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Introductory Foreword

Rudolf Seising

In the more than four decades of its existence, the scientific “Fuzzy Group” has
grown from a few engineers, working either alone or in small groups, to a large
scientific community. From the perspective of the history of science, it is quite nor-
mal over the course of time for such research programs to adapt themselves to the
phenomena of branching out and differentiation into special projects and the pen-
etration of other scientific disciplines. This applies not only to the distribution of
research projects, the number of researchers, and the benefits of various research
funding programs on the different continents and in individual countries, but also to
the high profile of the subject in widely diverse fields of science, technology, and
business.

Even though the majority of applications of the theory of fuzzy sets and systems
in the last decade have been in the field of engineering, beginning with control
engineering, since a few years ago the key area of fuzzy applications has seemed
to be computer sciences, especially the field of data or information mining.

For more than forty years, however, fuzzy logic and fuzzy mathematics have
been continuously developed, resulting in important theoretical expansions of this
mathematical theory of unsharp amounts or logic of unsharp statements, which have
often very quickly led to new application systems.

At the same time, the areas of artificial neural networks and of evolutionary and
genetic algorithms emerged as independent research disciplines and beginning in
the 1980s new developments arose that were hardly foreseeable: the theory of fuzzy
sets and systems was combined with artificial neural networks, and later also with
genetic or evolutionary algorithms or these algorithms could be successfully con-
nected with artificial neural networks. The use of such “hybrid systems” became
more and more common in all types of applications.

This was the situation when Lotfi A. Zadeh began to formulate the concept of
“soft computing”. In 1990 he wrote that “what might be referred to as soft com-
puting — and, in particular, fuzzy logic — to mimic the ability of the human mind
to effectively employ modes of reasoning that are approximate rather than exact.
In traditional — hard — computing, the prime desiderata are precision, certainty, and
rigor. By contrast, the point of departure in soft computing is the thesis that preci-
sion and certainty carry a cost and that computation, reasoning, and decision making
should exploit — wherever possible — the tolerance for imprecision and uncertainty.



VI Introductory Foreword

[...] Somewhat later, neural network techniques combined with fuzzy logic began
to be employed in a wide variety of consumer products, endowing such products
with the capability to adapt and learn from experience. Such neurofuzzy products
are likely to become ubiquitous in the years ahead. The same is likely to happen in
the realms of robotics, industrial systems, and process control. It is from this per-
spective that the year 1990 may be viewed as a turning point in the evolution of high
MIQ-products' and systems. Underlying this evolution was an acceleration in the
employment of soft computing — and especially fuzzy logic — in the conception and
design of intelligent systems that can exploit the tolerance for imprecision and un-
certainty, learn from experience, and adapt to changes in the operation conditions.”
(2]

In a retrospective foreword to the first issue of the then founded journal Applied
Soft Computing in June 2001, Zadeh wrote: “The concept of soft computing crys-
tallized in my mind during the waning months of 1990. Its genesis reflected the
fact that in science, as in other realms of human activity, there is a tendency to be
nationalistic — to make an exclusive commitment to a particular methodology and
proclaim that it is superior to all others. It is this mentality that underlies the well-
known hammer principle: when the only tool you have is a hammer, everything
looks like a nail. The launching of Berkeley Initiative in Soft Computing (BISC)
at UC, Berkeley in 1991 represented a rejection of this mentality. Initially, accep-
tance of the concept of soft computing was slow in coming. Within the past few
years, however, soft computing began to grow rapidly in visibility and importance,
especially in the realm of applications which related to the conception, design and
utilization of information/intelligent systems. This is the backdrop against which the
publication of Applied Soft Computing should be viewed. By design, soft comput-
ing is pluralistic in nature in the sense that it is a coalition of methodologies which
are drawn together by a quest for accommodation with the pervasive imprecision
of the real world. At this juncture, the principal members of the coalition are fuzzy
logic, neuro-computing, evolutionary computing, probabilistic computing, chaotic
computing, and machine learning.” [7]

The 1990s was a period of institutional consolidation of the new field of research,
to which a further field was soon added. In 1994, James Bezdek introduced the con-
cept of “computational intelligence”: “A system is computationally intelligent when
it: deals with only numerical (low-level) data, has pattern recognition components,
does not use knowledge in the Al sense; and additionally when it (begins to) exhibit

I MIQ means “Machine Intelligence Quotient”; in the introduction to his article Zadeh
wrote: “In retrospect, the year 1990 may well be viewed as the beginning of a new trend
in the design of household appliances, consumer electronics, cameras, and other types of
widely used consumer products. the trend in question relates to a marked increase in what
might be called the Machine Intelligence Quotient (MIQ) of such products compared to
what it was before 1990. Today, we have microwave ovens and washing machines that can
figure out on their own what settings to use to perform their task optimally; cameras that
come close to professional photographers in picture-taking ability; and many other prod-
ucts that manifest an impressive capability to reason, make intelligent decisions, and learn
from experience.”[2]
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1) computational adaptivity, 2) computational fault tolerance, 3) speed approaching
human-like turnaround and 4) error rates that approximate human performance.” [1]

The adjective “computational” was intended to refer to subsymbolic problem rep-
resentation, knowledge aggregation and information processing. The concept “com-
putational intelligence” is, however, only seductive as long as the concept of intelli-
gence is no better defined that it currently is, pointed out Bezdek, and he was backed
up in this in January 1995 by Hans Jiirgen Zimmermann, who as the editor of the
journal Fuzzy Sets and Systems at that time, foresaw in an editorial that the devel-
opment of systems combining fuzzy concepts with artificial neural networks and
genetic and evolutionary algorithms would continue in the future.

Therefore Zimmermann deliberated about a name for the common field of re-
search, which would then also become the subtitle of Fuzzy Sets and Systems: “Soft
computing, biological computing and computational intelligence have been sug-
gested so far.”” These concepts seemed to be attractive in different ways and also
varied with respect to their expressive power. He suggested calling the field — and
thus also the new subtitle of the journal — “soft computing and intelligence,” since
the other concepts seemed to place too much emphasis on “computing,” “which is
certainly not appropriate at least for certain areas of fuzzy set theory.” The name
“soft computing and intelligence” would be better defined than “artificial intel-
ligence,” but both have in common the word “intelligence,” which Zimmermann
found defined in Random House Dictionary as follows: “Capacity for reasoning,
understanding and for similar forms of mental activity.” This was exactly what the
editors of the journal Fuzzy Sets and Systems had considered to be central to fuzzy
set theory in the first issue.[8] Thus since the first issue of 1995 Fuzzy Sets and Sys-
tems has appeared with the subtitle International Journal for Soft Computing and
Intelligence (Figure 0.1).

FUZZY  FUzzY

R B el i%s}#‘ International Journal of Soft Computing and Intelligence
International Fuzzy Systems Association ngﬁ

official publication of the
International Fuzzy Systems Association

Principal Editor Editor-in- Chief

H.-J. ZIMMERMANN H.-J. ZIMMERMANN

VOLUME 68 (1994 VOLUME 69 (1995)

ELSEVIER Amsterdam - Lausanne - New York - Oxford -~ Shannon - Tokyo ELSEVIER Amsterdam - Lausanne - New York - Oxford — Shannon - Tokyo

Fig. 0.1 The volumes 68 (1994) and 69 (1995) of the journal Fuzzy Sets and Systems; since
1995 the subtitle has been International Journal for Soft Computing and Intelligence.
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During the 1990s there was a movement to combine the two concepts of soft
computing and (computational) intelligence, and during this decade congresses and
conferences took place in the USA, Japan, and Europe in which representatives from
these disciplines came together. Since then, there has been close interdisciplinary
cooperation and communication under the generic concepts of “soft computing”
and “computational intelligence.”

In addition, Zadeh’s initial work on “computing with words” and on the “compu-
tational theory of perceptions” finally opened the doors of “fuzzy thinking” to the
“artificial intelligence” research field in the years after 2000, following the publi-
cation of his article “A New Direction in Al: Toward a Computational Theory of
Perceptions” in the AI Magazine in the spring of 2001. [3]

In contrast, up to now there have been very few scholarly works concerned with
the theory of fuzzy sets and systems in the humanities, i.e., in philosophy, sociol-
ogy, economics, financial research, information and communication sciences, etc.
There have however, been some initial indications that the theory of fuzzy sets and
systems is making inroads into the humanities and social sciences, as Zadeh already
expected in the late 1960s: “What we still lack, and lack rather acutely, are meth-
ods for dealing with systems which are too complex or too ill-defined to admit of
precise analysis. Such systems pervade life sciences, social sciences, philosophy,
economics, psychology and many other ‘soft’ fields.” [4], [5]

In 1994, Zadeh was asked in an interview with the newspaper Azerbaijan Inter-
national, “How did you think Fuzzy Logic would be used at first?” He answered: In
many, many fields. I expected people in the social sciences — economics, psychol-
ogy, philosophy, linguistics, politics, sociology, religion and numerous other areas
to pick up on it. It’s been somewhat of a mystery to me why even to this day, so few
social scientists have discovered how useful it could be. Instead, Fuzzy Logic was
first embraced by engineers and used in industrial process controls and in “smart”
consumer products such as hand-held camcorders that cancel out jittering and mi-
crowaves that cook your food perfectly at the touch of a single button. I didn’t expect
it to play out this way back in 1965.”[6]

Today, I think that the theory of fuzzy sets and systems is a normal scientific
theory in the field of the exact sciences and engineering, and that it is well on its
way to becoming normal in the soft sciences as well. In 2007 and 2008 it was my
aim to collect the views of numerous scholars in different parts of the world who
are involved in various research projects concerning fuzziness in science, technol-
ogy, economic systems, social sciences, logics, and philosophy. It was my intent
in this volume to demonstrate that there are many different views of the theory of
fuzzy sets and systems and of their interpretation and applications in diverse areas
of our cultural and social life. I hope that the present volume fulfills these objec-
tives. An overview consisting of basic information on the contents of the individual
contributions is presented in the list of abstracts that follows this foreword.
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Abstracts

Quo vadis Fuzzy Systems?
An Advocacy of Boosting the Advantages of the Fuzzy Set Theory
Heinrich J. Rommelfanger

In this preface the author presents a critical essay on the development of fuzzy systems. In
order to ensure that fuzzy systems become popular in large sections of the population he
recommends that the essential advantage of fuzzy models be stressed: The fuzzy set the-
ory makes it possible to describe vague data and linguistic words in mathematical terms and
therefore this concept can span the gap between classical mathematical models and real world
problems.

Scientific Theories and the Computational Theory of Perceptions
Rudolf Seising

2

“A picture is a model of reality,” “picture is a fact”, and “We picture facts to ourselves,”
asserted Ludwig Wittgenstein in his Tractatus logico-philosophicus, thereby confirming the
influence on his thinking — which he himself acknowledged — of Heinrich Hertz’s Principles
of Mechanics. In this contribution the “picture” concept, which has a long tradition in philos-
ophy, serves as the starting point of an interpretation of the relationship between real systems
and theoretical structures of modern science. In addition, the approach dubbed as the “struc-
turalist” approach of scientific theories in the 20th century will be extended and enhanced by
the concept of “fuzzy sets.” This “fuzzy structuralist” view of scientific theories enables us to
combine philosophy of science with the methodologies of Computing with Words (CW) and
the Computational theory of Perceptions (CTP). We present case studies of the “fuzzy struc-
turalist view” concerning medical diagnosis, quantum mechanics, and evolutionary biology.

Fuzzy Systems and Scientific Method — Meta-Level Reflections and Prospects
Vesa Niskanen

Despite the great success of fuzzy systems in various applications, we still need further stud-
ies which consider their problems from the standpoint of the philosophy of science. Hence,
within fuzzy systems research we should devote more attention to such themes as the role
of patterns of thought and research paradigms, concept analysis, hypothesis and theory for-
mation, explanation, prediction and argumentation. Some typical problems in this area are
considered in this contribution.
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Fuzzy Logic and Science
Javier Montero

In this paper we point out that experimental science is a part of the human adventure to gain
knowledge built upon classical binary logic. Great advances have been made under two key
premises: observation for objectivity and logic for consistency. But science has focused its
main effort on observation and experimentation, while not much attention has been paid to
the underlying logic, which is in charge of enabling us to design experiments and understand
observations. Moreover, we also point out the existence of a humanization process within sci-
ence, in which human beings themselves are being introduced into the scientific model — first
as an inevitable observer, then as a key actor in world affairs, and finally as a main objective
(even intergenerational through environmental concerns). This growing role of human beings
in science implies in our opinion a search for alternative logics in order to ensure appropriate
consistency. To become the logic of a new science, such a logic should be related to natural
language and other standard human models for describing reality, managing information, and
producing implementable results in a society ruled by social and economic arguments. In this
context, fuzzy logic should play a key role in the next stage of the human adventure aimed at
gaining knowledge.

Fuzzy Logic, Concepts and Semantic Transformers
Stephan van der Waart van Gulik

Most fuzzy predicates in natural language own a complex concept. Informally speaking, a
complex concept of a predicate 1 is a set of associated predicates, each of which owns a
significant level of semantic relevance for 7. For example, when judging the applicability of
the predicate Bird to some given creature, we usually take into account the applicability of
several relevant predicates associated with Bird, e.g. Beak, Feathers, Fly etc. The standard se-
mantic representation of predicates by means of gradual membership functions in fuzzy logic
does not capture the semantic function of complex concepts. I will present a formalism based
on selection functions that represents complex concepts. It can be implemented in a large set
of fuzzy logics. In order to illustrate its use, I will sketch several new applications, including
several modified fuzzy logics that are able to deal with a new kind of hedges called semantic
transformers. Semantic transformers do not simply intensify or de-intensify the applicabil-
ity of a predicate, but really transform its meaning. People often transform the meaning of a
predicate used in an atomic formula in order to increase the truth-degree of the formula. A
good example of a semantic transformer is the phrase technically speaking as used in sen-
tences like ‘Only Technically speaking, Nixon can be called a Quaker.’

Phenomenology as a Criterion for Formalism Choice
Dmitri lourinski

There have been many attempts to use non-Boolean logics to develop an inferential apparatus
for the Dempster-Shafer theory. Most such formalisms use different flavors of modal logics.
This choice was popular due to different possible interpretations of the meaning of modal
connectives. In the current paper we present an alternative approach with the semantics of
Dempster-Shafer frames of discernment as a starting point. We demonstrate how Brouwer’s
intuitionist view gives an adequate understanding of the nature of the objects within the
Dempster-Shafer universe. We also show how the phenomenological choice leads one towards
adopting a superintuitionistic rather than a modal logic as a formalism for inference.
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Computational Theory of Meaning Articulation:
A Human Estimation Approach to Fuzzy Arithmetic
Tero Joronen

This article introduces a very simple computational theory of perceptions that resembles hu-
man estimation. The latest developments in soft computing are oriented towards the Compu-
tational Theory of Perceptions. This study approaches the problem of perceptions from the
perspective of a pictorial language in connection with fuzzy logic and introduces the com-
putational theory behind the description language. The applications seek to emulate simple
human estimation and exploit traditional arithmetic for actual computation.

Retrospective Look at the Foundational and Philosophical Issues of Bandler & Kohout’s
paper “Fuzzy Power Sets and Implication Operators after 29 years”
Ladislav Kohout

The development of new concepts in fuzzy set theory is an interesting story. In 1965 Zadeh
created fuzzy set theory by replacing the two-valued characteristic function y of crisp sets
with the many-valued fuzzy membership function u, which takes its values from the interval
[ O, 1]. The set inclusion A C B, on the other hand, still remained crisp in Zadeh’s paper. The
situation changed in 1978 with Bandler and Kohout’s paper entitled Fuzzy relational prod-
ucts and fuzzy implication operators, in which they provided the technical tools for defining
a wide variety of fuzzy subsetness predicates C by means of implication operators and de-
fined graded fuzzy power sets. The abbreviated version entitled Fuzzy power sets and fuzzy
implication operators appeared subsequently in Fuzzy Sets and Systems and has been fre-
quently quoted in the literature. Other sections of the 1978 paper defining fuzzy BK-products
of relations were published as separate papers that are also often quoted.

In the first part of this chapter we briefly survey Bandler and Kohout’s paper, pointing out
important interrelationships of various concepts first introduced there. This is followed in the
second part by discussion of subsequent related work by the fuzzy community concerning
the concepts of set inclusion, subsetness indicators, power sets and BK-products of relations.

Probability and Fuzziness — Echoes from 30 Years Back
Hannu Nurmi

Do we really need the theory of fuzzy sets and systems? After all, probability theory is a
widely applied and universally recognized field that apparently studies similar problems, viz.
related to impreciseness, vagueness, and ambiguity. My paper written about 30 years ago
tried to suggest that there is a legitimate “niche” for the theory of fuzzy systems. Between
1977 and 2007 many important developments have taken place both in the theory of fuzzy
systems, general modeling devices, and in the fields of application. This paper tries to find
out whether these developments call for a revision of the earlier views.

On a Model for the Meaning of Predicates
(A Naive Approach to the Genesis of Fuzzy Sets)
Enric Trillas

The meaning, or use, of a predicate P on a set X is considered in the case in which it can
be described by means of the relational statements “x is as equally P as y" and “x is less P
than y," for x,y in X. Once a general enough definition of an L — degree for P is introduced,
and the collective originated on X by the collective noun P is represented by an L — set, the
algebras of L — sets are studied. Synonyms and antonyms of P are also considered, as well as
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the concepts of qualified, modified, and constrained predicates. Finally, some comments on
the peculiar behavior shown by the predicate probable are made.

Fuzzy Logic as a Theory of Vagueness: 15 Conceptual Questions
Jeremy Bradley

Even though it has celebrated innumerable successes in the field of engineering, the so-called
fuzzy approach has not established itself among philosophers as a universally accepted theory
of vagueness. Various issues related to its mathematical and philosophical foundations have
been raised as problems. This chapter reviews these points and compares fuzzy logic with
other theories that have found wider acceptance in the context of vagueness. Key questions
are whether these issues are relevant, solvable, and/or exclusive to fuzzy logic and whether
anything can be done to address them more effectively in the future.

Dialogue Games as Foundation of Fuzzy Logics
Christian G. Fermiiller

The adequate formalization of correct reasoning with vague notions and propositions is an
important challenge in logic, computer science, and philosophy. A dialogue game based ap-
proach to the problem of providing a deeper semantic foundation for t-norm based fuzzy
logics is explained and explored. In particular, various versions, extensions, and alternatives
to Robin Giles’s dialogue and betting game for Lukasiewicz logic are re-visited and put in
the context of other foundational research in logic. It emerges that dialogue games cover a
wide range of topics relevant to approximate reasoning.

Connecting a Tenable Mathematical Theory to Models of Fuzzy Phenomena
Esko Turunen

Fuzzy logic appears different from various scientific viewpoints: from the standpoint of a
philosopher or applied computer scientist, fuzzy logic is a contrast to binary logic and crisp-
ness, while a mathematician examines fuzzy logic from a purely mathematical perspective:
what are the mathematical principles and algebraic structures behind fuzzy logic? Thus, for a
mathematician fuzzy logic is not really fuzzy; indeed, it is an exact logic of inexact concepts
and phenomena. It is a self-evident fact that fuzzy logic should be studied from all possible
scientific points of view. The starting point in this paper is that of mathematicians. We be-
gin by locating mathematical fuzzy logic on the map of mathematics and recall some basic
definitions and results on many-valued logic. We show that many parts of fuzzy reasoning
can be reduced to well-defined many-valued logic. In particular, Lukasiewicz-Pavelka style
fuzzy logic and many-valued similarity play a crucial role in typical fuzzy if-then inference
systems; this is shown by real world applications of the theory.

Many-Valuation, Modality, and Fuzziness
Jorma Mattila

When fuzzy sets are based on the concept of set, there has been motivation to consider mem-
bership functions as somehow necessary in presenting fuzzy sets. Connections between fuzzi-
ness and modality are considered. Many-valued logic serves as one link between modality and
fuzziness. In particular, it plays this role in Lukasiewicz’ 3-valued logic. Modal properties of
Lukasiewicz’s 3-valued logic is considered and Bochvar and Kleene’s 3-valued logics are
briefly considered from the modal point of view. Some ideas for many-valued modal logics
are considered. One of them is based on Lukasiewicz’s logic, others are based on modifier
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logic. A general condition for modal operators in many-valued logics is introduced. Some
basic modifiers for membership functions are considered as modal-like operators. An idea
about fuzziness without membership functions is introduced. It is based on modifiers. This
establishes a connection to computing with words.

Fuzzy Thinking in Sociology
Lars Winter and Thomas Kron

Social facts are seldom precise ,hard facts”, but mostly vague ,,soft facts.” Therefore fuzzy
thinking seems to be an appropriate logic that is capable of reflecting the social realm. We
argue that fuzzy thinking leads to a more ,.realistic”” understanding of how the social realm
is organized. Two central theoretical approaches will be discussed to show how fuzzy think-
ing contributes to the progress of theorizing social processes. First, we show that fuzzy logic
contributes to two central problems of social action theory: modeling the so-called definition
of the situation and modeling expectations while taking into account social actor’s ambiguity.
Second, we discuss Luhmannian social systems theory as another example of bivalent theo-
rizing in sociology. Fuzzy thinking in social systems theory leads to two important theoretical
aspects: vagueness of coding and vagueness of affiliation. Finally, we discuss the use of fuzzy
thinking in modernization theory and in macrosociological research.

Fuzzy Set Theory and Philosophical Foundations of Medicine
Julia Limberg and Rudolf Seising

Dealing with the concepts of health, illness, and disease encompasses dealing with fuzziness.
We will demonstrate that states designated by these concepts do not only exist or not exist.
The medical philosopher and physician Sadegh-Zadeh introduced the notions of fuzzy health,
fuzzy illness, and fuzzy disease. A closer look will be taken at the concept of fuzzy disease.
Because there are different ways of interpreting the concept of disease — among others, those
based on linguistic and social backgrounds — Sadegh Zadeh introduced potential candidates:
complex “human conditions.” This notion can be taken as a pre-stage of decision support in
medical diagnosis. As a demonstration, a computer program has been implemented and its
contents are summarized. The second part of the contribution deals with research on genes.
This subject has become a topic of increasing importance. But a real definition of a so-called
gene is rather complex. In addition, we argue for the development of a fuzzy definition of a
gene and fuzzy implementations on genes. We will start with Kazem Sadegh-Zadehs theory
about fuzzy genomes, make a detour to Bart Kosko’s Fuzzy Hypercube and then continue
with fuzzy-theoretical approaches to genes.

Fuzzy Preferences as a Convenient Tool in Group Decision Making
and a Remedy for Voting Paradoxes
Janusz Kacprzyk, Stawomir Zadrozny, Hannu Nurmi and Mario Fedrizzi

We give an overview of how fuzzy logic can be used to formulate the following problem of
group decision making and voting: we have a group of people and their individual prefer-
ence relations over a set of options (alternatives, variants, ...). We look for a solution, i.e.,
an alternative or a set of alternatives from among the feasible ones, which best reflects the
preferences of the group as a whole. We will briefly outline some basic inconsistencies and
negative results of group decisions and social choice, and show how they can be alleviated
mainly by introducing fuzzy preference relations to derive new solution concepts. Then, we
will show how fuzzy preferences can help alleviate some voting paradoxes. An extensive list
of literature is provided.
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What We Are Learning from the Neurosciences about Decision-Making:
A Quest for Fuzzy Set Technology
Armando Rocha, Fernando Gomide and Witold Pedrycz

Prospect theory has been developed as an alternative to expected utility theory as a model
of decision-making in economics. But data provided by the neurosciences are calling into
question both theories, by disclosing the existence of distinct neural circuits for reward eval-
uation; risk assessment, and approaching/avoidance decision. The present chapter introduces
a neurodynamic decision making model based on this knowledge that is able to solve, as
prospect theory does, the paradoxes that have called expected utility theory into question.
Besides this, learning allows neurodynamic decision making to adapt to new environmental
conditions to support survival. Currently, learning is not addressed by either expected utility
theory or prospect theory.

Postmodernism and Control Engineering
Valentina E. Bdlas and Marius M. Bdlas

This chapter discusses the relationship between modernism and postmodernism as a reaction
to modernism, from the point of view of control engineering. It draws a parallel between
intelligent control and new trends in intellectual thought. It also addresses the relationship
between postmodernism and soft computing, namely, fuzzy set theory. A benchmark study
concerning the switching controllers issue (an occasional instability that may appear when
two perfectly stable controllers are switched) illustrates the need for heuristic solutions and
the efficiency of the qualitative reasoning supported by the phase trajectory of the error.

Fuzzy Mechanisms for Qualitative Causal Relations
Joao Paulo Carvalho and José Alberto B. Tomé

When approaching causality, classical fuzzy systems do not allow the implementation of
qualitative causal relations as defined in causal maps. Fuzzy Causal Maps (FCM) have been
around for a long time, but are implemented using mechanisms closer to neural networks
that cannot be mixed with classic fuzzy rule based systems. This work presents a method to
implement Fuzzy Causal Relations that can be used in Rule Based Fuzzy Cognitive Maps
(RB-FCM). The procedure is based on a new fuzzy operation that simulates the "accumula-
tive" property associated with causal relations — the Fuzzy Carry Accumulation (FCA). The
FCA allows great flexibility in the addition and removal of concepts and links among con-
cepts while maintaining compatibility with classic fuzzy operations.

On the Relation Between Fuzzy and Quantum Logic
Ingo Schmitt, Andreas Niirnberger, Sebastian Lehrack

Fuzzy logic is a well-established formalism in computer science that is strongly influenced
by the work of Zadeh. It provides us a means to deal with uncertainty. The logic is based on
t-norms and t-conorms for conjunction and disjunction on membership values of fuzzy sets.

Quantum logic was developed in the context of quantum mechanics. In contrast to fuzzy logic,
the logic is based not on membership values, but on vector subspaces identified by projectors.
The lattice of all projectors provides us a special form of conjunction and disjunction.
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Interestingly, there are relations between both theories. The interaction, called quantum mea-
surement, of a projector with a normalized vector produces a value which can be directly
interpreted as a fuzzy membership value. This paper shows that under some circumstances
the conjunction of projectors directly corresponds to the algebraic product in fuzzy logic.
However, in contrast to fuzzy logic which uses just membership values, we take the produc-
ing projectors into consideration. As result, we are able to overcome the problem of idempo-
tence. Furthermore, if we restrict the projectors to be mutually commuting, we obtain a logic
obeying the rules of Boolean algebra. Thus, quantum logic gives us more insights into the
semantics behind the fuzzy algebraic product and algebraic sum.

Fuzzy Cluster Analysis from the Viewpoint of Robust Statistics
Frank Klawonn and Frank Hoppner

Fuzzy cluster analysis generates a fuzzy partition of a data set instead of a crisp partition
where each point must be assigned uniquely to a cluster. In this way, it can be expressed
that certain data points lie between clusters and distortion of the clustering result by such
data points can also be avoided. Robust statistics is concerned with data analysis techniques
which can cope with — at least a limited fraction — of outliers, even extreme outliers. Fuzzy
cluster analysis shares this idea with robust statistics. However, fuzzy cluster analysis devel-
oped its own strategies in the beginning and connections with robust data statistics were only
made later on. Especially so-called M-estimators from robust statistics are closely related to
fuzzy cluster analysis. Although this connection has been stated in a few papers, it is widely
ignored by many others. This paper provides an overview of the principles of fuzzy cluster
analysis, relates them to robust statistics, and shows how fuzzy cluster analysis can be im-
proved in this way.

On the Usefulness of Fuzzy Sets in Data Mining
Eyke Hiillermeier

Topics in data mining and knowledge discovery have recently received increasing attention in
the fuzzy sets community, and various extensions of data mining methods have already been
developed on the basis of fuzzy set theory. Corresponding fuzzy data mining methods exhibit
some potential advantages over conventional methods. In particular, since many patterns of
interest are inherently vague, fuzzy approaches allow for modeling them in a more adequate
way and thus enable the discovery of patterns that would otherwise remain hidden. This chap-
ter addresses the question of whether or not fuzzy methods are useful in data mining and, in
this regard, highlights the aforementioned advantages of fuzzy approaches in the context of
exemplary data mining methods.

The Uncertainty Associated with a Type-2 Fuzzy Set
Sarah Greenfield and Robert John

Type-2 fuzzy sets offer the opportunity to capture higher orders of uncertainty. However, re-
searchers have not explored fully the nature of this uncertainty and how it can be quantified.
In this paper we place type-2 fuzzy sets in the context of logic and model them, for the first
time, as a collection of meta-statements. The paper provides a full discussion on this new
perspective. We also propose new approaches to measuring the uncertainty represented by a
type-2 fuzzy set.
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Fuzziness — Representation of Dynamic Changes by Ordered Fuzzy Numbers
Witold Kosiriski, Piotr Prokopowicz and Dariusz Kacprzak

In our daily life there are many cases that observations of objects in a population are fuzzy, in-
accurate. The paper brings a discussion about the source of that inaccuracy and demonstrates
that the essential reason of the lack of precision is changeability, and the more changeability,
i.e. more dynamics, can be experienced the more inaccurate, more fuzzy judges can be. The
space of ordered fuzzy numbers (OFN), the new model of fuzzy numbers that make possi-
ble to deal with fuzzy inputs quantitatively, exactly in the same way as with real numbers,
is shortly presented. The new model possesses a set of properties which are in accordance
with the influence of changeability on the increase of the inaccuracy in observations of the
environment. The use of OFN is getting rid of the main problem in a classical fuzzy numbers
- an unbounded increase in inaccuracies with next calculations. Moreover, new interpretation
can be treated as an extend of classic proposals so there is no need to abandon existing ideas
to deal with the new model of fuzzy numbers.

Meta Sets - Another Approach to Fuzziness
Bartlomiej Starosta and Witold Kosiriski

We have developed a new concept of a fuzzy set with fuzzy membership relation. Its defini-
tion involves simple set-theoretic notions, like binary trees as opposed to real numbers as in
the case of a fuzzy set. The definition of a meta set is similar to the definition of a fuzzy set,
however it is more general, in particular elements of a meta set (partial elements too) are also
meta sets themselves. We have defined basic set-theoretic relations, like the membership and
the equality, as well as their fuzzy versions. We have also defined set-theoretical operations
and we have proved that they satisfy the Boolean algebra axioms. The meta sets language
is similar to the language of the crisp set theory, however it involves a countable number of
relational operation symbols to express different grades of membership or partial equality. A
meta set may be viewed as a crisp set in a number of ways by means of the so called interpre-
tations. The crisp sets which may be obtained from the meta set in this way, may induce some
properties of the meta set, in particular they are used to define basic set-theoretic relations.

Regression Model Based Fuzzy Random Variables
Junzo Watada and Shuming Wang

In real usages of regression models, we have encountered many cases where various statistical
data are linguistically imprecise or vague. Under the condi tion of such coexistence of random
and fuzzy information, we cannot characterize the data only by random variables. Therefore,
fuzzy random variables should be in troduced when there are such regression problems. The
objective of this paper is to build a regression model based on fuzzy random variables. First,
a general regression model for fuzzy random data is proposed. After that, using expected
value operators of fuzzy random variables, an expected regression model is established for its
practical usage. The expected regression model

can be solved by converting it to a linear programming problem. Finally, an illustrative
example is provided for the practical usage of the expected regression model.
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Optimal Workers’ Placement in an Industrial Environment
Shamshul Bahar Yaakobm and Junzo Watada

This paper deals with a problem concerning the evaluation and placement of workers in an
industrial environment; an effect of workers’ relationship to their placement is also included.
An evaluation of the suitability of workers on the basis of various evaluation criteria is an
important factor for decision makers in the selection of proper candidates for jobs from avail-
able human resources . For this type of problem, an analysis using the fuzzy number approach
promises to be potentially effective. In order to make a more convincing and accurate deci-
sion, the relationship between jobs is included in the workers’ assignment in an industrial
environment. The fuzzy suitability evaluation is performed by means of aggregating the de-
cision makers’ fuzzy assessments. Examples of typical applications are also presented: the
results demonstrate that the workers’ relationships are an important factor and the results
show that our method can provide a more effective decision making process.
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An Advocacy of Boosting the Advantages of the Fuzzy Set
Theory

Heinrich J. Rommelfanger

Between 1950-1980 the researchers and teachers in business administration real-
ized that mathematical models are essential for making better decisions and getting
new knowledge about the business cycles. The decision and optimization models,
developed during the second world war, were the starting point of a multiplicity
of mathematical models for various applications that were summarized under the
term Operations Research. The delight in developing Operations Research mod-
els was clouded when empirical studies revealed that only few of the methods and
algorithms are used for supporting real world problems. In their famous book Be-
havioral theory of the firm R.M. Cyert and J.G. March (1963) [2] discussed in detail
that the normative decision theory in the sense of von Neumann and Morgenstern
[14] (1953) is hardly used in practice to solve real-life problems. This scientific dis-
coveries were later underpinned by empirical studies of Kivijidrvi, Korhonen and
Wallenius [9] (1986), Lilien [11] (1987), Tingley [26] (1987), Meyer von Selhausen
[12] (1989), which came to the result that only few operations research methods
are used in practice and that a lot of applications proposed in OR literature are not
transformed into practical applications. These empirical surveys prove that linear
programming models are the only operation research methods which are applied on
large scale in practical life. Nevertheless a strong discrepancy between the applica-
tion in literature and the practical use can be acknowledged. Accordingly, Fandel,
Francois and Gulatz (1994) [3] proved in an empirical study that only 13 out of 167
production programming systems were based on the LP-approach.

This kind of disregarding scientific results is mainly based on the fact that the
mapping of practical problems by means of mathematical optimization systems re-
quires immense input data in order to describe the coefficients and right sides of the
model adequately by real numbers. However some data and especially future orien-
tated data can only be described ambiguously. Therefore, many decision makers are
for good reason not willing to collect the necessary information and to model the
problems in advance, while subsequently they will only apply a model which does
not adequately reflect the real problem. Since vague data is condensed to “average
data” it could happen that one would get a solution which may be perfect for the
model, but does not fit for the real problem. Attempts to model vague right hand
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sides or coefficients stochastically quite often fail, because the necessary input data
are not available and the operations for solving stochastic optimization models are
not convincing see [16] (1991).

In 1965 Lotfi A. Zadeh developed the theory of fuzzy sets and thus offered a
practical way to model vague data [29] (1965). Instead of replacing vague data by
“average data”, they are modeled by fuzzy numbers and fuzzy intervals, as precisely
as a decision maker will be able to explain and describe them. Therefore, an impor-
tant advantage of fuzzy systems is the fact that they allow an adequate mapping of
real problems. However, not many researchers on Operations Research took up this
new theory for developing more realistic models and algorithms.

As before, most of the scientists did not care about the gap between mathemati-
cal models and real world conditions. Nevertheless, some researchers from all over
the world recognized the essential advantage of the fuzzy set theory. They realized
that this concept allows describing vague data or linguistic words by mathematical
terms. Moreover, the restrictions of the two-dimensional logic were lifted. In many
fields, a lot of real world problems were modeled in form of fuzzy systems, see
Slowinski [24] (1998) and FSS, especially in the time period 1984-1995. These new
models reflected the real state much more realistic then the previous deterministic or
stochastic systems, but usually the well known algorithms for calculating solutions
were no longer valid. Therefore, new solution procedures have been developed. In
spite of all research work the fuzzy systems were not accepted in large sections of
teaching and research. Even so many scientists had shown an interest in the new
fuzzy models, they did not really deal with them. As a result practicians did not get
any information about these new tools.

New hopes were raised in the period 1987-1993, when newspapers and maga-
zine reported on fuzzy control and their applications. Starting from the ideas of S.
Assilian, E.H. Mamdani a lot of industrial applications of fuzzy logic control were
developed. The first technical realization was an automatically working control sys-
tem for cement kilns that was developed by Mamdani [1] (1974), Ostergaard and
Jensen for the company E. L. Smidth & Co., Denmark, see [7] (1979), [8] (1979),
[10] (1981). The fuzzy control systems have become much more public since in
1985 in Japan a profusion of these rule based control systems was developed for
different applications, see [25] (1985), Hall and Kandel [5] (1986) and Hirota [6]
(1989). As a positive effect the term fuzzy became a synonym for technological
progress in Japan. It was the merit of Hans Jiirgen Zimmermann and his collabora-
tors that since 1992 these fuzzy control systems have become popular in Germany
as well as in Western Europe. In numerous articles in newspapers and magazines
they praised the advantages of this new technology and indicated the technologi-
cal lead of the Japanese economy. The pleasing result was that within a few years
fuzzy control was accepted and used in the European Industry too. However, there
was an essential difference to South East Asia. The new technology was not touted
under the name fuzzy but with the reference electronically controlled. One reason
for this marketing decision may be the fact that in Middle Europe the term fuzzy
was strongly associated with the western hero Al “Fuzzy” St. John (1893-1963),
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who was well-known in Germany from the western film series Western von gestern,
which was transmitted by the ZDF in the time period 1978-1986.

The next approach to make fuzzy systems more popular was started at the end of
last millennium under the name Soft Computing that was later changed in Comput-
ing by words. This is undoubtedly an attractive slogan. But the papers and lectures
that had so far been presented under this generic term could not fulfill the great
expectations. Merely the peripheral parts of the presented models, where at first,
words are transformed in fuzzy sets and retransformed at the end, were convinc-
ing. But the main part, the mapping of fuzzy vectors in fuzzy vectors, was normally
done very simply and did not convincingly reflect the complex human-centric com-
puting. Here, the use of fuzzy relations was theoretically possible of course, but in
practice researchers were not yet able to present suitable relations. Unfortunately,
some plenary lessons on the Fuzzy World Congress 2007 in Cancun, Mexico were
good examples for supporting this thesis. Many participants expressed their disap-
pointment about these contributions that were not appropriate to advance the IFSA
community.

It was a pity that the sole successful concept, the fuzzy expert system, was not
mentioned on this conference. Already in 1992 Rommelfanger [17] (1993) had sub-
stantiated that fuzzy logic based expert rules can not only be used for controlling
technical processes but they are also helpful for supporting decision or valuation
problems. Meanwhile, a lot of fuzzy expert systems exist for supporting credit rat-
ings, auditors, suppliers, portfolio management, strategic early diagnosis, see e. g.
[18] (1999), [19] (1999), [4] (2002), [20] (2000), [13] (1996), [23] (1996), [27]
(1998), [15](2004).

Nevertheless, the essential question is, what can be done to promote fuzzy sys-
tems in order to make these concepts popular in large sections of the population. In
my opinion, we should stress the essential advantage of the fuzzy set theory. This
concept can span the gap between the classical mathematical models and the real
world problems. With the fuzzy set concept, real decision problems can be modeled
as exactly as the decision maker wants to or can perform. In doing so, the deci-
sion maker does not run the risk of choosing an alternative that provides an optimal
solution for the model, but does not match the real problem. Moreover, in many
cases additional merits of fuzzy models will be visible and should be highlighted
too. Since I am a specialist in fuzzy support systems, I want to explain the ideas in
this field. For more details see [21] (2003), [22] (2004). A disadvantageous conse-
quence of the use of fuzzy results or fuzzy probabilities in decision models is the
fact that a best alternative is not identified in all applications. But normally it is
possible to reject the majority of the alternatives because they have a worse ranking
compared with the remaining alternatives concerning the p- or the e-preference. In
order to reach a ranking of the remaining alternatives additional information about
the results of these alternatives can be used.

Apart from the fact that fuzzy models offer a more realistic modeling of de-
cision situations, the proposed solution process leads to a reduction of informa-
tion costs. This circumstance is caused by the fact that additional information is
gathered in correspondence with the requirements and under consideration of cost-
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benefit-relations. It is recommended to refrain from collecting expensive additional
information a priori and to start with the information that the decision maker has or
can get with low costs. Deterministic and stochastic models require enormous infor-
mation processing in order to determine “average values”. This is the only way to
minimize the risk of applying a wrong model of the real problem. We know however
that the optimum solution of an LP-model finally depends on very few restrictions.
Therefore, it would be sufficient to determine the coefficients and right hand sides
of these decision restrictions quite exactly and leave the other data rather vague.
Especially in case of large LP-systems one could save a lot of time (for collecting
information) and the thus resulting costs.

The application of fuzzy systems combined with an interactive solution process
offers an adequate answer to the information dilemma. Instead of collecting exten-
sive data for creating a crisp model of the real problem in the first step a fuzzy system
should be modeled, using only such information, which can be achieved easily and
without high expenses. Based on the solution of this fuzzy model the decision maker
has to decide which additional information has to be collected and processed. Thus
the data representation and the solution can be improved stepwise by gathering ob-
jective orientated additional information with reference to the costbenefit relation.
Since the collecting of input data is cut back on the relevant components, the result-
ing costs can be considerably reduced.

Furthermore fuzzy models with an interactive solution algorithm provide the op-
portunity to solve mixed integer (multi-criteria) LP-problems quite easily. Compared
with classical LP-models, where integer solutions nearby the optimum solution are
often not feasible, in case of fuzzy models the right hand sides are no strong borders.
Thus fuzzy models also admit most of the integer solutions, which are nearby the
optimum solution and the decision maker can chose one of the neighbor solutions.
However, the advantage of a higher objective value has to be weighed against the
disadvantages caused by disregarding the right hand side of the restrictions.
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Chapter 1

Fuzzy Sets and Systems and Philosophy of
Science

Rudolf Seising

1.1 Introduction

In science there is a traditional division of labor: on the one hand we have fundamen-
tal, logical, and theoretical investigations and on the other hand we have experimen-
tal and application-oriented examinations. Theoretical work in science uses logics
and mathematics to formulate axioms and laws. It is linked with the philosophical
view of rationalism, whereas the other aspects of science employing experiments to
discover prove, or refute natural laws have their roots in philosophical empiricism.
In both directions — from experimental results to theoretical laws or from theoretical
laws to experimental proofs or refutations — scientists have to bridge the gap that
separates theory and practice.

Beginning as early as the 17th century, a primary quality factor in scientific
work has been a maximal level of exactness. Galileo Galilei (1564-1642) and René
Descartes (1596-1650) started the process of giving modern science its exactness
through the use of the tools of logic and mathematics. The language of mathematics
has served as a basis for the definition of theorems, axioms, and proofs. The works of
Isaac Newton (1643-1727), Gottfried Wilhelm Leibniz (1646-17169, Pierre-Simon
Laplace (1749-1827), and many others led to the ascendancy of modern science,
fostering the impression that scientists were able to represent — completely and ex-
actly — all the facts and processes that people observe in the world. But this optimism
has gradually begun to seem somewhat naive in view of the discrepancies between
the exactness of theories and what scientists observe in the real world. From the em-
piricist point of view the source of our knowledge is sense experience. John Locke
(1632-1704) used the analogy of the mind of a newborn baby as a “tabula rasa”
that will be written by the sensual perceptions the child has later. In Locke’s opin-
ion these perceptions provide information about the physical world. Locke’s view
is called “material empiricism” whereas so-called idealistic empiricism was the po-
sition of George Berkeley (1685-175) and David Hume (1711-1776): the material
world does not exist; only perceptions are real.

Immanuel Kant (1724-1804) achieved a synthesis of rationalism and empiricism
in his magnum opus Critique of Pure Reason, published in 1781 [13]. Kant argued
that human experience of a world is only possible if the mind provides a systematic
structuring of its representations that is logically prior to the mental representations
that was analyzed by empiricists and rationalists. With these philosophical views
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2 1 Fuzzy Sets and Systems and Philosophy of Science

alone, we would not be able to explain the nature of our experience because these
views only considered the results of the interaction between our mind and the world,
but not the contribution made by the mind. Kant concluded that it must be the mind’s
structuring that makes experience possible.

This epistemological dispute is of great interest to historians of science, but since
it is still going on, it is also of great interest to today’s philosophers of science. The
attempt to find a way to bridge the gap between rationalism and empiricism is a
permanent issue in the history of the philosophy of science.

In the 1960s, the gap between real systems and exact mathematical theories, as
well as the search for possible ways of bridging this gap, led the electrical engineer
and Berkeley professor Lotfi A. Zadeh (born in 1921) to consider “mathematics of
cloudy or fuzzy quantities” and ultimately to establish the theory of fuzzy sets and
systems. Starting with a mathematical theory of electrical filters, on the one hand,
and with the impossibility of realizing ideal filters whose “passbands’ have exactly
defined threshold frequencies, on the other, and bearing in mind the characteristics
of actual electrical filters with their unsharp boundaries, Zadeh developed a mathe-
matical theory of “membership functions” for sets (or classes) with unsharp bound-
aries. With fuzzy sets, it is possible to handle classes and structures with unsharp
boundaries. They enable us to break down the sharp boundaries of our concepts,
which Gottlob Frege (1848-1925) always demanded with reference to the classic
sorites paradox — since if this was not done, not only would the laws of classical
logic be violated, but also false conclusions would be possible.

In my original research work on the history of the theory of fuzzy sets and sys-
tems (FSS), I could show that Zadeh established this new mathematical theory in
1964/65 to bridge the gap that reflects the fundamental inadequacy of conventional
mathematics to cope with the analysis of complex systems [20], [19], [21]]. In the
last decade of the 20th century Zadeh developed computing with words (CW) [41]]
and the computational theory of perceptions (CTP) [42], [44] and he established the
methodologies of CTP and CW on the basic methodology of FSS. In the second
half of the 20th century, a great many scientific concepts, methods, and theories
were “fuzzified”. Fuzzification is a transformation that can be reconstructed and re-
flected upon in a scientific manner by appropriately expanding the framework of the
structuralist view of scientific theories in the philosophy of science. The resulting
fuzzy sets can then serve as a new modeling tool in scientific theory. Zadeh’s theo-
ries, FSS, CW, and CTP constitute a hierarchy of methodologies that fits in between
the level of real systems and that of theoretical structures, making it possible to rep-
resent human perceptions that cannot be represented with the sharp boundaries of
classical logic.

In the present contribution we will examine this methodology stack for bridging
the gap between real and theoretical systems from a philosophical point of view.
Also, the approach dubbed the “structuralist view of scientific theories” in the 20th
century will be extended and enhanced by the concepts of “fuzzy sets” and “fuzzy
relations.” To this end, the structuralist approach of scientific theories will first be
reviewed in Section[[.3]and then this approach will be modified in Section[T.4l-i.e.,
it will be “fuzzified” to model perceptions of scientific observers. This approach
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provides a new view of the “fuzzy” relationship between empiricism and theory. To
illustrate the results of this “fuzzy structuralist” theory in the philosophy of science,
three case studies — medical diagnosis, quantum mechanics, and evolutionary biol-
ogy — will be discussed in Section [Ldl. In Section 1 below we give two examples of
epistemological positions in modern science from the 1890s to the present day that
have considered aspects of “‘concepts with unsharp borders,” which we interpret as
“fuzzy” entities in the philosophy of science:

e The German physicist Heinrich Hertz (1857-1894) established one of these posi-
tions in the introduction to his well-known Principles of Mechanics presented in
a new form [[11]]. This book was edited posthumously by Philipp Lenhard in 1894
and it is a milestone of classical philosophy of science. Ten years before, when
Hertz was a professor at the University in Kiel, Germany, he wrote a manuscript
of his lecture on The Constitution of matter, but he did not publish it as a book.
This manuscript was found in the 1990s by Albrecht Folsing, Hertz’s biographer,
who edited Die Constitution der Materie in 1999. The published version is only
available in German [[12]].

e Two other epistemological systems can be distinguished in the work of the
Austrian-British philosopher Ludwig Wittgenstein (1889-1951), who in his early
years wrote the famous Tractatus logico-philosophicus, which was published in
1921, and in later years produced the Philosophical Investigations, which ap-
peared two years after his death in a book translated and edited by Wittgenstein’s
former student and later Cambridge professor of analytic philosophy Gertrude
Elisabeth Marie Anscomb (1919 - 2001) [30].

In Wittgenstein’s two books we find totally different epistemologies and — as in the
two books of Heinrich Hertz — there is a concept of fuzziness in one of them. In
the case of Hertz there is room for fuzziness in his early book and in the case of
Wittgenstein it is in his later one.

Later in this contribution, we will use the structuralist program in the philoso-
phy of science to distinguish the layer of reality from the layer of theory. Then, we
will reconstruct a layer of fuzziness between the layers of external objects (things)
and of their images and symbols (conceptions of things) in these positions. We will
model this fuzziness in accordance with Zadeh’s hierarchy of FSS, CW, and CTP
methodologies, and finally we will discuss the future prospects of this view of mod-
ern scientific theories.

The Epistemological Systems of Heinrich Hertz and Ludwig Wittgenstein “A
picture is a model of reality.” “We picture facts to ourselves.” “A picture is a fact.”
These are three consecutive propositions in Ludwig Wittgenstein’s Tractatus logico-
philosophicus ([29], prop. 2.1, 2.12,2.141). They demonstrate the influence of Hein-
rich Hertz’s Principles of Mechanics on his thinking — a debt that Wittgenstein
himself acknowledged. In this contribution, the concept of a “picture”, which has
a long tradition in philosophy, serves as the starting point for an interpretation of the

! Another more detailed case study concerning the areas of medicine and genetics can be found in
Fuzzy Set Theory and Philosophical Foundations of Medicine by Julia Limberg and myself in the
present volume.
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relationship between real systems and theoretical structures of modern science. Il-
lustrating this in the following section, we will consider the epistemological systems
of Heinrich Hertz and Ludwig Wittgenstein.

1.1.1 Heinrich Hertz’s Epistemological System in the Principles
of Mechanics

Hertz’s book The Principles of Mechanics Presented in a New Form was edited
posthumously in 1894 by Philipp Lenhard (1862-1947), who was Hertz’s assistant
in Bonn from 1891 to 1894 and later became a professor in Breslau, Aachen, Hei-
delberg, and Kiel. In this book, Hertz created a new system of forceless mechanics
based on space, time, and mass; but most notably, the book’s introduction became a
significant document for the philosophy of science. In it, Hertz established his the-
ory of knowledge: he viewed physical theories as “pictures” of reality. He began his
introduction with the following words:

The most direct, and in a sense the most important, problem which our con-
scious knowledge of nature should enable us to solve is the anticipation of fu-
ture events, so that we may arrange our present affairs in accordance with such
anticipation. As a basis for the solution of this problem we always make use
of our knowledge of events which have already occurred, obtained by chance
observation or by pre-arranged experiment. In endeavoring thus to draw infer-
ences as to the future from the past, we always adopt the following process.
We form for ourselves images or symbols of external objects; and the form
which we give them is such that the necessary consequents of the images in
thought are always the images of the necessary consequents in nature of the
things pictured. ([11]], p. 1)

The images which we here speak of are our conceptions of things. With the
things themselves they are in conformity in one important respect, namely, in
satisfying the above-mentioned requirement. For our purpose it is not neces-
sary that they should be in conformity with the things in any other respect
whatever. As a matter of fact, we do not know, nor have we any means of
knowing, whether our conceptions of things are in conformity with them in
any other than this one fundamental respect. ([I1]], p. 1)

Figure[[Tlshows an illustration of this epistemological system in a two-layer struc-
ture, that of external objects and that of images or symbols of external objects.

We know from experience the conformity between nature and our mind that is
necessary for that: (logically) inadmissible images are “all images which implic-
itly contradict the laws of our thought.” Although images are logically admissible,
they can be incorrect “if their essential relations contradict the relations of exter-
nal things.” For one external object there can exist more than one correct image,
differing in respect to appropriateness:

Of two images of the same object that is the more appropriate which pictures
more of the essential relations of the object, the one which we may call the
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i external objects

Fig. 1.1 Hertz’s epistemological system in a two-layer structure, that of external objects and
that of images or symbols of external objects

more distinct. Of two images of equal distinctness the more appropriate is
the one which contains, in addition to the essential characteristics, the smaller
number of superfluous or empty relations, the simpler of the two. ([I1]], p. 2)

Hertz’s epistemology and his view of scientific theories as mind-created “im-
ages”, based on the scientist’s experience, was contrary to the dominant view at his
time. Most scientists during the years around the turn of the 20th century regarded
empirical theories as objective, and in particular, most of them believed in the ex-
istence of one unique theory. On the other hand, Hertz knew from the experience
he had gathered in the genesis of electrodynamics that various theories with differ-
ent systems of concepts are possible, and that one theory may eventually become
accepted. In his “language of images”, he wrote:

What enters into the images for the sake of correctness is contained in the
results of experience, from which the images are built up. What enters into the
images, in order that they may be permissible, is given by the nature of our
mind. To the question whether an image is permissible or not, we can without
ambiguity answer yes or no; and our decision will hold good for all time. And
equally without ambiguity we can decide whether an image is correct or not;
but only according to the state of our present experience, and permitting an
appeal to later and riper experience. But we cannot decide without ambiguity
whether an image is appropriate or not; as to this differences of opinion may
arise. One image may be more suitable for one purpose, another for another;
only by gradually testing many images can we finally succeed in obtaining the
most appropriate. ([11], p. 3)
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images an

external objects /

Fig. 1.2 Hertz’s epistemological system in a two-layer structure with two sets of images for
one set of objects

Hertz spoke about “images” or “symbols” of external objects, because they are re-
placements for concepts in physical theories (e.g., mechanics, electricity and mag-
netism, and electrodynamics) that are not accessible to our sensory perceptions. In
Figure we can again see the two layers of external objects and of images or
symbols of external objects, and an illustration of two sets of images for one set of
objects.

1.1.2 Wittgenstein 1

Wittgenstein concluded his work on the Tractatus logico-philosophicusin 1918 and
it was first published — supported by Bertrand Russell (1872-1970), who wrote an
introduction to it — in German in 1921, and one year later in a bilingual edition (Ger-
man and English). These propositions demonstrate that Wittgenstein’s philosophical
thinking was influenced by Heinrich Hertz’s Principles of Mechanics (as Wittgen-
stein himself also wrote in his diary (([31]], p. 476) and explicitly in another part of
the Tractatus: “In the proposition there must be exactly as many things distinguish-
able as there are in the state of affairs which it represents. They must both possess
the same logical (mathematical) multiplicity (cf. Hertz’s Mechanics, on Dynamic
Models).” ([29], prop. 4.04) Hertz also emphasized that images of facts do not have
to be unambiguous; thus there may be different theories in science representing the
same fact. The first two propositions in Wittgenstein’s Tractatus are:

1. The world is everything that is the case.
2. The world is the totality of facts, not of things. [5]
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In his introduction to the Tractatus, Bertrand Russell tried to explain Wittgenstein’s
thinking:

“A picture", he says, “is a model of the reality, and to the objects in the reality
corre-spond the elements of the picture: the picture itself is the fact. The fact that
things have a certain relation to each other is represented by the fact that in the
picture its elements have a certain relation to one another. “In the picture and the
pictured there must be something identical in order that the one can be a picture of
the other at all. What the picture must have in common with reality in order to be
able to represent it after its manner-rightly or falsely-is its form of representation.”
(2.161,2.17) (([171, p. 10)

Then, in the Tractatus, Wittgenstein wrote that the world consists of facts. Facts
may or may not contain smaller parts. If a fact has no smaller parts, he calls it
an “atomic fact.” If we knowTractatus logico-philosophicus all atomic facts, we
can describe the world completely by corresponding “atomic propositions.”
— Propositions 3 and 4 in the Tractatus are:

3. The logical picture of the facts is the thought.
4. The thought is the significant proposition. [29]

“The totality of propositions is language.” ([29], prop. 4.001) Wittgenstein argued
that sentences in colloquial language are very complex. He conceded that there is
a “silent adjustment to understand colloquial language” but it is “enormously com-
plicated.” Therefore it is “humanly impossible to gather immediately the logic of
language.” ([29], prop. 4.002) This is the task of philosophy: “All philosophy is
"Critique of language.” ([29].prop. 4.0031) Wittgenstein knew that common lin-
guistic usage is vague, but at the time when he wrote Tractatus, he tried to solve this
problem by constructing a precise language — an exact logical language that gives
a unique picture of the real world. Wittgenstein thought that the Tractatus solved
all philosophical problems. Therefore, he left philosophy and returned to Austria to
become an elementary school teacher.

In 1926 Wittgenstein felt that he was failing as a teacher. Through his contacts
with the Vienna Circle, he became interested in philosophy again and due to the
influence of Frank Plumpton Ramsey (1903-1930), a philosopher of mathematics
who traveled several times from Cambridge to Austria to urge him to come back to
philosophy, Wittengenstein decided to return to Cambridge in 1929. Later, Russell
encouraged Wittgenstein to submit the Tractatus as a doctoral dissertation. During
World War II, Wittgenstein left Cambridge and volunteered to serve as a hospital
porter in London and as a laboratory assistant in Newcastle. When he returned to
Cambridge after the war, he found teaching to be a burden. Finally, Wittgenstein
resigned his position at Cambridge in 1947 to concentrate on his writing, a decision
that led to a second, totally new philosophical system. This philosophy of his later
years is completely different from that of the Tractatus years. It seems as though
the two philosophical systems were created by different men. As a consequence, we
distinguish the philosophies of “Wittgenstein I’ from those of “Wittgenstein II”.
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1.1.3 Wittgenstein I1

In his later philosophy, Wittgenstein turned away from the epistemological system
of the Tractatus with its ideal mapping between the objects of reality and a logically
precise language. If we are not able to find such an exact logical language, then we
have to accept the fact that there is vague linguistic usage in all languages. Then the
images, models, and theories that we build with the words and propositions of our
languages to communicate with them are and will also be vague. Already in his so-
called Blue Book, which is a collection of Wittgenstein’s lecture manuscripts from
1933/34, we find the following paragraph:

This is a very one-sided way of looking at language. In practice we very rarely
use language as such a calculus. For not only do we not think of the rules of
usage of definitions, etc. while using language, but when we are asked to
give such rules, in most cases we aren’t able to do so. We are unable clearly
to circumscribe the concepts we use; not because we don’t know their real
definition, but because there is no real ’definition’ to them. To suppose that
there must be would be like supposing that whenever children play with a ball
they play a game according to strict rules. ([32]], p. 49)

“And this is true,” he wrote in his second main work, the Philosophical Investiga-
tions, abook that appeared two years after his death, after having been translated and
edited by his former student and later Cambridge professor of analytic philosophy
Gertrude Elisabeth Marie Anscomb (1919-2001). The Philosophical Investigations
epitomize Wittgenstein’s late philosophy: “Instead of producing something common
to all that we call language, I am saying that these phenomena have no one thing
in common which makes us use the same word for all, but that they are related to
one another in many different ways. And it is because of this relationship, or these
relationships, that we call them all "language’. I will try to explain this.” ([30], §
65) We find the following explanation in the next paragraph of this book, in keeping
with the concept of a game:

Consider for example the proceedings that we call “games”. I mean board-
games, card-games, ball-games, Olympic games, and so on. What is common
to them all? Don’t say: “There must be something common, or they would
not be called *games’ ” but look and see whether there is anything common
to all. For if you look at them you will not see something that is common
to all, but similarities, relationships, and a whole series of them at that. To
repeat: don’t think, but look! Look for example at board-games, with their
multifarious relationships.

Now pass to card-games; here you find many correspondences with the first
group, but many common features drop out, and others appear. When we pass
next to ball-games, much that is common is retained, but much is lost. Are
they all “amusing”? Compare chess with noughts and crosses. Or is there al-
ways winning and losing, or competition between players? Think of patience.
In ball games there is winning and losing; but when a child throws his ball at
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Fig. 1.3 Wittgenstein’s epistemological system in the Philosophical Investigations in a two-
layer structure

the wall and catches it again, this feature has disappeared. Look at the parts
played by skill and luck; and at the difference between skill in chess and skill
in tennis. Think now of games like ring-a-ring-a-roses; here is the element
of amusement, but how many other characteristic features have disappeared!
sometimes similarities of detail. And we can go through the many, many other
groups of games in the same way; can see how similarities crop up and dis-
appear. And the result of this examination is: we see a complicated network
of similarities overlapping and crisscrossing: sometimes overall similarities.

(1301, § 66)

In the next paragraph Wittgenstein creates a new concept to describe this new epis-
temological system:

I can think of no better expression to characterize these similarities than "fam-
ily resemblances"; for the various resemblances between members of a family:
build, features, colour of eyes, gait, temperament, etc. etc. overlap and criss-
cross in the same way. And I shall say: “games” form a family. ([30], § 67)

Figure [[.3] shows this relationship between objects and concepts and their fam-
ilies. Concepts and their families have no sharp boundaries, as he also wrote in
paragraph 119 of the Philosophical Investigations:

One might say that the concept “game” is a concept with blurred edges. “But
is a blurred concept a concept at all?” Is an indistinct photograph a picture of
a person at all? Is it even always an advantage to replace an indistinct picture
by a sharp one? Isn’t the indistinct one often exactly what we need? Frege
compares a concept to an area and says that an area with vague boundaries



10 1 Fuzzy Sets and Systems and Philosophy of Science

cannot be called an area at all. This presumably means that we cannot do
anything with it. But is it senseless to say: “Stand roughly there”? ([30], § 71)

And in a later paragraph Wittgenstein wrote: “The results of philosophy are the un-
covering of one or another piece of plain nonsense and bumps that the understanding
has got by running its head up against the limits of language.” ([30], § 119)

In other words, our conceptions, images, and symbols of external things or ob-
jects are entities without sharp borders. They are fuzzy entities and it is time to
establish a “fuzzy epistemological system” to master these complex circumstances
with an appropriate theory of science. This will be done by a short introduction into
the theory of fuzzy sets and systems and some remarks on methodological conse-
quences, followed by an introductory sketch of the so-called structuralist view of
scientific theories and my proposal for a fuzzy extension of this structuralist view of
science. But first we have to deal with another epistemological system put forward
by Hertz.

1.1.4 Heinrich Hertz’s Epistemological System in the
Constitution of Matter

In his Kiel lecture The Constitution of Matter, Hertz had already developed a con-
cept of grqq pictures” to describe reality. His starting point was the hypothesis of
the existence of atoms. The question was: Do atoms exist or are they mathematical
auxiliary constructions? In this lecture, Hertz sought to describe sensually percepti-
ble matters of fact as simply as possible, arguing that what is beyond these sensually
perceptible matters of fact is fiction that makes a simpler description possible. ([12],
p. 35) Then, Hertz argued that physicists are not obligated to restrict their research
activities in this manner: It is a general and necessary quality of the human mind
that we are not able to bring something to mind or to define external things concep-
tually without adding properties that they inherently do not have. We cannot do this
either in everyday life or in science. ([12], S. 35) Hertz devoutly believed that we
need imaginary constructs of conceptions in exact science, and gave two examples:

1. Geometry: “If anything deserves to be called an exact science, this does. It deals
with the attributes of spatial conceptions. And to define these, it requires us to
imagine a series of spatial conceptions. But all these are constituted in such a
manner that sensual imagination of them is not possible if we do not give them
attributes that geometry knows nothing about and which are explicitly supposed
to form the basis of our abstractions. If we are asked to imagine an infinitely thin
spherical shell or an infinitesimal component of space, the designated objects
will appear in our mind’s eye. But neither will they appear infinitely thin nor
infinitesimal, nor without colour, nor without other attributes that are absolutely
foreign to the intended object.” ([12]], p. 35B)

2. Physics: “Imagine an atom as a ball-shaped space filled with matter that has a
diameter of 1 millionth mm [...] Indeed, we are not able to imagine this space in

2 Translation by R.S.
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external objects

Fig. 1.4 Hertz’s epistemological system in The Constitution of Matter in a three-layer struc-
ture with the highest level of abstract cores of our conceptions

real dimensions; and we cannot visualize it filled, without visualizing it filled
with glass, iron, or some other specific substance. However, we can bring to
mind which attributes are circumstantial and a core will remain that constitutes
the basic attributes in which we are interested. What we add will always be
fictitious imaginings; we cannot remove them and replace them with better ones,
but must add them or abandon all imagining in this domain.” ([12], p. 36]3)

In this earlier lecture, Hertz emphasized the difference between conceptions (im-
ages, symbols) and their “cores”. This means that in his early epistemological sys-
tem he postulated imaginary constructs that are conceptions of things and held
that an abstraction of each of these images or symbols that is unimaginable exists.
Figure[[.4shows an illustration of this epistemological system in a three-layer struc-
ture with the highest level of abstract cores of our conceptions. Later on we will
model the abstract cores of images or symbols by means of mathematical objects
and figures, where the unsharp ones will become “fuzzy” entities in mathematics.

1.2 Lotfi Zadeh’s FSS, CW, and CTP Methodologies

1.2.1 Historical Aspects and Basics
“... we need a radically different kind of mathematics, the mathematics of fuzzy
or cloudy quantities which are not describable in terms of probability distributions,”

3 Translation by R.S.
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wrote Lotfi Zadeh, a Berkeley professor of electrical engineering in his 1962 article
“From Circuit Theory to System Theory” ([33]], p. 857). Why was this needed? —
Because there was “a fairly wide gap between what might be regarded as ’animate’
system theorists and ’inanimate’ system theorists at the present time, and it is not at
all certain that this gap will be narrowed, much less closed, in the near future.” To
continue Zadeh’s line of thought:

There are some who feel that this gap reflects the fundamental inadequacy
of conventional mathematics — the mathematics of precisely defined points,
functions, sets, probability measures, etc. — for coping with the analysis of bi-
ological systems, and that to deal effectively with such systems, which are
generally orders of magnitude more complex than man-made systems, we
need a radically different kind of mathematics, the mathematics of fuzzy or
cloudy quantities which are not describable in terms of probability distribu-
tions. Indeed, the need for such mathematics is becoming increasingly appar-
ent even in the realm of inanimate systems, for in most practical cases the a
priori data as well as the criteria by which the performance of a man-made
system are judged are far from being precisely specified or having accurately
known probability distributions.([33], p. 857).

Thus, Zadeh was thinking about a mathematical theory dealing with loose concepts,
provided that these concepts are defined by the absence of strict boundaries. Three
years later he introduced his theory of fuzzy sets and systems. He established the
theory of fuzzy sets in his seminal paper “Fuzzy Sets” in the journal Information
and Control [34]: In contrast to conventional set theory, an object is not required
to be either an element of a set (membership value 1) or not an element of this set
(membership value 0), but can also have a membership value between 0 and 1. Thus
he defined fuzzy sets by their membership function u, which is allowed to assume
any value in the interval [0, 1], rather than by their characteristic function, which
assumes the values of only 0 or 1 [34]. At first Zadeh introduced the new mathe-
matical entities — “fuzzy sets” — with “simple” examples only: “the ’class’ of real
numbers which are much larger than, say, 10 and “the "class’ of bald men’, but also
the “class’ of adaptive systems.” But he emphasized: “Such classes are not classes or
sets in the usual sense of these terms, since they do not dichotomize all objects into
those that belong to the class and those that do not.” Zadeh introduced “the concept
of a “fuzzy set”, which is a class in which there may be a continuous infinity of
grades of membership, with the grade of membership of an object x in a fuzzy set
A represented by a number A(x) in the interval [0, 1].” Zadeh maintained that these
new concepts provide a “convenient way of defining abstraction — a process which
plays a basic role in human thinking and communication.” ([33] p. 29) The question
was how to generalize various concepts — union of sets, intersection of sets, and so
forth. Zadeh stated the definitions set out in Figure[[.3lfor all x € X:

* A =RBifandonly if A(x) = B(x),
* A CBifandonlyifA(x) < B(x),
* A is the complement of A if and only if A(x) = 1 — ua(x),
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ty (x),f5(x)

Fig. 1.5 Zadeh’s illustration of fuzzy sets in R1: “The membership function of the union is
comprised of curve segments 1 and 2; that of the intersection is comprised of segments 3 and
4 (heavy lines)”. [34]

e AUB if and only if uayp(x) = max(ua(x),us(x)),
* ANB if and only if usnp(x) = min(ua(x),up(x)).

The space of all fuzzy sets in X becomes a distributive lattice with 0 and 1; thus, a
propositional logic with fuzzy concepts constitutes fuzzy logic.

In April 1965, when the Symposium on System Theory took place at the Polytech-
nic Institute in Brooklyn, Lotfi Zadeh presented “A New View on System Theory,”
which deals with the concepts of fuzzy sets and provides “a way of treating fuzzi-
ness in a quantitative manner.” In the symposium’s proceedings, there is a shortened
manuscript version of this talk under the heading “Fuzzy Sets and Systems.” ([33],
p. 29) In this paper, Zadeh defined the concept of a fuzzy system for the first time:

Definition
A system S is a fuzzy system if input u(t), output y(z), or state x(¢) of S or any
combination of them ranges over fuzzy sets. ([33], p. 33)

Zadeh explained that “these concepts relate to situations in which the source of
imprecision is not a random variable or a stochastic process but rather a class or
classes which do not possess sharply defined boundaries.” ([35]], p. 29]) He argued
that “the difference between stochastic and fuzzy systems is that in the latter the
source of imprecision is nonstatistical in nature and has to do with the lack of sharp
boundaries of the classes entering into the descriptions of the input, output or state.”
(1341, p. 33)

A propositional logic with fuzzy concepts constitutes a “logic of inexact con-
cepts,” as was demonstrated by Joseph Goguen, a Ph.D. student working with Zadeh
at Berkeley, in the late 1960s [9] and in his later published articles [10], [8]. For
this logic, George Lakoff, a Berkeley professor of linguistics, introduced the term
“fuzzy logic” in his 1973 paper “Hedges: A Study in Meaning Criteria and the
Logic of Fuzzy Concepts” [14]. He was influenced by Zadeh’s article “A Fuzzy-
Set-Theoretic Interpretation of Linguistic Hedges,” published in 1972 [37]], where
Zadeh discussed natural languages, which are the means human beings use to ex-
press their perceptions and observations of real world systems and phenomena. In
contrast to classical strict logic and artificial languages that appeared at that time
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in the field of computer science, natural languages and fuzzy logic were generally
not considered to be adequate tools for science. This again reflects the gap between
the basically unsharp character of human perceptions of systems and phenomena in
the real world and the precision thought to be necessary in science. In this paper
Zadeh introduced the expression “hedges” to describe linguistic fuzziness; they are
terms such as “very”, “somewhat”, “quite”, “much”, “more or less”, “sort of”, “es-
sentially”, etc. In Zadeh’s view, hedges are “operators acting on fuzzy subsets of the
universe of discourse.” [37], p. 468) In his article “Outline of a New Approach to
the Analysis of Complex Systems and Decision Processes,” published the same year,
Zadeh introduced the concept of “linguistic variables,” which are variables whose
values may be sentences in a specific natural or artificial language. For example,
the values of the linguistic variable “age” might be expressible as “young,” “very
young,” “not very young,” “somewhat old,” “more or less young.” These values
are formed with the label “old,” the negation “not,” and the hedges “very,” “some-
what,” and “more or less.” In this sense the variable “age” is a linguistic variable (see
Figure 6). Linguistic variables became a proper tool for reasoning without exact val-
ues. Since in many cases, it is either impossible or too time-consuming (and there-
fore too expensive) to measure or compute exact values, the concept of linguistic
variables has been successfully used in many fuzzy application systems, e.g., in
control and decision making.

In “Similarity Relations and Fuzzy Orderings” [36]], Zadeh substantiated the con-
cept of fuzzy relations: If L(A x B) is the set of all fuzzy sets in the Cartesian product
A x B of ordinary sets A and B, then a fuzzy relation is a subset of L(A x B). Using
three sets A, B, and C to compose fuzzy relations Q C L(A x B) and R C L(B x C)
to get a new fuzzy relation T C L(A x C), he introduced the combination rule of a
max-min composition: 7 = Q xR is defined by the following membership function:

T (x,z) = maxyey min{Q(x,y); R(y,2)}, y € Y. [36]

Now, after this brief sketch of Zadeh’s theory of fuzzy sets and systems (FSS), we
will provide brief sketches of his computing with words (CW), and his computa-
tional theory of perceptions (CTP). We will then use the structuralist program in
the philosophy of science to distinguish a layer of reality from a layer of theory,
and we will construct a layer of fuzziness between these two layers — in Hertz’s
terminology, the layers of external objects (things) and of their images and symbols
(conceptions of things). Finally, we will model the fuzziness in the new layer using
Zadeh'’s hierarchy of FSS, CW, and CTP methodologies.

9 <

1.2.2 Computing with Words and the Computational Theory of
Perceptions

In the early days, Zadeh called for “the principles and organization of machines
which behave like a human brain,” but in the later years of the last century he real-
ized that “thinking machines” do not think as humans do. In the years following this,
he changed his view on research and from the mid-1980s he focused on “Making
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Computers Think like People™ [40Q]. For this purpose, the machine’s ability “to com-
pute with numbers” was supplemented by an additional ability that was similar to
human thinking. Zadeh was and is inspired by the “remarkable human capability to
perform a wide variety of physical and mental tasks without any measurements and
any computations.” In many papers he has given everyday examples of such tasks:
parking a car, playing golf, deciphering sloppy handwriting, and summarizing a
story. Underlying this is the human ability to reason with perceptions “perceptions
of time, distance, speed, force, direction, shape, intent, likelihood, truth, and other
attributes of physical and mental objects.” ([43]], p. 903). As a potential replacement
of exact computing with numbers, he proposed computing with words (CW) in 1996
in an article entitled “Fuzzy Logic = Computing with Words.” He claimed that “the
main contribution of fuzzy logic is a methodology for computing with words. No
other methodology serves this purpose” ([41]], p. 103). Three years later he published
“From Computing with Numbers to Computing with Words — From Manipulation
of Measurements to Manipulation of Perceptions,” to show that the new computa-
tional theory of perceptions (CTP) is based on the methodology of CW. In 2001
Zadeh published “A New Direction in Al. Toward a Computational Theory of Per-
ceptions” [44]]. The computational theory of perceptions (CTP) was inspired by the
remarkable human capability to operate on, and reason with, perception-based in-
formation. Zadeh wrote:

Humans have a remarkable capability to perform a wide variety of physical
and mental tasks without any measurements and any computations. Every-
day examples of such tasks are parking a car, driving in city traffic, playing
golf, cooking a meal, and summarizing a story. In performing such tasks, for
example, driving in city traffic, humans base whatever decisions have to be
made on information that, for the most part, is perception, rather than mea-
surement, based. In CTP, words play the role of labels of perceptions and,
more generally, perceptions are expressed as propositions in natural language.

([42]], p. 105)

In [41] and [42] Zadeh pointed out that 1) measurements can be represented or ma-
nipulated by numbers, and 2) we are able to represent or manipulate perceptions
with words. Therefore we have a hierarchy of methodologies in a “stack’ shown in
Figure Zadeh intended to establish these methodologies as a new dimension of
artificial intelligence. His thesis was “that progress has been, and continues to be,
slow in those areas where a methodology is needed in which the objects of compu-
tation are perceptions — perceptions of time, distance, form, and other attributes of
physical and mental objects.” ([44], p. 73)

In the Al Magazine article he again presented a “new view” on system theory,
namely perception-based system modeling:

Definition: “A system, S, is assumed to be associated with temporal sequences of
input X1, Xp, ...; output Y1, Y2, ...; and states Sy, S2, .... S> is defined by the state-
transition function f and the output function g.” [44].
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Fig. 1.6. Zadeh’s “stack hierarchy” of methodologies: FSS, CW, CTP
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Fig. 1.7. Zadeh’s illustration of perception-based system modeling

An illustration of perception-based system modeling is given in Figure[I.7l It should
be noted that the same system equations were used in system theory and fuzzy
system theory, but the meanings of input, state, and output have been changed: in
perception-based system modeling, they are assumed to be perceptions, such as the
state-transition function, f, and the output function, g. [44], p. 77.)

The methodology-hierarchy of FSS, CW, and CTP is today at the core of “soft
computing” or “computational intelligence,” which became part of the field of ar-
tificial intelligence (AI) at the beginning of the new century. In the next section,
this hierarchy of methodologies for bridging the gap between real and theoretical
systems will be approached from a philosophical point of view. Future prospects
for developments in science and the philosophy of science will be explored. The
so-called structuralist approach to scientific theories will be surveyed and this ap-
proach will be modified or “fuzzified” by extending the structuralist framework,
using fuzzy sets and fuzzy relations to represent perceptions.

1.3 The Structuralist View of Science

The philosophy of science deals with the basis of science, its assumptions and im-
plications, its methods and results, and its theories and experiments. We can dis-
tinguish between the philosophies of physics and astronomy, chemistry, and other
empirical sciences, and we can concern ourselves with the philosophies of the social



1.3 The Structuralist View of Science 17

sciences and the humanities. However, these philosophies of scientific disciplines
arose during different historical periods, and the earliest philosophical reflections
on modern science started with theories and experiments in mechanics in the 17th
century. Two main views in the philosophy of science arose at about the same time:
The philosophical view of rationalism employed fundamental, logical, and theo-
retical investigations using logics and mathematics to formulate axioms and laws,
whereas the view of empiricism was to have experiments to find or prove or re-
fute natural laws. In both directions — from experimental results to theoretical laws
and from theoretical laws to experimental proofs or refutations — scientists have to
bridge the gap that separates theory and practice. Scientists observe real systems or
phenomena and they measure data, they establish laws and they introduce empirical
theories that say that the laws hold for the data. That is to say: To study systems
or phenomena in reality, we connect them with a theoretical structure. To this end
we give them a structure themselves. How to do that is not clear! — This is one of
the central problems in the philosophy of science. The German philosopher of sci-
ence Wolfgang Balzer wrote in his book on empirical theories: “The problem is that
we create a connection between real systems and theoretical structures. We assume
that this can be done. Without this assumption it is senseless to talk about empirical
science.” (1], p. 289@) Two trends in obtaining systematic rational reconstructions
of empirical theories can be found in the philosophy of science in the latter half
of the 20th century: the Carnap approach (named after the German-US-American
philosopher Rudolf Carnap (1891-1970)) and the Suppes approach (named after
the US-American philosopher and mathematician Patrick Suppes (born in 1922).
In both approaches, the first step consists of an axiomatization that seeks to deter-
mine the mathematical structure of the theory in question. The difference between
these views can be found in the manner in which this task is performed. Carnap was
firmly convinced that only formal languages can provide suitable tools to achieve
the desired precision. Consequently, the Carnap approach claims that a theory has to
be axiomatized within a formal language. On the other hand, the Suppes approach
uses informal logic and informal set theory. Thus, in this approach, one is able to
axiomatize physical theories in a precise way without recourse to formal languages.
This approach traces back to the proposal of Suppes in the 1950s to include the
axiomatization of empirical theories of science in the metamathematical program
of the French group “Bourbaki.”” [4] The Suppes approach is the basis of what is
now called the structuralist view in the philosophy of science. In this view the real
systems connected with a theoretical structure are called “intended systems” of the
theory [11], [28], [2], [3]l. In his scientific research based on an intended system the
scientist gets a data structure and he builds a model, which represents the structure
of the system. Frequently we say that the theory gives us a “picture of the reality,”
but this is a very simple way of expressing what we do in scientific work.

In the 1970s Joseph D. Sneed developed informal semantics meant to consider
not only mathematical aspects, but also application subjects of scientific theories in
this framework, based on this method. In [28]], Sneed presents this view as stating

4 Translation by R. S.
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Empirical Layer

Fig. 1.8. The structuralist view of science in a two-layer structure: empirical and theoretical
structural layers

that all empirical claims of physical theories have the form “x is an S” where “is an
S” is a set-theoretical predicate. Every physical system that fulfills this predicate is
called a model of the theory. To give concrete examples, the class M of a theory’s
models is characterized by empirical laws that consist of conditions governing the
connection of the components of physical systems. Therefore, we have models of
a scientific theory, and by removing their empirical laws, we get the class M, of
so-called potential models of the theory. Potential models of an empirical theory
consist of theoretical terms, i.e., observables with values that can be measured in
accordance with the theory. This connection between theory and empiricism is the
basis of the philosophical “problem of theoretical terms.”

If we remove the theoretical terms of a theory in its potential models, we get
structures that are to be treated on a purely empirical layer; we call the class M,
of these structures of a scientific theory its “partial potential models.” Finally, every
physical theory has a class I of intended systems (or applications). To make it clear
that this concept reflects both sides of scientific theories, the classes M), and M and
the classes M), and I are shown in “layers” in Figure[[.8 M, and I are entities of
an empirical layer, whereas M), and M), are structures in a theoretical layer of the
schema.

1.4 A Fuzzy Structuralist View of Science

Our modification of the structuralist approach in the philosophy of science pertains
to the empirical layer in Figure Now, we will distinguish between real sys-
tems and phenomena, on the one hand, and perceptions of these entities, on the
other. Thus we introduce a lower layer — the “real” layer — and we rename our for-
mer empirical layer as a “fuzzy layer,” as the partial potential models and intended
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Fig. 1.9. Crisp and fuzzy variable “age”

systems are not real systems, having a minimal structure by the scientist’s obser-
vation (see Figure [LT0). They are perception-based systems and therefore we have
to distinguish them from real systems and phenomena that have no structure be-
fore someone imposes one on them. The layer of perceptions lies between the layer
of real systems and phenomena and the layer of theoretical structures. According
to Zadeh’s computational theory of perceptions (CTP), we represent perceptions in
this intermediate layer as fuzzy sets. Whereas measurements are crisp, perceptions
are fuzzy, and because of the resolution of our sensory organs (e.g., the aligning
discrimination of the eye) perceptions are also granular, as Zadeh wrote in the Al
Magazine in 2001: “perceptions, in general, are both fuzzy and granular or, for short
f-granular” (see Figure [[L9) [44]]. When Zadeh established CTP on the basis of CW
that in turn is based on his theory of FSS, he firmly believed that these methodolo-
gies would attain a certain position in science: “In coming years, computing with
words and perceptions is likely to emerge as an im-portant direction in science and
technology.” [42]

To take Zadeh at his word, we will establish his methodologies of fuzzy sets and
systems, computing with words and the computational theory of perceptions in our
structuralist approach in the philosophy of science. As mentioned above, we will
introduce a fuzzy layer of perceptions between the empirical layer of real systems
and phenomena and the theoretical layer, where we have the structures of models
and potential models. Thus the relationship between real systems and theoretical
structures has two parts: “fuzzification” and “defuzzification”.

Fuzzification: From Phenomena to Perceptions

Measurements are crisp; perceptions are fuzzy and granular. To represent percep-
tions we use fuzzy sets, e.g., Ar, Br, Cr, ... It is also possible that a scientist per-
ceives not only single but interlinked phenomena, e.g., two entities move similarly
or inversely, or something is faster than something else, or it is brighter or smells in
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Fig. 1.10. The fuzzy structuralist view of science in a three-layer structure: empirical, fuzzy,
and theoretical layers of crisp and fuzzy structures, fuzzification between the empirical layer
and the fuzzy layer, and defuzzification between the fuzzy layer and the theoretical layer

an analogous way, etc. Such relationships can be characterized by fuzzy-relations
fF’gF’th

Defuzzification: From Perceptions to Models

“Measure what is measurable and make measurable what is not so” is a statement
attributed to Galileo. In modern science this is the way to move from perceptions
to measurements or, respectively, quantities to be measured. We interpret this trans-
fer as a defuzzification from perceptions represented by fuzzy sets Ar, Br, Cr, ...
and relations between perceptions rep-resented by fuzzy relations fr, gr, hr, ... to
ordinary (crisp) sets Ac, B¢, Cc, ... and relations fc, gc, hc, ... These sets and
relations are basic entities to construct (potential) models.

Theoretization: From Phenomena to Models
The composition of fuzzification and defuzzification yields the operation of a re-
lationship T that can be called theoretization, because it transfers phenomena and
systems from the real layer to structures in the theoretical layer (see Figure [[.10).
In the structuralist view of theories the concept of theoretization is defined as an
intertheoretical relation, i.e., a set theoretical relation between two theories 7 and
T’. This theoretization relation exists if T’ results from T by adding new theoretical
terms and introducing new laws that connect the former theoretical terms of theory
T with the new theoretical terms in theory 7. Successive addition of new theoretical
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terms establishes a hierarchy of theories and a comparative concept of theoriticity.
In this manner the space-time theory arose from Euclidean geometry by adding
the term “time” to the term “length,”, and from classical space-time theory we get
classical kinematics by adding the term ““velocity.” Classical kinematics is turned
into classical (Newtonian) mechanics by the additional introduction of the terms
“force” and “mass.”

 The old theory T is covered with a new theoretical layer by the new theory 7”.

e T-theoretical terms are not 7’-theoretical but 7’-non-theoretical terms and recip-
rocally they may not be any of the 7-non-theoretical terms. The old theory must
not be changed by the new theory in any way!

* In this hierarchy, it holds that the more theoretical terms exist higher in the hier-
archy, while the lower layers are characterized by the non-theoretical basis of the
theory.

What happens in the lowest layer of this hierarchy? Here, a theory T exists, with
theoretical terms and relations, but it is not a theoretization of another theory. This
theory T covers phenomena and intended systems initially with theoretical terms.
This is an initial theoretization because the T-theoretical terms are the only the-
oretical terms in this situation. They have been derived directly as measurements
from observed phenomena. This derivation is called theoretization and is a serial
connection between fuzzification and defuzzification.

1.5 Hertz’s Pictures, Wittgenstein’s Family Resemblances, and
Zadeh’s Fuzzy Sets

From a historical point of view it can be shown that the theory of fuzzy sets and
systems was created by the electrical engineer and system scientist Lotfi A. Zadeh
to bridge the gap between exact mathematical formulated scientific theories, on the
one hand, and empirical observations, experimental findings, and phenomena in lab-
oratories, on the other [20]. In this contribution we have applied this meta-scientific
achievement in the area of the philosophy of science and epistemology. To this end
we have employed the approach of the structuralist program to represent the struc-
tures of scientific theories and their intertheoretical relations by using classical set
theory. In the classical structuralist view of scientific theories there is an empiri-
cal layer of “real” phenomena and systems that have some minimal structure and
a theoretical layer of potential models and models that are fully structured entities.
But there is no representation of the observer’s role and of his/her perceptions. The
modified view of the structuralist approach that is presented in this paper only as
a proposal that will be worked out in detail in the near future comprises a layer
of fuzzy sets and fuzzy relations taking into account the difference between real
phenomena and systems, on the one hand, and the observer’s perceptions of these
real entities, on the other. This extended structuralist view — we call it the “fuzzy
structuralist view” of scientific theories — may open up a new and fruitful way to un-
derstand scientific research. In the fuzzy structuralist approach, we construct a fuzzy
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layer to represent the scientist’s perceptions with fuzzy sets, since these perceptions
belong to neither real systems nor phenomena nor theoretical entities or structures.

In the epistemological system of Heinrich Hertz, which he never published, but
which is recorded in his Kiel lecture transcripts on The Constitution of Matter
ten years before his Principles of Mechanics was published, we find a very simi-
lar hierarchy in his epistemological system. As in his better known Principles of
Mechanics, he distinguished between things and conceptions of things (pictures,
symbols), and he also made a distinction between things, conceptions of things and
their cores. These cores are abstractions of our conceptions, because the conceptions
of things (or their pictures) are constructed not only from their essential attributes,
but also from their circumstantial attributes. What Hertz said is that we have to dis-
tinguish between these imaginary constructs that “we can bring to mind” ([12], p.
36) and their cores, which are not in our mind but in a more abstract layer, i.e.,
the theoretical layer. Hertz’s distinction between three kinds of epistemological en-
tities — things, conceptions of things, and cores of conceptions of things — is in
accordance with the hierarchy of the three layers: empirical layer, fuzzy layer, and
theoretical layer.

We have pointed out that in his Tractatus Ludwig Wittgenstein referred to Hein-
rich Hertz’s epistemological system from the Principles of Mechanics. Later, when
he wrote Philosophical Investigations, Wittgenstein had changed his viewpoint. As
we have seen, in his later philosophical thinking Wittgenstein abandoned the simple
picture-concept that he had introduced in his Tractatus and established the con-
cept of family resemblances. Now, we interpret family resemblances of concepts as
unsharp concepts — as concepts without exact borders — and we model these inexact
entities by means of fuzzy sets. Therefore we stress an accordance between fam-
ily resemblances of concepts in the sense of Wittgenstein and pictures (or concep-
tions) of things in the sense of Hertz, and fuzzy sets that represent perceptions in the
sense of Zadeh. We emphasize that Zadeh’s computational theory of perceptions
is an appropriate methodology to represent efforts of scientific research to bridge
the gap between empirical observations and the abstract construction of theoretical
structures.

In the classical, i.e., non-fuzzy, structuralist view of theories there is an empirical
layer of real phenomena and systems that have some minimal structure and a the-
oretical layer of potential models and models that are fully structured entities. But
there is no representation of the observer’s role and his/her perceptions. Zadeh’s
computational theory of perceptions is suitable to represent the scientist’s obser-
vations of real things and phenomena. We have to distinguish between these “real”
things and phenomena and the perceptions of these empirical entities, and from both
of these kinds of epistemological entities we must also distinguish between the the-
oretical entities and structures that can form the framework of a scientific theory.
Therefore, using Zadeh’s fuzzy sets and systems to represent human perceptions,
we established a fuzzy structuralist view of the epistemological systems of Heinrich
Hertz and Ludwig Wittgenstein to bridge the gap between empirical observations
and the abstract construction of theoretical structures. Figure [[LTQ shows our pro-
posal in a diagram with three layers. It is similar to the diagram we presented in the
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context of Heinrich Hertz’s epistemological system in The Constitution of Matter —
see Figure [[.4l Unlike the two-layer diagram we used for the epistemological sys-
tem of Wittgenstein II (see Figure [[3)), there is an upper layer of abstract cores of
conceptions (images).

1.6 Fuzzy Structuralism and Modern Scientific Theories

The modified view of the structuralist approach presented here as a proposal com-
prises a layer of fuzzy sets and fuzzy relations as a means of dealing with the dif-
ference between real phenomena and systems on the one hand and the observer’s
perceptions of these real entities on the other (see Figure [[.11). This extended
structuralist view — which can be called the “fuzzy structuralist view” of scientific
theories may open up a new and fruitful way to understand scientific research.

Real phenomena : Theoretical
Perceptions
and systems structures

Fig. 1.11. The “fuzzy structuralist view of scientific theories”

To illustrate the epistemological consequences involved, three case studies —
medical diagnosis, quantum mechanics, and evolutionary biology — will be briefly
discussed in this section§

1.6.1 Medical Diagnosis

What is the connection between symptoms and diseases when medical doctors make
diagnoses? Because diagnostic procedures are extremely complex, it would be very
difficult — if not impossible — to explain this connection in terms of crisp logical
operations. When doctors examine patients, they are guided by their training, their
own personal medical experience, knowledge from books and other sources, and
their own mental abilities. They note a patient’s state and symptoms, combine these
with his/her medical history, physical examinations and laboratory findings, and
then make a diagnosis (see Figure[[.12). It takes a specific style of thinking — heavily
dependent on non-crisp logic — to master this process.

In a lecture entitled “Some specific features of the medical way of thinking” pre-
sented to the Society of Lovers of the History of Medicine in Lwéw in 1927, the Pol-
ish physician and philosopher Ludwik Fleck stated that the medical way of thinking
is a specific style of thinking [7]]. One important point in this lecture was that

3> Another case study on fuzziness in medicine and also in genetics can be found in the contribution
of Julia Limberg and myself in the present volume.
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Fig. 1.12. The diagnostic situation.

There exists no strict boundary between what is healthy and what is diseased,
and one never finds exactly the same clinical picture again. But this extremely
rich wealth of forever different variants is to be sur-mounted mentally, for
such is the cognitive task of medicine. How does one find a law for irregular
phenomena? This is the fundamental problem of medical thinking. In what
way should they be grasped and what relations should be adopted between
them in order to obtain a rational understanding? ([[7], p. 39).

Fleck emphasized that there are no sharp boundaries between the phenomena of
diseases:

In practice one cannot do without such definitions as ’chill,” ‘rheumatic’ or
"neuralgic’ pain, which have nothing in common with this bookish rheuma-
tism or neuralgia. There exist various morbid states and syndromes of subjec-
tive symptoms that up to now have failed to find a place and are likely not to
find it at any time. ([[7]], p. 42)

Clearly, it is very difficult to define sharp borders between various symptoms in the
set of all symptoms and between various diseases in the set of diseases, respectively.
Rather we can observe smooth transitions from one entity to another and perhaps a
very small variation might be the reason why a doctor diagnoses a patient with dis-
ease x instead of disease y. Fleck stated that physicians use a specific style of think-
ing when they assess symptoms and determine what disease or diseases patients
suffer from. He did not believe that medical diagnoses result from strict logical rea-
soning, but thought that elements of medical knowledge, symptoms, and diseases
are essentially indeterminate and that physicians rely on their intuition rather than
on logical consequences to deduce diseases from patients’ data.

Of course, Fleck did not know anything about fuzzy sets and systems, CW, and
CTP, but it seems that fuzziness was an integral part of his philosophy of medicine.
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Fig. 1.13. The medical diagnosis can be represented as a theoretization from symptoms to
diseases. This theoretization is a series of fuzzification and defuzzification.

A diagnosis is the result of a doctor’s medical thinking process based on a patient’s
symptoms. These symptoms are real phenomena, whereas diseases — which are the
result of a doctor’s decision in the diagnostic process — are theoretical concepts in
medical science. This process of medical diagnosis can be given a new two-part in-
terpretation: the first part models the physician’s collection of his/her perceptions of
the patient’s symptoms. The result of this part is a union of fuzzy sets representing
this collection of perceptions. Thus this aspect of the process can be called fuzzifi-
cation. The second part of the process is the decision-making dimension. Here, the
physician has to find a crisp representation of his/her fuzzy impression of what the
patient suffers from. This can be called defuzzification.

The combination of the fuzzification and defuzzification elements is the whole
decision-making process (see Figure[[.13)), which can be interpreted as a (medical)
theoretization of the observed symptoms, because it is a transfer of real phenomena
(symptoms) into theoretical terms (diseases). Thus, this brief case study on medi-
cal diagnosis can be regarded as a specialization of the “fuzzy structuralist view on
scientific theories” (see and compare Figures and [L.T1] Two more specializa-
tions — quantum mechanics and evolutionary biology — will follow in the following
subsections.

1.6.2 Quantum Mechanics

Due to the scientific revolution brought about by the discovery of quantum mechan-
ics in the first third of the 20th century, a basic change took place in the relationship
between the exact scientific theory of physics and the phenomena observed in basic
experiments. Systems of quantum mechanics do not behave like systems of classical
theories in physics — their elements are not particles and they are not waves, they are
different. This change led to a new mathematical conceptual fundament in physics.

The quantum mechanical state function ¥ is an element of the abstract Hilbert
space H and therefore it is a completely new theoretical term in physics that dif-
fers significantly from those of classical physics. Its properties are completely new
and are not comparable to those of observable phenomena in classical theories. The
theory of quantum mechanics is completely abstract: it is a theory of mathematical
state functions that have no exact counterpart in reality. This means that per se ¥
is not observable but, nonetheless, we can experiment with a quantum mechanical
object having a state function in order to measure its position value, and we can also
experiment with this object in order to measure its momentum value. However, we
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Fig. 1.14. The quantum mechanical theoretization from real systems and phenomena to an
abstract Hilbert space vector is a series of fuzzification and defuzzification

cannot conduct both experiments simultaneously and thus are not able to get both
values for the same point in time. But we can predict these values as outcomes of
experiments at this point in time. Since predictions are targeted on future events, we
cannot valuate them with the logical values “true” or “false,” but must use probabil-
ities. The probability distribution to measure a certain position value x at point ¢ in
time is given by |¥(x,#)|* and the probability distribution to measure a certain mo-
mentum value p at time point 7 is given by [¥(p,1)|*, where W(x,7) or W(p,1), are
representations of the abstract Hilbert space element W in the position or momen-
tum representation respectively. These circumstances are illustrated in Figure [[.14k
we measure or predict crisp values or probability distributions of classical observ-
able variables for a quantum mechanical system position or momentum values. We
interpret this constraint process as a fuzzification. From these observable values, we
come to an abstract Hilbert space vector Y. We interpret this abstraction process as
a defuzzification; the process to give this abstract element a realistic representation
is interpreted as the Hilbert space theoretical representation of ‘. It is important
to distinguish between the fuzzification and the representation: the first process is
based on a scientist’s perception whereas the second process is a well known math-
ematical kind of projection in the quantum mechanical framework.

Again, this case study is presented as a specialization of the “fuzzy structuralist
view of scientific theories” where the use of fuzzy sets and fuzzy relations to repre-
sent perceptions as important components in the interpretation of scientific theories
is very suitable in one of the new physical theories of the 20th century. In quantum
mechanics, the observer and his/her perceptions play a central role, and — as we have
seen above — this is also the case in medical diagnostics, and — as we will see below
— this is also the case in evolutionary biology.

1.6.3 Evolutionary Theory

In the waning 20th century biology became a leading scientific discipline. This was
due to one of the most famous evolutionary biologists of our times, the German-
US-American taxonomist and ornithologist Ernst Mayr (1904-2005), who in the
years after 1942 was one of the architects of the synthetic theory of evolution. He
was also one of the most important historians and philosophers of biology in the
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20th century. From the 1970s onward he argued that there is an important difference
between biology and the exact sciences. For example, in physics it is important to
discover new facts or natural laws, but in biology it is more important to develop new
concepts and to complete concepts that already exist. Philosophy of science in the
20th century was based on physics, especially on the newly established theories of
relativity and quantum mechanics. A philosophy of biology was, however, lacking.

* One reason for that is that most philosophers of science in the last century had a
background in physics rather than in biology.

* Another reason for the lack of a philosophy of biology is that the basic principles
of physics are simply not applicable to animate systems.

* A third reason is that biology is potentially based on self-contained principles
that are inapplicable to inanimate systems.

The discovery of these basic differences between physics and biology was a funda-
mental intellectual revolution that began with the publication in 1859 of the famous
book by Charles Robert Darwin (1809-1882): On the Origin of Species By Means
of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life
[6]. Following this, modern biology emerged as an autonomous scientific discipline
and the way was prepared for a restructuring of the philosophy of science.

In his “last survey of controversial concepts in biology” Ernst Mayr tried to re-
spond to the question What is biology? ([13], p. ix) He found “that biology actually
consists of two rather different fields, mechanistic (functional) biology and histori-
cal biology.

* Functional biology deals with the physiology of all activities of living organ-
isms, particularly with all cellular processes, including those of the genome.
These functional processes ultimately can be explained purely mechanistically
by chemistry and physics.

e The other branch of biology is historical biology. Knowledge of history is not
needed for the explanation of a purely functional process. However, it is indis-
pensable for the explanation of all aspects of the living world that involve the
dimension of historical time — in other words, as we now know, all aspects deal-
ing with evolution. This field is evolutionary biology.” ([13l], p. 24)

Both fields of modern biology — functional and evolutionary biology — were estab-
lished in the 19th century, but there were only a few philosophers of science and
modern biologists - one of whom was Mayr beginning in the 1970s — who argued
that we need a philosophy of modern biology that is different from the philosophy of
the exact sciences. Mayr especially emphasized this difference. In order to establish
a philosophy of modern biology it was necessary

1. to eliminate the principles of exact sciences and to replace these with principles
pertinent to biology and
2. to add new basic biological principles.

Mayr “found that biology, even though it is a genuine science, has certain character-
istics not found in other sciences.” ([13l], p. 4) Mayr specified four basic principles
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of physics that are inapplicable in biology:

Essentialism — unsharp separation of classes of phenomena:

From the ancient world “the traditional concept of the diversity of the world was
that it consisted of a limited number of sharply delimited and unchanging eide or
essences. [...] The seemingly endless variety of phenomena, it was said, actually
consisted of a limited number of natural kinds (essences or types), each forming
a class. The members of each class were thought to be identical, constant, and
sharply separated from the members of any other essence. Therefore variation was
nonessential and accidental. [...] Typological thinking, therefore, is unable to ac-
commodate variation and has given rise to a misleading conception of human race.
Caucasians, Africans, Asians, and Inuits are types for a typologist that differ con-
spicuously from other human ethnic groups and are sharply separated from them.
This mode of thinking leads to racism. Darwin completely rejected typological
thinking and instead used an entirely different concept, now called population think-

ing.” ([15], p. 27)

Determinism — variation or chance events:

“One of the consequences of the acceptance of deterministic Newtonian laws was
that it left no room for variation or chance events. [...] The refutation of strict
determinism and of the possibility of absolute prediction freed the way for the study
of variation and of chance phenomena, so important in biology.” ([13], p. 27).

Reductionism

Reductionists “claimed that the problem of the explanation of a system was resolved
in principle as soon as the system had been reduced to its smallest components. As
soon as one had completed the inventory of these components and had determined
the function of each of them, they claimed it would be an easy task also to ex-
plain everything observed at the higher levels of organization.” ([15], p. 27 ). “Until
far into the twentieth century philosophers almost consistently confounded analysis
and reduction. However, to have isolated all the parts, even the smallest ones, is not
enough for a complete explanation of most systems, as claimed by the reduction-
ists. For a complete explanation one also needs to understand the interaction among
these parts. As T. H. Huxley pointed out a long time ago, partitioning water into
hydrogen gas and oxygen gas does not explain the liquidity of water.” ... ([13], p.
69) As Hilary Putnam said correctly: “What [reductionism] breeds is physics wor-
ship coupled with neglect of the "higher-level’ sciences. Infatuation with what is
supposedly possible in principle goes with indifference to practice and to the actual
structure of practice.” ([16])

Absence of universal natural laws in biology — missing strict regularities:

“The philosophers of logical positivism, and indeed all philosophers with a back-
ground in physics and mathematics, base their theories on natural laws and such
theories are therefore usually strictly deterministic. In biology there are also regu-
larities, but various authors [...] severely question whether these are the same as
the natural laws of the physical sciences. There is no consensus yet in the answer
to this controversy. Laws certainly play a rather small role in theory construction
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in biology. The major reason for the lesser importance of laws in biological theory
formation is perhaps the greater role played in biological systems by chance and
randomness. Other reasons for the small role of laws are the uniqueness of a high
percentage of phenomena in living systems as well as the historical nature of events.
Owing to the probabilistic nature of most generalizations in evolutionary biology,
it is impossible to apply Popper’s method of falsification for theory testing because
a particular case of a seeming refutation of a certain law may not be anything but
an exception, as are common in biology. Most theories in biology are based not on
laws but on concepts.” ([13], p. 28).

In the years before the last turn of the century these characteristics were given prob-
abilistic formulations, but in this paper we argue for a better way to get fruitful so-
lutions in the philosophy of biology by using the methodologies of / computational
intelligence, FSS, CW, and CTP. Physics is concerned with the inanimate world,
encompassing many indistinguishable objects, and therefore it can be meaningful
to argue with probabilities, but: “In a biopopulation, by contrast, every individual
is unique, while the statistical mean value of a population is an abstraction.” ([13]],
p. 29) Because biological systems are high complex Mayr concluded:

“Population thinking and populations are not laws but concepts. It is one of
the most fundamental differences between biology and the so called exact
sciences that in biology theories usually are based on concepts while in the
physical sciences they are based on natural laws. Examples of concepts that
became important bases of theories in various branches of biology are terri-
tory, female choice, sexual selection, resource, and geographic isolation. And
even though, through appropriate rewording, some of these concepts can be
phrased as laws, they are something entirely different from the Newtonian
natural laws.” ([13]], p. 30).

In physics we can formulate the laws of our theories with exact mathematics — dif-
ferential equations — and of course, since the appearance of thermodynamics the
concept of probability has been very important and fruitful as a means of describing
the quantities of the theories of exact sciences. In Mayr’s view of evolutionary bi-
ology no laws exist that are describable in terms of probability distributions, but we
have concepts that are describable in terms of fuzzy sets and systems. Obviously we
can look at these concepts with our “fuzzy glasses” and maybe this is a good way to
get interesting results in the philosophy of biology. This means that the difference
between theories of exact sciences and evolutionary biology is manifest in the lack
of exact mathematical structures in biological theories. In exact sciences we have
real systems and phenomena, e.g., a rolling stone or a planet that follows its path
around the sun, on the one hand, and an exact-mathematical formulated theoretical
structure on the other hand, e.g., a vector space, the field of real numbers and natu-
ral laws, such as Newton’s law of gravity. Scientists often say that such a theoretical
structure provides a “picture of the reality.”

In Mayr’s view of biology we do not have this exact mathematical formulated
theoretical structure, but we have concepts. These concepts are — of course — much
fuzzier “pictures of the reality” than exact mathematical structures, but perhaps they
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Fig. 1.15. Fuzzification of real systems and phenomena to evolutionary concepts

are also much more suitable! Let’s try to associate these concepts with the observing
scientist’s perceptions of real systems and phenomena. Naturally, the scientist’s per-
ceptions do not have an exact mathematical structure, but rather a minimal structure
imposed by the scientist’s observations. We must distinguish these perception-based
models from real systems and phenomena that have no structure until someone im-
poses one upon them. In accordance with Zadeh’s CTP, we represent the scientist’s
perceptions by fuzzy sets. We call this representation “fuzzification”.

When Zadeh established CTP on the basis of CW, which in turn is based on his
theory of FSS, he earnestly believed that these methodologies would attain a certain
importance in science: “In coming years, computing with words and perceptions is
likely to emerge as an im-portant direction in science and technology”. [41]. Taking
Zadeh at his word, his methodology stack of FSS, CW, and CTP are here incorpo-
rated into the philosophy of biology: whereas in exact sciences there is a relationship
of real systems and exact mathematical theoretical structures, in biology we have a
relationship of real systems and fuzzy structures, a fuzzification (see Figure [[.13).

We represent perceptions by fuzzy sets; however, scientists observe not just single
phenomena, but many interlinked phenomena, e.g., two entities move similarly or
inversely, or something is faster or slower than a second entity, or something is
brighter or darker, or has an analogous smell, etc. Thus, we can get our “fuzzy
pictures of the reality” in biology using fuzzy relations.

The inapplicability of essentialism, determinism, and reductionism as principles
in biology and the replacement of universal laws by concepts in biology show that
biology is essentially different from physics and other exact sciences. Mayr wrote in
the introduction to his last book: “However, I found that biology, even enough it is a
genuine science, has certain characteristics not found in other sciences.” ([13], p. 4)
As we have seen Mayr identified such characteristics in the realm of unsharp sepa-
ration of classes of phenomena, variation or chance events, highly complex systems,
and the absence of strict regularities. In the latter decades of the 20th century these
characteristics were given probabilistic formulations, but we think an interpretation
using fuzzy concepts is more in line with Mayr’s way of thinking in the philosophy
of biology.
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1.7 Outlook

With fuzzy sets and systems (FSS), computing with words (CW) and the computa-
tional theory of perceptions (CTP), Lotfi Zadeh established an appropriate method-
ology stack to represent the work and efforts of scientific research and to bridge
the gap between empirical observations and the abstract construction of theoreti-
cal structures. In the classical, i.e., non-fuzzy, structuralist view of theories there is
an empirical layer of real phenomena and systems that have some minimal struc-
ture and a theoretical layer of potential models and models that are fully structured
entities. But there is no representation of the observer’s role and his/her perceptions.

The modified view of the structuralist approach presented as a proposal in this pa-
per comprises a layer of fuzzy sets and fuzzy relations as a means of dealing with the
difference between real phenomena and systems on the one hand and the observer’s
perceptions of these real entities on the other. This “fuzzy structuralist view” of the
philosophy of science may open up a new and fruitful way to understand scien-
tific research. After my talk at the IFSA 2007 World Congress in Cancun, Mexico,
[23], Jerry Mendel asked me to substitute the thin fuzzy layer between the real and
the theoretical layers by the whole space between these two layers as a “space of
fuzzy entities.” — I think that this is a very good idea and I would like to adopt this
suggestion here: Figure shows the “fuzzy space” of perceptions between the
theoretical and the empirical layer. Another idea is to introduce the variable 7' — the
“theoretization” — which can be interpreted as membership function of perceptions
in the class of theoretical entities ((potential) models). A perception p with T'(p) = 1

Theoretical
Layer

Theoretization

i perceptions

Real systems andiohenomena

Fuzzy-Space

Empirical
Layer

Fig. 1.16. The fuzzy space of perceptions between the empirical and the theoretical layer.
“Theorization” as a lingustic variable.
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Fig. 1.17. “Empirization” as the linguistic variable that is the complement of “Theoretization”

is completely theoretical and if T'(p) = 0, then perception p is completely empirical.
In Figure[T.T7 we also introduce the variable E — the “empirization” — which is the
complement of the theoretization T. A perception p with E(p) = 1 is completely
empirical and E(p) = 0 means that p is completely theoretical. Therefore we have
the empirization of our concepts as the complement of the theoretization of our con-
cepts: E =1 —T. In future works we will proceed with this “fuzzy epistemology”!
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Chapter 2

Fuzzy Systems and Scientific Method -
Meta-level Reflections and Prospects

Vesa A. Niskanen

Despite the great success of fuzzy systems in various applications, we still need
their further studies from the standpoint of their metatheory, methodology and the
philosophy of science. This objective means that in the context of fuzzy systems we
should consider more such aspects as the role of scientific outlooks and research
paradigms, concept analysis, scientific argumentation, hypothesis assessment, the-
ory formation, scientific explanation and ethics. Below we consider these subject
matters at a general level and we also attempt to subsume them under Lotfi Zadeh’s
recent ideas on approximation.

2.1 Background - Principal Western Traditions in Scientific
Method

Our outlooks constitute our assumptions and knowledge on nature, society and the
human beings as well as our philosophical conceptions on these issues. A scientific
outlook, in turn, presupposes that the foregoing assumptions and knowledge are
acquired and justified by using scientific methods. Below we consider some cen-
tral aspects of fuzzy systems from the standpoint of their metatheory, methodology
and the philosophy of science, and we particularly deal with problems of scientific
method.

This section sketches historical and ideological background in the Western world
for our study. Section 2 considers aspects of concept formation and interpretation,
section 3 deals with argumentation, in section 4 we examine scientific explanation
and theory formation, section 5 provides guidelines for scientific ethics and section 6
concludes our study.

The definitions on such terms as science or scientific method would already re-
quire wider considerations, but at this stage we only establish that science should
acquire novel knowledge in a systematic and rational manner and the scientific
method, in turn, guides in a systematic manner our research when we organize and
examine our rational and experimental processes and principles [40]. We consider
additional features for these below.

We can consider our scientific research process from various standpoints
211 [30]. First, the historical approach, in particular the history
of science and methodology, provides a basis for our present research traditions.
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Second, our outlooks stem from our philosophical and religious traditions. Third, we
apply certain scientific methods and even adopt certain research paradigms. Fourth,
in the science of science we can examine science from the empirical standpoint, for
example, the economy, sociology or psychology of science. Finally, the politics of
science is an important factor because the funding sources are often controlled by
political decision makers. In the light of this categorization, we focus on historical
and methodological aspects as well as on the politics of sciences from the ethical
standpoint.

When a scientific outlook is adopted, our scientific assumptions and assertions
have to be continuously open for criticism and discussion and this also concerns
the still continuing debates on the demarcation between the scientific and nonscien-
tific outlooks and methods. Fuzzy systems provide a good example of this because
their scientific nature has been criticized in particular by several mathematicians and
logicians.

The Western scientific outlooks stem from two mainstreams, the philosophies
of the ancient Greece and Christianity. Despite their distinct origins, these traditions
integrated in the conduct of inquiry in particular in the Scholastic philosophy, which
prevailed in Europe in the Middle Ages. This integration meant in practice that
the hypotheses, argumentation, theories and explanations were adopted from the
ancient Greeks (in particular from Plato and Aristotle), whereas their contents and
justifications had to correspond with the doctrines in the Bible. A typical example of
this approach was the Greek Eudoxan planetary model which due to its geocentric
nature was also acceptable to the Christian community. On the other hand, valuable
research in bivalent logics and mathematics was also performed, and these studies
were usually independent of religious commitments.

The link between Christianity and the scientific community weakened already
in the late Middle Ages, and by virtue of certain inventions and discoveries made
in the natural sciences, these sciences actually abandoned Christianity by the 18th
century. Essential persons in this process were Galileo, Francis Bacon and Newton,
inter alia. In addition, the philosophy of Enlightenment played an important role
in this process. However, in the Western world the influence on Christianity still
prevails to some extent in our ethics and even in the creationistic biology [12,
211 30].

Since the abandonment of Christianity, it has been the guiding principle in the
Western scientific outlook that the human reasoning provides the sole basis for all
our studies. This principle was adopted in the both epistemological mainstreams,
viz. rationalism and empiricism. The former aroused problems in the natural sci-
ences and thus the latter was adopted to be the prevailing approach to knowledge
acquisition, hypothesis testing and theory formation in these disciplines. According
to empiricism, which mainly has the British origin (Locke, Hume etc.), the scientific
research is based on our observations and experiments, whereas rationalism also ac-
cepts researcher’s “intuition" or “pure reasoning", even instead of experiments (Kant
suggested a compromise theory of these two traditions). Since Newton, in particu-
lar, mathematical notation and calculus are also widely used in the natural sciences

(211 26. 27, 28] 291 30].



2.1 Background — Principal Western Traditions in Scientific Method 39

The extensive rise of the Western human sciences (the social and behavioral sci-
ences, economics, the Humanities, etc.) began in the 19th century, and two main
methodological approaches were adopted. The one advocated the idea on the unity
of science by presupposing that the human sciences should also apply the meth-
ods of the natural sciences, whereas the other suggested alternative or comple-
mentary methods for these sciences. For example, the former approach, which was
strongly advocated in the positivistic tradition (e.g., Schlick, Carnap), assumed that
the human beings are only complicated machines or automata (“homeostats") and
thus they are not distinct from the other inanimate or animate entities, whereas
the latter approach emphasized the unique goal-oriented or intentional behavior
of the human being. The idea on intentionality stemmed from the Geisteswis-
senschaften tradition (“human” or “spiritual" sciences, e.g., Dilthey), in particu-
lar from phenomenology and hermeneutics. The rise of Marxism in the 20th cen-
tury was the third main factor in this methodological debate even though in this
tradition the concept of human being was close to the positivistic point of view
6} 38].

As regards the present situation in the Western human sciences, we seem to have
two main methodological traditions. First, the quantitative research tradition which
stems from the positivistic tradition and Marxism and, second, the qualitative re-
search based on the ideas of the Geisteswissenschaften.

Hence, today quantitative methods, empiricism and mathematical calculii prevail
in the methodology of the natural sciences. These disciplines also use widely bi-
valent logic in their argumentations. In the human sciences, in turn, we apply both
quantitative and qualitative methods but usually these methods are nevertheless ap-
plied separately.

Even though the Western methodology seems to prevail globally today, we must
bear in mind that there are also such several outstanding scientific traditions out-
side the Western culture from which we have espoused a lot of innovations as
the Egyptian, Mesopotamian, Indian, Chinese and Arabic traditions. For example,
Christianity has strictly speaking several features in common with the non-Western
philosophies.

As regards the role of fuzzy systems in the modern scientific method, fuzzy math-
ematics and logic have been revolutionary approaches in particular in the West-
ern world. Their innovative features are the humanlike processing of imprecise,
multi-valued and linguistic entities in concept formation, argumentation, theory
formation and model construction. Today fuzzy systems have a well-established
position in the various disciplines of the natural sciences, whereas in the human
sciences more applications are required, and thus in there fuzzy systems still await
their golden age. At a general methodological level fuzzy systems have a possibility
to integrate the Western and non-Western methodological traditions to a great ex-
tent and their methodology can also act as a mediator between the quantitative and
qualitative methods. Some examples are provided below. However, fuzzy systems
still encounter certain methodological problems and below we also consider these
issues.
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2.2 The Challenge of Concept Formation and Interpretation

2.2.1 A Case Study — Sketching the Exegesis of Fuzziness

In the scientific concept formation we consider the meanings of terms and these
meanings are specified according to our concept analyses and interpretations. As an
outcome, we can also perform definitions. This section considers typical challenges
which fuzzy systems can meet in concept formation.

At first we consider the meaning of fuzzy. The exegesis of terms comprises vari-
ous aspects. For example, a term can be homonymous (premises), ambiguous (fuzzy,
fuzzy logic), equivocal (reasoning), univocal (real number) or synonymous (episte-
mology, theory of knowledge). The meanings of terms can also include denotations,
connotations or both of them. In addition, it is usually assumed that in the conduct
of inquiry we should only operate with the cognitive meanings in which case we can
assess the truth values of our statements, whereas in our everyday life emotive mean-
ings based on our emotions and values are also used. Unfortunately, it is still now
and then possible that false or emotive arguments with negative value judgments are
also stated in the scientific community, and the emotional judgments against fuzzy
systems provide an examples of this.

We also have to bear in mind that the meaning of a term depends upon the con-
text, the usage of the term as a speech act, term’s role in the common knowledge,
linguistic conventions in society and the period of time when the term is used. For
example, the meaning of the term fuzzy in the common usage is distinct from that of
applied to soft computing, and thus the context, common knowledge and linguistic
conventions determine its usage. The employment of this term in the manner of Lotfi
Zadeh is also a fairly modern interpretation, and thus it was unknown to us prior to
the 1960’s. We also constantly introduce such novel meanings of terms to fuzzy sys-
tems research which are unfamiliar to the other scholars in the scientific community
(soft computing, defuzzification, granulation, precisiation, etc.). We could still re-
consider whether this is a good policy if we attempt to promote the idea of fuzziness
fluently (8, 0L [10, [111 122} 30. 43].

Below we adopt one traditional approach to philosophical concept analysis, and
thus we consider the intensions and extensions of terms. The intension of a term
comprises such properties or other concepts which constitute the meaning of this
term. The extension, in turn, consists of those things to which the term is referring.
For example, the intension of fuzzy is its meaning, i.e., the concept of fuzzy, whereas
its extension is the set of fuzzy things. Both of these constituents are considered
below.

In concept analysis we can start by considering term’s simple constituents of
intension and then we can add more properties to it gradually, and this technique
can even lead to complicated intensions. We also consider the interrelationships
between these constituents as well as the similarities and dissimilarities between
our intension and the other corresponding intensions. Typical relationships in this
context are x is associated with y, x is part of y, x is the cause of y, x follows y, x
contradicts y, x is a intervening condition fory and x is property of y.
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Consider now the exegesis of the term fuzzy. According to one hypothesis, in the
English common usage fuzzy presumably stems from the Low German word fussig
(spongy). Today it has various nuances of meaning and the most recent one was
specified by Zadeh in 1960’s. Figure 2.1] provides one example of examining the
intension of fuzzy in the common usage when the foregoing technique is used [47].
According to Zadeh, in turn, fuzzy and imprecise have identical meanings [50} 31}
52 [54] [56]]. Zadeh’s interpretation leads us to the exegesis of imprecision
within fuzzy systems.

In the 20th century philosophical literature imprecision was often synonymous
with vagueness, but today we usually assume that vagueness also includes gener-
ality and thus we can prefer imprecision to vagueness within the fuzzy systems.
Imprecision, in turn, constitutes ontological, epistemological and various forms of
linguistic approaches. The ontological approach considers the existence of the im-
precise objects, and in this context the crucial problem is whether there are any
imprecise entities or, in particular, whether there exist any fuzzy sets. As we know,
such isomorphic mathematical entities as the fuzzy membership functions, which
are generalized characteristic functions, are used in the fuzzy models, but are there
also the corresponding “true" fuzzy sets in the real world? This problem is still un-
resolved.

The epistemological imprecision is an outcome of the human being’s inability
to comprehend, perceive or discern certain precise objects clearly. Hence, in this
context the imprecision is not related to the entities in the real world but rather in
the human mind and thus we can perceive precise objects as being imprecise (e.g.
objects in the fog). This interpretation is related to uncertainty because in both cases
we deal with epistemological aspects. Zadeh’s theories of perceptions and FL+ are
related to this standpoint (cf. below).
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Within the fuzzy systems the linguistic semantic approach seems to prevail.
Hence, we assume that the linguistic entities can be imprecise by nature, and in
particular the extensions of terms have been in focus. If adopt this approach, we can
thus establish that a term is imprecise if and only if its extension contains borderline
cases. For example, the term young person is imprecise, because its extension, i.e.,
the set of young persons, includes borderline cases, and we are thus unable to de-
termine its precise limits. Fuzzy sets represent well the idea of extensions with the
borderline cases, and on some occasions fuzzy sets are even referred to as quantita-
tive meanings, i.e., the quantitative meaning of young person is the corresponding
fuzzy set (viz. the extension).

The linguistic semantic intensional imprecision means that the corresponding ex-
tension of a term might contain borderline cases. For example, young person is thus
imprecise in such world in which everyone is under 10 years (i.e., clearly young),
whereas this term would not be imprecise in the extensional sense in that world.

The linguistic syntactic approach to imprecision assumes that the scope of an
imprecise term is unclear. For example, strictly speaking, the statement / shot an
elephant in the pajamas does not clearly reveal us which party was in the pajamas,
because the scope of this word is problematic in this context.

The linguistic pragmatic approach considers the degree of unanimity of our state-
ments. For example, how many persons will agree with the statement A person of
30 is young ? The more disagreement, the more imprecision in this sense.

Hence, confusions will arise if various interpretations of imprecision are used
and our exegesis becomes even more complicated if the term uncertainty is also
involved. First, several scholars outside the fuzzy research community have argued
that fuzziness is actually a version of probability. Second, within the fuzzy sys-
tem community some scholars assume that fuzziness (or imprecision) is synony-
mous with uncertainty. We have already stated above that the idea of linguistic
imprecision has prevailed and this standpoint is related to semantics, whereas un-
certainty is an epistemological issue. Hence, in this sense the distinction between
these two concepts should be clear but there are also some historical reasons for this
misconception.

Today we agree with the fact that probability theory is an appropriate approach
to uncertainty but in fact the meaning of probability has varied since the ancient
Greek philosophy. In the conduct of inquiry we usually aim at avoiding erroneous
statements, and error can mean at least ignorance (or incompleteness), falsity and
uncertainty. In the ancient Greece such words as pistin, pithanos and doxa were used
in this context, and these expressions were usually translated into Latin as opinio,
probabilis and verisimilis. When translated into English, in turn, we thus obtained
such terms as probability, verisimilitude, truthlikeness and truth appearance. Con-
sequently there has been at least two historical approaches to the concept of proba-
bility, epistemic (uncertainty) and semantic (truth) traditions. Another example can
be found in German (and in a few other languages) in which the term for probability
(WAHRscheinlichkeir) actually refers to truth [29].

If we would like to find a connection between imprecision and uncertainty or
probability at the semantic level, Popper’s ideas on verisimilitude and fallibilism as
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well as the theories on truthlikeness provide one resolution because they consider the
notion of degree of truth and this notion also plays an essential role in fuzzy logic.
Unlike in fuzzy logic, however, these approaches only apply bivalent logic. We must
bear in mind that in this context probability is not having its modern mainstream
meaning [35, [36]].

At the epistemic level, in turn, probability is expected to represent the relation
between the hypothesis and evidence (e.g. Carnap, Ramsey, de Finetti) and this re-
lation is dependent upon our knowledge and ignorance. Hence, epistemic probabil-
ity actually deals with the degrees of belief and this notion can also be considered
fluently with fuzzy systems [4} 27, [49].

Today we also have physicalistic (or objective) approaches to probability such
as frequency and propensity interpretation (e.g., von Mises, Reichenbach). Then we
presuppose that probabilities are dependent upon physical properties assigned to
the occurrences in the real world. These approaches are closely related to the idea
of modality, and modality, in turn, is related to possibility. Hence, via the possibility
theory another connection between probability and fuzziness can be found [27]].

Summing up the distinction between imprecision (fuzziness) and uncertainty
(probability), the statement John's age is 21, provided that John is actually 20 years,
has a high degree of truth, whereas the probability of this statement is zero in the
light of the evidence that John’s age is 20. However, we can also integrate fuzzi-
ness with probability and this is carried out in the fuzzified probability theories (cf.
below) [14][56].

The foregoing discussion on the meaning of fuzziness already shows that there
is still a lot of work in the concept analysis within the fuzzy systems. Other exam-
ples which require more exegesis in this context are the notions of truth, linguis-
tic modifier, fuzzy quantifier, granulation, precisiation, defuzzification, information,
perception and similarity [8, 9, [T0} [T} 50, [55, 56]. Concept analysis
provides us a basis for definitions and we consider this subject matter in the next
section.

2.2.2 Definitions within Fuzzy Systems

Definitions are essential in concept formation and we usually apply them in the
linguistic form

co=df e

in which the expression on the left is the term to be defined (the definiendum) and
the expressions on the right (the definiens) give the meaning or the description of
the definiendum. For example, we can define

fuzzy =4 imprecise.

Traditional rules for definition presuppose that, first, the definition is not allowed to
be circular. This rule means in practice that the definiens is not allowed to include
the definiendum (recursive definitions do not obey this rule). Second, the definition
should not contain too imprecise or figurative terms. This principle, however, is a
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matter of degree in practice. Third, the definiens should not contain negative terms if
corresponding positive terms can be used instead. In addition, definitions should fol-
low such psychological rules as they should replace complicated terms with simpler
ones.

In the conduct of inquiry we define the central terms of our studies and in this
task we should take into account the available definitions of these terms, their cor-
respondence with the real world and even the alternative methodological traditions.
In addition to only clarify the meaning of a term, a definition can be the objective of
the study, a hypothesis, an outcome of the study or it can link theoretical concepts
to our observations. For example, if the term fuzzy logic is considered, definitions
prior to the 1960’s are unavailable and today, according to the traditional bivalent
logic, fuzzy logic is not “real" logic. The correspondence of the meaning of fuzzy
logic with the real world can also be problematic because of the novel usage of the
term fuzzy [[19, 22} 28].

Hempel suggested four types of definitions. The first main category, the de-
scriptive definitions, includes definitions that describe the meanings of the terms
already in use. In addition, we can meaningfully assign truth values to these defini-
tions. Its first subcategory comprises analytic definitions and then we assign to the
definiendum an expression which has identical intension with it. For example, the
definition,

fuzzy =4 imprecise

is true if the terms fuzzy and imprecise have identical intensions, i.e., if the concept
of fuzzy is identical with the concept of imprecise.

In the second subcategory, the non-analytic definitions, the definiendum and
definiens should have identical extensions, i.e., they should refer to identical sets.
For example, the definition

fuzzy =4 imprecise

is true if the set of fuzzy entities is identical with the set of imprecise entities.

The second main category, the stipulative definitions, assigns names by stipula-
tion to new linguistic or symbolic expressions (nominal definitions) as well as it pro-
vides “scientific" meanings to terms that are also in common usage (explications).
In this context it is not meaningful to consider the truth values of these definitions.
For example, if we use nominal definition and we define

fuzzy =4y imprecise,

we actually make a linguistic convention that fuzzy means imprecise.
In explication, in turn, the definition

fuzzy =4 imprecise

assigns a scientific or technical meaning for the term fuzzy, and this meaning can be
distinct from the common usage of this term (Zadeh has applied this to fuzzy).
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In fact, within fuzzy systems all the foregoing types of definitions have been
applied and thus it would be recommendable to mention to the other researchers,
what kind of definition is used in the study in order to avoid extra confusions.

Wittgenstein [46] attempted to solve the definition problems of imprecise and
complex terms by formulating the principle of family resemblance. According to
him, by describing the essence of a thing or object is impossible in the case of im-
precise and complex terms, and hence we should use terms which are characteristic
but not necessary of the definiendum. For example, in the case of the term human
being, we are unable to assign any necessary features or meaning components to
human beings, but rather this term should consist of such generally accepted mean-
ing components as rational, two-legged, and intentional, and a being is human if
most of these components may be assigned to it. Wittgenstein also emphasized the
role of exemplification when terms of this type are described. Wittgenstein’s idea
has been applied to grouping in statistics, and in this context these groups are some-
times confusingly referred to as fuzzy sets. Putnam, in turn, refers to the meaning
components of this type as cluster terms .

The operational definition, which is a method to determine concept’s or vari-
able’s structure or to measure its quantity, is also regarded as being one type of
definition on some occasions, but strictly speaking we can thus establish several
alternative definitions to a given term, viz. one for each measurement. These “def-
initions" are maintained in particular in the positivistic traditions of science. For
example, an operational definition on fuzzy reasoning should reveal us how this in-
ference is performed, but since there are several inference methods available, each
of them represents one definition. We encounter the similar problem with the de-
gree of membership because there are various methods to measure this quantity and
each of them establishes an operational definition for this term. Hence, the opera-
tional definitions can provide us with the diversity of definitions for each term, and
this situation is often unacceptable in the light of the concept formation and in the
practice of science [26, 28].

Another problem with the operational definition is that there are many such terms
which are difficult to measure directly or numerically as person’s attitudes, motives,
intentions and values, and thus they have problems with their validity of the mea-
surements. Validity problems can still exist even though we aim to specify measur-
able counterparts for these terms (operational indicators). At a general level, this
problem is a part of the controversy between the quantitative and qualitative re-
search because the latter sets strict limits to plausible numerical measurement (cf.
also below) [26) 28]].

On the other hand, in measurement fuzzy systems can provide a useful link be-
tween quantitative and qualitative modeling if we use fuzzy linguistic concepts and
variables when we examine our theories and observations. Then we can obtain more
direct and informative data which can also be examined conveniently in a computer
environment. Recently Zadeh has again focused on this important subject matter in

his theory of perceptions [20, [53] 56].
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2.2.3 The Challenge of Interpretation

Interpretation, which is an essential method in the qualitative research, usually refers
to delivering messages, explanation, exegesis or translation, and it has been per-
formed in the conduct of inquiry since the ancient Greece (Aristotle, Schleierma-
cher, Dilthey, Heidegger, Gadamer etc.). Originally interpretation was applied to
linguistic expressions and text documents but today we also scientifically interpret
such objects or phenomena as pictures, movies, music, dreams and the human be-
havior in particular within the hermeneutic and Geisteswissenschaften tradition in
general [6, [13] 22] 30, 43].

In general, interpretation comprises two main levels, our conceptual system and
our object of research. The former includes the meanings provided by us, and the lat-
ter focuses on object’s original, latent and intrinsic meanings. For example, fuzziness
can only mean imprecision to us, whereas originally it also has other meanings. An
object of latent interpretation would be the assumption that Lotfi Zadeh preferred
the term fuzzy to imprecise in his publications in order to arouse more interest in
fuzzy systems. Finally, we can consider such intrinsic aspects of fuzziness as its
moral and esthetical values.

In interpretation we aim to understand fully the meaning of our object of re-
search, and in practice we can apply such methods as the hermeneutic circle in
this task. The application of this method presupposes that in the beginning we have
some foreknowledge (Vorverstdndnis in German) or preconceptions on the object
or phenomenon under study. This knowledge is based on our experience, education,
traditions, historical facts etc. The foreknowledge is assessed according to our sci-
entific inquiry and it is subject to modification during our study. In our modification
we assume that the whole of the object or phenomenon may be understood accord-
ing to its parts, and vice versa. This interaction is a continuous circular process, and
in the manner of a helix, it should lead us to the deep understanding of our problem.
Our interpretations should also correspond well with the true nature of the object or
phenomenon under interpretation. Finally, by virtue of successful interpretation, we
may explain and understand both the relevant revealed and unrevealed features and
constituents of the objects or phenomena [22]].

For example, if a student is reading his/her first textbook on fuzzy systems, at the
very beginning he/she has only cursory knowledge on fuzziness and fuzzy systems.
While reading the book, he/she does not necessarily understand all its details imme-
diately, but the more he/she reads, the better general view is attained, and simulta-
neously, the better the details are understood. Thus, he/she is able to understand the
details according to the general view, and vice versa. Finally, a good understanding
of fuzzy systems should be attained.

However, there are no detailed methods available for making interpretations but
rather some general and approximate guidelines. Another problem is that our in-
terpretations are more or less subjective by nature even though we should aim to
minimize subjectivity. Despite these problems the foregoing method is widely ap-
plied to the qualitative research (cf. section 3).
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Interpretation is also used in quantitative research more or less implicitly. For ex-
ample, if we use mathematical models, we actually apply mathematical interpreta-
tion to the phenomena under study. In statistics, interpretation is used in the context
of cluster analysis, factor analysis and hypothesis assessment, inter alia. Since the
Pythagoreans, some scholars have even assumed that all the phenomena in the real
world can be considered within the mathematical calculus. In this context, however,
we must draw a distinction between the mathematical and real world. The former
can be exact, deducible, consistent and rational by nature but the latter does not ful-
fill these conditions and thus their full correspondence is problematic. For example,
a sophisticated mathematical model can be inappropriate in practice [22]]. Hence,
we have to draw a distinction between the Pythagorean style of “mathematism" and
mathematics.

Within fuzzy systems linguistic interpretation plays a central role because we
assign linguistic labels to fuzzy sets. Hence, the “quantitative meanings" of fuzzy
terms are fuzzy sets or relations. In the framework established in section 2.2 this
means that, given such term as young in the reference set of ages, its intension is its
common usage meaning, i.e., the concept of being young, and the extension is the
fuzzy set of young persons. Thus, the label of this set is young. This means that we
label the fuzzy sets according to our interpretations and this procedure is subjective
by nature. It also follows that the fuzzy terms have two “meanings"” in practice, their
intensions and corresponding fuzzy sets.

In addition, since we are unable to label all fuzzy sets in our models, we usually
formulate a family of labeled archetype sets, and by using linguistic approximation,
we attempt to label other sets according to these archetypes. This linguistic and
approximate “discriminant analysis" is another example in which case we make
interpretations.

Since the interpretations and artificial languages within fuzzy systems should
correspond well with both the natural language and the real world, we should have
an appropriate linguistic framework to the fuzzy linguistic variables. Our fuzzy arti-
ficial language should comprise a vocabulary and both syntactic and semantic rules.
We also need a universe of discourse for fuzzy sets and appropriate linguistic vari-
ables. The values of these variables, in turn, are formulated by using primitive terms,
linguistic modifiers, connectives, quantifiers, various qualifiers etc. For example,
many Swedes are tall, and very likely they are often fairly happy could be such an
expression [30, 33} 511 52} 53]].

We should also provide a psychological basis for our linguistic framework. For
example, the author has applied Osgood’s semantic differential technique in this
context [32]). In this case we first select two antonymous primitive terms for
each variable, and the rest of the values are usually their modified and compound
versions. For example, given the variable age of persons, our primitive terms are
obviously young and old. The other values can be fairly young, neither young nor old
(the middle point) and fairly old, if we use five values. If we examine the attitudes or
opinions of persons, we can also use Likert’s scales in which case we use such values
as [ strongly agree, I agree, I neither agree nor disagree, I disagree and I strongly
disagree. Osgood’s and Likert’s scales are widely used in the human sciences but
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Fig. 2.2. Structure of Zadeh’s Information Granulation

they are usually subsumed under the conventional statistical analysis. Fuzzy systems
enable us to take into account better their linguistic and approximate nature in a
computer environment and thus we can also apply pure qualitative modeling [30].
Zadeh has suggested a comprehensive theory to formulate a fuzzy artificial lan-
guage [51) [54]]. Unfortunately, it seems that many researchers have not fully
understood its great value and applicability thus far. Hence, in practice we still
operate much with fuzzy sets and mathematical notation in our model construc-
tion although we should rather use actual fuzzy linguistic entities and fuzzy logics.
Figure[2.2] provides an example of Zadeh’s information granulation approach when
it is applied to linguistic variables and the foregoing idea of quantitative meaning.
Although we would have an appropriate syntax for our fuzzy language, we still
can encounter problems in semantics because several quantitative meanings for fuzzy
terms, which stem both from normative and descriptive standpoint, are available.
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Examples are the meanings of very and fairly as well as the “interpretation” of con-
nectives and quantifiers. At least the normative interpretations are still established on
more or less subjective grounds.

An important topic in semantics is the problem of truth. In philosophy, a dis-
tinction is usually drawn between the definitions and criteria of truth 140]). The
former considers the meaning or nature of truth, and hence it concentrates on se-
mantic problems. The latter examines the procedures for recognizing or testing the
truth values of sentences, and it thus focuses on epistemology (if we maintain that
only sentences can have truth values). For example, according to the widelyused
correspondence theory, we can define that the linguistic statement Lotfi Zadeh lives
in Berkeley is true if and only if he lives in Berkeley. On the other hand, the ver-
ification of this statement in practice belongs to the problemacy of recognizing
the truth.

In definition, the correspondence theory of truth seems to be the mainstream ap-
proach within fuzzy systems, even though this principle is presented only implicitly
in the literature [40]. Hence, we regard truth as a relation between a given language
and the real world. First, this means that the meanings of linguistic expressions and
the connection between a given language and the real world are based on human
conventions. Second, the truth of a statement is determined by the real world, and
thus its truth is independent of our stipulations [29].

Since truth is not a manifest property of statements, it is possible that a sentence
is true although we do not recognize its truth. Hence, we also have to establish the
criteria for testing or measuring the truth values of sentences. The applicability of
using our truth value assignments in our model or theory construction is a traditional
example of such criteria, and this criteria also seems to be widely used within fuzzy
systems.

Since we use multivalued logics within fuzzy systems, we will encounter a diver-
sity of interpretations on truth [30]. For example, we can state that a compound
statement is partially true if only a part of it is true and the rest is not true. A state-
ment is totally true if all of it is true. A statement is a partial truth if it expresses a
part of the whole truth, but also excludes some (often relevant) true parts. We may
also assess that a statement is more or less close to being true (or false). If metric or
mathematical concepts are applied, then the notion degree of truth may be used in
this context and in fuzzy logic this approach has prevailed. In practice, however, the
concept of the degree of truth is still problematic and various alternative methods
for assigning or measuring it are used. This subject matter is also related to the prob-
lems of proximity, similarity and dissimilarity. Section 4 sketches one resolution to
this problem.

Recently, the Internet has aroused new challenges to interpretation in a computer
environment. Since we have enormously information available in the Internet, we
should have appropriate tools and methods for finding the relevant information for
us. Intelligent agents, knowledge discovery, data analysis and semantic web are ex-
amples of these. However, the crucial problem in this context is how computer sys-
tems could understand sufficiently the contents of the web documents, and thus we
encounter again the problem of interpretation. For example, is the document under
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consideration providing some arguments or explanations, is it true or how could we
make an abstract on it? Various interpretation models for computers are available
already but we still await the real “killer" product. The more extensive use of quali-
tative methods with fuzzy systems could provide one resolution to this challenging
problem.

We have mainly considered linguistic problems thus far but they are crucial if we
apply fuzzy systems. If our linguistic frameworks have such plausible basis which
correspond well with the real world, we can model fluently phenomena of nature,
human behavior and human reasoning. A good linguistic basis is also a necessary
condition to carry out further developments within fuzzy systems. We still have
such great challenges in this context as the modeling of human interpretation, and
it seems that the more extensive use of qualitative methods could better meet these
challenges.

The following sections consider other relevant selected methodological topics in
the light of linguistic framework of fuzzy systems and imprecise concepts.

2.3 Scientific Reasoning and Hypothesis Assessment

2.3.1 Approximate Reasoning — Past, Present and Future

Approximate reasoning is one of those central topics which has aroused lively de-
bates with the traditional bivalent approaches. By reasoning we generally mean such
thinking act that proceeds from assumptions to conclusions. Reasoning has origi-
nally been performed in the animate world but today machines can also reason to
some extent. In traditional argumentation, our assumptions are usually known as
the premisses (premises) or hypotheses [56], and in approximate reasoning these
premisses and/or the conclusions are imprecise. Fuzzy reasoning, in turn, applies
approximate reasoning and fuzzy systems [16, 20} 22, [42]].

We can study reasoning from such standpoints as psychology, physiology, biol-
ogy, logic and methodology. Below we focus on logico-methodological aspects and
thus we mainly consider problems of logic and argumentation.

If we perform reasoning, we should first specify our arguments or find the exist-
ing arguments in our object of study. Second, it is also important to draw a distinc-
tion between arguments, explanations and descriptions. For example, consider the
statements

1. Lotfi Zadeh introduced the principles of fuzzy systems because
he wrote the first papers on this topic.

2. Lotfi Zadeh introduced fuzzy systems in order to construct better
computer models.

3. Lotfi Zadeh introduced fuzzy systems.

They represent argument, explanation and description, respectively, but on some oc-
casions we also use their combinations. Below we consider arguments, whereas ex-
planation is examined in Section 4 [22]. Various types of reasoning are
available [27]].
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First, theoretical reasoning usually applies affirmations and standard forms of
reasoning methods (e.g. syllogisms). For example, if the Modus Ponens syllogism
is applied, we can reason that

Lotfi Zadeh lives in Berkeley. (premiss)
If Lotfi Zadeh lives in Berkeley, then he lives in the USA. (premiss)
Lotfi Zadeh lives in the USA. (conclusion)

Second, practical reasoning leads to certain acts or modes of behavior. For example,

If fuzzy systems are good at model construction, I will use them.

Third, in heuristics we consider the invention of new ideas and hypotheses as
well as the discovery of new objects or phenomena. Zadeh’s insight on fuzzy sets
provides an example of invention, whereas the planet Uranus is an example of an
object that was discovered.

Fourth, we can consider how our ideas, hypotheses or discoveries can be tested,
proved, accepted, rejected, confirmed or disconfirmed. The hypothetico-deductive
method and hermeneutic circle are well-known approaches to assess the hypotheses.

Reasoning can base on intuitive and informal rules and assessments, but, owing
to developments in logic, today symbolic representation and formal arguments are
used in particular in the bivalent logics. An essential reason for the controversy
between fuzzy systems and traditional logic is that the former does not fulfill the
formal conditions established by the latter. In brief, the syntactic structures of fuzzy
systems have had justifiability problems from the standpoint of bivalent logic even
though a lot of valuable work has been done in fuzzy logic in this field. In a sense,
fuzzy systems seem not to fulfill the idea of the “mental beauty" which is the alleged
feature of the traditional mathematics and formal bivalent logics. This principle of
the formal correctness of reasoning in the manner of bivalent logic has played a
central role in the Western scientific outlooks but today we should call into question
its plausibility due to the developments and results of the fuzzy systems.

On the other hand, the bivalent logics have encountered semantic problems be-
cause our actual reasoning does not correspond with them. The well-known un-
successful attempts to establish this correspondence are those suggested by the
Pythagoreans, Galileo, Leibniz, Hilbert and Carnap, inter alia, and hence today the
bivalent traditions generally maintain that their logics are only normative by nature,
i.e., instead of describing our actual reasoning, they show us how we should perform
our reasoning. It is, however, also problematic whether this normative approach is
justified in the modern conduct of inquiry due to the limitations and problems of bi-
valency. It has even been stated that bivalent logic was sufficiently simple calculus
to use in the precomputer age, whereas today we can apply more applicable systems
with the computers 24 [44].

We can also study reasoning by considering the nature of our premisses, in which
case the fundamental question is whether they are necessarily true or not. In the
former case we can apply demonstration and in the latter case dialectics. Examples
are Euclid’s geometry and Socrates’s reasoning method, respectively.

If we, in turn, consider the relationship between the premisses and the conclusion,
a distinction between deductive and inductive reasoning is usually drawn 140].
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Deductive reasoning contains nothing in the conclusion that is not already contained
in the premisses. This idea provides a basis for syntactic validity (or theoremhood),
which s aresearch object of proof theory. Semantic validity means that the conclusion
is true whenever all the premisses are true. In traditional bivalent logic tautologies are
semantically valid, whereas in the fuzzy logic we can also consider whether truth-
preserving reasoning with an alternative degree of truth fulfills semantic validity.

In inductive reasoning, it is assumed that the conclusions go beyond what is con-
tained in their premisses and thus it is regarded as ampliative with respect to our
knowledge if the conclusions are true. Unlike deduction, induction is, however, not
necessarily truth-preserving, and thus it is possible for the premisses to be true, but
the conclusion non-true. In this context the degree of support for the conclusion
provides a basis for the concept of inductive strength. Another clear distinction be-
tween deduction and induction is that in the former we can add new premisses to
our premiss set and the conclusion still logically follows from this set. In practice,
various types of inductive reasoning are available.

The fuzzy systems seem to mimic the human reasoning fairly well, and by virtue
of the idea of the gradation of truth they are semantically meaningful and they can
also resolve such traditional paradoxes of bivalent logic as the Sorites (Falakros)
paradox [41]]. However, several practical applications are based on ad hoc logical
structures or on mere fuzzy set models. In addition, some arguments typical of fuzzy
reasoning still stem from more or less intuitive and subjective assumptions, this
making it possible that researchers may also be persuaded by invalid arguments or
erroneous operations. We also have the unfortunate situation that, despite the general
aim of fuzzy systems to use linguistic and human-friendly notation and expressions,
a lot of mathematical and logical notations as well as pure mathematical operations
are still used in this context.

Recently, Zadeh has established the principles of the extended fuzzy logic, FL+,
and in this context we can reason by applying both traditional validity (p-validity)
and novel f-validity [50]. In the former case we operate with precise theorems, clas-
sical deducibility, syllogisms and formal logic, whereas f-validity is related to infor-
mal and approximate reasoning and approximate “f-theorems” (Fig.2.3). According
to Zadeh ([50], p. 2),

precise deduction f-deduction

Theorem

Fig. 2.3. Zadeh’s Syntactic F-validity Yields Approximate Theorems
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“A simple example of a f-theorem in f-geometry is: f-medians of f-triangle
are f-concurrent. This f-theorem can be f-proved by fuzzification of the
familiar proof of the crisp version of the theorem."

F-validity and f-theorem are examples of Zadeh’s Impossibility Principle. This
principle informally states that in an environment of imprecision, uncertainty, in-
completeness of information, conflicting goals and partiality of truth, p-validity is
not, in general, an achievable objective.

As we know, the fuzzified Modus Ponens, for example, corresponds with Zadeh’s
FL+ approach. In its usual form, i.e.,

statement 1,
if statement 2, then statement 3,
thus, statement 4,

the approximately identical statement 1 and the antecedent of statement 2 will yield
statement 4 as the conclusion and this is approximately identical with the consequent
of statement 3. By using this type of argument we can draw approximate conclusions
which are close to their true counterparts, and thus f-validity is applied. In practice
various fuzzy implications are used in this context and their correspondence with our
intuition can be problematic. In addition, true or precise multi-valued implications
are usually applied [} 9, [10].

Naturally we can also apply non-true or approximate implications to the forego-
ing argument in which case we obtain even more approximate conclusions. Then,
unlike in the case of bivalent or true fuzzy implication, the identity between state-
ment 1 and the antecedent of statement 2 do not yield conclusion which is identical
with the consequent of statement 3. Since we often apply the extension principle
in this context when we calculate the conclusion, this approach means that we do
not use bivalent relations as their inducing mappings but rather fuzzy relations. At
a general level, the role of non-true and approximate implications should be studied
more in this context because then we can better consider and model the approximate
interrelationships between the phenomena.

Fuzzy systems applied to approximate reasoning can resolve problems which
are superb to bivalent logics. They can overcome the Sorites paradox and model
conveniently such challenging phenomena of the real world which are problematic
to traditional approaches. The developments within the FL+ systems, in turn, seem
to open new prospects at a more general methodological level. The FL+ system also
seems to have connections to fallibilism, scientific realism, verisimilitude and the
theory of truthlikeness. These aspects as well as some applications of approximate
argumentation are discussed in the following sections.

2.3.2 Approximation and Reasoning with Hypotheses

When we assess the truth or justifiability of our hypotheses, we usually apply im-
plicitly or explicitly the Modus Tollendo Ponens syllogism, i.e.,
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statement 1 or statement 2,
it is not the case that statement 1,
thus, statement 2.

Hence, in our hypothesis assessment we first establish all possible relevant assump-
tions or resolutions concerning our object of research. Then, we eliminate those
assumptions from our “disjunction of assumptions" which contradict the evidence.
For example, from the disjunction Lotfi Zadeh lives either in Berkeley or New York
and the evidence Lotfi Zadeh does not live in New York, we can conclude that he
lives in Berkeley.

Various types of hypotheses are available. For example, the working hypotheses
are such alternative concepts, theories, models or methods which we consider in
the beginning of our studies. The causal hypotheses assume causal connections be-
tween entities. In interpretation our foreknowledge is our initial hypothesis. Causal
and interpretative hypotheses are used in the quantitative and qualitative research,
respectively.

The disjunctive method can be subsumed under the more general principle that
we can always find the true hypotheses by eliminating the false ones. However, the
well-known raven paradox of falsificationism challenges this idea by reasoning that
in practice we are unable to verify the statement that all the ravens are black because
it is impossible to find all of them but, on the other hand, only one counterexample
can falsify it. Thus we should prefer the falsification approach in hypothesis assess-
ment. If we instead of this “dogmatic" falsification approach assume more liberally
that both the acceptance and the rejection of a hypothesis are relevant procedures in
the conduct of inquiry, we maintain fallibilism [35.136].

Mill [26, has also applied the foregoing elimination method of hypotheses
to his well-known reasoning method of difference. Consider that we have the two
testing conditions, ¢y and ¢, which are similar except for one factor, f, and this
factor occurs in ¢ but it does not occur in ¢;. Now, according to Mill, if a certain
phenomenon only occurs in ¢, we may reason that factor f is the cause of this
phenomenon.

In the modern quantitative research we use causal hypotheses and in this con-
text falsification and Mill’s principle are applied to the widely-used hypothetico-
deductive method (Galileo, Descartes, Boyle, Peirce etc.).

From the logical standpoint, it stems from the classical bivalent Modus Tollens
syllogism in which case we can reason that

if statement 1, then statement 2 (true implication),
statement 2 is false (i.e., its negation is true),
statement 1 is false (conclusion).

It follows that if statement 2 is true, statement I may be true or false, and, in a sense,
the syllogism is thus useless for us.

In the hypothetico-deductive method we apply the Modus Tollens by assuming
that statement I is our hypothesis and statement 2 is usually its observable or testable
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logical consequence. The justifiability of statement 2 is thus based on our experi-
ments and observations, and if these are inconsistent with this statement, we reject
our hypothesis. If, in turn, our experiments and observations correspond with state-
ment 2, the Modus Tollens will not provide us with any resolution. Hence, in the
latter case we have to replace deduction with induction and then one method is to as-
sume that our hypothesis is only “confirmed". Sufficient confirmations, in turn, will
lead to the acceptance of the hypothesis [[3,[18}[19} 211,22, 231,25}, 26} 27, 3336, 38].

In practice, the hypothetico-deductive method thus uses the hypotheses, which
stem from the researcher’s context of discovery and inventions, deduces tests and ex-
periments from these hypotheses and finally either rejects or confirms the hypothe-
ses according to the empirical evidence. Rejection is based on deduction, whereas
confirmation is performed according to inductive reasoning.

If we use probability statements, the assessment on the relationship between the
hypothesis and the evidence is more challenging than in the deterministic case. Ex-
amples of these are the statistical tests in the human sciences in which case we
consider the acceptance of the null and alternative hypotheses at the given levels of
significance [14} [15].

We have to bear in mind that we are unable to use the hypothetico-deductive
method when we attempt to develop new ideas or hypothesis but these belong to the
field of heuristics. This restriction also concerns hypotheses assessments in the ideal
or imaginary conditions.

Within fuzzy systems we can also apply fuzzified probability theory, and the
most recent version of this is suggested by Zadeh in his theory of second-order
probability [30]. In this theory both the events and the probability functions can be
approximate and thus we can use such statements as the probability that John is
very young is fairly low. His theory provides one approach to the foregoing idea
on degree of confirmation in epistemic probability. Zadeh’s theory on probability
can also be subsumed under his FL+ and thus we could apply it to approximate
statistical reasoning, inter alia. Another method in the FL+ would be to generalize
the traditional second-order theory by considering such statements as the probabil-
ity that the probability of John being very young is fairly low is very high. These
subject matters would extend a new frontier within both the fuzzy systems and the
probability theory.

If we, in turn, apply a fuzzified version of the Modus Tollens to hypothesis as-
sessment, we can also use linguistic and approximate constituents. The essential
advantage of the model of this type over the conventional version is that the truth
values of the premisses may also be gradually between true and false. It follows
that we may acquire more information from the hypotheses than in the conventional
case. In practice we can now assume that a false consequent yields a false hypoth-
esis and otherwise the degree of confirmation increases as the truth value of the
consequent approaches truth. In other words, the more convincing evidence for the
hypothesis, the higher the degree of confirmation (and the lower the degree of dis-
confirmation). For example, the more various experiments support our hypotheses,
the more this hypothesis is gradually confirmed or accepted.
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Naturally, as in the case of the Modus Ponens, the implication in the fuzzified
Modus Tollens can also be non-true. For example, if this implication is only fairly
true, we can establish that even the false consequences of the hypotheses do not nec-
essarily lead to mere false hypotheses. Equally the truth values of the consequents
close to true may already lead to maximal degrees of confirmation. In general, we
may assume that with the non-true implications our conclusions include more “dis-
persion" or imprecision than in the conventional case, and loose reasoning links of
this type are typical in the human sciences in which we usually operate with noisy
data and the complicated interrelationships between the variables.

The actual hypothetico-deductive method performs tests and experiments with
the hypotheses, but we may also apply it to the interpretative method if we assume
that, in addition to these, we may consider the correspondence between our fore-
knowledge or interpretation hypothesis and the real world on rationalistic grounds.
Hence, in this sense, we can also apply the hypothetico-deductive method to the
qualitative research. The qualitative hypotheses are usually linguistic and approxi-
mate in nature, and they may more often deal with unique and non-recurrent events
or phenomena than in the quantitative case. Instead of traditional statistical tests
or other experiments we usually employ our observations, intuition, linguistic rea-
soning and interpretation when we assess the confirmation of our hypotheses. It is
even possible that we conduct studies without any hypotheses or we may begin our
studies without them and establish the hypotheses later according to our data and
materials (e.g. the grounded theory approach) [6}, 22]].

The fuzzy systems thus seem usable to qualitative hypothesis assessment as well
if we apply such foregoing methods as the FL+ or fuzzified Modus Tollens. How-
ever, these systems still apply traditional methods when the hypotheses are assessed.
By applying our novel approximation theories, we can acquire more informative re-
sul