question of the meaning and import of simulations, in other words the
philosophy of social simulation including what sort of theorising they imply.

Two other chapters consider separate aspects, but ones that will grow in importance
over time. Chapter 10 looks at participatory approaches to simulation, that is ways of
involving stakeholders more directly in the model specification and/or development
process. This is very different to an approach where the simulation model is built by
expert researchers who judge success by the correspondence with data sets, and can
almost become an intervention within a social process rather than a representation of it.
Chapter 11 investigates how analytic approaches can be combined with simulation
approaches, both using analytics to approximate and understand a simulation model as
well as using simulation to test the assumptions within an analytic model.

1.3.3 Mechanisms Section

The third section considers types of social mechanisms that have been used and
explored within simulations. It does not attempt to cover all such approaches, but
concentrates upon those with a richer history of use, where knowing about what has
been done might be important and possibly useful.

Chapter 13 takes a critical look at mechanisms that may be associated with
economics. Although this handbook is not about economic simulation' mechanisms
from economics are often used within simulations with a broader intent. Unfortunately,
this is often done without thinking so that, for example, an agent might be programmed
using a version of economic rationality (i.e. considering options for actions and rating
them as to their predicted utility) just because that is what the modellers know or
assume. However, since economic phenomena are a subset of social phenomena this
chapter does cover these.

Chapter 14 surveys a very different set of mechanisms, those of laws, conventions
and norms. This is where behaviour is constrained from outside the individual in some
way (although due to some decision to accept the constraint from the inside to differing
degrees). Chapter 15 focuses on trust and reputation mechanisms; how people might
come to judge that a particular person is someone they want to deal with.

Chapter 16 looks at a broad class of structures within simulations, those that
represent physical space or distribution in some way. This is not a cognitive or social
mechanism in the same sense of the other chapters in this section, but has implications
for the kinds of interactions that can occur, and indeed facilitates some kinds of
interaction due to partial isolation of local groups.

The last two chapters in this section examine ways in which groups and individuals
might adapt. Learning and evolution are concepts that are not cleanly separable;
evolution is a kind of learning by the collection of entities that are evolving and has

! There is an extensive handbook on this (Tesfatsion and Judd 2006).

http://dx.doi.org/10.1007/978-3-540-93813-2_12
http://dx.doi.org/10.1007/978-3-540-93813-2_10
http://dx.doi.org/10.1007/978-3-540-93813-2_11
http://dx.doi.org/10.1007/978-3-540-93813-2_13
http://dx.doi.org/10.1007/978-3-540-93813-2_14
http://dx.doi.org/10.1007/978-3-540-93813-2_15
http://dx.doi.org/10.1007/978-3-540-93813-2_16

10 B. Edmonds and R. Meyer

been used to implement learning within an individual (e.g. regarding the set of
competing strategies an individual has) as well as within a society. However,
Chap. 17 investigates these concepts primarily from the point of view of algorithms
for an individual to learn, while Chap. 18 looks at approaches that explicitly take a
population and apply some selective pressures upon it, along with adding some sources
of variation.

1.3.4 Applications Section

The last section looks at eight areas where the techniques that have been described
are being applied. We chose areas where there has been some history of application
and hence some experience. Areas of application that are only just emerging are not
covered here.

Chapter 19 reviews applications to ecological management. This is one of the
oldest and most productive areas where simulation approaches have been applied.
Since it is inevitable that the interaction of society and the environment is complex,
analytic approaches are usually too simplistic and approaches that are better suited
are needed.

Chapter 20 discusses how simulation approaches have begun to inform the
design of organisations or its processes. Chapter 21 explores how a simulation-
based understanding of ICT systems can enable new kinds of distributed systems to
be designed and managed, while Chap. 22 looks at how simulation can help us
understand animal interaction. Chapter 23 describes agent-based simulations as a
useful tool to come to a complex understanding of how markets actually work (in
contrast to their economic idealisations). Chapter 24 considers systems where
people and/or goods are being moved within space or networks including logistics
and supply chains.

The last two chapters look at understanding human societies. Chapter 25 focuses
on a descriptive modelling approach to structures of power and authority, with
particular reference to Afghanistan, whereas Chap. 26 reviews the different ways in
which simulations have been used to understand human societies, briefly describing
examples of each.

References

Edmonds B (2010) Bootstrapping knowledge about social phenomena using simulation models.
J Artif Soc Soc Simulat 13(1). http://jasss.soc.surrey.ac.uk/13/1/8.html

Granovetter M (1985) Economic action and social structure: the problem of embeddedness. Am J
Sociol 91(3):481-510

Kuhn TS (1962) The structure of scientific revolutions. University of Chicago Press, Chicago

Newell A, Simon HA (1972) Human problem solving. Prentice-Hall, Englewood Cliffs

Sargent TJ (1993) Bounded rationality in macroeconomics: the Arne Ryde memorial lectures.
Clarendon, Oxford

Sent E-M (1997) Sargent versus Simon: bounded rationality unbound. Camb J Econ 21:323-338

http://dx.doi.org/10.1007/978-3-540-93813-2_17
http://dx.doi.org/10.1007/978-3-540-93813-2_18
http://dx.doi.org/10.1007/978-3-540-93813-2_19
http://dx.doi.org/10.1007/978-3-540-93813-2_20
http://dx.doi.org/10.1007/978-3-540-93813-2_21
http://dx.doi.org/10.1007/978-3-540-93813-2_22
http://dx.doi.org/10.1007/978-3-540-93813-2_23
http://dx.doi.org/10.1007/978-3-540-93813-2_24
http://dx.doi.org/10.1007/978-3-540-93813-2_25
http://dx.doi.org/10.1007/978-3-540-93813-2_26
http://jasss.soc.surrey.ac.uk/13/1/8.html

1 Introduction to the Handbook 11

Simon HA (1947) Administrative behavior: a study of decision-making processes in administrative
organizations. The Free Press, New York

Simon HA (1956) Rational choice and the structure of the environment. Psychol Rev 63(2):129-138

Simon HA (1976) Administrative behavior, 3rd edn. The Free Press, New York

Tesfatsion L, Judd KL (eds) (2006) Handbook of computational economics, vol 2: Agent-based
computational economics, vol 13: Handbooks in economics. North Holland, Amsterdam

Chapter 2
Historical Introduction

Klaus G. Troitzsch

Why Read This Chapter? To understand the historical context of simulation in
the social sciences and thus to better comprehend the developments and
achievements of the field.

Abstract This chapter gives an overview of early attempts at modelling social
processes in computer simulations. It discusses the early attempts, their successes
and shortcomings and tries to identify some of them as forerunners of modern
simulation approaches.

2.1 Overview

The chapter is organised as follows: the next section will discuss the early attempts
at simulating social processes, mostly aiming at prediction and numerical simula-
tion of mathematical models of social processes. Section 2.3 will then be devoted to
the non-numerical and early agent-based approaches, while Sect. 2.4 will give a
short conclusion, followed by some hints at further reading.

2.2 The First Two Decades

Simulation in the social sciences is nearly as old as computer simulation at large. This
is partly due to the fact that some of the pioneers of computer science — such as John
von Neumann, one of the founders of game theory — were at the same time pioneers in
the formalisation of social science. In addition, Herbert A. Simon, one of the pioneers

K.G. Troitzsch ()

Institut fiir Wirtschafts- und Verwaltungsinformatik, Universitdt Koblenz-Landau,
Koblenz, Germany

e-mail: kgt@uni-koblenz.de

B. Edmonds and R. Meyer (eds.), Simulating Social Complexity, 13
Understanding Complex Systems, DOI 10.1007/978-3-540-93813-2_2,
© Springer-Verlag Berlin Heidelberg 2013

mailto:kgt@uni-koblenz.de

14 K.G. Troitzsch

in formalising social science, was an early adopter of computer-assisted methods of
building social theories. Thus the first two decades of computational social science
saw mathematical models and their inelegant solutions, microsimulation and even the
first agent-based models before the name of this approach was coined.

Among the first problems tackled with the help of computer simulation were
predictions of the future of companies (“industrial dynamics”, Forrester 1961),
cities (“urban dynamics”, Forrester 1969) and the world as a whole (“world
dynamics”, Forrester 1971) in the early 1960s and 1970s by Jay W. Forrester as
well as predictions of the consequences of tax and transfer laws for both the
individual household and the national economy in microanalytical simulation, an
attempt that started as early as 1956 (Orcutt 1957). Other early attempts at the
prediction of elections and referendum campaigns also became known in the 1960s,
such as Abelson and Bernstein’s simulation analysis of a fluoridation referendum
campaign within the Simulmatics project directed by de Sola Pool (Abelson and
Bernstein 1963). What all these early simulations have in common is that they were
aimed at predicting social and economic processes in a quantitative manner, and
that computer simulation was seen as a “substitute for mathematical derivations”
(Coleman 1964, p. 528). Despite Simon and others having already taught computers
to deal with non-numerical problems as early as 1955 (“Logic Theorist, the first
computer program that solved non-numerical problems by selective search”,
Simon 1996, pp. 189-190), 10 years later Coleman still believed that “the computer
cannot solve problems in algebra; it can only carry out computations when actual
numbers are fed into it (Coleman 1964, p. 529).

The remainder of this section will give a short overview of system dynamics and
microanalytic simulation — simulation approaches that continue to be promoted by
learned societies such as the System Dynamics Society and the International
Microsimulation Association, each celebrating their 50th anniversary with interna-
tional conferences held in Boston in July 2007 and Vienna in August 2007,
respectively —, before going into the details of some other early models that
remained more or less isolated and are now all but forgotten.

System dynamics was developed by Jay W. Forrester in the mid-1950s as a tool
to describe systems which could be modelled with large sets of difference and
differential equations containing functions whose mathematical treatment would
have been difficult or impossible. The general idea behind system dynamics was,
and is, that a system, without considering its components individually, could be
described in terms of its aggregate variables and their changes over time. The best
known examples of system dynamics models are Forrester’s (1971) and Meadows
et al. (1974) world models which were inspired by the Club of Rome and won
public attention in the 1970s when they tried to forecast the world population, the
natural resources, the industrial and agricultural capital and the pollution until the
end of the twenty-first century by describing the annual change of these aggregate
variables as functions of their current states and numerous parameters which had
some empirical background.

Microsimulation was first described in papers by Orcutt (1957) who designed a
simulation starting with a (sample of a) given population and simulating the individ-
ual fate of all the members of this population (sample) with the help of transition

2 Historical Introduction 15

probabilities empirically estimated from official statistics. Transitions represent
changes in the circumstances of an individual, e.g. switching to a different job,
achieving a higher educational level, marriage, birth of a child or death. These models
have mainly been used for predicting demographic changes and the effects of tax and
transfer rules. Usually they do not take into account that the overall changes of the
aggregated variables of the population (or the sample) may affect individual
behaviour. Thus in the sense of Coleman (1990, p. 10) these models neglect the
“downward causation” (i.e. the influence of the aggregate on the individual) and focus
only on the “upward causation”, namely the changes on the macro level, which are the
result of the (stochastically simulated) behaviour of the individuals.

The fluoridation referendum campaign model already mentioned above was one
of the first models that can be classified as an early predecessor of today’s agent-
based models. It consisted of a large number of representatives of people living in a
community faced with the option of compulsory fluoridation of drinking water — an
issue often discussed in the 1960s — which they would have to vote upon at the end
of a longish campaign, in which the media and local politicians were publishing
arguments in favour of or against this issue. In this model, 500 individuals are
exposed to information spread by several communication channels or sources and
additionally, they also exchange information among themselves. It depends on their
simulated communication habits to which extent they actually receive this infor-
mation and, moreover, to which extent this leads to changes in their attitudes
towards the referendum issue. Abelson and Bernstein defined 51 rules of behaviour,
22 of which are concerned with the processing of information spread over the
communication channels, whereas 27 rules are related to the information exchange
among individuals. Another two rules determine the final voting behaviour at the
end of the referendum campaign. The rules for processing the information from
public channels and those for processing the information exchanged among indi-
vidual citizens are quite similar; rule A3 and rule B2 read, for instance, “Receptivity
to [source] s is an inverse function of the extremity of [individual] i’s attitude
position.”

While this early model did not endow the model individuals with an appropriate
repertoire of behaviours, it nevertheless displays a relatively broad range of com-
munication possibilities among the model individuals — something that was neither
aimed at in the classical microanalytical simulation approach, nor in the cellular
automata approach adopted in the early 1970s in Thomas Schelling’s seminal paper
on segregation. One of the shortcomings of Abelson and Bernstein’s model in the
eyes of its critics was the fact that it “has never been fully tested empirically” (Alker
1974, p. 146). They also contested the adequacy of its “static representations of
citizen belief systems defined primarily in terms of assertions held, assertions
acceptance predispositions, with associated, more general, conflict levels” (Alker
1974, p. 146). Moreover, the assertions were modelled numerically (not a problem
with the proponents of a mathematical sociology who would even have used a large
system of differential equations to model the citizens’ attitude changes) where
obviously real citizens’ attitudes were never mapped on to the set of integer or
real numbers. Nowak et al. (1990, p. 371) give further reasons for the fact that this
approach was dropped for decades, “the ad hoc quality of many of the assumptions

16 K.G. Troitzsch

of the models, perhaps because of dissatisfaction with the plausibility of their
outcomes despite their dependence on extensive parameter estimation, or perhaps
because they were introduced at a time when computers were still cumbersome and
slow and programming time-consuming and expensive.”

Simulmatics suffered basically the same fate as Abelson and Bernstein’s model:
Simulmatics was set up “for the Democratic Party during the 1960 campaign. ...
The immediate goal of the project was to estimate rapidly, during the campaign, the
probable impact upon the public, and upon small strategically important groups
within the public, of different issues which might arise or which might be used by
the candidates” (de Sola Pool and Abelson 1961, p. 167). The basic components of
this simulation model were voter types, 480 of them, not individual voters, with
their attitudes towards a total of 48 so-called “issue clusters”, i.e. “political
characteristics on which the voter type would have a distribution”. Voter types
were mainly defined by region, agglomeration structure, income, race, religion,
gender and party affiliation. From different opinion polls and for different points of
time these voter types were attributed four numbers per “issue cluster”: the number
of voters in this type and “the percentages pro, anti and undecided or confused on
the issue” (168). For each voter type empirical findings about cross-pressure
(e.g. anti-Catholic voters who had voted for the Democratic Party in the 1958
congressional elections and were likely to stay at home instead of voting for the
Catholic candidate of the Democrats) were used during a simulation run to re-adjust
the preferences of the voters, type by type. It is debatable whether this would
classify as a simulation in current social simulation communities, but since this
approach at least in some way resembles the classical static microsimulation, where
researchers are interested in the immediate consequences of new tax or transfer
laws with no immediate feedback, one could argue that Simulmatics was a simula-
tion project — though with as little sophistication as static microsimulation.

Thus the first two decades of computer simulation in the social sciences were
mainly characterised by two beliefs: that computer simulations were nothing but the
numerical solution of more adequate mathematical models, and that they were most
useful for predicting the outcome of social processes whose first few phases had
already been observed. This was also the core of the discussion opened in 1968 by
Hayward Alker who analysed, among others, the Abelson-Bernstein community
referendum model and came to the conclusion that this “simulation cannot be
‘solved’: one must project what will be in the media, what elites will be doing,
and know what publics already believe before even contingent predictions are made
about community decisions. In that sense an open simulation is bad mathematics
even if it is a good social system representation.” (Alker 1974, p. 153)

2.3 Computer Simulation in Its Own Right

The Simulmatics Corporation mentioned in the previous subsection did not only
work in the context of election campaigning, but later on also as a consulting
agency in other political fields. Their Crisiscom model is another example of an

2 Historical Introduction 17

early forerunner of current simulation models of negotiation and decision making
processes. At the same time it is an early example of a simulation not aimed at
prediction but at “our understanding of the process of deterrence by exploring how
far the behaviour of political decision makers in crisis can be explained by psycho-
logical mechanisms.” (de Sola Pool and Kessler 1965, p. 31) Crisiscom dealt with
messages of the type “actor one is related to actor two”, where the set of relations
was restricted to just two relations: affect and salience. In some way, Crisiscom
could also be used as part of a gaming simulation in which one or more of the actors
were represented by human players, whereas the others were represented by the
computer program — thus it can also be classified as a predecessor of participatory
simulation (see Chap. 10 in this volume).

The 1970s and 1980s saw a number of new approaches to simulate abstract
social processes, and most of them now were actual computer simulations, as — in
terms of Thomas Ostrom — they used the “third symbol system” (Ostrom 1988,
p- 384) directly by translating their ideas from the first symbol system, natural
language, into higher level programming languages instead of using it as a machine
to manipulate symbols of the second symbol system, mathematics. Although this
was already true for Herbert Simon’s Logic Theorist, the General Problem Solver
and other early artificial intelligence programs, the direct use of the “third symbol
system” in social science proper was not introduced before the first multilevel
models and cellular automata that integrated at least primitive agents in the sense
of software modules with some autonomy.

Cellular automata (Farmer et al. 1984; Ilachinski 2001) are a composition of
finite automata which all follow the same rule, are ordered in a (mostly) two-
dimensional grid and interact with (receive input from) their neighbours. The
behaviour of the individual cells is usually quite simple: they only have a small
number of states among which they switch according to relatively simple transition
rules. Prime example is the famous game of life (Gardener 1970), where the cells
are either alive or dead and change state according to two simple rules: (a) a cell
stays alive if it has exactly two or three live neighbouring cells, otherwise it dies;
(b) a dead cell bursts into life if there are exactly three live cells among its eight
neighbours. The great variety of outcomes on the level of the cellular automaton as
a whole enthused researchers in complexity science and laid the headstone for
innumerable cellular automata in one or two dimensions.

One of the first applications of cellular automata to problems of social science is
Thomas Schelling’s (1971) segregation model, demo versions of which are nowa-
days part of any distribution of simulation tools used for programming cellular
automata and agent-based models. This model shows impressively that segregation
and the formation of ghettos is inevitable even if individuals tolerate a majority of
neighbours different from themselves.

Another example is Bibb Latané’s Dynamic Social Impact theory with the
implementation of the SITSIM model (Nowak and Latané 1994). This model,
similar to Schelling’s, also ends up in clustering processes and in the emergence
of local structures in an initially randomly distributed population, but unlike
Schelling’s segregation model (where agents move around the grid of a cellular

http://dx.doi.org/10.1007/978-3-540-93813-2_10

18 K.G. Troitzsch

automaton until they find themselves in an agreeable neighbourhood) the clustering
in SITSIM comes from the fact that immobile agents adapt their attitudes to the
attitudes they find in their neighbourhood according to the persuasive strength of
their neighbours.

Other cellular automata models dealt with n-person cooperation games and
integrated game theory into complex models of interaction between agents and
their neighbourhoods. These models, too, usually end up in emergent local structures
(Hegselmann 1996).

Another game-theory-related computer simulation, run by Axelrod (1984),
showed the Tit-For-Tat strategy in the iterated prisoner’s dilemma as superior to
all other strategies represented in a computer tournament. The prisoner’s dilemma
had served game theorists, economists and social scientists as a prominent model of
decision processes under restricted knowledge. The idea stems from the early
1950s, first written down by Albert Tucker, and is about “two men, charged with
a joint violation of law, [who] are held separately by the police. Each is told that
(1) if one confesses and the other does not, the former will be given a reward . . . and
the latter will be fined . . . (2) if both confess, each will be fined . . . At the same time,
each has good reason to believe that (3) if neither confesses, both will go clear.”
(Poundstone 1992, pp. 117-118) In the non-iterated version the rational solution is
that both confess — but if they believe they can trust each other, they can both win,
as both will go clear if neither confesses. Axelrod’s question was under which
conditions a prisoner in this dilemma would “cooperate” (with his accomplice, not
with the police) and under which condition they would “defect” (i.e. confess, get a
reward and let the accomplice alone in prison). Strategies in this tournament had to
define which choice — cooperate or defect — each player would make, given the
history of choices of both players, but not knowing the current decision of the
partner. Then every strategy played the iterated game against every other strategy,
with identical payoff matrices — and the Tit-For-Tat strategy proved to be superior
to 13 other strategies proposed by economists, game theorists, sociologists,
psychologists and mathematicians (and it was the strategy that had the shortest
description in terms of lines-of-code). Although later on several characteristics of a
number of the strategies proposed could be analysed mathematically, the tourna-
ment had at least the advantage of easy understandability of the outcomes — which,
by the way, is another advantage of the “third symbol system” over the symbol
system of mathematics.

Cellular automata later on became the environment of even more complex
models of abstract social processes. They serve as a landscape where moving,
autonomous, pro-active, goal-directed software agents harvest food and trade
with each other. Sugarscape is such a landscape functioning as a laboratory for a
“generative social science” (Epstein and Axtell 1996, p. 19) in which the researcher
“erows” the emergent phenomena typical for real-world societies in a way that
includes the explanation of these phenomena. In this artificial world, software
agents find several types of food which they need for their metabolism, but in
different proportions, which gives them an incentive to barter one kind of food,
of which they have plenty, for another kind of food, which they urgently need.

2 Historical Introduction 19

Table 2.1 Overview of important approaches to computational social science

Approach Used since Characteristics

System Mid-1950s Only one object (the system) with a large number of
dynamics attributes

Microsimulation Mid-1950s A large number of objects representing individuals

that do not interact, neither with each other nor
with their aggregate, with a small number of
attributes each, plus one aggregating object
Cellular Mid-1960s Large number of objects representing individuals
automata that interact with their neighbours, with a very
restricted behaviour rule, no aggregating object,
thus emergent phenomena have to be visualised

Agent-based Early 1990s, with some Any number of objects (“agents”) representing
models forerunners in the individuals and other entities (groups, different
1960s kinds of individuals in different roles) that

interact heavily with each other, with an
increasingly rich repertoire of changeable
behaviour rules (including the ability to learn
from experience and/or others, to change their
behavioural rules and to react differently to
identical stimuli when the situation in which
they are received is different)

This kind of laboratory gives an insight under which conditions skewed wealth
distributions might occur or be avoided; with some extensions (Konig et al. 2002)
agents can even form teams led by agents who are responsible for spreading the
information gained by their followers among their group.

2.4 Conclusion

This short guided tour through early simulation models tried to show the optimism
of the early adopters of this method: “If it is possible to reproduce, through
computer simulation, much of the complexity of a whole society going through
processes of change, and to do so rapidly, then the opportunities to put social
science to work are vastly increased.” (de Sola Pool and Abelson 1961, p. 183) 35
years later, Epstein and Axtell formulate nearly the same optimism when they list a
number of problems that social sciences have to face — suppressing real-world
agents’ heterogeneity, neglecting non-equilibrium dynamics and being preoccupied
with static equilibria — and claim that “the methodology developed [in Sugarscape]
can help to overcome these problems” (Epstein and Axtell 1996, p. 2).

To complete this overview, Table 2.1 lists the approaches touched in this
introductory chapter with their main features.

As one can easily see from this table, only the agent-based approach is able to
“cover all the world” (Brassel et al. 1997), as only this approach can (a) include the
features of all the other approaches, and (b) meet the needs of social science for

20 K.G. Troitzsch

models of individuals which are able to exchange symbolic messages that have to be
interpreted by the recipients before they can take effect. When investigating large-
scale social phenomena involving large numbers of individuals in more or less similar
situations, then microsimulation, cellular automata, including sociophysics models
(Chakrabarti et al. 2006; Ball 2005), or even system dynamics may provide a good
(enough) approximation of what happens in human societies. But if we deal with
small communities — including the local communities Abelson and Bernstein
analysed —, then the process of persuasion, which needs at least one persuasive person
and one or more persuadable persons, has to be taken into account, and this calls for
agents of a richer structure than the early approaches could provide.

Further Reading

Most of the literature suggested for further reading has already been mentioned.
Epstein and Axtell’s (1996) work on generating societies gives a broad overview of
early applications of agent-based modelling. Epstein (2006) goes even further as he
defines this approach as the oncoming paradigm in social science. For the state of
the art of agent-based modelling in the social sciences at the onset of this approach,
the proceedings of early workshops and conferences on computational social
science are still worth reading (Gilbert and Doran 1994; Gilbert and Conte 1995;
Conte et al. 1997; Troitzsch et al. 1996).

And many early papers on computational social science were recently
republished (Gilbert 2010).

References

Abelson RP, Bernstein A (1963) A computer simulation of community referendum controversies.
Public Opin Q 27:93-122

Alker HR Jr (1974) Computer simulations: inelegant mathematics and worse social science. Int J
Math Educ Sci Technol 5:139-155

Axelrod R (1984) The evolution of cooperation. Basic Books, New York

Ball P (2005) Critical mass — how one thing leads to another. Arrow Books, London

Brassel KH, Mohring M, Schumacher E, Troitzsch KG (1997) Agents cover all the world? In:
Conte R, Hegselmann R, Terna P (eds) Simulating social phenomena (Lecture notes in
economics and mathematical systems), vol 456. Springer, Berlin, pp 55-72

Chakrabarti BK, Chakraborti A, Chatterjee A (eds) (2006) Econophysics and sociophysics: trends
and perspectives. Wiley, Weinheim

Coleman JS (1964) Introduction to Mathematical Sociology. The Free Press of Glencoe,
New York

Coleman JS (1990) The foundations of social theory. Harvard University Press, Boston

Conte R, Hegselmann R, Terna P (eds) (1997) Simulating social phenomena (Lecture notes in
economics and mathematical systems), vol 456. Springer, Berlin

de Sola Pool I, Abelson RP (1961) The simulmatics project. Public Opin Q 25:167-183

2 Historical Introduction 21

de Sola Pool I, Kessler A (1965) The Kaiser, the Czar, and the computer: information processing in
a crisis. Am Behav Sci 8:32-38

Epstein JM (2006) Generative social science: studies in agent-based computational modeling.
Princeton University Press, Princeton/Oxford

Epstein JM, Axtell R (1996) Growing artificial societies: social science from the bottom up.
Brookings/MIT Press, Washington/Cambridge, MA

Farmer D, Toffoli T, Wolfram S (eds) (1984) Cellular automata: proceedings of an interdisciplin-
ary workshop, Los Alamos, 7-11 Mar 1983. North-Holland, Amsterdam

Forrester JW (1961) Industrial dynamics. MIT/Wright Allen, Cambridge, MA

Forrester JW (1969) Urban dynamics. MIT/Wright Allen, Cambridge, MA

Forrester JW (1971) World dynamics. MIT/Wright Allen, Cambridge, MA

Gardener M (1970) The game of life. Sci Am 223(4):120-123

Gilbert N (ed) (2010) Computational Social Science Four-Volume Set. Sage, Los Angeles

Gilbert N, Conte R (eds) (1995) Artificial societies: the computer simulation of social life.
UCL Press, London

Gilbert N, Doran JE (eds) (1994) Simulating societies: the computer simulation of social phenom-
ena. UCL Press, London

Hegselmann R (1996) Cellular automata in the social sciences: perspectives, restrictions, and
artefacts. In: Hegselmann R, Mueller U, Troitzsch KG (eds) Modelling and simulation in the
social sciences from the philosophy of science point of view. Kluwer, Dordrecht, pp 209-234

Tlachinski A (2001) Cellular automata: a discrete universe. World Scientific, Singapore/River
Edge/London/Hong Kong

Konig A, Mohring M, Troitzsch KG (2002) Agents, hierarchies and sustainability. In: Billari F,
Prskawetz-Fiirnkranz A (eds) Agent based computational demography. Physica, Berlin/
Heidelberg, pp 197-210

Meadows DL et al (1974) Dynamics of growth in a finite world. Wright-Allen, Cambridge, MA

Nowak A, Latané B (1994) Simulating the emergence of social order from individual behaviour.
In: Gilbert N, Doran JE (eds) Simulating societies: the computer simulation of social processes.
University College of London Press, London, pp 63—-84

Nowak A, Szamrej J, Latané B (1990) From private attitude to public opinion: a dynamic theory of
social impact. Psychol Rev 97:362-376

Orcutt G (1957) A new type of socio-economic system. Rev Econ Stat 58:773-797

Ostrom TM (1988) Computer simulation: the third symbol system. J Exp Soc Psychol 24:381-392

Poundstone W (1992) Prisoner’s dilemma: John von Neumann, game theory, and the puzzle of the
bomb. Oxford University Press, Oxford

Schelling TC (1971) Dynamic models of segregation. J Math Sociol 1:143-186

Simon HA (1996) Models of my life. MIT Press, Cambridge, MA

Troitzsch KG, Mueller U, Gilbert N, Doran JE (eds) (1996) Social science microsimulation.
Springer, Berlin

Chapter 3
Types of Simulation

Paul Davidsson and Harko Verhagen

Why Read This Chapter? To understand the different ways that computer simu-
lation can differ in terms of (a) purpose, (b) targets for simulation, (c) what is
represented, and (d) its implementation; and subsequently, to be more aware of the
choices to be made when simulating social complexity.

Abstract This chapter describes the main purposes of computer simulation and
gives an overview of the main issues that should be regarded when developing
computer simulations. While there are two basic ways of representing a system in a
simulation model — the equation-based or macroscopic approach and the individual-
based or microscopic approach — this chapter (as the rest of the handbook) focuses
on the latter. It discusses the various options a modeller faces when choosing how
to represent individuals, their interactions and their environment in a simulation
model.

3.1 Introduction

Simulation concerns the imitation of some aspects of the reality (past, present, or
future) for some purpose. We should contrast computer simulation to physical
simulation in which physical objects are substituted for the real thing. These
physical objects are often chosen because they are smaller or cheaper than the
actual object or system. When (some of) the objects in a physical simulation are
humans, we may refer to this as human simulation. However, the focus of this book
is on computer simulation, and in particular, computer simulation of social

P. Davidsson (0<)
Department of Computer Science, Malmé University, Malmo, Sweden
e-mail: paul.davidsson@mabh.se

H. Verhagen
Stockholm University, Stockholm, Sweden
e-mail: verhagen@dsv.su.se

B. Edmonds and R. Meyer (eds.), Simulating Social Complexity, 23
Understanding Complex Systems, DOI 10.1007/978-3-540-93813-2_3,
© Springer-Verlag Berlin Heidelberg 2013

mailto:paul.davidsson@mah.se
mailto:verhagen@dsv.su.se

24 P. Davidsson and H. Verhagen

complexity, which concerns the imitation of the behaviour of one or more groups of
social entities and their interaction.

Computer simulation, as any other computer program, can be seen as a tool,
which could be used professionally, or used in the user’s spare time, e.g., when
playing computer games. It is possible to distinguish between different types of
professional users, e.g. scientists who use simulation in the research process to gain
new knowledge, policy makers who use it for making strategic decisions, managers
(of a system) who use it to make operational decisions, and engineers who use it
when developing systems. We can also differentiate two user situations, namely the
user as participant in the simulation and the user as observer of the simulation.
Computer games and training settings are examples of the former, where the user is
immerged in the simulation. In the case of using simulation as a tool for, say,
scientific research or decision support, the user is an outside observer of the
simulation. (In other words, we may characterize this difference as that between
interactive simulations and batch simulations.)

The main task of computer simulation is the creation and execution of a formal
model of the behaviour and interaction (of the entities) of the system being
simulated. In scientific research, computer simulation is a research methodology
that can be contrasted to empirically driven research.’ As such, simulation belongs
to the same family of research as analytical models. One way of formally modelling
a system is to use a mathematical model, and then attempt to find analytical
solutions enabling the prediction of the system’s behaviour from a set of parameters
and initial conditions. Computer simulation, on the other hand, is often used when
simple closed form analytic solutions are not possible. Although there are many
different types of computer simulation, they typically attempt to generate a sample
of representative scenarios for a model in which a complete enumeration of all
possible states would be prohibitive or impossible.

It is possible to make a general distinction between two ways of modelling the
system to be simulated. One is to use mathematical models and is referred to as
equation-based (or system dynamics or macro-level) simulation. In such models the
set of individuals (the population of the system) is viewed as a structure that can be
characterized by a number of variables. In the other way of modelling, which is
referred to as individual-based (or agent-based or micro-level) simulation, the
specific behaviours of specific individuals are explicitly modelled. In contrast to
equation-based simulation, the structure is viewed as emergent from the
interactions between the individuals and thus exploring the standpoint that complex
effects need not have complex causes. We will here, as well as in the remainder of
this book, focus on individual-based simulation.

In this chapter we will describe the main purposes of computer simulation and
also give an overview of the main issues that should be regarded when developing
computer simulations.

! This distinction is of course not set in stone. For an example of an evidence-driven approach to
computer simulation see Chap. 25 in this volume (Geller and Moss 2013).

http://dx.doi.org/10.1007/978-3-540-93813-2_25

3 Types of Simulation 25
3.2 Purposes of Simulation

We can identify a number of distinct purposes of simulation. In general terms,
simulation is almost always used for analyzing (some aspects of) a system, typically
by predicting future states. More specifically, we may say that in the case when the
user is observing the simulation, the purpose is often one of the following:

— Management of a system, where simulation of (parts of) this system is used to
support operational decisions, i.e. which action to take, or strategic decisions, i.e.
which policy to use. The chapters on application areas in this book provide some
examples of this purpose; e.g., Chap. 19 addresses environmental management
(Le Page et al. 2013).

— Design or engineering of a system, where simulation is used as a tool to support
design decisions when developing a system. Chapter 21 illustrates how simula-
tion can help in the design of distributed computer systems (Hales 2013). In
fact, many new technical systems are distributed and involve complex interac-
tion between humans and machines, which make individual-based simulation a
suitable approach. The idea is to model the behaviour of the human users which
is useful in situations where it is too expensive, difficult, inconvenient, tiresome,
or even impossible for real human users to test out a new technical system. An
example of this is the simulation of “intelligent buildings” where software
agents model the behaviour of the people in the building (Davidsson 2000).

— FEvaluation and verification, where simulation is used to evaluate a particular
theory, model, hypothesis, or system, or compare two or more of these. More-
over, simulation can be used to verify whether a theory, model, hypothesis,
system, or software is correct. An example of this purpose is found in Chap. 20
of this book on the assessment of (changes in) organizational design (Dignum
2013). More generally, in the context of social theory building, simulations can
be seen as an experimental method or as theories in themselves (Sawyer 2003).
In the former case, simulations are run e.g. to test the predictions of theories,
whereas in the latter case the simulations themselves are formal models of
theories. Formalizing the ambiguous, natural language-based theories of the
social sciences helps to find inconsistencies and other problems, and thus
contributes to theory building.

— Understanding, where simulation is used to gain deeper knowledge of a certain
domain. In such explorative studies, there is no specific theory, model, etc. to
be verified, but we want to study different phenomena (which may however
lead to theory refinement). Chapter 22 in this volume provides a number of
examples how simulation has helped in understanding animal social behaviour
(Hemelrijk 2012).

The focus of this book is on the user as an observer, the role of the user as
participant is just touched upon in Chap. 10 on participatory approaches (Barreteau
et al. 2013). However, to give a more complete picture, we have identified the
following purposes in the case when the user is participating in the simulation:

http://dx.doi.org/10.1007/978-3-540-93813-2_19
http://dx.doi.org/10.1007/978-3-540-93813-2_21
http://dx.doi.org/10.1007/978-3-540-93813-2_20
http://dx.doi.org/10.1007/978-3-540-93813-2_22
http://dx.doi.org/10.1007/978-3-540-93813-2_10

26 P. Davidsson and H. Verhagen

— Education, where simulation is used to explain or illustrate a phenomenon and
deepen the user’s theoretical knowledge. An example of this is the recently
developed SimPort,> a multiplayer serious game where the players have to
construct a port area in the vicinity of Rotterdam. One aim of this simulation-
based tool is to give its users better insight into any unforeseen, undesirable and
unintentional effects of one or more development strategies and design variations
in the medium term (10-30 years) as a result of exogenous uncertainties (eco-
nomic, market, technological) and due to strategic behaviour of the parties
involved. Another example of individual-based simulation for educational pur-
pose is the PSI agent (Kiinzel and Hdmmer 2006) that supports acquiring
theoretical insights in the realm of psychological theory. It enables students to
explore psychological processes without ethical problems.

— Training, where simulation is used to improve a person’s practical skills in a
certain domain. The main advantage of using simulation for training purposes is
to be part of a real-world-like situation without real-world consequences. An
early work in this area was a tool to help train police officers to manage large
public gatherings, such as crowds and protest marches (Williams 1993). Another
example of agent-based simulation for training purposes is Steve, an agent
integrated with voice synthesis software and virtual reality software providing
a very realistic training environment. For instance, it has been applied to
maintenance tasks in nuclear power plants (Méndez et al. 2003).

— Entertainment, where simulation is used just to please the user. There are a large
number of popular simulation games available. These belong to genres like
construction and management simulations, where players experience managing
a government, a sports team, a business, or a city, life simulations, where players
manage a life-form or ecosystem, such as the well-known “Sims” and its sequels,
vehicle simulations, where players experience driving a vehicle, such as an
airplane or a racing car, and of course different types of war games.

3.3 Types of Systems Simulated

It is possible to categorize the systems being simulated:
1. Human-centered systems, such as:

— Human societies, consisting of a set of persons with individual goals. That is,
the goal of different individuals may be conflicting. In Chap. 26 of this book,
more information on the simulation of human societies is given (Edmonds
et al. 2013).

2 http://www.simport.eu/

http://dx.doi.org/10.1007/978-3-540-93813-2_26
http://www.simport.eu/

3 Types of Simulation 27

— Organizations, which we here define as structures of persons related to each
other in order to purposefully accomplishing work or some other kind of
activity. That is, the persons of an organization share some of their goals.
Further details on the modelling and simulation of organizations are provided
in Chap. 20 (Dignum 2013).

— Economic systems, which are organized structures in which actors
(individuals, groups, or enterprises) are trading goods or services on a market.
Chapter 23 (Rouchier 2013) takes a closer look at markets.

2. Natural systems, such as:

— Animal societies, which consist of a number of interacting animals, such as an
ant colony or a colony of birds. Chapter 22 (Hemelrijk 2013) is devoted to
simulation of animal societies.

— Ecological systems, in which animals and/or plants are living and evolving in
a relationship to each other and in dependence of the environment (even if
humans also are part of the ecological system, they are often not part of these
simulation models). In Chap. 19 (Le Page et al. 2013) more details on the
simulation of ecological systems are discussed.

3. Socio-technical systems, which are hybrid systems consisting of both living
entities (in most cases humans) and technical artefacts interacting with each
other. Examples of this type of system are transportation and traffic systems
concerning the movement of people, or goods in a transportation infrastructure
such as a road network. Chapter 24 (Ramstedt et al. 2013) provides a review of
simulation studies in these areas.

4. Artificial societies, which consist of a set of software and/or hardware entities,
i.e. computer programs and/or robots, with individual goals. One type of artifi-
cial societies, namely distributed computer systems, is treated in Chap. 21
(Hales 2013).

In addition, there are systems that are interesting to simulate using a micro-level
approach, but that we do not regard as social systems and are therefore not treated in
this book. One class of such systems are physiological systems, which consist of
functional organs integrated and co-operating in a living organism, e.g. subsystems
of the human body. Physical systems, which are collections of passive entities
following only physical laws, constitute another type of non-social systems.

3.4 Modelling

Let us now focus on how to model the system to be simulated. This depends on the
type of system and the purpose of the simulation study. An individual- or agent-
based model of a system consists of a set of entities and an environment in which
the entities are situated. The entities are either individuals (agents) that have some
decision-making capabilities, or objects (resources) that have no agency and are

http://dx.doi.org/10.1007/978-3-540-93813-2_20
http://dx.doi.org/10.1007/978-3-540-93813-2_23
http://dx.doi.org/10.1007/978-3-540-93813-2_22
http://dx.doi.org/10.1007/978-3-540-93813-2_19
http://dx.doi.org/10.1007/978-3-540-93813-2_24
http://dx.doi.org/10.1007/978-3-540-93813-2_21

28 P. Davidsson and H. Verhagen

purely physical. There are a number of characteristics that can be used to differen-
tiate between different types of models. We will first look at how individuals are
being modelled, then on the interaction between the individuals, and finally how the
environment is being modelled.

3.4.1 Individuals

A model of an individual can range from being very simple, such a one binary
variable (e.g. alive or dead) that is changed using only a single rule, to being very
complex. The complexity of the model for a given simulation should be determined
by the complexity of the individuals being simulated. Note, however, that very
complex collective behaviour could be achieved from very simple individual
models, if the number is sufficiently large.

We can distinguish between modelling the state of an individual and the
behaviour of the individual, i.e. the decisions and actions it takes. The state of an
individual, in turn, can be divided into the physical and the mental state. The
description of the physical state may include the position of the individual, and
features such as age, sex, and health status. The physical state is typically modelled
as a feature vector, i.e. a list of attribute/value pairs. However, this is not always the
case as in some domain the physical state of individual is not modelled at all. An
example is the PSI agent mentioned earlier that was used to give students theoreti-
cal insights in the area of psychological theory.

Whereas the physical state is often simple to model, representing the mental
state is typically much more complex, especially if the individuals modelled are
human beings. A common approach is to model the beliefs, desires, and intentions
of the individual, for instance by using the BDI model (Bratman 1987; Georgeff
et al. 1998). Such a model may include the social state of the individual, i.e. which
norms it adheres to, which coalitions it belongs to, etc. Although the BDI model is
not based on any experimental evidence of human cognition it has proven to be
quite useful in many applications. There has also been some work on incorporating
emotions in models of the mental state of individuals (cf. Bazzan and Bordini 2001)
as well as obligations, like the BOID model (Broersen et al. 2001), which extends
the BDI with obligations.

Modelling the behaviours (and decisions) of the individuals can be done in a
variety of ways, from simple probabilities to sophisticated reasoning and planning
mechanisms. As an example of the former we should mention dynamic micro-
simulation (Gilbert and Troitzsch 2005), which was one of the first ways of
performing individual-based simulation and is still frequently used. The purpose
is to simulate the effect the passing of time has on individuals. Data (feature
vectors) from a random sample from the population is used to initially characterize
the simulated individuals. A set of transition probabilities is then used to describe
how these features will change over a time period, e.g. there is a probability that an
employed person becomes unemployed during a year. The transition probabilities

3 Types of Simulation 29

are applied to the population for each individual in turn, and then repeatedly
re-applied for a number of simulated time periods. In traditional micro-simulation,
the behaviour of each individual is regarded as a “black box”. The behaviour is
modelled in terms of probabilities and no attempt is made to justify these in terms of
individual preferences, decisions, plans, etc. Thus, better results may be gained if
also the cognitive processes of the individuals were simulated.

Opening the black box of individual decision-making can be done in several
ways. A basic and common approach is to use decision rules, for instance, in the
form of a set of situation-action rules: If an individual and/or the environment is in
state X then the individual will perform action Y. By combining decision rules and
the BDI model quite sophisticated behaviour can be modelled. Other models of
individual cognition used in agent-based social simulation include the use of Soar,
a computer implementation of Allen Newell’s unified theory of cognition (Newell
1994), which was used in Steve (discussed above). Another unified theory of
individual cognition, for which a computer implementation exists, is ACT-R
(Anderson et al. 2004), which is realized as a production system. A less general
example is the Consumat model (Janssen and Jager 1999), a meta-model combining
several psychological theories on decision making in a consumer situation. In
addition, non-symbolic approaches such as neural networks have been used to
model the agents’ decision making (Massaguer et al. 2006).

As we have seen, the behaviour of individuals could be either deterministic or
stochastic. Also, the basis for the behaviour of the individuals may vary. We can
identify the following categories:

— The state of the individual itself: In most social simulation models the physical
and/or mental state of an individual plays an important role in determining its
behaviour.

— The state of the environment: The state of the environment surrounding the
individual often influences the behaviour of an individual. Thus, an individual
may act differently in different contexts although its physical and mental state is
the same.

— The state of other individuals: One popular type of simulation model, where the
behaviour of individuals is (solely) based on the state of other individuals, is
those using cellular automata (Schiff 2008). Such a simulation model consists of
a grid of cells representing individuals, each in one of a finite number of states.
Time is discrete and the state of a cell at time ¢ is a function of the states of a
finite number of cells (called its neighbourhood) at time ¢ — /. These neighbours
are a fixed selection of cells relative to the specified cell. Every cell has the same
rule for updating, based on the values in its neighbourhood. Each time the rules
are applied to the whole grid a new generation is created. In this case, informa-
tion about the state of other individuals can be seen as gained through
observations. Another possibility to gain this information is through communi-
cation, and in this case the individuals do not have to be limited to the
neighbours.

30 P. Davidsson and H. Verhagen

— Social states (norms etc.) as viewed by the agent: For simulation of social
behaviour the agents need to be equipped with mechanisms for reasoning at
the social level (unless the social level is regarded as emergent from individual
behaviour and decision making). Several models have been based on theories
from economy, social psychology, sociology, etc. Guye-Vuilleme (2004)
provides an example of this with his agent-based model for simulating human
interaction in a virtual reality environment. The model is based on sociological
concepts such as roles, values, and norms and motivational theories from social
psychology to simulate persons with social identities and relationships.

In most simulation studies, the behaviour of the individuals is static in the sense
that decision rules or reasoning mechanisms do not change during the simulation.
However, human beings and most animals do have an ability to adapt and learn. To
model dynamic behaviour of individuals through learning/adaptation can be done in
many ways. For instance, both ACT-R and Soar have learning built in. Other types
of learning include the internal modelling of individuals (or the environment) where
the models are updated more or less continuously.

Finally, there are some more general aspects to consider when modelling
individuals. One such aspect is whether all agents share the same behaviour or
whether they behave differently, in other words, representation of behaviour is either
individual or uniform. Another general aspect is the number of individuals modelled,
i.e. the size of the model, which may vary from a few individuals to billions of
individuals. Moreover, the population of individuals could be either static or
dynamic. In dynamic populations, changes in the population are modelled, typically
births and deaths.

3.4.2 Interaction Between Individuals

In dynamic micro-simulation simulated individuals are considered in isolation
without regard to their interaction with others. However, in many situations the
interaction between individuals is crucial for the behaviour at system level. In such
cases better results will be achieved if the interaction between individuals was
included in the model. Two important aspects of interaction are (a) who is
interacting with whom, i.e. the interaction topology, and (b) the form of this
interaction.

A basic form of interaction is physical interaction or interaction based on spatial
proximity. As we have seen, this is used in simulations based on cellular automata,
e.g. in the well-known Game of Life (Gardner 1970). The state of an individual is
determined by how many of its neighbours are alive. Inspired by this work
researchers developed more refined models, often modelling the social behaviour
of groups of animals or artificial creatures. One example is the Boid model by
Reynolds (1987), which simulates coordinated animal motion such as bird flocks
and fish schools in order to study emergent phenomena. In these examples,

3 Types of Simulation 31

the interaction topology is limited to the individuals immediately surrounding an
individual. In other cases, as we will see below, the interaction topology is defined
more generally in terms of a (social) network. Such a network can be either static,
i.e. the topology does not change during a simulation, or dynamic. In these networks
interaction is typically language-based. An example is the work by Verhagen
(2001), where agents that are part of a group use direct communication between
the group members to form shared group preferences regarding the decisions they
make. Communication is steered by the structure of the social network regardless of
the physical location of the agents within the simulated world. For a more detailed
discussion of the different options to model interaction topologies see Chap. 16 in
this volume (Amblard and Quattrochiocchi 2013).

3.4.3 The Environment

The state of the environment is usually represented by a set of (global) parameters,
e.g. temperature. In addition, there are a number of important aspects of the
environment model, such as:

— Spatial explicitness: In some models, there is actually no notion of physical
space at all. An example of a scenario where location is of less importance are
“innovation networks” (Gilbert et al. 2001). Individual agents are high-tech
firms that each have a knowledge base used to develop artefacts to launch on a
simulated market. The firms are able to improve their products through research
or by exchanging knowledge with other firms. However, in many scenarios
location is very important, thus each individual (and sometimes objects) is
assigned a specific location at each time step of the simulation. In this case, the
individuals may be either static (the entity does not change location during the
simulation) or mobile. The location could either be specified as an absolute
position in the environment, or in terms of relative positions between entities.
In some areas the simulation software is integrated with a Geographical Infor-
mation System (GIS) in order to achieve closer match to reality (cf. Schiile
et al. 2004).

— Time: There are in principle two ways to address time, and one is to ignore it. In
static simulation time is not explicitly modelled; there is only a “before” and an
“after” state. However, most simulations are dynamic, where time is modelled as
a sequence of time steps. Typically, each individual may change state between
each time step.

— Exogenous events: This is the case when the state of the environment, e.g. the
temperature, changes without any influence/action from the individuals. Exoge-
nous events, if they are modelled, may also change the state of entities, e.g.
decay of resources, or cause new entities to appear. This is a way to make the
environment stochastic rather than deterministic.

http://dx.doi.org/10.1007/978-3-540-93813-2_16

32 P. Davidsson and H. Verhagen
3.4.4 Factors to Consider When Choosing a Model

In contrast to some of the more traditional approaches, such as system dynamics,
individual-based modelling does not yet have any standard procedures that can
support the model development. (Although some attempts in this direction have
been made, e.g. by Grimm et al. (2006) in the area of ecological systems.) In
addition, it is often the case that the only formal description of the model is the
actual program code. However, it may be useful to use the Unified Modelling
Language (UML) to specify the model.

Some of the modelling decisions are determined by the features of the system to
be simulated, in particular those regarding the interaction model and the environ-
ment model. The hardest design decision is often how the mental state and the
behaviour of individuals should be modelled, in particular when representing
human beings. For simpler animals or machines, a feature vector combined with
a set of transitions rules is often sufficient. Depending on the phenomena being
studied, this may also be adequate when modelling human beings. Gilbert (2006)
provides some guidelines whether a more sophisticated cognitive model is neces-
sary or not. He states that the most common reason for ignoring other levels is that
the properties of these other levels can be assumed constant, and exemplifies this by
studies of markets in equilibrium where the preferences of individual actors are
assumed to remain constant. (Note, however, that this may not always be true).
Another reason for ignoring other levels, according to Gilbert, is when there are
many alternative processes at the lower level, which could give rise to the same
phenomenon at the macro level. He illustrates this with the famous study by
Schelling (1971) regarding residential segregation. Although Schelling used a
very crude model of the mental state and behaviour of the individuals, i.e. ignoring
the underlying motivations for household migration, the simulation results were
valid (as the underlying motivations were not relevant for the purpose of
Schelling’s study).

On the other hand, there are many situations where a more sophisticated
cognitive model is useful, in particular when the mental state or behaviour of the
individual constraints or in other ways influences the behaviour at the system level.
However, as Gilbert concludes, the current research is not sufficiently mature in
order to give advice on which cognitive model to use (BDI, Soar, ACT-R, or other).
Rather, he suggests that more pragmatic considerations should guide the selection.

The model of the environment is mostly dictated by the system to be simulated,
with the modeller having to decide on the granularity of the values the environ-
mental attributes can take. The interaction model is often chosen based on the
theory or practical situation that lies at the heart of the simulation, but sometimes
the limitations of the formal framework used restrict the possibilities. Here the
modeller also has to decide upon the granularity of attribute values.

3 Types of Simulation 33
3.5 Implementation

We will now discuss some issues regarding the implementation (programming and
running) of a simulator.

A simulator can be time-driven, where the simulated time is advanced in
constant time steps, or event-driven, where the time is advanced based on the
next event. In an event-driven simulation, a simulation engine drives the simulation
by continuously taking the first event out of a time-ordered event list, and then
simulating the effects on the system state caused by this event. Since time segments
where no event takes place are not regarded, event-driven simulation is often more
efficient than time-driven simulation. On the other hand, since time is incremented
at a constant pace during a simulation in time-driven mode, this is typically a better
option if the simulation involves user participation.

There are a number of platforms or toolkits for agent-based simulation available,
such as Swarm, NetLogo and RePast (see Railsback et al. (2006) for a critical
review of these and some other platforms). These are freely available, simplify the
programming and can be of great help, in particular for modellers that are not
skilled programmers. However, they all impose some limitations on what can be
modelled, which may or may not be crucial for the application at hand. An approach
without such limitation is of course to program the simulator from scratch using
ordinary programming languages like Java or C, which is more difficult and time
consuming. In some cases, e.g. if you want to distribute the simulation on a number
of computers, it may be appropriate to use an agent platform, such as JADE. In this
case, the individuals may be implemented as actual software agents. In particular,
when the number of individuals simulated is large and/or the models of individuals
are complex, it may be too time consuming to run the simulation on a single
computer. Instead, one may distribute the computational load on several computers
in order to get reasonable running times. It should be mentioned that there are some
efforts on making agent-based simulation platforms run on large-scale computer
networks such as Grids, see e.g. the work by Chen et al. (2008).

It is worth noting that the resulting software is an approximation of a simulation
model, which in turn is an approximation of the actual system. Thus, there are
several steps of verification and validation that need to be addressed in the devel-
opment of a simulation model, as discussed in Chap. 8 (David 2013).

3.6 Conclusion

As we have seen, there are many different types of individual-based social simula-
tion. In the table below, we provide a summary.

http://dx.doi.org/10.1007/978-3-540-93813-2_8

34

P. Davidsson and H. Verhagen

Focus Aspect Options
Usage Users Scientists
Policy makers
Managers
Non-professionals
Purposes Management of a system

System simulated

Individual model

Interaction model

Environment model

Implementation

Human-centered systems

Natural systems

Socio-technical systems

Artificial systems

Individual physical state
Individual mental state

Individual behaviour

Basis of behaviour

Uniformity
Population
Form of interaction

Interaction topology
Spatial explicitness
Time

Exogenous events

Simulation engine
Programming

Distributedness

Design or engineering of a system
Evaluation and verification
Understanding

Education

Training

Entertainment

Human societies
Organizations

Economic systems

Animal societies
Ecological systems

Feature vector

Feature vector

BDI

Transition probabilities
Decision rules

Cognitive model (Soar, ACT-R, etc.)
Own state

State of the environment
State of other individuals
Social states
Uniform/non-uniform
Static/dynamic

No interaction

Physical

Language-based
Static/dynamic
Neighbourhood/network
None

Relative positions

Absolute positions
Static/dynamic

Yes/no
Time-driven/event-driven
MABS platform (NetLogo, Repast, etc.)
MAS platform (JADE, etc.)
From scratch (C, Java, etc.)
Single computer/distributed

3 Types of Simulation 35
Further Reading

Gilbert and Troitzsch (2005) also have sections that describe the different kinds of
simulation available. Railsback and Grimm (2011) present a complementary anal-
ysis, coming from ecological modelling. The introductory chapters in (Gilbert and
Doran 1994) and (Conte and Gilbert 1995) map out many of the key issues and
aspects in which social simulation has developed.

References

Amblard F, Quattrociocchi W (2013) Social networks and spatial distribution. Chapter 16 in this
volume

Anderson JR et al (2004) An integrated theory of the mind. Psychol Rev 111(4):1036-1060

Barreteau O et al (2013) Participatory approaches. Chapter 10 in this volume

Bazzan ALC, Bordini RH (2001) A framework for the simulation of agents with emotions: report
on experiments with the iterated prisoners dilemma. In fifth international conference on
autonomous agents, Montreal. ACM Press, New York, pp 292-299

Bratman ME (1987) Intentions, plans, and practical reason. Harvard University Press, Cambridge,
MA

Broersen J, Dastani M, Huang Z, Hulstijn J, Van der Torre L (2001) The BOID architecture:
conflicts between beliefs, obligations, intentions and desires. In fifth international conference
on autonomous agents, Montreal. ACM Press, New York, pp 9-16

Chen D et al (2008) Large-scale agent-based simulation on the grid. Future Gen Comput Syst 24
(7):658-671

Conte R, Gilbert N (eds) (1995) Artificial societies: the computer simulation of social life. UCL
Press, London

David N (2013) Validating simulations. Chapter 8 in this volume

Davidsson P (2000) Multi agent based simulation: beyond social simulation. In: Moss S,
Davidsson P (eds) Multi agent based simulation (Lecture notes in computer science, 1979).
Springer, Berlin, pp 98-107

Dignum V (2013) Organisational design. Chapter 20 in this volume

Edmonds B, Lucas P, Rouchier J, Taylor R (2013) Human societies: understanding observed social
phenomena. Chapter 26 in this volume

Gardner M (1970) Mathematical games: the fantastic combinations of John Conway’s new
solitaire game “Life”. Sci Am 223(4):120-124

Geller A, Moss S (2013) Modeling power and authority: an emergentist view from Afghanistan.
Chapter 25 in this volume

Georgeff M, Pell B, Pollack M, Tambe M, Wooldridge M (1998) The belief-desire-intention
model of agency. In: Muller J, Singh M, Rao A (eds) Intelligent agents V (Lecture notes in
artificial intelligence, 1555). Springer, Berlin, pp 1-10

Gilbert N (2006) When does social simulation need cognitive models? In: Sun R (ed) Cognition
and multi-agent interaction: from cognitive modelling to social simulation. Cambridge
University Press, Cambridge, pp 428-432

Gilbert N, Doran J (eds) (1994) Simulating societies. UCL Press, London

Gilbert N, Troitzsch KG (2005) Simulation for the social scientist, 2nd edn. Open University
Press/McGraw Hill Education, Maidenhead

Gilbert N, Pyka A, Ahrweiler P (2001) Innovation networks: a simulation approach. J Artif Soc
Soc Simulat 4(3). http://jasss.soc.surrey.ac.uk/4/3/8.html

http://jasss.soc.surrey.ac.uk/4/3/8.html

36 P. Davidsson and H. Verhagen

Grimm V et al (2006) A standard protocol for describing individual-based and agent-based
models. Ecol Model 198:115-126

Guye-Vuilleéme A (2004) Simulation of nonverbal social interaction and small groups dynamics in
virtual environments (Ph.D. thesis). Ecole Polytechnique Fédérale de Lausanne, No 2933

Hales D (2013) Distributed computer systems. Chapter 21 in this volume

Hemelrijk C (2013) Animal social behaviour. Chapter 22 in this volume

Janssen MA, Jager W (1999) An integrated approach to simulating behavioural processes: a case
study of the lock-in of consumption patterns. J Artif Soc Soc Simulat 2(2). http://jasss.soc.
surrey.ac.uk/2/2/2.html

Kiinzel J, Himmer V (2006) Simulation in university education: the artificial agent PSI as a
teaching tool. Simulation 82(11):761-768

Le Page C et al (2013) Environmental management. Chapter 19 in this volume

Massaguer D, Balasubramanian V, Mehrotra S, Venkatasubramanian N (2006) Multi-agent
simulation of disaster response. In: Jennings NR, Tambe M, Ishida T, Ramchurn SD (eds)
First international workshop on agent technology for disaster management. Hakodate, 8 May
2006, pp 124-130. http://users.ecs.soton.ac.uk/sdr/atdm/ws34atdm.pdf

Méndez G, Rickel J, de Antonio A (2003) Steve meets jack: the integration of an intelligent tutor
and a virtual environment with planning capabilities. In: intelligent virtual agents (Lecture
notes on artificial intelligence, 2792). Springer, Berlin, pp 325-332

Newell A (1994) Unified theories of cognition. Harvard University Press, Cambridge, MA

Railsback SF, Grimm V (2011) Agent-based and individual-based modeling: a practical introduction.
Princeton University Press, Princeton

Railsback SF, Lytinen SL, Jackson SK (2006) Agent-based simulation platforms: review and
development recommendations. Simulation 82(9):609-623

Ramstedt L, Tornquist Krasemann J, Davidsson P (2013) Movement of people and goods.
Chapter 24 in this volume

Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioural model. Comput Graph
21(4):25-34

Rouchier J (2013) Markets. Chapter 23 in this volume

Sawyer RK (2003) Artificial societies: multi-agent systems and the micro—macro link in sociolog-
ical theory. Sociol Methods Res 31(3):325-363

Schelling TC (1971) Dynamic models of segregation. J Math Sociol 1:143-186

Schiff JL. (2008) Cellular automata: a discrete view of the world. Wiley, Oxford

Schiile M, Herrler R, Kliigl F (2004) Coupling GIS and multi-agent simulation: towards infra-
structure for realistic simulation. In: Lindemann G, Denzinger J, Timm 1J, Unland R (eds)
Multiagent system technologies, second German conference, MATES 2004 (LNCS, 3187).
Springer, Berlin, pp 228-242

Verhagen H (2001) Simulation of the learning of norms. Soc Sci Comput Rev 19(3):296-306

Williams R (1993) An agent based simulation environment for public order management training.
In: Western simulation multiconference, object-oriented simulation conference, Hyatt Regency,
La Jolla, 17-20 Jan 1993, pp 151-156

http://jasss.soc.surrey.ac.uk/2/2/2.html
http://jasss.soc.surrey.ac.uk/2/2/2.html
http://users.ecs.soton.ac.uk/sdr/atdm/ws34atdm.pdf

Part I1
Methodology

Chapter 4
Informal Approaches to Developing
Simulation Models

Emma Norling, Bruce Edmonds, and Ruth Meyer

Why Read This Chapter? To get to know some of the issues, techniques and tools
involved in building simulation models in the manner that probably most people in the
field do this. That is, not using the “proper” computer science techniques of specifica-
tion and design, but rather using a combination of exploration, checking and
consolidation.

Abstract This chapter describes the approach probably taken by most people in the
social sciences when developing simulation models. Instead of following a formal
approach of specification, design and implementation, what often seems to happen in
practice is that modellers start off in a phase of exploratory modelling, where they
don’t have a precise conception of the model they want but a series of ideas and/or
evidence they want to capture. They then may develop the model in different
directions, backtracking and changing their ideas as they go. This phase continues
until they think they may have a model or results that are worth telling others about.
This then is (or at least should be) followed by a consolidation phase where the model
is more rigorously tested and checked so that reliable and clear results can be
reported. In a sense what happens in this later phase is that the model is made so
that it is as if a more formal and planned approach had been taken.

There is a danger of this approach: that the modeller will be tempted by apparently
significant results to rush to publication before sufficient consolidation has occurred.
There may be times when the exploratory phase may result in useful and influential
personal knowledge but such knowledge is not reliable enough to be up to the more
exacting standards expected of publicly presented results. Thus it is only with careful
consolidation of models that this informal approach to building simulations should
be undertaken.

E. Norling (2<)) » B. Edmonds (b)) « R. Meyer

Manchester Metropolitan University, Centre for Policy Modelling, Business School, Oxford Road,
Manchester M15 6BH, United Kingdom

e-mail: norling@acm.org; bruce@edmonds.name; r.meyer@mmu.ac.uk

B. Edmonds and R. Meyer (eds.), Simulating Social Complexity, 39
Understanding Complex Systems, DOI 10.1007/978-3-540-93813-2_4,
© Springer-Verlag Berlin Heidelberg 2013

mailto:norling@acm.org
mailto:bruce@edmonds.name
mailto:r.meyer@mmu.ac.uk

40 E. Norling et al.

4.1 Introduction: Exploration and Consolidation
Modelling Phases

Formal approaches to the development of computer programs have emerged through the
collective experience of computer scientists (and other programmers) over the past half-
century. The experience has shown that complex computer programs are very difficult
to understand: once past a certain point, unless they are very careful, programmers lose
control over the programs they build. Beyond a certain stage of development, although
we may understand each part, each micro-step, completely we can lose our understand-
ing of the program as a whole: the effects of the interactions between the parts of a
program are unpredictable; they are emergent. Thus computer science puts a big
emphasis on techniques that aim to ensure that the program does what it is intended to
do as far as possible. However, even with the most careful methodology it is recognised
that a large chunk of time will have to be spent debugging the program — we all know that
a program cannot be relied on until it has been tested and fixed repeatedly.

However, it is fair to say that most computational modellers do not follow such
procedures and methodologies all the time (although since people don’t readily admit
to how messy their implementation process actually is, we cannot know this, just as
one does not know how messy people’s homes are when there are no visitors). There
are many reasons for this. Obviously those who are not computer scientists may simply
not know these techniques. Then there are a large number of modellers who know of
these techniques to some degree but judge that they are not necessary or not worth the
effort. Such a judgement may or may not be correct. Certainly it is the case that people
have a tendency to underestimate the complexity of programming and so think they
can get away with not bothering with a more careful specification and analysis stage.
There may also be times when there are good reasons not to follow such techniques.

A specification and design approach is simply not possible if you don’t have a very
clear idea of your goal. When modelling some target phenomena, one simply does not
know beforehand which parts of the system will turn out to be important to the
outcomes or even possible to computationally model. One of the big benefits of
modelling phenomena computationally is that one learns a lot about what is crucial
and possible in the process of building a simulation model. This is very unlike the case
where one has a functional goal or specification for a program that can be analysed into
sub-goals and processes etc. In (social) simulation, the degree to which formal
approaches are useful depends somewhat on the goal of modelling. If the goal is
very specific, for example understanding the effect of the recovery rate on the change
in the number of infections in an epidemic, and the basic model structure is known then
what is left is largely an engineering challenge. However, if the goal is general
understanding of a particular process then there is no possible way of systematically
determining what the model should be. Here the modelling is essentially a creative
process, and the development of the model proceeds in parallel with the development
of the understanding of the process; the model is itself a theory under development.

Thus what often seems to happen in practice is that modellers start off in a phase
of exploratory modelling, where they don’t have a precise conception of the model

4 Informal Approaches to Developing Simulation Models 41

they want but a series of ideas and/or evidence they want to capture. They then may
develop the model in different directions, backtracking and changing their ideas as
they go. This phase continues until they think they may have a model or results that
are worth telling others about. This then is (or at least should be) followed by a
consolidation phase where the model is more rigorously tested and checked so that
reliable and clear results can be reported. In a sense what happens in this later phase
is that the model is made so that it is as if a more formal and planned approach had
been taken.

There is nothing wrong with using an exploratory approach to model development.
Unfortunately, it is common to see models and results that are publicly presented
without a significant consolidation phase being undertaken. It is very understandable
why a researcher might want to skip the consolidation phase: they may have discov-
ered a result or effect that they find exciting and not wish to go through the relatively
mundane process of checking their model and results. They may feel that they have
discovered something that is of more general importance — however this personal
knowledge, that may well inform their understanding, is not yet of a standard that
makes it worthwhile for their peers to spend time understanding, until it has been more
rigorously checked.

One of the problems with the activity of modelling is that it does influence how the
modeller thinks. Paradoxically, this can also be one of the advantages of this approach.
After developing and playing with a model over a period of time it is common to “see”
the world (or at least the phenomena of study) in terms of the constructs and processes
of that model. This is a strong version of Kuhn’s “theoretical spectacles” (Kuhn 1969).
Thus it is common for modellers to be convinced that they have found a real effect or
principle during the exploration of a model, despite not having subjected their own
model and conception to sufficient checking and testing — what can be called modelling
spectacles. Building a model in a computer is almost always in parallel with the
development of one’s ideas about the subject being modelled. This is why it is almost
inevitable that we think about the subject in terms of our models — this is at once a
model’s huge advantage but also disadvantage. As long as one is willing to be aware of
the modelling spectacles and be critical of them, or try many different sets of modelling
spectacles, the disadvantage can be minimised.

Quite apart from anything, presenting papers with no substantial consolidation is
unwise. Such papers are usually painfully obvious when presented at workshops and
easily criticised by referees and other researchers if submitted to a journal. It is socially
acceptable that a workshop paper will not have as much consolidation as might be
required of a journal article, since the criticism and evaluation of ideas and models ata
workshop is part of its purpose, but presenting a model with an inadequate level of
consolidation just wastes the other participants’ time.

What steps then should modellers who follow such an informal approach take to
ensure that their model is sufficiently consolidated to present to a wider audience? The
first step is to ensure that they have a clear purpose for their model, as described below.
Secondly, the modeller must be careful to identify the assumptions that are made
during the construction of the model. Thirdly, the modeller must maintain control of
the model while exploring different possibilities. And fourthly — and this is perhaps the

42 E. Norling et al.

Fig. 4.1 The exploration and
consolidation approach to
model development

\

Exploration

Consolidation

. Simulation
Documentation
results

most difficult — the modeller must maintain an understanding of the model. The
following sections of this chapter discuss these points in more detail. Then there is
the all-important consolidation phase (which may proceed in parallel with the former
steps, rather than strictly sequentially), during which the modeller formalises the
model in order to ensure that the results are sound and meaningful. Figure 4.1
illustrates this approach to model building.

\e

4.2 Knowing the Purpose of the Model

There are many possible purposes for constructing a model. Although some models
might be adapted for different purposes without too much difficulty, at any one time a
model will benefit from having a clear purpose. One of the most common criticisms
of modelling papers (after a lack of significant consolidation) is that the author has
made a model but is unclear as to its purpose. This can be for several reasons, such as:

» The author may have simply modelled without thinking about why. (For exam-
ple having vague ideas about a phenomenon, the modeller decides to construct a
model without thinking about the questions one might want to answer about that
phenomenon.)

¢ The model might have been developed for one purpose but is being presented as
if it had another purpose.

¢ The model may not achieve any particular purpose and so the author might be
forced into claiming a number of different purposes to justify the model.

The purpose of a model will affect how it is judged and hence should influence
how it is developed and checked.

4 Informal Approaches to Developing Simulation Models 43

The classic reason for modelling is to predict some unknown aspect of observed
phenomena — usually a future aspect. If you can make a model that does this for
unknown data (data not known to the modellers before they published the model) then
there can be no argument that such a model is (potentially) useful. Due to the fact that
predictive success is a very strong test of a model for which the purpose is prediction,
this frees one from an obligation as to the content or structure of the model.'
In particular the assumptions in the model can be quite severe — the model can be
extremely abstract as long as it actually does predict.

However, predictive power will not always be a measure of a model’s success.
There are many other purposes for modelling other than prediction. Epstein (2008)
lists 16 other purposes for building a model, e.g. explanation, training of practitioners
or education of the general public, and it is important to note that the measure of
success will vary depending on the purpose.

With an explanatory model, if one has demonstrated that a certain set of
assumptions can result in a set of outcomes (for example by exhibiting an acceptable
fit to some outcome data) this shows that the modelled process is a possible explanation
for those outcomes. Thus the model generates an explanation, but only in terms of the
assumptions in the setup of the simulation. If these assumptions are severe ones, i.e. the
model is very far from the target phenomena, the explanation it suggests in terms of
the modelled process will not correspond to a real explanation in terms of observed
processes. The chosen assumptions in an explanatory model are crucial to its purpose
in contrast to the case of a predictive model — this is an example of how the purpose of a
model might greatly influence its construction.

It does sometimes occur that a model made for one purpose can be adapted for
another, but the results are often not of the best quality and it almost always takes
more effort than one expects. In particular, using someone else’s model is usually
not very easy, especially if you are not able to ask the original programmer
questions about it and/or the code is not very well documented.

4.3 Modelling Assumptions

Whilst the available evidence will directly inform some parts of a model design, other
parts will not be so informed. In fact it is common that a large part of a simulation
model is not supported by evidence. The second source for design decisions is the
conceptions of the modeller, which may have come from ideas or structures that are
available in the literature. However, this is still not sufficient to get a model working.
In order to get a simulation model to run and produce results it will be necessary to add
in all sorts of other details: these might include adding in a random process to “stand in”

'Of course a successfully predictive model raises the further question of why it is successful,
which may motivate the development of further explanatory models, since a complete scientific
understanding requires both prediction and explanation, but not necessarily from the same models
(Cartwright 1983).

44 E. Norling et al.

for an unknown decision or environmental factor, or even be a straight “kludge”
because you don’t know how else to program something. Even when evidence supports
a part of the design there will necessarily be some interpretation of this evidence. Thus
any model is dependent upon a whole raft of assumptions of different kinds.

If a simulation depends on many assumptions that are not relatable to the object
or process it models, it is unlikely to be useful. However, just because a model has
some assumptions in it this does not mean it should be disregarded. Any modelling
is necessarily a simplification of reality, done within some context or other. Hence
there will be the assumption that the details left out are not crucial to the aspect of
the results deemed important, as well as those assumptions that are inherent in the
specification of the context. This is true for any kind of modelling, not just social
simulation. It is not sufficient to complain that a model has assumptions or does
simplify, since modelling without this is impossible; one has to argue or show why
the assumptions included will distort the results. (Equally, the author of a model
should be able to justify the assumptions that have been made.)

What one can do is to try to make the assumptions as transparent, as clear and as
explicit as possible. Thus future researchers will be better able to judge what the
model depends upon and adapt the model if any of the assumptions turns out to be
considered bad. The most obvious technique is to try to document and display the
assumptions. This not only helps to defend the model against criticism but also
helps one to think more clearly about the model.

Particularly in the early stages of constructing a model, it is common to make a
number of “assumptions” about various processes that are involved. In a sense these
are not strictly assumptions — they are just necessary simplifications made in order
to get something running — but nevertheless are included here. The model builder
might for example include a random term to substitute for an unknown process, or a
particular value might be chosen for a constant without knowing if it is a suitable
value. The modeller must carefully document such decisions and be prepared to
revisit them and adjust them as necessary.

The next type of assumption to consider is that which is “forced” by the constraints of
the programming system. This might be the simplification of a process due to computa-
tional power limitations, restrictions forced upon the modeller due to the data structures
and/or algorithms available, or the desire to reuse another (sub-)model. Again, such
decisions must be documented. While the modeller may feel that these decisions have
been forced, their documentation can serve two purposes. Firstly, other modellers may
have insights into the same programming system that will allow them to suggest
alternate approaches. Secondly, modellers who wish to replicate the model using an
alternate system may be able to better demonstrate the impact of these assumptions.

The third type of assumption to consider is the choice of relevant objects and
processes. As mentioned previously, any modelling exercise is necessarily an
abstraction, and one must leave out much of the detail of the real world. Of course
it is impractical to document every detail that has been omitted, but the modeller
should consider carefully which objects and processes may be relevant to the
model, and document those that have been included and those that have been

4 Informal Approaches to Developing Simulation Models 45

omitted. This documentation will then prove invaluable in the consolidation phase
(see Sect. 4.6), when the modeller should explicitly test these assumptions.

The most difficult type of assumption to track and document is that which derives
from the modeller’s own personal biases. For example, the modeller may have an
innate “understanding” of some social process that is used in the model without
question. The modeller may also have been trained within a particular school that
embraces a traditional set of assumptions. Such traditional assumptions may be so
deeply ingrained that they are treated as fact rather than assumption, making them
difficult to identify from within.

This final class of assumption may be difficult for the modeller to identify and
document, but all others should be carefully documented. The documentation can then
be used in the exploration and consolidation phases (see below), when the modeller checks
these assumptions as much as possible, refining the model as necessary. The assumptions
should also be clearly stated and justified when reporting the model and results.

4.4 Maintaining Control of the Model While Exploring

The second biggest problem in following the exploration and consolidation approach
to model building (after that of giving in to the temptation to promote your results
without consolidation) is that one loses control of the model while exploring, resulting
in a tangle of bugs. Exploration is an essential step, testing the impact of the
assumptions that have been made, but if not carefully managed can result in code
that achieves nothing at all. Bugs can creep in, to an extent that fixing one merely
reveals another, or the model can become so brittle that any further modifications are
impossible to integrate, or the model becomes so flaky that it breaks in a totally
unexpected manner. Although interactions between processes might be interesting
and the point of exploration, too much unknown interaction can just make the model
unusable. Thus it is important to keep as many aspects as possible under control as you
explore, so you are left with something that you can consolidate!

The main technique for maintaining control of a model is doing some planning
ahead and consolidation as you explore. This is a very natural way for a modeller to
work — mixing stages of exploration and consolidation as they feel necessary and as
matches their ambitions for the model. Each programmer will have a different balance
between these styles of work. Some will consolidate immediately after each bit of
development or exploration; some will do a lot of exploration, pushing the model to its
limits and then reconstruct a large part of the model in a careful and planned way. Some
will completely separate the two stages, doing some exploration, then completely
rebuild their ideas in a formal planned way but now having a better idea (if they are
correct) of: what they are aiming to achieve, what needs to go into the model (and what
not), what is happening in the model as it runs, and which results they need to collect
from it.

There is no absolute rule for how careful and planned one should be in developing a
model, but roughly the more complex and ambitious it is the more careful one should be.

http://dx.doi.org/10.1007/978-3-540-93813-2_4

46 E. Norling et al.

Whilst a “quick and dirty” implementation may be sufficient for a simple model, for
others it is unlikely to get the desired results: it is too easy to lose understanding and
control of the interactions between the various parts, and also the model loses the
flexibility to be adapted as needed later on. At the other end of the spectrum, one can
spend ages planning and checking a model, building in the maximum flexibility and
modularity, only to find that the model does not give any useful results. This might be a
valuable experience for the programmer, but does not produce interesting knowledge
about the target phenomenon. This is the fundamental reason why exploration is so
important: because one does not know which model to build before it is tried. This is
particularly so for models that have emergent effects (like most of the ones discussed in
this volume), and also for those where there is no benchmark (either formal or observed)
against which to check them.

One important thing about the activity of modelling is that one has to be willing to
throw a lot of model versions away. Exploratory modelling is an inherently difficult
activity; most of the models built will either be the wrong structure or just not helpful
with regard to the phenomena we seek to understand. Further, the modelling is
constrained in many ways: in the time available for developing and checking them,
in the amount of computational resources they require, in the evidence available to
validate the model, in the necessary compromises that must be made when making a
model, and in the need to understand (at least to some extent) the models we make.
Thus the mark of a good modeller is that he or she throws away a /ot of models and only
publishes the results of a small fraction of those he or she builds. There is a temptation
to laziness, to trying to ‘fix’ a model that is basically not right and thus save a lot of
time, but in reality this often only wastes time. This relates to the modelling spectacles
mentioned above: one becomes wedded to the structure one is developing and it takes a
mental effort to start afresh. However, if it is to be effective, a corollary of an
exploratory approach is being highly selective about what one accepts — junking a
lot of models is an inevitable consequence of this.

Whatever balance you choose between exploration and consolidation, it is probably
useful to always pause before implementing any key algorithm or structure in your
model, thinking a little ahead to what might be the best way. This is an ingrained habit
for experienced programmers but may take more effort for the beginner. The beginner
may not know of different ways of approaching a particular bit of programming and so
may need to do some research. This is why developing some knowledge of common
algorithms and data structures is a good idea. There is a growing body of work on
documenting programming ‘patterns’ — which seek to describe programming solutions
at a slightly general level — which can be helpful, although none of these pattern
catalogues have yet been written specifically with models of social complexity in mind
(but see Grimm et al. 2005 for examples from ecology). Increasingly too researchers
within this field are making their code, or at least descriptions of the algorithms used,
available to wider audiences.

There are dangers of using someone else’s code or algorithm though. There is the
danger of assuming that one understands an algorithm, relying on someone else’s

4 Informal Approaches to Developing Simulation Models 47

description of it.” It is almost inconceivable that there will not be some unforeseen results
of applying even a well-known algorithm in some contexts. When it comes to reusing
code, the risk is even higher. Just as there are assumptions and simplifications in one’s
own code, so there will be in the code of others, and it is important to understand their
implications. Parameters may need adjustment, or algorithms tweaking, in order for the
code to work in a different context. Thus one needs to thoroughly understand at the very
least the interface to the code, and perhaps also its details. In some cases the cost of doing
this may well outweigh the benefits of reuse.

It is important to note that even though the approach presented here deviates from
formal approaches to software development, this does not mean one should ignore the
standard ‘good practices’ of computer programming. Indeed, due to the complexity of
even the simplest models in this field, it is advisable to do some planning and design
before coding. In particular, the following principles should be applied:

» Conceptualisation: any model will benefit greatly from developing a clear under-
standing of the model structure and processes before starting to program. This is often
called a conceptual model and usually involves some diagramming technique. While
computer scientists will tend to use UML for this purpose, any graphical notation that
you are familiar with will do to sketch the main entities and their relationships on
paper, such as mind maps or flow diagrams. Apart from helping a modeller to better
understand what the model is about this will form a valuable part of the overall model
documentation. See (Alam et al. 2010; appendix) for an example of using UML class
and activity diagrams.

¢ Modularity: it is not always possible to cleanly separate different functions or
parts of a model but where it is possible it is hugely advantageous to separate
these into different modules, classes or functions. In this way the interactions
with the other parts of your model are limited to what is necessary. It makes it
much easier to test the module in isolation, facilitates diagnostics, and can make
the code much simpler and easier to read.

» Clear structures/analogies: it is very difficult to understand what code does, and to
keep in mind all the relevant details. A clear idea or analogy for each part of the
simulation can help you keep track of the details as well as being a guide to
programming decisions. Such analogies may already be suggested by the
conceptions that the programmer (or others) have of the phenomena under study,
but it is equally important not to assume that these are always right, even if this was
your intention in programming the model.

¢ Clear benchmarks: if there is a set of reference data, evidence, theory or other model
to which the simulation is supposed to adhere this can help in the development of a
model, by allowing one to know when the programming has gone astray or is not
working as intended. The clearest benchmark is a set of observed social phenomena,
since each set of observations provides a new set of data for benchmarking.

2 Of course this danger is also there for one’s own programming: it is more likely, but far from
certain, that you understand some code you have implemented or played with.

48 E. Norling et al.

Similarly if a part of the model is supposed to extend another model then restricting
the new model should produce the same outcomes as the original.’

» Self-documentation: if one is continuously programming a simulation that is not
very complex then one might be able to recall what each chunk of code does.
However when developing this type of simulation it is common to spend large
chunks of time focusing on one area of a model before returning to another. After
such a lapse, one will not necessarily remember the details of the revisited code,
but making the code clear and self-documenting will facilitate it. This sort of
documentation does not necessarily have to be full documentation, but could
include: using sensible long variable and module names, adding small comments
for particularly tricky parts of the code, keeping each module, class, function or
method fairly simple with an obvious purpose, and having some system for
structuring your code.

» Building in error checking: errors are inevitable in computer code. Even the best
programmer can inadvertently introduce errors to his or her code. Some of these
will be obvious but some might be subtle; difficult to isolate and time-consuming
to eliminate. Detecting such errors as early as possible is thus very helpful and
can save a lot of time. Including safeguards within your code that automatically
detect as many of these errors as possible might seem an unnecessary overhead,
but in the long run can be a huge benefit. Thus you might add extra code to check
that all objects that should exist at a certain time do in fact exist, or that a message
from one object to another is not empty, or that a variable that should only take
values within a certain range does stay within this range. This is especially
important in an exploratory development, where one might develop a section
of code for a particular purpose, which then comes to be used for another
purpose. In other words the computational context of a method or module has
altered.

There are also many techniques that computer scientists may exhort you to use
that are not necessarily useful, that may be more applicable to the development of
software with more clearly defined goals. Thus do evaluate any such suggested
techniques critically and with a large dose of common sense.

4.5 Understanding the Model

Understanding a model is so intertwined with controlling a model that it is difficult to
cleanly separate the two. You cannot really control a complex model if you do not at
least partially understand it. Conversely, you cannot deeply understand a model until
you have experimented with it, which necessitates being able to control it to a
considerable extent. However, since modelling complex social phenomena requires

* What the “same outcomes™ here means depends on how close one can expect the restricted new
model to adhere to the original, for example it might be the same but with different pseudo-random
number generators.

4 Informal Approaches to Developing Simulation Models 49

(at least usually and probably always) complex models, complete understanding and/
or control is often unrealistic. Nevertheless, understanding your model as much as is
practical is key to useful modelling. This is particularly true for exploratory modelling
because it is the feedback between trying model variations and building an under-
standing of what these variations entail that makes this approach useful.

Understanding one’s model is a struggle. The temptation is to try shallow
approaches by only doing some quick graphs of a few global measures of output,
hoping that this is sufficient to give a good picture of what is happening in a complex
social simulation. Although information about the relationship of the set-up of a
simulation and its global outcomes can be useful, this falls short of a full scientific
understanding, which must explain ow these are connected. If you have an idea of
what the important features of your simulation model are, you might be able to design a
measure that might be suitable for illustrating the nature of the processes in your
model. However, a single number is a very thin indication of what is happening — this is
OK if you know the measure is a good reflection of what is crucial in the simulation, but
can tend to obscure the complexity if you are trying to understand what is happening.

To gain a deeper understanding, one has to look at the details of the interactions
between the parts of the simulation as well as the broader picture. There are two main
ways of doing this: case studies using detailed traces/records and complex visualisations.

A case study involves choosing a particular aspect of the simulation, say a
particular individual, object or interaction; then following and understanding it,
step-by-step, using a detailed trace of all the relevant events. Many programming
environments provide tracing tools as an inbuilt feature, but not all social simulation
toolkits have such a feature. In this latter case, the modeller needs to embed the
tracing into the model, with statements that will log the relevant data to a file for later
analysis. This “zooming in” into the detail is often very helpful in developing a good
understanding of what is happening and is well worth while, even if you don’t think
you have any bugs in your code. However, in practice many people seek to avoid this
mundane and slightly time-consuming task.

The second way to gain an understanding is to program a good dynamic visualisation
of what is happening in the model. What exactly is “good” in this context depends
heavily on the nature of the model: it should provide a meaningful view of the key
aspects of the model as the simulation progresses. Many social simulation toolkits
provide a range of visualisation tools to assist this programming, but the key is
identifying the relevant processes and choosing the appropriate visualisation for
them — a task that is not amenable to generic approaches. Thus you could have a 2D
network display where each node is an individual, where the size, shape, colour, and
direction of each node all indicate different aspects of its state, with connections drawn
between nodes to indicate interactions, and so on. A good visualisation can take a while
to design and program but it can crucially enhance the understanding of your
simulation and in most cases is usable even when you change the simulation set-
up. The chapter by Evans et al. (2013) in this volume discusses a range of
visualisation techniques aimed at aiding the understanding of a simulation model.

50 E. Norling et al.

4.6 The Consolidation Phase

The consolidation phase should occur after one has got a clear idea about what simula-
tion one wants to run, a good idea of what one wants to show with it, and a hypothesis
about what is happening. It is in this stage that one stops exploring and puts the model
design and results on a more reliable footing. It is likely that even if one has followed a
careful and formal approach to model building some consolidation will still be needed,
but it is particularly crucial if one has developed the simulation model using an informal,
exploratory approach. The consolidation phase includes processes of: simplification,
checking, output collection and documentation. Although the consolidation phase has
been isolated here, it is not unusual to include some of these processes in earlier stages of
development, intermingling exploration and consolidation. In such circumstances, it is
essential that a final consolidation pass is undertaken, to ensure that the model is truly
robust.

Simplification is where one decides which features/aspects of the model you need
for the particular paper/demonstration you have in mind. In the most basic case, this
may just be a decision as to which features to ignore and keep fixed as the other features
are varied. However this is not very helpful to others because (a) it makes the code and
simulation results harder to understand (the essence of the demonstration is cluttered
with excess detail) and (b) it means your model is more vulnerable to being shown to be
brittle (there may be a hidden reliance on some of the settings for the key results).
A better approach is to actually remove the features that have been explored but turned
out to be unimportant, so that only what is important and necessary is left. This not only
results in a simpler model for presentation, but is also a stronger test of whether or not
the removed features were irrelevant.

The checking stage is where one ensures that the code does in fact correspond to the
original intention when programming it and that it contains no hidden bug or artefact.
This involves checking that the model produces “reasonable” outputs for both “standard”
inputs and “extreme” inputs (and of course identifying what “standard” and ‘“‘extreme”
inputs and “reasonable” outputs are). Commonly this involves a series of parameter
sweeps, stepping the value of each parameter in turn to cover as wide a combination as
possible (limited usually by resources). When possible, the outputs of these sweeps
should be compared against a standard, whether that is real world data on the target
phenomenon, or data from a comparable (well-validated) model.

The output collection stage is where data from the various runs is collected and
summarised in such a way that (a) the desired results are highlighted and (b) sufficient
“raw” data is still available to understand how these results have been achieved. It
would be impractical to record the details of every variable for every run of the
simulation, but presenting results in summary form alone may hide essential details.
At the very least, it is essential to record the initial parameter settings (including
random seeds, if random numbers are used) so that the summary results may be
regenerated. It may also be informative to record at least a small number of detailed
traces that are illustrative of the simulation process (once one has determined which
parameter configurations produce “interesting” results).

4 Informal Approaches to Developing Simulation Models 51

Documentation is the last stage to be mentioned here, but is something that should
develop throughout the exploration and consolidation of a model. Firstly, as mentioned
above, the code should be reasonably self-documenting (through sensible naming and
clear formatting) to facilitate the modeller’s own understanding. Secondly, the
consolidated model should be more formally documented. This should include any
assumptions (with brief justifications), descriptions of the main data structures and
algorithms, and if third-party algorithms or code have been used, a note to their source.
This may seem like unnecessary effort, particularly if the modeller has no intention of
publicly releasing the code, but if questions arise some months or years down the track,
such documentation can be invaluable, even for the original author’s understanding.

Finally, the modeller must present the model and its results to a wider audience.
This is essential to the process of producing a model, since one can only have some
confidence that it has been implemented correctly when it has been replicated,
examined and/or compared to other simulations by the community of modellers.
The distribution of the model should include a description of the model with sufficient
detail that a reader could re-implement it if desired. It should present the typical
dynamics of the system, with example output and summaries of detailed output. The
relevant parameters should be highlighted, contrasting those deemed essential to the
results with those with little or no impact. The benchmark measurements should be
summarised and presented. To maximise a simulation’s use in the community the
simulation should be appropriately licensed to allow others to analyse, replicate and
experiment with it (Polhill and Edmonds 2007).

4.7 Tools to Aid Model Development

As indicated previously, there is now a variety of systems for aiding the development
of complex simulations. These range from programming-language-based tracing and
debugging tools through to frameworks designed explicitly for social simulation,
which include libraries of widely used patterns. Learning to use a particular system or
framework is a substantial investment and because of this, most people do not swap
from system to system readily once they have mastered one (even when an alternate
system may provide a far more elegant solution to a problem). Ideally, a modeller
would evaluate a range of systems when embarking on a new project, and decide
upon the most appropriate one for that project. In practice, most modellers simply
continue to use the same system as they have used on previous projects, without
considering alternatives. There is no simple answer as to which system is “best”. The
available options are constantly changing as new systems are developed and old ones
stop being supported. The type of modelling problem will influence the decision.
And indeed it is partly a personal decision, depending on the modeller’s own
personal style and preferences. However given that such an investment is involved
in learning a new system, it is a good idea to make this investment in one that will
have large payoffs; that will be useful for developing a wide range of models.
Systems for developing and testing simulations range from the very specific to
those that claim to be fairly generally applicable. At the specific end there are

52 E. Norling et al.

simulators that are designed with a restricted target in mind — such as a grid-based
simulation of land use change (e.g. FEARLUS,* Polhill et al. 2001, or SLUDGE,
Parker and Meretzky 2004) — where most of the structures, algorithms and outputs are
already built in. The user has some latitude to adapt the simulation for their own
modelling ends, but the ease with which one can make small changes and quickly get
some results may be at the cost of being stuck with inbuilt modelling assumptions,
which may not be appropriate for the task at hand. The specificity of the model means
thatitis not easy to adapt the system beyond a certain point; it is not a universal system,
capable in principle, of being adapted to any modelling goal. Thus such a specific
modelling framework allows ease of use at the cost of a lack of flexibility.

At the other end of the spectrum are systems that aim to be general systems to
support simulation work; that can, at least in principle, allow you to build any
simulation that can be conceived. Such systems will usually be close to a computer
programming language, and usually include a host of libraries and facilities for the
modeller to use. The difficulty with this type of system is that it can take considerable
effort to learn to use it. The range of features, tools and libraries that they provide take
time to learn and understand, as does learning the best ways to combine these features.
Furthermore, even if a system in principle makes it possible to implement a modelling
goal, different systems have different strengths and weaknesses, making any particular
system better for some types of models, and less good for others. Thus modellers will
sometimes “fight the system,” implementing workarounds so that their model can be
implemented within the system in which they have invested so much time, when in fact
the model could more efficiently be implemented in an alternative system.

Between these two extremes lie a host of intermediate systems. Because they are
often open source, and indeed more specific modelling frameworks are commonly
built within one of these generic systems, it is usually possible (given enough time
and skill) to ‘dig down’ to the underlying system and change most aspects of these
systems. However the fundamental trade-offs remain — the more of a simulation
that is ‘given,’ the more difficult it will be to adapt and the more likely it is that
assumptions that are not fully understood will affect results.

Thus it is impossible to simply dictate which the best system is to use for
developing simulation models of social complexity; indeed there is no single system
that is best under all circumstances. However the sorts of questions one should
consider are clearer. They include:

e Clear structure: Is the way the system is structured clear and consistent? Are
there clear analogies that help ‘navigate’ your way through the various choices
you need to make? Is it clear how its structures can be combined to achieve more
complex goals?

e Documentation: Is there a good description of the system? Is there a tutorial to
lead you through learning its features? Are there good reference documents

“http://www.macaulay.ac.uk/fearlus/.

http://www.macaulay.ac.uk/fearlus/

Informal Approaches to Developing Simulation Models 53

where you can look up individual features? Are there lots of well-documented
examples you can learn from?

Adaptability: Can the system be adapted to your needs without undue difficulty?
Is the way it is structured helpful to what you want to do? Are the structures
easily adaptable once implemented in your model? Does the system facilitate the
modularisation of your model so that you can change one aspect without having
to change it all?

Speed: How long does it take to run a model? Speed of execution is particularly
important when a variety of scenarios or parameters need to be explored, or
when several runs are necessary per parameter configuration due to random
processes in the model.

User community: Do many people in your field use the system? Are there active
mailing lists or discussion boards where you can ask for help? If you publish a
model in that system is it likely that it will be accessible to others?

Debugging facilities: Does the system provide inbuilt facilities for debugging
and tracing your simulation? If not, are there perhaps generic tools that could be
used for the purpose? Or would you have to debug/trace your model by manually
inserting statements into your code?

Visualisation facilities: Does the system provide tools and libraries to visualise
and organise your results? Are there dynamic visualisation tools (allowing one to
view the dynamics of the system as it evolves)? How quickly can you develop a
module to visualise the key outputs of a simulation?

Batch processing facilities: Is there a means of running the model a number of
times, collecting and perhaps collating the results? Is it possible to automatically
explore a range of parameters whilst doing this?

Data collection facilities: Are the results collected and stored systematically so
that previous runs can easily be retrieved? Is it possible to store them in formats
suitable for input into other packages (for example for statistical analysis, or
network analysis)?

Portability: Is the system restricted to a particular platform or does it require
special software to run? Even if all your development will be done on one
particular machine, in the interests of reusability it is desirable to use a system
that will run on multiple platforms, and that is not dependent on specialised
commercial software.

Programming paradigm: Different programming paradigms are more appropriate
to different types of modelling problems. If for example you think of things in
terms of “if-then” statements, a rule-based system might be the most appropriate
for your modelling. If instead you visualise things as series of (perhaps branching)
steps, a procedural one might be more appropriate. In practice most systems these
days are not purely one paradigm or another, but they still have leanings one way
or another, and this will influence the way you think about your modelling.
Timing: How will time be handled in the simulation? Will it be continuous or
stepped, or perhaps event-driven? Will all agents act “at once” (in practice,
unless each agent is run on a separate processor they will be executed in some
sense sequentially, even if conceptually within the model they are concurrent),

54 E. Norling et al.

or do they strictly take turns? Will it be necessary to run the simulation in real
time, or (many times) faster than real time?

Once one has considered these questions, and decided on the answers for the
particular model in mind, the list of potential systems will be considerably shortened,
and one should then be able to make an informed choice over the available options.
The temptation, particularly when one is beginning to write models, is to go for the
option that will produce the quickest results, but it is important to remember that
sometimes a small initial investment can yield long-term benefits.

4.8 Conclusion

It is easy to try and rationalise bad practice. Thus it is tempting to try and prove that
some of the more formal techniques of computer science are not applicable to
building social simulations just because one cannot be bothered to learn and master
them. It is true however that not all the techniques suggested by computer scientists
are useful in an exploratory context, where one does not know in advance precisely
what one wants a simulation to do. In these circumstances one has to take a looser
and less reliable approach, and follow it with consolidation once one has a more
precise idea of what one wants of the simulation. The basic technique is to mix bits
of a more careful approach in with the experimentation in order to keep sufficient
control. This has to be weighed against the time that this may take given one does
not know which final direction the simulation will take. There is a danger of this
approach: that the modeller will be tempted by apparently significant results to rush
to publication before sufficient consolidation has occurred. There may be times
when the exploratory phase may result in useful and influential personal knowledge
but such knowledge is not reliable enough to be up to the more exacting standards
expected of publicly presented results. Thus it is only with careful consolidation of
models that this informal approach to building simulations should be undertaken.

Further Reading

Outside the social sciences, simulation has been an established methodology for
decades. Thus there is a host of literature about model building in general. The biggest
simulation conference, the annual “Winter Simulation Conference”, always includes
introductory tutorials, some of which may be of interest to social scientists. Good
examples are (Law 2008) and (Shannon 1998).

For a comprehensive review of the currently existing general agent-based simula-
tion toolkits see (Nikolai and Madey 2009); other reviews focus on a smaller selection
of toolkits (e.g. Railsback et al. 2006; Tobias and Hofmann 2004; Gilbert and Bankes
2002).

The chapters on checking your simulation model (Galan et al. 2013), documenting
your model (Grimm et al. 2013) and model validation (David 2013) in this volume
should be of particular interest for anyone intending to follow the exploration and

4 Informal Approaches to Developing Simulation Models 55

consolidation approach to model development. However, if you would rather attempt a
more formal approach to building an agent-based simulation model, the subsequent
chapter (Jonker and Treur 2013) discusses one such approach in detail. You could also
consult textbooks on methodologies for the design of multi-agent systems, such as
(Luck et al. 2004), (Bergenti et al. 2004) or (Henderson-Sellers and Giorgini 2005).
After all, any agent-based simulation model can be seen as a special version of a multi-
agent system.

References

Alam SJ, Geller A, Meyer R, Werth B (2010) Modelling contextualized reasoning in complex societies
with “endorsements”. J Artif Soc Soc Simul 13(4). http://jasss.soc.surrey.ac.uk/13/4/6.html

Bergenti F, Gleizes M-P, Zambonelli F (eds) (2004) Methodologies and software engineering for
agent systems: the agent-oriented software engineering handbook. Kluwer, Boston

Cartwright N (1983) How the laws of physics lie. Clarendon, Oxford

David N (2013) Validating simulations. Chapter 8 in this volume

Epstein J (2008) Why model? J Artif Soc Soc Simul 11(4). http://jasss.soc.surrey.ac.uk/11/4/12.html

Evans A, Heppenstall A, Birkin M (2013) Understanding simulation results. Chapter 9 in this volume

Galan J et al (2013) Detecting and avoiding errors and artefacts. Chapter 6 in this volume

Gilbert N, Bankes S (2002) Platforms and methods for agent-based modelling. Proc Natl Acad Sci
USA 99(3):7197-7198

Grimm V et al (2005) Pattern-oriented modeling of agent-based complex systems: lessons from
ecology. Science 310:987-991

Grimm V, Polhill G, Touza J (2013) Documenting simulations using ODD. Chapter 7 in this volume

Henderson-Sellers B, Giorgini P (eds) (2005) Agent-oriented methodologies. Idea Group, Hershey

Jonker C, Treur J (2013) A formal approach to building compositional agent-based simulations.
Chapter 5 in this volume

Kuhn T (1969) The structure of scientific revolutions. University of Chicago Press, Chicago

Law AM (2008) How to build valid and credible simulation models. In: Mason SJ et al. (eds)
Proceedings of the 2008 winter simulation conference, Miami, FL. http://www.informs-sim.org/
wsc08papers/007.pdf

Luck M, Ashri R, d’Inverno M (2004) Agent-based software development. Artech House, London

Nikolai C, Madey G (2009) Tools of the trade: a survey of various agent based modelling
platforms. J Artif Soc Soc Simul 12(2). http://jasss.soc.surrey.ac.uk/12/2/2.html

Parker DC, Meretsky V (2004) Measuring pattern outcomes in an agent-based model of edge-
effect externalities using spatial metrics. Agric Ecosyst Environ 101(2-3):233-250

Polhill JG, Edmonds B (2007) Open access for social simulation. J Artif Soc Soc Simul 10(3).
http://jasss.soc.surrey.ac.uk/10/3/10.html

Polhill G, Gotts N, Law ANR (2001) Imitative versus non-imitative strategies in a land-use
simulation. Cybern Syst 32(1-2):285-307

Railsback SF, Lytinen SL, Jackson SK (2006) Agent-based simulation platforms: review and
development recommendations. Simulation 82:609—-623

Shannon RE (1998) Introduction to the art and science of simulation. In: Medeiros DJ, Watson EF,
Carson JS, Manivannan MS (eds) Proceedings of the 1998 winter simulation conference,
Washington, D.C. http://www.informs-sim.org/wsc98papers/001.PDF

Tobias R, Hofmann C (2004) Evaluation of free Java-libraries for social-scientific agent based
simulation. J Artif Soc Soc Simul 7(1). http://jasss.soc.surrey.ac.uk/7/1/6.html

http://jasss.soc.surrey.ac.uk/13/4/6.html
http://jasss.soc.surrey.ac.uk/11/4/12.html
http://www.informs-sim.org/wsc08papers/007.pdf
http://www.informs-sim.org/wsc08papers/007.pdf
http://jasss.soc.surrey.ac.uk/12/2/2.html
http://jasss.soc.surrey.ac.uk/10/3/10.html
http://www.informs-sim.org/wsc98papers/001.PDF
http://jasss.soc.surrey.ac.uk/7/1/6.html

Chapter 5
A Formal Approach to Building Compositional
Agent-Based Simulations

Catholijn M. Jonker and Jan Treur

Why Read This Chapter? To be introduced to a more formal “computer-science”
style of simulation design, especially suited to simulations of multi-level systems
(e.g. firms, departments, and people).

Abstract This chapter is an introduction to a more formal approach to designing
agent-based simulations of organisations (in the widest sense). The basic method is
the iterative refinement of structure, process and knowledge, decomposing each
abstraction into near-decomposable components that can be (for the most part) then
considered separately. Within this over all framework there are two complementary
approaches: designing the organisation first, and designing the individual agents first.

5.1 Introduction

This chapter outlines a more formal approach to designing an agent system, in this
case an agent-based simulation. Its approach comes from computer science, and
shows how one can develop a design for a simulation model in a staged and
cautious manner. This is particularly appropriate when the simulation is complex,
requiring the interaction of complex and intelligent entities, and the intended design
of the model is essentially known or accessible. Thus it contrasts with and
complements the previous chapter describing more informal and exploratory
approaches to developing simulations (Norling et al. 2013).

C.M. Jonker (<)

Man-Machine Interaction, Delft University of Technology, Mekelweg 4, Delft 2628 CD,
The Netherlands

e-mail: C.M.Jonker@tudelft.nl

J. Treur

Department of Artificial Intelligence, Vrije Universiteit Amsterdam, De Boelelaan 1081a,
Amsterdam 1081 HV, The Netherlands

e-mail: treur@few.vu.nl

B. Edmonds and R. Meyer (eds.), Simulating Social Complexity, 57
Understanding Complex Systems, DOI 10.1007/978-3-540-93813-2_5,
© Springer-Verlag Berlin Heidelberg 2013

mailto:C.M.Jonker@tudelft.nl
mailto:treur@few.vu.nl

58 C.M. Jonker and J. Treur

This chapter draws on approaches which were designed for engineering agent-
based software systems (e.g. air traffic control) and applies them to the engineering
of agent-based simulations since a simulation model is an example of a complex
piece of software. Such a cautious approach will result in the development of the
model taking more time and effort but also should result in a simulation model that
is easier to maintain and adapt and create fewer bugs, or simulations artefacts
(as described in Chap. 6, Galan et al. 2013).

The chapter is structured into three main sections, covering: compositional
design, organisations and agents. The section on compositional design is the most
general, and “works” for both the design of organisations and agents. However,
there is no need to reinvent the wheel — the sections on designing organisations and
agents raise more specific issues and aspects that experience has shown to be
helpful when designing simulations of these entities. Although they do not recapit-
ulate all in the section on compositional design they are essentially examples of that
general approach, though they each only concentrate on part of the overall process.
The differences are, roughly, that the organisational view starts with the
organisation, then the roles within that organisation, working “downwards”. It
highlights the constraints from above that organisations place on their members,
dealing with the nature of the agents after. The agent viewpoint starts with the
agents and their properties first and then moves on to how they interact (including
maybe as an organisation). Social phenomena often do involve both the “down-
ward” actions of constraint and “immergence” as well as the upwards actions of
emergence and collective outcomes. Thus both organisational and agent views are
often necessary to be explicitly considered in simulations.

5.2 Principles of Compositional Design of Multi-agent Systems

Although any principled design method can be used for the development of
simulations, we are concentrating in this chapter on those social systems which
are compositional in nature, since compositional actors are common in the social
world and this case also covers the principles in the simpler, non-compositional,
case. The principles described are quite general in nature, but will be illustrated
with respect to a particular compositional multi-agent development method, the
Design and Specification of Interacting Reasoning Components (DESIRE) (Brazier
et al. 1998).

The approach described here considers the design of autonomous interactive
agents and explicitly models both the intra-agent functionality and the inter-agent
functionality. Intra-agent functionality concerns the expertise required to perform
the tasks for which an agent is responsible in terms of the knowledge, and reasoning
and acting capabilities. The inter-agent functionality concerns the expertise
required to perform and guide co-ordination, co-operation and other forms of social
interaction in terms of knowledge, reasoning and acting capabilities.

http://dx.doi.org/10.1007/978-3-540-93813-2_6

5 A Formal Approach to Building Compositional Agent-Based Simulations 59

In the approach here described, both the individual agents and the overall system
are considered as compositional structures — hence all functionality is designed in
terms of interacting, compositionally structured components. Complex distributed
processes are the result of tasks performed by agents in interaction with their
environment.

The process starts at the most general, aggregate and abstract level, works in ever
increasing detail down through the specification of individual agents and finally the
code that determines their behaviour. At each stage there are a number of decisions
to be made, which correspond to specifying the features and properties that are
described below. The decisions at the higher levels help frame those made for the
next level, etc. until everything has been described. This should leave a documented
“trace” of the decisions that are made during the simulation design, that will help
with the description of the simulation and the explicit logging of assumptions made
during the design process.

Once this has been done and a roughly working simulation obtained, the verifi-
cation and validation procedure happens in the other direction, starting at testing
and validating the smallest processes and components and building upwards to
higher groups and units until the simulation as a whole has been checked.

5.2.1 The Design Process

The design of a multi-agent simulation is an iterative process, which aims at the
identification of the parties involved (i.e., human agents, system agents, external
worlds), and the processes, in addition to the types of knowledge needed. Initially
broad conceptual descriptions of specific processes and knowledge are attained.
Further explication of these conceptual design descriptions results in more detailed
design descriptions, most often in parallel with the development of the conceptual
design. During the design of these models, prototype implementations or parts or
sections of the overall model may be used to analyse or verify the resulting behaviour.
On the basis of examination of these partial prototypes, new designs and prototypes
are generated and examined, and so on and so forth. This evolutionary development
of systems is characteristic to the whole approach. Thus, as with any idealised design
methodology, in practice there is a lot of iterating back and forth between stages and
levels until a satisfactory design is obtained. The concepts presented in this chapter
are to help focus what might otherwise be an unstructured process.

We distinguish the following kinds of descriptions within the development
process:

» Problem description — Sect. 5.2.3
* Conceptual design — Sect. 5.2.4

¢ Detailed design — Sect. 5.2.4

* Design rationale — Sect. 5.2.5

* Operational design

60 C.M. Jonker and J. Treur

The problem description is a description of the target system to be simulated and
the main issues and questions to be investigated, this usually includes the
requirements imposed on the design — what the simulation must do to be useful
in this regard. Starting from the problem description, the design rationale specifies
the choices made during each of the levels of the design process, the reasons for
those choices, and the assumptions behind those choices that will impinge on its
use. In other words, the design rationale is the strategy for “solving” the problem
description using the design along with the reasons and justification for that
strategy.

The actual design process roughly proceeds from conceptual and abstract, down
to the more concrete until one has almost written the simulation code itself. The
conceptual design includes conceptual models (the main design ideas and
structures) for each entity in the model: the organisation, its roles and groups, the
individual agents, the external world, the interaction between agents, and the
interaction between agents and the external world. In a sense a conceptual design
could apply as much to a human who will have to fulfil a role as a programmed
agent, it does not concern itself with exactly how these aspects are to be achieved,
but more about sow it relates to other key structures. The detailed design of a
system, based on the conceptual design, specifies all aspects of a system’s knowl-
edge and behaviour. It describes how the agent’s processes will achieve its role.
This can be thought of as the step where one is thinking about how a computational
agent might achieve what is described in the conceptual design, but it is probably
independent of which computer language, or system the agent is destined to be
implemented in. A detailed design is an adequate basis for the operational design,
which deals with some of the nitty-gritty of a specific implementation in a particular
system. It stops short of actual programming code, but would be enough for a
programmer to implement the system. This final stage will not be discussed in this
chapter since it will be different for each programming language or system that is
used to implement the final simulation.

The sequence tends to progress roughly from the conceptual towards the con-
crete, however this is only a general rule; there is no immutable sequence of design:
depending on the specific situation, different types of knowledge are available at
different points during system design which means that stages need to be iterated or
even that, at times, lower level necessities might drive the higher levels of design.

5.2.2 Compositionality of Processes and Knowledge

Compositionality is a general principle that refers to the use of components to
structure a design. This process of composition can be extended downwards as far
as it is useful, for example, components can themselves be compositional structures
in which a number of other, more specific components are grouped. During the
design all the components at the different levels are identified. Processes at each of
these levels (except the lowest level) are modelled as (process) components

5 A Formal Approach to Building Compositional Agent-Based Simulations 61

composed of entities at the level one lower to the process. Clearly this approach
depends upon the possibility of decomposing what is being modelled into separate
entities that are somewhat independent, so that the interaction of these components
can be considered in turn. In other words it is necessary that what is being modelled
is a near-decomposable system (Simon 1962). Although this is not always the case,
there are many social actors that, prima facie, are themselves composed of other
actors, for example political parties or firms. Thus this is often a reasonable
approach to take in the field of social simulation. Even when it is not clear that
what is being modelled does divide so neatly, then this method provides a system-
atic approach to attempting to identify and analyse those parts that are amenable to
design so that when they are all put together the desired behaviour will emerge from
their interaction during the simulation. Such emergence is an indication of non-
decomposability and can never be guaranteed — one has to find out by running the
simulation model, i.e. performing simulation experiments. If the desired behaviour
does not emerge then one has to try and work out the possible reasons for the failure
and go back to earlier stages of the design and rethink the approach.

In this compositional approach, each process within a multi-agent system may
be viewed as the result of interaction between more specific processes. A complete
multi-agent system may, for example, be seen to be one single component respon-
sible for the performance of the overall process. Within this one single component a
number of agent components within a common internal environment may be
distinguished, each responsible for a more specific process. Each agent component
may, in turn, have a number of internal components responsible for more specific
parts of this process. These components may themselves be composed, again
entailing interaction between other more specific processes.

The knowledge and information that is stored, produced, and communicated is
as important as the processes. The set of all terms, labels, types, structures etc. that
is used to encode and process the knowledge needed in a specific domain or for the
purposes of a particular agent may also be seen as a component, a knowledge
structure. This knowledge structure can be composed of a number of more specific
knowledge structures which, in turn, may again be composed of other even more
specific knowledge structures.

Compositionality of processes and compositionality of knowledge are two inde-
pendent dimensions of design. Thus a set of processes might be summarised as a
single process when appropriate or, in the other direction, broken down into a
system of sub-processes. The knowledge structures at one level might be adequate
for the purposes of the compositional processes or, maybe, a finer system of
description might be needed to be utilised by a finer grain of process representation.
For example, some simulations might represent the spread of beliefs through a
group as a simple contagion process, with simple entities representing the beliefs
and who has them. A finer grained model might include more of a cognitive
representation of the knowledge structures involved and how others are persuaded
to accept these as the result of a dialogue process.

Compositionality is a means to achieve information and process hiding within a
model: by defining processes and knowledge at different levels of abstraction,

62 C.M. Jonker and J. Treur

unnecessary detail can be hidden at those stages, allowing the broader
considerations to be considered separately from the component details. Clearly in
the realm of social simulation being able to satisfactorily express social processes
without always going down to the details is necessary if the resulting model is to be
feasible — clearly we cannot simulate social actors, going all the way down to the
atoms they are made of. Compositionality also makes it possible to integrate
different types of components in one agent, providing the structure and means by
which they work together.

5.2.3 Problem Description

There are many ways to write a problem description. Techniques vary in their
applicability, depending on, for example, the situation, the task, or the type of
knowledge on which the system developer wishes to focus. Therefore, no particular
method will be described here. However, whichever way the problem description is
developed it is crucial to capture the key requirements to be imposed on the system —
that is, what one wants to gain from building and using the simulation. These
requirements are part of the initial problem definition, but may also evolve during
the development of a system. Different simulations of the same phenomena might
well be appropriate because each might have different requirements. For example, a
simulation model to predict where queues will form on a certain stretch of motor-
way will probably be different from one to predict whether different proportions of
lorries might affect the throughput of traffic, even if both simulations are of traffic
on the same stretch of road at the same times.

5.2.4 Conceptual and Detailed Design

A conceptual and detailed design consists of specifications of the following three
types:
* Process composition;

* Knowledge composition;
¢ The relation between process composition and knowledge composition.

These are discussed in turn in more detail below.

5.2.4.1 Process Composition

Process composition identifies the relevant processes at different levels of (process)
abstraction, and describes how a process can be defined in terms of lower level
processes. Depending on the context in which a system is to be designed two
different approaches can be taken: a task perspective, or a multi-agent perspective.

5 A Formal Approach to Building Compositional Agent-Based Simulations 63

The task perspective refers to the approach, in which the processes needed to
perform an overall task are distinguished first, which are then delegated to appro-
priate agents and the external world. In this approach the agents and the external
world are designed later. The multi-agent perspective refers to the approach in
which agents and an external world are distinguished first and afterwards the
processes within each agent and within the external world.

Identification of Processes at Different Levels of Abstraction

Processes can be described at different levels of abstraction; for example, the
processes for the multi-agent system as a whole, processes within individual agents
and the external world, processes within task-related components of individual
agents. Thus in a traffic simulation system processes might include the introduction
and removal of vehicles, the collection of statistics and the visualisations of the
system state; individual agents representing vehicles might have processes for
monitoring their speed and for deciding when to change lane; within these agents
might be a reactive component that monitors and adjusts the speed reacting when
other traffic gets too close, a learning component that remembers which lanes were
faster in the past, and a reasoning component that decides when to change lanes.

Relevant Aspects of a Process

The processes identified are modelled as components. For each process the types of
information used by it for input and resulting as output are identified and modelled
as input and output interfaces of the component (an interface is a protocol for the
information and maybe some specification of a process to deal with it, translating or
storing it). So in a traffic simulation the process in an agent may need the distance
and the relative speed of any object in its path to be passed to it as an input and the
reactions (accelerating, braking) may be passed as its outputs. Clearly in a simple
simulation these interfaces will be trivial, but in more complex simulations or
where a degree of modularity is required some effort in designing these interfaces
might well pay off.

Modelling Process Abstraction Levels

Each level of process is either an abstraction of lower levels of component and/or a
specialisation of the levels above. These layers of abstraction only go down so far
since processes are either composed of other components or they may be primitive.
Primitive components may be either reasoning components (for example based on a
knowledge base), or, alternatively, components capable of performing tasks such as
calculation, information retrieval, optimisation, etc.

64 C.M. Jonker and J. Treur

The identification of processes at different levels of abstraction results in the
specification of components that can be used as building blocks, and which
components are sub-components of which other component. The distinction of
different levels of process abstraction results in hiding detail from the processes
at the higher levels. Thus a process to decide whether to change lane in the traffic
example might be composed of a process to access the memory of how fast each
lane was in the past, an estimate of the average speed of the current lane, and how
fast the traffic ahead is moving.

Composition

The way in which processes at one level of abstraction in a system are composed of
processes at the adjacent lower abstraction level in the same system is called
composition. This composition of processes is described not only by the
component/sub-component relations, but in addition by the (possibilities for) infor-
mation exchange between processes (the static aspects), and fask control knowledge
used to control processes and information exchange (the dynamic of the
composition).

Information Exchange

A specification of information exchange defines which types of information can be
transferred between components and the ways by which this can be achieved, called
information links. Within each of the components private information links are
defined to transfer information from one component to another. In addition,
mediating links are defined to transfer information from the input interfaces of
encompassing components to the input interfaces of the internal components, and to
transfer information from the output interfaces of the internal components to the
output interface of the encompassing components. That is the mediating links are
those which pass information “up” and “down” the structure of the agent: to their
components or up to the entity that they are a component of. Thus in the traffic
example there might well be mediating information links from each vehicle up to
the simulation to pass information about its current speed and position.

5.2.4.2 Knowledge Composition

Knowledge composition identifies the knowledge structures at different levels of
abstraction, and describes how a knowledge structure can be defined in terms of
lower level knowledge structures. The levels of knowledge abstraction may corre-
spond to the levels of process abstraction, but this is not necessarily the case.

5 A Formal Approach to Building Compositional Agent-Based Simulations 65

Identification of Knowledge Structures at Different Abstraction Levels

The two main structures used as building blocks to model knowledge are: informa-
tion types and knowledge bases. These knowledge structures can be identified and
described at different levels of abstraction. At the higher levels the details can be
hidden. The resulting levels of knowledge abstraction can be distinguished for both
information types and knowledge bases.

Information Types

An information type defines the sorts of terms that will be used describe objects or
other terms, their kinds, and the relations or functions that can be defined on these
objects.' Information types can be specified in graphical form, or in formal textual
form. Thus the speed of objects is a type of knowledge in the traffic example,
relatable to other speeds in terms of relative speed.

Knowledge Bases

Knowledge bases are structured collections of information held by agents. The
specification of the knowledge bases use the information types just described. To
specify a knowledge base one needs to say which information types are used in as
well as the relationships between the concepts specified in the information types.
Thus in a (somewhat complex) driver memory there might be three kinds of
information: days of the week, times of the day, lane label and categories of
speed. Each lane might relate to a set of past occasions composed of day of the
week, time of day and speed category.

Composition of Knowledge Structures

Information types can be composed of more specific information types, following
the principle of compositionality discussed above. Similarly, knowledge bases can
be composed of more specific knowledge bases. Thus in the example of memory
about past lane speeds the sets of past occasions might be a list of limited size
ordered first by level of annoyance and secondly by recency.

5.2.4.3 Relation Between Process Composition and Knowledge Composition
Each process in a process composition uses knowledge structures. These will be

involved in the building and maintenance of the knowledge structures at their level,
but could involve knowledge structures from higher or, occasionally, lower levels.

! Such sets of agreed terms are often called an “ontology” in computer science.

66 C.M. Jonker and J. Treur

So the processes that comprise the cognitive processes of a traffic agent might well
be involved in maintaining the memory of past lane speeds but might also relate to
the positional clues that are associated with the highest levels of the simulation.

5.2.5 Design Rationale

The design rationale is important because it makes explicit the reasoning “glue”
that underpins some of the other parts. Essentially it answers the question “given the
modelling target and goals why have the design decisions been made?” Thus it
describes the relevant properties of the design in relation to the requirements
identified in the problem description. It also documents the verification of the
design — that is how one will check that the implemented system does in fact
meet its specification, including the assumptions under which the desired properties
will hold. All the important design decisions are made explicit, together with some
of the alternative choices that could have been made, and the arguments in favour of
and against the different options. At the operational level the design rationale
includes decisions based on operational considerations, such as the choice to
implement an agent’s cognitive process in a particular way in order to make the
simulation run at a reasonable speed.

5.2.6 Multi-agent Systems in the Simulation of Social Phenomena

The method described above deals with the design process in terms of components
and the interactions between those components. In this light, multi-agent systems
are not considered specifically. However, in the context of simulating social
phenomena, it comes out naturally that in many instances the appropriate
“components” are the correlates of observed social actors. In other words it is
almost always overwhelmingly sensible to model the target system as a multi-agent
system, where agents in the model are representations of the actors (people, firms,
etc.) that are known to exist. In a sense, in the social sphere almost everything is an
agent, or conversely, agents are nothing special. It is simply that a component that is
naturally thought of as having elements of cognition (learning, reasoning etc.) is an
agent and will be endowed, as part of the simulation process, with many of the
attributes that agents are expected to have (and are discussed later in this chapter).
Representations of humans in a simulation will not include all aspects of cognition
but, dependent on the modelling goals, might well be much simpler. On the other
hand some non-human components, such as a firm, might be represented as an
agent, being able to learn, react, and reason in an agent-like way.

Simulations are growing in complexity, not in the least because agents are asked
to fulfil different roles over time, and to change their behaviour according to both
their own internal learning mechanisms and changing role descriptions. Within the

5 A Formal Approach to Building Compositional Agent-Based Simulations 67

described approach it has become good practice to first design the organisation, and
then the agents and their interaction in such a way that the agents realize the
organisation. The next section explicitly considers organisations. The chapter on
“Assessing Organisational Design” (Dignum 2013) follows the application of the
ideas that are described here.

5.3 Organisations

The organisational approach to simulation design takes the observed and inferred
organisational structures as the starting point and considers individual action and
agency at a later stage. This is particularly suitable for situations that seem to be
structured in this way, that is to say the roles and the requirements significantly
characterise and constrain individual action. Clearly in many observed cases there
is a complex mix of organisational constraint and emergence from individual action
so the decision to adopt a primarily organisational approach is a pragmatic one. In
many cases a mixture of organisation-based and agent-based approaches will be
necessary.

Societies are characterised by complex dynamics involving interaction between
many actors and groups of actors. If such complex dynamics take place in an
completely unstructured, incoherent manner, then the actors involved will probably
not be able to predict much, and not able to use and exploit any knowledge that they
have in a useful way. However in many social situations this is not the case, social
phenomena are full of structure, and even in initially unstructured situations social
actors will often quickly develop norms, rules, habits etc. — effectively creating
structure. Some sociologists (e.g. Luhman) have suggested that the purpose of
human institutional structure is to manage the complexity, in other words to
simplify social action and make planning possible. Organisational structure
provides co-ordination of the processes in such a manner that the agents involved
can function in a more adequate manner. The dynamics in many organisational
structures are much more dependable and understood than in apparently entirely
unstructured situations.

One key assumption of the organisational approach to simulation design is that
the organisational structure itself is relatively stable, i.e., the structure may change,
but the frequency and scale of change are assumed low compared to the more
standard dynamics through the structure. Within the field of Organisation Theory
such organisational structures regulating societal dynamics are studied (see e.g.
Kreitner et al. 2001; Mintzberg 1979). In summary, organisational structure is used
to help specify the dynamics (or organisational behaviour) of a desired type. A
crucial issue for further analysis is how exactly structure is able to affect dynamics.

A number of organisation modelling approaches have been developed to simu-
late and analyse dynamics within organisations in society (e.g. Ferber and
Gutknecht 1998; Hannoun et al. 1998, 2000; Hiibner et al. 2002a b; Lomi and
Larsen 2001; Moss et al. 1998; Prietula et al. 1997). Some of these approaches

68 C.M. Jonker and J. Treur

explicitly focus on modelling organisational structure, abstracting from the detailed
dynamics. Other approaches put less emphasis on organisational structure but focus
on the dynamics in the sense of implementing and experimenting with simulation
models. Often these simulation models are based on some implementation environ-
ment and not specified in an implementation-independent manner using a formally
defined conceptual language. However, there are some exceptions to this where the
specification approach is supported by an implementation framework.? The Agent/
Group/Role (AGR) approach (previously called Aalaadin) introduced in (Ferber
and Gutknecht 1998) is a good example of the organisational approach. It focusses
on organisational structure, abstracting from the details of the dynamics. It helps
define a formal relation between the dynamic properties and the organisational
structure (Ferber et al. 1999, 2000). The relevance for this chapter is that it shows
how dynamics of the organisational structure itself can be modelled: agents can
dynamically create, join, or quit groups. This is particularly relevant for simulating
situations where the organisational structure is somewhat fluid.

In this section the “dynamics specification” approach exemplified by AGR is
presented.”’ The organisational structure is discussed and its parts defined. Then the
dynamics of the organisation is discussed in terms of dynamic properties that can be
associated to each element of the organisational structure. These dynamic
properties can help the simulation and analysis of empirical or simulated traces.
The various compositional levels within an organisation are related to the
organisational dynamics via a series of relationships. Finally, as a prerequisite to
realising an organisation the requirements of the agents are specified from their
roles within the organisation model.

5.3.1 Specification of Organisation Structure

In this approach, an organisation is viewed as a framework for activity and
interaction through the definition of groups, roles and their relationships. By
avoiding an agent-oriented viewpoint, an organisation is regarded as a structural
relationship between agents. In this way the organisation is described solely on the
basis of its structure, i.e. by the way groups and roles are arranged to form a whole,
without being concerned with the way agents actually behave. That is the systems
will be analysed from the outside, as a set of interaction modes. The specific
architecture of the agents is purposely not addressed in the organisational model.

2 The Strictly Declarative Modelling Language SDML (Moss et al. 1998) and the use of the agent-
oriented modelling approach DESIRE in social simulation as presented in (Brazier et al. 2001) are
two examples.

3 For more information on the use of AGR, see (Jonker and Treur 2003).

5 A Formal Approach to Building Compositional Agent-Based Simulations 69

The three primitive definitions are:

* The agents. The model places no constraints on the internal architecture of
agents. An agent is only specified as an active communicating entity which
plays roles within groups. This agent definition is intentionally general to allow
agent designers to adopt the most accurate definition of agent-hood relative to
their application. In other words, the specification of the agent is left as flexible
as possible, given the organisational constraints upon its roles.

* Groups are sets of agents. Each agent is part of one or more groups. In its most
basic form, the group is only a way to tag a set of agents. An agent can be a
member of several groups at the same time. A major point of these groups is that
they can freely overlap.

e A role is an abstract representation of an agent function, service or identification
within a group. Each agent can have multiple roles and each role handled by an
agent is local to a group. Roles could be assigned beliefs; that is, they could reason
about whether they should have a particular belief given a certain role. These
beliefs can be seen as an additional requirement on the agents playing that role.

Organisation structure is often show as a diagram (for example, as kind of
labelled graph; see Fig. 5.3 in Sect. 5.3.5) consisting of roles, groups, and
interactions, and of relationships between these elements.

Within AGR an organisation structure consists of a set of groups, the roles in
each group and the agents fulfilling those roles. To complete the picture
relationships between roles can be specified.

5.3.2 Organisation Structure

An AGR specification of an organisation structure is defined by the following:
groups, roles, (intergroup) interactions, transfers (intra-group interactions), which
roles are in which groups, the roles that are the source of interactions, the roles that
are the destination of interactions, the roles that are the source of transfers, and the
roles that are the destination of transfers. Transfers, under this scheme, are within a
group as opposed to interactions which may be between groups. Thus it is necessary
that the source and destination of all transfers belong to the same group. Although
intergroup interactions are defined above as between two roles, this can easily be
generalised to intergroup interactions involving more than two roles.

5.3.3 Dynamic Properties of an Organisation

After the foundation of an organisation structure has been defined, the foundations
for specification of dynamic properties in an organisation are addressed. The aim is
not only to cover simple types of dynamics, such as simple reactive behaviour, but

70 C.M. Jonker and J. Treur

also more complex dynamics, necessary for the simulation of realistic
organisations. The challenge here is to incorporate somehow the organisational
structure within the formal description of the organisation’s internal dynamics. To
this aim, the following approach is introduced:

For each element within the organisational structure characterise its dynamics by a
specific set of dynamic properties.

This is based on the structural relations between elements in an organisational
structure. Then:

Identify relationships between the sets of dynamic properties corresponding with
these elements;

In general, the dynamics of an element within an organisation structure can be
characterised by describing how the states of the elements change over time. For a
role the ‘state’ needs to include descriptions of for both the input and the output of
the role. Transfers and intergroup interactions are assumed to operate only on input
and output states of roles. These roles do not have their own internal state, so no
further state is needed to be described for such transfers and intergroup interactions.

An organisational structure defines relations between different elements in an
organisation. The dynamics of these different elements are characterised by their
dynamic properties. An organisational structure has the aim of keeping the overall
dynamics of the organisation manageable. For this reason the structural relations
between the different elements within the organisational structure have to somehow
impose constraints on or dependencies between their dynamics. Logical relations
defined between sets of dynamic properties allow the use of logical methods to
analyse, verify and validate organisation dynamics in relation to organisation
structure. Within AGR organisation models three aggregation levels are involved:

e The organisation as a whole (the highest aggregation level)
e The level of a group
e The level of a role within a group

A general pattern for the dynamics in the organisation as a whole in relation to
the dynamics in groups is as follows:

Dynamic properties for the groups AND dynamic properties for intergroup role
interaction
= Dynamic properties for the organisation

Moreover, dynamic properties of groups can be related to dynamic properties of
roles as follows:

Dynamic properties for roles AND dynamic properties for transfer between roles
= Dynamic properties for a group

The idea is that these are properties dynamically relating a number of roles
within one group.

5 A Formal Approach to Building Compositional Agent-Based Simulations 71

Fig. 5.1 Overview of inter-
. organlsatlon
level relations between

dynamic properties within an
AGR organisation model

intergroup mteractlon
group propertles

properties / \
transfer propertles role properties

Table 5.1 Types of dynamic Property type Relating

properties for an AGR -

organisation model Role r Role r input Role r output
Transfer from rl to 12 Role r1 output Role 12 input
Group G Input or output of roles in G
Intragroup interaction Role r1 output Role r2 output
Intergroup interaction Role r1 input Role 12 output
Organisation Input or output of roles in O

An overview of the logical relationships between dynamic properties at different
aggregation levels is depicted as an AND-tree in Fig. 5.1.*

To define states the notion of state property is useful. The notion of frace as a
sequence of states over a time frame is used to formalise the dynamics. To formally
specify dynamic properties that are essential in an organisation, an expressive
language is needed. One can do this using a formal language,’ however in this
chapter this will not be used to retain its accessibility.

We distinguish five kinds of dynamic properties that might be described during a
specification (or at least thought about). Not all of these are always necessary. A
summary of them is displayed in Table 5.1.

5.3.3.1 Role Dynamic Properties

The role dynamic properties relate input to output of that role. This is a subset of the
dynamic properties of that role; it is a concern of that role only. For example, the
gossip role behaviour: ‘whenever somebody tells you something, you will tell it to
everybody else’ is expressed in terms of input of the role leading to output of the
role in a reactive manner.

*For formalisation details of the logical relationships put forward above, see (Jonker and Treur
2003).

3E.g. the Temporal Trace Language (TTL), which defines the dynamics in terms of a “leads to”
relation (Jonker et al. 2001). A specification of dynamic properties in leads to format has as
advantages that it is executable and that it can often easily be depicted graphically.

72 C.M. Jonker and J. Treur

5.3.3.2 Transfer Dynamic Properties

Transfer properties relate output of the source roles to input of the destination roles.
That is they represent the dynamic properties of transfers from one role to another.

Typically, these sets contain properties such as: information is indeed transferred
from source to destination, transfer is brought about within x time, arrival comes
later than departure, and information departs before other information also arrives
before that other information.

5.3.3.3 Group Dynamic Properties

Group dynamic properties relate input and/or output of roles within a group, it
relates the roles within the group. An example of a group property is: “if the
manager asks anyone within the group to provide the secretary with information,
then the secretary will receive this information”.

A special case of a group property is an intragroup interaction relating the
outputs of two roles within a group. A typical (informal) example of such an
intragroup interaction property is: “if the manager says ‘good afternoon’, then the
secretary will reply with ‘good afternoon’ as well”. Other examples may involve
statistical information, such as “3 out of the 4 employees within the organisation
never miss a committed deadline”.

5.3.3.4 Intergroup Interaction Dynamic Properties

Intergroup interaction properties relate the input of the source role in one group to
the output of the destination role in another group. Note that intergroup interaction
is specified by the interaction of roles within the group, and not the groups
themselves. Sometimes there are specialist roles for such intergroup interaction.
For example, a project leader is asked by one of the project team members (input of
role ‘project leader’ within the project group) to put forward a proposal in the
meeting of project leaders (output of role ‘member’ within the project leaders

group).

5.3.3.5 Organisation Dynamic Properties

Organisation dynamic properties relate to input and/or output of roles within the
organisation. A typical (informal) example of such a property is: “if within the
organisation, role A promises to deliver a product, then role B will deliver this
product”.

The different types of dynamic properties all relate to different combinations of
input and output. Table 5.1 provides an overview of these combinations. Note that
with respect to simulation, the above dynamics definition can contain elements that

5 A Formal Approach to Building Compositional Agent-Based Simulations 73

are redundant: a smaller subset of dynamical properties could form an executable
specification of the dynamics of an AGR type organisation — not all of the above are
always needed.

For example, an organisation could be simulated on the basis of the role dynamic
properties, the transfer dynamic properties and the intergroup interactions. The
group dynamic properties, including the intragroup role interaction properties, and
the organisation properties should emerge in the execution. However specifying
them in advance can be used to check what is expected and help verify the
simulation.

In order to make an executable organisation model the dynamical properties
need to be chosen from those properties that can be executed.

5.3.4 Organisation Realisation

In this section criteria are discussed when allocation of a set of agents to roles is
appropriate to realize the organisation dynamics, illustrated for the AGR approach.
One of the advantages of an organisation model is that it abstracts from the specific
agents fulfilling the roles. This means that all dynamic properties of the
organisation remain the same, independent of the particular allocated agents.
However, the behaviours of these agents have to fulfil the dynamic properties of
the roles and their interactions that have been already specified. The organisation
model can be (re)used for any allocation of agents to roles for which:

e For each role, the allocated agent’s behaviour satisfies the dynamic role
properties,

¢ For each intergroup role interaction, one agent is allocated to both roles and its
behaviour satisfies the intergroup role interaction properties, and

« The communication between agents satisfies the respective transfer properties.

To satisfy the relationships specified above there needs to be a relevant overlap
between the agent’s ontologies and the role ontologies,® i.e. there must be some
common referents so that the interactions of the agents are well defined with respect
to their roles. Moreover, note that if one agent performs two roles in the group then
dynamic properties of communication from itself to itself are required, i.e. that it
will receive (at its input state) what it communicates (at its output state): ‘it hears
itself talking’. The logical relationships can be depicted as in the extension of
Fig. 5.1 shown as Fig. 5.2.

Alternatively, if the roles in an intergroup interaction would not be fulfilled by
one agent, but by several, this would create a mystery, since input to one agent
creates output for another agent, even though the agents are not connected by any

6 For a more detailed discussion on this issue, see (Sichman and Conte 1998).

74 C.M. Jonker and J. Treur

Fig. 5.2 Inter-level relations
between dynamic properties
for a realised organisation
model

‘ organisational properties ‘

intergroup interaction

Broperties group properties

| role properties transfer properties
| S— - — - -

agent behaviour
properties

agent communication
properties

transfer since the roles they fulfil are from separate groups. This would suggest that
the organisation structure is not complete. The whole idea of specifying the
organisational approach through roles is that all communication and interaction is
somehow made explicit — in an AGR organisation model it is assumed that the roles
in an intergroup interaction are fulfilled by one agent.

5.3.5 Organisational Example

Here the organisational approach to simulation specification is illustrated. This
shows how an organisation that is the target of simulation can be analysed into
groups, roles and processes. This analysis can then be the basis for the design of the
simulation implementation and finally its code. As described this is essentially a
top-down analytic approach (in contrast to the more bottom-up agent approach
described at the end of this chapter).

In this example, a factory and some of its components are considered. This
factory is organised at the highest level according to two divisions: the division that
produces certain components (division A) and the division that assembles these
components into products (division B). At the lower level, division A is organised
in two departments: the work planning department for division A (dep. A1) and the
component production department (dep. A2). Similarly, division B is organised in
two department roles: one for assembly work planning (dep. B1) and one for
product production (dep. B2). This example is illustrated in Fig. 5.3.

Here the two divisions are modelled as groups (depicted by the larger ovals),
with the departments as their roles (depicted by smaller ovals within larger ones). A
third group, the Connection Group C, models the communication between the two
divisions. This group consists of the two roles ‘division A representative’ and
‘division B representative’. Intergroup role interactions (depicted by pairs of
dashed lines) are modelled between the role ‘department Al’ in the division A

5 A Formal Approach to Building Compositional Agent-Based Simulations 75

Connection Group C

divA rep divB rep

S =)
dep AT C")‘sp A2 dep 81\\>Cde>p B2

Group divA Group divB

Fig. 5.3 Organisational example. The smaller ovals indicate roles, the bigger ovals groups.
Connections are indicated by the two types of lines (dashed indicates an intergroup interaction,
solid arrow indicates a transfer). Membership of a role to a group is indicated by drawing the
smaller role oval within the bigger group oval

group and the role ‘division A representative’ within the connection group, and
between the role ‘department B1’ in the division B group and the role ‘division B
representative’ within the connection group. Intragroup role transfers model com-
munication between the two roles within each of the groups (depicted by the
arrows).

Connections have destination roles (indicated by the arrow points) and source
roles (where the arrow originates). Based on the semantic structures of many-sorted
predicate logic a more precise formal definition is the following.

5.3.5.1 Groups and Roles in Organisational Example

The example has the following groups, roles, and relationships between them:

¢ Groups = {divA, divB, C},

¢ Roles = {depAl, depA2, depB1, depB2, divArep, divBrep},
e Intergroup_interactions = {iAC, iCA, iBC, iCB}

o Transfers = {tA12, tA21, tB12, tB21},

* Some of the relationships are:

Within divA

Organisation level

Role_in(depAl, divA)
Role_in(depA2, divA)
Source_of_transfer(depAl, tA12)
Destination_of_transfer(depA2, tA12)
Source_of_transfer(depA2, tA21)
Destination_of _transfer(depAl, tA21)

Source_of_interaction(divA, iAC)
Destination_of_interaction(C, iAC)
Source_of_interaction(C, iCA)
Destination_of_interaction(divA, iCA)

76 C.M. Jonker and J. Treur

5.3.5.2 Dynamic Properties in Organisational Example

To get the idea, consider the special case of an intragroup role interaction from role
rl to role r2, characterised by dynamic properties that relate output of one role r1 to
output of another role r2. Assuming that transfer from output of r1 to input of r2 is
adequate and simply copies the information, this property mainly depends on the
dynamics of the role r2. Therefore in this case the relationship has the form:

Dynamic properties for role r2 AND
Dynamic properties for transfer from role rl to role r2
= Dynamic properties of intragroup interaction from rl to 12

Role Dynamic Properties

DP(depAl) Progress Information Generates Planning in depAl

If within division A department Al receives progress information on component
production,then an updated planning will be generated by department Al taking
this most recent information into account.

Group Dynamic Properties

DP(A) A Progress Information Generation
This property is the conjunction of the following two properties.
DPI(A) Initial A Progress Information Generation

Department Al receives initial progress information on component production
processes, involving already available components.

DP2(A) Subsequent A Progress Information Generation

Within the division A group, for any component production planning gene-
rated by department Al, incorporating a specific required set of components,
progress information on the production of these components will be received by
department Al.

Intergroup Interaction Dynamic Properties

Intergroup Role Interaction between A and C: IrRI(A, C)

For the connectivity between the groups A and C, the following intergroup role
interaction properties are considered, one from A to C, and one from C to A.

IrRI(depAl, divArep) Progress Information Provision A to B

5 A Formal Approach to Building Compositional Agent-Based Simulations 77

If within division A progress information on component production is received
by department A1, then within the connection group this will be communicated by
the division A representative to the division B representative.

IrRI(divArep, depAl) B Progress Information Incorporation by A

If within the connection group the division A representative receives informa-
tion from the division B representative on which components are needed, then
within division A a component production planning will be generated by depart-
ment Al taking these into account.

Organisational Dynamic Properties

DP(F) Overall Progress Notification

If a request for a product is made (by a client), then progress information will be
provided (for the client).
Realisation

The following allocation of agents agentAl, agentA2, agentB1, agentB2 to roles is
possible:

agentAl — depAl agentBl — depBl1 agentAl — divArep
agentA2 — depA2 agentB2 — depB2 agentBI — divBrep

To realise the organisation model, for example agentAl has to satisfy the
following dynamic properties:

DP(agentAl)

If agent Al receives progress information on component production,

Then an updated planning will be generated by agent Al taking this most recent
information into account.

IrRI(agentAl)

If progress information on component production is received by agent Al,

Then this will be communicated by agent Al to agent Bl

If agent Al receives information on which components are needed,

Then a component production planning will be generated by agent Al taking
these components into account

5.3.5.3 Conclusion of Organisational Example

One can see how the above analysis is getting us closer to the implementation of a
simulation of this organisation. Given details of an organisation this could continue

78 C.M. Jonker and J. Treur

down the organisational structure. Clearly this kind of analysis is more appropriate
when the structure of the organisation is known, and much less appropriate when
the structure is only partially known or, indeed, emergent. However, even in those
cases it could guide the documentation capturing how and which aspects of an
organisation’s official structure was translated into a simulation.

5.4 Organisation Design by Requirements Refinement

The previous sections address the question of how the structure and the behaviour
of a given organisation can be modelled. This section takes the design perspective.
This perspective does not assume a given organisation, but aims at creating a new
organisation in silica. Whilst on the whole in simulation we are aiming to capture
aspects of existing organisations one might want to design one in a number of
circumstances.

For example, one may not know the internal structure of an organisation which is
part of the system one is trying to model but only how it communicates or relates to
the actors around it. In this case to get the simulation to run one would have to
invent the organisation. Obviously the danger in this case is that the organisational
structure that is chosen might subtly affect how it interacts with other agents and
thus have an impact upon the simulation outcomes. However in some cases the
internal workings of an organisation are effectively insulated from how it interacts
with the outside world by regulation and self-interest — in these cases one might
well have no choice but to invent its workings on the basis of its external constraints
and common knowledge of how such things are arranged.

Another case is where one is not attempting to represent anything that is
observed but rather exploring the space of possible organisations. For example
one might wish to know which of several possible organisational structures might
be best according to some specified criteria. Such “artificial societies” or “thought
experiments” are reasonable common, however their relevance is questionable. If a
small change in the environment or other aspect (e.g. reliability of internal commu-
nication) means that what was a good organisational structure now fails, then the
results of such artificial studies are difficult to apply to other cases. In other words
the general applicability of such studies is hard to establish. On the other hand if one
has a good knowledge of the environment and characteristics where the results of
the simulation experiments are to be applied and one does extensive ‘what if’
experiments testing the robustness of the designs to such small changes then this
can be a helpful way forward.

Such an design process starts by specifying requirements for the overall
organisation behaviour. The requirements express the dynamic properties that
should ‘emerge’ if appropriate organisational building blocks, such as roles, groups,
transfers, group interactions, role behaviours, and so on, are glued together in an
appropriate manner in an organisation model. In addition, other requirements on
behavioural and structural aspects of the organisation to be created may be

5 A Formal Approach to Building Compositional Agent-Based Simulations 79

imposed. Given these requirements on overall organisation behaviour (and, per-
haps, some additional requirements), organisational structure and organisational
behaviour are designed in such a manner that the requirements are fulfilled. The
approach described in this section is the method of requirements refinement, which
is illustrated for an example.

5.4.1 Designing by Requirements Refinement

In Sect. 5.3.3 a scheme for specifying the dynamic properties and relationships at
different levels of aggregation was described; overall organisational behaviour can
be related to dynamic group properties and group interaction properties via the
following pattern:

Dynamic properties for the groups AND dynamic properties for group interaction
= Dynamic properties for the organisation

This scheme is also useful for the design perspective. Consider a design problem
for which the requirements of the overall behaviour are given in the form of
dynamic properties. This scheme says that to fulfil these overall dynamic
properties, dynamic properties of certain groups and group interactions together
imply the organisation behaviour requirements. This process is called requirements
refinement in that the requirements for the whole organisation are reduced to that of
its constituent groups and the interactions between these groups. It thus provides a
new, refined set of requirements in terms of the behaviour of groups and group
interaction.

Clearly if one has a multi-level organisation with component sub-organisations
as well as groups one has a choice as to how best to fill in the detail of one’s design.
One can decide to reduce it first to the behaviour of its constituent groups but it is
also possible to first refine requirements for the behaviour of the organisation as a
whole to the requirements on the behaviour of parts of the organisation, before
further refinement is made to refinements for groups. In each case this is a
pragmatic decision and will depend on the organisation being designed.

Subsequently, the required dynamic properties of groups can be refined to
dynamic properties of certain roles and transfers, making use of:

Dynamic properties for roles AND dynamic properties for transfer between roles
= Dynamic properties for a group

This provides requirements on role behaviour and transfer that together imply
the requirements on the behaviour of the group. Again it is possible to first refine
requirements on the behaviour of a group to requirements of the behaviour of parts
of the group, before further refinement to role behaviour requirements is made,
depending on what is best in each case.

An overview of the inter-level relationships between these dynamic properties at
different aggregation levels is depicted in Fig. 5.1, repeated for your convenience

80 C.M. Jonker and J. Treur

Fig. 5.4 Overview of
interlevel relationships
between dynamic properties
within an organisation model

organisation properties ‘

group interaction

properties ’ group properties \

transfer properties ‘ role properties

here as Fig. 5.4. In summary, from the design perspective, a top-down refinement
approach can be followed. That is, the requirements on overall organisational
behaviour can be first refined to requirements on behaviour of groups and group
interaction, and then the requirements on behaviour of groups can be refined to
requirements on roles and transfers. Notice that as part of this refinement process
the organisational structure (e.g., the groups and roles) is defined.

A design problem statement consists of:

e A set of requirements (in the form of dynamic properties) that the overall
organisational behaviour has to fulfil

e A partial description of (prescribed) organisational structure that has to be
incorporated

e A partial description of (prescribed) dynamic properties of parts of the
organisation that have to be incorporated; e.g., for roles, for transfers, for groups,
for group interactions.

A solution specification for a design problem is a specification of an organisation
model (both structure and behaviour) that fulfils the imposed requirements on
overall organisation behaviour, and includes the given (prescribed) descriptions
of organisation structure and behaviour. Here ‘fulfilling’ the organisation behaviour
requirements means that the dynamic properties for roles, transfers, and group
interactions within the organisation model imply the behaviour requirements.

In specific circumstances, part of the organisational structure and/or behaviour
may already be prescribed by requirements. For example, the organisational struc-
ture may already be prescribed; in such a case only the organisation dynamics is
designed, for the given organisational structure. Other, more specific cases are, for
example, role behaviour design and interaction protocol design.

5.4.1.1 Role Behaviour Design

For role behaviour design the organisational structure and the transfers and
interactions are completely prescribed. However, appropriate dynamic properties
for the different roles have yet to be found, to satisfy the requirements for the

5 A Formal Approach to Building Compositional Agent-Based Simulations 81

Fig. 5.5 Role behaviour

design organisation properties ‘

group interaction

properties ’ group properties \

’ transfer properties ‘ role properties

Fig. 5.6 Organisation design | organisation properties |

group interaction
properties

| group properties |

transfer properties | | role properties ‘

organisational behaviour that are imposed; see Fig. 5.5. Here (and in Fig. 5.6) the
grey rectangles indicate what is already given as prescribed and the transparent
rectangle what has to be designed.

5.4.1.2 Interaction Protocol Design

For interaction protocol design the organisational structure and role dynamics are
completely prescribed, but appropriate transfer and interaction dynamics have to be
found to satisfy given requirements for the organisational behaviour that are
imposed; see Fig. 5.6.

5.5 The Agent Approach

The agent approach is contrary to the organisational approach. It starts with the
agents and its properties and attempts to work upwards towards the whole system.
This is more useful in situations where the “top down” social constraints upon
action are weak or non-existent, and it is the “upwards” emergence of outcome from
the many micro-level interactions that is more important. Clearly, if one was in a
situation where top down social and/or organisational constraints were severe then

82 C.M. Jonker and J. Treur

one would have no guarantee that working bottom-up in this manner one would be
able to meet those constraints at the higher levels of the structure. It would be like
trying to organise the production of a kind of car by the random meeting of people
with particular parts and skills without any planning. However, especially in the
development of new social structure such “bottom-up” processes can be crucial, so
that the agent approach can be appropriate for investigating such issues. Often, for
social phenomena some mix of both approaches is necessary, first a bit of one, then
a bit of the other etc.

5.5.1 Some Agent Notions

The term agent has been used for a wide variety of applications, including: simple
batch jobs, simple email filters, mobile applications, intelligent assistants, and
large, open, complex, mission critical systems (such as systems for air traffic
control).” Some of the key concepts concerning agents lack universally accepted
definitions. In particular, there is only partial agreement on what an agent is. For
example, simple batch jobs are termed agent because they can be scheduled in
advance to perform tasks on a remote machine, mobile applications are termed
agent because they can move themselves from computer to computer, and intelli-
gent assistants are termed agents because they present themselves to human users as
believable characters that manifest intentionality and other aspects of a mental state
normally attributed only to humans. Besides this variety in different appearances of
agents, the only precise description of the agents involved is their implementation
code. As a result, existing agent architectures are only comparable in an informal
manner — just because something is called an agent-architecture or an agent does
not mean that it is suitable for simulating a human or social actor. Especially if the
goal of the agent-based system is a complex simulation, a principled, design-
oriented description of the organisation, and of the agents in it at a conceptual
and logical level is of the essence, since the control, testing, verification and
validation of such complex simulations is an issue. Spending time on a more formal
and staged approach to simulation design can make life a lot easier later. Due to the
organisational nature, and the complexity of intelligent agents and their interaction,
a more formal compositional design method for agents is necessary.

As agents show a variety of appearances, perform a multitude of tasks, and their
abilities vary significantly, attempts have been made to define what they have in
common. The weak notion of agent is seen as a reference. The weak notion of agent
is a notion that requires the behaviour of agents to exhibit at least the following four
types of behaviour:

7Many of the notions discussed in this and the following section are adopted from (Wooldridge
and Jennings 1995), (Nwana 1996), (Nwana and Ndumu 1998) and (Jennings and Wooldridge
1998).

5 A Formal Approach to Building Compositional Agent-Based Simulations 83

¢ Autonomous behaviour

¢ Responsive behaviour (also called reactive behaviour)
* Pro-active behaviour

* Social behaviour

Autonomy relates to control: although an agent may interact with its environ-
ment, the processes performed by an agent are in full control of the agent itself.
Autonomous behaviour is defined as:

. where the system is able to act without the direct intervention of humans (or other
agents) and should have control over its own actions and internal state.

This means that an agent can only be requested to perform some action, and:

The decision about whether to act upon the request lies with the recipient.

Examples of autonomous computer processes are: process control systems (e.g.,
thermostats, missile guiding systems, and nuclear reactor control systems), soft-
ware daemons (e.g., one that monitors a user’s incoming email and obtains their
attention by displaying an icon when new, incoming email is detected), and
operating systems.

Many processes that exhibit autonomous behaviour are called agents. However,
if such agents do not exhibit flexible behaviour, they are not, in general, considered
to be intelligent agents. An intelligent agent is a computer system that is capable of
flexible autonomous actions in order to meet its design objectives — indeed Randall
Beer (1990) defined intelligence as “the ability to display adaptive behaviour”.
Intelligence requires flexibility with respect to autonomous actions, meaning that
intelligent agents also need to exhibit responsive, social, and pro-active behaviour.

An agent exhibits responsive (or reactive) behaviour if it reacts or responds to
new information from its environment. Responsive behaviour is where:

Agents perceive their environment (which may be the physical world, a user, a collection of
agents, the Internet, etc.) and respond in a timely fashion to changes that occur in it.

A barometer is a simple example of a system that exhibits responsive behaviour:
It continually receives new information about the current air pressure and responds
to this new information by adjusting its dial.

Pro-active behaviour is where:

Agents do not simply act in response to their environment, but are be able to exhibit
opportunistic, goal-directed behaviour and take the initiative where appropriate.

Pro-active behaviour in some sense is the most difficult of the required types of
behaviour for an agent defined according to the weak agent notion. For example,
pro-active behaviour can occur simultaneously with responsive behaviour. It is
possible to respond to incoming new information in an opportunistic manner
according to some goals. Also initiatives can be taken in response to incoming
new information from the environment, and thus this behaviour resembles respon-
sive behaviour. However, it is also possible to behave pro-actively when no new

84 C.M. Jonker and J. Treur

information is received from the environment. This last behaviour can by no means
be called responsive behaviour.

An agent exhibits social behaviour if it communicates and co-operates with
other agents. Jennings and Wooldridge define social behaviour as when:

Agents are able to interact, when they deem appropriate, with other artificial agents and

humans in order to complete their own problem solving and to help others with their
activities.

An example of an agent that exhibits social behaviour is a car: it communicates
with its human user by way of its dials (outgoing communication dials: speed,
amount of fuel, temperature) and its control mechanisms (incoming communication
control mechanisms: pedals, the steering wheel, and the gears). It co-operates with
its human user, e.g., by going in the direction indicated by the user, with the speed
set by that user.

Agents can also be required to have additional characteristics. Here three of
these characteristics are discussed: adaptivity, pro-creativity, and intentionality.

Adaptivity is a characteristic that is vital in some systems. An adaptive agent
learns and improves with experience. This behaviour is vital in environments that
change over time in ways that would make a non-adaptive agent obsolete or give it
no chance of survival. This characteristic is modelled in simulations of societies of
small agents, but also, for example, in adaptive user interface agents.

Pro-creativity is of similar importance to find agents that satisfy certain
conditions. The chance of survival is often measured in terms of a fitness function.
This characteristic is found in various simulations of societies of small agents (see
the literature in the area of Artificial Life). A computer virus is an infamous form of
a pro-creative agent.

An intentional system is defined by Dennett to be an entity

. whose behaviour can be predicted by the method of attributing beliefs, designs and
rational acumen.

Mentalistic and intentional notions such as beliefs, desires, intentions,
commitments, goals, plans, preference, choice, awareness, may be assigned to
agents. The stronger notion of agenthood, in which agents are described in terms
of this type of notions, provides additional metaphorical support for the design of
agents.

5.5.2 Representative Agents

Of course a software agent need not have all the characteristics of something it
represents. Thus, depending on the model purpose, it is quite possible to represent
an intelligent actor by a relatively simply object, that might not even be meaning-
fully called an agent. For example, if simulating the movement of a crowd or traffic,
it might not be necessary to include much, if any, of the features discussed above.

5 A Formal Approach to Building Compositional Agent-Based Simulations 85

So sometimes something is called an agent because it represents an agent, but this
usage conflates what is being modelled and the model, which may cause confusion.
How and when it is necessary to include the various features that are known about
the actor being modelled in the model is a crucial modelling question. However it is
not a question to which there is a general answer since this goes to the heart of the
difficulty of making sense of the complexity that we observe.

The power of the agent idea and approach to programming, clearly comes from
the apparent efficacy of observed social actors that seem to be able to organise
themselves in useful and adaptive ways, that they have the characteristics listed
above. This differs qualitatively from more traditional computer science
approaches to programming. It also comes from the power of the analogy with
humans to guide the direction of programming — we have a deep mundane knowl-
edge of how humans work (c.f. Dennett 1996) and this can help in design decisions,
for example whether a certain feature or ability is necessary to model a particular
social system. In this sense the idea of an agent can be thought of as a stance, in
comparison to the “intentional” stance mentioned above — it may be useful to think
of a computational object as an agent, having some of the sort of properties we
know real human actors have. However there are clearly more and less useful
applications of this stance: I may think of a light switch as an agent, but it has
limited usefulness in terms of understanding or modelling it. In the contrary
direction on can think of a fully autonomous and intelligent agent such as a
human as a merely a physical particle for some circumstances, however this is
open to question, depending upon the purpose and target of the exercise. Clearly, in
many circumstances and for many purposes, treating complex social actors as if
they were simple (for example acted upon in the manner of a simple linear influence
plus some randomness) is insufficient since individual complexity can impinge
upon the social complexity that results.

5.5.3 Agent Properties

The notions of agency discussed above are highly abstract notions. In order to
design agents, it is necessary to be familiar with a number of primitive agent
concepts.® These primitive concepts serve as an ontology or vocabulary used to
express analyses and designs of applications of agents and multi-agent systems.
Two classes of primitive notions are distinguished: those used to describe the
behaviour of agents in terms of their external (or public) states and interactions
(Sect. 5.5.3.1), and those used to describe the behaviour of agents in terms of their
internal (or private) states, and processes (Sect. 5.5.3.2). To illustrate these
concepts, some example agents are discussed in Sect. 5.5.4.

8 The material in this section is based on (Brazier et al. 2000).

86 C.M. Jonker and J. Treur

5.5.3.1 External Primitive Concepts

Two types of interaction of an agent with its environment are distinguished,
depending on whether the interaction takes place with an agent or with something
else (called an external world), for example a database, or the material world. For
each of these two types of interaction specific terminology is used.

Interaction with the External World

Two primitive types of interaction with the external world are distinguished. The
first type of interaction, observation, changes the information the agent has about
the world, but does not change the world state itself, whereas the second type,
performing an action, does change the world state, but does not change the
information the agent has about the world. Combinations of these primitive types
of interaction are possible; for example, performing an action, and observing its
results.

Observation

In which ways is the agent capable of observing or sensing its environment? Two
types of observation can be distinguished: the agent passively receives the results of
observations without taking any initiative or control to observe (passive observa-
tion), or the agent actively initiates and controls which observations it wants to
perform; this enables the agent to focus its observations and limit the amount of
information acquired (active observation).

Execution of Actions in the External World

An agent may be capable of making changes to the state of its environment by
initiating and executing specific types of actions.

Communication with Other Agents

Two directions of communication are distinguished, which can occur together:
outgoing communication (is the agent capable of communicating to another
agent; to which ones?), and incoming communication (is the agent capable of
receiving communication from another agent; from which ones?).

5 A Formal Approach to Building Compositional Agent-Based Simulations 87

5.5.3.2 Internal Primitive Concepts

A description in terms of the external primitive concepts abstracts from what is
inside the agent. In addition to descriptions of agents in terms of the external
concepts, descriptions in terms of internal concepts are useful. The following
internal primitive agent concepts are distinguished.

World and Agent Models

An agent may create and maintain information on (a model of) external world based
on its observations of that world, on information about that world communicated by
other agents, and its own knowledge about the world. The agent may also create and
maintain information on (models of) other agents in its environment based on its
observations of these agents as they behave in the external world, on information
about these agents communicated by other agents, and knowledge about the world.

Self Model and History

Some agents create and maintain information on (a model of) their own
characteristics, internal state, and behaviour. Or the agent creates and maintains a
history of the world model, or agent models, or self model, or own and group
processes.

Goals and Plans

To obtain pro-active, goal-directed behaviour, an agent represents, generates, and
uses explicit goals and its own plans of action in its processing.

Group Concepts

Besides individual concepts, agents can use group concepts that allow it to
co-operate with other agents. For example, joint goals: is the agent capable of
formulating or accepting and using goals for a group of agents, i.e., goals that can
only be achieved by working together? Or joint plans: is the agent capable of
representing, generating, and using plans of action for joint goals, i.e., involving
which actions are to be performed by which agents in order to achieve a certain joint
goal? Also commitments to joint goals and plan, negotiation protocols and
strategies can be useful group concepts for agents, depending on their role and
function.

88 C.M. Jonker and J. Treur

Table 5.2 External primitive concepts for an elevator

External primitive concepts Elevator

Interaction with the world
Passive observations Presence of objects between doors (optically)
Total weight
Its position

Active observations Presence of objects between the doors
(mechanically)
Performing actions Moving

Opening and closing doors
Communication with other agents
Incoming communication From users in the elevator
Where they want to go (pushing button in elevator)
From users outside
Where they want to be picked up (pushing button
outside elevator)
Outgoing communication To users in the elevator
Where we are (display)
There is overweight (beep)
To users outside
Where is the elevator (display)
In which direction it moves (display)

5.5.4 Example of the Agent Approach: An Elevator

Let us illustrate the agent concepts introduced above by an example: an elevator is
analysed from the agent perspective using these basic concepts (Table 5.2). This
might be an element in the simulation of how people move around a building. The
advantage of using an elevator as an example is that it does interact with users as an
agent, but it is well known and simple enough to make a clear example of
specifying an agent using the agent-oriented approach.

5.5.4.1 External Primitive Concepts (Table 5.2)
Observation

Observations are performed continually. However, it receives passive observation
results on the presence of objects between the doors (an optical sensor), the total
weight of its contents, and its position in the building (at which floor). Besides it is
able to perform active observation: the presence of objects between the doors
(a mechanical sensor which is moved in the door opening just ahead of the doors
themselves).

5 A Formal Approach to Building Compositional Agent-Based Simulations 89

Table 5.3 Internal primitive concepts for an elevator

Internal primitive concepts Elevator
World model The current floor, max load, current load
Agent models A user wants to be picked up from floor X
A user wants to go to floor Y
Self model When maintenance is next due
History When maintenance was last performed
Goals To go to floor X to pick up somebody
To go to floor Y to deliver somebody
Plans The order in which the required floors are visited

Sometimes: the speed that is taken
Group concepts

Joint goals With other elevators to transport people and

goods as efficiently as possible
Joint plans Some elevators are capable of distributing the work
Commitments The elevators then commit to their part of the work
Negotiation protocol To reach a good distribution, they may have to negotiate
Negotiation strategies To reach a good distribution, they may have to negotiate

Performing Actions

Its actions are moving itself (and people) vertically from one position to another and
opening and closing doors.

Incoming Communication

The elevator receives communication from users by buttons that have been pressed
outside (to call the lift and indicate the direction they wish to go in) and inside the
lifts (providing information about the floor to which they wish to be transported).
Outgoing Communication

The elevator communicates to a user by indicating which floor the lift is on (both
inside and outside the lifts) and sounding beeps (information about overload)
(Table 5.2).

5.5.4.2 Internal Primitive Concepts (Table 5.3)

World and Agent Models

Elevators know where they are, to do this they keep track of which floor they are on
based on their actions (going two floors up, going one floor down) they perform.

90 C.M. Jonker and J. Treur

Table 5.4 Types of behaviour for an elevator

Types of behaviour Elevator
Autonomy Yes
Responsiveness In reaction to user requests

In immediate reaction to observed objects between the doors
Pro-activeness Taking the initiative to go to a normally busy floor, if empty

and not being called by a user

Social behaviour Co-operation with users, and, sometimes, with other elevators
Own adaptation and learning Often not possible

Furthermore, the elevator knows if the weight in the lift is over its maximum limit.
The agent information of the user goals (where they want to go) may be maintained
as well.

Self Model and History

The agent does not know what actions it previously performed to perform its
current task. It might have an explicit representation of when it has last received
maintenance.

Goals and Plans

Modern elevators make use of the explicit goals (adopted from the goals
communicated by the users). The goals are used to determine which actions to
perform. They may even make plans for reaching these goals: determine the order
of actions, for example when one of the users has the goal to be at a higher floor and
another on a lower floor.

Group Concepts

The elevator co-operates with its users. The elevator might also be designed to co-
operate with other elevators so that they could strategically distribute themselves
over the floors. The goals adopted from the goals communicated by the users are
Jjoint goals (joint with the users), and sometimes even joint with the other elevators.
Modern elevators are capable of distributing the work load, and thus of making joint
plans. To achieve the joint goals an elevator must commit to its part of the work as
specified in the joint plans. To make a joint plan, the elevators might negotiate using
a particular strategy as to which elevator goes where. Negotiation is only possible if
a negotiation protocol is followed.

5 A Formal Approach to Building Compositional Agent-Based Simulations 91

5.5.4.3 Types of Behaviour (Table 5.4)
Autonomy

As soon as it is activated, no system or human is controlling its machinery, and
(normally) it is not switched off and on by the user. The elevator has full control of
its motor, doors, and lights.

Pro-activeness

The simplest elevators stay where they are (some take the initiative to close their
doors) when no longer in use, but more intelligent elevators go to a strategic floor
(e.g., the ground floor).

Reactiveness

The elevator reacts to the immediate stimuli of buttons pressed, therefore, it is
shows reactive behaviour. People often have to wait for the elevator as the elevator
picks up people on other floors, however, the elevator does not forget a signal and
will, eventually, come to the requested floor.

Social Behaviour

The elevator co-operates with users and, sometimes, with other elevators.

Own Adaptation and Learning

Simple elevators are not capable of adjusting their own behaviour to new situations,
nor are they capable of learning. However, it is possible to conceive of more
intelligent elevators that can learn the rush hours for the different floors.

5.5.4.4 Conclusion of Elevator Example

One can see that the above analysis has clarified what is needed to implement a
model of this element within a simulation. The objects, properties and processes of
the simulation code is an easy step from here. One also sees that some of the
complexities of the agent have been considered before the implementation starts, in
this way cleaner and more maintainable code might be produced, fewer mistakes

92 C.M. Jonker and J. Treur

made in the implementation and some of the complexities in terms of user-lift
interaction considered and anticipated. Of course in the case of simulating a human
agent there are likely to be many unknowns in terms of their goals, group concepts
etc. — unless the simulators simply add in their informed guesses they will have a
considerable job finding evidence to guide them in the answers to fill in within such
an analysis. Thus this kind of analysis is not a total solution when simulating
complex social actors whose attributes and internal states may be largely unknown.

5.6 Conclusion

More formal approaches to simulation design can help make complex
implementations manageable and can probably save one time in the longer-run. It
also makes the simulation easier to check, validate, re-implement and further
develop. These approaches do this in a three principled ways. Firstly, by encourag-
ing the more complete documentation of the intentions and decisions of a designer/
implementer. One can see a lot of this chapter as a check-list of all the aspects one
might think about and record. Secondly, it helps encourage doing this in an explicit
and exact manner. We have not displayed some of the formal notation that can be
used in this chapter, since we did not want to overwhelm the reader, however for
those who wish to utilise this style of design to the fullest will naturally find them
themselves adopting a variety of formal languages and diagrams in pursuit of
precision. Thirdly, it suggests a method by which a complex specification can be
iteratively refined from abstract and high-level entities towards a detailed imple-
mentation. In this way the design decisions do not all have to be made simulta-
neously but can be made in stages.

Further Reading

For readers interested in software engineering approaches Bergenti et al. (2004)
give a thorough introduction to and overview of current methodologies. Gilbert and
Terno (2000) offer suggestions on techniques for building and structuring agent-
based simulation models, particularly geared towards use in the social sciences.

In addition to methodologies, a lot of work has been done in the development of
programming languages and platforms to support the implementation of multi-
agent systems and models. Bordini et al. (2010) focus on a comprehensive presen-
tation of MAS programming, including four approaches that are based on formal
methods, whereas Railsback et al. (2006) provide a review of platforms for agent-
based simulations.

5 A Formal Approach to Building Compositional Agent-Based Simulations 93

References

Beer RD (1990) Intelligence as adaptive behavior: an experiment in computational neuroethology.
Academic, Boston

Bergenti F, Gleizes M-P, Zambonelli F (eds) (2004) Methodologies and software engineering for
agent systems: the agent-oriented software engineering handbook. Kluwer, Boston

Bordini RH, Dastani M, Seghrouchni AEF (eds) (2010) Multi-agent programming: languages,
platforms and applications. Springer, Berlin

Brazier FMT, Jonker CM, Treur J (1998) Principles of compositional multi-agent system devel-
opment. In: Cuena J (ed) IT & KNOWS — information technology and knowledge systems,
IFIP world computer congress 1998 (Schriftenreihe der Osterreichischen Computer Gesell-
schaft, 122). OCG, Wien, pp 347-360

Brazier FMT, Jonker CM, Treur J (2000) Compositional design and reuse of a generic agent
model. Appl Artif Intell J 14:491-538

Brazier FMT, van Eck PAT, Treur J (2001) Modelling a society of simple agents: from conceptual
specification to experimentation. J Appl Intell 14:161-178

Daniel C. Dennett (1996), The Intentional Stance (6th printing), Cambridge, Massachusetts: The
MIT Press, ISBN 0-262-54053-3 (First published 1987)

Dignum V (2013) Assessing organisational design. Chapter 20 in this volume

Ferber J, Gutknecht O (1998) A meta-model for the analysis and design of organisations in multi-
agent systems. In: Demazeau Y (ed) Proceedings of the third international conference on multi-
agent systems (ICMAS’98), Paris, 3—7 July 1998. IEEE Computer Society Press, pp 128-135

Ferber J, Gutknecht O (1999) Operational semantics of a role-based agent architecture. In:
Jennings NR, Lespérance Y (eds) Intelligent agents VI, proceedings of the 6th international
workshop on agent theories, architectures and languages, ATAL’99 (Lecture notes in
Computer Science), vol 1757. Springer, Berlin, pp 205-217

Ferber J, Gutknecht O, Jonker CM, Miiller JP, Treur J (2000) Organization models and
behavioural requirements specification for multi-agent systems. In: Proceedings of the fourth
international conference on MultiAgent systems (ICMAS), Boston, 10-12 July 2000. IEEE
Computer Society, pp 387-388

Galan J et al (2013) Checking simulations: detecting and avoiding errors and artefacts. Chapter 6
in this volume

Gilbert N, Terno P (2000) How to build and use agent-based models in social science. Mind Soc
1(1):57-72

Hannoun M, Sichman JS, Boissier O, Sayettat C (1998) Dependence relations between roles in a
multi-agent system: towards the detection of inconsistencies in organization. In: Sichman JS,
Conte R, Gilbert N (eds) Multi-agent systems and agent-based simulation, proceedings of the
first international workshop on multi-agent based simulation, MABS’98. (Lecture notes in
artificial intelligence), vol 1534. Springer, Berlin, pp 169-182

Hannoun M, Boissier O, Sichman JS, Sayettat C (2000) MOISE: an organizational model for
multi-agent systems. In: Monard MC, Sichman JS (eds) Advances in artificial intelligence,
international joint conference 7th Ibero-American conference on Al, 15th. Brazilian sympo-
sium on AI (IBERAMIA-SBIA 2000), Atibaia, 19-22 Nov 2000. Proceedings (Lecture notes in
computer science), vol 1952. Springer, Berlin, pp 156-165

Hiibner JF, Sichman JS, Boissier O (2002a) A model for the structural, functional and deontic
specification of organizations in multiagent systems. In: Bittencourt G, Ramalho GL (eds)
Advances in artificial intelligence. Proceedings of 16th Brazilian symposium on artificial
intelligence (SBIA’02), Porto de Galinhas/Recife, Brazil, 11-14 Nov 2002. (Lecture notes in
computer science), vol 2507. Springer, Berlin, pp 439448

Hiibner JF, Sichman JS, Boissier O (2002b) MOISE+: towards a structural, functional and deontic
model for MAS organizations. In: Castelfranchi C, Johnson WL (eds) Proceedings of the first
international joint conference on autonomous agents and multi-agent systems, AAMAS 2002,
Bologna, 15-19 July 2002. ACM Press, pp 501-502

94 C.M. Jonker and J. Treur

Jennings NR, Wooldridge M (eds) (1998) Agent technology: foundations, applications, and
markets. Springer, Berlin

Jonker CM, Treur J (2003) Relating structure and dynamics in organisation models. In: Sichman JS,
Bousquet F, Davidsson P (eds) Multi-agent-based simulation II, third international workshop,
MABS 2002, Bologna, July 2002, revised papers (Lecture notes in Al), vol 2581. Springer,
Berlin, pp 50-69

Jonker CM, Treur J, Wijngaards WCA (2001) Temporal languages for simulation and analysis of
the dynamics within an organisation. In: Dunin-Keplicz B, Nawarecki E (eds) From theory to
practice in multi-agent systems, proceedings of the second international workshop of central
and eastern Europe on multi-agent systems, CEEMAS’01 (Lecture notes in computer science),
vol 2296. Springer, Berlin, pp 151-160

Kreitner R, Kunicki A (2001) Organisational behavior. McGraw-Hill, New York

Lomi A, Larsen ER (2001) Dynamics of organizations: computational modeling and organization
theories. AAAI Press, Menlo Park

Mintzberg H (1979) The structuring of organisations. Prentice Hall, Englewood Cliffs

Moss S, Gaylard H, Wallis S, Edmonds B (1998) SDML: a multi-agent language for organiza-
tional modelling. Comp Math Org Theory 4(1):43-70

Norling E, Edmonds B, Meyer R (2013) Informal approaches to developing simulation models.
Chapter 4 in this volume

Nwana HS (1996) Software agents: an overview. Knowl Eng Rev 11(3):205-244

Nwana HS, Ndumu DT (1998) A brief introduction to software agent technology. In: Jennings M,
Wooldridge NR (eds) Agent Technology: Foundations, Applications and Markets. Springer
Verlag, Berlin, pp 2947

Prietula M, Gasser L, Carley K (1997) Simulating organizations. MIT Press, Cambridge, MA

Railsback SF, Lytinen SL, Jackson SK (2006) Agent-based simulation platforms: review and
development recommendations. Simulation 82(9):609-623

Sichman JS, Conte R (1998) On personal and role mental attitudes: a preliminary dependence-
based analysis. In: Oliveira F (ed) Advances in Al. Proceedings of the 14th Brazilian sympo-
sium on artificial intelligence, SBIA’98 (Lecture notes in artificial intelligence), vol 1515.
Springer, Berlin, pp 1-10

Simon HA (1962) The architecture of complexity. Proc Am Philos Soc 106(6):467—482

Wooldridge M, Jennings NR (1995) Agent theories, architectures, and languages: a survey. In:
Wooldridge M, Jennings NR (eds) Intelligent agents, proceedings of the first international
workshop on agent theories, architectures and languages, ATAL’94 (Lecture notes in Al),
vol 890. Springer, Berlin, pp 1-39

Chapter 6
Checking Simulations: Detecting and Avoiding
Errors and Artefacts

José M. Galan, Luis R. Izquierdo, Segismundo S. Izquierdo, José 1. Santos,
Ricardo del Olmo, and Adolfo Lopez-Paredes

Why Read This Chapter? Given the complex and exploratory nature of many
agent-based models, checking that the model performs in the manner intended by
its designers is a very challenging task. This chapter helps the reader to identify
some of the possible types of error and artefact that may appear in the different
stages of the modelling process. It will also suggest some activities that can be
conducted to detect, and hence avoid, each type.

Abstract The aim of this chapter is to provide the reader with a set of concepts and
a range of suggested activities that will enhance his or her ability to understand
agent-based simulations. To do this in a structured way, we review the main
concepts of the methodology (e.g. we provide precise definitions for the terms
‘error’ and ‘artefact’) and establish a general framework that summarises the
process of designing, implementing, and using agent-based models. Within this
framework we identify the various stages where different types of assumptions are
usually made and, consequently, where different types of errors and artefacts may
appear. We then propose several activities that can be conducted to detect each type
of error and artefact.

J.M. Galan (><) « L.R. Izquierdo ¢ J.I. Santos * R. del Olmo
Departamento de Ingenieria Civil, Universidad de Burgos, Burgos E-09001, Spain
e-mail: jmgalan@ubu.es; luis@izquierdo.name; jisantos@ubu.es; rdelolmo@ubu.es

S.S. Izquierdo « A. Lopez-Paredes
Departamento de Ingenieria Civil, Universidad de Burgos, Valladolid E-47011, Spain
e-mail: segis@eis.uva.es; adolfo@insisoc.org

B. Edmonds and R. Meyer (eds.), Simulating Social Complexity, 95
Understanding Complex Systems, DOI 10.1007/978-3-540-93813-2_6,
© Springer-Verlag Berlin Heidelberg 2013

mailto:jmgalan@ubu.es
mailto:luis@izquierdo.name
mailto:jisantos@ubu.es
mailto:rdelolmo@ubu.es
mailto:segis@eis.uva.es
mailto:adolfo@insisoc.org

96 J.M. Galan et al.

6.1 Introduction

Agent-based modelling is one of multiple techniques that can be used to conceptu-
alise social systems. What distinguishes this methodology from others is the use of
a more direct correspondence between the entities in the system to be modelled and
the agents that represent such entities in the model (Edmonds 2001). This approach
offers the potential to enhance the transparency, soundness, descriptive accuracy,
and rigour of the modelling process, but it can also create difficulties: agent-based
models are generally complex and mathematically intractable, so their exploration
and analysis often require computer simulation.

The problem with computer simulations is that understanding them in reason-
able detail is not as straightforward an exercise as one could think (this also applies
to one’s own simulations). A computer simulation can be seen as the process of
applying a certain function to a set of inputs to obtain some results. This function is
usually so complicated and cumbersome that the computer code itself is often not
that far from being one of the best descriptions of the function that can be provided.
Following this view, understanding a simulation would basically consist in
identifying the parts of the mentioned function that are responsible for generating
particular (sub)sets of results.

Thus, it becomes apparent that a prerequisite to understand a simulation is to
make sure that there is no significant disparity between what we think the computer
code is doing and what is actually doing. One could be tempted to think that, given
that the code has been programmed by someone, surely there is always at least one
person — the programmer — who knows precisely what the code does. Unfortu-
nately, the truth tends to be quite different, as the leading figures in the field report:

You should assume that, no matter how carefully you have designed and built your
simulation, it will contain bugs (code that does something different to what you wanted
and expected). (Gilbert 2007)

An unreplicated simulation is an untrustworthy simulation — do not rely on their results,
they are almost certainly wrong. (‘Wrong’ in the sense that, at least in some detail or other,
the implementation differs from what was intended or assumed by the modeller). (Edmonds
and Hales 2003)

Achieving internal validity is harder than it might seem. The problem is knowing
whether an unexpected result is a reflection of a mistake in the programming, or a surprising
consequence of the model itself. [...] As is often the case, confirming that the model was
correctly programmed was substantially more work than programming the model in the first
place. (Axelrod 1997a)

In the particular context of agent-based simulation, the problem tends to be
exacerbated. The complex and exploratory nature of most agent-based models
implies that, before running a model, there is almost always some uncertainty
about what the model will produce. Not knowing a priori what to expect makes it
difficult to discern whether an unexpected outcome has been generated as a legiti-
mate result of the assumptions embedded in the model or, on the contrary, it is due
to an error or an artefact created in its design, its implementation, or in the running
process (Axtell and Epstein 1994: 31; Gilbert and Terna 2000).

6 Checking Simulations: Detecting and Avoiding Errors and Artefacts 97

Moreover, the challenge of understanding a computer simulation does not end
when one is confident that the code is free from errors; the complex issue of
identifying what parts of the code are generating a particular set of outputs remains
to be solved. Stated differently, this is the challenge of discovering what
assumptions in the model are causing the results we consider significant. Thus, a
substantial part of this non-trivial task consists in detecting and avoiding artefacts:
significant phenomena caused by accessory assumptions in the model that are
(mistakenly) deemed irrelevant. We explain this in detail in subsequent sections.

The aim of this chapter is to provide the reader with a set of concepts and a range
of suggested activities that will enhance his ability to understand simulations. As
mentioned before, simulation models can be seen as functions operating on their
inputs to produce the outputs. These functions are created by putting together a
range of different assumptions of very diverse nature. Some assumptions are made
because they are considered to be an essential feature of the system to be modelled;
others are included in a somewhat arbitrary fashion to achieve completeness —i.e. to
make the computer model run —, and they may not have a clear referent in the target
system. There are also assumptions — e.g. the selection of the compiler and the
particular pseudo-random number generator to be employed — that are often made,
consciously or not, without fully understanding in detail how they work, but
trusting that they operate in the way we think they do. Finally, there may also be
some assumptions in a computer model that not even its own developer is aware of,
e.g. the use of floating-point arithmetic, rather than real arithmetic.

Thus, in broad terms, understanding simulations requires identifying what
assumptions are being made, and assessing their impact on the results. To achieve
this, we believe that it is useful to characterise the process by which assumptions
accumulate to end up forming a complete model. We do this in a structured way by
presenting a general framework that summarises the process of creating and using
agent-based models through various stages; then, within this framework, we char-
acterise the different types of assumptions that are made in each of the stages of the
modelling process, and we identify the sort of errors and artefacts that may occur;
we also propose activities that can be conducted to avoid each type of error or
artefact.

The chapter is structured as follows: the following section is devoted to
explaining what we understand by modelling, and to argue that computer simula-
tion is a useful tool to explore formal models, rather than a distinctively new
symbolic system or a uniquely different reasoning process, as it has been suggested
in the literature. In Sect. 6.3 we explain what the essence of agent-based modelling
is in our view, and we present the general framework that summarises the process of
designing, implementing, and using agent-based models. In Sect. 6.4 we define the
concepts of error and artefact, and we discuss their relevance for validation and
verification. The framework presented in Sect. 6.3 is then used to identify the
various stages of the modelling process where different types of assumptions are
made and, consequently, where different types of errors and artefacts may appear.
We then propose various activities aimed at avoiding the types of errors and
artefacts previously described, and we conclude with a brief summary of the
chapter.

98 J.M. Galan et al.
6.2 Three Symbolic Systems Used to Model Social Processes

Modelling is the art of building models. In broad terms, a model can be defined as
an abstraction of an observed system that enables us to establish some kind of
inference process about how the system works, or about how certain aspects of the
system operate.

Modelling is an activity inherent to every human being: people constantly
develop mental models, more or less explicit, about various aspects of their daily
life. Within science in particular, models are ubiquitous. Many models in the “hard”
sciences are formulated using mathematics (e.g. differential equation models and
statistical regressions), and they are therefore formal, but it is also perfectly
feasible — and acceptable — to build non-formal models within academia; this is
often the case in disciplines like history or sociology — consider e.g. a model written
in natural language that tries to explain the expansion of the Spanish Empire in the
sixteenth century, or the formation of urban “tribes” in large cities.

We value a model to the extent that it is useful —i.e. in our opinion, what makes a
model good is its fitness for purpose. Thus, the assessment of any model can only be
conducted relative to a predefined purpose. Having said that, there is a basic set of
general features that are widely accepted to be desirable in any model, e.g.
accuracy, precision, generality, and simplicity (see Fig. 6.1). Frequently some of
these features are inversely related; in such cases the modeller is bound to compro-
mise to find a suitable trade-off, considering the perceived relative importance of
each of these desirable features for the purpose of the model (Edmonds 2005).

Some authors (Gilbert 1999; Holland and Miller 1991; Ostrom 1988) classify the
range of available techniques for modelling phenomena in which the social dimen-
sion is influential according to three symbolic systems.

One possible way of representing and studying social phenomena is through
verbal argumentation in natural language. This is the symbolic system traditionally
used in historical analyses, which, after a process of abstraction and simplification,
describe past events emphasising certain facts, processes, and relations at the
expense of others. The main problem with this type of representation is its intrinsic
lack of precision (due to the ambiguity of natural language) and the associated
difficulty of uncovering the exact implications of the ideas put forward in this way.
In particular, using this symbolic system it is often very difficult to determine the
whole range of inferences that can be obtained from the assumptions embedded in
the model in reasonable detail; therefore it is often impossible to assess its logical
consistency, its scope, and its potential for generalisation in a formal way.

A second symbolic system that is sometimes used in the Social Sciences,
particularly in Economics, is the set of formal languages (e.g. leading to models
expressed as mathematical equations). The main advantage of this symbolic system
derives from the possibility of using formal deductive reasoning to infer new facts
from a set of clearly specified assumptions; formal deductive reasoning guarantees
that the obtained inferences follow from the axioms with logical consistency.
Formal languages also facilitate the process of assessing the generality of a

6 Checking Simulations: Detecting and Avoiding Errors and Artefacts 99

Simplicity

Generality

Specificity (makes
precise predictions)

Lack of error
(accuracy of results)

Fig. 6.1 The trade-off between various desirable features depends on the specific case and model.
There are not general rules that relate, not even in a qualitative fashion, all these features. The
figure shows a particular example from Edmonds (2005) that represents the possible equilibrium
relationships between some features in a particular model

model and its sensitivity to assumptions that are allowed to change within the
boundaries of the model (i.e. parameter values and non-structural assumptions).

However, the process of reducing social reality to formal models is not exempt
from disadvantages. Social systems can be tremendously complex, so if such
systems are to be abstracted using a formal language (e.g. mathematical equations),
we run the risk of losing too much in descriptiveness. To make things worse, in
those cases where it appears possible to produce a satisfactory formal model of the
social system under investigation, the resulting equations may be so complex that
the formal model becomes mathematically intractable, thus failing to provide most
of the benefits that motivated the process of formalisation in the first place. This is
particularly relevant in the domain of the Social Sciences, where the systems under
investigation often include non-linear relations (Axtell 2000). The usual approach
then is to keep on adding simplifying hypotheses to the model — thus making it
increasingly restrictive and unrealistic — until we obtain a tractable model that can
be formally analysed with the available tools. We can find many examples of such
assumptions in Economics: instrumental rationality, perfect information, represen-
tative agents, etc. Most often these concepts are not included because economists
think that the real world works in this way, but to make the models tractable (see for
instance Conlisk (1996), Axelrod (1997a), Hernandez (2004), Moss (2001, 2002)).
It seems that, in many cases, the use of formal symbolic systems tends to increase
the danger of letting the pursuit for tractability be the driver of the modelling
process.

But then, knowing that many of the hypotheses that researchers are obliged to
assume may not hold in the real world, and could therefore lead to deceptive
conclusions and theories, does this type of modelling representation preserve its

100 J.M. Galan et al.

advantages? Quoting G.F. Shove, it could be the case that sometimes “it is better to
be vaguely right than precisely wrong”.

The third symbolic system, computer modelling, opens up the possibility of
building models that somewhat lie in between the descriptive richness of natural
language and the analytical power of traditional formal approaches. This third type
of representation is characterized by representing a model as a computer program
(Gilbert and Troitzsch 1999). Using computer simulation we have the potential to
build and study models that to some extent combine the intuitive appeal of verbal
theories with the rigour of analytically tractable formal modelling.

In Axelrod’s (1997a) opinion, computational simulation is the third way of doing
science, which complements induction —the search for patterns in data— and deduc-
tion —the proof of theorems from a set of fixed axioms. In his opinion, simulation,
like deduction, starts from an explicit set of hypotheses but, rather than generating
theorems, it generates data that can be inductively analysed.

While the division of modelling techniques presented above seems to be
reasonably well accepted in the social simulation community —and we certainly
find it useful—, we do not fully endorse it. In our view, computer simulation does not
constitute a distinctively new symbolic system or a uniquely different reasoning
process by itself, but rather a (very useful) tool for exploring and analysing formal
systems. We see computers as inference engines that are able to conduct algorith-
mic processes at a speed that the human brain cannot achieve. The inference
derived from running a computer model is constructed by example and, in the
general case, reads: the results obtained from running the computer simulation
follow (with logical consistency) from applying the algorithmic rules that define the
model on the input parameters' used.

In this way, simulations allow us to explore the properties of certain formal
models that are intractable using traditional formal analyses (e.g. mathematical
analyses), and they can also provide fundamentally new insights even when
such analyses are possible. Like Gotts et al. (2003), we also believe that mathemat-
ical analysis and simulation studies should not be regarded as alternative and even
opposed approaches to the formal study of social systems, but as complementary.
They are both extremely useful tools to analyse formal models, and they are
complementary in the sense that they can provide fundamentally different insights
on one same model.

To summarise, a computer program is a formal model (which can therefore be
expressed in mathematical language, e.g. as a set of stochastic or deterministic
equations), and computer simulation is a tool that enables us to study it in ways that
go beyond mathematical tractability. Thus, the final result is a potentially more
realistic — and still formal — study of a social system.

"By input parameters in this statement we mean “everything that may affect the output of the
model”, e.g. the random seed, the pseudo-random number generator employed and, potentially,
information about the microprocessor and operating system on which the simulation was run, if
these could make a difference.

6 Checking Simulations: Detecting and Avoiding Errors and Artefacts 101

6.3 Agent Based Modelling

6.3.1 Concept

As stated before, modelling is the process of building an abstraction of a system for
a specific purpose (see Edmonds (2001) and Epstein (2008) for a list of potential
applications). Thus, in essence, what distinguishes one modelling paradigm from
another is precisely the way we construct that abstraction from the observed system.

In our view, agent-based modelling is a modelling paradigm with the defining
characteristic that entities within the target system to be modelled — and the
interactions between them — are explicitly and individually represented in the
model (see Fig. 6.2). This is in contrast to other models where some entities are
represented via average properties or via single representative agents. In many other
models, entities are not represented at all, and it is only processes that are studied
(e.g. a model of temperature variation as a function of pressure), and it is worth
noting that such processes may well be already abstractions of the system.> The
specific process of abstraction employed to build one particular model does not
necessarily make it better or worse, only more or less useful for one purpose or
another.

The specific way in which the process of abstraction is conducted in agent-based
modelling is attractive for various reasons: it leads to (potentially) formal yet more
natural and transparent descriptions of the target system, provides the possibility to
model heterogeneity almost by definition, facilitates an explicit representation of
the environment and the way other entities interact with it, allows for the study of
the bidirectional relations between individuals and groups, and it can also capture
emergent behaviour (see Epstein 1999; Axtell 2000; Bonabeau 2002). Unfortu-
nately, as one would expect, all these benefits often come at a price: most of the
models built in this way are mathematically intractable. A common approach to
study the behaviour of mathematically intractable formal models is to use computer
simulation. It is for this reason that we often find the terms “agent-based modelling”
and “agent-based simulation” used as synonyms in the scientific literature (Hare
and Deadman 2004).

Thus, to summarise our thoughts in the context of the classification of modelling
approaches in the social sciences, we understand that the essence of agent-based
modelling is the individual and explicit representation of the entities and their
interactions in the model, whereas computer simulation is a useful tool for studying
the implications of formal models. This tool happens to be particularly well suited
to explore and analyse agent-based models for the reasons explained above. Run-
ning an agent-based model in a computer provides a formal proof that a particular
micro-specification is sufficient to generate the global behaviour that is observed

2 The reader can see an interesting comparative analysis between agent-based and equation-based
modelling in (Parunak et al. 1998).

102 J.M. Galan et al.

Target System Agent based model

A RARARARE S sa

.
c"
.

{9

4
'll‘ll..l-"'

TLL "y
L
.

lll.,..'ll-|-|-|ll 5
te,

Entities ®=====ssssssssansad Agents

Aasuuss
aunsuERpRRel
Ll
ss®

{w}‘*}&;

Interaction between g.sp Interactions between
entities agents

Fig. 6.2 In agent based modelling the entities of the system are represented explicitly and
individually in the model. The limits of the entities in the target system correspond to the limits
of the agents in the model, and the interactions between entities correspond to the interactions of
the agents in the model (Edmonds 2001)

during the simulation. If a model can be run in a computer, then it is in principle
possible to express it in many different formalisms, e.g. as a set of mathematical
equations. Such equations may be very complex, difficult to interpret and impossi-
ble to solve, thus making the whole exercise of changing formalism frequently
pointless, but what we find indeed useful is the thought that such an exercise could
be undertaken, i.e. an agent-based model that can be run in a computer is not that
different from the typical mathematical model. As a matter of fact, it is not difficult
to formally characterise most agent-based models in a general way (Leombruni and
Richiardi 2005).

6.3.2 Design, Implementation, and Use of an Agent-Based Model

Drogoul et al. (2003) identify three different roles in the design, implementation,
and use of a typical agent-based model: the thematician (domain expert), the
modeller, and the computer scientist. It is not unusual in the field to observe that

6 Checking Simulations: Detecting and Avoiding Errors and Artefacts 103

Fig. 6.3 Different stages in
the process of designing,
implementing and using an
agent-based model

THEMATICIAN

MODELLER

one single person undertakes several or even all of these roles. We find that these
three roles fit particularly well into the framework put forward by Edmonds (2001)
to describe the process of modelling with an intermediate abstraction. Here we
marry Drogoul et al.’s and Edmonds’ views on modelling by dissecting one of
Drogoul et al.’s roles and slightly expanding Edmonds’ framework (Fig. 6.3). We
then use our extended framework to identify the different types of assumptions that
are made in each of the stages of the modelling process, the errors and artefacts that
may occur in each of them, and the activities that can be conducted to avoid such
errors and artefacts. We start by explaining the three different roles proposed by
Drogoul et al. (2003).

The role of the thematician is undertaken by experts in the target domain. They
are the ones that better understand the target system, and therefore the ones who
carry out the abstraction process that is meant to produce the first conceptualisation
of the target system. Their job involves defining the objectives and the purpose of
the modelling exercise, identifying the critical components of the system and the
linkages between them, and also describing the most prominent causal relations.
The output of this first stage of the process is most often a non-formal model
expressed in natural language, and it may also include simple conceptual diagrams,
e.g. block diagrams. The non-formal model produced may describe the system
using potentially ambiguous terms (such as e.g. learning or imitation, without fully
specifying how these processes actually take place).

The next stage in the modelling process is carried out by the role of the modeller.
The modeller’s task is to transform the non-formal model that the thematician aims
to explore into the (formal) requirement specifications that the computer scientist —
the third role — needs to formulate the (formal) executable model. This job involves
(at least) three major challenges. The first one consists in acting as a mediator
between two domains that are very frequently fundamentally different (e.g. sociol-
ogy and computer science). The second challenge derives from the fact that in most
cases the thematician’s model is not fully specified, i.e. there are many formal

104 J.M. Galan et al.

models that would conform to it.> In other words, the formal model created by
the modeller is most often just one of many possible particularisations of the
thematician’s (more general) model. Lastly, the third challenge appears when the
thematician’s model is not consistent, which may perfectly be the case since his
model is often formulated using natural language. Discovering inconsistencies in
natural language models is in general a non-trivial task. Several authors (e.g.
Christley et al. (2004), Pignotti et al. (2005), and Polhill and Gotts (2006)) have
identified ontologies to be particularly useful for this purpose, especially in the
domain of agent-based social simulation. Polhill and Gotts (2006) write:

An ontology is defined by Gruber (1993) as “a formal, explicit specification of a shared
conceptualisation”. Fensel (2001) elaborates: ontologies are formal in that they are machine
readable; explicit in that all required concepts are described; shared in that they represent an
agreement among some community that the definitions contained within the ontology
match their own understanding; and conceptualisations in that an ontology is an abstraction
of reality. (Polhill and Gotts 2006, p. 51)

Thus, the modeller has the difficult —potentially unfeasible— task of finding a set
of (formal and consistent) requirement specifications® where each individual
requirement specification of that set is a legitimate particular case of the
thematician’s model, and the set as a whole is representative of the thematician’s
specifications (i.e. the set is sufficient to fully characterise the thematician’s model
to a satisfactory extent).

Drogoul et al.’s third role is the computer scientist. Here we distinguish between
computer scientist and programmer. It is often the case that the modeller comes up
with a formal model that cannot be implemented in a computer. This could be, for
example, because the model uses certain concepts that cannot be operated by
present-day computers (e.g. real numbers, as opposed to floating-point numbers),
or because running the model would demand computational requirements that are
not yet available (e.g. in terms of memory and processing capacity). The job of the
computer scientist consists in finding a suitable (formal) approximation to the
modeller’s formal model that can be executed in a computer (or in several
computers) given the available technology. To achieve this, the computer scientist
may have to approximate and simplify certain aspects of the modeller’s formal
model, and it is his job to make sure that these simplifications are not affecting the
results significantly. As an example, Cioffi-Revilla (2002) warns about the poten-
tially significant effects of altering system size in agent-based simulations.

The Navier—Stokes equations of fluid dynamics are a paradigmatic case in point.
They are a set of non-linear differential equations that describe the motion of a fluid.
Although these equations are considered a very good (formal and fully specified)

3 Note that the thematician faces a similar problem when building his non-formal model. There are
potentially an infinite number of models for one single target system.

4Each individual member of this set can be understood as a different model or, alternatively, as a
different parameterisation of one single —more general- model that would itself define the whole
set.

6 Checking Simulations: Detecting and Avoiding Errors and Artefacts 105

model, their complexity is such that analytical closed-form solutions are available
only for the simplest cases. For more complex situations, solutions of the
Navier—Stokes equations must be estimated using approximations and numerical
computation (Heywood et al. 1990; Salvi 2002). Deriving such approximations
would be the task of the computer scientist’s role, as defined here.

One of the main motivations to distinguish between the modeller’s role and the
computer scientist’s role is that, in the domain of agent-based social simulation, it is
the description of the modeller’s formal model what is usually found in academic
papers, even though the computer scientist’s model was used by the authors to
produce the results in the paper. Most often the modeller’s model (i.e. the one
described in the paper) simply cannot be run in a computer; it is the (potentially
faulty) implementation of the computer scientist’s approximation to such a model
what is really run by the computer. As an example, note that computer models
described in scientific papers are most often expressed using equations in real
arithmetic, whereas the models that actually run in computers almost invariably
use floating-point arithmetic.

Finally, the role of the programmer is to implement the computer scientist’s
executable model. In our framework, by definition of the role computer scientist,
the model he produces must be executable and fully specified, i.e. it must include all
the necessary information so given a certain input the model always produces the
same output. Thus, the executable model will have to specify in its definition
everything that could make a difference, e.g. the operating system and the specific
pseudo-random number generator to be used. This is a subtle but important point,
since it implies that the programmer’s job does not involve any process of abstrac-
tion or simplification; i.e. the executable model and the programmer’s
specifications are by definition the same (see Fig. 6.3). (We consider two models
to be the same if and only if they produce the same outputs when given the same
inputs.) The programmer’s job consists “only” in writing the executable model in a
programming language.’ If the programmer does not make any mistakes, then the
implemented model (e.g. the code) and the executable model will be the same.

Any mismatch between someone’s specifications and the actual model he passes
to the next stage is considered here an error (see Fig. 6.3). As an example, if the
code implemented by the programmer is not the same model as his specifications,
then there has been an implementation error. Similarly, if the computer scientist’s
specifications are not complete (i.e. they do not define a unique model that produces
a precise set of outputs for each given set of inputs) we say that he has made an error
since the model he is producing is necessarily fully specified (by definition of the
role). This opens up the question of how the executable model is defined: the
executable model is the same model as the code if the programmer does not

3There are some interesting attempts with INGENIAS (Pavén and Gémez-Sanz 2003) to use
modelling and visual languages as programming languages rather than merely as design languages
(Sansores and Pavon 2005; Sansores et al. 2006. These efforts are aimed at automatically
generating several implementations of one single executable model (in various different simula-
tion platforms).

106 J.M. Galan et al.

make any mistakes. So, to be clear, the distinction between the role of computer
scientist and programmer is made here to distinguish (a) errors in the implementa-
tion of a fully specified model (which are made by the programmer) from (b) errors
derived from an incomplete understanding of how a computer program works
(which are made by the computer scientist). An example of the latter would be
one where the computer scientist’s specifications stipulate the use of real arithmetic,
but the executable model uses floating-point arithmetic.

It is worth noting that in an ideal world the specifications created by each role
would be written down. Unfortunately the world is far from ideal, and it is often the
case that the mentioned specifications stay in the realm of mental models, and never
reach materialisation.

The reason for which the last two roles in the process are called ‘the computer
scientist’ and the ‘programmer’ is because, as mentioned before, most agent-based
models are implemented as computer programs, and then explored through simula-
tion (for tractability reasons). However, one could also think of e.g. a mathemati-
cian conducting these two roles, especially if the formal model provided by the
modeller can be solved analytically. For the sake of clarity, and without great loss of
generality, we assume here that the model is implemented as a computer program
and its behaviour is explored through computer simulation.

Once the computer model is implemented, it is run, and the generated results are
analysed. The analysis of the results of the computer model leads to conclusions on
the behaviour of the computer scientist’s model and, to the extent that the computer
scientist’s model is a valid approximation of the modeller’s formal model, these
conclusions also apply to the modeller’s formal model. Again, to the extent that the
formal model is a legitimate particularisation of the non-formal model created by
the thematician, the conclusions obtained for the modeller’s formal model can be
interpreted in the terms used by the non-formal model. Furthermore, if the
modeller’s formal model is representative of the thematician’s model, then there
is scope for making general statements on the behaviour of the thematician’s
model. Finally, if the thematician’s model is satisfactorily capturing social reality,
then the knowledge inferred in the whole process can be meaningfully applied to
the target system.

In the following section we use our extended framework to identify the different
errors and artefacts that may occur in each of the stages of the modelling process
and the activities that can be conducted to avoid such errors and artefacts.

6.4 Errors and Artefacts

6.4.1 Definition of Error and Artefact and Their Relevance for
Validation and Verification

Since the meanings of the terms validation, verification, error, and artefact are not
uncontested in the literature, we start by stating the meaning that we attribute to

6 Checking Simulations: Detecting and Avoiding Errors and Artefacts 107

each of them. For us, validation is the process of assessing how useful a model is for
a certain purpose. A model is valid to the extent that it provides a satisfactory range
of accuracy consistent with the intended application of the model (Kleijnen 1995;
Sargent 2003).° Thus, if the objective is to accurately represent social reality, then
validation is about assessing how well the model is capturing the essence of its
empirical referent. This could be measured in terms of goodness of fit to the
characteristics of the model’s referent Moss et al. (1997).

Verification — sometimes called “internal validation”, e.g. by Taylor (1983),
Drogoul et al. (2003), Sansores and Pavon (2005), or “internal validity”, e.g. by
Axelrod (1997a) — is the process of ensuring that the model performs in the manner
intended by its designers and implementers (Moss et al. 1997). Let us say that a
model is correct if and only if it would pass a verification exercise. Using our
previous terminology, an expression of a model in a language is correct if and only
if it is the same model as the developer’s specifications. Thus, it could well be the
case that a correct model is not valid (for a certain purpose). Conversely, it is also
possible that a model that is not correct is actually valid for some purposes. Having
said that, one would think that the chances of a model being valid are higher if it
performs in the manner intended by its designer. To be sure, according to our
definition of validation, what we want is a valid model, and we are interested in its
correctness only to the extent that correctness contributes to make the model valid.

We also distinguish between errors and artefacts (Galan et al. 2009). Errors
appear when a model does not comply with the requirement specifications self-
imposed by its own developer. In simple words, an error is a mismatch between
what the developer thinks the model is, and what it actually is. It is then clear that
there is an error in the model if and only if the model is not correct. Thus,
verification is the process of looking for errors. An example of an implementation
error would be the situation where the programmer intends to loop through the
whole list of agents in the program, but he mistakenly writes the code so it only runs
through a subset of them. A less trivial example of an error would be the situation
where it is believed that a program is running according to the rules of real
arithmetic, while the program is actually using floating-point arithmetic (Izquierdo
and Polhill 2006; Polhill and Izquierdo 2005; Polhill et al. 2005, 2006).

In contrast to errors, artefacts relate to situations where there is no mismatch
between what the developer thinks a model is and what it actually is. Here the
mismatch is between the set of assumptions in the model that the developer thinks
are producing a certain phenomenon, and the assumptions that are the actual cause
of such phenomenon. We explain this in detail. We distinguish between core and
accessory assumptions in a model. Core assumptions are those whose presence is
believed to be important for the purpose of the model. Ideally these would be the
only assumptions present in the model. However, when producing a formal model it
is often the case that the developer is bound to include some additional assumptions
for the only purpose of making the model complete. We call these accessory

5 See a complete epistemic review of the validation problem in Kleindorfer et al. (1998).

108 J.M. Galan et al.

assumptions. Accessory assumptions are not considered a crucial part of the model;
they are included to make the model work. We also distinguish between significant
and non-significant assumptions. A significant assumption is an assumption that is
the cause of some significant result obtained when running the model. Using this
terminology, we define artefacts as significant phenomena caused by accessory
assumptions in the model that are (mistakenly) deemed non-significant. In other
words, an artefact appears when an accessory assumption that is considered non-
significant by the developer is actually significant. An example of an artefact would
be the situation where the topology of the grid in a model is accessory, it is believed
that some significant result obtained when running the model is independent of the
particular topology used (say, e.g. a grid of square cells), but it turns out that if an
alternative topology is chosen (say, e.g. hexagonal cells) then the significant result
is not observed.

The relation between artefacts and validation is not as straight-forward as that
between errors and verification. For a start, artefacts are relevant for validation only
to the extent that identifying and understanding causal links in the model’s referent
is part of the purpose of the modelling exercise. We assume that this is the case, as
indeed it usually is in the field of agent-based social simulation. A clear example is
the Schelling-Sakoda model of segregation, which was designed to investigate the
causal link between individual preferences and global patterns of segregation
(Sakoda 1971; Schelling 1971, 1978). The presence of artefacts in a model implies
that the model is not representative of its referent, since one can change some
accessory assumption (thus creating an alternative model which still includes all the
core assumptions) and obtain significantly different results. When this occurs, we
run the risk of interpreting the results obtained with the (non-representative) model
beyond its scope (Edmonds and Hales 2005). Thus, to the extent that identifying
causal links in the model’s referent is part of the purpose of the modelling exercise,
the presence of artefacts decreases the validity of the model. In any case, the
presence of artefacts denotes a misunderstanding of what assumptions are
generating what results.

6.4.2 Appearance of Errors and Artefacts

The dynamics of agent-based models are generally sufficiently complex that model
developers themselves do not understand in exhaustive detail how the obtained
results have been produced. As a matter of fact, in most cases if the exact results and
the processes that generated them were known and fully understood in advance,
there would not be much point in running the model in the first place. Not knowing
exactly what to expect makes it impossible to tell whether any unanticipated results
derive exclusively from what the researcher believes are the core assumptions in the
model, or whether they are due to errors or artefacts. The question is of crucial
importance since, unfortunately, the truth is that there are many things that can go
wrong in modelling.

6 Checking Simulations: Detecting and Avoiding Errors and Artefacts 109

Errors and artefacts may appear at various stages of the modelling process
(Galan and Izquierdo 2005). In this section we use the extended framework
explained in the previous section to identify the critical stages of the modelling
process where errors and artefacts are most likely to occur.

According to our definition of artefact — i.e. significant phenomena caused by
accessory assumptions that are not considered relevant —, artefacts cannot appear in
the process of abstraction conducted by the thematician, since this stage consists
precisely in distilling the core features of the target system. Thus, there should not
be accessory assumptions in the thematician’s model. Nevertheless, there could still
be issues with validation if, for instance, the thematician’s model is not capturing
social reality to a satisfactory extent. Errors could appear in this stage because the
thematician’s specifications are usually expressed in natural language, and rather
than being written down, they are often transmitted orally to the modeller. Thus, an
error (i.e. a mismatch between the thematician’s specifications and the non-formal
model received by the modeller) could appear here if the modeller misunderstands
some of the concepts put forward by the thematician.

The modeller is the role that may introduce the first artefacts in the modelling
process. When formalising the thematician’s model, the modeller will often have to
make a number of additional assumptions so the produced formal model is fully
specified. By our definition of the two roles, these additional assumptions are not
crucial features of the target system. If such accessory assumptions have a signifi-
cant impact on the behaviour of the model and the modeller is not aware of it, then
an artefact has been created. This would occur if, for instance, (a) the thematician
did not specify any particular neighbourhood function, (b) different neighbourhood
functions lead to different results, and (c) the modeller is using only one of them and
believes that they all produce essentially the same results.

Errors could also appear at this stage, although it is not very likely. This is so
because the specifications that the modeller produces must be formal, and they are
therefore most often written down in a formal language. When this is the case, there
is little room for misunderstanding between the modeller and the computer scien-
tist, i.e. the modeller’s specifications and the formal model received by the com-
puter scientist would be the same, and thus there would be no error at this stage.

The role of the computer scientist could introduce artefacts in the process. This
would be the case if, for instance, his specifications require the use of a particular
pseudo-random number generator, he believes that this choice will not have any
influence in the results obtained, but it turns out that it does. Similar examples could
involve the arbitrary selection of an operating system or a specific floating-point
arithmetic that had a significant effect on the output of the model.

Errors can quite easily appear in between the role of the computer scientist and
the role of the programmer. Note that in our framework any mismatch between
the computer scientist’s specifications and the executable model received by the
programmer is considered an error. In particular, if the computer scientist’s
specifications are not executable, then there is an error. This could be, for instance,
because the computer scientist’s specifications stipulate requirements that cannot
be executed with present-day computers (e.g. real arithmetic), or because it does not

110 J.M. Galan et al.

specify all the necessary information to be run in a computer in an unequivocal way
(e.g. it does not specify a particular pseudo-random number generator). The error
then may affect the validity of the model significantly, or may not.

Note from the previous examples that if the computer scientist does not provide a
fully executable set of requirement specifications, then he is introducing an error,
since in that case the computer program (which is executable) would be necessarily
different from his specifications. On the other hand, if he does provide an execut-
able model but in doing so he makes an arbitrary accessory assumption that turns
out to be significant, then he is introducing an artefact.

Finally, the programmer cannot introduce artefacts because his specifications
are the same as the executable model by definition of the role (i.e. the programmer
does not have to make any accessory assumptions). However, he may make
mistakes when creating the computer program from the executable model.

6.4.3 Adctivities Aimed at Detecting Errors and Artefacts

In this section we identify various activities that the different roles defined in the
previous sections can undertake to detect errors and artefacts. We consider the use
of these techniques as a very recommendable and eventually easy to apply practice.
In spite of this, we should warn that, very often, these activities may require a
considerable human and computational effort.

6.4.3.1 Modeller’s Activities

¢ Develop and analyse new formal models by implementing alternative accessory
assumptions while keeping the core assumptions identified by the thematician.
This exercise will help to detect artefacts. Only those conclusions which are not
falsified by any of these models will be valid for the thematician’s model. As an
example, see Galan and Izquierdo (2005), who studied different instantiations of
one single conceptual model by implementing different evolutionary selection
mechanisms. Takadama et al. (2003) conducted a very similar exercise
implementing three different learning algorithms for their agents. In a collection
of papers, Klemm et al. (2003a, b, ¢, 2005) investigate the impact of various
accessory assumptions in Axelrod’s model for the dissemination of culture
(Axelrod 1997b). Another example of studying different formal models that
address one single problem is provided by Kluver and Stoica (2003).

* Conduct a more exhaustive exploration of the parameter space within the
boundaries of the thematician’s specifications. If we obtain essentially the
same results using the wider parameter range, then we will have broadened
the scope of the model, thus making it more representative of the thematician’s
model. If, on the other hand, results change significantly, then we will have

6 Checking Simulations: Detecting and Avoiding Errors and Artefacts 111

identified artefacts. This type of exercise has been conducted by e.g. Castellano
et al. (2000) and Galan and Izquierdo (2005).

» Create abstractions of the formal model which are mathematically tractable. An
example of one possible abstraction would be to study the expected motion of a
dynamic system (see the studies conducted by Galdn and Izquierdo (2005),
Edwards et al. (2003), and Castellano et al. (2000) for illustrations of mean-
field approximations). Since these mathematical abstractions do not correspond
in a one-to-one way with the specifications of the formal model, any results
obtained with them will not be conclusive, but they may suggest parts of the
model where there may be errors or artefacts.

e Apply the simulation model to relatively well understood and predictable
situations to check that the obtained results are in agreement with the expected
behaviour (Gilbert et al. 2000).

6.4.3.2 Computer Scientist’s Activities

* Develop mathematically tractable models of certain aspects, or particular cases,
of the modeller’s formal model. The analytical results derived with these models
should match those obtained by simulation; a disparity would be an indication of
the presence of errors.

» Develop new executable models from the modeller’s formal model using alter-
native modelling paradigms (e.g. procedural vs. declarative). This activity will
help to identify artefacts. As an example, see Edmonds and Hales’ (2003)
reimplementation of Riolo et al. (2001) model of cooperation among agents
using tags. Edmonds reimplemented the model using SDML (declarative),
whereas Hales reprogrammed the model in Java (procedural).

« Rerun the same code in different computers, using different operating systems,
with different pseudo-random number generators. These are most often accessory
assumptions of the executable model that are considered non-significant, so any
detected difference will be a sign of an artefact. If no significant differences are
detected, then we can be confident that the code comprises all the assumptions
that could significantly influence the results. This is a valuable finding that can be
exploited by the programmer (see next activity). As an example, Polhill et al.
(2005) explain that using different compilers can result in the application of
different floating-point arithmetic systems to the simulation run.

6.4.3.3 Programmer’s Activities

¢ Re-implement the code in different programming languages. Assuming that the
code contains all the assumptions that can influence the results significantly, this
activity is equivalent to creating alternative representations of the same execut-
able model. Thus, it can help to detect errors in the implementation. There are

112 J.M. Galan et al.

several examples of this type of activity in the literature. Bigbee et al. (2007)
reimplemented Sugarscape (Epstein and Axtell 1996) using MASON. Xu et al.
(2003) implemented one single model in Swarm and Repast. The reim-
plementation exercise conducted by Edmonds and Hales (2003) applies here too.

* Analyse particular cases of the executable model that are mathematically tracta-
ble. Any disparity will be an indication of the presence of errors.

e Apply the simulation model to extreme cases that are perfectly understood
(Gilbert et al. 2000). Examples of this type of activity would be to run
simulations without agents or with very few agents, explore the behaviour of
the model using extreme parameter values, or model very simple environments.
This activity is common practice in the field.

6.5 Summary

The dynamics of agent-based models are usually so complex that their own
developers do not fully understand how they are generated. This makes it difficult,
if not impossible, to discern whether observed significant results are legitimate
logical implications of the assumptions that the model developer is interested in or
whether they are due to errors or artefacts in the design or implementation of the
model.

Errors are mismatches between what the developer believes a model is and what
the model actually is. Artefacts are significant phenomena caused by accessory
assumptions in the model that are (mistakenly) considered non-significant. Errors
and artefacts prevent developers from correctly understanding their simulations.
Furthermore, both errors and artefacts can significantly decrease the validity of a
model, so they are best avoided.

In this chapter we have outlined a general framework that summarises the
process of designing, implementing, and using agent-based models. Using this
framework we have identified the different type of errors and artefacts that may
occur in each of the stages of the modelling process. Finally, we have proposed
several activities that can be conducted to avoid each type of error or artefact. Some
of these activities include repetition of experiments in different platforms,
reimplementation of the code in different programming languages, reformulation
of the conceptual model using different modelling paradigms, and mathematical
analyses of simplified versions or particular cases of the model. Conducting these
activities will surely increase our understanding of a particular simulation model.

Acknowledgements The authors have benefited from the financial support of the Spanish
Ministry of Education and Science (projects DPI2004-06590, DPI2005-05676 and
TIN2008-06464—C03-02), the Spanish Ministry for Science and Innovation (CSD2010-00034)
within the framework of CONSOLIDER-INGENIO 2010 and of the JCyL (projects VAO0O6B09,
BU034A08 and GREX251-2009). We are also very grateful to Nick Gotts, Gary Polhill, Bruce
Edmonds and Cesareo Hernandez for many discussions on the philosophy of modelling.

6 Checking Simulations: Detecting and Avoiding Errors and Artefacts 113
Further Reading

Gilbert (2007) provides an excellent basic introduction to agent based modelling.
Chapter 3 summarizes the different stages involved in an agent-based modelling
project, including verification and validation. The paper entitled “Some myths and
common errors in simulation experiments” (Schmeiser 2001) discusses briefly
some of the most common errors found in simulation from a probabilistic and
statistical perspective. The approach is not focused specifically on agent based
modelling but on simulation in general. Yilmaz (2006) presents an analysis of the
life cycle of a simulation study and proposes a process-centric perspective for the
validation and verification of agent-based computational organization models.
Finally, Chap. 8 in this volume (David 2013) discusses validation in detail.

References

Axelrod RM (1997a) Advancing the art of simulation in the social sciences. In: Conte R,
Hegselmann R, Terna P (eds) Simulating social phenomena, vol 456, Lecture notes in
economics and mathematical systems. Springer, Berlin, pp 21-40

Axelrod RM (1997b) The dissemination of culture: a model with local convergence and global
polarization. J Confl Resolut 41(2):203-226

Axtell RL (2000) Why agents? On the varied motivations for agent computing in the social
sciences. In: Macal CM, Sallach D (eds) Proceedings of the workshop on agent simulation:
applications, models, and tools. Argonne National Laboratory, Argonne, pp 324

Axtell RL, Epstein JM (1994) Agent based modeling: understanding our creations. The Bulletin of
the Santa Fe Institute, Winter, pp 28-32

Bigbee T, Cioffi-Revilla C, Luke S (2007) Replication of sugarscape using MASON. In: Terano T,
Kita H, Deguchi H, Kijima K (eds) Agent-based approaches in economic and social complex
systems I'V: post-proceedings of the AESCS international workshop 2005. Springer, Tokyo, pp
183-190

Bonabeau E (2002) Agent-based modeling: methods and techniques for simulating human
systems. Proc Natl Acad Sci U S A 99(2):7280-7287

Castellano C, Marsili M, Vespignani A (2000) Nonequilibrium phase transition in a model for
social influence. Phys Rev Lett 85(16):3536-3539

Christley S, Xiang X, Madey G (2004) Ontology for agent-based modeling and simulation. In:
Macal CM, Sallach D, North MJ (eds) Proceedings of the agent 2004 conference on social
dynamics: interaction, reflexivity and emergence. Argonne National laboratory/The University
of Chicago, Chicago. http://www.agent2005.anl.gov/Agent2004.pdf

Cioffi-Revilla C (2002) Invariance and universality in social agent-based simulations. Proc Natl
Acad Sci U S A 99(3):7314-7316

Conlisk J (1996) Why bounded rationality? J Econ Lit 34(2):669-700

David N (2013) Validating simulations. Chapter 8 in this volume

Drogoul A, Vanbergue D, Meurisse T (2003) Multi-agent based simulation: where are the agents?
In: Sichman JS, Bousquet F, Davidsson P (eds) Proceedings of MABS 2002 multi-agent-based
simulation, vol 2581, Lecture notes in computer science. Springer, Bologna, pp 1-15

Edmonds B (2001) The use of models: making MABS actually work. In: Moss S, Davidsson P
(eds) Multi-agent-based simulation, vol 1979, Lecture notes in artificial intelligence. Springer,
Berlin, pp 15-32

http://dx.doi.org/10.1007/978-3-540-93813-2_3
http://dx.doi.org/10.1007/978-3-540-93813-2_8
http://www.agent2005.anl.gov/Agent2004.pdf

114 J.M. Galan et al.

Edmonds B (2005) Simulation and complexity: how they can relate. In: Feldmann V, Miihlfeld K
(eds) Virtual worlds of precision: computer-based simulations in the sciences and social
sciences. Lit-Verlag, Miinster, pp 5-32

Edmonds B, Hales D (2003) Replication, replication and replication: some hard lessons from
model alignment. J Artif Soc Soc Simulat 6(4). http://jasss.soc.surrey.ac.uk/6/4/11.html

Edmonds B, Hales D (2005) Computational simulation as theoretical experiment. J Math Sociol
29:1-24

Edwards M, Huet S, Goreaud F, Deffuant G (2003) Comparing an individual-based model of
behaviour diffusion with its mean field aggregate approximation. J Artif Soc Soc Simulat 6(4).
http://jasss.soc.surrey.ac.uk/6/4/9.html

Epstein JM (1999) Agent-based computational models and generative social science. Complexity
4(5):41-60

Epstein JM (2008) Why model? J Artif Soc Soc Simul 11(4). http://jasss.soc.surrey.ac.uk/11/4/12.
html

Epstein JM, Axtell RL (1996) Growing artificial societies: social science from the bottom up.
Brookings Institution Press/MIT Press, Cambridge, MA

Fensel D (2001) Ontologies: a silver bullet for knowledge management and electronic commerce.
Springer, Berlin

Galan JM, Izquierdo LR (2005) Appearances can be deceiving: lessons learned re-implementing
Axelrod’s ‘Evolutionary approach to norms’. J Artif Soc Soc Simulat 8(3). http://jasss.soc.
surrey.ac.uk/8/3/2.html

Galan JM et al (2009) Errors and artefacts in agent-based modelling. J Artif Soc Soc Simulat 12(1).
http://jasss.soc.surrey.ac.uk/12/1/1.html

Gilbert N (1999) Simulation: a new way of doing social science. Am Behav Sci 42(10):1485-1487

Gilbert N (2007) Agent-based models. Sage, London

Gilbert N, Terna P (2000) How to build and use agent-based models in social science. Mind Soc 1
(1):57-72

Gilbert N, Troitzsch KG (1999) Simulation for the social scientist. Open University Press,
Buckingham

Gotts NM, Polhill JG, Adam WJ (2003) Simulation and analysis in agent-based modelling of land
use change. In: Online proceedings of the first conference of the European Social Simulation
Association, Groningen, 18-21 Sept 2003. http://www.uni-koblenz.de/~essa/ESSA2003/
gotts_polhill_adam-rev.pdf

Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquis 5
(2):199-220

Hare M, Deadman P (2004) Further towards a taxonomy of agent-based simulation models in
environmental management. Math Comput Simulat 64(1):25-40

Hernandez C (2004) Herbert A Simon, 1916-2001, y el Futuro de la Ciencia Econémica. Revista
Europea De Direccion y Economia De La Empresa 13(2):7-23

Heywood JG, Masuda K, Rautmann R, Solonnikov VA (eds) (1990) The Navier—Stokes equations:
theory and numerical methods. In: Proceedings of a conference held at Oberwolfach, FRG,
18-24, Sept 1988 (Lecture notes in mathematics), vol 1431. Springer, Berlin

Holland JH, Miller JH (1991) Artificial adaptive agents in economic theory. Am Econ Rev 81
(2):365-370

Izquierdo LR, Polhill JG (2006) Is your model susceptible to floating point errors? J Artif Soc Soc
Simulat 9(4). http://jasss.soc.surrey.ac.uk/9/4/4.html

Kleijnen JPC (1995) Verification and validation of simulation models. Eur J Oper Res 82
(1):145-162

Kleindorfer GB, O’Neill L, Ganeshan R (1998) Validation in simulation: various positions in the
philosophy of science. Manage Sci 44(8):1087-1099

Klemm K, Eguiluz V, Toral R, San Miguel M (2003a) Role of dimensionality in Axelrod’s model
for the dissemination of culture. Phys A 327:1-5

http://jasss.soc.surrey.ac.uk/6/4/11.html
http://jasss.soc.surrey.ac.uk/6/4/9.html
http://jasss.soc.surrey.ac.uk/11/4/12.html
http://jasss.soc.surrey.ac.uk/11/4/12.html
http://jasss.soc.surrey.ac.uk/8/3/2.html
http://jasss.soc.surrey.ac.uk/8/3/2.html
http://jasss.soc.surrey.ac.uk/12/1/1.html
http://www.uni-koblenz.de/~essa/ESSA2003/gotts_polhill_adam-rev.pdf
http://www.uni-koblenz.de/~essa/ESSA2003/gotts_polhill_adam-rev.pdf
http://jasss.soc.surrey.ac.uk/9/4/4.html

6 Checking Simulations: Detecting and Avoiding Errors and Artefacts 115

Klemm K, Eguiluz V, Toral R, San Miguel M (2003b) Global culture: a noise-induced transition in
finite systems. Phys Rev E 67(4):045101

Klemm K, Eguiluz V, Toral R, San Miguel M (2003¢) Nonequilibrium transitions in complex
networks: a model of social interaction. Phys Rev E 67(2):026120

Klemm K, Eguiluz V, Toral R, San Miguel M (2005) Globalization, polarization and cultural drift.
J Econ Dyn Control 29(1-2):321-334

Kluver J, Stoica C (2003) Simulations of group dynamics with different models. J Artif Soc Soc
Simulat 6(4). http://jasss.soc.surrey.ac.uk/6/4/8.html

Leombruni R, Richiardi M (2005) Why are economists sceptical about agent-based simulations?
Phys A 355:103-109

Moss S (2001) Game theory: limitations and an alternative. J Artif Soc Soc Simulat 4(2). http://
jasss.soc.surrey.ac.uk/4/2/2.html

Moss S (2002) Agent based modelling for integrated assessment. Integr Assess 3(1):63-77

Moss S, Edmonds B, Wallis S (1997) Validation and verification of computational models with
multiple cognitive agents (Report no. 97-25). Centre for Policy Modelling, Manchester. http://
cfpm.org/cpmrep25.html

Ostrom T (1988) Computer simulation: the third symbol system. J Exp Soc Psychol 24(5):381-392

Parunak HVD, Savit R, Riolo RL (1998) Agent-based modeling vs. equation-based modeling: a
case study and users’ guide. In: Sichman JS, Conte R, Gilbert N (eds) Multi-agent systems
and agent-based simulation, vol 1534, Lecture notes in artificial intelligence. Springer, Berlin,
pp 10-25

Pavén J, Gémez-Sanz J (2003) Agent oriented software engineering with INGENIAS. In: Marik
V, Miiller J, Pechoucek M (eds) Multi-agent systems and applications III, 3rd international
central and eastern European conference on multi-agent systems, CEEMAS 2003 (Lecture
notes in artificial intelligence), vol 2691. Springer, Berlin, pp 394-403

Pignotti E, Edwards P, Preece A, Polhill JG, Gotts NM (2005) Semantic support for computational
land-use modelling. In: Proceedings of the Sth international symposium on cluster computing
and the grid (CCGRID 2005). IEEE Press, Piscataway, pp 840-847

Polhill JG, Gotts NM (2006) A new approach to modelling frameworks. In: Proceedings of the first
world congress on social simulation, vol 1. Kyoto, 21-25 Aug 2006, pp 215-222

Polhill JG, Izquierdo LR (2005) Lessons learned from converting the artificial stock market to
interval arithmetic. J Artif Soc Soc Simulat 8(2). http://jasss.soc.surrey.ac.uk/8/2/2.html

Polhill JG, Izquierdo LR, Gotts NM (2005) The ghost in the model (and other effects of floating
point arithmetic). J Artif Soc Soc Simulat 8(1). http://jasss.soc.surrey.ac.uk/8/1/5.html

Polhill JG, Izquierdo LR, Gotts NM (2006) What every agent based modeller should know about
floating point arithmetic. Environ Model Software 21(3):283-309

Riolo RL, Cohen MD, Axelrod RM (2001) Evolution of cooperation without reciprocity. Nature
411:441-443

Sakoda JM (1971) The checkerboard model of social interaction. J] Math Sociol 1(1):119-132

Salvi R (2002) The Navier—Stokes equation: theory and numerical methods, Lecture notes in pure
and applied mathematics. Marcel Dekker, New York

Sansores C, Pavon J (2005) Agent-based simulation replication: a model driven architecture
approach. In: Gelbukh AF, de Albornoz A, Terashima-Marin H (eds) Proceedings of MICAI
2005: advances in artificial intelligence, 4th Mexican international conference on artificial
intelligence, Monterrey, 14—18 Nov 2005. Lecture notes in computer science, vol 3789.
Springer, Berlin, pp 244-253

Sansores C, Pavon J, Gémez-Sanz J (2006) Visual modeling for complex agent-based simulation
systems. In: Sichman JS, Antunes L (eds) Multi-agent-based simulation VI, international
workshop, MABS 2005, Utrecht, 25 July 2005, Revised and invited papers. Lecture notes in
computer science, vol 3891. Springer, Berlin, pp 174-189

Sargent RG (2003) Verification and validation of simulation models. In: Chick S, Sanchez PJ,
Ferrin D, Morrice DJ (eds) Proceedings of the 2003 winter simulation conference. IEEE,
Piscataway, pp 3748

http://jasss.soc.surrey.ac.uk/6/4/8.html
http://jasss.soc.surrey.ac.uk/4/2/2.html
http://jasss.soc.surrey.ac.uk/4/2/2.html
http://cfpm.org/cpmrep25.html
http://cfpm.org/cpmrep25.html
http://jasss.soc.surrey.ac.uk/8/2/2.html
http://jasss.soc.surrey.ac.uk/8/1/5.html

116 J.M. Galan et al.

Schelling TC (1971) Dynamic models of segregation. J Math Sociol 1(2):47-186

Schelling TC (1978) Micromotives and macrobehavior. Norton, New York

Schmeiser BW (2001) Some myths and common errors in simulation experiments. In: Peters BA,
Smith JS, Medeiros DJ, Rohrer MW (eds) Proceedings of the winter simulation conference, vol
1. Arlington, 9—12 Dec 2001, pp 3946

Takadama K, Suematsu YL, Sugimoto N, Nawa NE, Shimohara K (2003) Cross-element valida-
tion in multiagent-based simulation: switching learning mechanisms in agents. J Artif Soc Soc
Simulat 6(4). http://jasss.soc.surrey.ac.uk/6/4/6.html

Taylor AJ (1983) The verification of dynamic simulation models. J Oper Res Soc 34(3):233-242

Xu J, Gao Y, Madey G (2003) A docking experiment: swarm and repast for social network
modeling. In: seventh annual swarm researchers conference (SwarmFest 2003), 13-15 Apr
2003, Notre Dame

Yilmaz L (2006) Validation and verification of social processes within agent-based computational
organization models. Comput Math Organ Theory 12(4):283-312

http://jasss.soc.surrey.ac.uk/6/4/6.html

Chapter 7

Documenting Social Simulation Models:
The ODD Protocol as a Standard

Volker Grimm, Gary Polhill, and Julia Touza

Why Read This Chapter? To learn about the importance of documenting your
simulation model and discover a lightweight and appropriate framework to guide you
in doing this.

Abstract The clear documentation of simulations is important for their communica-
tion, replication, and comprehension. It is thus helpful for such documentation to
follow minimum standards. The “Overview, Design concepts and Details” document
protocol (ODD) is specifically designed to guide the description of individual- and
agent-based simulation models (ABMs) in journal articles. Popular among ecologists,
it is also increasingly used in the social simulation community. Here, we describe the
protocol and give an annotated example of its use, with a view to facilitating its wider
adoption and encouraging higher standards in simulation description.

7.1 Introduction and History

A description protocol is a framework for guiding the description of something, in
this case a social simulation model. It can be thought of as a check-list of things that
need to be covered and rules that should be followed when specifying the details of
a simulation (in a scholarly communication). Following such a protocol means that
readers can become familiar with its form and that key elements are less likely to be

V. Grimm ()

UFZ, Helmholtz Centre of Environmental Research — UFZ, Department of Ecological
Modelling, Permoserstr. 15, 04318 Leipzig, Germany

e-mail: volker.grimm@ufz.de

G. Polhill
The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom

J. Touza
Applied Economics Department, University of Vigo, Vigo C.P. 36.310, Spain

B. Edmonds and R. Meyer (eds.), Simulating Social Complexity, 117
Understanding Complex Systems, DOI 10.1007/978-3-540-93813-2_7,
© Springer-Verlag Berlin Heidelberg 2013

mailto:volker.grimm@ufz.de

118 V. Grimm et al.

forgotten. This chapter describes a particular documentation protocol, the ODD
(pronounced: “odd”, or “oh dee dee”) protocol.

The ODD protocol (Grimm et al. 2006, 2010; Polhill et al. 2008; Polhill 2010) is a
standard layout for describing individual- and agent-based simulation models
(ABMs), especially for journal articles, conference papers, and other academic
literature. It consists of seven elements which can be grouped into three blocks:
Overview, Design concepts, Details (hence, “ODD”; see Table 7.1). The purpose of
ODD is to facilitate writing and reading of model descriptions, to better enable
replication of model-based research, and to establish a set of design concepts that
should be taken into account while developing an ABM. It does this in a relatively
lightweight way, avoiding over-formal approaches whilst ensuring that the essentials
of a simulation are explicitly described in a flexible yet appropriate manner.

Originally, ODD was formulated by ecologists, where the proportion of ABMs
described using ODD is increasing fast and might cross the 50 % margin in the near
future. In social simulation, the acceptance of ODD has been slower. A first test, in
which three existing descriptions of land-use models were re-formulated according
to ODD, demonstrated the benefits of using ODD but also revealed that some
refinements were needed to make it more suitable for social simulation (Polhill
et al. 2008). In 2010, an update of ODD was released (Grimm et al. 2010), which is
based on users’ feedback and a review of more than 50 ODD-based model
descriptions in the literature. In this update, ODD itself was only slightly modified
but the explanation of its elements completely rewritten, with the specific intention
of making it more suitable for social simulation.

Currently in social simulation, interest in ODD is also increasing (Polhill 2010).
An indicator for this is the inclusion of ODD chapters in recent reference books
(this volume; Heppenstall et al. 2012). Moreover, a recent textbook of agent-based
modelling uses ODD consistently (Railsback and Grimm 2012), so that the next
generation of agent-based modellers is more likely to be familiar with ODD, and
hence to use it themselves.

7.2 The Purpose of ODD

Why is ODD (or a protocol very much like it) needed? There are a number of
endeavours in agent-based social simulation that are facilitated through having a
common approach to describing the models that is aimed at being readable and
complete':

! Many of these endeavours have been covered in submissions to the “model-to-model” series of
workshops, organised by members of the social simulation community (Hales et al. 2003;
Rouchier et al. 2008. The second workshop was held as a parallel session of the ESSA 2004
conference: see http://www.insisoc.org/ESSA04/M2M2.htm).

http://www.insisoc.org/ESSA04/M2M2.htm

119

7 Documenting Social Simulation Models: The ODD Protocol as a Standard

(ponunjuod)

{ umouy], A1dwuts 31 st 10 $59001d © Ur APIo1[dxa pI[[epow UOIJBWLIOJUT UTe)qo SJuage yorym Aq
SWISTUBYIIW A} 1Y (IUSSIOWS 10 pasodull sY10M]aU JO 2INIoNAS 3Y) ST ;[8qO[3 10 syI0mIou
ySnoxy ‘Teoo] Sursuas ST ((,sreudrs, pakedsip ‘8-9) aareorad [enprAIpur ue ued saNIUD
I9U10 YoIyM JO s10adse Jeypp /IOPISUOD PUE JSUSS 0) PAUWINSSE S[ENPIAIPUT ATk $109dse ey
(suondunsse s [opow [eurdul 9sayy ur parjduur
a1e suonoipaid J10B), JBYA (S20UaNnbasuod Jo SUONIPUOd dININJ AJLWIIS 0] SN SJude
Op S[OpPOW [BUISIUI JRYA ¢ SIUYI OP AJU) MOY ‘SUOISIOaP JO souanbasuod anjng Suneuirsa

uo paseq are sampadoxd Jurures] s,Judde ue J1 SUrew-uoIsIoAp jo ied oq ued uoNOIpaI]
{MOoY ‘oS

J1 (Qouauadxa J1ay) Jo 90udnbasuod € se awin 1940 sireny oAndepe J1oy) oSueyd s[enprAIpul ABJ\
dnoi3 oy Inq seATeswAY)

0} 191 jou Aewr sroquiowr dnoig se sjuage yons Jo 9A1302[(qO a3 Jey) 9JON (,sn L3y} op
BLIAIID JRUM ‘SOAIRUId)[E Sunjuel AQ SUOISIOOP YW S[ENPIAIPUI USYAA (PAINSLaw J1 ST MOY
pue jey st £[308X3 Jeym ‘9Ano3[qo awos josw 0] pawwer3ord Aprordxa are (sdnois 10) sjuage I

{INJSsa00ns se dAro1ad

K91 181} SINOTARYDQ PIAIISGO 20npoIdar A3y Op 10 SSIIINS JO AINSBIW JWOS ISBAIOUT 0] YIS

S1Ua3e O(J (JUSWUOIIAUL IIY) JO SIA[SWAY) ul sagueyd 0] asuodsal ur Inoraeyaq Sursueyo
10 SUOISIOapP Sulyew I0J dARY AJU) Op SI[NI JBYA\ (,SABY S[ENPIAIPUL J) Op Sirer) aandepe Jeyp

(Op S[enpialpur

JeyMm Uo Judpuadop ss9f douay pue sanI [powr Aq pasodur AY3n a10w A1k JBY) SINSAU IYI0

Q1Y) oIy (Sueyd sonsLIsjoeIeyd Ienonted uaym skem a[qejorpardun/xa[dwods ur A1ea sjnsar
JBYAA (S[ENPIAIPUL JO SINOIABYQQ 1O ‘siren} dandepe oy} woj JuUISIoW a1 snsar Ao Jeyp\

{1OAQ] WRISAS Ay e 1o

S[opowqns JO [9AJ] Y} J& Pasn A3y} oIy (IUNOIIE OJUl ude) Ay}
AIom MOH (USISIP § [9pOW dY) Ul papn[oul a1k sasaodAy 1o sa110ay) ‘s1doouod [e1oudd yorym

{INDD0 UBD SJUIAD JJIOSIP PUE sIssad0Id snonunuod

10q YOIym I9A0 WNNUNUOD © Sk 10 sdols 91010SIp se :pa[[opowt awill ST MOH (pajepdn
SO[QRLIBA 9JEB]S I8 USYAN (O1WeuAp 1o pasoduur 19pIo oY) ST (IOPIO JeyMm UI ‘Jeym sQop AIud Jey

{1opow dY} JO SJUIX pue suonnjosal feneds pue [erodwd) oy are

JEYA\ (POZLIDJORIRYD SANNUD ISAY) Ik ‘SIINQLIIE IO ‘SI[qBLIBA)]s Jeym Ag (oS[O Sulyjowos
10 SWIY ‘SIOUMOPUR] ‘SI210A ‘s1oeureul Juasaidal Aoy) o ([opow dY) Ul I8 SANNUD JO Puly 1LY
(1opowt a3 jo asodind ayy ST JRYM

3ursuag

uonoIpalg

Sururea|

saA1o2[qO

uoneiydepy

Qousdiowryg
sordround sydoouoo
oIseq udisoq ¢ $3dadu0d usIsag

SuInNpayds ‘MITAIIAO SS01 *¢

S9[BOS ‘SO[qRLIBA d)elS ‘Sannuy ¢
asoding '| MIIAIRAQ

JUSWIR[Q Yord 0) payuI| suonsonb oY) Jurromsue Aq poidwos are SNV Jo suondriosa(q [[000301d QO Y} JO SJUWI[D UAAJS Y], [°L dqelL

V. Grimm et al.

120

(paziiajowered pue ‘pa)sd) ‘ULSOYD IO PAUSISIP S[opowqns
QIoM MOH (SIN[BA QOUAIRJRI PUB ‘SUOTSUdWIP I1AY) ‘SIojowrered [opour Y AIe JRYA
(. 3UINPaYIS PUB MITAIIAO SSII01J, Ul PASI] $9552001d 9y Juasaidar jeyy spopowqns Y3 AIe TRy A\
o 19A0 a3ueyd Jey) sassadord
jJuosaidal 0) sopou I9YJo IO SA[Y BIEP SE Yons SA0INO0S [BUI)X woij Indur asn [apowr Ay seoq
(BIep J[qE[IeAR UO
paseq 10 AJLIenIqIe uasoyd SON[eA [eNIUL Y} Iy ;PILIBA JI ST JO ‘QUIes dU) SAem[e uorjezijeniul
ST ((39s A9y} 21om MOY JO) SI[qRLIBA dJe)s IIdY) JO SoN[eA dy} oIk Jeym pue ‘A[[eniur 1oy} aIe
ad£y eym Jo sonnue Auew MOH ;0 = 1 oW I “"9'T ‘PIIOM [9POWU Y] JO dJeIS [BUIUL U ST JBYA
(Apms Teouidwe ue ur poAIdsSqo 9q UBD Jeym dJejrul
0] ‘pasn pue pajdwes vjep ULl A[UO A1k 10 ‘pasn A[9a1j elep Indino [[e a1y ;Palod[od Ay
aIe Moy pue ‘I SuizA[eue pue ‘Surpuelsiopun ‘3unsal I0J NGV U} WO} PAJOJ[[0d Ik BIep JeYM
({S)BI) PUR SI[QRLIBA 9]E]S UMO SII [IIM AJIJUD
Jo pury 9jeredas e se 10 s[enprarpur oy jo sonradord jueSiowo se — pojuasardar sQANI[[0D
QI MOH "UOIIRZIULSIO JO [9AJ] dJeIpauLIajul Jueliodul ue 9q Ued SIAIIII[0J YoNg /S[enprAIpuUl
Ay} ‘Aq pajooyJe are pue 1o93je Jey) suonedar3se o) Suo[oq J0 WO S[ENPIAIPUL Y} O]
(Aouanbary payroads
B 1M INDJ0 0] SINOIARYSQ IO SJUIAD [9POW ASNED 0] 10 ‘AJ[IqRLIBA SU] JO SISNED [Bnidk 9y}
[opout 03 Jueltodwirun s1 31 Yorym 10J sassaooid ur Ayifiqerrea oonpoidar oy ‘opduwrexs 10j ‘pasn
K1013581003Ss S Jwopuel A[red 1o wopuer are A9y} Surwnsse Aq pI[[opour are sassa001d Jeyp
({pajuasaxdar suonesTUNUWIWod
ons 9Ie MOV ‘UOTIBITUNWIWIOD JAJOAUI SUONIIRIUI Y] J] (90IN0SAI SUNBIPIW
€ 10J uonnadwod BIA 39 “J00IIPUI SUOTIORIAUI IE JO ‘SISYIO0 JO9JJe Uk JOJUNOOUD SENPIAIPUL
QoYM SUOTIORIAIUL JOAIIP 1Y) ALY ;PIWNSSE Ik SJUdFe Juouwle SUOIIOBIAIUI JO SPUDY JBUA

s[opowqng */

eyep nduy ‘9

uonezIeHI] °g

UuoneAIdSqQ

SOATIOR[OD

£31013581 001§

uonorIANU]

spreq

(panunuoo)

T"L3lqeL

7 Documenting Social Simulation Models: The ODD Protocol as a Standard 121

e Communication is the most basic aim of anyone trying to publish their results.
For agent-based modellers, this can pose a particular challenge, as our models
can be complicated, with many components and submodels. As a critical mass of
papers using ODD develops, so readers of agent-based modelling papers will
find themselves sufficiently more familiar with papers structured using ODD
than those using an arbitrary layout devised by the authors that they will find the
former easier to read and understand than the latter.

e Replication, as we discuss later in this chapter, is a pillar of the scientific
endeavour. If our model descriptions are inadequate, our results are not repeat-
able, and the scientific value of our work commensurately reduced. ODD helps
to encourage the adequacy of descriptions by saving authors having to ‘reinvent
the wheel’ each time they describe a model, by providing a standard layout
designed to ensure that all aspects of a model needed to replicate it are included
in the account.

» Comparing models is likely to become increasingly important as work in agent-
based modelling continues. If two or more research teams produce similar
models with different outcomes, comparing the models will be essential to
identifying the cause of the variance in behaviour. Such comparisons will be
much easier if all teams have used the same protocol to describe the models. At a
conceptual level, the design concepts also enable comparison of models with
greater differences and application domains.

e Dialogue among disciplines can be encouraged through a standard that is used by
both the ecological and social simulation communities. This is especially useful
for those developing coupled socio-ecosystem models (Polhill et al. 2008),
which is a rapidly growing area of research (Polhill et al. 2011).

In the following, we briefly describe the rationale of ODD and how it is used,
provide an example model description, and finally discuss benefits of ODD, current
challenges, and its potential future development.

7.3 The ODD Protocol

A core principle of ODD is that first an ‘Overview’ of a model’s purpose, structure
and processes should be provided, before ‘Details’ are presented. This allows
readers to quickly get a comprehensive overview of what the model is, what it
does, and for what purpose it was developed. This follows the journalistic ‘inverted
pyramid’ style of writing, where a summary is provided in the first one or two
paragraphs, and progressively further detail is added on the story the further on you
read (see, e.g. Wheeler 2005). It allows the reader to easily access the information
they are interested in at the level of detail they need. For experienced modellers, this
overview part is sufficient to understand what the model is for, to relate it to other
models in the field, and to assess the overall design and complexity.

122 V. Grimm et al.

Before presenting the ‘Details’, ODD requires a discussion of whether, and how,
ten design concepts were taken into account while designing the model. This
‘Design concepts’ part of ODD does not describe the model itself but the principles
and rationale underlying its design. ‘Design concepts’ is thus not needed for model
replication but for making sure that important design decisions were made con-
sciously and that readers are fully aware of these decisions. For example, it is
important to be clear about what model output is designed to emerge from the
behaviour the model’s entities and their interactions, and what, in contrast, is
imposed by fixed rules and parameters. Ideally, key behaviours in a model emerge,
whereas other elements might be imposed. If modellers are not fully aware of this
difference, which is surprisingly often the case, they might impose too much so that
model output is more or less hard-wired into its design, or they might get lost in a too
complex model because too much emergence makes it hard to understand anything.
Likewise, the design concept ‘stochasticity’ requires that modellers explicitly say
what model processes include a stochastic component, why stochasticity was used,
and how it was implemented. Note that, in contrast to the seven elements of ODD,
the sequence in which design concepts are described can be changed, if needed, and
design concepts that are not relevant for the model can be omitted.

The ‘Details’ part of ODD includes all details that are needed to re-implement
the model. This includes information about the values of all model entities’ state
variables and attributes at the begin of a simulation (‘Initialisation’), the external
models or data files that are possibly used as ‘Input data’ describing the dynamics of
one or more driving contextual or environmental variables (e.g., rainfall, market
price, disturbance events), and ‘Details’ where the submodels representing the
processes listed in ‘Process overview and scheduling’ are presented. Here, it is
recommended for every submodel to start with the factual description of what the
submodel is and then explain its rationale.

Model parameters should be presented in a table, referred to in the ‘Submodels’
section of ODD, including parameter name, symbol, reference value, and — if the
model refers to real systems — unit, range, and references or sources for choosing
parameter values. Note that the simulation experiments that were carried out to
analyse the model, characterized by parameter settings, number of repeated runs,
the set of observation variables used, and the statistical analyses of model output, is
not part of ODD but ideally should be presented in a section ‘Simulation
experiments’ directly following the ODD-based model description.

7.4 How to Use ODD

To describe an ABM using ODD, the questions listed in Table 7.1 have to be
answered. The identifiers of the three blocks of ODD elements — Overview, Design
concepts, Details — are not used themselves in ODD descriptions (except for

7 Documenting Social Simulation Models: The ODD Protocol as a Standard 123

‘Design concepts’, which is the only element of the corresponding block). Rather,
the seven elements are used as headlines in ODD-based model descriptions. For
experienced ODD users, the questions in Table 7.1 are sufficient. For beginners,
however, it is recommended to read the more detailed description of ODD in
Grimm et al. (2010) and to use the template, which provides additional questions
and examples, and which is available via download.”

7.5 An Example

In the supplementary material of Grimm et al. (2010), publications are listed which
use ODD in a clear, comprehensive, and recommendable way. Many further
examples are provided in the textbook by Railsback and Grimm (2012). In Grimm
and Railsback (2012), Schelling’s segregation model, as implemented in the model
library of the software platform NetLogo (Wilensky 1999), is used as an example.
Here, we demonstrate the process of model documentation using ODD by describing
a model developed by Deffuant et al. (2002), which explores the emergence of
extreme opinions in a population. We choose this model because it is simple but
interesting and opinion dynamics models are quite well-known in the social simula-
tion community. It is also one of the introductory examples in Gilbert (2007). The
ODD for the Deffuant et al. model is interspersed with comments on the information
included, with a view to providing some guidelines for those applying ODD to their
own model. Clearly this is a very simple example and many models would require
more extensive description. The parts of ODD are set in italics and indented to
distinguish them from comments. Normally the ODD description would simply
form part of the text in the main body of a paper or in an appendix.’

7.5.1 Purpose

The model’ s purpose is to study the evolution of the distribution of opinions in a population
of interacting individuals, which is under the influence of extremists’ views. Specifically, it
aims to answer how marginal extreme opinions can manage to become the norm in large
parts of a population. The central idea of the model is that people who have more extreme
opinions are more confident than people with moderate views. More confident people are,
however, assumed to more easily affect the opinion of others, who are less confident.

Comments: The purpose section is deliberately brief. Even for more sophisticated
models than this, we would not expect to see much more text here. This would

2E.g. http://www.ufz.de/index.php?de=10466.

31t is often the case that a substantial description needs to be included in the main text so readers
can get an idea of what is being discussed, but maybe a more complete description might be added
in an appendix.

http://www.ufz.de/index.php?de=10466
http://www.ufz.de/index.php?de=10466

124 V. Grimm et al.

otherwise repeat information in the rest of the paper. However, since the ODD, to
some extent, needs to stand alone and be comprehensive, the summary of the
purpose is included as here.

7.5.2 Entities, State Variables, and Scales

The model includes only one type of entity: individuals. They are characterised by two continu-
ous state variables, opinion x and uncertainty u. Opinions range from —1 to 1. Individuals with
an opinion very close tox = —1 or +1 are referred to as “extremists” , all other individuals are
“moderates” . Uncertainty u defines an interval around an individuals’ opinion and determines
whether two individuals interact and, if they do, on the relative agreement of those two
individuals which then determines how much opinion and uncertainty change in the interaction.
One time step of the model represents the time in which all individuals have randomly chosen
another individual and possibly interacted with it. Simulations run until the distribution of
opinions becomes stationary.

Comments: For larger models, this section has the potential to get quite long if
written in the same style as this example, which has only one type of entity, with
two state variables. Other articles have taken the approach of using tables to express
this information; one table per entity, with one row per state variable associated
with that entity (see, e.g. Polhill et al. 2008). Other articles have used UML class
diagrams (e.g., Bithel et al. 2009), as suggested in the original ODD article (Grimm
et al. 2006); however, these do not provide a means for giving any description,
however brief, of each state variable. Simply listing the entities and the data types
of the state variables does not provide all the information that this element of ODD
should provide. This, together with the fact that UML is focused on Object-
Oriented Design (which is used to implement the majority of ABMs, but by no
means all: NetLogo, for example, is not an object-oriented language, and many,
particularly in agent-based social simulation, use declarative programming
languages), meant that the recommendation to use UML was retracted in the recent
ODD update (Grimm et al. 2010).

In declarative programming languages, the entities and their state variables may
not be so explicitly represented in the program code as they are in object-oriented
languages. For example, this information may be implicit in the arguments to rules.
However, many declarative programs have a database of knowledge that the rules
operate on. This database could be used to suggest entities and state variables. For
example, a Prolog program might have a database containing the assertions person
(volker) and nationality(volker, german). This suggests that ‘person’ is an entity,
and ‘nationality’ a state variable. (It might be reasonable to suggest in general that
assertions with one argument suggest entities, and those with two, state variables.)

7 Documenting Social Simulation Models: The ODD Protocol as a Standard 125
7.5.3 Process Overview and Scheduling

In each time step each individual chooses randomly one other individual to interact with,
then the relative agreement between these two agents is evaluated, and the focal
individual’s opinion and uncertainty are immediately updated as a result of this opinion
interaction. Updating of state variables is thus asynchronous. After all individuals have
interacted, a convergence index is calculated which captures the level of convergence in the
opinions of the population, additionally, and output is updated (e.g.: draw histogram of the
population’s opinions; write each individual’s opinion to a file.)

Comments: This section briefly outlines the processes (or submodels) that the
model runs through in every time step (ignoring initialisation), and in what order.
Notice how each process is given an emphasized label, which corresponds to
subsection headings in the Submodels section. Whilst the ODD protocol does not
make such precise stipulations as to formatting, there should be a clear one-to-one
correspondence between the brief outlines of processes here, and the details
provided on each in the Submodels section.

In describing larger models than Deffuant et al.’s, it may be appropriate to simply
present the process overview as a list. Many models have a simple schedule structure
consisting of a repeated sequence of actions; such a list would clearly show this
schedule. However, others use more complicated scheduling arrangements (e.g.
dynamic scheduling). In such cases, the rules determining when new events are
added to the schedule would need to be described, as well as an (unordered) list of
event types, each corresponding to a subsection of ‘Submodels’.

The ‘schedule’ in a declarative model may be even less clear, as it will depend on
how the inference engine decides which rules to fire. However, declarative programs
are at least asked a query to start the model, and this section would be an appropriate
place to mention that. Some declarative programs also have an implied ordering to
rule firing. For example, in Prolog, the rule a :- x, y, z. will, in the event that the
inference engine tries to prove a, try to prove x, then y, then z. Suppose the model is
started with the query ?- a. In describing the model here, it might suffice simply to
summarise how x, y and z change the state of the model. Any subrules called by the
inference engine trying to prove these could be given attention in the Details section.

The declarative programmer may also use language elements (such as cuts in
Prolog) to manage the order of execution. In deciding which rules to describe here,
a declarative modeller might focus on those changing the value of a state variable
over time. The key point is that the program will do something to change the values
of state variables over time in the course of its execution. Insofar as that can be
described in a brief overview, it belongs here.

7.5.4 Design Concepts

Basic principles. — This model extends earlier stylised models on opinion dynamics, which
either used only binary opinions instead of a continuous range of opinions, or where

126 V. Grimm et al.

interactions only depended on whether opinion segments overlapped, but not on relative
agreement (for references, see Deffuant et al. 2002).

Emergence. — The distribution of opinions in the population emerges from interactions
among the individuals.

Sensing. — Individuals have complete information of their interaction partner’s opinion
and uncertainty.

Interaction. — Pairs of individuals interact if their opinion segments, [x — u, x + uj,
overlap.

Stochasticity. — The interaction between individuals is a stochastic process because
interaction partners are chosen randomly.

Observation. — Two plots are used for observation: the histogram of opinions, and the
trajectories of each individual’s opinion. Additionally, a convergence index is calculated.

Comments: Note that the design concepts are only briefly addressed. This would be
expected in larger models too. Note also that several design concepts have been
omitted because they are not appropriate to the model. Specifically, adaptation,
objectives, learning, prediction, and collectives have been left out here: individuals
change their opinion after interaction, but this change is not adaptive since it is not
linked to any objective; there also no collectives since all individuals act on their
own. Nevertheless, most models should be able to relate to some basic principles,
emergence, interactions, and observation, and most often also stochasticity. Small
models might use the option of concatenating the design concepts into a single
paragraph to save space.

7.5.5 Initialization

Simulations are run with 1,000 individuals, of which a specified initial proportion, p,, are
extremists; p, denotes the proportion of ‘positive’ extremists, and p_ are the proportion of
‘negative’ extremists. Each moderate individual’s initial opinion is drawn from a random
uniform distribution between —I and +1 (not inclusive). Extremists have on opinion of
either —1 or +1. Initially, individuals have a uniform uncertainty, which is larger for
moderates than for extremists.

Comments: This explains how the simulation is set up before the main schedule
starts. In other models, this might include empirical data of various kinds from, for
example, surveys. The key question to ask here, particularly given the potential for
confusion with the next section (‘input data’), is whether the data are used only to
provide a value for a state variable before the schedule runs.

7.5.6 Input Data

The model does not include any input of external data.

Comments: These are time-series data used to ‘drive’ the model. Some of these
data may specify values for variables at time O (i.e. during initialisation); however,

7 Documenting Social Simulation Models: The ODD Protocol as a Standard 127

if a data series specifies values for any time step other than during initialisation,
then it is input data rather than initialisation. It is also important not to confuse
‘Input data’ with parameter values.

7.5.7 Submodels

All model parameters are listed in the following table.

Parameter Description

N Number of individuals in population

U Initial uncertainty of moderate individuals
n Speed of opinion dynamics

Pe Initial proportion of extremists

P+ Initial proportion of positive extremists
p_ Initial proportion of negative extremists
Ue Initial uncertainty of extremists

Opinion interaction. — This is run for an agent j, whose ‘opinion segment’ s; is defined in
terms of its opinion x; and uncertainty u; as:

sj = [— 1w, +]

The length of the opinion segment is 2u; and characterizes an individual’'s overall
uncertainty.
In opinion interaction, agent j (the influenced, focal, or ‘calling’ individual) is paired with a
randomly chosen agent, i, the influencing individual. The ‘overlap’ of their opinion segments,
hyj, is then computed as:

hij = min (x,- + i, X + uj) — max(xi — Ui Xj — u,)

This overlap determines whether an opinion interaction will take place or not: Agent j will
change its opinion if hy; > u;, which means that overlap of opinions is higher than the
uncertainty of the influencing agent (see Fig. 7.1).

For opinion interactions, the relative agreement of the two agents’ opinions, RA, is
calculated by dividing the overlap of their opinion segments (h;;) minus the length of the
non-overlapping part of influencing individual’s opinion segment, (2u; — hy), and this
difference divided by agent i’s opinion segment length, 2u; (Fig.7.1 depicts these terms
graphically):

RA = (l’lU — <2M, — h,j))/2u, = 2(/1,1 - u,-)/2u,- = (/’l,j/l/l,) —1

The opinion and uncertainty of agent j are then updated as follows:
Xj = x; + uRA (x; + x;)

MJ' = MJ' +/4RA (l/l[—+ I/lj)

128 V. Grimm et al.

Fig. 7.1 Visualisation of the Opinion X;‘
individual’s opinions, segment of I E
uncertainties, and overlap in individual j

opinions in the model of
Deffuant et al. (2002)

Opinion segment ' | I l
of individual i

|

Overlap hjj

Non-overlap 2u-h,

Thus, the new values are determined by the old values and the sum of the old values of both

interacting individuals multiplied by the relative agreement, RA, and by parameter p, which

determines how fast opinions change.

The main features of this interaction model are, according to Deffuant et al. (2002):

o Individuals not only influence each other’s opinions but also each other’s uncertainties.

» Confident agents, who have low uncertainty, are more influential. This reflects the
common observation that confident people more easily convince more uncertain people
than the other way round — under the conditions that their opinions are not too different
at the beginning.

Calculate convergence index. — This index, y, is used as a summary model output for
sensitivity analysis and an exploration of the model’s parameter space. It is defined as:

y=4q++4q-

where q, and q_ are the proportions of initially moderate agents which become extremists in
the positive extreme or negative extreme, respectively. If after reaching the steady state none
of the initially moderate agents became extremist the index would take a value of zero. If half
of them become positive extremists and the other half becomes negative extremists, the index
would be 0.5. Finally, if all the initially moderate agents converge to only one extreme, the
index would be one. Note that for calculating y, “positive” or “negative” extreme has to be
defined via an interval close the extreme, with a width of, for example, 0.15.

Comments: Here, details on the two processes described in Sect. 7.3 are provided,
in sufficient depth to enable replication, i.e. opinion interaction and calculate
convergence index. Note how these names match with those used in the process
overview in Sect. 7.3.

Authors describing larger models may find journal editors protesting at the length
of the ODD if all submodels are described in the detail required. There are various
ways such constraints can be handled. One is to include the submodels in an appendix
or supplementary material to the paper. Another is to provide them as a technical
report accessible separately (e.g. on a website), and referred to in the text. If space is
not too limited, a summary of each submodel could be provided in the main text,

7 Documenting Social Simulation Models: The ODD Protocol as a Standard 129

longer than the brief description in the process overview, but shorter than the full
detail; the latter being provided separately. For very large models, or where space is
highly constrained, there may be little room for much more than the three Overview
sections in the journal article; again, making the full ODD available separately is a
possible solution. Nevertheless, excluding the ‘Submodels’ element entirely from the
main text should be avoided because this would mean to ask readers to accept, in the
main text of the article, the model as a black box. Description of the most important
processes should therefore be included also in the main text.

7.6 Discussion

Since the example model by Deffuant et al. (2002) is very simple, using ODD here
comes with the cost of making the model description longer than the original one,
through requiring the ODD labels. The original model is actually relatively clear
and easy to replicate (which might partly explain this model’s success). However,
easy replication is much more the exception than the rule (Hales et al. 2003;
Rouchier et al. 2008), and the more complex an ABM, the higher the risk that not
all information is provided for unambiguous replication.

ODD facilitates writing comprehensive and clear documentations of ABMs.
This does not only facilitate replication, it also makes writing and reading model
documentations easier. Modellers no longer have to come up with their own format
for describing their model, and readers know, once they are familiar with the
structure of ODD, exactly where to look for what kind of information.

Whether or not to use ODD as a standard format for model descriptions might
look like a rather technical question, but it has fundamental consequences, which go
far beyond the issue of replication. Once ODD is used as a standard, it will be
become much easier to compare different models addressing similar questions.
Even now, ODD can be used to review models in a certain field, by rewriting
existing model descriptions according to ODD (Grimm et al. 2010). Building
blocks of existing models, in particular specific submodels, which seem to be useful
in general, will be much easier to identify and re-use in new models.

Most importantly, however, using ODD affects the way we design and formulate
ABMs in the first place. After having used ODD for documenting two or three
models, you start formulating ABMs by answering the ODD questions: What
‘things’, or entities, do I need to represent in my model? What state variables and
behavioural attributes do I need to characterize these entities? What processes do I
want to represent explicitly, and how should they be scheduled? What are the
spatial and temporal extent and resolution of my model, and why? What do I
want to impose, and what to let emerge? What kind of interactions does the
model include? For what purposes should I include stochasticity? How should the
model world be initialized, what kinds of input data do I need, and how should I, in
detail, formulate my submodels?

130 V. Grimm et al.

These questions do not impose any specific structure on simulation models, but
they provide a clear checklist for both model developers and users. This helps
avoiding “ad hoc-ery” in model design (Heine et al. 2005). Modellers can also more
easily adopt designs of existing models and don’t have to start from scratch all the
time, as in most current social simulation models.

Criticisms of ODD include Amouroux et al. (2010), who, acknowledging its
merits, find the protocol ambiguous and insufficiently specified to enable replica-
tion. This article pertained to the Grimm et al. (20006) first description of ODD. The
update in Grimm et al. (2010) endeavoured to address issues such as these.
However, the success of the latter article in so doing, and indeed any future
revisions of ODD, can only be measured by comparing replication efforts based
on ODD descriptions with those not conforming to any protocol — the norm prior to
2006 when ODD was first published. As suggested above, the record for articles not
using ODD has not been particularly good: Rouchier et al. (2008) observe in their
editorial to a special section of JASSS on the third Model-2-Model workshop that
several researchers attempting replications have to approach the authors of the
original articles to disambiguate model specifications. If the models were ade-
quately described in the original articles, this should not be necessary.

Polhill et al. (2008) also observed that those used to object-oriented designs for
modelling will find the separation of what will for them effectively amount to
instance variables and methods (state variables and processes respectively) counter-
intuitive, if indeed not utterly opposed to encapsulation: one of the key principles of
object orientation. For ODD, however, it is the reader who is important rather than
programming principles intended to facilitate modularity and code reuse. It is also
important that, as a documentation protocol, ODD does not tie itself to any
particular ABM implementation environment. From the perspective of the human
reader, it is illogical (to us at least) to discuss processes before being informed what
it is the processes are operating on. Encapsulation is about hiding information;
ODD has quite the opposite intention.

The main issue with ODD in social simulation circles as opposed to ecology, from
which it originally grew, pertains to its use with declarative modelling environments.
This matter has been raised in Polhill et al. (2008), and acknowledged in Grimm et al.
(2010). Here we have tried to go further towards illustrating how a declarative
modeller might prepare a description of their model that conforms to ODD. However,
until researchers using declarative environments attempt to use ODD when writing an
article, and feedback on their findings, this matter cannot be properly addressed.

Certainly, ODD is not the silver bullet regarding standards for documenting
ABMs. Nevertheless, even at the current stage its benefits by far outweigh its
limitations, and using it more widely is an important condition for further
developments. Still, since ODD is a verbal format, not all ambiguities can
be prevented. Whilst a more formal approach using, for example XML or UML
(e.g. Triebig and Kliigl 2010, and for ABMs of land use/cover change, the
MRPOTATOHEAD framework — Livermore 2010; Parker et al. 2008) might address
such ambiguities, we consider it important that written, natural language formulations
of ABMs exist (Grimm and Railsback 2005). This is the only way to make modelling,
as a scientific activity, independent of technical aspects of mark-up or programming

7 Documenting Social Simulation Models: The ODD Protocol as a Standard 131

languages and operating systems. Further, verbal descriptions force us to think about a
model, to try to understand what it is, what it does, and why it was designed in that
way and not another (J. Everaars, pers. comm.). We doubt that a ‘technical’ standard
for documenting ABMs — one that can be read by compilers or interpreters, would
ever initiate and require this critical thinking about a model.

Nevertheless, it is already straightforward to translate ODD model description to
NetLogo programs because much of the way models are written in NetLogo
corresponds to the structure of ODD: the declaration of ‘Entities, state variables,
and scales’ is done via NetLogo’s globals, turtles-own, and patches-own primitives,
‘Initialization’ is done via the setup procedure, ‘Process overview and scheduling’
corresponds to the go procedure, ‘Details’ are implemented as NetLogo procedures,
and ‘Design concepts’ can be included, (as indeed can the entire ODD model
description), on the ‘Information’ tab of NetLogo’s user interface.

7.7 Conclusion

Clearly describing simulations well, so that other researchers can understand a
simulation is important for the scientific development and use of complex
simulations. It can help in: the assessment and comprehension of simulation results
by readers; replicating simulations for checking and analysis by other researchers;
transferring knowledge embedded within simulations from one domain to another;
and allowing simulations to be better compared. It is thus an important factor for
making the use of simulations more rigorous and useful. A protocol such as ODD is
useful in standardising such descriptions and encouraging minimum standards. As the
field of social simulation matures it is highly likely that the use of a protocol such as
ODD will become standard practice.

The investment in learning and using ODD is minimal but the benefits, both for
its user and the scientific community, can be huge. We therefore recommend
learning and testing ODD by re-writing the model description of an existing,
moderately complex ABM, and, in particular, using ODD to formulate and docu-
ment the next ABM you are going to develop.

Acknowledgements We are grateful to Bruce Edmonds for inviting us to contribute this chapter,
and for his helpful comments and suggested amendments to earlier drafts. Gary Polhill’s contri-
bution was funded by the Scottish Government.

Further Reading

Railsback and Grimm (2012) is a textbook which introduces agent-based modelling
with examples described using ODD. The OpenABM website (http://openabm.org) is
a portal specifically designed to facilitate the dissemination of simulation code and

http://openabm.org

132 V. Grimm et al.

descriptions of these using the ODD protocol. The original reference document for
ODD is (Grimm et al. 2006) with the most recent update being (Grimm et al. 2010).
Polhill (2010) is an overview of the 2010 update of ODD written specifically with the
social simulation community in mind.

References

Amouroux E, Gaudou B, Desvaux S, Drogoul A (2010) O.D.D.: a promising but incomplete
formalism for individual-based model specification. In: Ho TB, Zuckerman DN, Kuonen P,
Demaille A, Kutsche R-D (eds) 2010 IEEE-RIVF international conference on computing and
communication technologies: research, innovation and vision for the future, Vietnam National
University, Hanoi, 1-4 Nov 2010

Bithell M, Brasington J (2009) Coupling agent-based models of subsistence farming with
individual-based forest models and dynamic models of water distribution. Environ Model
Software 24:173-190

Deffuant G, Amblard F, Weisbuch G, Faure T (2002) How can extremism prevail? A study based
on the relative agreement interaction model. J Artif Soc Soc Simulat 5(4):1. http://jasss.soc.
surrey.ac.uk/5/4/1.html

Gilbert N (2007) Agent-based models. Sage, London

Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton University
Press, Princeton

Grimm V, Railsback SF (2012) Designing, formulating, and communicating agent-based models.
In: Heppenstall A, Crooks A, See LM, Batty M (eds) Agent-based models of geographical
systems. Springer, Berlin, pp 361-377

Grimm V et al (2006) A standard protocol for describing individual-based and agent-based
models. Ecol Model 198:115-126

Grimm V et al (2010) The ODD protocol: a review and first update. Ecol Model 221:2760-2768

Hales D, Rouchier J, Edmonds B (2003) Model-to-model analysis. J Artif Soc Soc Simulat 6(4):5.
http://jasss.soc.surrey.ac.uk/6/4/5.html

Heine B-O, Meyer M, Strangfeld O (2005) Stylised facts and the contribution of simulation to the
economic analysis of budgeting. J Artif Soc Soc Simulat 8(4):4. http://jasss.soc.surrey.ac.uk/8/
4/4.html

Heppenstall A, Crooks A, See LM, Batty M (eds) (2012) Agent-based models of geographical
systems. Springer, Berlin

Livermore M (2010) MR POTATOHEAD framework: a software tool for collaborative land-use
change modeling. In: Swayne DA, Yang W, Voinov AA, Rizzoli A, Filatova T (eds) Interna-
tional Environmental Modelling And Software Society (iIEMSs) 2010 international congress
on environmental modelling and software: modelling for environment’s Sake, Fifth Biennial
Meeting, Ottawa. http://www.iemss.org/iemss2010/index.php?n=Main,Proceedings

Parker DC et al (2008) Case studies, cross-site comparisons, and the challenge of generalization:
comparing agent-based models of land-use change in frontier regions. J Land Use Sci
3(1):41-72

Polhill JG (2010) ODD updated. J Artif Soc Soc Simulat 13(4):9. http://jasss.soc.surrey.ac.uk/13/
4/9.html

Polhill JG, Parker D, Brown D, Grimm V (2008) Using the ODD protocol for describing three
agent-based social simulation models of land use change. J Artif Soc Soc Simulat 11(2):3.
http://jasss.soc.surrey.ac.uk/11/2/3.html

Polhill JG, Gimona A, Aspinall RJ (2011) Agent-based modelling of land use effects on ecosystem
processes and services. J Land Use Sci 6(2-3):75-81

http://jasss.soc.surrey.ac.uk/5/4/1.html
http://jasss.soc.surrey.ac.uk/5/4/1.html
http://jasss.soc.surrey.ac.uk/6/4/5.html
http://jasss.soc.surrey.ac.uk/8/4/4.html
http://jasss.soc.surrey.ac.uk/8/4/4.html
http://www.iemss.org/iemss2010/index.php?n=Main,Proceedings
http://www.iemss.org/iemss2010/index.php?n=Main,Proceedings
http://jasss.soc.surrey.ac.uk/13/4/9.html
http://jasss.soc.surrey.ac.uk/13/4/9.html
http://jasss.soc.surrey.ac.uk/11/2/3.html

7 Documenting Social Simulation Models: The ODD Protocol as a Standard 133

Railsback SF, Grimm V (2012) Agent-based and individual-based modeling: a practical introduc-
tion. Princeton University Press, Princeton

Rouchier J, Cioffi-Revilla C, Polhill JG, Takadama K (2008) Progress in model-to-model analysis.
J Artif Soc Soc Simulat 11(2):8. http://jasss.soc.surrey.ac.uk/11/2/8.html

Triebig C, Kliigl F (2010) Elements of a documentation framework for agent-based simulation.
Cybern Syst 40(5):441-474

Wheeler S (2005) Beyond the inverted pyramid: developing news-writing skills. In: Keeble R (ed)
Print journalism: a critical introduction. Routledge, Abingdon, pp 84-93

Wilensky U (1999) NetLogo. http://ccl.northwestern.edu/netlogo

http://jasss.soc.surrey.ac.uk/11/2/8.html
http://ccl.northwestern.edu/netlogo

Chapter 8
Validating Simulations

Nuno David

Why Read This Chapter? To help you decide how to check your simulation —
both against its antecedent conceptual models (verification) and external standards
such as data (validation) — and in this way help you to establish the credibility of
your simulation. In order to do this the chapter will point out the nature of these
processes, including the variety of ways in which people seek to achieve them.
Abstract Verification and validation are two important aspects of model building.
Verification and validation compare models with observations and descriptions of
the problem modelled, which may include other models that have been verified and
validated to some level. However, the use of simulation for modelling social
complexity is very diverse. Often, verification and validation do not refer to an
explicit stage in the simulation development process, but to the modelling process
itself, according to good practices and in a way that grants credibility to using the
simulation for a specific purpose. One cannot consider verification and validation
without considering the purpose of the simulation. This chapter deals with a com-
prehensive outline of methodological perspectives and practical uses of verification
and validation. The problem of verification and validation is tackled in three main
topics: (1) the meaning of the terms verification and validation in the context of
simulating social complexity; (2) methods and techniques related to verification,
including static and dynamic methods, good programming practices, defensive
programming, and replication for model alignment; and (3) types and techniques
of validation as well as their relationship to different modelling strategies.

N. David (P<)
ISCTE - Lisbon University Institute, Av. das Forcas Armadas, Lisbon 1649-026, Portugal
e-mail: Nuno.David@iscte.pt

B. Edmonds and R. Meyer (eds.), Simulating Social Complexity, 135
Understanding Complex Systems, DOI 10.1007/978-3-540-93813-2_8,
© Springer-Verlag Berlin Heidelberg 2013

mailto:Nuno.David@iscte.pt

136 N. David
8.1 Introduction

The terms verification and validation (V&V) are commonly used in science but
their meaning is often controversial, both in the natural and the social sciences.
The purpose of this chapter is not to describe any general theory of model V&V.
A general theory of that kind does not exist.

Besides the epistemological underpinnings of the terms, their use in simulation has
a pragmatic nature. In disciplines that make use of computerised models, the role of
V&V is related to the need of evaluating models along the simulation development
process. Basically, the very idea of V&V is comparing models with observations and
descriptions of the problem modelled, and this may include other models that have
been verified and validated to some level. This chapter describes methodological
perspectives and practical uses of the terms as well as different strategies and
techniques to verify and validate models of social complexity, mostly in social
simulation.

The use of simulation for modelling social complexity is very diverse. Often,
V&V do not refer to an explicit stage in the simulation development process, but to
the modelling process itself according to good practices and in a way that grants
credibility to using the simulation for a specific purpose. Normally, the purpose is
dependent on different strategies or dimensions, along which simulations can be
characterized, related to different kinds of claims intended by the modeller, such as
theoretical claims, empirical claims or subjunctive theoretical claims. The term
subjunctive is used when simulations are used for talking about scenarios in possible
worlds, such as describing ‘what would happen if something were the case’. There
cannot be V&V without considering the purpose of the simulation.

In the next section of the chapter, I will deal with the meaning of the terms V&V
in the context of the simulation development process. While the terms are often
used with the same meanings, or even interchangeably, practical reasons exist for
distinguishing between them. Whereas verification concerns the evaluation of the
implementation of the model in terms of the researchers’ intentions, validation
refers to the evaluation of the credibility of the model as a representation of the
subject modelled. In Sect. 8.3, methods and techniques related to verification are
described. Subsequently, in Sect. 8.4, validation types and techniques are described,
as well as their relationship to different modelling strategies.

8.2 The Simulation Development Process

Several chains of intermediate models are developed before obtaining a satisfactory
verified and validated model. What does it mean to verify and validate a model in
social simulation? Is there a fundamental difference between verifying and
validating models? The purpose of this section is to define the role of V&V within
the scope of the simulation development process.

8 Validating Simulations 137

Target
/ theory or (\
phenomenon

Validation 7 Validation

Conceptualization and
model construction

Publication / Theory
dissemination / Application

Post-computerized Pre-computerized
models models

Implementation
(physical construction of
computerised models)

Conceptualization and
model construction

Executing

Verification N computerized / Verification

model

Fig. 8.1 Verification and validation related to the model development process (David 2009)

The most common definitions of V&V are imported from computer science, as
well as from technical and numerical simulation,' having intended distinct — although
often overlapping — meanings. The reason for distinguishing the terms is the need to
determine the suitability of certain models for representing two distinct subjects of
inquiry. This is represented in Fig. 8.1, in which V&V are related to a simplified
model development process. Two conceptual models mediate between two subjects
of inquiry. The latter are (1) the target theory or phenomenon and (2) the executing
computerised model. The conceptual model on the right, which is designated here as
the pre-computerised model, is basically a representation in the minds and writing of
the researchers, which presumably represents the target. This model must be
implemented as a computerised executable model, by going through a number of
intermediate models such as formal specification or textual programs written in high-
level programming languages.

The analysis of the executing model gives rise to one or more conceptual models
on the left, which are designated here as the post-computerised models. They are
constructed based on the output of the computerised model, often with the aid of
statistical packages, graphing and visualisation. The whole construction process
results in categories of description that may not have been used for describing the
pre-computerised model. This is the so-called idea of emergence, when interactions
among objects specified through pre-computerised models at some level of descrip-
tion give rise to different categories of objects at macro levels of description observed
in the executing model, which are later specified through post-computerised models.

! Numerical simulation refers to simulation for finding solutions to mathematical models, normally
for cases in which mathematics does not provide analytical solutions. Technical simulation stands
for simulation with numerical models in computational sciences and engineering.

138 N. David

As an example consider the culture dissemination model of Axelrod (1997a)
which has a goal of analysing the phenomena of social influence. At a micro-level of
description, a pre-computerised model defines the concept of actors distributed on a
grid, the concept of culture of each actor as a set of five features and the interaction
mechanisms specified with a bit-flipping schema, in which the probability of inter-
action between two actors is set proportionately to measure the similarity between
two cultures.

The executing model is then explored and other categories of objects resulting
from the interaction of individual cultures may be defined, associated with macro
properties of interest and conditions in which they form, such as the concepts of
regions and zones on the grid. A great deal of the simulation proposed by Axelrod
concerns investigating properties of regions and zones in the context of the concep-
tual, post-computerised, model proposed, such as the relation between the size of a
region formed and the number of features per individual culture. These concepts
are interpreted in relation to the target social phenomena of social influence.

I will now situate the role of V&V in the modelling process of social simulation.

8.2.1 What Does It Mean to Verify a Computerised Model?

Computerised model verification is defined as checking the adequacy among con-
ceptual models and computerised models (see also Chap. 6 in this volume, Galan
et al. 2013). Consider the lower quadrants of Fig. 8.1. They are concerned with
ensuring that the pre-computerised model has been implemented adequately as an
executable computerised model, according to the researchers’ intentions in the
parameter range considered, and also that the post-computerised model adequately
represents the executing model in the parameter range considered.”

At this point you might question the meaning of adequately. There is no formal
definition of adequately. Actually, it is a rather difficult epistemological problem,
considered in the series of EPOS meetings about epistemological perspectives on
simulation (see Frank and Troitzsch 2005; Squazzoni 2009; David et al. 2010).
A practical and minimal definition could be the following: adequateness means that
the relationship between inputs and outputs of the computerised model is consistent
with the semantics of both the pre- and post-computerised models, in accordance with
the researcher’s intentions. However, the outcomes of computer programs in social
simulation are often unintended or not known a priori and thus the verification process
requires more than checking that the executing model does what it was planned to do.
The goal of the whole exercise is to assess logical links within, as well as between, the
pre- and the post-computerised models. This requires assessing whether the post-
computerised model — while expressing concepts that the pre-computerised model
does not express — is consistent with the latter. From a methodological point of view

% Verification in the left quadrant of Fig. 8.1 is sometimes known as “internal validation”.

http://dx.doi.org/10.1007/978-3-540-93813-2_6

8 Validating Simulations 139

this is a complicated question, but from a practical perspective one might operationally
define the verification problem with the following procedures:

(a) For some pre-computerised model definable as a set of input/output pairs in a
specified parameter range, the corresponding executing model is verified for
the range considered if the corresponding post-computerised model expresses
the same set of inputs/outputs for the range considered.

(b) For some pre-computerised model defined according to the researcher and/or
stakeholders’ intentions in a specified parameter range, the corresponding
executing model is verified for the range considered if the corresponding
post-computerised model complies with the researchers and/or stakeholders’
intentions for the range considered.

Note that both procedures limit the verification problem to a clearly defined
parameter range. The first option is possible when extensive quantitative data is
available from the target with which to test the executing model. This is normally
not the case and the verification problem often amounts to the last option. This is
possible since the aim of verification is to assess the appropriateness of the logical
links that may be established between micro-levels of description specified in the
pre-computerised model and macro-levels of description specified through post-
computerised models, which should be amenable to evaluation by researchers and
stakeholders. Nevertheless, as we will discuss further, a computerised model should
only be qualified as verified with reasonable confidence if it has been successfully
subjected to a procedure known in software engineering as N-version program-
ming. A synonym commonly used in social simulation consists of replicating
implementations for model alignment. This is described in Sect. 8.2.4.

It is important to observe that, unlike many areas of computer science and formal
logics, the verification process should not be understood as a mere process of
evaluating the correctness of formal inference steps. The coherence among concep-
tual and computerised models, in the light of the researchers’ and stakeholders’
intentions, is, to a large extent, narratively evaluated. Were we to envisage computers
and programming languages as mere formal machines then computers and program-
ming languages would have limited expressiveness for representing inferences upon
semantically rich descriptions of social processes. After defining the meaning of
validation in the following section, this will be a point where the meanings of
verifying and validating a simulation model will overlap, and it may not be trivial
to distinguish between the two.’

? From a technical point of view, in classical computer theory, verification amounts to ascertaining
the validity of certain output as a function of given input, regardless of any interpretation given in
terms of any theory or any phenomenon not strictly computational — it is pure inference in a closed
world. But this would require us to assume that social processes are computational in a Church-
Turing sense, which seems difficult to conceive. For an elaboration on this see (David et al. 2007).

140 N. David
8.2.2 What Does It Mean to Validate a Model?

Model validation is defined as ensuring that both conceptual and computerised
models are adequate representations of the target. The term “adequate” in this sense
may stand for a number of epistemological perspectives. From a practical point of
view we could assess whether the outputs of the simulation are close enough to
empirical data.

We could also assess various aspects of the simulation, such as if the mechanisms
specified in the simulation are well accepted by stakeholders involved in a partici-
pative-based approach. In Sect. 8.4 we will describe the general idea of validation as
the process that assesses whether the pre-computerised models — put forward as
models of social complexity— can be demonstrated to represent aspects of social
behaviour and interaction able to give rise to post-computerised models that are, at
some given level, consistent with the subjacent theories or similar to real data.

Given the model development process described, is there any practical differ-
ence between verifying and validating simulations? Rather than being a sharp
difference in kind it is a distinction that results from the computational method.
Whereas verification concerns the assessment of the logical inferences that are
established between micro and macro concepts with close reference to the
computerised model, validation concerns the evaluation of such inferences and
concepts with a closer reference to the target.

In paraphrasing Axelrod (1997b), at first sight, we could say that the problem is
whether an unexpected result is a reflection of the computerised model, due to a
mistake in the implementation of the pre-computerised model, or is a surprising
consequence of the pre-computerised model itself. Unfortunately, the problem is
more complicated than that. In many cases mistakes in the code may not be
qualified simply as mistakes, but only as one interpretation among many other
possible interpretations for implementing a conceptual model. Nevertheless, from a
practical viewpoint there are still good reasons to make the distinction between
V&V. A number of established practices exist for the corresponding quadrants of
Fig. 8.1. We will address these in the following sections.

8.3 Verification Methods and Techniques

The need to transform conceptual models into computerised models and back to
conceptual models is one of the substratums of simulation. This process is illustrated
in Fig. 8.2. Several conceptual models are constructed and specified in order to obtain
a proper implementation as a computerised model. The intended computerised model
is specified as a computer program in a readable form with a high-level language. The
compilation of the program into a low-level program, followed by its execution with
a set of inputs, results in outputs described with data and visualization models. Given
the use of pseudo-random generators, the simulation will be run many times with the

8 Validating Simulations 141

Pre-Computerized models Computerized models Post-Computerized models

Inputs:

- param D execution ® Conceptual
—— Outputs —

: Conceptual
Conceptual _, ..._, CO“CQP“"“I_’ - random seeds oncepua

. models " ™ models
models models . /compilation
High level interpretation
programs

VERIFICATION

Fig. 8.2 Implementation of pre-computerised models and construction of post-computerised
models

same inputs. At any rate, the complexity of social theories and phenomena implies
that the simulation must be run many times in order to observe its behaviour in a
variety of conditions. A post-computerised model is built, i.e. a conceptual model
describing the simulation behavior, possibly incorporating new concepts and knowl-
edge not captured with the pre-computerised model.

8.3.1 Static and Dynamic Methods

In simulation, verification techniques involve showing that the process of transla-
tion among conceptual and computerised models is carried out according to the
researchers’ intentions. Computer science, mostly in the field of software engineer-
ing, has developed numerous approaches and techniques for writing programs and
verifying their execution in computers. Most of these are not particular to simula-
tion and not all are well suited to social simulation. The techniques and terminology
that we describe in this section are based on Sommerville (1995) and Sargent
(1999), and are adapted to social simulation whenever appropriate. There are two
basic approaches for verification: static and dynamic methods.

Dynamic methods involve exercising the computerised model with sets of inputs
and the results obtained are used to determine whether the computerised model has
been programmed appropriately. A possible simulation failure occurs when the
simulation is executing and does not behave as expected. Whether the unexpected
output is indeed a failure or a legitimate consequence of the pre-computerised
model concerns the use of static methods. Static methods involve showing that
the computerised model appropriately implements the pre-computerised models
without software faults, i.e. without programming errors whereby the computerised
model does not conform to the researchers’ intentions.

Software faults are static and their existence may be inferred from simulation
failures and further inspections to the high-level program code. A software fault
causes a simulation failure when the faulty code is executed with a set of inputs that
expose the simulation fault (cf. Sommerville 1995).

We can never conclusively demonstrate that a simulation is fault free, but we can
increase our confidence in a program within the range of the parameter space tested
by adopting good programming and testing practices in order to minimize faults.

142 N. David

Good practices common to any kind of programming include commenting your
code and testing the program with parameter values whose outputs are known or
with values that are at the extremes of the legal values.

Nevertheless, not all programming and testing techniques in computer science
can be applied to social simulation. For the most part, simulation is used to explore
concepts that are not anticipated during the specification of pre-computerised
models. Virtually, the software notion of “functional requirement” does not exist
in social simulation. If we are dealing with complex social models, it is virtually
impossible to enumerate a priori an exhaustive list of requirements that a program
should satisfy (David et al. 2003). To the extent that the researcher does not know
what to expect, program testing is not enough to show that the program properly
reflects the intended model.

In any case, the verifiability of a simulation is influenced by the process used to
develop that simulation. The adoption of good programming practices for designing
and implementing the model is fundamental. Defensive programming methodologies,
like contract-based programming with use of assertions, are well suited for the
explorative nature of simulation. Defensive programming consists of including
extra, redundant, code to test for errors and to aid in general debugging. In addition,
the need to produce several implementations of the same conceptual model is
increasingly playing a role. These techniques are described below along four major
topics: good programming practices, defensive programming, replication, and a very
brief reference to participative-based methods.

8.3.2 Good Programming Practices

Good programming in social simulation includes several approaches, techniques or
mechanisms to improve verifiability in general and, specifically, to decrease the
number of expected simulation faults, to ease debugging and to improve code
readability as well as faster and more flexible development. Available techniques
and mechanisms include modularity, encapsulation, high-level memory manage-
ment and, more generally, software reuse. Most object-oriented programming
languages include built-in mechanisms that simplify their use. The following
deserve particular attention.

8.3.2.1 Modularity and Encapsulation

Programs should be written and verified in modules or subprograms.* In the words
of Kleijen (1995), this is a kind of “divide and conquer” process, where one verifies
the whole simulation module by module. Modular programming simplifies the

*We consider “modules” and “sub-programs” as synonymous.

8 Validating Simulations 143

location of faults in the program. A module is any component that provides one or
more services to other modules and which separates its public interface from its
implementation details. The public interface of a module concerns the specification
for how other modules may request services from it. The implementation concerns
particular design decisions hidden within the module and not accessible to the other
modules, which are more liable to faults or design changes along the simulation
development process. If the implementation of a module is changed this should not
affect how other modules request services from it. A typical kind of module is a
class in object-oriented programming.

A class is a model for object instantiation. Objects are independent, loosely coupled
entities in which the particular implementation of the object state (information
representation) and of the services provided by the object (information processing)
should not affect the public interface through which other objects request services
from it. An object comprises a set of private attributes — which define its state — and a
set of public operations that check or act on those attributes — which define its
interface. Insofar as the public interface remains the same along the development
process, the internal data representation of the class may be changed along the way
without affecting the way other classes request services from it. The grouping of
related classes within a single file is another kind of module, usually called a physical
module. Yet another kind is the concept of package, defined as a group of related files,
such as in the Java programming language. The public interface of a package is the set
of all public services available in all files. The package design details most likely to
change are hidden behind the interface, possibly implemented with the aid of other
private classes in the package.

It is essentially up to the programmer to decide which data structures, classes and
files should be grouped together. According to Sommerville (1995, pp. 218-219),
the cohesion of a module is a measure of the closeness of the relationship between
its components. Conversely, the coupling among modules measures the strength of
interconnections among them. As a rule, modules are tightly coupled if they make
use of shared variables or if they interchange many types of control information.
A good design calls for high cohesion within a module and low coupling among
modules. For instance, an agent implemented as a group of classes should have
its public interface clearly defined and be as independent as possible from the group
of classes that implement the interaction environment of the agents, such as a
bi-dimensional torus grid. Whether the grid is implemented as a torus or as a
network should not imply future changes to the implementation of the agent
architecture, which in any case would request the same services from the grid,
such as moving to the left or right. Modularity encourages the production of
readable and testable simulations. Moreover, insofar as agent-based modelling
can be easily mapped to the programming of interacting modules, the adoption of
bottom-up design and testing approaches is a natural way to proceed. Small
modules at the lower levels in the hierarchy are tested first and the other modules
are worked up the hierarchy until the whole simulation is tested.

144 N. David

8.3.2.2 High-Level Memory Management

The use of pointers and pointer arithmetic in a program are low-level constructs
available in some high-level languages that manipulate variables referring directly to
the machine memory. They are inappropriate in social simulation programs because
they allow memory leaks and foment aliasing, which makes programs prone to bugs.
A memory leak occurs when a program fails to release memory no longer needed,
which may have the effect of consuming more memory than necessary and decreasing
efficiency. We say there is aliasing when an object is changed through a reference
variable with unwanted indirect effects on another variable. Both leaks and aliasing
make programs harder to understand and faults harder to find. Whenever possible,
high-level languages with pointer arithmetic should be avoided. In programming with
object-oriented languages, the use of built-in mechanisms for automatic memory
management, responsible for managing the low-level lifecycle of objects in memory,
should be preferred. Whereas it is up to the programmer to determine the points where
objects are created in the program, mechanisms of memory management free the
programmer from the trouble of deleting the objects from memory at the points where
they become useless. Fortunately, most programming languages used in current
agent-based simulation toolkits are examples of high-level languages that have
built-in mechanisms for automatic memory management.

8.3.2.3 Software Reuse

We sometimes tend to prefer rewriting modules insofar as we believe that our
modules are better programmed than others. However, software modules that are
used and tested in a variety of different situations have fewer faults than modules
developed for the purposes of a single simulation. A good programmer should not
assume that all modules should be implemented especially for the simulation being
developed. Reusable modules that have been subjected to previous use and verifica-
tion should be preferred to those built from scratch. The more a simulation is based on
reusable modules the fewer modules need to be specified, implemented and verified.

Software reuse is used in social simulation as more and more developing
frameworks become available. Module reuse in simulation is basically a type of
model embedding. The use of agent-based toolkits as special-purpose extensions to
standard high-level languages based on Java, Objective C, or SmallTalk provides
developing standards and faster development, making simulations more compara-
ble to each other. Software reuse in computer science and engineering can be
considered at a number of different levels (Sommerville 1995, p. 397). Likewise
in social simulation we may identify different levels from the strongest to the
weakest degrees of dependency on the specifics of simulation platforms and
toolkits. In this sense, strong reuse means constraints on the simulation to existing
models and weak reuse lets the researcher develop models more freely.

8 Validating Simulations 145

Model Architecture Level

The control subsystem of a simulation, such as a discrete-time scheduling mecha-
nism, may be reused. In most agent-based simulation toolkits, scheduling consists
of setting up method calls on objects to occur at certain times. Scheduling
mechanisms are thus part of a reusable agent skeleton template, extended according
to the specifics of each agent model. Other examples include whole collections of
reusable objects and mechanisms, such as interaction environments that act as agent
containers and define the interactive relationship of agents relative to each other,
such as a network model or a torus grid. Yet other examples may include entire
canonical simulation models, which are used as components of another extended,
more sophisticated, simulation model.

Module or Object Level

Components representing a set of functions may be reused, such as class libraries
for generating sequence graphs; histograms or plots for visualization models;
statistical packages for data analysis; and widely tested pseudo-random number
generators that aggregate a set of different random number distributions into a
single class or package.

Programming Language API Level

Standard libraries and Application Programming Interfaces (APIs) conventionally
available in every implementation of high-level languages may and should be used.
Typically, abstract data structures representing such things as lists, queues and
trees, are coupled in a set of classes that implement reusable data structures, such as
the Java Collections Framework.

Generic-Type Level

The use of generic classes is a kind of reuse. Generics are a way of creating
parameterized general purpose templates for class types and subroutines (see e.g.
Sommerville 1995). If the same kind of abstract structure, such as a list, is used
for many different types of elements, like a list of agents and a list of events, this
avoids the need to develop a separate implementation of the list for each type of
element. As a result, programmers are less likely to make mistakes, thus
avoiding faults and improving confidence in the simulation. Generic program-
ming facilities are available in several object-oriented languages, such as C++
and Java.

146 N. David

Routine Level

Independent components implementing a single procedure or function may be
reused, for example, a mathematical function used in a previously tested and
verified setting can be reused in another simulation.

8.3.3 Defensive Programming

The focus of good programming practices is on good code readability, flexible and
fast development as well as ease of debugging. Other focuses yet to be considered
are the actual testing and location of faults in the program. A typical test consists of
running test cases for which outputs are known and confirming these every time the
program is changed. Defensive approaches require that the programmer should
never assume that a module will work as expected but instead the programmer
should handle the appropriate testing for every module, possibly embedding the test
in the program itself. Rather than considering testing only after programming the
model, some of the testing should be planned and embedded as redundant code in
the program. In software engineering defensive programming stands for an
approach to fault tolerance for failure recovery. In social simulation the goal is
somewhat different and consists of including extra, redundant, code to test for
program failures and assist in the location of program faults.

Two techniques seem relevant to social simulation: contract-based programming
and unit testing. Although the latter is often referred to in the literature, it is not a
common practice in social simulation, probably because it requires a considerable
amount of redundant code to test programs.

The former stands for a methodology for checking the violation of specified
conditions in order to verify programs written with procedural languages on the
basis of declarative statements, called assertions, which are appropriate to the kind
of explorative programming used in simulation.

Testing and contract-based programming can be combined with the use of
assertions and exceptions. Assertions are predicates placed in the program to test
whether a specified condition is satisfied during testing. If the predicate evaluates to
false, the program should halt for further debugging. Exceptions are messages that
indicate the occurrence of exceptional conditions that were anticipated by the
programmer, which usually halt the program as well.

Contract-based programming is a methodology for designing class specifications
with checkable conditions at run time. The attributes of a class define the state space
for the objects of that class. The set of states considered valid act as constraints on
the range of values that objects of that class can assume. Constraints are limits
defined over the ranges of the attributes of a class and may define dependencies
among those attributes. If the valid state space of a class is violated in execution
time then an exceptional condition is launched and the program execution halts,
indicating information about the location and the type of violation occurred.

8 Validating Simulations 147

Constraints can also be specified at the routine level by specifying the range of
the parameter values and the dependencies among parameters. In fact, the specifi-
cation of a class may be understood as defining a contract between two
programmers, the client and the supplier of that class, resulting in two types of
constraints:

1. The methods’ pre-conditions specified by the supplier, to which the client should
abide;

2. The class invariant and the methods’ post-conditions to which the supplier
commits.

If the pre-conditions are not satisfied, then an exceptional condition occurs,
which must be dealt with by the client programmer who violated the contract of
that class. In contrast, if the class invariant or the post-conditions are not satisfied,
then the fault is due to the particular implementation of that class, resulting in an
assertion failure. This means that the supplier may not have programmed the class
appropriately.

As an example, consider a partial definition of a class named Agent that specifies
an agent in a culture dissemination model. Agents are distributed on a grid and the
culture of each actor is defined as a nonempty set of features with a positive number
of traits per feature. Each agent is aware of its position on the grid, which cannot be
outside the grid bounds. The attributes of that class include a list of features, the
number of traits per feature and the agent’s position. The invariant of such a class
would be defined as follows:

features # {} and number_traits > 0 and position is legal

Suppose that agent interaction is specified with a bit-flipping kind of schema,
which occurs only between contiguous neighbors and if the agents have different
traits in at least one feature. Moreover, the agents must share the same trait in at
least one feature after the interaction. In order to guarantee that every state change
in objects of type Agent is valid, the invariant must be checked (1) right after the
calling of that method; (2) right before it returns to the caller; and (3) right before
the end of the class constructors. That is, whereas the bit-flipping pre-conditions
should be checked before the interaction takes place, the post-conditions should be
checked after the interaction. A partial definition of a Java class could be the
following (with redundant code in boldface):

public class Agent {

private SpaceGrid grid; // the agent’s interaction
environment

private int [] features;

private int number_of_traits;

private Position position; // the agent’s current
position in the grid

148

N. David

// class constructor
public Agent (final SpaceGridgrid, final int [] features,

}

final int number_of_traits, final Position
position) {

this.grid = grid;

this.features = features;

this.number_of_ traits = number_of traits;
this.position = position;

// check the class invariant after initialisation
assert checkInvariant () ;

// other methods here

// the bit-flipping operation
public void bitFlip (final Agent theOtherAgent) {

// check the invariant before every method that
change the agent’s state
assert checkInvariant();

// test pre-conditions for bit-flipping
if (theOtherAgent == null)
throw new NullPointerException();
if (!grid.areNeigbourhs(this, theOtherAgent)) //
are the agents neighbours?
throw
new IllegalArgumentException(“Agents are not
neighbours, cannot bit-flip”);
// agentsmust haveadifferent trait inat least one
feature
if (Arrays.dontMatch(features, theOtherAgent.
getFeatures()) < 1)
throw
new IllegalArgumentException(“Insufficient
number of features to bit-flip”);

// make bit-flipping
int[] other_ features = theOtherAgent.getFeatures() ;

int rand = randomFeature (features) ;

while (features[rand] == other_features|[rand])
rand = randomFeature (features) ;

other_features[rand] = features|[rand]; // bit-flip

8 Validating Simulations 149

// test post-conditions (agents must share at least
one feature after bit-flip)

assert Arrays.match(features, theOtherAgent.
getFeatures()) > =1;

// check the invariant after every method that
changed the agent’s state
assert checkInvariant () ;

}

private boolean checkInvariant () {

if (grid == null || features == null || position ==
null | |
number_of_traits < 1 || grid.outOfBounds
(position))
return false;

return true;

}
} // end of class Agent

In the program, the invariant is checked at the end of the constructor, right after
initializing the agent’s attributes, and both before and after any state change in the
methods. Since the invariant concerns the testing on the part of the programmer of
that class (the supplier), rather than the user of that class (the client), the method
checklInvariant is set to private. Since the method bitFlip changes the agent’s state, the
method pre-conditions and post-conditions should be checked. If the pre-conditions
are not satisfied, an exception is thrown. This means that the error is on the caller of
that method. If the class invariant or the post-conditions are not satisfied, then an
assertion failure is launched, suggesting an error in the implementation of that class.

Contract-based programming helps programmers reason about the conceptual
model and its programs. Too often it is difficult to understand the details of an
implementation. Insofar as the contracts of a module are fully documented and are
regarded as a precise specification of the computerised model — akin to a declarative
programming language style — additional benefits are increased readability and the
fostering of replicability. During testing the programmer will typically run the
program with assertions enabled. For reasons of efficiency, the assertion mecha-
nism can either be set to on or off.

8.3.4 Replication for Model Alignment

Program testing is an essential activity for building simulations. However, testing
alone cannot distinguish between faults in the implementation of the pre-computerised
model and a surprising consequence of the model itself. Static methods are thus
unavoidable and the examination of the source code is important in all stages of the

150 N. David

Computerized

model A compare
results

Conceptual model A »

Conceptual model B* —p Computerized
model B’

. Computerized

Conceptual model B model B

Fig. 8.3 Model alignment

Computerized

/ model A’

_—

Published results compare
conceptual model A >
results
and results
\ Computerized
- 5
model A”

Fig. 8.4 Model replication

development process. In practice, static and dynamic methods are used together.
Most integrated development environments provide debugging tools and allow the
programmer to trace the execution of a program and observe the values of variables
statement by statement.

A slightly different technique, mostly used in numerical and technical simulation,
is called “structured walk-throughs.” This consists of having more than one person
reading and debugging a program. All members of the development team are given a
copy of a particular module to be debugged and the module developer goes through
the code but does not proceed from one statement to another until everyone is
convinced that a statement is correct (Law and Kelton 1991).

A different technique described by Sargent (1999) consists of reprogramming
critical modules to determine if the same results are obtained. If two members are
given the same specification for a module and they make two distinct
implementations and obtain the same results, then the confidence in the implemen-
tation is increased. A more general problem is the extent to which models can be
related to others so that their consequences and results are consistent with each
other. In its most general form, this concerns both to V&V. After Axtell et al.
(1996) it became known as the process of model alignment, which is used for
determining whether different published models describing the same class of social
phenomena produce the same results. Usually the alignment of two models A and B
requires modifying certain features of model B — for instance by turning off certain
features — in order to become equivalent to model A. This is represented in Fig. 8.3.

The term “model alignment” is frequently used synonymously for model repli-
cation. This assesses the extent to which building computerised models that draw
on the same conceptual, usually published, model give results compatible with the
ones reported in the published model. If the new results are similar to the published
results, then the confidence in the correspondence between the computerised and
the conceptual models is increased. Replication is represented in Fig. 8.4.

8 Validating Simulations 151

Computerized Alignment 1 (A)

Models

Version 1

Version 2

Publication 1

Alignment 2 (B)

Alignment 3 Publication 3

Version 3 | Alignment n || Publication n |

[Replicating for model Veriﬁc:@ |Replicating for model alignment >

Fig. 8.5 N-version programming and replication for model alignment

uonedyadg
uonesrqnd

In the vast majority of cases, replication processes are mostly reactive and not
proactive, in other words, the creator of the model publishes it and in the future
someone else replicates it. However, we should not take replication lightly and see it
as something that will possibly be done in the future. A verification technique, not so
frequently used in social simulation, is called N-version programming. This is similar
to reprogramming critical modules. In contrast to the practice of having other teams
replicating models after they have already been reviewed, accepted and published,
the effort of replication becomes focused on producing multiple computerised
versions of a conceptual model before submitting it for peer reviewing.

Both N-version programming and replication are depicted in Fig. 8.5. The right-
hand side of the diagram illustrates a perspective where a published conceptual model
is replicated. The left-hand side illustrates a perspective where a conceptual model
gives origin to multiple computerised versions of the model, implemented by differ-
ent persons before it is actually published. In any case, if all versions lead to the same
results, then there are reasonable grounds for trusting in the results obtained, as well
as in the correspondence between the conceptual and computerised models.

8.3.4.1 Types of Model Equivalence

The work of Axtell et al. (1996) is arguably the most-cited attempt to align two
distinct but similar models. Rather than re-implementing Axelrod’s culture dissem-
ination model, Axtell and colleagues focused on the general case of aligning two
models that reflected slightly distinctive mechanisms. For this purpose, Epstein and
Axtell’s Sugarscape model was progressively simplified in order to align with the
results obtained by Axelrod’s culture dissemination model.

Model alignment has been further investigated in a series of meetings called
model-to-model (M2M) workshops (see Rouchier et al. 2008). The M2M workshops
attract researchers interested in understanding and promoting the transferability of
knowledge between model users. The replication of Edmonds and Hales (2003) is
particularly informative on the problem of verification. They suggested that one
should not trust an unreplicated simulation, since its results are almost certainly
wrong in the sense that the computerised model differs from what was intended or

152 N. David

assumed in the conceptual model. In order to align with a published conceptual model
they had to rely on a double replication process insofar as the first replication did not
seem to result in alignment. It was only after implementing a second computerised
version of the published model that the authors were sure that the results reported in
the published model did not align with their own. They concluded that the original
implementation of the published model was producing results that could be
misleading. This was due to different interpretations of the correct implementation
of a mechanism of tournament selection for reproducing agents. Subtle differences in
the mechanism implied different conclusions about the functioning of the model.

But how do we determine whether or not two models produce equivalent results?
Axtell et al. (1996) defined three kinds of equivalence:

¢ Numerical identity: shows that the two models reproduce the results exactly.

» Relational equivalence: shows that the two models produce the same internal
relationship among their results, for instance that a particular variable is a
quadratic function of another.

¢ Distributional equivalence: shows that the two models produce distributions of
results that cannot be distinguished statistically.

Numerical identity is hardly attainable in social complexity, except in the
circumstances where models converge to some kind of final equilibrium, such as in
Axelrod’s culture dissemination model. Most simulations display several kinds of
global behaviours that do not converge to equilibrium, are in the medium term self-
reinforcing and make numerical identity unattainable. Among the three kinds of
equivalence, distributional equivalence is the most demanding: it is achieved when
the distributions of results cannot be distinguished statistically. What this shows
is that at conventional confidence probabilities the statistics from different
implementations may come from the same distribution, but it does not prove that
this is actually the case. In other words, it does not prove that two implementations are
algorithmically equivalent, but it allows us to disconfirm that they are. If this test
survives repeatedly we somehow increase our confidence in the equivalence but only
in the parameter range within which it has been tested.

8.3.4.2 Programming for Replication

An important aspect when programming a simulation is to guarantee that it may be
replicated by other researchers. Designing and programming for replicability
involves a number of aspects that should be considered. Simulations are often a
mix of conceptual descriptions and hard technical choices about implementation.
The author who reports a model should assume that an alignment may later be tried
and thus should be careful about providing detailed information for future use:

« Provide effective documentation about the conceptual and the computerised
models; provide information about those technical options where the translation
from the conceptual to the computerised model is neither straightforward nor
consensual. Even if the difference between two computerised models may seem

8 Validating Simulations 153

minor or irrelevant, small differences can affect the level of equivalence, even if
the overall character of the simulation does not seem to change significantly.

¢ Qutline in pseudo-code the parts of the program that may be liable to
ambiguities; use modelling languages to represent implementation options,
like UML. This is a formalism used to describe not only the static structure of
the relations between classes but also different aspects of its dynamic behaviour,
for instance, with activity graphs and sequence diagrams.

e Make the source code available online and ready to install. If possible, use a
simulation platform to implement the model, hence fostering software reuse in
order to make simulations reliable and more comparable to each other. If possible,
make the simulation available to be run online, for instance, by using such
technologies as Applets, a technology that allows the embedding of an execution
model in Web pages, making it possible to be loaded and executed remotely.
Making the computerised model available is crucial for others to be able to run the
model with parameters settings that were not reported in your papers. Whereas for
a certain set of parameter settings two simulations may match, this may not
happen with other settings, suggesting the two models are not equivalent.

¢ Provide a detailed description about the results, statistical methods used, distri-
butional information and qualitative measures. Make the bulk outputs available
online or in appendices.

While programming for replicability is something to be considered on the part of
the team that programs the model, a number of aspects should be considered by the
team that decides to replicate a model. Often apparently irrelevant differences in two
implementations can be the cause of different statistics that do not match (Edmonds
and Hales 2003). This is particularly relevant if the description of the original model
is not detailed sufficiently, making it difficult to assess whether the computerised
model is implemented correctly and according to the conceptual model. When the
original implementation is available, high degrees of confidence in the new imple-
mentation requires matching results with runs based on different parameters from
those reported in the original model. The experiment of Edmonds and Hales provides
a good deal of informative techniques and tips on this kind of model alignment:

e If the simulation shows very dynamic self-reinforcing effects in the long run,
check the alignment of simulations in the first few cycles of their runs, averaged
over several runs, in order to test whether they are initialized in the same way.

» Use different parameter settings and for each setting make several runs of both
implementations over long-term periods. For each implementation collect several
statistics from each time period and average them over the number of runs. For
each such pair of sets of averages use statistical tests, such as the Kolmogorov-
Smirnov test for the goodness of fit of cumulative distribution functions.

» Use modularity to test features separately. If two simulations do not align, turn
off certain features of the implementations until they do so, and find the source
of errors in the different modules. Reprogramming whole critical modules may
also apply here.

» Use different toolkits or programming languages to re-implement simulations
and if possible have this done by different people.

154 N. David
8.3.5 Participative-Based Methods

Replication is feasible when models are simple. When the goal is modelling a specific
target domain, full of context, with significant amounts of rich detail, and use of
empirical data and stakeholder participation, such as with the Companion Modelling
approach, replication may not be feasible for verifying the computerised model. As in
any other simulation, good programming practices and defensive programming are
thus fundamental. In addition, insofar as some results may be due to software faults
and be unexpected for stakeholders, participative-based methods are also a form of
verification. This fact stresses the importance of involving domain experts and
stakeholders as much as possible in all stages of the development and implementation
process. Here, documentation and visualisation techniques can play a crucial role in
bridging between the stakeholders’ opinions and the intention of the programmer of
the simulation. This is discussed in more detail in Chap. 10 in this volume (Barreteau
et al. 2013).

8.4 Validation Approaches

We offered a conceptual definition of validation in Sect. 8.2.2. Had we given an
operational definition, things would have become somewhat problematical. Models
of social complexity are diverse and there is no definitive and guaranteed criterion
of validity. As Amblard et al. (2007) remarked, “validation suggests a reflection on
the intended use of the model in order to be valid, and the interpretation of the
results should be done in relation to that specific context.”

A specific use may be associated with different methodological perspectives for
building the model, with different strategies, types of validity tests, and techniques -
Fig. 8.6. Consider the kind of subjunctive, metaphorical, models such as
Schelling’s. In these models there is no salient validation step during the simulation
development process. Design and validation walk together, and the intended use is
not to show that the simulation is plausible against a specific context of social
reality but to propose abstract or schematic mechanisms as broad representations of
classes of social phenomena. In other different cases, the goal may be modelling a
specific target domain, full of context, with use of empirical data and significant
amounts of rich detail. Whereas in the former case a good practice could be
modelling with the greatest parsimony possible so as to have a computational
model sanctionable by human beings and comparable to other models, parsimony
can be in opposition to the goal of descriptive richness and thus inappropriate to the
latter case.

There are also different methodological motivations behind the use of a model,
such as those conceived to predict or explain and those merely conceived to
describe. Regardless of what method is used, the reproduction of characteristics
of the object domain is important, but this can be assessed through rather different
approaches during the model development process. If it is prediction you are

http://dx.doi.org/10.1007/978-3-540-93813-2_10

8 Validating Simulations 155

Purpose of Models

General goal of simulating social complexity

Basic methodological conceptions
(types of validity:
through prediction, retrodiction, structural similarity)

Validation Techniques
(diverse)

Relationship to modeling strategies
(subjunctive models, context-specific models)

Fig. 8.6 Validation implies considering the purpose of the model

seeking, validation consists of confronting simulated behaviour with the future
behaviour of the target system (however, attempting to establish numerical predic-
tion is not a normal goal in simulation). If it is explanation, validation consists of
building plausible mechanisms that are able to reproduce simulated behaviour
similar to real behaviour. If the goal is the more general aim of descriptiveness,
explanation may probably be a goal as well, and a creative integration of ways for
assessing the structure and results of the model, from quantitative to qualitative and
participatory approaches, will be applied.

In conclusion, one should bear in mind that there is no one special method for
validating a model. However, it is important to assess whether the simulation is
subjected to good practices during its conception, whether it fits the intended use of
the model builder and whether it is able to reproduce characteristics of the object
domain. Assessing whether the goals of the modellers are well stated and the
models themselves are well described in order to be understood and sanctioned
by other model builders are sine qua non conditions for good simulation modelling.

In the remainder of this section, we revise the issue of the purpose of validating
simulations along four dimensions: the general goal of simulation in social com-
plexity, three basic methodological conceptions of validity types, a set of usual
techniques applied in social simulation, and finally the relationship of validation to
different modelling strategies with respect to the level of descriptive detail embed-
ded in a simulation.

8.4.1 The Goal of Validation: Goodness of Description

If one is using a predictive model, then the purpose of the model is to predict either
past or future states of the target system. On the other hand, one may strive for a

156 N. David

model that is able to describe the target system with satisfactory accuracy in order
to become more knowledgeable about the functioning of the system, to exercise
future and past scenarios, and to explore alternative designs or inform policies.

The objective in this section is to define the purpose of validation in terms of the
purpose of simulating social complexity, which we will define as being of good
description. This position entails that there is no single method or technique for
validating a simulation. A diversity of methods for validating models is generally
applied.

In the rest of this chapter we adopt the multi-agent paradigm for modelling.
A conceptual understanding of validation, similar but more general than Moss and
Edmonds’ (2005), will be used:

The purpose of validation is to assess whether the design of micro-level mechanisms, put
forward as theories of social complexity validated to arbitrary levels, can be demonstrated
to represent aspects of social behaviour and interaction that are able to produce macro-level
effects either (i) broadly consistent with the subjacent theories; and/or (ii) qualitatively or
quantitatively similar to real data.

By broad consistency we mean the plausibility of both micro specification and
macro effects accounted as general representations of the target social reality. In its
most extreme expression, plausibility may be evaluated on a metaphorical basis. By
qualitative similarity to real data we mean a comparison with the model in terms of
categorical outcomes, accounted as qualitative features, such as the shape of the
outcomes, general stylized facts, or dynamical regimes. As for quantitative similar-
ity we mean the very unlikely case in which the identification of formal numerical
relationships between aggregate variables in the model and in the target — such as
enquiring as to whether both series may draw from the same statistical distribution —
proves to be possible.

Notice that this definition is general enough to consider both the micro-level
mechanisms and macro-level effects assessed on a participatory basis. It is also
general enough to consider two methodological practices — not necessarily incom-
patible — related to the extent to which models in social science simulation ought to
be constructed on the basis of formal theories or ought to be based on techniques
and approaches on the basis of the intuition of the model builders and stakeholders —
an issue that we will come back to later. These are omnipresent methodological
questions in the social simulation literature and are by no means irrelevant to the
purpose of simulation models.

Suppose that on the basis of a very abstract model, such as the Schelling model,
you were to evaluate the similarity of its outputs with empirical data. Then you will
probably not take issue with the fact that the goal of predicting future states of the
target would be out of the scope of simulation research for that kind of modelling.
However, despite the belief that other sorts of validation are needed, this does not
imply excluding the role of prediction, but emphasises the importance of description
as the goal of simulating social complexity. In truth, what could be more contentious
in assessing the Schelling model is the extreme simplicity used to describe the
domain of social segregation. The descriptive power of multi-agent models makes
them suited to model social complexity. Computational modelling corresponds to a

8 Validating Simulations 157

process of abstraction, in that it selects some aspects of a subject being modelled,
like entities, relations between entities and change of state, while ignoring those that
may be considered less relevant to the questions that are of interest to the model
builder. The expressiveness of multi-agent models allows the researcher to play with
intuitive representations of different aspects of the target, such as defining societies
with different kinds of agents, organizations, networks and environments, which
interact with each other and represent social heterogeneity. By selecting certain
aspects of social reality into a model, this process of demarcation makes multi-agent
modelling suited to represent sociality as perceived by researchers and often by the
stakeholders themselves.

The descriptive power of simulation is on par with the diversity of ways used for
informing the construction and validation of models, from theoretic approaches to the
use of empirical data or stakeholder involvement. At any rate, measuring the good-
ness of fit between the model and real data expressed with data series is neither the
unique nor a typical criterion for sanctioning a model. The very idea of using a
diversity of formal and informal methods is to assess the credibility of the
mechanisms of the model as good descriptions of social behaviour and interaction,
which must be shown to be resilient in the face of multiple tests and methods, in order
to provide robust knowledge claims and allow the model to be open to scrutiny.

8.4.2 Broad Types of Validity

When we speak about types of validity we mean three general methodological
perspectives for assessing whether a model is able to reproduce expected
characteristics of an object domain: validation through prediction, validation
through retrodiction and validation through structural similarity. Prediction refers
to validating a model by comparing the states of a model with future observations of
the target system; retrodiction compares the states of the model with past
observations of the target system; and structural similarity refers to assessing the
realism of the structure of the model in terms of empirical and/or theoretical
knowledge of the target system. In practice, all three approaches are interdependent
and no single approach is used alone.

8.4.2.1 Validation Through Prediction

Validation through prediction requires matching the model with aspects of the
target system before they were observed. The logic of predictive validity is the
following: If one is using a predictive model — in which the purpose of the model is
to predict future states of the target system — and the predictions prove satisfactory
in repeated tested events, it may be reasonable to expect the model outcomes to stay
reliable under similar conditions (Gross and Strand 2000). The purpose of predic-
tion is somewhat problematic in social simulation:

158 N. David

* Models of social complexity usually show nonlinear effects in which the global
behaviour of the model can become path-dependent and self-reinforcing, pro-
ducing high sensitivity to initial conditions, which limits the use of predictive
approaches.

e Many social systems show high volatility with unpredictable events, such as
turning points of macroeconomic trade cycles or of financial markets that are in
practice (and possibly in principle) impossible to predict; see (Moss and
Edmonds 2005) for a discussion on this.

¢ Many social systems are not amenable to direct observation, change too slowly,
and/or do not provide enough data to be able to compare model outcomes. Most
involve human beings and are too valuable to allow repeated intervention, which
hinders the acquisition of knowledge about its future behaviour. Policies based
on false predictions could have serious consequences, thus making the purpose
of prediction unusable (Gross and Strand 2000).

While quantitative prediction of the target system behaviour is rare or simply
unattainable, prediction in general is not able to validate per se the mechanisms of
the model as good representations of the target system. In the words of Troitzsch
(2004), “What simulations are useful to predict is only how a target system might
behave in the future qualitatively”. But a different model using different
mechanisms that could lead to the same qualitative prediction may always exist,
thus providing a different explanation for the same prediction. More often, the role
of predicting future states of the target system becomes the exploration of new
patterns of behaviour that were not identified before in the target system, whereby
simulation acquires a speculative character useful as a heuristic and learning tool.
What we are predicting is really new concepts that we had not realized as being
relevant just for looking into the target.

8.4.2.2 Validation Through Retrodiction

The difference from retrodiction to prediction is that in the former the intention is to
reproduce already observed aspects of the target system. Given the existence of a
historical record of facts from the target system, the rationale of retrodictive
validity for a predictive model is the following: If the model is able to reproduce
a historical record consistently and correctly, then the model may also be trusted for
the future (Gross and Strand 2000). However, as we have mentioned, predictive
models of social complexity are uncommon in simulation. Explanation rather than
prediction is the usual motive for retrodiction. The logic of retrodictive validity is
the following: If a model is able to consistently reproduce a record of past
behaviours of the target system, then the mechanisms that constitute the model
are eligible candidates for explaining the functioning of the target system. Never-
theless, retrodiction alone is not sufficient to assess the validity of the candidate
explanations:

8 Validating Simulations 159

¢ Underdetermination: Given a model able to explain a certain record of
behaviours or historical data, there will always be a different model yielding a
different explanation for the same record.

» Insufficient quality of data: In many cases it is impossible to obtain long
historical series of social facts in the target system. In the social sciences the
very notion of social facts or data is controversial, can be subjective, and is not
dissociable from effects introduced by the measurement process. Moreover,
even when data is available it may not be in a form suitable to be matched to
the bulk of data generated by simulation models.

Underdetermination and insufficient data suggest the crucial importance of
domain experts for validating the mechanisms specified in the model. A model is
only valid provided that both the generated outcomes and the mechanisms that
constitute the model are sanctioned by experts in the relevant domain. The impor-
tance of validating the mechanisms themselves leads us to the structural validity of
the model, which neither predictive nor retrodictive validity is able to assess alone.

8.4.2.3 Validation Through Structural Similarity

In practice, the evaluation of a simulation includes some kind of prediction and
retrodiction, based on expertise and experience. Given the implementation of
micro-level mechanisms in the simulation, classes of behaviour at the macroscopic
scale are identified in the model and compared to classes of behaviour identified in
the target. Similarly, known classes of behaviour in the target system are checked
for existence in the simulation. The former case is generally what we call the
“surprising” character of simulations in which models show something beyond
what we expect them to. However, only an assessment of the model at various
points of view, including its structure and properties on different grains and levels,
will truly determine whether the system reflects the way in which the target system
operates. For instance, do agents’ behaviour, the constituent parts and the structural
evolution of the model match the conception we have about the target system with
satisfactory accuracy? These are examples of the elements of realism between the
model and the system that the researcher strives to find, which requires expertise in
the domain on the part of the person who builds and/or validates the model.

8.4.3 Validation Techniques

In this section we describe validation techniques used in social simulation. Some
are used as common practices in the literature, and most of the terminology has
been inhered from simulation in engineering and computer science, particularly
from the reviews of validation and verification in engineering by Sargent (1999).
All techniques that we describe can be found in the literature, but it would be rare to

160 N. David

find a model in which only one technique was used, consistent with the fact that the
validation process should be diverse. Also, there are no standard names in the
literature and some techniques overlap with others.

8.4.3.1 Face Validity

Face validity is a general kind of test used both before and after the model is put to
use. During the model development process, the various intermediate models are
presented to persons who are knowledgeable about, or are relevant to the problem in
order to assess whether it is compatible with their knowledge and experience and
reasonable for its purpose (Sargent 1999). Face validity may be used for evaluating
the conceptual model, the components thereof, and the behaviour of the
computerised models in terms of categorical outcomes or direct input/output
relationships. This can be accomplished via documentation, graphing visualisation
models, and animation of the model as it moves through time. Insofar as this is a
general kind of test, it is used in several iterations of the model.

8.4.3.2 Turing Tests

People who are knowledgeable about the behaviour of the target system are asked if
they can discriminate between system and model outputs (Sargent 1999). The logic
of Turing tests is the following: If the outputs of a computerised model are
qualitatively or quantitatively indistinguishable from the observation of the target
system, a substantial level of validation has been achieved.

Note that the behaviour of the target system does not need to be observed
directly in the cases where a computerised representation is available. For example,
suppose that videos of car traffic are transformed into three-dimensional scenes,
whereby each object in the scene represents a car following the observed trajectory.
If an independent investigator is not able to distinguish the computerised reproduc-
tion from an agent-based simulation of car traffic, then a substantial level of
validation has been obtained for the set of behaviours represented in the simulation
model.

8.4.3.3 Historical Validity

Historical validity is a kind of retrodiction where the results of the model are
compared with the results of previously collected data. If only a portion of the
available historical data is used to design the model then a related concept is called
out-of-sample tests in which the remaining data are used to test the predicative
capacity of the model.

8 Validating Simulations 161

8.4.3.4 Event Validity

Event validity compares the occurrence of particular events in the model with the
occurrence of events in the source data. This can be assessed at the level of individual
trajectories of agents or at any aggregate level. Events are situations that should occur
according to pre-specified conditions, although not necessarily predictable. Some
events may occur at unpredictable points in time or circumstances. For instance, if the
target system data shows arbitrary periods of stable behaviours interwoven with
periods of volatility with unpredictable turning points, the simulation should produce
similar kinds of unpredictable turning events.

8.4.3.5 Extreme Condition Tests

Extreme conditions are used for both verifying and validating the validation. The
experimenter uses unlikely combinations of factors in the system, usually very high
or low values for the inputs and parameters in order to test whether the simulation
continues to make sense at the margins. For instance, if interaction among agents is
nearly suppressed the modeller should be surprised if such activities as trade or
culture dissemination continues in a population.

8.4.3.6 Sensitivity Analysis

As a precautious rule one should consider that a model is only valid for the range of
parameters that have been tested. Sensitivity analysis stands for tests in which
parameters or even the inter-relations of model components are systematically
varied in order to determine the effect on the behaviour of the model. It aims at
three sorts of related considerations:

¢ Understanding the basic conditions under which the model behaves as expected;

» Finding the conditions that maximize the agreement of the model behaviour with
the target system behaviour;

¢ Identifying the conditions that are sensitive, for instance, when changes in the
input yield outputs that do not remain within known intervals, even when
changes are carried out in a very controlled way.

Parameters that are sensitive should be made sufficiently accurate prior to using
the model. If the output remains unpredictable even with controlled changes, the
modeller should be concerned about making claims about the model.

Executing sensitivity tests is not a trivial task, and there are no special methods.
If one imagines sweeping three parameters with 10 distinct values each then 720
configurations of input sets will be defined. If for each configuration we carry out
five runs so as to obtain meaningful statistical figures, we can imagine 3,600 runs of
the model. Since it is likely that some of the parameters will interact they should be

162 N. David

swept in combinations — a fact which makes sensitivity tests already intractable for
only a relatively small number of parameters.

Experience, the availability of empirical data, and the use of sampling techniques
are the usual solution. A possible approach is constraining the range of values
according to empirical data by ignoring ranges of values that are known from the
start to be implausible in the target system. Yet, this might not be possible. The
correspondence between parameter ranges in the model and in the target must be
somehow known a priori, which requires that the model be subjected to some kind of
testing anyway.

Sampling the parameter space is the usual solution. Related techniques in social
simulation include learning algorithms for searching the parameter space, such as the
Active Nonlinear Test (Miller 1998). Genetic algorithms for exploring the parameters
of the model more efficiently are often used.

Besides sweeping parameters, any changes in the conditions of the model should
be tested. Two architectural levels in the model must be considered:

1. The conceptual level, which involves changing the internal mechanisms or sub-
models that constitute the larger model, such as changing the decision processes
of the agents, their learning mechanisms or their interaction topology.

2. The system level, which involves low-level elements of the model, such as the
effect of changing the agent activation regimes (e.g. uniform activation or
random activation).

If changing elements at the system level determines different behaviours of the
model that cannot be adequately interpreted, then the validity of the model can be
compromised. The case of changing elements at conceptual levels is more subtle,
and the validity of the results must be assessed by the researcher with reference to
the validity of the composing elements of the model. This is basically a kind of
cross-model or cross-element validation, as described below.

8.4.3.7 Cross-Sectional Validity

Cross-sectional validity refers to the examination of the fit of congruence of social
data to the results that simulation models produce in a specific point in time. This
may be accomplished by comparing empirical data, such as a cross-sectional
survey, with output generated by a model at a single time period. For example,
simulation models of withdrawal behaviours in organisations, based on fuzzy set
theory, have been used by Munson and Hulin (2000) for comparing correlations
among frequencies of withdrawal behaviours in a cross-section survey with
correlations among simulated behaviours after a certain number of iterations. The
model that generated the correlation matrix that fitted better with the empirical data
(evaluated by calculating root mean squared discrepancies) gained support as the
most useful model of the organisational context that was being analysed. Notwith-
standing, quantitative assessments between cross-sectional and simulated data are

8 Validating Simulations 163

rare. Moreover, the benefits of simulation for representing time suggest an obvious
disadvantage of cross-sectional approaches: they are unable to assess results from a
longitudinal point of view.

8.4.3.8 Comparison to Other Models

There are strong reasons to compare a model with other models. One reason is the
unavailability, or insufficient quality, of data. Another is that models are often
specified at a level of abstraction not compatible with available data. Moreover,
even if data were available, the goodness of fit between real and simulated data, albeit
reflecting evidence about the validity of the model as a data-generating process, does
not provide evidence on how it operates. The most important reason for comparing
models is intrinsic to the scientific practice. The very idea of validation is comparing
models with other descriptions of the problem modelled, and this may include other
simulation models that have been validated to some level.

If two models of the same puzzle lead to different conclusions, then they
motivate us to check the validity of the models. Or, as we mentioned in Sect. 8.2,
indicate that the computerised models have not been appropriately verified. The
bricolage of methods for relating models in social simulation has become more
mature after the aligning experience of Axtell et al. (1996), and is now a highly
cited area. The goal of relating models can have different origins. In Sect. 8.2.4 the
meaning of model alignment was described as well as the different methods for
replicating (computerised) models. These focused on the verification of algorithmic
equivalence of models through comparison of data. There are a number of
approaches for relating models focused on the validation perspective:

» Extending models or composing models in a larger model, where different
concepts, mechanisms or results are abstracted as components of the larger
model; software reuse, as described in Sect. 8.2.2, is a kind of model
composition.

¢ Docking data produced by a model to a set of data produced by another model;
this may require changing and calibrating the model, for instance, by turning off
features of the former in order to align with the latter.

e Varying systematically and controllably the internal structure of a model; in
other words, playing with models within models in order to assess the overall
validity of the larger model with reference to the validity of each one of the
composing models; this is a kind of sensitivity analysis that resembles cross-
element validation, which is mentioned below.

¢ Relating different computerised models that are based on different paradigms
and provide different scales and perspectives for the same class of target; for
instance, agent-based models and equation-based modelling.

164 N. David

8.4.3.9 Cross-Element Validity

Cross-element validation, rather than comparing whole models, compares the results
of a model whose architecture of the agents differs only in a few elements. The goal is
to assess the extent to which changing elements of the model architecture produces
results compatible with the expected results of the (larger) model; basically an
exercise of composing different models within a larger model, which resembles
structural sensitivity analysis. For instance, one may study the effects of using a
model with agents in a bargaining game employing either evolutionary learning or
reinforcement learning strategies, and assess which one of the strategies produces
results compatible with theoretical analysis in game theory (Takadama et al. 2003).

A difficult issue faced with cross-element validation is that different results
depend on the different elements used. The results obtained may only be a result of
sensitivity to the elements. How can different tendencies be compared resulting from
using different elements in the model? Arai and Watanabe (2008) have introduced a
promising approach for use with time-series data. A quantitative comparison method
based on the Fourier transform is used for measuring the distance between the results
of two models that use different elements (e.g. different learning mechanisms).

Another problem with abstract simulations, in which the context of the empirical
referent is vague, refers to the lack of real data for comparing which of the
simulation outcomes are more realistic. As a result, the outcomes may only be
assessed against a reference theoretical model. In contrast, when enough data from
the target system are available, cross-element validation becomes a particular case
of validation through retrodiction. For example, the cross-sectional validity tests
employed by Munson and Hulin (2000) are a kind of cross-element validation
through retrodiction, in which different theoretical models of individual withdrawal
behaviours were tested within the same organisational model, with post-model data
fit evaluation. Data generated for each theoretical model was compared with data
from structured interviews in order to determine which theoretical model provided
the best fit to the empirical data.

8.4.3.10 Participatory Approaches for Validation

Participatory approaches refer to the involvement of stakeholders both in the design
and the validation of a model. Such an approach, also known as Companion
Modelling (Barreteau et al. 2001), assumes that model development must be itself
considered in the process of social intervention, where dialogue among
stakeholders, including both informal and theoretical knowledge, is embedded in
the model development process. Rather than just considering the final shape of the
model, both the process and the model become instruments for negotiation and
decision making. It is particularly suited for policy or strategy development. This
topic is discussed in Chap. 10 “Participatory Approaches” (Barreteau et al. 2013).

http://dx.doi.org/10.1007/978-3-540-93813-2_10

8 Validating Simulations 165
8.4.4 Relationship to Modelling Strategies

Regarding the diversity of methodological conceptions for modelling, different
strategies may be adopted relating to the level of descriptive richness embedded
in the simulations.

Several taxonomies of modelling strategies have been described in the literature
(see David et al., 2004; Boero et al., 2005; Gibert 2008, pp. 42—44). Normally, the
adoption of these strategies does not depend on the class of the target to be modeled,
but in different ways to address it as the problem domain. For example, if a
simulation is intended to model a system for the purpose of designing policies,
this will imply representing more detail than a simulation intended for modeling
certain social mechanisms of the system in a metaphorical way. But this also means
that there is a trade-off between the effort that a modeler puts into verifying the
simulation and puts into validating it. As more context and richness are embedded
in a model, the more difficult it will be to verify it. Conversely, as one increases the
descriptive richness of a simulation, more ways will be available to assess its
validity. A tension that contrasts the tendency for constraining simulations by
formal-theoretical constructs — normally easier to verify — and constraining
simulations by theoretical-empirical descriptions — more amenable to validation
by empirical and participative-based methods. In the remaining sections of this
chapter, two contrasting modelling strategies are described.

8.4.4.1 Subjunctive Agent-Based Models

A popular strategy in social simulation consists of using models as a means for
expressing subjunctive moods to talk about possible worlds using what-if scenarios,
like ‘what would happen if something were the case’. The goal is building artificial
societies for modelling possible worlds that represent classes of social mechanisms,
while striving for maximal simplicity and strong generalisation power of the
representations used. Reasons for striving for simplicity include the computational
tractability of the model and to keep the data analysis as simple as possible.
Simplicity and generalization power are often seen as elements of elegance in a
model. However, making the model simpler in the social sciences does not neces-
sarily make the model more general. More often than not this kind of modelling
only makes it metaphorically general, or simply counterfactual (with false
assumptions). For example, ‘What would happen if world geography is regarded
as a two-dimensional space arranged on a 10 x 10 grid, where agents are thought
of as independent political units, such as nations, which have specific behaviours of
interaction according to simple rules?’ To assume that world geography is one-
dimensional, as Axelrod does in his Tribute Model, is clearly a false assumption.
Often these models are associated with a design slogan coined by Axelrod, called
the KISS approach — “Keep it Simple Stupid”. Despite their simplicity, these
models prove useful for concept formation and theoretical abstraction. The

166 N. David

emergence of macro regularities from micro-levels of interaction becomes
the source of concept formation and hypothesis illustration, with the power of
suggesting novel theoretical debates.

Given the preference for simplification and abstraction, mechanisms used in
these models are normally described in a formalized or mathematical way.
Axelrod’s models, such as the culture dissemination model, or Schelling’s residen-
tial segregation model, are canonical examples. Their simplicity and elegance have
been factors for popularity and dissemination that span numerous disciplines and
ease replication and verification.

However, whereas simplicity eases verification, the use of metaphorical models
also brings disadvantages. Consider a word composed of several attributes that
represents an agent’s culture, such as in Axelrod’s culture dissemination model. The
attributes do not have any specific meaning and are only distinguishable by their
relative position in the word and so can be interpreted according to a relatively
arbitrary number of situations or social contexts. However, such a representation
may also be considered too simplified to mean anything relevant for such a complex
concept as a cultural attribute. As a consequence, verification is hardly distinguish-
able from validation, insofar as the model does not represent a specific context of
social reality. In such a sense, the researcher is essentially verifying experimentally
whether the conceptions that he has in his mind are met by an operationalisation that
is computationally expressed (David et al. 2007). Nevertheless, given their simplic-
ity, subjunctive models can be easily linked and compared to other models,
extended with additional mechanisms, as well as modified for model alignment,
docking, or replication. Cross-element validation is a widely used technique.

At any rate, the fact that these models are easily replicable and comparable — but
hardly falsifiable by empirically acquired characteristics of social reality — stresses
their strong characteristic: when models based on strategies of maximal simplicity
become accepted by a scientific community, their influence seems to reach several
other disciplines and contexts. Perhaps for this reason, these kind of models are the
most popular in social simulation, and some models are able to reach a considerable
impact in many strains of social science.

8.4.4.2 Context-Specific Agent-Based Models

It would be simplistic to say that models in social simulation can be characterized
according to well-defined categories of validation strategies. Even so, the capacity
to describe social complexity, whether through simplicity or through rich detail and
context, is a determining factor for a catalogue of modelling strategies.

We cannot hope to model general social mechanisms that are valid in all
contexts. There are many models that are not designed to be markedly general or
metaphorically general, but to stress accurateness, diversity, and richness of
description. Instead of possible worlds representing very arbitrary contexts, models
are explicitly bounded to specific contexts. Constraints imposed on these models
can vary from models investigating properties of social mechanisms in a large band

8 Validating Simulations 167

of situations which share common characteristics, to models with the only ambition
of representing a single history, like Dean’s retrodiction of the patterns of settle-
ment of a specific population in the southwestern United States, household by
household (see Dean et al. 2000).

Constructing and validating a model of this kind requires the use of empirical
knowledge. They are, for this reason, often associated with the idea of “Empirical
Validation of Agent-Based Models.”

What is the meaning of empirical in this sense? If the goal is to discuss empirical
claims, then models should attempt to capture empirically enquired characteristics
of the target domain. Specifying the context of descriptions in the model will
typically provide more ways for enquiring quantitative and qualitative data in the
target, as well as using experimental and participative methods with stakeholders.
In this sense, empirical may be understood as a stronger link between the model and
a context-specific, well-circumscribed, problem domain.

The model of Dean et al. (2000), which attempted to retrodict the patterns of
settlement of the Anasazi in the Southwestern United States, household by house-
hold, is a well-known and oft-cited example of a highly contextualized model built
on the basis of numerous sources, from archaeological data to anthropological,
agricultural and ethnographic analyses, in a multidisciplinary context.

Given the higher specificity of the target domain, the higher diversity of ways for
enriching the model as well as the increased semantic specificity of the outputs
produced by the model, context-specific models may be more susceptible to be
compared with empirical results of other methods of social research. On the other
hand, comparison with other simulation models is complex and these models are
more difficult to replicate and verify.

8.4.4.3 Modus Operandi: Formal and Informal Approaches

The tension between simplicity and descriptive richness expresses two different
ways for approaching the construction and validation of a model. One can start with
a rich, complex, realistic description and only simplify it where this turns out to be
possible and irrelevant to the target system — known as the KIDS approach
(Edmonds and Moss 2005). Or one starts from the outset with the simplest possible
description and complexifies it only when it turns out to be necessary to make the
model more realistic, nevertheless keeping the model as simple as possible — known
as the KISS approach (Axelrod 1997b).

In practice, both trends are used for balancing trades-offs between the model’s
descriptive accuracy and the practicality of modelling, according to the purpose and
the context of the model. This raises yet another methodological question: the
extent to which models ought to be designed on the basis of formal theories, or
ought to be constrained by techniques and approaches just on the basis of the
intuition of the model builders and stakeholders. As we have seen, strong, subjunc-
tive, agent-based models with metaphorical purposes tend to adopt the simplicity
motto with extensive use of formal constructs, making the models more elegant

168 N. David

from a mathematical point of view, easier to verify, but less liable to validation
methods. Game theoretical models, with all their formal and theoretical apparatus,
are a canonical example. Results from these models are strongly constrained by the
formal theoretical framework used.

A similar problem is found when agent-based models make use of cognitive
architectures strongly constrained by logic-based formalisms, such as the kind of
formalisms used to specify BDI-type architectures. If the cognitive machinery of
the agents relies on heuristic approaches that have been claimed valid, many
researchers in the literature claim that cognitive agent-based models can be
validated in the empirical sense of context-specific models. Cited examples of
this kind usually point to agent-based models based on the Soar architecture.

At any rate, context-specific models are normally more eclectic and make use of
both formal and informal knowledge, often including stakeholder evidence in order
to build and validate the models. Model design tends to be less constrained a priori
by formal constructs. In principle, one starts with all aspects of the target domain
that are assumed to be relevant and then explores the behaviour of the model in
order to find out whether there are aspects that do not prove relevant for the purpose
of the model. The typical approach for modelling and validation can be summarized
in a cycle with the following iterative and overlapping steps:

A. Building and validating pre-computerised and computerised models: Several
descriptions and specifications are used to build a model, eventually in the form
of a computer program, which are micro-validated against a theoretical frame-
work and/or empirical knowledge, usually qualitatively. This may include the
individual agents’ interaction mechanisms (rules of behaviour for agents or
organisations of agents), their internal mechanisms (e.g. their cognitive machin-
ery), the kind of interaction topology or environment, and the passive entities
with which the agents interact. The model used should be as accurate as possible
for the context in consideration as well as flexible for testing how parameters
vary in particular circumstances. Empirical data — if available — should be
used to help configure the parameters. Both the descriptions of the model and
the parameters used should be validated for the specific context of the model.
For example, suppose empirical data are available for specifying the consumer
demand of products. If the demand varies from sector to sector, one may use
data to inform the distribution upon which the parameter could be based for each
specific sector.

B. Specifying expected behaviours of the computerised model: Micro and macro
characteristics that the model is designed to reproduce are established from the
outset based on theoretical and/or empirical knowledge. Any property, from
quantitative to qualitative measures, such as emergent key facts the model should
reproduce (stylized facts), the statistical characteristic or shape of time-data series
(statistical signatures) and individual agents’ behaviour along the simulation
(individual trajectories), can be assessed. This may be carried out in innumerable
ways, according to different levels of description or grain, and be more or less
general depending on the context of the model and the kind of empirical

8 Validating Simulations 169

knowledge available. For instance, in some systems it may be enough to predict
just a “weak” or “positive” measure on some particular output, such as a positive
and weak autocorrelation. Or we might look for the emergence of unpredictable
events, such as stable regimes interleaved with periods of strong volatility, and
check their statistical properties for various levels of granularity. Or the emer-
gence of different structures or patterns associated with particular kinds of agents,
such as groups of political agents with “extremist” or “moderate” agents.

. Testing the computerised model and building and validating post-computerised

models: The computerised model is executed. Both individual and aggregate
characteristics are computed and tested for sensitivity analysis. These are micro-
validated and macro-validated against the expected characteristics of the model
established in step B according to a variety of validation techniques, as
described in Sects. 8.4.2 and 8.4.3. A whole process of building post-
computerised models takes place, possibly leading to the discovery of unex-
pected characteristics in the behaviour of the computerised model which should
be assessed with further theoretical or empirical knowledge about the problem
domain.

Further Reading

Good introductions to validation and verification of simulation models in general
are Sargent (1999) and Troitzsch (2004), the latter with a focus on social simula-
tion. Validation of agent-based models in particular is addressed by Amblard and
colleagues (Amblard et al. 2007).

For readers more interested in single aspects of V&V with regard to agent-based

models in the context of social simulation, the following papers provide highly
accessible starting points:

Edmonds and Hales (2003) demonstrate the importance of model replication
(or model alignment) by means of a clear example.

Boero and Squazzoni (2005) examine the use of empirical data for model
calibration and validation and argue that “the characteristics of the empirical
target” influence the choice of validation strategies.

Moss and Edmonds (2005) discuss an approach for cross-validation that
combines the involvement of stakeholders to validate the model qualitatively
on the micro level with the application of statistical measures to numerical
outputs to validate the model quantitatively on the macro level.

Finally, for a more in-depth epistemological perspective on verification and

validation I would refer the inclined reader to a revised version of my EPOS
2006 paper (David 2009).

170 N. David

References

Amblard F, Bommel P, Rouchier J (2007) Assessment and validation of multi-agent models.
In: Phan D, Amblard F (eds) Agent-based modelling and simulation in the social and human
sciences. The Bardwell Press, Oxford, pp 93-114

Arai R, Watanabe S (2008) A quantitative comparison method for multi-agent based simulation in
the feature space. In: David N, Sichman JS (eds) Multi-agent-based simulation IX, MABS
2008, revised selected papers (Lecture notes in artificial intelligence), vol 5269. Springer,
Berlin, pp 154-166

Axelrod R (1997a) The dissemination of culture: a model with local convergence and global
polarization. J Conf Resolut 41(2):203-226

Axelrod R (1997b) Advancing the art of simulation in the social sciences. In: Conte R,
Hegselmann R, Terna P (eds) Simulating social phenomena. Springer, Berlin, pp 21-40

Axtell R, Axelrod R, Epstein J, Cohen M (1996) Aligning simulation models: a case study and
results. Comp Math Organiz Theory 1(2):123-141

Barreteau O, Bousquet F, Attonaty JM (2001) Role-playing games for opening the black box of
multi-agent systems: method and lessons of its application to Senegal River Valley irrigated
systems. J Artif Soc Soc Simul 4(2). http://jasss.soc.surrey.ac.uk/4/2/5.html

Barreteau O et al (2013) Participatory approaches. Chapter 10 in this volume

Boero R, Squazzoni F (2005) Does empirical embeddedness matter? Methodological issues on
agent-based models for analytical social science. J Artif Soc Soc Simul 8(4). http://jasss.soc.
surrey.ac.uk/8/4/6.html

David N (2009) Validation and verification in social simulation: patterns and clarification of
terminology. In: Squazzoni F (ed) Epistemological aspects of computer simulation in the social
sciences, second international workshop, EPOS 2006, Brescia, 5-6 Oct 2006, revised selected
and invited papers (Lecture notes in computer science), vol 5466. Springer, Berlin, pp 117-129

David N, Sichman J, Coelho H (2003) Towards an emergence-driven software process for agent-
based-simulation. In: Sichman JS, Bousquet F, Davidsson P (eds) Multi-agent-based simula-
tion II, third international workshop, MABS 2002, Bologna, 15-16 July 2002, revised papers
(Lecture notes in artificial intelligence), vol 2581. Springer, Berlin, pp 89-104

David N, Marietto M, Sichman J, Coelho H (2004) The structure and logic of interdisciplinary
research in agent-based social simulation. J Artif Soc Soc Simul 7(3). http://jasss.soc.surrey.ac.
uk/7/3/4.html

David N, Sichman J, Coelho H (2007) Simulation as formal and generative social science: the very
idea. In: Gershenson C, Aerts D, Edmonds B (eds) Worldviews, science and us: philosophy and
complexity. World Scientific, Singapore, pp 266284

David N, Caldas JC, Coelho H (2010) Epistemological perspectives on simulation III: selected papers
of EPOS 2008. J Artif Soc Soc Simul 13(1), special section. http://jasss.soc.surrey.ac.uk/13/1/

Dean S et al (2000) Understanding Anasazi culture change through agent-based modeling.
In: Kohler T, Gumerman G (eds) Dynamics in human and primate societies: agent-based
modeling of social and spatial processes. Oxford University Press, New York/Oxford,
pp 179-205

Edmonds B, Hales D (2003) Replication, replication and replication: some hard lessons from
model alignment. J Artif Soc Soc Simul 6(4). http://jasss.soc.surrey.ac.uk/6/4/11.html

Edmonds B, Moss S (2005) From KISS to KIDS: an ‘anti-simplistic’ modelling approach.
In: Davidsson P, Logan B, Takadama K (eds) Multi-agent and multi-agent-based simulation
(Lecture notes in artificial intelligence), vol 3415. Springer, Berlin, pp 130-144

Frank U, Troitzsch KG (2005) Epistemological perspectives on simulation. J Artificial Soc Soc
Simul 8(4). http://jasss.soc.surrey.ac.uk/8/4/7.html

Galan JM et al (2013) Checking simulations: detecting and avoiding errors and artefacts. Chapter 6
in this volume

Gilbert N (2008) Agent-based models, vol 153, Quantitative applications in the social sciences.
Sage, London

http://jasss.soc.surrey.ac.uk/4/2/5.html
http://jasss.soc.surrey.ac.uk/8/4/6.html
http://jasss.soc.surrey.ac.uk/8/4/6.html
http://jasss.soc.surrey.ac.uk/7/3/4.html
http://jasss.soc.surrey.ac.uk/7/3/4.html
http://jasss.soc.surrey.ac.uk/13/1/
http://jasss.soc.surrey.ac.uk/6/4/11.html
http://jasss.soc.surrey.ac.uk/8/4/7.html

8 Validating Simulations 171

Gross D, Strand R (2000) Can agent-based models assist decisions on large-scale practical
problems? A philosophical analysis. Complexity 5(6):26-33

Kleijnen JPC (1995) Verification and validation of simulation models. Euro J Operat Res 82:
145-162

Law A, Kelton D (1991) Simulation modelling and analysis, 2nd edn. McGraw Hill, New York

Miller JH (1998) Active nonlinear tests (ANTSs) of complex simulation models. Manage Sci 44(6):
820-830

Moss S, Edmonds B (2005) Sociology and simulation: statistical and qualitative cross-validation.
Am J Sociol 110(4):1095-1131

Munson L, Hulin C (2000) Examining the fit between empirical data and theoretical simulations.
In: Ilgen DR, Hulin CL (eds) Computational modeling of behaviour in organisations: the third
scientific discipline. American Psychological Association, Washington, DC, pp 69-84

Rouchier J, Cioffi-Revilla C, Polhill JG, Takadama K (2008) Progress in model-to-model analysis.
J Artif Soc Soc Simul 11(2). http://jasss.soc.surrey.ac.uk/11/2/8.html

Sargent R (1999) Verification and validation of simulation models. In: Farrington PA, Nembhard
HB, Sturrock DT, Evans GW (eds) Proceedings of the 1999 winter simulation conference, Squaw
Peak, Phoenix, 5-8 Dec 1999, pp 39—48. http://www.informs-sim.org/wsc99papers/005.PDF

Sommerville I (1995) Software engineering, 5th edn. Addison Wesley, Boston

Squazzoni F (2009) Epistemological aspects of computer simulation in the social sciences,
second international workshop, EPOS 2006, Brescia, Revised selected and invited papers
(Lecture notes in computer science), vol 5466. Springer, Berlin, 5-6 Oct 2006

Takadama K, Suematsu Y, Sugimoto N, Nawa N, Shimohara K (2003) Cross-element validation in
multi-agent-based simulation: switching learning mechanisms in agents. J Artif Soc Soc Simul
6(4). http://jasss.soc.surrey.ac.uk/6/4/6.html

Troitzsch K (2004) Validating simulation models. In: Horton G (ed) Proceedings of the 18th European
simulation multiconference, ESM 2004, 13-16 June 2004, Magdeburg. SCS, Erlangen,
pp 265-270

http://jasss.soc.surrey.ac.uk/11/2/8.html
http://www.informs-sim.org/wsc99papers/005.PDF
http://jasss.soc.surrey.ac.uk/6/4/6.html

Chapter 9
Understanding Simulation Results

Andrew Evans, Alison Heppenstall, and Mark Birkin

Why Read This Chapter? Overall, this chapter aims to help you understand the
results that a simulation model produces, by suggesting some ways to analyse and
visualise them. The chapter concentrates on the internal dynamics of the model
rather than its relationship to the outside world.

Abstract Simulation modelling is concerned with the abstract representation of
entities within systems and their inter-relationships; understanding and visualising
these results is often a significant challenge for the researcher. Within this chapter
we examine particular issues such as finding “important” patterns and interpreting
what they mean in terms of causality. We also discuss some of the problems with
using model results to enhance our understanding of the underlying social systems
which they represent, and we will assert that this is in large degree a problem of
isolating causal mechanisms within the model architecture. In particular, we high-
light the issues of identifiability and equifinality — that the same behaviour may be
induced within a simulation from a variety of different model representations or
parameter sets — and present recommendations for dealing with this problem. The
chapter ends with a discussion of avenues of future research.

9.1 Introduction

Simulation models may be constructed for a variety of purposes. Classically these
purposes tend to centre on either the capture of a set of knowledge or making
predictions. Knowledge capture has its own set of issues that are concerned
with structuring and verifying knowledge in the presence of contradiction and
uncertainty. The problems of prediction, closely associated with calibration and

A. Evans (P<) « A. Heppenstall « M. Birkin
Centre for Spatial Analysis and Policy, University of Leeds, Leeds, Britain, LS2 9JT
e-mail: a.j.evans@]leeds.ac.uk

B. Edmonds and R. Meyer (eds.), Simulating Social Complexity, 173
Understanding Complex Systems, DOI 10.1007/978-3-540-93813-2_9,
© Springer-Verlag Berlin Heidelberg 2013

mailto:a.j.evans@leeds.ac.uk

174 A. Evans et al.

validation, centre around comparisons with real data, for which the methods
covered in Chap. 8 (David 2013) are appropriate. In this chapter, however, we
look at what our models tell us through their internal workings and logic; how we
might understand/interpret simulation results as results about an attempted simu-
lation of the real world, rather than as results we expect to compare directly with
the world. Here then, we tackle the third purpose of modelling: the exploration of
abstracted systems through simulation. In a sense, this is a purpose predicated
only on the limitations of the human mind. By common definition, simulation
modelling is concerned with abstract representations of entities within systems
and their interrelationships, and with the exploration of the ramifications of these
abstracted behaviours at different temporal and geographical scales. In a world in
which we had larger brains, models would not be required to reveal anything — we
would instantly see the ramifications of abstracted behaviours in our heads. To a
degree, therefore, models may be seen as replacing the hard joined-up thinking
that is required to make statements about the way the world works. This chapter
looks at what this simplifying process tells us about the systems we are trying to
replicate.

In part, the complications of simulation modelling are a product of the dimension-
ality of the systems with which we are dealing. Let us imagine that we are tackling a
system of some spatio-temporal complexity, for example, the prices in a retail market
selling items A, B, and C. Neighbouring retailers adjust their prices based on local
competition, but the price of raw materials keeps the price surface out of equilibrium.
In addition, customers will only buy one of the products at a time, creating a link
between the prices of the three items. Here, then, we have three interdependent
variables, each of which varies spatio-temporally, with strong auto- and cross-
correlations in both time and space. What kinds of techniques can be used to tease
apart such complex systems? In Sect. 9.2 of this chapter we will discuss some of the
available methodologies broken down by the dimensionality of the system in ques-
tion and the demands of the analysis. Since the range of such techniques is extremely
sizable, we shall detail a few traditional techniques that we believe might be helpful
in simplifying model data that shows the traits of complexity, and some of the newer
techniques of promise.

Until recently, most social science models represented social systems using
mathematical aggregations. We have over 2,500 years’ worth of techniques to
call upon that are founded on the notion that we need to simplify systems as rapidly
as we can to the point at which the abstractions can be manipulated within a single
human head. As is clear, not least from earlier contributions in this volume, it is
becoming increasingly accepted that social scientists might reveal more about
systems by representing them in a less aggregate manner. More specifically, the
main difference between mathematics and the new modelling paradigm is that we
now aspire to work at a scale at which the components under consideration can be
represented as having their own discrete histories; mathematics actually works in a
very similar fashion to modern models, but at all the other scales. Naturally there
are knock-ons from this in terms of the more explicit representation of objects,
states and events, but these issues are less important than the additional simulation

http://dx.doi.org/10.1007/978-3-540-93813-2_8

9 Understanding Simulation Results 175

and analytical power that having a history for each component of a system gives us.
Of course, such a “history” may just be the discrete position of an object at a single
historical moment, and plainly at this level of complication the boundary between
such models and, for example, Markov models is somewhat diffuse, however, as
the history of components becomes more involved, so the power of modern
modelling paradigms comes to the fore. What is lacking, however, are the
techniques that are predicated on these new architectures. Whilst models which
are specified at the level of individual entities or ‘agents’ may also be analysed
using conventional mathematical techniques, in Sect. 9.3 of the chapter we will
discuss some more novel approaches which are moving the direction of understand-
ing the outputs of these new, unaggregated, models on their own terms.

One of the reasons that simulation models are such a powerful methodology for
understanding complex systems is their ability to display aggregate behaviour
which goes beyond the simple extrapolation of the behaviour of the individual
component parts. In mathematical analysis, such as dynamical systems theory, this
behaviour tends to be linked to notions of equilibrium, oscillation, and catastrophe
or bifurcation. Individual and agent-based modelling approaches have veered more
strongly towards the notion of emergence, which can be defined as “an unforeseen
occurrence; a state of things unexpectedly arising” (OED 2010). The concept of
emergence is essentially a sign of our ignorance of the causal pathways within a
system. Nevertheless, emergence is our clearest hope for developing an understand-
ing of systems using models. We hope that emergence will give us a perceptual
shortcut to the most significant elements of a system’s behaviour. When it comes to
applications, however, emergence is a rather double-edged blade: emergence hap-
pily allows us to see the consequence of behaviours without us having to follow the
logic ourselves, however it is problematic in relying upon us to filter out which of
the ramifications are important to us. As emergence is essentially a sign of incom-
plete understanding, and therefore weakly relative, there is no objective definition
of what is “important”. One might imagine one day a classification of the kinds of
patterns that relate to different types of causal history, but there is no objective
manner of recognising a pattern as “important” as such. These two problems:
finding “important” patterns (in the absence of any objective way of defining
“important”) and then interpreting what they mean in terms of causality are the
issues standing between the researcher and perfect knowledge of a modelled
system. In the fourth section of this chapter, we will discuss some of the problems
with using model results to enhance our understanding of the underlying social
systems which they represent, and we will assert that this is in large degree a
problem of isolating causal mechanisms within the model architecture. In particu-
lar, we highlight the issues of equifinality and identifiability — that the same
behaviour may be induced within a simulation from a variety of different model
representations or parameter sets — and present recommendations for dealing with
this problem. Since recognising emergence and combating the problems of
identifiability and equifinality are amongst the most urgent challenges to effective
modelling of complex systems, this leads naturally to a discussion of future
directions in the final section of the chapter.

176 A. Evans et al.

9.2 Aggregate Patterns and Conventional Representations
of Model Dynamics

Whether a model is based on deductive premises or inferred behaviours, any new
understanding of a given modelled system tends to be developed inductively.
Modellers examine model outputs, simplify them, and then try to work out the
cause utilising a combination of hypothesis dismissal, refinement and experimenta-
tion. For example, a modeller of a crowd of people might take all the responses of
each person over time and generate a single simple mean statistic for each person;
these might then be correlated against other model variables. If the correlation
represents a real causal connection, then varying the variables should vary the
statistic. Proving such causal relationships is not something we often have the
ability to do in the real world. During such an analysis the simplification process
is key: it is this that reveals the patterns in our data. The questions are: how do we
decide what needs simplifying and, indeed, how simple to make it?

We can classify model results by the dimensionality of the outputs. A general
classification for social systems would be:

< Single statistical aggregations (1D)

¢ Time series of variables (2D)

e The spatial distributions of invariants (2D) or variables (3D)
* Spatio-temporal locations of invariants (3D) or variables (4D)
e Other behaviours in multi-dimensional variable space (nD)

For simplicity, this assumes that geographical spaces are essentially two-
dimensional (while recognising that physical space might also be represented
along linear features such as a high street, across networks, or within a three
dimensional topographical space for landforms or buildings). It should also be
plain that in the time dimension, models do not necessarily produce just a stream
of data, but that the data can have complex patternation. By their very nature,
individual-level models, predicated as they are on a life-cycle, will never stabilise
in the way a mathematical model might (Grimm 1999); instead models may run
away or oscillate, either periodically or chaotically.

Methods for aiding pattern recognition in data break down, again, by the
dimensionality of the data, but also by the dimensionality of their outputs. It is
quite possible to generate a one-number statistic for a 4D spatio-temporal distribution.
In some cases, the reduction of dimensionality is the explicit purpose of the technique,
and the aim is that patterns in one set of dimensions should be represented as closely
as possible in a smaller set of dimensions so they are easier to understand. Table 9.1
below presents a suite of techniques that cross this range (this is not meant to be an
exhaustive list; after all, pattern recognition is a research discipline of its own with a
whole body of literature including several dedicated journals).

To begin with, let us consider some examples which produce outputs in a single
dimension. In other words, techniques for generating global and regional statistics
describing the distribution of variables across space, either a physical space, or a

9 Understanding Simulation Results 177

Table 9.1 Pattern recognition techniques for different input and output data dimensions

1D output 2D output 3D output 4D output ND
1D input
2D input Exploratory Cluster
statistics locating
Fourier/wavelet
transforms
3D input Entropy Phase diagrams
statistics Fourier/wavelet
transforms
4D input Diffusion Time slices Recurrence
statistics plots
nD Network Eigenvector Sammon Animations Heuristic
statistics analysis mapping techniques

variable space. Such statistics generally tend to be single time-slice, but can be
generated for multiple time-slices to gauge overall changes in the system dynamics.

Plainly, standard aggregating statistics used to compare two distributions, such as
the variable variance, will lose much of interest, both spatially and temporally. If we
wish to capture the distribution of invariants, basic statistics like Nearest-Neighbour
(Clark and Evans 1954) or the more complex patch shape, fragmentation and
connectivity indices of modern ecology (for a review and software see McGarigal
2002) provide a good starting point. Networks can be described using a wide variety
of statistics covering everything from shortest paths across a network, to the quantity
of connections at nodes (for a review of the various statistics and techniques
associated with networks, see Boccaletti et al. 2006; Evans 2010). However, we
normally wish to assess the distribution of a variable across a surface — for example a
price surface or a surface of predicted retail profitability. One good set of global
measures for such distributions are entropy statistics. Suppose we have a situation in
which a model is trying to predict the number of individuals that buy product A in one
of four regions. The model is driven by a parameter, beta. In two simulations we get
the following results: simulation one (low beta): 480, 550, 520, 450; simulation two:
(high beta) 300, 700, 500, 400. Intuitively the first simulation has less dispersal or
variability than the second simulation. An appropriate way to measure this variability
would be through the use of entropy statistics. The concept of entropy originates in
thermodynamics, where gases in a high entropy state contain dispersed molecules.
Thus high entropy equates to high levels of variability. Entropy statistics are closely
related to information statistics where a high entropy state corresponds to a high
information state. In the example above, simulation two is said to contain more
‘information’ than simulation one, because if we approximate the outcome using
no information we would have a flat average — 500, 500, 500, 500 — and this is closer

178 A. Evans et al.

to simulation one than simulation two. Examples of entropy and information statistics
include Kolmogorov-Chaitin, mutual information statistics and the Shannon infor-
mation statistic. Most applications in the literature use customised code for the
computation of entropy statistics, although the computation of a limited range of
Generalised Entropy indices is possible within Stata.! Entropy statistics can also be
used to describe flows across networks. In this sense they provide a valuable addition
to networks statistics: most network statistics concentrate on structure rather than the
variable values across them. Unless they are looking specifically at the formation of
networks over time, or the relationship between some other variable and network
structure, modellers are relatively bereft of techniques to look at variation on a
network.

In the case where variability is caused and constrained by neighbourhood effects,
we would expect the variation to be smoother across a region. We generally expect
objects in space under neighbourhood effects to obey Tobler’s first law of geography
(1970) that everything is related, but closer things are related more. This leads to
spatial auto- or cross-correlation, in which the values of variables at a point reflect
those of their neighbours. Statistics for quantifying such spatial auto- or cross-
correlation at the global level, or for smaller regions, such as Moran’s I and Geary’s
C, are well-established in the geography literature (e.g. Haining 1990); a useful
summary can be found in Getis (2007).

Such global statistics can be improved on by giving some notion of the direction
of change of the auto- or cross-correlation. Classically this is achieved through
semi-variograms, which map out the intensity of correlation in each direction
traversed across a surface (for details, see Isaaks and Srivastava 1990). In the
case where it is believed that local relationships hold between variables, local linear
correlations can be determined, for example using Geographically Weighted
Regression (GWR: for details, see Fotheringham et al. 2002). GWR is a technique
which allows the mapping of Rs calculated within moving windows across a
multivariate surface and, indeed, mapping of the regression parameter weights.
For example, it would be possible in our retail results to produce a map of the
varying relationship between the amount of A purchased by customers and the
population density, if we believed these were related. GWR would not just allow a
global relationship to be determined, but also how this relationship changed across
a country. One important but somewhat overlooked capability of GWR is its ability
to assess how the strength of correlations varies with scale by varying the window
size. This can be used to calculate the key scales at which there is sufficient overlap
between the geography of variables to generate strong relationships (though some
care is needed in interpreting such correlations, as correlation strength generally
increases with scale: Robinson 1950; Gehlke and Biehl 1934). Plainly, identifying
the key scale at which the correlations between variables improve gives us some

! Confusingly, ‘generalised entropy’ methods are also widely used in econometrics for the
estimation of missing data. Routines which provide this capability, e.g. in SAS, are not helpful
in the description of simulation model outputs!

9 Understanding Simulation Results 179

ability to recognise key distance-scales at which causality plays out. In our example,
we may be able to see that the scale at which there is a strong relationship
between sales of A and the local population density increases as the population
density decreases, suggesting rural consumers have to travel further and a concom-
itant non-linearity in the model components directing competition.

If, on the other hand, we believe the relationships do not vary smoothly across a
modelled surface, we instead need to find unusual clusters of activity. The ability to
represent spatial clustering is of fundamental importance, for example, within
Schelling’s well-known model of segregation in the housing market (Schelling
1969). However clustering is often not so easy to demonstrate within both real
data and complex simulation outputs. The most recent techniques use, for example,
wavelets to represent the regional surfaces, and these can then be interpreted for
cluster-like properties. However, for socio-economic work amongst the best soft-
ware for cluster detection is the Geographical Analysis Machine (GAM), which not
only assesses clustering across multiple scales, but, also allows assessment of
clustering in the face of variations in the density of the population at risk. For
example, it could tell us where transport network nodes were causing an increase in
sales of A, by removing regions with high sales caused by high population density
(the population “at risk” of buying A). Clusters can be mapped and their signifi-
cance assessed (Openshaw et al. 1988).

Often, simulations will be concerned with variations in the behaviour of systems,
or their constituent agents, over time. In common with physical systems, social and
economic systems are often characterised by periodic behaviour, in which similar
states recur, although typically this recurrence is much less regular than in many
physical systems. For example, economic markets appear to be characterised by
irregular cycles of prosperity and depression. Teasing apart a model can provide non-
intuitive insights into such cycles. For example, Heppenstall et al. (2006) considered
a regional network of petrol stations and showed within an agent simulation how
asymmetric cyclical variations in pricing (fast rises and slow falls), previously
thought to be entirely due to a desire across the industry to maintain artificially
high profits, could in fact be generated from more competitive profit-maximisation in
combination with local monitoring of network activity. While it is, of course, not
certain these simpler processes cause the pattern in real life, the model exploration
does give researchers a new explanation for the cycles and one that can be
investigated in real petrol stations.

In trying to detect periodic behaviour, wavelets are rapidly growing in popularity
(Graps 2004). In general, one would assume that the state of the simulation can be
represented as a single variable which varies over time (let’s say the average price
of A). A wavelet analysis of either observed or model data would decompose this
trend into chunks of time at varying intervals, and in each interval the technique
identifies both a long-term trend and a short-term fluctuation. Wavelets are there-
fore particularly suitable for identifying cycles within data. They are also useful as
filters for the removal of noise from data, and so may be particularly helpful in
trying to compare the results from a stylised simulation model with observed data
which would typically be messy, incomplete or subject to random bias. It has been

180 A. Evans et al.

argued that such decompositions are fundamentally helpful in establishing a basis
for forecasting (Ramsey 2002). A software environment for wavelet analysis is
provided by Wavelab, using procedures derived from the Matlab statistical
package.

Wavelets are equally applicable in both two and three dimensions. For example,
they may be useful in determining the diffusion of waves across a two-dimensional
space and over time, and can be used to analyse, for example, the relationship
between wave amplitude and propagation distance. Viboud et al. (2006) provide a
particularly nice example of such a use, looking at the strength of the propagation of
influenza epidemics as influenced by city size and average human travel distances
in the USA. Other, more traditional statistics, such as the Rayleigh statistic (Fisher
etal. 1987; Korie et al. 1998) can also be used to assess the significance of diffusion
from point sources.

In addition to global and regional aggregate statistics of single variables or cross-
correlations, it may be that there is simply too great a dimensionality to recognise
patterns in outputs and relate them to model inputs. At this point it is necessary to
engage in multi-dimensional scaling. If an individual has more than four
characteristics, then multi-dimensional scaling methods can be used to represent the
individuals in two or three dimensions. In essence, the problem is to represent the
relation between individuals such that those which are most similar in #-dimensions
still appear to be closest in a lower dimensional space which can be visualised more
easily. The most popular technique is Sammon mapping. This method relies on the
ability to optimise an error function which relates original values in high dimensional
space to the transformed values. This can be achieved using standard optimisation
methods within packages such as Matlab. Multidimensional scaling can be useful in
visualising the relative position of different individuals within a search space, for
exploring variations in a multi-criteria objective function within a parameter space, or
for comparing individual search paths within different simulations (Pohlheim 2006).

Eigenvector methods are another form of multi-dimensional scaling. Any multi-
dimensional representation of data in n-dimensional space can be transformed into
an equivalent space governed by n orthogonal eigenvectors. The main significance
of this observation is that the principal eigenvector constitutes the most efficient
way to represent a multi-dimensional space within a single value. For example,
Moon, Schneider and Carley (2006) use the concept of ‘eigenvector centrality’
within a social network to compute a univariate measure of relative position based
on a number of constituent factors.

Clustering techniques collapse multi-dimensional data so that individual cases
are members of a single group or cluster, classified on the basis of a similarity
metric. The method may therefore be appropriate if the modeller wishes to under-
stand the distribution of an output variable in relation to the combination of several
input variables. For example, Schreinemachers and Berger (2006) present a model
of land-use in relation to farm characteristics such as soil quality, agricultural
intensity, market orientation, water use, social capital and migration. In order to
understand land use outcomes (for example, preference for crops versus livestock)
farms were clustered into nine groups based on their shared characteristics. Cluster

9 Understanding Simulation Results 181

analysis is easy to implement in all the major statistics packages (SAS, SPSS,
BMDP). The technique is likely to be most useful in empirical applications with a
relatively large number of agent characteristics (i.e. six or more) than in idealised
simulations with simple agent rules. One advantage of this technique over multidi-
mensional scaling is that it is possible to represent statistical variation within the
cluster space.

9.3 Individual Patterns, Novel Approaches and Visualisation

Plainly aggregate statistics like those above are a useful way of simplifying
individual-level data, both in terms of complexity and dimensionality. However,
they are the result of over 2,500 years of mathematical development in a research
environment unsuited to the mass of detail associated with individual-level data.
Now, computers place us in the position of being able to cope with populations of
individual-level data at a much smaller scale. We still tend to place our own
understanding at the end of an analytical trail, constraining the trail to pass through
some kind of simplification and higher level of aggregation for the purposes of
model analysis. Despite this, it is increasingly true that individual-level data is dealt
with at the individual-level for the body of the analysis and this is especially true in
the case of individual-level modelling, in which experimentation is almost always
enacted at the individual-level. Whether it is really necessary to simplify for human
understanding at the end of an analysis is not especially clear. It may well be that
better techniques might be developed to do this than those built on an assumption of
the necessity of aggregation.

At the individual-level, we are interested in recognising patterns in space and time,
seeing how patterns at different scales affect each other, and then using this to say
something about the behaviour of the system/individuals. Patterns are often indicators
of the attractors to which individuals are drawn in any given system, and present a
shortcut to understanding the mass of system interactions. However, it is almost as
problematic to go through this process to understand a model as it is, for example, to
derive individual-level behaviours from real large-size spatio-temporal datasets of
socio-economic attributes. The one advantage we have in understanding a model is
that we do have some grip on the foundation rules at the individual-scale. Nonethe-
less, understanding a rule, and determining how it plays out in a system of multiple
interactions are very different things. Table 9.2 outlines some of the problems.

Our chief tool for individual-level understanding without aggregation is, and
always has been, the human ability to recognise patterns in masses of data.
Visualisation, for all its subjectivity and faults, remains a key element of the
research process. The standard process is to present one or more attributes of the
individuals in a map in physical or variable space. Such spaces can then be evolved
in movies or sliced in either time or space (Table 9.3 shows some examples). In
general, we cannot test the significance of a pattern without first recognising it
exists, and to that extent significance testing is tainted by the requirement that it test

182 A. Evans et al.

Table 9.2 Issues related to understanding a model at different levels of complexity

Complexity Issues

Spatial What is the impact of space (with whom do individuals initiate transactions
and to what degree)?

Temporal How does the system evolve?

Individuals How do we recognise which individual behaviours are playing out in the
morass of interactions?

Relationships How do we recognise and track relationships?

Scale How can we reveal the manner in which individual actions affect the

large scale system and vice versa?

our competency in recognising the correct pattern as much as that the proposed
pattern represents a real feature of the distribution of our data. Visualisation is also a
vital tool in communicating results within the scientific community and to the wider
public. The former is not just important for the transmission of knowledge, but
because it allows others to validate the work. Indeed, the encapsulation of good
visualisation techniques within a model framework allows others to gain deeper
understanding of one’s model, and to experiment at the limits of the model — what
Grimm (2002) calls “Visual Debugging”. Good model design starts like the design
of any good application, with an outline of what can be done to make it easy to use,
trustworthy, and simple to understand. Traditionally, user interface design and
visualisation have been low on the academic agenda, to the considerable detriment
of both the science and the engagement of taxpayers. Fortunately, in the years since
the turn of the millennium there has been an increasing realisation that good design
engages the public, and that there is a good deal of social-science research that can
be built on that engagement. Orford et al. (1999) identify computer graphics,
multimedia, the World Wide Web, and virtual reality as four visualisation
technologies that have recently seen a considerable evolution within the social
sciences. There is an ever increasing array of visualisation techniques at our
disposal: Table 9.3 presents a classification scheme of commonly used and more
novel visualisation methods based on the dimensionality and type of data that is
being explored.

Another classification scheme of these techniques that is potentially very useful
comes from Andrienko et al. (2003). This classification categorises techniques
based on their applicability to different types of data.

» “Universal” techniques that can be applied whatever the data, e.g. querying and
animation.

« Techniques revealing existential change, e.g. time labels, colouring by age,
event-lists and space-time cubes.

» Techniques about moving objects, e.g. trajectories, space-time cubes, snapshots
in time.

» Techniques centered on thematic/numeric change, e.g. change maps, time-series
and aggregations of attribute values.

9 Understanding Simulation Results

183

Table 9.3 Classification of visualisation methods according to dimensionality and type of data

Method Pro Con
Spatial 1D/2D Map: overlay; View of whole Cannot analyse trajectory
animated trajectory of movement. If several
trajectory of an object objects cross paths,

representation
(e.g. arrows);
snapshots

Spatial distribution:
e.g. choropleth
maps

Time-series graphs/
linear and
cyclical graphs

Temporal 1D

Rank clocks (e.g.
Batty 2006)

Rose diagrams
(e.g. Parry 2005)

Phase diagram

Spatio-temporal
3D/4D

Map animation
(e.g. Patel and
Hudson-Smith
2012)

Space-time cube
(Andrienko
et al. 2003)

Recurrence plot

Vector plotting/
Contour slicing
(Ross and Vosper
2003)

Gives a snapshot
of an area

Show how the system
(or parameters)
change over time

Good for visualising
change over time
in ranked order of
any set of objects

Good for
representation of
circular data e.g.
wind speed and
direction

Excellent for
examining system
behaviour over
time for one or
two variables

Can see system
evolving spatially
and temporally

Can contain space-
time paths for
individuals

Reveals hidden
structures over
time and in space

Ability to visualise
2D or 3D data
and multiple
dimensional
data set

cannot tell whether
objects met at crossing
point or visited points at
different times

Cannot see how a system
evolves through time.
Aggregate view of area.
Only represents one
variable; hard to
distinguish relationships

No spatial element. Hard to
correlate relationships
between multivariate
variables

No spatial element

No spatial element

No spatial element. Gets
confusing quickly with
more than two variables

Hard to quantify or see
impacts of individual
behaviour, i.e. isolated
effects

Potentially difficult to
interpret

Computationally intensive.
Methods difficult to
apply. Have to generate
multiple snapshots and
run as an animation

Hard to quantify
individual effects

184 A. Evans et al.

For information on other visualisation schemes, see Cleveland (1983),
Hinneburg et al. (1999) and Gahegan (2001).

In each case, the techniques aim to exploit the ease with which humans recognise
patterns (Muller and Schumann 2003). Pattern recognition is, at its heart, a human
attribute, and one which we utilise to understand models, no matter how we process
the data. The fact that most model understanding is founded on a human recognition
of a “significant” pattern is somewhat unfortunate, as we will bring our own biases
to the process. At worst we only pay attention to those patterns that confirm our
current prejudices: what Wyszomirski et al. (1999) call the WYWIWYG — What You
Want is What You Get — fallacy. At best, we will only recognise those patterns that
match the wiring of the human visual system and our cultural experiences. The
existence of visualisation techniques generally points up the fact that humans are
better at perceiving some patterns than others, and in some media than others — it is
easier to see an event as a movie and not a binary representation of the movie file
displayed as text. However, in addition to standard physiological and psychological
restrictions on pattern recognition consistent to all people, it is also increasing
apparent there are cultural differences in perceptions. Whether there is some
underlying biological norm for the perception of time and space is still moot
(Nisbett and Masuda 2003; Boroditsky 2001) but it is clear that some elements of
pattern recognition vary by either culture or genetics (Nisbett and Masuda 2003;
Chua et al. 2005). Even when one looks at the representation of patterns and
elements like colour, there are clear arguments for a social influence on the
interpretation of even very basic stimuli into perceptions (Roberson et al. 2004).
Indeed, while there is a clear and early ability of humans to perceive moving objects
in a scene as associated in a pattern (e.g. Baird et al. 2002), there are cultural traits
associated with the age at which even relatively universal patterns are appreciated
(Clement et al. 1970). The more we can objectify the process, therefore, the less our
biases will impinge on our understanding. In many respects it is easier to remove
human agents from data comparison and knowledge development than pattern
hunting, as patterns are not something machines deal with easily. The unsupervised
recognition of even static patterns repeated in different contexts is far from com-
putationally solved (Bouvrie and Sinha 2007). Most pattern-hunting algorithms try
to replicate the process found in humans and in that sense one suspects we would do
better to skip the pattern hunting and concentrate on data consistency and the
comparison of full datasets directly. At best we might say that an automated
“pattern” hunter that wasn’t trying to reproduce the human ability would instead
seek to identify attractors within the data.

Figure 9.1 presents several visualisation methods that are commonly found in
the literature, ranging from 1D time-series representation Fig. 9.1a to contour plots
Fig. 9.1d that could be potentially used for 4D representation.

Visualisations are plainly extremely useful. Here we’ll look at a couple of
techniques that are of use in deciphering individual-level data: phase maps and
recurrence plots. Both techniques focus on the representation of individual level
states and the relationships between stated individuals.

9 Understanding Simulation Results

a b

400 Income (pounds)

25000
20000
15000

300

185

25000
20000
15000

10000

10000
5000

5000
200

Price

100 {—¢f

42
410 415
410

450405

420
Easting (km)

Northing (km)

Time 440

c oo d

U and streamlines

4.50
4.00
3.50

10000

3.00
2.50
2.00
1.50

5000

10000 SGK
0004

10000 o

N

5000

15000 10000 15000

1.00
0.500
0.00
—-0.500

-100 0
X (m)

100

15000

Fig. 9.1 Examples of different visualisation methods. (a) 1D time-series graph (idealised data).
(b) 3D interpolated map (idealised data). (c) Rose diagram. (d) Contour plot

9.3.1 Phase Maps

Phase space maps are commonly used by physicists to study the behaviour of
physical systems. In any graphical representation, a phase space map represents
an abstract view of the behaviour of one or more of the system components. These
can be particularly useful to us as we can plot the behaviour of our system over
time. This allows us to understand how the system is evolving and whether it is
chaotic, random, cyclical or stable (Fig. 9.2).

Each of the graphs produced in Fig. 9.2 are a representation of the coincident
developments in two real neighbouring city centre petrol stations in Leeds (UK)
over a 30 day period (sampled every other day). Figure 9.2a represents a stable
system. Here, neither of the stations is changing in price and thus, a fixed point is
produced. However, this behaviour could easily change if one or both of the stations
alters it price. This behaviour is seen in Fig. 9.2b. Both stations are changing their
prices each day (from 75.1p to 75.2p to 75.1p), this creates a looping effect; the
stations are cycling through a pattern of behaviour before returning to their starting

186 A. Evans et al.

a b
755 75.02
75.45 ~
T 754 5 7521
] =
= 7535 S 75184
£ 7]
®» 753 . b
® S 75.16
o 7525 .g
2 752 & 7514
o
75.15 75.12
75.1
75.05 7511
75 75.08
75 75.05 7541 75.15 75.2 75.25 75.3 7508 751 7512 7514 7516 7518 752 75.22
Price at Station 1 Price at Station 1
C 90 d
88 4 85 1
o~
N 861 g 841
2 844 =
8§ g 8 83
& 1 7}
= g0 w 82
z 80 8
8 78 2 81
& 76 &
o 80 1
74 4
72 | 79
70 T T T T T T T T] 78 T T T T T v
69 70 7 72 73 74 75 76 77 78 73 74 75 76 7 78 79
Price (p) Station1 Price (p) Station 1

Fig. 9.2 Examples of different types of behaviour found in urban petrol stations (Leeds).
(a) Stable (b) Looping (c) Two types of behaviour (d) Chaotic

point. Note that the graph appears to reveal a causative link between the two
stations as they are never simultaneously low. Figure 9.2c and d show a more
varied pattern of behaviour between the stations. In Fig. 9.2c, one point is rising in
price whilst the other is oscillating. In Fig. 9.2d, there is no apparent pattern in the
displayed behaviour. Simply knowing about these relationships is valuable infor-
mation and allows us a greater understanding of this system, its behaviour and its
structure. For example, it may be that the only difference between the graphs is one
of distance between the stations, but we would never see this unless the graphs
allowed us to compare at a detailed level the behaviours of stations that potentially
influence each other.

9.3.2 Recurrence Plots

Recurrence plots (RPs) are a relatively new technique for the analysis of time series
data that allows both visualisation and quantification of structures hidden within
data or exploration of the trajectory of a dynamical system in phase space
(Eckmann et al. 1987). They are particularly useful for graphically detecting hidden
patterns and structural changes in data as well as examining similarities in patterns
across a time series data set (where there are multiple readings at one point). RPs

9 Understanding Simulation Results 187

b
1.00 1.00
0.900 100 |- pem . == o - [0.900
0.800 N IV S —0.800
0.700 0.700
0.600 «~ i 0.600
0.500 § 0.500
0400 %0 0.400
0.300 0.300
0.200 85 0.200
0.100 y - 1] 0.100
0.00 80 . 0.00
40 60 80 100
Day 1

Fig. 9.3 Example of recurrence plots

can be also used to study the nonstationarity of a time series as well as to indicate its
degree of aperiodicity (Casadagli 1997; Kantz and Schreiber 1997). These features
make RPs a very valuable technique for characterising complex dynamics in the
time domain (Vasconcelos et al. 2006), a factor reflected in the variety of
applications that RPs can now found in, ranging from climate variation (Marwan
and Kruths 2002), and music (Foote and Cooper 2001) to heart rate variability
(Marwan et al. 2002).

Essentially a RP is constructed via a matrix where values at a pair of time-steps
are compared against each other. If the system at the two snapshots is completely
different, the result is 1.0 (black), while completely similar periods are attributed
the value 0.0 (represented as white). Through this, a picture of the structure of the
data is built up. Figure 9.3a shows the RP of the change in price at a retail outlet
over 100 days. Above the RP is a time-series graph diagrammatically representing
the change in price. Changes in price, either increases, decreases, or oscillations,
can be clearly seen in the RP. Figure 9.3b illustrates how oscillations in the change
in the price data are represented in the RP.

Early work on this area has shown that there is considerable potential in the
development and adaptation of this technique. Current research is focused on the
development of cross-reference RPs (consideration of the phase space trajectories
of two different systems in the same phase space) and spatial recurrence plots.

9.4 Explanation, Understanding and Causality

Once patterns are recognised, ‘“understanding” our models involves finding
explanations highlighting the mechanisms within the models which give rise to
these patterns. The process of explanation may be driven with reference to current
theory or developing new theory. This is usually achieved through:

188 A. Evans et al.

1. Correlating patterns visually or statistically with other parts of the model, such as
different geographical locations, or with simulations with different starting
values;

2. Experimentally adjusting the model inputs to see what happens to the outputs;

3. Tracking the causal processes through the model.

It may seem obvious, and yet it is worth pointing out that model outputs can only
causally relate to model inputs, not additional data in the real world. Plainly insights
into the system can come from comparison with external data that is correlated or
mis-correlated with model outputs, but this is not the same as understanding your
model and the way it currently represents the system. One would imagine that this
means that understanding of a model cannot be facilitated by comparing it with
other, external, data, and yet it can often be worth:

4. Comparing model results with real world data,

because the relationships between real data and both model inputs and model
outputs may be clearer than the relationships between these two things within the
model.

Let’s imagine, for example, a model that predicts the location of burglaries
across a day in a city region where police corruption is rife. The model inputs are
known offenders’ homes, potential target locations and attractiveness, the position
of the owners of these targets and the police, who prefer to serve the wealthy. We
may be able to recognise a pattern of burglaries that moves, over the course of the
day, from the suburbs to the city centre. Although we have built into our model the
fact that police respond faster to richer people, we may find, using (1) that our
model doesn’t show less burglaries in rich areas, because the rich areas are so
spatially distributed that the police response times are stretched between them. We
can then alter the weighting of the bias away from the wealthy (2) to see if it
actually reduces the burglary rate in the rich areas by placing police nearer these
neighbourhoods as an ancillary effect of responding to poor people more. We may
be able to fully understand this aspect of the model and how it arises (3), but still
have a higher than expected burglary rate in wealthy areas. Finally, it may turn out
(4) that there is a strong relationships between these burglaries and real data on
petrol sales, for no other reason than both are high at transition times in this social
system, when the police would be most stretched between regions — suggesting in
turn that the change in police locations over time is as important as their positions at
any one time.

Let us look at each of these methodologies for developing understanding in turn.

Correlation: Most social scientists will be familiar with linear regression as a
means for describing data or testing for a relationship between two variables; there
is a long scientific tradition of correlating data between models and external
variables, and this tradition is equally applicable to intra-model comparisons.
Correlating datasets is one of the areas where automation can be applied. As an
exploratory tool, regression modelling has its attractions, not least its simplicity in
both concept and execution. Simple regressions can be achieved in desktop
applications like Microsoft Excel, as well as all the major statistical packages

9 Understanding Simulation Results 189

(SAS, SPSS, BMDP, GLIM etc.). Standard methodologies are well known for
cross-correlation of both continuous normal data and time series. However even
for simple analyses with a single input and single output variable, linear regression
is not always an appropriate technique. For example, logistic regression models will
be more appropriate for binary response data, Poisson models will be superior when
values in the dependent tend to be highly clustered, while binomial models may be
the most effective when observations are highly dispersed around the mean. An
interesting example is Fleming and Sorenson (2002) in which binomial estimates of
technological innovation are compared to the complexity of the invention measured
by both the number of components and the interdependence between those
components. In behavioural space, methodologies such as Association Rule
Making (e.g. Hipp et al. 2002) allow the Bayesian association of behavioural
attributes. It is worth noting that where models involve a distribution in physical
space this can introduce problems, in particular where the model includes
neighbourhood-based behaviours and therefore the potential to develop spatial
auto and cross-correlations. These alter the sampling strategies necessary to prove
relationships — a full review of the issues and methodologies to deal with them can
be found in (Wagner and Fortin 2005).

Experimentation: In terms of experimentation, we can make the rather artificial
distinction between sensitivity testing and “what if?”” analyses — the distinction is
more one of intent than anything. In sensitivity analysis one perturbs model inputs
slightly to determine the stability of the outputs, under the presumption that models
should match the real world in being insensitive to minor changes (a presumption not
always well founded). In “what if?”” analyses, one alters the model inputs to see what
would happen under different scenarios. In addition to looking at the output values at
a particular time-slice, the stability or otherwise of the model, and the conditions
under which this varies, also give information about the system (Grimm 1999).

Tracking Causality: Since individual-based models are a relatively recent
development, there is far less literature dealing with the tracking of causality
through models. It helps a little that the causality we deal with in models, which
is essentially a mechanistic one, is far more concrete than the causality perceived by
humans, which is largely a matter of the repeated co-incidence of events. Never-
theless, backtracking through a model to mark a causality path is extremely hard,
primarily for two reasons. The first is what we might call the “find the lady
problem” — that the sheer number of interactions involved in social processes
tends to be so large we don’t have the facilities to do the tracking. The second
issue, which we might call the “drop in the ocean problem”, is more fundamental as
it relates to a flaw in the mathematical representation of objects, that is, that
numbers represent aggregated quantities, not individuals. When transacted objects
in a system are represented with numbers greater than one, it is instantly impossible
to reliably determine the path taken by a specific object through that system. For
objects representing concepts, either numerical (for example, money) or non-
numerical (for example, a meme), this isn’t a problem (one dollar is much like
any other; there is only one YouTube to know). However, for most objects such
aggregations place ambiguous nodes between what would otherwise be discrete

190 A. Evans et al.

causal pathways. Fortunately, we tend to use numbers in agent-models as a meth-
odology to cope with our ignorance (for example, in the case of calibrated
parameters), or the lack of the computing power we’d need to deal with individual
objects and their transactional histories (for example, in the case of a variable like
“number of children”). As it happens, every day brings improvements to both. It
addition, the last 10 years or so has seen considerable theoretical advances in the
determination of the probabilities of causation (for example, Pearl and Verma 1991;
Greenland and Pearl 2006). For now, however, the tracking of causality is much
easier if the models build in appropriate structures from the start. While they are in
their infancy, techniques like Process Calculi (Worboys 2005) and Petri Nets show
the potential of this area.

The inability to track causality leads to the perennial problem of identifiability,
that is, that a single model outcome may have more than one history of model
parameters that leads to it. Identifiability is part of a larger set of issues with
confirming that the model in the computer accurately reflects the system in the real
world — the so-called equifinality issue. These are issues that play out strongly during
model construction from real data and when validating a model against real data, and
areview of techniques to examine these problems, including using model variation to
determine the suitability of variables and parameters, can be found in Evans (2012).
At the model stage we are interested in, however, we at least have the advantage that
there is only one potential model that may have created the output — the one running.
Nevertheless, the identifiability of the parameters in a running model still makes it
hard to definitively say when model behaviour is reasonable. For those modelling for
prediction, this is of little consequence — as long as the model gives consistently good
predictions it may as well be a black-box. However, if we wish to tease the model
apart and look at how results have emerged, these issues become more problematic.

The mechanisms for dealing with these problems are pragmatic.

1. Examine the stability of the calibration process and/or the state of internal
variables that weren’t inputs or outputs across multiple runs.

2. Validate internal variables that weren’t inputs or outputs used in any calibration
against real data.

3. Run the model in a predictive mode with as many different datasets as possible —
the more the system can replicate reality at output, the more likely it is to
replicate reality internally. If necessary engage in inverse modelling: initialize
parameters randomly then adjust them over multiple runs until they match all
known outputs.

Of these, by far the easiest, but the least engaged with, is checking the stability of
the model in parameter space (see Evans 2012 for a review). Various Al techniques
have been applied to the problem of optimizing parameters to fit model output
distributions to some pre-determined pattern (such as a ‘real world’ distribution).
However, the stability of these parameterizations and the paths Als take to generate
them are rarely used to examine the degree to which the model fluctuates between
different states, let alone to reflect on the nature of the system. The assumption of
equifinality is that the more parameterized a model, the more likely it is a set of

9 Understanding Simulation Results 191

parameter values can be derived which fit the data but don’t represent the true
values. However, in practice the limits on the range of parameter values within any
given model allows us an alternative viewpoint: that the more parameterized rules
in a model, the more the system is constrained by the potential range of the elements
in its structure and the interaction of these ranges. For example, a simple model
a = b has no constraints, but a = b/c, where ¢ = distance between a and b, adds an
additional constraint even though there are more parameters. As such rules build up
in complex systems, it is possible that parameter values become highly constrained,
even though, taken individually, any given element of the model seems reasonably
free. This may mean that if a system is well modelled, exploration of the model’s
parameter space by an Al might reveal the limits of parameters within the
constraints of the real complex system. For example, Heppenstall et al. (2007)
use a Genetic Algorithm to explore the parameterisation of a petrol retail model/
market, and find that while some GA-derived parameters have a wide range, others
consistently fall around specific values that match those derived from expert
knowledge of the real system.

The same issues as hold for causality hold for data uncertainty and error. We
have little in the way of techniques for coping with the propagation of either
through models (see Evans 2012 for a review). It is plain that most real systems
can be perturbed slightly and maintain the same outcomes, and this gives us some
hope that errors at least can be suppressed, however we still remain very ignorant as
to how such homeostatic forces work in real systems, and how we might recognise
or replicate them in our models. Data and model errors can breed patterns in our
model outputs. An important component of understanding a model is understanding
when this is the case. If we are to use a model to understand the dynamics of a real
system and its emergent properties, then we need to be able to recognise novelty in
the system. Patterns that result from errors may appear to be novel (if we are lucky),
but as yet there is little in the way of toolkits to separate out such patterns from truly
interesting and new patterns produced intrinsically.

Currently our best option for understanding model artifacts is model-to-model
comparisons. These can be achieved by varying one of the following contexts while
holding the others the same: the model code (the model, libraries, and platform), the
computer the model runs on, or the data it runs with (including internal random
number sequences). Varying the model code (for instance from Java to C++, or
from an object-orientated architecture to a procedural one) is a useful step in that it
ensures the underlying theory is not erroneously dependent on its representation.
Varying the computer indicates the level of errors associated with issues like
rounding and number storage mechanisms, while varying the data shows the degree
to which model and theory are robust to changes in the input conditions. In each
case, a version of the model that can be transferred between users, translated onto
other platforms and run on different data warehouses would be useful. Unfortu-
nately, however, there is no universally recognised mechanism for representing
models abstracted from programming languages. Mathematics, UML, and natural
languages can obviously fill this gap to a degree, but not in a manner that allows for
complete automatic translation. Even the automatic translation of computer

192 A. Evans et al.

languages is far from satisfactory when there is a requirement that the results be
understood by humans so errors in knowledge representation can be checked. In
addition, many such translations work by producing the same binary executable.
We also need standard ways of comparing the results of models, and these are no
more forthcoming. Practitioners are only really at the stage where we can start to
talk about model results in the same way (see, for example, Grimm et al. 2006).
Consistency in comparison is still a long way off, in part because statistics for
model outputs and validity are still evolving, and in part because we still don’t have
much idea which statistics are best applied and when (for one example bucking this
trend see Knudsen and Fotheringham 1986).

9.5 Future Directions

Recognising patterns in our modelled data allows us to:

1. Compare it with reality for validation.
2. Discover new information about the emergent properties of the system.
3. Make predictions.

Of these, discovering new information about the system is undoubtedly the
hardest, as it is much easier to spot patterns you are expecting. Despite the above
advances, there are key areas where current techniques do not match our
requirements. In particular, these include:

1. Mechanisms to determine when we do not have all the variables we need to
model a system and which variables to use.

2. Mechanisms to determine which minor variables may be important in making
emergent patterns through non-linearities.

. The tracking of emergent properties through models.

. The ability to recognise all but the most basic patterns in space over time.

. The ability to recognise action across distant spaces over space and time.

. The tracking of errors, error acceleration, and homeostatic forces in models.

AN B~ W

While we have components of some of these areas, what we have is but a drop in
the ocean of techniques we need. In addition, the vast majority of our techniques are
built on the 2,500 years of mathematics that resolved to simplify systems that were
collections of individuals because we lacked the ability (either processing power or
memory) to cope with the individuals as individuals. Modern computers have given
us this power for the first time and, as of yet, the ways we describe such systems
have not caught up, even if we accept that some reduction in dimensionality and
detail is necessary for a human to understand our models. Indeed in the long-run it
might be questioned whether the whole process of model understanding and
interpretation might be divorced from humans, and delegated instead to an artifi-
cially intelligent computational agency that can better cope with the complexities
directly.

9 Understanding Simulation Results 193
Further Reading

Statistical techniques for spatial data are reviewed by McGarigal (2002) while for
network statistics good starting points are (Newman 2003) and (Boccaletti et al.
2006), with more recent work reviewed by Evans (2010). For information on
coping with auto/cross-correlation in spatial data, see (Wagner and Fortin 2005).
Patel and Hudson-Smith (2012) provide an overview of the types of simulation tool
(virtual worlds and virtual reality) available for visualising the outputs of spatially
explicit agent-based models. Evans (2012) provides a review of techniques for
analysing error and uncertainty in models, including both environmental/climate
models and what they can bring to the agent-based field. He also reviews techniques
for identifying the appropriate model form and parameter sets.

References

Andrienko N, Andrienko G, Gatalsky P (2003) Exploratory spatio-temporal visualisation: an
analytical review. J Vis Lang Comput 14(6):503-541

Baird AA et al (2002) Frontal lobe activation during object permanence: data from near-infrared
spectroscopy. Neuroimage 16:1120-1126

Batty, M (2006) Rank Clocks. Nature, 444: 592-596

Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure
and dynamics. Phys Rep 424(4-5):175-308

Boroditsky L (2001) Does language shape thought? Mandarin and English Speakers’ conceptions
of time. Cogn Psychol 43:1-22

Bouvrie JV, Sinha P (2007) Visual object concept discovery: observations in congenitally blind
children, and a computational approach. Neurocomputing 70(13-15):2218-2233

Casdagli M (1997) Recurrence plots revisited. Phys D 108(1-2):12-44

Chua HF, Boland JE, Nisbett RE (2005) Cultural variation in eye movements during scene
perception. Proc Natl Acad Sci USA 102(35):12629-12633

Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in
populations. Ecology 35(4):445-453

Clement DE, Sistrunk F, Guenther ZC (1970) Pattern perception among Brazilians as a function of
pattern uncertainty and age. J Cross Cult Psychol 1(4):305-313

Cleveland WS (1983) Visualising data. Hobart Press, Summit

David N (2013) Validating simulations. Chapter 8 in this volume

Eckmann JP, Kamphorst SO, Reulle D (1987) Recurrence plots of dynamical systems.
Europhys Lett 4(9):973-977

Evans AJ (2010) Complex spatial networks in application. Complexity 16(2):11-19

Evans AJ (2012) Uncertainty and error. In: Heppenstall AJ, Crooks AT, See LM, Batty M (eds)
Agent-based models of geographical systems. Springer, Berlin, chapter 15

Fisher N, Lewis T, Embleton B (1987) Statistical analysis of spherical data. Cambridge University
Press, Cambridge

Fleming L, Sorenson O (2001) Technology as a complex adaptive system: evidence from patent
data. Research Policy 30: 1019-1039

Foote J, Cooper M (2001) Visualising music structure and rhythm via self-similarity.
In: Proceedings of the international computer music conference, ICMC’01, Havana. ICMA,
San Francisco, pp 419-422

194 A. Evans et al.

Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression:
the analysis of spatially varying relationships. Wiley, Chichester

Gahegan M (2001) Visual exploration in geography: analysis with light. In: Miller HJ, Han J (eds)
Geographic data mining and knowledge discovery. Taylor & Francis, London, pp 260-287

Gehlke CE, Biehl H (1934) Certain effects of grouping upon the size of correlation coefficients in
census tract material. J Am Stat Assoc 29(2):169-170

Getis A (2007) Reflections on spatial autocorrelation. Reg Sci Urban Econ 37(4):491-496

Graps A (2004) Amara’s wavelet page. Access date 8 Jun 2011. http://web.archive.org/web/
20110608005544/http://www.amara.com/current/wavelet.html

Greenland S, Pearl J (2006) Causal diagrams (Technical report, R-332). UCLA Cognitive Systems
Laboratory, Los Angeles. Access date 8 June 2011 http://ftp.cs.ucla.edu/pub/stat_ser/r332.pdf

Grimm V (1999) Ten years of individual-based modelling in ecology: what have we learned and
what could we learn in the future? Ecol Model 115(2):129-148

Grimm V (2002) Visual debugging: a way of analyzing, understanding, and communicating
bottom-up simulation models in ecology. Nat Resour Model 15:23-38

Grimm V et al (2006) A standard protocol for describing individual-based and agent-based
models. Ecol Model 198(1-2):115-126

Haining R (1990) Spatial data analysis in the social and environmental sciences. Cambridge University
Press, Cambridge

Heppenstall AJ, Evans AJ, Birkin MH (2006) Using hybrid agent-based systems to model
spatially-influenced retail markets. J Artif Soc Soc Simul 9(3). http://jasss.soc.surrey.ac.uk/9/
3/2.html

Heppenstall AJ, Evans AJ, Birkin MH (2007) Genetic algorithm optimisation of a multi-agent
system for simulating a retail market. Environ Plann B 34(6):1051-1070

Hinneburg A, Keim DA, Wawryniuk M (1999) HD-eye: visual mining of high-dimensional data.
IEEE Comput Graph Appl 19(5):22-31

Hipp J, Giintzer U, Nakhaeizadeh G (2002) Data mining of association rules and the process of
knowledge discovery in databases. In: Perner P (ed) Advances in data mining, vol 2394,
Lecture notes in computer science. Springer, Berlin, pp 207-226

Isaaks EH, Srivastava RM (1990) Applied geostatistics. Oxford University Press, Cary

Kantz H, Schreiber T (1997) Non-linear time series analysis. Cambridge University Press, Cambridge

Knudsen DC, Fotheringham AS (1986) Matrix comparison, goodness-of-fit, and spatial interaction
modelling. Int Reg Sci Rev 10:127-147

Korie S et al (1998) Analysing maps of dispersal around a single focus. Environ Ecol Stat 5(4):
317-344

Marwan N, Kruths J (2002) Nonlinear analysis of bivariate data with cross recurrence plots.
Phys Lett A 302(5-6):299-307

Marwan N, Wessel N, Meyerfeldt U, Schirdewan A, Kurths J (2002) Recurrence-plot-based measures
of complexity and their application to heart-rate-variability data. Phys Rev E 66(2):026702

McGarigal K (2002) Landscape pattern metrics. In: El-Shaarawi AH, Piegorsch WW (eds)
Encyclopedia of environmentrics, vol 2. Wiley, Chichester, pp 1135-1142

Moon I-C, Schneider M, Carley K (2006) Evolution of player skill in the America’s army game.
Simulation 82(11):703-718

Miiller W, Schumann HS (2003) Visualisation methods for time-dependent data: an overview.
In: Chick S, Sanchez PJ, Ferrin D, Morrice DJ (eds) Proceedings of winter simulation 2003,
New Orleans, 7-10 Dec 2003. http://informs-sim.org/wsc03papers/090.pdf

Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167-256

Nisbett RE, Masuda T (2003) Culture and point of view. Proc Natl Acad Sci USA 100(19):
11163-11170

OED (2010) Oxford English dictionary. Access date 21 Dec 2010 http://www.oed.com/

Openshaw S, Craft AW, Charlton M, Birch JM (1988) Investigation of leukaemia clusters by use
of a geographical analysis machine. Lancet 331(8580):272-273

http://web.archive.org/web/20110608005544/http://www.amara.com/current/wavelet.html
http://web.archive.org/web/20110608005544/http://www.amara.com/current/wavelet.html
http://ftp.cs.ucla.edu/pub/stat_ser/r332.pdf
http://jasss.soc.surrey.ac.uk/9/3/2.html
http://jasss.soc.surrey.ac.uk/9/3/2.html
http://informs-sim.org/wsc03papers/090.pdf
http://www.oed.com/

9 Understanding Simulation Results 195

Orford S, Harris R, Dorling D (1999) Geography: information visualisation in the social sciences.
Soc Sci Comput Rev 17(3):289-304

Parry H (2005) Effects of Land Management upon Species Population Dynamics: A Spatially
Explicit, Individual-based Model. Unpublished PhD thesis, University of Leeds. pp. 281

Patel A, Hudson-Smith A (2012) Agent tools, techniques and methods for macro and microscopic
simulation. In: Heppenstall AJ, Crooks AT, See LM, Batty M (eds) Agent-based models of
geographical systems. Springer, Berlin, chapter 18

Pearl J, Verma TS (1991) A theory of inferred causation. In: Allen JA, Fikes R, Sandewall E (eds)
Proceedings of the 2nd international conference on principles of knowledge representation and
reasoning (KR’91), Cambridge, MA, 22-25 Apr 1991. Morgan Kaufmann, San Mateo,
pp 441452

Pohlheim H (2006) Multidimensional scaling for evolutionary algorithms: visualisation of the path
through search space and solution space using Sammon mapping. Artif Life 12(2):203-209

Ramsey JB (2002) Wavelets in economics and finance: past and future. Stud Nonlinear Dynam
Econ 6(3):1-27

Roberson D, Davidoff J, Davies IRL, Shapiro LR (2004) The development of color categories in
two languages: a longitudinal study. J Exp Psychol Gen 133(4):554-571

Robinson WS (1950) Ecological correlations and the behaviour of individuals. Am Sociol Rev 15:
351-357

Ross AN, Vosper SB (2003) Numerical simulations of stably stratified flow through a mountain
pass. Q J R Meteor Soc 129:97-115

Schelling TC (1969) Models of segregation. Am Econ Rev 59(2):88—493

Schreinemachers P, Berger T (2006) Land-use decisions in developing countries and their
representation in multi-agent systems. J Land Use Sci 1(1):29-44

Tobler WR (1970) A computer model simulation of urban growth in the Detroit region.
Econ Geogr 46(2):234-240

Vasconcelos DB, Lopes SR, Kurths J, Viana RL (2006) Spatial recurrence plots. Phys Rev E 73(5):
056207

Viboud C et al (2006) Synchrony, waves, and spatial hierarchies in the spread of influenza.
Science 312(5772):447-451

Wagner HH, Fortin M-J (2005) Spatial analysis of landscapes: concepts and statistics.
Ecology 86:1975-1987

Worboys MF (2005) Event-oriented approaches to geographic phenomena. Int J Geogr Info Sci
19(1):1-28

Wyszomirski T, Wyszomirska I, Jarzyna I (1999) Simple mechanisms of size distribution dynamics
in crowded and uncrowded virtual monocultures. Ecol Model 115(2-3):253-273

Chapter 10
Participatory Approaches

Olivier Barreteau, Pieter Bots, Katherine Daniell, Michel Etienne,
Pascal Perez, Cécile Barnaud, Didier Bazile, Nicolas Becu,
Jean-Christophe Castella, William’s Daré, and Guy Trebuil

O. Barreteau (<)
IRSTEA, UMR G-EAU, 361 rue Jean-Frangois Breton, BP 5095, Montpellier 34196, France
e-mail: olivier.barreteau@irstea.fr

P. Bots

Delft University of Technology, Faculty of Technology, Policy and Management,
Delft 50152600 GA, The Netherlands

e-mail: p.w.g.bots@tudelft.nl

K. Daniell
Centre for Policy Innovation, The Australian National University, Canberra ACT 0200, Australia
e-mail: katherine.daniell@anu.edu.au

M. Etienne
Ecodevelopment UnitDomaine St-Paul, site Agroparc, Avignon cedex 9 84914, France
e-mail: etienne@avignon.inra.fr

P. Perez
SMART, University of Wollongong, Northfields Ave, Wollongong NSW 2522, Australia
e-mail: pascal_perez@uow.edu.au

C. Barnaud

INRA, Centre INRA de Toulouse UMR Dynafor Chemin de Borde Rouge,
Castanet Tolosan Cedex BP 5262731326, France

e-mail: cecile.barnaud@toulouse.inra.fr

D. Bazile « W. Dar€ » G. Trebuil

Cirad GREEN, TA C-47/F. Campus international de Baillarguet, Montpellier Cedex 5 34398,
France

e-mail: didier.bazile@cirad.fr; dare@cirad.fr; guy.trebuil@cirad.fr

N. Becu
CNRS, Laboratoire de géographie PRODIG 2, rue Valette, Paris 75005, France
e-mail: nicolas.becu@univ-paris1.fr

J.-C. Castella

Institut de Recherche pour le Développement (IRD), UMR 220 GRED (IRD UPV Montpellier 3),
PO Box 5992, Vientiane, Laos

e-mail: j.castella@ird.fr

B. Edmonds and R. Meyer (eds.), Simulating Social Complexity, 197
Understanding Complex Systems, DOI 10.1007/978-3-540-93813-2_10,
© Springer-Verlag Berlin Heidelberg 2013

mailto:olivier.barreteau@irstea.fr
mailto:p.w.g.bots@tudelft.nl
mailto:katherine.daniell@anu.edu.au
mailto:etienne@avignon.inra.fr
mailto:pascal_perez@uow.edu.au
mailto:cecile.barnaud@toulouse.inra.fr
mailto:didier.bazile@cirad.fr
mailto:dare@cirad.fr
mailto:guy.trebuil@cirad.fr
mailto:nicolas.becu@univ-paris1.fr
mailto:j.castella@ird.fr

198 O. Barreteau et al.

Why Read This Chapter? To help you understand how one might involve
stakeholders in all stages of the modelling process. This approach allows for
including stakeholders’ expertise as well as giving them more control over the
process.

Abstract This chapter aims to describe the diversity of participatory approaches in
relation to social simulations, with a focus on the interactions between the tools and
participants. We consider potential interactions at all stages of the modelling
process: conceptual design; implementation; use; and simulation outcome analysis.
After reviewing and classifying existing approaches and techniques, we describe
two case studies with a focus on the integration of various techniques. The first case
study deals with fire hazard prevention in southern France, and the second one with
groundwater management on the Atoll of Kiribati. The chapter concludes with a
discussion of the advantages and limitations of participatory approaches.

10.1 Introduction

In this chapter, social simulation is cross-examined with a currently very active
trend in policy making: participation or stakeholder involvement. This cross-
examination has two main outputs: the development of tools and methods to
improve or facilitate participation; and the development of more grounded simula-
tion models through participatory modelling. Technological development provides
new devices to facilitate interaction around simulation models: from the phase of
conceptual design to that of practical use. In many fields there is a growing
requirement from stakeholders and the public to become more actively involved
in policy making and to be aware of probable changing trends due to global policy
decisions. New tools and methods related to social simulation have started to be
made available for this purpose such as many Group Decision Support Systems
which use computer simulation, including potentially social items components, to
facilitate communication to formulate and solve problems collectively (DeSanctis
and Gallupe 1987; Shakun 1996; Whitworth et al. 2000). In addition, simulation of
social complexity occurs in models whose validation and suitability depend on their
close fit to society, as well as on their acceptability by it. These issues are tackled
through the use of participatory modelling, such as group model building (Vennix
1996) or participatory agent based simulations (Bousquet et al. 1999; Guyot and
Honiden 2006; Moss et al. 2000; Pahl-Wostl and Hare 2004; Ramanath and Gilbert
2004). The topic is also related to participatory design as it is a mean of involving
end-users of computer systems in their design, including social simulations
focussed ones (Schuler and Namioka 1993).

Group Decision Support as well as Participatory Modelling stem from the
interactions between simulation models and participants. There is a diversity of
ways though which these interactions might take place. They are related to the
diversity of approaches to simulate society or to organise participation. It is important
to make the choices made for these interactions explicit: for distinction between
approaches to be possible; to provide the opportunity for stakeholders to discuss the

10 Participatory Approaches 199

process; and for them to be prepared to be involved in. There is a need to go further
than the development of tools as they are liable to create filters that reshape the
understanding of social complexity. Description of the mechanisms behind
interactions is a way to qualify the potential effects of these interactions.

This chapter aims to describe the diversity of participatory approaches in
relation to social simulations, with a focus on the interactions between the tools
and participants. This overview is limited to simulation models. Model is consid-
ered here as a representation of shared knowledge, which means the gathering of
pieces of knowledge and assumptions about a system, written altogether in a model
so that they might play or work together. We limit this scope further to simulation
model, hence models including the representation of dynamics. We consider here
potential interactions among participatory and modelling processes at all stages of
the modelling process: conceptual design; implementation; use; and simulation
outcome analysis.

The first section of this chapter outlines a number of factors which have paved
the way for development of the association between social simulation and partici-
pation. There is a large body of literature in which authors have developed their
own participatory modelling approaches, justified by some specific expectations on
participation for modelling or vice-versa. This first section makes a synthesis of
these expectations and draws out some principles on which various participatory
modelling settings should be assessed. The second section describes some existing
techniques and approaches. The third section proposes a classification of these
participatory approaches according to three dimensions: the level of involvement in
the process; the timeliness of involvement; and the heterogeneity of population
involved. The fourth section describes two case studies with a focus on the
integration of various techniques. We discuss the advantages of these approaches
but also some limits, according to the expectations and in comparison with more
traditional techniques in the fifth section.

10.2 Expectations of Using Participatory Approaches
with Simulation of Social Complexity

Joint use of participatory approaches with social simulations is based upon three
categories of expectations. They vary according to the target of the expected
benefits of the association:

1. Quality of the simulation model per se;
2. Suitability of the simulation model for a given use; and
3. Participation support.

These three targets are linked to three different components of a modelling
process. Target one is linked to the output, target three to the source system, and
target two to the relation between both the output and source system. In this section
we further develop these three categories.

200 O. Barreteau et al.

10.2.1 Increasing Quality of Simulation Models of Social
Complexity

The objective here is to produce a good quality model to simulate social complexity.
Participation is then pragmatically assumed to be a means for improving this
quality. There is no normative belief which would value participation by itself in
this category of expectations.

Quality of the simulation model is understood here rather classically with the
following indicators:

— Realism: is the simulation model able to tackle key features of the social
complexity it aims to represent?

— Efficiency: is the simulation model representing its target system with a mini-
mum of assumptions and minimal simulation run-times?

Quality of the representation according to its use is another classical indicator of
a simulation model’s quality. It is specifically tackled in the following subsection.

10.2.1.1 Taking Social Diversity and Capacity to Evolve into Account

One of the key features to be taken into account when representing a social system is
to deal with its diversity. This diversity is related not only to individual
characteristics, but also to viewpoints, expectations towards the system, and positions
in the decision making processes. Dealing with diversity in simulation of social
complexity involves embracing it as well as profiting by its existence.

Classically, dealing with diversity is a process of aggregation or selection.
Aggregation consists of the identification of classes of individuals and
representatives for them. Selection consists of choosing a few cases with all of
their characteristics. This may lead to very simple simulation models with a generic
diversity. Aggregation is rather greedy on data and modelling time and is still
dependent on the viewpoint of the observers who provide the information leading to
the categorisation. Selection is weak to cope with relations among various sources
of diversity.

Involvement of stakeholders in the modelling process allows them to bring their
own diversity. Concerns over representation are then transferred onto the constitu-
tion of the sample of participants. Fischer and colleagues have shown through
development of situations to support creativity in various fields, such as art, open
source development and urban planning, that diversity, as well as complexity, is
important to enhance creativity (Fischer et al. 2005). This creativity is expected to
pave the way for surprises in the simulation model.

Involvement of stakeholders in the modelling process is a way to externalise part
of this diversity outside the model towards a group of stakeholders. The issue is then
to work on the relation between the model and a number of stakeholders to allow a
transfer of knowledge and ideas.

10 Participatory Approaches 201

Social systems are open and evolving. Their definition depends on the viewpoint
of the analyst. As far as simulation is concerned, this means depending on the
viewpoint of the model designer(s). This choice means framing: cutting a number
of links around the boundaries of the system studied, as well as around the
interpretation which might occur based on the simulation outcomes (Dewulf et al.
2006). Firstly, participation provides the opportunity to consider problem
boundaries which would be plurally defined, increasing the potential coherence of
the model. However, it is still an operation of cutting links out of the real world
situation, even though these chosen cuttings are more grounded and discussed.
Secondly, interactive use of a simulation model is a means to keep some of these
links open and active, with participants as driving belts. Stakeholders are embedded
in social networks which cross the boundaries into the physical and environmental
networks. They make the links come alive, which allows them to function and be
updated.

There is thus a need to question the boundaries set in the interactive setting:
actors in the neighbourhood; concerns of actors connected to those tackled by the
(simulation) model; and how these relations are to be mobilised in the interaction.

10.2.1.2 Distribution of Control

A key characteristic of social systems which is to be addressed through social
simulation is their complexity. This complexity leads to various consequences, such
as the emergence of phenomena, delay effects or discontinuities in some trends,
which are present in social systems as in any complex systems. These are usually
the effects which one likes to discover or better understand when experimenting
with social simulations. From the internal point of view of simulations, Schelling
has shown experimentally that reproducing settings with multiple decision centres
improves the quality of representation of complexity (Schelling 1961). He could
generate complexity through experimental games because of the presence of
independent decision centres, the players. This result has also been shown with
simulations used for forecasting (Green 2002). Green compared the capacity of
forecasting the outcome of past social conflicts with: a role playing game with
students; game theorists; and a group of experts. He compared the simulated
outcomes with those from the real negotiations and found that the role playing
game setting produced the best results. This was the one with the main distribution
of decisions among autonomous centres.

The purpose of associating participatory processes and social simulation here is
then to increase the complexity through interactive use or implementation of a
social model. Unless computational agents are effectively used, which is rare
(Drogoul et al. 2003), formal theories of complex systems that are completely
embedded in a simulation model do not simulate complex patterns but implement
an explanation of a complex pattern. In other words, they should be implemented in
a distributed setting with autonomous entities. Participatory approaches provide

202 O. Barreteau et al.

such settings. There is then an issue of a deep connection between a simulation
model and participants in a participatory modelling setting.

10.2.2 Improving Suitability of Simulation Model’s Use

Quality of a model is also assessed according to its suitability for its intended use. In
this subsection, two cases of use are considered: knowledge increase; and policy
making. In both cases, it is expected that involvement of stakeholders at any stage
of a modelling process will aid better tuning of the model with its intended use:
either through interactions with people represented in the model, or with potential
users. Both cases have a major concern with making viewpoints explicit.

10.2.2.1 Case of Increasing Knowledge

The case of use for knowledge increase builds upon the previous subsection. The
key element treated here deals with the uncertainty of social systems. The involve-
ment of stakeholders represented in the simulation model is a way to improve its
validation or calibration. Participants may bring their knowledge to reduce or better
qualify some uncertainties. The simulation model is then expected to give back to
the participants simulation outputs based on the interactions between their pieces of
knowledge. On the other hand, this feedback is sometimes difficult to validate
(Manson 2002). Its presentation and discussion with stakeholders represented in the
simulation model is a way to cope with this issue. This approach has been explored
by Barreteau and colleagues to improve the validation of an Agent Based Model of
irrigated systems in Senegal River valley (Barreteau and Bousquet 1999). The
format of this feedback, information provided and medium of communication,
might make the model really open to discussion.

This joins another expectation which is probably the most common in work that
has so far implemented such participatory approaches with a social simulation
model: making each participant’s assumptions explicit, included the modellers
(Fischer et al. 2005; Moss et al. 2000; Pahl-Wostl and Hare 2004). This is a
requirement from the simulation modelling community: making stakeholders’
beliefs, points of view and tacit knowledge explicit (Barreteau et al. 2001; Cockes
and Ive 1996; D’Aquino et al. 2003; McKinnon 2005). Moreover, so that
participants might become part of the model, the assumptions behind the model
should be made explicit in order to be discussed, as should the outputs of the
simulations so that they can also be discussed, transferred and translated in new
knowledge. This is to overcome one major pitfall identified with the development of
models which is the under-use of decision support models because of their opacity
(Loucks et al. 1985; Reitsma et al. 1996). This concern of making explicit
assumptions in the modelling process is also at the heart of the participatory
approach community. One aim of gathering people together and making them

10 Participatory Approaches 203

collectively discuss their situation in a participatory setting is to make them aware
of others’ viewpoints and interests. This process involves and stimulates some
explanation of tacit positions.

This means that the interactive setting should allow a bi-directional transfer of
knowledge between stakeholders and the simulation model: knowledge elicitation
in one direction and validation and explanation of simulation outputs in the other
direction.

10.2.2.2 Case of Policy Making

In the case of simulation focusing on policy issues, there is a pragmatic, moral, and
now sometimes legal need to involve stakeholders, which may lead to open the
black box of models of social complexity used in policy making. Post-normal
approaches aim at making the decision process and its tools explicit so that
stakeholders can better discuss it and appropriate its outcomes. When this decision
process involves the use of decision support tools, which might include social
simulation models, this means that the models themselves should be opened to
stakeholders (Funtowicz et al. 1999). A simulation model is then expected to be
explicit enough so that stakeholders who might be concerned by the implementa-
tion of the policy at stake could discuss it. This legitimisation is socially based,
while validation, as mentioned with the previous case of use, is scientifically based
(Landry et al. 1996). Even though validation is still required in this case of use,
because it is the mode of evaluation for some participants, it is rather the
legitimisation of the model by the stakeholders which is to be worked out.

Participatory approaches may be a means for opening these models to
stakeholders, provided that formats of communication of models’ assumptions and
structure can be genuinely discussed. Involvement of stakeholders is expected to raise
their awareness of the assumptions of the model and potentially able to discuss these
and modify them. This includes the evolution of underlying values and choices made
in the design of model.

10.2.3 Simulation as a Means to Support Participation

Social simulation might also benefit to participation. While the previous subsection
was dedicated to appropriateness between the model and its use as a group decision
support tool, we focus here on participation which might be a component of a
decision making process.

Social simulation is seen here as an opportunity to foster participation and cope
with some of its pitfalls (Eversole 2003). Use of simulation models may lead to
some outcomes such as community building or social learning.

204 O. Barreteau et al.

10.2.3.1 Dynamics and Uncertainties

Social systems have to deal with uncertainties just as social simulation models do.
This might hamper participatory processes: in wicked problems (Rittel and Webber
1973), encountered in many situations where participatory processes are organised,
stakeholders always maintain the opportunity related to these uncertainties to
challenge others’ viewpoints or observations. As an example: origin, flow and
consequences of non point source pollution are uncertain. This leads some farmers
to challenge the accusation, made by domestic water companies downstream of
their fields, that they are polluting their sources. Sometimes, disparate viewpoints
do not conflict. The gathering of these disparate pieces of knowledge is a way to
reduce uncertainty and allow the group of stakeholders involved in a participatory
process to progress; provided that they can work together.

Another characteristic of any social system which might hamper participation is
its dynamicity. Socio-ecological systems exhibit a range of dynamics; not only
social, but also natural, which evolve at various paces. In the application developed
by Etienne and colleagues in Causse Mejan, pine tree diffusion has a typical time
step of 20 years which is long according to the typical time steps of land use choices
and assessment (Etienne et al. 2003). In a participatory process it might be difficult
to put these dynamics on the agenda. Simulation models are known to be good tools
to deal with dynamic systems.

Simulation models are therefore a means to gather distributed pieces of knowl-
edge among stakeholders and to cope with scenarios in the face of uncertainties.
They can also help make the participants aware of potential changes or regime
shifts generated by their interactions (Kinzig et al. 2006).

10.2.3.2 Towards Social Learning

Participation is often linked with the concept of social learning (Webler et al. 1995).
However, for social learning to occur, participants should have a good understand-
ing of their interdependencies as well as of the system’s complexity. Social
simulation can provide these bases, provided that the communication is well
developed (Pahl-Wostl and Hare 2004).

This learning comes from exchanges among stakeholders involved in the par-
ticipatory process but also from new knowledge which emerges in the interaction.
Externalisation of tacit knowledge in boundary objects (Star and Griesemer 1989)
is useful for both: it facilitates communication in giving a joint framework to make
one’s knowledge explicit; and it enhances individual, as well as social, creativity
(Fischer et al. 2005).

Simulation models are good candidates to become such boundary objects. Agent
based models have long been considered as blackboards upon which various
disciplines could cooperate (Hochman et al. 1995). Through simulation outputs,
they provide the necessary feedback for reflexivity, be it individual or collective.

10 Participatory Approaches 205

The question then remains whether such models constrain the format of knowl-
edge which might be externalised.

10.2.4 Synthesis: A Key Role of the Interaction Pattern
Between Model and Stakeholders

These three categories of expectations have led to specific requests for the devel-
opment of participation in relation to social simulation models. In the following
section, we provide an overview of these techniques. On the basis of the previous
requests, these techniques and methods have to be analysed according to the
following dimensions:

— Set of connections between the participation arena and simulation model: its
structure, its content, and organisation of its mobilisation;

— Control of the process; and

— Format of information which can travel from one pole to another: openness and
suitability to the diversity of stakeholders’ competencies.

10.3 A Diversity of Settings

In this section, we describe some examples of participatory techniques and
approaches associated with social simulation models. Settings described in this
overview stem from various fields and disciplines. Most of these have already
produced some reviews on participatory approaches. For the purpose of the discus-
sion in relation with social simulation, a synthesis of these reviews is provided here
with a focus on the requests identified in the previous section.

10.3.1 From System Science and Cybernetics

Cybernetics and system sciences have produced a first category of simulation models
of social complexity (Gilbert and Troitzsch 1999). These models are based on tools
originating from system dynamics, using specific software. They focus on flows of
resources and information between stocks which can be controlled.

Two main types of interactions between these models and stakeholders have so
far emerged: group model building (Vennix 1996); and management flight
simulators or microworlds (Maier and Grossler 2000).

Group Model Building experiments focus on the interaction with stakeholders in
the design stage of a modelling process. It associates techniques of system dynam-
ics modelling with brainstorming tools and other techniques of group work, mainly

206 O. Barreteau et al.

based on workshops and meetings. This trend consists of integrating future users of
the model in the design stage. The participants are supposed to be the clients of the
modelling process. Rouwette and colleagues analysed 107 cases of such
experiments and proposed a number of guidelines to facilitate consistent reporting
on participatory modelling exercises. These guidelines focus on three categories:
context, mechanisms and results (Rouwette et al. 2002). The second category
focuses predominately on preparation activities and description of meetings,
along with factual elements and the modelling process.

This category of participatory modelling deals with the expectations identified in
the first section in the following manner:

— The participation arena is constituted of a rather small or medium size well
identified group. The structure of the interaction is rather global: debates tackle
the whole model, and participants are supposed to be concerned by the model
entity as a whole. The connections may convey information on the tacit knowl-
edge of stakeholders, as well as on their purposes. This is still very diverse
among the experiments. The group of stakeholders is mobilised within specific
events, workshops, which might be repeated. The aim is to feed the model but
also to increase the probability of use of the models produced.

— The process is predominately controlled by the modellers; and

— The format of information is generally not well formalised, even though
techniques, such as hexagons brainstorming or causal diagrams (Akkermans
1995), appear to organise the knowledge brought by stakeholders. This low
formalisation allows the issues related to stakeholder diversity to be tackled
and alleviated in the problem framing phase, but it leaves a large place to the
modellers’ interpretation.

Management flight simulators or microworlds constitute a complementary tech-
nique, which focuses more on the stages of use and simulation outcomes analysis,
even though this technique may also be used in a design stage to elicit tacit
knowledge. A key characteristic of this type of technique is to encourage learning
by doing. Participants, who might be the clients or other concerned people without
any formal relation to the modelling team, have to play through a simulation of the
model. Martin and colleagues have used this technique to validate a system
dynamics model on the hen industry (Martin et al. 2007). Participants were asked
to play with some parameters of the model.

When used to elicit knowledge, microworlds attempt to provide events that are
similar to those that participants already face or are likely to face in their activities
related to the issue at stake in the model. Le Bars and colleagues have thus
developed a game setting to lead farmers to understand the dynamics of their
territory with regard to water use and changes in EU Common Agricultural Policy
(Le Bars et al. 2004). In flight simulator experiments, interaction between
stakeholders and the simulation model is structured around future users of the
model or people whose stakes are represented in the model, with a slightly deeper
connection than with previous group modelling building approaches. Participants
are asked to deal with parameters of the model and are framed in the categories used

10 Participatory Approaches 207

in the model. There is no a priori differentiation among participants. The
connections convey information about the object from the model to participants.
It also conveys the participants’ reactions to this object, and some behavioural
patterns observed that can provide new information for the modellers. This connec-
tion is activated by the participants working through specific events and focus on
the use of the tool. Control is still on the side of modellers, who frame the
interactions. The format of information is largely formalised from model to
stakeholders. It is not formalised from stakeholders to model.

10.3.2 Knowledge Engineering: Between Artificial Intelligence
and Social Psychology

Knowledge engineering focuses on a specific time of the interaction between
stakeholders and a simulation model in the design stage: the process of translating
tacit knowledge into conceptual or sometimes computational models. Many knowl-
edge elicitation techniques are useful in transforming written or oral text into pieces
of simulation models. The purpose of these techniques is to separate the
contributions made directly to the model from the design of the model itself.
Knowledge engineering aims to provide interfaces for this gap.

To deal with this interface, techniques have been developed, grounded in artifi-
cial intelligence, (social) psychology and cognitive science. Behavioural patterns in
social simulation models are often borrowed in simplified versions from these fields
(Moss et al. 2000; Pahl-Wostl ND Hare 2004). This cross-pollination of disciplines
can be potentially fruitful for model design. As an example, Abel and colleagues
have built upon the concept of a mental model. They assume that individuals have
representations of their world which may be formalised in causal rules. Working in
the Australian bush, they have designed specific individual interview protocols and
analysis frameworks to elicit these mental models (Abel et al. 1998). In this case,
interaction with the model occurs through the interviewer who in this case was also
the modeller. There was no collective interaction. Researchers dealing with the
interviews and the corresponding model design clearly guide the process. The
format of information is speech (in the form of a transcribed text), which is
transformed into a modelling language in this elicitation process.

Building upon Abel’s work, Becu has further minimised the involvement of the
modeller, still using individual interviews. This has led him to collaborate with an
anthropologist and to use ethnographic data as a benchmark. Individual interviews,
with the interviewee in the environment suitable to the purpose of the interview, led
him to identify objects and relations among these objects. These constitute the
initial basis for an exercise, labelled as playable stories: stakeholders, in his case
farmers from Northern Thailand, are asked to choose the key elements to describe
their world from their own viewpoints (with the possibility of adding new
elements), then to draw relations among them and to tell a story with this support

208 O. Barreteau et al.

(Becu 2006; Becu et al. 2006). In this case, interaction between stakeholders and the
simulation model is still on an individual basis. The format of conveyed informa-
tion is finally less formal, but the work of translation is less important. However,
control of the process still remains largely in the hand of the modeller, but to a lesser
degree than in previous examples. This technique was further associated with semi-
automatic ontology building procedures by Dray and colleagues in order to gener-
ate collective representations of water management in the atoll of Tarawa
(Dray et al. 2006a).

With inspiration coming similarly from the domain of ethnography, Bharwani
and colleagues have developed the KNeTS method to elicit knowledge. Apart from
a first stage with a focus group, this method is also based on individual interviews.
As in Becu’s work, interaction occurs in two phases: elicitation through
questionnaires and involvement in the model design at the validation stage, which
is also considered as a learning phase for stakeholders. These authors used an
interactive decision tree to check with stakeholders whether the output of simula-
tion would fit their points of view (Bharwani 2006). Control of this process is on the
modeller’s side. The stakeholders’ interaction is marginally deeper in the model
than in previous examples, since there is a direct interaction with the model as in
management flight simulator. On the other hand, the ontology which is manipulated
seems to be poorer, since the categories of choices open in the interaction are rather
reduced. The format of information is open in the first phase and very structured in
the decision tree in the second phase. The structuration process used in the
modelling process occurs outside of the field of interaction with the stakeholders.

On its side, Group Decision Support System design domain is based on a
collective interaction with stakeholders as early as the design stage. These systems
tend to be used to address higher level stakeholders. In the method he developed,
ACKA, Hamel organised a simulation exercise with the stakeholders of a poultry
company. In this exercise, the participants were requested to play their own roles in
the company. He constrained the exchanges taken place during the exercise through
the use of an electronic communication medium so that he could analyse them and
keep track of them later. All of the participants’ communication was transformed
into graphs and dynamic diagrams (Hamel and Pinson 2005). In this case, the
format of information was quite structured.

10.3.3 From Software Engineering

Close to the artificial intelligence trend, working like Hamel and Pinson on the
design of Agent Based Models, there is an emerging trend in computing science
based on agent based participatory simulations (Guyot and Honiden 2006) or
participatory agent based design (Ramanath and Gilbert 2004). This trend focuses
on the development of computer tools, multi-agent systems, which originate from
software engineering. Guyot proposes the implementation of hybrid agents, with
agents in the software controlled by real agents, as avatars (Guyot 2006). These

10 Participatory Approaches 209

avatars help the players’ understanding the system (Guyot and Honiden 2006).
They can be thought as learning agents: they learn from choices of their associated
player and are progressively designed (Rouchier 2003). The approaches working on
hybrid agents implement a deep connection between participants and the social
simulation model. Information conveyed in the interaction is relative to the model
assumptions, as well as to the model content.

Ramanath and Gilbert have reviewed a number of software engineering techniques
which may be coupled to participatory approaches (Ramanath and Gilbert 2004). This
union between software design and participatory approaches is based on joint pro-
duction not only between developers but also with end-users. Not only interaction
with stakeholders contributes to better software ergonomics — the Computer
Supported Cooperative Work (CSCW) workshops series being an example — but
their participation tends to improve their acceptation and further appropriation of the
mode.

The implementation of interactive techniques may take place at all stages of a
software development process. In early stages, joint application design (Wood and
Silver 1995) allows issues raised to be dealt with during the software development
phase, attributing a champion to each issue. It is also concerned with technical
issues. This protocol might involve other developers, as well as potential users. It
may also increase the computing literacy of the participants involved in the process.
This process is based on the implementation of rather well framed workshops.

Joint application design is supported by using prototypes. It is here we find a link
with a second technique: prototyping. This technique can be used all the way
through a software development cycle. It is based around providing rough versions
or parts of the targeted product. For example, it allows the pre-product to be
criticised, respecified, or the interface improved. Quite close to prototyping, in
the final stages of the process, user panels can be used to involve end-users in
assessment of the product. These panels are based on a demonstration or a test of the
targeted product.

In these cases, control of the process is dependent on the hiring of a skilful
facilitator. Otherwise, control of the process may become rather implicit. The
content of the interaction is rather technical, which makes it potentially unbalanced
according to participants’ literacy in computer science. An assessment of 37 joint
application design experiments has shown that the participation of users during the
process is actually rather poor, notably due to the technical nature of debates, which
is hardly compatible with the time allocated to a joint application design process by
users, compared to the time allocated by developers (Davidson 1999). Interaction is
rather superficial and needs translation. However, identification of a champion of
specific tasks gives a little bit more control to participants, as does involvement in
the content of pieces of the tool being developed.

Besides these approaches originating from software engineering, people work-
ing in thematic fields such as the environmental sciences propose co-design
workshops that focus on the development of simulation models. Such workshops
are a type of focus group, organised around the identification of actors, resources,
dynamics and interactions, suitable for a set of stakeholders to represent from a

210 O. Barreteau et al.

socio-ecological system on which they express their own point of view (Etienne
2006). This approach, which occurs at the design stage of the modelling process is
supposed to lead participants to design the simulation model by themselves, by
formalising the conceptual model through a series of diagrams and a set of logical
sentences. The final interaction diagram and the attached logical sentences are then
translated by the modeller in computer code. It is in this type of process that a deep
interaction can occur between participants and the model. This interaction conveys
information on the model content, which is attached to the representations and
knowledge of each participant.

10.3.4 From Statistical Modelling

Bayesian Belief Networks have been developed to include in the computation of
probabilities, their dependence on the occurrence of any event. They can be useful
to represent complex systems and increasingly used in participatory settings
because their graphical nature facilitates discussion (Henriksen et al. 2004). A
group of participants can be asked individually or collectively to generate relations
between events and possibly probabilities as well. Henriksen and his colleagues
propose a method in seven stages which alternates between individual and collec-
tive assessment and revision of an existent Bayesian Belief Network diagram.

This approach is reported to still present some difficulties in encouraging strong
participant involvement due to the mathematical functions behind the network
structure. However, other researchers and practitioners have improved their com-
munication and facilitation of the technique with their own Bayesian Belief Net-
work processes and are receiving positive stakeholder engagement in the modelling
processes (Ticehurst et al. 2005). In the example of Henriksen and colleagues, the
process is controlled by the modeller and includes only a rather superficial coupling
between participants and the model. The translation of participant-provided infor-
mation into probabilities is mediated by the modeller and is rather opaque, as in
many participatory modelling approaches.

10.3.5 From the Social Sciences

The association of participatory approaches and social simulation modelling also
originates from disciplines not focussing on the production of tools but on under-
standing social systems. Social psychology, economics, management and policy
sciences have all developed their own interactive protocols to involve stakeholders
in the design and/or use of their models. Sociology is still at the beginning of this
process (Nancarrow 2005). These protocols propose a variety of structures of
experimental settings, from laboratory to in vivo experiments through interactive
platforms (Callon and Muniesa 2006). These three categories vary according to

10 Participatory Approaches 211

their openness to the influence given to participants. The in vivo category is beyond
the scope of this paper since it does not involve modelling: the society in which the
experiment is embedded provides its own model (Callon and Muniesa 2006).

Laboratory settings are very controlled experiments, involving human subjects.
This is the case for most economic experiments. Participants are encouraged to
behave with a given rationality through instructions and payments at the end of the
session. In canonical experiments, analysis of the experiments is performed by the
scientist. The focus of the analysis is to understand the individual and collective
behavioural patterns generated by these settings. The purpose of these experiments
is either: the testing of theories and models; new knowledge on human behavioural
patterns in given situations; or the testing of new institutional configurations
(Friedman and Sunder 1994). These experiments are particularly efficient for
situations with strong communication issues or with important inter-individual
interactivity (Ostrom et al. 1994). The issue of simulating a real situation is not
considered, but rather the testing of a theoretical model. This field is currently very
active and evolve with the emergence of field experiments involving stakeholders
concerned by the issues idealised in the model tested, asking them to play in their
environment (Cardenas et al. 2000). With this configuration, interactions are rather
deep since participants act as parts of the model. The participants convey action
choices. However, the experimentalist strongly controls the process.

A platform is an intermediary setting more open to compromise and hybridisation
than the laboratory. Heterogeneity of participants is also more welcome, since the
setting is designed to enhance sharing interests. Through experimentation, a platform
is supposed to bridge through experimentation the gap between the world of the
model and that of the stakeholders (Callon and Muniesa 2006). Policy exercises and
role playing games, as developed in the companion modelling approach, are kinds of
these platforms (Richard and Barreteau 2006). Policy exercises embed stakeholders
in potential situations they might have to face in the future (Toth 1988). They stem
from war games that have been developed since the time of Ancient China and are
now used in public policy assessment (Duke and Geurts 2004) or environmental
foresighting (Mermet 1993). They are actually quite similar to the business games and
the system dynamics trend explained previously in subsection 10.2.1. However, the
underlying social simulation model is rather implicit; though it exists to create the
potential situation and to help identify the participants relevant to the exercise.
Association with a computer tool tends to be with a simulation model of the environ-
ment, that does not necessary involve a social component. The interaction between
participants and the social model is rather deep since they are pieces of the model and
connect with the model of their environment. Control of the process is rather diffuse.
There might be a genuine empowerment of participants since they have the possibility
of bringing their own parts of the social model to the process, and can adapt it in ways
different to what the designers expected. Alike with laboratory settings, platforms
provide information to the modeller about behavioural patterns of the participants.
Reaction to taboos or innovative behaviours in situations new to the participants, tacit
routines, and collective behavioural patterns can be elicited using these platforms,
while it is difficult with classical interviewing techniques.

212 O. Barreteau et al.

Between experimental laboratory settings and policy exercises, the companion
modelling approach proposes an association of role playing games and agent based
simulations (Bousquet et al. 2002). Even though authors in this approach claim not
to limit themselves to these two categories of tools, they predominately rest in the
trend of participatory agent based simulations, and are thus close to the software
design and artificial intelligence trends presented above. This approach makes a full
use of similarities in architecture between role playing games and agent based
simulations (Barreteau 2003). Both implement autonomous agents that interact
within a shared dynamic environment. Joint use of both agent based simulation
and role playing games builds upon these similarities to express the same concep-
tual model. Authors in this approach use this to reinforce a principle of making all
the assumptions underlying a model used or design interactively with stakeholders
explicit and understood. At the design stage, this approach aims to incorporate
stakeholders’ viewpoints in the model. At the model use stage, it aims to improve
the appropriation of the tool produced, as well as to increase its legitimacy for
further operational use. However, this appropriation is still under discussion and
might be rather heterogeneous (Barreteau et al. 2005).

10.4 Participation in the Modelling Process:
Diversity of Phases and Intensity

While many authors claim to use participatory approaches for the simulation of social
complexity, there remains a large diversity of actual involvement of stakeholders and
of activities hidden behind this involvement. Associations of participatory methods
with social simulation models are rather heterogeneous. It is thus important to qualify
the actual involvement of stakeholders in these processes. This level of participation
can range from mere information received by concerned parties related to the output
of a process to the full involvement of a wide range of stakeholders at all stages of a
process. There are also many intermediary situations imaginable. Participation should
not be thought of as just talking, and diversity should be made explicit so that
criticisms towards participation as a global category (Irvin and Stansbury 2004) can
focus on specific implementations. This section explores the potential consequences
of this diversity in three dimensions: stage in the modelling process, degree of
involvement and heterogeneity of stakeholders involved.

10.4.1 Stages in the Modelling Process

The modelling process can be subdivided into the following stages, with the
possibility of iterating along them:

— Preliminary synthesis/diagnosis (through previously available data). This
includes making explicit the goal of the modelling process
— Data collection (specific to the modelling purpose)

10 Participatory Approaches 213

— Conceptual model design

— Implementation

— Calibration and verification

— Simulation process (might be running a computer simulation model, playing a
game session, etc.)

— Validation

— Discussion of results

Involvement of stakeholders in each of the different stages of the modelling
process does not generate the same level of empowerment or learning, even if we
assume that this involvement is sincere. Preliminary synthesis, conceptual model
design, validation and, to some extent, discussion of results are framing stages;
stakeholder involvement at these levels gives power to stakeholders to orientate the
process. In the preliminary synthesis/diagnosis, stakeholders have the opportunity
to play a part in setting the agenda. This is the stage of problem structuring which is
identified as a key one in all participatory processes (Daniell et al. 2006). Even if the
agenda developed with stakeholder involvement might further evolve, its
initialisation generates a strong irreversibility in the process: data collection,
participants selection and (partially) modelling choices (architecture, platform)
are related to this agenda and are costly, either directly or through the necessity
of re-programming. The modelling process is a sequential decision process, and as
shown in theory of sequential decisions: initial decisions are often at the source of
more consequences than envisaged (Henry 1974; Richard and Trometter 2001).
Conceptual model design constitutes a landmark in the process. It is the
crystallisation of viewpoints that serves as a reference in further stages. Validation
is the compulsory stage where stakeholders will have the opportunity to check the
effectiveness of the computer model in representing correctly their behaviours and
ways of acting. Discussion of results may also constitute a framing phase, according
to the purpose of the discussion. If dimensions of discussion are to be defined and
model is open to be modified, there is some place for participants to (re-)orientate
the modelling process. Otherwise, if the discussion of results aims to choose from a
few scenarios for example, the choice is very narrow and might be completely
manipulated. In this regard, it has been shown that for any vote among composite
baskets, it is possible to maintain that one item always selected according to the way
the baskets are constituted (Marengo and Pasquali 2003). A scenario in this case is a
kind of composite basket.

In other stages of a modelling process, the influence of stakeholder involvement
on the overall process is less important. When data collection, or calibration and
verification involve participants, stakeholders tend to take the role of informants.
Among the various levels proposed in the classical ladder of participation explained
in the following subsection, these stages deal predominately with consultation.
Their involvement is framed by the format of information which is expected, and
on the parts of the model which are to be calibrated or validated. If the process is
open to modification in these frames, the level of participation might be higher, but
still with a limited scope.

214 O. Barreteau et al.

Implementation stage is another mean to empower participants. It is often
implicitly framing. But empowerment through involving stakeholders in this tech-
nical activity is rather to raise their literacy in this part and raise the probability of
their appropriation of the model. Simulation stage is basically providing informa-
tion to stakeholders on what is being done. This is a technical stage (running the
simulation) which keeps a part of strategic choices (design of scenarios and
indicators to track the simulation progress). Involvement of stakeholders in the
technical part, such as through role playing games, increases their knowledge of the
model from inside, provided stakeholders have the literacy for that. Involvement in
strategic part is connected to the initial stage which has set the agenda. The further
this initialisation has gone in formalising the questions, the less empowering is this
involvement.

10.4.2 Level of Involvement

Level of involvement is a more classical dimension. It is inspired by the classical
hierarchy of participation levels proposed first by Arnstein (1969). Several reviews
and adaptations have been made since then, with the same focus on power issues
(Mostert 2006; Asselt et al. 2001). These works focus on what participation means
in decision making terms (the bases of many political or democratic theories), with
Democracy Cube (Fung 2006) or the work of Pateman (1990) and Rocha (1997). In
most of these examples, the emphasis is placed on who (citizens, managers or
policy makers) has the balance of power for final decision-making (i.e. the choice
phase of a decision process (Simon 1977)) but other issues of process are not
specifically mentioned. Such participation classifications, although useful in a
very general sense for the question of participation in modelling processes, do not
explicitly treat the issue of the place of a modeller or researchers with expert
knowledge (Daniell et al. 2006).

On these bases, we consider here the five following levels in which there are at
least some interactions between a group of citizens and a group of decision makers:

— Information supply: citizens are provided access to information. This is not
genuine participation since it is a one way interaction;

— Consultation: solicitation of citizens’ views;

— Co-thinking: real discussions between both groups;

— Co-design: citizens have an active contribution in policy design; and

— Co-decision making: decisions are taken jointly by members of both groups.

Since a modelling process is a kind of decision process, this hierarchy might apply
to modelling process as well. This is a little bit more complicated because two
processes are behind the modelling process and the network of interactions cannot
be represented with a group of citizens and a group of decision or policy makers only.

A modelling process with the purpose of simulation has two dimensions along
which these scales might be assessed: model content and building on one hand; and

10 Participatory Approaches 215

control over model use on the other. Though these two dimensions are related, it is
useful to consider them separately as they provide power and knowledge: either
within the process; or in the system in which the process takes place. Each of these
dimensions is more closely related to specific stages in the modelling process
presented in the previous subsection. However, some stages, such as model design
or implementation, contribute to both dimensions.

Therefore we consider the following categories:

— Information on a model’s content and no control over model use;
— Consultation and no control over model use;

— Dialogue with modellers and no control over model use;

— Dialogue with modellers and control over model use;

— Co-building of a model and no control over model use; and

— Co-building of a model and control over model use;

Each category is described in the following sub-section by a flow of interactions
within an interaction network based on four poles: A, R, M, and P. A stands for all
people who are involved in and/or concerned by the social complexity at stake in
the modelling process. This includes policy makers and citizens. R stands for
researchers involved in the modelling process. M stands for the model. P stands
for policy makers. P is a subset of A, which gathers the actors who might use
the model and its output for the design of new regulations or policies concerning
the system as a whole. We chose to gather citizens and policy makers in A, as in the
modelling process they are rather equivalent in their interactions with the
researchers about the model. Their distinction is useful for the second dimension:
model use and dissemination. We assume that the default situation is an access of P
members to the output of the modelling process.

10.4.2.1 Information and No Control

A«—R

P<+—M

Participants are informed about the model’s content and the simulation by
researchers, who are the only designers. No control over the model’s use or
dissemination is deputed to participants as such. Whatever the use of the model
may be afterwards, citizens become only better aware of the basis on which this
model has been built. However, the model exists and can be used by members of P.
This is the classical situation with simulation demonstration and explanation of a
model’s assumptions. This explanation might be achieved by more active means,
such as a role playing game. A switch to the following category occurs when this
explanation leads to a debate that makes the model open to modifications. Other-
wise, it remains mere information.

216 O. Barreteau et al.

10.4.2.2 Consultation and No Control

Participants are consulted about the model’s content and its simulation that is by the
researchers, who are the only designers. They provide information and solicit
comments on the model. Mere data collection through a survey does not fall in
this category because it assumes active involvement from participants in providing
information to the modellers. Some knowledge elicitation techniques, such as BBN
design, tend to fall mostly in this category. Translation of the inputs originating
from participants into pieces of a model is performed only by researchers. This
translation is not necessary transparent. No control over use or dissemination of the
model is deputed to participants as such. Compared to previous category,
participants have the ability to frame marginally more of what is performed by
the model through their inputs to the model’s content However, the extent of this
ability depends on the participants’ skills to identify potential uses of a model. As in
any participatory process, when there is an unbalanced power relation between
parties, the process is also a way for policy makers to gain information from
stakeholders; information that could be used for strategic purposes. This bias can
be alleviated if the involvement of A includes all members of A, including the
subset P. The constructed model in this case may be used by the members of P.

10.4.2.3 Dialogue with Modellers and No Control

A—R

N

pe—M

In this category, iterative and genuinely interactive processes between stakeholders
and modellers start to appear. There is still a translation of inputs from participants
into the model through the researchers, but there is feedback about these
developments to the stakeholders. This leads to discussion about the model. Conver-
gence of the discussion remains on the researchers’ side. Group Model Building
experiments predominately fall into this category. In this case, stakeholders may
increase their influence on the framing of the model with better prior assessment of
the scope of simulations to be examined. Biases related to strategic information being
revealed in the dialogue process are still present if there is unbalanced involvement of
Members of A, and notably if members of P are less active, but still present. However,
this category still represents indirect control and no specification of model use is left

10 Participatory Approaches 217

open to the stakeholders. At the end of the process, the created model can be used by
members of P without