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Introductory Foreword

Rudolf Seising

In the more than four decades of its existence, the scientific “Fuzzy Group” has
grown from a few engineers, working either alone or in small groups, to a large
scientific community. From the perspective of the history of science, it is quite nor-
mal over the course of time for such research programs to adapt themselves to the
phenomena of branching out and differentiation into special projects and the pen-
etration of other scientific disciplines. This applies not only to the distribution of
research projects, the number of researchers, and the benefits of various research
funding programs on the different continents and in individual countries, but also to
the high profile of the subject in widely diverse fields of science, technology, and
business.

Even though the majority of applications of the theory of fuzzy sets and systems
in the last decade have been in the field of engineering, beginning with control
engineering, since a few years ago the key area of fuzzy applications has seemed
to be computer sciences, especially the field of data or information mining.

For more than forty years, however, fuzzy logic and fuzzy mathematics have
been continuously developed, resulting in important theoretical expansions of this
mathematical theory of unsharp amounts or logic of unsharp statements, which have
often very quickly led to new application systems.

At the same time, the areas of artificial neural networks and of evolutionary and
genetic algorithms emerged as independent research disciplines and beginning in
the 1980s new developments arose that were hardly foreseeable: the theory of fuzzy
sets and systems was combined with artificial neural networks, and later also with
genetic or evolutionary algorithms or these algorithms could be successfully con-
nected with artificial neural networks. The use of such “hybrid systems” became
more and more common in all types of applications.

This was the situation when Lotfi A. Zadeh began to formulate the concept of
“soft computing”. In 1990 he wrote that “what might be referred to as soft com-
puting – and, in particular, fuzzy logic – to mimic the ability of the human mind
to effectively employ modes of reasoning that are approximate rather than exact.
In traditional – hard – computing, the prime desiderata are precision, certainty, and
rigor. By contrast, the point of departure in soft computing is the thesis that preci-
sion and certainty carry a cost and that computation, reasoning, and decision making
should exploit – wherever possible – the tolerance for imprecision and uncertainty.
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[...] Somewhat later, neural network techniques combined with fuzzy logic began
to be employed in a wide variety of consumer products, endowing such products
with the capability to adapt and learn from experience. Such neurofuzzy products
are likely to become ubiquitous in the years ahead. The same is likely to happen in
the realms of robotics, industrial systems, and process control. It is from this per-
spective that the year 1990 may be viewed as a turning point in the evolution of high
MIQ-products1 and systems. Underlying this evolution was an acceleration in the
employment of soft computing – and especially fuzzy logic – in the conception and
design of intelligent systems that can exploit the tolerance for imprecision and un-
certainty, learn from experience, and adapt to changes in the operation conditions.”
[2]

In a retrospective foreword to the first issue of the then founded journal Applied
Soft Computing in June 2001, Zadeh wrote: “The concept of soft computing crys-
tallized in my mind during the waning months of 1990. Its genesis reflected the
fact that in science, as in other realms of human activity, there is a tendency to be
nationalistic – to make an exclusive commitment to a particular methodology and
proclaim that it is superior to all others. It is this mentality that underlies the well-
known hammer principle: when the only tool you have is a hammer, everything
looks like a nail. The launching of Berkeley Initiative in Soft Computing (BISC)
at UC, Berkeley in 1991 represented a rejection of this mentality. Initially, accep-
tance of the concept of soft computing was slow in coming. Within the past few
years, however, soft computing began to grow rapidly in visibility and importance,
especially in the realm of applications which related to the conception, design and
utilization of information/intelligent systems. This is the backdrop against which the
publication of Applied Soft Computing should be viewed. By design, soft comput-
ing is pluralistic in nature in the sense that it is a coalition of methodologies which
are drawn together by a quest for accommodation with the pervasive imprecision
of the real world. At this juncture, the principal members of the coalition are fuzzy
logic, neuro-computing, evolutionary computing, probabilistic computing, chaotic
computing, and machine learning.” [7]

The 1990s was a period of institutional consolidation of the new field of research,
to which a further field was soon added. In 1994, James Bezdek introduced the con-
cept of “computational intelligence”: “A system is computationally intelligent when
it: deals with only numerical (low-level) data, has pattern recognition components,
does not use knowledge in the AI sense; and additionally when it (begins to) exhibit

1 MIQ means “Machine Intelligence Quotient”; in the introduction to his article Zadeh
wrote: “In retrospect, the year 1990 may well be viewed as the beginning of a new trend
in the design of household appliances, consumer electronics, cameras, and other types of
widely used consumer products. the trend in question relates to a marked increase in what
might be called the Machine Intelligence Quotient (MIQ) of such products compared to
what it was before 1990. Today, we have microwave ovens and washing machines that can
figure out on their own what settings to use to perform their task optimally; cameras that
come close to professional photographers in picture-taking ability; and many other prod-
ucts that manifest an impressive capability to reason, make intelligent decisions, and learn
from experience.”[2]
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1) computational adaptivity, 2) computational fault tolerance, 3) speed approaching
human-like turnaround and 4) error rates that approximate human performance.” [1]

The adjective “computational” was intended to refer to subsymbolic problem rep-
resentation, knowledge aggregation and information processing. The concept “com-
putational intelligence” is, however, only seductive as long as the concept of intelli-
gence is no better defined that it currently is, pointed out Bezdek, and he was backed
up in this in January 1995 by Hans Jürgen Zimmermann, who as the editor of the
journal Fuzzy Sets and Systems at that time, foresaw in an editorial that the devel-
opment of systems combining fuzzy concepts with artificial neural networks and
genetic and evolutionary algorithms would continue in the future.

Therefore Zimmermann deliberated about a name for the common field of re-
search, which would then also become the subtitle of Fuzzy Sets and Systems: “Soft
computing, biological computing and computational intelligence have been sug-
gested so far.” These concepts seemed to be attractive in different ways and also
varied with respect to their expressive power. He suggested calling the field – and
thus also the new subtitle of the journal – “soft computing and intelligence,” since
the other concepts seemed to place too much emphasis on “computing,” “which is
certainly not appropriate at least for certain areas of fuzzy set theory.” The name
“soft computing and intelligence” would be better defined than “artificial intel-
ligence,” but both have in common the word “intelligence,” which Zimmermann
found defined in Random House Dictionary as follows: “Capacity for reasoning,
understanding and for similar forms of mental activity.” This was exactly what the
editors of the journal Fuzzy Sets and Systems had considered to be central to fuzzy
set theory in the first issue.[8] Thus since the first issue of 1995 Fuzzy Sets and Sys-
tems has appeared with the subtitle International Journal for Soft Computing and
Intelligence (Figure 0.1).

Fig. 0.1 The volumes 68 (1994) and 69 (1995) of the journal Fuzzy Sets and Systems; since
1995 the subtitle has been International Journal for Soft Computing and Intelligence.



VIII Introductory Foreword

During the 1990s there was a movement to combine the two concepts of soft
computing and (computational) intelligence, and during this decade congresses and
conferences took place in the USA, Japan, and Europe in which representatives from
these disciplines came together. Since then, there has been close interdisciplinary
cooperation and communication under the generic concepts of “soft computing”
and “computational intelligence.”

In addition, Zadeh’s initial work on “computing with words” and on the “compu-
tational theory of perceptions” finally opened the doors of “fuzzy thinking” to the
“artificial intelligence” research field in the years after 2000, following the publi-
cation of his article “A New Direction in AI: Toward a Computational Theory of
Perceptions” in the AI Magazine in the spring of 2001. [3]

In contrast, up to now there have been very few scholarly works concerned with
the theory of fuzzy sets and systems in the humanities, i.e., in philosophy, sociol-
ogy, economics, financial research, information and communication sciences, etc.
There have however, been some initial indications that the theory of fuzzy sets and
systems is making inroads into the humanities and social sciences, as Zadeh already
expected in the late 1960s: “What we still lack, and lack rather acutely, are meth-
ods for dealing with systems which are too complex or too ill-defined to admit of
precise analysis. Such systems pervade life sciences, social sciences, philosophy,
economics, psychology and many other ‘soft’ fields.” [4], [5]

In 1994, Zadeh was asked in an interview with the newspaper Azerbaijan Inter-
national, “How did you think Fuzzy Logic would be used at first?” He answered: In
many, many fields. I expected people in the social sciences – economics, psychol-
ogy, philosophy, linguistics, politics, sociology, religion and numerous other areas
to pick up on it. It’s been somewhat of a mystery to me why even to this day, so few
social scientists have discovered how useful it could be. Instead, Fuzzy Logic was
first embraced by engineers and used in industrial process controls and in “smart”
consumer products such as hand-held camcorders that cancel out jittering and mi-
crowaves that cook your food perfectly at the touch of a single button. I didn’t expect
it to play out this way back in 1965.”[6]

Today, I think that the theory of fuzzy sets and systems is a normal scientific
theory in the field of the exact sciences and engineering, and that it is well on its
way to becoming normal in the soft sciences as well. In 2007 and 2008 it was my
aim to collect the views of numerous scholars in different parts of the world who
are involved in various research projects concerning fuzziness in science, technol-
ogy, economic systems, social sciences, logics, and philosophy. It was my intent
in this volume to demonstrate that there are many different views of the theory of
fuzzy sets and systems and of their interpretation and applications in diverse areas
of our cultural and social life. I hope that the present volume fulfills these objec-
tives. An overview consisting of basic information on the contents of the individual
contributions is presented in the list of abstracts that follows this foreword.



Introductory Foreword IX

Acknowledgments

My first thanks go to Lotfi A. Zadeh (Berkeley), the founder of the theory of fuzzy
sets and systems, who has enthusiastically supported my project on fuzzy sets and
systems in the humanities in recent years.

Most sincere thanks go to the scientific committees of the IFSA-, FUZZ-IEEE-,
EUSFLAT-, and NAFIPS-Conferences in the last five years. I am grateful for many
opportunities since 2005 to organize special sessions on the history, present state,
and future of the theory of fuzzy sets and systems, soft computing, and computa-
tional intelligence, in their philosophical, cultural, and humanistic aspects. I would
also like to extend my thanks to audiences at these special sessions; without so
many interested researchers it would not have been possible to start my program of
addressing “new aspects” of scientific research in the so-called “soft sciences.”

I would like to thank Enric Trillas (Mieres) for his co-chairship of the newly
founded EUSFLAT Working Group “Humanities” (2007) and his generous help in
many regards. Special thanks go to him as an emeritus researcher and to Luis Mag-
dalenas, (Mieres) as the general director of the European Centre of Soft Computing
in Mieres, Asturias, for giving me the opportunity to stay at the center for two weeks
in January 2008.

I would like to thank Jeremy Bradley (Vienna), Eyke Hüllermeier (Marburg),
Frank Klawonn (Braunschweig/Wolfenbüttel), Julia Limberg (Vienna), Andreas
Nürnberger (Magdeburg), Thomas Runkler (Munich), and Christian Schuh (Vienna)
for having made it possible to realize the Vienna Spring Fuzzy Workshop in March
2007.

I would like to thank Elisabeth Rakus-Anderson (Karlskrona), Rainer Palm (Mu-
nich and Örebro), and Dimiter Driankov (Örebro) in Sweden and Tero Joronen
(Tampere), Jorma Mattila (Lappeenranta), Vesa Niskanen (Helsinki), Hannu Nurmi
(Turku), Esko Turunen (Tampere), and Jan von Plato (Helsinki) in Finland for their
support and help in realizing my “Fenno-Scandian tour” (as Hannu Nurmi called it)
in February and March 2008.

I would like to thank Valentina Bǎlaş (Arad) and Annamaria R. Varkonyi Kocy
(Budapest) for opportunities to attend summer schools and conferences and to visit
very interesting places in Romania and Hungary during the past four years. I would
like to thank Javier Montero (Madrid), Joao Paulo B. Carvalho (Lisbon), and Susana
Vieira (Lisbon) for their invitations to come to Madrid and Lisbon in 2008 as well
as for their subsequent assistance.

My thanks go to Janusz Kacprzyk (Warsaw), Witold Pedrycz (Edmonton), Fer-
nando Gomide (Campinas), Zeungnam Bien (Daejeon), and Kaoru Hirota (Tokyo)
for their support in the establishment of the two IFSA special interest groups, “His-
tory” and “Medicine” in the year 2004. I would also like to thank Christian Schuh
(Vienna) for chairing the IFSA special interest group “Medicine” since that time.

All of these people encouraged me to continue my research on the theory of fuzzy
sets and systems from a historical and philosophical perspective.



X Introductory Foreword

Sincere thanks go to all of the authors who have contributed to this volume for
their willingness and patience during the months (more than a year) of preparation
of this book and I thank Prof. Heinrich Rommelfanger (Frankfurt) for his preface.

I am very grateful to the Springer Verlag (Heidelberg) and in particular again to
Thomas Ditzinger (Heidelberg) for helping this edition find its way onto the pub-
lisher’s list; likewise to Janusz Kacprzyk (Warsaw), who accepted the book into the
series Studies in Fuzziness and Soft Computing.

A very special thank you goes to Ecaterina Dodu (Vienna) who converted many
of the manuscripts from Word into LaTeX and then corrected the resulting files
again and created the present layout. Again I would like to thank Jeremy Bradley
for his help in preparing this book.

Finally, I would like to thank Julia Limberg (Vienna) for her support during the
last two years.

Vienna, Austria Rudolf Seising
November 2008



References

1. Bezdek, J.C.: What is computational intelligence? In: Zurada, J.M., Marks II, R.J.,
Robinson, C.J. (eds.) Computational Intelligence Imitating Life, pp. 1–12. IEEE Press,
Los Alamitos (1994)

2. Zadeh, L.A.: Fuzzy Logic, Neural Networks, and Soft Computing. Communications of
the ACM 37(3), 77–84 (1994)

3. Zadeh, L.A.: A New Direction in AI. Toward a Computational Theory of Perceptions.
AI-Magazine 22(1), 73–84 (2001)

4. Zadeh, L.A.: Toward a Theory of Fuzzy Systems. Electronic Research Laboratory, Col-
lege of Engineering, University of California, Berkeley 94720, Report No. ERL-69-2
(June 1969)

5. Zadeh, L.A.: Towards a Theory of Fuzzy Systems. In: Kalman, R.E., DeClaris, N. (eds.)
Aspects of Network and System Theory, pp. 469–490. Holt, Rinehart and Winston, New
York (1971)

6. Blair, B.: Interview with Lotfi Zadeh, Creator of Fuzzy Logic, Azerbaijan International,
Winter 1994 (2.4) (1994), http://www.azer.com/aiweb/categories/magazine/
24_folder/24_articles/24_fuzzylogic.html (accessed on May 2, 2003, 3:51
P.M.)

7. Zadeh, L.A.: Foreword. Applied Soft Computing 1(1), 1–2 (2001)
8. Zimmermann, H.J.: Editorial. Fuzzy Sets and Systems 69(1), S. 1–2 (1995)



Abstracts

Quo vadis Fuzzy Systems?
An Advocacy of Boosting the Advantages of the Fuzzy Set Theory
Heinrich J. Rommelfanger

In this preface the author presents a critical essay on the development of fuzzy systems. In
order to ensure that fuzzy systems become popular in large sections of the population he
recommends that the essential advantage of fuzzy models be stressed: The fuzzy set the-
ory makes it possible to describe vague data and linguistic words in mathematical terms and
therefore this concept can span the gap between classical mathematical models and real world
problems.

Scientific Theories and the Computational Theory of Perceptions
Rudolf Seising

“A picture is a model of reality,” “picture is a fact”, and “We picture facts to ourselves,”
asserted Ludwig Wittgenstein in his Tractatus logico-philosophicus, thereby confirming the
influence on his thinking – which he himself acknowledged – of Heinrich Hertz’s Principles
of Mechanics. In this contribution the “picture” concept, which has a long tradition in philos-
ophy, serves as the starting point of an interpretation of the relationship between real systems
and theoretical structures of modern science. In addition, the approach dubbed as the “struc-
turalist” approach of scientific theories in the 20th century will be extended and enhanced by
the concept of “fuzzy sets.” This “fuzzy structuralist” view of scientific theories enables us to
combine philosophy of science with the methodologies of Computing with Words (CW) and
the Computational theory of Perceptions (CTP). We present case studies of the “fuzzy struc-
turalist view” concerning medical diagnosis, quantum mechanics, and evolutionary biology.

Fuzzy Systems and Scientific Method – Meta-Level Reflections and Prospects
Vesa Niskanen

Despite the great success of fuzzy systems in various applications, we still need further stud-
ies which consider their problems from the standpoint of the philosophy of science. Hence,
within fuzzy systems research we should devote more attention to such themes as the role
of patterns of thought and research paradigms, concept analysis, hypothesis and theory for-
mation, explanation, prediction and argumentation. Some typical problems in this area are
considered in this contribution.
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Fuzzy Logic and Science
Javier Montero

In this paper we point out that experimental science is a part of the human adventure to gain
knowledge built upon classical binary logic. Great advances have been made under two key
premises: observation for objectivity and logic for consistency. But science has focused its
main effort on observation and experimentation, while not much attention has been paid to
the underlying logic, which is in charge of enabling us to design experiments and understand
observations. Moreover, we also point out the existence of a humanization process within sci-
ence, in which human beings themselves are being introduced into the scientific model – first
as an inevitable observer, then as a key actor in world affairs, and finally as a main objective
(even intergenerational through environmental concerns). This growing role of human beings
in science implies in our opinion a search for alternative logics in order to ensure appropriate
consistency. To become the logic of a new science, such a logic should be related to natural
language and other standard human models for describing reality, managing information, and
producing implementable results in a society ruled by social and economic arguments. In this
context, fuzzy logic should play a key role in the next stage of the human adventure aimed at
gaining knowledge.

Fuzzy Logic, Concepts and Semantic Transformers
Stephan van der Waart van Gulik

Most fuzzy predicates in natural language own a complex concept. Informally speaking, a
complex concept of a predicate π is a set of associated predicates, each of which owns a
significant level of semantic relevance for π. For example, when judging the applicability of
the predicate Bird to some given creature, we usually take into account the applicability of
several relevant predicates associated with Bird, e.g. Beak, Feathers, Fly etc. The standard se-
mantic representation of predicates by means of gradual membership functions in fuzzy logic
does not capture the semantic function of complex concepts. I will present a formalism based
on selection functions that represents complex concepts. It can be implemented in a large set
of fuzzy logics. In order to illustrate its use, I will sketch several new applications, including
several modified fuzzy logics that are able to deal with a new kind of hedges called semantic
transformers. Semantic transformers do not simply intensify or de-intensify the applicabil-
ity of a predicate, but really transform its meaning. People often transform the meaning of a
predicate used in an atomic formula in order to increase the truth-degree of the formula. A
good example of a semantic transformer is the phrase technically speaking as used in sen-
tences like ‘Only Technically speaking, Nixon can be called a Quaker.’

Phenomenology as a Criterion for Formalism Choice
Dmitri Iourinski

There have been many attempts to use non-Boolean logics to develop an inferential apparatus
for the Dempster-Shafer theory. Most such formalisms use different flavors of modal logics.
This choice was popular due to different possible interpretations of the meaning of modal
connectives. In the current paper we present an alternative approach with the semantics of
Dempster-Shafer frames of discernment as a starting point. We demonstrate how Brouwer’s
intuitionist view gives an adequate understanding of the nature of the objects within the
Dempster-Shafer universe. We also show how the phenomenological choice leads one towards
adopting a superintuitionistic rather than a modal logic as a formalism for inference.
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Computational Theory of Meaning Articulation:
A Human Estimation Approach to Fuzzy Arithmetic
Tero Joronen

This article introduces a very simple computational theory of perceptions that resembles hu-
man estimation. The latest developments in soft computing are oriented towards the Compu-
tational Theory of Perceptions. This study approaches the problem of perceptions from the
perspective of a pictorial language in connection with fuzzy logic and introduces the com-
putational theory behind the description language. The applications seek to emulate simple
human estimation and exploit traditional arithmetic for actual computation.

Retrospective Look at the Foundational and Philosophical Issues of Bandler & Kohout’s
paper “Fuzzy Power Sets and Implication Operators after 29 years”
Ladislav Kohout

The development of new concepts in fuzzy set theory is an interesting story. In 1965 Zadeh
created fuzzy set theory by replacing the two-valued characteristic function ψ of crisp sets
with the many-valued fuzzy membership function μ, which takes its values from the interval
[ 0, 1]. The set inclusion A⊆ B, on the other hand, still remained crisp in Zadeh’s paper. The
situation changed in 1978 with Bandler and Kohout’s paper entitled Fuzzy relational prod-
ucts and fuzzy implication operators, in which they provided the technical tools for defining
a wide variety of fuzzy subsetness predicates ⊆ by means of implication operators and de-
fined graded fuzzy power sets. The abbreviated version entitled Fuzzy power sets and fuzzy
implication operators appeared subsequently in Fuzzy Sets and Systems and has been fre-
quently quoted in the literature. Other sections of the 1978 paper defining fuzzy BK-products
of relations were published as separate papers that are also often quoted.
In the first part of this chapter we briefly survey Bandler and Kohout’s paper, pointing out
important interrelationships of various concepts first introduced there. This is followed in the
second part by discussion of subsequent related work by the fuzzy community concerning
the concepts of set inclusion, subsetness indicators, power sets and BK-products of relations.

Probability and Fuzziness – Echoes from 30 Years Back
Hannu Nurmi

Do we really need the theory of fuzzy sets and systems? After all, probability theory is a
widely applied and universally recognized field that apparently studies similar problems, viz.
related to impreciseness, vagueness, and ambiguity. My paper written about 30 years ago
tried to suggest that there is a legitimate “niche” for the theory of fuzzy systems. Between
1977 and 2007 many important developments have taken place both in the theory of fuzzy
systems, general modeling devices, and in the fields of application. This paper tries to find
out whether these developments call for a revision of the earlier views.

On a Model for the Meaning of Predicates
(A Naive Approach to the Genesis of Fuzzy Sets)
Enric Trillas

The meaning, or use, of a predicate P on a set X is considered in the case in which it can
be described by means of the relational statements “x is as equally P as y" and “x is less P
than y," for x,y in X . Once a general enough definition of an L−degree for P is introduced,
and the collective originated on X by the collective noun P is represented by an L− set, the
algebras of L− sets are studied. Synonyms and antonyms of P are also considered, as well as
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the concepts of qualified, modified, and constrained predicates. Finally, some comments on
the peculiar behavior shown by the predicate probable are made.

Fuzzy Logic as a Theory of Vagueness: 15 Conceptual Questions
Jeremy Bradley

Even though it has celebrated innumerable successes in the field of engineering, the so-called
fuzzy approach has not established itself among philosophers as a universally accepted theory
of vagueness. Various issues related to its mathematical and philosophical foundations have
been raised as problems. This chapter reviews these points and compares fuzzy logic with
other theories that have found wider acceptance in the context of vagueness. Key questions
are whether these issues are relevant, solvable, and/or exclusive to fuzzy logic and whether
anything can be done to address them more effectively in the future.

Dialogue Games as Foundation of Fuzzy Logics
Christian G. Fermüller

The adequate formalization of correct reasoning with vague notions and propositions is an
important challenge in logic, computer science, and philosophy. A dialogue game based ap-
proach to the problem of providing a deeper semantic foundation for t-norm based fuzzy
logics is explained and explored. In particular, various versions, extensions, and alternatives
to Robin Giles’s dialogue and betting game for Lukasiewicz logic are re-visited and put in
the context of other foundational research in logic. It emerges that dialogue games cover a
wide range of topics relevant to approximate reasoning.

Connecting a Tenable Mathematical Theory to Models of Fuzzy Phenomena
Esko Turunen

Fuzzy logic appears different from various scientific viewpoints: from the standpoint of a
philosopher or applied computer scientist, fuzzy logic is a contrast to binary logic and crisp-
ness, while a mathematician examines fuzzy logic from a purely mathematical perspective:
what are the mathematical principles and algebraic structures behind fuzzy logic? Thus, for a
mathematician fuzzy logic is not really fuzzy; indeed, it is an exact logic of inexact concepts
and phenomena. It is a self-evident fact that fuzzy logic should be studied from all possible
scientific points of view. The starting point in this paper is that of mathematicians. We be-
gin by locating mathematical fuzzy logic on the map of mathematics and recall some basic
definitions and results on many-valued logic. We show that many parts of fuzzy reasoning
can be reduced to well-defined many-valued logic. In particular, Lukasiewicz-Pavelka style
fuzzy logic and many-valued similarity play a crucial role in typical fuzzy if-then inference
systems; this is shown by real world applications of the theory.

Many-Valuation, Modality, and Fuzziness
Jorma Mattila

When fuzzy sets are based on the concept of set, there has been motivation to consider mem-
bership functions as somehow necessary in presenting fuzzy sets. Connections between fuzzi-
ness and modality are considered. Many-valued logic serves as one link between modality and
fuzziness. In particular, it plays this role in Łukasiewicz’ 3-valued logic. Modal properties of
Łukasiewicz’s 3-valued logic is considered and Bochvar and Kleene’s 3-valued logics are
briefly considered from the modal point of view. Some ideas for many-valued modal logics
are considered. One of them is based on Łukasiewicz’s logic, others are based on modifier
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logic. A general condition for modal operators in many-valued logics is introduced. Some
basic modifiers for membership functions are considered as modal-like operators. An idea
about fuzziness without membership functions is introduced. It is based on modifiers. This
establishes a connection to computing with words.

Fuzzy Thinking in Sociology
Lars Winter and Thomas Kron

Social facts are seldom precise „hard facts”, but mostly vague „soft facts.” Therefore fuzzy
thinking seems to be an appropriate logic that is capable of reflecting the social realm. We
argue that fuzzy thinking leads to a more „realistic” understanding of how the social realm
is organized. Two central theoretical approaches will be discussed to show how fuzzy think-
ing contributes to the progress of theorizing social processes. First, we show that fuzzy logic
contributes to two central problems of social action theory: modeling the so-called definition
of the situation and modeling expectations while taking into account social actor’s ambiguity.
Second, we discuss Luhmannian social systems theory as another example of bivalent theo-
rizing in sociology. Fuzzy thinking in social systems theory leads to two important theoretical
aspects: vagueness of coding and vagueness of affiliation. Finally, we discuss the use of fuzzy
thinking in modernization theory and in macrosociological research.

Fuzzy Set Theory and Philosophical Foundations of Medicine
Julia Limberg and Rudolf Seising

Dealing with the concepts of health, illness, and disease encompasses dealing with fuzziness.
We will demonstrate that states designated by these concepts do not only exist or not exist.
The medical philosopher and physician Sadegh-Zadeh introduced the notions of fuzzy health,
fuzzy illness, and fuzzy disease. A closer look will be taken at the concept of fuzzy disease.
Because there are different ways of interpreting the concept of disease – among others, those
based on linguistic and social backgrounds – Sadegh Zadeh introduced potential candidates:
complex “human conditions.” This notion can be taken as a pre-stage of decision support in
medical diagnosis. As a demonstration, a computer program has been implemented and its
contents are summarized. The second part of the contribution deals with research on genes.
This subject has become a topic of increasing importance. But a real definition of a so-called
gene is rather complex. In addition, we argue for the development of a fuzzy definition of a
gene and fuzzy implementations on genes. We will start with Kazem Sadegh-Zadehs theory
about fuzzy genomes, make a detour to Bart Kosko’s Fuzzy Hypercube and then continue
with fuzzy-theoretical approaches to genes.

Fuzzy Preferences as a Convenient Tool in Group Decision Making
and a Remedy for Voting Paradoxes
Janusz Kacprzyk, Sławomir Zadrożny, Hannu Nurmi and Mario Fedrizzi

We give an overview of how fuzzy logic can be used to formulate the following problem of
group decision making and voting: we have a group of people and their individual prefer-
ence relations over a set of options (alternatives, variants, . . . ). We look for a solution, i.e.,
an alternative or a set of alternatives from among the feasible ones, which best reflects the
preferences of the group as a whole. We will briefly outline some basic inconsistencies and
negative results of group decisions and social choice, and show how they can be alleviated
mainly by introducing fuzzy preference relations to derive new solution concepts. Then, we
will show how fuzzy preferences can help alleviate some voting paradoxes. An extensive list
of literature is provided.
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What We Are Learning from the Neurosciences about Decision-Making:
A Quest for Fuzzy Set Technology
Armando Rocha, Fernando Gomide and Witold Pedrycz

Prospect theory has been developed as an alternative to expected utility theory as a model
of decision-making in economics. But data provided by the neurosciences are calling into
question both theories, by disclosing the existence of distinct neural circuits for reward eval-
uation; risk assessment, and approaching/avoidance decision. The present chapter introduces
a neurodynamic decision making model based on this knowledge that is able to solve, as
prospect theory does, the paradoxes that have called expected utility theory into question.
Besides this, learning allows neurodynamic decision making to adapt to new environmental
conditions to support survival. Currently, learning is not addressed by either expected utility
theory or prospect theory.

Postmodernism and Control Engineering
Valentina E. Bălaş and Marius M. Bălaş

This chapter discusses the relationship between modernism and postmodernism as a reaction
to modernism, from the point of view of control engineering. It draws a parallel between
intelligent control and new trends in intellectual thought. It also addresses the relationship
between postmodernism and soft computing, namely, fuzzy set theory. A benchmark study
concerning the switching controllers issue (an occasional instability that may appear when
two perfectly stable controllers are switched) illustrates the need for heuristic solutions and
the efficiency of the qualitative reasoning supported by the phase trajectory of the error.

Fuzzy Mechanisms for Qualitative Causal Relations
Joao Paulo Carvalho and José Alberto B. Tomé

When approaching causality, classical fuzzy systems do not allow the implementation of
qualitative causal relations as defined in causal maps. Fuzzy Causal Maps (FCM) have been
around for a long time, but are implemented using mechanisms closer to neural networks
that cannot be mixed with classic fuzzy rule based systems. This work presents a method to
implement Fuzzy Causal Relations that can be used in Rule Based Fuzzy Cognitive Maps
(RB-FCM). The procedure is based on a new fuzzy operation that simulates the "accumula-
tive" property associated with causal relations – the Fuzzy Carry Accumulation (FCA). The
FCA allows great flexibility in the addition and removal of concepts and links among con-
cepts while maintaining compatibility with classic fuzzy operations.

On the Relation Between Fuzzy and Quantum Logic
Ingo Schmitt, Andreas Nürnberger, Sebastian Lehrack

Fuzzy logic is a well-established formalism in computer science that is strongly influenced
by the work of Zadeh. It provides us a means to deal with uncertainty. The logic is based on
t-norms and t-conorms for conjunction and disjunction on membership values of fuzzy sets.
Quantum logic was developed in the context of quantum mechanics. In contrast to fuzzy logic,
the logic is based not on membership values, but on vector subspaces identified by projectors.
The lattice of all projectors provides us a special form of conjunction and disjunction.
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Interestingly, there are relations between both theories. The interaction, called quantum mea-
surement, of a projector with a normalized vector produces a value which can be directly
interpreted as a fuzzy membership value. This paper shows that under some circumstances
the conjunction of projectors directly corresponds to the algebraic product in fuzzy logic.
However, in contrast to fuzzy logic which uses just membership values, we take the produc-
ing projectors into consideration. As result, we are able to overcome the problem of idempo-
tence. Furthermore, if we restrict the projectors to be mutually commuting, we obtain a logic
obeying the rules of Boolean algebra. Thus, quantum logic gives us more insights into the
semantics behind the fuzzy algebraic product and algebraic sum.

Fuzzy Cluster Analysis from the Viewpoint of Robust Statistics
Frank Klawonn and Frank Höppner

Fuzzy cluster analysis generates a fuzzy partition of a data set instead of a crisp partition
where each point must be assigned uniquely to a cluster. In this way, it can be expressed
that certain data points lie between clusters and distortion of the clustering result by such
data points can also be avoided. Robust statistics is concerned with data analysis techniques
which can cope with – at least a limited fraction – of outliers, even extreme outliers. Fuzzy
cluster analysis shares this idea with robust statistics. However, fuzzy cluster analysis devel-
oped its own strategies in the beginning and connections with robust data statistics were only
made later on. Especially so-called M-estimators from robust statistics are closely related to
fuzzy cluster analysis. Although this connection has been stated in a few papers, it is widely
ignored by many others. This paper provides an overview of the principles of fuzzy cluster
analysis, relates them to robust statistics, and shows how fuzzy cluster analysis can be im-
proved in this way.

On the Usefulness of Fuzzy Sets in Data Mining
Eyke Hüllermeier

Topics in data mining and knowledge discovery have recently received increasing attention in
the fuzzy sets community, and various extensions of data mining methods have already been
developed on the basis of fuzzy set theory. Corresponding fuzzy data mining methods exhibit
some potential advantages over conventional methods. In particular, since many patterns of
interest are inherently vague, fuzzy approaches allow for modeling them in a more adequate
way and thus enable the discovery of patterns that would otherwise remain hidden. This chap-
ter addresses the question of whether or not fuzzy methods are useful in data mining and, in
this regard, highlights the aforementioned advantages of fuzzy approaches in the context of
exemplary data mining methods.

The Uncertainty Associated with a Type-2 Fuzzy Set
Sarah Greenfield and Robert John

Type-2 fuzzy sets offer the opportunity to capture higher orders of uncertainty. However, re-
searchers have not explored fully the nature of this uncertainty and how it can be quantified.
In this paper we place type-2 fuzzy sets in the context of logic and model them, for the first
time, as a collection of meta-statements. The paper provides a full discussion on this new
perspective. We also propose new approaches to measuring the uncertainty represented by a
type-2 fuzzy set.
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Fuzziness – Representation of Dynamic Changes by Ordered Fuzzy Numbers
Witold Kosiński, Piotr Prokopowicz and Dariusz Kacprzak

In our daily life there are many cases that observations of objects in a population are fuzzy, in-
accurate. The paper brings a discussion about the source of that inaccuracy and demonstrates
that the essential reason of the lack of precision is changeability, and the more changeability,
i.e. more dynamics, can be experienced the more inaccurate, more fuzzy judges can be. The
space of ordered fuzzy numbers (OFN), the new model of fuzzy numbers that make possi-
ble to deal with fuzzy inputs quantitatively, exactly in the same way as with real numbers,
is shortly presented. The new model possesses a set of properties which are in accordance
with the influence of changeability on the increase of the inaccuracy in observations of the
environment. The use of OFN is getting rid of the main problem in a classical fuzzy numbers
- an unbounded increase in inaccuracies with next calculations. Moreover, new interpretation
can be treated as an extend of classic proposals so there is no need to abandon existing ideas
to deal with the new model of fuzzy numbers.

Meta Sets - Another Approach to Fuzziness
Bartlomiej Starosta and Witold Kosiński

We have developed a new concept of a fuzzy set with fuzzy membership relation. Its defini-
tion involves simple set-theoretic notions, like binary trees as opposed to real numbers as in
the case of a fuzzy set. The definition of a meta set is similar to the definition of a fuzzy set,
however it is more general, in particular elements of a meta set (partial elements too) are also
meta sets themselves. We have defined basic set-theoretic relations, like the membership and
the equality, as well as their fuzzy versions. We have also defined set-theoretical operations
and we have proved that they satisfy the Boolean algebra axioms. The meta sets language
is similar to the language of the crisp set theory, however it involves a countable number of
relational operation symbols to express different grades of membership or partial equality. A
meta set may be viewed as a crisp set in a number of ways by means of the so called interpre-
tations. The crisp sets which may be obtained from the meta set in this way, may induce some
properties of the meta set, in particular they are used to define basic set-theoretic relations.

Regression Model Based Fuzzy Random Variables
Junzo Watada and Shuming Wang

In real usages of regression models, we have encountered many cases where various statistical
data are linguistically imprecise or vague. Under the condi tion of such coexistence of random
and fuzzy information, we cannot characterize the data only by random variables. Therefore,
fuzzy random variables should be in troduced when there are such regression problems. The
objective of this paper is to build a regression model based on fuzzy random variables. First,
a general regression model for fuzzy random data is proposed. After that, using expected
value operators of fuzzy random variables, an expected regression model is established for its
practical usage. The expected regression model

can be solved by converting it to a linear programming problem. Finally, an illustrative
example is provided for the practical usage of the expected regression model.
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Optimal Workers’ Placement in an Industrial Environment
Shamshul Bahar Yaakobm and Junzo Watada

This paper deals with a problem concerning the evaluation and placement of workers in an
industrial environment; an effect of workers’ relationship to their placement is also included.
An evaluation of the suitability of workers on the basis of various evaluation criteria is an
important factor for decision makers in the selection of proper candidates for jobs from avail-
able human resources . For this type of problem, an analysis using the fuzzy number approach
promises to be potentially effective. In order to make a more convincing and accurate deci-
sion, the relationship between jobs is included in the workers’ assignment in an industrial
environment. The fuzzy suitability evaluation is performed by means of aggregating the de-
cision makers’ fuzzy assessments. Examples of typical applications are also presented: the
results demonstrate that the workers’ relationships are an important factor and the results
show that our method can provide a more effective decision making process.
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An Advocacy of Boosting the Advantages of the Fuzzy Set
Theory

Heinrich J. Rommelfanger

Between 1950-1980 the researchers and teachers in business administration real-
ized that mathematical models are essential for making better decisions and getting
new knowledge about the business cycles. The decision and optimization models,
developed during the second world war, were the starting point of a multiplicity
of mathematical models for various applications that were summarized under the
term Operations Research. The delight in developing Operations Research mod-
els was clouded when empirical studies revealed that only few of the methods and
algorithms are used for supporting real world problems. In their famous book Be-
havioral theory of the firm R.M. Cyert and J.G. March (1963) [2] discussed in detail
that the normative decision theory in the sense of von Neumann and Morgenstern
[14] (1953) is hardly used in practice to solve real-life problems. This scientific dis-
coveries were later underpinned by empirical studies of Kivijärvi, Korhonen and
Wallenius [9] (1986), Lilien [11] (1987), Tingley [26] (1987), Meyer von Selhausen
[12] (1989), which came to the result that only few operations research methods
are used in practice and that a lot of applications proposed in OR literature are not
transformed into practical applications. These empirical surveys prove that linear
programming models are the only operation research methods which are applied on
large scale in practical life. Nevertheless a strong discrepancy between the applica-
tion in literature and the practical use can be acknowledged. Accordingly, Fandel,
Francois and Gulatz (1994) [3] proved in an empirical study that only 13 out of 167
production programming systems were based on the LP-approach.

This kind of disregarding scientific results is mainly based on the fact that the
mapping of practical problems by means of mathematical optimization systems re-
quires immense input data in order to describe the coefficients and right sides of the
model adequately by real numbers. However some data and especially future orien-
tated data can only be described ambiguously. Therefore, many decision makers are
for good reason not willing to collect the necessary information and to model the
problems in advance, while subsequently they will only apply a model which does
not adequately reflect the real problem. Since vague data is condensed to “average
data” it could happen that one would get a solution which may be perfect for the
model, but does not fit for the real problem. Attempts to model vague right hand
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sides or coefficients stochastically quite often fail, because the necessary input data
are not available and the operations for solving stochastic optimization models are
not convincing see [16] (1991).

In 1965 Lotfi A. Zadeh developed the theory of fuzzy sets and thus offered a
practical way to model vague data [29] (1965). Instead of replacing vague data by
“average data”, they are modeled by fuzzy numbers and fuzzy intervals, as precisely
as a decision maker will be able to explain and describe them. Therefore, an impor-
tant advantage of fuzzy systems is the fact that they allow an adequate mapping of
real problems. However, not many researchers on Operations Research took up this
new theory for developing more realistic models and algorithms.

As before, most of the scientists did not care about the gap between mathemati-
cal models and real world conditions. Nevertheless, some researchers from all over
the world recognized the essential advantage of the fuzzy set theory. They realized
that this concept allows describing vague data or linguistic words by mathematical
terms. Moreover, the restrictions of the two-dimensional logic were lifted. In many
fields, a lot of real world problems were modeled in form of fuzzy systems, see
Slowinski [24] (1998) and FSS, especially in the time period 1984-1995. These new
models reflected the real state much more realistic then the previous deterministic or
stochastic systems, but usually the well known algorithms for calculating solutions
were no longer valid. Therefore, new solution procedures have been developed. In
spite of all research work the fuzzy systems were not accepted in large sections of
teaching and research. Even so many scientists had shown an interest in the new
fuzzy models, they did not really deal with them. As a result practicians did not get
any information about these new tools.

New hopes were raised in the period 1987-1993, when newspapers and maga-
zine reported on fuzzy control and their applications. Starting from the ideas of S.
Assilian, E.H. Mamdani a lot of industrial applications of fuzzy logic control were
developed. The first technical realization was an automatically working control sys-
tem for cement kilns that was developed by Mamdani [1] (1974), Ostergaard and
Jensen for the company E. L. Smidth & Co., Denmark, see [7] (1979), [8] (1979),
[10] (1981). The fuzzy control systems have become much more public since in
1985 in Japan a profusion of these rule based control systems was developed for
different applications, see [25] (1985), Hall and Kandel [5] (1986) and Hirota [6]
(1989). As a positive effect the term fuzzy became a synonym for technological
progress in Japan. It was the merit of Hans Jürgen Zimmermann and his collabora-
tors that since 1992 these fuzzy control systems have become popular in Germany
as well as in Western Europe. In numerous articles in newspapers and magazines
they praised the advantages of this new technology and indicated the technologi-
cal lead of the Japanese economy. The pleasing result was that within a few years
fuzzy control was accepted and used in the European Industry too. However, there
was an essential difference to South East Asia. The new technology was not touted
under the name fuzzy but with the reference electronically controlled. One reason
for this marketing decision may be the fact that in Middle Europe the term fuzzy
was strongly associated with the western hero Al “Fuzzy” St. John (1893-1963),
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who was well-known in Germany from the western film series Western von gestern,
which was transmitted by the ZDF in the time period 1978-1986.

The next approach to make fuzzy systems more popular was started at the end of
last millennium under the name Soft Computing that was later changed in Comput-
ing by words. This is undoubtedly an attractive slogan. But the papers and lectures
that had so far been presented under this generic term could not fulfill the great
expectations. Merely the peripheral parts of the presented models, where at first,
words are transformed in fuzzy sets and retransformed at the end, were convinc-
ing. But the main part, the mapping of fuzzy vectors in fuzzy vectors, was normally
done very simply and did not convincingly reflect the complex human-centric com-
puting. Here, the use of fuzzy relations was theoretically possible of course, but in
practice researchers were not yet able to present suitable relations. Unfortunately,
some plenary lessons on the Fuzzy World Congress 2007 in Cancun, Mexico were
good examples for supporting this thesis. Many participants expressed their disap-
pointment about these contributions that were not appropriate to advance the IFSA
community.

It was a pity that the sole successful concept, the fuzzy expert system, was not
mentioned on this conference. Already in 1992 Rommelfanger [17] (1993) had sub-
stantiated that fuzzy logic based expert rules can not only be used for controlling
technical processes but they are also helpful for supporting decision or valuation
problems. Meanwhile, a lot of fuzzy expert systems exist for supporting credit rat-
ings, auditors, suppliers, portfolio management, strategic early diagnosis, see e. g.
[18] (1999), [19] (1999), [4] (2002), [20] (2000), [13] (1996), [23] (1996), [27]
(1998), [15](2004).

Nevertheless, the essential question is, what can be done to promote fuzzy sys-
tems in order to make these concepts popular in large sections of the population. In
my opinion, we should stress the essential advantage of the fuzzy set theory. This
concept can span the gap between the classical mathematical models and the real
world problems. With the fuzzy set concept, real decision problems can be modeled
as exactly as the decision maker wants to or can perform. In doing so, the deci-
sion maker does not run the risk of choosing an alternative that provides an optimal
solution for the model, but does not match the real problem. Moreover, in many
cases additional merits of fuzzy models will be visible and should be highlighted
too. Since I am a specialist in fuzzy support systems, I want to explain the ideas in
this field. For more details see [21] (2003), [22] (2004). A disadvantageous conse-
quence of the use of fuzzy results or fuzzy probabilities in decision models is the
fact that a best alternative is not identified in all applications. But normally it is
possible to reject the majority of the alternatives because they have a worse ranking
compared with the remaining alternatives concerning the ρ- or the ε-preference. In
order to reach a ranking of the remaining alternatives additional information about
the results of these alternatives can be used.

Apart from the fact that fuzzy models offer a more realistic modeling of de-
cision situations, the proposed solution process leads to a reduction of informa-
tion costs. This circumstance is caused by the fact that additional information is
gathered in correspondence with the requirements and under consideration of cost-
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benefit-relations. It is recommended to refrain from collecting expensive additional
information a priori and to start with the information that the decision maker has or
can get with low costs. Deterministic and stochastic models require enormous infor-
mation processing in order to determine “average values”. This is the only way to
minimize the risk of applying a wrong model of the real problem. We know however
that the optimum solution of an LP-model finally depends on very few restrictions.
Therefore, it would be sufficient to determine the coefficients and right hand sides
of these decision restrictions quite exactly and leave the other data rather vague.
Especially in case of large LP-systems one could save a lot of time (for collecting
information) and the thus resulting costs.

The application of fuzzy systems combined with an interactive solution process
offers an adequate answer to the information dilemma. Instead of collecting exten-
sive data for creating a crisp model of the real problem in the first step a fuzzy system
should be modeled, using only such information, which can be achieved easily and
without high expenses. Based on the solution of this fuzzy model the decision maker
has to decide which additional information has to be collected and processed. Thus
the data representation and the solution can be improved stepwise by gathering ob-
jective orientated additional information with reference to the costbenefit relation.
Since the collecting of input data is cut back on the relevant components, the result-
ing costs can be considerably reduced.

Furthermore fuzzy models with an interactive solution algorithm provide the op-
portunity to solve mixed integer (multi-criteria) LP-problems quite easily. Compared
with classical LP-models, where integer solutions nearby the optimum solution are
often not feasible, in case of fuzzy models the right hand sides are no strong borders.
Thus fuzzy models also admit most of the integer solutions, which are nearby the
optimum solution and the decision maker can chose one of the neighbor solutions.
However, the advantage of a higher objective value has to be weighed against the
disadvantages caused by disregarding the right hand side of the restrictions.
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A Näıve Approach to the Genesis of Fuzzy Sets . . . . . . . . . 175
Enric Trillas
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.2 Primary Meaning and Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.3 Additional Comments on L-Degrees . . . . . . . . . . . . . . . . . . . . . . 181
9.4 The Meaning of a Predicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
9.5 On Synonyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.6 Qualified, and Modified, Predicates . . . . . . . . . . . . . . . . . . . . . . 186
9.7 On Negate and Antonym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.8 Constrained Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
9.9 Elementary Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
9.10 The Representation of Collectives: L-Sets . . . . . . . . . . . . . . . . . 194
9.11 The Algebras of L-Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
9.12 Some Properties of the Algebras of L-Sets . . . . . . . . . . . . . . . . 198
9.13 On the Predicate “Probable” . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
9.14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

10 Fuzzy Logic as a Theory of Vagueness: 15 Conceptual
Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Jeremy Bradley
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
10.2 Fifteen Points of Critique of Fuzzy Logic The Questions,

Analyses and Attempts to Answer Them . . . . . . . . . . . . . . . . . 208
10.2.1 Improper Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
10.2.2 Linear Ordering of Truth Values . . . . . . . . . . . . . . . . . . . 209
10.2.3 Truth Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
10.2.4 Higher Order Vagueness . . . . . . . . . . . . . . . . . . . . . . . . . . 211
10.2.5 Different Truth Functions for Connectives . . . . . . . . . . 211
10.2.6 Worries about “(Too) Many Logics” . . . . . . . . . . . . . . . 212
10.2.7 Hedging via Disjunctions . . . . . . . . . . . . . . . . . . . . . . . . . 213
10.2.8 Sacrificed Principles of Classical Logics . . . . . . . . . . . . . 215
10.2.9 Epistemic, Ontic or Pragmatic Character? . . . . . . . . . . 217
10.2.10 Surface Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
10.2.11 Penumbral Connections . . . . . . . . . . . . . . . . . . . . . . . . . 218
10.2.12 It Is Only a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
10.2.13 Relation to Natural Language . . . . . . . . . . . . . . . . . . . . 219
10.2.14 Operational Deficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 221
10.2.15 Record of Discourse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

10.3 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
10.3.1 Attitudes Differ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
10.3.2 A Question of Modeling? . . . . . . . . . . . . . . . . . . . . . . . . . 223



XXXIV Contents

10.3.3 Type-2 Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
10.3.4 A Theory of Vagueness? . . . . . . . . . . . . . . . . . . . . . . . . . . 225

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

11 Dialogue Games as Foundation of Fuzzy Logics . . . . . . . . . . 229
Christian G. Fermüller
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
11.2 Giles’s Game for �Lukasiewicz Logic . . . . . . . . . . . . . . . . . . . . . . 230
11.3 Other Connectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
11.4 Beyond �Lukasiewicz Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
11.5 Truth Comparison Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
11.6 Connections to Proof Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
11.7 Pavelka Style Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
11.8 Connections to Supervaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 240
11.9 Dialogue Games in a Wider Context . . . . . . . . . . . . . . . . . . . . . 242

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

12 Connecting a Tenable Mathematical Theory to Models
of Fuzzy Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Esko Turunen
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
12.2 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
12.3 Pavelka Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
12.4 Many-Valued Similarity and Fuzzy Inference . . . . . . . . . . . . . . 257
12.5 Applying Pavelka Logic in Fuzzy Inference . . . . . . . . . . . . . . . . 259

12.5.1 Predicting Travel Time from Lahti to Heinola . . . . . . . 259
12.5.2 Signalized Isolated Pedestrian Crossing: Fuzzy

Input - Crisp Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
12.5.3 Multi-phase Vehicle Control . . . . . . . . . . . . . . . . . . . . . . 263

12.6 Fuzzy Model for Real–Time Reservoir Operation . . . . . . . . . . 265
12.7 Defining Athlete’s Aerobic and Anaerobic Thresholds . . . . . . 266
12.8 Classification and Case Based Reasoning . . . . . . . . . . . . . . . . . 268
12.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

13 Many-Valuation, Modality, and Fuzziness . . . . . . . . . . . . . . . . 271
Jorma K. Mattila
13.1 Motivation for Modal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
13.2 On Possible Worlds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
13.3 Connections between Modal and Many-Valued Logics . . . . . . 277
13.4 Motivation for Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288



Contents XXXV

13.5 On Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
13.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

14 Fuzzy Thinking in Sociology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Lars Winter, Thomas Kron
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
14.2 “Fuzzy Fundamentals” for Social Scientists . . . . . . . . . . . . . . . 301
14.3 Action Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
14.4 Considering Fuzziness in the Study of Social Systems . . . . . . 309

14.4.1 Vagueness of Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
14.4.2 Vagueness of Affiliation . . . . . . . . . . . . . . . . . . . . . . . . . . 313

14.5 Fuzzy Thinking in Modernization Theory . . . . . . . . . . . . . . . . . 315
14.6 Fuzziness in Social Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
14.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

15 Fuzzy Set Theory and the Philosophical Foundations
of Medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Julia Limberg, Rudolf Seising
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
15.2 Motivation of Fuzzy Health, Fuzzy Illness and Fuzzy Disease 321
15.3 Fuzzy Health, Illness, and Disease . . . . . . . . . . . . . . . . . . . . . . . 323

15.3.1 Fuzzy Health . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
15.3.2 Fuzzy Illness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
15.3.3 Fuzzy Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

15.4 Implementation of Fuzzy Disease . . . . . . . . . . . . . . . . . . . . . . . . 329
15.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
15.4.2 Description of the Database . . . . . . . . . . . . . . . . . . . . . . 329
15.4.3 Description of the Program Surface . . . . . . . . . . . . . . . . 330
15.4.4 Results of Fuzzy Health, Fuzzy Illness and Fuzzy

Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
15.5 The Fuzzy Hypercube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
15.6 Fuzzy Diseases in the Hypercube . . . . . . . . . . . . . . . . . . . . . . . . 334
15.7 Genes and Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

15.7.1 Definition of Genes – A Genesis . . . . . . . . . . . . . . . . . . . 335
15.7.2 Character of DNA and Fuzziness . . . . . . . . . . . . . . . . . . 337
15.7.3 Springing Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
15.7.4 Widespread Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

15.8 Fuzzy Genomes and Comparisons on Base Sequences . . . . . . . 339
15.8.1 Approach 1: Fuzzy Genomes by Sadegh-Zadeh . . . . . . 339



XXXVI Contents

15.8.2 Approach 2: The Fuzzy Polynucleotide Space:
Basic Properties by Torres and Nieto . . . . . . . . . . . . . . 340

15.9 Annotations and Future Aspects . . . . . . . . . . . . . . . . . . . . . . . . 342

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

16 Fuzzy Preferences as a Convenient Tool in Group
Decision Making and a Remedy for Voting Paradoxes . . . 345
Janusz Kacprzyk, S�lawomir Zadrożny, Hannu Nurmi, Mario Fedrizzi
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Chapter 1
Fuzzy Sets and Systems and Philosophy of
Science

Rudolf Seising

1.1 Introduction

In science there is a traditional division of labor: on the one hand we have fundamen-
tal, logical, and theoretical investigations and on the other hand we have experimen-
tal and application-oriented examinations. Theoretical work in science uses logics
and mathematics to formulate axioms and laws. It is linked with the philosophical
view of rationalism, whereas the other aspects of science employing experiments to
discover prove, or refute natural laws have their roots in philosophical empiricism.
In both directions – from experimental results to theoretical laws or from theoretical
laws to experimental proofs or refutations – scientists have to bridge the gap that
separates theory and practice.

Beginning as early as the 17th century, a primary quality factor in scientific
work has been a maximal level of exactness. Galileo Galilei (1564-1642) and René
Descartes (1596-1650) started the process of giving modern science its exactness
through the use of the tools of logic and mathematics. The language of mathematics
has served as a basis for the definition of theorems, axioms, and proofs. The works of
Isaac Newton (1643-1727), Gottfried Wilhelm Leibniz (1646-17169, Pierre-Simon
Laplace (1749-1827), and many others led to the ascendancy of modern science,
fostering the impression that scientists were able to represent – completely and ex-
actly – all the facts and processes that people observe in the world. But this optimism
has gradually begun to seem somewhat naïve in view of the discrepancies between
the exactness of theories and what scientists observe in the real world. From the em-
piricist point of view the source of our knowledge is sense experience. John Locke
(1632-1704) used the analogy of the mind of a newborn baby as a “tabula rasa”
that will be written by the sensual perceptions the child has later. In Locke’s opin-
ion these perceptions provide information about the physical world. Locke’s view
is called “material empiricism” whereas so-called idealistic empiricism was the po-
sition of George Berkeley (1685-175) and David Hume (1711-1776): the material
world does not exist; only perceptions are real.

Immanuel Kant (1724-1804) achieved a synthesis of rationalism and empiricism
in his magnum opus Critique of Pure Reason, published in 1781 [13]. Kant argued
that human experience of a world is only possible if the mind provides a systematic
structuring of its representations that is logically prior to the mental representations
that was analyzed by empiricists and rationalists. With these philosophical views
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alone, we would not be able to explain the nature of our experience because these
views only considered the results of the interaction between our mind and the world,
but not the contribution made by the mind. Kant concluded that it must be the mind’s
structuring that makes experience possible.

This epistemological dispute is of great interest to historians of science, but since
it is still going on, it is also of great interest to today’s philosophers of science. The
attempt to find a way to bridge the gap between rationalism and empiricism is a
permanent issue in the history of the philosophy of science.

In the 1960s, the gap between real systems and exact mathematical theories, as
well as the search for possible ways of bridging this gap, led the electrical engineer
and Berkeley professor Lotfi A. Zadeh (born in 1921) to consider “mathematics of
cloudy or fuzzy quantities” and ultimately to establish the theory of fuzzy sets and
systems. Starting with a mathematical theory of electrical filters, on the one hand,
and with the impossibility of realizing ideal filters whose “passbands” have exactly
defined threshold frequencies, on the other, and bearing in mind the characteristics
of actual electrical filters with their unsharp boundaries, Zadeh developed a mathe-
matical theory of “membership functions” for sets (or classes) with unsharp bound-
aries. With fuzzy sets, it is possible to handle classes and structures with unsharp
boundaries. They enable us to break down the sharp boundaries of our concepts,
which Gottlob Frege (1848-1925) always demanded with reference to the classic
sorites paradox – since if this was not done, not only would the laws of classical
logic be violated, but also false conclusions would be possible.

In my original research work on the history of the theory of fuzzy sets and sys-
tems (FSS), I could show that Zadeh established this new mathematical theory in
1964/65 to bridge the gap that reflects the fundamental inadequacy of conventional
mathematics to cope with the analysis of complex systems [20], [19], [21]. In the
last decade of the 20th century Zadeh developed computing with words (CW) [41]
and the computational theory of perceptions (CTP) [42], [44] and he established the
methodologies of CTP and CW on the basic methodology of FSS. In the second
half of the 20th century, a great many scientific concepts, methods, and theories
were “fuzzified”. Fuzzification is a transformation that can be reconstructed and re-
flected upon in a scientific manner by appropriately expanding the framework of the
structuralist view of scientific theories in the philosophy of science. The resulting
fuzzy sets can then serve as a new modeling tool in scientific theory. Zadeh’s theo-
ries, FSS, CW, and CTP constitute a hierarchy of methodologies that fits in between
the level of real systems and that of theoretical structures, making it possible to rep-
resent human perceptions that cannot be represented with the sharp boundaries of
classical logic.

In the present contribution we will examine this methodology stack for bridging
the gap between real and theoretical systems from a philosophical point of view.
Also, the approach dubbed the “structuralist view of scientific theories” in the 20th
century will be extended and enhanced by the concepts of “fuzzy sets” and “fuzzy
relations.” To this end, the structuralist approach of scientific theories will first be
reviewed in Section 1.3 and then this approach will be modified in Section 1.4 – i.e.,
it will be “fuzzified” to model perceptions of scientific observers. This approach
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provides a new view of the “fuzzy” relationship between empiricism and theory. To
illustrate the results of this “fuzzy structuralist” theory in the philosophy of science,
three case studies – medical diagnosis, quantum mechanics, and evolutionary biol-
ogy – will be discussed in Section 1.61. In Section 1 below we give two examples of
epistemological positions in modern science from the 1890s to the present day that
have considered aspects of “concepts with unsharp borders,” which we interpret as
“fuzzy” entities in the philosophy of science:

• The German physicist Heinrich Hertz (1857-1894) established one of these posi-
tions in the introduction to his well-known Principles of Mechanics presented in
a new form [11]. This book was edited posthumously by Philipp Lenhard in 1894
and it is a milestone of classical philosophy of science. Ten years before, when
Hertz was a professor at the University in Kiel, Germany, he wrote a manuscript
of his lecture on The Constitution of matter, but he did not publish it as a book.
This manuscript was found in the 1990s by Albrecht Fölsing, Hertz’s biographer,
who edited Die Constitution der Materie in 1999. The published version is only
available in German [12].

• Two other epistemological systems can be distinguished in the work of the
Austrian-British philosopher Ludwig Wittgenstein (1889-1951), who in his early
years wrote the famous Tractatus logico-philosophicus, which was published in
1921, and in later years produced the Philosophical Investigations, which ap-
peared two years after his death in a book translated and edited by Wittgenstein’s
former student and later Cambridge professor of analytic philosophy Gertrude
Elisabeth Marie Anscomb (1919 - 2001) [30].

In Wittgenstein’s two books we find totally different epistemologies and – as in the
two books of Heinrich Hertz – there is a concept of fuzziness in one of them. In
the case of Hertz there is room for fuzziness in his early book and in the case of
Wittgenstein it is in his later one.

Later in this contribution, we will use the structuralist program in the philoso-
phy of science to distinguish the layer of reality from the layer of theory. Then, we
will reconstruct a layer of fuzziness between the layers of external objects (things)
and of their images and symbols (conceptions of things) in these positions. We will
model this fuzziness in accordance with Zadeh’s hierarchy of FSS, CW, and CTP
methodologies, and finally we will discuss the future prospects of this view of mod-
ern scientific theories.

The Epistemological Systems of Heinrich Hertz and Ludwig Wittgenstein “A
picture is a model of reality.” “We picture facts to ourselves.” “A picture is a fact.”
These are three consecutive propositions in Ludwig Wittgenstein’s Tractatus logico-
philosophicus ([29], prop. 2.1, 2.12, 2.141). They demonstrate the influence of Hein-
rich Hertz’s Principles of Mechanics on his thinking – a debt that Wittgenstein
himself acknowledged. In this contribution, the concept of a “picture”, which has
a long tradition in philosophy, serves as the starting point for an interpretation of the

1 Another more detailed case study concerning the areas of medicine and genetics can be found in
Fuzzy Set Theory and Philosophical Foundations of Medicine by Julia Limberg and myself in the
present volume.
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relationship between real systems and theoretical structures of modern science. Il-
lustrating this in the following section, we will consider the epistemological systems
of Heinrich Hertz and Ludwig Wittgenstein.

1.1.1 Heinrich Hertz’s Epistemological System in the Principles
of Mechanics

Hertz’s book The Principles of Mechanics Presented in a New Form was edited
posthumously in 1894 by Philipp Lenhard (1862-1947), who was Hertz’s assistant
in Bonn from 1891 to 1894 and later became a professor in Breslau, Aachen, Hei-
delberg, and Kiel. In this book, Hertz created a new system of forceless mechanics
based on space, time, and mass; but most notably, the book’s introduction became a
significant document for the philosophy of science. In it, Hertz established his the-
ory of knowledge: he viewed physical theories as “pictures” of reality. He began his
introduction with the following words:

The most direct, and in a sense the most important, problem which our con-
scious knowledge of nature should enable us to solve is the anticipation of fu-
ture events, so that we may arrange our present affairs in accordance with such
anticipation. As a basis for the solution of this problem we always make use
of our knowledge of events which have already occurred, obtained by chance
observation or by pre-arranged experiment. In endeavoring thus to draw infer-
ences as to the future from the past, we always adopt the following process.
We form for ourselves images or symbols of external objects; and the form
which we give them is such that the necessary consequents of the images in
thought are always the images of the necessary consequents in nature of the
things pictured. ([11], p. 1)

The images which we here speak of are our conceptions of things. With the
things themselves they are in conformity in one important respect, namely, in
satisfying the above-mentioned requirement. For our purpose it is not neces-
sary that they should be in conformity with the things in any other respect
whatever. As a matter of fact, we do not know, nor have we any means of
knowing, whether our conceptions of things are in conformity with them in
any other than this one fundamental respect. ([11], p. 1)

Figure 1.1 shows an illustration of this epistemological system in a two-layer struc-
ture, that of external objects and that of images or symbols of external objects.

We know from experience the conformity between nature and our mind that is
necessary for that: (logically) inadmissible images are “all images which implic-
itly contradict the laws of our thought.” Although images are logically admissible,
they can be incorrect “if their essential relations contradict the relations of exter-
nal things.” For one external object there can exist more than one correct image,
differing in respect to appropriateness:

Of two images of the same object that is the more appropriate which pictures
more of the essential relations of the object, the one which we may call the
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Fig. 1.1 Hertz’s epistemological system in a two-layer structure, that of external objects and
that of images or symbols of external objects

more distinct. Of two images of equal distinctness the more appropriate is
the one which contains, in addition to the essential characteristics, the smaller
number of superfluous or empty relations, the simpler of the two. ([11], p. 2)

Hertz’s epistemology and his view of scientific theories as mind-created “im-
ages”, based on the scientist’s experience, was contrary to the dominant view at his
time. Most scientists during the years around the turn of the 20th century regarded
empirical theories as objective, and in particular, most of them believed in the ex-
istence of one unique theory. On the other hand, Hertz knew from the experience
he had gathered in the genesis of electrodynamics that various theories with differ-
ent systems of concepts are possible, and that one theory may eventually become
accepted. In his “language of images”, he wrote:

What enters into the images for the sake of correctness is contained in the
results of experience, from which the images are built up. What enters into the
images, in order that they may be permissible, is given by the nature of our
mind. To the question whether an image is permissible or not, we can without
ambiguity answer yes or no; and our decision will hold good for all time. And
equally without ambiguity we can decide whether an image is correct or not;
but only according to the state of our present experience, and permitting an
appeal to later and riper experience. But we cannot decide without ambiguity
whether an image is appropriate or not; as to this differences of opinion may
arise. One image may be more suitable for one purpose, another for another;
only by gradually testing many images can we finally succeed in obtaining the
most appropriate. ([11], p. 3)
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Fig. 1.2 Hertz’s epistemological system in a two-layer structure with two sets of images for
one set of objects

Hertz spoke about “images” or “symbols” of external objects, because they are re-
placements for concepts in physical theories (e.g., mechanics, electricity and mag-
netism, and electrodynamics) that are not accessible to our sensory perceptions. In
Figure 1.2 we can again see the two layers of external objects and of images or
symbols of external objects, and an illustration of two sets of images for one set of
objects.

1.1.2 Wittgenstein I

Wittgenstein concluded his work on the Tractatus logico-philosophicus in 1918 and
it was first published – supported by Bertrand Russell (1872-1970), who wrote an
introduction to it – in German in 1921, and one year later in a bilingual edition (Ger-
man and English). These propositions demonstrate that Wittgenstein’s philosophical
thinking was influenced by Heinrich Hertz’s Principles of Mechanics (as Wittgen-
stein himself also wrote in his diary (([31], p. 476) and explicitly in another part of
the Tractatus: “In the proposition there must be exactly as many things distinguish-
able as there are in the state of affairs which it represents. They must both possess
the same logical (mathematical) multiplicity (cf. Hertz’s Mechanics, on Dynamic
Models).” ([29], prop. 4.04) Hertz also emphasized that images of facts do not have
to be unambiguous; thus there may be different theories in science representing the
same fact. The first two propositions in Wittgenstein’s Tractatus are:

1. The world is everything that is the case.
2. The world is the totality of facts, not of things. [5]
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In his introduction to the Tractatus, Bertrand Russell tried to explain Wittgenstein’s
thinking:

“A picture", he says, “is a model of the reality, and to the objects in the reality
corre-spond the elements of the picture: the picture itself is the fact. The fact that
things have a certain relation to each other is represented by the fact that in the
picture its elements have a certain relation to one another. “In the picture and the
pictured there must be something identical in order that the one can be a picture of
the other at all. What the picture must have in common with reality in order to be
able to represent it after its manner-rightly or falsely-is its form of representation.”
(2.161, 2.17) (([17], p. 10)

Then, in the Tractatus, Wittgenstein wrote that the world consists of facts. Facts
may or may not contain smaller parts. If a fact has no smaller parts, he calls it
an “atomic fact.” If we knowTractatus logico-philosophicus all atomic facts, we
can describe the world completely by corresponding “atomic propositions.”
– Propositions 3 and 4 in the Tractatus are:

3. The logical picture of the facts is the thought.
4. The thought is the significant proposition. [29]

“The totality of propositions is language.” ([29], prop. 4.001) Wittgenstein argued
that sentences in colloquial language are very complex. He conceded that there is
a “silent adjustment to understand colloquial language” but it is “enormously com-
plicated.” Therefore it is “humanly impossible to gather immediately the logic of
language.” ([29], prop. 4.002) This is the task of philosophy: “All philosophy is
’Critique of language.”’ ([29].prop. 4.0031) Wittgenstein knew that common lin-
guistic usage is vague, but at the time when he wrote Tractatus, he tried to solve this
problem by constructing a precise language – an exact logical language that gives
a unique picture of the real world. Wittgenstein thought that the Tractatus solved
all philosophical problems. Therefore, he left philosophy and returned to Austria to
become an elementary school teacher.

In 1926 Wittgenstein felt that he was failing as a teacher. Through his contacts
with the Vienna Circle, he became interested in philosophy again and due to the
influence of Frank Plumpton Ramsey (1903-1930), a philosopher of mathematics
who traveled several times from Cambridge to Austria to urge him to come back to
philosophy, Wittengenstein decided to return to Cambridge in 1929. Later, Russell
encouraged Wittgenstein to submit the Tractatus as a doctoral dissertation. During
World War II, Wittgenstein left Cambridge and volunteered to serve as a hospital
porter in London and as a laboratory assistant in Newcastle. When he returned to
Cambridge after the war, he found teaching to be a burden. Finally, Wittgenstein
resigned his position at Cambridge in 1947 to concentrate on his writing, a decision
that led to a second, totally new philosophical system. This philosophy of his later
years is completely different from that of the Tractatus years. It seems as though
the two philosophical systems were created by different men. As a consequence, we
distinguish the philosophies of “Wittgenstein I” from those of “Wittgenstein II”.
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1.1.3 Wittgenstein II

In his later philosophy, Wittgenstein turned away from the epistemological system
of the Tractatus with its ideal mapping between the objects of reality and a logically
precise language. If we are not able to find such an exact logical language, then we
have to accept the fact that there is vague linguistic usage in all languages. Then the
images, models, and theories that we build with the words and propositions of our
languages to communicate with them are and will also be vague. Already in his so-
called Blue Book, which is a collection of Wittgenstein’s lecture manuscripts from
1933/34, we find the following paragraph:

This is a very one-sided way of looking at language. In practice we very rarely
use language as such a calculus. For not only do we not think of the rules of
usage of definitions, etc. while using language, but when we are asked to
give such rules, in most cases we aren’t able to do so. We are unable clearly
to circumscribe the concepts we use; not because we don’t know their real
definition, but because there is no real ’definition’ to them. To suppose that
there must be would be like supposing that whenever children play with a ball
they play a game according to strict rules. ([32], p. 49)

“And this is true,” he wrote in his second main work, the Philosophical Investiga-
tions, a book that appeared two years after his death, after having been translated and
edited by his former student and later Cambridge professor of analytic philosophy
Gertrude Elisabeth Marie Anscomb (1919-2001). The Philosophical Investigations
epitomize Wittgenstein’s late philosophy: “Instead of producing something common
to all that we call language, I am saying that these phenomena have no one thing
in common which makes us use the same word for all, but that they are related to
one another in many different ways. And it is because of this relationship, or these
relationships, that we call them all ’language’. I will try to explain this.” ([30], §
65) We find the following explanation in the next paragraph of this book, in keeping
with the concept of a game:

Consider for example the proceedings that we call “games”. I mean board-
games, card-games, ball-games, Olympic games, and so on. What is common
to them all? Don’t say: “There must be something common, or they would
not be called ’games’ ” but look and see whether there is anything common
to all. For if you look at them you will not see something that is common
to all, but similarities, relationships, and a whole series of them at that. To
repeat: don’t think, but look! Look for example at board-games, with their
multifarious relationships.

Now pass to card-games; here you find many correspondences with the first
group, but many common features drop out, and others appear. When we pass
next to ball-games, much that is common is retained, but much is lost. Are
they all “amusing”? Compare chess with noughts and crosses. Or is there al-
ways winning and losing, or competition between players? Think of patience.
In ball games there is winning and losing; but when a child throws his ball at
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Fig. 1.3 Wittgenstein’s epistemological system in the Philosophical Investigations in a two-
layer structure

the wall and catches it again, this feature has disappeared. Look at the parts
played by skill and luck; and at the difference between skill in chess and skill
in tennis. Think now of games like ring-a-ring-a-roses; here is the element
of amusement, but how many other characteristic features have disappeared!
sometimes similarities of detail. And we can go through the many, many other
groups of games in the same way; can see how similarities crop up and dis-
appear. And the result of this examination is: we see a complicated network
of similarities overlapping and crisscrossing: sometimes overall similarities.
([30], § 66)

In the next paragraph Wittgenstein creates a new concept to describe this new epis-
temological system:

I can think of no better expression to characterize these similarities than "fam-
ily resemblances"; for the various resemblances between members of a family:
build, features, colour of eyes, gait, temperament, etc. etc. overlap and criss-
cross in the same way. And I shall say: “games” form a family. ([30], § 67)

Figure 1.3 shows this relationship between objects and concepts and their fam-
ilies. Concepts and their families have no sharp boundaries, as he also wrote in
paragraph 119 of the Philosophical Investigations:

One might say that the concept “game” is a concept with blurred edges. “But
is a blurred concept a concept at all?” Is an indistinct photograph a picture of
a person at all? Is it even always an advantage to replace an indistinct picture
by a sharp one? Isn’t the indistinct one often exactly what we need? Frege
compares a concept to an area and says that an area with vague boundaries
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cannot be called an area at all. This presumably means that we cannot do
anything with it. But is it senseless to say: “Stand roughly there”? ([30], § 71)

And in a later paragraph Wittgenstein wrote: “The results of philosophy are the un-
covering of one or another piece of plain nonsense and bumps that the understanding
has got by running its head up against the limits of language.” ([30], § 119)

In other words, our conceptions, images, and symbols of external things or ob-
jects are entities without sharp borders. They are fuzzy entities and it is time to
establish a “fuzzy epistemological system” to master these complex circumstances
with an appropriate theory of science. This will be done by a short introduction into
the theory of fuzzy sets and systems and some remarks on methodological conse-
quences, followed by an introductory sketch of the so-called structuralist view of
scientific theories and my proposal for a fuzzy extension of this structuralist view of
science. But first we have to deal with another epistemological system put forward
by Hertz.

1.1.4 Heinrich Hertz’s Epistemological System in the
Constitution of Matter

In his Kiel lecture The Constitution of Matter, Hertz had already developed a con-
cept of grqq pictures” to describe reality. His starting point was the hypothesis of
the existence of atoms. The question was: Do atoms exist or are they mathematical
auxiliary constructions? In this lecture, Hertz sought to describe sensually percepti-
ble matters of fact as simply as possible, arguing that what is beyond these sensually
perceptible matters of fact is fiction that makes a simpler description possible. ([12],
p. 35) Then, Hertz argued that physicists are not obligated to restrict their research
activities in this manner: It is a general and necessary quality of the human mind
that we are not able to bring something to mind or to define external things concep-
tually without adding properties that they inherently do not have. We cannot do this
either in everyday life or in science. ([12], S. 35) Hertz devoutly believed that we
need imaginary constructs of conceptions in exact science, and gave two examples:

1. Geometry: “If anything deserves to be called an exact science, this does. It deals
with the attributes of spatial conceptions. And to define these, it requires us to
imagine a series of spatial conceptions. But all these are constituted in such a
manner that sensual imagination of them is not possible if we do not give them
attributes that geometry knows nothing about and which are explicitly supposed
to form the basis of our abstractions. If we are asked to imagine an infinitely thin
spherical shell or an infinitesimal component of space, the designated objects
will appear in our mind’s eye. But neither will they appear infinitely thin nor
infinitesimal, nor without colour, nor without other attributes that are absolutely
foreign to the intended object.” ([12], p. 35.2)

2. Physics: “Imagine an atom as a ball-shaped space filled with matter that has a
diameter of 1 millionth mm [. . . ] Indeed, we are not able to imagine this space in

2 Translation by R.S.
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Fig. 1.4 Hertz’s epistemological system in The Constitution of Matter in a three-layer struc-
ture with the highest level of abstract cores of our conceptions

real dimensions; and we cannot visualize it filled, without visualizing it filled
with glass, iron, or some other specific substance. However, we can bring to
mind which attributes are circumstantial and a core will remain that constitutes
the basic attributes in which we are interested. What we add will always be
fictitious imaginings; we cannot remove them and replace them with better ones,
but must add them or abandon all imagining in this domain.” ([12], p. 36.3)

In this earlier lecture, Hertz emphasized the difference between conceptions (im-
ages, symbols) and their “cores”. This means that in his early epistemological sys-
tem he postulated imaginary constructs that are conceptions of things and held
that an abstraction of each of these images or symbols that is unimaginable exists.
Figure 1.4 shows an illustration of this epistemological system in a three-layer struc-
ture with the highest level of abstract cores of our conceptions. Later on we will
model the abstract cores of images or symbols by means of mathematical objects
and figures, where the unsharp ones will become “fuzzy” entities in mathematics.

1.2 Lotfi Zadeh’s FSS, CW, and CTP Methodologies

1.2.1 Historical Aspects and Basics

“. . . we need a radically different kind of mathematics, the mathematics of fuzzy
or cloudy quantities which are not describable in terms of probability distributions,”

3 Translation by R.S.
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wrote Lotfi Zadeh, a Berkeley professor of electrical engineering in his 1962 article
“From Circuit Theory to System Theory” ([33], p. 857). Why was this needed? –
Because there was “a fairly wide gap between what might be regarded as ’animate’
system theorists and ’inanimate’ system theorists at the present time, and it is not at
all certain that this gap will be narrowed, much less closed, in the near future.” To
continue Zadeh’s line of thought:

There are some who feel that this gap reflects the fundamental inadequacy
of conventional mathematics – the mathematics of precisely defined points,
functions, sets, probability measures, etc. – for coping with the analysis of bi-
ological systems, and that to deal effectively with such systems, which are
generally orders of magnitude more complex than man-made systems, we
need a radically different kind of mathematics, the mathematics of fuzzy or
cloudy quantities which are not describable in terms of probability distribu-
tions. Indeed, the need for such mathematics is becoming increasingly appar-
ent even in the realm of inanimate systems, for in most practical cases the a
priori data as well as the criteria by which the performance of a man-made
system are judged are far from being precisely specified or having accurately
known probability distributions.([33], p. 857).

Thus, Zadeh was thinking about a mathematical theory dealing with loose concepts,
provided that these concepts are defined by the absence of strict boundaries. Three
years later he introduced his theory of fuzzy sets and systems. He established the
theory of fuzzy sets in his seminal paper “Fuzzy Sets” in the journal Information
and Control [34]: In contrast to conventional set theory, an object is not required
to be either an element of a set (membership value 1) or not an element of this set
(membership value 0), but can also have a membership value between 0 and 1. Thus
he defined fuzzy sets by their membership function µ, which is allowed to assume
any value in the interval [0,1], rather than by their characteristic function, which
assumes the values of only 0 or 1 [34]. At first Zadeh introduced the new mathe-
matical entities – “fuzzy sets” – with “simple” examples only: “the ’class’ of real
numbers which are much larger than, say, 10” and “the ’class’ of bald men’, but also
the ’class’ of adaptive systems.” But he emphasized: “Such classes are not classes or
sets in the usual sense of these terms, since they do not dichotomize all objects into
those that belong to the class and those that do not.” Zadeh introduced “the concept
of a “fuzzy set”, which is a class in which there may be a continuous infinity of
grades of membership, with the grade of membership of an object x in a fuzzy set
A represented by a number A(x) in the interval [0,1].” Zadeh maintained that these
new concepts provide a “convenient way of defining abstraction – a process which
plays a basic role in human thinking and communication.” ([35] p. 29) The question
was how to generalize various concepts – union of sets, intersection of sets, and so
forth. Zadeh stated the definitions set out in Figure 1.5 for all x ∈ X :

• A = B if and only if A(x) = B(x),
• A⊆ B if and only if A(x)≤ B(x),
• A is the complement of A if and only if A(x) = 1−µA(x),
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Fig. 1.5 Zadeh’s illustration of fuzzy sets in R1: “The membership function of the union is
comprised of curve segments 1 and 2; that of the intersection is comprised of segments 3 and
4 (heavy lines)”. [34]

• A∪B if and only if µA∪B(x) = max(µA(x),µB(x)),
• A∩B if and only if µA∩B(x) = min(µA(x),µB(x)).

The space of all fuzzy sets in X becomes a distributive lattice with 0 and 1; thus, a
propositional logic with fuzzy concepts constitutes fuzzy logic.

In April 1965, when the Symposium on System Theory took place at the Polytech-
nic Institute in Brooklyn, Lotfi Zadeh presented “A New View on System Theory,”
which deals with the concepts of fuzzy sets and provides “a way of treating fuzzi-
ness in a quantitative manner.” In the symposium’s proceedings, there is a shortened
manuscript version of this talk under the heading “Fuzzy Sets and Systems.” ([35],
p. 29) In this paper, Zadeh defined the concept of a fuzzy system for the first time:

Definition
A system S is a fuzzy system if input u(t), output y(t), or state x(t) of S or any
combination of them ranges over fuzzy sets. ([35], p. 33)

Zadeh explained that “these concepts relate to situations in which the source of
imprecision is not a random variable or a stochastic process but rather a class or
classes which do not possess sharply defined boundaries.” ([35], p. 29]) He argued
that “the difference between stochastic and fuzzy systems is that in the latter the
source of imprecision is nonstatistical in nature and has to do with the lack of sharp
boundaries of the classes entering into the descriptions of the input, output or state.”
([34], p. 33)

A propositional logic with fuzzy concepts constitutes a “logic of inexact con-
cepts,” as was demonstrated by Joseph Goguen, a Ph.D. student working with Zadeh
at Berkeley, in the late 1960s [9] and in his later published articles [10], [8]. For
this logic, George Lakoff, a Berkeley professor of linguistics, introduced the term
“fuzzy logic” in his 1973 paper “Hedges: A Study in Meaning Criteria and the
Logic of Fuzzy Concepts” [14]. He was influenced by Zadeh’s article “A Fuzzy-
Set-Theoretic Interpretation of Linguistic Hedges,” published in 1972 [37], where
Zadeh discussed natural languages, which are the means human beings use to ex-
press their perceptions and observations of real world systems and phenomena. In
contrast to classical strict logic and artificial languages that appeared at that time
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in the field of computer science, natural languages and fuzzy logic were generally
not considered to be adequate tools for science. This again reflects the gap between
the basically unsharp character of human perceptions of systems and phenomena in
the real world and the precision thought to be necessary in science. In this paper
Zadeh introduced the expression “hedges” to describe linguistic fuzziness; they are
terms such as “very”, “somewhat”, “quite”, “much”, “more or less”, “sort of”, “es-
sentially”, etc. In Zadeh’s view, hedges are “operators acting on fuzzy subsets of the
universe of discourse.” [37], p. 468) In his article “Outline of a New Approach to
the Analysis of Complex Systems and Decision Processes,” published the same year,
Zadeh introduced the concept of “linguistic variables,” which are variables whose
values may be sentences in a specific natural or artificial language. [38] For example,
the values of the linguistic variable “age” might be expressible as “young,” “very
young,” “not very young,” “somewhat old,” “more or less young.” These values
are formed with the label “old,” the negation “not,” and the hedges “very,” “some-
what,” and “more or less.” In this sense the variable “age” is a linguistic variable (see
Figure 6). Linguistic variables became a proper tool for reasoning without exact val-
ues. Since in many cases, it is either impossible or too time-consuming (and there-
fore too expensive) to measure or compute exact values, the concept of linguistic
variables has been successfully used in many fuzzy application systems, e.g., in
control and decision making.

In “Similarity Relations and Fuzzy Orderings” [36], Zadeh substantiated the con-
cept of fuzzy relations: If L(A×B) is the set of all fuzzy sets in the Cartesian product
A×B of ordinary sets A and B, then a fuzzy relation is a subset of L(A×B). Using
three sets A, B, and C to compose fuzzy relations Q ⊆ L(A×B) and R ⊆ L(B×C)
to get a new fuzzy relation T ⊆ L(A×C), he introduced the combination rule of a
max-min composition: T = Q∗R is defined by the following membership function:

T (x,z) = maxy∈Y min{Q(x,y); R(y,z)} , y ∈ Y . [36]

Now, after this brief sketch of Zadeh’s theory of fuzzy sets and systems (FSS), we
will provide brief sketches of his computing with words (CW), and his computa-
tional theory of perceptions (CTP). We will then use the structuralist program in
the philosophy of science to distinguish a layer of reality from a layer of theory,
and we will construct a layer of fuzziness between these two layers – in Hertz’s
terminology, the layers of external objects (things) and of their images and symbols
(conceptions of things). Finally, we will model the fuzziness in the new layer using
Zadeh’s hierarchy of FSS, CW, and CTP methodologies.

1.2.2 Computing with Words and the Computational Theory of
Perceptions

In the early days, Zadeh called for “the principles and organization of machines
which behave like a human brain,” but in the later years of the last century he real-
ized that “thinking machines” do not think as humans do. In the years following this,
he changed his view on research and from the mid-1980s he focused on “Making
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Computers Think like People” [40]. For this purpose, the machine’s ability “to com-
pute with numbers” was supplemented by an additional ability that was similar to
human thinking. Zadeh was and is inspired by the “remarkable human capability to
perform a wide variety of physical and mental tasks without any measurements and
any computations.” In many papers he has given everyday examples of such tasks:
parking a car, playing golf, deciphering sloppy handwriting, and summarizing a
story. Underlying this is the human ability to reason with perceptions “perceptions
of time, distance, speed, force, direction, shape, intent, likelihood, truth, and other
attributes of physical and mental objects.” ([43], p. 903). As a potential replacement
of exact computing with numbers, he proposed computing with words (CW) in 1996
in an article entitled “Fuzzy Logic = Computing with Words.” He claimed that “the
main contribution of fuzzy logic is a methodology for computing with words. No
other methodology serves this purpose” ([41], p. 103). Three years later he published
“From Computing with Numbers to Computing with Words – From Manipulation
of Measurements to Manipulation of Perceptions,” to show that the new computa-
tional theory of perceptions (CTP) is based on the methodology of CW. In 2001
Zadeh published “A New Direction in AI. Toward a Computational Theory of Per-
ceptions” [44]. The computational theory of perceptions (CTP) was inspired by the
remarkable human capability to operate on, and reason with, perception-based in-
formation. Zadeh wrote:

Humans have a remarkable capability to perform a wide variety of physical
and mental tasks without any measurements and any computations. Every-
day examples of such tasks are parking a car, driving in city traffic, playing
golf, cooking a meal, and summarizing a story. In performing such tasks, for
example, driving in city traffic, humans base whatever decisions have to be
made on information that, for the most part, is perception, rather than mea-
surement, based. In CTP, words play the role of labels of perceptions and,
more generally, perceptions are expressed as propositions in natural language.
([42], p. 105)

In [41] and [42] Zadeh pointed out that 1) measurements can be represented or ma-
nipulated by numbers, and 2) we are able to represent or manipulate perceptions
with words. Therefore we have a hierarchy of methodologies in a “stack” shown in
Figure 1.6. Zadeh intended to establish these methodologies as a new dimension of
artificial intelligence. His thesis was “that progress has been, and continues to be,
slow in those areas where a methodology is needed in which the objects of compu-
tation are perceptions – perceptions of time, distance, form, and other attributes of
physical and mental objects.” ([44], p. 73)

In the AI Magazine article he again presented a “new view” on system theory,
namely perception-based system modeling:

Definition: “A system, S, is assumed to be associated with temporal sequences of
input X1, X2, . . . ; output Y1, Y2, . . . ; and states S1, S2, . . . . S2 is defined by the state-
transition function f and the output function g.” [44].
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Fig. 1.6. Zadeh’s “stack hierarchy” of methodologies: FSS, CW, CTP

Fig. 1.7. Zadeh’s illustration of perception-based system modeling [44]

An illustration of perception-based system modeling is given in Figure 1.7. It should
be noted that the same system equations were used in system theory and fuzzy
system theory, but the meanings of input, state, and output have been changed: in
perception-based system modeling, they are assumed to be perceptions, such as the
state-transition function, f , and the output function, g. [44], p. 77.)

The methodology-hierarchy of FSS, CW, and CTP is today at the core of “soft
computing” or “computational intelligence,” which became part of the field of ar-
tificial intelligence (AI) at the beginning of the new century. In the next section,
this hierarchy of methodologies for bridging the gap between real and theoretical
systems will be approached from a philosophical point of view. Future prospects
for developments in science and the philosophy of science will be explored. The
so-called structuralist approach to scientific theories will be surveyed and this ap-
proach will be modified or “fuzzified” by extending the structuralist framework,
using fuzzy sets and fuzzy relations to represent perceptions.

1.3 The Structuralist View of Science

The philosophy of science deals with the basis of science, its assumptions and im-
plications, its methods and results, and its theories and experiments. We can dis-
tinguish between the philosophies of physics and astronomy, chemistry, and other
empirical sciences, and we can concern ourselves with the philosophies of the social
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sciences and the humanities. However, these philosophies of scientific disciplines
arose during different historical periods, and the earliest philosophical reflections
on modern science started with theories and experiments in mechanics in the 17th
century. Two main views in the philosophy of science arose at about the same time:
The philosophical view of rationalism employed fundamental, logical, and theo-
retical investigations using logics and mathematics to formulate axioms and laws,
whereas the view of empiricism was to have experiments to find or prove or re-
fute natural laws. In both directions – from experimental results to theoretical laws
and from theoretical laws to experimental proofs or refutations – scientists have to
bridge the gap that separates theory and practice. Scientists observe real systems or
phenomena and they measure data, they establish laws and they introduce empirical
theories that say that the laws hold for the data. That is to say: To study systems
or phenomena in reality, we connect them with a theoretical structure. To this end
we give them a structure themselves. How to do that is not clear! – This is one of
the central problems in the philosophy of science. The German philosopher of sci-
ence Wolfgang Balzer wrote in his book on empirical theories: “The problem is that
we create a connection between real systems and theoretical structures. We assume
that this can be done. Without this assumption it is senseless to talk about empirical
science.” ([1], p. 289.4) Two trends in obtaining systematic rational reconstructions
of empirical theories can be found in the philosophy of science in the latter half
of the 20th century: the Carnap approach (named after the German-US-American
philosopher Rudolf Carnap (1891-1970)) and the Suppes approach (named after
the US-American philosopher and mathematician Patrick Suppes (born in 1922).
In both approaches, the first step consists of an axiomatization that seeks to deter-
mine the mathematical structure of the theory in question. The difference between
these views can be found in the manner in which this task is performed. Carnap was
firmly convinced that only formal languages can provide suitable tools to achieve
the desired precision. Consequently, the Carnap approach claims that a theory has to
be axiomatized within a formal language. On the other hand, the Suppes approach
uses informal logic and informal set theory. Thus, in this approach, one is able to
axiomatize physical theories in a precise way without recourse to formal languages.
This approach traces back to the proposal of Suppes in the 1950s to include the
axiomatization of empirical theories of science in the metamathematical program
of the French group “Bourbaki.” [4] The Suppes approach is the basis of what is
now called the structuralist view in the philosophy of science. In this view the real
systems connected with a theoretical structure are called “intended systems” of the
theory [1], [28], [2], [3]. In his scientific research based on an intended system the
scientist gets a data structure and he builds a model, which represents the structure
of the system. Frequently we say that the theory gives us a “picture of the reality,”
but this is a very simple way of expressing what we do in scientific work.

In the 1970s Joseph D. Sneed developed informal semantics meant to consider
not only mathematical aspects, but also application subjects of scientific theories in
this framework, based on this method. In [28], Sneed presents this view as stating

4 Translation by R. S.
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Fig. 1.8. The structuralist view of science in a two-layer structure: empirical and theoretical
structural layers

that all empirical claims of physical theories have the form “x is an S” where “is an
S” is a set-theoretical predicate. Every physical system that fulfills this predicate is
called a model of the theory. To give concrete examples, the class M of a theory’s
models is characterized by empirical laws that consist of conditions governing the
connection of the components of physical systems. Therefore, we have models of
a scientific theory, and by removing their empirical laws, we get the class Mp of
so-called potential models of the theory. Potential models of an empirical theory
consist of theoretical terms, i.e., observables with values that can be measured in
accordance with the theory. This connection between theory and empiricism is the
basis of the philosophical “problem of theoretical terms.”

If we remove the theoretical terms of a theory in its potential models, we get
structures that are to be treated on a purely empirical layer; we call the class Mpp

of these structures of a scientific theory its “partial potential models.” Finally, every
physical theory has a class I of intended systems (or applications). To make it clear
that this concept reflects both sides of scientific theories, the classes Mp and M and
the classes Mpp and I are shown in “layers” in Figure 1.8: Mpp and I are entities of
an empirical layer, whereas Mp and Mpp are structures in a theoretical layer of the
schema.

1.4 A Fuzzy Structuralist View of Science

Our modification of the structuralist approach in the philosophy of science pertains
to the empirical layer in Figure 1.8. Now, we will distinguish between real sys-
tems and phenomena, on the one hand, and perceptions of these entities, on the
other. Thus we introduce a lower layer – the “real” layer – and we rename our for-
mer empirical layer as a “fuzzy layer,” as the partial potential models and intended



1.4 A Fuzzy Structuralist View of Science 19

Fig. 1.9. Crisp and fuzzy variable “age” [39]

systems are not real systems, having a minimal structure by the scientist’s obser-
vation (see Figure 1.10). They are perception-based systems and therefore we have
to distinguish them from real systems and phenomena that have no structure be-
fore someone imposes one on them. The layer of perceptions lies between the layer
of real systems and phenomena and the layer of theoretical structures. According
to Zadeh’s computational theory of perceptions (CTP), we represent perceptions in
this intermediate layer as fuzzy sets. Whereas measurements are crisp, perceptions
are fuzzy, and because of the resolution of our sensory organs (e.g., the aligning
discrimination of the eye) perceptions are also granular, as Zadeh wrote in the AI
Magazine in 2001: “perceptions, in general, are both fuzzy and granular or, for short
f -granular” (see Figure 1.9) [44]. When Zadeh established CTP on the basis of CW
that in turn is based on his theory of FSS, he firmly believed that these methodolo-
gies would attain a certain position in science: “In coming years, computing with
words and perceptions is likely to emerge as an im-portant direction in science and
technology.” [42]

To take Zadeh at his word, we will establish his methodologies of fuzzy sets and
systems, computing with words and the computational theory of perceptions in our
structuralist approach in the philosophy of science. As mentioned above, we will
introduce a fuzzy layer of perceptions between the empirical layer of real systems
and phenomena and the theoretical layer, where we have the structures of models
and potential models. Thus the relationship between real systems and theoretical
structures has two parts: “fuzzification” and “defuzzification”.

Fuzzification: From Phenomena to Perceptions
Measurements are crisp; perceptions are fuzzy and granular. To represent percep-
tions we use fuzzy sets, e.g., AF , BF , CF , ... It is also possible that a scientist per-
ceives not only single but interlinked phenomena, e.g., two entities move similarly
or inversely, or something is faster than something else, or it is brighter or smells in



20 1 Fuzzy Sets and Systems and Philosophy of Science

Fig. 1.10. The fuzzy structuralist view of science in a three-layer structure: empirical, fuzzy,
and theoretical layers of crisp and fuzzy structures, fuzzification between the empirical layer
and the fuzzy layer, and defuzzification between the fuzzy layer and the theoretical layer

an analogous way, etc. Such relationships can be characterized by fuzzy-relations
fF , gF , hF , . . . .

Defuzzification: From Perceptions to Models
“Measure what is measurable and make measurable what is not so” is a statement
attributed to Galileo. In modern science this is the way to move from perceptions
to measurements or, respectively, quantities to be measured. We interpret this trans-
fer as a defuzzification from perceptions represented by fuzzy sets AF , BF , CF , . . .
and relations between perceptions rep-resented by fuzzy relations fF , gF , hF , . . . to
ordinary (crisp) sets AC, BC, CC, . . . and relations fC, gC, hC, . . . These sets and
relations are basic entities to construct (potential) models.

Theoretization: From Phenomena to Models
The composition of fuzzification and defuzzification yields the operation of a re-
lationship T that can be called theoretization, because it transfers phenomena and
systems from the real layer to structures in the theoretical layer (see Figure 1.10).

In the structuralist view of theories the concept of theoretization is defined as an
intertheoretical relation, i.e., a set theoretical relation between two theories T and
T ′. This theoretization relation exists if T ′ results from T by adding new theoretical
terms and introducing new laws that connect the former theoretical terms of theory
T with the new theoretical terms in theory T ′. Successive addition of new theoretical
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terms establishes a hierarchy of theories and a comparative concept of theoriticity.
In this manner the space-time theory arose from Euclidean geometry by adding
the term “time” to the term “length,”, and from classical space-time theory we get
classical kinematics by adding the term “velocity.” Classical kinematics is turned
into classical (Newtonian) mechanics by the additional introduction of the terms
“force” and “mass.”

• The old theory T is covered with a new theoretical layer by the new theory T ′.
• T -theoretical terms are not T ′-theoretical but T ′-non-theoretical terms and recip-

rocally they may not be any of the T -non-theoretical terms. The old theory must
not be changed by the new theory in any way!

• In this hierarchy, it holds that the more theoretical terms exist higher in the hier-
archy, while the lower layers are characterized by the non-theoretical basis of the
theory.

What happens in the lowest layer of this hierarchy? Here, a theory T exists, with
theoretical terms and relations, but it is not a theoretization of another theory. This
theory T covers phenomena and intended systems initially with theoretical terms.
This is an initial theoretization because the T -theoretical terms are the only the-
oretical terms in this situation. They have been derived directly as measurements
from observed phenomena. This derivation is called theoretization and is a serial
connection between fuzzification and defuzzification.

1.5 Hertz’s Pictures, Wittgenstein’s Family Resemblances, and
Zadeh’s Fuzzy Sets

From a historical point of view it can be shown that the theory of fuzzy sets and
systems was created by the electrical engineer and system scientist Lotfi A. Zadeh
to bridge the gap between exact mathematical formulated scientific theories, on the
one hand, and empirical observations, experimental findings, and phenomena in lab-
oratories, on the other [20]. In this contribution we have applied this meta-scientific
achievement in the area of the philosophy of science and epistemology. To this end
we have employed the approach of the structuralist program to represent the struc-
tures of scientific theories and their intertheoretical relations by using classical set
theory. In the classical structuralist view of scientific theories there is an empiri-
cal layer of “real” phenomena and systems that have some minimal structure and
a theoretical layer of potential models and models that are fully structured entities.
But there is no representation of the observer’s role and of his/her perceptions. The
modified view of the structuralist approach that is presented in this paper only as
a proposal that will be worked out in detail in the near future comprises a layer
of fuzzy sets and fuzzy relations taking into account the difference between real
phenomena and systems, on the one hand, and the observer’s perceptions of these
real entities, on the other. This extended structuralist view – we call it the “fuzzy
structuralist view” of scientific theories – may open up a new and fruitful way to un-
derstand scientific research. In the fuzzy structuralist approach, we construct a fuzzy
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layer to represent the scientist’s perceptions with fuzzy sets, since these perceptions
belong to neither real systems nor phenomena nor theoretical entities or structures.

In the epistemological system of Heinrich Hertz, which he never published, but
which is recorded in his Kiel lecture transcripts on The Constitution of Matter
ten years before his Principles of Mechanics was published, we find a very simi-
lar hierarchy in his epistemological system. As in his better known Principles of
Mechanics, he distinguished between things and conceptions of things (pictures,
symbols), and he also made a distinction between things, conceptions of things and
their cores. These cores are abstractions of our conceptions, because the conceptions
of things (or their pictures) are constructed not only from their essential attributes,
but also from their circumstantial attributes. What Hertz said is that we have to dis-
tinguish between these imaginary constructs that “we can bring to mind” ([12], p.
36) and their cores, which are not in our mind but in a more abstract layer, i.e.,
the theoretical layer. Hertz’s distinction between three kinds of epistemological en-
tities – things, conceptions of things, and cores of conceptions of things – is in
accordance with the hierarchy of the three layers: empirical layer, fuzzy layer, and
theoretical layer.

We have pointed out that in his Tractatus Ludwig Wittgenstein referred to Hein-
rich Hertz’s epistemological system from the Principles of Mechanics. Later, when
he wrote Philosophical Investigations, Wittgenstein had changed his viewpoint. As
we have seen, in his later philosophical thinking Wittgenstein abandoned the simple
picture-concept that he had introduced in his Tractatus and established the con-
cept of family resemblances. Now, we interpret family resemblances of concepts as
unsharp concepts – as concepts without exact borders – and we model these inexact
entities by means of fuzzy sets. Therefore we stress an accordance between fam-
ily resemblances of concepts in the sense of Wittgenstein and pictures (or concep-
tions) of things in the sense of Hertz, and fuzzy sets that represent perceptions in the
sense of Zadeh. We emphasize that Zadeh’s computational theory of perceptions
is an appropriate methodology to represent efforts of scientific research to bridge
the gap between empirical observations and the abstract construction of theoretical
structures.

In the classical, i.e., non-fuzzy, structuralist view of theories there is an empirical
layer of real phenomena and systems that have some minimal structure and a the-
oretical layer of potential models and models that are fully structured entities. But
there is no representation of the observer’s role and his/her perceptions. Zadeh’s
computational theory of perceptions is suitable to represent the scientist’s obser-
vations of real things and phenomena. We have to distinguish between these “real”
things and phenomena and the perceptions of these empirical entities, and from both
of these kinds of epistemological entities we must also distinguish between the the-
oretical entities and structures that can form the framework of a scientific theory.
Therefore, using Zadeh’s fuzzy sets and systems to represent human perceptions,
we established a fuzzy structuralist view of the epistemological systems of Heinrich
Hertz and Ludwig Wittgenstein to bridge the gap between empirical observations
and the abstract construction of theoretical structures. Figure 1.10 shows our pro-
posal in a diagram with three layers. It is similar to the diagram we presented in the



1.6 Fuzzy Structuralism and Modern Scientific Theories 23

context of Heinrich Hertz’s epistemological system in The Constitution of Matter –
see Figure 1.4. Unlike the two-layer diagram we used for the epistemological sys-
tem of Wittgenstein II (see Figure 1.3), there is an upper layer of abstract cores of
conceptions (images).

1.6 Fuzzy Structuralism and Modern Scientific Theories

The modified view of the structuralist approach presented here as a proposal com-
prises a layer of fuzzy sets and fuzzy relations as a means of dealing with the dif-
ference between real phenomena and systems on the one hand and the observer’s
perceptions of these real entities on the other (see Figure 1.11). This extended
structuralist view – which can be called the “fuzzy structuralist view” of scientific
theories may open up a new and fruitful way to understand scientific research.

Fig. 1.11. The “fuzzy structuralist view of scientific theories”

To illustrate the epistemological consequences involved, three case studies –
medical diagnosis, quantum mechanics, and evolutionary biology – will be briefly
discussed in this section.5

1.6.1 Medical Diagnosis

What is the connection between symptoms and diseases when medical doctors make
diagnoses? Because diagnostic procedures are extremely complex, it would be very
difficult – if not impossible – to explain this connection in terms of crisp logical
operations. When doctors examine patients, they are guided by their training, their
own personal medical experience, knowledge from books and other sources, and
their own mental abilities. They note a patient’s state and symptoms, combine these
with his/her medical history, physical examinations and laboratory findings, and
then make a diagnosis (see Figure 1.12). It takes a specific style of thinking – heavily
dependent on non-crisp logic – to master this process.

In a lecture entitled “Some specific features of the medical way of thinking” pre-
sented to the Society of Lovers of the History of Medicine in Łwów in 1927, the Pol-
ish physician and philosopher Ludwik Fleck stated that the medical way of thinking
is a specific style of thinking [7]. One important point in this lecture was that

5 Another case study on fuzziness in medicine and also in genetics can be found in the contribution
of Julia Limberg and myself in the present volume.
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Fig. 1.12. The diagnostic situation.

There exists no strict boundary between what is healthy and what is diseased,
and one never finds exactly the same clinical picture again. But this extremely
rich wealth of forever different variants is to be sur-mounted mentally, for
such is the cognitive task of medicine. How does one find a law for irregular
phenomena? This is the fundamental problem of medical thinking. In what
way should they be grasped and what relations should be adopted between
them in order to obtain a rational understanding? ([7], p. 39).

Fleck emphasized that there are no sharp boundaries between the phenomena of
diseases:

In practice one cannot do without such definitions as ’chill,’ ’rheumatic’ or
’neuralgic’ pain, which have nothing in common with this bookish rheuma-
tism or neuralgia. There exist various morbid states and syndromes of subjec-
tive symptoms that up to now have failed to find a place and are likely not to
find it at any time. ([7], p. 42)

Clearly, it is very difficult to define sharp borders between various symptoms in the
set of all symptoms and between various diseases in the set of diseases, respectively.
Rather we can observe smooth transitions from one entity to another and perhaps a
very small variation might be the reason why a doctor diagnoses a patient with dis-
ease x instead of disease y. Fleck stated that physicians use a specific style of think-
ing when they assess symptoms and determine what disease or diseases patients
suffer from. He did not believe that medical diagnoses result from strict logical rea-
soning, but thought that elements of medical knowledge, symptoms, and diseases
are essentially indeterminate and that physicians rely on their intuition rather than
on logical consequences to deduce diseases from patients’ data.

Of course, Fleck did not know anything about fuzzy sets and systems, CW, and
CTP, but it seems that fuzziness was an integral part of his philosophy of medicine.
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Fig. 1.13. The medical diagnosis can be represented as a theoretization from symptoms to
diseases. This theoretization is a series of fuzzification and defuzzification.

A diagnosis is the result of a doctor’s medical thinking process based on a patient’s
symptoms. These symptoms are real phenomena, whereas diseases – which are the
result of a doctor’s decision in the diagnostic process – are theoretical concepts in
medical science. This process of medical diagnosis can be given a new two-part in-
terpretation: the first part models the physician’s collection of his/her perceptions of
the patient’s symptoms. The result of this part is a union of fuzzy sets representing
this collection of perceptions. Thus this aspect of the process can be called fuzzifi-
cation. The second part of the process is the decision-making dimension. Here, the
physician has to find a crisp representation of his/her fuzzy impression of what the
patient suffers from. This can be called defuzzification.

The combination of the fuzzification and defuzzification elements is the whole
decision-making process (see Figure 1.13), which can be interpreted as a (medical)
theoretization of the observed symptoms, because it is a transfer of real phenomena
(symptoms) into theoretical terms (diseases). Thus, this brief case study on medi-
cal diagnosis can be regarded as a specialization of the “fuzzy structuralist view on
scientific theories” (see and compare Figures 1.12 and 1.11. Two more specializa-
tions – quantum mechanics and evolutionary biology – will follow in the following
subsections.

1.6.2 Quantum Mechanics

Due to the scientific revolution brought about by the discovery of quantum mechan-
ics in the first third of the 20th century, a basic change took place in the relationship
between the exact scientific theory of physics and the phenomena observed in basic
experiments. Systems of quantum mechanics do not behave like systems of classical
theories in physics – their elements are not particles and they are not waves, they are
different. This change led to a new mathematical conceptual fundament in physics.

The quantum mechanical state function Ψ is an element of the abstract Hilbert
space H and therefore it is a completely new theoretical term in physics that dif-
fers significantly from those of classical physics. Its properties are completely new
and are not comparable to those of observable phenomena in classical theories. The
theory of quantum mechanics is completely abstract: it is a theory of mathematical
state functions that have no exact counterpart in reality. This means that per se Ψ
is not observable but, nonetheless, we can experiment with a quantum mechanical
object having a state function in order to measure its position value, and we can also
experiment with this object in order to measure its momentum value. However, we



26 1 Fuzzy Sets and Systems and Philosophy of Science

Fig. 1.14. The quantum mechanical theoretization from real systems and phenomena to an
abstract Hilbert space vector is a series of fuzzification and defuzzification

cannot conduct both experiments simultaneously and thus are not able to get both
values for the same point in time. But we can predict these values as outcomes of
experiments at this point in time. Since predictions are targeted on future events, we
cannot valuate them with the logical values “true” or “false,” but must use probabil-
ities. The probability distribution to measure a certain position value x at point t in
time is given by |Ψ(x,t)|2 and the probability distribution to measure a certain mo-
mentum value p at time point t is given by |Ψ(p, t)|2, where Ψ(x, t) or Ψ(p, t), are
representations of the abstract Hilbert space element Ψ in the position or momen-
tum representation respectively. These circumstances are illustrated in Figure 1.14:
we measure or predict crisp values or probability distributions of classical observ-
able variables for a quantum mechanical system position or momentum values. We
interpret this constraint process as a fuzzification. From these observable values, we
come to an abstract Hilbert space vector Ψ. We interpret this abstraction process as
a defuzzification; the process to give this abstract element a realistic representation
is interpreted as the Hilbert space theoretical representation of Ψ. It is important
to distinguish between the fuzzification and the representation: the first process is
based on a scientist’s perception whereas the second process is a well known math-
ematical kind of projection in the quantum mechanical framework.

Again, this case study is presented as a specialization of the “fuzzy structuralist
view of scientific theories” where the use of fuzzy sets and fuzzy relations to repre-
sent perceptions as important components in the interpretation of scientific theories
is very suitable in one of the new physical theories of the 20th century. In quantum
mechanics, the observer and his/her perceptions play a central role, and – as we have
seen above – this is also the case in medical diagnostics, and – as we will see below
– this is also the case in evolutionary biology.

1.6.3 Evolutionary Theory

In the waning 20th century biology became a leading scientific discipline. This was
due to one of the most famous evolutionary biologists of our times, the German-
US-American taxonomist and ornithologist Ernst Mayr (1904-2005), who in the
years after 1942 was one of the architects of the synthetic theory of evolution. He
was also one of the most important historians and philosophers of biology in the
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20th century. From the 1970s onward he argued that there is an important difference
between biology and the exact sciences. For example, in physics it is important to
discover new facts or natural laws, but in biology it is more important to develop new
concepts and to complete concepts that already exist. Philosophy of science in the
20th century was based on physics, especially on the newly established theories of
relativity and quantum mechanics. A philosophy of biology was, however, lacking.

• One reason for that is that most philosophers of science in the last century had a
background in physics rather than in biology.

• Another reason for the lack of a philosophy of biology is that the basic principles
of physics are simply not applicable to animate systems.

• A third reason is that biology is potentially based on self-contained principles
that are inapplicable to inanimate systems.

The discovery of these basic differences between physics and biology was a funda-
mental intellectual revolution that began with the publication in 1859 of the famous
book by Charles Robert Darwin (1809-1882): On the Origin of Species By Means
of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life
[6]. Following this, modern biology emerged as an autonomous scientific discipline
and the way was prepared for a restructuring of the philosophy of science.

In his “last survey of controversial concepts in biology” Ernst Mayr tried to re-
spond to the question What is biology? ([15], p. ix) He found “that biology actually
consists of two rather different fields, mechanistic (functional) biology and histori-
cal biology.

• Functional biology deals with the physiology of all activities of living organ-
isms, particularly with all cellular processes, including those of the genome.
These functional processes ultimately can be explained purely mechanistically
by chemistry and physics.

• The other branch of biology is historical biology. Knowledge of history is not
needed for the explanation of a purely functional process. However, it is indis-
pensable for the explanation of all aspects of the living world that involve the
dimension of historical time – in other words, as we now know, all aspects deal-
ing with evolution. This field is evolutionary biology.” ([15], p. 24)

Both fields of modern biology – functional and evolutionary biology – were estab-
lished in the 19th century, but there were only a few philosophers of science and
modern biologists - one of whom was Mayr beginning in the 1970s – who argued
that we need a philosophy of modern biology that is different from the philosophy of
the exact sciences. Mayr especially emphasized this difference. In order to establish
a philosophy of modern biology it was necessary

1. to eliminate the principles of exact sciences and to replace these with principles
pertinent to biology and

2. to add new basic biological principles.

Mayr “found that biology, even though it is a genuine science, has certain character-
istics not found in other sciences.” ([15], p. 4) Mayr specified four basic principles
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of physics that are inapplicable in biology:

Essentialism – unsharp separation of classes of phenomena:
From the ancient world “the traditional concept of the diversity of the world was
that it consisted of a limited number of sharply delimited and unchanging eide or
essences. [. . . ] The seemingly endless variety of phenomena, it was said, actually
consisted of a limited number of natural kinds (essences or types), each forming
a class. The members of each class were thought to be identical, constant, and
sharply separated from the members of any other essence. Therefore variation was
nonessential and accidental. [. . . ] Typological thinking, therefore, is unable to ac-
commodate variation and has given rise to a misleading conception of human race.
Caucasians, Africans, Asians, and Inuits are types for a typologist that differ con-
spicuously from other human ethnic groups and are sharply separated from them.
This mode of thinking leads to racism. Darwin completely rejected typological
thinking and instead used an entirely different concept, now called population think-
ing.” ([15], p. 27)

Determinism – variation or chance events:
“One of the consequences of the acceptance of deterministic Newtonian laws was
that it left no room for variation or chance events. [. . . ] The refutation of strict
determinism and of the possibility of absolute prediction freed the way for the study
of variation and of chance phenomena, so important in biology.” ([15], p. 27).

Reductionism
Reductionists “claimed that the problem of the explanation of a system was resolved
in principle as soon as the system had been reduced to its smallest components. As
soon as one had completed the inventory of these components and had determined
the function of each of them, they claimed it would be an easy task also to ex-
plain everything observed at the higher levels of organization.” ([15], p. 27 ). “Until
far into the twentieth century philosophers almost consistently confounded analysis
and reduction. However, to have isolated all the parts, even the smallest ones, is not
enough for a complete explanation of most systems, as claimed by the reduction-
ists. For a complete explanation one also needs to understand the interaction among
these parts. As T. H. Huxley pointed out a long time ago, partitioning water into
hydrogen gas and oxygen gas does not explain the liquidity of water.” . . . ([15], p.
69) As Hilary Putnam said correctly: “What [reductionism] breeds is physics wor-
ship coupled with neglect of the ’higher-level’ sciences. Infatuation with what is
supposedly possible in principle goes with indifference to practice and to the actual
structure of practice.” ([16])

Absence of universal natural laws in biology – missing strict regularities:
“The philosophers of logical positivism, and indeed all philosophers with a back-
ground in physics and mathematics, base their theories on natural laws and such
theories are therefore usually strictly deterministic. In biology there are also regu-
larities, but various authors [. . . ] severely question whether these are the same as
the natural laws of the physical sciences. There is no consensus yet in the answer
to this controversy. Laws certainly play a rather small role in theory construction
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in biology. The major reason for the lesser importance of laws in biological theory
formation is perhaps the greater role played in biological systems by chance and
randomness. Other reasons for the small role of laws are the uniqueness of a high
percentage of phenomena in living systems as well as the historical nature of events.
Owing to the probabilistic nature of most generalizations in evolutionary biology,
it is impossible to apply Popper’s method of falsification for theory testing because
a particular case of a seeming refutation of a certain law may not be anything but
an exception, as are common in biology. Most theories in biology are based not on
laws but on concepts.” ([15], p. 28).

In the years before the last turn of the century these characteristics were given prob-
abilistic formulations, but in this paper we argue for a better way to get fruitful so-
lutions in the philosophy of biology by using the methodologies of / computational
intelligence, FSS, CW, and CTP. Physics is concerned with the inanimate world,
encompassing many indistinguishable objects, and therefore it can be meaningful
to argue with probabilities, but: “In a biopopulation, by contrast, every individual
is unique, while the statistical mean value of a population is an abstraction.” ([15],
p. 29) Because biological systems are high complex Mayr concluded:

“Population thinking and populations are not laws but concepts. It is one of
the most fundamental differences between biology and the so called exact
sciences that in biology theories usually are based on concepts while in the
physical sciences they are based on natural laws. Examples of concepts that
became important bases of theories in various branches of biology are terri-
tory, female choice, sexual selection, resource, and geographic isolation. And
even though, through appropriate rewording, some of these concepts can be
phrased as laws, they are something entirely different from the Newtonian
natural laws.” ([15], p. 30).

In physics we can formulate the laws of our theories with exact mathematics – dif-
ferential equations – and of course, since the appearance of thermodynamics the
concept of probability has been very important and fruitful as a means of describing
the quantities of the theories of exact sciences. In Mayr’s view of evolutionary bi-
ology no laws exist that are describable in terms of probability distributions, but we
have concepts that are describable in terms of fuzzy sets and systems. Obviously we
can look at these concepts with our “fuzzy glasses” and maybe this is a good way to
get interesting results in the philosophy of biology. This means that the difference
between theories of exact sciences and evolutionary biology is manifest in the lack
of exact mathematical structures in biological theories. In exact sciences we have
real systems and phenomena, e.g., a rolling stone or a planet that follows its path
around the sun, on the one hand, and an exact-mathematical formulated theoretical
structure on the other hand, e.g., a vector space, the field of real numbers and natu-
ral laws, such as Newton’s law of gravity. Scientists often say that such a theoretical
structure provides a “picture of the reality.”

In Mayr’s view of biology we do not have this exact mathematical formulated
theoretical structure, but we have concepts. These concepts are – of course – much
fuzzier “pictures of the reality” than exact mathematical structures, but perhaps they
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Fig. 1.15. Fuzzification of real systems and phenomena to evolutionary concepts

are also much more suitable! Let’s try to associate these concepts with the observing
scientist’s perceptions of real systems and phenomena. Naturally, the scientist’s per-
ceptions do not have an exact mathematical structure, but rather a minimal structure
imposed by the scientist’s observations. We must distinguish these perception-based
models from real systems and phenomena that have no structure until someone im-
poses one upon them. In accordance with Zadeh’s CTP, we represent the scientist’s
perceptions by fuzzy sets. We call this representation “fuzzification”.

When Zadeh established CTP on the basis of CW, which in turn is based on his
theory of FSS, he earnestly believed that these methodologies would attain a certain
importance in science: “In coming years, computing with words and perceptions is
likely to emerge as an im-portant direction in science and technology”. [41]. Taking
Zadeh at his word, his methodology stack of FSS, CW, and CTP are here incorpo-
rated into the philosophy of biology: whereas in exact sciences there is a relationship
of real systems and exact mathematical theoretical structures, in biology we have a
relationship of real systems and fuzzy structures, a fuzzification (see Figure 1.15).

We represent perceptions by fuzzy sets; however, scientists observe not just single
phenomena, but many interlinked phenomena, e.g., two entities move similarly or
inversely, or something is faster or slower than a second entity, or something is
brighter or darker, or has an analogous smell, etc. Thus, we can get our “fuzzy
pictures of the reality” in biology using fuzzy relations.

The inapplicability of essentialism, determinism, and reductionism as principles
in biology and the replacement of universal laws by concepts in biology show that
biology is essentially different from physics and other exact sciences. Mayr wrote in
the introduction to his last book: “However, I found that biology, even enough it is a
genuine science, has certain characteristics not found in other sciences.” ([15], p. 4)
As we have seen Mayr identified such characteristics in the realm of unsharp sepa-
ration of classes of phenomena, variation or chance events, highly complex systems,
and the absence of strict regularities. In the latter decades of the 20th century these
characteristics were given probabilistic formulations, but we think an interpretation
using fuzzy concepts is more in line with Mayr’s way of thinking in the philosophy
of biology.
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1.7 Outlook

With fuzzy sets and systems (FSS), computing with words (CW) and the computa-
tional theory of perceptions (CTP), Lotfi Zadeh established an appropriate method-
ology stack to represent the work and efforts of scientific research and to bridge
the gap between empirical observations and the abstract construction of theoreti-
cal structures. In the classical, i.e., non-fuzzy, structuralist view of theories there is
an empirical layer of real phenomena and systems that have some minimal struc-
ture and a theoretical layer of potential models and models that are fully structured
entities. But there is no representation of the observer’s role and his/her perceptions.

The modified view of the structuralist approach presented as a proposal in this pa-
per comprises a layer of fuzzy sets and fuzzy relations as a means of dealing with the
difference between real phenomena and systems on the one hand and the observer’s
perceptions of these real entities on the other. This “fuzzy structuralist view” of the
philosophy of science may open up a new and fruitful way to understand scien-
tific research. After my talk at the IFSA 2007 World Congress in Cancun, Mexico,
[23], Jerry Mendel asked me to substitute the thin fuzzy layer between the real and
the theoretical layers by the whole space between these two layers as a “space of
fuzzy entities.” – I think that this is a very good idea and I would like to adopt this
suggestion here: Figure 1.16 shows the “fuzzy space” of perceptions between the
theoretical and the empirical layer. Another idea is to introduce the variable T – the
“theoretization” – which can be interpreted as membership function of perceptions
in the class of theoretical entities ((potential) models). A perception p with T (p) = 1

Fig. 1.16. The fuzzy space of perceptions between the empirical and the theoretical layer.
“Theorization” as a lingustic variable.
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Fig. 1.17. “Empirization” as the linguistic variable that is the complement of “Theoretization”

is completely theoretical and if T (p) = 0, then perception p is completely empirical.
In Figure 1.17 we also introduce the variable E – the “empirization” – which is the
complement of the theoretization T . A perception p with E(p) = 1 is completely
empirical and E(p) = 0 means that p is completely theoretical. Therefore we have
the empirization of our concepts as the complement of the theoretization of our con-
cepts: E = 1−T . In future works we will proceed with this “fuzzy epistemology”!
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Chapter 2
Fuzzy Systems and Scientific Method –
Meta-level Reflections and Prospects

Vesa A. Niskanen

Despite the great success of fuzzy systems in various applications, we still need
their further studies from the standpoint of their metatheory, methodology and the
philosophy of science. This objective means that in the context of fuzzy systems we
should consider more such aspects as the role of scientific outlooks and research
paradigms, concept analysis, scientific argumentation, hypothesis assessment, the-
ory formation, scientific explanation and ethics. Below we consider these subject
matters at a general level and we also attempt to subsume them under Lotfi Zadeh’s
recent ideas on approximation.

2.1 Background – Principal Western Traditions in Scientific
Method

Our outlooks constitute our assumptions and knowledge on nature, society and the
human beings as well as our philosophical conceptions on these issues. A scientific
outlook, in turn, presupposes that the foregoing assumptions and knowledge are
acquired and justified by using scientific methods. Below we consider some cen-
tral aspects of fuzzy systems from the standpoint of their metatheory, methodology
and the philosophy of science, and we particularly deal with problems of scientific
method.

This section sketches historical and ideological background in the Western world
for our study. Section 2 considers aspects of concept formation and interpretation,
section 3 deals with argumentation, in section 4 we examine scientific explanation
and theory formation, section 5 provides guidelines for scientific ethics and section 6
concludes our study.

The definitions on such terms as science or scientific method would already re-
quire wider considerations, but at this stage we only establish that science should
acquire novel knowledge in a systematic and rational manner and the scientific
method, in turn, guides in a systematic manner our research when we organize and
examine our rational and experimental processes and principles [40]. We consider
additional features for these below.

We can consider our scientific research process from various standpoints [12,
17, 21, 26, 27, 28, 29, 30]. First, the historical approach, in particular the history
of science and methodology, provides a basis for our present research traditions.

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 37–65.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009



38 2 Fuzzy Systems and Scientific Method – Meta-level Reflections and Prospects

Second, our outlooks stem from our philosophical and religious traditions. Third, we
apply certain scientific methods and even adopt certain research paradigms. Fourth,
in the science of science we can examine science from the empirical standpoint, for
example, the economy, sociology or psychology of science. Finally, the politics of
science is an important factor because the funding sources are often controlled by
political decision makers. In the light of this categorization, we focus on historical
and methodological aspects as well as on the politics of sciences from the ethical
standpoint.

When a scientific outlook is adopted, our scientific assumptions and assertions
have to be continuously open for criticism and discussion and this also concerns
the still continuing debates on the demarcation between the scientific and nonscien-
tific outlooks and methods. Fuzzy systems provide a good example of this because
their scientific nature has been criticized in particular by several mathematicians and
logicians.

The Western scientific outlooks stem from two mainstreams, the philosophies
of the ancient Greece and Christianity. Despite their distinct origins, these traditions
integrated in the conduct of inquiry in particular in the Scholastic philosophy, which
prevailed in Europe in the Middle Ages. This integration meant in practice that
the hypotheses, argumentation, theories and explanations were adopted from the
ancient Greeks (in particular from Plato and Aristotle), whereas their contents and
justifications had to correspond with the doctrines in the Bible. A typical example of
this approach was the Greek Eudoxan planetary model which due to its geocentric
nature was also acceptable to the Christian community. On the other hand, valuable
research in bivalent logics and mathematics was also performed, and these studies
were usually independent of religious commitments.

The link between Christianity and the scientific community weakened already
in the late Middle Ages, and by virtue of certain inventions and discoveries made
in the natural sciences, these sciences actually abandoned Christianity by the 18th
century. Essential persons in this process were Galileo, Francis Bacon and Newton,
inter alia. In addition, the philosophy of Enlightenment played an important role
in this process. However, in the Western world the influence on Christianity still
prevails to some extent in our ethics and even in the creationistic biology [12, 17,
21, 26, 27, 28, 29, 30].

Since the abandonment of Christianity, it has been the guiding principle in the
Western scientific outlook that the human reasoning provides the sole basis for all
our studies. This principle was adopted in the both epistemological mainstreams,
viz. rationalism and empiricism. The former aroused problems in the natural sci-
ences and thus the latter was adopted to be the prevailing approach to knowledge
acquisition, hypothesis testing and theory formation in these disciplines. According
to empiricism, which mainly has the British origin (Locke, Hume etc.), the scientific
research is based on our observations and experiments, whereas rationalism also ac-
cepts researcher’s “intuition" or “pure reasoning", even instead of experiments (Kant
suggested a compromise theory of these two traditions). Since Newton, in particu-
lar, mathematical notation and calculus are also widely used in the natural sciences
[21, 26, 27, 28, 29, 30].
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The extensive rise of the Western human sciences (the social and behavioral sci-
ences, economics, the Humanities, etc.) began in the 19th century, and two main
methodological approaches were adopted. The one advocated the idea on the unity
of science by presupposing that the human sciences should also apply the meth-
ods of the natural sciences, whereas the other suggested alternative or comple-
mentary methods for these sciences. For example, the former approach, which was
strongly advocated in the positivistic tradition (e.g., Schlick, Carnap), assumed that
the human beings are only complicated machines or automata (“homeostats") and
thus they are not distinct from the other inanimate or animate entities, whereas
the latter approach emphasized the unique goal-oriented or intentional behavior
of the human being. The idea on intentionality stemmed from the Geisteswis-
senschaften tradition (“human" or “spiritual" sciences, e.g., Dilthey), in particu-
lar from phenomenology and hermeneutics. The rise of Marxism in the 20th cen-
tury was the third main factor in this methodological debate even though in this
tradition the concept of human being was close to the positivistic point of view
[5, 6, 13, 23, 38].

As regards the present situation in the Western human sciences, we seem to have
two main methodological traditions. First, the quantitative research tradition which
stems from the positivistic tradition and Marxism and, second, the qualitative re-
search based on the ideas of the Geisteswissenschaften.

Hence, today quantitative methods, empiricism and mathematical calculii prevail
in the methodology of the natural sciences. These disciplines also use widely bi-
valent logic in their argumentations. In the human sciences, in turn, we apply both
quantitative and qualitative methods but usually these methods are nevertheless ap-
plied separately.

Even though the Western methodology seems to prevail globally today, we must
bear in mind that there are also such several outstanding scientific traditions out-
side the Western culture from which we have espoused a lot of innovations as
the Egyptian, Mesopotamian, Indian, Chinese and Arabic traditions. For example,
Christianity has strictly speaking several features in common with the non-Western
philosophies.

As regards the role of fuzzy systems in the modern scientific method, fuzzy math-
ematics and logic have been revolutionary approaches in particular in the West-
ern world. Their innovative features are the humanlike processing of imprecise,
multi-valued and linguistic entities in concept formation, argumentation, theory
formation and model construction. Today fuzzy systems have a well-established
position in the various disciplines of the natural sciences, whereas in the human
sciences more applications are required, and thus in there fuzzy systems still await
their golden age. At a general methodological level fuzzy systems have a possibility
to integrate the Western and non-Western methodological traditions to a great ex-
tent and their methodology can also act as a mediator between the quantitative and
qualitative methods. Some examples are provided below. However, fuzzy systems
still encounter certain methodological problems and below we also consider these
issues.
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2.2 The Challenge of Concept Formation and Interpretation

2.2.1 A Case Study – Sketching the Exegesis of Fuzziness

In the scientific concept formation we consider the meanings of terms and these
meanings are specified according to our concept analyses and interpretations. As an
outcome, we can also perform definitions. This section considers typical challenges
which fuzzy systems can meet in concept formation.

At first we consider the meaning of fuzzy. The exegesis of terms comprises vari-
ous aspects. For example, a term can be homonymous (premises), ambiguous (fuzzy,
fuzzy logic), equivocal (reasoning), univocal (real number) or synonymous (episte-
mology, theory of knowledge). The meanings of terms can also include denotations,
connotations or both of them. In addition, it is usually assumed that in the conduct
of inquiry we should only operate with the cognitive meanings in which case we can
assess the truth values of our statements, whereas in our everyday life emotive mean-
ings based on our emotions and values are also used. Unfortunately, it is still now
and then possible that false or emotive arguments with negative value judgments are
also stated in the scientific community, and the emotional judgments against fuzzy
systems provide an examples of this.

We also have to bear in mind that the meaning of a term depends upon the con-
text, the usage of the term as a speech act, term’s role in the common knowledge,
linguistic conventions in society and the period of time when the term is used. For
example, the meaning of the term fuzzy in the common usage is distinct from that of
applied to soft computing, and thus the context, common knowledge and linguistic
conventions determine its usage. The employment of this term in the manner of Lotfi
Zadeh is also a fairly modern interpretation, and thus it was unknown to us prior to
the 1960’s. We also constantly introduce such novel meanings of terms to fuzzy sys-
tems research which are unfamiliar to the other scholars in the scientific community
(soft computing, defuzzification, granulation, precisiation, etc.). We could still re-
consider whether this is a good policy if we attempt to promote the idea of fuzziness
fluently [8, 9, 10, 11, 22, 30, 43].

Below we adopt one traditional approach to philosophical concept analysis, and
thus we consider the intensions and extensions of terms. The intension of a term
comprises such properties or other concepts which constitute the meaning of this
term. The extension, in turn, consists of those things to which the term is referring.
For example, the intension of fuzzy is its meaning, i.e., the concept of fuzzy, whereas
its extension is the set of fuzzy things. Both of these constituents are considered
below.

In concept analysis we can start by considering term’s simple constituents of
intension and then we can add more properties to it gradually, and this technique
can even lead to complicated intensions. We also consider the interrelationships
between these constituents as well as the similarities and dissimilarities between
our intension and the other corresponding intensions. Typical relationships in this
context are x is associated with y, x is part of y, x is the cause of y, x follows y, x
contradicts y, x is a intervening condition for y and x is property of y.
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Fig. 2.1. An Example of Concept Analysis of Fuzzy According to Visuwords™

Consider now the exegesis of the term fuzzy. According to one hypothesis, in the
English common usage fuzzy presumably stems from the Low German word fussig
(spongy). Today it has various nuances of meaning and the most recent one was
specified by Zadeh in 1960’s. Figure 2.1 provides one example of examining the
intension of fuzzy in the common usage when the foregoing technique is used [47].
According to Zadeh, in turn, fuzzy and imprecise have identical meanings [50, 51,
52, 53, 54, 55, 56]. Zadeh’s interpretation leads us to the exegesis of imprecision
within fuzzy systems.

In the 20th century philosophical literature imprecision was often synonymous
with vagueness, but today we usually assume that vagueness also includes gener-
ality and thus we can prefer imprecision to vagueness within the fuzzy systems.
Imprecision, in turn, constitutes ontological, epistemological and various forms of
linguistic approaches. The ontological approach considers the existence of the im-
precise objects, and in this context the crucial problem is whether there are any
imprecise entities or, in particular, whether there exist any fuzzy sets. As we know,
such isomorphic mathematical entities as the fuzzy membership functions, which
are generalized characteristic functions, are used in the fuzzy models, but are there
also the corresponding “true" fuzzy sets in the real world? This problem is still un-
resolved.

The epistemological imprecision is an outcome of the human being’s inability
to comprehend, perceive or discern certain precise objects clearly. Hence, in this
context the imprecision is not related to the entities in the real world but rather in
the human mind and thus we can perceive precise objects as being imprecise (e.g.
objects in the fog). This interpretation is related to uncertainty because in both cases
we deal with epistemological aspects. Zadeh’s theories of perceptions and FL+ are
related to this standpoint (cf. below).
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Within the fuzzy systems the linguistic semantic approach seems to prevail.
Hence, we assume that the linguistic entities can be imprecise by nature, and in
particular the extensions of terms have been in focus. If adopt this approach, we can
thus establish that a term is imprecise if and only if its extension contains borderline
cases. For example, the term young person is imprecise, because its extension, i.e.,
the set of young persons, includes borderline cases, and we are thus unable to de-
termine its precise limits. Fuzzy sets represent well the idea of extensions with the
borderline cases, and on some occasions fuzzy sets are even referred to as quantita-
tive meanings, i.e., the quantitative meaning of young person is the corresponding
fuzzy set (viz. the extension).

The linguistic semantic intensional imprecision means that the corresponding ex-
tension of a term might contain borderline cases. For example, young person is thus
imprecise in such world in which everyone is under 10 years (i.e., clearly young),
whereas this term would not be imprecise in the extensional sense in that world.

The linguistic syntactic approach to imprecision assumes that the scope of an
imprecise term is unclear. For example, strictly speaking, the statement I shot an
elephant in the pajamas does not clearly reveal us which party was in the pajamas,
because the scope of this word is problematic in this context.

The linguistic pragmatic approach considers the degree of unanimity of our state-
ments. For example, how many persons will agree with the statement A person of
30 is young ? The more disagreement, the more imprecision in this sense.

Hence, confusions will arise if various interpretations of imprecision are used
and our exegesis becomes even more complicated if the term uncertainty is also
involved. First, several scholars outside the fuzzy research community have argued
that fuzziness is actually a version of probability. Second, within the fuzzy sys-
tem community some scholars assume that fuzziness (or imprecision) is synony-
mous with uncertainty. We have already stated above that the idea of linguistic
imprecision has prevailed and this standpoint is related to semantics, whereas un-
certainty is an epistemological issue. Hence, in this sense the distinction between
these two concepts should be clear but there are also some historical reasons for this
misconception.

Today we agree with the fact that probability theory is an appropriate approach
to uncertainty but in fact the meaning of probability has varied since the ancient
Greek philosophy. In the conduct of inquiry we usually aim at avoiding erroneous
statements, and error can mean at least ignorance (or incompleteness), falsity and
uncertainty. In the ancient Greece such words as pistin, pithanos and doxa were used
in this context, and these expressions were usually translated into Latin as opinio,
probabilis and verisimilis. When translated into English, in turn, we thus obtained
such terms as probability, verisimilitude, truthlikeness and truth appearance. Con-
sequently there has been at least two historical approaches to the concept of proba-
bility, epistemic (uncertainty) and semantic (truth) traditions. Another example can
be found in German (and in a few other languages) in which the term for probability
(WAHRscheinlichkeit) actually refers to truth [29].

If we would like to find a connection between imprecision and uncertainty or
probability at the semantic level, Popper’s ideas on verisimilitude and fallibilism as
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well as the theories on truthlikeness provide one resolution because they consider the
notion of degree of truth and this notion also plays an essential role in fuzzy logic.
Unlike in fuzzy logic, however, these approaches only apply bivalent logic. We must
bear in mind that in this context probability is not having its modern mainstream
meaning [35, 36].

At the epistemic level, in turn, probability is expected to represent the relation
between the hypothesis and evidence (e.g. Carnap, Ramsey, de Finetti) and this re-
lation is dependent upon our knowledge and ignorance. Hence, epistemic probabil-
ity actually deals with the degrees of belief and this notion can also be considered
fluently with fuzzy systems [4, 27, 49].

Today we also have physicalistic (or objective) approaches to probability such
as frequency and propensity interpretation (e.g., von Mises, Reichenbach). Then we
presuppose that probabilities are dependent upon physical properties assigned to
the occurrences in the real world. These approaches are closely related to the idea
of modality, and modality, in turn, is related to possibility. Hence, via the possibility
theory another connection between probability and fuzziness can be found [27].

Summing up the distinction between imprecision (fuzziness) and uncertainty
(probability), the statement John’s age is 21, provided that John is actually 20 years,
has a high degree of truth, whereas the probability of this statement is zero in the
light of the evidence that John’s age is 20. However, we can also integrate fuzzi-
ness with probability and this is carried out in the fuzzified probability theories (cf.
below) [14, 56].

The foregoing discussion on the meaning of fuzziness already shows that there
is still a lot of work in the concept analysis within the fuzzy systems. Other exam-
ples which require more exegesis in this context are the notions of truth, linguis-
tic modifier, fuzzy quantifier, granulation, precisiation, defuzzification, information,
perception and similarity [8, 9, 10, 11, 50, 51, 52, 53, 54, 55, 56]. Concept analysis
provides us a basis for definitions and we consider this subject matter in the next
section.

2.2.2 Definitions within Fuzzy Systems

Definitions are essential in concept formation and we usually apply them in the
linguistic form

. . . =d f . . .

in which the expression on the left is the term to be defined (the definiendum) and
the expressions on the right (the definiens) give the meaning or the description of
the definiendum. For example, we can define

fuzzy =d f imprecise.

Traditional rules for definition presuppose that, first, the definition is not allowed to
be circular. This rule means in practice that the definiens is not allowed to include
the definiendum (recursive definitions do not obey this rule). Second, the definition
should not contain too imprecise or figurative terms. This principle, however, is a
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matter of degree in practice. Third, the definiens should not contain negative terms if
corresponding positive terms can be used instead. In addition, definitions should fol-
low such psychological rules as they should replace complicated terms with simpler
ones.

In the conduct of inquiry we define the central terms of our studies and in this
task we should take into account the available definitions of these terms, their cor-
respondence with the real world and even the alternative methodological traditions.
In addition to only clarify the meaning of a term, a definition can be the objective of
the study, a hypothesis, an outcome of the study or it can link theoretical concepts
to our observations. For example, if the term fuzzy logic is considered, definitions
prior to the 1960’s are unavailable and today, according to the traditional bivalent
logic, fuzzy logic is not “real" logic. The correspondence of the meaning of fuzzy
logic with the real world can also be problematic because of the novel usage of the
term fuzzy [19, 22, 28].

Hempel [19] suggested four types of definitions. The first main category, the de-
scriptive definitions, includes definitions that describe the meanings of the terms
already in use. In addition, we can meaningfully assign truth values to these defini-
tions. Its first subcategory comprises analytic definitions and then we assign to the
definiendum an expression which has identical intension with it. For example, the
definition,

fuzzy =d f imprecise

is true if the terms fuzzy and imprecise have identical intensions, i.e., if the concept
of fuzzy is identical with the concept of imprecise.

In the second subcategory, the non-analytic definitions, the definiendum and
definiens should have identical extensions, i.e., they should refer to identical sets.
For example, the definition

fuzzy =d f imprecise

is true if the set of fuzzy entities is identical with the set of imprecise entities.
The second main category, the stipulative definitions, assigns names by stipula-

tion to new linguistic or symbolic expressions (nominal definitions) as well as it pro-
vides “scientific" meanings to terms that are also in common usage (explications).
In this context it is not meaningful to consider the truth values of these definitions.
For example, if we use nominal definition and we define

fuzzy =d f imprecise,

we actually make a linguistic convention that fuzzy means imprecise.
In explication, in turn, the definition

fuzzy =d f imprecise

assigns a scientific or technical meaning for the term fuzzy, and this meaning can be
distinct from the common usage of this term (Zadeh has applied this to fuzzy).
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In fact, within fuzzy systems all the foregoing types of definitions have been
applied and thus it would be recommendable to mention to the other researchers,
what kind of definition is used in the study in order to avoid extra confusions.

Wittgenstein [46] attempted to solve the definition problems of imprecise and
complex terms by formulating the principle of family resemblance. According to
him, by describing the essence of a thing or object is impossible in the case of im-
precise and complex terms, and hence we should use terms which are characteristic
but not necessary of the definiendum. For example, in the case of the term human
being, we are unable to assign any necessary features or meaning components to
human beings, but rather this term should consist of such generally accepted mean-
ing components as rational, two-legged, and intentional, and a being is human if
most of these components may be assigned to it. Wittgenstein also emphasized the
role of exemplification when terms of this type are described. Wittgenstein’s idea
has been applied to grouping in statistics, and in this context these groups are some-
times confusingly referred to as fuzzy sets. Putnam, in turn, refers to the meaning
components of this type as cluster terms [37].

The operational definition, which is a method to determine concept’s or vari-
able’s structure or to measure its quantity, is also regarded as being one type of
definition on some occasions, but strictly speaking we can thus establish several
alternative definitions to a given term, viz. one for each measurement. These “def-
initions" are maintained in particular in the positivistic traditions of science. For
example, an operational definition on fuzzy reasoning should reveal us how this in-
ference is performed, but since there are several inference methods available, each
of them represents one definition. We encounter the similar problem with the de-
gree of membership because there are various methods to measure this quantity and
each of them establishes an operational definition for this term. Hence, the opera-
tional definitions can provide us with the diversity of definitions for each term, and
this situation is often unacceptable in the light of the concept formation and in the
practice of science [26, 28].

Another problem with the operational definition is that there are many such terms
which are difficult to measure directly or numerically as person’s attitudes, motives,
intentions and values, and thus they have problems with their validity of the mea-
surements. Validity problems can still exist even though we aim to specify measur-
able counterparts for these terms (operational indicators). At a general level, this
problem is a part of the controversy between the quantitative and qualitative re-
search because the latter sets strict limits to plausible numerical measurement (cf.
also below) [26, 28].

On the other hand, in measurement fuzzy systems can provide a useful link be-
tween quantitative and qualitative modeling if we use fuzzy linguistic concepts and
variables when we examine our theories and observations. Then we can obtain more
direct and informative data which can also be examined conveniently in a computer
environment. Recently Zadeh has again focused on this important subject matter in
his theory of perceptions [20, 25, 30, 55, 56].
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2.2.3 The Challenge of Interpretation

Interpretation, which is an essential method in the qualitative research, usually refers
to delivering messages, explanation, exegesis or translation, and it has been per-
formed in the conduct of inquiry since the ancient Greece (Aristotle, Schleierma-
cher, Dilthey, Heidegger, Gadamer etc.). Originally interpretation was applied to
linguistic expressions and text documents but today we also scientifically interpret
such objects or phenomena as pictures, movies, music, dreams and the human be-
havior in particular within the hermeneutic and Geisteswissenschaften tradition in
general [6, 13, 22, 30, 45].

In general, interpretation comprises two main levels, our conceptual system and
our object of research. The former includes the meanings provided by us, and the lat-
ter focuses on object’s original, latent and intrinsic meanings. For example, fuzziness
can only mean imprecision to us, whereas originally it also has other meanings. An
object of latent interpretation would be the assumption that Lotfi Zadeh preferred
the term fuzzy to imprecise in his publications in order to arouse more interest in
fuzzy systems. Finally, we can consider such intrinsic aspects of fuzziness as its
moral and esthetical values.

In interpretation we aim to understand fully the meaning of our object of re-
search, and in practice we can apply such methods as the hermeneutic circle in
this task. The application of this method presupposes that in the beginning we have
some foreknowledge (Vorverständnis in German) or preconceptions on the object
or phenomenon under study. This knowledge is based on our experience, education,
traditions, historical facts etc. The foreknowledge is assessed according to our sci-
entific inquiry and it is subject to modification during our study. In our modification
we assume that the whole of the object or phenomenon may be understood accord-
ing to its parts, and vice versa. This interaction is a continuous circular process, and
in the manner of a helix, it should lead us to the deep understanding of our problem.
Our interpretations should also correspond well with the true nature of the object or
phenomenon under interpretation. Finally, by virtue of successful interpretation, we
may explain and understand both the relevant revealed and unrevealed features and
constituents of the objects or phenomena [22].

For example, if a student is reading his/her first textbook on fuzzy systems, at the
very beginning he/she has only cursory knowledge on fuzziness and fuzzy systems.
While reading the book, he/she does not necessarily understand all its details imme-
diately, but the more he/she reads, the better general view is attained, and simulta-
neously, the better the details are understood. Thus, he/she is able to understand the
details according to the general view, and vice versa. Finally, a good understanding
of fuzzy systems should be attained.

However, there are no detailed methods available for making interpretations but
rather some general and approximate guidelines. Another problem is that our in-
terpretations are more or less subjective by nature even though we should aim to
minimize subjectivity. Despite these problems the foregoing method is widely ap-
plied to the qualitative research (cf. section 3).
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Interpretation is also used in quantitative research more or less implicitly. For ex-
ample, if we use mathematical models, we actually apply mathematical interpreta-
tion to the phenomena under study. In statistics, interpretation is used in the context
of cluster analysis, factor analysis and hypothesis assessment, inter alia. Since the
Pythagoreans, some scholars have even assumed that all the phenomena in the real
world can be considered within the mathematical calculus. In this context, however,
we must draw a distinction between the mathematical and real world. The former
can be exact, deducible, consistent and rational by nature but the latter does not ful-
fill these conditions and thus their full correspondence is problematic. For example,
a sophisticated mathematical model can be inappropriate in practice [22]. Hence,
we have to draw a distinction between the Pythagorean style of “mathematism" and
mathematics.

Within fuzzy systems linguistic interpretation plays a central role because we
assign linguistic labels to fuzzy sets. Hence, the “quantitative meanings" of fuzzy
terms are fuzzy sets or relations. In the framework established in section 2.2 this
means that, given such term as young in the reference set of ages, its intension is its
common usage meaning, i.e., the concept of being young, and the extension is the
fuzzy set of young persons. Thus, the label of this set is young. This means that we
label the fuzzy sets according to our interpretations and this procedure is subjective
by nature. It also follows that the fuzzy terms have two “meanings" in practice, their
intensions and corresponding fuzzy sets.

In addition, since we are unable to label all fuzzy sets in our models, we usually
formulate a family of labeled archetype sets, and by using linguistic approximation,
we attempt to label other sets according to these archetypes. This linguistic and
approximate “discriminant analysis" is another example in which case we make
interpretations.

Since the interpretations and artificial languages within fuzzy systems should
correspond well with both the natural language and the real world, we should have
an appropriate linguistic framework to the fuzzy linguistic variables. Our fuzzy arti-
ficial language should comprise a vocabulary and both syntactic and semantic rules.
We also need a universe of discourse for fuzzy sets and appropriate linguistic vari-
ables. The values of these variables, in turn, are formulated by using primitive terms,
linguistic modifiers, connectives, quantifiers, various qualifiers etc. For example,
many Swedes are tall, and very likely they are often fairly happy could be such an
expression [30, 33, 51, 52, 53].

We should also provide a psychological basis for our linguistic framework. For
example, the author has applied Osgood’s semantic differential technique in this
context [30, 32]. In this case we first select two antonymous primitive terms for
each variable, and the rest of the values are usually their modified and compound
versions. For example, given the variable age of persons, our primitive terms are
obviously young and old. The other values can be fairly young, neither young nor old
(the middle point) and fairly old, if we use five values. If we examine the attitudes or
opinions of persons, we can also use Likert’s scales in which case we use such values
as I strongly agree, I agree, I neither agree nor disagree, I disagree and I strongly
disagree. Osgood’s and Likert’s scales are widely used in the human sciences but
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Fig. 2.2. Structure of Zadeh’s Information Granulation

they are usually subsumed under the conventional statistical analysis. Fuzzy systems
enable us to take into account better their linguistic and approximate nature in a
computer environment and thus we can also apply pure qualitative modeling [30].

Zadeh has suggested a comprehensive theory to formulate a fuzzy artificial lan-
guage [51, 52, 53, 54]. Unfortunately, it seems that many researchers have not fully
understood its great value and applicability thus far. Hence, in practice we still
operate much with fuzzy sets and mathematical notation in our model construc-
tion although we should rather use actual fuzzy linguistic entities and fuzzy logics.
Figure 2.2 provides an example of Zadeh’s information granulation approach when
it is applied to linguistic variables and the foregoing idea of quantitative meaning.

Although we would have an appropriate syntax for our fuzzy language, we still
can encounter problems in semantics because several quantitative meanings for fuzzy
terms, which stem both from normative and descriptive standpoint, are available.
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Examples are the meanings of very and fairly as well as the “interpretation" of con-
nectives and quantifiers. At least the normative interpretations are still established on
more or less subjective grounds.

An important topic in semantics is the problem of truth. In philosophy, a dis-
tinction is usually drawn between the definitions and criteria of truth [27, 40]. The
former considers the meaning or nature of truth, and hence it concentrates on se-
mantic problems. The latter examines the procedures for recognizing or testing the
truth values of sentences, and it thus focuses on epistemology (if we maintain that
only sentences can have truth values). For example, according to the widelyused
correspondence theory, we can define that the linguistic statement Lotfi Zadeh lives
in Berkeley is true if and only if he lives in Berkeley. On the other hand, the ver-
ification of this statement in practice belongs to the problemacy of recognizing
the truth.

In definition, the correspondence theory of truth seems to be the mainstream ap-
proach within fuzzy systems, even though this principle is presented only implicitly
in the literature [40]. Hence, we regard truth as a relation between a given language
and the real world. First, this means that the meanings of linguistic expressions and
the connection between a given language and the real world are based on human
conventions. Second, the truth of a statement is determined by the real world, and
thus its truth is independent of our stipulations [29].

Since truth is not a manifest property of statements, it is possible that a sentence
is true although we do not recognize its truth. Hence, we also have to establish the
criteria for testing or measuring the truth values of sentences. The applicability of
using our truth value assignments in our model or theory construction is a traditional
example of such criteria, and this criteria also seems to be widely used within fuzzy
systems.

Since we use multivalued logics within fuzzy systems, we will encounter a diver-
sity of interpretations on truth [28, 30]. For example, we can state that a compound
statement is partially true if only a part of it is true and the rest is not true. A state-
ment is totally true if all of it is true. A statement is a partial truth if it expresses a
part of the whole truth, but also excludes some (often relevant) true parts. We may
also assess that a statement is more or less close to being true (or false). If metric or
mathematical concepts are applied, then the notion degree of truth may be used in
this context and in fuzzy logic this approach has prevailed. In practice, however, the
concept of the degree of truth is still problematic and various alternative methods
for assigning or measuring it are used. This subject matter is also related to the prob-
lems of proximity, similarity and dissimilarity. Section 4 sketches one resolution to
this problem.

Recently, the Internet has aroused new challenges to interpretation in a computer
environment. Since we have enormously information available in the Internet, we
should have appropriate tools and methods for finding the relevant information for
us. Intelligent agents, knowledge discovery, data analysis and semantic web are ex-
amples of these. However, the crucial problem in this context is how computer sys-
tems could understand sufficiently the contents of the web documents, and thus we
encounter again the problem of interpretation. For example, is the document under
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consideration providing some arguments or explanations, is it true or how could we
make an abstract on it? Various interpretation models for computers are available
already but we still await the real “killer" product. The more extensive use of quali-
tative methods with fuzzy systems could provide one resolution to this challenging
problem.

We have mainly considered linguistic problems thus far but they are crucial if we
apply fuzzy systems. If our linguistic frameworks have such plausible basis which
correspond well with the real world, we can model fluently phenomena of nature,
human behavior and human reasoning. A good linguistic basis is also a necessary
condition to carry out further developments within fuzzy systems. We still have
such great challenges in this context as the modeling of human interpretation, and
it seems that the more extensive use of qualitative methods could better meet these
challenges.

The following sections consider other relevant selected methodological topics in
the light of linguistic framework of fuzzy systems and imprecise concepts.

2.3 Scientific Reasoning and Hypothesis Assessment

2.3.1 Approximate Reasoning – Past, Present and Future

Approximate reasoning is one of those central topics which has aroused lively de-
bates with the traditional bivalent approaches. By reasoning we generally mean such
thinking act that proceeds from assumptions to conclusions. Reasoning has origi-
nally been performed in the animate world but today machines can also reason to
some extent. In traditional argumentation, our assumptions are usually known as
the premisses (premises) or hypotheses [56], and in approximate reasoning these
premisses and/or the conclusions are imprecise. Fuzzy reasoning, in turn, applies
approximate reasoning and fuzzy systems [16, 20, 22, 42].

We can study reasoning from such standpoints as psychology, physiology, biol-
ogy, logic and methodology. Below we focus on logico-methodological aspects and
thus we mainly consider problems of logic and argumentation.

If we perform reasoning, we should first specify our arguments or find the exist-
ing arguments in our object of study. Second, it is also important to draw a distinc-
tion between arguments, explanations and descriptions. For example, consider the
statements

1. Lotfi Zadeh introduced the principles of fuzzy systems because
he wrote the first papers on this topic.

2. Lotfi Zadeh introduced fuzzy systems in order to construct better
computer models.

3. Lotfi Zadeh introduced fuzzy systems.

They represent argument, explanation and description, respectively, but on some oc-
casions we also use their combinations. Below we consider arguments, whereas ex-
planation is examined in Section 4 [22]. Various types of reasoning are
available [27].
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First, theoretical reasoning usually applies affirmations and standard forms of
reasoning methods (e.g. syllogisms). For example, if the Modus Ponens syllogism
is applied, we can reason that

Lotfi Zadeh lives in Berkeley. (premiss)
If Lotfi Zadeh lives in Berkeley, then he lives in the USA. (premiss)
Lotfi Zadeh lives in the USA. (conclusion)

Second, practical reasoning leads to certain acts or modes of behavior. For example,
If fuzzy systems are good at model construction, I will use them.
Third, in heuristics we consider the invention of new ideas and hypotheses as

well as the discovery of new objects or phenomena. Zadeh’s insight on fuzzy sets
provides an example of invention, whereas the planet Uranus is an example of an
object that was discovered.

Fourth, we can consider how our ideas, hypotheses or discoveries can be tested,
proved, accepted, rejected, confirmed or disconfirmed. The hypothetico-deductive
method and hermeneutic circle are well-known approaches to assess the hypotheses.

Reasoning can base on intuitive and informal rules and assessments, but, owing
to developments in logic, today symbolic representation and formal arguments are
used in particular in the bivalent logics. An essential reason for the controversy
between fuzzy systems and traditional logic is that the former does not fulfill the
formal conditions established by the latter. In brief, the syntactic structures of fuzzy
systems have had justifiability problems from the standpoint of bivalent logic even
though a lot of valuable work has been done in fuzzy logic in this field. In a sense,
fuzzy systems seem not to fulfill the idea of the “mental beauty" which is the alleged
feature of the traditional mathematics and formal bivalent logics. This principle of
the formal correctness of reasoning in the manner of bivalent logic has played a
central role in the Western scientific outlooks but today we should call into question
its plausibility due to the developments and results of the fuzzy systems.

On the other hand, the bivalent logics have encountered semantic problems be-
cause our actual reasoning does not correspond with them. The well-known un-
successful attempts to establish this correspondence are those suggested by the
Pythagoreans, Galileo, Leibniz, Hilbert and Carnap, inter alia, and hence today the
bivalent traditions generally maintain that their logics are only normative by nature,
i.e., instead of describing our actual reasoning, they show us how we should perform
our reasoning. It is, however, also problematic whether this normative approach is
justified in the modern conduct of inquiry due to the limitations and problems of bi-
valency. It has even been stated that bivalent logic was sufficiently simple calculus
to use in the precomputer age, whereas today we can apply more applicable systems
with the computers [3, 16, 24, 44].

We can also study reasoning by considering the nature of our premisses, in which
case the fundamental question is whether they are necessarily true or not. In the
former case we can apply demonstration and in the latter case dialectics. Examples
are Euclid’s geometry and Socrates’s reasoning method, respectively.

If we, in turn, consider the relationship between the premisses and the conclusion,
a distinction between deductive and inductive reasoning is usually drawn [27, 40].
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Deductive reasoning contains nothing in the conclusion that is not already contained
in the premisses. This idea provides a basis for syntactic validity (or theoremhood),
which is a research object of proof theory. Semantic validity means that the conclusion
is true whenever all the premisses are true. In traditional bivalent logic tautologies are
semantically valid, whereas in the fuzzy logic we can also consider whether truth-
preserving reasoning with an alternative degree of truth fulfills semantic validity.

In inductive reasoning, it is assumed that the conclusions go beyond what is con-
tained in their premisses and thus it is regarded as ampliative with respect to our
knowledge if the conclusions are true. Unlike deduction, induction is, however, not
necessarily truth-preserving, and thus it is possible for the premisses to be true, but
the conclusion non-true. In this context the degree of support for the conclusion
provides a basis for the concept of inductive strength. Another clear distinction be-
tween deduction and induction is that in the former we can add new premisses to
our premiss set and the conclusion still logically follows from this set. In practice,
various types of inductive reasoning are available.

The fuzzy systems seem to mimic the human reasoning fairly well, and by virtue
of the idea of the gradation of truth they are semantically meaningful and they can
also resolve such traditional paradoxes of bivalent logic as the Sorites (Falakros)
paradox [41]. However, several practical applications are based on ad hoc logical
structures or on mere fuzzy set models. In addition, some arguments typical of fuzzy
reasoning still stem from more or less intuitive and subjective assumptions, this
making it possible that researchers may also be persuaded by invalid arguments or
erroneous operations. We also have the unfortunate situation that, despite the general
aim of fuzzy systems to use linguistic and human-friendly notation and expressions,
a lot of mathematical and logical notations as well as pure mathematical operations
are still used in this context.

Recently, Zadeh has established the principles of the extended fuzzy logic, FL+,
and in this context we can reason by applying both traditional validity (p-validity)
and novel f-validity [50]. In the former case we operate with precise theorems, clas-
sical deducibility, syllogisms and formal logic, whereas f-validity is related to infor-
mal and approximate reasoning and approximate “f-theorems" (Fig. 2.3). According
to Zadeh ([50], p. 2),

Fig. 2.3. Zadeh’s Syntactic F-validity Yields Approximate Theorems
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“A simple example of a f-theorem in f-geometry is: f-medians of f-triangle
are f-concurrent. This f-theorem can be f-proved by fuzzification of the

familiar proof of the crisp version of the theorem."

F-validity and f-theorem are examples of Zadeh’s Impossibility Principle. This
principle informally states that in an environment of imprecision, uncertainty, in-
completeness of information, conflicting goals and partiality of truth, p-validity is
not, in general, an achievable objective.

As we know, the fuzzified Modus Ponens, for example, corresponds with Zadeh’s
FL+ approach. In its usual form, i.e.,

statement 1,
if statement 2, then statement 3,
thus, statement 4,

the approximately identical statement 1 and the antecedent of statement 2 will yield
statement 4 as the conclusion and this is approximately identical with the consequent
of statement 3. By using this type of argument we can draw approximate conclusions
which are close to their true counterparts, and thus f-validity is applied. In practice
various fuzzy implications are used in this context and their correspondence with our
intuition can be problematic. In addition, true or precise multi-valued implications
are usually applied [8, 9, 10].

Naturally we can also apply non-true or approximate implications to the forego-
ing argument in which case we obtain even more approximate conclusions. Then,
unlike in the case of bivalent or true fuzzy implication, the identity between state-
ment 1 and the antecedent of statement 2 do not yield conclusion which is identical
with the consequent of statement 3. Since we often apply the extension principle
in this context when we calculate the conclusion, this approach means that we do
not use bivalent relations as their inducing mappings but rather fuzzy relations. At
a general level, the role of non-true and approximate implications should be studied
more in this context because then we can better consider and model the approximate
interrelationships between the phenomena.

Fuzzy systems applied to approximate reasoning can resolve problems which
are superb to bivalent logics. They can overcome the Sorites paradox and model
conveniently such challenging phenomena of the real world which are problematic
to traditional approaches. The developments within the FL+ systems, in turn, seem
to open new prospects at a more general methodological level. The FL+ system also
seems to have connections to fallibilism, scientific realism, verisimilitude and the
theory of truthlikeness. These aspects as well as some applications of approximate
argumentation are discussed in the following sections.

2.3.2 Approximation and Reasoning with Hypotheses

When we assess the truth or justifiability of our hypotheses, we usually apply im-
plicitly or explicitly the Modus Tollendo Ponens syllogism, i.e.,
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statement 1 or statement 2,

it is not the case that statement 1,

thus, statement 2.

Hence, in our hypothesis assessment we first establish all possible relevant assump-
tions or resolutions concerning our object of research. Then, we eliminate those
assumptions from our “disjunction of assumptions" which contradict the evidence.
For example, from the disjunction Lotfi Zadeh lives either in Berkeley or New York
and the evidence Lotfi Zadeh does not live in New York, we can conclude that he
lives in Berkeley.

Various types of hypotheses are available. For example, the working hypotheses
are such alternative concepts, theories, models or methods which we consider in
the beginning of our studies. The causal hypotheses assume causal connections be-
tween entities. In interpretation our foreknowledge is our initial hypothesis. Causal
and interpretative hypotheses are used in the quantitative and qualitative research,
respectively.

The disjunctive method can be subsumed under the more general principle that
we can always find the true hypotheses by eliminating the false ones. However, the
well-known raven paradox of falsificationism challenges this idea by reasoning that
in practice we are unable to verify the statement that all the ravens are black because
it is impossible to find all of them but, on the other hand, only one counterexample
can falsify it. Thus we should prefer the falsification approach in hypothesis assess-
ment. If we instead of this “dogmatic" falsification approach assume more liberally
that both the acceptance and the rejection of a hypothesis are relevant procedures in
the conduct of inquiry, we maintain fallibilism [27, 35, 36].

Mill [26, 27] has also applied the foregoing elimination method of hypotheses
to his well-known reasoning method of difference. Consider that we have the two
testing conditions, c1 and c2, which are similar except for one factor, f , and this
factor occurs in c1 but it does not occur in c2. Now, according to Mill, if a certain
phenomenon only occurs in c1, we may reason that factor f is the cause of this
phenomenon.

In the modern quantitative research we use causal hypotheses and in this con-
text falsification and Mill’s principle are applied to the widely-used hypothetico-
deductive method (Galileo, Descartes, Boyle, Peirce etc.).

From the logical standpoint, it stems from the classical bivalent Modus Tollens
syllogism in which case we can reason that

if statement 1, then statement 2 (true implication),

statement 2 is false (i.e., its negation is true),

statement 1 is false (conclusion).

It follows that if statement 2 is true, statement 1 may be true or false, and, in a sense,
the syllogism is thus useless for us.

In the hypothetico-deductive method we apply the Modus Tollens by assuming
that statement 1 is our hypothesis and statement 2 is usually its observable or testable
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logical consequence. The justifiability of statement 2 is thus based on our experi-
ments and observations, and if these are inconsistent with this statement, we reject
our hypothesis. If, in turn, our experiments and observations correspond with state-
ment 2, the Modus Tollens will not provide us with any resolution. Hence, in the
latter case we have to replace deduction with induction and then one method is to as-
sume that our hypothesis is only “confirmed". Sufficient confirmations, in turn, will
lead to the acceptance of the hypothesis [5, 18, 19, 21, 22, 23, 25, 26, 27, 35, 36, 38].

In practice, the hypothetico-deductive method thus uses the hypotheses, which
stem from the researcher’s context of discovery and inventions, deduces tests and ex-
periments from these hypotheses and finally either rejects or confirms the hypothe-
ses according to the empirical evidence. Rejection is based on deduction, whereas
confirmation is performed according to inductive reasoning.

If we use probability statements, the assessment on the relationship between the
hypothesis and the evidence is more challenging than in the deterministic case. Ex-
amples of these are the statistical tests in the human sciences in which case we
consider the acceptance of the null and alternative hypotheses at the given levels of
significance [14, 15].

We have to bear in mind that we are unable to use the hypothetico-deductive
method when we attempt to develop new ideas or hypothesis but these belong to the
field of heuristics. This restriction also concerns hypotheses assessments in the ideal
or imaginary conditions.

Within fuzzy systems we can also apply fuzzified probability theory, and the
most recent version of this is suggested by Zadeh in his theory of second-order
probability [50]. In this theory both the events and the probability functions can be
approximate and thus we can use such statements as the probability that John is
very young is fairly low. His theory provides one approach to the foregoing idea
on degree of confirmation in epistemic probability. Zadeh’s theory on probability
can also be subsumed under his FL+ and thus we could apply it to approximate
statistical reasoning, inter alia. Another method in the FL+ would be to generalize
the traditional second-order theory by considering such statements as the probabil-
ity that the probability of John being very young is fairly low is very high. These
subject matters would extend a new frontier within both the fuzzy systems and the
probability theory.

If we, in turn, apply a fuzzified version of the Modus Tollens to hypothesis as-
sessment, we can also use linguistic and approximate constituents. The essential
advantage of the model of this type over the conventional version is that the truth
values of the premisses may also be gradually between true and false. It follows
that we may acquire more information from the hypotheses than in the conventional
case. In practice we can now assume that a false consequent yields a false hypoth-
esis and otherwise the degree of confirmation increases as the truth value of the
consequent approaches truth. In other words, the more convincing evidence for the
hypothesis, the higher the degree of confirmation (and the lower the degree of dis-
confirmation). For example, the more various experiments support our hypotheses,
the more this hypothesis is gradually confirmed or accepted.



56 2 Fuzzy Systems and Scientific Method – Meta-level Reflections and Prospects

Naturally, as in the case of the Modus Ponens, the implication in the fuzzified
Modus Tollens can also be non-true. For example, if this implication is only fairly
true, we can establish that even the false consequences of the hypotheses do not nec-
essarily lead to mere false hypotheses. Equally the truth values of the consequents
close to true may already lead to maximal degrees of confirmation. In general, we
may assume that with the non-true implications our conclusions include more “dis-
persion" or imprecision than in the conventional case, and loose reasoning links of
this type are typical in the human sciences in which we usually operate with noisy
data and the complicated interrelationships between the variables.

The actual hypothetico-deductive method performs tests and experiments with
the hypotheses, but we may also apply it to the interpretative method if we assume
that, in addition to these, we may consider the correspondence between our fore-
knowledge or interpretation hypothesis and the real world on rationalistic grounds.
Hence, in this sense, we can also apply the hypothetico-deductive method to the
qualitative research. The qualitative hypotheses are usually linguistic and approxi-
mate in nature, and they may more often deal with unique and non-recurrent events
or phenomena than in the quantitative case. Instead of traditional statistical tests
or other experiments we usually employ our observations, intuition, linguistic rea-
soning and interpretation when we assess the confirmation of our hypotheses. It is
even possible that we conduct studies without any hypotheses or we may begin our
studies without them and establish the hypotheses later according to our data and
materials (e.g. the grounded theory approach) [6, 22].

The fuzzy systems thus seem usable to qualitative hypothesis assessment as well
if we apply such foregoing methods as the FL+ or fuzzified Modus Tollens. How-
ever, these systems still apply traditional methods when the hypotheses are assessed.
By applying our novel approximation theories, we can acquire more informative re-
sults and assess our hypothesis in a more versatile manner. In particular in the hu-
man sciences these methodological innovations are relevant because several of their
computer models are still fairly primitive in particular in the qualitative research.

In addition to concept analysis, argumentations and descriptions, explanations
are relevant in the conduct of inquiry, and in the following section we consider this
subject matter.

2.4 Approximation and Scientific Explanation on Human
Behavior

Scientific explanations make our objects of research intelligible for us. An explana-
tion constitutes of two parts, the phenomenon or problem to be explained (explanan-
dum) and our explanation for it (explanans). With the explanations we attempt pro-
vide answers to such questions as why?, what for? and what is the purpose for?

Within fuzzy systems we usually apply such causal or probabilistic explanations
which are used in the natural sciences and these do not take into account the in-
tentions or motives of beings because their origin is in the inanimated world. For
example, if we would like to know fully the reasons which led Lotfi Zadeh to for-
mulate the theory of fuzzy systems, we should also understand his aims, motives and
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the other underlying causes and these aspects go beyond the natural sciences. We
also encounter this problem in such quantitative branches in the human sciences as
behaviorism. Hence, we should also apply additional explanations when we model
the modes of human behavior [18, 19, 39].

According to the well-known slogan in the Geisteswissenschaften, we explain
(erklären) nature but we understand (verstehen) history which means that in general
the entities of the natural sciences neither establish any goals nor have any mo-
tives, whereas in history, and more generally in the human sciences, goal-oriented
or motive-based behavior of agents is typical.

In the natural sciences Hempel’s subsumption theory is widely used in which
case we formulate the explanans according to the given initial conditions and ap-
propriate general laws by using either deduction or induction. When the human be-
ings are involved, it is nevertheless difficult to find any general laws nor even clear
cause-effect relationships in person’s behavior. This is mainly due to their noisy
data and the complicated interrelationships between the variables (e.g., elaboration
problems).

In the qualitative research and the Geisteswissenschaften tradition we do not pri-
marily attempt to find the causes for the phenomena but we principally aim to make
appropriate interpretations to these phenomena. As was mentioned above already,
we first attempt to understand the phenomenon under study and at this stage we
usually apply our foreknowledge. This process leads us to our initial interpreta-
tion. Second, we apply such methods as the hermeneutic circle in order to enhance
or finetune our interpretation. Finally, we should yield an intelligible interpretation
which also explains well the phenomenon [48].

For example, consider the following: Lotfi Zadeh realized in the 1960’s that the
available computer models were inappropriate to several applications particularly
when imprecise model entities were involved. As a creative person, who constantly
aims to design better theories and models, he attempted to resolve this problem and
his new position in the liberal university in Berkeley provided a good working en-
vironment for this. Hence, he introduced fuzzy systems in order to construct better
models. We have thus provided one possible qualitative explanation on the formu-
lation of fuzzy systems.

The goal-oriented behavior of the human beings is taken into account in the teleo-
logical explanations, and Aristotle applied one already referred to as the practical syl-
logism. Our goal-oriented behavior can be conscious (intentional) or subconscious
by nature. For example, Lotfi Zadeh’s inventions concerning fuzzy systems based
evidently on conscious goals to provide better resolutions to computer modeling,
whereas presumably due to the subconscious fear that the fuzzy systems will re-
place the traditional mathematical modeling, some scholars have aimed to avert the
dissemination of these systems. As a borderline case we can also study goal-directed
behavior which is common to beings and objects in both the animated and inanimated
world. In this case the functions of these objects can give us the impression that these
objects have deeper goals or end states but in fact these acts or functions are neither
conscious nor subconscious by nature. Examples of these are the body temperature
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control of living beings and an auto pilot system in an aircraft. Thus, the goal-directed
behavior belongs to the category of quasi-teleological or functional explanations.

Other models for explanation are also available such as the genetic and statistical
explanations. Since the latter applies probability theory and statistics, we can also
use fuzzified probability in this context. For example, we can provide a probabilistic
explanation that the wide acceptance of the fuzzy systems in the Asian countries is
likely due to their multivalent philosophical and religious traditions.

On the time axis the distinction between causal and teleological explanations
means that, given the explanandum, the former attempts to find its causes from the
past or present, whereas the latter focuses on the present or future events. For ex-
ample, if we state that the fuzzy systems were invented because Lotfi Zadeh’s new
environment in Berkeley was sufficiently liberal for this work, we apply causal ex-
planation. If, in turn, we state that the reason for this invention was that we could
use better models in the future, a teleological explanation is used. Naturally, we can
often use these explanations simultaneously:

PAST → PRESENT ← FUTURE

Liberal environment Invention of fuzzy systems Better models
(causal explanans) (explanandum) (teleological explanans)

Although we already have several good fuzzy models operating in goal-directed
systems, we still lack such systems which take into account the goal-oriented be-
havior of the human beings. The fuzzy goal-oriented systems would nevertheless
be very useful in particular in the behavioral and social sciences, economics, game
theory, decision making, decision support systems and even in robotics. Possible
complementary methods in this context could be adaptive systems, cognitive maps,
evolutionary computing, cellular automata, theory of networks and swarm theory,
inter alia [1, 2, 7, 31].

Another interesting object of research within fuzzy systems would be approxi-
mate explanation. Niiniluoto suggests within his theory of truthlikeness that if we
are unable to apply conventional explanations, we could use approximate explana-
tions instead [29]. In an approximate explanation the explanans is in the neighbor-
hood of the correct explanation, i.e., its truth value is not true but between true and
false. Niiniluoto, however, applies bivalent logic in this context and thus his ap-
proach does not sufficiently correspond with the actual ideas of approximation and
truthlikeness. With fuzzy logic, in turn, we can assign various degrees of truth to
our approximate explanans as well as we can apply the approximate deduction of
the FL+. In practice we thus assess the degree of similarity between our explanans
and its true counterpart, and the higher the degree of similarity, the higher the degree
of truth for our explanans is obtained.

For example, the statement that the engineers favor today fuzzy systems in com-
puter modeling because they have proven to be good in practice since the 1990’s,
is a non-true explanation because the plausibility of these systems was recognized
already in the 1970’s and 1980’s. Hence, we have one such possible approach to
approximate explanation which can be subsumed under the FL+.
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Fig. 2.4. The Possible Role of the FL+ in the Conduct of Inquiry

Since the scientific theories constitute descriptions, explanations, predictions and
interpretations which base on our observations, experiments, formal argumentation
and pure reasoning, we can also consider approximate theories. We can thus assume
that if our theory is close to its true counterpart theory, we have formed an approx-
imate theory, and we can even consider its degree of truth when fuzzy systems are
used. In addition to Niiniluoto’s theory of truthlikeness, Popper has considered this
subject matter in his theory of verisimilitude from the bivalent standpoint [35, 36].
Popper presupposes that we aim to form true theories (cognitivism) but in practice
our theories can be non-true. If we perform successful research, our theories will
approach their true counterparts and thus they are always corrigible by nature. The
similar idea is applied in Peirce’s fallibilism, and in general, scientific realism has
maintained this outlook (Peirce, Lenin, Popper, Hempel) [27].

Once again, fuzzy systems could open new vistas in theory formation, if we apply
Zadeh’s FL+ and the degree of truth to approximate theories. It also seems that
several of our theories today are still non-true by nature. Fig. 2.4 depicts the possible
role of the FL+ in the conduct of inquiry in general.

Summing up, such particular features of human beings as their goal-oriented be-
havior are often ignored when fuzzy systems are used in the human-scientific ap-
plications. This is due to the fact that quantitative methods are mainly used in this
context, but we should also apply both traditional and fuzzified qualitative meth-
ods to a great extent. In addition, we should consider the application of such novel
theories as the FL+ to approximate explanations and theories in general.
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2.5 Aspects of Scientific Ethics

Ethical aspects have a growing importance in the scientific community and thus
within fuzzy systems we should take them better into account in the future. In ethics
we consider the approval or disapproval, rightness or wrongness, goodness or bad-
ness and virtue or vice of our judgments. We also study the desirability or wisdom
of our actions, dispositions, ends, objects or states of affairs [40].

The empirical traditions in ethics focus on the studies on our moral behavior and
explanations on our moral judgments. This approach is, in addition to such philoso-
phers as Hume and some positivists, usually adopted in the social and behavioral
sciences (e.g. Westermarck). The other, more “philosophical" traditions, mainly
consider those moral principles or recommendations which guide our behavior or
the ways of life. In both cases we can consider the judgments of our ethical values
(axiology) and the judgments of our ethical obligations (deontology). The philo-
sophical mainstream traditions in ethics have concentrated on the recommendation
approach and deontology [40].

In the scientific ethics we examine those ethical principles, rules, norms, values
and virtues which scientists should accept and follow in the conduct of inquiry. All
researchers can encounter ethical problems in their studies and thus they should
be familiar with the prevailing scientific ethics. However, to date there are no such
universal rules available but we can only provide some guidelines, and some of these
ideas already stem from Aristotle’s philosophy. Within the fuzzy systems research,
in particular, we still lack such comprehensive ethical rules as the ethical code for the
IEEE. Below we sketch a framework for establishing these rules for fuzzy systems.

First, as a professional person, we can presuppose that a researcher should be a
good expert. This criterion means that he/she should have a good knowledge on the
results and sufficient skills on applying the methods in his/her field. He/she should
also be sufficiently creative to provide novel scientific knowledge. As an instructor
and mentor, a researcher should disseminate his/her expertise to the students and to
society [34].

In order to attain these goals, a researcher is usually expected to be truly enthusi-
astic in performing his/her studies in an honest, exhaustive and a critical manner. It
is also widely presupposed that a researcher should not work for his/her personal or
methodological school’s profit but rather for the benefit of nature and humanity. The
social aspects, in turn, presuppose that the membership in the scientific community
is possible for everyone, for example, for both men and women or rich and poor.
If we consider the researcher’s profession at an even more general level, a question
arises whether this profession is having some privileges concerning the ethical rules,
i.e., due to the particular nature of this profession, are the researchers also working
beyond the prevailing ethical principles [34]?

Second, a researcher should evaluate whether his/her research objects are ethi-
cally acceptable. Today we generally presuppose that our studies are public and they
are not allowed to be injurious to nature or humanity, and thus military research and
some areas in medicine and biology, for example, are problematic. It is also usual
today that these research policies vary between the nations. On the other hand, it is
characteristic of human nature to be always curious and thus to be interested in all
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the phenomena in the real world. Hence, in order to resolve this contradiction it is
sometimes suggested that we are allowed to study anything but we should be selec-
tive in publishing our results. Another resolution has been a moratorium which, for
example, has been applied to cloning. In practice, however, it is often problematic
to estimate the possible risks or damages caused by our studies but in any case we
must always attempt to consider thoroughly these consequences.

Third, we should consider our research methods. Today human experiments are
strictly controlled by international laws, and according to them, our research should
cause neither physical nor mental injuries to the persons under study. We must also
guarantee the protection of privacy for these persons. A borderline case in this con-
text is such injurious experiment in which the researcher only uses his/her own body.

The animal experiments, in turn, should evidently follow the rules similar to the
human experiments, but in this context the corresponding laws are more flexible.
However, it is generally presupposed that these animals should be treated well and
we should also avoid to cause them unnecessary pain. In practice, for example, the
medical animal experiments are more widely accepted than those carried out in the
cosmetics industry. In addition, today we do not accept that the “intelligent" animals
are used in these experiments.

Fourth, the autonomy of the scientific community is also problematic. It seems
that the researchers usually wish to perform their studies independently, but in prac-
tice the political decision makers, business world and the funding sources aim to
control this work. Hence we should find an appropriate equilibrium between these
possibly contradicting aims.

Finally, today nature protection plays an important role in our globe and thus we
can presuppose that our research should not cause any environmental hazards. It is
even recommendable that we could promote the idea of sustainable development in
our environment, technology, economy, education, world peace and health care.

Fuzzy systems usually require a high-tech environment with computers. Hence,
in this respect, they can arouse some ethical problems. First, most of their research
work is performed in the highly developed countries or only in the highly developed
areas in the development countries. The poor areas in the world are thus outsiders
in this work. In addition, the great majority of the researchers are still males. We
could greatly expand our scientific community, increase our creativity potential and
promote equality if these obstacles could be removed.

Second, many fuzzy applications are designed for military or business purposes.
It follows that in these cases the data, methods and results are not necessarily public
for the scientific community. It is also evident that these studies do not necessarily
aim to the welfare of our nature or humanity.

Third, in the light of such crisis scenarios of futurologists which deal with the
possible problems in our environment, economy, energy consumption and health,
we could contribute more our efforts to resolve these problems because fuzzy sys-
tems seem to have a great potential in these areas. For example, appropriate fuzzy
applications can reduce energy consumption, enhance medical and social care or
provide user-friendly technology to such areas in our globe which still are at low
educational stage. Since free and equal education for both boys and girls seems to be
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the silver bullet for attaining a high standard of living today, fuzzy systems research
should empower this policy by producing good learning tools and aids for e-learning
and instruction in general. Fortunately, many of the available studies serve already
these purposes partially or implicitly.

Hence, today ethical aspects should always be taken into account within fuzzy
systems research. These principles should correspond with such subject matters as
the international laws and declarations concerning nature protection, human rights,
equality, peace and sustainable development. A good starting point for this policy
would be that we establish a global ethical code for the researchers who study fuzzy
systems.

2.6 Conclusions

We have considered fuzzy systems from the standpoint of their metatheory, method-
ology and the philosophy of science. In particular, we have examined concept forma-
tion, argumentation, explanation, theory formation and ethics. In concept formation
we should take more into account the actual nature of linguistic variables as well as
psychological factors, because fuzzy systems apply such artificial languages which
should correspond well the natural languages. Hence appropriate vocabulary and
both syntactic and semantic rules are expected. Methods for good interpretations
of data and documents are also required because the available, mainly quantitative
approaches, seem to be insufficient.

In argumentation we should develop more the idea of approximation in the man-
ner of the FL+. In the semantic examination we should consider fuzzified syl-
logisms, fuzzy validity and the degree of acceptance (or rejection) in hypothesis
assessment. Syntactical examinations, in turn, should consist of approximate de-
ducibility and theoremhood. We could also consider the distinction between induc-
tion and deduction when this fuzzy argumentation is used.

In the scientific explanation we should provide a methodological basis for ap-
proximate teleological and probabilistic explanations because they are essential in
particular in the human sciences. We should also consider the possibilities for using
approximate explanations generally in an intelligible manner.

Today ethical aspects are very important in the conduct of inquiry. Thus we should
establish ethical code for those researchers who work with fuzzy systems. Another
important subject matter, which is related to ethics, is sustainable development.

At a more general level, we should consider how the foregoing ideas can be
applied to both traditional and approximate theories. We should also examine more
the role of fuzzy systems in the human sciences, in particular in the qualitative
research, because in these fields we should be able to operate with noisy numerical
or non-numerical data sets, unique or non-recurrent events, non-numerical methods,
linguistic and approximate reasoning, complicated networks of variables and only
probable conclusions.

If we apply fuzzy systems in the foregoing manner, we can extend the frontiers
of science and we can also apply better quantitative and qualitative methods in com-
bination. It is even possible that we can thus bring the Western and Eastern outlooks
closer to each other.
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Chapter 3
Fuzzy Logic and Science

Javier Montero

3.1 Introduction

After more than forty years since the seminal paper of L.A. Zadeh on fuzzy sets
[30], a search on the term fuzzy “logic” in the top Science journal may be dis-
couraging and claims for an explanation: despite those almost 7000 cites acknowl-
edged by Thomson’s ISI Web of Knowledge to such a seminal paper, less than
20 articles in Science journal include the term “fuzzy logic”. And indeed some of
them not in Zadeh’s sense. One of these out-of-context articles is a Science ed-
itorial note [4], where F.E. Bloom acknowledges that key acceptance criteria for
publishing a paper in Science (like the existence of novel concepts of interdisci-
plinary interest or novelty and general significance) are ambiguous criteria, trying
below in such a note to illuminate as editors potential authors of Science journal
with some of the fuzzy logic behind their decisions. Should we think then that sci-
entists can take advantage of some kind of “fuzzy logic” in order to evaluate the
quality of a scientific paper, but such a logic can not be part of such a scientific
paper?

In this paper we shall try an explanation for this situation, starting with a fast
look to history of science (section 2). In particular, we shall stress that science, at
least the way it is conceived now, is being built upon the official pillar of a method-
ological observation of reality (through controlled experiments). But in section 3
we point out that a second pillar has been assumed in science without discus-
sion, directly taken from the ancient times: the Aristotelian (binary) logic, which
provides the tool for designing and understanding experiments. This is being ex-
plained in section 4 taking the probabilistic uncertainty as an example. Then, after
reminding in section 5 that no scientific approach can be complete neither from
an experimental or a logical point of view, we stress in section 6 the increas-
ing role of human beings in science: first as an observer that modifies reality and
should therefore be included in the model, then as an object to be studied and,
anyway, because researchers decide the logic for designing experiments and giv-
ing a meaning to observations. Our final comments (section 7) postulates that we
need another science built upon some non-binary logic not only because current soft
sciences need a true scientific structure, but because it is a political must in demo-
cratic societies.

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 67–77.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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3.2 Experimental Sciences

Science was a concept originally equivalent to knowledge, and it is only during the
eighteen century when science took a particular meaning, that became the current
one in the middle of the nineteen century.

A naive approach to the history of science will suggest that science started when
Mathematics made Astronomy out from the observation of celestial objects. The
object of study was physically quite far away from human beings but, meanwhile,
mathematics were being developed with interesting applications to closer fields. An-
cient Greeks made a tremendous effort in order to understand the world and the ma-
chinery describing it (not only language but concepts and relations between them).
A theory illuminates certain parts of a complex world, allowing in this simplifica-
tion a certain understanding. A variety of theories offer from specific solutions for
particular issues to global approaches for the whole human life, close to religion
(remind that Pythagoreans was a secretive knowledge organization). Due to many
historical circumstances, one of these theories became hegemonic in Europe: the re-
ligion of the Roman Church. With this religion, mainly due to Aquinas (1225-1274),
the structural logic of Aristotle was introduced in the basic European culture. But
this rational component acted like a virus inside the Roman Church religion: consis-
tency is a human argument, not a divine argument. In this way a battle between the
two arguments was declared, and the Roman Church started to loose protagonism in
the management of knowledge (human arguments need not to be discussed in Latin,
for example). At this stage, the press invented by Gutenberg (1398-1468) plays an
extremely relevant role in spreading knowledge out of any religious oligarchy. A
break point in this battle can be stated with Copernicus (1473-1543) and Galileo
(1564-1642), since they represent the victory of the human argument. Society was
then ready to lead knowledge, on one hand stressing observation and prediction,
but accepting on the other hand and without any discussion the Aristotelian logic
as the basis for consistency. In fact, although Plato had acknowledged the existence
of intermediate degrees of truth between true and false, it was not till Łukasiewicz
(1878-1956) that an alternative logic was formalized.

From the positivism and empiricism approach to knowledge, together with Aris-
totelian logic in the internal machinery, natural sciences have been successively
stressing key issues during the twentieth century (modelling in Physics associated to
Mathematics or addressing complexity in Biology associated to Computer Sciences,
for example).

But then, if science pursues some kind of universal truth, it should be formalized
according to a proposition. Hence, according to the experimental science empiri-
cism, we should agree with Wittgenstein [28] that propositions need to be empiri-
cally verified in order to be meaningful. But Carnap [6] pointed out that universal
statements could never be verified, so science could only pursue a gradually increas-
ing confirmation (as pointed out in [7], empiricism claims that science begins with
observation, and the accumulation of further observations will provide probabilistic
support for its conclusion). Error measurements can in this way be part of the sci-
entific argument, but then Feyerabend [9] pointed out that we can not avoid the fact
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that every observation is theory-contaminated (observation always presupposes the
existence of some system of expectations, see again [7]). So, the only alternative Pop-
per [23] offers to science is to falsify a conjecture (by obtaining observations being
inconsistent with such a theory). This position will never be able to validate any the-
ory, but since researcher conjectures do not represent the only scientific framework
of the observation, Kuhn [15] postulated that science progresses through paradigm
shifts with no guarantee of anything called truth.

So, at the end the initial effort for formal explanation of experimental science
reaches to a certain relativism close to late post-modernistic theories (in fact, some
links between them and fuzzy sets theory has been postulated in [21]).

But in this paper we do not pretend to propose any definition of science, far from
being direct despite its dominant methodological structure (science indeed needs
creativity and eventually tries strange paths, and Feyerabend [9] will go much fur-
ther). At this point we just want to stress that experiments and observations are
strongly dependent of the machinery from which experiments are designed and ob-
servations explained. Such a machinery has been unique in the history of science
and never put into doubt: the Aristotelian logic.

3.3 Aristotelian Logic

The relevance of the experimental side of science has been stressed so much in the
last centuries that a key piece of knowledge system has not received much attention:
on the other side of the observed reality there is an observer with a specific reasoning
tool. As written by the philosopher Francis Bacon, “those who have handled the
sciences have been either empiricists or dogmatists. Empiricists are like ants, who
only collect things and make use of them. Rationalists are like spiders, who weave
webs out of their own bodies. But the bee has a middle policy: it extracts material
from the flowers of the gardens and meadows, and digests and transforms it by its
own powers.”

In order to do science we of course need data for objectivity, but we also need a
reasoning tool, which is essential in order to get data from reality and give data a
meaning. If we use green glasses, for example, we shall never be able to see green
objects.

The fact is that science till now has been conceived under an Aristotelian frame-
work, so information has to be managed by means of binary logic, and experiments
are designed in order to produce information being consistent with such a logic
(so, if there is such a kind of information that can not be managed by this binary
structure, it will be never considered as information).

In fact, some authors have pointed out the existence of a cultural heritage in the
western world that makes it very difficult to identify such a situation as a problem:
we all learn at school that from the ancient times (2500 years ago) only one logic
has been formalized and developed, the Aristotelian logic, so most of us are ready to
accept that not following the rules of this binary logic means that we are not being
logic, that we are being not-logic (although we know such an argument is essentially
wrong, at least once Łukasiewicz proved that this ternary logic was consistent).
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Nowadays we have many non-binary logics available for scientists, but science
is still keeping a strong dependence on the ancient binary logic.

From our point of view, this situation has an explanation. For sure scientists know
that assertions in real life can be neither true or false. But some scientists will argue
that no hard science (they mean true science) is possible outside the Aristotelian
framework. But notice the circular argument, since the design of an experiment
requires a logic, and these experiments have been conceived from the Aristotelian
binary logic.

Lets go back to the history of Probability Theory so we can review some of the
criticism this theory got till the beginning of the twentieth century, and understand
how the way we conceive experiments implies the nature of the information we can
get from them.

3.4 Probability Theory

Science of the nineteen century was deterministic and uncertainty was the enemy
of science. Complete information would allow exact prediction. Throwing a coin is
subject to randomness meanwhile we can not capture all details about how, when
and where such a coin is being thrown. In this sense, it was extremely difficult
for hard sciences to accept that randomness required a model, since getting rid of
randomness was just the objective of science.

Several centuries were needed to accept probability within science. It was not till
the first quarter of the twentieth century that probability showed, almost simulta-
neously, that it could be modelled according the strict mathematical standard rules
[13] and that it was an efficient model within quantum mechanic (see, e.g., [10]).

Apparently, probability was removing the foundations of science, since a proba-
bility distribution was being admitted as a consequence (when ancient science was
looking for an observable fact). But probability was still assuming the Aristotelian
logic: every event happens or not, no matter if it is unknown to us, and the logic of
events is just the Aristotelian logic. Uncertainty in probability means that we do not
know if a certain event happened or will happen when running an experiment, but
with complete information the answer about if such an event happened or not has
only two possible answers: yes or no.

It is surprising that some texts still found probability in Stone’s theorem [27],
stating that every Boolean algebra is isomorphic to the standard sets algebra, mean-
while it is not formally proven that events define a Boolean algebra. Some texts even
locate events in the language framework so the claimed isomorphism is with the lin-
guistic terms associated to each event. Let us just remind here that natural language
is the standard representation of reality, indeed closer to reality than to mathematical
(set) language. And it is obvious that even a restricted view of language that forgets
about alternative words for yes should acknowledge that the meaning of the word
yes depends on the way it is pronounced and the facial expression we show (together
with all contextual information). Of course in reality there is more than one yes and
more than one no. Of course events have a more complex structure than an Boolean
algebra.
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It is important to realize that Kolmogorov [13] states his model for probability
Kolmogorov proposing the representation of the space of events in terms of subsets
of the space of possible results of an experiment. The space of events represents the
family of allowed questions, does event A holds once result w has been observed?,
and the space of results represents the possible available information we can get
from the experiment. Of course both need to be consistent, and such a consistency
is obtained from the Aristotelian logic: the answer to that question must always be
(assuming complete information) either yes or no. Each realization of the experi-
ment produces an observation, and the structure of those observations imposes a
particular family of possible events. Not every event in the natural language will be
an event for probability.

In addition, we must remind that some mathematicians thought about probability
as a non serious field, just because first probability researchers devoted too much ef-
fort to games instead of science. It is relevant for the objective of this article to point
out that the problem first probability researchers (see, e.g., [11]) were facing was a
decision making problem, i.e., a choice problem under uncertainty. First probability
researchers were trying to estimate the right value of a business position subject to
randomness, and notice that those first probability researchers did not impose any
coin throwing in order to estimate the probability of head and tail (probability was
hopefully estimated from the direct intuition based upon of certain physical sym-
metries). First probability researchers had a deterministic view of the world (uncer-
tainty could be eliminated with complete information). Later on (but see, e.g., [20]
for a deeper discussion), some probability researchers will claim that randomness
exist as part of the physical properties of the coin, so frequencies would converge
to a certain value under the infinite repetition of an experiment, and some other
probabilistic researchers will claim that probability is just the way human beings
explain reality (if our decisions are consistent, it looks like we support our decisions
evaluating probabilities, but notice how information here is based upon a decision
maker, which is no longer a outside observer). In this context it is important to re-
alize with [20] that observed acts are always crisp (although their description may
be subject to imprecision), meanwhile most human decisions are fuzzy in nature
(details are usually fixed almost simultaneously to the execution of such a decision,
and some control is expected in order to assure that final act meets such a previous
decision). See [17, 24, 25] for a discussion on the role of knowledge in decision
making, and take into account that science has recently proved [2, 3] that the part of
the brain in charge of analyzing a decision making problem is located in a different
area from the part of the brain in charge of making the final decision, which in turn
will produce an observable act (certain brain damage produces, as a consequence,
rational individuals still able to develop detailed analysis of the different available
options they have, but not emotionally able to choose one of those options). In fact,
the brain structures responsible for emotion and reasoning must cooperate in order
to make decisions [12, 14], by-passing consistency difficulties (lack of information,
excessive information, apparent contradictions, time limitations, etc.)

Nevertheless, probability model is fully consistent with Aristotelian logic. Ex-
periments are conceived in such a way that events under study are isomorphic to an
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algebra of subsets of the space of possible results. Probability is part of the positive
and empiric science, even if a decision maker is introduced (they do not take opin-
ions from decision makers, but their acts). Probability experiments play a key role
in the empirical view of science.

3.5 Crisis: Neither Experiences or Logic Can Be Complete

But the positive and empiric view of science entered into a deep crisis with two
main arguments: on one hand, Heisenberg showed in 1927 that no experiment can
be complete. The researcher ruling the experiment introduces a terrible paradox:
the observer modifies the observed reality. Heisenberg explained his paradox with
the following example: observing a particle speed implies loosing exact position
(the particle is moving during the experiment) and observing exact position means
loosing speed (the particle needs to be previously stopped), so we can not know
both parameters at the same time. The fact is that we shall never be able to get
complete information, since we as observers modify reality. The observer is part of
the scientific system.

On the other hand, we should also remind that, in the same way that Heisenberg
proved that no experiment can be complete, Godel proved in 1930 that no logical
system will be complete: in any formal system there are true assertions that can not
be proved, and self-consistency can not be proved from inside such a formal systems
(see again a clear exposition in [7]).

3.6 Next Science Revolution: Social Sciences and Humanities

Then, science can not avoid dealing with human beings. At least science should take
into account the essential parameters (cultural, logical, etc.) that make information
possible. Among those parameters, language is one of the most important. In fact,
language represents a standard format (but not the unique) in which most human
beings manage information. This was strongly stressed by Wittgenstein [29]: all as-
pects of the human mind are strongly dependent on the use of language. As pointed
out by [26], a cartesian view would maintain that thoughts and representation are
possible without language. This is the position of the so-called hard sciences. But
we sincerely should agree with (1889-1951) that language can not be avoided in any
human activity (structure of the English language is deeply related to the success of
positivism in England, for example). This argument applies to science whenever
science intends to interact with society.

Language is a model for managing the world, as Mathematics is. If Galileo said
that Mathematics is the language with which God has written the Universe, we
should remind that human beings are the ones developing science, not God. Science
should be developed in terms of a human model, like Mathematics or Language.
Language is not arbitrary, but contains quite strong rules that most people learn and
accept so they can efficiently communicate between them.
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Of course there is a lot of work ahead before we formalize how it works. Nev-
ertheless, language should be part of science, otherwise science will never reach
society (we shall come back to this argument in the final section from another point
of view). In fact, as L. A. Zadeh points out somewhere, most scientific results have
a soft version which is quite often the relevant contribution of science to life (see
[16, 19, 18] for an example in group decision making relative to Arrow’s paradox
[1]). Fuzzy logic is contributing in this effort, pointing out that concepts need not to
be crisp in order to be managed.

Language should represent a key stage of the science humanization process. As
soon as we acknowledge the observer is inside the scientific system, we can not
avoid analyzing not only the logic such an observer assumes for developing sci-
ence, but also all those conscious or not conscious assumptions that come with the
observer. As pointed out by Penrose [22], a scientific view of the world requires a
deep look into human mind (the impact of Freud, 1856-1939, in modern society is
extreme).

If scientists at the beginning looked at reality as a source of external information,
along the history the increasing interaction between science and scientists is clear.
Scientists realized first that they were not only observers but actors that change
reality (consciously or not), and then they became the observed object of study
(either as individuals or as group of individuals).

Current state of the art in social sciences and humanities are far from being struc-
tured as hard sciences require, and perhaps one possible reason in that the logic they
need can not be the Aristotelian logic. Most concepts in social sciences are vague
and can not be formalized according to standard mathematics. Perhaps the best way
in which science can enter into them is through its usual formal vehicle: language.

Language represents a consistent representation system of reality (otherwise
communication would not be efficient). The fact that language does not meet Aris-
totelian logic does not means that language is illogical (see [19]). A mathematical
formalization of language by means of alternative logics should produce, in the long
run, the acceptance of social sciences (sometimes called soft sciences) as part of Sci-
ence, a concept actually associated to hard or nature sciences only. At this point it is
now suggesting to notice the increasing research on internet information, which has
a linguistic support (see [5] for an interesting overview of late advances on extended
fuzzy sets and their application in this and other key fields).

3.7 Final Comments: Funding Science

I would like to finish this article with some comments to L. A. Zadeh’s own words,
which in some way can summarize the whole article: I believe that, although much
of modern science is based on bivalent logic, eventually most scientific theories will
be based at least in part on fuzzy logic [8]. Such a claim shows a different approach
to science than Galileo’s, who stated a principle for hard sciences when he wrote
that the universe... is written in the language of mathematics, and its characters
are triangles, circles and other geometric figures without which it is humanly im-
possible to understand a single word of it: without these, one wanders about in a
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dark labyrinth (Assayer, 1623). But such a labyrinth is dark only if we enter the
labyrinth with a binary torch. More sophisticated torches may give some light into
an obviously non-binary labyrinth.

Most people will accept that science pursues knowledge obtained by means of a
methodological analysis of controlled experiments in order to assure objectivity. But
sometimes such an aim has been not so clear. In fact, many recent technological ad-
vances participated now by society have been previously part of a military research
programme. Nevertheless, modern science requires investment and someone has to
pay for it. So, we should be better assuming that most science sponsors (includ-
ing state government) need an argument for investing money in science (although
information means potential power, and power is always an argument).

Science, as any other human activity pursuing some kind of generalized knowl-
edge, needs support and funding. It is true that we can find in the history examples
of (private or public) philanthropic organizations, and that merchants developed also
specific technologies for travelling, but a constant supporter of science for sure has
been war (in some developed countries, military research can currently reach one-
third of the government funding for science, for example). Military science, in part
an instrument of economic power, has been in the past the best guarantee that a re-
search will not run out of funding, and even now a big proportion of the technolog-
ical advances we enjoy in our day life were obtained within a military framework,
translated to sports, cooking, travelling, etc.

As L. A. Zadeh has pointed out in some of his talks around the world, it is only
in the late twentieth century when the society itself begins to be able to support
science and technology. Indeed, a quite recent argument for investing in science
is the more or less global market: an industrial company can invest in technology
from the expected return of millions of individual sells. Perhaps Henry Ford can
be considered another breakpoint here (his 1908 Model T automobile was produced
with the declared objective of being reasonably priced, reliable and efficient, so
access to cars was opened to a wider society). The big business is within society,
and each one of its members is a potential client. Some people may think this is
a old business principle, but we should remind how a prestigious company like
IBM made the terrible mistake of thinking that computer technology would be kept
within the scientific oligarchy. If science at its beginning was indeed reserved to
certain knowledge oligarchies, nowadays is increasingly supported by society. The
tremendous impact of internet in our lives and in business is the better example
of a technology being increasingly ruled by society, and the consequent spreading
of information may have much more impact than Gutenberg press (if the cultural
bottleneck in the past has been the ability for reading, another cultural bottleneck
will appear now depending on the internet access).

Moreover, at the same time political systems become more democratic and econ-
omy gets people grounds, research objectives move to medical, health and envi-
ronment issues, as part of a stable and intergenerational quality of life principles.
Democratic governments need to use taxes according to more social criteria. Re-
search in education, medicine and environment sustainability should increasingly
explain government budget together with an infrastructure investment with declared
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social aim. The objective of this science funded by a democratic state should mainly
pursue social welfare.

And such a social policy for funding science requires a proper explanation in
a democratic society: in a knowledge-based society, democratic governance must
ensure that citizens are able to make an informed choice from the options made
available to them by responsible scientific and technological progress (P. Busquin,
Commissioner for Research of the European Commission, in his foreword to the
6th European Research Framework Programme). Of course increasing general and
specific education of people will help to meet such a democratic must, but recent
history shows that science should significatively move towards society.

Future of science will most probably require non Aristotelian logics to support
development of social science and even humanities, but for sure science will need
a logical approach to natural language in order to get closer to society. Natural lan-
guage (not standard mathematics) is the common support for communication be-
tween human beings, and indeed plays an important role in the structure of human
mind. Acknowledging the relevance of the linguistic issue in every human activ-
ity represents the first stage in order to get science closer to society. Language can
not be taken away from the scientific influence, and addressing it from a scientific
perspective is essential in the science humanization process, which focuss technol-
ogy towards a friendly technological management instead of asking users to read
long booklets or memorize lots of complex instructions. We are actually living the
beginning of the next revolution in science, and fuzzy logic will be there.
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Chapter 4
Fuzzy Logic, Concepts and Semantic
Transformers

Stephan van der Waart van Gulik

4.1 Introduction

In standard fuzzy logic, the meaning of a predicate is identified with a fuzzy ex-
tension, i.e. a fuzzy set. This approach abstracts away from the semantic function
of concepts. Informally speaking, a concept is a structure in our semantic memory
that allows us to categorize objects into the extension of a predicate. In this pa-
per, I present an implementation of concepts in fuzzy logic. The implementation
allows fuzzy logic to extend its functional scope. I discuss one new function, i.e.
the modeling of fuzzy reasoning with semantic transformers. Semantic transform-
ers are words and phrases that are capable of transforming the meaning of pred-
icates. Intuitive examples are technically and loosely speaking, e.g. “Technically
speaking, Richard Nixon is a Quaker” and “Loosely speaking, a vase can be called
furniture.”

The paper is structured as follows. In section 4.2, I first discuss several con-
temporary insights in cognitive science concerning human categorization and the
structure and function of concepts. Next, I specify the way in which standard fuzzy
logic fails to incorporate conceptual information. Section 4.3 introduces several new
distinctions and formal elements that are necessary for the explicit representation
of concepts in fuzzy logic. In section 4.4, I characterize a fuzzy logic with con-
cept representations called BLC. The logic is based on the fuzzy logic BL∀, de-
veloped by Petr Hájek in [5], and illustrates the modifications that are necessary
for the representation and consultation of concepts in fuzzy logic. In section 4.5,
the logic BLT is characterized. This logic is a variant of BLC that is able to deal
with the semantic transformers technically, strictly speaking and loosely speaking.
The functionality of the transformers is based on a critical analysis of linguistic
research by George Lakoff in [6]. The intuitive logical behavior of the transform-
ers is illustrated by means of several meta-theorems. In section 4.6, I list some
conclusions.

4.2 Prototypes, Concepts and Fuzzy Sets

In order to explain how exactly standard fuzzy logic abstracts away from the se-
mantic function of concepts, I first need to discuss some well-known insights in
cognitive science concerning human categorization and concepts.

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 79–97.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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4.2.1 Prototype Theory

In the beginning of the 70’s of the previous century, cognitive psychologist Eleanor
Rosch e.a. performed a series of well-known experiments concerning human cate-
gorization. The experiments revealed that people are often able to order objects of
a category C with respect to their representativeness or typicality as a member of
C. Categories that allow for such typicality judgements are said to have a prototype
structure. The most typical objects form a prototype. According to Rosch, most, if
not all, natural language categories have a prototype structure, cf. [10]. Rosch also
frequently stresses that typicality orderings should be interpreted as gradual mem-
bership orderings: “Perception of typicality differences is, in the first place, an em-
pirical fact of people’s judgement about category membership.” [11], p. 196. Hence,
most categories do not have clear membership borders, i.e. their borders are fuzzy.

Rosch also intensely researched the structural principles behind the prototype
structure of categories. Her main hypothesis was that prototype structures are
formed by a proces called cue validity maximization. Cue validity is a probabilistic
notion, cf. [3, 9]: the validity of a given property F as an indicator of a given cat-
egory C (the conditional probability C | F) increases when the frequency by which
F is associated with C rises, and decreases when the frequency by which F is asso-
ciated with other categories than C rises. The typicality of an object in a category
is the sum of the cue validities of all its properties. The prototype of a category C
consists of those objects of which the sums of the cue validities of their properties
are the highest in C.

An important confirmation of Rosch’s hypothesis is presented in [10]. In this
paper, Rosch and Carolyn Mervis show that the more a test person evaluates an
object as typical for a category, the more properties the object shares with other
objects from the same category and the less properties the object shares with objects
from contrasting categories. Hence, as the members of the prototype of C are highly
typical, these objects share a maximum amount of properties with the other objects
in C and a minimum of properties with objects in other categories. In other words,
the prototype contains a maximum amount of information about which properties
are highly characteristic or indicative for (the members of) C.1

Rosch’s prototype theory has often been misinterpreted as a theory about con-
cepts, i.e. the mental representations of natural language categories. Her proto-
type theory is, however, a purely descriptive theory about human categorization,
cf. [11]. It does not say anything directly about concepts, let alone anything about
the function of concepts in categorization or concept learning. The observations and
structural principles discussed in Rosch’s prototype theory are to be used only as
evaluative criteria for concrete theories or models of human concepts. For example,
a good concept theory should be able to explain and predict gradual membership
judgements in human categorization.

1 In [10], Rosch and Mervis also point out the connection with the notion family resemblance
relationship, famously introduced by Ludwig Wittgenstein in [12]. A family resemblance re-
lationship is present within a category C when every object in C shares at least one (but often
several) properties with other objects in C, but no properties with all objects in C.
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4.2.2 Concept Theory

There are a lot of concept theories in contemporary cognitive science that satisfy
the criteria set out by Rosch’s prototype theory with reasonable success. Examples
are exemplar theory, cf. [8], frame theory, cf. [1], [2] and even some neural net-
work theories, cf., for instance [7]. The theories differ quite strongly with respect to
their fundamental assumptions concerning the structure of concepts. Yet, according
to Lawrence Barsalou in [1], they do share one basic assumption. They all assume
that the vital information of a concept can be represented by means of a feature list.
A feature list is a bundle of properties that are characteristic for the objects in the
related category. In most models, the properties of a feature list are identified by an
analysis of the prototype structure of a (representative) sample of the related cate-
gory (evidently, the level up to which a property is characteristic may be represented
by means of its cue validity).

Note that the evaluative criteria of Rosch’s prototype theory and the success of
the contemporary models above also show that the so-called classic concept the-
ory is very unrealistic. In the classic concept theory, a concept is simply identified
with a set of singly necessary and together sufficient criteria of membership, i.e. a
classic membership definition. Clearly, this rather naive theory cannot explain the
existence of gradual membership judgements. When a definition is used, either an
object satisfies the criteria and is a member, or not.

4.2.3 Fuzzy Set Theory

Interestingly, in his seminal article Fuzzy Sets, Lotfi Zadeh starts with a similar
statement concerning the insufficiency of membership definitions for explaining ev-
eryday categorization: “More often than not, the classes of objects encountered in
the real world do not have precisely defined criteria of membership.” [13], p. 338.
Moreover, Zadeh also states that membership in this kind of (natural language)
classes or categories is not discrete but gradual. He then introduces the fuzzy set
as a way to formally represent the structure of these categories. Researchers in
concept theory and fuzzy set theory sometimes refer to each other because of this
common ground. Unfortunately, these references are mostly only used rhetorically.
It is not common to actually integrate findings from one discipline into the other,
cf. also [4].

In standard fuzzy logic, fuzzy sets are even used as a means to abstract away from
richer notions of meaning based on concepts. The meaning of an n-ary predicate π is
identified with an extension, i.e. a fuzzy set represented by a continuous membership
function µπ : Dn → [0,1], where D is a non-empty set and [0,1] is the standard
real unit interval. The membership function is primitive. It is not determined by a
concept. The idea of the function being determined by a concept is at most implicitly
assumed. In what follows, I discuss and illustrate a way of implementing concepts
in fuzzy logic by means of a kind of feature lists.



82 4 Fuzzy Logic, Concepts and Semantic Transformers

4.3 Some New Distinctions and Formal Elements

In this section, I introduce several new distinctions and formal elements that are
necessary for the formal representation of concepts in fuzzy logic.

4.3.1 Predicates and Concepts: A Simple Typology

First of all, several types of predicates and concepts are distinguished. I only con-
sider unary predicates in order to keep things clear.

The set of unary predicates contains two types of predicates: complex predicates
and primitive predicates. A complex predicate π is a predicate with which a finite set
of predicates is associated in semantic memory. The set functions as the concept of
π. Its members are called meaning components.2 The meaning components are as-
sociated on the basis of a significant cue validity for the category denoted by π. The
cue validity of a component πi expresses the extent to which πi is a reliable indicator
for the applicability of π. The components may have different cue validities. Hence,
the members of the complex concept may differ with respect to their importance
for the meaning of π, i.e. some associated predicates may be more reliable crite-
ria for the applicability of π than others. When the components are ordered with
respect to their relative semantic importance, a feature list is obtained. A primitive
predicate π is a predicate that has a primitive meaning. The meaning of π cannot be
analyzed in terms of other predicates. This type of meaning can be represented best
as a simple scale on which the applicability of the predicate is set out.

An illustrative example of a complex predicate is the predicate Bird. For most
people, the concept of Bird includes meaning components like Feathers, Fly, Wings
and Beak. Normally, the predicate Feathers has an absolute cue validity, as all known
members of the category own feathers and no other animals do. Hence, it is an
association of great semantic importance. The predicate Fly is also important but
normally does not have an absolute cue validity, as there are many birds that cannot
fly, e.g. penguins. A good example of a primitive predicate is the predicate Red.
The meaning of Red cannot be further analyzed in terms of other predicates.3 Its
meaning comes down to a simple reddishness scale. The scale represents the only
dimension that matters for the applicability of the predicate Red.

The set of complex predicates covers two types of predicates: those that have a
core in their concept, and those that do not. The core of a concept is a subset of
meaning components that functions as a classic membership definition. Its mem-
bers are referred to as meaning components of definitional importance. A similar
subset is distinguished in the concepts of predicates without a conceptual core. It
consists of the meaning components that (comparatively speaking) have very high
cue validities. These components are referred to as components of quasi-definitional

2 The word meaning component is originally used by George Lakoff in a more specific research
setting in [6]. The same holds for the phrase meaning components of primary importance intro-
duced below. I discuss Lakoff’s research in subsection 4.5.1.

3 Of course, in science, colors do allow for further formal analysis. However, in this paper I only
consider informal personal cognition.
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importance. Normally, sets of definitional and quasi-definitional importance do not
exhaust their respective concepts. Usually, also a lot of other predicates are associ-
ated because of their significantly high cue validities. These members of the concept
are referred to as meaning components of primary importance.

A good example of a predicate that has a conceptual core is the predicate Bird, as
used by an ornitologist. In order to be able to determine whether something formally
belongs to the category of birds or not, an ornitologist must learn some set of defi-
nitional criteria. These criteria form the core of the concept of Bird. A well-known
example of a predicate for which it is most likely impossible to define its meaning
is the predicate Game. As Ludwig Wittgenstein already argued in [12], Game is
a predicate for which it is very hard, maybe even impossible, to conceive a set of
singly necessary and jointly sufficient criteria. In other words, the concept of Game
most certainly lacks a core.

In sum, the following sets of predicates are distinguished: (1) the set P p of prim-
itive predicates, (2) the set P d of complex predicates with a core, and (3) the set P q

of complex predicates without a core. The union P p∪P d ∪P q is called P .

4.3.2 Conceptual Information

A selection function set S = {d,q, p} is introduced in order to represent the kind
of information a person can pick up from concepts in his semantic memory. More
specifically, for each complex predicate, the functions d,q and p respectively select
the meaning components of definitional importance (in case there is a core), the
meaning components of quasi-definitional importance (in case there is no core), and
the meaning components of primary importance. The set is defined as follows.

Definition 1. A selection function set S is a set {d,q, p} that complies with the fol-
lowing conditions (ρ, ρi, ρ j ∈ S and π ∈ P ):

(a) ρ : P d ∪P q →℘(P ),
(b) for each π ∈ P d : ρ(π) �= /0 if ρ �= q, and q(π) = /0,
(c) for each π ∈ P q: ρ(π) �= /0 if ρ �= d, and d(π) = /0,
(d) for each π: ρi(π)∩ρ j(π) = /0, with ρi �= ρ j,
(e) π is of type 0 iff π ∈ P p; π is of type n + 1 iff the maximum type of
the predicates in d(π)∪q(π)∪ p(π) equals n.

I explain the conditions. Condition (a) demands that the concept of each complex
predicate consists exclusively of complex and primitive predicates. Condition (b)
states that every selection function should select a non-empty set of predicates for
each predicate that has a core in its concept, except for selection function q, which
should generate an empty set (as there are no components of quasi-definitional im-
portance). Condition (c) demands that every selection must select a non-empty set
of predicates for each complex predicate without a conceptual core, except selection
function d, which should generate an empty set (as there is no core). The motivation
behind the conditions (b) and (c) is mainly technical: the conditions warrant that
no complex predicate may be defined in terms of empty predicate sets in definition
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(Dc), see below. Condition (d) demands that every two different predicate sets that
are generated in function of a complex predicate do not share predicates. Allow-
ing any overlap would be pointless and overly complex both from a logical and a
concept theoretical perspective. Condition (e) fixes a recursive structure. Primitive
predicates are of type 0. Complex predicates are of type n > 0 and the concept of a
predicate of type n can only consist of predicates of type n−1 or smaller. This con-
dition makes sure that the analysis of a concept cannot go on forever. Eventually,
the analysis has to end with the generation of a (possibly very large) set of primitive
predicates. This is a reasonable demand in view of the finite nature of human cogni-
tion. The condition also prohibits conceptual circularity. The concept of a complex
predicate π can never be based on π itself.

4.3.3 The Meaning of Complex Predicates

Finally, a special interpretation definition is introduced to capture the meaning of
complex predicates. Let α be a metavariable for a term and let & be the conjunction
of the fuzzy logic in question (π ∈ P d ∪P q and πi ∈ P ).

(Dc) πα=d f &{πiα | πi ∈ d(π)∪q(π)∪ p(π)}
The definition states that when a complex predicate π has a core in its concept, π
applies iff all meaning components of definitional and primary importance apply.
When π does not have a conceptual core, π applies iff all meaning components of
quasi-definitional and primary importance apply. Note that the definition is only
operational in combination with a selection function set S. Also remark that every
formula πα, with π ∈ P d ∪P q, may be rewritten as a complex formula containing
only primitive predicates by means of (Dc) and the recursive structure fixed by S.

Some readers might wonder whether the consultation of meaning components
of primary importance in (Dc) is realistic, especially when a conceptual core is
present. I mention some observations that illustrate the realism of this consultation
in informal, everyday contexts. I first consider the case in which the predicate in
question has a core in its concept. Imagine that two persons A and B start talking in
an informal, non-technical way about triangles and that both A and B have learned
the definition of the predicate Triangle. Person A wants to communicate something
to B about a specific triangle he has in mind and decides to draw the triangle on
the black board. Person A draws a triangle with an extremely small base and an
extremely large height. It is more than likely that B will react surprised. Without
any further specification by A, B will most likely expect a typical triangle like, for
example, an equilateral triangle or a rectangled triangle with equilateral legs. This
natural bias indicates that the everyday meaning of Triangle involves more meaning
components than those included in the core of its concept. As these extra compo-
nents are used as criteria for typical triangles, it is very likely that they correspond
to the meaning components of primary importance. The frequent usage of specifica-
tions like any and arbitrary in technical sentences like “Consider any triangle T”
and “Presuppose an arbitrary triangle T ” also points in this direction. Words like
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any and arbitrary seem to be used as warnings that we enter a rigid, formal context
in which only the definition or core of the concept is consulted. All other associa-
tions become irrelevant. There are no apparent reasons to believe that the case of a
predicate without a conceptual core would be different. The fact that a set of mean-
ing components of quasi-definitional importance is used instead of a core clearly
does not affect a person’s ability to also take into account components of primary
importance.

4.4 BLC: A Fuzzy Logic with Concepts

Many different fuzzy logics may be modified in such a way that they can represent
and make use of conceptual information during inference. In this section, I illus-
trate the necessary modifications by means of the fuzzy logic BLC. This logic is a
(conservative) variant of the first-order fuzzy logic BL∀ developed by Petr Hájek,
cf. [5].

The logic BL∀ is based on the basic properties of a t-norm ∗. This operator is used
to fix the truth-functionality of the (strong) conjunction and is defined as follows.
Let L be an ordered set of elements in which the smallest and largest element are
respectively 0 and 1.

Definition 2. A t-norm is a binary operator ∗ : L2 → L that complies with the fol-
lowing conditions (x, y, z ∈ L):

(a) x∗ y = y∗ x (commutativity),
(b) x∗ (y∗ z) = (x∗ y)∗ z (associativity),
(c) if x≤ y, then x∗ z≤ y∗ z (non-decreasing),
(d) 1 ∗ x = x (neutral element).

A continuous t-norm ∗ is a t-norm for which holds that L = [0,1]. In view of con-
dition (a), condition (c) implies that a t-norm is non-decreasing in both arguments.
It is also easy to see that 0 is the zero element. Let z = 0 and y = 1 in condition
(c). In that case it holds that x∗ z = 0, for any x. Remark that the operation behaves
classically for the extrema 0 and 1. Hence, it is an intuitive fuzzy generalization of
the truth-functionality of the conjunction in classic two-valued logic CL.

For each t-norm ∗ there is a unique binary residuum operator ⇒: L2 → L for
which holds that x⇒ y = max{z | x ∗ z ≤ y}, cf. [5], lemma 2.1.4. This operator is
used to model the truth-functionality of the fuzzy implication. It is non-increasing
in the antecedent and non-decreasing in the consequent, and behaves classically for
the extrema 0 and 1. These properties make it a good fuzzy generalization of the
truth-functionality of the material implication in CL.

Algebraically, BL∀makes use of the class of BL-algebras, each of which is based
on a particular t-norm ∗ and its corresponding residuum operator⇒. A BL-algebra
is basically a residuated lattice 〈L,∩,∪,∗,⇒,0,1〉, with ∩ = inf and ∪ = sup, for
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which the following identities hold (x, y ∈ L): (1) x∩ y = x ∗ (x ⇒ y), (2) (x ⇒
y)∪ (y ⇒ x) = 1.4 Extensions of BL∀ are characterized by choosing a particular
set of one or more t-norms (thereby also restricting the class of BL-algebra’s that
is consulted). Some well-known BL∀-extensions are Łukasiewicz logic Ł∀ (x∗ y =
max(0,x+ y−1)), Gödel logic G∀ (x∗ y = min(x,y)) and product logic Π∀ (x∗ y =
x.y). For a more detailed discussion of t-norms, residuum operators, BL-algebras
and extensions of BL∀, I refer to Hájek’s [5]. I now present the characterization of
BLC.

4.4.1 The Language of BLC

The language L of BLC consists of the following sets of non-logical symbols (no
predicates of arity two or higher are used, as they are not relevant in this context).

• C : the set of constants
• V : the set of variables
• P p: the set of primitive predicates
• P d : the set of complex predicates with a conceptual core
• P q: the set of complex predicates with no conceptual core

The set of formulas F is closed under the connectives ¬,&,→,∧,∨,↔, the truth-
constants 0,1, and the quantifiers ∃, ∀ in the standard first-order way. The set W is
the standard set of closed formulas based on F .

This linguistic set-up is complemented with (Dc). Let me stress again that every
formula πα, with π ∈ P d ∪P q, may be rewritten as a complex formula that consists
exclusively of primitive predicates by means of this definition and the recursive
structure fixed by the given selection function set.

4.4.2 The Structure of a BLC-Theory

In contrast to theories in BL∀, BLC-theories are not just a set of closed formulas.
They also assume a concrete selection function set that operationalizes (Dc).

Definition 3. A BLC-theory is a couple 〈Γ,S〉. The first element Γ is a set of W -
formulas. The second element S is a selection function set.

4.4.3 The Proof Theory of BLC

The proof theory of BLC is a conservative modification of the proof theory of BL∀.
The axioms, rules and definitions of connectives are the same as those of BL∀. How-
ever, BLC uses alternative definitions for the notions theoremhood and derivability

4 A residuated lattice is an algebra 〈L,∩,∪,∗,⇒,0,1〉 with four binary operations and two con-
stants for which the following conditions holds (x, y, z ∈ L): (a) 〈L,∩,∪,0,1〉 is a lattice with
1 being the largest element and 0 the least element (with respect to the lattice ordering ≤), (b)
〈L,∗,1〉 is a commutative semigroup with 1 being the neutral element, i.e. ∗ is commutative and
associative, and 1∗x = x, for all x, (c) for ∗ and⇒, it holds that z≤ (x⇒ y) iff x∗ z≤ y, for all
x, y, z.
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that take into account the presence of a selection function set. I first give the axioms,
rules and definitions shared with BL∀, cf. also [5] (α ∈V and β ∈ V ∪C ).

(A1) (A→ B)→ ((B→C)→ (A→C))
(A2) (A&B)→ B
(A3) (A&B)→ (B&A)
(A4) (A&(A→ B))→ (B&(B→ A))
(A5a) (A→ (B→C))→ ((A&B)→C)
(A5b) ((A&B)→C)→ (A→ (B→C))
(A6) ((A→ B)→C)→ (((B→ A)→C)→C)
(A7) 0→ A
(∀1) (∀α)A(α)→ A(β) (β substitutable for α in A(α))
(∃1) A(β)→ (∃α)A(α) (β substitutable for α in A(α))
(∀2) (∀α)(B→ A)→ (B→ (∀α)A) (α not free in B)
(∃2) (∀α) (A→ B)→ ((∃α)A→ B) (α not free in B)
(∀3) (∀α)(A∨B)→ ((∀α)A∨B) (α not free in B)

(MP) From A and A→ B, derive B
(UG) From A, derive (∀α)A

(D1) ¬A =df A→ 0
(D2) A∧B =df A&(A→ B)
(D3) A∨B =df ((A→ B)→ B)&((B→ A)→ A)
(D4) A↔ B =df (A→ B)&(B→ A)

The definitions of theoremhood and derivability are the following.

Definition 4. Theoremhood in BLC

�BLC A iff there exists a proof of A from /0 under each possible selection function
set S, i.e. under every S there exists a sequence of formulas ending with A in which
every member either is an axiom or follows from previous members of the sequence
by means of a rule.

Definition 5. Derivability in BLC

〈Γ,S〉 �BLC A iff there exists a proof of A from Γ under S, i.e. there exists under S
a sequence of formulas ending with A in which every member is either an axiom or
a member of Γ, or follows from previous members of the sequence by means of a
rule.

Definition 4 rules out that derivations that are exclusively based on information of
a particular selection function set may be validated as theorems of BLC. When, for
example, Bird ∈ P d and Beak is selected by d(Bird) in a specific selection function
set S, it evidently holds that 〈 /0,S〉 �BLC (∀x)(Bird x→ Beak x). Yet, this statement
has nothing to do with theoremhood in BLC. It is only a conceptual (and thus contin-
gent) truth. It is always possible to conceive another selection function set in which
Beak �∈ d(Bird). The same holds for the semantic notion validity, cf. definition 6.
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4.4.4 The Semantics of BLC

The semantics of BLC is a conservative modification of the semantics of BL∀.
There are only two new elements: an alternative valuation function that is deter-
mined by a model and a selection function set, and alternative definitions for the
notions validity and semantic consequence that also take into account the presence
of a selection function set. Similar to BL∀, two types of semantics are distinguished
with respect to BLC: a general semantics and a standard semantics. I first discuss
the general semantics of BLC.

Let L be a linearly ordered BL-algebra. An L-model M in BLC is a couple 〈D,v〉,
with D being a non-empty set and v an assignment function that complies with the
following conditions.

(i) v : C ∪V →D
(ii) v : P p → (D→ L)

The valuation function vMS : F → L is determined by an L-model M and a selection
function set S and complies with the following conditions.

S.1 vMS(πα) = v(π)(v(α)), where π ∈ P p

S.2 vMS(0) = 0
S.3 vMS(1) = 1
S.4 vMS(A&B) = vMS(A)∗ vMS(B)
S.5 vMS(A→ B) = vMS(A)⇒ vMS(B)
S.6 vMS((∃α)A) = sup{vM′S(A) |M′ = 〈D,v′〉 differs at most from M
in that possibly v′(α) �= v(α)}
S.7 vMS((∀α)A) = inf{vM′S(A) |M′ = 〈D,v′〉 differs at most from M
in that possibly v′(α) �= v(α)}

Note that S.6 and S.7 assume the existence of infima and suprema in L. If this is not
the case, the truth-degrees of some formulas are undefined. An L-model M is called
safe when all the needed infima and suprema exist. As in BL∀, the set of designated
values is the singleton {1}.
Definition 6. Validity in BLC

�BLC A iff vMS(A) = 1 in each safe L-model M, under every S, for every linearly
ordered BL-algebra L

Definition 7. Semantic consequence in BLC

〈Γ,S〉 �BLC A iff vMS(A) = 1 in each safe L-model M in which vMS(B) = 1 for every
B ∈ Γ, for every linearly ordered BL-algebra L.

Note that formulas that are valid in the general semantics of BLC, i.e. general BLC-
tautologies, are tautologies in all BLC-extensions.
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In the standard semantics, only those BL-algebras are considered in which L =
[0,1].5

Remark that only primitive predicates are directly assigned an extension. Again,
the combination of (Dc) and the recursive structure fixed by the selection func-
tion set S ensures that the valuation of every formula πα, with π ∈ P d ∪ P q, is
based on the extensions of a related set of primitive predicates. In this way, also
the semantics reflects the philosophical idea that the meaning of a complex predi-
cate depends (deep down) on the unanalyzable meaning of a set of related primitive
predicates.

4.4.5 Soundness and Completeness of BLC

The logic BLC is evidently a conservative modification of BL∀. Therefore, all meta-
properties of BL∀ are immediately inherited by BLC. The logic BL∀ is sound and
(strongly) complete with respect to its general semantics in the following sense (let
Γ be a theory in BL∀): Γ �BL∀ A iff the valuation of A equals 1 in each safe L-model
M of Γ, for every linearly BL-algebra L, cf. [5], theorem 5.2.9. Hence, BLC is also
sound and complete with respect to its general semantics. Note that BL∀ (and hence
BLC) is not complete with respect to its standard semantics.6

4.5 Fuzzy Reasoning with Transformers

In this section, the logic BLT is characterized. The logic BLT is a (conservative)
variant of BLC that is able to deal with the transformers technically, strictly speak-
ing, and loosely speaking (henceforth, respectively t-, s- and l-transformers). The
functionality of the transformers is based on a critical analysis of linguistic research
by George Lakoff in [6]. First, I present Lakoff’s linguistic analysis and proposal,
and discuss it problems. Next, I characterize and discuss BLT.

4.5.1 Lakoff’s Analysis and Proposal

I first present a synthesized version of Lakoff’s linguistic analysis. Consider the
following two sentences.

(1)“Technically, Richard Nixon is a Quaker.”

(2)“Strictly speaking, Richard Nixon is a Quaker.”

According to Lakoff, sentence (1) is acceptable, i.e. it is true enough. Nixon is a
Quaker because the meaning component of definitional importance for the meaning

5 Evidently, this restriction also limits the set of possible t-norms to the set of the continuous
t-norms.

6 A well-known extension of BL∀ that is also standard complete is G∀, cf. [5], theorem 5.3.3.
Hence, the ‘concept variant’ GC of G∀ is also complete with respect to its standard semantics.
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of Quaker, i.e. Born-into-a-Quaker-Family, applies to Nixon. Many people, how-
ever, also associate Pacifism with Quaker. It is not a necessary, definition-like cri-
terium, but it is highly characteristic. In other words, it is a meaning component of
primary importance. Yet, the predicate Pacifist cannot be applied to Nixon without
great controversy. According to Lakoff, this is the reason why sentence (2) is not ac-
ceptable. Lakoff hypothesizes the following: (a) a t-transformed predicate applies
iff all meaning components of definitional importance apply and at least one com-
ponent of primary importance does not, and (b) an s-transformed predicate applies
iff all meaning components of definitional and primary importance apply.

The functionality of the l-transformer is analyzed in a similar way. Consider the
following sentence.

(3)“Loosely speaking, a whale is a fish.”

According to Lakoff, this sentence states that whales can still be interpreted as a
kind of fish when we also take into account meaning components of secondary
importance for the meaning of Fish, i.e. associated predicates with a relatively low
cue validity for the category of fish, e.g. Water-Animal and Streamlined-body. These
components evidently apply to whales. The fact that most meaning components of
definitional and primary importance for Fish do not apply to whales, e.g. Gills and
Scales, does not seem to be a problem. It even seems to be part of what the l-
transformer is communicating. Hence, with respect to the functionality of loosely
speaking, Lakoff hypothesizes the following: an l-transformed predicate applies iff
all meaning components of secondary importance apply and at least one meaning
component of definitional or primary importance does not.

On the basis of this analysis, Lakoff presents an onset of a fuzzy semantics for
t-, s- and l-transformer. What follows is the formal essence of his proposal. The
membership function µπ : D→ [0,1] characterizes the extension of a unary predi-
cate π, where D is a non-empty set. The set π = {µπ1 , . . . , µπn} contains the mem-
bership functions of the meaning components of π. The functions sld, slp, and sls
respectively select from π the membership functions of the meaning components
of definitional, primary and secondary importance, i.e. sl : π →℘(π), where ℘
is the power set and sl ∈ {sld,slp,sls}. Let dπ(e) =d f mini{µπi(e) | µπi ∈ sld(π)},
pπ(e) =d f mini{µπi(e) | µπi ∈ slp(π)}, and sπ(e) =d f mini{µπi(e) | µπi ∈ sls(π)},
where e is any element of D and mini is the minimum function for an arbitrary large
set of values from [0,1]. Finally, let min be the standard minimum function with two
arguments and 1− ( . ) the standard order-inversion on [0,1]. What follows are the
definitions of the membership functions of a predicate π respectively transformed
by a t-, s- and l-transformer (e ∈D).

(Dlt) µπt (e) =d f min(dπ(e),1− pπ(e))
(Dls) µπs(e) =d f min(dπ(e), pπ(e))
(Dll) µπl (e) =d f min(sπ(e),1−min(dπ(e), pπ(e)))

It is easy to see that these definitions correspond perfectly to Lakoff’s conclusions
with respect to the functionality of the t-, s- and l-transformer. For example, (Dlt)
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demands that a t-transformed predicate π applies iff all meaning components of def-
initional importance (selected by sld(π)) apply and at least one meaning component
of primary importance (selected by slp(π)) does not.

4.5.2 Problems

Lakoff’s proposal has several problems. First of all, it is not specified what kind of
information should be recollected from the concept of a complex predicate that is
applied in an untransformed way. Secondly, Lakoff’s proposal only considers pred-
icates that have a core in their concept. However, as I discussed in section 4.3.1,
many predicates do not have a conceptual core. Reconsider, for example, the com-
plex predicate Game. The concept of Game most likely lacks a conceptual core.
Yet, it is intuitively correct to state phrases like “Strictly speaking, it’s a game” or
“Loosely speaking, it’s a game”. Thirdly, the proposal does not prohibit meaning
components from being selected by more than one selection function at the same
time. Hence, a meaning component may have different levels of semantic impor-
tance for the same complex predicate. These problems can be solved easily, as I will
show in the next subsection.

Next to these problems, there also seems to exist a type of usage of the s-
transformer that presupposes a totally different kind of functionality than the one
formalized by Lakoff. In Lakoff’s proposal, the s-transformer functions in a dif-
ferent way than the t-transformer, cf. (Dlt) and (Dls). However, there are a lot of
statements in which the s-transformer seems to function in a similar way as the
t-transformer. Consider the following example.

(4)“Strictly speaking, John is married, although he has been living alone for years
now.”

The logical function of the word although is a bit tricky. In order to make the logical
structure of the sentence more explicit, it may be paraphrased as “One can say that
John is married, but only in a strict sense, as he has been living alone for years now.”
Hence, it is stated that John is married, but not in the everyday, untransformed sense
of Married. The most important, quasi-definitional meaning components of the con-
cept of Married still apply to John, but some component of primary importance does
not. The sub-clause of the sentence conveys that Living-together is this failing com-
ponent. Clearly, in this sentence, the s-transformer functions in a way that is similar
to the t-transformer, cf. (Dlt).

A first possible explanation for this similarity is that the transformers act as func-
tional synonyms. Even Lakoff seems to think this as he notes in [6] that there are
statements in which the t- and s-transformer generate the same semantic effect. He
illustrates this remark by means of the following pair of sentences.7

7 Ironically, this observation is hard to match with Lakoff’s final proposal in which the t- and
s-transformer logically exclude each other. Hence, when the t- and s-transformer are used in
the same atomic formula, there are no models that make both the t-variant and s-variant of this
formula true (nor are there any models that make both of these variants false), cf. (Dlt) and
(Dls).
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(5)“Technically, a whale is a mammal.”

(6)“Strictly speaking, a whale is a mammal.”

However, a second, more likely explanation is that the t- and s-transformer function
in a similar way, but with a different scope. The word technically seems to assume
the presence of a technical characterization or definition. This implies that the usage
of technically is not correct in sentence (5) when the predicate Whale does not have
a concept with a core. Likewise, the usage of strictly speaking in sentence (6) is
not correct when the predicate Whale does have a conceptual core. In other words,
both transformers function in a similar way, but the t-transformer may only be used
for predicates that have a core in their concept and the s-transformer may only be
applied to predicates without a conceptual core in their concept.

I think it is plausible that the type of usage of the s-transformer suggested by
Lakoff is less common than the type of usage described above. Hence, in the logic
that follows, I model the latter kind of usage8.

4.5.3 A Solution: The Logic BLT

The logic BLT is obtained from BLC by three easy, conservative modifications.
First, an alternative language Lτ is introduced. This language uses the same sets of
non-logical and logical symbols as L , plus the set of the t-, s- and l-transformer T =
{t,s, l}. The set of formulas Fτ is the smallest set that complies with the following
conditions (π ∈ P ,α ∈ C ∪V ).

(a) πα,0,1 ∈ Fτ,
(b) if π ∈ P d , then πtα ∈ Fτ,
(c) if π ∈ P q, then πsα ∈ Fτ,
(d) if π ∈ P d ∪P q, then πlα ∈ Fτ,
(e) if A ∈ Fτ, then ¬A,
(f) if A,B ∈ Fτ, then A&B, A→ B, A∧B, A∨B, A↔ B ∈ Fτ,
(g) if A ∈ Fτ and α ∈ V , then (∀α)A, (∃α)A ∈ Fτ.

The set Wτ is the standard set of closed formulas based on Fτ. Note that the lan-
guage does not allow the t-transformer to operate on complex predicates that do
not have a conceptual core and that the s-transformer is not allowed to operate on
complex predicates that have a conceptual core, cf. conditions (b) and (c). The l-
transformer, however, is allowed to operate on all complex predicates, cf. condition
(d). Of course, primitive predicates cannot be transformed.

Secondly, an extra selection function s is added to the selection function set S,
i.e. S = {d,q, p,s}. Given a complex predicate π, the function s selects the meaning

8 Note, however, that the linguistic choices in this paper are first and foremost illustrative. The
choices are not meant to be final linguistic arguments about the functionality of the t-, s- and
l-transformer.
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components of secondary importance for the meaning of π. Remark that all the
conditions presented in definition 1 also hold for s.9

Finally, three new interpretation definitions are added, next to the original defini-
tion (Dc) (high(π) = d(π)∪q(π)∪ p(π), π ∈ P d ∪P q and πi,π j ∈ P ).

(Dc) πα=df &{πiα | πi ∈ high(π)}
(Dt) πtα=df &{πiα | πi ∈ d(π)}&¬&{π jα | π j ∈ p(π)}
(Ds) πsα=df &{πiα | πi ∈ q(π)}&¬&{π jα | π j ∈ p(π)}
(Dl) πlα=df &{πiα | πi ∈ s(π)}&¬&{π jα | π j ∈ high(π)}

I already discussed (Dc) in subsection 4.3.3. Definition (Dt) evidently captures
the main idea behind (Dlt). Definition (Ds) captures the type of usage of the s-
transformer discussed in the previous subsection: an s-transformed predicate π ap-
plies iff all meaning components of quasi-definitional importance (selected by q(π))
apply and at least one meaning component of primary importance (selected by p(π))
does not. Definition (Dl) captures the main idea behind (Dll), but in a more gener-
alized way: both predicates with and without a conceptual core may now be trans-
formed by the l-transformer.

This linguistic set-up solves all the problems of Lakoff’s original proposal, as
discussed in the previous section. First of all, (Dc) specifies the kind of information
that should be recollected from the concept of a complex predicate that is applied
in an untransformed way. Secondly, the set-up allows for both predicates with and
without a conceptual core. Thirdly, the set-up does not allow meaning components
to be selected by more than one selection function.

4.5.4 Some Interesting Meta-theorems

I briefly illustrate the intuitive logical behavior of the transformers in BLT by means
of the following meta-theorems.

Theorem 1. �BLT πτα→¬πα
Proof. Case 1: τ= t. Observation: for each predicate π (with a core in its concept),
term α and linearly ordered BL-algebra L, the following equation holds in each
L-safe model M, under each selection function set S (because of (DT) en (DC)):

vMS(πtα→¬πα) = vMS((&{πiα | πi ∈ d(π)}&¬&{π jα | π j ∈ p(π)})→
¬(&{πiα | πi ∈ d(π)}&&{π jα | π j ∈ p(π)})).
The conditions for S in definition 1 ensure that (in combination with (Dc)) the sub-
formulas &{πiα | πi ∈ d(π)} and &{π jα | π j ∈ p(π)} obtain specific truth degrees in
each L-safe model M, under each selection function set S, for every linearly ordered
BL-algebra L (problems like circularity and contradictions are ruled out). Hence, it
is sufficient to show that 1 ≤ (x ∗ (y⇒ 0))⇒ ((x ∗ y)⇒ 0) holds in every linearly
ordered BL-algebra:

9 Hence, the original union d(π)∪ q(π)∪ p(π) in condition (e) of definition 1 becomes d(π)∪
q(π)∪ p(π)∪ s(π).
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[a] 1≤ (x∗ (y⇒ 0))⇒ ((x∗ y)⇒ 0) iff

[b] 1 ∗ x∗ (y⇒ 0)≤ (x∗ y)⇒ 0 (cf. cond. (c), footnote 4) iff

[c] 1 ∗ x∗ (y⇒ 0)∗ x∗ y≤ 0 (cf. cond. (c), footnote 4) iff

[d] x∗ (y⇒ 0)∗ x∗ y≤ 0 (cf. cond. (d), def. 2) iff

[e] x∗ 0 ∗ x≤ 0 (y∗ (y⇒ 0) = y∗max{z | z∗ y≤ 0}= 0, cf. sec. 4.4) iff

[f] 0≤ 0 (0 is the zero element for t-norms, cf. sec. 4.4).

The proofs for the cases τ= s and τ= l proceed in a similar way.

Theorem 2. �BLT πα→¬πτα.

Proof. The proof proceeds in a similar way as the proof of theorem 1.

Theorem 1 indicates that when a τ-transformed predicate π applies to a term α, we
may derive that π does not apply to α in its everyday, untransformed sense. This cor-
responds to the intuitive idea that the presence of a transformer indicates a deviation
from everyday meaning. This idea is clearly illustrated for the s-transformer by the
paraphrase of sentence (4) in subsection 4.5.2: “One can say that John is married,
but only in a strict sense, [. . . ]” The predicate Married applies to John, but only in
a sense that deviates from the everyday meaning of the predicate Married.

Theorem 2 states that when a non-transformed complex predicate π applies to a
term α, we may derive that π does not apply to α when transformed by τ. Again,
this is an intuitive result in view of the idea that a transformer indicates a deviation
from everyday meaning.

In the following two theorems, τ and τ′ always denote two different transformers.

Theorem 3. ��BLT πτα→ πτ′α, for each formula πτα→ πτ′α

Proof. Case 1: τ= t and τ′ = l. Observation: for each predicate π (with a core in its
concept), term α and linearly ordered BL-algebra L, the following equation holds
in each L-safe model M, under each selection function set S (because of (DT) en
(DR)):

vMS(πtα→¬πlα) = vMS((&{πiα | πi ∈ d(π)}&¬&{π jα | π j ∈ p(π)})→ (&{πkα |
πk ∈ s(π)}&¬(&{πiα | πi ∈ d(π)}&&{π jα | π j ∈ p(π)}))).
Again, the conditions for S in definition 1 (in combination with (Dc)) ensure that
the subformulas &{πiα | πi ∈ d(π)}, &{π jα | π j ∈ p(π)} and &{πkα | πk ∈ s(π)}
obtain specific truth degrees in each L-safe model M, under each selection function
set S, for every linearly ordered BL-algebra L. Therefore, it is sufficient to show that
the valuation of the formula in the right part of the equation above is smaller than 1
in a specific L-safe model M, under some S, for some linearly ordered BL-algebra
L. In order to do this, I represent the valuations of the three subformulas in M by
respectively d, p and s and assume that d = 1 and p = s = 0. Hence, the valuation of
the whole formula corresponds to (d̄ ∗ (p̄⇒ 0))⇒ (s̄ ∗ ((d̄ ∗ p̄)⇒ 0)) = (1 ∗ (0⇒
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0))⇒ (0 ∗ ((1 ∗ 0)⇒ 0)), which, given the classical behavior of the operations ∗
and⇒ for the extrema 0 and 1, equals 1⇒ 0 = 0.

The proofs for the other cases proceed in a similar way.

Theorem 4. ��BLT πτα→¬πτ′α, for each formula πτα→¬πτ′α
Proof. The proof proceeds in a similar way as the proof of theorem 3.

It is important to note that the results in theorem 3 and 4 also hold for all the
BLT-extensions. Evidently, this is not always the case. In contrast to general BLT-
tautologies (like those captured in theorems 1 and 2), non-tautologies of BLT are
not by definition non-tautologies in every extension of BLT. Consider, for instance,
the simple fact that ��BLT A∨¬A but �CLT A∨¬A, where CLT is the ‘transformer
variant’ of CL. However, in the case of theorem 3 and 4, (the counterexamples in)
the proofs are based exclusively on the extrema 0 and 1, the basic t-norm properties
and the definitions of connectives that hold for all BLT-extensions.10

Theorem 3 states that when a τ-transformed predicate π applies to a term α,
we cannot derive that π applies to α when transformed by τ′. There are models in
which the τ-transformation of π applies, but the τ′-transformation of π does not.
I illustrate this fact by means of an informal example. It certainly seems valid
to state that, loosely speaking, a whale may be called a fish. As Lakoff argued,
meaning components of a relatively low importance for the meaning of Fish like
Water-Animal or Streamlined-body also evidently apply to whales. However, im-
portant meaning components like Gills and Scales do not apply. Now assume that
the predicate Fish has a conceptual core, i.e. a definition, and that Gills belongs to
this core. In that case, it is clear that the t-transformation of Fish does not apply to
whales, cf. (Dt).

Theorem 4 says that when a τ-transformed predicate π applies to a term α, we
cannot derive that π does not apply to α when transformed by τ′. There are mod-
els in which π applies both transformed by a transformer τ and τ′. Consider the
following informal example. Assume that the concept of the predicate Woman is
build up as follows: a core consisting of predicates capturing the genetic defini-
tion of a female human being, a set of meaning components of primary impor-
tance describing the primary and secondary female sex characteristics, and a set of
meaning components of secondary importance describing certain kinds of behavior
(sometimes) observed in women. Now imagine a transsexual woman in progress
of becoming a man. The woman has the standard genetic build up of a female hu-
man being and (still) acts and thinks in a way that may be considered as female,
but already lost some of the female sex characteristics of primary semantic impor-
tance, e.g. by an ongoing hormone treatment. This person can very well be called
both technically a woman as well as loosely speaking a woman, cf. respectively
(Dt) and (Dl).

10 Moreover, the counterexamples in the proofs consult a formula that is evaluated to the mini-
mum degree 0. Hence, even in atypical extensions with an extended non-singleton interval of
designated values [x,1], where x > 0, these semantic results remain valid.
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In sum, we may conclude that the usage of a t-, s- or l-transformer in an atomic
formula in BLT negates the non-transformed variant of this formula and vice versa,
cf. theorems 1 and 2. However, there is no such directive relation between the dif-
ferent transformer variants of an atomic formula, cf. theorems 3 and 4.

4.6 Conclusion

I discussed the possibility to implement concepts in standard fuzzy logic and illus-
trated this fact by means of the logic BLC, i.e. a fuzzy logic with concepts based
upon the logic BL∀. The logic BLC inherits all meta-properties of BL∀ (as the mod-
ifications that are needed for the implementation are conservative). The implementa-
tion of concepts allows fuzzy logic to extend its functional scope. One new function
is the modeling of fuzzy reasoning with semantic transformers such as technically,
strictly speaking and loosely speaking. In order to show this, I also characterized the
logic BLT, i.e. a conservative variant of BLC (and hence BL∀). The functionality
of the transformers in BLT is based on a critical analysis of linguistic research by
George Lakoff. Also several meta-theorems were proven in order to illustrate the
intuitive logical behavior of the transformers.

Acknowledgment

The research for this paper was supported by the Research Fund of the Ghent
University.



References

1. Barsalou, L.W., Hale, C.R.: Frames, Concepts and Conceptual Fields. In: Kittay, E.,
Lehrer, A. (eds.) Frames, Fields and Contrasts: New Essays in Lexical and Semantic
Organization, pp. 21–74. Lawrence Erlbaum Associates, Hillsdale (1992)

2. Barsalou, L.W., Hale, C.R.: Components of Conceptual Representation: From feature
Lists to Recursive Frames. In: Van Mechelen, I., Hampton, J., Michalski, R., Theuns,
P. (eds.) Categories and Concepts: Theoretical Views and Inductive Data Analysis, pp.
97–144. Academic Press, San Diego (1982)

3. Beach, L.R.: Cue Probabilism and Inference Behavior. Psychological Monographs 78,
1–20 (1964)

4. Fuhrmann, G.: Note on the Integration of Prototype Theory and Fuzzy Set Theory. Syn-
these 7, 573–605 (1991)

5. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
6. Lakoff, G.: Hedges: A Study in Meaning Criteria and the Logic of Fuzzy Concepts.

Journal of Philosophical Logic 2, 458–508 (1973)
7. Rogers, T.T., McClelland, J.L.: Semantic Cognition. A Parallel Distributed Processing

Approach. The M.I.T. Press, Cambridge (2004)
8. Smith, E., Medin, D.: The Exemplar View. In: Margolis, E., Laurence, S. (eds.) Concepts.

Core Readings, pp. 207–221. The M.I.T. Press, Cambridge (1999)
9. Reed, S.K.: Pattern Recognition and Categorization. Cognitive Psychology 3, 382–407

(1972)
10. Rosch, E., Mervis, C.: Family Resemblances: Studies in the Internal Structure of Cate-

gories. Cognitive Psychology 7, 573–605 (1975)
11. Rosch, E.: Principles of Categorization. In: Margolis, E., Laurence, S. (eds.) Concepts.

Core Readings, pp. 189–206. The M.I.T. Press, Cambridge (1999)
12. Wittgenstein, L.: Philosophical Investigations. The MacMillan Company, New York

(1953)
13. Zadeh, L.A.: Fuzzy Sets. Information and Control 8(3), 338–353 (1965)



Chapter 5
Phenomenology as a Criterion for Formalism
Choice

Dmitri Iourinski

5.1 Introduction

The aim of the current exposition is to provide a justification for choosing a super-
intuitionistic logic to represent the semantics of the Dempster-Shafer theory. The
author adopts the applied point of view to the problem: the main research topic is
within artificial intelligence. Thus, along with finding an adequate logical interpreta-
tion of the theory in question we also interested in finding the formalism that renders
itself well to algorithms and uses data structures that are ‘computer-friendly’. The
actual formalism built upon the premises discussed in the current paper was pre-
sented in the second IEEE-SOFA workshop on soft computing applications and in
Linz seminar in Fuzzy set theory [16, 17, 18].

On the other hand, there are theoretical questions that are interesting. While clas-
sical Boolean logic is used for reasoning within the probability theory setup, there
is no general consensus among the researchers about what is the best formalism to
be used for reasoning about beliefs. The literature on the topic is vast and there are
numerous non-Boolean logics that are shown to provide inferential apparatuses for
the Dempster-Shafer theory. The major problem with these formalisms is, in the au-
thor’s view, the possibility of a non-constructive proof. In the current work we are
not presenting yet another logic that works relatively well, but attempt to understand
how to construct a family of logics that do not allow for a non-constructive proof
and can be used for inference within the realm of the Dempster-Shafer theory.

We take advantage of the ‘modular design’ of building a logic in a propositional
language. As long as there is some definition of a propositional language, one can
explore the semantics of logics built upon it. The logical connectives can be defined
later. In this case the choice of suitable logical connectives is limited by already
known semantic limitations. Most other publications on the matter approach the
problem from the other end – either the connectives are chosen first or the axioms
are stated explicitly before the logic is being built.

While having many merits of their own, the approaches that define a logic ex-
plicitly through a set of axioms rule out all of the logics that do not admit finite
axiomatizations. It is known that many otherwise well-behaved logics do not admit
finite axiomatization. Specifying a Hilbert-style calculus is not the only and not nec-
essarily the best way to represent a logic especially within the computing domain.
Moreover, we show that a logic introduced through a first order condition may not
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springerlink.com © Springer-Verlag Berlin Heidelberg 2009



100 5 Phenomenology as a Criterion for Formalism Choice

have a finite axiomatization. In some cases having a first-order condition on the
elements of the logic may be more convenient than an explicit axiomatization.

The paper is organized as follows. After a brief overview of the Dempster-Shafer
theory and Kripke semantic we take a look at the aspects of philosophical discussion
about the nature of mathematical objects that we consider relevant for the problem at
hand. Once the problem is defined we argue in favor of adopting Brouwer’s point of
view and look at its implications on the formal aspect of the approach. The implica-
tions are analyzed by looking at three general types of logic: Boolean, intuitionistic
and modal. We also provide a brief reference to the logics that are already presented
and explain the difference between the approaches. We conclude the exposition by
giving a brief overview of the logic that was constructed according to the stated
objectives.

5.2 Some Necessary Background

The main topic of this work is the justification of the formalism choice for interpret-
ing the Dempster-Shafer theory. The approach taken by the author is focussed on
better understanding the semantic of the constructed formalism. The semantic tool
of choice is Kripke models. In order move through the argument smoother, a short
review of the two main theories that inspired the research may be useful. We limit
our background exposition to bare minimum necessary to understand the discussion
below. There is a vast amount of literature about both Kripke semantics and the
Dempster-Shafer theory. The exposition below in its Dempster-Shafer theory part is
based on Shafer’s original essay [22]. The semantic part is according to the mono-
graph by Chagrov and Zakharyaschev [8]. The definition of a Kripke model used in
this work is slightly different from the one used in such important works as Hájek’s
Metamathematics of Fuzzy Logic [13], but given the popularity of the concept it is
quite difficult to decide on a particular notational convention. An interesting review
of different definitions of Kripke model is given by Burgess [7].

5.2.1 The Dempster-Shafer Theory

Only the facts necessary to understand the discussion below are given.
There is no complete specification of the propositional language used in

Dempster-Shafer theory. Instead, there are several conditions that the statements
of this language should meet. The propositions are related to subsets of a given set.
In other words, let θ be a quantity of interest and Θ be the range of its values, then
the propositions of interest are of the form

“The true value of θ is in T ”

where T ⊂ Θ. Such a universe is not as restrictive as it may seem, and all possible
statements are in one-to-one correspondence with subsets of Θ. In the Dempster-
Shafer theory range of values Θ and its known subsets are called a frame of
discernment.
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A frame of discernment does not include actual propositions, it describes the
domain of the values that quantities in propositions can assume. Effectively, it means
that the propositions considered in Dempster-Shafer theory form some propositional
language, say L , which is not yet defined. L will be defined when the possible
candidate logics are considered.

That said, we can immediately make simple intuitive guesses about the nature of
the relation between L and Θ. Indeed, assume that p,q∈ L; A,B∈Θ and that p and
q stand for:

p = “the true value of θ is in A,”

q = “the true value of θ is in B.”

It is not illogical then to assume that

p∧q = “the true value of θ is in A∩B.”

The correspondence between ∧ in L and ∩ inΘ is not necessarily true for all frames
of discernment and all languages, but it is very intuitive. The correspondence is true
when L is the language of Boolean propositional calculus – the situation considered
in Shafer’s monograph.

A belief function is defined on the frame of discernment through the set of re-
quirements.

Definition 5.2.1 Belief function. Let Θ be a frame of discernment and Bel : 2Θ→
[0,1] be a map such that

1. Bel( /0) = 0.
2. Bel(Θ) = 1.
3. For every positive integer n and every collection A1, . . . ,An of subsets of Θ,

Bel(A1∪ . . .∪An)≥ ∑I⊂{1,...,n};I �= /0(−1)|I|+1Bel (
⋂

i∈I Ai)

Bel is then a belief function on Θ.

Dempster-Shafer theory also uses the concept of a basic probability assignment.

Definition 5.2.2 Basic probability assignment. Quantity m(A) is called a basic
probability number (assignment in newer works) if it obeys the following
restrictions:

1. m( /0) = 0.
2. ∑A⊂Θm(A) = 1.

m(A) measures the belief that is committed exactly to A.

A belief function and a basic probability assignment are related through:

Bel(A) = ∑
B⊂A

m(B). (5.1)

Equation 5.1 is used as an alternative definition of a belief function.
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Naturally, a logical interpretation of Dempster-Shafer theory must preserve the
properties above.

The definitions demonstrate the dual nature of basic probability assignments and
belief functions. The mathematical apparatus dealing with this duality allows con-
version in either direction.

Updating knowledge amounts to introducing new pieces of evidence with their
own mass assignments. The new pieces of evidence may affect the beliefs into al-
ready established facts. Two different frames of discernment that exist within the
same universe may be combined too. Combining new and existing information is
done by means of taking the orthogonal sum of the respective mass assignments. We
will not define the orthogonal sum and will just limit our mention of it to saying that
the developed formalism must posses a meaningful interpretation of such operation.
Developing such interpretation is the next step in the research, at the moment we
concentrate on finding a logic that can adequately represent frames of discernment.

5.2.2 Kripke Models

Kripke models are a famous tool for exploring different modal logics. It is important
though to remember that Kripke models are not exclusively applicable only in the
modal logic case. They provide a formalism for addressing a wider range of objects.

Definition 5.2.3 Kripke Model. Consider some propositional language L and a
triple M = 〈W,R,V 〉, where W is some set, relation R is a partial order on W and
valuation V : VarL → 2W is a multivalued map. The triple M is an Intuitionistic
Kripke Model. The elements of W are sometimes called possible worlds or, less dra-
matically, points. xRy, x,y ∈ W is read either “x sees y" or “y is reachable from x”.

The definition is not very restrictive and leaves a lot of space for the maneuver. To
develop a usable interpretation of Dempster-Shafer theory, we first need to develop
an intuitive understanding of the universe that is described through Kripke mod-
els. We begin with presenting several thoughts about the nature of the components
of M.

We may think of elements of W as of different states of information or knowl-
edge. The valuation V provides the link between the actual knowledge (the proposi-
tions of L) and the states of knowledge (points of W ). Different statements are true
in different states. The relation R shows what could be inferred from different states
of knowledge. If point x sees point y, it means that the information available at y
may be inferred from information available at x. Point x occurs earlier than point y.
If a proposition is known to be true at a point x it cannot become false at later points
reachable from x. On the other hand, a proposition known to be false at some point
can become true at a later point reflecting the ability to discover new facts.

Often, Kripke models are represented as directed graphs with vertex set W and
adjacency matrix given by relation R. No more graph-theoretical notions is used
and we thus bypass giving a definition of such basic things as adjacency matrix, an
unfamiliar reader can refer to any book on the subject with Brualdi’s monograph as
the author’s personal favorite [6] for the definitions.
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5.3 The Nature of Mathematical Objects

The Kripke models can be used to analyze the semantics of any logic, moreover,
they can be used to give alternative definitions of logics in certain cases. The idea of
the proposed approach is to develop a procedure that will allow an adequate repre-
sentation of the frames of discernment by Kripke models using some propositional
language and thus to induce a family of logics whose formulas are validated by the
corresponding Kripke frames. Such strategy does not necessary lead to a unique
solution: depending on the choice of the propositional language the same models
can correspond to different logics. So, to narrow the domain of search, we first look
into a philosophical and consequent semantic distinctions between the three main
strands of logics: Boolean logic, modal logic and intuitionistic logic. The exposi-
tion is started with some phenomenological remarks that are later applied to the
‘candidate logics’.

The outlined strategy does not give a definite answer to the question about the
unique best logic suitable for inference with the Dempster-Shafer theory, it rather
demonstrates that even though less popular than the modal logic, a superintuitionis-
tic logic is a good candidate for the purpose that even has certain advantages over
the its modal counterparts.

5.3.1 Historical Remarks

This work is devoted to the development of a mathematical formalism that is used
for reasoning within the Dempster-Shafer theory. Thus the subject of this inquiry is
a collection of mathematical objects. Given the applied nature of the belief theory,
the ability to update the knowledge, possibly as a result of the interaction with the
outside world, is important. The collection of the mathematical objects that is be-
ing constructed should not be independent from the notion of time. Discussing the
issues of temporality of the mathematical objects cannot be done without a short
foray into the philosophy of mathematics. Below, we take a look at the relevant def-
initions of a mathematical object and its basic properties. The discussion below is
by no means exhaustive or comprehensive; we only concentrate on the issues that
the author considers relevant for the problem at hand.

While the discussion of the nature of mathematical objects is ages old, we con-
fine ours to the formalisms that date back to XIX and XX centuries. The author
believes that the works that have shaped the modern understanding of the nature
of a mathematical object are as follows. Boole was the first person to introduce an
example of a non-numerical algebra and the first example of a symbolic logic [3]
thus paving the way for symbolic mathematics as we know it. The familiar Boolean
logic in modern notation is, however, due to Frege [10].

Russell-Whitehead Principia Mathematica [20] was published in 1910-1913. It
famously tried to develop all mathematical truths from a well-defined set of axioms
and inference rules in symbolic (Boolean) logic. As Dunn and Hardegree [9] put it,
Boole wanted to study the mathematics of logic whereas Russell and Frege wanted
to study the logic of mathematics.
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Boolean algebra is different from classical propositional calculus, or the algebra
of sentences. This kind of distinction is too subtle to be practically useful or mathe-
matically interesting. What is really interesting is the Lindenbaum-Tarski approach,
from which we are going to use some results, with a notion of equivalence of the
classes of sentences. Let ψ and φ be two sentences in appropriate propositional lan-
guage, then ψ≡ φ⇔ ψ⊂ φ and φ⊂ ψ are both theorems.

Lindenbaum-Tarski method allows one to construct an algebra out of a classical
propositional calculus and such algebra is a distributive lattice. Moreover, the ap-
proach does not only work with the classical propositional calculus. In this work we
take the advantage that an algebra can be formed by a closed (according to some
definition) set of formulas in some propositional language [23].

Wittgenstein published his Tractatus Logico-Philosophicus [25] in 1921. While
agreeing with Russell at certain points Wittgenstein introduces a different under-
standing of what a mathematical object is and what is the purpose of mathematics
and philosophy. In 1918 Brouwer begins the systematic intuitionistic reconstruction
of mathematics with his paper Begründung der Mengenlehre unabhängig vom lo-
gischen Satz vom ausgeschlossenen Dritten. Erster Teil, Allgemeine Mengenlehre.
(Founding Set Theory Independently of the Principle of the Excluded Middle. Part
One, General Set Theory) [1].

Around the same time, Husserl developed his phenomenological approach to
mathematics [15]. A detailed account of the similarities and differences of the philo-
sophical approaches can be found in Brouwer meets Husserl: on the phenomenology
of choice sequences [2]. In this work, we only look at a few basic distinctions be-
tween the approaches that are relevant to the development of our formalism.

5.3.2 Phenomenological Remarks

In addressing the stated goal of the work, the author follows several basic definitions.
First of all, we believe that Wittgenstein’s definition of the world captures the basic
idea of artificial intelligence [25]:

1.13 The facts in logical space are the world.

2.034 The structure of a fact consists of the structures states of affairs.

2.04 The totality of existing states of affairs is the world.

The next important distinction is about the nature of the states of affairs, that in our
case are represented by mathematical objects.

One of the main distinctions is in the relation between the mathematical objects
and time. There is more than one dichotomy that describes the relations between
objects and time:

• Static/dynamic: an object is static exactly if at no moment are parts added to it,
or removed from it. It is dynamic if at some moment there are parts added to it,
or removed from it.

• Temporal/atemporal: an object is temporal exactly if it exists in time, and atem-
poral exactly if it does not exist in time.
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• Intratemporal/omnitemporal: a temporal object is omnitemporal exactly if it is
static and exists at every moment. A temporal object is intratemporal exactly if it
is not omnitemporal [2].

A decision-making formalism that represents some model of the real world is not
static and thus the distinction between omnitemporal and intratemporal becomes
important. Van Atten presents three logical possibilities:

1. All mathematical objects are omnitemporal. (Husserl)
2. No mathematical objects are omnitemporal. (Brouwer)
3. Some mathematical objects are omnitemporal, some are not. [2]

The purpose of our research is to develop a formalism useful for inference within the
framework of the Dempster-Shafer theory or theory of beliefs. One of the fundamen-
tal premises of the theory of beliefs is the possibility to learn and incorporate new
knowledge into the already known. We also want some uniformity of our objects
ruling out the third view. Brouwer’s view is the most attractive for our purposes.

Brouwer’s philosophical views led him to the development of his own system of
mathematical foundations that he called intuitionist mathematics. Brouwer further
elaborates on his view of mathematical objects:

In intuitionist mathematics a mathematical entity is not necessarily predeter-
minate, and may, in its state of free growth, at some time acquire a property it
did not possess before [2].

Intuitionism is often viewed within a broader constructivist approach to mathemat-
ics. Constructivists, however, need not accept the idea of dynamic objects. The ob-
jects that interest us are dynamic and we restrict our outlook only to intuitionist
mathematics.

The concern with the notion of time is not unique for the intuitionism. Temporal
logic is one of the most well-known and developed examples of the approaches that
explicitly incorporate the notion of time into mathematical objects. On a more gen-
eral level, temporal logics are a class of modal logics where the modality expresses
temporal relations. We analyze the general modal logic in reference to our tasks
later. Now we look at the temporal logic in the context of formalizing inferential
apparatus for the Dempster-Shafer theory.

Even after establishing that the objects that we want to analyze are dynamic and
intratemporal there is more than one choice to be made. In a nutshell, the choices
that one has to face include deciding what is primary: the concept of the flow of
time or the concept of change [11].

The author believes that the nature of the objects described by the Dempster-
Shafer theory is better described through the approach when the notion of change is
accepted as primary. Accepting primacy of the flow of time is the stand taken by the
temporal logic. If the flow of time is prime, then the propositions hold truth values
for some time and may change them as time passes. In our approach that is based
on modeling evidential setup through Kripke semantic models, such a situation is
not exactly possible: a variable can be instantiated at some moment of time, but
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it cannot change its value at a later time. Instead, we accept primacy of the change
making the moments of time equivalence classes of the states, the situation rendered
through the concept of the state of the world.

Temporal logic is then not a suitable candidate under the given premises. It does
not, however, mean that temporal logic cannot provide one with reasoning tools for
the Dempster-Shafer theory. Brouwer separates mathematics into old formalism,
pre-intuitivism (Borel, Lebesgue, Poincaré) and new formalism. The intuitionism
has two acts.

First act of intuitionism completely separates mathematics from the phe-
nomena of language described by theoretical logic, recognizing that intuition-
ist mathematics is an essentially languageless activity of the mind having its
origin in the perception of a move of time.

Second act of intuitionism admits two ways of creating new mathematical
entities: firstly in the shape of more or less freely proceeding infinite sequences
of mathematical entities previously acquired (e.g. infinite decimal fractions);
secondly in the shape of mathematical species, i.e. properties supposable for
the mathematical entities previously acquired, satisfying the condition that if
they hold for a certain mathematical entity, they also hold for all mathematical
entities which have been defined to be ‘equal’ to it, definitions of equality
having to satisfy the conditions of symmetry, reflexivity and transitivity [5].

While commenting on the first act of intuitionism Brouwer introduces the notion of
a fleeing property f :

(i) for each natural number n it can be decided whether or not n possesses the
property f ;

(ii) no way of calculating a natural number n possessing f is known;
(iii) the assumption that at least one natural number possesses f is not known to be

an absurdity.

The notion of the fleeing property leads to the rejection of the tertium non datur
principle and raising the problem of interpreting and intuiting the continuum, solved
by the second act. At the same time the second act weakens the restrictions of the
first act, while for any proposition p we have that p∨¬p is true only if p is decidable,
it follows from the second act that ¬p∨¬¬p is provable (absurdity or absurdity of
absurdity in Brouwer’s words).

In phenomenological terms Brouwer’s approach is an example of a strong revi-
sionism that has the potential of both limiting and extending actual practice.

In the next section we use the phenomenological issues outlined above to select
a formalism suitable for our goals.

5.4 Implications on the Formalism Preference

We are now ready to see how Brouwer’s revisionist approach influenced the actual
development of intuitionist formalism and what is relevant for the current work. In
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the discussion below, we do not use Brouwer’s original notation or actual formal
framework. Instead, we refer to Heyting’s interpretation of intuitionism that is more
familiar for the contemporary reader [14].

The familiar Boolean algebra serves as a starting point for different revisionist
approaches to mathematics. In many cases, the easiest way of defining a new logic
is through its relationship with Boolean algebra. We start our exposition with re-
minding the definition to the reader. For he sake of consistency all formal logic
definitions are according to Chagrov and Zakharyaschev [8].

5.4.1 Boolean Logic

By Boolean logic we mean a familiar system of a set A supplied with binary opera-
tors ∨, ∧ and→, one unary operator ¬ and a constant⊥. Set A with the connectives
and punctuation marks is a language L . Set A is then a set of variables of L , VarL ,
variables and constants are used to build inductively defined formulas in the set
ForL:

• ⊥ and a ∈ VarL are formulas;
• If a,b ∈ ForL then a∨b, a∧b,¬a and a→ b are formulas too.

In classical Boolean logic, for any elements p0, p1 ∈ VarL we then have ten true
propositions called axioms of Boolean logic.

(A1) p0 → (p1 → p0);
(A2) (p0 → (p1 → p2))→ ((p0 → p1)→ (p0 → p2)),
(A3) p0∧ p1 → p0;
(A4) p0∧ p1 → p1;
(A5) p0 → (p1 → p0∧ p1);
(A6) p0 → p0∨ p1;
(A7) p1 → p0∨ p1;
(A8) (p0 → p2)→ ((p1 → p2)→ (p0∨ p1 → p2));
(A9) ⊥→ p0;
(A10) p0∨ (p0 →⊥).

The inference rules are:

Modus ponens:
Given formulas φ and φ→ ψ obtain ψ.

Substitution:
Given a formula φ obtain φs, where s, a substitution, is a map from VarL to ForL
defined inductively: ps = s(p) for every p∈VarL ,⊥s =⊥ and (ψ�φ)s =ψs�φs,
for� ∈ {∨,∧,→}.
Boolean logic as defined above is denoted Cl. It is immediately clear that Cl cannot
be used as a reasoning framework within the realm of intuitionist mathematics (ax-
iom (A10) is not necessarily true in intuitionist mathematics). Boolean logic is the
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logic of atemporal objects. In terms of Kripke models Cl is the set of formulas true
at a single world, i.e. the formulas that are true in the world that never changes.

5.4.2 Modal Logic

A modal logic is often defined as an extension of Cl. A modal language M L is
obtained by enriching language L with the new unary connective � and the corre-
sponding formula formation rule.

• If φ is an M L formula then (�φ) is also an M L formula.

The formula formation rules for L also work in L . The smallest modal logic
KM L is then defined as follows:

• Axioms (A1)-(A10) are true in KM L ;
• An additional modal axiom

(A11) �(p0 → p1)→ (�p0 → p1);
• The inference rules are modus ponens, substitution of modal formulas instead of

variables and the rule of
Necessitation: given a formula φ, we infer �φ.

The definition above gives logic KM L , the logic of some abstract necessity that
describes the common properties that are characteristic for all interpretations of the
operator �. KM L is a minimal modal logic, in a sense that any property of this
logic will also be a property of any other modal logic that is built through defining
� in some meaningful way. It is also easy to see that the modal language with the
operator of abstract necessity is weaker than the language that is used for building a
temporal logic that requires two additional operators.

There is a variety of different modal logics: temporal logic, deontic logic, epis-
temic logic and so on which owe their existence to the meaning of the modality that
is expressed through the corresponding operator. Defining, interpreting and formal-
izing modality is an amazing field in itself, but we are not going to venture into it at
all. Instead, we look at the semantic implications of having a modal operator.

The possibility of gaining new knowledge at different states of the world is the
basic premise that we accept. In the logic universe gaining new knowledge equates
to instantiating new variables. This possibility is best illustrated through the corre-
sponding Kripke models: while Cl is the set of formulas valid at a single node. In
case of the minimal possible modal logic will be the logic that contains all the for-
mulas of M L that are true at all worlds in all possible configurations of the universe,
or in all possible models. Even though KM L is in some sense a minimal modal logic
it is still stronger than Cl: Cl⊂ KM L , the proof of this fact can be found in many
places [8].

A modal logic is therefore unsuitable for building an intuitionist framework for
the Dempster-Shafer theory, at least in the case when a non-constructive proofs are
not allowed. It must be added that, in case if the authors, do not reject the possibility
of a non-constructive proof, different flavors of modal logic are a popular choice.
We have already mentioned a temporal logic as a candidate for interpreting the
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inferential powers of the Dempster-Shafer theory different authors [12, 24, 21, 4]
use differently defined modal connectives in their constructions. The reference is by
no means exhaustive it is just intended to give reader some idea about the scope and
the state of the art in the field. A better review of the publications on the matter can
be found in already mentioned article by Hájek and Godo [12].

5.4.3 Intuitionistic Logic

The ‘minimal’ intuitionistic logic Int may be defined using the same propositional
language L as in the case with Boolean logic Cl. It also admits axioms (A1)-(A9),
but not (A10) of Cl and uses the same inference rules, modus ponens and substiu-
tion, as Cl. The notions of derivation and derivations from assumptions are the ones
of Cl too. In a superficial way one can think of Int as of Cl without (A10).

The differences between Cl and Int run deeper than a simple exclusion of an
axiom. On the formal level excluding one axiom does has a negative effect: fewer
formulas are true in a weakened logic. On the other hand, there is a gain in semantic.
We have already established that Boolean logic is a logic of atemporal objects. Intu-
itionist mathematics takes the epistemic aspect of the truth into account: the truth of
a proposition may not be known a priori, but can be learned later. Considering the
possibility of learning new things requires a richer semantics than the one of the
Boolean logic. Learning new things is reflected through the concept of a possible
world or a different state of the world.

Referring to semantic models again, Int can be defined as a set of formulas true
in all possible Kripke frames with transitive nodes. Worlds may have different states
at which different things are known. Hence, the same variable can be instantiated
at some worlds not at some others. The worlds are related through the accessibility
relation meaning that the knowledge in the related worlds is non-contradictory. Non-
contradictory knowledge in this case means that if a variable was instantiated to
some value, this value cannot be changed at a later stage: in a world accessible from
the one where the variable was first instantiated.

The truth of propositions is then established according to intuitionist under-
standing:

• φ∧ψ is true at a state (world) x if both φ and ψ are true at x.
• φ∨ψ is true at a state (world) x if either φ or ψ is true at x.
• φ→ψ is true at a state (world) x if for every subsequent possible state y, φ is true

at y if and only if ψ is true at y.
• ⊥ is true nowhere [8].

Boolean logic Cl then becomes an intuitionistic logic that consists of all formulas
true at a single state (world) x. By intuitionistic propositional logic Int in a language
L we then understand the set of formulas that are true in all worlds and all possible
configurations of such worlds. It is a well-known fact that any connected model with
more than one reflexive node refutes (A10) in L , see Mints’ Short introduction to
intuitionistic logic [19] for example.
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Int is a weaker logic than Cl: it is known that Int⊆Cl. It is possible to embed Cl
into Int though. The properties of Int are quite well-known and we are not going to
spend any time discussing them.

By now we have taken a brief look at three important logic formalisms: Boolean
Logic Cl, Intuitionistic logic Int and Modal Logic K. Among the three only the
intuitionistic one does not contradict the basic premises of intuitionist mathematics
that we chose to follow. We have seen also that these three logics can be ordered as
Int⊆Cl⊂KM L . Such ordering reflects only the fist half of the definition of a strong
revisionist approach (see page 106). The second half that mentions the potential of
extension of the existing practice is realized through the superintuitionistic logic.

Logic Int serves as a basis for an infinite family of logics known as superintu-
itionistic logics also known as intermediary logics. In the sequence that follows we
use si-logic as a preferred term, partly because of the author’s personal preferences
and partly to stress the fact that the logics in question are extensions of Int.

A superintuitionistic logic, or si-logic for short, in language L is then any set L
of L-formulas satisfying the conditions:

1. Int⊆ L;
2. L is closed under MP;
3. L is closed under uniform substitution.

The largest si-logic is ForL , known as inconsistent si-logic, every si-logic that is
not inconsistent is then consistent. For every consistent si-logic L it is known that
Int⊆ L⊆ Cl.

We referred to all configurations of possible worlds while defining both KM L
and Int, a ‘configuration’ in this case is represented by a Kripke model. Unlike
KM L and Int different si-logics are validated by different classes of models. We
demonstrated [16] that the Dempster-Shafer theory gives rise to a specific class of
semantic models which can be described by a first-order condition on frames but
does not have a finite axiomatization. The logic constructed this way is however
complete and sound which is shown through representing the Kripke models of the
class through their algebraic duals and proving that they form a variety [17].

Up to now our discussion used a notion of some language L defined in a fairly
general way. Now when a logic a set of formulas is explored to a certain extent,
we can face the question of defining the connectives in L and seeing which actual
formalisms can be used.

Aside from obvious choice of Boolean connectives, there is a whole universe
of t-norm based multivalued logics. However, among t-norm based only Gödel-
Dummett logic belongs to si-logics1.

5.5 Modalities Versus Beliefs

Having an additional modal operator in the propositional language is seen as
an advantage by many authors and the discussion about logics representing the

1 The author is very grateful to C. Fermüller for drawing his attention to this fact.
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Fig. 5.1. A simple modal model

Dempster-Shafer theory is mostly centered on choosing the appropriate modality
from the impressive array of known modal connectives. We have already presented
the formal arguments against using propositional language with the modality for the
Dempster-Shafer theory interpretation.

Now, we consider a simplest Kripke model in a general modal propositional lan-
guage and look at possible semantic implications on the corresponding frame of
discernment. It was already mentioned any si-logic is represented by Kripke models
with reflexive nodes. There is no such restriction for the models representing modal
logics, the nodes may be either reflexive of irreflexive.

We use relational or possible world semantics. In this framework relation R is the
alternativeness relation and xRy means that y is an alternative (or possible) world
for x. Under this assumption the meaning of � and � = ¬�¬ on Kripke models
becomes clear. �φ is true at a node w if φ is true at all nodes reachable from w, �φ
is true if φ is true in at least one node reachable from w. Given this we now need to
pay attention to whether a node is reflexive of not.

Consider now a simplest single-node models on figure 5.1. On the picture the
reflexive nodes are empty circles and the irreflexive ones are filled. The model in
both cases consists of a single node w, the formulas true at the node are listed on the
left of it, the ones that are false – on the right.

For both frames we have F = 〈W,R〉 with W = {w} and V (p) = /0. Relations R
are different for different models: for the model on figure 5.1 (a) R = /0 and on
figure 5.1 (b) R = {(w,w)}. This ‘minor’ difference leads to significant semantic
difference between the models. Without looking too much further we can immedi-
ately see that necessity operator is validated on an irreflexive node, but is refuted in
a reflexive one. The sequence can be continued, a few formulas are listed in both
cases.

Consider now an irreflexive node in the Dempster-Shafer theory context. Even if
all the belief is attributed to the node such that p is false, we still have that p must
be true somewhere else: the beliefs and the modalities clash.

5.6 Conclusion

The question of the best logical formalism for interpreting the Dempster-Shafer
theory is likely to stay open for a long time, mostly because several different view-
points have resulted in feasible formalisms. The choice of a particular formalism is
still largely determined by the factors that lie outside of the Dempster-Shafer theory
proper. Often such a choice is based on focusing attention on some particular as-
pect of the theory. Often the choice is based on some attempt to interpret the beliefs
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with the aid of either modalities or the truth values of propositions. This approach
is ‘dangerous’ because of the fundamental difference between the two concepts. As
Hajék puts it:

Truth degrees in fuzzy logic must be clearly distinguished from belief degrees
in the Dempster-Shafer theory.

Fuzzy logic is the logic of comparative truths that are understood as truth-
functional. Belief degrees are not truth-functional [12].

The statement above does not explicitly mean that there is no connection between
the degrees of truth and the degrees of belief. The logic that we propose also can be
used to find a degree of truth of a proposition with a belief attributed to it. In our
approach we would rather aim to keep the notion of modality and of belief separate.

We argued in favor of taking a more general approach and tried to understand
the nature of mathematical objects that constitute the Dempster-Shafer theory uni-
verse from a phenomenological point of view first. The presented argument is by no
means exhaustive. It rather shows a fairly obvious distinction which, if noticed early
enough in the course of inquiry, leads the researcher in a different direction. The ap-
proach yields a practical result: there is a complete and sound superintuitionistic
logic built according to the principles described in this paper.
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Chapter 6
Computational Theory of Meaning
Articulation: A Human Estimation
Approach to Fuzzy Arithmetic

Tero Joronen

6.1 Introduction

The aim of this chapter is to introduce a very simple computational theory of
perceptions that resembles human estimation. I follow here Professor Zadeh’s
latest developments in soft computing, oriented towards Computational The-
ory of Perceptions [54], Percisiated Natural Language [56] and towards the
Generalized Theory of Uncertainty [57]. I follow the approach of perceptional
computation and continue my study of the semantics of fuzzy sets [23] but
approach the problem from a different angle. In a previous paper [24], I in-
troduced a pictorial language in connection with fuzzy logic, a language that
defines human-like, multi-domain reasoning and that develops further the ex-
isting simple pictorial language, Bliss [2]. In graphical form, fuzzy sets increase
the expressive power of the new language, which I call the Description Lan-
guage of Meaning Articulation (DLMA). This paper introduces the computa-
tional theory behind the DLMA. The DLMA contains several Bliss sentences,
called moves, which are used to show the right way of reasoning. With the
Computational Theory of Meaning Articulation (CTMA), I seek to emulate
human estimation and exploit traditional arithmetic for actual computation.

The paper is divided into three parts. The first part explores the existing
approaches and the latest developments in fuzzy arithmetic. The second
part introduces the DLMA and CTMA. The third part provides examples of
the CTMA. The chapter ends with a conclusion and suggestions for further
research.

6.2 Fuzzy Arithmetic

This part briefly introduces the existing approaches to fuzzy arithmetic and
presents a body of knowledge. Fuzzy arithmetic has been widely studied,
for instance by Bonissone (1980) [3], Carlsson and Fuller (2001) [5], Chang
and Hung (2006) [6], Dubois and Prade (1978, 1980, 1987) [8], [9], [10],
Goetschel and Voxman (1983) [13], Hanss (2003, 2005) [15], [16], Klimke
(2003) [27], Klimke and Wohlmuth (2004) [28], Klir and Cooper (1996) [31],

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 115–127.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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Kosinki (2006) [32], Kosinki et al. (2005) [33], Ma et al. (1998, 1999) [36],
[37], Nola et al. (2007) [38], Piegat (2005) [40], and Yager (1980, 1986) [47],
[48]. Zadeh’s (1965) [49] well-known extension principle forms the theoretical
basis of the traditional approaches to fuzzy arithmetic, and Yager (1986) [48]
showed that the principle is appropriate in certain conditions.

However, classical fuzzy arithmetic has met with severe criticism. Klimke
and Wohlmuth (2004) [28], point out that implementing fuzzy arithmetic
turns into a non-linear programming problem, usually difficult to solve and
computationally expensive. Similar problems arise also with its probabilistic
counterpart (Williamson, 1989) [44].

Classical fuzzy arithmetic is based either on interval arithmetic introduced
by Kaufmann and Gupta (1985) [25] or on the LR-fuzzy numbers of Dubois and
Prade (1980) [9]. These classical methods are computationally manageable but
have a serious drawback: in each occurrence, each variable is considered inde-
pendently. This can lead to a vastly overestimated result, as demonstrated,
for instance, by Dong and Shah (1987) [7], Hanss (2002) [14] and Klir (1997)
[29]. Hanss (2002) [14] showed that the multiple appearance of a fuzzy num-
ber gives wrong results, because each appearance of the number is taken to
be independent. Klir (1997) [29] has suggested some requisite constraints to
solve this problem, whereas Dong and Shah (1987) [7] have proffered a vertex
method and Hanss (2002) [14] a transformation. Constraint methods seek to
circumvent the overestimation effect of the classical methods.

My aim here is to find a computationally simple, human-like approach,
for though constraint methods prevent overestimation, they are computation-
ally complex. Consequently, I am looking for a fuzzy arithmetic as simple as
Zadeh’s basic min-max fuzzy logic. In the following I will explain my approach.

6.3 CTMA

In my previous introductory paper (Joronen, 2007) [24], I introduced fuzzy
logic to Bliss, an existing pictorial language, to facilitate handling of ap-
proximate concepts such as tall, about 100, and short in a broad domain
of pictorial languages. In this paper, I introduce a computational theory
that can be used in the graphical domain to compute answers to linguistic
problems. A natural way is to estimate fuzzy numbers to crisp numbers and
exploit traditional arithmetic.

We use approximation a lot in the every day life. The verbs approximate
and estimate are synonyms. In human context, we normally speak of estima-
tion. Usiskin (1986) [43], p. 3-4 gives us several reasons for using estimations:

Constraints force estimates. Values are unknown or vary, and measure-
ment may also be difficult. The domain is limited. For instance, paper
money has certain values.

Estimates increase clarity. By clarity, we mean ease of understanding. For
instance, a school budget of $148,309,563 for 62,772 pupils might be reported
as about $150 million for 63,000 pupils.
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Table 6.1 Phases of the CTMA procedure

Index Phase Aim Note
1. Describe the case To show the right Situation prototypes

in the description use of language by may be used
language means of the

description language
2. Evaluate the case Estimation of the A priori knowledge

meaning of the of the case is
message necessary

3. Infer the best act Estimation of a
including the reli- proper act
ability of the infor-
mation by the CTMA

4. Move to the case
5. Calculate the final The best information Learning needs

membership functions for an intelligent must be estimated
with the CTMA act

Estimates are effortless to use. It is useful to round numbers up or down
for easier computation. For instance, a trip of about 800 miles with a car
that makes 40 miles per gallon and with gas priced at about $2.50 per gallon
costs about $50.

Estimating gives consistency. In the media, the world’s population was
estimated to be over 5 billion, but today it is almost 6 billion.

We add one more reason to Usiskin’s list: many linguistically expressed
values are estimates of convenience. For instance, Bob lives near Berkeley
or most Finns are tall. Since words are estimations, references to them are
naturally also estimations.

The CTMA consists of different phases (Table 6.1). First, we must express
as clearly as possible the case in the DLMA (Joronen, 2007) [24], and, second,
evaluate the case by calculation or inference. This paper introduces a way
to calculate approximate arithmetical problems. In the second phase also
the reliability of the result is evaluated. For reliability, this chapter shows
a simple bound evaluation. Third, we must infer the best act, taking into
consideration the reliability of the result. The fourth stage is to act, and the
fifth to calculate the conclusion of the case for the next task.

Examples of the above procedure are given in the example section with an
introduction to the definition language and the CTMA.

6.4 The Arithmetical Approach

In contrast to the traditional approaches, I seek to resolve linguistic com-
putation problems somewhat differently by applying estimation to fuzzy
arithmetical problems. Linguistic variables are first estimated by membership
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Fig. 6.1. Schema of the semantics

functions, which are then defuzzified by expected values. Arithmetical cal-
culations are made in the traditional manner. The fuzziness of the result is
estimated by employing a bound evaluation, in which the result’s lower and
upper bounds estimate the tolerance. In the end, the result is fuzzified into a
pictorial element by the membership function. In addition, the membership
function is labeled linguistically. In this approach, calculation remains easy
by way of traditional arithmetic.

Figure 6.1 illustrates the new approach. First, fuzzy membership functions
are defuzzified, resulting a crisp mean value and lower and upper boundary
limit values. The mean value and the boundaries are calculated separately
by worst-case boundary calculation. These parameterized numbers are used
in traditional arithmetic. For further linguistic expressions, the output is
fuzzified.

The new approach is supported by research into human calculation. In
everyday life, humans make wide use of estimation and simplified calculation
(Hilton and Pedersen, 1986) [18], and already in their early development
normal humans estimate numerical results (Wright et al., 2006) [46].

Because it does not involve spoken language, pictorial arithmetic by Bliss
helps minimize difficulties with arithmetic reading. According to Spencer
and Russell (1960) [41], most problems in arithmetic reading are caused
by the effect of spoken language; thus it seems that mathematical thinking
is strongly linked with the non-linguistic understanding of the world. Fur-
ther clarifying the difference between the reading of arithmetic and written
words, Spencer and Russell point out that pre-scientific thinking is already
involved in the quantitative aspects of thought, associated with reading and
giving meaning and significance to size, order, amount, shape, and position.
They also emphasize that primary reading (related to concrete things) forms
the basis of secondary reading (for example, of numbers). Hardgrove and
Sueltz (1960) [17] have shown that in learning arithmetic, pictorial material
is useful in creating abstractions. The abstraction process consists of readi-
ness, exploration, verbalization, and systematic generalization. Moreover,
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Fig. 6.2. Copying addition in Bliss

pictorial material is especially useful in the exploration and verbalization
phases. In his textbook for mathematics teachers, Jensen (2003) [22] empha-
sizes the importance of a practical link between arithmetic and geometry.

6.4.1 Pictorial Computation

Because the CTMA concerns the pictorial language Bliss, I explore first pic-
torial arithmetic. Bliss (1965) [2] points out that the great mathematician
Leibnitz dreamed of a pictorial language that would immediately show if
someone is lying in saying 1 + 2 = 4. Numbers can be applied in Bliss and
also the basic integer arithmetic operations (Bliss, 1965) [2]. I will demon-
strate here the operations graphically. In general, any useful mathematical
operation may be applied in the CTMA.

According to axiom system arithmetic (for example, Beth 1962) [1], in the
graphical domain we need a successor that we might more appropriately call
a copier. This suggests that the induction assumed in the Peano axioms is
not always relevant to real life applications. In Bliss, by copying we can easily
write the calculation 2 + 3 cars makes 5 cars (Figure 6.2).

Similar objects can be added, subtracted, multiplied, or divided, and the
result is drawn into a graph. This naïve notation helps expose the liar Leibniz
was looking for. Naturally, the suggested notation becomes impractical and
applies only to basic arithmetical operations, such as illustrated above.

6.4.2 The New Approach

The idea behind the new approach is that the edge of a fuzzy number is
estimated by a crisp value. The natural choice is the expected value of the
edge. I use here the upper and lower possibilistic mean value defined by
Carlsson and Fuller (2001) [5]. The expected value is thus integrated over
the measurement axis.

Definition 1
Let L(l1 ,l2 ) and R(r1 ,r2 ) be the left and right shape functions of an LR-
fuzzy number (Figure 6.3). L and R can be any fuzzy set. The mean value of
the fuzzy membership function is calculated as a weighted average, weighted
by the membership values.
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Fig. 6.3. LR-fuzzy number

M(A) =

∫ r2

l1
μxxdx∫ r2

l1
μxdx

, (6.1)

where l1 is the lower boundary and r2 is the upper boundary of the support
of the fuzzy number.

Definition 2
I follow the definition by Fuller and Carlsson (2001) [5] of the variance of
the fuzzy number. The variance of A is defined as the expected value of the
squared deviations between the arithmetic mean and the values weighted by
the membership value.

V ar(A) =

∫ r2

l1
μA(M(A)− x)2dx∫ r2

l1
μAdx

(6.2)

Definition 3
The standard deviation of a fuzzy number is defined as the square root of its
variance.

Definition 4
The lower boundary of a fuzzy number is calculated by the lower part of the
fuzzy number that is the support up to the mean value. The lower boundary
is calculated as the average weighted by the complement of the membership
function.

x∗ =

∫ x̄A

l1
(1− μA)xdx∫ x̄A

l1
(1− μA)dx

(6.3)
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Definition 5
The upper boundary of a fuzzy number is calculated by the upper part of
the fuzzy number that is the support up from the mean value. The upper
boundary is calculated as the average weighted by the complement of the
membership function.

x∗ =

∫ r2

x̄A
(1− μA)xdx∫ r2

x̄A
(1− μA)dx

(6.4)

6.4.3 Upper and Lower Boundary Values in Arithmetic

Depending on the arithmetical operation, the result’s upper and lower bound-
ary values are calculated by the upper and lower boundary values of the el-
ements in the calculation. The values used are defined below in Definition 6
and Definition 7.

Definition 6
The values used for calculating the upper boundary are defined as follows:

6.1 Addition use upper boundary,
6.2 Subtraction use lower boundary,
6.3 Multiplication use upper boundary,
6.4 Division use lower boundary,
6.5 Power use upper boundary, and
6.6 Root use lower boundary.

Definition 7
The values used for calculating the lower boundary are as follows:

7.1 Addition use lower boundary,
7.2 Subtraction use upper boundary,
7.3 Multiplication use lower boundary,
7.4 Division use upper boundary,
7.5 Power use lower boundary, and
7.6 Root use upper boundary.

6.5 Examples

This third part of the paper provides two examples of the new approach.
The first estimates how long it takes for Bob to reach Berkeley; the second
is about the average height of Finns. The problems in these examples are
shown in the DLMA with calculations attached.

Example 1. How long does it take for Bob to drive to Berkeley?
In my 2007 paper [24], I introduced an example of Bob who lives near Berkeley
(shown in the DLMA in 6.5). We estimate now how long it actually takes for
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Table 6.2. Membership data for near

Near M(near) STD (near)
Distance(km) 1 2 3 4 5 6 2.2 1.1
Degree of membership 1 0.8 0.7 0.3 0.1 0

Table 6.3. Membership data for slow

Slow M(slow) STD (slow)
Speed (km/h) 10 15 20 25 30 35 15.8 5.8
Degree of membership 1 0.7 0.5 0.3 0.1 0

Bob to reach Berkeley. In addition to the drawing, the values of the member-
ship functions are available for a priori knowledge (Table 6.2 and Table 6.3).

The answer to the above question is 2.2 km/ 15.9 km/h · 60 min/h = 8.4
min, with a lower limit of 1.1/21.6 · 60 = 3 and with an upper limit of 3.3/
10 · 60 = 20. Thus the answer to the question is 3 < 8.4 < 20 minutes. In
language, the answer reads as follows: Bob needs approximately 8.5 minutes
to reach Berkeley, but the trip can take up to 20 minutes, or as little as 3
minutes. 6.4 illustrates in brief in the DLMA the sentence “Bob needs a short
time to drive to Berkeley.”

Example 2. How tall are young Finnish males?
We estimate here the average height of young Finnish males, knowing that
most young Finnish males are tall? In this context, the membership functions
are tall and most. We suppose that the opposite of most is few and that of
tall is short (Table 6.4).

The result of the calculation is most* · tall* + few* · short* = 0.83 · 184.8
cm + 0.17 · 160 cm = 180.5 cm. This is a good approximation, because the

Fig. 6.4. Bob needs a short time to drive to Berkeley

Table 6.4. Membership data for most and few

Most M(most) STD (most)
Share of population 0.6 0.7 0.8 0.9 0.83 0.053
Degree of membership 0 0.4 0.7 1
Few M(few) STD(few)
Share of population 0.1 0.2 0.3 0.4 0.17 0.058
Degree of membership 1 0.7 0.4 0
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Table 6.5. Membership data for tall and short

Tall M(tall) STD(tall)
Height [cm] 170 175 180 185 190 184.8 3.3
Degree of membership 0.0 0.3 0.5 0.7 1
Short M(short) STD(short)
Height [cm] 155 160 165 170 175 160 3.3
Degree of membership 1 0.7 0.5 0.3 0.0

average height of young Finnish men is 182 cm. Tolerance is here calculated
by standard deviations. The share of the population is limited by the fact
that the sum of the shares of short and tall is 1. The upper tolerance limit is
0.883 · 188.1 + 0.117 · 163.3 = 185.2, and the lower tolerance limit is 0.777 ·
181.5 + 0.223 · 156.7 = 176.0. The estimate of the average of young Finnish
males is 176 < 180.5 < 185.2 cm, which is well within the tolerance of actual
statistics.

6.6 Conclusion

This chapter introduced a simple technique, used in addition to the pictorial
language Bliss, to calculate arithmetic operations with fuzzy numbers. First,
fuzzy numbers are defuzzified by expected values. Second, calculus is exe-
cuted with their crisp numbers. The expected variation around the excepted
value is employed for worst-case tolerance analysis.

The two examples given above show that the method is useful. Future
research should focus on using the method in design of control systems and
study human estimation with linguistic variables.
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Chapter 7
Power Sets, Implications and Set Inclusions
Revisited – Retrospect and Prospect:
A Review of Bandler and Kohout’s Paper and a
Survey of 30 Years of Subsequent Developments

Ladislav J. Kohout

7.1 Introduction

It is an interesting story to look at the development of new concepts in fuzzy set
theory. One looks at the motivation, the first formulation and the subsequent devel-
opment. In our case study we look at one of the early papers that interrelates the
concept of fuzzy set inclusion, power set and many-valued implication operators,
namely the paper of Bandler and Kohout [4]. This is followed by discussion of the
subsequent related work by the fuzzy community.

This paper [4] was presented at an international workshop organized by Professor
Mamdani in 1978. In this international workshop people from a number of differ-
ent disciplines participated: pure mathematicians, scientists from various fields, (in-
cluding brain modeling, psychology and medicine) and understandably, with strong
representation of people from the fuzzy control community. The fuzzy control com-
munity had that time strong interest in investigating different types of implications.
That established Bandler and Kohout’s paper as a repository of useful information
about various implication operators and about the bootstrap of their properties into
fuzzy sets. The extended version was submitted to Fuzzy Sets and Systems, but the
manuscript was considered to be too large, so the Editor-in-Chief Professor Zim-
merman recommended to be limited to discussion of different kinds of fuzzy set
inclusions and of their link to many-valued logic operators. This paper [10] has be-
come well known in the fuzzy community and was reprinted in a collection edited
by Dubois, Prade and Yager. Other parts of the 1978 paper were extended and pub-
lished as separate papers [12],[11].

We shall examine the historical trace of the development of concept of fuzzy
inclusion in the following ways:

1. What part of the original approach has been retained;
2. how was it used in the further development of the concepts involved;
3. what aspects of the paper were understood well, which have been neglected,

and what was misunderstood or misinterpreted.

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 129–159.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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4. We shall also look at the links to other concepts that were only in the original
[4] but unfortunately did not appear in the reduced version [10] published in
Fuzzy Sets and Systems.

We shall briefly survey the key concepts of [4] section by section first, and then look
at subsequent developments.

7.2 Paper of 1978: “Fuzzy Relational Products and Fuzzy
Implication Operators”

The first paper was entitled “Fuzzy Relational Products and Fuzzy Implication
Operators”. The list of contents of this paper listed the following topics:

1. Various Products of Crisp Relations.
2. Towards a Theory of Fuzzy Power-Sets.
3. Possibilistic Notation.
4. Comparative Semantics of Fuzzy Implication Operators.
5. Height, Plinth and Crispness of Fuzzy Sets.
6. Fuzzy Set-Inclusions and Equalities.
7. Disjointness of Fuzzy Sets.
8. A Fuzzy Set and its Complement.
9. Choice of System and Further Aspects.

FRP1 – Section 1: Various Products of Crisp Relations

The main motivation for fuzzification of Zadeh’s set inclusion predicate the
membership function of which is given by the formula

µA⊆B(x) = µA(x)≤ µB(x)

came from the need to fuzzify the crisp BK-products of relations [3]. That is clearly
stated in the abstract of the 1978 paper [4]:

Besides the usual circlet product of crisp relations, there are three others
which are natural and of interest and of use. Their fuzzification requires the
choice of a fuzzy implication operator, and will vary with the choice made
(Section 1). The reason why this is so leads the problem back to a fundamen-
tal and hitherto neglected aspect of fuzzy set theory: the appropriate definition
of a fuzzy power-set; thus the motivation for choosing a suitable internal im-
plication operator is much deepened, and by the use of a possibilistic notation
is also somewhat broadened (Sections 2 and 3). (From the abstract of [4] ).

Because the paper links various concepts, it has became the seminal ground for other
work of Bandler and Kohout. In particular, the paper [4] introduced the fuzzy non-
associative products (�,�,�) also called BK-products in the literature. That was
a successful fuzzification of crisp BK-products introduced by Bandler and Kohout
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earlier [3]. It paved the way to development of Enriched theory of fuzzy relations
(ETFR) which successfully extended the crisp enriched theory of relations of [3]
into the fuzzy realm [13, 15, 16, 57].

The mathematics of crisp BK-products was already extensively developed in [3].
The products were defined by means of foresets and aftersets and of set inclusions.
So the set inclusions needed to be fuzzified.

For a relation R from set A to set B the afterset of a∈ A is the following subset of
B: aR = {b | aRb}. The foreset of b∈ b is the following subset of A: aR = {a | aRb}.
For relations R and S, where R is from set A to set B and S from set B to set C, the
BK-products were defined as

• Triangle Subproduct: a(R � S)c⇔ aR⊆Sc
• Triangle Superprod.: a(R � S)c⇔ aR⊇Sc
• Square product: a(R�S)c ⇔ aR = Sc

The crisp sub- super- and square-product1 were introduced by Bandler and Kohout
in 1977 [3]. These non-associative products (compositions) of relations play an im-
portant role in developing the mathematics of relations. It becomes immediately ob-
vious what their fuzzification can bring to the mathematics of fuzzy if one looks at a
small sample of their use in the crisp case [3]. The following pseudo-associativities
hold for � and �:

1. Q� (R � S) = (Q� R)� S, hence written Q� R � S.
2. Q� (R � S) = (Q◦R)� S; Q� (R � S) = Q� (R◦ S).

Universal characterization of relational properties are expressible by means of
BK-products. For example [3, 20, 56]:

1. transitivity: R� R � R−1; reflexivity: R � R−1 � R
2. preorder: R = R � R−1; equivalence: R = R�R−1

3. Classivalent or di-functional: R◦R−1 � R�R−1

4. Covering Classivalent or Semi-uniform: R◦R−1 = R�R−1

Hájek [39] provides some useful comments on the crisp version [3]. Expressive
richness of BK–products has been the main motivation for their fuzzification and
leads directly to the demand for fuzzification of the set inclusion.

FRP1 – Section 2: Towards a Theory of Fuzzy Power-Sets

The situation where sets B and A are both crisp subsets of some universe U is con-
sidered first. The standard definition of the subset relation between them is

A⊆ B means (b ∈ A→ b ∈ B).

This is the connection between ⊆ and the implication operator→. Now, the subset
relation itself is expressible in terms of the belonging relation and the power-set
P (B) of B:

1 In the current literature, the above defined compositions are often called BK-products, in order
to distinguish them from their more recent modifications introduced by DeBaets and Kerre.
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A⊆ B means A ∈ P (B). Thus A ∈ P (B) means (b ∈ A→ b ∈ B).

This formulation is subject to immediate fuzzification as follows:

Definition 1 ([4], Def. 2.1) Given a fuzzy implication operator→, and a fuzzy sub-
set B of a crisp universe U, the fuzzy power-set P (B) of B is given by the membership
function with

µP BA =
∧

x∈U

(µAx→ µBx).

This is well defined in terms of each suitable → operator, for every argument A ∈
F (U).

Hence, the degree to which A is a subset of B is

π(A⊆ B) =
∧
x∈U

(µAx→ µBx).

The symbol π indicates that, in fact, that the degree assigned to the statement (A⊆B)
is degree of possibility.

Note that, where I is the unit real closed interval, the fuzzy set B is an element of
IU while its power-set P (B) is an element of IUU

(Otherwise put, B ∈ F (U), while
P (B) ∈ F (F (U).)

Bandler and Kohout also introduced the mean inclusion in [4] (Prop. 3.2) replac-
ing inf by the mean value:

πm(A⊆ B) = ∑x∈U(µA → µB)
card(supp A∪ supp B)

Properties of these have been investigated by Willmott later2.

FRP1 – Section 3: Possibilistic Notation

Following Zadeh (1971) in using π for “possibility” in comparison to p for “proba-
bility”, Bandler and Kohout extend the analogy-or-contrast by enclosing statements
in brackets after π to indicate their degree of possibility. On the interpretation of π
they say the following:

One (but not the only) interpretation of this is, “the degree to which the brack-
eted statement is true.” In particular, the previous section shows that we will
wish to have π(A⊆ B)=

∧
x∈U (µAx→ µBx). “the degree to which A is a subset

of B.”

Once the graded set inclusion is expressed in the possibilistic notation, fuzzification
of the BK-products becomes obvious. Expressing “the degree to which a stands in

2 Willmott [81] renamed this inclusion a-inclusion, i.e. πa(A⊆ B).
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the fuzzy relation R to b’ as π(aRb) = µA(a,b) ([4] Defin. 3.3) yields the formulas
of fuzzy BK-products as well as of Zadeh’s fuzzy ◦ immediately3:

π(aR � Sc) = π(aR⊆ Sc); π(aR � Sc) = π(aR⊇ Sc)

π(aR�Sc) = π(aR≡ Sc) π(aR◦ Sc) = π(aR()Sc)

where aR∩Sc �= /0 is abbreviated as aR()Sc.

FRP1 – Section 4: Comparative Semantics of Fuzzy Implication Operators

Implication operators play crucial role in linking sets with their power sets as well
as with the inclusion predicate. In order to investigate the properties of fuzzy set
operations we need to start with examining the properties of logic formulas on which
specific set theories are based. The properties of logic connectives are then reflected
in the properties of fuzzy sets and set operations as shown in sections 6–9 of [4].
The criteria for evaluation outlined in [4] are as follows:

Does an implication operator used in a formula yield

1. a strong, or moderate tautology for a→ a?
2. the flat contradiction, or a moderate contradiction for a→¬a?
3. is the implication operator contrapositive?
4. is the implication operator continuous?

Such questions are, however, meaningful and unambiguous if and only if they are
asked in an appropriate context. Bandler and Kohout point out that two entirely
different contexts are often not sufficiently distinguished [4],[10].

Logic has long been beset with the often-muddied distinction between

1. inferences made in a meta-language from statements in an object-language,
on the one hand,

2. and on the other, the formation in the object-language itself of an implica-
tive combination of its c statements.

Both the need for this distinction and the difficulty of keeping to it become
more acute in the fuzzy environment.

They continue [4, 10]

Our present need is for a “suitable” generalization of the second of the dis-
tinguenda, the internal implication operator in the object language4.

3 Note the important role played by graded foresets and aftersets (namely aR, Sc∈F (U)) in these
definitions.

4 When [4] was written, most of the considerations of fuzzy ply operators in the literature had
been from quite a different point of view: an operator suitable for the first of the distinguenda
had been sought, a means of meta reasoning from fuzzy data.
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In order to detach this notion from the first one, that of (meta-)reasoning with fuzzy
premises, they use the unemotive term favored by Curry: PLY operator; the arrow
itself is then read a “ply”.

The problem is posed very explicitly [4],[10]:

1. We are working in a Multi-Valued System V , which for present purposes is all
or some of the real interval I = [0, 1]. The rationals there are more than ample
for their purposes (so: cardinality at most ℵ0).

2. Whatever V is, it is furnished with the uncontroversial operators ∧ and ∨, and
with the accepted negation ¬, with ¬a = 1−a.

3. One seeks within this system a ply operator→, that is, a mapping from V ×V
to V , suitable for the concepts of the previous sections, which is to say chiefly
for defining the degree to which one fuzzy set is to be said to be a subset of
another.

4. The fuzzy sets themselves are mappings from some crisp universe U into our
V , that is, the membership degrees of elements are numbers in V .

5. The ply operator will take two such degrees and make another out of them. The
natural anticipation, is that the fuzziness will not thereby be diminished in this
process.

For further investigations of specific power set theories and inclusion predicates,
Bandler and Kohout [4],[10] chose six representative ply operators 1–6.

FRP1 – Section 5: Interrelating Height, Plinth, Crispness and Fuzziness of
Fuzzy Sets

Connected with semantics of PLY is the natural notion of natural crispness and
fuzziness of an MVL proposition and of a fuzzy set. This was utilized for assessing
PLY by their degrees of crispness and investigating how this bootstraps onto the
various constructs made of fuzzy sets by set operations.

Table 7.1 Implication operators

1. S# Rescher [72] (p. 344).
a→1= 1 if a �= 1 or b = 1, 0 otherwise.

2. S The “standard sequence” of Rescher [72] (pp. 46–52, 343–344).
a→2= 1 if a≤ b, 0 otherwise.

3. S∗ Gödel. a→3 b = 1 if a≤ b,b otherwise.
4. G43 Goguen–Gaines. Recommended by Gaines, formula (43), for further investigation.

a→4 b = min(1,b/a).
5. Ł Łukasiewicz. a→5 b = min(1,1−a+b)
6. KD Kleene–Dienes. a→6 b = max(1−a,b)
7. EZ Zadeh [91]. a→7 b = max(min(a,b),(1−a))
8. W Willmott [80], [82]

min(max(1-a, b), min(max(a, 1-b), max(b, 1-a))).
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In [4] Bandler and Kohout introduced the crispness of a proposition a ∈ V as
κa = a∨(1−a). The fuzziness φa = 1−κa as its dual. Using the above formula for
crispness of a proposition they further defined two kinds of crispness of a fuzzy set.
The harsh crispness of a fuzzy set:

κB =
∧
U

κ(µBx).

In [4],[10] they also investigated some of its properties, in particular its relationship
to hight and plinth of fuzzy sets.

The mean crispness of a fuzzy set A was defined by Bandler and Kohout [4],
[10] as

κmA = ∑U κ(µAx)
card suppA

.

Willmott [81] further refined these definitions of Bandler and Kohout, distinguishing
a-mean and m-mean crispness5 and investigated the relationship of mean crispness
to mean hight and plinth of a fuzzy set.

7.2.1 FRP1: Sections 6 – 8: Consequences of Fuzzification

Diversification as a Result of Fuzzification: Split of a Crisp Concept into
Several Fuzzy Concepts

The paper [4] clearly demonstrates that from a mathematical viewpoint the impor-
tant feature of fuzzy set theory is the replacement of the two valued logic by a
multiple-valued logic. Since every mathematical notion can be written as a formula
in a formal language, we have only to internalize, i.e. to interpret these expres-
sions by the given multiple-valued logic. For that reason, it was important to “inter-
nalize”, i.e. to form in the object language itself an implicative combination of its
statements.

One important aspect of fuzzification that 1978 paper and 1980 paper demon-
strated was the fact that two or more equivalent crisp definitions are not any more
equivalent for their fuzzy counterparts. For example the Definition 5.1 [10] provides
2 formulas for disjointness of two sets that are different in the fuzzy case, despite
the fact that they are equivalent in the crisp case.

FRP1 – Section 6: Fuzzy Set-Inclusions and Equalities

The degree to which the fuzzy sets A and B are the same, or their degree of
sameness, is π(A ≡ B) = π(A ⊆ B)∧π(A ⊇ B). The following is then immediate.
π(A≡ B) =

∧
x∈U

(µAx↔ µBx).

5 Willmott [81] renamed mean crispness as a-mean crispness, i.e. κaA.
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In addition to fuzzy set inclusions and equalities, this section also looks at the
degree to which a fuzzy set is empty.

FRP1 – Section 7: Disjointness of Fuzzy Sets

In ordinary set theory

A∩B = /0 iff A⊆ Bc iff A∩Bc = A.

The first two characterizations were investigated by Bandler and Kohout [4][10]
while the last characterization leads to a third possible definition of the degree of
disjointness between sets which was investigated by Willmott.

FRP1 – Section 8. A Fuzzy Set and Its Complement

The three distinct concepts of disjointness are also reflected in the issue to what
extend a set is disjoint from its complement.

FRP1 – Section 9. Choice of System and Further Aspects

The fuzzier implication operators exhibit a certain property of invariance that has
been called by Bandler and Kohout “the conservation of crispness”. This is useful
in deciding which system to adopt for a particular purpose.

7.3 Summary of Responses

The response in the literature and the influence of the paper on the subsequent work
can be summarized as follows.

The paper of Bandler and Kohout [4] presented new concepts and also stated
their mutual relationships. The results of investigation of properties of various im-
plication operators→, of various inclusion predicates ⊆, and of various constructs
made from fuzzy sets by fuzzy operators have been recognized and quoted. On the
other hand, some important links between the mathematical concepts in [4, 10] have
scarcely been noticed, and the relationship of these to the concept of the power set
has been almost completely overlooked. Only scant attention has been paid to other,
equally important aspects of these papers that have been surveyed, in particular to
the notions of harsh and mean crispness and fuzziness.

The 1978 paper [4] introduced and interlinked the following topics:

1. a broad definition of graded fuzzy set inclusion;
2. the mean inclusion operators and the mean power sets (’the mean’ in sense of

aggregation);
3. realization that crisp mean relational products produce fuzzy relations;
4. the notion of crispness and fuzziness for many-valued connectives and

propositions;
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5. the mean crispness and fuzziness for sets (m- and the c-type);
6. concrete examples of connectives for category theory researchers;
7. the first results on conservation of crispness for Kleene-Dienes system of con-

nectives (max, min,→KD);
8. first fuzzification of the crisp BK-products of relations (the subproduct, super-

product and the square product);
9. a link between fuzzy power sets and fuzzy relations by mutual transformations

using the notion of foresets and aftersets.

The paper [4] was one of the early works on fuzzy power sets that demonstrated
the bifurcation of crisp notions after fuzzification just providing useful concrete
examples of connectives for category theory researchers.

Bandler and Kohout’s ideas that were first outlined in [4] further branched into
fuzzy relational calculi exploring BK-products of relations. The first bridging papers
are [12, 11]. The paper [12] also contained the Checklist Paradigm that had provided
the semantics and the tools for interval fuzzy logics further developed in [66, 63, 64].
It also lead to the question of cutworthiness [13, 18] and the need for an appropriate
theory of fuzzy closures and interiors [14, 17, 19].

Unfortunately, because the truncated version [10] published in Fuzzy Sets and
Systems did not contain section 1 of [4], the fuzzy community has viewed un-
til recently these three branches (that stem from unified foundational study pre-
sented in [4]) as completely unrelated, despite of their conceptual and mathematical
relationship.

7.4 Response to the Paper within the Fuzzy Community I:
Selected Early Papers Presenting Further Development of
Ideas

7.4.1 Connectives

The paper [4] deals with a family of implicational fragments of logics, the properties
of which are bootstrapped into the properties of sets. While Willmott extends this by
two more PLY operators, Weber looks at link of implications to other connectives.

The six operators of Bandler and Kohout are ordered by them ’in decreasing order
of rigidity’ or in increasing order of fuzziness, i.e. the later ones give decreasingly
many crisp, or increasingly many fuzzy results in the case of non-crisp or fuzzy
antecedents.

Willmott [80] The investigation of Bandler and Kohout in [4] is repeated by Will-
mott for two more implication operators (EZ, W) which follow the above six in
this ordering (see our Table 1 above). Both EZ and W are fuzzier than any con-
sidered in [4]. The first was suggested by Zadeh [91] previously. The second is
new and probably represents the extreme in fuzziness for a usable operator of this
kind, according to Willmott “realizing natural anticipation that the fuzziness (the
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value of an implication compared to that of its components) will not be dimin-
ished”. In terms of fuzzy sets, while using this operator, the degree of possibility
of any relation between two fuzzy sets cannot be larger than the crispness of the less
crisp of the two. The operator retains virtually all of the favorable features of the
sixth operator (i. e. Kleene-Dienes) investigated by Bandler and Kohout in Sec. 4 of
their paper.

Willmott states [80, 82] “This note should be considered as an addendum to the
paper by Bandler and Kohout. It assumes all their notation, definitions and results
and uses the same section and item numbering...”.

Weber [79] Claiming that "all known connectives ‘and’ [resp. ‘or’] for fuzzy sets
can be introduced as t-norms [t-conorms], where Ling’s representation theorem is
used as a basic tool....". Weber classifies so generated connectives (Sec. 1 – 4). In
the rest of the paper which was “motivated by Bandler and Kohout [10]” he gen-
erates implication operators using the logic connectives of the previous sections.
Implications of type I use ‘and’ only; those of type II use ‘or’ and ‘non’; those of
type III use ‘and’ and ‘non’. It included→i for i∈ {2,3,4,5,6,7} of [10, 82] as spe-
cial instances (see Table 1 above). Note that implications that do not residuate with
t-norms can also be generated that way, e.g. KD or EZ. In Sec. 6 some properties of
these implications are diecussed. Sec. 6.1 compares implication operators concern-
ing contrapositive symmetry and contradiction. Remarks on natural crispness and
fuzziness that was introduced by Bandler and Kohout in [4, 10] conclude the paper
of Weber.

7.4.2 Fuzzy Set Inclusion: A Survey of Papers on Inclusion
Indicator

There is rather large literature on this aspect. This unfortunately most papers in this
category develop idea in isolation from the power set concept. The papers divide
into two groups:

1. papers taking the inclusion predicate just as an index of subsetness, and
2. papers that provide axioms for various “desirable” properties of inclusion

predicate.

In the first group are papers by Young [90], Kosko [67], Bustince et al. [29], Bo-
denhofer [26] and others. In the second group (axioms of desirable properties) are
papers by Sinha and Dougherty [73], Pappis et al, important paper by Kitainik, etc.

There are several hundred of quotations of [10], mostly related to the viewing
set inclusion as a measure, a subsetness indicator; or quoting Bandler and Kohout’s
work as a useful repertory of properties of implication operators6.

6 None of the authors quoted in this section seem to realize that we have also provided the defini-
tion of the mean subsethood [4] and used it extensively in applications since 1979 [8, 12]. Even
for crisp sets the mean subsetness yields fuzzy values [12]. Willmott’s interest in mean inclusion
was triggered by [4],[8] while he visited us at Essex. His visit was supported by a (UK)SERC
grant that was obtained for this visit.
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Graded Inclusion: Harsh and Mean Types

When the crisp inclusion A ⊆ B = ∀(x)(µA(x)→Bool µB(x)) is fuzzified, the crisp
quantifier ∀ is replaced by some generalized quantifier Qx, and the crisp →Bool by
some many-valued logic implication operator→, yielding the formula

π(A⊆ B) = Qx(µA(x)→ µB(x)).

In [4] Bandler and Kohout introduced two different types of inclusion, the harsh
and the mean inclusion. In the definition of the harsh ⊆, the infimum in f is chosen
for Qx, in the definition of the mean ⊆, some aggregating operator is chosen as Qx.
Their papers [4, 5, 7, 10] they dealt with the harsh inclusion, and [4, 9, 6, 7, 12] with
the mean inclusion, substituting 1

n ∑x(µA(x)→ µB(x)) for Qx. See [4] (Prop. 3.2):

πm(A⊆ B) =
∑x∈U(µA → µB)

card(supp A∪ supp B)

It should be noted that for crisp arguments µA(x),µB(x) ∈ {0,1} the mean inclusion
yields fuzzy result, i.e. πmean(A⊆B)∈ [ 0,1 ] (see [6], and [12] sec. 3). This contrasts
with the harsh inclusion which is crisp for crisp arguments.

The mean crispness of a fuzzy set A was defined by Bandler and Kohout [4],
[10] as

κmA = ∑U κ(µAx)
card supp A

.

Willmott [81] further refined these definitions of Bandler and Kohout, distinguishing
a-mean, c-mean and m-mean crispness7 and investigated the relationship of mean
crispness to mean hight and plinth of a fuzzy set.

πm(A⊆ B) =
1

card supp U ∑
x∈U

(µA → µB)

πa(A⊆ B) =
1

card(supp A∪ supp B) ∑
x∈|(supp A∪supp B)|

(µA → µB)

πc(A⊆ B) = ∑x∈U (µA → µB)
card supp A

Kosko [67] We shall look at some length at Kosko’s paper because it contains a
number of interesting ideas and has been very influential, despite of some inaccura-
cies in its contents.

In his discussion of fuzzy inclusion (subsetness indicator) Kosko writes: Rigorous
but non-operational answer was given by Bandler and Kohout [10]. They observed

7 In order to distinguish Bandler and Kohout’s πm from Willmott’s [81], we rename the original
BK-mean inclusion as πmp – mean-partial.
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that, with non-fuzzy sets, A is a subset of B iff A ∈ 2B. So A is a fuzzy subset of B iff
A ∈ F(2B). Hence we have identified S(A,B) : S(A,B) = mF(2B)(A), the degree of A
in B’s fuzzy power set. But, again, how do we measure it?

Clearly, if the membership functions of the elements of B are given, one can
compute the degree of subsetness as well as the membership function of each el-
ement of the power set using the formulas that follow Definition 1.1 in [10]. So
what exactly Kosko means by saying “non-operational”? It becomes clear when
one looks at his definition of F(2X ), the power set of X in [67], p. 14. He says that
it is the non-fuzzy set of all fuzzy subsets. This is correct only if the inclusion is
the original Zadeh’s non-graded inclusion, which is defined by the S implication
operator (→2). So it seems that Kosko does not fully realize that the Bandler and
Kohout deal with graded sets, operations and predicates of subsetness8. Then he
proceeds with both, algebraic and geometric derivation of graded fuzzy set inclu-
sion S(A,B) = 1

M(A) ∑x max(0,µA(x)−µB(x)). This is identical with the mean inclu-
sion of Bandler and Kohout, based on Lukasiewicz implication operator, the variant
πma(A⊆ B) derived in Willmott which can be also expressed as a mean unary BK-
subproduct A �L

ma B. So, one can say that the main novelty of Kosko’s approach
to fuzzy subsetness is his geometric interpretation of fuzzy set inclusion based on
Lukasiewicz implication. Kosko’s paper, however, contains some important and in-
teresting results concerning fuzzification of entropy which we shall discuss else-
where.

The Use of Equivalence

In [84] Wygaralak presented a new concept of cardinality of fuzzy sets based on
generalized equality of fuzzy subsets called CD cardinality. In section 5 Wygaralak
investigates and compares the properties of seven kinds of CDA cardinals defined
by means of seven implication operators →1 to →7 listed in [4, 10, 80, 12]. In his
proofs, Wygaralak defines a ↔ q = min(p→ q,q→ p); in proofs of some propo-
sitions he uses the properties of π1(A ≡ B) to π7(A ≡ B) given in Proposition 4.2
of [10, 82]. In section 3 Wygaralak utilizes the definition of harsh propositional
crispness κa (Def. 3.3(1) in [10], which he denotes as csn(a).

7.4.3 Power Set

Although [4],[10] introduce power sets, the importance of it has been overlooked
by most the papers that quote Bandler and Kohout. The reason for this is clearly
indicated in comments of Höhle and Stout [41]:

For fuzzy mathematics we would like to have a foundation for higher order
structures as well as for the propositional logic of fuzzy sets. To develop such

8 Furthermore, although in his book [68] Kosko clearly appreciates the conceptual clarification of
relationship between →,⊆ and the power set that Bandler and Kohout made in [10], he states
again that the fuzzy power set F(2B) is crisp, probably mislead by his geometrical picture (Fig.
7.7, p. 280 in [68]).
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a foundation we need to ask to what extent it makes sense to talk about a fuzzy
power object.

This can be internal (in which case an individual could have fuzzy mem-
bership in such a power set) or external as a construction in classical math-
ematics (the usual practice in current fuzzy topology). Indeed we claim that
the first fifteen years of fuzzy set theory was dominated by the fuzzy power-set
problem.

In L.A. Zadeh’s pioneering paper of 1965 it is obvious that he defines in-
tersection, union, and complement of fuzzy subsets, but he hesitates to specify
the fuzzy power set of a given fuzzy set.

Indeed, as we remarked above, Zadeh’s theory is a theory of fuzzy subsets of a crisp
set, not a theory of fuzzy sets.

Bandler and Kohout clearly state that they are “looking for an internal implica-
tion operator within an object language.” This yields an individual that has fuzzy
membership in a power set.

Stout [74] says about attempts to handling the power set problem:

In fuzzy set theory the approach has been more external, at least for second
order theories, in part because there is no single fully satisfactory fuzzy power
set operator. For example, in fuzzy topology one approach which has been
developed at length [83] uses crisp sets together with a topology which is
a crisp set of fuzzy subsets). This uses only the properties of the sub-object
lattice, an external propositional level approach. Several attempts have been
made by Pultr [71], Bandler and Kohout [10], Gottwald [37, 38] to provide
a suitable theory of fuzzy power sets.

Bandler and Kohout [4] approach the problem of power set “top down”, and alge-
braically. Note that in [4, 10], where I is the unit real closed interval, the fuzzy set
B is an element of IU while its power-set B is an element of IUU

(Otherwise put,
B ∈ F (U), while P (B) ∈ F (F (U).)

The axiomatic approach within a logic on the other hand was provided by
other authors. There have been two set-theoretic approaches to the foundations of
fuzzy sets with a power set: one by Gottwald [38], and Klaua [49, 50], based on
Lukasiewicz connectives. For summaries of this work see also [41, 35]. The work
of Takeuti and Titani [75] is based on intuitionistic connectives. They abandon the
Lukasiewicz connectives because of problems with extensionality resulting from the
fact that (p ∗ (p← q))← q) need not be valid.

Gottwald parallels the construction of Boolean-valued models to get a hierarchi-
cal system of fuzzy sets with membership values in a ruler by giving an inductive
definition. There is a sense in which each fuzzy set x in his hierarchy has a natural
ordinal rank given by the smallest a such that x∈ R(α)). Gottwald calls the elements
with rank > 0 fuzzy sets to distinguish them from the ur-elements with rank 0. The
empty fuzzy set has rank 1, as do other fuzzy subsets in the sense of Zadeh of the
set of ur-elements.
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The question of ur-elements needs to be revisited, as these may be important for
applications. Unfortunately, almost no attention has been given to this important
aspect of Gottwald’s paper.

The power set problem has been resolved only comparatively recently within
the setting of monoidal and other kinds of categories (cf. work of Höhle, Stout,
Rodabaugh and others). Approach using the apparatus of (mathematical) categories
is useful from the foundational point of view.

The algebraic approach of Bandler and Kohout that uses the many-valued logic
connectives directly, is more suitable for development of calculi of fuzzy relations,
interval fuzzy logics, and knowledge elicitation. From categorial point of view it is
related to esomathematical use of category theory pioneered by Bandler [2].

7.4.4 From Fuzzy Graded Inclusions to Fuzzy BK-Products of
Relations

We have already noticed that the need to fuzzify the BK-products of relations
provided the impetus to fuzzification of set inclusion in [4]. There is direct corre-
spondence between set inclusions and triangle BK-products that is of considerable
theoretical importance. The statement “the degree to which a stands in the fuzzy re-
lation R to b” expressed in symbols as π(aRb) = µR(a,b) ([4] Def. 3.3; cf. also [12]
Sec. 3) together with the definitions of the foreset and afterset provide the desired
link ([4] Def. 3.3; cf. also [12] Sec. 3).

This link applies not only to homogeneous relations but also to heterogeneous
relations that relate two universes, say U1,U2. Let us take a heterogeneous fuzzy
relation R from U1 to U2, in symbols R ∈ RF(U1 � U2) and a heterogeneous fuzzy
relation S from U2 to U3, in symbols S ∈ RF(U2 � U3). It is obvious that in its gen-
erality, the computation of the product R#S, (where # ∈ {�,�,�,◦}) may involve
three different universes.

Let us examine the subproduct R�S. In this case, the afterset aR of a ∈U1 is the
fuzzy subset of U2 consisting of those y ∈U2 to which a ls related, each, of course,
with its degree, thus given by its membership function µaR, with

µaR(y) = µR(a,y).

Similarly, the forerset Sc of c ∈ U3 is the fuzzy subset of U2 consisting of those
y ∈ U2 which are related to c, each with its degree of intensity, thus with a µSc

given by
µSc(y) = µS(y,c).

Then it can be seen that this degree is the same as the degree to which a is related to
c by R � S:

π(aR⊆ Sc) = µR�S(a,c).

So we can summarize the correspondence between fuzzy graded ⊆ and fuzzy
BK-subproduct [4, 7, 11]:

π(aR⊆ Sc) = Qy(µaR → µSc) = Qy(µR(a,y)→ µS(y,c)) = µR�S(a,c)
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where the quantifier Q ∈ {inf, 1
n ∑}. The quantifier representation in f forms harsh

products, while 1
n ∑ forms mean products. The reader will easily work out the cases

of �,�.
Crisp Generalized Morphisms of Bandler and Kohout [3] are fuzzified by Kohout

in [55, 60] within the BL t-norm based predicate calculus of Hájek [40]. In [56, 59]
this is extended to binary relations in monoidal logics of Höhle based on residuated
lattices.

7.4.5 Natural Crispness and Fuzziness

Unlike most other papers, Bandler and Kohout distinguish the crispness and fuzzi-
ness of a proposition from crispness or fuzziness of a fuzzy set or class. In order to
be able to compare different connectives of propositional expressions with respect
to their crispness or fuzziness it has to be done on the ground level. The most natural
is to use lattice join and meet and the negation.

Crispness of a proposition a ∈ V , κa = a∨ (1− a) has a related counterpart,
fuzziness φa = 1−κa which is its dual. Above9, we have already discussed how this
was extended to the definition of two kinds crispness of a fuzzy set, namely harsh
and mean crispness and fuzziness in [4, 10].

In order to define crispness and fuzziness on the propositional level, Bandler and
Kohout compared a proposition with its negation.

A year later Ron Yager also came with this idea, directly on the subset level of
mean inclusion, aggregating propositions by a measure that originated in functional
analysis, namely the measure lP. The mean fuzziness of Bandler and Kohout is a
special case for P=1.

Harsh Crispness and Fuzziness of Propositions

In physics, quantum chemistry and elsewhere, invariants of mathematical expres-
sions that conserve some quantities frequently represent physical laws of the na-
ture. In quantum sciences, these invariant are often probabilistic. It makes sense to
ask what mathematical invariants are related to crispness and fuzziness of sets and
classes. Indeed, one can find conservation laws for crispness and fuzziness.

Theorem 2 (Complete Conservation of Crispness in KD)
(Bandler and Kohout [4, 10])
If, for arbitrary m ∈ N (or, where the expression is meaningful, even for higher
cardinalities), f (a1, . . . ,am) is any expression in KD well-formed from a1, . . . ,am,
then ∧

i

κai ≤ κ f (a1, . . . ,am)≤
∨

i

κa j.

These results assert that the crispness of any expression in KD cannot be lower
than that of the fuzziest atom in the expression, nor higher than that of the crispest.

9 cf. FRP1 – Sec. 5: Interrelating Height, Plinth, Crispness of a Fuzzy Set.
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If, as seems plausible, we take crispness as a measure of the definiteness of the
statement corresponding to the formula f (a1, . . . ,am), then the result says that the
crispness of a compound statement lies between that of the vaguest and the firmest
sub-statement; of an argument it would say that the reliability lies between that of
the weakest and the strongest link.

Starting from the point of view of Bandler and Kohout [4, 10] and Willmott [80,
82] Di Nola and Ventre [31] investigate the behavior Kleene-Dienes, Early Zadeh
and Willmott fuzzy implication operators with respect to measures of crispness and
fuzziness (as defined in [4, 10]). They extend the results of [4, 10, 80, 82] from
[0,1] to De Morgan algebras (in Sec. 2). In Sections 3, 4, and 5 they investigate the
properties of implicative filters based on the three above mentioned implications. In
Sec. 3 they employ in proofs harsh crispness κa. It is also shown there, that Kleene-
Dienes →6 and Early Zadeh →7 implication operators are indistinguishable with
respect to algebraic filters which are also implicative.

Interesting work using the connectives directly in an algebraic way appears
in one of more recent books. Yang Xu et al. [89]showed in their book that the
harsh inclusion, power set and some other notion introduced in by Bandler and
Kohout in [4, 10] extend without substantial changes into a theory in lattice im-
plication algebras. In Chapter 8.3 they deal with the theory of fuzzy power sets,
degrees of disjointness of two kinds (as defined in [10] Def. 5.1) and harsh crisp-
ness and fuzziness of fuzzy sets. It should be noticed, that in lattice implication
algebras, in lattice L with the top element I, a subset A ∈ F (U) is crisp if harsh
κ(A) = I. On the other hand, if κ(A) = I and I is ∨-irreducible, than A is a crisp
subset of U .

Bounds on Crispness and Fuzziness

The mean inclusion and mean relational products lead to the question what are the
upper and lower bounds for the average degrees of implications. This question has
been answered by means of the ordered pairing property. This property gives a con-
crete construction of optimal and pessimal pairings for arbitrary given sequences,
thereby determining upper and lower bounds for the average degree of implica-
tion between them. Bandler et al. [22] show that Kleene-Dienes →6, Lukasiewicz
→5 and Reichenbach→5.5 implication operators possess ordered pairing property.
This property makes it possible to find the extreme values for special sequences.
The rather surprising theorem holds for all implication operators.

Theorem 3 (Achievable Values for All PLY Operators) [22]
For every fuzzy implication operator whatsoever, there exist sequences with the
following means:

d∗sup = a∗ →5 b∗ = min(1,
1
n

n

∑
i=1

(1−a)+
1
n

n

∑
i=1

b) (Łukasiewicz operator)
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d∗in f = a∗ →6 b∗ = max(
1
n

n

∑
i=1

(1−a),
1
n

n

∑
i=1

b) (Kleene–Dienes operator)

( the star * superscript indicates that the item so marked is an average.

Note:

Thus every fuzzy implication operator has at least the range from d∗in f to d∗sup;
whether it is confined to that range depends upon the following considerations:

1. d∗in f will be a greatest lower bound (glb) for d∗ iff it is a lower bound;
2. d∗sup will be a least upper bound (lub) for d∗ iff it is an upper bound.
3. These conditions will hold iff respectively a→KD b is a lower bound and a→L

b is an upper bound for a→ b.

It is easy to show this is the case for the three “central” operators of the following
theorem.

Theorem 4 Extremal Values for Certain Operators [22]
The operators→5 (Łukasiewicz),→5.5 (Reichenbach) and→6 (Kleene–Dienes) all
have exactly the range from d∗in f to d∗sup.

Remark: This is not the case for all operators, in particular it fails for several which
can descend below b.

7.5 Response to the Paper within the Fuzzy Community II:
Survey of Later Developments according to the Topics –
Power Sets, Inclusions, Measures of Similarity

This section further looks at the impact of the four early BK-papers in the literature
on fuzzy sets and systems. It is not possible to comment on more than just some
selected samples of papers that have been motivated by the four papers [4, 10, 11,
12]. Out of several hundred papers we have selected just some papers for each topic
introduced in the four said BK papers. The choice was determined by the need to
cover each topic as well as by the availability of papers10.

7.5.1 The Question of Choice of Implication Operators

Survey of the literature shows that the choice of implication operator in the defi-
nition of fuzzy inclusion strongly depends on the kind of application in which it
is used. It is interesting to note that operators most often used cluster into several
families. There seems to be a fuzzy dichotomy in this classification by the purpose
for which the implication operators are used. Namely:

• Operators most widely used in mathematical fuzzy logics are are mostly
produced by residuation from t-norms e.g. [40, 33].

10 That, in particular applies to early FSS papers.
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• In scientific and engineering applications less crisp implications (some of which
do not residuate with t-norms) also play an important role, e.g. Early-Zadeh,
Kleene-Deienes, Willmott.

This division is, however, not absolute. Partial overlap appears.

Fuzzy Inclusions

Direct fuzzification of the crisp inclusion property as performed 1978 by Bandler
and Kohout in [4] leads to formulas for fuzzy inclusion and fuzzy tolerance which
is also a local equivalence. Because this fuzzification employs foresets and after-
sets, it can be also expressed by means of fuzzy BK-products over unary relations
(i.e. unary predicates). It is generally accepted that fuzzy logic has to subsume as
a special case the crisp case. Hence such direct fuzzification of a crisp case (when
it works) is a natural way of preserving the intended meaning of a mathematical
concept.

INCL&(A,B) = in fx(A(x)→& B(x)) = R �& B

SIM&(A,B) = in fx(A(x)↔& B(x)) = R�&B

It has been shown [3] that R = R � R−1 is a universal preorder. Kohout [56] gener-
alized this to binary relations in monoidal logics based on residuated lattices11.

A related general result for fuzzy sets (i.e. unary relations) is obtained by Gia-
como Gerla [36] who shows that given a complete residuated lattice (L,∨,∧,&,→,
0,1), any &-preorder can be represented both by an implication-based graded inclu-
sion as defined by Bandler and Kohout in [4, 10] and by a similarity-based graded
inclusion as defined by Biacino and Gerla in [25]. Furthermore, in accordance with
a duality between fuzzy orders and quasi-metrics, Gerla obtains in [36] two corre-
sponding representation theorems for quasi-metrics.

Bodenhofer, De Baets and Fodor [27], restrict & to a left-continuous t-norm. In
this framework, they find foresets to be useful concepts and use these for proving
various theorems in their paper dealing with weak orders using an implication oper-
ator→T that residuates with a left-continuous t-norm T .

Cornelis, van Donk, Kerre [30] look at an alternative approach to the classifica-
tion of fuzzy inclusion indicators due to Kitainik. Kitainik’s results ultimately lead
them to a necessary and sufficient characterization of the Sinha-Dougherty axioms.
They also point out that indicators satisfying all axioms necessarily belong to a
special subclass of the Bandler-Kohout indicator family.

Pivert and Bosc present a useful brief survey and comparison of two important
axiomatizations of fuzzy set inclusion: (i)the axioms of Kitainik first published in
1986 (c.f. [47, 48]) and (ii) the axioms of Sinha and Dougherty (1993) that ap-
peared in [73]. They also point out that “Fodor and Yager [34] showed that the
inclusion indicators (admissible in the sense of Kitainik’s requirements) belong to
the Bandler–Kohout class [10]”.

11 Monoidal t-norm logics MTL which use left-continuous t-norms are a special case of general
Monoidal fuzzy logics based on residuated lattices.
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While mathematical logic of fuzzy sets deals extensively with T-norm based
logic, where implications are residua of T-norms or their generalizations, appli-
cations use extensively implication operators that have lower degree κ of crisp-
ness, and do not residuate with T-norms e.g. Kleene-Dienes, Willmot, Early Zadeh.
Some application require implication operators that are not contrapositive, e.g. G43
Goguen-Gaines, Gödel, Early Zadeh.

Bustince et al. [29] provide a very useful comparison of axioms of Sinha and
Dougherty [73] with subsethood measures of Young [90]. DI-subsethood measures
include some of the mean inclusion operators that were introduced by Bandler, Ko-
hout and Willmott (cf. our section 4.2 above) that are further generalized. The paper
[29] provides link between various axiomatic approaches (Sinha and Dougherty, Ki-
tainik, Young etc) and the direct constructive algebraic and computational approach
of Bandler, Kohout and Willmott. This is a good starting point for further clarifica-
tion of the link between different approaches towards fuzzy subsethood and should
be further explored.

7.5.2 Measures of Similarity

In the paper [78] called “A comparative study of similarity measures”, in the sec-
tion entitled “A class of similarity measures extracted from the work of Bandler and
Kohout”, Wang, De Baets and Kerre investigate properties of the concept of approx-
imate equality corresponding to these similarity measures ([10] Def. 1.2 and Prop.
1.3; c.f. also [4] Def. 3.1.4 etc.):

EI (A,B) =
∧
x∈U

(µAx→ µBx)∧
∧
x∈U

(µAx← µBx) =
∧
x∈U

(µAx↔ µBx)

Staring from Bandler and Kohout’s degree of sameness, Wang, De Baets and Kerre
then introduce Equality to degree α w.r.t. EI , denoted by A∼EI

α B defined by A∼EI
α

B iff EI (A,B)≥ α, where α ∈ [ 0,1].
Making this more transparent in the set notation, we re-express ∼EI

α in the π–
notation. Subsetness is parameterized by the choice of implication operator. Having
→i, the operators will be indexed by i in order to keep track of the type of implica-
tion. So we shall write for typographical reasons Ei(A,B) instead of EI (A,B) in the
sequel.

Ei(A,B) = π(A⊆i B)∧π(A⊇i B) = π(A≡i B) =
∧

x∈U

(µAx↔i µBx)

As the final step we rewrite this as BK-products over sets expressed as unary pred-
icates. Because π(A ⊆i B) = π(A �i B) ; π(A ⊇i B) = π(A �i B) ; π(A ≡i B) =
π(A �i B) we finally get

Ei(A,B) = π(A≡i B) =
∧
x∈U

(µAx↔i µBx) = π(A �i B)
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Proposition 1 (Some Properties of Ei: Equivalent Formulation.)
The following statements using unary BK-square products are equivalent to the
corresponding Propositions of Section 3 in Wang, DeBaets and Kerre [78].

Let A, B, C fuzzy sets in the universe X and α ∈ [ 0,1] in what follows.

1. Prop. 3.2 of [78]: Interaction with complementation.
Let →i be a contrapositive implication operator. Then the following statement
holds:

π(A �i B)≥ α iff π(¬A �i ¬B)≥ α

2. Prop. 3.3 of [78]: Interaction with union and intersection.
Let →i be a hybrid monotonous implication operator with the following
property: x≤ y iff x→i y = 1. Then the following statements hold:

a. If π(A �i B)≥ α then π(A∪C �i B∪C)≥ α
b. If π(A �i B)≥ α then π(A∩C �i B∩C)≥ α

3. Prop. 3.4 of [78]: Interaction with direct image.
Let →i be a hybrid monotonous implication operator with the following prop-
erty: x ≤ y iff x →i y = 1. Let universe X be finite, R a relation from X to a
universe Y. Let express the direct images R(A), R(B) by means of inclusive BK-
aftersets: R(A) = A◦R, R(B)) = B◦R. Then the following statements hold:

If π(A �i B)≥ α then π((A◦R)(y) �i (B◦R)(y))≥ α

Bělohlávek [23] shows that BK-products preserve similarity of the relations in that
if R1, R2, and S1, S2 are similar then R1 * S1 and R2 * S2 are also similar for any
type * of BK-products defined in complete residuated lattices.

7.5.3 Applications Using Inclusions and Equalities

In this section, we survey a few selected papers12 that contrast the properties of
different implication operators used to form fuzzy inclusions.

Mathematics

In purely mathematical applications, the inclusions and BK–products are most fre-
quently based on residuated logics. For example, Alaoui [1] fuzzifies some concepts
of graphs. Crisp Generalized Morphisms of Bandler and Kohout [3] are fuzzified by
Kohout in [55, 60] within the BL t-norm based predicate calculus of Hájek [40]. In
[56, 59] this is extended to binary relations in monoidal logics based on residuated
lattices of Höhle.

12 Due to lack of space, it is just a small sample. This topic would deserve a separate chapter.
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In his book Bělohlávek [24] provides further development of BK-products de-
fined in complete residuated lattices. Cf. [58] for extensive survey of the book.

Engineering

Classical Fuzzy Control. Tong traces [76] the development of fuzzy process control
from the first papers by Zadeh to the current (in 1984) efforts in both theory and
practice and presents some suggestions for future work. He lists the role of various
techniques in design and analysis. In the computational unit of a fuzzy controller,
the adequate choice of implication operator is essential. He quotes four important
papers in this area, two on the choice of implication operator; a Baldwin’s paper and
Bandler and Kohout [10]; two on the validity of the compositional rule of inference:
a paper by Mizumoto and a paper by Sugeno.

Kiszka et al. [46] present a fuzzy model of a DC motor. Such a motor has a
nonlinear, but continuous dependency of rotations N on driving current I.

1. The best implication operators split into two classes: {S, G43, L}, {S*}, these
implication operators are essentially t-norm residua;

2. KD is worse, but still monotonous, non-increasing; produces more deviations
than (1);

3. EZ produces, however, non-monotonous transient oscillation - different for each
direction of a non-contrapositive implication operator EZ,→7 or←7.

Later applications in industrial engineering and aeronautics also find clustering of
fuzzy inclusions into fuzzy equivalence classes. Similar clusters of implications in-
dicate similarity of industrial processes [61, 45]. In other words, such equivalences
provide useful characterization of data [62]. For example, in [65] Fig. 7 show sim-
ilarities of extrusion and forging with respect to a particular family of linguistic
semiotic descriptors shown in [62] Fig. 6. Figures 3, 4 of [62] graph structures of
extrusion and forging. Algorithms [13, 17] and tools, such as Trisys [17], Gmorph
[45] have been developed to aid this kind of meta-analysis.

Xiao and Weidemann [85] use inclusive and exclusive aftersets and products
of relations: inclusive and exclusive BK-aftersets investigating magnetic bearing
without paramagnetization which has strong non-linear relationship. The purpose
of the fuzzy model is minimization of error. They find that the functions are smooth
only if the t-norms in the interval tmin and tmax are used. This is an interesting
result.

Janet Efstathiou [32] evaluated all the implication operators of [4, 10] (see Table 1
above) with respect to suitability for design of rule–based fuzzy control. She makes
the case for S, S*, KD, EZ, W as suitable for fuzzy control under the assumption of
completeness13. Namely, if ai is the value of a grade of membership of an element in
a of b, then 1−ai should also be a grade of membership14. She also points out that

13 In the terminology of rule–based rewriting systems, this completeness requirement can be called
the “local closed world” assumption.

14 Mamdani–Assilian rule, widely used in rule–based control based on min connective also satisfies
this requirement.
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there is a case for non-contrapositive operators in rule-based fuzzy control, despite
of the fact that these are usually ignored.

Techniques for Intelligent Systems

Mathematical morphologies. In the context of Mathematical morphologies, Burillo,
Frago and Fuentes [28] "define erosion and dilation with the inclusion grade oper-
ators as postulated by Bandler and Kohout [10]". They also make comparison of
some implication operators listed in [10, 12] on test images. In their later papers
they also further generalize and use the mean inclusion operators.

Computing with Words. Approximate reasoning (AR) has a powerful machinery for
manipulating statements involving possibilistic variables. In [86] Yager suggested
a methodology for converting statements involving veristic variables into propo-
sitions involving possibilistic variables. The possibilistic type information could
then be manipulated using AR and then the results retranslated into statements in-
volving veristic variables. Yager uses πA⊇KD B = in fx(µBx∨ (1− µAx)) = A � B
in computations with veristic variables [86, 87]. Yager’s methodology is then
applied in [88] to data summarization using concept ontologies and evaluating
queries involving veristic variables in databases. This also uses KD implications.
Despite of the fact that KD does not residuate with min, mutual transformations
between possibilistic and veristic variables are possible the because of the availabil-
ity of De-Morgan triples in KD logic which guarantee a local fuzzy closed world.
Mathematically, this is linked to what Efstathiou [32] called “the assumption of
completeness”.

It should be noted that conservation of crispness formula [4, 10] (cf. also
Sec. 4.5. above) ∧i κai ≤ κ f (a1, . . . ,am)≤ ∨i κa j may be relevant in this context,
as it provides a powerful fuzzy invariant.

Cognitive Sciences and Computing with Words (CW). Von Eckardt [77] defines cog-
nitive science as “a field that studies cognition by drawing on resources of a number
of disciplines, including cognitive psychology, AI, linguistics, philosophy, neuro-
science and cognitive antropology.” It is not, however, a single discipline, but rather
a collection of ‘cognitive sciences’ that mutually interact. Juliano shows clearly [42]
how Zadeh’s CW fits into this interdisciplinary arena. Furthermore, Von Eckardt
[77] points out that a complete theory of cognition will not be possible without a
substantial contribution from each sub-discipline of cognitive sciences. An example
of such cross–disciplinary approach is the work of Juliano and Bandler [43] pre-
senting the basic framework for cognitive diagnosis which utilizes fuzzy relational
methods based on fuzzy BK-products and graded inclusions. Then in [44] they ex-
pound on the use of fuzzy graph15 structures called fuzzy cognitive maps (FCMs)
to model the use of similarities and discrepancies when humans form conceptual
categories as a part of our higher mental activities. Methodologically, this approach

15 A fuzzy graph is, in fact, a satisfaction set [15, 16] of a fuzzy relation.
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is also related to earlier work in General Systems approach to activities [54, 51, 52]
and the structure of language and thought [21, 53, 70].

Intelligent Navigation Systems. An important and very interesting paper of Lee and
Yong-Gi Kim [69] describes a new heuristic search technique for real-time collision
avoidance of autonomous underwater vehicles (AUVs). An AUV is equipped with
an intelligent navigation system (INS), which performs cognition, decision and ac-
tion. Most INS use route planning16 and path planning17. Path planning serves to
find a safe and reasonable path to the goal by means of heuristic search.

The heuristic algorithm ranks all the acceptable paths using the mean fuzzy BK-
relational products which compute relationship among the candidate successors that
form a path. The authors tested optimality of seven fuzzy implication operators, 3:S*
to 8:W listed in [4, 10] (cf. also Table 1 above) and 4’:Modified G43 listed in [12].
They simulated 6,300 cases (100 α-cuts × 9 scenarios × 7 implication operators).
The result is a function of the (i) the obstacle type, (ii) implication chosen, (iii) the
value of the defuzzification parameter (e.g. α-cut).

The authors consider two measures of performance, (i) the optimality of energy
consumption, (ii) the safety. The following two non-contrapositive implication op-
erators are the best choice for a specific purpose of AUV, e.g. when the goal position
is hidden beyond the obstacle:

1. the Early Zadeh (EZ) →7 yields the optimal path along which AUVs consume
the minimal energy to the goal position. Therefore it is suitable for AUVs lim-
ited in mission time or operating time.

2. The Gödel →3 (S*) is the best for a mission in which the safety of AUVs is
most important key to success, because it very robust with respect within a
large interval of values of defuzzification parameter18. It, however, has higher
energy consumption than EZ.

The contrapositive implication operator 4’:G43’ generates the minimum mean value
in general, hence it is suitable for a general-purposed AUVs.

Other tested operators perform worse. For example, the contrapositive Kleene-
Dienes (KD) →6 yields the lowest mean value of consumed energy of all tested
implication operators. It is, however, excluded because it has just one value of α=cut
for which an adequate path is found for all the nine tested types of obstacle (s1 to
s9). It is too sensitive to the variation of the value of the defuzzification parameter.

We summarize the most interesting findings of Lee and Yong-Gi Kim [69] that
concern the seven tested implication operators:

1. Contrapositive implication operators generate paths with lower consumption of
energy than non-contrapositive ones.

16 Route planning aims at deriving way-points from a start position to the goal position based on
environment information.

17 Path planning derives a new path between way-points when AUVs meet with an unknown ob-
stacle or an unexpected change of mission happens.

18 29 cases of α-cuts with S* succeed in generating acceptable path to the goal.
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2. Non-contrapositive operators are more robust than contrapositive, generating
paths that are safe over larger interval of values of the defuzzification parameter.

Summary of Comparisons in Applications

The above comparisons of the use of implication operators revealed an important
and interesting trend. Where we deal with simulation of linear or even strongly
non-linear, but continuous, and possibly smooth system behavior, t-norm based log-
ics are often adequate. In engineering applications, strong discontinuities may some-
times destabilize the system. On the other hand, discontinuities may also stabilize;
cf. well-known effect of “bang-bang” control. In such cases, more fuzzy discontin-
uous logic connectives should be preferred.

As shown by Bodenhofer et.al [27] INCLT (A,B) = in fx(A(x) →T B(x)) pro-
vides the standard way of defining graded set inclusion in MTL logics based on
left-continuous t-norms. The set inclusions in this family is again the subclass of
Bandler and Kohout indicator family [4, 10]. This subclass is characterized by an
additional constraint such that x→T y = 1 iff x≤ y, where→T is the residuum of
&T . This may be too crisp for some applications because →T has 1’s everywhere
on and above the diagonal. Then less crisp implication operators, e.g. KD, EZ, or W
may be preferable.

7.6 The Need for Foundational Studies

Contemporary mathematical logic is conveniently classified into the parts: (i) Propo-
sitional logic; (ii) Quantification & identity; (iii) Arithmetics; (iv) Set theory; (v)
Recursive functions .

These extend into the many-valued domain of fuzzy structures by means of judi-
cious fuzzification. It can be seen that Zadeh and his disciples attempted to fuzzify
with success some of these, now classical parts of mathematical logic.

Although the above hierarchy covers what is known as mathematical logic – the
logic intimately linked with the foundations of mathematics and computation, other
approaches to logic stem from the linguistic philosophy and the linguistic proper.
So, in any foundational studies, attention has to be paid also to these.

Höhle and Stout ask a pertinent question in the context of foundational studies,
and offer an answer [41]

What should the study of foundations of fuzzy sets offer? Certainly it should
place fuzzy sets in a longer and broader tradition of many- valued mathemat-
ics ... but it must also speak to the needs of the practitioner of applied fuzzy
set theory. A foundation for fuzzy set theory should provide a rigorous base
for the actual practice of those applying the theory. ... people working with
fuzzy sets want to use them for practical purposes ... These practitioners need
a fuzzy set theory which is robust ... not particularly sensitive to the details of
the model and connectives used but flexible enough so that the model can be
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tuned to provide high levels of performance. Thus a foundation for fuzzy sets
needs to provide for a variety of connectives while clarifying the bounds on
choices available.

The second property that foundation should have is elegance. ... We can
also ask if a foundation can take into account the ‘linguistic variables’ and
experimental, computational approach.

The suggestions are a good start, but in my opinion, one has to go even further. One
has to build on algebraic strength of many-valued logic also learning from its failure
to tap the conceptual and formal resources of contemporary philosophical logic.

The foundations of fuzzy sets, logics and systems contain some general systemic
concepts that run across the boundary between theory and methodology. Although
the initial motivation came from Systems Science through the important work of
Zadeh that predated his first paper on fuzzy sets in 1965, the field has become rather
fragmented in the last decade, losing to a great extent its initial cross disciplinary
character. There is also a wide gap between mathematical and philosophical formal
logic. Mathematical theory of General Systems has some features that may help
to bridge this gap by mediating communication between the two disparate logic
disciplines. Also the notions of dynamics, stability, approximation, optimization
etc. may provide a fertile ground for formalization employing the notion of many-
valuedness; in particular in the form of many-valued logic based algebraic theories
of relations.

So, in a foundational analysis we have to distinguish sharply not only

1. mathematical questions,
2. logical questions,
3. ontological, epistemological and metaphysical questions,

but also look at their interrelationship, with particular emphasis on many-valued sys-
tems. For example, there are some interesting links between the mathematical and
logical features of fuzzy structures of any kind and the ontological and epistemo-
logical questions of the foundational concepts. In order to bring these out explicitly,
we need to employ an adequate method of conceptual analysis. In (1) we deal with
the structure, in (2) we add to the structure the logical form. In (3) we deal with
the problem of ontology, epistemology of the primitive concepts and perhaps, some
minimal metaphysics of the systems involved; and also with with the questions of
selection and justification of the appropriate meaning of the concepts employed.
We have also to add the problematics of methods of enquiry and problem solving.
This provides us with a conceptual framework, on the backcloth of which we should
judge the issues dealt with in comparative studies of various approaches in the field
of fuzzy sets and systems.

NOTE: The papers reviewed in this chapter represents just ‘the tip of the iceberg’.
There are many interesting papers related to the theme of this chapter that would
deserve to be discussed but had to be omitted for lack of space.
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Chapter 8
Probability and Fuzziness –
Echoes from 30 Years Back

Hannu Nurmi

8.1 Introduction

In 1977 as a (relatively) young assistant professor I was invited to deliver a tutorial
on fuzzy sets in decision making at the meeting on subjective probability, utility and
decision making (SPUDM) in Warsaw. Apparently, the well-known Polish social
psychologist and methodologist Maria Nowakowska with whom I had been in cor-
respondence for some years had suggested my name to the local organizers of the
meeting. The invitation was naturally a great honor to me although the meaning of
the word “tutorial” was not known to me at the time. It turned out that I was to give
a plenary lecture to an international audience of distinguished decision analysts,
psychologists, methodologists and management scientists. In those days the fuzzy
systems were not considered standard background knowledge of people working on
individual decision making. Sometimes I doubt that times have changed much in
this regard.

The presentation I gave in the Warsaw meeting forms the background of this
article. In fact, the first part of the following can be considered a revision of the
tutorial. The tutorial was published with some delay in 1983 [15]. It will hopefully
turn out that many of the issues that I then wanted to discuss are still relevant.

The main subject of the tutorial was the issue of whether we really need the theory
and methodology based on fuzzy sets as distinct from probability theory. After all,
both theories dealt with imprecise notions. Since the theory of probability is built
on firm axiomatic foundations and contains well-defined rules of inference, we are
led to ask if there is a way of linking fuzzy statements to probabilistic ones so that
the probabilistic methodology would become applicable. In case no such link can be
established, we are dealing with two different types of impreciseness, each calling
for its own axiomatic foundations and rules of derivation.

The second part of this article is a similar revision of an earlier article from
roughly the same period [16]. It is an attempt to give probabilistic voting an in-
terpretation in terms of fuzzy preferences. At the time of its writing I thought that
fuzzy preferences would give a plausible rationale for probabilistic voting which
in itself had proven to be an important tool in explaining the intuitive stability of
electoral outcomes flying in the face of the theoretical results of the “deterministic”
voting theory. In early 1980’s the idea of combining probability and fuzziness in the
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same model had not been much advocated in political science. In fact, fuzzy models
are still today relative few in number in political science [17].

The works mentioned above reflected the optimism of their author with regard to
the possibilities that fuzzy sets could provide to the study of human behavior, in gen-
eral, and political behavior, in particular. The task was to convince the “mainstream”
scholarly community of this potential. I observed with delight the emergence of spe-
cialized fuzzy set conferences, journals, book series and societies, but I also saw the
risks involved in isolating the fuzzy set scholars into their own outlets and gather-
ings. I decided to adopt an agnostic view on the virtues of fuzzy sets: if they help us
in solving scientific problems, these solutions are the best way of advocating them
to the rest of the scholarly community. Fuzzy sets ought to be viewed as yet another
item in the toolbox of scholars, no more, no less.

8.2 Impreciseness, Vagueness, Ambiguity and Granularity

The fuzzy set theory was invented by L. A. Zadeh [30] to deal with imprecise con-
cepts in an exact way. Examples of imprecise expressions in ordinary parlance is
not hard to come by: “slippery road”, “a polite person”, “a difficult assignment”,
“sizable majority” are a few examples. Here it is the adjective that relates to some-
thing considered imprecise, but there are inexact expressions pertaining to other
word classes as well. To wit, “he often comes late to meetings”, “not much is known
about his past”, “the downfall here is more likely to be sleet than snow” or “at this
price, the house is a real bargain”.

An established way of dealing with some types of impreciseness is by the use of
tools of probability theory. In particular, if the impreciseness under study pertains
to randomness – like in the case of “often” – probability theory seems to provide
a natural approach to dealing with impreciseness. However, the bulk of examples
mentioned above pertain to impreciseness that apparently has nothing to do with
randomness (e.g. “late”,“not much”, “polite”, “sleet”, “real bargain”). Do we thus
need a new theoretical and methodological apparatus to deal with these types of
expressions or is the difference more apparent than real? If it turns out that we are
dealing with appearances only, then there must be a link of some sort connecting
those expressions and probabilistic ones. In that case, the technical apparatus of
probability theory is – in final analysis – applicable and the basic rationale of fuzzy
sets would thereby evaporate.

In an attempt to take a stand on the above question it is useful to differentiate be-
tween the following types of impreciseness: ambiguity, randomness and vagueness.
Vagueness may pertain both concepts and propositions. The same is true of ambi-
guity. Focusing on concepts, we may further distinguish between intensional and
extensional vagueness and ambiguity [4]. A concept is intensionally vague if there
are instances where we simply cannot say whether the concept applies or not. There
is something deficient in the definition of the concept. There are borderline cases in
its applicability. Those borderline instances mark the extensional vagueness of the
concept [7]. In similar vein, intensional ambiguity of a concept means that it can be
applied to several entities of quite different nature. For example, the Finnish word
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“kuusi” refers to both number 6 and to spruce (tree). Eo ipso, it is extensionally am-
biguous, i.e. can refer to two quite different things. In general, intensional ambiguity
implies extensional one. The same holds for intensional vagueness. The existence of
borderline cases is the hallmark of vagueness. Ambiguous concepts or propositions,
in contrast, are not characterized by borderline cases. Ambiguous concept refers to
things that are known to be different. The things in themselves may be quite precise.

A natural field of application of fuzzy set theory is the domain of vague con-
cepts since one often associates fuzzy membership degrees with truth values of
propositions containing vague concepts. The underlying assumption, then, is that
the sentences are endowed with unique truth values. Statements containing ambigu-
ous concepts do not have unique truth values. Hence, the application of fuzzy sets
is not feasible. To quote Bellman and Zadeh ([1] p. B 142):

“Essentially randomness has to do with uncertainty concerning the member-
ship or nonmembership of an object in a nonfuzzy set. Fuzziness, on the other
hand, has to do with classes in which there may be grades of membership
intermediate between full membership and nonmembership.”

In the words of Negoita and Ralescu ([13] p. 31):

“Randomness involves uncertainty about the occurrence of an event precisely
described. Fuzziness deals with the case where the object itself is intrinsically
imprecise...”

Over the past decades a new type of impreciseness has come into focus, viz. one
where the borderline cases assume an important role as well [19]. However, in con-
tradistinction to vagueness, this type of impreciseness is conceptually connected to
the observer’s ability of differentiate between classes of objects. While some objects
or things can be neatly classified, some cannot. The conceptual apparatus dealing
with this – “granular” – type of impreciseness is the theory of rough sets [20]. The
relationships between granularity, randomness and fuzziness will be discussed in
the following sections.

8.3 Interpretations of Probability

In ordinary and scientific parlance the concept of probability is used in the following
ways:

1. as verisimilitude (veri similis, truth-like)
2. as degree of belief further sub-divided into:

• personalistic view whereby probability is a strictly subjective notion reflect-
ing the agent’s beliefs, and

• logical view which deems probability as the degree of belief that a consis-
tent or rational agent would have concerning a statement, given that another
statement is known to be true
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3. as an objective property of the world. This can be further sub-divided into:

• limiting relative frequency view. According to this, probability is the limit of
the relative frequency of an event in an infinite sequence of events, and

• propensity view which associates probability with a dispositional property of
an event and the chance setup where it occurs so that in the long run certain
outcome sequences are observed.

It is of some etymological interest to notice that the term used to designate prob-
ability in several languages – e.g. Finnish, German, Swedish – could literally be
translated as “verisimilitude”. The modern concept of probability, in turn, has a
clearly different meaning, either 2 or 3 in the above list. Hence, the literal mean-
ing of the terms used to denote probability (“something that resembles truth”) is, in
fact, misleading. More interestingly, the concept of fuzziness comes very close to
the concept of verisimilitude. Therefore, for reasons of conceptual orthodoxy one
could suggest that the terms used in Finnish, German and Swedish to denote prob-
ability – “todennäköinen”, “wahrscheinlich”, “sannolik” – should rather be used to
denote fuzziness.

The meaning 2 above relates the probability concept to an agent or knowledge
system. Under this interpretation, probability is a conceptual device for dealing with
uncertainty. Uncertainty, in its turn, is related to knowledge. This view is in stark
contrast with objective interpretations, i.e. those that deem probability as an objec-
tive property of the world. For example, in the relative frequency view, the events
are random regardless of the presence of a human observer. Whether the world is
irreducibly stochastic or whether the apparent randomness is merely due to our im-
perfect knowledge of the determinants of events, is unimportant: in both cases the
locus of probability lies in the nature of things themselves because even in the latter
case the protagonist of the objective interpretation would claim that objective events
or factors not explicitly considered would account for the random variation of the
observed events. The beliefs of the observer should play no role in the assignment
of probability values to events.

The modern theory of probability is based on axiomatic foundations. Starting
from the concept of comparative probability one looks for the conditions that the
binary relation “is at least as probable as” has to satisfy in order for there to be
a measure P defined over the set of subsets of a given set so that the values of P
represent the binary relation in the sense of assigning larger values to more probable
events and smaller values to less probable ones.

More exactly, let G be an algebra of sets on an nonempty set X and let ≥ be a
binary relation in G (≥ may be interpreted as “at least as probable as”). Suppose
that there exists a mapping P : G→ R, where R is the set of real numbers, so that for
all A,B ∈ G:

1. P(A)≥ 0,
2. P(X) = 1, and
3. if A∩B = /0, then P(A∪B) = P(A)+ P(B),
4. A≥ B if and only if P(A)≥ P(B).
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If these conditions are met, (X ,P,G) is called a finitely additive probability space-
and ≥ is measurable.

These conditions can be compared with those pertaining to fuzzy measure. Ac-
cording to Terano and Sugeno [28], fuzzy measure in a set of X and a σ-algebra H
defined on it, can be defined as follows: if there is a function f with the following
properties, we call f a fuzzy measure:

1. f ( /0) = 0 and f (X) = 1,
2. If A,B ∈ H and A⊂ B, then f (A)≤ f (B).

Measures f and P thus have the same properties except that the fuzzy measure is
associated with monotonicity (condition 2), while the probability measure is char-
acterized by additivity (condition 3). Hence, from the measurement-theoretic point
of view fuzziness is a more general property than probability as the measure of the
latter can be derived as a special case of the former.

There is a literature on comparing probability interpretations along various crite-
ria. W.C. Salmon suggests three criteria: admissibility, decidability and applicability
[23],[24]. An interpretation of an axiom system is admissible if the the axioms of
the system are translated into true statements in the interpretation. In the probabil-
ity contexts this means that whatever the interpretation of the probability concept
chosen, all axioms of the probability calculus have to be satisfied. Should the in-
terpretation be inadmissible, we would end up with incoherent betting systems, i.e.
lose our bets no matter what the outcomes we are betting on – assuming that our
opponent resorts to a coherent betting system, that is, one based on admissible inter-
pretation of probability. Decidability, in turn, pertains to the method of ascertaining
or assigning probabilities to events or classes thereof. More specifically, decidability
criterion requires that there be a method of – at least in principle – ascertaining the
probabilities. In other words, probability statements must in principle be testable.
The applicability criterion states that the probability concept is to have predictive
importance in the interpretation chosen. It must be useful as a guide of life.

Unsurprisingly, all the interpretations outlined above are admissible. Failure on
this criterion would imply a failure on the applicability criterion as well. The ob-
jective interpretations are clearly applicable since probability statements translate
into synthetic (i.e. not conceptually true) statements pertaining to a future course
of events. In that sense also the personalistic interpretation is admissible since it
is motivated to by an attempt to discover rules that govern the transformation of
subjective probabilities in the light of evidence. Arguably, the degree of belief in-
terpretations are particularly application oriented since their main motivation is to
design guidelines for practical decision making. Within the class of objective inter-
pretations one could maintain that the limiting frequency interpretation is limited to
event classes only, whereas the propensity interpretation applies to singular events
as well. It is, thus, incorrect to speak of probabilities of single events under the lim-
iting frequency interpretation. Probability statements refer to classes of events, not
single ones. This has to do with problems of decidability and ascertainability. No
matter how many observations we have at our disposal, we cannot say whether an
observed series of relative frequencies converges to a certain limit value. Indeed,
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we cannot even say whether it approaches any particular value when the experiment
is continued indefinitely. This, of course, casts doubt upon the decidability of any
probability statements when the limiting frequency interpretation is adopted: any
value of the relative frequency computed from a set of empirical data is compatible
with any probability value since the latter is defined with respect to an infinite set of
observations.

While the propensity interpretation is not subject to the same conceptual diffi-
culty as the limiting relative frequency one, viz. the difficulty of assigning probabil-
ities to singular events, it is no less problematic when it comes to the decidability
criterion. We can speak of probabilities of singular events, but this, as such, is of
little help in assigning probability values to events or event classes. Hence, both
objective interpretations lead to difficulties in application as well as in ascertaining
specific probability values. It is, then, natural to ask whether probability after all is
related to knowledge and not directly to the objective reality. The argument could
be built as follows. The probability of, say, a coin falling heads next time we toss it
can be assigned some value, e.g. 1/2. But once the throw has been made, the coin
shows either heads or tails. Therefore, it makes no sense to speak of the probabil-
ity of coin falling heads once the throw has been made. The “probability” of heads
on that throw is now either 1 or 0 depending on the outcome now known. From
this point of view it is problematic to speak of probabilities of single events at all
after the events have occurred. The proponents of the limiting frequency interpreta-
tion would undoubtedly accept this line of reasoning. They would quickly point out
the conclusion: the concept of probability is meaningful in the case of mass events
only. Therefore, the whole business of investigating probabilities of singular events
is doomed to fail.

Epistemic interpretations have much less difficulty in probability assignment to
singular events. But surely what the probability theorists are indirectly interested in
is objective reality, not just the beliefs or knowledge thereof. Is this interest compat-
ible with the known difficulties of ascertainability of probability statements related
to epistemic interpretations? Not easily, I would think. The epistemic interpretations
are mainly interested in the changes of probability assignments when new evidence
is obtained. It is known that Bayesian decision rules lead to swiftly converging a
posteriori probabilities, no matter how different a priori probabilities one starts up
with. Yet, is it not the relationship between empirical observations and probabil-
ity statements that is of crucial importance in applying probability theory? We have
seen that different interpretations of probability give rise to different problems of ap-
plication. In particular, it is easy to see that each class of interpretations deals with
different types of problems. Therefore, they can be expected to stand in different
relationships to fuzziness.

8.4 Probability, Fuzziness and Evidence

According to the distinction between randomness and fuzziness made by Bellman
and Zadeh as well as by Negoita and Ralescu – quoted above – when randomness is
involved one can always – in principle – determine with certainty whether the event
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in question has occurred or not in the past, whereas in the case of fuzziness the tem-
poral location of the event makes no difference for the determination of the member-
ship degrees. From the methodological point of view this observation is important
when due account is given to the fact that in the preceding quotations the authors
have obviously restricted themselves to the objective interpretations of probability.
If we for a moment restrict the discussion to cover the limiting relative frequency
interpretation vs. fuzziness distinction only, we may point to an additional method-
ological difference between these two notions: statements containing fuzzy notions
do not depend for their validity on any kind of frequency observations or statements
pertaining to frequencies. In other words, no evidence to a statement containing
fuzzy concepts can be given by invoking statements containing information about
relative frequencies. On the other hand, when the limiting relative frequency inter-
pretation is adopted, probabilistic statements become decidable – in principle – in
the light of data on relative frequencies. So, there is a clear methodological line of
demarcation between one particular probability interpretation and fuzziness.

Another often invoked distinction between fuzziness and probability concerns
algebraic properties: the probabilities of mutually exclusive and jointly exhaustive
events add up to unity, whereas the sum of membership degrees of distinct elements
of a universe of discourse in a fuzzy set may well differ from unity. If probability
in the limiting relative frequency sense and fuzziness can be kept distinct method-
ologically and conceptually, the distinction between personalistic interpretation of
probability, on the one hand, and fuzziness, on the other, is essentially more diffi-
cult. The conceptual difference can still be made since it is obviously a different
thing to argue that in my opinion the probability of tomorrow’s being a sunny day is
0.7 and to say that tomorrow belongs to the fuzzy set of sunny days with the degree
of membership of 0.7. For the latter statement it is necessary for me to actually ob-
serve tomorrow’s weather, whereas in order to make the former claim I do not need
to do that. What I need for the probability statement is a record on observations or
a subjective belief that warrants such an assertion. Once tomorrow is here, I know
that the day is either sunny or not sunny. In the case of the fuzzy statement, the de-
gree of membership can be ascertained when tomorrow comes. Various day-types
are endowed with various degrees of membership in the fuzzy set of sunny days.
Comparing the description of tomorrow’s weather with these day-types enables me
to judge whether the fuzzy statement was correct.

Suppose now that we have to test statements containing fuzzy or probabilistic
notions. Can we distinguish between hypotheses containing personalistic probabil-
ity statements and fuzzy expressions? Disregarding the time at which the proba-
bility or membership degree assessment is made, it would require essentially simi-
lar apparatus to measure the degrees of belief and subjective membership degrees.
Hence, from the methodological point of view the only way to keep these two no-
tions distinct would seem to be to keep an eye on the time at which the subject
is asked to make an assessment of probability or membership degrees. In the case
of randomness we can speak of probabilities of events on the basis of our knowl-
edge concerning the pattern of randomness involved. Regardless of the interpreta-
tion of randomness (probability) adopted, there is no way in which an observation
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concerning the result of a trial or experiment could challenge our value assignment –
disregarding the degenerate case in which the assigned value is 0 or 1 and the event
occurs or does not occur, respectively. In contrast, the investigation of the event and
that only can determine the justifiability of a given membership degree assignment.
Experiment is, thus, directly relevant in the latter case, whereas its relevance is at
best of an indirect nature in probability assignments.

8.5 Probabilistic Voting and Fuzzy Preferences

Rather than arguing for the primacy of probability vs. fuzziness it is perhaps more
prudent to think of both as tools applicable in solving certain types of problems.
In some cases one type of impreciseness may be used to explain or generate the
other type. A case in point is probabilistic voting. The well-known results of McK-
elvey, Saari and Schofield have shown that with deterministic voting – i.e. with each
voter voting for whichever alternative is closest to his/her ideal point in a multi-
dimensional policy space – the majority rule does not guarantee any kind of corre-
spondence between voter ideal points and voting outcomes [12], [22], [25]. Intro-
ducing randomness in the form probabilistic voting, however, makes the majority
voting much more reliable tool for making social choices [5], [8], [9], [10].

Consider a two-candidate electoral contest and a set S of feasible policy alterna-
tives.We denote by si(i = 1,2) the policy alternative proposed by candidate i. Let the
voter set N be partitioned into subsets N1, . . . ,Nk so that each voter j in a subset Nj

is characterized by a utility function Uj : S→ R, where R is the set of real numbers.
We assume that the following probability is well-defined for all s1,s2 ∈ S× S and
for each i ∈ 1,2:

Pi
j(s1,s2) = Pi

j(Uj(s1),Uj(s2)) (8.1)

This denotes the probability that a voter j randomly chosen from Nj will vote for
candidate i, given that the policy proposal of candidate 1 is s1 and that of candidate
2 is s2.

Clearly not all probability distributions Pi
j(s1,s2) can be deemed rational. On

the other hand, too stringent rationality assumptions would bring us back to the
deterministic model and its “chaos” results. Consider, for example, the following
restrictions:

P1
j (s1,s2) = 1 if Uj(s1) > Uj(s2) (8.2)

P2
j (s1,s2) = 1 if Uj(s1) < Uj(s2) (8.3)

P0
j (s1,s2) = 1,otherwise (8.4)

where P0
j (s1,s2) means that a voter randomly chosen from Nj abstains from voting.

These three restrictions would put us right back to the chaos theorems. Therefore,
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we relax these along the lines suggested by Hinich et al. [8] and assume for all
i ∈ 1,2 and for all Nj ⊂ N:

• Pi
j is strictly monotone increasing function of Uj(si),

• Pi
j is strictly monotone decreasing function of Uj(sl), for i �= l, and

• Pi
jis an integrable function [5].

These conditions define a minimally responsive probabilistic voting. Consider now
the set SP of strongly Pareto optimal outcomes:

SP = {x ∈ S|∀y ∈ S∃ j ∈ N : xR jy} (8.5)

where R j stands for individual j’s weak preference relation.
One of Coughlin’s results states that if voting is probabilistic and minimally re-

sponsive in the above sense, one can ensure that the electoral outcomes approach SP

if at each stage of the voting, the winner of the previous ballot is confronted with
its toughest competitor, i.e. the alternative that has the maximum expected support
against the winner. Moreover, once the the sequence of voting outcomes enters SP, it
remains there. This is certainly a much more positive result than the chaos theorems
alluded to above.

To argue that people resort to probabilistic rather than deterministic rules in bal-
loting calls for some kind of justification. Fuzzy preference relations provide such
a justification [2], [3], [14]. For any s1,s2 ∈ S define individual j’s fuzzy preference
of s1 over s2 as

f j
12 = g j(Uj(s1),Uj(s2)) (8.6)

so that

1. f j
12 = 1

2 if Uj(s1) = Uj(s2),
2. g j is monotone increasing function of Uj(s1),
3. g j is monotone decreasing function of Uj(s2).

Now, let f12 and Pi
j be related to each other as follows:

• if f j
12 > 1

2 , then it is not the case that P2
j > P1

j ,

• if f j
12 < 1

2 , then it is not the case that P1
j > P2

j ,

• f j
12 = 1

2 , then P0
j = 1.

Obviously, the fuzzy preference relation f j
12 generates the probabilistic voting func-

tion Pi
j. Thus, the underlying fuzzy preference relation provides a rationale for prob-

abilistic voting. Thus, far from competing for exclusive dominance the probabilistic
and fuzzy concepts can together provide a deeper understanding of phenomena at
hand than either one set of concepts alone could do. By suggesting how fuzzy pref-
erences may be seen as underlying probabilistic voting one gains in the intuitive
plausibility of the primitive theoretical concepts without losing anything at all. The
difficulties in interpretation of probabilistic voting are exemplified by the electoral
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competition models in the tradition of Downs [6]. For example, Shepsle and Page
construct and analyze models in which the incumbent and the challenger can be
represented as points in an issue dimension [26]. [18]. In introducing risk into this
model, Shepsle allows the challenger to be represented as a probability distribution
over two points on the dimension, while the incumbent is represented by a point. It
is difficult to imagine how a candidate could create an impression among the elec-
torate that he/she is at point a with probability p1 and at point b with probability of
1− p1. All the more difficult, the further apart a and b are and the more points there
are in the dimension. On the other hand, it is not difficult to entertain a notion of the
contestants being represented by fuzzy sets along the issue dimension. Similarly,
the notion of fuzzy preference over pairs of alternatives is pretty straight-forward
idea. It can be used to generate probabilistic voting, and it gives a plausible intuitive
background for this type of voting. It is thereby not claimed that probabilistic and
utility-theoretic conceptualizations not have an important role in voting models. The
idea is to interpret probabilistic voting in terms of fuzzy preference calculus.

A common criticism of fuzzy preference concepts is that they do not accomplish
anything in addition to what we already know from probability and utility theory.
This criticism seems to derive much of its force from Ockham’s razor: entia non
sunt multiplicanda praeter necessitatem (entities should not be multiplied unless
necessary). This principle does not give the intended result in the present context,
however. The probability measures satisfying Kolmogoroff’s axioms are actually
special cases of characteristic functions of fuzzy sets [11], [28]. In other words, from
the measurement point of view, fuzziness is a more general concept than probability.

8.6 Complexity and Granularity

In an article that in many respects was ahead of its time, Weaver discusses the notion
of complexity and points out that the methodology of empirical sciences seems to be
based on the assumption that the objects of study are either deterministic and sim-
ple or disorganized and random in character [29]. Objects that can be characterized
as organized complexities were in Weaver’s view beyond the reach of our method-
ological apparatus. This view was presented sixty years ago. It still has some validity
although systems theory and computer science have certainly made much progress
in this regard.

Whereas randomness and fuzziness relate to the external aspects of events or
behavior of systems, complexity typically refers to the underlying structure. Com-
plex systems are characterized by large number of components and an extensive
network of interdependencies [27]. This complexity sometimes amounts to unpre-
dictable randomness, sometimes also vagueness. As fuzzy preferences may account
for randomness or fuzziness, so can complexity.

As was pointed out above, rough sets have been a focus of considerable scholarly
interest over the past two decades. They are suitable models of situations where the
objects to be classified are “lumpy” in the sense that we cannot place them into
separate classes in a satisfactory manner. In rough sets analysis the objects studied
(e.g. policies, decision alternatives, patients) are represented as rows of a table, while
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the columns represent attributes (e.g. criteria of performance, cost, symptoms). Each
cell of the table contains a descriptor, i.e. the value of the object represented by the
row on the attribute represented by the column. To quote Pawlak and Słowinski
([21] p. 107):

“The observation that objects may be indiscernible in terms of descriptors
is a starting point of the rough set philosophy. Indiscernibility of objects by
means of condition attributes generally prevents their precise assignment to a
set following from a partition generated by the decision attribute. In this case,
the only sets which can be characterized precisely in terms of the classes of
indiscernible objects are lower and upper approximations. Using a lower and
an upper approximation of a set (or family of sets) one can define an accuracy
and and quality of approximation. ”

The theory of rough sets deals i.a. with approximation of sets. A lower approxi-
mation of a set consists of those elements that are all in the set, whereas the upper
approximation consists of those alternatives that have a nonempty intersection with
the set. The difference between these two sets measures the accuracy of approxima-
tion of the set.

How is this measure related to vagueness and randomness? As randomness has
to do with ambiguity rather than vagueness, we can conclude that probability and
roughness are conceptually and methodologically distinct notions. Rough sets have,
however, more in common with fuzzy sets. Apparently, when upper and lower ap-
proximations differ, there are some borderline cases in classifying objects. This, it
will be recalled, is the hallmark of vagueness and, thus, of fuzziness. If the lower
approximation set consists of objects having a membership degree of unity in the set
in question, the borderline case objects have a membership function value less than
unity. This would seem plausible. The difference between fuzzy and rough sets stud-
ies is that the former are interested in the specific values that the borderline objects
have, while the latter’s primary focus is on the number of those borderline cases.
So, rough set and fuzzy set analysis provide complementary information about sets.

8.7 Concluding Remark

We can then conclude that there are at least three distinct corpora of literature deal-
ing with imprecise concepts: probability theory, fuzzy set theory and rough set the-
ory. None of these is reducible to each other, but each has its own focus of interest.
What is more important, each theory can open an angle to impreciseness that is
complementary to the others. Thirty years ago when my work in this field began,
the awareness of this complementarity was rudimentary. Over the years it has in-
creased and with it a more pragmatic and open-minded attitude has taken over the
old controversies over the primacy of one theory of impreciseness with respect to
the others. Perhaps a time will come when all three theories can be derived from a
more general theory of complex systems, but until then we are well advised to keep
an eye on developments not just in the theory of fuzzy sets but in other schools of
thought dealing with impreciseness as well.
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Chapter 9
On a Model for the Meaning of Predicates –
A Naïve Approach to the Genesis of Fuzzy Sets

Enric Trillas

9.1 Introduction

9.1.1

This is neither a paper on mathematical logic, nor even on logic, but in the actually
not well enough explored subject of the mathematical models of language. For this
reason, it connects with the grounds of Zadeh’s fuzzy sets [23], [15].

Language, that is basically for describing perceptions and covers a wide range
of human activities, is a social phenomenon resulting in evolutive systems of a big
complexity. Language, inextricably linked to narrative and common-sense arguing,
is there viewed as the reality to be mathematically represented. Of course, once a
(partial) model is introduced it should be later on tested against that to which it refers
to, as the only way of knowing to what extent it reflects well enough what is done
by means of language, at least when linguistically describing actual or imaginary
facts. Understanding a language implies to know what its words mean, how to use
them properly.

In that aspect, the most relevant feature of language is meaning, and not only the
meaning of the words allowing to articulate significative expressions but also the
meaning of such expressions themselves since, in many occasions, the meaning of
the words integrating an expression is only captured after capturing what the full
expression [8] means. In this sense, and concerning meaning, atomism is at stake,
at least concerning verbalized or written common sense discourses.

Notwithstanding, this paper only deals with the meaning of some words, those
naming properties of the elements in a given set, or predicates. A set that, in prin-
ciple, does not need to show any particular structure, but which the predicate will
order in some way because of its meaning. This corresponds to the intuitive idea
that, when discoursing, some “order” is introduced in the universe of discourse, and
that the quality of the discourse directly depends on the adequacy of the ordering
introduced between the referred objects in the world.

9.1.2

The meaning of a predicate will be understood, following Ludwig Wittgenstein [22],
as “the meaning of a word is its use in the language”, and translated by attending at

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 175–205.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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how it is used in a given set. In this way, a formal model for the meaning of a pred-
icate is introduced by means of some basic relations defined among the elements in
the corresponding universe of discourse, that is, by the basic regularities its use fol-
lows. It should be pointed out that “I know the meaning of a word”, or “I understand
it”, means “I learned how to correctly use it”.

A complete knowledge of the way of using P on a given universe of discourse
would require the availability of a meaning-manual [5], [10] for it. A manual that,
for example, does contain additional information on how P is used in other universes
of discourse. In general, such availability seems to be something actually rare.

The model introduced in this paper is just to be viewed as a sub-manual, not
allowing to completely represent the linguistic use of P on the given universe of
discourse, but only a part of its use that is crucial for some purposes. For the sake
of reaching a high level of generality, everything is posed with as less mathematical
structure as possible.

The predicates this paper deals with are not only, as it is in classical logic, those
that are precise (by naming precise, or binary, properties), but, in the line of Zadeh’s
Fuzzy Logic [23], [20] it mainly deals with imprecise predicates, that is, those nam-
ing gradable properties. Most of the predicates appearing in language, and mainly
in common-sense discourses, are imprecise ones. Only once predicates are gradu-
ated it seems possible to represent the collective they originate in the universe of
discourse. Gradability is, essentially, a semantic property.

It can be said, following Colin McGeen [8], that the notions of property and ob-
ject are inextricably woven together: An object is what has or instantiates properties,
and a property is what objects have or instantiate.

The contents of this paper corresponds, perhaps, to nothing else than what is in
the core of the ordered structure behind Zadeh’s fuzzy sets and, in this sense, is why
it can be said that it reflects something like an approach to the genesis of fuzzy sets.
At this point, it is not to be forgotten what is said in [23], “In a more general setting,
the range of the membership function can be taken to be a suitable ordered set”.

9.1.3

The mathematical style here employed is just naïve and not strictly axiomatic. The
study starts with three notions immediately taken from language, and considered
good enough to reflect the regularities, or the rules, on the use of the predicate.

For a predicate P on a given universe of discourse X (a set), these notions are the
following:

• x is P
• x is as equally P as y
• x is less P than y

for x,y in X , and they allow to introduce two basic relations concerning the use of P
on X . With the third of these notions, a formal concept of degree for P is defined by
a kind of non-necessarily numerical “measure” on X , once this set is preordered by
such relation.
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>From each degree, linked to the use of P on X , it follows a representation of
the collective that P originates on X and, in the particular case the degree takes its
values in the unit interval of the real line -P is “measurable” in [0,1]- the collective’s
representation results a Zadeh’s fuzzy set [23]. With each degree it is passed from
“gradable property” to “graduated predicate”.

9.1.4

The formalization of the knowledge coming from some reality is difficult to be done
well enough before a lot of trial and error processes are accomplished, jointly with
adequate testing experiments striving for mathematical models. And, at the end, it
should show a good capability of prediction for new situations.

The concept of meaning, that refers to some relations between world, thought,
and language, deserved a lot of attention in Philosophy and Linguistics [9], [7], [12],
[6], [5] but have not had any kind of scientific approach based on mathematical mod-
eling and controlled experimentation yet. It is because of this that meaning is still
far from a good formalization that could become useful in Computer Science, where
almost only fuzzy logic does strive for meaning’s precisiation by giving a represen-
tation with some expressive power. Even more, a complete enough mathematical
modeling of language attending to the meaning of complex linguistic expressions,
is very far from now.

But, of course, all of that does not mean that some small steps cannot be done in
such direction. This paper only tries, by employing few and very elementary con-
cepts of mathematics, to do one of this small steps, surely a very small one. Would
it be, at least, in a good direction that could help to push ahead more theoretical and
experimental studies in a forthcoming future.

9.1.5

In a slightly different form, this paper extends the work done in [16], its contents
was initially advanced in [15] addressed before in [17], [2], [19], and it is directly
inspired by [22], ([23], and specially [4]. It also benefits from what is presented
in [18].

In addition, references [20], [7], [9], [8], [21], [10], [5], and [3], helped the author
to reflect on some questions appeared while the manuscript was being written.

9.2 Primary Meaning and Degree

This paper only deals with those predicates P that can also be called “collective
nouns”, that is, those generating a collective (class, collectivity, set, collection, clus-
ter, family, etc) in the universe of discourse X where they apply, act, or work.

The action of P on X is perceived through the atomic statement “x is P”, and
consists on collectivizing, on making a collective on X . Other types of predicates,
provided they do exist, are here out of scope. The action of P on X refers to the set
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of atomic statements X(P) = {Px;Px = “x is P′′,x ∈ X}, a set that, although very
different from the actual X is bijective with it.

Predicate P is out of X , it just acts or works on X through the statements “x is
P”. In fact, X(P) can be identified with X ×{P}, which implies that the following
identity holds if and only if x = y:

(x,P), or Px, or “x is P”= (y,P), or Py, or “y is P”.

In itself, “x is P” is nothing else than a relational statement with a typical linguistic
use of the verb to be, that does not show any identity [8] between X and P, since
P /∈ X . “x is P” has to be viewed just as the element (x,P) in X×{P}, and it simply
means that x does verify, to some extent, the property p, named P, of the elements
in X . That is, “x is P” shortens “x verifies p up to some extent”, an abbreviation that,
actually, manifests the (empirical) problem of determining if x does verify p, and up
to which extent it does.

Notice that Px = Py, the identity of “x is P” and “y is P”, is not to be confused
with “x is as equally P as y”.

What follows is under the supposition that the action of P on X (how P is used
on X) cannot be sufficiently recognized without knowing, at least, some of the rules
by which it is actually done.

9.2.1

The action of P on X can be initially recognized throughout the two relations [15],

• x is as equally P as y, x =P y,=P⊂ X×X
• x is less P than y, x≤P y,≤P ⊂ X×X ,

that can be considered as basic to formalize the rules under which P is used on X .
It will be supposed that if x = y, then x =P y, and x≤P y. Both relations are taken

as reflexive. Notice that:

• The relation �=P is not equally P
• The relation≤−1

P , defined by x≤−1
P y⇔ y≤P x, can be read “x is more P than y”

• It can be supposed that =P ⊂≤P ∩ ≤−1
P

Both relations are obtained by perceptions on X(P), namely on the description of
how P is used on X . Only in very structured frameworks it is possible to precisely
define how P acts on X , usually in those that were previously mathematized, that
is, represented by a good mathematical model. By understanding “meaning” à la
Wittgenstein, in mathematics, once a concept is introduced by axioms, these give
it a meaning since they show how to use it [10]. For example, in the context of
mathematics the meaning of natural numbers is just “all elements in a set verifying
Peano’s axioms”.

9.2.2

The relations =P and≤P give the primary use of P on X . Hence, following Wittgen-
stein’s definition of meaning, it is possible to define.
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Primary meaning of P on X = (=P,≤P).

In particular, if it is =P =≤P ∩≤−1
P , x =P y⇔ x≤P y and y≤P x, it can be defined

Primary meaning of P on X = {≤P}
With all that, it can be said that P is meaningless on X if

=P =≤P = /0

that is, if Primary meaning of P on X = { /0}.
Notice that the primary meaning of P on X is nothing else than the way P or-

ganizes, or orders, X . Of course, if ≤P is a preorder, that is, a transitive relation (it
is reflexive by definition) then the associate relation ≤P ∩ ≤−1

P is an equivalence,
and X/≤P∩≤−1

P
is a perfect classification of X . In what follows it will not be sup-

posed that =P necessarily coincides with ≤P ∩ ≤−1
P , but almost always that ≤P is a

preorder.
Actually, there are two “equalities” concerning the use of P on X . The first is the

perception-based =P, and the second is ≤P ∩≤−1
P , associate to the also perception-

based relation ≤P. Since in what follows there is no possible confusion between
them, they are designed by the same sign =P.

Remarks

a. Although they are not bizarre hypotheses, it is not fully clear that ≤P is always a
preorder, and that =P coincides with ≤P ∩ ≤−1

P . Anyway, it seems clear that =P

is always an equivalence.
b. Provided ≤P is not reflexive, it would exist a in X such that a �P aand, in the

case =P =≤P ∩ ≤−1
P , it will result the (rare) statement a �=P a [15].

c. An important difference between this paper treatment of meaning, and that done
in Philosophy and Linguistics, lies in fixing the universe of discourse. Neverthe-
less, and as in the case of u-synonymy (in section 9.5), it is possible to consider
different universes of discourse when a mapping between them is known.

9.2.3

Once the primary meaning of P on X is known, it is possible to pose the question:
Up to which extent x is P?, for all x in X .

To answer this question the problem lies in what could be understood by the word
“extent”. Let us proceed on the hypotheses [15] that it exists a poset L = (LP,≤),
and a function µP : X → LP, such that

Extent up to which x is P = µP(x), for all x in X ,

verifying

• If x =P y, then µP(x) = µP(y)
• If x≤P y, then µP(x)≤ µP(y).
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Then, each function µP will be called an L−degree for P on X ,

µP(x) = L−degree up to which x is P= Extent up to which x is P.

Provided =P = ≤P ∩ ≤−1
P , the first condition for µP follows from the second as it

results µP(x) ≤ µP(y) and µP(y) ≤ µP(x). In this case, it always exists a poset L
naturally linked to the primary meaning of P on X , and giving an L−degree for P.
It can be obtained through the following path,

• Take the quotient set X/=P

• Extend ≤P to the classes in X/=P , by

[x]≤∗P [y]⇔ x≤P y

Obviously, provided≤P is a preorder, (X/=P ,≤∗P) is a poset.
• Take L isomorphic to (X/=P ,≤∗P)

Obviously, the mapping µP : X → X/=P , given by µP(x) = [x] is an L − degree
for P on X .

Remarks

a. It is not clear that for every predicate P on X and a poset (LP,≤), it does exist a
degree µP.

b. Provided ≤P is not transitive, there are a,b,c in X , such that a≤P b, b ≤P c, but
a �P c. In this case, and provided P has an L − degree µP, it follows µP(a) ≤
µP(c). The fact a�P c is not recognized by the L−degree [15].

c. In the case P is meaningless on X , for no poset it can be defined a degree.
d. Sometimes, the informations coming from reality are not comparable between

themselves. It is because of this, and that a good part of the power of fuzzy sets
is due to the ordering induced on the elements in X by the membership function,
that L-degrees are of some interest [3].

9.2.4

A use of P on X is semi-rigid if

• =P is an equivalence
• X/=P has a finite number of classes.

It is immediate that if P is used in a semi-rigid form on X , any L −degree for P is
constant on each class in X/=P . If there is only one class (equal to X), the L−degree
is constant.

A predicate P with a semi-rigid use on X is rigid or crisp, if

• There is an L−degree µP

• There exist α= infL , and ω= supL ,
• Among the finite number of classes in X/=P , at most in one µP takes the value ω,

and in all others takes the value α.
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It should be pointed out that, by its definition, the L − degree that makes rigid a
semi-rigid predicate, is unique.

There can be only two kinds of rigid predicates with only a single class (equal
to X),

• Pα such that µPα(x) = α, for all x in X
• Pω such that µPω(x) = ω, for all x in X ,

and it results
µPα ≤ µP ≤ µPω,

for all predicate P on X with an L−degree µP.

9.2.5

Let us end with a question, and the corresponding comment, on the deployed
methodology, namely on the basic relation ≤P. Why it is taken rigid instead of
gradable?

The reason is similar to that of taking P on a classical set X , and not on some
collective, to be in a solid ground and avoiding more undefined concepts. It is also
similar to first defining the concept of probability and, after, that of conditional
probability.

To take ≤P as a gradable relation will force to graduate it by means of a degree
µ≤P : X × X → L and, once this is done, to obtain a degree µP for P on X . For
example, if LP is endowed with a convenient operation ∗, µP could be defined as
a function verifying µP(x) ∗ µ≤P(x,y) ≤ µ(y), for all x,y in X . Another example is
in the case there is a previously designated x0 in X , with the definition µP(x) =
µ≤P(x0,x), for all x in X . But all this requires either more structure on LP, or some
structure in X , like the case when the a priori probability is recovered from the
conditional one, p(x) = p(x/1), in a boolean algebra with maximum 1. Predicates
do act on any set, be it previously structured or not.

9.3 Additional Comments on L-Degrees

9.3.1

An element x in X is a minimal of (X ,≤P), if {y ∈ X ;y≤P x}= {x}. When there is
only one minimal, it is the minimum of (X ,≤P).

An element x in X is a maximal of (X ,≤P), if {y∈ X ;x≤P y}= {x}. When there
is only one maximal, it is the maximum of (X ,≤P).

Provided =P =≤P ∩ ≤−1
P :

• If x is a minimal, [x]P = {z ∈ X ;x =P z}= {z ∈ X ;z≤P x}
If x is the minimum, [x]P = x.

• If x is a maximal, [x]P = {z ∈ X ;x =P z} = {z ∈ X ;x≤P z}
If x is the maximum, [x]P = x.
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9.3.2

Provided P is rigidly used on X , with respect to an L − degree µP, from x ≤P y it
follows µP(x)≤ µP(y), and

• If µP(x) = α, it is µP(y) ∈ {α,ω}
• If µP(x) = ω, it is µP(y) = ω
• If µP(y) = α, it is µP(x) = α
• If µP(y) = ω, it is µP(x) ∈ {α,ω}.
Of course, if x is a minimal, it is µP(x) =α, and if y is a maximal it is µP(y) =ω. All
minimals do have degree α, and all maximals have degree ω. Notice that this does
not mean that µ−1

P (α) is the set of minimals, nor that µ−1
P (ω) is the set of maximals.

9.3.3

If there is an L − degree µP, since µP(X) ⊂ LP, and provided (µP(X),≤) is com-
plete, then

• If x0 is the minimum of (X ,≤P), µP(x0) = infµP(X), since it is x0 ≤P x for all x
in X .

• If x1 is the maximum of (X ,≤P), µP(x1) = supµP(X), since it is x≤P x1 for all x
in X .

Of course,

• If µP(x) = infµP(X), and y≤P x, then µP(y) = infµP(X)
• If µP(x) = supµP(X), and x≤P y, then µP(y) = supµP(X).

It is also evident that if x is minimal (maximal), then µP(x) is minimal (maximal)
in (µP(X),≤). Would x be the minimum (maximum) in (LP,≤P), then µP(x) is the
minimum (maximum) in (µP(X),≤).

9.3.4

It should be noticed that the following properties of µP : X → µP(X) ⊂ LP, show
that µP is a general measure [17] [21] on the preordered set (X ,≤P):

• If x≤P y, then µP(x)≤ µP(y)
• If x0 is the minimum in (X ,≤P), then µP(x0) is the minimum in (µP(X),≤)
• If x1 is the maximum in (X ,≤P), then µP(x1) is the maximum in (µP(X),≤).

9.4 The Meaning of a Predicate

9.4.1

Provided it exists an L−degree µP , the relation ≤µP defined by

x≤µP y⇔ µP(x)≤ µP(y),
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is a preorder since it is obviously reflexive and transitive. Because of (x,y) ∈≤P ⇒
µP(x)≤ µP(y)⇔ (x,y) ∈≤µP , it is

≤P ⊂≤µP ,

that is, the preorder≤µP is larger than the relation ≤P.
When ≤P = ≤µP , it is said that µP perfectly reflects the primary use of P on X .

Provided =P = ≤P ∩ ≤−1
P , if (x,y) ∈≤−1

P or (x,y) ∈≤P, it follows (x,y) ∈≤µP or
(x,y) ∈≤−1

µP
. Hence µ−1

P ⊂≤−1
µP

, and

≤P ∩ ≤−1
P ⊂≤µP ∩ ≤−1

µP
, or

=P ⊂=µP .

This contention just says that if x =P y, then µP(x) = µP(y), as it was said before.
With all that, it is possible to define

Secondary meaning o f P on X = {≤µP},
as well as,

Meaning o f P on X = (=P,≤P,≤µP).

When =P =≤P ∩ ≤−1
P , it can be defined

Meaning o f P on X = (≤P,≤µP)

that, if in addition µP perfectly reflects the primary use of P on X reduces to

Meaning o f P on X = {{≤P}}= {{≤µP}}1.

If P is meaningless on X it is also ≤µP= /0, and then

Meaning o f P on X = {{ /0}}.

Remarks

a. Let us show an example with ≤P = ≤µP . Take X = {1,2,3,4,5}, L = ([0,1],≤)
with ≤ the order of the real line, P =small and ≤P given by the matrix (ai j)
where

ai j =
{

1 if “i is less P than j”
0 otherwise⎛⎜⎜⎜⎜⎝

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

⎞⎟⎟⎟⎟⎠= [≤P]

1 With the von Neumann’s definition of an ordered pair, (a,b) = {{a},{a,b}}, it results (a,a) =
{{a},{a,a}} = {{a}}.
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Obviously,≤P is a preorder. With the L−degree given by

µP(1) = 1,µP(2) = 0.7,µP(3) = 0.5,µP(4) = 0.2,µP(5) = 0

the matrix (bi j) of ≤µP , with

bi j =
{

1 if µP(i)≤ µP( j)
0 otherwise

is equal to [≤P]. Hence, ≤P = ≤µP , and the degree µP perfectly reflects the pri-
mary use of P.

Notice that since µP is strictly non-increasing, what results is ≤P =≤µP=≤,
the order of the real line restricted to X . Would µP be strictly non-decreasing (for
example, with P=big), it results ≤P = ≤µP= ≤−1, the reverse order of the real
line.

b. The given meaning’s definition does not facilitate, in principle, a single meaning
for each predicate. In that sense, predicates coming from gradable properties
(imprecise ones) are ambiguous, at least for what respects to its degree, a function
that needs to be designed.

c. As defined, each meaning of P on X depends on L . Hence, they are actually
L−meanings of P on X .

9.4.2

The meaning of words is not fixed for all people and all context. For example, in
a dinner with three commensals the deliciousness of the dessert plates could easily
result in three different orderings of such plates. Since language is a social phe-
nomenon, also meaning is such, and it is possible to talk on the meaning of predi-
cates for a group of people in, of course, a given context.

For a group of people G = {p1, . . . , pm}, a predicate P on X can show m primary
meanings (=P,i,≤P,i), 1≤ i≤ m. Since

(
m⋂

i=1

=P,i) = =P,G, (
m⋂

i=1

≤P,i) =≤P,G

are not empty (all =P,i, ≤P,i are reflexive), it can be taken

Primary meaning o f P on X f or the group G = (=P,G,≤P,G).

Notice that =P,G is an equivalence, and provided all ≤P,i are preorders,≤P,G is also
a preorder. Let us suppose that (=P,i) =≤P,i ∩ ≤−1

P,i for all 1≤ i≤ m.

Since (
m⋂

i=1
≤P,i)−1 =

m⋂
i=1
≤−1

P,i , if (=P,i) =≤P,i ∩ ≤−1
P,i for all 1≤ i≤ m, then

(=P,G) =≤P,G ∩ ≤−1
P,G =

m⋂
i=1

(≤P,i ∩≤−1
P,i ) =

m⋂
i=1

=P,i .
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If m L−degrees µ(i)
P are known for each primary meaning (=P,i,≤P,i), since

• x =P,G y⇔ x =P,1 y & . . .& x =P,m y,
• x≤P,G y⇔ x≤P,1 y & . . .& x≤P,m y,

for each function Φ : Lm → L, non-decreasing in each place i between 1 and m (for
example, if a≤ b thenΦ(a,x2, . . . ,xm)≤Φ(b,x2, . . . ,xm)), or Aggregation Function,
it results

• x≤P,G y⇒Φ(µ(1)
P (x), . . . ,µ(m)

P (x)) ≤Φ(µ(1)
P (y), . . . ,µ(m)

P (y)),

that allows to take

µG
P (X) =Φ(µ(1)

P (x), . . . ,µ(m)
P (x)), for all x ∈ X ,

as an L−degree of P on X for the group G. The meaning for G results from aggre-
gating its people’s meanings.

9.5 On Synonyms

In the language, synonymy is a complex problem whose roots are possibly to be
searched for in the apparition of new facts or concepts for which there is not yet a
word for their designation. Then, what is sometimes done is to designate the new
fact/concept by means of an old word whose meaning is considered, for some rea-
sons, similar to that of the new fact/concept. That is, for example, that the old word
was already used in situations judged similar to those where the new fact/concept
appears/applies.

Synonymy is related with some kind of similarity or proximity of meaning and,
of course, in this paper it is not possible to do a complete study of the linguistic
phenomenon of synonymy, but only to present some previous treats of it.

9.5.1

Let P be a predicate on X with =P and≤P, and Q a predicate on Y with =Q and≤Q.
If there exists a bijective function u : X → Y such that,

• x1 =P x2 ⇔ u(x1) =Q u(x2)
• x1 ≤P x2 ⇔ u(x1)≤Q u(x2),

predicates P and Q are u-primary-synonyms. Notice that when X = Y , with u = idX ,
what results is that P and Q are idX -primary synonyms, or primary synonyms for
short, if and only if (=P,≤P) = (=Q,≤Q), that is, if and only if

Primary meaning of P on X = Primary meaning of Q on X

If P and Q are idX -primary synonyms, it is said that they are exact or perfect syn-
onyms when µP = µQ, and it results (=P,≤P,≤µP) = (=Q,≤Q,≤µQ).

For example, if P = small on X = [0,1] is with ≤P = ≤−1 (the reverse linear
order on the real line), and Q = short on Y = [0,10] is with ≤Q = ≤−1 (also the
reverse linear order on the real line), u(x) = 10x gives
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• x = y⇔ 10x = 10y
• x≤−1 y⇔ 10x≤−1 10y

taking =P =≤P ∩≤−1
P and =Q =≤Q ∩≤−1

Q equal to the identity = on the real line.
Then, small and short can be considered a pair of u-primary synonyms.

9.5.2

If P acts on X with an L−degree µP, Q acts on Y and is a u-primary synonym of P,
from

y1 ≤Q y2 ⇔ u−1(y1)≤P u−1(y2)⇒ µP(u−1(y1))≤ µP(u−1(y2)),

it follows that
µQ = µP ◦ u−1

is an L−degree for Q. In this situation it is

y1 ≤µQ y2 ⇔ u−1(y1)≤µP u−1(y2),

or
x1 ≤µP x2 ⇔ u(x1)≤µQ u(x2),

that are equivalent to
≤µQ=≤µP ◦(u×u).

For example, with the before mentioned predicates short and small, it is

µshort(y) = µsmall(y/10)

for all y in [0,10], and results

y1 ≤µµQ
y2 ⇔ y1/10≤µP y2/10.

Remarks

a. It could be stated that “P means Q”, whenever P and Q are u-synonyms.
b. The definition of primary meaning is just a formal one trying to approach an

important aspect of the meaning of linguistic predicates when acting on a given
universe of discourse. The same can be said about the definition of u-primary
synonyms with which it does not hold, in general, that a pair of u−primary syn-
onyms are necessarily linguistic synonyms.

9.6 Qualified, and Modified, Predicates

9.6.1

Let P be a predicate on X , with an L − degree µP ∈ LX
P , L = (LP,≤). Let τ be

a predicate on µP(X) ⊂ LP, with an L − degree µτ ∈ LµP(X)
P , such that ≤ ⊂ ≤τ.
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Consider the qualified predicate ‘P is τ’ on X , x is (P is τ) = x is P is τ, provided
/0 �=≤Pis τ⊂≤P. On these conditions [15]

µP is τ = µτ ◦ µP

is an L−degree for P is τ on X , since:

x≤P is τ y⇒ x≤P y⇒ µP(x)≤ µP(y)⇒
⇒ µP(x)≤τ µP(y)⇒ µτ(µP(x))≤ µτ(µP(y)),

that is
x≤P is τ y⇒ (µτ ◦ µP)(x)≤ (µτ ◦ µP)(y).

For example, with L = ([0,1],≤), and P = small in X = [0,10], with ≤P = ≤−1

and µP(x) = 1− x/10, if τ= large on [0,1] is with ≤τ=≤, and

µτ(x) =
{

0 if 0≤ x < 0.5
1 if 0.5≤ x≤ 1,

it results

µτ(µP(x)) =
{

0 if 5≤ x < 10
1 if 0≤ x < 5,

that can be interpreted as the degree of x is small is large ≈ less than 5, in [0,10].

9.6.2

Consider the elements in LP as the possible values for the L−degrees of the predi-
cate τ= true on LP. Since for all a,b ,

“a is less true than b”, could be considered equivalent to “a≤ b”,

it results ≤τ=≤.
Hence, µτ can be any non-decreasing function LP → LP such that µτ(α) = α, and

µτ(ω) = ω, once accepted hat “α is τ” is totally non true (false, α), and that “ω is τ”
is totally true (ω).

With the aim of standardizing µτ, let us take µτ(a) = a, for all a in LP, that is,
µτ = idLP . With all that, “x is P is τ” has the L−degree

µτ ◦ µP = idLP ◦ µP = µP.

In this line of thought, “x is P is τ” has the L − degree µP(x) for all x in X . This
allows to state that “x is P” has µP(x) as L − degree of true, or (for short) that the
L − degree of truth of “x is P” is µP(x). If, in the same vein, τ is the predicate
confident on LP, then µτ ◦ µP can be understood as the degree of confidence on x is
P. Analogously, with τ= reliable, and the degree of reliability. Etc.
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9.6.3

A qualitatively different case, although practically similar to that of qualified predi-
cates, is given by the linguistic modifiers or hedges [24], [3], m, some adverbs acting
on the predicate P just in the form mP, not to be confused with “P is m”. For ex-
ample, with P = tall and m = very, then mP = very tall has nothing to do with the
linguistically meaningless tall is very.

A characteristic distinguishing imprecise predicates is that once P and m are
known, mP is immediately understandable. If P is precise, mP needs of a new defi-
nition to be understandable, as it happens with even on the set of integers, and very
even in the same set. In principle, adverbs only modify, but do not change abruptly,
imprecise predicates.

If P on X is with≤P and an L−degree µP, and m on µP(X)⊂ LP is with≤⊂≤m

and an L−degree µm, it can be taken µmP = µm ◦ µP, provided≤mP⊂≤P:

x≤mP y⇒ x≤P y⇒ µP(x)≤ µP(y)⇒

µP(x)≤m µP(y)⇒ µm(µP(x)) ≤ µm(µP(y)),

that is,
x≤mP y⇒ (µm ◦ µP)(x)≤ (µm ◦ µP)(y).

It should be pointed out that two interesting types of linguistic modifiers are the
following:

• Expansive modifiers, verifying idµP(X) ≤ µm

• Contractive modifiers, verifying µm ≤ idµP(X).

With the first type it results µP ≤ µm ◦ µP = µmP, and with the second type it
results µmP = µm ◦ µP ≤ µP. This is what happens, if L = ([0,1],≤), with Zadeh’s
definitions µmore or less(a) =

√
a, and µvery(a) = a2, respectively.

Remark
There is another kind of modifiers, those called internal modifiers and whose degree
is given in the form µmP = µP ◦ µm, with µm ∈ XX . The only we will consider is that
giving the antonyms of P

9.7 On Negate and Antonym

9.7.1

If a linguistic term P is a predicate, not P = P′ can be also considered a predicate
but not a linguistic term [15]. The primary use of P′ follows from the rule

If “ x is less P than y”, then “ y is less not P than x”,

that is, ≤P ⊂≤−1
P′ , or ≤P′ ⊂ ≤−1

P .
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In the particular case in which ≤P′=≤−1
P , is ≤(P′)′=≤−1

P′ = ≤P: both P and
not(not P) do semantically organize X in the same way. Nevertheless, in the general
case ≤P′ ⊂ ≤−1

P , nothing can be concluded at this respect. Anyway, if x≤P′ y, since
it is also y≤P x, the inequalities µP′(x)≤ µP′(y), and µP(y)≤ µP(x), do coexist. For
all functions N : LP → LP, reversing the partial order≤, N ◦µP is an L−degree for
P′ since:

x≤P′ y ⇒ y≤P x ⇒ µP(y)≤ µP(x) ⇒ N(µP(x)) ≤ N(µP(y)),

and it can be taken µP′ = N ◦ µP.

9.7.2

Let ′P be an antonym (opposite, symmetrical) of a linguistic term P. ′P is also a
linguistic term whose oppositeness to P is understood by the equivalence

“ x is less P than y”⇔ “ y is less ′P than x”,

that is,
≤P =≤−1

′P , or ≤′P =≤−1
P

Then, it follows
≤P′ ⊂ ≤′P,

and ≤′P =≤P′ , if and only if ≤P′ =≤−1
P .

A way for obtaining an L−degree for ′P form that µP of P (provided it exists), is
through a function s : X → X reversing ≤′P (preserving≤P), by µ′P = µP ◦ s, since

x≤′P y⇒ s(y)≤′P s(x)⇔ s(x)≤P s(y)⇒ µP(s(x)) ≤ µP(s(y)),

or
(µP ◦ s)(x)≤ (µP ◦ s)(x).

If, in addition, s is a symmetry on X , s◦ s = idX , then

µ′(′P)) = µ′P ◦ s = µP ◦ s◦ s = µP ◦ idX = µP

and ′(′P) and P are a pair of exact synonyms.

Remarks

a. Since P′ is not a linguistic term, it has no sense to consider any antonym ′(P′) of
not P.

b. From examples like “If a bottle is full, then it is not empty”, with ′P= full and
P= empty, it follows µ′P ≤ µP′ : the negate is the greatest antonym of a linguistic
term. Only in some especial cases (not regular antonyms) it is taken ′P = P′ .

c. The relation ≤P in X (x is less P than y) allows to define the relational predicate
Q = less P than, on X2 = X ×X , that originates the corresponding relation ≤Q

on X2. This relation translates “(x1,y1) is less Q than (x2,y2)”.
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The predicate ′Q = more P than, originates, at its turn, the relation ≤′Q⊂ X2

that, in good conditions, should reflect that ′Q is the antonym of Q.
Provided, as it seems reasonable, that ≤Q =≤P ×≤P, and ≤′Q =≤′P ×≤′P,

with ′P an antonym of P, from ≤′P =≤−1
P , it follows

≤′Q =≤′P ×≤′P =≤−1
P ×≤−1

P = (≤P ×≤P)−1 =≤−1
Q ,

that is, actually ′Q is an antonym of Q.
In the case P is graduated by an L−degree µP, it also seems reasonable that

Q does have an L−degree depending of µP, for example in the form

µQ(x,y) = F(µP(x),µP(y)))

for all x,y in X , and a function F : LP × LP → LP. In this case, and for what
concerns µ′Q, it could be taken as

µ′Q = µQ ◦ s,

for some symmetry s : X2 → X2. If, in addition, it is s = s1× s2, with s1,s2 : X →
X two symmetries on X , then

µ′Q = µQ ◦ s = µQ ◦ (s1× s2) = F ◦ (µP ◦ s1×µP ◦ s2),

or
µ′Q(x,y) = F(µP(s1(x)),µP(s2(y)),

for all x,y in X .

9.8 Constrained Predicates

9.8.1

Let P be a predicate on X , with a preorder≤P and an L−degree µP ∈ LX , and Q a
predicate on Y with a preorder≤Q and an L−degree µQ ∈ LY . Each relation [15]:

/0 �= R(P,Q)⊂ X(P)×Y(Q) : (x is P,y is Q) ∈ R(P,Q),

allows to define the “constrained predicate” Q/P = Q if P on X×Y , by

(x,y) ∈ Q/P⇔ (x is P,y is Q) ∈ R(P,Q)

An example of such relation is given by the case where “(x,y) is Q/P” is interpreted
as the conditional statement “If x is P, then y is Q”.

Provided Q/P induces a preorder ≤Q/P on X ×Y , and it exists an L − degree
µQ/P : X×Y → L such that

(x1,y1)≤Q/P (x2,y2)⇒ µQ/P(x1,y1)≤ µQ/P(x2,y2),
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then, it could be studied how to express µQ/P by means of µP and µQ.
Notice that there are several possibilities for≤Q/P, for example,

≤Q/P =≤P ×≤Q, ≤Q/P =≤−1
P ×≤Q, etc.

9.8.2

Once it could exist an L−degree µQ/P, it is said to be decomposable if there is an
operation J : L×L→ L such that

µQ/P(x,y) = J(µP(x),µQ(y))

for all (x,y) in X×Y .
In this case, it should be tested that µQ/P is actually an L −degree for Q/P. For

example,

• If≤Q/P =≤P ×≤Q, and J is non-decreasing in both variables, it is (x1,y1)≤Q/P
(x2,y2) ⇔ (x1,x2) ∈≤P, and (y1,y2) ∈≤Q, that implies µP(x1) ≤ µP(x2) and
µQ(y1)≤ µQ(y2). Hence,

µQ/P(x1,y1) = J(µP(x1),µQ(y1))≤ J(µP(x2),µQ(y2)) = µQ/P(x2,y2)

• If ≤Q/P =≤−1
P ×≤−1

Q , and J is decreasing in both variables, it follows the same
conclusion.

• If≤Q/P =≤P ×≤−1
Q , and J is non-decreasing in the first variable and decreasing

in the second, it also follows the same conclusion. Etc.

Remark
The decomposability of µQ/P cannot be considered as a general property of the
L−degree of the constrained predicate Q/P.

9.9 Elementary Examples

9.9.1

Let us show an example with≤P �≤µP . Take X = {1,2,3,4,5,6}, with P = around
4, and ⎛⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
0 1 1 1 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 1 1 1 0
0 0 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎠= [≤P]
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Since ≤P is reflexive and transitive (as [≤P]× [≤P] = [≤P], with × the max-min
product),≤P is a preorder.

With L = ([0,1],≤), define the degree

µP(1) = 0,µP(2) = 0.1,µP(3) = 0.95,µP(4) = 1,µP(5) = 0.91,µP(6) = 0.1

giving the matrix ⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 0 0
0 0 0 1 0 0
0 0 1 1 1 0
0 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎠= [≤µP ]

verifying [≤P]� [≤µP ], or≤P�≤µP . Hence , the degree µP does not perfectly reflect
the primary use of P on X .

9.9.2

Take X = {1,2,3,4,5,6}, P =even, and⎛⎜⎜⎜⎜⎜⎜⎝
1 1 0 1 0 1
0 1 0 1 0 1
0 1 1 1 0 1
0 1 0 1 0 1
0 1 0 1 1 1
0 1 0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎠= [≤P]

that shows ≤P is a preorder. With L = ([0,1],≤), define the degree

µP(1) = 0,µP(2) = 1,µP(3) = 0,µP(4) = 1,µP(5) = 0,µP(6) = 1

giving a rigid use of P on X , with X/≡µP= {{2,4,6}{1,3,5}}, and⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 1 1 1
0 1 0 1 0 1
1 1 1 1 1 1
0 1 0 1 0 1
1 1 1 1 1 1
0 1 0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎠= [≤µP ]

Hence, ≤P � ≤µP: the degree µP does not perfectly reflect the primary use of
P on X .

With ∧= min, is [=P] = [≤P]∧ [≤−1
P ], and
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1 0 0 0 0 0
0 1 0 1 0 1
0 0 1 0 0 0
0 1 0 1 0 1
0 0 0 0 1 0
0 1 0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎠= [=P]

which shows that X/=P = {{1},{2,4,6},{3},{5}}. Hence, P is rigidly used on X .

9.9.3

Next figures 9.1 and 9.2 show, respectively, the case of two semi-rigid predicates
with a degree in L = ([0,1],≤). The first 9.1 is with two classes, and the second 9.2
is with one class. The first P could be called “r up to x0 and s up to end”. The second
“constantly r”, or just “r′′.

Fig. 9.1. Fig. 9.2.

9.9.4

This is a case in which the values of µP are not always order-comparable.
Let X = {x1,x2,x3,x4}, with ≤P given by,⎛⎜⎜⎝

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎞⎟⎟⎠= [≤P]

a preorder which diagram (loops are not depicted) is 9.3 [15]:
Obviously, the classes in X/=P are reduced each one to a single element, [xi]P =

{xi},1≤ i≤ 4.
If, as indicated in section 2.3, L is taken as the poset (boolean algebra 22) 9.4
with µP defined by

µP(x1) = α,µP(x2) = r,µP(x3) = s,µP(x4) = ω

it results ≤P =≤µP , that is, µP perfectly reflects ≤P. Notice that, for example, these
values can be interpreted as α = negative, ω = positive, r = more positive than
negative, and s = more negative than positive, or something similar.
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Fig. 9.3.

Fig. 9.4.

9.10 The Representation of Collectives: L-Sets

Once an L−degree for P on X is known, it arises the possibility of representing the
collective originated by the use, or meaning, of P on X [4], [17].

9.10.1

The collective given by the use of P on X with L − degree µP is represented by a
symbol P such that

• x ∈r P (x belongs up to the degree r to P)⇔ µP(x) = r, with r ∈ LP

• P = Q⇔ µP(x) = µQ(x),∀x ∈ X ⇔ µP = µQ (equality).

Notice that the equality of P and Q can be equivalently formulated by,

P = Q⇔ [∀x ∈ X ,∀r ∈ LP : x ∈r P⇔ x ∈r Q]

Two graduated predicates P and Q are exact synonyms if and only if P = Q.

9.10.2

Last definition allows to define when a collective is contained in another one:

P⊂Q⇔ µP ≤ µQ (inclusion).

Then, P = Q⇔ P⊂Q and Q⊂ P.
These especial collectives P,Q, . . . can also be called L-sets [4], and all of them

are represented by functions in LX
P ,LX

Q, . . . It should be pointed out that P only exists
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after an L−degree µP for P on X is known. Different degrees for the same P orig-
inate different collectives. Sometimes, the predicate P is called the linguistic label
of the L-set P or L-extension of P on X .

9.10.3

Notice that if P is rigidly used on X , then, for all x in X , it can only be x ∈α P, or
x∈ω P. The symbol∈α does correspond to the classical symbol /∈ (does not belong),
and the symbol ∈ω to the classical ∈ (does belong). Under such interpretation, from

µPα ≤ µP ≤ µPω,

it is possible to accept the existence of the rigid L-sets

Pα = /0, and Pω = X

such that
mathb f Pα ⊂ P⊂ Pω, for all L-set P in X .

Naming by µr (r ∈ LP) the function µr(x) = r, for all x in X , we can also accept
the existence of the predicates Pr = constantly r, that are semi-rigid and with a sin-
gle class in X/=P .

Remark
It is not clear that all predicates do originate an L-set. The representation of the
collective originated by a predicate without an L−degree deserves further thinking.
Of course, if P is meaningless on X , it cannot exist the L-set P. In addition, there
can be L-sets without a predicate naming them.

9.10.4

Let L0 = {α,ω} ⊂ LP, and consider the set LX
0 of all functions µ : X → L0, of which

the only constant are µα and µω, and the others take the two values α and ω. Hence,
functions in LX

0 can only represent rigid predicates on X .
For each µ ∈ LX

0 , consider the subset µ−1(ω) in X , and name it in some way, for
example, mu: then µ = µmu. Hence all functions in LX

0 do correspond with rigid pred-
icates whose collectives are subsets in X . L0-sets are just the classical subsets in X .

9.10.5

Of course, L0 is a chain (α< ω) that with min and max (for example, min(α,ω) =
α, min(ω,ω) = ω, max(α,ω) = ω, etc.) is a distributive lattice. In addition, with
α′ = ω, ω′ = α, (L0,min,max,′ ) is the boolean algebra 21. Then, extending these
boolean operations to LX

0 by:

• (µ ·σ)(x) = min(µ(x),σ(x))
• (µ +σ)(x) = max(µ(x),σ(x))
• µ′(x) = (µ(x))′,
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for all µ,σ in LX
0 , and all x in X , it gives the boolean algebra (LX

0 , ·,+,′ ) with mini-
mum µα and maximum µω.

As it is immediate to prove with the bijection µ "→ µ−1(ω), that boolean algebra
is isomorphic with (P(X),∩,∪,c ) : From this point of view it is indistinguishable to
work with (P(X),∩,∪,c ) than with (LX

0 , ·,+,′ ). The algebra of L0-sets is the same
as that of classical subsets in X .

Since LX
0 ⊂ LX , provided (L,≤) is a poset such that (L0,≤) is a sub-poset of

it, not only classical sets can be viewed as particular cases of collectives (those
corresponding to rigid predicates on X), but the algebra of sets can be included in
some algebra of L-sets. This allows to view classical sets as a kind of “declined”
L−sets.

9.11 The Algebras of L-Sets

In general, there are more functions in LX (LX
0 ) than existing graduated predicates

(rigid predicates) on X . Actually, an L-set µ cannot be considered as representing a
collective until is identified by a linguistic label P such that µ = µP, and, of course,
there can be predicates Q,R, . . . , such that µ = µP = µQ = µR, etc. All of them are
exact synonyms.

By analogy with the case of classical sets, we will define on LX algebras of L-sets
that, potentially, can be identified with collectives given by predicates [15]. To this
end, let us consider a poset (L,≤) such that L0 ⊂ L in such a way that α= infL, ω=
supL. Then, an algebra (or theory) of L-sets [18] is a tuple (L;≤,=,µα,µω; ·,+,′ )
verifying:

1) µ≤ σ⇔ µ(x)≤ σ(x), for all x in X
2) µα ≤ µ≤ µω, for all µ in LX

3) µ = σ⇔ µ≤ σ, and σ≤ µ
4) · : LX ×LX → LX verifies

4.1. µ ·µα = µα ·µ = µα, µ ·µω = µω ·µ = µ, for all µ in LX

4.2.If µ≤ σ, then µ ·λ≤ σ ·λ, and λ ·µ≤ λ ·σ, for all λ in LX

4.3. If µ,σ ∈ LX
0 , then µ ·σ= min(µ,σ) ∈ LX

0

5) + : LX ×LX → LX verifies

5.1. µ + µα = µα+ µ = µ, µ + µω = µω+ µ = µω, for all µ in LX

5.2. If µ≤ σ, then µ +λ≤ σ+λ, and λ+ µ≤ λ+σ, for all λ in LX

5.3. If µ,σ ∈ LX
0 , then µ +σ= max(µ,σ) ∈ LX

0

6) ′ : LX → LX verifies

6.1. µ′α = µω,µ′ω = µα
6.2. If for some x ∈ X , µ(x)≤ σ(x), then σ′(x)≤ µ′(x)
6.3. If µ ∈ LX

0 , then µ′(x) = (µ(x))′, with µ′ ∈ LX
0 , for all x in X and µ′ in LX

0 .
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Notice that it is not required that ·(+) is commutative, nor associative, nor that ’ is
involutive (µ′′ = µ), nor that the pair (·,+) is distributive, nor that · and + verify the
De Morgan law (µ ·σ)′ = µ′+σ′, etc.

It is also not supposed that operations · and + are decomposable (or functionally
expressible), that is, that there are functions

F : L×L→ L, G : L×L→ L,

such that µ ·σ= F ◦ (µ×σ), and µ+σ= G◦ (µ×σ), for all µ,σ in LX . It is also not
supposed that there exists a function N : L→ L such that µ′ = N ◦ µ, for all µ in LX

[18], [13]. Hence, a lot of different structures can be taken into account for the tuple
(LX ;≤,=,µα,µω; ·,+,′ ) verifying laws 1 to 6. All of them verify, for example,

If µ≤ σ, then σ′ ≤ µ′

because of 6.2.

Remarks

a. The operation µ · σ is the intersection of µ and σ. When µ = µP, σ = µQ the
operation · is searched to verify µP ·µQ = µP and Q.

b. The operation µ +σ is the union of µ and σ. When µ = µP, σ= µQ the operation
+ is searched to verify µP + µQ = µP or Q.

c. The operation ′ is the complement of µ. When µ = µP, ′ is searched to verify
µ′P = µnot P.

d. Given a family of predicates P,Q, . . . , with degrees in the same poset (L,≤), the
operations ·,+,′ are to be obtained as representations of the linguistic connectives
and, or, not, respectively. Contrarily to the case of crisp predicates, or classical
subsets, where ·,+,′ are unique, in general these operations in LX do represent in
each case the corresponding particular use of the linguistic connectives. This is
what happens in the language. There is not a universal algebra of L-sets capable
to represent all the combinations of predicates given by the rules

– x is (P and Q) = (x is P) and (x is Q)
– x is (P or Q) = (x is P) or (x is Q)
– x is (not P)= Not (x is P).

e. To work with a family of predicates on X by means of L-sets, an algebra is to be
specified, adapted (in the sense of (d)) to the uses of the linguistic connectives, as
well as to find the degrees of predicates, that is, their meanings. The situation is
more complex than with rigid predicates, where the axiom of specification only
requires to state that for all rigid predicate on X it exists the corresponding subset
of the elements x such that “x is P” has the degree ω.

f. Not only Zadeh’s fuzzy sets are captured by the concept of L-set, but also
interval-valued fuzzy sets, intuitionists fuzzy sets, and Goguen’s L-sets, where
L is a monoid [15], [4].

In the case of Zadeh’s fuzzy sets, the usual algebras or standard theories
are obtained with [0,1]X , once pointwise ordered, and the decomposable oper-
ations given by µ · σ = T ◦ (µ× σ), µ +σ = S ◦ (µ× σ), µ′ = N ◦ µ, with T a
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continuous t-norm, S a continuous t-conorm, and N an strong-negation [18]. Of
course, such standard theories of fuzzy sets do verify the six before mentioned
laws of an algebra of L-sets and, in addition, the commutative and associative
laws.

Other numerical functions, like copulas and dual-copulas [11] can be used to
obtain decomposable algebras of fuzzy sets, with less properties (for example,
without associativity) than standard theories. The use of bounded subsets L of
the real line is of great interest for the technological applications.

9.12 Some Properties of the Algebras of L-Sets

On the basis of the properties 1 to 6 in section 9.11, and provided (L,≤) has a lattice
structure (L,min,max) relative to the order ≤, it is easy to prove, mutatis mutandis
as it is done in [18], [13] for L = [0,1], the following results.

1. For all µ,σ in LX , µ ·σ≤ min(µ,σ) ≤ max(µ,σ) ≤ µ +σ. In particular, µ ·σ≤
µ≤ µ +σ, and µ ·σ≤ σ≤ µ +σ.

2. If L is a chain with at least three elements, (LX , ·,+,′ ) is never an ortholattice
and, a fortiori, is never a boolean algebra.

3. It is µ ·µ = µ for all µ in LX , if and only if ·= min.
4. It is µ + µ = µ for all µ in LX , if and only if + = max.
5. The law of absorption µ · (µ +σ) = µ, holds if and only if ·= min.
6. The law of absorption µ +(µ ·σ) = µ, holds if and only if + = max.
7. For all ′ (not necessarily decomposable), the structure (LX ,min,max,′ ) is a De

Morgan algebra.
8. In all algebras of L-sets it holds the Kleene’s law

µ ·µ′ ≤ σ+σ′

for all µ,σ in LX . Hence, (LX ,min,max,′ ) are De Morgan-Kleene algebras.
9. For all µ in LX , it holds the Excluded-Middle law in the form

(µ + µ′)′ ≤ ((µ + µ′)′)′,

that is, (µ + µ′)′ is self-contradictory.
10. For all µ in LX , it holds the Non-Contradiction law in the form

µ ·µ′ ≤ (µ ·µ′)′,

that is, µ ·µ′ is self-contradictory.

Some other laws, like Non-Contradiction in the form µ · µ′ = µα, are to be studied
in dependence of the particular connectives (·,+,′ ) considered. For example, in the
standard theories of fuzzy sets this last law holds if and only if T =Wf ,S = W ∗

f ,N =
Nf , for any order automorphism f of ([0,1],≤).
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9.13 On the Predicate “Probable”

9.13.1

Science and Philosophy are full of more or less clear discussions around the linguis-
tic predicate P = probable that, in some sense, has a peculiar behavior. Its action on
a set X is difficult to perceive directly, at least without a previous structure on X , and
the help of some measure of the statements “x is P”. It is around this that different
views on the concept of probability are hidden.

In mathematics, probabilities are defined when X is an orthomodular lattice or,
in particular, a boolean algebra, with the typical operations ·, ‘+,′, the extreme ele-
ments 0 and 1, and the natural order

a≤ b⇔ a ·b = a⇔ a + b = b⇔ b′ ≤ a′.

If (X , ·,+,′ ,0,1) is an orthomodular lattice, a probability is a function p : X →
[0,1] such that: 1) p(1) = 1, and 2) If a ≤ b′, then p(a + b) = p(a)+ p(b), from
which follow p(a′) = 1− p(a), p(0) = 0, and

If a≤ b, then p(a)≤ p(b) (*)

because of the orthomodular law, a ≤ b⇔ b = a + a′ ·b, and a ≤ a + b′ = (a′ ·b)′,
it results p(b) = p(a)+ p(a′ · b) ≥ p(a). Remember that in boolean algebras it is
“a≤ b′ ⇔ a ·b = 0′′.

9.13.2

The main problem with the predicate probable lies in how to fix its primary meaning.
For example, in the case of a boolean algebra with a probability p1 it can be p1(a) <
p1(b), but with another p2 it can be p2(b) < p2(a) : It is difficult to perceive the
relation “a is less probable than b”. In throwing a dice whose statistical behaviour
is unknown (the values ai = Prob(Obtaining i), 1 ≤ i ≤ 6, are not known), it could
be either “k is as equally probable as j” (if ak = a j), or not (if ak �= a j).

It seems that, in general, the relations =P and ≤P are not well perceived, that
probable can be meaningless in general.

9.13.3

In the case of orthomodular lattices, provided the only degrees up to which “x is
probable” are probabilities, that is that they are the ([0,1],≤)-degrees for the predi-
cate probable, from (*) it follows ≤P ∩ ≤ �= /0 and, hence, in this case the relations
=P and ≤P are not empty. Then, at least in the case of ortholattices (and a fortiori
in that of boolean algebras), probable is not a meaningless predicate.

In the particular case in which ≤ ⊂ ≤P, it is ≤P = ≤ ∪ ≤∗P, or ≤P − ≤ = ≤∗P,
with ≤ ∩ ≤∗P = /0, but the part ≤∗P could be easily empty. If it exists (a,b) ∈≤∗P it
should be p(a) ≤ p(b) for all probability p, but it is neither a ≤ b, nor b < a, and,
this allows to define a probability p̂ by:
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p̂(x) =
{

1 if a≤ x
0 if x < a, or x is not order-comparable with a

Then, from a≤∗P b (that implies a≤P b, and that b is not order-comparable with a)
follows p̂(a)≤ p̂(b), or 1≤ 0, that is absurd.

Then, supposing ≤P = ≤, that does not depend on p, by (*) it results that each
probability p is a degree for P : µP = p. There are as many ([0,1],≤)-degrees for
probable as probabilities on (X , ·,+,′ ,0,1).

Since in this case it is clear that ≤P = ≤ � ≤µP , probabilities do not perfectly
reflect the primary meaning of probable.

9.13.4

From what has been said, all probabilities on B = (X , ·,+,′ ,0,1) can be considered
originating a Zadeh’s fuzzy set in X .

Of course, if p is one of such probabilities p ∈ [0,1]X , and µ,σ are also in [0,1]X ,
it can be µ < p < σ, but if either µ or σ are probabilities, it is p = µ or p = σ. Let
us prove it. If p1 and p2 are probabilities on X , and p1 ≤ p2, then for all x in B it is
p1(x) ≤ p2(x). But it is also p1(x′) ≤ p2(x′), that is equivalent to p2(x) ≤ p1(x) –
from 1− p1(x)≤ 1− p2(x)-, and gives p1(x) = p2(x) for all x in X . That is, p1 = p2.

Hence two probabilities on B are either identical or not comparable under
the point-wise order on [0,1]B. Probabilities are not order-comparable between
them [14].

Remarks

a. With B = (X , ·,+,′ ) a De Morgan algebra, and Π : X → [0,1] a possibility mea-
sure [21], that is, verifying Π(0) = 0,Π(1) = 1, ,Π(x + y) = max(Π(x),Π(y)),
for all x,y in X , it can be analogously considered the predicate P = possible
on X with the statements “x is possible”. Since, in particular, x ≤ y implies
Π(x)≤Π(y), in the case ≤P ⊂≤, it results that Π is an L−degree for P but, in
this case, since Π(x′) is not functionally expressible, it cannot be concluded that
Π1 ≤Π2 does imply Π1 =Π2.

b. The same conclusion follows with a necessity measure [21] N : X → [0,1], that
verifies N(0) = 0,N(1) = 1,N(x · y) = min(N(x),N(y)), for all x,y in X , and in
particular x≤ y⇒ N(x)≤ N(y), with N(x′) non functionally expressible.

c. The antonym of P = probable is ′P = improbable [14]. Then, by 9.7.2. with a
symmetry s : X → X , it results µ′P(x) = µP(s(x)) = p(s(x)), for a given proba-
bility p on B . In the case in which s(x) = x′, it follows µ′P = p(x′) = 1− p(x) =
1− µP(x) and ′P can be identified with not-probable, provided “not” is repre-
sentable by the strong-negation 1-id.

9.14 Conclusion

Let us end this paper with some comments.
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9.14.1

From its very inception, and by the first time, fuzzy logic systematically considered
several meanings (uses) of the linguistic connectives and, or and not, as well as
antonyms, linguistic modifiers and linguistic quantifiers. Fuzzy logic is more con-
cerned, in the main, with Semantics than with Syntaxis, what it offers is a syntaxis
adapted to some particular semantics.

In a not too far away future, the new field of Computing with Words and Per-
ceptions [25] suggested by Lotfi A. Zadeh, will take into account larger and more
sophisticated expressions than those that can be currently modeled by the existing
theories of fuzzy sets. If only because of this, fuzzy set theories will need to be ex-
tended [18] to capture, at least, the meaning of more complex linguistic expressions
than those currently considered, and where not all terms are always comparable as
it is, for example, the deliciousness of dessert plates [3]. Semantical aspects will
become more relevant than they are today.

9.14.2

If Semantics is the study of meaning [7], this paper should be considered as one on
the semantics of predicates with meaning translated, à la Wittgenstein, by its use on
some (previously given) universe of discourse. Notice, at this respect, that the word
“use” is here used as “use on”. In consequence, the meaning of a predicate is tried
to be mathematically reached by describing its use on the corresponding universe of
discourse through the two basic relations ≤P and ≤µP (the basic rules under which
P is used on X) once the intuitive concept of degree is interpreted as a function
µP : X → LP such that ≤P ⊂ ≤µP . After this, it is shown how the meaning of some
complex predicates can be analyzed by means of the meaning of their parts.

It should be pointed out that “gradable property” results directly linked with
“predicate with a degree”, or “graduated predicate”.

9.14.3

By defining P≤Q if and only if µP ≤ µQ (or P⊂Q), it obviously results Pα ≤ P≤
Pω, for all predicate P on X with an L − degree µP. Hence, the mapping m(P) =
sup{µP(x);x ∈ X}= supµP, verifies

• m(Pα) = α, and m(Pω) = ω
• If P≤ Q, or µP ≤ µQ, then m(P)≤ m(Q),

and m results to be a general measure on the considered family of graduated predi-
cates [17].

In addition to the first property of m, if P is a predicate rigidly used on X and
with two classes in X/=P , then m(P) = ω, although the reciprocal of this result is
not true since it suffices that µP(x0) = ω for a single x0 in X to have m(P) = ω. It is
m(P) = α, or supµP = α, if and only if P = Pα.
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If P is meaningless on X , then m(P) does not exist. Hence, m can be understood
as a measure of the meaning of P.

With a qualified predicate P is τ, is m(P is τ) = supµτ ◦ µP = µτ(m(P)).

9.14.4

A not yet closed problem is that of the meanings of P and Q, P or Q, and not P, given
those of P,Q. That is, the relations between ≤Pand Q,≤P or Q, ≤not P, and ≤P,≤Q. It
seems clear enough that

≤not P ⊂≤−1
P (see sect. 7),≤P ∩ ≤Q ⊂≤Pand Q, and ≤P ∪ ≤Q ⊂≤Por Q

but ≤−1
P and ≤P ∩ ≤−1

P are preorders, and ≤P ∪ ≤Q is not. In some cases [15] it is

≤Pand Q =≤P ∩≤Q, ≤P or Q =≤P⊕≤Q, ≤not P =≤−1
P (∗)

with ⊕ indicating the preorder’s closure of ≤P ∪ ≤Q.
If equalities (∗) do hold, then:

1. The classes in X/=P and Q , X/=P or Q , X/=not P , follow from those in X/=P and
X/=Q , by

[x]P and Q = [x]P∩ [x]Q, [x]P or Q = [x]P∪ [x]Q, [x]not P = [x]P.

2. Provided,

• (LP and Q,≤P and Q) = (Lnot P,≤not P) = (LP,≤P) = (LQ,≤Q) = (L,≤),
• There are families of operations {∗x;∗x : L → L,x ∈ X}, and {′x; ′x : L →

L,x ∈ X}, such that all ∗x are monotonic respect to ≤ and all ′x reverse≤,

it can be taken

µPand Q(x) = µP(x)∗x µQ(x), and µnot P(x) = µP(x)′x

because of the following reasons:

• [x≤P and Q y⇔ x≤P y and x≤Q y]⇒ [µPand Q(x)≤ µPand Q(y)⇔
µP(x)≤ µP(y) and µQ(x)≤ µQ(y)] or µP(x)∗x µQ(x)≤ µP(y)∗x µQ(y).

• [x≤not P y⇔ y≤P x]⇔ [µnot P(x)≤ µnot P(y)⇔ µP(y)≤ µQ(x)] or µP(x)′x ≤
µP(y)′x .

Notice that if ∗x = ∗, and ′x = ′, for all x∈ X , then µP and Q = µP ∗µQ, and µnot P = µ′P.
For what concerns µPor Q, nothing can be stated immediately after equalities (∗)

since from
x≤P y or x≤Q y⇒ x≤Por Q y,

it just follows
µP(x)≤ µP(y) or µQ(x)≤ µQ(y),
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inequalities that, because of the “or” linking them, do not allow to reproduce a rea-
soning like that for µP and Q.

9.14.5

There are some notions of which practically nothing has been said in this paper. This
is, for example, the case of contradiction (µ≤ σ′), and incompatibility (µ ·σ= µα),
and, specially, of selfcontradiction (µ≤ µ′).

Since with classical subsets in X , is A⊂ Bc ⇔ A∩B = /0, with µ,σ in LX
0 is

µ≤ σ′ ⇔ µ ·σ= µα,

that implies
µ≤ σ′ ⇔ µ = µα,

the only selfcontradictory object in LX
0 is the empty set µα = /0. But , in LX and, in

general, contradiction and incompatibility are independent notions, as it is clear in
the language.

If L = ([0,1],≤), and ′ is pseudo-functionally expressible [18], µ′(x) = Nx(µ(x)),
with {Nx;x ∈ X} a family of strong negations, it results µ(x)≤ µ′(x)⇔ µ(x)≤ n(x),
with each n(x) = Nx(n(x)), the fixed-point of the strong negation Nx. Hence, in
the case in which ′ is decomposable (µ′ = N ◦ µ), results µ ≤ µ′ ⇔ µ ≤ µn with
n the fixed-point of N. In the before mentioned case what results is µ ≤ n, with
n : [0,1]→ [0,1], the function giving, for each x ∈ X , the fixed-point n(x) of the
corresponding Nx.

In (LX , ·,+,′ ), the relationship between contradiction and incompatibility, as well
as the characterization of the selfcontradictory objects in LX , when possible, are
interesting open problems.
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Chapter 10
Fuzzy Logic as a Theory of Vagueness:
15 Conceptual Questions

Jeremy Bradley

10.1 Introduction

Fuzzy logic has successfully established itself as an engineering tool. Though its
purpose and validity in any context were highly controversial in the early years,
this initial criticism was defused by the practical success of fuzzy set theory, to
a large degree under the name of “fuzzy logic”. This began with Assilian’s and
Mamdani’s steam engine in the 1970s [22] and has extended over an ever-expanding
range of applications, from noodle cookers to washing machines, up to the present
day. The history of fuzzy set theory’s birth, development and progression has been
documented by Rudolf Seising in his book The Fuzzification of Systems [32].

The acceptance of fuzzy logic as a technical tool, however, has not necessarily
led to an acceptance of fuzzy set theory as a theory of vagueness or as an instrument
for handling natural language – a matter over which there is a certain rift within the
fuzzy community, which will be examined later.

In one of these groups – the “engineers” – many might argue that these objectives
are not, never were and never will be the intended domain of fuzzy logic. However,
probability theory, which deals with a type of uncertainty diametrically opposed to
fuzziness, has in its longer lifetime managed to become a principle that to a large
degree is accepted as an integral part of almost every aspect of life. It has become
much more than “just a tool”, while dealing with a concept (degrees of probability –
“with a degree of likeliness of 0.5, Austria will beat Liechtenstein in the upcoming
match”) no more natural than the concept on which fuzzy logic is based (degrees of
applicability – “Italy played rather well in yesterday’s match”).

Many philosophers have argued and still argue that fuzzy logic must deal with
some of these points in order to receive any recognition as a valuable theory of
vagueness. This chapter represents an attempt to analyze how relevant the said
points actually are and whether it would be possible to overcome them, or whether
trying to solve these problems is basically an attempt to teach an elephant to fly.

This chapter will compile the insights, thoughts and answers collected during the
course of a recent project the author participated in. The core of this project was
formed by fifteen questions formulated by Christian G. Fermüller of the Vienna
University of Technology after he was involved in the organization of and then par-
ticipated in the Prague International Colloquium: Uncertainty – Reasoning about

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 207–228.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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probability and vagueness in the Czech Republic in September 2006 [8], [19]. The
context of this conference was not discussions focused specifically on fuzzy logic
as a technical tool, but deliberations concerning the conceptual handling of vague-
ness. As such, fuzzy logic was only considered in the narrow sense of its being used
as a theory of approximate reasoning based on many-valued logics. It should also
be kept in mind that while the questions were later considered in many different
contexts, only this narrow sense of fuzzy logic as a theory of vagueness was under
discussion when these questions were originally compiled. The decision to approach
the fuzzy community with these questions led to some interesting and unexpected
results, which will be discussed in 10.3.1.

The 15 questions attempt to summarize the points of criticism and doubt en-
countered in and around the conference in Prague, among other places. Through
international survey work and extensive participation from all over the world, it was
possible to formulate some examinations of the points brought up – though not to
answer all points raised to a level at which further contributions would stop being
welcome.

It should be noted that this project was not meant to be an attempt to question
the feasibility of fuzzy logic in any of its present-day applications or to disqualify
fuzzy logic in general. Nonetheless this impression seems to have been made in
some quarters, despite all the precautions taken, which is a further indication of
the rift between different methods of thinking that exists in the so-called “fuzzy
community”. If anything, the project is an attempt to defend fuzzy logic against
points brought up against its being anything more than just a “useful tool”.

10.2 Fifteen Points of Critique of Fuzzy Logic – The Questions,
Analyses and Attempts to Answer Them

10.2.1 Improper Precision

What do truth values like 0.5476324 mean? How do we arrive at such values? Does
FL provide any means to distinguish reasonable from unreasonable attributions of
values? (A complete theory of vagueness should provide answers to such questions.)

In a fuzzy environment one can, in fact, encounter truth values of which the
interpretation can be difficult. Especially if a system uses a high granularity for its
fuzzy values, one can come across a great array of decimal places that might appear
to be far too detailed to serve as an approximation of vague facts.

In some simple cases, a numerical value other than 0 and 1 can have a meaning
that could be considered to be straightforward. For example, when establishing a
degree of applicability of the term “luminous” to a pixel in a grayscale bitmap image
that allows 256 different gray values distributed at equal distances over the spectrum,
it seems intuitive to assign a pixel with the luminosity value of 128, the fuzzy value
of 0.5. With this same system, it is also possible to get fuzzy values with more
decimal places that are still intuitive. For example, a luminosity value of 129 would,
under linear mapping, lead to a fuzzy value of 0.5019608 ( 128

255) – a fuzzy value no
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less applicable than a probability value of the same sort, or the fuzzy value 0.5 in
the preceding pixel.

However, in this example, the fuzzy value approximates granularity rather than
vagueness. When venturing out of this very narrow realm of quite specific cases, the
problem remains. What does it mean to say that Ginger loves Fred to a degree of
0.5476324? That fuzzy logic is an adequate tool for handling granularity is beyond
doubt. Some might, however, consider granularity to be the opposite of vagueness.

In statistics, the answer would be quite simple – given that that one’s models
are robust. If an event will happen with a statistical probability of 0.5476324, this
would, for example, mean that given 10,000,000 attempts, one would expect the
event to happen 5,476,324 times. Statistical probability gives us a direct path to an
expected value.

So what does it mean to say that a book is long to the degree of 0.5476324?
Intuitively, colleagues agree, not much.

Some see it as an abstraction of an actual value, such as any exact number will
always be – a person listing his weight as 72 kilograms will rarely weigh exactly
this much. However, in the realm of real numbers, one can still determine what one
is abstracting from.

This is generally considered to be a question of modeling. The luminosity ex-
ample illustrated that, in some cases, fuzzy values can be confirmed as adequate in
reality. In most cases, this is not the case – but is this a problem with fuzzy logic or
a problem with how we try to describe reality when creating a model?

10.2.2 Linear Ordering of Truth Values

This seems to force one to judge the relative truth of intuitively incomparable state-
ments, such as e.g., “John is tall” “Mary is rich,” “Ginger loves Fred”, etc. How
can this be justified? (Note: it is insufficient to point out that algebraic models may
also be non-linear. The deeper worry here is that this does not explicitly reflect the
“incomparability” of at least some vague propositions.)

One element of classical logics which is actually preserved in fuzzy logics is
linearity. This can be described with the following axiom:

(a→ b)∨ (b→ a) (10.1)

Given that the value of a is smaller or equal to the value of b, any t-norm based
fuzzy logic will compute (a → b) as 1. Thus, the content of this statement can be
summarized as:

(val(a)≤ val(b))or (val(b)≤ val(a) (10.2)

A consequence of the validity of this axiom in a fuzzy environment is that a linear
ordering of fuzzy values is always legitimate.

However, a linear ordering of values might not be desired. Thus, this axiom does
not seem to fit into a theory of vagueness in the eyes of many philosophers. If you
cannot clearly accept or reject statements, how can you compare them? The issue is,
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therefore, that the mathematical frameworks allow a comparison that does not seem
natural or intuitive.

The consensus here seems to be that the fact that both values in a comparison
are within the same system and thus are theoretically comparable does not mean
that they are necessarily comparable in context even if the logical framework would
allow such a comparison. Statements such as “John is taller than Bill is fat” are not
answerable in terms of crisp numbers in natural language. It is not possible to say if
a body mass of 81 kilograms is larger than a body size of 181 centimeters.

However, within the realm of crisp numbers, a comparison between body height
and body weight would be a comparison between two values of different dimen-
sionalities. There is only one unit of truth in fuzzy logic. When comparing fuzzy
values, both values will be truth values, noted as a value on an interval stretching
from 0 to 1. While one cannot compare inches with pounds, one is able to compare
two truth values, no matter where they came from.

This is possible in probability theory, when dealing with degrees of probability.
Much like degrees of truth, degrees of probability are noted as a value within an
interval extending from 0 to 1. If I am aware of the respective probabilities, I can
evaluate statements such as “it is more likely that I will die in a plane crash than that
I will win the lottery”, even though the safety of my traveling has no connection
whatsoever with the results of a lottery.

10.2.3 Truth Functionality

This seems to clash with many intuitions (see, e.g., D. Edgington for very explicit
arguments against truth functional connectives applied to vague propositions [6]).
In particular, it is forcefully argued (by many experts) that the semantic status (truth
value) of ψ, given that both ϕ and ϕ→ ψ are “true to some intermediary degree”,
also depends on the intentional relation between ϕ and ψ, and not just on their
respective truth values.

Implications in fuzzy logic are always material implications and not intentional
implications. Thus, implications are indeed truth functional. This “problem”, though
avoided in some modal logics, is not unique to fuzzy logic. It is quite possible to
create bogus implications that will, in spite of their abstract nature, still hold true
when evaluated, even in a logic that does not use incomplete truth values. Saying
that the moon being made of green cheese would imply that pigs can fly, though
clearly nonsense, would still evaluate as true – simply because the moon is not
made of green cheese and thus it is impossible to negate this statement. Lack of
consideration of conditionality is, however, a problem encountered in most logics.
It is, of course, a problem relevant to fuzzy logic as well. But truth functionality is
not a problem exclusive to fuzzy logics – it is not created by fuzzy logic.

However, in classical logics, truth functional connectives do not cause the kind of
issues that they cause in fuzzy logics. In fuzzy logics, truth functional implications
lead to the possibly undesired linear ordering of truth values, which was discussed
in Section 10.2.2.
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Apparently, however, there are non-functionally expressible theories of fuzzy
sets, though they have not been practically applied up to now. Time will tell if fuzzy
modal logics will suceed or not.

10.2.4 Higher Order Vagueness

Even if the truth values themselves are replaced by “fuzzy values” or something sim-
ilar, the problem does not disappear: – at some level (order) “improper precisions”
must creep in for any formal fuzzy logic – at every level (order) it remains unclear
how we arrive at the corresponding “fuzzy truth value”. (How should we distinguish
between an artifact of the model and a “genuinely representing” property of truth
values?)

This consideration might be judged to be related to Zadeh’s type-2 fuzzy sets,
recently presented and elaborated in Type-2 Fuzzy Sets Made Simple [23] by Jerry
M. Mendel and Robert I. John and Type-2 Fuzzy Sets: Some Questions and Answers
[24] by Jerry M. Mendel. This concept takes into consideration the fact that fuzzy
sets themselves are, in turn, uncertain.

Dealing with higher order vagueness seems highly relevant to the “objective”
of fuzzy set theory. However, the higher one goes with the vagueness considered,
the more complex a model gets. And practically speaking, a certain degree of im-
precision is generally accepted in order to keep the modeling simple, intuitive and
comprehensible. Though type-2 fuzzy sets are superior in power, their complex-
ity and non-intuitive nature have probably contributed to their failure as yet to be-
come an accepted standard, even though they do not consider any vagueness above
second order.

In statistics one could also model a system with various levels of overlying un-
certainty. However, in practice an engineer will at some point choose to “cut off”
his measurements at a certain threshold at which viewing deeper into the problem
handled is no longer relevant or necessary.

10.2.5 Different Truth Functions for Connectives

Where are the criteria that allow us to pick the right or best one? There seems to be
a lack of arguments from “first principles”.

It is, indeed, possible to compute the same connectives in various ways in fuzzy
logic, something that in classical mathematics or probability theory would seem
alien. Finding various vastly different interpretations for “+” or for the joint proba-
bility of two statements happening in unison would not be acceptable.

In fuzzy logic, however, the “AND” connective can, for example, be evaluated
through an unlimited range t-norms, which will generally offer vastly different re-
sults. A t-norm is a function T : [0,1]× [0,1]−→ [0,1] satisfying the following four
properties:

• Commutativity:
T (x,y) = T (y,x) (10.3)
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• Monotonicity:

((x≤ y)and(z≤ q))impliesT (x,y)≤ T (z,q) (10.4)

• Associativity:
T (x,T (y,z)) = T (T (x,y),z) (10.5)

• 1 is the identity element:
T (x,1) = x (10.6)

Three popular t-norms are:

Tmin(x,y) = min{x,y} (10.7)

TŁ(x,y) = max{0,a + b−1} (10.8)

Tprod(x,y) = x∗ y (10.9)

In probability theory, the combined probability of two independent events can be
denoted quite easily. The “OR” connective can be denoted by:

P(x∨ y) = P(x)+ P(y)−P(x)∗P(y) (10.10)

And the “AND” connective can be denoted by:

P(x∧ y) = P(x)∗P(y) (10.11)

It is also quite possible to validate these formulas through mathematical deduction
or, alternatively, through empirical validation.

This brings us back to the problem of empirical validation – a perpetual millstone
around fuzzy logic’s neck. While it is quite often possible to validate independence
of events in a statistical environment, it is quite hard to empirically validate much
of anything in a fuzzy environment.

If one removes the possibility of empirical validation from statistics. however,
it again loses its advantage – a topic that will be discussed in Section 10.3.2. It is
quite unclear in what manner any connection between statistical values should be
evaluated if their relation is not known – if it is not known whether one depends on
the other or even if they are disjoint or not.

10.2.6 Worries about “(Too) Many Logics”

Correct reasoning should – like rationality in general – point to just one overall
logic of which other logics can be (modal etc.) extensions or “limit cases”. However
(modern) FL is about an ever increasing range of logics.

This question, in particular seems to accent a split between two vastly different
approaches to fuzzy logic within the fuzzy community, a phenomenon further ex-
plored in Section 10.3.1. While many people argue that fuzzy logic creates models
and should thus be treated correspondingly, others are interested in the practical
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validity of data handled by a fuzzy system, since they do not regard “it is only a
model” as a satisfying answer.

If one was to accept this answer as valid, however, the endless realm of models
describing a given situation would become something not specific to fuzzy logic. It
is encountered in reality as well, as one can quite easily see when looking at various
vastly different maps of one and the same city (some designed for pedestrians, some
for motorists, some for users of public transport, et cetera). The question remaining
here is whether an ideal model of a given situation exists.

This problem is generally perceived as a problem of reality mapping, rather than
of the logic itself. Mapping of reality can be critical in any theory, as the complexity
of reality is impossible to capture completely with models. Some respondents even
argue that this is not a problem, but rather a blessing, since the multitude of logics
allows various applications from which one can pick and choose, depending on the
specific needs of a given situation.

Also, it was noted that statistics suffer from the same “disease”. Outside of ideal
textbook examples, it is very rare for a statistical situation to possess one, and only
one, stochastic model that ideally describes it. In most cases, the person doing the
modeling will have several models from which to choose. The choice made in such
cases can be just as ambiguous as it is in a fuzzy environment. However, here the
person picking the model can at least do a statistical test on the chosen model to see
how well it works.

10.2.7 Hedging via Disjunctions

[Cited here from Roy Sorenson’s entry for “Vagueness” in the Stanford Encyclo-
pedia of Philosophy [38]]: “Critics of the many-valued approach complain that it
botches phenomena such as hedging. If I regard you as a borderline case of ’tall
man’, I cannot sincerely assert that you are tall and I cannot sincerely assert that
you are of average height. But I can assert the hedged claim ’You are tall or of
average height’. The many-valued rule for disjunction is to assign the whole state-
ment the truth-value of its highest disjunct. Normally, the added disjunct in a hedged
claim is not more than the other disjuncts.

Thus it cannot increase the degree of truth. Disappointingly, the proponent of
many-valued logic cannot trace the increase of assertibility to an increase [in] the
degree of truth.”

Sorensen [obviously] intends to evaluate disjunctions through the maximum. But
can “disjunction for hedging” really be explained by, e.g., Łukasiewicz, “strong dis-
junction”? Why should any particular truth function for disjunction adequately rep-
resent hedging in natural languages? Granted that disjunction by minimum is also
a “real disjunction”, how many “real disjunctions” are there in natural language?
How do we get to know them? Can fuzzy logic provide guidance for answers?

Fuzzy hedging can indeed often lead to insufficiencies, particularly in the field
of natural language processing, as it does not, by default, consider the intentional
relation between terms, but only their mathematical relation.
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Fig. 10.1. A borderline case between fairly tall and tall

For example, if a person is a borderline case between tall and average height, he
might have the fuzzy value of 0.5 for both “tall” and “average height”. Intuitively, if
I was to ask if the said person is “tall or of average height”, the answer would have
to be yes if he is a borderline case. Surely covering both possibilities must fully
include him.

A disjunction can be evaluated in many ways. Classically, it is evaluated with a
minimum. In t-norm based fuzzy logics, any t-norm’s dual t-conorm can be theoret-
ically used to evaluate the (controversial) “strong disjunction”. The three relevant
t-conorms in this context are:

• Gödel logic:
Smax(x,y) = max{x,y} (10.12)

• Łukasiewicz logic:
SŁ(x,y) = min{x + y,1} (10.13)

• Product logic:
Ssum(x,y) = x + y− x · y (10.14)

However, of the three prominent t-norms, only the Łukasiewicz t-norm’s dual, the
bounded sum t-conorm, offers the desired result here.

• Gödel logic:
Smax(0.5,0.5) = max{0.5,0.5}= 0.5 (10.15)

• Łukasiewicz logic:

SŁ(0.5,0.5) = min{0.5 + 0.5,1}= 1 (10.16)

• Product logic:
Ssum(x,y) = 0.5 + 0.5−0.5 ·0.5 = 0.75 (10.17)

The answer to this problem, from a practical point of view, is simple: in a practical
application, when working with disjoint fuzzy sets, it would be bad modeling to
use anything but bounded sums to evaluate disjunctions. Evaluating a disjunction
through a maximum, regardless of the context, can be – and has been – compared
to evaluating the probability of two disjoint events occurring in unison in statistics
through the formula P(x∧ y) = P(x)∗P(y), regardless of context.
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For example, the probability of rolling an odd number with one die is 0.5. Like-
wise, the probability of rolling an even number is also 0.5. Of course, the chances
of rolling an odd number and an even number at the same time in one single role are
not very promising. If one was to use the classical statistical formula for the prob-
ability of two independent events happening in unison, one would get a statistical
value of P(odd∧ even) = 0.5 ∗ 0.5 = 0.25.

Obviously, this is nonsense, since the connection between two events considered
must be taken into account in statistics. Likewise, it is indispensable to consider
the practical connection between various linguistic variables when deciding how to
compute connectives between them.

10.2.8 Sacrificed Principles of Classical Logics

(Most, if not all) fuzzy logics sacrifice principles of classical logics that seem intu-
itively “correct” even from (e.g.) a constructive or “relevance” point of view (e.g.,
the law of contradiction¬(ϕ∧¬ϕ) and idempotence of conjunction ϕ→ ϕ∧ϕ etc.)
How can such radical deviations from traditional “laws” be justified?

This issue seems to be related to issues brought up by Charles Elkan in his highly
controversial 1993 paper The Paradoxical Success of Fuzzy Logic [7], in which
he claimed that the mathematical foundations of fuzzy logic collapse under close
consideration. Several responses from the fuzzy community illustrated how Elkan
had based his analyses on false assumptions, using tools in certain situations that
fuzzy logicians would never deem adequate. The law of contradiction is one such
principle, which one can make collapse in fuzzy logic, but only by intentionally
using means that are less than ideal.

Using the fuzzy connectives as they were initially proposed, the law of con-
tradiction does indeed fail. If, for example, one was to consider a situation in
which val(ϕ) = 0.5 and was to compute conjunctions as the minimum, (ϕ∧¬ϕ)
would evaluate as 0.5. If one was to evaluate negations through the complement,
1− val(ϕ), the entire statement would evaluate as 0.5.

T-norm based fuzzy logics, however, use other means that preserve the law of
contradiction. The Łukasiewicz t-norm already evaluates (ϕ∧¬ϕ) as 0 for any ϕ.
The other two popular t-norms evaluate this statement to a value between 0 and 1.
For example, in the given example of val(ϕ) = 0.5:

Tmin(0.5,0.5) = 0.5 (10.18)

TŁ(0.5,0.5) = 0 (10.19)

Tprod(0.5,0.5) = 0.25 (10.20)

However, only Łukasiewicz logics evaluate the negation of a truth value ϕ as 1−
val(ϕ). In Gödel logics and product logics, the negation of any value larger than 0
is 0. As such, the law of contradiction also holds here.

The idempotence of the conjunction, ϕ→ ϕ∧ϕ, is another matter entirely. If ϕ is
true, ϕ and ϕ must both be true – in natural language, a trivial statement. However,
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only in Gödel logics is the result of ϕ∧ϕ identical to ϕ. In the other two major t-
norm based logics, the result of ϕ∧ϕ will always be smaller than ϕ, unless ϕ= 1. In
Łukasiewicz logics, ϕ∧ϕ even evaluates as 0 for any ϕ smaller than or equal to 0.5.

Take, for example, the case of val(ϕ) = 0.6, in which the results would be:

Tmin(0.6,0.6) = 0.6 (10.21)

TŁ(0.6,0.6) = 0.2 (10.22)

Tprod(0.6,0.6) = 0.36 (10.23)

So only in Gödel logics can ϕ→ ϕ∧ϕ be simplified to ϕ→ ϕ, which is trivially
true. In other logics, we get an implication with a consequent smaller than ϕ, unless
ϕ is 1. In this example:

(0.6⇒min 0.6) = 1 (10.24)

(0.6⇒Ł 0.2) = 0.6 (10.25)

(0.6⇒prod 0.36) = 0.6 (10.26)

Among the three t-norm based logics considered, this principle of classical logics is
thus only preserved in Gödel logics. In addition to the example given, the following
derrivation illustrates how the idempotence of conjunction generally holds:

val(ϕ→ ψ) = (val(ϕ)⇒min val(ψ)) =
{

1, val(ϕ)≤ val(ψ)
val(ψ), val(ϕ) > val(ψ) (10.27)

val(ϕ∧ϕ) = Tmin(val(ϕ),val(ϕ)) = min{val(ϕ),val(ϕ)}= val(ϕ) (10.28)

val(ϕ→ ϕ∧ϕ) = val(ϕ→ ϕ) = (ϕ⇒min ϕ) = 1 (10.29)

Another principle to be considered is the law of the excluded middle, or tertium non
datur, ϕ∨¬ϕ. While Łukasiewicz logics, possibly computing disjunctions through
the bounded sum t-conorm and the negation of ϕ as 1−val(ϕ), will always yield the
value 1 for this statement, this is not the case in Gödel logics or in product logics.
For example, consider val(ϕ) = 0.5.

(0.5⇒min 0) = 0 (10.30)

(0.5⇒Ł 0) = 0.5 (10.31)

(0.5⇒prod 0) = 0 (10.32)

Since both Gödel logics and product logics assign 0 as the value to the negation of
any value greater than 0, ϕ∨¬ϕwill be equivalent to ϕ∨⊥ for any ϕ greater than 0.
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The evaluation of the complete example in this case, through the respective t-
conorms (if one was to choose to employ them), yields the following results:

Smax(0.5,0) = 0.5 (10.33)

SŁ(0.5,0.5) = 1 (10.34)

Ssum(0.5,0) = 0.5 (10.35)

This law only holds in Łukasiewicz logics, and here also only if t-conorms are used.
To illustrate that it holds generally, and not just in this specific example, we can
combine the formulas of the negation and the disjunction in the following example.

val(ϕ�ψ) = SŁ(val(ϕ),val(ψ)) = min{val(ϕ)+ val(ψ),1} (10.36)

val(¬ϕ) = 1− val(ϕ) (10.37)

val(ϕ�¬ϕ) = SŁ(val(ϕ),val(¬ϕ)) = SŁ(val(ϕ),1− val(ϕ)) (10.38)

SŁ(val(ϕ),1− val(ϕ)) = min{val(ϕ)+ 1− val(ϕ),1}= min{1,1}= 1 (10.39)

The preservation of this principle is regarded to be an argument supporting super-
valuationism against fuzzy logic as a theory of vagueness.

However, arguments are also found against the preservation of principles such
as the law of the excluded middle. The statement “either you’re with us or you’re
against us” has caused confusion all over the world throughout the course of his-
tory. In logics, this is equivalent to the aforementioned law, which classical logics
preserves. If human thinking does not necessarily preserve it, it is questionable if a
theory of vagueness, trying to approximate human thinking, should preserve it.

If one wanted to preserve all these principles, however, one would have a problem
in fuzzy logics. To preserve the idempotence of the conjunction, one has to confine
oneself to Gödel logics. To preserve the law of the excluded middle, one has to stick
to Łukasiewicz logics. One cannot have both at the same time.

10.2.9 Epistemic, Ontic or Pragmatic Character?

It is left unclear whether the “degree of truth” has an epistemic, an “ontic” or a
“purely pragmatic” character; different interpretations (Giles [10], [11], Ruspini
[31], Mundici [5], Behounek’s [1] resource interpretation/voting semantics, etc.)
seem to imply different answers. (See, e.g., Jeff Paris [2], [28] for problems with
some of these interpretations). A theory of vagueness should include clear answers
to such questions.

This question is aimed at the nature of facts handled in fuzzy logic – where do
these facts come from? If they were to be of epistemic character, they would be
based on our knowledge and our perception. The word “epistemic” is based on
the term “epistemology”, which in turn is based on two Greek words – ὲπιστήµη
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(epistēme), meaning knowledge or science, and λóγoς(lōgos), meaning account or
explanation. An epistemic character would mean that the facts we use are based on
our perception of reality and our knowledge of reality – where knowledge is defined
as the area in which our truths and our beliefs coincide.

“Ontic”, on the other hand, relates to the factual physical existence of a circum-
stance. The word “ontic” also stems from Greek, namely, from the Greek word óντoς
(ōntos), which is a participle of ειναι (einai), meaning “to be”. It refers to factual
circumstances in reality, not to how people perceive these on an individual basis.

“Pragmatic” would mean that the logic works on a result-driven basis. A person
employing pragmatism is interested in getting a useful result and does not care how
valid the model employed might be on a theoretical basis.

Most respondents seem to credit fuzzy logic with having an ontic character that
may be used pragmatically – and is often used in this way in feedback control sys-
tems. As a question of semantics, the question was not particularly interesting to most
respondents. It was noted, however, that a similar question has often been asked about
probability theory and has never been answered in a satisfactory manner.

10.2.10 Surface Phenomena

Fuzzy logic is only an ad-hoc model for some “surface phenomena” that may be
useful for engineering purposes, but does not help us (a lot) in answering “deep
questions” about correct reasoning, the metaphysical or ontological status of vague
predicates, epistemic and – probably most important – prescriptive (deontic) aspects
of logic in general.

It is true that modeling in fuzzy logic is generally based on surface phenomena.
However, most respondents seem to consider this to be an issue of modeling and not
of the logical system used. Determining the metaphysical origins of knowledge is
difficult in any circumstances.

Any kind of reasoning used in practical situations is hard to analyze to its deepest
level. Even successful doctors are often credited for making good decisions in a
hypothetical and conjectural fashion, rather than in a deductive manner.

10.2.11 Penumbral Connections

Many philosophers follow Kit Fine [9] in asserting that “penumbral connections”
should be modeled directly in any logic seeking to deal with vagueness. (E.g., if it
is indeterminate whether X is blue or green, it is still definitely true that it is mono-
colored, etc.) Can FL compete with supervaluationism in accommodating penum-
bral connections?

Kit Fine explains what he regards to be a penumbral connection in detail in his
1975 paper ’Vagueness, truth and logic’ [9].

The concept of penumbral connections was discussed in Section 10.2.11. An
example of a penumbral connection that cannot be modeled in fuzzy logics would
be the following:
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Consider a color f and a monocolored object x. The object is definitely mono-
colored, but it is not definitely of the color f . No matter what color this object is,
f (x)∨¬ f (x) is true.

Technicians argue that fuzzy logic should not compete here, since penumbral
connections of this sort do not lie within its modeling range.

10.2.12 It Is Only a Model

FL often insists on a kind of application-oriented point of view. However, it is not
enough to reply “it is only a model” to worries about a particular logic or se-
mantic machinery. This would beg the question of whether the model is adequately
representing how we should reason correctly in various situations. In general, it
is doubtful whether an “engineering approach” can help us create a full-fledged
theory of vagueness. Mathematical models can only be a part of or a tool within a
theory of vagueness.

Many responses agreed that fuzzy logic is, indeed, only a tool for modeling that
comes from the field of engineering, but that there is nothing “only” about this.
Some claim that fuzzy logic never pretended to offer a foundation for theoretical
understanding of vagueness, while others claim that fuzzy logic is on its way to-
wards eventual success at this task through a process of abstraction.

Also, any practical applications of any theory of vagueness use models – prob-
ability theory as well can only hope to model occurrences in the real world. Thus,
a better question here would be whether the models used are adequate, judged in
terms of the respective background of a theory – a background that is present in
probability theory. This problem will be discussed in the conclusions, in section
10.3.2.

Natural language is also “only a model”, used by humans to share their thoughts
and impressions with others. Making and using models are elementary aspects of
human thinking – seeing it as a problem seems ridiculous to many respondents.

10.2.13 Relation to Natural Language

FL has an uneasy relation to natural language. On the one hand, it is often claimed
that FL is “close to natural language discourse”. On the other, it does not respect
the fact that in natural language we do not use (concrete, linearly ordered) interme-
diate truth values and (different) truth functional connectives.

Fuzzy logic is a precise tool for dealing with imprecise data, while natural lan-
guage is imprecise in a manner that cannot be quantified – or is based on a model
so complex that it is impossible to determine the relation between possibly precise
causes and human thought – and thus natural language. (On a very basic level, the
human brain does function digitally – a neuron either transmits a signal or it does
not). The author of this thesis has previously been a co-author of papers on this
topic [33], [34], [35]. The relationship between formal logic and natural language is
a problematic one in any case. The question is what additional contributions fuzzy
logic can make here, having been called “the logic of natural language” by many.
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There are limits to how well classical fuzzy logic can approximate natural lan-
guage. It is theoretically possible that if, at some point in the future, the functioning
of the human brain is better understood, it will be possible to model natural language
adequately through the use of a great number of stages of fuzziness, as opposed to
only one or two (as are considered in type-2 fuzzy sets – see Section 10.2.4). How-
ever, a model describing such a situation would become complex beyond compre-
hension – and, therefore, unusable.

Thus the fact remains that while humans would refer to a person as “rather tall”
or “really tall”, fuzzy logic states that a person is tall to a degree of 0.7 and 0.9.

Many respondents argue that natural language seems like a fairly abstract field
in which to try to implement fuzzy logic. Though this might be true with respect
to applications today, it should be noted that the term fuzzy logic was actually not
coined by Lotfi Zadeh, who spoke of fuzzy sets only initially, but by his Berkeley
colleague George P. Lakoff, a professor of linguistics, in his 1972 paper Hedges:
A Study in Meaning Criteria and the Logic of Fuzzy Concepts [18], in which he
explored the possibilities of applying fuzzy set theory to natural language.

It is not, however, true that humans do not use different truth functional connec-
tives for the same terms in natural language. The word “and” can have quite different
functional meanings in natural language, depending on the context. The meaning of
the word “and” in the sentence “My car is new and red.” differs functionally from
that of same word in the sentence “I will buy a car and drive to Canada.” In the
first example, it is commutative – one could easily turn around the two elements
connected by the conjunction without altering the meaning of the sentence. The
sentence “My car is new and red.” is equivalent to the sentence “My car is red and
new.”. In the second sentence, however, the “and” contains a temporal element. “I
will buy a car and drive to Canada.” implies that I will buy a car, wherever I might
be, and then drive it to Canada. If I was to turn it around, and say “I will drive to
Canada and buy a car.” the sentence means that I will drive to Canada first (in my
old car?), and only then buy a car. The “and” is not commutative.

Similarly, the connective “or” can also have vastly different meanings. Compare
“If you have a club card or are a pensioner, admission is free” with “follow the rules
or be expelled”. In the first example, admission is free if one of the conditions is
met. In the second example, the two events described are disjoint – if you follow
the rules, you will not be expelled. If you’ve been expelled, you haven’t followed
the rules. The two statements are connected in an exclusive manner – a manner that
would employ the XOR operator in classical logics.

This, again, might give fuzzy logic an advantage over other approaches. As men-
tioned above – as an objection to fuzzy logic – fuzzy logic can employ a great
number of functions for one and the same connective. When considering natural
language, this seems like a good thing, actually, as natural language also does not
have clear rules for computing its own connectives – conjunctions.

It is, however, true that natural language, unlike fuzzy logic (see 10.2.3,) is not
always truth functional. Take the word “because”, for example. It only models causal
relationships.
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One could not model the sentence “The street is wet, because it has rained.”
using material implications only. Consequently, as all implications in fuzzy logics
are material implications, it does not seem to be appropriate to call fuzzy logic “the
logic of natural language”, as some have done, when such a basic functionality of
natural language such as causal relationships cannot be modeled with the methods
(currently) available to fuzzy logic.

10.2.14 Operational Deficiency

FL does not compare favorably with probability theory (PT) as a theory of (another
type!) of uncertainty. Granted that FL is about degrees of truth as opposed to de-
grees of belief, one may be disappointed about the lack of convincing and robust
models in FL as compared to PT. There is nothing like the paradigmatic application
of PT to (e.g.) games of chance, where it is universally agreed that highly non-
trivial, uniquely determined computations give you demonstrably and empirically
well-corroborated (unique) values corresponding to rational expectation. Will sim-
ilarly robust, non-trivial guidelines for complex information processing ever come
from FL?

No satisfactory answer to this question was received and further opinions and
would be greatly appreciated. Most respondents seem to see this as something that
only time will answer.

10.2.15 Record of Discourse

Many theoreticians agree that paying attention to the specific context (“record of
discourse”) of an assertion (by competent speakers) is of utmost importance in un-
derstanding what’s going on in a “(forced march) Sorites” situation (and probably
in all situations, where vagueness is involved). FL does not pay sufficient attention
to this and therefore cannot compete (in particular) with contextualist theories of
vagueness (Shapiro [36], [37], Graff [12], [13], [14], Raffman [29], [30], etc.) with
respect to questions about the best/correct way of actual reasoning in concrete dia-
logue scenarios (about Sorites, etc.).

This issue is based on Stuart Shapiro’s 2006 book Vagueness in Context [36].
Shapiro illustrates what he means by a “record of discourse” through a large, ide-
alized set of so-called competent speakers, which the following example will be
loosely based on.

For example, let us assume that we have 256 monocolored cards, arranged in a
row. The first card on the far left end of the row will be clearly red. In the RGB
color representation system, it would have the value of (255,0,0). The last card in
the row, on the far right, will be clearly yellow, with a RGB value of (255,255,0).
Every intermittent card will differ from its neighbor by exactly one point on the
green scale of RGB. The second card would have a RGB value of (255,1,0), the
third one (255,2,0) and so on.

Human vision cannot distinguish 256 different tones between red and yellow;
no human, no matter how good his or her vision is, can tell the difference between
(255,0,0) and (255,1,0).
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A set of competent speakers can now be asked to look at the cards and decide
what color each one is. They would all believe the card on the far left to be red and
they would definitely believe the card on the far right to be yellow. Cards in the
middle of the row would be regarded to be orange.

So where are the borderlines between red, orange and yellow? One must assume
that somewhere along the line, starting from the red end, speakers will look at cards
and not think that they are clearly red.

If one now allowed the speakers to communicate with each other, they might
disagree about where the borderlines between the cards lie. They might find good
arguments to explain why they believe certain cards to be red or not to be red. “We
can agree that this card is red, can’t we? So how can this one not be red, if you
cannot see a difference between them?”

At some point, somewhere along the row of cards, this process would stop – on
the left, on the right and on the edges of the “orange zone”. However, discussions
would still take place in the borderline areas. This record of discourse might make
some people change their minds and alter the way that vague facts are interpreted in
this specific situation.

This is the kind of discourse which fuzzy logic does not take into consideration.
Due to the technical community’s lack of familiarity with Shapiro’s ideas, it was
not possible to collect any theoretical solutions to this problems at this time. Possi-
bly, uncertainty caused by this phenomenon could be included when modeling the
statistical uncertainty considered in type-2 fuzzy sets. This would, however, not be
sufficient and accurate modeling of the phenomenon at hand.

10.3 Lessons Learned

10.3.1 Attitudes Differ

The first conclusion is that many issues brought up regarding fuzzy logic are ac-
tually considered to be difficulties of modeling reality rather than issues pertaining
specifically to the theory itself. In probability theory, it can often be easy to empiri-
cally prove the validity – or invalidity – of a chosen model. In fuzzy logic, this can
be much more difficult.

The second major conclusion of the data collection project has interestingly
enough not been of a technical, mathematical or philosophical nature, but of a soci-
ological nature. There seems to be a fairly clear-cut difference in attitudes towards
questions and contemplations of this nature. The author experienced this rift at the
NAFIPS 2006 conference in Montreal on a personal level, as was discussed in this
chapter’s introduction, but was not aware of the magnitude of the division between
these two “schools of thought.”

Within the “technical half” of the community [3], [4], [20], [21], only a few
of the issues addressed in this paper are relevant. The general maxim seems to be
that fuzzy logic is a valid tool because it works – its practical successes invalidate
conceptual and philosophical questions about it. If there were conceptual problems
with fuzzy logic, it just would not work in practice. Trying to solve some of the
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points addressed here is not of interest to representatives of this community, since
in their eyes fuzzy logic is not supposed to deal with these issues and has never
pretended to have solved them.

On the other hand, there are mathematicians and logicians [17], [39], [25], [26],
[27] who seem to regard contemplations of this sort as highly relevant and would
themselves be interested in learning about possible answers to the questions raised.
This is not surprising, since these questions stem from a philosophical context.
Within this group, the practical successes of fuzzy logic generally imply that it is
an excellent abstraction of reality, but do not necessarily imply that it is a valid rep-
resentation of the many layers of vagueness encountered in reality. Fuzzy logic’s
successes do not imply that it is anything more than just a model or that it is a valid
theory of vagueness.

For the author, who has a limited background in the fields of mathematics and
philosophy, it is hard to see what there is “only” about a model, since from a tech-
nical point of view, practically all methods applied and tools used are models, ab-
stractions and simplifications of reality. And it is not just difficult to model reality
in its entirety, it is impossible to do so, as the Heisenberg uncertainty principle [15],
among other theories, states.

Some of the reactions to the questions raised were of a very emotional nature.
This can probably be explained by the fact that fuzzy set theory is a relatively young
discipline in science that faced a great deal of unjustified criticism in its early days.
These attacks were eventually discredited by the practical successes of fuzzy logic,
but it is possible that some of the individuals who experienced those relatively recent
times have continued to be very defensive of their theory until the present day.

Also, prior attempts to discredit fuzzy logic [7] might have led some people to
believe that this project was an attempt to revive such efforts. This, however, was
never the motivation behind the project, whose raison d’être was to explore ob-
jections already existing outside of the so-called fuzzy community and to analyze
them. Its focus was to probe whether the questions raised are actually problems with
fuzzy logic or problems related to people’s understanding of fuzzy logic. Moreover,
a further goal was to seek possible solutions for problems deemed to be genuine.

10.3.2 A Question of Modeling?

A number of the points raised in various questions were perceived as issues of mod-
eling rather than as problems of the models of the logic employed. How well does
my model correspond to reality and can I evaluate this in experiments? Probability
theory can employ statistical tests to evaluate the adequacy of a statistical model in
a given situation. It can empirically confirm its data, which fuzzy logic cannot do.

To many, this advantage in the field of modeling represents an “unfair advantage,”
as it is not a matter of the mathematical or logical framework used, but a matter of
the empirical data collection. To best illustrate this, it seems sensible to create a
situation in which probability theory also cannot employ empirical means to verify
its models.
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Such a situation was suggested in the form of a betting shop. For example, a
betting shop could take bets regarding the physical height of presidents of various
countries. The people taking bets and the people setting the odds would lack actual
knowledge about the corresponding presidents.

In one game, for example, bets could be made on the question of who is taller, the
president of Finland or the president of South Korea. Lacking any knowledge about
the individuals in question, odds could still be quoted. Since Finns are statistically
taller than South Koreans, the odds put people betting on the president of South
Korea in a better position to earn more money, since, statistically, this is considered
the less probable answer. The probability of the Finnish president being taller is
considered to be higher.

If one was then to receive the additional information that Finland has a very
strong history of emancipation, one could consider the probability of Finland having
a female president to be relatively high. As women are statistically not as tall as men,
this would reduce the statistical probability of the Finnish president being the taller
of the two people, in view of the given knowledge.

This probability would be further altered if it was confirmed that the president of
Finland is in fact female, whereas the president of South Korea is not.

If one was to receive the even further information that the prime minister of Fin-
land, Matti Vanhanen, has the formidable body height of 1.98 meters, this would
alter the odds once again in favor of the Finnish president, as it illustrates the pos-
sibility that Finnish people can be even taller than formerly believed – though the
possibility must also be considered that Matti Vanhanen is an outlier in any Finnish
population statistics.

A similar procedure could be continued for a very long time, giving the partici-
pants and the odds-setters an ever-increasing amount of information on both presi-
dents’ ethnic background, family background, hobbies, et cetera. And at every step
of the procedure, odds could be quoted and probabilities estimated.

At some point, one could remove the blinds and reveal that the president of Fin-
land, Tarja Halonen, is 1.72 meters tall, while the president of South Korea, Roh
Moo-hyun, is 1.68 meters tall. Thus, the president of Finland, regardless of any of
the prior considerations, is clearly the taller of the two individuals.

So why was the betting shop talking about the “probability of the President of Fin-
land being taller than the President of South Korea”? Obviously, since Tarja Halonen
is four centimeters taller than her Korean colleague, the probability of the statement
“the President of Finland is taller than the President of South Korea” is 1, while the
probability value of the statement “the President of South Korea is taller than the
President of Finland” has the value 0. Any other values are simply not correct.

Nevertheless, we encountered them, even when using “clean” statistical methods,
since the information available to the individuals in the betting shop a priori did not
make a better modeling of the statistical situation possible.

The comprehensible, and thus comparable, nature of statistical values is gener-
ally based on the fact that modeling in statistics is generally easier than it is in a
fuzzy environment, as one can often prove the validity of one’s models through
experiments. If one removes this “unfair advantage, ”however, it becomes clear that
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probability theory does not necessarily fare any better than fuzzy logic does under
less ideal conditions.

10.3.3 Type-2 Fuzzy Sets

In the technical community, there were also many individuals who considered some
of the issues raised in the fifteen questions to be essential problems even in technical
applications of fuzzy set, and view them as driving factors for the development
of type-2 fuzzy sets to enable better modeling of the uncertainties not covered by
“classical” fuzzy sets.

10.3.4 A Theory of Vagueness?

Many of the issues raised in the questions can be solved by specific fuzzy logics.
One can preserve some principles of classical logics by confining oneself to t-norm
x and others by confining oneself to t-norm y (see Section 10.2.8). One can preserve
the idempotence of the conjunction by restricting oneself to Gödel logics and solve
the problem of hedging via disjunction by sticking to Łukasiewicz logics.

Outside the realm of fuzzy logics in a narrow sense, this is sufficient. While
some of these principles might be important in an application, they will rarely all be
necessary. A “pick and choose” approach has proven to be quite successful.

There is no question about the fact that fuzzy logic has established itself as a
valid representation of granularity. There are few issues regarding the representation
of graduated concepts, as long as the graduation can be justified, which is quite
commonly the case – see subsection 10.2.1. This is not enough, however, to qualify
fuzzy logic as a theory of vagueness.

When handling vagueness, fuzzy logic has shown itself to be applicable and prof-
itable in many situations. It is not without its mathematical basis. However, to find
universal acceptance as a theory of vagueness, more will be needed. A full-fledged
theory of vagueness will have to be evaluated according to various criteria, includ-
ing adequate representation of language usage, internal coherence and the scope of
applications. These criteria are discussed in detail by Rosanna Keefe in [16].

It is still an open question whether or not fuzzy logic can be considered a full
theory of vagueness in these respects. It would definitely help fuzzy logic if certain
principles considered to be elemental in classical logics could be generally secured
in fuzzy logics, and if one did not have to choose between various alternative fuzzy
logics, some preserving certain principles of classical logics and others preserving
different ones. This lends support to attempts to combine fuzzy logics with other
theories of vagueness – such as supervaluationism – in attempts to utilize the advan-
tages of both.
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Chapter 11
Dialogue Games as Foundation of Fuzzy Logics

Christian G. Fermüller

11.1 Introduction

This chapter deals with fuzzy logic in Zadeh’s ‘narrow sense’ [27], pointing to t-
norm based truth functional logics, where the truth values model ‘degrees of truth’,
identified with reals from the unit interval [0,1]. In particular, we are interested in
Łukasiewicz logic Ł and some of its variants, but also in Gödel logic G, and in
Product logic P. The literature on formal deduction systems for these and related
many-valued logics is vast and even more has been written about their algebraic
background. We refer to the monographs [23], [22], and [10] for more information
and references. Most authors take the usefulness of these logics in the context of ap-
proximate reasoning, i.e., reasoning with vague and imprecise notions for granted.
However the corresponding proof systems are hardly ever explicitly related to mod-
els of correct reasoning with vague information. In other words: the challenge to
derive particular fuzzy logics from first principles about approximate reasoning is
not addressed explicitly. The reference to general models of reasoning and to the-
ories of vagueness – a prolific discourse in contemporary analytic philosophy – is
only implicit, if not simply missing, in most presentations of inference systems for
fuzzy logics. Some notable exceptions, where an explicit semantic foundation for
particular fuzzy logics is aimed at, are: Ruspini’s similarity semantics [35]; vot-
ing semantics [25]; ‘re-randomizing semantics’ [24]; measurement-theoretic justi-
fications [7]; the Ulam-Rényi game based interpretation of D. Mundici [29]; and
‘acceptability semantics’ of J. Paris [31]. As we have argued elsewhere [12], these
formal semantics for various t-norm based logics (in particular Łukasiewicz logic)
should be placed in the wider discourse about adequate theories of vagueness, a
prolific subfield of analytic philosophy.

Here, we focus on a specific approach to derive logics from fundamental reason-
ing principles that was initiated by Robin Giles already in the 1970s [19]. This con-
cept combines Paul Lorenzen’s attempt to provide a dialogue theoretic foundation
of logic in general (explained, e.g., in [26] and [5]) with a ‘risk based’ evaluation
of atomic propositions that is specific to the context of vagueness understood as a
phenomenon implying ‘dispersion’. By the latter notion Giles refers to the fact that
binary (yes/no) experiments set up to test the acceptability of vague atomic asser-
tions may show different outcomes when repeated. As we will see in Section 11.8,
this concept allows one to relate two seemingly very different theories of vagueness.
Namely the familiar degree based, truth functional, approach of t-norm based fuzzy
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logic, on the one hand side, and supervaluationism, introduced by Kit Fine [18] and
currently very popular among philosophers of vagueness, on the other hand side.

We will briefly review Giles’s characterization of Łukasiewicz logic and provide
an overview over more recent results covering a wider range of logics. As a sort of
conclusion, we will indicate connections of the dialogue game paradigm to other
important foundational research programs in contemporary logic.

For brevity we restrict our attention to propositional logics, here. We assume
the reader to be familiar with the basic concepts of t-norm based fuzzy logics as
presented, e.g., in [23]. On the other hand we aim at a self-contained presentation
as far as the (presumably less well known) concept of dialogue games as formal
foundation of logical reasoning is concerned.

11.2 Giles’s Game for Łukasiewicz Logic

Giles’s analysis [19] of approximate reasoning originally referred to the phenomenon
of ‘dispersion’ in the context of physical theories. Later Giles [20] explicitly applied
the same concept to the problem of providing ‘tangible meanings’ to (logically com-
plex) fuzzy propositions. For this purpose he introduces a game that consists of two
independent components:

(1) Betting for Positive Results of Experiments

Two players–say: me and you–agree to pay 1C to the opponent player for every
false statement they assert. By [p1, . . . , pm‖q1, . . . ,qn] we denote an elementary state
of the game, where I assert each of the qi in the multiset {q1, . . . ,qn} of atomic
statements (represented by propositional variables), and you, likewise, assert each
atomic statement pi ∈ {p1, . . . , pm}.

Each propositional variable q refers to an experiment Eq with binary (yes/no)
result. The statement q can be read as ‘Eq yields a positive result’. Things get inter-
esting as the experiments may show dispersion; i.e., the same experiment may yield
different results when repeated. However, the results are not completely arbitrary:
for every run of the game, a fixed risk value 〈q〉r ∈ [0,1] is associated with q, denot-
ing the probability that Eq yields a negative result. For the special atomic formula
⊥ (falsum) we define 〈⊥〉r = 1. The risk associated with a multiset {p1, . . . , pm}
of atomic formulas is defined as 〈p1, . . . , pm〉r = ∑m

i=1〈pi〉r. The risk 〈〉r associated
with the empty multiset is defined as 0. The risk associated with an elementary state
[p1, . . . , pm‖q1, . . . ,qn] is calculated from my point of view. Therefore the condition
〈p1, . . . , pm〉r ≥ 〈q1, . . . ,qn〉r expresses that I do not expect any loss (but possibly
some gain) when betting on the truth of atomic statements, as explained above.

(2) A Dialogue Game for the Reduction of Compound Formulas

Giles follows ideas of Paul Lorenzen and his school that date back already to
the 1950s (see, e.g., [26]) and constrains the meaning of logical connectives by
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reference to rules of a dialogue game that proceeds by systematically reducing ar-
guments about compound formulas to arguments about their subformulas.

We at first assume that formulas are built up from propositional variables, the
falsity constant ⊥, and the connective → only.1The central dialogue rule can then
be stated as follows:

(R→) If I assert A → B then, whenever you choose to attack this statement by
asserting A, I have to assert also B. (And vice versa, i.e., for the roles of me and
you switched.)

This rule reflects the idea that the meaning of implication is specified by the princi-
ple that an assertion of ‘if A, then B’ (A→ B) obliges one to assert B, if A is granted.

In contrast to dialogue games for intuitionistic logic [26, 11], no special regula-
tion on the succession of moves in a dialogue is required here. However, we assume
that each assertion is attacked at most once: this is reflected by the removal of A→B
from the multiset of all formulas asserted by a player during a run of the game, as
soon as the other player has either attacked by asserting A, or has indicated that she
will not attack A → B at all. Note that every run of the dialogue game ends in an
elementary state [p1, . . . , pm‖q1, . . . ,qn]. Given an assignment 〈·〉r of risk values to
all pi and qi we say that I win the corresponding run of the game if I do not expect
any loss, i.e., if 〈p1, . . . , pm〉r ≥ 〈q1, . . . ,qn〉r.

As an almost trivial example consider the game where I initially assert p → q
for some atomic formulas p and q; i.e., the initial state is [‖p → q]. In response,
you can either assert p in order to force me to assert q, or explicitly refuse to attack
p→ q. In the first case, the game ends in the elementary state [p‖q]; in the second
case it ends in state [‖]. If an assignment 〈·〉r of risk values gives 〈p〉r ≥ 〈q〉r, then I
win, whatever move you choose to make. In other words: I have a winning strategy
for p→ q in all assignments of risk values where 〈p〉r ≥ 〈q〉r.

Recall that a valuation v for Łukasiewicz logic Ł is a function assigning values
∈ [0,1] to the propositional variables and 0 to ⊥, extended to compound formulas
using the truth function x⇒Ł y = inf{1,1− x + y}.
Theorem 1 (R. Giles [19]). Every assignment 〈·〉r of risk values to atomic formulas
occurring in a formula F induces a valuation v〈·〉r for Ł such that v〈·〉r(F) = 1 if
and only if I have a winning strategy for F in the game presented above.

Corollary 1. F is valid in Ł if and ony if for all assignments of risk values to atomic
formulas occurring in F I have a winning strategy for F.

11.3 Other Connectives

Although all other connectives can be defined in Łukasiewicz logic from → and ⊥
alone, it will be helpful to illustrate the idea that the meaning of all relevant connec-
tives can be specified directly by intuitively plausible dialogue rules. Interestingly,
for conjunction two different rules seem to be plausible candidates at a first glance:

1 Remember that in Ł all other connectives can be defined from→and⊥alone. (See, e.g., [23].)
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(R∧) If I assert A1 ∧A2 then I have to assert also Ai for any i ∈ {1,2} that you
may choose.

(R∧′) If I assert A1∧′ A2 then I have to assert also A1 as well as A2.

Of course, both rules turn into rules referring to your claims of a conjunctive formula
by simply switching the roles of the players (‘I’ and ‘you’).

Rule (R∧) is dual to the following natural candidate for a disjunction rule:

(R∨) If I assert A1∨A2 then I have to assert also Ai for some i∈{1,2} that I myself
may choose.

Moreover, it is clear how (R∧) generalizes to a rule for universal quantification.
It follows already from results in [19] that rules (R∧) and (R∨) are adequate for

‘weak’ conjunction and disjunction in Ł, respectively.∧ and∨ are also called ‘lattice
connectives’ in the context of fuzzy logics, since their truth functions are given by
v(A∧B) = inf{v(A),v(B)} and v(A∨B) = sup{v(A),v(B)}.

The question arises, whether one can use the remaining rule (R∧′) to characterize
strong conjunction (&) which corresponds to the t-norm x∗Ł y = sup{0,x+ y−1}.

However, rule (R∧′) is inadequate in the context of our betting scheme for random
evaluation in a precisification space. The reason for this is that we have to ensure that
for each (not necessarily atomic) assertion that we make, we risk a maximal loss of
1C only. It is easy to see that rules (R→), (R∧), and (R∨) comply with this principle
of limited liability. However, if I assert p∧′ q and we proceed according to (R∧′),
then I end up with a loss of 2C, in case both experiments Ep and Eq fail. There is a
simply way to redress this situation to obtain a rule that is adequate for (&): Allow
any player who asserts A1 &A2 to hedge her possible loss by asserting ⊥ instead of
A1 and A2, if wished. Asserting ⊥, of course, corresponds to the obligation to pay
1C (but not more) in the resulting final state. We obtain the following rule for strong
conjunction:

(R& ) If I assert A1 &A2 then I either have to assert A1 as well as A2, or else I have
to assert ⊥.

In a similar way, also dialogue rules for negation, ‘strong’ disjunction, and equiva-
lence can be formulated directly, instead of just derived from (R→).

11.4 Beyond Łukasiewicz Logic

There is an interesting ambiguity in the phrase ‘betting for positive results of (a
multiset of) experiments’ that describes the evaluation of elementary states of the
dialogue game. As explained above, Giles identifies the combined risk for such a bet
with the sum of risks associated with the single experiments. However, other ways
of interpreting the combined risk are worth exploring. In [9] we have considered a
second version of the game, where an elementary state [p1, . . . , pm‖q1, . . . ,qn] corre-
sponds to my single bet that all experiments associated with the qi, where 1≤ i≤ n,
show a positive result, against your single bet that all experiments associated with
the pi (1 ≤ i ≤ m) show a positive result. A third form of the game arises (again,
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see [9]) if one decides to perform only one experiment for each of the two players,
where the relevant experiment is chosen by the opponent.

It turns out that these three betting schemes constitute three versions of Giles’s
game that are adequate for the three fundamental logics Ł (Łukasiewicz logic), P
(Product logic), and G (Gödel logic), respectively. To understand this result it is
convenient to invert risk values into probabilities of positive results (yes-answers)
of the associated experiments. More formally, the value of an atomic formula q is
defined as 〈q〉= 1−〈q〉r; in particular, 〈⊥〉= 0.

My expected gain in the elementary state [p1, . . . , pm‖q1, . . . ,qn] in Giles’s game
for Ł is the sum of money that I expect you to have to pay me minus the sum
that I expect to have to pay you. This amounts to ∑m

i=1(1−〈pi〉)−∑n
i=1(1−〈qi〉) C.

Therefore, my expected gain is greater or equal to zero if and only if 1+∑m
i=1(〈pi〉−

1)≤ 1 +∑n
i=1(〈qi〉−1) holds. The latter condition is called winning condition W∑.

(Note that ‘winning’ here refers to expected gain: although, in this sense, I ‘win’ in
state [p‖p], I still loose 1C in those concrete runs of the game, where the instance
of the experiment Ep referring to my assertion of p results in ‘no’, but where the
instance of Ep referring to your assertion of p end positively (answer ‘yes’).

In the second version of the game, you have to pay me 1C unless all experiments
associated with the pi test positively, and I have to pay you 1C unless all experiments
associated with the qi test positively. My expected gain is therefore 1−∏m

i=1〈pi〉−
(1−∏n

i=1〈qi〉) C; the corresponding winning condition W∏ is ∏m
i=1〈pi〉 ≤∏n

i=1〈qi〉.
To maximize the expected gain in the third version of the game I will choose

a pi ∈ {p1, . . . , pm} where the probability of a positive result of the associated ex-
periment is least; and you will do the same for the qi’s that I have asserted. There-
fore, my expected gain is (1−min1≤i≤m〈pi〉)− (1−min1≤i≤n〈qi〉) C. Hence the
corresponding winning condition Wmin is min1≤i≤m〈pi〉 ≤min1≤i≤n〈qi〉.

We thus arrive at the following definitions for the value of a multiset {p1, . . . , pn}
of atomic formulas, according to the three versions of the game:

〈p1, . . . , pn〉Ł = 1 +∑n
i=1(〈pi〉−1)

〈p1, . . . , pn〉P =∏n
i=1〈pi〉

〈p1, . . . , pn〉G = min1≤i≤n〈pi〉 .

For the empty multiset we define 〈〉Ł = 〈〉P = 〈〉G = 1.
In contrast to Ł, the dialogue game rule (R) does not suffice to characterize P

and G. To see this, consider the state [p→⊥‖q]. According to rule (R) I may assert
p in order to force you to assert ⊥. Since 〈⊥〉 = 0, the resulting elementary state
[⊥‖p,q] fulfills the winning conditions 〈⊥〉≤ 〈p〉·〈q〉 and 〈⊥〉≤min{〈p〉,〈q〉}, that
correspond to P and G, respectively. However, this is at variance with the fact that
for assignments where 〈p〉 = 0 and 〈q〉< 1 you have asserted a statement (p→⊥)
that is definitely true (v(p→⊥) = 1), whereas my statement q is not definitely true
(v(q) < 1).2

2 The problem does not arise in logic Ł, since there the expected gain for state [⊥‖p,q] is 〈p,q〉Ł−
〈⊥〉Ł = 1− (〈p〉 − 1)− (〈q〉 − 1)− (1− 1) = 〈p〉+ 〈q〉 − 1 and therefore, indeed, negative, as
expected, if 〈p〉 = 0 and 〈q〉 < 1.
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There are different ways to address the indicated problem. They all seem to imply
a break of the symmetry between the roles of the two players (me and you). We have
to distinguish between elementary states in which my expected gain is non-negative
and those in which my expected is strictly positive. Accordingly, we introduce a
(binary) signal or flag ¶ into the game which, when raised, announces that I will be
declared the winner of the current run of the game, only if the evaluation of the final
elementary state yields a strictly positive (and not just non-negative) expected gain
for me. This allows us to come up with a version of the dialogue rules for implication
that can be shown to lead to adequate games for all three logics consider here (Ł, P,
G):

(RI∗→) If I assert A → B then, whenever you choose to attack this statement by
asserting A, I have the following choice: either I assert B in reply or I challenge
your attack on A→ B by replacing the current game with a new one in which you
assert A and I assert B.

In formulating an adequate rule for my attacks on your assertions of an implicative
formulas we have to use the flag signalling the strict case of the winning condition:

(RY∗→ ) If you assert A → B then, whenever I choose to attack this statement by
asserting A, you have the following choice: either you assert B in reply or you
challenge my attack on A→ B by replacing the current game with a new one in
which the flag ¶ is raised and I assert A while you assert B.

In contrast to Ł, in G and P the other connectives cannot be defined from → and ⊥
alone. However, the rules presented in Section 11.3 turn out to be adequate for G and
P, too. In the case of Gödel logic (G), the two versions of conjunction (‘strong’ and
‘weak’) coincide. This fact, that is well known from the algebraic view of t-norm
based logic (see, e.g., [23]) can also be obtained by comparing optimal strategies
involving the rules (R∧) and (R& ), respectively.

11.5 Truth Comparison Games

In [16] yet another dialogue game based approach to reasoning in Gödel logic G has
been described. It relies on the fact that G is the only t-norm based logic, where the
validity of formulas depends only on the relative order of the values of the involved
propositional variables. This observation arguably is of philosophical interest in the
context of scepticism concerning the meaning of particular real numbers ∈ [0,1]
understood as ‘truth values’. To emphasize that only the comparison of degrees of
truth, using the standard order relations < and≤, is needed in evaluating formals in
G, one may refer to a dialogue game which is founded on the idea that any logical
connective ◦ of G can be characterized via an adequate response by a player X to
player Y’s attack on X’s claim that a statement of form (A ◦B)�C or C � (A ◦B)
holds, where � is either < or ≤.

We need the following definitions. An assertion F � G is atomic if F and G are
either propositional; otherwise it is a compound assertion. Atomic assertions of form
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Table 11.1 Rules for connectives

P attacks: O asserts as answer:

A & B�C {A�C} or {B�C}
C �A & B {C �A, C �B}
A∨B�C {A�C, B�C}
C �A∨B {C �A} or {C �B}
A→ B < C {B < A, B < C}
C < A→ B {C < B} or {A≤ B, C <%}
A→ B≤C {% ≤C} or {B < A,B≤C}
C≤ A→ B {A≤ B} or {C ≤ B}
In the first four lines, � denotes either < or ≤, consistently throughout each line. Assertions,
which involve a choice of O in the answer (indicated by ‘or’) are called or-type assertions.
All other assertions are of and-type.

p < p, p <⊥,%< p or%≤⊥ are called elementary contradictions. An elementary
order claim is a set of two assertions of form {E �1 F,F �2 G}, where E , F , and G
are atoms, and �1,�2 ∈ {<,≤}.

Following traditional terminology, introduced by Paul Lorenzen, we call the
player that initially claims the validity of a chosen formula the Proponent P, and
the player that tries to refute this claim the Opponent O. The dialogue game pro-
ceeds in rounds as follows:

1. A dialogue starts with P’s claim that a formula F is valid. O answers to this
move by contradicting this claim with the assertion F <%.

2. Each following round consists in two steps:

(i) P either attacks a compound assertion or an elementary order claim,
contained in the set of assertions that have been made by O up to this state
of the dialogue, but that have not yet been attacked by P.

(ii) O answers to the attack by adding a set of assertions according to the rules
of Table 11.1 (for compound assertions) and Table 11.2 (for elementary
order claims).

3. The dialogue ends with P as winner if O has asserted an elementary contradic-
tion. Otherwise, O wins if there is no further possible attack for P.

Table 11.2 Rules for elementary order claims

P attacks: O asserts as answer:

{p≤ q, q≤ r} {p≤ r}
{p < q, q� r} {p < r}
{p�q, q < r} {p < r}
where � is either < or ≤.
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Instead of considering the rules of Table 11.1 and 11.2 as derived from the truth
functions for G, one may argue that the dialogue rules are derived from fundamental
principles about reasoning in a truth functional, order based fuzzy logic.

Consider the example of conjunction. We contend that anyone who claims ‘A &
B is at least as true as C’ (for arbitrary, but concrete statements A, B, and C) has to
be prepared to defend the claim that ‘A is at least as true as C’ and the claim that ‘B
is at least as true as C’. In a similar manner, the claim that ‘C is at least as true as
A & B’, should be supported either by ‘C is at least as true as A’ or by ‘C is at least
as true as B’. (Likewise, if we replace ‘at least as true’ by ‘truer than’.) One may
then go on to argue that this reading of the rules for & in Table 11.1 completely
determines correct reasoning about assertions of this form. Form this assumption,
one can derive that v(A & B) = min(v(A),v(B)) is the only adequate definition for
the semantics of conjunction in this setting.

The case for disjunction is very similar. Implication, as usual, is more controver-
sial. However, it is easy to see that there are no reasonable alternatives to our rules,
if the truth value (i.e., degree of truth) of any assertion involving a formula A→ B
should only depend on the relative degrees of truth of A and B, and should not in-
volve any additional value. (In particular the resulting value should not refer to any
arithmetical operation that had to be performed on the absolute values of A and B,
respectively).

Obviously, the mentioned dialogue rules for logical connectives guide a stepwise,
systematic reduction of any claim involving propositions of arbitrary logical com-
plexity to claims about the relative degree of truth of atomic propositions. Sets of
claims of the latter form are further reduced as specified in Table 11.2. The intuitive
justification of these latter dialogue rules seems obvious: If player O asserts, e.g.,
both p < q and p ≤ r, then P is entitled to force O to assert also p < r. Clearly, a
claim of the form p < p is defensible. Therefore P is declared winner of a run of the
game if she succeeds in forcing O to assert such an elementary contradiction.

Formally we may summarize this analysis of Gödel logic as follows:

Theorem 2 ([16]). A formula F is valid in G if and only if there exists a winning
strategy for P on F in the presented comparison game.

Note that, in the parlor of game theoreticians, the presented dialogue game is a
strategic zero-sum game of perfect information. Moreover, if we stipulate that the
same pair of elementary order claims (by O) can be attacked at most once (by P),
then all runs of the game are finite. Thus we have defined a determinate game:
for any initial state either P or O has a winning strategy. While winning strategies
for P witness validity, even more specific semantic information can be extracted
from winning strategies for O. Call a Gödel logic valuation v compatible with an
elementary order claim p � q if and only if v(p)� v(q), where � ∈ {<,≤}.
Theorem 3 ([16]). For all formulas F and Gödel logic valuations v: v(F) < 1 if
and only if there exists a winning strategy for O on F, where v is compatible with
all elementary order claims made by O in the corresponding runs of the game.

Since all sets elementary order claims either contain an elementary contradic-
tion or else are compatible with some valuation, this result implies that winning
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strategies for O implicitly specify counter-models and, vice versa, counter-models
induce winning strategies for O.

11.6 Connections to Proof Systems

There is a close correspondence between winning strategies in dialogue games and
cut-free proofs in adequate versions of Gentzen’s sequent calculus. For the case of
Lorenzen’s original dialogue game and (a variant of) Gentzen’s LJ for intuition-
istic logic this has been demonstrated, for example, in [11]. A similar, even more
straightforward relation holds between Gentzen’s LK and Lorenzen-style dialogue
games for classical logic. Game based characterizations have been presented for
many other logics, including modal logics, paraconsistent logics, and various sub-
structural logics. To name just one result of relevance to our context, a correspon-
dence between parallel versions of Lorenzen’s game and so-called hypersequent
calculi for intermediary logics, including the fuzzy logic G, has been established
in [13, 14].

Returning to the game presented in Section 11.2, we note that Giles proved The-
orem 1 without formalizing the concept of strategies. However, to reveal the close
relation to analytic proof systems we need to define structures that allow us to for-
mally register possible choices for both players. These structures, called disjunctive
strategies or, for short, d-strategies appear at a different level of abstraction to strate-
gies. The latter are only defined with respect to given assignments of risk values (and
may be different for different assignments), whereas d-strategies abstract away from
particular assignments.

Definition 8. A d-strategy (for me) is a tree whose nodes are disjunctions of states:

[A1
1, . . . ,A

1
m1
‖B1

1, . . . ,B
1
n1

]
∨

. . .
∨

[Ak
1, . . . ,A

k
mk
‖Bk

1, . . . ,B
k
nk

]

which fulfill the following conditions:

1. All leaf nodes denote disjunctions of elementary states.
2. Internal nodes are partitioned into I-nodes and you-nodes.
3. Any I-node is of the form [A → B,Γ‖Δ]

∨
G and has exactly one successor

node of the form [B,Γ‖Δ,A]
∨

[Γ‖Δ]
∨

G , where G denotes a (possibly empty)
disjunction of states, and Γ, Δ denote (possibly empty) multisets of formulas.

4. For every state [Γ‖Δ] of a you-node and every occurrence of A → B in Δ, the
you-node has a successor of the form [A,Γ‖B,Δ′]

∨
G as well as a successor of

the form [Γ‖Δ′] ∨ G , where Δ′ is Δ after removal of one occurrence of A→ B.
(The multiset of occurrences of implications at the right hand sides is non-empty
in you-nodes.)3

We call a d-strategy winning (for me) if, for all leaf nodes ν and for all possible
assignments of risk values to atomic formulas, there is a disjunct [p1, . . . , pm‖q1, . . . ,
qn] in ν, such that 〈p1, . . . , pm〉r ≥ 〈q1, . . . ,qn〉r.

3 For a total of n occurrences of compound formulas on the right-hand sides of states in a you-node,
there are 2n successor nodes, corresponding to 2n possible moves for you.
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In game theory, a winning strategy (for me) is usually defined as a function from all
possible states, where I have a choice, into the set of my possible moves. Note that
winning strategies in the latter sense exist for all assignments of risk values if and
only if a winning d-strategy exists.

Strictly speaking, we have only defined d-strategies (and therefore, implicitly,
also strategies) with respect to some given regulation that, for each possible state,
determines who is to move next. Each consistent partition of internal nodes into I-
nodes and you-nodes corresponds to such a regulation. However, it has been demon-
strated by Giles [19, 21] that the order of moves is irrelevant for determining my
expected gain. Therefore no loss of generality is involved here.

The defining conditions for I-nodes and you-nodes clearly correspond to possible
moves for me and you, respectively, in the dialogue game. Thus Giles’s theorem can
be reformulated in terms of d-strategies. More interestingly, conditions 3 and 4 also
correspond to the introduction rules for implication in the hypersequent calculus HŁ
for Ł, defined in [28].

Hypersequents, due to Pottinger [33] and Avron [2], are a natural and useful
generalization of Gentzen’s sequents. A hypersequent is just a multiset of sequents
written as

Γ1 � Δ1 | · · · | Γn � Δn

The interpretation of component sequents Γi � Δi varies from logic to logic. But
the |-sign separating the individual components is always interpreted as a classical
disjunction (at the meta-level). The logical rules for introducing connectives refer
to single components of a hypersequent. The only difference to sequent rules is that
the relevant sequents live in a (possibly empty) context H of other sequents, called
side-hypersequent. The rules of HŁ for introducing implication are:

B,Γ � Δ,A |H
A→ B,Γ � Δ |H (→, l)

A,Γ � Δ,B |H &Γ � Δ |H
Γ � Δ,A→ B |H (→,r)

Observe that rules (→, l) and (→,r) are just syntactic variants of the defining con-
ditions 3 and 4 for d-strategies. To sum up: the logical rules of HŁ can be read as
rules for constructing generic winning strategies in Giles’s game.

In this vein the close correspondence between logical rules of hypersequent sys-
tems and rules for specifying winning strategies for Giles-style dialogue games can
be used to interpret the logical rules of the uniform hypersequent system defined
in [9] for Łukasiewicz, Gödel, and Product logic. Interpretations of this kind are
systematic and robust enough to be considered a bridge between proof theoretic
investigations of t-norm based fuzzy logics, on the one hand side, and semantic
foundations along the lines envisaged by Giles [19, 20], on the other hand side.

Not only Giles’s game, but also the truth comparison game presented in
Section 11.5 is closely related to a specific type of analytic calculus, namely so-
called sequents of relations systems, as introduced for the family of projective logics
in [4] and further analyzed in [3]. Without presenting any details here, we just men-
tion that different cut rules for sequents of relations correspond to generalizations
of the dialogue rules in Table 11.2, Section 11.5, from elementary order claims to
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analogous pairs of order claims about arbitrary complex formulas. Moreover it can
be observed that the above mentioned uniform hypersequent system of [9] and its
dialogue interpretation generalizes features of two seemingly very different analytic
proof systems, the hypersequent calculus HŁ and the sequents of relations system
for G from [4].

11.7 Pavelka Style Reasoning

An important paradigm for approximate reasoning has been explored in a series of
papers by J. Pavelka [32]. It is sometimes also advocated as ‘fuzzy logic with eval-
uated syntax’ (see, e.g., [30]). In this approach one makes the reference to degrees
of truth explicit by considering graded formulas r : F as basic objects of inference,
where r is a rational number ∈ [0,1] and F is an Ł-formula, with the intended in-
terpretation that F is evaluated to a value ≥ r. The resulting logic is called rational
Pavelka logic RPL in [23].

Inference systems for RPL can be obtained by using the following graded version
of modus ponens as rule of derivation:

r : A s : A→ B
r ∗Ł s : B

Completeness and soundness of such systems can be stated as the coincidence of
the truth degree ‖F‖T of F over some theory (set of graded formulas) T with the
provability degree |F|T of F over T . Here ‖F‖T is defined as infv∈IT v(F), where IT

is the set of all Ł-valuations satisfying T ; and |F |T is defined as sup{r | T � r : F},
where � denotes the indicated derivability relation. (See, e.g., [23] for details.)

It is easy to see that Giles’s dialogue game for Ł can be adapted to RPL, since
a graded formula r : F can be expressed as r̄ → F in Ł if Ł is extended by truth
constants r̄ for all rationals ∈ [0,1], interpreted by stipulating v(r̄) = r. The only
change in Giles’s original dialogue and betting scenario (explained in Section 11.2)
is the additional reference to special elementary experiments Er̄ with fixed success
probabilities r. Such experiments can easily be defined for all rational p by referring
to a certain number of fair coin tosses and an adequate definition of a ‘positive
result’. According to the dialogue rule (R→) of Section 11.2 an attack on the graded
statement r : F (=r̄→ F) indicates the willingness of the attacking player to bet on
a positive result of Er̄ in exchange for an assertion of F by the other player. Clearly,
one can simplify the overall pay-off scheme by stipulating that an attack by player
X on a graded formula r : F consists in paying (1− r)C to the opponent player Y
and thereby forcing Y to continue the game with an assertion of F .

Since Ł is the only fuzzy logic, where also the residuum⇒Ł of the underlying t-
norm is a continuous function, one cannot readily transfer the concept of provability
degrees that match truth degrees to other logics. Nevertheless, it makes sense to
enrich the syntax of Gödel logic G and Product logic P not only by rational truth
constants, but also by a binary connective ‘:’ with the corresponding truth function :̃
given by
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x :̃y =
{

1 if x≤ y
0 otherwise

Hilbert-style axiomatizations of such enriched logics, which contain ‘evaluated syn-
tax’ (beyond RPL) seem possible, but are of questionable use. For our context, it is
interesting to observe that it is straightforward to define dialogue game rules and
pay-off schemes that capture the intended meaning of such extended versions of G
and P. Moreover, in the case of G, it is also possible to extend the truth comparison
game described in Section 11.5 to evaluated syntax. To this aim it suffices to add
truth (degree) constants corresponding to all rational numbers.

11.8 Connections to Supervaluation

Supervaluation is a widely discussed concept in philosophical logic. Kit Fine has
pioneered its application to formal languages that accommodate vague propositions
in [18], a paper that remains an important reference point for philosophers of lan-
guage and logic. The main idea is to evaluate propositions not simply with respect
to classical interpretations – i.e., assignments of the truth values 0 (‘false’) and 1
(‘true’) to atomic statements – but rather with respect to a whole space Π of (pos-
sibly) partial interpretations. For every partial interpretation I in Π, Π is required
to contain also a classical interpretation I′ that extends I. I′ is called an admissible
(complete) precisification of I. A proposition is called supertrue in Π if it evaluates
to 1 in all admissible precisifications, i.e., in all classical interpretations contained
in Π.

Supervaluation and fuzzy logics can be viewed as capturing contrasting, but
individually coherent intuitions about the role of logical connectives in vague
statements. Consider a sentence like

(*) The sun is orange and is not orange.

When formalized as s&¬s, (*) is superfalse in all precisification spaces, since either
s or ¬s is evaluated to 0 in each precisification. This fits Kit Fine’s motivation in [18]
to capture ‘penumbral connections’ that prevent any mono-colored object from hav-
ing two colors at the same time. According to Fine’s intuition the statement ‘The
sun is orange’ absolutely contradicts the statement ‘The sun is not orange’, even if
neither statement is definitely true or definitely false. Consequently (*) is judged
as definitely false, although admittedly composed of vague sub-statements. On the
other hand, by asserting (*) one may intend to convey the information that both com-
ponent statements are true only to some degree, different from 1 but also from 0:
The statement that the sun is orange is not deemed completely incompatible with
the opposite statement. In one and the same interpretation, both statements might be
deemed partially true and partially false. With this reading and under certain ‘nat-
ural’ choices of truth functions for & and ¬ the statement s&¬s is not definitely
false, but receives some intermediary truth value.

In [17], we have worked out a dialogue game based attempt to reconcile
supervaluation and t-norm based (‘fuzzy’) evaluation within a common formal
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framework. To this aim we interpret ‘supertruth’ as a modal operator and define
a logic SŁ that extends both, Łukasiewicz logic Ł, as well as the classical modal
logic S5.

Formulas of SŁ are built up from the propositional variables p∈V = {p1, p2, . . .}
and the constant ⊥ using the connectives & and →. The additional connectives ¬,
∧, and ∨ are defined as explained above. In accordance with our earlier (informal)
semantic considerations, a precisification space is formalized as a triple 〈W,e,µ〉,
where W = {π1,π2, . . .} is a non-empty (countable) set, whose elements πi are called
precisification points, e is a mapping W ×V "→ {0,1}, and µ is a probability mea-
sure on the σ-algebra formed by all subsets of W . Given a precisification space
Π = 〈W,e,µ〉 a local truth value ‖A‖π is defined for every formula A and every
precisification point π ∈W inductively by

‖p‖π = e(π, p), for p ∈V

‖⊥‖π = 0

‖A&B‖π =
{

1 if ‖A‖π = 1 and ‖B‖π = 1
0 otherwise

‖A→ B‖π =
{

1 if ‖A‖π = 1 and ‖B‖π = 0
0 otherwise

‖SA‖π =
{

1 if ∀σ ∈W : ‖A‖σ = 1
0 otherwise

Local truth values are classical and do not depend on the underlying t-norm ∗Ł. In
contrast, the global truth value ‖A‖Π of a formula A is defined by

‖p‖Π = µ({π ∈W |e(π, p) = 1}), for p ∈V

‖⊥‖Π = 0

‖A&B‖Π = ‖A‖Π ∗Ł ‖B‖Π
‖A→ B‖Π = ‖A‖Π⇒Ł ‖B‖Π
‖SA‖Π = ‖SA‖π for any π ∈W

Note that ‖SA‖π is the same value (either 0 or 1) for all π∈W . In other words: ‘local’
supertruth is in fact already global; which justifies the above clause for ‖SA‖Π. Also
observe that we could have used the global conditions, referring to ∗Ł and⇒Ł, also
to define ‖A&B‖π and ‖A→ B‖π, since the t-norm based truth functions coincide
with the (local) classical ones, when restricted to {0,1}. (However that presentation
might have obscured their intended meaning.)

Most importantly for our current purpose, it has been demonstrated in [17]
that the evaluation of formulas of SŁ can be characterized by a dialogue game
extending Giles’s game for Ł, where ‘dispersive elementary experiments’ (see
Section 11.2) are replaced by ‘indeterministic evaluations’ over precisification
spaces. The dialogue rule for the supertruth modality involves a relativization to
specific precisification points:
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(RS) If I assert SA then I also have to assert that A holds at any precisification
point π that you may choose. (And vice versa, i.e., for the roles of me and you
switched.)

The resulting game is adequate for SŁ:

Theorem 4 ([17]). A formula F is valid in SŁ if and only if for every precisification
space Π I have a winning strategy for the game starting with my assertion of F.

11.9 Dialogue Games in a Wider Context

Having sketched the rather varied landscape of dialogue game based approaches to
the foundations of fuzzy logic – following Giles’s pioneering work in the 1970s – we
finally want to hint briefly at some connections with other foundational enterprises
in logic. We think that these connections indicate potential benefits that the dialogue
game approach might enjoy relative to alternative semantic frameworks mentioned
in the introduction (Section 11.1).

Connections to Lorenzen style constructivism. It is certainly true that reasoning with
vague notions and propositions poses challenges to philosophical logic that are dif-
ferent from well known concerns about, e.g., constructive meaning, adequate char-
acterization of entailment (‘relevance’), or intentional logics. However, one should
not dismiss the possibility that traditional approaches to foundational problems in
logic may benefitly be employed to enhance the understanding of fuzzy logics, too.
Lorenzen’s dialogue based paradigm is a widely discussed, flexible tool in such
foundational investigations. (See, e.g., [5, 34, 26].) Its philosophical underpinnings
can assist in the difficult task to derive mathematical structures that are used in fuzzy
logics from more fundamental assumptions about correct reasoning. In this context,
the fact that Lorenzen and his collaborators have (somewhat narrowly) focussed
on intuitionistic logic, may help to uncover deep connections between constructive
reasoning and reasoning under vagueness.

Connections to ‘game logics’ and ‘logic games’. In recent years the logical analysis
of games as well as game theoretic approaches to logic emerge as prolific foun-
dational research areas that entail interest in topics like dynamics and interaction
of reasoning agents, analysis of strategies and different forms of knowledge. (See,
e.g., [6] or www.illc.uva.nl/lgc/ for further references.) It is clear that dialogue
games, like the ones described in this paper, nicely fit in this framework. Founda-
tional research in fuzzy logic, along the lines indicated here, will surely profit from
new results about games in logic and logic in games. Moreover, it is not unreason-
able to hope that, vice versa, fuzzy logic has to offer interesting new perspectives
on agent knowledge and interaction that will be taken up by ‘game logics’ in future
research.

Connections to proof search and analytic calculi. We have already indicated in
Section 11.6 that there is a close relation between dialogue rules for attacking and
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defending complex assertions and introduction rules in sequent and hypersequent
calculi for corresponding logical connectives. However, as indicated in [15], appro-
priate dialogue rules enable a somewhat more fine grained representation of analytic
reasoning. They allow, in principle, to model more possible modes of interaction be-
tween a ‘client’ seeking a counter-model of a statement and a ‘server’ that may have
all resources to check the validity of the statement. This observation should be use-
ful in modeling and planning efficient (interactive or mechanized) proof search, and
thus hints to a potential application of dialogue games beyond purely foundational
concerns.

Connections to substructural logics. Games that have been inspired by Lorenzen’s
original dialogue game for intuitionistic logic are widely used in the analysis of
(fragments of) linear logic and related formalism (see, e.g., [8, 1]). This research
field, often simply called ‘game semantics’, highlights applications of rather abstract
forms of dialogue games, where logical connectives are viewed as certain operators
on formal games. While the emphasis in dialogue based approaches to fuzzy logics,
arguably, is closer to philosophical concerns about providing ‘tangible meaning’
(to use a phrase of Robin Giles), it is nevertheless evident that there are common
interests in the search for alternative semantics of linear logic and t-norm based
fuzzy logics, respectively. To name just one corresponding problem: How can the
feature of ‘resource consciousness’ of logics be adequately characterized at the level
of analytic reasoning? Dialogue semantics clearly aims at a direct model of this and
related features of information processing, thus stressing the well known fact that
t-norm based fuzzy logics can be viewed as a particular type of substructural logics.

Let us finally point out that this short survey on dialogue games for fuzzy log-
ics is far from complete. Among related topics, pursued elsewhere, we just mention
evaluation games, parallel dialogue games for intermediate logics (including G) and
connections to Mundici’s analysis of the Ulam-Rényi game. A further very impor-
tant topic that we have not even touched here is the investigation of quantification
– whether first-order, propositional, of higher-order. However, we maintain that al-
ready the results described here allow one to conclude that the dialogue game ap-
proach, originally developed in a quite different philosophical context, bears fruit
also in the realm of deductive fuzzy logic.
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Chapter 12
Connecting a Tenable Mathematical Theory
to Models of Fuzzy Phenomena

Esko Turunen

12.1 Introduction

It is evident that fuzzy logic should be studied from various scientific points of de-
parture, however, fuzzy logic appears different depending on this viewpoint: from
the standpoint of a philosopher or applied computer scientist fuzzy logic is a contrast
to binary logic and crispness, while a mathematician examines fuzzy logic from a
pure mathematical angle: what are the mathematical principles and algebraic struc-
tures behind fuzzy logic? Thus, for a mathematician there is nothing really fuzzy in
fuzzy logic, indeed, it is an exact logic of inexact concepts and phenomena. An anal-
ogy can be found in probability theory: it is not relevant to ask what the probability
is that Central Limit Theorem holds; this is a matter of exact proof, not a probabil-
ity. Intuitionist mathematics is a branch of mathematical research where a theorem
is accepted only if it can be proved on the basis of intuitionist logic: to prove, for
example, that α holds it is not enough to show that ¬α leads to contradiction. In this
sense intuitionist logic is a challenger for Boolean logic. In contrast, in mathemati-
cal fuzzy logic that has been developed as a formal system e.g. in [5], [11] and [17],
the meta logic is Boolean logic. To our knowledge there is no approach to fuzzy
logic where the situation would be different. The point of view in this reviewing
paper is that of mathematicians’.

Fuzzy logic has been successfully applied to a wide range of real world prob-
lems e.g. in engineering, social sciences and economics. The main benefit is the
opportunity to model the ambiguity and the uncertainty. Moreover, fuzzy logic has
the ability to comprehend linguistic instructions and to generate strategies based on
prior communications. The point in utilizing fuzzy logic in e.g. control theory is to
model control based on human expert knowledge, rather than to model the process
itself. Indeed, fuzzy control has proven to be successful in problems where con-
ventional mathematical modeling is hard or impossible but an experienced human
operator can control the process.

At present, there is a multitude of inference systems based on fuzzy technique.
Most of them, however, suffer ill–defined mathematical foundations; even if they
are performing better that classical mathematical methods, they still contain black
boxes, e.g. defuzzification, which are very difficult to justify mathematically or log-
ically. For example, fuzzy IF – THEN rules, which are in the core of fuzzy inference

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 247–270.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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systems, are often reported to be generalizations of classical Modus Ponens rule of
inference, but literally this not the case; the relation between these rules and any
known many-valued logic is complicated and artificial. Moreover, the performance
of an expert system should be equivalent to that of human expert: it should give the
same results that the expert gives, but warn when the control situation is so vague
that an expert is not sure about the right action. The existing fuzzy expert systems
very seldom fulfill this latter condition.

One gets an impression that fuzzy control, fuzzy decision making and other ar-
eas exploiting fuzzy set theory manage on relatively simple mathematical tools and
deeper theoretical results in mathematical fuzzy logic are not even known to ap-
pliers. Theoreticians and appliers do not meet each other. The immediate cause
might be that theoretical results are often written on a too abstract level. Dvořák
and Novák even write we cannot expect that complex problems can be solved using
simple means [4]. We disagree: fuzzy logic was created to avoid too complicated
formalism and this principle should be kept. Our objective in this paper is to show
that Lukasiewicz–Pavelka style fuzzy sentential logic offers relatively simple but
still well founded basis for several applications of fuzzy logic.

Many researches observe that fuzzy inference is based on similarity. Kosko [8],
for example, writes ’Fuzzy membership ... represents similarities of objects to im-
precisely defined properties’. We study systematically many–valued equivalence, or
fuzzy similarity, the original notion by Zadeh [18], a generalization of equivalence
relation; a binary fuzzy relation that is reflexive, symmetric and weakly transitive.
Later many other authors have developed Zadeh’s ideas, see e.g. [16], [2] and [7].
Dubois and Prade write [2]

The evaluation of similarity between two multi–feature descriptions of objects
may be especially of interest in analogical reasoning. If we assume that each feature
is associated with an attribute domain equipped with similarity relation modeling
approximate equality on this domain, the problem is then to aggregate the degrees
of similarity between the objects pertaining to each feature into a global similarity
index. This means that the resulting index should still have properties like reflexivity,
symmetry and max–�–transitivity. ... Moreover, we may think of a weighted aggre-
gation if we consider that we are dealing with a fuzzy set of features having different
levels of importance.

Niiniluoto examines the same topic in his paper Analogy and Similarity in Scien-
tific Reasoning (cf. [6]). He writes

(RA) :
F(α)
sim(α,β) = k

k+m
F(β)

(where α and β agree on k attributes and disagree on m attributes.) (RA) is a rule
for simple analogy, since it tells how to transfer knowledge from one source object
α to a target object β. In the case of multiple analogy, we try to extract information
about the target β from several sources α1, · · · ,αn. A real challenge is that we have
to extend our treatment from simple analogy to multiple analogies.
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Niiniluoto aims to generalize Imanuel Kant’s ideas who in his Logik (1800) for-
mulated the task in the following way: Analogy concludes from partial similarity of
two things to total similarity according to the principle of specification: Things of
one genus which we know to agree in much, also agree in the remainder as we know
it in some of the genus but do not perceive it in others. Niiniluoto cites also John
Stuart Mill, who in his System of Logic (1843) wrote:

Two things [α and β] resemble each other in one or more respect; a certain
proposition [F] is true of the one, therefore it is true of the other ... Every such re-
semblance which can be pointed out between α and β affords some degree of prob-
ability, beyond what would otherwise exist, in favor of the conclusion drawn from
it ... Every dissimilarity which can be proved between them furnished a counter–
probability of the same nature on the other side ... There will, therefore, be a com-
petition between the two points of argument and the known points of difference
in α and β; and accordingly as the one or the other may be deemed to prepon-
derate, the probability derived from analogy will be for or against β’s having the
property F.

In [9] we gave a solution to the problem stated by Dubois & Prade. It turned out
that, starting from Lukasiewicz–Pavelka logic, we are able to construct a method
performing fuzzy reasoning such that the inference relies only on experts knowl-
edge and on well–defined logical concepts. Our basic observation is that any fuzzy
set generates a fuzzy similarity, and that these similarities can be combined to a
fuzzy relation which turns out to a fuzzy similarity, too. We call the induced fuzzy
relation Total Fuzzy Similarity. Fuzzy IF – THEN inference systems are, in fact,
problems of choice: compare each IF–part of the rule base with an actual input
value, find the most similar case and fire the corresponding THEN–part; if it is not
unique, use a criteria given by an expert to proceed. We show how this method can
be carried out formally. Thus, we give a mathematical foundation to fuzzy reason-
ing. Our method is based on many–valued equivalence rather that on many–valued
implication. Moreover, it was shown in [9] that Niiniluoto’s approach is related
to ours.

This paper is organized in the following way. In Section 2 we recall some mathe-
matical concepts and results that we utilize in ensuing sections. Section 3 is devoted
to Lukasiewicz–Pavelka logic and Section 4 to many-valued similarity based infer-
ence. In Section 5 we report some real world applications of the theory we have
carried out.

12.2 Mathematical Preliminaries

The following results were proved in [9]. A Wajsberg algebra is a non–void set L
containing a fixed element 1, a binary operation →, and a unary operation ∗ such
that, for each x,y,z ∈ L,

1→ x = 1, (12.1)

(x→ y)→ [(y→ z)→ (x→ z)] = 1, (12.2)
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(x→ y)→ y = (y→ x)→ x, (12.3)

(x∗ → y∗)→ (y→ x) = 1. (12.4)

It is well–known that there is a one–to–one correspondence between Wajsberg alge-
bras and MV–algebras. Indeed, the MV–operations can be obtained by stipulations
x� y = (x→ y∗)∗, x⊕ y = x∗ → y and 0 = 1∗. Thus, Wajsberg algebras and MV–
algebras are the very same thing. Moreover, a Wajsberg algebra generates a lattice. If
this lattice is complete, then the corresponding Wajsberg algebra is called complete.
In fact Wajsberg algebras are residuated lattices (cf. [17]). A standard reference to
MV–algebras is [10].

An element b of an MV-algebra L is called an n-divisor of an element a ∈ L if
(a∗ ⊕ (n−1)b)∗ = b and nb = a, where nb = b⊕·· ·⊕b (n times). If all elements a
of a Wajsberg algebra L have n-divisors for each natural n, then L is called divisible.
A Wajsberg-algebra L is called injective if

L is complete, (12.5)

L is divisible. (12.6)

The axioms (12.1)–(12.6) are sufficient to construct fuzzy IF–THEN inference sys-
tems. A canonical example of an injective Wajsberg algebra is the Lukasiewicz
algebra L defined on the real unit interval: 1 = 1, x∗ = 1 − x and x → y =
min{1,1−x+y}. Lukasiewicz algebra is a continuous t–norm. The MV–operations
� and ⊕ are defined via x� y = max{x + y− 1,0}, x⊕ y = min{x + y,1}. For any
natural number m ≥ 2, a finite chain 0 < 1

m < · · · < m−1
m < 1 can be viewed as an

MV–algebra where

n
m ⊕ k

m = min{ n+k
m ,1} and ( n

m)∗ = m−n
m .

Finally, a structure L ∩Q with the Lukasiewicz operations is an example of a count-
able MV–algebra called rational Lukasiewicz structure. All these examples are linear
MV–algebras, i.e. the corresponding order is a total order. Moreover, they are MV-
sub algebras of the structure L . Any Boolean algebra is an MV-algebra such that the
monoidal operations⊕,� and the lattice operations ∨, ∧ coincide, respectively.

Di Nola and Sessa proved in [15] that L is an injective MV-algebra if, and only if
L is isomorphic to F(L), where F(L) is the MV-algebra of continuous [0,1]-valued
functions on the set of all maximal ideals of L, and

1(M ) = 1, ( f → g)(M ) = min{1,1− f (M )+ g(M )}, f ∗(M ) = 1− f (M )

for any maximal ideal M of L.

Theorem 1. In an injective MV-algebra, any n-divisor is unique.

By this Theorem, we may denote the unique n-divisor of an element a by a
n . For

any maximal ideal M of an injective MV-algebra L it holds that n f (M )
n = f (M ).

Moreover, [ f ∗(M )⊕ (n− 1) f (M )
n ]∗[1− f (M ) + (n−1) f (M )

n ]∗ f (M )
n . We therefore

conclude f
n (M ) = f (M )

n . In [12], the following proposition was established
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Proposition 1. In the Lukasiewicz structure, if ai � bi ≤ ci for i = 1, · · · ,n then
1
nΣ

n
i=1ai� 1

nΣ
n
i=1bi ≤ 1

nΣ
n
i=1ci.

We proved in [9] more generally

Proposition 2. In an injective MV-algebra L, if ai�bi ≤ ci for all i = 1, · · · ,n then
( a1

n ⊕·· ·⊕ an
n )� ( b1

n ⊕·· ·⊕ bn
n )≤ ( c1

n ⊕·· ·⊕ cn
n ).

Castro & Klawonn [7] among others set the following important

Definition 1. Let A be a non-void set and � a continuous t-norm. Then a fuzzy
similarity S on A is such a binary fuzzy relation that, for each x,y,z ∈ A,
(i) S〈x,x〉 = 1 (everything is similar to itself),
(ii) S〈x,y〉 = S〈y,x〉 (fuzzy similarity is symmetric),
(iii) S〈x,y〉�S〈y,z〉 ≤ S〈x,z〉 (fuzzy similarity is weakly transitive).

Trivially, fuzzy similarity is a generalization of classical equivalence relation, thus
called many-valued equivalence, too. This definition can be generalized to any resid-
uated lattice L. Moreover, an L-valued fuzzy set X is an ordered couple (A,µX),
where the reference set A is a non-void set and the membership function µX : A↘ L
tells the degree to which an element a∈ A belongs to the fuzzy set X . The following
result can be found e.g. in [17].

Theorem 2. Any fuzzy set (A,µX) on a reference set A generates a fuzzy similarity
S on A, defined for all x,y ∈ A by

S(x,y) = µX(x)↔ µX(y) = [µX(x)→ µX(y)]∧ [µX(y)→ µX(x)].

Moreover,

if µX(y) = 1 then S(x,y) = µX(x).

It is worth noting that, in Lukasiewicz algebra, the negation of equivalence is dis-
tance in a sense that, for all x,y ∈ [0,1],

(x↔ y)∗ = 1−|x− y|.
Theorem 3. Consider n injective MV-algebra valued fuzzy similarities Si, i =
1, · · · ,n on a set X. Then

S〈x,y〉 S1〈x,y〉
n ⊕·· ·⊕ Sn〈x,y〉

n

is an injective MV-algebra valued fuzzy similarity on X. More generally, the
weighted mean

S〈x,y〉= m1S1〈x,y〉
M ⊕·· ·⊕ mnSn〈x,y〉

M ,

where M = Σn
i=1mi and mi are natural numbers, is again an injective MV-algebra

valued fuzzy similarity on X.

Niiniluoto [6] quoted from John Stuart Mill (1843): If two objects A and B agree on
k attributes and disagree on m attributes, then the number
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sim(A,B) = k
k+m

can be taken to measure the degree of similarity or partial identity between A and B.

Proposition 3. ’sim’ is a fuzzy similarity relation with respect to Lukasiewicz
algebra.

Notice that Proposition 3 does not hold for any other t–norm than Lukasiewicz t–
norm.

12.3 Pavelka Logic

Jan Lukasiewicz studied infinite valued logic already in 1920’s. More that 50 years
later in 1979 Jan Pavelka [13], under the influence of ideas of fuzzy sets, extended
Lukasiewicz’ ideas to what we now call Lukasiewicz–Palvelka sentential logic, or
Pavelka logic for short. Anyone who has passed an under graduate level course of
Boolean sentential logic will have no difficulties to comprehend Pavelka’s ideas that
we now recall briefly.

We start by fixing the set of possible truth values L which we assume to posses
an injective MV–algebra structure; in most applications a sufficient large but finite
MV–chain will do. Then consider a zero order language F with
(i) a set of infinite many propositional variables p,q,r, · · · ,
(ii) a set of inner truth values {a | a ∈ L} corresponding to elements in the
set L – if L is the Lukasiewicz algebra L then only all rationales ∈ [0,1] are
needed. In Boolean logic, inner truth values correspond to the truth constants ⊥
and %.
These two sets of objects constitute the set Fa of atomic formulae. The elementary
logical connectives are implication ’imp’ and conjunction ’and’. The set of all well
formed formulae (wffs) is obtained in the natural way: atomic formulae are wffs and
if α, β are wffs, then ’α imp β’, ’α and β’ are wffs.

As shown in [17], we can introduce many other logical connectives by
abbreviations, e.g. disjunction ’or’, negation ’non’, equivalence ’equiv’ and ex-
clusive or ’xor’ are possible. Also the connectives weak implication ’imp’, weak
conjunction ’and’, weak disjunction ’or’, weak negation ’non’, weak equivalence
’equiv’ and weak exclusive or ’xor’ are available in this logic. We call the logi-
cal connectives without bar Lukasiewicz connectives, those with bar are Intuitionist
connectives.

Semantics is introduced in the same way than in Boolean sentential logic, how-
ever, finite truth tables are not possible. Any mapping v : Fa "→ L such that v(a) = a
for all inner truth values a can be extended recursively into the whole F by setting
v(α imp β) = v(α)→ v(β) and v(α and β) = v(α)� v(β). Such mappings v are
called valuations. The degree of tautology of a wff α is the infimum of all values
v(α), that is

C sem(α) =
∧{v(α);v is a valuation }.
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Denote |=a α if C sem(α) = a, in particular, |=α if a = 1. In Boolean logic tautologies
are formulae α such that v(α) = 1 (the top element of a Boolean algebra) for any
valuation v. Thus, the concept degree of tautology generalizes state of affairs in
Boolean logic in an elegant way.

Theorem 4. In any injective MV–algebra L the following holds

|= α imp α, (12.7)

|= (α imp β) imp [(β imp γ) imp (α imp γ)], (12.8)

|= (α1 imp β1) imp {(β2 imp α2) imp [(β1 imp β2) imp (α1 imp α2)]}, (12.9)

|= α imp 1, (12.10)

|= 0 imp α, (12.11)

|= (α and non-α) imp 0, (12.12)

|=a a, (12.13)

|= α imp (β imp α), (12.14)

|= (1 imp α) imp α, (12.15)

|= [(α imp β) imp β] imp [(β imp α) imp α], (12.16)

|= (non-α imp non-β) imp (β imp α), (12.17)

where α,β,α1,β1,α2,β2 are wffs and a is an inner truth value.

We may also fix some set T ⊆ F of wffs and consider valuations v such that T (α)≤
v(α) for all wffs α. If such a valuation exists, the T is called satisfiable. We say that
T is a fuzzy theory and formulae α such that T (α) �= 0 are the non–logical axioms
of the fuzzy theory T . Then we consider values

C sem(T )(α) =
∧{v(α);v is a valuation, T satisfies v}.

Denote T |=a α if C sem(T )(α) = a.
As is Boolean logic, syntax in Pavelka logic is defined by fixing logical axioms

and rules of inference. The set A of logical axioms is composed by the eleven forms
of formulae (12.7) – (12.17). A fuzzy rule of inference is a scheme

α1, · · · ,αn , a1, · · · ,an

rsyn(α1, · · · ,αn) rsem(α1, · · · ,αn),

where the wffs α1, · · · ,αn are premises and the wff rsyn(α1, · · · ,αn) is the conclu-
sion. The values a1, · · · ,an and rsem(α1, · · · ,αn) ∈ L are the corresponding truth
values. The mappings rsem : Ln "→ L are semi–continuous, i.e.

rsem(α1, · · · ,∨ j∈Γ akj , · · · ,αn) =
∨

j∈Γ rsem(α1, · · · ,akj , · · · ,αn)

holds for all i ≤ k ≤ n. Moreover, the fuzzy rules are required to be sound in a
sense that
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rsem(v(α1), · · · ,v(αn))≤ v(rsyn(α1, · · · ,αn))

holds for all valuations v. The following are examples of fuzzy rules of inference,
denoted by a set R:

Generalized Modus Ponens:

α,α imp β , a,b
β a�b

a–Consistency testing rules:

a , b
0 c

where a is an inner truth value and c = 0 if b≤ a and c = 1 elsewhere.
a–Lifting rules:

α , b
a imp α a→ b

where a is an inner truth value.
Rule of Bold Conjunction:

α,β , a,b
α and β a�b

It is easy to verify that, if restricted only on value 1, fuzzy rules of inference are
sound generalizations of classical rules of inference: they preserve validity. A clas-
sical meta proof of a formula α is a finite sequence of true formulae such that each
step is justified by an axiom or a rule of inference. In Pavelka logic we have to deal
with degrees of truth, too. Thus, we define a meta proof w of a wff α in a fuzzy
theory T to be a finite sequence

α1 , a1
...

...
αm , am

where

(i) αm = α,
(ii) for each i, 1 ≤ i ≤ m, αi is a logical axiom, or is a non–logical axiom, or there

is a fuzzy rule of inference in R and wff formulae αi1 , · · · ,αin with i1, · · · , in < i
such that αi = rsyn(αi1 , · · · ,αin),

(iii) for each i, 1≤ i≤ m, the value ai ∈ L is given by

ai =

⎧⎪⎪⎨⎪⎪⎩
a if αi is the axiom a
1 if αi is some other logical axiom in the set A
T (αi) if αi is a non–logical axiom
rsem(ai1 , · · · ,ain) if αi = rsyn(αi1 , · · · ,αin)
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The value am is called the degree of the meta proof w. Since a wff α may have
various meta proofs with different degrees, we define the degree of deduction of a
formula α to be the supreme of all such values, i.e.,

C syn(T )(α) =
∨{am;w is a meta proof for α in the fuzzy theory T}.

If C syn(T )(α) = a write T �a α, in particular, �a α if T = /0. A fuzzy theory T
is consistent if C sem(T )(a) = a for all inner truth values a. By Proposition 94 in
[17], any satisfiable fuzzy theory is consistent. Theorem 25 in [17] now states the
completeness of Pavelka logic:

If a fuzzy theory T is consistent, then C sem(T )(α) = C syn(T )(α) for any wff α.
In particular, for any wff α holds �a α iff |=a α. Thus, in Pavelka logic we may

talk about tautologies of a degree a and theorems of a degree a for all truth values
a ∈ L and these two concepts coincide.

We have now a solid syntax available and e.g. all the many–valued extensions
of classical rules of inference are available; 25 such rules are listed in [17]. For
example, the following are sound rules of inference.

Generalized Modus Tollendo Tollens;

non−β,α imp β , a,b
non−α a�b

Generalized Simplification Law 1;

α and β , a
α a

Generalized Simplification Law 2;

α and β , a
β a

Rule of Bold Conjunction;

α,β , a,b
α and β a�b

Generalized De Morgan Law 1;

(non−α) and (non−β) , a
non−(α or β) a

Generalized De Morgan Law 2;

non−(α or β) , a
(non−α) and (non−β) a

Example

To illustrate the use of Pavelka logic, assume we have an L–valued fuzzy theory T
with the following fours non–logical axioms:



256 12 Connecting a Tenable Mathematical Theory to Models of Fuzzy Phenomena

(1) If wages rise or prices rise
there will be inflation (p or q) imp r 1.0

(2) If there will be inflation, the Government
will stop it or people will suffer r imp (s or t) 0.9
(3) If people will suffer the Government
will lose popularity t imp w 0.8

(4) The Government will not stop inflation
and will not lose popularity non−s and non−w 1.0

We interpret the logical connectives to be the Lukasiewicz ones, however, they could
be Intuitionist, too. Moreover, the inclusive or connective could be the exclusive
disjunction xor as well.

1◦ We show that T is satisfiable and therefore consistent. Focus on the following

Atomic formula valuation v

p 0.3

q 0

r 0.3

s 0

t 0.2

w 0

By direct computation we realize that they lead to the same degrees of truth that
in the fuzzy theory T . Indeed, for example for the first non–logical axiom we
have v([(p or q) imp r]) = (0.3⊕0)→ 0.3 = 1. Similarly for the other axioms.
Thus, T is satisfiable and consistent.

2◦ What can be said on logical cause about the claim ’wages will not rise’, formally
expressed by non−p? The above consideration on valuation v associates with
(non−p) a value 1−0.3 = 0.7. Hence the degree of tautology of (non−p) is less
than or equal to 0.7.

3◦ We prove that the degree of tautology of the wff ’wages will not rise’, cannot be
less that 0.7. To this end consider the following meta proof:

(1) (p or q) imp r 1.0 non–logical axiom
(2) r imp (s or t) 0.9 non–logical axiom
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(3) t imp w 0.8 non–logical axiom
(4) non−s and non−w 1.0 non–logical axiom
(5) non−w 1.0 (4), GS2
(6) non−s 1.0 (4), GS1
(7) non−t 0.8 (5), (3), GMTT
(8) non−s and non−t 0.8 (6), (7), RBC
(9) non−(s or t) 0.8 (8), GDeM1
(10) non−r 0.7 (9), (2), GMTT
(11) non−(p or q) 0.7 (10), (1) GMTT
(12) non−p and non−q 0.7 (11), GDeM2
(13) non−p 0.7 (12), GS1

By completeness of T we conclude

C sem(T )(non−p) = C syn(T )(non−p) = 0.7.

This result can be expressed by saying that it is mostly true – true at a degree 0.7 –
that wages will not rise.

Remark

It is worth noting that if the truth value set is the real unit interval [0,1] then
only Lukasiewicz interpretation of the logical connectives guarantees the well
behavior of Pavelka logic, i.e. Soundness and Completeness. In general, what
can be done in two valued Boolean logic can be transferred to graded valued
Pavelka logic. However, some tautologies are no more valid in Pavelka logic. e.g.
�|= α imp (α and α).

12.4 Many-Valued Similarity and Fuzzy Inference

In fuzzy IF–THEN inference systems we consider an input universe of discourse X ,
the IF–parts of an inference system S, and an output universe of discourse Y , the
THEN–parts of S. We assume there are n ≥ 1 input variables and – for simplicity
– only one output variable, however, the procedure can be easily extended to sev-
eral output variables. The dynamics of S are characterized by a finite collection of
IF–THEN–rules, e.g. with three input values by

Rule 1 IF x is A1 and y is B1 and z is C1 THEN w is D1

Rule 2 IF x is A2 and y is B2 and z is C2 THEN w is D2
...

...
Rule k IF x is Ak and y is Bk and z is Ck THEN w is Dk

where A1, · · · ,Dk are fuzzy sets of height 1, that is, in each fuzzy set there is at
least one element that obtains the membership degree 1. Generally, the output fuzzy
sets D1, · · · ,Dk should obtain all the same values ∈ L the input fuzzy sets A1, · · · ,Ck
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do, however, the outputs can be crisp actions, too. All these fuzzy sets are to be
specified by the fuzzy control engineer. We avoid disjunction between the rules
by allowing some of the output fuzzy sets Di and D j, i �= j, be possibly equal.
Thus, a fixed THEN–part can be followed by various IF–parts. Some of the in-
put fuzzy sets may be equal, too (e.g. Bi = B j for some i �= j). However, the rule
base should be consistent; a fixed IF-part precedes a fixed THEN-part. Moreover,
the rule base can be incomplete; if an expert is not able to define the THEN-part
of some combination ’IF x is Ai and y is Bi and z is Ci’ then the rule can be
skipped.

Now we are in the position to formulate an algorithm a fuzzy control engineer
has to perform to construct a total fuzzy similarity based inference system.

Step 1. Create the dynamics of S, i.e. define the IF–THEN rules, give the shapes of
the input fuzzy sets (e.g. A1, · · · ,Ck) and the shapes of the output fuzzy sets (e.g.
D1, · · · ,Dk).

Step 2. Give weights to various parts of the input fuzzy sets (e.g. to Ai.s, Bi.s
and Ci.s) to emphasize the mutual importance of the corresponding input
variables.

Step 3. List the IF–THEN-rules in a sequence from the best to the worst with respect
to their mutual importance, or give some criteria on how this can be done when
necessary; i.e. give a criteria on how to distinguish inputs causing equal degree of
total fuzzy similarity in different IF–parts.

Step 4. For each THEN–part i, give a criteria on how to distinguish outputs with
equal degree on membership (e.g. w0 and v0 such that µDi(w0) = µDi(v0), w0 �= v0).

A general framework for the inference system is now ready. Assume then that we
have actual input values, e.g. (x0,y0,z0). The corresponding output value w0 is found
in the following way.

Step 5. Consider each IF–part of the rule base as a crisp case, and compare the
actual input values separately with each IF–part, in other words, count total fuzzy
similarities between the actual inputs and each IF–part of the rule base; by 2, this is
equivalent to counting weighted means

m1µA1
(x0)

m1+m2+m3
⊕ m2µB1 (y0)

m1+m2+m3
⊕ m3µC1

(z0)
m1+m2+m3

= Similarity(actual,Rule 1)

m1µA2 (x0)
m1+m2+m3

⊕ m2µB2 (y0)
m1+m2+m3

⊕ m3µC2 (z0)
m1+m2+m3

= Similarity(actual,Rule 2)
...

...
m1µAk

(x0)
m1+m2+m3

⊕ m2µBk
(y0)

m1+m2+m3
⊕ m3µCk

(z0)
m1+m2+m3

= Similarity(actual,Rule k)

where m1,m2 and m3 are the weights given in Step 2.
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Step 6. Fire an output value w0 such that

µDi(w0) = Similarity(actual,Rule i)

corresponding to the maximal total fuzzy similarity Similarity(actual,Rule i), if such
Rule i is not unique, use the order of quality given in Step 3 and, if there are several
such output values w0, utilize the criteria given in Step 4.

Remark

The rule base of a fuzzy IF–THEN inference system and an actual input value con-
stitute a fuzzy theory T . The IF–THEN rules are non–logical axioms of a form
(αi imp βi) with a truth degree T (αi imp βi) = 1 and an actual input value cor-
responds to non–logical axioms of a form αi with truth degrees T (αi) = ai =
Similarity(actual,Rule i), i = 1, · · · ,k. Step 6 of the algorithm can be viewed as an
instance of Generalized Modus Ponens

αi,(α imp βi) ai,1
,

βi ai�1 = ai

If the rule base is consistent then it is easy to see that

C sem(T )(βi) = C syn(T )(βi) = Similarity(actual,Rule i), i = 1, · · · ,k.

The algorithm gives a Pavelka logic based theoretical justification to fuzzy inference
and, in particular, to Step 6. Depending on an application, the algorithm can be
modified as we see in the next section where we outline some real world cases
where we utilized the algorithm.

12.5 Applying Pavelka Logic in Fuzzy Inference

12.5.1 Predicting Travel Time from Lahti to Heinola

The simplest application of the algorithm was put into practice when predicting
travel time from Lahti to Heinola in Southern Finland. A solution of this real
world problem is reported in [1]. The research was carried out on main road 4
between points A (Lahti) and D (Heinola). The average daily summertime traf-
fic on this 28 km section was about 15100 vehicles per day. The study section
AD was divided into three sub–sections AB, BC and CD with camera stations ap-
proximately equally distributed over link AD length and equipped with an auto-
matic travel time monitoring system. The system was based on an artificial vision
and neural network application, which automatically reads license plates. A vari-
able message sign (VMS) at point A gave upper and lower bounds of a forecast
about the travel time t to the point D. The prediction classes were 20 ≤ t ≤ 25
min, 25 < t ≤ 30 min, 30 < t ≤ 40 min, 40 < t ≤ 50 min and t above 50 min.
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Travel time t from point A to point D was regarded as congested if it is above
25 min.

In this study we used two data sets we received in autumn 2001 and in sum-
mer 2002 from Helsinki University of Technology, Transportation Engineering. The
original data was given in form of the following table.

Input Output

avg. tt AB avg. tt BC avg. tt CD avg. tt AD real travel time AD

26.1 20.6 6.62 48.3 54.9

27.2 21.2 6.73 48.9 55.7

· · · · · · · · · · · · · · ·

where avg. tt is average travel time in [min] and real travel time AD is the value to be
predicted. There were 4541 rows (cases) in the first data set and 9333 rows (cases) it
the second data set. Notice that average travel time AD is not the sum AB+BC+CD
but it is the average travel time of the vehicles that passed point D during the last 5
minutes spent in the whole section. In other words, the sum AB+BC+CD contains
travel time information of at least three different vehicles while AD can be based on
travel time information of one single car.

Actually , the most difficult task was the formulate the rule base. This was done
by a data mining method called GUHA. Based on GUHA analyses on the first data
set (4541 cases), the rule base of a Total Fuzzy Similarity-inference system is the
following

IF AD≥ 23 AND AB+BC ≥ 17.5 AND 23≤ AB THEN prediction > 50
IF AD≥ 23 AND AB+BC ≥ 17.5 AND 12≤ AB < 23 THEN prediction ∈ (40,50]
IF AD≥ 23 AND AB+BC ≥ 17.5 AND 5.58≤ AB < 12 THEN prediction ∈ (30,40]
IF AB+BC +CD≥ 21.25 AND CD≥ 6.3 THEN prediction ∈ (25,30]
IF AD≥ 35 AND CD ≤ 6.3 THEN prediction ∈ (25,30]
ELSE prediction ∈ (20,25]

The corresponding fuzzy sets reduced to crisp ones. If the output would not be
unique i.e. there are several IF-parts possessing the maximal total similarity degree,
then – corresponding to ’pessimistic prediction principle’ – the prediction should be
the longest one.

The second data set was used as a test data: prediction was right in 96,5% of
all 9333 cases, too low in 1,6% of these cases and too high in 1,9% of cases. In
congested situations, and there were 640 such cases, the figures were 60,5%, 23,1%
and 16,4%, respectively. We did not accept any tolerance in error: for example, if
a real travel time 50,3 min was predicted to fall into the class (40,50], then this
prediction was regarded as incorrect. As reported in [1], our model performed better
that a neural network based model.
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It is worth emphasizing that the presented Total Fuzzy Similarity model is ex-
tremely simple, indeed, it contains only six rules. Adding more rules and using
fuzzy sets in stead of crisp ones would probably improve correctness of predictions.
This we did not, however, do as our main purpose was to show that hidden in the
data, there is a reasonable structure that can be found by GUHA data mining method
and then implemented by an IF–THEN rule base.

12.5.2 Signalized Isolated Pedestrian Crossing: Fuzzy
Input - Crisp Output

The second application (cf. [12]) of the algorithm controls a signalized isolated
pedestrian crossing represented in the following picture
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Layout of a signalized isolated pedestrian crossing

Normally, the signals of isolated pedestrian crossings in Finland are working as
traffic actuated, and the rest phase is vehicle green (important safety aspect). Two
detectors are located per each lane, one at the stop line and the other 60 meters
from the stop line. Pedestrian green time is constant (10 seconds) or even actuated
(6 ... 14 seconds) in specific conditions if children or elderly people are numer-
ous. The main goal of fuzzy control is to give pedestrians an opportunity to cross
the street safely, and with minimum waiting time, but also that the risk of rear-end
collisions is minimized (minimize the number of approaching vehicles at the ter-
mination moment). It is also important that control does not encourage pedestrians
to cross the street during the pedestrian red phase. Controlling the timing of a traf-
fic signal means making the following evaluation constantly: either to terminate the
current phase and to change it to the next phase, or to continue the current phase.
In other words, a controller incrementally evaluates these two options and takes the
most appropriate option. This means the output is the decision about the termination
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(T) or the extension (E) of vehicle signal group (crisp value). The input parameters
in use are

• pedestrian waiting time in seconds, PWT, corresponding to three fuzzy sets;
short, long, very long,

• maximum number of approaching vehicles/lane, NoAV, corresponding to three
fuzzy sets none, some, many,

• discharging queue indicator, gap between vehicles at stop line GAP, correspond-
ing two fuzzy sets; low, high.

For the corresponding fuzzy sets, see Picture 2 in [12]. PWT, NoAV and GAP have
weights 1, 2 and 3, respectively. In this fuzzy IF-THEN inference system, general
rule formulation is the following

IF PWT is short/long/verylong AND
NoAV is none/some/many AND
GAP is low/high

THEN Terminate/Extend

The rule base is complete, indeed, total number of rules is 18 (= 3× 3× 2).
There are 9 rules for the extension and 9 rules for the termination decisions. We
have now settled Step 1 and Step 2 of the algorithm. According to an experienced
traffic signal designer, in fifty-fifty situation the decision is Extension. This corre-
sponding to Step 3 of the algorithm. Clearly, Step 4 is empty. Step 5 and Step 6 is
straightforward.

To illustrate the performance of the control system, assume a pedestrian has been
waiting 13 seconds, there are 2 vehicles approaching and their gap is 1.5 seconds.
Such a situation is the most similar to the case PVT is long, µlong(13)= 0.6, NoAV is
some, µsome(2) = 1, and GAP is small, µsmall(1.5) = 0.8. The degree of total fuzzy
similarity to this IF-part is 0.8334, and the corresponding THEN-part is ’Extend
vehicles green signal’.

Simulation Results

A previous version of this control system was a Matlab Fuzzy Logic Toolbox’s
Mamdani style fuzzy inference machine. Simulations made by a traffic simu-
lator called HUTSIM showed that even the previous version performed better
or at least as well as traditional isolated pedestrian signals do. Therefore the
performance of the Total Fuzzy Similarity based control system was compared
to this Mamdani style inference: the rule base and the fuzzy sets were same.
In general, Mamdani style fuzzy inference algorithm and Total Fuzzy Similar-
ity based algorithm performed much in the same way. However, if traffic vol-
ume was high and, especially, if pedestrian volume was high too, then the results
of Total Fuzzy Similarity algorithm were better: this difference has statistical
significance.
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12.5.3 Multi-phase Vehicle Control

For the other two traffic signal control applications of the algorithm (cf. [12]),
consider the following T-junction

�
�
�

�
�
�

���

Layout and three phases of a T-junction
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Traffic flow on the main street (phase A) is from two to ten times more intensive
than traffic flow from the other direction. Normally the phase order is A−B−C−A,
however, if there is low request, i.e. very few or no vehicles in the next phase B or
C, then this phase can be skipped. Thus, the order can be e.g. A−C−A−B−C or
A−B−A−B−C. The first task is to determine the right phase order; fuzzy phase
selector decides the next signal group. The second task is the exact timing and length
of the current green phase.

Phase Control: Fuzzy Input – Crisp Output

The goal was to determine the right phase order; after A either B or C. The basic
principle is that phase B can be skipped if there is no request or if total waiting time
of vehicles V (B) in phase B is low, and similarly, phase C can be skipped if there
is no request or if total waiting time of vehicles V (C) in phase C is low. Thus, after
phase B the next phase is C or A, and after phase C the next phase is A. In detail, the
dynamics of the inference is the following.

After phase A,

IF V(B) is high AND V(C) is any THEN phase is B
IF V(B) is medium AND V(C) is over saturated THEN phase is C
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IF V(B) is low AND V(C) is more than medium THEN phase is C
IF V(B) is less than low AND V(C) is more than medium THEN phase is C

For the corresponding membership functions, see Picture 5 in [12]. Corresponding
to Step 3 of the algorithm, if the maximal total similarity is not unique, the phase
with the longest waiting time will be fired, or in the worst case, the next phase will
not be skipped. The performance of the fuzzy phase control is now straightforward;
for example, after phase A, if there are 7 vehicles in phase B and 3 vehicles in phase
C, then the next phase will be B.

Green Ending Control: Fuzzy Input – Fuzzy Output

The previous two applications of the algorithm are relatively simple. Indeed, the out-
put is just a discrete action. To test what happens in such a situation that the output
is a fuzzy variable we constructed a green ending control for the above T–junction.
Depending on circumstances, the extension varies from 0 to 12 seconds. The main
goal was to maximize the traffic capacity by minimizing inter–green times. The basic
principle was that signal group can be kept in green while no disadvantages to other
flows occur. The main decision was the right termination moment of the green, the
moment when the green of the first signal group of phase A can be terminated, so
that the first signal group of phase B or C can be started. Secondly, the decision will
be checked when the last signal group of phase A is ready to be terminated. The rule
base was more or less a good guess by the authors, and the rules were as follows

Rule01 IF A is Zero AND Q is Any Value THEN E1 is Zero
Rule02 IF A is a Few AND Q is LT Medium THEN E1 is Short
Rule03 IF A is MT a Few AND Q is Any Value THEN E1 is Medium
Rule04 IF A is MT Medium AND Q is Any Value THEN E1 is Long
Rule05 IF A is None AND Q is None THEN E1 is None

RULE SET 1. First extension after 65 seconds green signal.

Rule06 IF A is Zero AND Q is Any Value THEN E2 is Zero
Rule07 IF A is a Few AND Q is LT Medium THEN E2 is Short
Rule08 IF A is Medium AND Q is Any Value THEN E2 is Medium
Rule09 IF A is Many AND Q is Any Value THEN E2 is Long
Rule10 IF A is None AND Q is None THEN E2 is None

RULE SET 2. E1 seconds after the first extension.

RULE11 IF A is Zero AND Q is Any Value THEN E3 is Zero
RULE12 IF A is a Few AND Q is LT Medium THEN E3 is Short
RULE13 IF A is Medium AND Q is LT Medium THEN E3 is Medium
RULE14 IF A is Many AND Q is LT Medium THEN E3 is Long
RULE15 IF A is None AND Q is None THEN E3 is None

RULE SET 3. E2 seconds after the second extension.

RULE16 IF A is Zero AND Q is Any Value THEN E4 is Zero
RULE17 IF A is MT a Few AND Q is LT Medium THEN E4 is Short
RULE18 IF A is Medium AND Q is LT Medium THEN E4 is Medium
RULE19 IF A is Many AND Q is LT a Few THEN E4 is Long
RULE20 IF A is Any Value AND Q is Too Long THEN E4 is Zero

RULE SET 4. E3 seconds after the third extension.
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RULE21 IF A is Zero AND Q is Any Value THEN E5 is Zero
RULE22 IF A is MT a Few AND Q is a Few THEN E5 is Short
RULE23 IF A is Medium AND Q is LT a Few THEN E5 is Medium
RULE24 IF A is Many AND Q is LT a Few THEN E5 is Long
RULE25 IF A is Any Value AND Q is Too Long THEN E5 is Zero

RULE SET 5. E4 seconds after the fourth extension.

The corresponding fuzzy sets are shown in Picture 6 in [12]. Again, corresponding
to Step 3 and Step 4 of the Algorithm, we needed an extra rule. To minimize the risk
of too long extensions for phase A, we decided to give the shortest possible extension
in case total fuzzy similarity of the output values was not unique. Moreover, corre-
sponding to Step 6 – and here fuzziness appears in outputs – if we had an input such
that the largest total fuzzy similarity was obtained e.g. at Rule 24 and at a degree a
there, then such an extension ’Long’ is fired that its membership degree is the largest
number which is ≤ a, and which is simultaneously the shortest such an extension.

Simulation Results

The performances of Mamdani–style and Total Fuzzy Similarity based control sys-
tems were compared with respect to average vehicle delays on various vehicle densi-
ties and vehicle ratio (main/minor street volume). Moreover, a statistical hypothesis
’The average delays are equal in each case’ was tested by approximate t-test on the
risk level α = 0.01. Simulation results done by HUTSIM indicated that the fuzzy
phase selector seemed to improve the control performance in both cases, i.e. com-
parison between Mamdani and Mamdani + PS as well as comparison between Total
Fuzzy Similarity and Total Fuzzy Similarity + PS; in some cases this improvement
had statistical significance. However, with larger minor street share of total volume,
the phase selector was unable to skip phases and, because of that, no time saving is
accomplished. With lower main street volumes, the phase selector control resulted
to equal or slightly lower delays compared to the fuzzy control with fixed phase
order.

Comparison between Mamdani and Total Fuzzy Similarity show that there is no
significant difference between the fuzzy control methods operating without phase
selector. With low volumes, the Total Fuzzy Similarity based algorithm seemed to
give somewhat bigger delays than the Mamdani method, but the difference had no
statistical significance, and it vanishes when the total volume increased. However,
the Total Fuzzy Similarity + PS algorithm gave clearly lowest delays with high
main street volumes and, by vehicle density 1600 vehicles/hour. This difference had
statistical significance, too.

12.6 Fuzzy Model for Real–Time Reservoir Operation

Lake Päijänne is located in the Southern part of Finland (see Picture 1). Its water
runs to the Golf of Finland via River Kymijoki. Each year Päijänne is frozen at
least 5 months and lots of snow is accumulated. In spring floods caused by smelting
snow would be typical if Päijänne was not regulated. The water reference level is
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a function of date given by law of Finnish government. Based e.g. on snow water
equivalent, human experts are able to regulate several dams such that water level can
be kept close to the reference level. Our task was to create a formal control system
to mimic human control. A control system was created at Helsinki University of
Technology, laboratory of water resource management [3].

The model consisted of two real-time sub models; the first sub model sets up
a reference water level (WREF) for each time step. Given this reference level, the
observed water level (W), and the observed inflow (I), the second sub model makes
the decision on how much should be released from the reservoir during the next
time step. For the snowmelt season, WREF value is dependent on the snow water
equivalent (SWE) and can be inferred for each time step with the fuzzy rules of
form:

IF SWE is smaller than average/average/larger than
average/much larger than average
THEN WREF is high/middle/low/very low.

In the second submodel, the rules have a form

IF W is very low/ low/ objective/ high/ very high
AND I is very small/ small/ large/ very large
THEN release is exceptionally small/ very small/ small/
quite small/ quite large /large/ very large/ exceptionally large.

For the shapes of the corresponding fuzzy sets, see [3]. To calibrate the corre-
sponding fuzzy set, a data of real control actions collected during 1975–1985 was
used and the model was then tested using data from the years 1985–1996. Matlab
Fuzzy Logic Toolbox’s Sugeno method was chosen for comparison against the To-
tal Fuzzy Similarity. With both methods the system was kept the same as much as
possible. To apply the Sugeno method the defuzzification was performed using a
weighted average.

The performances of the two methods were almost indistinguishable. With the
Total Fuzzy Similarity model the water level targets during the summer were some-
times better fulfilled, but the release tended to fluctuate more, and the limitation on
change in release was more relevant.

The Total Fuzzy Similarity model performance was generally good (see Pictures
2 and 3), but the first model did not capture expert thinking in the most exceptional
circumstances, therefore the model was later completed by an extra subsystem to do
the job.

12.7 Defining Athlete’s Aerobic and Anaerobic Thresholds

Aerobic and anaerobic thresholds whose units of measure are pulse in beat/min,
are of importance for top athletes due to the fact that workout will be more effi-
cient and can be more focused to different parts of endurance if these thresholds
are known. However, these thresholds are individual and may vary from time to
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time. Basic aerobic endurance is improved with workouts when pulse will not ex-
ceed aerobic threshold, typically between 120 to 160 beat/min, and maximal aer-
obic endurance is improved when pulse is over anaerobic threshold, typically be-
tween 150 to 190 beat/min. Finally, aerobic speed endurance in improved when
pulse stays between these thresholds during workout. In Finland determination
of aerobic and anaerobic thresholds are made in 30 sports medical clinics. Dur-
ing a half an hour exertion test, performed on exercise cycle or stationary ex-
ercise runner, 11 variables are measured in 3 minutes intervals. These variables
are functions of density of pulse and contain e.g. content of lactic acid in cap-
illary blood, ventilation, consumption of oxygen, production of carbon dioxide,
etc. A sports medical expert uses the following 7 rules when determining aerobic
threshold:

1a) Pulse is about 40 beat/min below maximal pulse.
2a) Content of lactic acid in capillary blood begins to rise.
3a) Content of lactic acid in capillary blood is about 1.0 – 2.5 mmol/l.
4a) Ventilation begins to rise from beginning level.
5a) Relative amount of oxygen in respiration air reaches its maximum.
6a) Ventilation equivalent for oxygen is lowest.
7a) Lactic acid divided by consumption of oxygen is lowest.

For anaerobic threshold the corresponding 6 rules are the following:

1b) Pulse is about 15 beat/min below maximal pulse.
2b) Content of lactic acid in capillary blood is about 2.5 – 4.0 mmol/l.
3b) Content of lactic acid in capillary blood begins to rise rapidly.
4b) Ventilation equivalent for carbon dioxide changes radically.
5b) Ventilation equivalent for oxygen begins to rise rapidly.
6b) Relative amount of oxygen in respiration air begins to drop.

Based on 154 data files of measurements that we received from KIHU – Finnish
Research Institute for Olympic Sports, our object was to create a formal computer
system that would mimic a sports medical expert in determining the thresholds.
We solved the problem by Total Fuzzy Similarity algorithm [14]. We started by
expressing the rules (1a) – (6b) by fuzzy sets. For aerobic threshold we needed only
one rule, namely the conjunction of rules (1a) – (7a). The idea was to compare each
measured input value of seven components with this rule: in fact, by interpolation
we obtained a continuous function

Sim : [lowest measured pulse,highest measured pulse] "→ [0,1].

All the measured data of a data file and the function Sim(x) was then visualized on
screen, so a user can see where the function Sim(x) has the highest values; if this
value is not unique the user is responsible for the final decision. Besides the shapes
of the corresponding fuzzy sets, another task was to define the weights of the seven
input values. This was solved by a differential evolution algorithm. For anaerobic
threshold we proceeded in the same way.
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Later experiment results showed that our model succeeded to find thresholds
which do not differ statistically significantly from the thresholds estimated by hu-
man sports medicine experts.

12.8 Classification and Case Based Reasoning

Besides fuzzy inference, Total Fuzzy Similarity method is used in various classi-
fication tasks and case based reasoning as described in [17]. At present, related
to national elections, various web based election machines have become popular
in Finland, see e.g. http://www.yle.fi/vaalit/2007/vaalikone/. Candidates of political
parties first give via web their answers to relevant limited set of questions, typically
on a 5 point likert scale, and then a voter can answer to the same questions. Based
on a Total Fuzzy Similarity style reasoning, the computer systems writes out those
candidates whose answers are most similar with the voter’s answers. In this way a
voter gets a hint who he or she could possibly vote.

12.9 Conclusion

In this reviewing paper it was our intention to show that Pavelka sentential logic and
many-valued similarity offer a simple and yet powerful and mathematically well
established basis for modeling various fuzzy phenomena. In the view of the present
writer, we have succeed in obtaining this goal. Nevertheless, we do not claim that
our approach would be the only one or without limitations. Indeed, we have some
unpublished experiments where the results were near to white noise. However, in a
restricted area of applications our methods have turned out to be useful.
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Chapter 13
Many-Valuation, Modality, and Fuzziness

Jorma K. Mattila

13.1 Motivation for Modal Logic

We consider some fundamental things from history and some motivating things.
Lemmon [16], pp. 20-21, describes Leibniz’s basic ideas for motivating the idea of
modal logics. He says:

“Leibniz’s suggestion now becomes: a sentence is necessarily true (in this
world) iff that sentence is true in all worlds alternative to this world.1 Actu-
ally, in many connections it is intuitively simpler to think of world t as acces-
sible from world u rather than alternative to u. This at least has the merit of
avoiding the temptation to suppose that alternativeness is a symmetric rela-
tion between worlds – that if t is alternative to u, then u must be alternative
to t. Indeed, we shall not assume that each world is accessible from itself,
or even that to each world there is at least one accessible world: there may
be accessibility-isolated worlds. We shall find that to many such assumptions
about the accessibility relation between worlds there correspond distinctive
modal sentences which come out valid precisely because we have made those
assumptions. If necessity means truth in all accessible worlds, then possibility
will mean truth in some accessible world. Thus our remarks about the vague-
ness of the notion of necessity, and the various more precise accounts of it,
may be repeated mutantis mutandis for the notion of possibility.”

We may call this a “traditional” motivation. Now, we try to interpret it more gen-
erally. As we see, intuitive ideas for modal logics start from the concepts neces-
sary and possible. Also these concepts are not truth-functional in classical logic,
because considering truth in a world needs also other worlds accessible from that
world. Already Aristotle considered the question of presuppositions for a sentence
be necessarily true, or possibly true. He somehow gave probabilistic meanings to
these concepts. If we interpret the concept “necessary” to be “certain”, the proba-
bilistic meaning would be more clear. But this interpretation is just a special case.
The reason for this may be the fact that these modal concepts has closely been re-
lated to many-valued theory already in Aristotle’s time – and also due to him. Also

1 See Lemmon [16], p. 20 to check the detailed analysis about what the concept “alternative to this
world” means.

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 271–300.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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Łukasiewicz continued this interpretation. He used Aristotle’s way to motivate the
idea of his three-valued logic with probabilistic examples where the concept “time”
(may be accidentally) had the fundamental role in such a way that tomorrow we can
see, whether the sentence “Tomorrow we will have a naval battle” were true or not
yesterday. Before yesterday it is uncertain. Anyway, the time is actually not present
in the formalism of these logics. Temporal logics came later. Also, early considera-
tions of modal logics did not include the deontic aspect. As we have learned later, a
deontic logic needs some further operators in addition to the usual ones. As we see
above, Lemmon says that vagueness is associated with the notion of necessity. As
we know, vagueness does not mean the same as probability. It contains also features
of fuzziness. When we consider mathematical results from above mentioned intu-
itive ideas, i.e. formal semantics of modal logics, especially canonical frames, we
see that these results are more general than just the ideas about mathematical mod-
els of necessity and possibility. The author has strongly come into the thought that
the most general linguistic interpretations for operators resulting from the formal
semantics equipped with the considerations above are substantiating operator and
weakening operator. We can also call them substantiating modifier and weakening
modifier, respectively. The concepts necessity and possibility are corresponding in-
stances of these modifiers. Thus we have for example modifiers of T-style, S4-style,
S5-style etc. corresponding to the modal systems T, S4, S5 etc., respectively. These
labels or names do not have any special interpretations, like probabilistic one, as
their burdens. The mathematical analysis of the formal semantics does not take any
such interpretations for granted.

13.2 On Possible Worlds

In the first section there already exists the concept possible world. Now we con-
sider this concept more closely. First, we consider the truth of an argument in crisp
situations. Here we follow the books of Bradley and Swartz [4] and V. Rantala
and A. Virtanen [25]. Second, we enlarge our considerations to many-valued and
modal cases. These considerations are the preliminarities for the connections to
fuzzy logic. “Classical” possible world semantics is considered for example in [5],
[11], [12], [14], and [16]. Especially, L. F. Goble [9] introduces his possible world
semantics for graded modal operators.

It is well known that, to a great extend, the validity of an argument does not
depend on the actual truth or the actual falsity of the premises or what are their actual
interpretations. It depends on these things only to such an extent as the condition

If the premises are true then the conclusion is true. (13.2.1)

tells. When in connection with this one speaks about the ’actual truth’, ’actual con-
tents’ or briefly ’truth’ of premises, it is meant its truth or interpretation in relation-
ship with this world or the situation or the state of affairs where we in that moment
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are, or what we are considering for some reason. If for example, I am in my office
and I say

“The door of my office is closed.” (13.2.2)

then the actual situation or the actual world consists of those things, happenings etc.
that are connected with that room and with the fact that I am in that room. Whatever
things are associated with it, is at least partly upon agreements. But however, we
understand, what the actual situation or world mostly means. When we in this way
think about actual world to be fixed, we understand also, what it is meant about the
actual truth or actual falsity of the sentence (13.2.2), i.e. it is either true or false,
or what is its actual interpretation. In connection with this kind of sentences one is
often speaking about the context or circumstance, where the sentence is told.

Likewise, if we consider the sentence

“Helsinki is the capital of Finland.” (13.2.3)

we notice that it is true, i.e. true in this actual world, which can be intuitively thought
a ’more wide’ or ’larger’ world than the former one. In both cases no exact limits
are needed in order to understand the meaning of these sentences and to see whether
they are true or not. So, we can for example see that in view of a certain historical
situation (13.2.3) is not true.

It can be shown that a valid argument can be characterized by means of the mean-
ings of the sentences existing in it, if the ’meaning’ is defined in a suitable way. In
this way we get a semantic interpretation for the argument, even if the inference can
be considered as a syntactical execution, so far the question concerns its form, as it
is already noticed earlier.

Because speaking about actual truth is not enough, besides the actual world we
have to consider also other so-called possible worlds, possible states of affairs or
situations. For example, we can illustrate such a situation or world, where Helsinki
is not the capital of Finland, i.e. where the sentence (13.2.3) is false. It is not the
present actual world, but it is in some sense possible; and the situation has been
actual in a certain historical stage. The stage of our present world could represent
for example in the year 2020 a possible world, that is not actual, but it becomes
actual or becomes real in that year. On the other hand, one can speak about possible
worlds (states of affairs, situations etc.), that never become actual. For example, a
world where there exist horses with wings, may be such a world. It is possible in
some sense, for example, it is logically possible world, even though it would not
be physically or biologically possible. We may have different criteria to that, what
is possible and what is not. But in connection to logic we consider usually logical
possibility (that also is often in relation to the given logic).

We need not care about what possible worlds exactly are. When we consider
the formal semantics of some logic, the concept of the needed possible world is
always defined exactly (mathematically, set-theoretically). Then one often speaks
about model instead of possible world. However, at this phase it suffices to think,
that a possible world is something, where the sentences of a suitable language
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under consideration are either true or false. i.e. where they have a truth-value. On the
other hand, we agree that such expressions of the language are called sentences that
have truth-value in models or possible worlds, sentences are truth carriers. So, sen-
tences of natural language in this meaning are indicative sentences and statements,
but not, for example, questions. When using natural language, the context often de-
termines whether a sentence is a statement or not. Sentences are creatures belong-
ing to the syntax of a language, while possible worlds and truth-values belong to
semantics.

Let A be a sentence of a language under consideration and w a possible world.
Write

w |= A ,

if A is true in the world w. If it is not true in the world w, i.e. it is false in this world,
we write

w �|= A.

Truth in a world (or in a model) can be defined in formal semantics, although its
meaning depends on the logic under consideration.

Suppose now that we can speak about such an entirety as the collection of all
possible worlds W . In fact, this kind of collection cannot be strictly restricted or
defined; it is undetermined, and speaking about it can even be lead to contradiction.
It is already undetermined as such, but on the other hand, it is undetermined also in
that respect, in what meaning one considers the world to be ’possible’. This may have
different meanings, as we saw above. It can be better restricted, if we have suitable
suppositions in that respect, what kind of construction the possible world has, what
we think to belong to it, and what kind of possibility is meant. When we consider
some formal logic, possible worlds or models and their construction coming into the
question are determined exactly. Thus W is well-defined class, although very big.

For the next considerations this concept is, also as undetermined, useful. Thus
we can speak about the collection of all the worlds, where a given sentence of a
language under consideration is true. Thus, let W be a given collection of all possible
worlds. Let A be a sentence of a language under consideration. Let us agree about
the following terms and symbols:

P(A) = {w ∈W | w |= A} (13.2.4)

i.e., P(A) is ’the class of all worlds belonging to W , where A is true’, or it is the
proposition determined by A, or intension (meaning) of A. Accordingly, P(A) is
always a subclass of the space W : P(A)⊆W .

Now we can define some important semantical concepts involved in properties
and interrelationships of sentences. The space W should be as a parameter in defini-
tions, because it is not uniquely given in every cases, as we noticed above. However,
in the sequel we think that W is fixed so that all the definitions are closed under
this space of possible worlds, so that it is not always needed to mention separately.
This is closely argued already for the reason that for example those well-defined and
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logically possible worlds are usually considered in formal semantics, whose class is
determined.

Suppose also, that the language is given, whose sentences are under considera-
tion. Moreover, let w0 ∈W be an actual world in some meaning of this word.

Consider first one sentence at a time. The following properties of sentences can
be called their modal properties.

Definition 13.2.1. A sentence A is

(i) true, or actually true if A is true in the actual world: w0 |= A;
(ii) logically true (valid) or necessary (necessarily true) if A is true in all possible

worlds: P(A) = W ;
(iii) logically false or inconsistent if A is not true in any world, or it is false in all

worlds: P(A) = /0;
(iv) accidentally true or contingent if A is true but not necessary: w0 |= A and

P(A) �= W ;
(v) consistent or possible (possibly true) if A is true in some world: w |= A for

some w ∈W , or P(A) �= /0;
(vi) refutable if A is false in some world: w |= A for some w ∈W , or P(A) �= W .

For the next, consider two or more sentences.

Definition 13.2.2. We say that B is a logical consequence of A, or B follows logically
from A if B is true in every world, where A is true: P(A)⊆ P(B).

If B follows logically from A then write A |= B. The definition above can be given
in the form

A |= B, if always when w |= A, then w |= B.

This means that A ’allows’ only a part (or at most the same) of the worlds, that
B allows. In this sense, one can say that A is ’logically stronger’ than B. Thinking
intuitively, it seems to be natural that the stronger condition a sentence express the
‘less’ can be the number of worlds, where it is true.

The notation A1,A2, . . . ,Ak |= B means that B is a logical consequence of the
sentences A1,A2, . . . ,Ak. The definition of logical consequence can be generalized
as follows:

A1,A2, . . . ,Ak |= B, if and only if w |= A1, . . . ,w |= Ak ⇒ w |= B.

The definition can be generalized naturally to the case where there are infinitely
many sentences A1,A2,A3, . . ..

Denote A1,A2, . . . ,Ak � B, if from the premises A1,A2, . . . ,Ak the conclusion B can
be inferred. In order that the logical consequence, being a semantical concept, and
valid argument, being a syntactical concept, would correspond to each other, the
following condition must hold:

A1,A2, . . . ,Ak � B, if and only if A1,A2, . . . ,Ak |= B, (13.2.5)
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i.e. the conclusion follows from the premises exactly, when the conclusion is a
logical consequence of the premises.
It can be shown that combined with formal logics, this condition holds, if the space
of possible worlds is in each case (corresponding to each logic) the class of all
logically possible worlds. It is impossible to prove the condition, before the concepts
existing in it has been made exact. We do not prove the condition for any logic
considered in this course.

We define some further semantical concepts.

Definition 13.2.3

(i) A and B are logically equivalent if they define the same proposition: P(A) =
P(B), i.e. w |= A iff w |= B.

(ii) A and B are incompatible if A and B have no common worlds, where both
would be true: P(A)∩P(B) = /0.

(iii) A and B are compatible if there exists at least one world w, such that w |= A
and w |= B.

It should still be reminded that these terms are related with some certain space W of
possible worlds, although this thing is not mentioned in definitions. Further, it must
be noticed that what labels concerning these alternatives are used in each definition,
depends on the used connection. Thus, for example, the expressions ’necessary’
and ’necessarily true’ are used in modal logic. Modal (alethic) logic is just the logic
studying the concepts of possible and necessary.

From the definition of modal properties, Def. 13.2.1, it follows that a sentence
A is necessary, denote �A, if P(A) = W or a sentence A is possible, denote �A,
if P(A) �= /0. These things hold in a frame consisting of a certain set of worlds W.
Hence, Def. 13.2.1 is a link between classical propositional logic and modal logic.

It is possible to extend the consideration at least to two branches, to frames for
semantics of standard modal logics, and to many-valued semantical considerations.
This last alternative is described and used in Section 13.3. For the first alternative,
we consider here briefly the main principles of modal relational structures, called
also Kripke semantics according to the Norwegian logician Saul Kripke.

Let W be a nonempty set of possible worlds and R be any binary relation on W .
We give the following

Definition 13.2.4. A frame, or a relational structure is an ordered pair

F = 〈W,R〉. (13.2.6)

A model corresponding to the frame F is an ordered triple

M = 〈W,R,V 〉 (13.2.7)

where V : Prop→ P (W ) is a valuation, where Prop is the set of propositional vari-
ables. V determines for every possible world w∈W the set of propositional variables
that are true in w,

Pw = {p | w ∈V (p)}. (13.2.8)
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We concentrate ourselves to consider things belonging to a canonical model. This
kind of models are needed for completeness proofs of modal systems.

Every possible world w is a maximally consistent set of formulas, i.e., A→ B ∈
w iff A /∈ w or B ∈ w and A ∈ w iff ¬A /∈ w. Hence, a set of worlds, W , is a set
of maximally consistent sets of formulas. Now, we can define the modal operator
’necessary’, or � by means of frames as follows.

Definition 13.2.5. Let F = 〈W,R〉 be a frame. A a modal formula, and w, t ∈W .
Then � is a necessity operator iff the condition

wRt ⇐⇒{A |�A ∈ w} ⊆ t (13.2.9)

holds, i.e., wRt holds iff every such a formula A, for which �A ∈ w, belongs itself
to the world t.

From the duality condition �A ≡ ¬�¬A we derive the similar condition to
possibility operator. We have

Theorem 13.2.1. Let F = 〈W,R〉 be a frame. A a modal formula, and w, t ∈W.
Then for possibility operator �, the condition

wRt ⇐⇒{�A | A ∈ t} ⊆ w (13.2.10)

holds.

For the proof of this theorem, see, for example, Lemmon [16].
Now, we need truth definitions for modal formulas. We have

Definition 13.2.6. The truth of a formula A in a world w of a model M = 〈W,R,V 〉,
denoted by M ,w |= A is defined recursively as follows:

(i) If p ∈ Prop then M ,w |= p iff w ∈V (p).
If A and B are formulas then

(ii) M ,w |= ¬A iff M ,w �|= A;
(iii) M ,w |= A→ B iff M ,w �|= A or M ,w |= B;
(iv) M ,w |= �A iff for every world t ∈W , the condition wRt =⇒M ,w |= A holds.

It can be proved by Def. 13.2.6 (iv) that

(v) M ,w |= �A iff there exists a world t ∈W , such that wRt and M ,w |= A.

These modal considerations forms the core of the relational frame semantics mainly
used in standard modal logics.

13.3 Connections between Modal and Many-Valued Logics

As is well known, classical 2-valued logic has not very much expressional power.
The ability to distinguish between the interpretations of some formulas that are quite
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Table 13.1 Łukasiewicz’ definition for possible and necessary

p �p �p
T T T
I T F
F F F

near to each other is weak, even so weak that their interpretations appear to be logi-
cally the same. This appears at least in the way, that some formulas in 2-valued logic
are logically equivalent, eventhough they are not logically equivalent, for example,
in some 3-valued logic. We will see an example about this later. We may say that,
somehow, classical logic is logic of extreme cases. One way to extend this ability
is to shift from classical logic to many-valued logic. Then many 2-valued logical
equivalencies cease to be logical equivalencies in many-valued logics. This means
that the expressional power increases.

We consider here mainly Łukasiewicz’ 3-valued logic, and have a very brief look
at Bochvar’s and Kleene’s 3-valued logics, too.

Łukasiewicz introduced modal operations of possibility and necessity into his 3-
valued logic (see Rescher [27], p. 25). His motivation for creating his 3-valued logic
was, that modal operators cannot be truth-functional in classical logic, and probably
he wanted to have a truth-functional modal logic. He defined the modal operators
’possible’ and ’necessary’ by the truth table

where T , I, and F stand for ’true’, ’neither true nor false’ (called also ’inde-
terminate’), and ’false’ respectively. Hence, �p is to be true if p is either true or
indeterminate, but is false if p is definitely false. And �p is to be true only if p is
true and false otherwise. This is very reasonable way to define modal propositional
formulas truth-functionally. These truth tables for �p and �p serve a semantical
method for modal logic, i.e., the 3-valued truth table method. Here, a propositional
variable p is a truth-function p : {T, I,F} → {T, I,F}, and �p and �p are truth-
functions {T, I,F}→ {T,F}.

Let us define the ordering on the set of truth values {T, I,F} according to the
truth status as follows:

F < I < T. (13.3.1)

Now we can define the aritmetical operations on the set {T, I,F} in the following
way. Then we give the aritmetic operations for adding, subtraction and multiplica-
tion with natural numbers. The set {T, I,F} needs not be closed under all these op-
erations, but it need to be closed under subtraction, such that for any x,y∈ {T, I,F},
x− y ∈ {T, I,F} iff y ≤ x. (The ordering ≤ is understood in usual way.) Addition
is defined such that the truth value F is its neutral element, i.e., x + F = x for
all x ∈ {T, I,F}. Hence, we create the important corresponding differences from
addition:
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T = T + F ⇐⇒ T −F = T, T −T = F (13.3.2)

I = I + F ⇐⇒ I−F = I, I− I = F (13.3.3)

F = F + F ⇐⇒ F−F = F (13.3.4)

T = I + I ⇐⇒ T − I = I (13.3.5)

Multiplying a truth value x ∈ {T, I,F} with a natural number n ∈ N is defined by

nx = x + . . .+ x︸ ︷︷ ︸
n

(13.3.6)

Especially, if x ∈ {T, I,F} and n ∈N, we define

0x = F, (13.3.7)

−nx = (−1)nx. (13.3.8)

The arithmetic for truth values T , I, and F is similar to that of the numbers 1, 1
2 ,

and 0.
"Before considering some special 3-valued logics, we consider in general such

3-valued propositional logics which satisfy

Lemma 1 (Normality Lemma). In a normal 3-valued system. a classical truth-
value assignment behaves exactly as it does in classical logic — every formula that
is true on that assignment in the 3-valued system is also true on that assignment in
classical logic, and every formula that is false on that assignment in the 3-valued
system is also false on that assignment in classical logic.

The lemma follows from the fact that the connectives in a normal system behave
exactly as they do in classical logic whenever they operate on formulas with classical
truth values (cf. e.g. Bergmann [3], p. 75. ).

Also, in our logics, the negation is so-called standard negation defined by the
truth table below, and

(a) the implication operation satisfies the condition that A→ B is true iff the truth
value of A is less than or equal to that of B.

(b) Also, the equivalence operation satisfies the natural condition that A↔ B is true
iff the truth values of A and B are equal.

We call the set of these logics the family L3.
This suffices to our purposes when we will consider the validity of axioms and

soundness of modal systems in general in the scope of standard 3-valued logics.

Table 13.2 Standard negation of a logic belonging to L3

p ¬p
T F
I I
F T
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The modal language we are considering is that of standard modal logic, i.e.,
a propositional language equipped with modalities. This means that, the alphabet
consists of propositional variables, logical connectives, and modal operator sym-
bols. Hence, well formed formulas (or formulas) of this language are defined as

A ::= pi|¬P|�P|�P|P→ Q|P∨Q|P∧Q|P↔ Q. (13.3.9)

Note that metavariables are used in the usual way.
This language is the same for standard two-valued propositional modal logics as

well as for those of n-valued modal logics (n≥ 3), too.

Semantics of three-valued modal logics based on the family L3 is based on the defi-
nition of modal operators by Table 13.1, the above mentioned definition of negation
made by Table 13.2, and the properties (a) and (b) of implication and equivalency.
We need the definitions of the essential concepts included to the semantical ap-
proach of L3 modal logics."

Using Table 13.1, we show that �A⇐⇒¬�¬A. We have the truth table

A ¬A �¬A ¬�¬A �A �A↔¬�¬A
T F F T T T
I I T F F T
F T T F F T

Because �A ↔ ¬�¬A is a 3-valued tautology and hence valid, the formulas
�A and ¬�¬A are logically equivalent. Similarly, the formulas �A and ¬�¬A are
logically equivalent, i.e., �A⇐⇒¬�¬A.

For modal logic systems we introduce the most usual standard modal systems
from 2-valued modal logic. We will apply them in 3-valued cases. As is known, a
system is a set of theorems closed with respect to the inference rules. We have the
following axiom schemes:

(PL) If A is a tautology then A is an axiom.
(K) If A and B are formulas then �(A→ B)→ (�A→�B) is an axiom.
(T) If A is a formula then �A→ A is an axiom.

(S4) If A is a formula then �A→ ��A is an axiom.
(B) If A is a formula then A→ ��A is an axiom.

(S5) If A is a formula then �A→��A is an axiom.

We have the following inference rules:

(MP) From A and A→ B deduce B.

The rule (MP) guarantees that if in any system, A and A→ B are theorems then B is
a theorem, too.

(RN) From A deduce �A.
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The rule (RN) guarantees that if in any modal system, A is a theorem then �A is a
theorem, too.

The most usual normal modal systems are as follows. The system

K is the least set of formulas that satisfies the axioms (PL) and (K), and is closed
with respect to the inference rules (MP) and (RN);

T is the least set of formulas that satisfies the axioms (PL), (K), and (T), and is
closed with respect to the inference rules (MP) and (RN);

S4 is the least set of formulas that satisfies the axioms (PL), (K), (T), and (S4), and
is closed with respect to the inference rules (MP) and (RN);

B is the least set of formulas that satisfies the axioms (PL), (K), (T), and (B), and
is closed with respect to the inference rules (MP) and (RN);

S5 is the least set of formulas that satisfies the axioms (PL), (K), (T), and (S5), and
is closed with respect to the inference rules (MP) and (RN).

Especially, the axioms (S4) and (B) are theorems in the system S5.
We say that a 3-valued formula A is a 3-tautology or tautology if the truth table

of A consists of only the truth value T . Futher, we say that a 3-valued formula is
3-valid or valid if it is a 3-tautology. It is obvious that a 3-valid formula is also valid
in classical sense, because classical truth value distributions belong to 3-valued truth
tables as special cases.

All the axiom schemes from (K) to (S5) are 3-tautologies and hence 3-valid. For
example, consider the axiom (T). We have

A �A �A→ A
T T T
I F T
F F T

Hence, �A→ A is a 3-tautology and therefore 3-valid. Hence, �A→ A is valid
also in the classical sense. This means that all the axiom scheme given above are
valid in classical sense. So, we have a result:

Theorem 13.3.1 (soundness). The modal systems K, T, S4, B, and S5 are sound,
i.e., all the formulas belonging to these systems are valid, and the inference rules
(MP) and (RN) preserve validity.

Description of Łukasiewicz’ 3-Valued Logic

Łukasiewicz defined his 3-valued logic (denoted by Ł3) by choosing negation and
implication as primitive connectives and by giving the truth tables for ¬p and p→ q
as follows:
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p ¬p
T F
I I
F T

p→ q T I F
T T I F
I T T I
F T T T

Then he defined the other connectives in terms of negation and implication as
follows:

p∨q
def⇐⇒ (p→ q)→ q (13.3.10)

p∧q
def⇐⇒¬(¬p∨¬q) (13.3.11)

p↔ q
def⇐⇒ (p→ q)∧ (q→ p) (13.3.12)

Next, we generate the evaluation rules for connectives. Here we need the ordering
and the aritmetical operations on the set of truth values we defined above.

A valuation associates truth values with formulas, especially, the expression v(p)
where p := x,x ∈ {T, I,F} means that the propositional variable p takes the truth
value x. Hence, v(p) = x.

By menas of the truth table of negation and the subtraction rules given above, we
have the evaluation rule for negation in the form

v(¬p) = T − v(p). (13.3.13)

Using the truth table of implication and the formula (13.3.10) that defines disjunc-
tion, we can create the truth table of disjunction. (This is left to the reader.) From
that truth table we see that

v(p∨q) = max{v(p),v(q)}. (13.3.14)

Similarly, using (13.3.14) and (13.3.11) we have

v(p∧q) = min{v(p),v(q)}. (13.3.15)

Using the evaluation rules of disjunction (13.3.14) and conjunction (13.3.15) we
create the valuation tule for implication. We use the alternative forms for max and
min operations as follows:

max{x,y}=
x + y+ | x− y |

2
(13.3.16)

min{x,y}=
x + y− | x− y |

2
(13.3.17)

The equations (13.3.11) can be transformed into the form

min{v(p),v(q)}= T −max{(T − v(p)),(T − v(q))} (13.3.18)
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by (13.3.13) and (13.3.11). Because max and min operations are dual of each other
(see e.g. [24], p. 508), we also have

max{v(p),v(q)}= T −min{T − v(p),T − v(q)}. (13.3.19)

Now we are rady to create an evaluation rule for implication. For this, we use the
definition of disjunction (13.3.10). We start from the left side and have

v(p∨q) = max{v(p),v(q)}= min{T,max[v(p),v(q)]}
= min{T,T −min{T − v(p),T − v(q)}}

= min

{
T,T − T − v(p)+ T − v(q)− | T − v(p)−T + v(q) |

2

}
= min

{
T,T − T + T − v(p)+ v(q)− | −v(p)+ v(q) |

2
+ v(q)

}
= min

{
T,T − T +(T − v(p)+ v(q))− | v(p)− v(q) |

2
+ v(q)

}
= min

{
T,T − T +(T − v(p)+ v(q))− | T − (T − v(p)+ v(q)) |

2
+ v(q)

}
= min{T,T −min{T,T − v(p)+ v(q)}+ v(q)}.

Hence, we have

v((p→ q)→ q) = min{T,T −min{T,T − v(p)+ v(q)}+ v(q)}. (13.3.20)

From this it follows

v(p→ q) = min{T,T − v(p)+ v(q)}. (13.3.21)

This evaluation rule for implication gives exactly the same truth values as the truth
table above, given as the definition of implication.

We have the evaluation rule for equivalence

v(p↔ q) = T− | v(p)− v(q) | (13.3.22)

by the evaluation rules of implication and conjunction, (13.3.21) and (13.3.15).
The evaluation rules (13.3.13), (13.3.14), (13.3.15), (13.3.21), and (13.3.22) can

be generalized for other Łukasiewicz’ logics, too. For example, the formulas of these
rules are similar to those of Łukasiewicz’ logics Łℵ (ℵ=ℵ0,ℵ1).

Now we return back to the modalities. Alfred Tarski remarked that ¬p→ p will,
according to Łukasiewicz’ 3-valued truth tables, have exactly this same truth table
as �p and may thus be used as a definition of �p within this framework. So we
may define

�p
def⇐⇒¬p→ p. (13.3.23)
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In modal logic, possibility and necessity operators are dual of each other, i.e.,
�p≡¬�¬p. There were no further things considered in Rescher’s book [27] about
these modal operators, so, using (13.3.23), we examine whether this duality holds
in Łukasiewicz’ 3-valued logic. We have

�p≡ ¬�¬p≡ ¬(¬¬p→¬p)≡ ¬(p→¬p).

The truth table of the formula ¬(p→¬p) in Łukasiewicz’ 3-valued logic is

p ¬p ¬(p→¬p)
T F T
I I F
F T F

The truth table is the same as that of �p. Hence, in Łukasiewicz’ 3-valued logic we
can define

�p⇐⇒d f ¬(p→¬p). (13.3.24)

Hence, the truth values T and F are the only ones that appear (in the right order) in
the truth tables of �p and �p also when they are defined by (13.3.24) and (13.3.23),
respectively.

Remark 13.3.1. It must be noted that the definitions (13.3.23) and (13.3.24) do not
work in classical propositional logic because in two-valued logic possibility and
necessity operators are not truth-functional. In fact, in classical propositional logic

¬p→ p≡ p∨ p≡ p≡ ¬(¬p) ≡ ¬(¬p∨¬p)≡ ¬(p→¬p).

So, there is no difference between the interpretations of the expressions¬p→ p and
¬(p→¬p) in classical propositional logic.

We construct the evaluation rules for �p and �p:

v(�p) = v(¬p→ p) = min{T,T − v(¬p)+ v(p)}
= min{T,T −T + v(p)+ v(p)}= min{T,2v(p)}

v(�p) = v(¬(p→¬p)) = T − v(p→¬p)
= T −min{T,T − v(p)+ v(¬p)}= T −min{T,2(T − v(p))}

Hence, the evaluation rules are

v(�p) = min{T,2v(p)} (13.3.25)

v(�p) = T −min{T,2(T − v(p))} (13.3.26)
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To test these evaluation rules, we evaluate �p and �p when p := F , p := I, and
p := T . So, we have for p := F

�p := min{T,2F}= min{T,F}= F,

�p := T −min{T,2F}= F.

For p := I we have

�p := min{T,2I}= min{T,T}= T,

�p := T −min{T,2(T − I)}= T −min{T,T}= T −T = F.

For p := T we have

�p := min{T,2T}= T,

�p := T −min{T,2(T −T )}= T −min{T,F}= T −F = T.

This is in accordance with Łukasiewicz’ truth tables of �p and �p. Hence, we also
have the ordering

v(�p)≤ v(p)≤ v(�p) (13.3.27)

by the consideration just made, or by the truth tables.

A very interesting thing is that the semnatics of possibility and necessity in
Łukasiewicz’ 3-valued logic is included to the general semantics of it because of
the interpretations (13.3.23) and (13.3.24).

Description of Bochvar’s 3-Valued Logic

Bochvar has created a variant system of 3-valued logic, denoted by B3. “Bochvar
proposed to construe I as “undecidable” in a sense somewhat along the lines of
’having some element of undecidability about it’ ”, as Rescher ([27], p. 29) tells.
In Bochvar’s 3-valued logic, Hence, the truth value I is “not so much consid-
ered as “intermediate” between truth and falsity but rather as paradoxical or even
meaningless. . . . Its presence in a conjunction overpowers the whole and reduces
it to I status.” as Rescher continues. Hence, the truth value I has stronger role in
Bochvar’s logic that in Łukasievicz’ logic. The primitive connectives in Bochvar’s
3-valued logic are negation and conjunction. Negation is defined in the same way
as in Łukasievicz’ 3-valued logic. The truth tables of negation and conjunction are
as follows:

p ¬p
T F
I I
F T

p∧q T I F

T T I F
I I I I
F F I F
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Disjunction, implication, and equivalency are defined as

p∨q
def⇐⇒¬(¬p∧¬q) (13.3.28)

p→ q
def⇐⇒¬(p∧¬q) (13.3.29)

p↔ q
def⇐⇒ (p→ q)∧ (q→ p) (13.3.30)

Bochvar’s 3-valued logic has an interesting property. Let p � q be a formula of
Bochvar’s 3-valued logic, where � is any two-placed connective, and let at least
one of the propositional variables p and q have the truth value I. Then the truth
value of p � q has always the truth value I. This follows by the trut tables of
the primitive connectives negation and conjunction and the definitions (13.3.28),
(13.3.29), and (13.3.30). Hence, for this reason, in Bochvar’s 3-valued logic
there is no such formula P that it maps the truth values onto the set
{T,F}, i.e.,

P : {T, I,F}→ {T,F} (13.3.31)

which is a necessary condition that a modal operator is included to P if there is only
one propositional variable in P, like the formula ¬p→ p in Łukasievicz’ 3-valued
logic. From the semantics of B3 it follows that B3 does not have any tautologies.
Instead, there exist quasi-tautologies in B3. A formula is a quasi-tautology iff it is
never false, i.e., there exists no such truth value assignment that make the formula
false. The set of all quasi-tautologies of B3 is the same as the set of classical tau-
tologies. So, if we want to have a modal version about Bochvar’s logic, we need
additional operators.

Bochvar extended his system by making use of the idea of two distinct modes of
assertion (see Rescher [27], pp. 30 - 31):

(1) The ordinary straightforward, “internal” assertion of a formula p as simply p.
(2) The special mode of “external” assertion of a formula, represented by the special

assertion operator A: Ap.

Technically, the case (1) does not bring any new to this logic, but the case (2), the
external assertion operator has the same property as necessity because the truth table
of Ap is the same as that of �p, according to Łukasiewicz’ principle of necessity
in 3-valued logic. Bochvar introduced new connectives involving the operator A.
The truth tables of these new connectives consist only of the truth values T and F ,
even when some propositional variables have the truth value I. Hence, these new
connectives satisfy the property (13.3.31).

By means of the operator A, we can form its dual operator Bp≡¬A¬p. So, B has
the possibility property that can be seen by its truth table. We collect the resulting
tables here:
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p Ap
T T
I F
F F

p ¬p A¬p Bp
T F F T
I I F T
F T T F

Hence we conclude that extending Bochvar’s 3-valued logic to modal logic, we
need additional modal operators similarly as in classical logic.

The operator B is similar to the operator W (in Rescher’s text) by means of which
the weak connectives of B3 are derived. According to Rescher, a formula W p in B3

is equivalent to the formula ¬(p∧¬p)→ p in Ł3. But in Ł3,

¬(p∧¬p)→ p≡ ¬p→ p ≡�p.

So, the operator W can be viewed as the modal operator �.

Description of Kleene’s 3-Valued Logic

Kleene introduced his 3-valued logic, denoted by K3, in 1938. In order to describe
Kleene’s logic, we again refer to Rescher [27], pp. 34 - 36. Rescher tells:

“In Kleene’s system, a proposition is to bear the third truth-value I not for
fact-related, ontological reasons but for knowledge-related, epistemological
ones: it is not to be excluded that the proposition may in fact be true or false,
but it is merely unknown or undeterminable what its specific truth status may
be.”

The truth tables of negation, konjunction, and disjunction are the same as in
Łukasiewicz’ 3-valued logic. Hence, we have the following evaluation rules for
these connectives:

v(¬p) = T − v(p), (13.3.32)

v(p∧q) = min{v(p),v(q)}, (13.3.33)

v(p∨q) = max{v(p),v(q)}. (13.3.34)

Kleene defined the implication of his 3-valued logic, denoted by �, analogously to
material implication:

p � q
def⇐⇒¬p∨q, (13.3.35)

hence, the evaluation rule of p � q is

v(p � q) = max{T − v(p),v(q)}. (13.3.36)

We may construct the truth tables according to the evaluation rules. Rescher tells that
Kleene motivated the construction of his truth tables in terms of a mathematical ap-
plication. He has in mind the case of a mathematical predicate P (i.e., a propositional
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function) of a variable x ranging over a domain D where “P(x)” is defined for only
a part of this domain. For example, we might have that

P(x) iff 1≤ 1
x
≤ 2.

Here P(x) will be:

(1) true if x lies within the range from 1
2 to 1,

(2) undefined (or undetermined) if x=0,
(3) false in all other cases.

Kleene presented his truth tables to formulate the rules of combination by logical
connectives for such propositional functions. He writes:

“From this standpoint, the meaning of Q∨R is brought out clearly by the
statement in words: Q∨R is true, if Q is true (here nothing is said about R) or
if R is true (similarly); false, if Q and R are both false; defined only in these
cases (and hence undefined, otherwise).”2

Kleene also introduced a family of “weak” connectives where the truth table of
such a connective automatically shows the “output” truth value I if any one of the
“input” truth value is I. Hence, this weak system appears to be the same as Bochvar’s
3-valued system.

The question whether there exists at least one such formula P satisfying the con-
dition (13.3.31) is open. Maybe that Kleene’s implication defined by negation and
disjunction, i.e., to be so-called S-implication is the resaon that there exists no such
formula P because of the truth value p � q := I if p := I and q := I. But in any case,
Kleene’s logic has connections to fuzzy sets like Łukasiewicz’ logic, too.

In Bendová’s paper [2], connections of K3 and modal logic is investigated. Espe-
cially, each model of K3 determines a Kripke model of modal logic.

13.4 Motivation for Fuzzy Sets

To motivate fuzzy sets, L.A. Zadeh’s paper Fuzzy Sets [33] has the key role. The
main thing is the concept of generalized characteristig function, called membership
function, representing a given fuzzy set. The idea is based on characteristic functions
of classical set theory, where a set can be given by its characteristic function defined
on the universe of discourse X . Hence, the characteristic function of a subset A
of X is

fA : X →{0,1}.
This is extended for fuzzy sets as follows. If the set of the membeship values is the
unit interval I= [0,1] then a membership function of a fuzzy subset A of a set X is

A : X → I.

2 Kleene, Introduction to Metamathematics (1952).



13.4 Motivation for Fuzzy Sets 289

Hence, the set of all membership functions from X to I is

IX = {A |A : X → I}. (13.4.1)

As a summary about Zadeh’s theory based on his paper [33], we have the following
algebraic approach (see also [22]). It gives an additional motivation to fuzzy set
theory. Let for all x ∈ X , A,B,0X ,1X ∈ IX , and 0X(x) = 0, 1X(x) = 1 are constant
functions, then

(A∧B)(x) = min{A(x),B(x)}, (13.4.2)

(A∨B)(x) = max{A(x),B(x)}, (13.4.3)

η(A)(x) = (1X −A)(x) = 1−A(x), (13.4.4)

on IX , such that the following axioms are satisfied:

(Z1) the operations ∧ and ∨ are commutative on IX ;
(Z2) for all A ∈ IX ,A∨0X = A and A∧1X = A;
(Z3) the operations ∧ and ∨ are distributive on IX ;
(Z4) for any A ∈ IX , there exists η(A) ∈ IX where η(A) = 1X −A;
(Z5) 0X �= 1X .

Then IX with the formulas (13.4.2), (13.4.3), and (13.4.4) and with the axioms (Z1)
– (Z5) forms a quasi-Boolean algebra

Z = (IX ,∧,∨,η,0X ,1X). (13.4.5)

It is called “DeMorgan algebra”, too. In this special case, we may call it
Zadeh-algebra. About quasi-Boolean algebras, see e.g. Rasiowa [26].

L. A. Zadeh mentions in his paper [33] in the footnote 3 on page 339:

“If the values of fA(x) (i.e., the membership function of A) are interpreted as
truth values, the latter case (i.e., the interval [0,1]) corresponds to a multival-
ued logic with continuum of truth values in the interval [0,1].”

Hence, from the beginning, many-valued logics are associated with the theory of
fuzzy sets. R. Seising tells in his book (Seising [31], pp. 172-173) that L. A. Zadeh
“. . . wanted to learn more about logic, an interest he had cultivated since 1950, when
he predicted that logic, and particularly multi-valued logic, would become increas-
ingly more important to the problems of electrical engineering in the future. . . .
Zadeh found multi-valued logic to be a natural generalization of the conventional
logic of just two values into n values, similar to the leap from two-dimensionality to
n-dimensionality in mathematics.” L. A. Zadeh also says in R. Seising’s interview
1999 (see [31], p. 173): “Steven Kleene was my teacher in logic. Yes, I learned logic
from Steven Kleene!” Based on these facts, Kleene’s many-valued logic seems to
be as important for the theory of fuzzy sets, as Łukasiewicz’ logic, too. As we have
seen, in the both logics the connectives negation, conjunction and disjunction appear
to be similar to the operations complement, intersection, and union in Zadeh’s basic
theory of fuzzy sets.
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As we have seen, combining many-valued logic to fuzzy sets is very natural. This
comes well up for example in considering the concept of possible world. For exam-
ple, in classical propositional logic a possible world can be given as a set of atoms
(propositional variables) where all the atoms belonging to this set is considered to
be true in the possible world presented by the set. Actually, this set is a descrip-
tion about the states of affairs holding in the corresponding possible world. This is
a clever formal interpretation for ε-relation, that does not fasten it to the choice of
truth theory that is used as a criterion to the truth of an atom in a given possible
world. In many-valued logics the correspomding interpretation of ε-relation is prob-
lematic. In this environment, a partial membership in a set shall be adopted to the
consideration. In two-valued logic, the characteristic function of the set representing
a given possible world gives truth values to atoms, and hence to other formulas by
the truth definitions of the logic. In many-valued cases, characteristic functions must
be extended, for example, in the way as is done in defining membership functions.
Hence, a membership function gives truth values to atoms, and further, to other for-
mulas in a given possible world. This means that in the many-valued case, possible
worlds are represented by fuzzy sets. This generally means that the truth values are
fuzzified. This is the main stream in fuzzy logic.

In addition to Zadeh’s approach, there are some modality involved attempts for
developing fuzzy set theory. One of them is an idea for constructing membership
functions based on modal logic. In their article Uncertainty and modal logic [28]
G. Resconi, G. J. Klir, and U. H. St. Clair introduce their idea based on M. Black’s
article “Vagueness: An exercise in logical analysis”(Philosophy of Science, Vol. 4,
1937, pp. 427–455, published again in International Journal of General Systems,
Vol. 17, 1990, pp. 107-128). The main idea is an endeavour to be able to solve con-
tradictions appearing when different cognitive agents accept different limits to the
same inexact concept. We take an example from M. Black’s article, where the first
agent accepts the expression L(x) to be true on the set {1,2,3,4,5,6} and the second
agent accepts the expression ¬L(x) to be true on the set {5,6,7,8,9,10,}. Hence,
the set {5,6} causes a conflict. It cannot be placed to classical logic. Resconi et al.
call this kind of expression L(x) doubtful. Their solution to this problem that they
adopt two different possible worlds, such that both of these expressions is true ex-
actly in one of these worlds. This leads to the use of modal logic in defining certain
conceps. However, we do not introduce this approach further. This approach is near-
est associated with evidence theory and its application, where belief and plausibility
functions Bel and Pl are defined by traditional modal operators � and �.

In another approach, J. Dombi introduces continuous modal operators for fuzzy
logic in his thesis [6]. They are based on continuous negations. On pages 5-25 he
presents the construction of his fuzzy logic system, where all the operations are
based on certain generating functions. For example, a bijection f : [0,1]→ [0,1]
that is continuous and strictly increasing, generates negation. Hence, a negation op-
eration n is given in the form

n(x) = f−1(1− f (x)) (13.4.6)
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where different negation operations are created by different functions f . The modal
operators � and � based on negations are defined according to the following idea.
The interpretation of the expression is ’�not-x is the same as impossible’. It contains
two negations, n1(x) means not-x and n2(x) means x is non-possible. Choose two
negations, nν1 and nν2 where 0 < ν1 < ν2 < 1 (νi expresses the symmetry point
where nνi = νi). Substitute x := nν1(x), then we have

�x = nν2(nν1(x)). (13.4.7)

When �x is interpreted as non-possible then

�x = nν1(nν2(x)). (13.4.8)

If nν1(x) = 1− x we have Dombi’s negation

n(x) =
ν2(1− x)

ν2(1− x)+ (1−ν2)x
(13.4.9)

where n(ν) = ν. Further, we have the formula

n(1− x) =
ν2x

ν2x +(1−ν2)(1− x)
(13.4.10)

This formula generates the modal operators as follows:

n(1− x) = �x if ν<
1
2
, (13.4.11)

n(1− x) = �x if ν>
1
2
, (13.4.12)

These modal operators have following properties:

�0 = 0 �0 = 0

�1 = 1 �1 = 1

�x < x < �x, x ∈ [0,1] (13.4.13)

Further, if x1,x2 ∈ [0,1] and x1 < x2 then

�x1 < �x2 and �x1 < �x2. (13.4.14)

13.5 On Modifiers

Consider the assertion (13.2.2) in Section 13.2. What is its truth status if the men-
tioned door is almost closed? We may say that the sentence “The door of my office
is closed” is “almost true”. It may mean that the assertion “The door of my office is
almost closed” is true. Any way, Leibniz’s suggestion for modal logic supports this
idea. This is the similar case as the assertion in modal logic: in a given world, “a
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sentence A is possibly true” if �A is true in this world. Here the word almost
is a hedge which, on the other hand, weakens the truth status ’true’, and on the
other hand, it weakens the original sentence in question, for example, the sentence
(13.2.2). About hedges, see Lakoff [15].

Linguistic expressions, called hedges, are instances of modifiers. Originally,
modifiers are operators for modifying fuzzy sets. Modifiers may have many dif-
ferent properties, like weakening, substantiating, order preserving, order reversin,
identifying, etc.

Before a more detailed consideration of modifiers,we have a short look at the
concept of negation operation, and especially the concept strong negation. This term
comes from Rasiowa [26]. It has been used already in early studies on many-valued
logics.

Definition 13.5.1. Let I be the closed unit interval with 1 as its top element and 0 as
its bottom element. Let a function η : I−→ I satisfy the conditions

(i) η is continuous in I;
(ii) η is strictly monotonically decreasing in I ;

(iii) η(1) = 0 and η(0) = 1.

Then we say that η is a negation operation on I . If, in addition to this, the condition
of involution

(iv) ∀x ∈ I , η(η(x)) = x

that η is a strong negation on I .

In this definition, the negation operation is defined on the set of values I. Hence, it
suits to be a definition of a negation for some formal logic. The concept ’negation’
on a set of values is in a close relation to the concept ’complement’ on a class of sets.
Hence, when we use strong negation as a complement for fuzzy sets on a universe
of discourse X , we have to define it on the set IX because this is the power set of all
fuzzy subsets of X . This means that we have a complement operation for fuzzy sets
based on the construction of strong negation. Hence, instead of values or constants
(like truth values), we are manipulating fuzzy sets (membership functions) collected
in the set IX . We will need the concept ’strong negation’in the sequel.

A main idea for modifiers is that they are operators modifying fuzzy sets. Here
we consider so-called basic modifiers. From different kinds of modifiers we mention
two subsets, order preserving modifiers and order reversing modifiers. In general,
the properties of a lattice I can be embedded into the lattice IX , i.e., the set of the
functions IX = {µ | µ : X → I} is ordered set because I is ordered.

Definition 13.5.2 (Modifier). A mapping MMM : IX → IX is called a modifier. A
modifier MMM is

(i) an order preserving modifier if for all fuzzy sets µ,ν ∈ IX ,

µ≤ ν=⇒MMM (µ)≤MMM (ν). (13.5.1)
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(ii) an order reversing modifier if for all fuzzy sets µ,ν ∈ IX ,

µ≤ ν=⇒MMM (µ)≥MMM (ν). (13.5.2)

(iii) a substantiating modifier if for any fuzzy set µ ∈ IX ,

MMM (µ)≤ µ, (13.5.3)

(iv) a weakening modifier if for any µ ∈ IX ,

µ≤MMM (µ), (13.5.4)

(v) an identity modifier if for any µ ∈ IX ,

MMM (µ) = µ. (13.5.5)

Let us extend Def. 13.5.1 from the set I to the set IX as described above. Hence,
we extend the concept of negation from a set of values I to the corresponding set of
functions defined on a set, say, X , mapping its elements to I. Especially, we have the
following

Lemma 13.5.1. The complement ’strong negation’η : IX → IX is an order reversing
modifier.

The condition (ii) of Def. 13.5.2 for η follows directly from Def. 13.5.1 applied to
fuzzy sets in IX . Hence, Lemma 13.5.1 is true.

Definition 13.5.3 (Duality). The dual of a modifier FFF is the composition η◦FFF ◦η.

Theorem 13.5.1. If FFF is a substantiating (weakening) modifier then its dual η◦FFF ◦
η is weakening (substantiating).

For the proof, see, for example, Mattila [21, 24].

An Idea of Generating Modifiers Using n-ary Functions

There are many different ways for creating modifiers in fuzzy environments. We
describe a principle of using n-ary functions for modifying fuzzy sets pointwise.
Then we apply the principle to special two-placed functions, namely to t-norms and
t-conorms.

The simplest idea using n-ary functions for generating modifiers for fuzzy sets is
to replace every variable with the membership function of a fuzzy set to be modified.

Let f : In → I be any n-placed function then f generates a substantiating modifier
FFF (x) = f (x,x, . . . ,x) if for all x1,x2, . . . ,xn ∈ I the condition

f (x1,x2, . . . ,xn)≤min(x1,x2, . . . ,xn) (13.5.6)

holds for all xi∈X . A function f generates a weakening modifierHHH (x)= f (x,x, . . . ,x)
if for all x1,x2, . . . ,xn ∈ I the condition
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f (x1,x2, . . . ,xn)≥max(x1,x2, . . . ,xn) (13.5.7)

holds for all xi ∈ X . A function f generates an identity modifier FFF 0 = f (x,x, . . . ,x)
if for all x1,x2, . . . ,xn ∈ I the condition

min(x1,x2, . . . ,xn)≤ f (x1,x2, . . . ,xn)≤max(x1,x2, . . . ,xn) (13.5.8)

holds for all xi ∈ X .
The idea of generating modifiers by n-placed functions is based on the formulas

(13.5.6), (13.5.7) and (13.5.8), when we put the same argument x in every place in
the n-tuple of arguments in the function f . Thus from the conditions (13.5.6) and
(13.5.7) it follows immediately that for all x, and especially for all x ∈ [0,1],

f (x,x, . . . ,x)≤ x (13.5.9)

if f generates a substantiating modifier, and

f (x,x, . . . ,x)≥ x (13.5.10)

if f generates a weakening modifier.
An identity operator is generated by any function f , such that

f (x,x, . . . ,x) = x, (13.5.11)

for example,

f (x1,x2, . . . ,xn) =
1
n
(x1 + x2 + . . .+ xn), (13.5.12)

for which (13.5.11) holds. Also max and min generate identity modifiers, because
these operators do not have any modifying effect.

Modifiers Generated by Some t-norms and t-conorms

The idea is to use the different modifying grades of some t-norms and t-conorms.
We put the norms into the order according to the modifying grade. In this way we
have a graded modifier system. Originally the idea is given in [23].

Suppose µ,µ ∈ IX . We consider the following well-known norms:

Minimun and maximum:

Tm(µ(x),ν(x)) = min(µ(x),ν(x)), Sm(µ(x),ν(x)) = max(µ(x),ν(x))

Algebraic product and sum:

Ta(µ(x),ν(x)) = µ(x) ·ν(x), Sa(µ(x),ν(x)) = µ(x)+ν(x)−µ(x) ·ν(x)

Einstein’s product and sum:
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Te(µ(x),ν(x)) =
µ(x)ν(x)

1 +(1−mu(x))(1−ν(x)), Se(µ(x),ν(x)) =
µ(x)+ν(x)

1 + µ(x)ν(x)

Restricted difference and sum:

Tr(µ(x),ν(x)) = max(0,µ(x)+ν(x)−1), Sr(µ(x),ν(x)) = min(1,µ(x)+ν(x))

Hamacher’s product and sum:

Th(µ(x),ν(x)) =
µ(x)ν(x)

µ(x)+ν(x)−µ(x)ν(x)
, Sh(µ(x),ν(x)) =

µ(x)+ν(x)−2µ(x)ν(x)
1−µ(x)ν(x)

Drastic product and sum:

Tw(µ(x),ν(x)) =

⎧⎪⎨⎪⎩
µ(x) if ν(x) = 1

ν(x) if µ(x) = 1

0 otherwise

, Sw(µ(x),ν(x)) =

⎧⎪⎨⎪⎩
µ(x) if ν(x) = 0

ν(x) if µ(x) = 0

1 otherwise

These operators can be ordered as follows:

Tw ≤ Tr ≤ Te ≤ Ta ≤ Th ≤ Tm

≤ Sm ≤ Sh ≤ Sa ≤ Se ≤ Sr ≤ Sw (13.5.13)

which holds for all x,y ∈ I. Thus the corresponding pairs Tk,Sk,k = m,h,a,e,r,w,
form a dual modifier generator pair with respect to the negation n(x) = 1− x. The
order (13.5.13) represents the generators from the most substantiating norm to the
most weakening one. Because Tm and Sm does not have any modifying effect they
generate the same modifier that is the identity modifier. Naturally, they do not make
any changes in fuzzy sets. The modifiers generated by t-norms and t-conorms (being
two-placed functions) we call norm modifiers.

Now, let substitute µ(x) also into the place of ν(x) in the norms given above. Thus
by the order of (13.5.13) we have a totally ordered sequence

∀x ∈ X , Hw(µ(x))( Hr(µ(x))He(µ(x))(
( Ha(µ(x))( Hh(µ(x))( Hm(µ(x)) =

= µ(x) = Fm(µ(x))( Fh(µ(x))( Fa(µ(x))( (13.5.14)

( Fe(µ(x))( Fr(µ(x))( Fw(µ(x)),

where the symbol ’(’ compares the strength of substantiation between two mod-
ifiers, i.e. H ( F means that F is at least as substantiating as H. The fact is the
following:
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Fi ( Fj ⇔ Tj ≤ Ti,Hi ( Hj ⇔ S j ≤ Si. (13.5.15)

Of course, if F is any substantiating and H any weakening modifier, we have H ( F .
Note that if we use any t-norm T in such a way we have a modifier defined by

F(µ(x)) = T (µ(x),1) and for its dual S we have a modifier defined by F∗(µ(x)) =
S(µ(x),0), then we get an identity modifier, i.e. T (µ(x),1) = S(µ(x),0) = µ(x) by
the definition of t-norm and t-conorm.

To Fuzzify Things

We may consider weakening modifiers as fuzzifiers. Further, we may apply them to
fuzzify either truth values or formulas. The first step in fuzzifying truth values is
many-valued logics and the second step fuzzy-valued logics.

To Fuzzify Truth Values

Consider two-valued valuation

v : Prop→ {F,T} (13.5.16)

where Prop is a set of propositional variables. Then, for any propositional variable
p∈Prop, the expression v(p) is a truth value, i.e., v(p)∈{F,T}. Hence, v(p) means
that p := x where x ∈ {F,T}, i.e., p takes its values from the set {F,T}.

Let

FFF : {F,T}→ I (13.5.17)

be a fuzzifier then a fuzzy set of the set {F,T}, FFF (v(p)) is a fuzzy truth value. Hence,
a fuzzy truth value is the composition of v and FFF , i.e.,

(FFF ◦ v)(p) = FFF (v(p)). (13.5.18)

Hence, a fuzzy valuation is a mapping

FFF ◦ v : Prop→ I. (13.5.19)

Denote {F,T} def= 2, then we have the following sets of mappings:

2Prop = {v | v : Prop→{F,T}}, (13.5.20)

I2 = {FFF |FFF : 2→ I}, (13.5.21)

IProp = {FFF ◦ v |FFF ◦ v : Prop→ I}. (13.5.22)

This approach is a starting point to fuzzy logic with fuzzy truth values.
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To Fuzzify Logical Formulas

Let p ∈ Prop and FFF be a fuzzifier

FFF : Prop→ I (13.5.23)

then FFF (p) is a fuzzified logical formula. Hence, the set of all fuzzified formulas
created from the set of propositional variables Prop is

IProp = {FFF (p) |FFF : Prop→ I}, (13.5.24)

i.e., p "→FFF (p) is a membership function of p. Hence, the crisp valuation for fuzzy
formulas is

v : IProp → {F,T}. (13.5.25)

This kind of approach leads to fuzzy logic with fuzzy formulas and crisp valua-
tion. This implies two-valued theory for modifiers. This is related to modal theories
(cf. Mattila [17, 21]). We call these modifiers modal modifiers because they have
the usual modal properties, as can be seen in two-valued modal logics (see some
examples in [21]).

When returning back to Leibniz’s ideas for motivating modal logics in 11.1 and
the author’s interpretation about these ideas (told on Page 232), using the approach
to fuzzify logical formulas, it is possible to create graded modal-like systems where
modifiers are based on graded modalities. A relational semantics for modifier logics
based on graded modalities is presented for example in Mattila [21]. An alternative
semantics can be found from Goble [9]. This semantics is originally constructed for
graded modal operators.

In the approach exploiting modalities as modifiers, any substantiating modifiers
have the nature of graded necessity and the corresponding dual modifiers have
graded possibility effects being weakening modifiers. If we construct a modifier
logic based on fuzzifying truth values, we can prove similar theorems in both sys-
tems (cf. eg. Mattila [23, 24]). Comparing these two approaches, we have a system
based on membership functions as truth value distributions and a system without
any membership background. Hence, using modal based weakening modifiers as
graded fuzzifiers and corresponding substantiating modifiers as graded defuzzifiers
we have a fuzzy logical system without any straightforward connection to member-
ship grades. This kind of approach may serve some base to computing with words.

13.6 Concluding Remarks

The concept ’possible world’ is widely connected with many things somehow in-
volved in logic. It is a base for models in classical logic as well as in non-classical
logics, like modal logic and many-valued logic. Also, to fuzzify a set of possible
worlds, and also relations on that set of worlds, gives a basis for fuzzy logic with
fuzzy truth-values as well as fuzzy modal logic.
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Łukasiewicz’ 3-valued logic is very interesting because it involves also modali-
ties. This was one of Łukasiewicz’ motives for his 3-valued logic. In fact, modali-
ties are “hidden” to the logic. This system serves a semantical method for standard
modal logic, too. Łukasiewicz’ n-valued logics, where n > 3, may be also modal
many-valued logics, where also modal formulas can have other truth values than the
classical ones.

To fuzzify formulas, we can have modal-like 2-valued logics for modifiers. When
we model some suitable hedges by modifiers we have logics somehow applicable to
computing with words. To fuzzify truth values, we can create logics with fuzzy truth
values.
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Chapter 14
Fuzzy Thinking in Sociology

Lars Winter and Thomas Kron

14.1 Introduction

The well-known distinction between soft and hard science cuts a sharp line of de-
marcation between hard and soft facts of scientific studies. Physics deal with precise
hard facts characteristically whereas social sciences are confronted with imprecise
soft social facts because social facts are notoriously vague, interpretative facts of
meaning. Therefore Fuzzy logic seems to fit perfectly the needs of social scientist
that look for mathematical precise models to deal with vague, imprecise data [52].
In this contribution we discuss the usefulness of Fuzzy logic for social sciences in
general, and especially sociology. In a first step we summarize some fundamen-
tals of “fuzzy thinking” [10] for social scientist. This will lead to the discussion of
the need of fuzzy thinking in action theory, systems theory, modernization theory
and empirical research. We discuss the advantage of fuzzy thinking for action the-
ory and social systems theory at length whereas the discussion of fuzzy thinking in
modernization theory and empirical research falls short. Modernization theory and
empirical research just function as further examples for the need and usefulness of
fuzzy thinking.

14.2 “Fuzzy Fundamentals” for Social Scientists

Western scientific community is characterized by a bivalent way of thinking: scien-
tific statements have to be true or false, independent from our ability to find out its
logical value. This way of thinking leads to two fundamentals of Aristotelian logic:

(1) The principle of the excluded contradiction: no statement can be true and false
simultaneously [ x = not(A∩ notA) ]

(2) The principle of the excluded middle (or: principium tertii exclusi): every state-
ments is either true or false [ x = A∪ notA ].

This worldview is also fundamental for a number of sociological theories [27] but
has been an object for reservation; bivalent modelling involves a “problem of mis-
matching” [24], p. 19: the social realm is grey but science is black and white. Thus,
bivalent thinking is not per se adequate to cope with social phenomena. According

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 301–320.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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Fig. 14.1. Fuzzy cube

to Mario Bunge [8], p. 141 it seems that bivalent thinking is as primitive as the un-
derlying dichotomization is and therefore inconsistent with how the (social) world
is organized. Systems possess polar characteristics but also possess some character-
istics that are not. Polar characteristics are rather exceptions and not the rule. There-
fore we need another way of thinking which is able to cope with world’s diversity,
including polar as well as non-polar characteristics. One candidate for a (new) way
of thinking world’s diversity is Fuzzy logic.

Fuzzy logic is more than just a method. Fuzzy logic implies a new worldview
[22], [24], [25], [26] that focuses not just on bivalence but also on polyvalence
and therefore challenges the “probabilistic monopoly” of classical Aristotelian logic
over the world [23].1 Polyvalence addresses the fact that systems are fuzzy per se.
Fuzzy-logic “refers to the uncertainty of the system. . . . A Fuzzy set is a collec-
tion of objects without clear boundaries. In a Fuzzy system, there is a transition
area where things can belong to either opposite. . . . A probabilistic statement con-
cerns the uncertainty among a fixed, unambiguous set of outcomes; a statement of
fuzziness concerns uncertainty in the meaning of the outcomes themselves. The un-
certainty in a Fuzzy set is to a large extent the uncertainty of the system per se” [64],
p. 172. One can imagine easily the progress of fuzzy thinking for how the world is
described and explained.

The progress of fuzzy thinking we have in mind can be demonstrated using the
so called “fuzzy-cube” (or “set-cube”) (Fig. 14.1). It describes the degree of sets
referring to their membership to certain dimensions.2 Thereby Fuzzy sets are not

1 Eastern philosophical thinking challenges classical Aristotelian logics early: “Both Lao-Tze and
the Buddah championed the A-And-not-A view of simultaneous opposites. [. . .] The Buddha
built his whole worldview on first breaking out of the black-white shell of words that still binds
much of Western culture and the modern science is spawned. This lies at the heart of satori
enlightenment in Zen Buddhism [. . .]. [. . .] In any case I cannot imagine any major Eastern
thinker who would claim that P(A∩AC) = 0 holds for all events A. That is the height of logical
and cultural extremism. The probability monopoly is over” [23], p. 33). German Idealism also
challenges bivalent thinking in science [18], [19], [20].

2 For further discussions see [24].
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presented as functions over a basic set but as a single point in a space whose di-
mensions correspond to the number of elements of the basic set. We can call these
elements [x,y] “fuzzy units” (or “fits”) that designate the degree of membership
within a range of values ( 0,0 and 1,1 ) that is calculated by summing up the fits.
The set of all of those data pairs is a quadrate with a side length of 1, and a point A
within this quadrate is a fuzzy-set A [x,y].

By “mirroring at the central point of the quadrate” one can identify the set notA,
i.e. if A [x,y] then notA [1-x,1-y]. With these two sets one can form the set union
and the intersection of sets. The latter (A-and-notA) is formed by the minimum of
the membership functions:

A∩ Ā = (min(x,x
′
),min(y,y

′
)) (14.1)

And the set union of two sets is those set-point that describes the most widely rect-
angular extension of both sets:

A∪ Ā = (max(x,x
′
),max(y,y

′
)) (14.2)

The set M is the fuzziest set of all sets wherein the known bivalent views loose
their validity because the sets A and notA as well as A-and-notA and A-or-notA are
identical here! This means that the central theorems of bivalent thinking and are not
longer valid.

The subset characteristics of two sets must be “fuzziable” too. The fuzziness of
those sets can be understood as entropy, that is, the degree of uncertainty or disor-
der in a system. A set describes a system of elements. If a set is fuzzy – elements
belong to it only partially – this set is vague or indefinite to some degree too. Fuzzy
logical entropy measures the ratio between and , that is, the relation of polyvalence
to bivalence.3

E(A) =
A∩ Ā

A∪ Ā
(14.4)

Fuzzy entropy has some major impact on how we understand and model social
actors’ decision-making.

14.3 Action Theory

Actor theoretical approaches have to deal with the analytical problem of the so-
called “definition of situation” [13], [14], p. 29ff, [63], p. 68, that is, how social
actors reflect their selves in a given social situation. To form adequate “bridge
hypotheses” [34] social scientist need a method to link an actor’s “environment”
(institutions, norms, values, communication, symbols etc.) to an actor’s “personal

3 Note that the degree of vagueness of a fuzzy set is defined by the similarity of a set and ist
complement, therefore fuzzy entropy is identical to the degree of subsethood:

Sub(A∪ Ā,A∩ Ā) =
‖ (A∪ Ā,A∩ Ā)‖

‖ A∪ Ā‖ =
A∩ Ā

A∪ Ā
(14.3)
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setting” like internalised norms and values, identities, emotions etc. Fuzzy logic
seems to be an appropriate method to formulate such hypotheses because it enables
social scientists to model the link between situational parameters and the actor’s
personal settings while taking into account that social actors seldom interpret social
situations in a perfect unambiguously way.

We discuss subjective expected utility theory (SEU-theory) (cf. amongst others
[11], [12]) to demonstrate that using Fuzzy logic to model the link between an ac-
tor’s environment and an actor’s personal settings leads to a more realistic model of
how social actors define social situations (as real).4 As a consequence Fuzzy logic
enables social scientists to come close to the real process of decision-making in ev-
eryday life situations. According to SEU-theory social actors define their situations
by considering alternatives of action, consequences of action, evaluations and costs.
To model an actor’s expectation (p) social scientists combine the parameters men-
tioned before. An expectation is defined, as estimation about what consequence will
be realized if one chooses an action’s alternative under empirically given situational
conditions.

Typically social scientists describe the process of how actors build up their ex-
pectations the same way like social actors do, namely by using linguistic terms.
Linguistic terms, that is, vague phrases to describe the world, can be understood
and modelled as fuzzy sets. Linguistic terms form a system of (social) rules to
interpret the world. Thus systems of decision-making consist of if-then-rules that
fit for the estimation of a system function. The more uncertain the rules are the
wider are the faces that cover the function (see for illustration Fig. 1). In other
words: expectations are (more or less) vague if-then-rules. These are e.g. heuris-
tics (“rules of thumb”) of decision-making that can be modelled with Fuzzy logic.
Fuzzy logic in this case means deciding with imprecise data and imprecise sets
[48], [58]. Thus Fuzzy logic allows to model complex contexts in which decision-
making takes place easily. The technical expression for this is approximation. We
all act in this manner while e.g. driving our car backwards, catching a ball or watch-
ing television. The advantage for sociology is: while using fuzzy-logic social sci-
entists can simulate this dynamical “everyday approximation” in decision-making
realistically and in an easy way without being forced to fall back on simplifying
as-if-assumptions.

Take for example the so-called bystander dilemma [9], [33], [31], [32], [51], [60].
The problem we face is why do actors in situations where their help is needed, e.g.
a situation where one is attacked, act or just stand on the sidelines or even look the
other way. How do actors take a stance on the situation? We take the example of
the so-called emotional man [15] [59], p. 107ff as a typical social actor in such a
situation. We hypothize, that the feeling of endangerment has an impact on emo-
tional man’s decision. We state that there exist four alternative actions: (1) Helping,
(2) Signalling his will to help, (3) Ignoring or (4) Leaving the situation. The conse-
quences of action could be “feeling of safety” or “feeling of endangerment”. For the
sake of the argument we state that there exist two relevant situational parameters that

4 “If men define situations as real, they are real in their consequences” [62], p. 572.
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influences the actor’s decision, namely the number of other actors who will help and
the power of the person who attacks. We assume that the feeling of endangerment
is reduced when the number of people who help the victim increases. The feeling
of safety increases (or sinks) in accordance to the attacker’s strength. An emotional
man has to decide whether he is going to help, signalling his will to help, ignore or
even leave the situation according to his estimation of how many people help and on

Fig. 14.2. Number of people

Fig. 14.3. Attacker’s strength
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Fig. 14.4. Feeling of endangerment

Table 14.1. If-then-rules

Number of Attecker’s Feeling of
people Strength endangerment

1 none low relatively low
2 none middle relatively high
3 none high high
4 few low relatively low
5 few middle middle
6 few high relatively high
7 some low relatively low
8 some middle middle
9 some high relatively high
10 many low low
11 many middle relatively low
12 many high relatively high

his estimation about the attacker’s strength. It is striking here that such estimations
are fuzzy.5

In a first step we define the relevant fuzzy sets and their value range to model
these estimations (Fig.14.2, 14.3) as input variables of our fuzzy-decision-system.
The output-variable “feeling of endangerment” is “fuzzified” as well (Fig.14.4).

Now we have to define bridge hypotheses to link the input-variables to the output-
variable with the help of simple if-then-rules. In our example we need twelve rules
to respect all relevant relations between the variables:

5 Even the estimation about how many people are helping right now or will help could be fuzzy
not at least because exceptional circumstances do not allow “rational” precise evaluations of
every relevant parameter.
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Fig. 14.5. Output “Feeling of endangerment”

For illustration we assume that an actor (emotional man) estimates that 15 other
actors will help and that the attacker’s strength seems to be quite high. As a result
three fuzzy-output-sets (feeling of endangerment) are activated partially (Fig.14.5):
relatively low feeling of endangerment is activated to the degree of 0.12, feeling of
endangerment middle is activated to the degree of 0.29 and the Fuzzy set relatively
high feeling of endangerment is activated to the degree of 0.43). In the end this leads
to a feeling of endangerment of 58.316, that is, “our” actor expects (p) that he will
realize a feeling of endangerment of about 58% if he engages in this situation.

To put it otherwise: all rules exert an effect parallel but only partially. This means
that using fuzzy-logic enables social scientists to model overlaps of diverse vague
and possible contradictorily expectations too. The result is a fuzzy-weighted average
of different expectations. This output value can be displayed in a three-dimensional
space (Fig. 14.6).

It can be seen that such a fuzzy-system allows modelling even non-linear rela-
tions easily because every curve can be covered by fuzzy-faces. The broader the
faces the less we know about the details of the problem of decision-making. More
precision leads to smaller faces but with the consequence that we need more faces
(= more information) to cover the curve. In boundary cases the face shrinks to-
wards zero, i.e. we have a natural number and no fuzzy set anymore. But it is dif-
ficult to work with small triangles because they do not just loose their fuzziness
but also loose their sociological meaning. Precision has its price. It is hard to pro-
duce the necessary precision for an explanation but it is eased inasmuch as fuzzy-
logic is conformable with different methods of producing bridge hypotheses. And
we are able to adjust the faces in such a way that fuzzy systems can model dy-
namical systems. Moreover Fuzzy logic advantages actor theory by considering an

6 We use the method of centre of gravity to calculate the output-value.
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Fig. 14.6. Non-linear relations

admeasurement of vagueness (ambiguity) in form of fuzzy entropy.7 The ambiguity
of an expectation as a Fuzzy set is its entropy, its expectation vagueness [27]. Within
the framework of SEU theory we can now formalise the expected-utility-weight
(EU) in respect of the actor’s ambiguity of expectations: when an expectation p (as
a fuzzy set) of an action alternative A has been calculated then it is possible to as-
certain its complement as well as the union set and the intersection and therewith
calculate the expectation vagueness EV(A). This admeasurement of vagueness can
be considered in the calculation rule of expected-utility-weights:

EUi =∑(pi− (EVi · pi)) ·Ui (14.5)

If fuzzy entropy is equal 1 (total ambiguity) the actor is totally vague about his or her
expectation whatever his/her expectation is based on. The expected-utility-weights
are zero. Only if the actor is absolute certain about its expectation (no ambiguity)
the common view of SEU theory applies. All values in-between the range of 0 and 1
reduce the expected-utility-weight of the action alternative accordingly. It is possible
to derive the expectation vagueness EV from the output-fuzzy-set and to enter it
into the formula for utility-expectation-weights of the single alternatives of action.
For that purpose we assume that the wider the faces that represent expectations as
Fuzzy sets the higher the vagueness of expectation. And: the higher the degree of
membership the more this vagueness applies (the more this vagueness is imposed).
Thus the expectation vagueness EV can be calculated using the following formula:

Expectation VaguenessEV = f ace ·
√

basiclength (14.6)

7 Note that classical action theory focuses on risky decisions, uncertain decision and safe decisions
although it is obvious that actors (most of the time) do not possess non-ambiguous expectations
[14], p. 54ff. An actor is absolute uncertain if he is not able to possess any expectation value
(p = 0). An actor is absolute certain if he possesses p = 1. Risky decision takes place if an actor
possesses an expectation p between the range of 0 and 1. Ambiguity instead means that an actor
is even uncertain about his expectations, that is, he is fuzzy in his expectations.
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In the example given above this would lead to an expectation vagueness of about
22,6%:

EU(Helping) = (0.58 · (1−0.226)) ·UHel ping = 0.44892 ·UHel ping (14.7)

In this case expectation vagueness leads to a reduction of the original expectation p
about 13% because of the actor’s ambiguity in respect of the parameters “attacker’s
strength" and “number of people who help".

To sum up: Fuzzy logic enables sociologist to formulate bridge hypotheses to
model the definition of situation in an easy and realistic way. One major advantage
of using Fuzzy logic is that Fuzzy logic refers to differences in kind (i.e. quali-
tative dimension) as well as to differences in degree of membership (i.e. quanti-
tative dimension) at the same time. The derivation of bridge hypothesis with the
help of Fuzzy logic gives social scientists one method at hand to specify the logic
of social situations and to describe the parameter for the logic of action-selection
in one step. Bridge hypotheses are formulated as if-then-statements. Thus they do
not only refer to the estimation of consequences of action but also consider the
environmental parameters actors attach importance too. Fuzzy logic is a very use-
ful tool to model the relations between situational parameters and actors’ orien-
tations because social, symbolized relational patterns are not ascertainable by the
interpretation of detailed situational information (crisp set of information), but only
few information (fuzzy set of information) are sufficient to recognize and define
the social situation. In addition: the fact, that social actors combine situational pa-
rameters to a certain pattern that represents the definition of the situation not in
every detail but on the basis of more or less vague representations, leads to the
idea of “vague pattern matching” that goes beyond detailed reflection of single
framing-processes.8

14.4 Considering Fuzziness in the Study of Social Systems

Although Niklas Luhmann [43], p. 904ff has criticized bivalent thinking in classical
Aristotelian logics it is obvious that his conception of social systems idealizes biva-
lence on the operational level of social systems [27], [30].9 Surprisingly, only few
have yet recognized or even scrutinized the two-valued operational logic of social
systems [7], [45], [46], [47]. The two-valued operational logic of social systems is
founded in the central distinction between system and environment, which is as Luh-
mann [38], p. 94 stated inherently problematic because the distinction itself has to
be distinguished in a first step. According to George Spencer-Brown [61] observers
have to draw a distinction; every observation has to distinguish and designate, that
is, distinguishes two sides of the form and designates one side for further observa-
tions. The observer functions as the tertium non datur which cannot be observed

8 Thus frame analysis [16] is a branch of fuzzy pattern thinking for social actors as well as for
social scientist.

9 This is getting obvious in the following citation: “A woman may be pregnant or not: she cannot
be a little pregnant. This is true of course for ’system maintenance’ as well” [36] , p. 183.
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simultaneously while observation takes place [43], p. 62, 69). Therefore observa-
tion has to blind out (have to make invisible) the fundamental paradox that every
observation as a form has a different form as a prerequisite, which cannot be dis-
tinguished but via a new form of observation. To put it straightforward: if two sides
of the form are distinguished one cannot observe the difference without designating
one side because otherwise the different values would be observed as equal values
[38], p. 80, [39], p. 201. Therefore three modes exist to cope with the paradox of
observation [39], p. 201f: factually, if one observes he has to follow the imperative
"draw a distinction"; temporarily, if one observes he has to proceed consecutively,
that is, observation always affiliates on one side of the distinction but can change
the sides in time; socially, one can observe what others observe while reflecting dif-
ferent forms of observation - this is the idea of second order observation. The latter
leads over to a critical reflection of Aristotelian bivalent logic.

In accordance with Gotthard Günther [18], [19], [20] Luhmann agues that Aris-
totelian bivalent logic reflects the ontological difference between being and non-
being which leads to the idea of the excluded middle: boundaries, caesurae,
everything in-between belongs to the non-being, to the realm of the ontologically
excluded middle [43], p. 905. In a constructivist fashion Luhmann [40], [44] denies
the ability to achieve knowledge about how the world really is: we have to abstain
form the very idea that we could achieve knowledge of an unobservable and unob-
served world, therefore we have to take into account the observer and ask for how
does an observer construe identities [43], p. 767. The answer is straightforward:
identities come into being while systems operate autopoetically and generate the el-
ements that they need to sustain identity. For that background social systems could
be best understood as a recursive network of observations.

Or, to put it slightly different: social systems are themselves observers. While
observing, that is, affiliating observations to observations, social systems generate
eigenvalues that allow specifying which elements belong to the system and allow
manifesting the identity of the system in difference to the system’s environment
[43], p. 60ff. In that sense binary coding functions as a contrast or crispy set [36],
p. 91 that assign what belongs to one or the other value [37], p. 76f, [42]. Because
binary coding could be easily institutionalized and practically handled, not at least
because binary coding reduces complexity rapidly, they enable the system to operate
unambiguously in an enormous complex environment [41], p. 177f.

To conclude: although Luhmann criticizes classical Aristotelian bivalent logic
because it lacks a reference to the tertium non datur of observation, that is: the
observer, he does not criticizes bivalence per se. Contrariwise bivalence is the
fundamental operational principle of social systems. And this is, as [43], p. 1113
stated, neither a criticism nor a factual statement but just a confession: to observe
means to distinguish and to designate otherwise observation could not be possible.
But what if the fundamental operations of the social do not follow any bivalent
principle?

Following Niklas Luhmann [35], [43] the fundamental operations of social sys-
tems are communications. Communication is defined as the synthesis of three
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selections: information, message and understanding [35], p. 92ff. Without going
into depth this needs some clarifying remarks. Communication is not understood
as an intentional act. Communication therefore has not to be taken as a way of
transporting information form on system to another system. Instead, communica-
tion has to be analyzed “the other way around”, that is, communication has taken
place when understanding takes place. Understanding distinguishes information and
message as distinct selections. Therefore communication permanently oscillates be-
tween information (as information) and message (as information), that is, under-
standing distinguishes information and message and designates on side of the form
for subsequent communications. Imagine for example a bouquet of red roses as
a form of communication. Despite what a (fictional) husband has in mind when
he is going to present the bouquet of red roses to his wife it is possible that his
wife does not understand the gift as a love symbol but as a sign that something
(maybe a liaison) gnaws at her husband’s conscience. In this case the message be-
comes informative. One can easily imagine how the communication will proceed
in that case. The argument here is that communication is inherently ambivalent be-
cause it is in principle possible to take the message as information [1], p. 54ff.
But, despite the permanent ambivalent character of communication, what if infor-
mation and message become liquid in the sense, that the difference is amenable for
several interpretations, that is, communication is ambiguous. Colin B. Grant [17]
asks in that case for a revision of the communicational components of Luhmann’s
systems theory.

Grant argues that one has always to consider that communication is supplied
with contingencies and uncertainties. As Hempel [21], p. 170 states: “the terms of
our language in scientific as well as in everyday use, are not completely precise, but
exhibit a more or less high degree of vagueness.” If communication is inherently
vague, this also will be the case of systems that rely on communication. “Thus it
follows that systems . . . are porous in their communication” [17], p. 224). Luhmann
instead overemphasis the stability of social systems and neglected the vagueness
of communication. Although there are reasons to assume that in some cases binary
coded schemes to orientate communication really exist, “it can also be said that
binary codes . . . and schematisms are in themselves porous” [17], p. 225f. This leads
to the conclusion that “if communication is uncertain, this resolution is permanently
polysemic” [17], p. 226. Therefore one has to consider fuzziness in the study of
social systems; as already mentioned, non-ambiguous communication is possible
but could be taken as an exception that proves the rule.

Two kinds of vagueness have to be considered in the analysis of fuzzy systems.
First, one has to consider the vagueness concerning the binary coding of social sys-
tems, that is, not every communicational event can be assigned to one value of the
code unambiguously - this kind of vagueness should be termed vagueness of cod-
ing. Second, and as a result of the first vagueness, not every communicational event
belongs to a system clearly but could cross the system-environment-boundary and
therefore could belong to different systems simultaneously – this kind of vagueness
is termed: vagueness of affiliation.
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14.4.1 Vagueness of Coding

Vagueness of coding addresses the fact that communications sometimes cannot be
located in a binary coded scheme unambiguously. For example, it seems to be an
idealized assumption that the code of the legal system (legal/illegal) [41] always en-
ables an observer to decide what is right or wrong. Using Fuzzy logic as a modelling
tool the distinction between legal and illegal can be best understood as crisp sets of
the legal system designating two points of a continuous spectrum that “measures”
what kind of communication could count as legal or illegal in degree. This contin-
uous spectrum of “legal and illegal communications” consists of several values in
between the two crisp sets of legal or illegal communications. This could be called
the systemic set-triangular of vague coding.

A communicational event that is located in between the two crisp sets can be
called fuzzy unit or fit. Those fuzzy units can be interpreted as the degree a com-
munication belonging to the crisp set values of legal and illegal communication and
can be measured easily by summing up the fits. The centre of the continuous straight
line connecting the crisp sets of legal and illegal communication can then be inter-
preted as the most fuzziness form of communication that is legal as well as illegal.
To calculate the measure of fuzziness we use the idea of fuzzy entropy (Fig.14.8).
If a set is fuzzy, that is, elements do belong to this set partially, the set is fuzzy to
some degree. Fuzzy entropy is calculated as the quotient of the distances d between
a communicational event A located on s and the crisp sets (1,0 , 0,1) in percentage.

The more a communicational event belongs to one of the crisp sets the less vague
it is:

Vagueness of coding :
dA → [1,0]
dA → [0,1]

(14.8)

The highest degree of vagueness can be measured if a communicational event is
located in the centre of s:

EntropyA =
0.5
0.5

= 1

Fig. 14.7. Systemic set-triangular of vague coding
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Fig. 14.8. Entropy of Coding

One can now imagine easily what would be the case if communication becomes
fuzzy: social systems cannot longer place communication unambiguously and thus
are not longer able to reproduce the clear distinction between the two values of the
code. The code itself becomes vague and at least the distinction between system and
environment is becoming porous. But this does not necessarily mean that binary
coded schemes will erode completely. Binary coding still functions as a horizon
that orientates communication: the systems code is still in place while the idea of
bivalent operational logic is dismissed.

14.4.2 Vagueness of Affiliation

Taking into account that communications can cross the system-environment-distinc-
tion, not at least because the code itself can erode in cases where communication
cannot longer be located unambiguously, it is striking here that one has to con-
sider communicational events that could belong to the system as well as to the sys-
tem’s environment. If communication is vague system-environment-distinction will
be vague too. A communication that belongs to a system’s environment unambigu-
ously is considered to be an element of a blank set. That means a communication
that does not belong to a system is defined negatively through exclusion 0/0 .

On the contrary, a communication belonging to a system is defined through the
degree of affiliation. Taking into account that a communicational event does not
necessarily belong to the values of the code but could vary in the degree of affil-
iation, it follows that this communication is not a clearly defined element of the
system. As pictured in Fig. 14.9 a communicational event A just belongs to the sys-
tem gradually. This could be interpreted as vagueness of affiliation. The vagueness
of affiliation could also be calculated as fuzzy entropy but now measured as the
quotient of the distance between A to s and the distance of A to the blank set [0,0].
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Fig. 14.9. Vagueness of affiliation (System’s Entropy)

Vagueness of affiliation : A =
dA → s

dA → [0,0]
(14.9)

It is now getting obvious that the vagueness of affiliation necessarily implies vague-
ness of coding because every time the degree of affiliation becomes fuzzy it is not
clear how the communication can be placed relative to the code values, that is,

Fig. 14.10. Systems interpenetration
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communication belongs to both value sets of the code to some degree. This leads
over to the idea of system’s interpenetration. According to [49], p. 14 – and in con-
trast to [35], p. 286ff – interpenetration addresses the fact that elements could belong
to different systems simultaneously. Thus it is untenable to state that elements are
either elements of one or another system. Taking vagueness of affiliation seriously
it is striking here that communications could belong to one system as well as to
another system partially (Fig.14.10).10

Fuzzy logic allows overcoming bivalent thinking in systems theory. Instead of
overemphasizing bivalence as a criterion of social systems’ stability, fuzzy think-
ing forces social scientists to have an eye for vague, imprecise communicational
processes within social systems and thus sensitize an observer for (social) mecha-
nisms that allow dealing with social fuzziness. Actual Ulrich Beck is one prominent
sociologist who emphasizes fuzzy thinking in modernization theory.

14.5 Fuzzy Thinking in Modernization Theory

The so-called Theory of Reflexive Modernity by Ulrich Beck [4] emphasizes the
need to think in terms of as well as instead of either-or. Straightforwardly speak-
ing, Beck claims - in order to analyze second modernity – for the need of fuzzy
thinking in social sciences. The idea of second modernity addresses the fact that
institutional settings of first modernity are not longer adequate to deal with the un-
intended consequences generated by industrial societies and their undamped growth
[2]. Second modernity is characterized by social phenomena that do not longer fit
in well-defined categories with sharp boundaries. Contrariwise social phenomena of
second modernity possess characteristics that correspond to the “new" worldview of
Fuzzy logics, namely, that social phenomenon sometimes possess polar characteris-
tics but most of the time do not. Therefore Ulrich Beck [3] claims for a new method
of theorizing modern society - methodological cosmopolitism.

Methodological nationalism on the contrary perfectly fits in the old institutional
setting of first modernity but is nowadays nothing more than anachronistic way of
thinking; the logic of methodological nationalism is bivalent in the sense that the
categories are well defined and clear-cut, thus methodological nationalism is charac-
terized by dualistic and antagonistic concepts like friend vs. enemy, us vs. them, for
us vs. against us. This way of thinking in terms of black and white (good and evil)
will fail in the light of second modernity.11 Thus methodological cosmopolitism
takes social fuzziness seriously like in the case of transnational terrorism. The war
on terrorism for example fits the needs of traditional institutional settings but is in-
adequate to deal with new forms of terrorism not at least because there is no country
on which war could be declared. Several other dualistic and antagonistic concepts

10 Surprisingly even Luhmann [43], p. 775 assumes that under the conditions of functional differ-
entiation a multiplicity of communication exists which cannot be located exclusively belonging
to one system. This is a characteristic of modern society. But instead taking vagueness of affili-
ation seriously Luhmann argues that vagueness is reduced in time.

11 For example [3] states that war is peace.
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fall short for characterising transnational terrorism as well: e.g., Al-Qaida’s ideol-
ogy is modern and anti-modern, Al-Qaida operates local and global and not at least
Al-Qaida is afar and close to its enemies [28]. In short: adequate theorizing of social
phenomena needs fuzzy thinking and at least Fuzzy logic as an appropriate tool to
model social phenomena.12 This applies to social research methodologies too.

14.6 Fuzziness in Social Research

The surplus of Fuzzy logic for the social research was early recognized by Charles
Ragin [54], [55], [56], [50]. Charles Ragin advanced traditional Qualitative Com-
parative Analysis [53], [5], [6] in macro-sociological studies using fuzzy-logical
operations to include diversity of kind and diversity of membership degree in con-
figurational analysis of social causal factors. Qualitative Comparative Analysis, gen-
erally speaking, aims at identifying necessary and/or sufficient (configurations of)
causal factors for a social outcome13. Those prime implicants, as Ragin calls them,
are common (configurations of) causal factors of a certain group of social cases in
regard to a certain social outcome.

Prime implicants “explain” how social causes combine to generate a specific so-
cial effect. Cases are understood as configurations of variables. Those variables are
interpreted as factors that lead to an outcome. The comparison of cases as con-
figuration of factors in regard of an specific outcome (diversity of kind) and their
fuzzy membership to those configurational sets of factors (diversity of degree) re-
sults in parsimonious explanations that deal with as much complexity as required
by sociology but at the same time are simple enough to explain the social effect
sufficiently [57].

Because social diversity is complex, comparative analysis often results in differ-
ent causal paths that generate the same social effect. For classical research strate-
gies (especially quantitative social research) this might seem to be a disadvantage
as long as science is looking for causal laws of hard facts. But, as we already stated
in the beginning, the realm of the social is not governed by hard facts, therefore
there is a need for a method that allows considering diversity and complexity with-
out given up the idea that diverse, complex cases could be explained even if they
are fuzzy.

To conclude: Formal logic and linguistic formulations converge in Fuzzy logic.
The specification of variables and degrees of membership is theoretically and em-
pirically instructed. Thus Fuzzy Set Social Sciences [54] provides an interpretative
tool that forces social scientist to bring together theory, empirical evidence and for-
mal logic in one research strategy while considering diversity and complexity of the
social realm.

12 It is obvious that the idea and model of fuzzy systems is a first step in the right direction. If well-
defined and clear-cut social categories do not longer fit the “empirical world” we need a way to
think, theorize and model how social systems and social agents proceed in a fuzzy environment.

13 John Stuart Mill speaks of chemical causation.
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14.7 Conclusion

We gave a brief outline of the usefulness of Fuzzy logic for different branches of
sociology. We focused on action theory and social systems theory as two impor-
tant candidates for fuzzy thinking. The advantages are at hand: Fuzzy logic closes
the gab between real-life decision-making in everyday life and traditional models
of decision-making (e.g. SEU theory) while taking seriously that a social actor sel-
dom calculates his actions on the basis of precise, sharp, unambiguous expectation.
Contrariwise social actors decide on the basis of vague representations of social
situations and on basis of vague expectations. Fuzzy thinking in social systems the-
ory considers imprecise and vague communications as well as vague distinctions or
rather imprecise differences. This leads to the idea of fuzzy systems characterized by
vague system-environment distinctions, vague code-differences and vague commu-
nicational tokens. The social realm is inherently vague, therefore there is a need for
fuzzy thinking. Especially modernization theory could benefit from fuzzy thinking
in the long run. Nowadays it seems already unimaginable to do macro-sociological
comparative research without Fuzzy logic.
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Chapter 15
Fuzzy Set Theory
and the Philosophical Foundations of
Medicine

Julia Limberg and Rudolf Seising

15.1 Introduction

“A Good Title Is A Work of Genius,” according to the US-American social
reformer and publisher Emanuel Haldeman-Julius (1889-1951). Bearing in
mind the importance of titles, we believe that we first and foremost have
to indicate what we mean by philosophical foundations of medicine. And
that will include an explanation of what is regarded as “medicine” in this
paper and to which philosophical aspects and foundations we will restrict
our discussion.

The term “medicine” is derived from the Latin expression ars medicina,
which means the art of healing [1]. The art of healing “encompasses a range
of practices which aim to maintain and restore human health through the pre-
vention and treatment of illness. Contemporary medicine relies upon health
science, biomedical research, and medical technology to diagnose and treat in-
jury and disease” [31]. That’s the beginning of wikipedia’s article on medicine.
Indeed, it may be controversial to cite wikipedia, but the article contains this
paper’s key words: we will discuss the meanings of health, illness and disease.
With reference to “contemporary,” we will discuss the core of biomedical re-
search: genes. Finally, we will conclude that definitions of these terms can only
yield satisfactory results if the definitions are drawn up in a fuzzy-theoretical
way, mainly based on approaches proposed by the Iranian-German physician
and philosopher of medicine Kazem Sadegh-Zadeh [20], [21]. We will focus on
Sadegh-Zadeh’s “fuzzy disease” concept, the interpretation and definition of
which proves to be very complex, and we will present software we have devel-
oped to demonstrate Sadegh-Zadeh’s ideas. Moreover, we will use his ideas to
display fuzzy disease and fuzzy polynucleotides in the hypercube of the US-
American professor of electrical engineering Bart Kosko [6].

15.2 Motivation of Fuzzy Health, Fuzzy Illness and
Fuzzy Disease

Some specific features of the medical way of thinking was the subject of a
lecture given by the Polish physician and medical philosopher Ludwik Fleck

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 321–344.
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in Lwów in 1926, which was published in the following year. Regarding the
concepts of “health” and “disease” he said: “There exists no strict boundary
between what is healthy and what is diseased, and one never finds exactly
the same clinical picture again. But this extremely rich wealth of forever
different variants is to be surmounted mentally, for such is the cognitive task
of medicine.” ([4], p. 39, see also [26], [24].)

At the end of the 20th century various philosophical groups contended
with each other regarding an exact definition of the terms “health,” “illness”
and “disease.” These groups were not able to come to an agreement, since
all of the meanings put forward fell short of a logical analysis of the three
concepts.

They all had attempted to interpret the concepts of health, illness and dis-
ease according to the classical, two-valued logic, which meant that following
rules applied:

• An individual is healthy or not healthy, but never both at the same time
• An individual is ill or not ill, but is never ill and not ill concurrently.
• An individual has a disease or does not have a disease, but is never in both

states at the same time.

The following is another widely held belief:

• Health and disease are in stark contrast to each other and are mutually
exclusive. Health includes the absence of disease and vice versa.

Kazem Sadegh-Zadeh, a doctor and philosopher of medicine, firmly believes
that all of these assumptions are not acceptable and that the concepts of
health, illness and disease cannot be defined in a classically logical manner.
As a matter of fact, an individual may be healthy and not healthy at the
same time or ill and not ill, contemporaneously. Also, it is possible to have a
disease, while not having a disease. The ideas of health and disease are not
mutually exclusive: An individual may be healthy, while having a disease or
even be unhealthy without having a disease.

Obviously the concepts of health, illness and disease have fuzzy ranges.
They stray from classical binary logic. Therefore, Sadegh-Zadeh tried to
define the notions in a fuzzy-theoretical way.

Fuzzy sets were introduced as the basis of a new mathematical theory,
presented in June 1965 in an article of the journal Information and Control
by Lotfi A. Zadeh, a professor of electrical engineering at the University of
California in Berkeley [33], [23], [25], see also [24]. Bivalent set theory clearly
defines an object to be either an element of a set or not to be an element of
that set. Whereas in fuzzy set theory the membership of an object in a set
is fuzzy. This fuzziness is described by values between 0 and 1, which are
assigned to every object by a membership function of the fuzzy set.

One may operate with fuzzy sets in a manner similar to that used with
usual “crisp” sets: There is the empty fuzzy set (μA(x) = 0 ∀x in the basic set)
and the complement Ac of every fuzzy set A (μAc(x) = 1−μA(x)); sets can be
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Fig. 15.1. Left: Lotfi A. Zadeh, right: Kazem Sadegh-Zadeh

united and one can set up an intersection. The last two operations that Zadeh
defined are based on conventional set theory: The membership function of
the union of two fuzzy sets, A and B, is defined by the maximum of the
membership degrees of both fuzzy sets, μA∪B = max(μA(x), μB(x)), while
the membership function of their intersection is defined by their minimum,
μA∩B = min(μA(x), μB(x)).1

A mathematical theory to describe a state operates on variables that can
reach certain values and these are numerical in classical scientific theories.
For example, indications of the variable length are given by the units of meters
and the variable time may be expressed by the number of seconds. Referring
to individuals, the variable age, for example in medical diagnosis, is assigned
a value corresponding to a patient’s years of life.

15.3 Fuzzy Health, Illness, and Disease

15.3.1 Fuzzy Health

The World Health Organization (WHO) defines “health” as “a state of com-
plete physical, mental and social well-being and not merely the absence of
disease or infirmity” [29]. The idea that “health” is not the conceptual oppo-
site of “disease” is implied by this definition. Sadegh-Zadeh agrees with this
opinion and proposes the concept of “malady” as the opposite of health. In
this connection, he introduces the term “patienthood”. Patienthood stands
for being afflicted by a malady. Accordingly, Sadegh-Zadeh defines this no-
tion as the (fuzzy-)inverse to the concept of health:

Health = 1− Patienthood.
1 Of course, today there are many other so-called „t-norms” and „t-conorms” to represent

„union” and „intersection” in the theory of fuzzy sets, but in 1965 Lotfi Zadeh used just
maximum and minimum. In [25]it is shown that this was influenced by Lotfi Zadeh’s
work on electrical filters at that time.
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Due to an individual x that means

μHealth(x) = 1− μPatienthood(x).

For instance, an individual has a membership of degree 0.6 in the set H
(health) of healthy people, if it is a member to the extent of 0.4 to the set P
(patienthood). Operations on these sets are carried out in accordance with
the rules of fuzzy set theory. The intersection of these fuzzy sets is calculated
from the minimum of the membership values, min(0.6, 0.4) = 0.4. The result
is not empty.

Thus, according to fuzzy set theory, health and patienthood are comple-
mentary, but not incompatible – in contrast to binary logic.

Once again, one has to suggest that health and disease may exist at the
same time. It may be that a patient is afflicted with calcinosis circumscripta
of the thyroid gland. Nonetheless, the patient may not be afflicted by a
malady. Therefore, this membership has a degree of 1 in the set of health.
Thus, disease does not have an effect on health as long as the disease does
not reach the degree of patienthood.

15.3.2 Fuzzy Illness

In the German language, often no difference is made between illness and
disease. However, in English, one distinguishes between disease and illness
explicitly, and in the newer sociology of medicine [30] this difference is em-
phasized, because someone may have a disease without feeling ill. Also, an
individual may be suffering without having a disease. Zadeh’s Outline of a
New Approach to the Analysis of Complex Systems and Decision Processes
released in 1973, is concerned with the introduction of the notion of “linguistic
variables.” These “are variables whose values may be sentences in a specific
natural or artificial language” [34].

Sadegh-Zadeh defined the state of health of an individual as a linguistic
variable, see Fig. 15.2, with the following term set:

Tstateofhealth = {well, not well, very well, ill, not ill, . . .}.

Fig. 15.2. Linguistic variable state-of-health [20], p. 616
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Fig. 15.3. Illustration of the fuzzy sets of the state of “health” [20], p. 619. All
fuzzy sets result from building up the complement, concentration or dilatation of
the fuzzy set “well. ”

This raises additional questions: Whereas the word “not” may intuitively be
interpreted as the complement in fuzzy set theory, the fuzzy-theoretical inter-
pretation of “very” is not directly evident. Once again, Sadegh-Zadeh, there-
fore, resorted to Lotfi Zadeh’s definitions from 1973 in which modifications of
fuzzy sets were introduced – including “concentration” and “dilatation” [34].
Let A be a fuzzy set so that concentration CON A = A2 and dilatation
DIL A = A1/2.

The word “very” concentrates and intensifies respectively the meaning of a
term. Whereas “more or less” expands and dilates the meaning respectively.

Sadegh-Zadeh adopted these definitions and derived the following relations
for the corresponding membership functions:

• μvery−well(x) = (μwell(x))2

• μmore−or−less−well(x) = (μwell(x))1/2

• μillness(x) = ((μillness(x))1/2)2 = (very(μunwell(x)))2 = (μunwell(x))4

In the case of the linguistic variable Tstateofhealth, introduced above, one
may denote: very well corresponds to well2, more or less well corresponds to
well1/2 and Illness comes up to very (more or less illness) and that means,
in turn, very very unwell, hence unwell4 (Fig. 15.3).

All in all, one may conclude that illness is not the conceptual opposite of
health and that illness and wellbeing are only two of many possible conditions
of an individual’s state of health.

15.3.3 Fuzzy Disease

Apparently, humans have been thinking about the existence of diseases since
the very beginning of human thought. Many places in the Bible refer to
diseases that were linked with unbelief and punishment.
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According to Karl Eduard Rothschuh (1908-1984), a physician and a his-
torian of medicine, this metaphysical interpretation of disease is still evident
in human consciousness ([18], p. 5.). As part of this view, Rothschuh also
mentions a model of disease in association with philosophy.

However, this view remained very generalized and interpreting a disease
as a phenomenon or a “matter of evil” cannot be considered satisfactory. So,
Rothschuh introduced his third model of disease: disease as a naturalistic
model. In this, disease can be described in two ways. First, disease is treated
as a real being. In compliance with this view, disease has an autonomous
existence and has its roots in something like a seed. The disease grows
like plants grow and this kind of growing can be regarded as the clinical
tenor of a disease. Second, disease can be regarded as a consequence of a
disorganization of the organism and the organism’s functional and structural
components. ([18], p. 6, 7, see also [8].)

In an approach similar to that of these models and interpretations of them,
Kazem Sadegh-Zadeh, a former associate of Rothschuh in Münster, Germany,
combined notions of disease. By observing linguistic and social backgrounds,
he introduced potential candidates for diseases – complex “human conditions”
like heart attack, apoplexia, cancer, etc...

A declaration like “a heart attack is a disease” is well known in common
language usage. Other conditions, known in society as diseases, are now
taken to approximate the notion of disease. These conditions do not merely
arise from the biological state of the body. They may, as well, be described
as large fuzzy sets that contain many different aspects of the sick person’s
environment, including religion and society. Conditions that can be described
as “pain,” “distress” or “a feeling of loneliness” may also be regarded as aspects.

To establish a definition as a whole, one has to take a set of human con-
ditions (D) with its corresponding criteria (C ) into account. Following rules
are prescribed:

1. Every element that is member of the basic set {D1, D2, ..., Dn} is a disease
and

2. Every element that is similar to a disease with respect to the criteria
{C1, C2, ..., Cn} is a disease.

The first declaration seems to be clear. However, the second one poses a
problem, because similarity has to be described. For this reason, the fuzzy
set difference of two fuzzy sets A and B – differ(A, B) – is introduced as a
starting point that is calculated as follows:

differ(A, B) =
∑

i max(0, μA(xi)− μB(xi)) +
∑

i max(0, μB(xi)− μA(xi))
c(A ∪B)

(15.1)
C, stated in the denominator, is the sum of the membership values of the
corresponding fuzzy set (fuzzy set count). For instance, there is a fuzzy set
X with X = {(x, 0.6), (y, 0.9)}, c(X) will be calculated as: 0.6 + 0.9 = 1.5.
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Back to the fuzzy difference: Let’s assume that there is a fuzzy set Y with
Y = {(x, 0.7), (y, 0.4)}. The fuzzy-difference differ(X, Y ) is calculated as

(0+0.5)+(0.1+0)
1.6 = 0.375.

X differs from Y to a degree of 0.375.
The similarity of two fuzzy sets results from the inversion of the fuzzy

difference. According to the example above, similarity would be given as:
1− 0.375 = 0.625.

In order to avoid comparing apples and oranges, descriptions of similarity
should be reduced to assimilable subsets. For example, one raises the question
of how similar the two diseases Di and Dj are by considering a few criteria
{C1, C2, ..., Cm}.

Let’s assume A to be a fuzzy set of arbitrary dimension and X as a part of
this set; so A\X . Human conditions, like a heart attack and a stomach ulcer,
can be arranged according to their assimilable criteria {C1, C2, ..., Cm}:
• heart_attack\ {(C1, a1), (C2, a2), ..., (Cm, am)}
• stomach_ulcer\ {(C1, b1), (C2, b2), ..., (Cm, bm)}
• heart_attack\ {(bodily_lesion, 1), (pain, 0.7), (distress, 0.8)}
• stomach_ulcer\ {(bodily_lesion, 1), (pain, 0.3), (distress, 0.5)}
To calculate similarities between fuzzy sets, the following theorem is used:

Theorem : similar(A, B) =
c(A ∩B)
c(A ∪B)

(15.2)

Similar comparisons include several degrees of partial (p) similarity, symbol-
ized as p-similar(A\X, B\Y ), under the terms of the following definition:

p-similar(A\X, B\Y ) = r, if similar(X, Y ) = r

According to the example above and using the theorem stated above, this
would mean:

p-similar(heart_ attack\X , stomach_ulcer\Y ) = 0.72.

Assuming that {D1, ..., Dn} would be a small set of human conditions, be-
cause of a set of criteria {C1, ..., Cn} which these conditions have in common.
Each of these conditions is interpreted in a certain society as a disease. For
this society there is an agreement of degree ε of partial similarity. This degree
is a pillar of this society’s concept of disease:

1. Every element in the basic set {D1, ..., Dn} is a disease,
2. A human condition H\X is a disease, if there is a disease Di\Y ∈
{D1, ..., Dn} and there is ε > 0, so that p-similar(H\X, Di\Y ) ≥ ε

Granted, that there is the criteria set

• heart_attack\ {(C1, 1), (C2, 0.7), (C3, 0.8)}
as an element in basic set {D1, ..., Dn} and therefore a disease by definition.
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The question of whether something that is not contained in the basic set
{D1, ..., Dn}, like hemorrhoids, could be identified as a disease is decided by
the degree ε of partial similarity. For example, ε = 0.6 is asked and there is
a human condition like:

• hemorrhoids\ {(C1, 0.9), (C2, 0.2), (C3, 0.55)},
the result is:

p-similar(hemorrhoids\X, heart_attack\Y ) = 0.66

Since 0.66>0.6 hemorrhoids can be described as a disease.
According to this definition a proper choice of ε is essential: The smaller

the ε chosen, the larger number of diseases there will be and vice versa.
However, the value of ε is not chosen by the doctor, but by society.

In any case, this concept of disease is a notion that can be comprised in
binary logic, because there is an explicit difference between states that are
consistent with a disease and states that are not. Therefore, Sadegh-Zadeh
expands this concept of disease to a notion of “Disease to a certain degree.”
This can be achieved by the definition as follows:

Let’s assume H to be a small set of human conditions. A fuzzy set D over
H is considered to be a set of diseases only if there is a subset {D1, ..., Dn}
of H and there is a function μD so that:

μD : H → [0, 1] with μD(Hi\X) =

• 1, if Hi\X ∈ {D1, ..., Dn}, called prototype disease
• ε ,if there is a prototype disease Hj\Y with p-similar(Hi\X, Hj\Y ) = ε

and there is no prototype disease Hk\Z with p-similar(Hi\X, Hk\Z) > ε
and D = {(Hi, μD(Hi))|Hi ∈ H}.

In this expanded definition a fuzzy set of following kind is created:
D = {(D1, μD(D1)), ..., (Dq, μD(Dq))}, which consists of individual

archetypes of diseases, which are all members of the set D to different
degrees.
The membership-degree μD(Di) is of interval [0,1].

These new findings are now applied to the example of hemorrhoids:

• hemorrhoids\ {(C1, 0.9), (C2, 0.2), (C3, 0.55)}.
These criteria are compared with a prototype disease. The already known
set heart_attack is called into the equation:

• heart_attack\ {(C1, 1), (C2, 0.7), (C3, 0.8)}
Drawing a comparison shows that hemorrhoids may be considered as a disease
to a degree of 0.66. Accepting another individual with another set,

• hemorrhoids\ {(C1, 0.2), (C2, 0.1), (C3, 0.1)},
and taking this individual in comparison to heart_attack would result in a
membership of degree 0.16 to the set of diseases.
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From this, we conclude that a person may have a disease to a certain
degree and that this person may have no disease to a certain degree at the
same time. [20], [9].

15.4 Implementation of Fuzzy Disease
15.4.1 Motivation
The software has been constructed on the basis of the idea of defining dis-
eases using fuzzy sets. By making requests of membership degrees of certain
symptoms, similarities to existing diseases are calculated and decisions will
be made on whether an entered group of symptoms provides an indication of
the existence of a disease. Moreover, it should be possible to make requests
of new prototype diseases and symptoms and to modify them.

15.4.2 Description of the Database

Each entry in the entity symptom-list consists of an ID of disease, an ID of
symptom and the corresponding fuzzy set. Due to this database architecture,
the database is easy to modify and very stable.

By way of demonstration, nine symptoms and twelve diseases with cer-
tain membership degrees are already stored in the database. Some of the
diseases and their fuzzy sets was gathered directly from proposals of Kazem
Sadegh-Zadeh. Other diseases and membership degrees were acquired in col-
laboration with an internist.

The following symptoms are stored: pain, distress, lesion, coryza (cold),
cough, fever, dyspnea (breathlessness), nausea, dizziness.

Acting prototype-diseases are heart attack, apoplexia, stomach ulcer,
fevered cold, influenza, asthma, cholecystitis, renal colic, gout, migraine, di-
verticulitis, zoster.

The following two tables (Table 15.1, Table 15.2) provide a summary of
already stored diseases, symptoms and membership degrees.

Table 15.1. First synoptical table, showing stored symptoms, diseases and degrees
of membership

Heart
attack

Appoplexia Stomach
ulcer

Fevered
cold

Influenza Asthma

Pain 0.7 0.3 0.3 0.2 0.8 0
Distress 0.8 0.6 0.5 0.4 1 1
Lesion 1 1 1 0.2 0.8 0.3
Coryza 0 0 0 0.9 0.3 0.1
Cough 0 0 0 0.7 0.5 0.2
Fever 0 0 0 0.4 0.9 0
Dyspnea 0.5 0 0 0 0.2 1
Nausea 0.3 0.2 0.5 0.2 0.2 0.1
Dizziness 0.1 0.3 0 0.1 0.4 0.2
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Table 15.2. Second synoptical table, showing stored symptoms, diseases and
degrees of membership

Cholecystitis Renal
colic

Gout Migraine Diverticulitis Zoster

Pain 0.9 1 1 0.9 0.7 0.8
Distress 0.9 1 0.8 0.9 0.8 0.5
Lesion 0.8 0.5 0.3 0.1 0.5 0.3
Coryza 0 0 0 0 0 0
Cough 0 0 0 0 0 0
Fever 0 0 0 0 0.7 0.2
Dyspnea 0 0 0 0 0 0
Nausea 0.8 0.8 0.3 0.5 0.3 0.8
Dizziness 0.2 0.2 0 0.3 0 0

15.4.3 Description of the Program Surface

In the main menu (Fig. 15.4), all stored prototype diseases with their mem-
bership degrees of certain symptoms are listed. All symptoms are listed ac-
cording to their membership degrees. The symptom with highest membership
degree is placed first, at the left, and the symptom with lowest membership
degree is placed last, at the right.

The program offers users following options:

• Users may calculate similarities. Here, they would click the button “Simi-
larity Calculation”.

Fig. 15.4. Program – Main menu
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Fig. 15.5. Form of calculation of similarities – Input

• They may enter a new prototype disease. To do this, they must click the
button “New Prototype Disease”.

• It is possible for users to edit the already stored prototype diseases. To
proceed with this option, a user marks a disease included in the list of pro-
totype diseases that is to be edited and clicks the button “Edit Prototype
Disease”.

• Via button “Symptom List”, all stored symptoms may be viewed and new
symptoms may be stored.

If a user chooses “Similarity Calculation”, the input form of calculation of
similarities is called up (see Fig. 15.5).

In this form, the user can declare membership degrees of certain symp-
toms. All the symptoms stored in the database are itemized in a list. If the
user wishes to declare the membership degree of a certain symptom, he/she
selects this symptom and declares the membership degree by using the reg-
ulator. The idea of using a regulator was influenced by the physician’s use
of pain scales. The selected symptom and its current regulated membership
degree can be viewed in a selection-button. Once the regulator points to the
correct degree, the user clicks the selection-button and the symptom and its
corresponding membership degree is taken into the symptom-group table. If
the table contains all symptoms, for which the user wants to make decla-
rations, he/she clicks the button “Calculate!” and is then forwarded to the
form of analysis.

Now, the similarity between the given symptom group and existing proto-
type diseases is calculated. The calculation is based on the formula used by
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Fig. 15.6. Form of calculation of similarities – Input

Kazem Sadegh-Zadeh to calculate (partial) similarities between two symptom
groups that was introduced as a theorem in (15.2).

The form that follows (see Fig. 15.6) lists all prototype diseases and their
respective similarity to the given symptom-group in a table. The table entries
are sorted according to similarity, descending from top to bottom. Thus, the
most similar prototype disease is listed at the top and this value of highest
similarity serves as the reference value. In compliance with Sadegh-Zadeh,
a particular society defines a degree ε that determines to what extent and
whether a symptom-group alludes to a disease.

This ε-value is preset at 0.6 and may be changed using the ε-regulator.
If ε falls under the value 0.5, the user is warned of the fact that the chosen
value is very small and therefore many symptom-groups might be treated as
diseases. However, they can keep the ε-value, due to the generally known
fact that ε just simply means greater than 0.0 and can reach a value of 1.0
at most.

The preset ε-value is compared with the reference value, the highest value
of similarity. If the value of ε is higher than the reference value or is, at least,
equal to this value, the conclusion is drawn that the given group of symptoms
can be treated as a disease to an extent of the degree ε. [9]

15.4.4 Results of Fuzzy Health, Fuzzy Illness and
Fuzzy Disease

So far, we have constructed new ideas of what health is and how to describe
diseases. But we have not shown why we need such definitions apart from the
philosophical aspect: To provide a definition so that there is a definition is just
one reason. Having analyzed the concept of a disease in a fuzzy-theoretical
way, we are able to give information regarding how diseased a person is and
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that reflects patients’ actual desire: in the real world, patients who feel sick
and call a doctor do not want to know whether they are diseased or not and
they do not want to hear a possible diagnosis in the technical language used
by physicians – patients normally would not understand this in any case.
What they really want to know is to what degree and thus how seriously
they are diseased. This is also what employees of an emergency medical
service want to know: When they answer an emergency call, they are not
interested in the diagnosis of a potential disease, but need to determine how
serious the caller’s affliction is and in the end whether they should dispatch an
ambulance or not. An idea would be that the employee consults software that
gives information about the seriousness of a given set of symptoms. We have
already introduced the first stages of such software and are, moreover, able to
demonstrate – using this software – that calculating similarities with a fuzzy
definition of a disease also allows for differences between very similar diseases.
An example would be influenza and fevered cold. They share the same set
of symptoms; they differ only in the varying degrees of the symptoms. An
ambulance would be sent if the clinical picture is similar to influenza.

This issue gives rise to another aspect of the definition of diseases: the
classification of diseases. Sadegh-Zadeh also introduced theories about this
aspect, but for this purpose we first of all need to make a detour to Bart
Kosko’s hypercube.

15.5 The Fuzzy Hypercube

The first presentation of the history of the theory of fuzzy sets and systems
was published in [25]. A very interesting aspect of the history of fuzzy math-
ematics that is not covered in [25] is Bart Kosko’s work on fuzzy sets as
points in a hypercube. Kosko developed this theory in the 1980s during his
graduate studies in electrical engineering of the University of California at
Irvine and in 1987 he received a Ph.D. in electrical engineering based on fuzzy
systems. In the mid-eighties he wrote several papers on his results and later
he also published some successful books, but we will confine our very brief
presentation of the fuzzy hypercube to Kosko’s article [6]. There, Kosko seeks
to oppose this concept of the fuzzy hypercube to Zadeh’s “sets-as-functions
definition of fuzzy sets” ([6], p. 216.).

He argues that this interpretation of “fuzzy sets as membership functions,
mappings A from domain X to range [0,1]” is “hard to visualize. Membership
functions are often pictured as two-dimensional graphs, with the domain X
misleadingly represented as one-dimensional. The geometry of fuzzy sets
involves both the domain X = {x1, ..., xn} and the range [0,1] of mappings
μAX → [0, 1]. The geometry of fuzzy sets is a great aid in understanding
fuzziness, defining fuzzy concepts, and proving fuzzy theorems. Visualizing
this geometry may by itself be the most powerful argument for fuzziness.”

The geometry of fuzzy sets is revealed by asking an odd question: What
does the fuzzy power set F (2X), the set of all fuzzy subsets of X, look like?
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Fig. 15.7. Left: The 3-dimensional cube I3, right: Point (0.5, 0.4, 0.7) in 3-
dimensional cube. ([21], p. 11, 12.)

His answer is: a cube. What does a fuzzy set look like? A point in a cube.
The set of all fuzzy subsets is the unit hypercube In = [0, 1]n. A fuzzy set is
a point in the cube In.” [6], p. 216.) For an illustration see Fig. 15.7.

Vertices of the cube In are nonfuzzy sets. So the ordinary power set 2X ,
the set of all 2n nonfuzzy subsets of X, is the Boolean n-cube Bn : 2X = Bn.
Fuzzy sets fill in the lattice Bn to produce the solid cube In : F (2X) = In.

Therefore, fuzzy set A = {(x1, a1), ..., (xn, an)} is represented by the n-
dimensional vector (a1, . . . , an) and all ai are elements in [0,1]. Consequently,
A is a point in the n-dimensional unit hypercube [0,1] n.

For i = 3 one could display A in a 3-dimensional cube (with 23 = 8 vertices).
For example, considering the fuzzy set A as {(x1, 0.5), (x2, 0.4), (x3, 0.7)}. Ac-
cording to the coordinate axes x1, x2, x3, A would be a point (0.5, 0.4, 0.7) in
the 3-dimensional hypercube (see Fig. 15.7, right).

15.6 Fuzzy Diseases in the Hypercube

As has already been demonstrated, diseases can be classified by a set of
symptoms. In medicine, the study of the classification of diseases is called
nosology. Conventional nosological systems classify a disease by cause (etiol-
ogy), by the genesis and development of the disease (pathogenesis) or by the
diseases’ symptoms.

Today, the most common system is the International Classification of Dis-
eases (ICD), which is also a billing system and classifies causes of death. [27]

However, as Sadegh-Zadeh argues, these conventional nosological systems
pose problems and are in need of improvement. He demands from nosolog-
ical systems not only the provision of a database of classified diseases, but
also a clinical diagnosis. But due to the fact that diseases are sets of symp-
toms that often go along with uncertainty, a one-dimensional system is not
able to solve this problem, since diseases with n-dimensional sets cannot be
compared in only one dimension. And this is the point where the hypercube
comes into play: Considering a disease with a set of criteria of length n, this
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disease may be converted into a vector of length n and therefore displayed in
the hypercube. Another disease with assimilable criteria can be displayed in
the same hypercube and thus, these diseases are not only classified but also
comparable through their distance. The sets’ Hamming and Euclidean dis-
tances can be easily determined. In doing so, one is able to make statements
about relationships to other diseases and possible diagnosis. This could also
be an advantage if a disease is unknown. Moreover, it is possible to display
the development of a disease in the hypercube. Every point in the hypercube
would be the disease at a particular time and the effects of therapies, for
example, could be reproduced [19].

According to the director of the National Institute of Environmental Health
Sciences Kenneth Olden “diseases are caused by multi-factorial interactions
of genes and environment” [11]. Let’s conjure up the definition of diseases
that Rothschuh claimed: Diseases are based on seeds. One may assume that
seeds grow better if there is fertilizer and if seeds are planted in the right
kind of soil. The fertilizer can be compared to the environmental influence
and the soil, as a living material, can be compared with the human body and
therefore its genes. Now, it is time for a basic survey or rather a definition
of genes.

15.7 Genes and Fuzzy Sets

15.7.1 Definition of Genes – A Genesis

On June 27, 1994, Bill Gates, one of the founders of the Microsoft Corpora-
tion, was quoted in Business Week as saying, “The gene is by far the most
sophisticated program around” and in the Stanford Encyclopedia of Philoso-
phy the molecular biologist and historian of science Hans-Jörg Rheinberger
declared inter alia: “There has never been a generally accepted definition of
the ’gene’ in genetics. There exist several, different accounts of the historical
development and diversification of the gene concept as well. Today, along
with the completion of the human genome sequence and the beginning of
what has been called the era of postgenomics, genetics is again experiencing
a time of conceptual change, voices even being raised to abandon the concept
of the gene altogether.” In this paper, the concept of genes will not be aban-
doned. Instead of doing so, we now will present some of the milestones in the
discovery of what we nowadays call a gene. Thereby, it will become obvious
that the detection and definition of a gene is what the word family of gene
already suggests: a genesis. This subsection concerned with the definition
and history of the gene is primarily based on the work of the historian of
science E. P. Fischer [3] and H.- J. Rheinberger [14].

When Gregor Mendel (1822-1884) examined the heredity of peas and for-
mulated the laws of inheritance in 1865, he was the first person to suggest
that there are factors that are passed from parents to descendants. He called
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these factors elements and these elements were considered to be measurable
qualities.

In 1868, Charles Darwin (1809-1882) called these hereditary particles gem-
mules. Darwin thought that gemmules are formed and then enter the blood
stream to ultimately reach the gametes. Then, in the gametes the heredity of
acquired attributes is achieved. Since all parts of an organism participate in
this process, Hugo de Vries (1848-1935) formulated the concept of “pangenes.”

However, Rheinberger declares that “none of these scientists thought of
associating these particles with a particular hereditary substance. They all
thought that they consisted of the stuff that the body of the organism is
made of.” Consequently, none of these scientists thought of calling the par-
ticles or elements genes. The name ’gene’ was first formulated by Wilhelm
Johannsen (1857-1925) in 1909 (using the Greek word for gender). He wanted
the concept of a gene to be interpreted as the operand that serves all objects
involved in heredity. According to his definition, the notion of gene is an “ex-
act, experimental doctrine of heredity”. Thus, Johannsen declared that many
attributes of the organism are determined by specific and separable states and
bases, and these states and bases can be combined to form a notion of genes.

The evidence of the fact that genes may be transferred from one organism
to another organism was produced in 1928 by Frederick Griffith (1877-1941)
in the “Griffiths Experiment”.

In 1941 George Wells Beadle (1903-1989) and Edward Lawrie Tatum
(1909-1975) discovered that mutations in genes are responsible for defects
in metabolic pathways. These experiments led them to propose a direct link
between genes and enzymatic reactions, known as the “one gene, one enzyme”
hypothesis.

It was Oswald Avery (1913-1947), Colin Munro MacLeod (1909-1972) and
Maclyn McCarty (1901-2003) who discovered that DNA contains the genetic
information and accordingly that DNA is the material of which genes and
chromosomes are made. This conclusion was drawn in 1944 and in 1953
James D. Watson (born 1928) and Francis Crick (1916-2004) mapped the
structure of DNA, based on the findings of Rosalind Franklin (1920-1958).
In 1969 Jonathan Beckwith (born 1935) was able to isolate a single gene.

The history of the gene is quite voluminous, and therefore our presenta-
tion of milestones in this history will stop here. Rather, we will conclude
that the definition of the gene has always been changing according to the
latest findings in science. An example from the present day is a definition
of the gene formulated by the Sequence Ontology Consortium in 2006 as “a
locatable region of genomic sequence, corresponding to a unit of inheritance,
which is associated with regulatory regions, transcribed regions and/or other
functional sequence regions.” According to Karen Eilbeck, a coordinator of
the Sequence Ontology Consortium, it took 25 scientists nearly two days to
agree upon this definition of a gene [12]. Despite all the care taken by these 25
scientists, this was not an ultimate definition, since a newer one was worked
out in the ENCODE (ENCyclopedia Of DNA Elements) Project in 2007: “A
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gene is a union of genomic sequences encoding a coherent set of potentially
overlapping functional products” [5]. These examples demonstrate that the
definition of the gene is not definite and the latest definition already suggests
our next assumption: the fuzzy character of the gene [10].

15.7.2 Character of DNA and Fuzziness

All the genetic instructions for the development and functioning of living
organisms are contained in the DNA (as an exception, one has to mention
that there is a group of viruses that have RNA-genomes). The DNA is a
double helix made up of many units of nucleotides. A nucleotide consists of
a base, a sugar and one or more phosphate groups. In DNA, the backbone
consists of the phosphates and sugars and the purine and pyrimidine bases
adenine (A), guanine (G), cytosine (C) and thymine (T) are inward-looking.
A segment of DNA may code a protein. The genetic code describes the
relationship between the DNA sequence and the protein sequence. Only one
of the two strands of the DNA codes the protein.

A coded DNA sequence consists of many codons, which are read from a
certain starting point. Each codon consists of three nucleotides and encodes
for one amino acid. Indeed, the DNA of a gene contains all the information
needed for the synthesis of protein, but DNA is not the direct matrix for its
creation.

In fact, the genetic information of the DNA first has to be transcribed into
the base sequence of a single-stranded ribonucleic acid – the RNA, which con-
tains the sugar ribose and the base uracil (U) instead of 2-deoxyribose and
thymine. After other transformations, a working copy of the gene is achieved,
called messenger-RNA (mRNA). This mRNA describes a transportable in-
formation system for the synthesis of a specific protein [27], [7].

So far, we have described the genesis, the location and the composition of
a gene. Now, the reader might be interested in questions such as “How many
genes are in an individual’s organism?”, “How can bases be counted?” and
“How can one analyze given bases in order to recognize a disease?”

Although there are problems in finding a precise definition and in giving
an impression of the count of genes, definitions and the number of genes are
still important for humans in order to verify genetic predictions.

In 1995 Victor Velculescu developed a new technique called SAGE (serial
analysis of gene expression). First, RNA molecules are isolated and then their
sequence is transcribed to DNA. Finally, one receives a piece of 20 pairs of bases
from this copy ofDNA;with this piece the gene under consideration canbe iden-
tified [3].To compare and todeterminegenes, one consults a database that stores
information about already known sequences. The National Center for Biotech-
nology Information (NCBI) 2 offers a database that stores a collection of all
publicly available DNA sequences that can be used for comparisons.

2 http://www.ncbi.nlm.nih.gov/

http://www.ncbi.nlm.nih.gov/
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Comparing sequences is a difficult task and there are many different meth-
ods describing possibilities and algorithms. In public databases, genes are
stored as well-defined, crisp sets of bases. These well-defined crisp sets may
pose problems. The first problem is, what we have already demonstrated,
namely that a definition of a gene is rather complex and is still changing.
That fact brings us to the next problem: There are good reasons why taking
crisp sets for comparison sometimes may be inadequate or ill-advised, since
we may not be able to define the gene in a precise way.

According to Ernst Peter Fischer, who is a professor of the history of
science at the University of Constance, the concept of genes is fuzzy. If
one only takes the sequences of the genome into account, one also has to
recognize that genes are fuzzy entities. Fischer points out that there are
flanking sequences that do not necessarily belong to the specific gene, and
that there are sequences far away from the gene that have to be assigned to
this gene. Moreover, Fischer emphasizes that a gene does not have a fixed
place in a cell and that there are springing genes [2].

Let’s look at a few of these problems that Fischer has raised.

15.7.3 Springing Genes

Springing genes are so-called transposons. These transposons are sequences of
DNA that can move around to different positions within the genome. Nearly
45% of the entire genome belongs to this class, but there is also a large part
of the remaining DNA that surely emanated from the transposons. However,
these parts of DNA are so divergent that it is not possible to recognize this.
In the past, this DNA has been referred to as junk, but nowadays there are
more and more indications that the transposons are responsible for cells in
mammals [13].

This indicates to us that there are uncertain and changing structures in
our DNA that also play a determining role in organisms.

15.7.4 Widespread Sequences

In complex living systems, overlapping genes are rare. But in some cases
there are genes that are very close to each other. Therefore, it is possible
that there is shared regulation of the gene pair. Also, there are genes located
inside of other genes. This includes coding genes that are situated in non-
coding regions of other genes [13]. Consequently, we can see that it is not
obvious how to differentiate between coding and non-coding regions and that
the position and regulation of a gene is not definite.

As has already been suggested, there are good reasons for considering
the gene in a fuzzy-theoretical way. In the article “Fuzzy Genomes,” Sadegh-
Zadeh justifies the need of a fuzzy definition and demonstrates a way in which
this can be realized [21]. Furthermore, he developed a method to compare
fuzzy genomes.
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The next section presents a short summary of Sadegh-Zadeh’s fuzzy
genomes and another approach of sequence comparison by Angela Torres
and Juan J. Nieto [28] will also be briefly reviewed.

15.8 Fuzzy Genomes and Comparisons on Base
Sequences – Two Approaches

Both theories that will be presented are based on a fuzzy-theoretical definition
of the gene and particular attention is paid to comparison in order to identify
diseases.

15.8.1 Approach 1: Fuzzy Genomes by Sadegh-Zadeh

Having analyzed a human’s germplasm, one has to decide if a given section
of RNA is a disease, respectively, a special form of a disease, such as HIV.
Decisions on these cases are made by comparing known sequences of diseases
with the section of RNA. Therefore, Sadegh-Zadeh transforms DNA and RNA
into fuzzy sets. According to the “RNA alphabet” of the bases <U, C, A,
G>, U could be written as 1000, because the appearance of U is true and
there is no C, no A and no G. C could be written as 0100, A as 0010, G as
0001. So, an RNA sequence UACUGU can be transformed into the following
bit sequence: 1000001001001000 00011000.

To combine all possible appearances of a character in the alphabet, Sadegh-
Zadeh builds up a fuzzy-matrix. This matrix contains all bases, or rather
every character of the RNA alphabet and its membership in a given base
sequence.

Considering every single base when building up a matrix, there are two
points of interest:

1. What is the position of the base?
2. To what extent and accordingly what membership values do the bases

have?

For example, there is a RNA sequence UAC. Thus, the sequence consists of
three bases. The corresponding fuzzy-matrix would be:

Fuzzy_matrix (UAC)= <(U in 1,1), (C in 1,0), (A in 1,0), (G in 1,0)
(U in 2,0), (C in 2,0), (A in 2,1), (G in 2,0)
(U in 3,0), (C in 3,1), (A in 3,0), (G in 3,0)>

An example focusing on the first row: In UAC, U is in the first position.
Therefore, U has membership 1, at position 1 (write U in 1, 1), there is no
C at position 1, therefore C has membership 0 to the first position and the
same is true of A and G.

One has to point out that appearance or membership is not obliged to be
either 1 or 0. Membership may correspond to every value between 0 and 1.
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This could be the case if a base is defective and cannot be defined as belonging
to one single class or if there is uncertainty about the correct identification
of a piece of a sequence.

Having a (m x n)-matrix, one may build up the corresponding (m x n)-
vector with length n - thus, creating an n-dimensional vector.

Dealing with dimensions, Sadegh-Zadeh used Kosko’s hypercube in the
following way: A sequence of DNA or RNA is a point in a 4n-dimensional
hypercube. The 4n dimensions are determined by the fact that there are
four bases, thus m=4. Displaying a sequence as a point in an n-dimensional
hypercube depicts its order in comparison to any other sequence.

Differences and, consequently, similarities of two polynucleotides A and B
may be calculated in accordance with the definition of the difference, with
the formula (15.1), already introduced in the discussion of fuzzy disease or
as Hamming distances in the cube.

Analogously, similarity between sequences are calculated as the inverse of
the difference or as given as a theorem in (15.2).

A degree that determines the vagueness of a set is referred to as its fuzzy
entropy, denoted by Sadegh-Zadeh as ent, so that the hypercube is mapped
as follows:

ent : F (2ω) → [0, 1] (15.3)

Considering a set’s entropy, one is interested in determining the nearest and
the farthest set. Let’s assume that there is a set A = (0.2, 0.8, 0.6). Then the
nearest and farthest sets are given as: Anear = (0, 1, 1) and Afar = (1, 0, 0).
According to the hypercube, there is always a nearest and a farthest vertex
to A. Fuzzy entropy of any set A is defined as the ratio of the Hamming
distance from vertex Anear to Afar:

ent(A) =
l1(A, Anear)
l1(A, Afar)

(15.4)

Clarity, denoted as clar(A), is defined as the opposite of fuzzy entropy:

clar(A) = 1− ent(A) (15.5)

At the edges, clar(A) = 1 and in the center of the hypercube clar(A) = 0.
This indicates that real, that is, existing, polynucleotides like UAC have

an entropy of 0 and therefore a clarity of 1, whereas a fuzzy polynucleotide
is near and far from a real polynucleotide to a certain degree [21].

15.8.2 Approach 2: The Fuzzy Polynucleotide Space:
Basic Properties by Torres and Nieto

As this approach is partially similar to the approach just presented, only the
common bases and the differences will be described.
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Table 15.3. Table of fractions of sequence CAU UGU

Position Count of nucleotides Fractions
U C A G Sum U C A G

1 1 1 0 0 2 0.5 0.5 0 0
2 0 0 1 1 2 0 0 0.5 0.5
3 2 0 0 0 2 1 0 0 0

Torres and Nieto’s approach is based on Sadegh-Zadeh’s approach; a 12-
dimensional hypercube and the RNA-alphabet are also taken into consider-
ation. The main difference between their theory and Sadegh-Zadeh’s results
from the fact that Torres and Nieto do not generalize the 12 dimension to n
dimensions. Instead of doing this, they leave it at 12 dimensions and compare
genes by frequency of occurrence of a certain base.

In a given sequence there are four bases – U, C, A and G – and three of
these bases constitute a codon. A sequence is now characterized on the basis
of the frequency of every single base at any position in every codon.

For example, we consider a sequence such as: UACUGA. The codons would
be given as codon1: UAC and codon2: UGA. With respect to U, we would
conclude that U occurs at position 1 in codon1 and also, U occurs at position
1 in codon2. All in all, U occurs twice in the whole sequence at position 1.
Thus, the fraction of U in the first base is calculated as 2/2 = 1 = 100%. By
applying this method to every base, 3*4 = 12 fractions will be calculated,
since there are 3 positions in a codon and 4 possible bases. The following
table (Table 15.3) shows the fractions of a sequence S1 that would be given,
for example, as: S1 = CAUUGU.

After calculating the fractions of a base, a vector of fractions with length
= 12 remains and stands for the whole sequence.

In the above example, the sequence S1 with CAU UGU would result in a
vector V1 = {0.5, 0.5, 0, 0, 0, 0, 0.5, 0.5, 1, 0, 0, 0}.

In order to compare a sequence with another sequence, the sequences’
vectors of fractions are considered and the similarity between these sequences
is calculated as:

sim(A, B) = c(A ∨B)/C (15.6)

with
C =

(
a1 + b1

2
, ...,

an + bn

2

)
(15.7)

The difference between sequences is given as:

dif(A, B) = 1− sim(A, B) (15.8)

Torres and Nieto conclude that:

• sim(A, B) �= similar(A, B)
• dif(A, B) �= differ(A, B)



342 15 Fuzzy Set Theory and the Philosophical Foundations of Medicine

Every sequence of bases can be compared with every other sequence, by
comparing the 12 fractions of the sequences, whether they are of the same
length or not [28].

15.9 Annotations and Future Aspects

There is seemingly a shortcoming in Sadegh-Zadeh’s theory because se-
quences can only be compared if they are of the same length. This might
have been the motivation for Torres and Nieto’s approach in which they stop
at 12 dimensions. But we recommend not discriminating against Sadegh-
Zadeh’s ideas due to Torres and Nieto’s approach: Dealing with sequences
that are not of the same length is a common problem in bioinformatics and
there are well-known potential solutions using sequence alignment. However,
there is a need to examine Torres and Nieto’s approach, because it is possible
to reach similarity of degree 1 comparing two apparently completely different
sequences such as S1 = CAG AUG GGA and S2 = GGU CUG AAA.

Calculation of similarity will result in 1 and this result is clearly not obvi-
ous; that might be a reason why this approach only shows a way of presorting
sequences. But we also recommend not passing final judgment on this theory
without further examination – in possible future work.

In his latest article [22] Sadegh-Zadeh presents a new view of his philo-
sophical thinking on fuzzy health, illness and disease. In this article he calls
his theory, The Prototype Resemblance Theory of Disease and he combines
his „fuzzy philosophy of medicine” with the linguistic „prototype theory” of
Eleanor Rosch [15], [16], [17] and Ludwig Wittgenstein’s concept of family
resemblances in his Philosophical Investigations [32]. We would like to point
out that we consider this theory to be closely related to the so-called „fuzzy
structuralist view of scientific theories” that is introduced in Fuzzy Sets and
Systems and Philosophy of Science by Rudolf Seising in the present volume.
When Sadegh-Zadeh introduces in [22] the concept of a „fuzzy prototype re-
semblance frame” to create his Prototype Resemblance Theory of Disease, he
uses the frameworks of the theory of fuzzy sets and systems and the struc-
turalist approach to the philosophy of science.
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Chapter 16
Fuzzy Preferences as a Convenient Tool
in Group Decision Making
and a Remedy for Voting Paradoxes

Janusz Kacprzyk, Sławomir Zadrożny, Hannu Nurmi,
and Mario Fedrizzi

16.1 Introduction

In this section we will first discuss the very essence of group decision making and
how fuzzy preferences can help alleviate some inherent difficulties and make models
more realistic. Then, we will briefly present some tools to be used, notably how to
deal with linguistically quantified statements, and with a linguistic quantifier driven
aggregation.

Decision making in real world usually proceeds under multiple criteria, decision-
makers, dynamics, etc. Here we consider group decision making, and voting, under
some fuzzification of preferences. We assume a set of individuals who provide their
testimonies assumed to be preferences over the set of alternatives. The problem is to
find a solution, i.e. an alternative (or a set of alternatives) which is best acceptable
by the group of individuals as a whole. For some approaches involving choice sets
or utility functions, cf., e.g., Kim [42], Salles [59], etc.

Since its very beginning group decision making has been plagued by negative
results, essentially boiling down to that no “rational” choice procedure satisfies all
“natural”, or plausible, requirements; cf. the so-called Arrow’s impossibility the-
orem (cf. Arrow [2] or Kelly [40]). This general drawback applies to all possible
choice procedures, so that attempts to develop new, more sophisticated choice pro-
cedures do not seem very promising, and more promising seems to be to modify
some underlying assumptions – cf. Nurmi [50].

A notable research direction is here based on an individual and social fuzzy pref-
erence relation. Suppose that we have a set of n ≥ 2 alternatives, S = {s1, . . . ,sn},
and a set of m ≥ 2 individuals, E = {1, . . . ,m}. Then, an individual’s k ∈ E indi-
vidual fuzzy preference relation in S× S assigns a value in the unit interval for the
preference of one alternative over another. For conditions to be satisfied by such
relations, see, e.g., Salles [59], Fodor and Roubens’ [16].

In this paper we assume that the individual and social fuzzy preference rela-
tions are defined in S× S, i.e. assign to each pair of alternatives a strength of

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 345–360.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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preference of one over another as a value from [0,1]. The fuzzy preferences will
be employed instrumentally, and we will not discuss them and their properties in
more detail.

Another basic element underlying group decision making is the concept of a
majority – notice that a solution is to be an alternative(or alternatives) best accept-
able by the group as a whole, that is by (at least!) most of its members since in
practically no real nontrivial situation it would be accepted by all. We will not dis-
cuss here the fuzzification of majority, and for more information on this very rel-
evant topic we refer the reader to our papers: Fedrizzi, Kacprzyk and Nurmi [12],
Kacprzyk [20, 21, 22, 23], Kacprzyk, Fedrizzi and Nurmi [30, 31, 34], Kacprzyk
and Zadrożny [36, 38], etc.

16.2 Group Decision Making under Fuzzy Preferences: Basic
Issues

Group decision making (equated here with social choice) proceeds in the following
setting. We have a set of n ≥ 2 alternatives, S = {s1, . . . ,sn}, and a set of m ≥ 2
individuals, E = {1, . . . ,m}. Each individual k ∈ E provides his or her testimony
as to the alternatives in S, assumed to be individual fuzzy preference relations de-
fined over S (i.e. in S× S). Fuzzy preference relations are employed to reflect an
omnipresent fact that the preferences may be not clear-cut so that conventional non-
fuzzy preference relations may be not adequate (see, e.g., many articles in Kacprzyk
and Roubens [35] or Kacprzyk, Nurmi and Fedrizzi [33]).

An individual fuzzy preference relation of individual k, Rk, is given by its mem-
bership function µRk : S×S−→ [0,1] such that

µRk(si,s j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if si is definitely preferred to s j

c ∈ (0.5,1) if si is slightly preferred to s j

0.5 in the case of indifference
d ∈ (0,0.5) if s j is slightly preferred to si

0 if s j is definitely preferred to si

(16.1)

If cardS is small enough (as assumed here), an individual fuzzy preference relation
of individual k, Rk, may conveniently be represented by an n× n matrix Rk = [rk

i j],
such that rk

i j = µRk(si,s j); i, j = 1, . . . ,n; k = 1, . . . ,m. Rk is commonly assumed (also

here) to be reciprocal in that rk
i j + rk

ji = 1; moreover, it is also normally assumed that

rk
ii = 0, for all i,k. Notice that we do not mention here other properties of (individ-

ual) fuzzy preference relations which are often discussed (cf. Salles [59]) but which
will not be relevant to our discussion. Moreover, we will not use here a more so-
phisticated concept of a fuzzy preference systems proposed by, for instance, Fodor
and Roubens [16]. The reasoning is in this case principally the same.

Basically, to derive group decision making solutions, two lines of reasoning may
be followed here (cf. Kacprzyk [20] – [25]):
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• a direct approach: {R1, . . . ,Rm} −→ solution, that is, a solution is derived di-
rectly (without any intermediate steps) just from the set of individual fuzzy pref-
erence relations, and

• an indirect approach: {R1, . . . ,Rm} −→ R −→ solution, that is, from the set of
individual fuzzy preference relations we form first a social fuzzy preference re-
lation, R (to be defined later), which is then used to find a solution.

A solution is here, unfortunately, not clearly understood – see, e.g., Nurmi [46] –
[50] for diverse solution concepts; some further analysis is also given in Nurmi and
Kacprzyk [56].

In this paper we will only sketch the derivation of some more popular solution
concepts, and this will show to the reader not only the essence of the particular
solution concept but how a fuzzification may be performed so that the reader can
eventually fuzzify other crisp solution concepts that may be found in the literature.
More specifically, we will show the derivation of some fuzzy cores and minimax sets
for the direct approach, and some fuzzy consensus winners for the indirect approach.
In addition to fuzzy preference relations, which are usually employed, also here, a
fuzzy majority represented by a linguistic quantifier can also be employed but we
will not use it here.

16.3 Group Decision Making under Fuzzy Preferences:
Solutions

In this section we will only assume that we have individual fuzzy preferences and a
non-fuzzy majority. We will present some solution concepts that are derived using
the above mentioned direct and indirect approach, i.e. directly from individual fuzzy
preference relations or via a social preference relation.

16.3.1 Solutions Based on Individual Fuzzy Preference Relations

Let us first consider solution concepts that do not require any preference aggregation
at all, not assuming for the moment that the preferences are fuzzy. One of the best
solution concepts is that of a core or a set of undominated alternatives. Suppose that
the nonfuzzy required majority be r (e.g., at least 50 %).

We have now some definitions.
An alternative x ∈ S belongs to the core if and only if there is no other alternative

y ∈ S that defeats x by the required majority r.
We can extend the notion of a core to cover fuzzy individual preference relations

by defining a fuzzy α-core as follows (cf. Nurmi [46]):

An alternative si ∈ S belongs to the fuzzy α-core Sα if and only if there exists no
other alternative s j ∈ S such that r ji > α for at least r individuals.
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Clearly, for any α1,α2 ∈ (0,1], α1 < α2, we have:

Sα1 ⊆ Sα2

The intuition behind the fuzzy α-core is obvious: an alternative belongs to Sα if and
only if a sufficient majority of voters does not feel strongly enough against it.

Another nonfuzzy solution concept with much intuitive appeal is a minimax set.
In a nonfuzzy setting it is defined as follows:

For each x,y ∈ S denote the number of individuals preferring x to y by n(x,y).
Then define v(x) = maxy n(y,x) and n∗= minx v(x). Now the minimax set is

Q(n∗) = {x | v(x) = n∗}

Thus, Q(n∗) consists of those alternatives that in pairwise comparison with any
other alternative are defeated by no more than n∗ votes. Obviously, in our setting,
if n∗ < m/2 , where m is the number of individuals, then Q(n∗) is singleton and
x ∈ Q(n∗) is the core if the simple majority rule is being applied.

Analogously, in the case of fuzzy preference relations we can define a minimax
degree set Q(β) as follows. Given si,s j ∈ S and let, for individuals k = 1, . . . ,m:
vk

D(x j) = maxi ri j , vD(x j) = maxk vk
D(x j), and min j vD(x j) = β. Then

Q(β) = {x j | vD(x j) = β}

For properties of the minimax degree set, cf. Nurmi [46] – [48].
Another concept that is analogous to the nonfuzzy minimax set is a minimax

opposition set, Q(v f ). Let ni j be the number of those individuals for whom ri j > r ji

and let v f (x j) = maxi ni j. Denote by v̄ f the minimum of v f (x j) with respect to j, i.e.
v̄ f = min j v f (x j). Then:

Q(v f ) = {x j | v f (x j) = v̄ f }.

But, clearly, Q(v f ) = Q(n∗) since ri j > r ji implies that the individual prefers xi to
x j. Similarly, the preference of xi over x j implies that ri j > r ji. Consequently, the
minimax opposition set does not take into account the intensity of preferences as
expressed in the individual preference relation matrices.

A more general solution concept, an α-minimax set (cf. Nurmi [46]), Qα(vαf ), is
defined as follows. Let nα(xi,x j) be the number of individuals for whom ri j ≤ α
for some value of α ∈ [0,0.5). We now define ∀xi ∈ S : vαf (xi) = max j nα(xi,x j) and
v̄αf = mini vαf (xi). Then

Qα(vαf ) = {xi | vαf (xi) = v̄αf }
It can be shown that

Qα(vαf )⊆ Q(n∗)
and details can be found in Nurmi [46].
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Fuzzy Tournaments

One purpose of studying fuzzy tournaments is to overcome the difficulties inherent
in the conventional solution concepts, namely that they tend to produce too large
solution sets and are therefore not decisive enough. Another purpose is to apply
analogues of the nonfuzzy solutions to contexts where the opinions of individuals
can be represented by more general constructs than just connected and transitive
preference relations (cf., e.g., [35]).

Let us take a look at a few solution concepts of nonfuzzy tournaments, mostly
those proposed by Nurmi and Kacprzyk [54].

Given the alternative set S, a tournament P on S is a complete and asymmetric
relation on S.

When S is of small cardinality, P can be expressed as a matrix [pi j], pi j ∈ {0,1}
so that pi j = 1 if the alternative represented by row i is preferred to that represented
by column j, and pi j = 0 if the alternative represented by column j is preferred to
that represented by row i.

Suppose that each individual has a complete, transitive and asymmetric prefer-
ence relation over S, and that the number of individuals is odd. Then a tournament
can be constructed through pairwise comparisons of alternatives. In the ensuing
tournament alternative si is preferred to s j if and only if the number of individuals
preferring the former to the latter is larger than the number of individuals preferring
s j to si.

Perhaps the best-known solution concept of tournaments is the Condorcet winner.
The Condorcet winner is an alternative which is preferred in the tournament to

all other alternatives, i.e., is preferred to all other alternatives by a majority of in-
dividuals. The main problem with this solution concept is that it does not always
exist.

The Copeland winning set UCC consists of those alternatives that have the largest
number of 1s in their corresponding rows in the tournament matrix.

In other words, the Copeland winners defeat more alternatives than any other
alternatives do.

The uncovered set is defined by means of a binary relation of covering. An alter-
native si covers another alternative s j if and only if si defeats s j and everything that
s j defeats. The uncovered set consists of those alternatives that are covered by no
alternatives.

The Banks set is the set of end-points of Banks chains. Starting from any alter-
native si the Banks chain is constructed as follows. First one looks for an alternative
that defeats si. Suppose that such an alternative exists and is s j (if one does not exist,
then of course si is the Condorcet winner). Next one looks for another alternative
that defeats both si and s j, etc. Eventually, no alternative can be found that would de-
feat all previous ones in the chain starting from si. The last alternative which defeats
all previous ones is the end-point of the Banks chain starting from si. The Banks set
is then the set of all those end points.
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The following relationships hold between the above mentioned solutions (cf. [50]):

• all solutions converge to the Condorcet winner when one exists,
• the uncovered set includes the Copeland winning set and the Banks set,
• when S contains less than 7 elements, the uncovered set and the Banks set coin-

cide, and
• when the cardinality of S exceeds 12, the Banks set and the Copeland winning

set may be distinct; however, they both always belong to the uncovered set.

Given a group E of m individuals, a collective fuzzy tournament F = [ri j] can be
obtained through pairwise comparisons of alternatives so that

ri j =
card{k ∈ E | siPks j}

m

where Pk is a nonfuzzy tournament representing the preferences of individual k.
Let us now define a strong fuzzy covering relation CS ⊂ S×S as follows

∀i, j, l ∈ {1, . . . ,n} : siCSs j ⇔ ril ≥ r jl & ri j > r ji

Clearly, the strong fuzzy covering relation implies the nonfuzzy covering relation,
but not vice versa. The set of CS-undominated alternatives is denoted by UCS.

Let us first define:
A weak fuzzy covering relation CW ⊂ S×S is defined as follows:

∀si,s j ∈ S :

siCW s j ⇔ ri j > r ji

& card{sl ∈ S : ril > r jl} ≥ card{sp ∈ S : r jp > rip}

Obviously, siCSs j implies siCW s j, but not conversely. Thus, the set of CW -
undominated alternatives, UCW , is always a subset of UCS. Moreover, the Copeland
winning set is always included in UCS, but not necessarily in UCW (see Nurmi and
Kacprzyk [54]). If one is looking for a solution that is a plausible subset of an un-
covered set, then UCW is not appropriate since it is possible that UCC is not always
a subset of the uncovered set, let alone the Banks set.

Another solution concept, the α-uncovered set, is based on the individual fuzzy
preference tournament matrices. One first defines the fuzzy domination relation D
and an α-covering relation Cα ⊆ S×S as follows.

• siDs j if and only if at least 50% of the individuals prefer si to s j to a degree of at
least 0.5.

• If siCαs j, then siDs j and siDαsk, for all sk ∈ S for which s jDαsk.

The α-uncovered set consists of those alternatives that are not α-covered by any
other alternative.

An obvious candidate for a plausible solution concept for fuzzy tournaments is
an α-uncovered set with the smallest value of α.
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Other fuzzy solution concepts analogous to their nonfuzzy counterparts can be
defined (see Nurmi and Kacprzyk [54]). For example, the α-Banks set can be con-
structed by imposing the restriction that the majority of voters prefer the next alter-
native to the previous one in the Banks chain with intensity of at least α.

16.3.2 Solutions Based on a Social Fuzzy Preference Relation

The derivation of these solution concepts requires first a derivation of a social fuzzy
preference relation.

Bezdek, Spillman and Spillman [7], [8] discuss the problem of finding the set of
undominated alternatives or other stable outcomes given a collective fuzzy prefer-
ence ordering over the alternative set; see also Nurmi [46].

We now define a couple of solution concepts for voting games with fuzzy collec-
tive preference relation.

The set Sα of α-consensus winners is defined as: si ∈ Sα if and only if ∀s j �= si :
ri j ≥ α, with 0.5 < α≤ 1

Whenever Sα is nonempty, it is a singleton, but it does not always exist. Thus,
it may be useful to find other solution concepts that specify a nonempty alternative
sets even when Sα is empty. One possible candidate is a straightforward extension
of Kramer’s minimax set. We call it a set of minimax consensus winners, denote it
by SM and define as follows. Let r̄ j = maxi ri j and r̄ = min j maxi ri j. Then si ∈ SM

(the set of minimax consensus winners) if and only if r̄i = r̄.
Clearly SM is always nonempty, but not necessarily a singleton. As a solution set

it has the same interpretation as Kramer’s minimax set: it consists of those alterna-
tives which, when confronted with their toughest competitors, fare best, i.e. win by
the largest score (if r̄ ≤ 0.5) or lose by the smallest one (if r̄ > 0.5).

These solution concepts are based on the social preference relation matrix. Such
matrices may be obtained in various ways. For instance, one may start from a pref-
erence profile over a set of alternatives and construct the [ri j] matrix as follows:

ri j =
{ 1

mΣ
m
k=1ak

i j for i �= j
ri j = 0 for i = j

where ak
i j = 1 if si is strictly preferred to s j by voter k, and ak

i j = 0 otherwise.
Clearly, many other algorithms can be applied for this purpose, and the simple

averaging is also possible.
There is nothing “fuzzy” in the above solutions. As the method of constructing

the social preference relation matrix suggests, the starting point can just be the or-
dinary preference profile as well.

This concludes our discussion on the use of fuzzy preference relations in group
decision making. Notice that we did not discuss here the use of a fuzzy ma-
jority, and for more information on his important topic we refer the reader to,
e.g., Kacprzyk [20] – [25], Fedrizzi, Kacprzyk and Nurmi [12], Kacprzyk and
Zadrożny [36], [37], Kacprzyk [24]), Kacprzyk and Fedrizzi [26]–[27], and
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Kacprzyk, Fedrizzi and Nurmi [30]–[31], see also Kacprzyk, Nurmi and Fedrizzi
[33], [34] and Zadrożny [64].

16.4 Remarks on Some Voting Paradoxes and Their Alleviation

Voting paradoxes are an interesting and very relevant topic that has a considerable
theoretical and practical relevance. In this paper we will just give some simple ex-
amples of well known paradoxes and indicate some possibilities of how to alleviate
them by using some elements of fuzzy preferences. The paper is based on the works
by Nurmi [52], [53], and Nurmi and Kacprzyk [55].

Table 16.1 presents an instance of Condorcet’s paradox where there are three
voter groups of equal size having preferences over alternatives A, B and C as indi-
cated by the rank order indicated below each group. In fact, the groups need not be
of equal size. What is essential for the paradox is that any two of them constitutes a
majority. Clearly, a collective preference relation formed on the basis of comparing
alternatives in pairs and using majority rule, results in a cycle: A is preferred to B, B
is preferred to C and C is preferred to A.

Table 16.1 Condorcet’s paradox

Group I Group II Group III
A B C
B C A
C A B

An instance of Borda’s paradox, in turn, is given in Table 16.2, where alternative
A would win by plurality voting and, yet, both B and C would beat A, should pairwise
majority comparisons be conducted.

Table 16.2 Borda’s paradox

voters 1-4 voters 5-7 voters 8,9
A B C
B C B
C A A

A common feature in these classic paradoxes is an incompatibility of several in-
tuitively plausible requirements regarding social choices. In the case of Condorcet’s
paradox the result obtained by using majority rule on a set of complete and transitive
preferences is intransitive. In the case of Borda’s paradox, the winner in the plurality
sense is different from the winner in another sense, i.e. in the sense that requires the
winner to beat all the other alternatives in binary contests.
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Let us try to solve the above paradoxes using some fuzzy tools. The solutions
presented are very much in the spirit of Sen’s idea of broadening the amount of in-
formation about individuals. In particular, we shall take our point of departure in the
notion of fuzzy individual preference relation. We consider the set E of individuals
and the set S of decision alternatives. Each individual i ∈ E is assumed to possess a
fuzzy preference relation Ri(x,y) over S. For each x,y∈ S the value Ri(x,y) indicates
the degree in which x is preferred to y by i with 1 indicating the strongest preference
of x to y, 0.5 indifference between the two and value 0 the strongest preference of
y to x. Obviously, the assumption that the voters be endowed with fuzzy preference
relations is precisely the kind of broadening of the information about individuals
that Sen discusses. Some properties of fuzzy preference relations are defined in the
following.

Connectedness. A fuzzy preference relation R is connected if and only if R(x,y)+
R(y,x)≥ 1,∀x,y ∈ S.

Reflexivity. A fuzzy preference relation R is reflexive if and only if R(x,x) = 1,
∀x ∈ S.

Max-min transitivity. A fuzzy connected and reflexive relation R is max-min
transitive if and only if R(x,z)≥min[R(x,y),R(y,z)],∀x,y,z ∈ S.

For the case of the Condorcet paradox, given the broadening of information con-
cerning voter preferences represented by fuzzy preference relations, we can solve it
very much in the spirit of its “father”, Marquis de Condorcet (cf. Nurmi [53]). A way
out of cyclical collective preferences is to look at the sizes of majorities supporting
various collective preferences. For example, if the number of voters preferring a to
b is 5 out of 9, while that of voters preferring b to c is 7 out of 9, then, according
to Condorcet, the latter preference is stronger than the former. By cutting the cycle
of collective majority preferences at its weakest link, one ends up with a complete
and transitive relation. Clearly, with nonfuzzy preference relation this method works
only in cases where not all of the majorities supporting various links in the cycle are
of same size. With fuzzy preferences one can form the collective preference between
any x and y ∈ S using a variation of the average rule (cf. Intrilligator [18]), i.e.

R(x,y) =
∑i Ri(x,y)

m
(16.2)

where R(x,y) is the degree of collective fuzzy preference of x over y.
Now, supposing that a preference cycle is formed on the basis of collective fuzzy

preferences, one could simply ignore the link with weakest degree of preference
and thus possibly end up with a ranking. In general one can proceed by eliminating
weakest links in collective preference cycles until a ranking results.

The above method of successive elimination of weakest links in preference cycles
thus works with fuzzy and nonfuzzy preferences. When individual preferences are
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fuzzy each voter is assumed to report his/her preferences so that the following matrix
can be formed:

Ri =

⎛⎜⎜⎝
− r12 . . . r1n

r21 − . . . r2n

. . . . . . . . . . . .
rn1 rn2 . . . −

⎞⎟⎟⎠ (16.3)

Here ri j indicates the degree in which i prefers the i-th alternative to the j-th one.
By averaging over the voters we obtain:

R̄ =

⎛⎜⎜⎝
− r̄12 . . . r̄1n

r̄21 − . . . r̄2n

. . . . . . . . . . . .
r̄n1 r̄n2 . . . −

⎞⎟⎟⎠ (16.4)

Apart from the successive elimination method one can use another straightforward
method to resolve Condorcet’s paradox, once the R̄ matrix is given. It proceeds as
follows. One first computes the row sums of the matrix:

r̄i =∑
j

r̄i j (16.5)

These represent the total fuzzy preference weight assigned to the i-th alternative
in all pairwise preference comparisons, when the weight in each comparison is the
average fuzzy preference value. Let now

pi =
r̄i

∑i r̄i
. (16.6)

Clearly pi ≥ 0 and ∑i pi = 1. Thus, pi has the natural interpretation of choice prob-
ability. An obvious way to utilize this is to form the collective preference ordering
on the basis of these choice probabilities. The result is necessarily a complete and
transitive relation. Hence we can use the information broadening provided by fuzzy
preferences to solve Condorcet’s paradox.

For illustration, consider the example of Table 16.1 again and assume that each
group consists of just one voter. Assume, furthermore, that the fuzzy preferences
underlying the preference rankings are as follows:

Table 16.3 Fuzzy Condorcet’s paradox

voter 1 voter 2 voter 3
A B C A B C A B C

A - .6 .8 A - .1 .3 A - .6 .3
B .4 - .6 B .9 - .7 B .4 - .1
C .2 .4 - C .7 .3 - C .7 .9 -
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The R̄ matrix is now:

R̄ =

⎛⎝− .4 .5
.6 − .5
.5 .5 −

⎞⎠
Now, PA = 0.3,PB = 0.4,PC = 0.3.

Obviously, the solution is based on somewhat different fuzzy preference relations
over the three alternatives. Should the preference relations be identical, we would
necessarily end up with identical choice probabilities.

With fuzzy individual preference relations we can resolve Borda’s paradox. To
do that, we simply apply the same procedure as in the resolution of Condorcet’s
paradox.

Let us take a look at a fuzzy Borda’s paradox for illustration. Assume that the
fuzzy preferences underlying Table 16.2 are those indicated in Table 16.4.

Table 16.4 Fuzzy Borda’s paradox

4 voters 3 voters 2 voters
A B C A B C A B C

A - .6 .8 A - .1 .3 A - .2 .1
B .4 - .6 B .9 - .7 B .8 - .3
C .2 .4 - C .7 .3 - C .9 .7 -

The matrix of average preference degrees is then the following:

R̄ =

⎛⎝− .3 .5
.7 − .6
.5 .4 −

⎞⎠
The choice probabilities of A, B and C are, thus, 0.27,0.43,0.30. We see that the
choice probability of B is the largest. Thus the method solves Borda’s paradox in
the way similar as the Borda count does, choosing the Condorcet winner alternative
B. Moreover, fuzzy preference relations give a richer picture of voter preferences
than the ordinary preference rankings.

For additional information on voting paradoxes and some ways to solve them
using fuzzy logic, we refer the reader to Nurmi and Kacprzyk [55].

16.5 Concluding Remarks

In this paper we have briefly presented the use of fuzzy preference relations in the
derivation of group decision making (social choice) solution concepts. First, we
briefly discussed some more general issues related to the role fuzzy preference re-
lations may play as a tool to alleviate difficulties related to negative results in group
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decision making exemplified by Arrow’s impossibility theorem. Though very im-
portant for a conceptual point of view, these analyses are of a lesser practical rele-
vance to the user who wishes to employ those fuzzy tools to constructively solve the
problems considered.

Therefore, emphasis has been on the use of fuzzy preference relations to derive
more realistic and human-consistent solutions of group decision making. Reference
has been given to other approaches and works in this area, as well as to the authors’
previous, more foundational works in which an analysis of basic issues underlying
group decision making formation has been included.

It is hoped that this work will provide the interested reader with some tools to
constructively solve group decision making (and, subsequently, consensus forma-
tion) problems when preferences are imprecisely specified or perceived, and may be
modeled by fuzzy relations and fuzzy sets.
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Chapter 17
What We Are Learning from Neurosciences
about Decision-Making: A Quest for Fuzzy Set
Technology

Armando Rocha, Fernando Gomide, and Witold Pedrycz

17.1 Introduction

Classic decision theory asserts that decision makers should choose the option that
offers the highest expected value. Daniel Bernoulli [24] (Trepel, Fox and Poldrack,
2005) suggested that people do not evaluate options by their objective value but
rather by their utility and conjectured that appropriate choices are those for which
the expected utility is maximum. Bernoulli also argued that utility functions should
to be a concave function because he assumed that the marginal utility decreases as
the assets increases.

Expected utility theory gained greater prevalence among economists when von
Neumann and Morgenstern (1953) [17] articulated a set of axioms that are assumed
to be necessary and sufficient to allow one to represent preferences by expected
value maximization. Among such axioms, the sure-thing principle asserts: If two
acts yield the same consequence when a particular state is achieved, then a person’s
preference among those acts should not depend on the particular consequence that
they have in common. The sure-thing principle is necessary to establish that utilities
of outcomes are weighted by their respective probabilities [24] (Trepel, Fox and
Poldrack, 2005).

Although expected utility theory is widely accepted, it has been challenged by
many experimental studies which have disclosed different violations of its axioms.
One of the most authoritative challenges manifests in the form of a so-called “Al-
lais Paradox” [24] (Trepel, Fox and Poldrack, 2005). Prospect theory developed by
Kahneman and Tversky (1991, 1992) [7], [25] attempts to accommodate the exper-
imental results while avoiding the expected utility pitfalls. These authors suggest
that prospects should be evaluated using subjective value functions weighted by a
function that captures the impact of the probabilities on the attractiveness of the
prospect.

The main difference between expected utility theory and prospect theory are: the
utility function has states of wealth as its domain whereas the value function has
gains and losses relative to a reference point (usually the status quo) as domain; the
impact of the probabilities on returns is replaced by a weighting function to address
the importance of probabilities upon the attractiveness of the prospect. Moreover,

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 361–375.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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unlike the expected utility theory, prospect theory explicitly incorporates principles
of framing and editing that allow for different descriptions of the same choice to
give rise to different decisions.

Utility and value functions are postulated to express subjective evaluation of the
outcome. Neither expected utility theory nor prospect theory claims to mirror the
brain mechanisms involved in decisions under risk. They are taken by their face
value in generalizing economic calculations. Neurosciences, however, have begun
to investigate the cerebral circuits involved in calculating the expected rewards and
risks that support decision making ([4], [10], [11], [9], [16], [23]. Two distinct neural
systems have been proposed to deal with rewards and risks ([6], [11], [13]. These
results do not support modeling gains and losses relative to a reference point (usually
the status quo), but suggest a complex model of decision making process in which
necessities η trigger motivations ϑ to implement actions ai that are anticipated to
fulfill η with some reward λai(t) and risk or cost χai , such that decision about ai

becomes dependent on the actual values of λai(t) and χai computed by two different
and independent neural circuits.

The purpose of the present chapter is to propose a neurodynamic modeling of
decision-making supported by knowledge provided by neurosciences; and to show
that this initial model is able to solve the problems that the Expected Utility The-
ory cannot cope with and that its learning capabilities are an the advantage over the
Prospect Theory. In the setting of the study, we also advocate a meaningful func-
tionality offered by the technology of fuzzy sets.

17.2 Decision under Risk

Decision analysis provides a framework for analyzing a variety of decision making
situations. The framework comprises a system to classify decisions based on the
amount of information available and a decision criterion, a measure of how good a
decision is.

In general terms, decision theory concerns decisions against nature, a situation
where the result or return resulting from an individual decision depends on the ac-
tion of another player, the nature, over which the decision maker has no control.
Decision with certainty is one in which the state of nature is known, a decision
situation which is deterministic because knowledge of the underlying scenario is
complete and certain. Decision theory provides a wealth of approaches to handle
lack of complete knowledge and certainty. One of such approaches comes under
the headline of decision-making under risk. In decision theory context, risk has a
well-defined meaning as: it refers to a class of decision making situations for which
there is more than one state of nature and for which we assume that the decision
maker can arrive at a probability estimate for the occurrence for each of the vari-
ous states of the nature. Let n > 1 states of nature and pi the probability estimate
that state i occurs, 1 ≤ i ≤ n. The expected return associated with decision j is the
weighted sum, over all possible states i, of the product between the decision j and
corresponding probability estimate:
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EVj =
n

∑
i=1

x ji pi (17.1)

The decision should be the one that maximizes the expected return, that is, the opti-
mal decision j∗ is such that

EV ∗j = max
j

EVj = max
j

n

∑
i=1

x ji pi (17.2)

Maximization of expected return (e.g. profit, gain) is equivalent to the minimization
of expected regret (e.g. cost, loss). Therefore, without any loss of generality, one
can assume the maximization of expected return criterion in the above formulation.
The expected value as a basis for comparison seems to be a sensible method for
evaluation of decisions under risk.

To fully appreciate the maximization of expected return principle it is worth to
recall that, in decision theory models, the fundamental piece of data is a payoff
table where alternative decisions are listed along with the possible states of nature.
The entries x ji of the payoff table are the outcomes for all possible combinations
of decisions j and states of nature i. Let pi be the probability of occurrence of
the i-th state i = 1, ..,n. To each decision j = 1, ..,m, we associate a n-tuple D j =
[x j1¸p1; ...;x ji¸pi; ...;x jn¸pn] to specify the j-th row of the payoff table, the one linked
with the j-th decision. The decision process is as follows. The decision maker should
select one of the alternative decisions d j, j = 1, ...,m. After the decision is made, a
state of nature occurs beyond the decision maker control. The return received can
be determined from the payoff table: if decision j is made and the state of the nature
i occurs, then the return is x ji. There is usually little assurance that the predicted
state of nature will coincide with the actual one. Thus, the economic elements upon
which a course of action depends may vary from their estimated values because of
chance causes. Which of the decisions should be selected? Often, the requirement
is to have as large a return as possible, that is, the largest possible value of x ji.
The lack of certainty about the state of nature requires the use of estimations of
probability functions and the expected vales provide a reasonable basis to compare
alternatives. The choice of the decision that maximizes the expected return seems to
be appropriate in these decision scenarios.

17.3 Utilities and Decision under Risk

The term value has a multiplicity of meanings. In economics, value is a measure
of the worth that an individual assigns to a good or service. Thus, the value of an
object is not inherent in the object itself, but assigned as a result of the regard that
an individual has for it. Value should not be mistaken with the cost or the price of
an object. There may be little or no relation between the value an individual assign
to an object and the cost of providing or asked for it.

Utility is a measure of the strength of a good or service to satisfy human needs.
Thus, the utility of an object, similarly as its value, is not inherited in the object itself,
but in the regard that an individual has for it. Utility and value, in the sense used
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herein, are closely related. The utility of an object for an individual is the satisfaction
derived from it. Value is an assessment of utility in terms of a medium of exchange.

In decision theory, utility is an alternative to measure the attractiveness of the
result of a decision. In practical terms, utility is an alternative way to assign values
for the entries of a payoff table. Decision under risk uses either expected return or
expected regret as measures of how good a decision is. In other words, decision
under risk uses either expected return or expected regret as decision criterion. How-
ever, expected return or regret can produce unacceptable results. Utility suggests
another type of measure to turn decisions more general. This is because in some
cases, for example, because of the magnitude of the potential losses, the decision
that maximizes the expected gains is not the decision we want to choose.

There is, however, no need to reject the notion of expected value because we can
adapt the notion of maximum expected return criterion to general decisions under
risk if we recognize that returns do not always accurately reflect the attractiveness
of possible outcomes of decisions. Since the notion of attractiveness of decisions
is measured through utility functions, we can replace the utility of decisions in the
process of choosing a decision which, similarly as in the return maximization crite-
rion, maximizes the expected utility. If we denote by u(x ji) the utility of the return
of decision j in state of nature i, then similarly as (17.1) its expected value is

EU j =
n

∑
i=1

u(x ji)pi (17.3)

and decision should be the one that maximizes the expected utility, that is, similarly
as (17.2) the optimal decision j∗ is such that

EUj∗ = max
j
{EU j}= max

j
{

n

∑
i=1

u(x ji)pi}. (17.4)

Several methods have been devised to assessing utility functions, an important part
of decision problems which is beyond the scope of this work (see [19] Render and
Stair, 1997), but we recall that there are three basic types of utility functions: that of
the risk averter, the risk seeker, and the risk-neutral individual. These utility func-
tions are illustrated in Figure 17.1.

Fig. 17.1. Types of utility functions: (a) risk averter, (b)risk seeker, (c) risk neutral
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Two characteristics of utility functions are worth noting. The first, common to
all three types, demonstrates that they are nondecreasing functions because greater
payoff (eg. money) is always at least as attractive as smaller payoff. The risk averter
function shows a rapid increase in utility for initial payoff levels followed by a
gradual leveling off for increasing payoff levels. This means that the value of each
additional payoff level is not as great once large level of payoff have been earned, in
other words, the function is concave. The risk seeker function represents the utility
of an individual who likes to take risks. The utility becomes larger for larger payoffs,
meaning that there is a will to take large risks to obtain the opportunity of making
large profits. Thus, the risk seeker function is convex. The risk neutral individual
represents the expected payoff value approach because each additional payoff level
has the same value as the previous payoff.

Once a utility function is developed for a particular decision maker in a specific
decision situation, the outcomes would be converted to utilities and the expected
utility of each alternative decision would be determined using (17.3). Next, accord-
ing to (17.4), the alternative which achieves the highest expected utility is chosen.

17.4 Prospect Theory and Decision under Risk

Decision making under risk can be devised as a choice between decisions d j, each of
which characterized by a n-tuple D j = [x j1¸p1; ...;x ji¸pi; ...;x jn¸pn] called prospect
in prospect theory. As discussed in the previous section, in expected utility theory
choices are made to achieve the maximum expected utility as indicated in (17.4).
From (17.3) we notice that expected utility is an additively separable function and
represents the average utility of the j-th decision because each individual utility is
weighted by the corresponding probability.

Also, in expected utility theory a prospect is acceptable if the utility resulting
from adding the prospect with the current assets surpasses the utility of the current
assets alone. Thus, utility function provides evaluations of the worth of total assets.
For positive assets or wealth, utility function is concave (convex for negative assets
or wealth) and decision makers with curves of this type are risk-averse decision
maker because they prefer a sure prospect with a payoff that is less than or equal the
expected value of a risky prospect.

Prospect theory explains that the way decision makers assess probabilities are
subjective and are different from objective probabilities. Weighting of outcomes
with low probability are undervalued in comparison with certain outcomes. This
tendency motivates risk aversion in choices involving sure gains and to risk seek-
ing in choices involving sure losses. Value functions have differences or changes
instead of absolute values as domain. Gains and losses with respect to a certain ref-
erence are the key to preference order of prospects. Thus, prospect theory suggests
that a value function for changes of assets (alternatively, wealth, return) is normally
concave above the reference point and often convex below the reference point. This
means that, contrary to expected utility theory, the marginal value of both, gains and
losses, generally decreases with their magnitude. As Figure 17.2 suggests, the value
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Fig. 17.2. Value function

function ν for losses are steeper than for gains, which means that losses appear to
be larger than gains.

Decision making under risk within the framework of prospect theory proceeds
in two steps, editing and evaluation, respectively. Editing concerns a preliminary
analysis of the list of feasible prospects whose aim is to simplify the representa-
tion of these prospects. In the second step the edited prospects are evaluated us-
ing a value function and the prospect with highest values is chosen. More specif-
ically, the evaluation step computes an overall value of an edited prospect D j =
[x j1¸p1; ...;x ji¸pi; ...;x jn¸pn] using two functions denoted by w and v. The first func-
tion maps each probability pi on a decision weight w(pi) as Figure 17.3 illustrates.
Notice that the weighting function w is nonlinear and usually the values of the
weights w(pi) are above the dotted line (w(pi) = pi) for small values of pi and
below the dotted line for middle-larger values of pi.

The second function ν is a value function that assigns to each outcome x ji a value
to mirror the (subjective) value of that outcome, with regard to the reference point.
Therefore, the value function quantifies the deviations from the reference, namely,
gains and losses. The values of w and v are combined to determine the value of the
prospects as follows:

Fig. 17.3. Weighting function
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Vj =
n

∑
i=1

ν(x ji)w(pi) (17.5)

and decision should be the one with the highest value, that is, the optimal decision
j∗ is such that

Vj∗ = max
j
{V j}= max

j
{

n

∑
i=1

ν(x ji)w(pi)}. (17.6)

Clearly, expression (17.6) generalizes (17.4) in the sense that it relaxes the expecta-
tion principle.

17.5 A Neurosciences Approach to Decision Making Modeling

Emotion is a key issue on decision making because it arose in nature and it was
shaped by evolution as the most important tool to assess how adequate is the be-
havior of an animal to successfully adapt itself to the environment where it is trying
to survive. If an action is successful, then the appraisal is joy, happiness, otherwise
the felling is pain, displeasure. Also, emotion is used to evaluate if the environment
is either supportive or life-threatening to the animal. A supportive environment is
agreeable, pleasant, peaceful, while a threatening environment inspires anger, fear,
and panic.

There is an old and recurrent debate whether emotion is category based or unify-
ing dimensions accounts [12], [15] (Laros and Steenkamp, 2005; Marcus, 2003);
whether its neural representation involves individual systems for separate emo-
tions, or an integrated system able to code all emotions; or whether emotions are
a means by which living creatures solve the approach and avoidance problems [2]
[15] (Calder, Laurence and Young, 2001; Marcus, 2003). These views are not mutu-
ally exclusive. For instance, a hybrid model, in which discrete emotions are seen as
preferred states or “attractors” in a high-dimensional state-space could potentially
account for most if not all properties of emotions [2] (Calder, Laurence and Young,
2001).

Experimental results on how people experience feelings require two orthogo-
nal dimensions to be explained. These prompted scholars to propose different state
spaces to account for their data. For example, in the case of [14] Marcus, Russel and
Mackuen (2000) aroused/not aroused and pleasant/unpleasant were the dimensions
used to explain his findings. Rolls (1999) [21] defines emotions in terms of states
elicited by positive and negative instrumental reinforcements: his dimensions are
presentation of reward/punishment and termination of reward/punishment.

Decision making is a process that starts with necessities η that create motivations
to produce actions ϑ to provide services or goods Γη that satisfy η, Figure 17.4.
Necessities can be either concrete things required to maintain an individual alive,
such as food to keep the body functioning, or abstract things and pieces of informa-
tion required to reason, such as in decision-making processes. Motivation triggers
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Fig. 17.4. Decision making process

planning to define the possible set A of actions ai for satisfying η. The degree of sat-
isfaction provided by ai is given by the similarity between the services or goods Γai

produced by ai and the required services or goods Γη. The implementation of any
action has a cost, may demand an effort, or may involve a risk χai . Decision-making
is about selecting the most profitable and less costly actions to satisfy necessities η.
Thus, decision making proceeds through three steps:

1. calculation of the reward (return, benefit) λai of each action ai ∈ A ; the return
can be computed as the degree of similarity between Γai and Γη;

2. assessment of the risk χai of each action ai ∈ A; a measure of the risk is the
degree of effort or threaten to implement ai;

3. selection of the best or quasi-best actions that satisfy η that is select ai for which
χai
λai
→ 0.

Neurosciences suggest three basic neural circuits involved in the three steps above.
Their states involve the Emotional Decision Space (EDS), Figure 17.5. The neural
circuits are:

1. rewarding circuit: it corresponds to the Liking System proposed by [1] Berridge,
2003; its purpose is to evaluate λai ;

2. risk taking circuit: it corresponds to the Fear-Panic System as described e.g. by
Graeff, 2003 [6] and Ledoux, 1996 [13]; it is in charge of assessing χai ;

3. approaching-withdrawing circuit: it corresponds to the Seeking-avoiding Sys-
tem proposed by Panksepp, 1998; it is responsible for selecting actions ai for
which

χai
λai
→ 0.

Monitoring involves checking if the selected action ai satisfies η. Monitoring is
mainly concerned in verifying if the ratio

χai
λai

is being maintained at least smaller

than 1. If
χai
λai
→ 1, then planning revision may be required. During monitoring both,



17.6 Implications 369

Fig. 17.5. The emotional decision space

the actual reward υλai
obtained and the actual risk υχai incurred are computed and de-

fine the current state in the EDS. The current state may differ from the state specified
by λai and χai . The evaluation of the deviations Δλai

= υλai
−λai and Δχai = χai −υχai

provides a measure of the success or failure of ai in satisfying η [22], [23]. Learn-
ing updates knowledge about motivations, actions and planning using Δλai

,Δχai [22].

Whenever Δλai
≥ Δχai plans are maintained, otherwise (Δλai

≤ Δχai) they are eventually
reviewed or rejected.

17.6 Implications

One of the most influential challenge to expected utility theory has come to be
known as the “Allais Paradox” [24](Trepel, Fox and Poldrack, 2005). The following
pair of decision problems is a variation of Allais example suggested by [8] Kahne-
man and Tversky (2007).

Problem 1: Choose between (A) $2400 for sure and; (B) a 33% chance of receiving
$2500, a 66% chance of receiving $2400, and a 1% chance to get nothing.

Using the notation introduced in section 4, the prospects of Problem 1 are

DA = [2400,1] and DB = [2500,0.33;2400 0̧.66;0,0.01]

Problem 2: Choose between (C) a 34% chance of receiving $2400, a 66% chance to
get nothing; (D) a 33% chance of receiving $2500, and 67% chance to get nothing.

In the prospect notation, the decisions of Problem 2 are

DC = [2400,0.34;0 0̧.66] and DB = [2500,0.33;0 0̧.67].

Experiments show that most people choose decision (A) instead of (B) in the
problem 1 and decision (D) instead of (C) in problem 2. This configuration of



370 What We Are Learning from Neurosciences about Decision-Making

preferences breaks expected utility theory. Let us assume that the utility function
is such that u(0) = 0. Thus, from expression (3) we have:

Problem 1

EUA = u(2400) EUB = 0.33u(2500)+ 0.66u(2400)

Since decision (A) was the choice, from expression (17.4) we get EUA≥EUB mean-
ing that u(2400)≥ 0.33u(2500)+ 0.66u(2400). Rearranging the terms we have:

0.34u(2400)≥ 0.33u(2500) (17.7)

Problem 2

EUC = 0.34u(2400) EUD = 0.33u(2500)

Since decision (D) was the choice, from expression (17.4) we get EUD ≥ EUC,
that is

0.33u(2500)≥ 0.34u(2400) (17.8)

Clearly, inequalities (17.7) and (17.6) are contradictory since the first is the reverse
of the second. Notice that Problem 2 is the same as Problem 1 except for 66% chance
of winning 2400. This modification induces a greater reduction in attractiveness
when it changes the character of the prospect from a sure gain to a probable one,
than when both prospects are uncertain [7] (Kahneman and Tversky, 1991). This
example also shows violation of the sure-thing principle. Recall that the sure-thing
principle is necessary to establish that utilities of outcomes are weighted by their
respective probabilities.

Now, given a value function ν and a weight function w from expressions (17.5)
and (17.6) of prospect theory we have:

Problem 1

ν(2400)≥ ν(2400)w(0.66)+ν(2500)w(0.33)

that is

[1−w(0.66)]ν(2400)≥ ν(2500)w(0.33) (17.9)

Problem 2

ν(2500)w(0.33)≥ ν(2400)w(0.34) (17.10)

Notice that, (17.9) and (17.10) are fully meaningful as long as w(0.66)+ w(0.33)
≤ 1, in other words, as long as the weighting function satisfies the subcertainty
property [8] (Kahneman and Tversky, 2007).
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Next let us examine the above examples from the neurosciences modeling view-
point.

Assume the following:

1. the reward λχof a prospect correlates with the values of the returns, that is
∞≥ λ2500 ≥ λ2400 ≥ λ0 = 0

2. the risk χchi of a prospect correlates with the value of the probabilities, that is
0 = χ1 ≤ χ0.67 ≤ χ0.66 ≤ χ0.34 ≤ χ0.33 ≤ χ0.01.

Thus

a) Condition (A) implies 0 = χ1
χ2400

, condition (B) implies χ0.01
λ0=∞ and 0 ≤ χ0.66

λ2400
, 0 ≤

χ0.33
λ2500

such that (A) is to be preferred over (B), and

b) Condition (C) implies 0 ≤ χ0.34
λ2400

, condition (D) implies 0 ≤ χ0.34
λ2500

since χ0.67
λ0

=
χ0.66
λ0

= ∞ (D) is to be preferred over (C) because χ0.33
λ2500

≤ χ0.34
λ2400

.

Since assumptions 1 and 2 above are very intuitive, the neurodynamic decision-
making model discussed in the previous sections also explains the preferences for
the decisions of problems 1 and 2.

The most striking difference between expected utility theory or prospect theory
and the present neurodynamic decision making model concerns to learning. The
utility function u(x) is required to be immutable to make theorem proving possi-
ble. The subjective value function ν(x) of a prospect x may be framed but it is not
proposed to be learned. Both, value ν and weighting w functions are experimen-
tally estimated but assumed to be universal. In neurodynamic decision making both,
reward λai and risk χai are required to be updated according to deviations Δλai

and
Δχai to favor survival. Survivability behavior has the purpose of maintaining systems
alive despite environmental changes, requiring decision making to change accord-
ingly. The best solution in a given environment setting may be the worst if condition
changes. Preferences cannot be stable. On the contrary, theoreticians relate rational-
ity with preference stability, because they need this to prove their theorems. Their
success depends on the success of these proofs.

17.7 Decision-Making in the Setting of the Technology of Fuzzy
Sets

Fuzzy sets offer a number of substantial enhancements and conceptual generaliza-
tions to the investigations we presented so far. Some of them can be more visible as
conceptual augmentations while some others could offer useful optimization devel-
opment vehicles.

First, it becomes quite apparent that the models and underlying formulas such as
those in Section 2, say (17.1), (17.3) and others are overly “precise” as they require
numeric values of the parameters. Quite often it is not realistic at all. For instance,
let us focus on (17.3). The probability is expressed not as a single numeric value
but rather a certain fuzzy set or fuzzy number, to be more specific. In the simplest
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Fig. 17.6. An example of the relational representation U of the risk averter model; note that
U is a fuzzy relation which is schematically visualized through some shadowed region shown
in this figure

possible scenario, the estimate of the probability could be an interval [pmin, pmax]. If
we gather more specific evidence, we resort ourselves to triangular fuzzy probabili-
ties [pmin, pmode, pmax]. More generally, we could envision some fuzzy probabilities
where we admit more general type of membership functions which in essence give
rise to fuzzy (linguistic) probabilities. The resulting terms such as low probability,
high probability and alike are highly appealing in the context of the problem. Given
the linguistic probability contributing to the formula, the expected value itself be-
comes a fuzzy number. The calculations follow the extension principle. Furthermore
the maximization is realized in the realm of fuzzy optimization which invokes es-
sential techniques of fuzzy optimization. Recapping, the first avenue is concerned
with the admission of the detailed formula but relaxing it with respect to the param-
eters and the input variables. The other general direction which is worth pursuing
and becomes legitimate in light of the nature of input-output relationships is about
the use of fuzzy relations. For instance, while utility function of risk averter as illus-
trated in Figure 17.1 (a) is a sound illustration, there is in essence a relation rather
than a function. An illustration is presented in Figure 17.6.

Accepting this more realistic modeling scenario, the generalization of the original
model gives rise to the relational model where we compute U ◦ x ji which produces
a fuzzy set as the outcome of the computing of this nature. The relational operator
encountered above is the one of the form of the max-min or max-t form composition
with “t”denoting a certain t-norm.

17.8 Conclusion

The present chapter has introduced a neurodynamic model of decision-making sup-
ported by the knowledge provided by neurosciences about the neural circuits for
risk appraisal, reward expectation and approaching/avoidance decision. These sys-
tems were developed during animal evolution as basic tools to adaptation and sur-
vival. Learning makes decision making supported by these systems very efficient in
adapting to very different and changeable environments.
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Here, we have shown that the neurodynamic decision making model is capable
to solve the paradoxes that question the expected utility theory in the same way as
prospect theory did. However, the present proposal clearly differentiates between
risk and benefits, discovered to be computed by two very distinct neural systems.
Neither expected utility theory nor prospect theory has specifically defined the role
of risk in decision making. Prospect theory differentiates between gain and loses,
and refers to risk aversion and risk seeking behaviors depending of the relation
between the value and weighting functions v and w.

A word of caution is necessary about the need of a more formal development of
the ideas introduced here, such that the strength and weaknesses of the model may
better identified and discussed in future works.
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Chapter 18
Postmodernism and Control Engineering

Marius M. Bǎlaş and Valentina E. Bǎlaş

18.1 Modernism and Postmodernism

Modernism is defined by some important features: rationalism (the belief in knowl-
edge through reason), empiricism (the belief in knowledge through experience) and
materialism (the belief in a purely physical universe). Postmodernism is a recent
movement and a reaction to modernism.

The term Postmodernism was coined in the early 60’s to describe the dissatisfac-
tion with the modern architecture and became than a term for reaction to modernism
in other fields as well [15]. Postmodern ideas in arts have influenced the philosophy
and the analysis of culture and society. As engineers, we are interested to find out
if a cultural movement, namely the postmodernism, is able to mark the scientific
and the technological visions of our society, or at least, if similarities caused by the
same social environment can be revealed in both fields. Since even the architecture,
the domain that generated the term has an inevitable technological component, pos-
itive answers to the above mentioned quests are natural. The vice versa question is
also challenging: are science and technology able to initiate and to determine global
trends of the intellectual thinking?

Positive answers have been already given to these questions; our chapter is mean-
ing just to bring some personal arguments and opinions.

18.2 Modernism and Science

Science and society are intimately linked, although the science is often proclaim-
ing its perfect objectivity. Scientific adventures, as the achievement of the atomic
bomb, are proving that the society is able to take over the scientists. In the same
time any society is depending of its scientific and technological platform. The mod-
ernism was initially supported by the mechanization of the industry, fired by the
invention of the steam engines. The portrait of the modernist science has some cor-
responding features: a rigorous mathematical (numeric) support and formalism, a
continuous search for abstracting and precision, etc. Further on, the electrical engi-
neering was able not only to value another form of energy, but also to control the
industrial processes. The same person, J. C. Maxwell, built the theoretical pedestal
of the electro-magnetism, as well as a milestone for the automate control systems.

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 377–391.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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Electricity made also possible the telecommunications. The electronic computing,
analog as well as digital (based on the Boolean logic) emerged. A more than 2000
years developing and growing civilization, seeded by the ancient Greek philoso-
phers, was by now ruling the Earth. The time to look at the stars and to put the foot
on the Moon, and why not on other planets, has come.

The modernism best times may be considered as centered on the so called “la
belle époque”, around 1900. The technological progress in all domains was finally
bringing a significant improvement of the quality of life for everybody (well ... al-
most). The young generation was educated with the help of the science-fiction au-
thors J. Verne and H.G. Wells and the perspectives were bright. One of the last
modernist cultural items that is fully containing the modernist science vision is con-
sidered to be the well-known G. Roddenberry’s TV series Star Trek – The Next
Generation. Unfortunately the human mentality couldn’t match the human intelli-
gence, and the euphoria of the new acquired technological breakdown generated
two disastrous world wars and a subsequent long term cold war. These tragic events
scattered away the general trust in science and technology, that could be put in
the position to invent and produce global destroying devices. The reactions against
modernism began to structure themselves. Writers such as John Ralson Saul among
others have argued that postmodernism represents an accumulated disillusionment
with the promises of the Enlightenment project and its progress of science, so central
to modernist thinking.

18.3 Which Is the Postmodernist Vision

Constantin Virgil Negoita and others consider Paris as the Postmodernism’s birth
place, “bursting full-blown” from the brains of Jean Baudrillard and Jean-Francois
Lyotard. Jean-Francois Lyotard understood modernity as a cultural condition char-
acterized by constant change in the pursuit of progress, and postmodernity as the
culmination of this process, where constant change has become a status quo and the
notion of progress, obsolete. Following Ludwig Wittgenstein’s critique of the possi-
bility of absolute and total knowledge, Lyotard also further argued that the various
“master-narratives” of progress, such as positivist science, Marxism and Structural-
ism, were defunct as methods of achieving progress. One of the most significant
differences between modernism and postmodernism is its interest in universality
or totality. While modernist artists aimed to capture universality or totality in some
sense, postmodernists have rejected these ambitions as “metanarratives”. “Simplify-
ing to the extreme,” says Lyotard, “I define postmodern as incredulity toward meta-
narratives” [15].

Postmodernism has features as the tolerance of ambiguity and disorder, stressing
on skepticism and nihilism, the mixing of styles and manners, rejection of ultimate
reality and absolute truth, lack of determinism and dogmatism. These features are
not representing a simple fashion, they are not just “a rage against the machine”,
their origin is rather linked to the increasing complexity of our perception of the
world.
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The complexity of some problems created and leaven by the modernist era is
now so high, that simple yes/ no solutions are not any more possible; for instance
the global heating can not be handled with the simple removal of its causes, we
simply can not suddenly stop burning fuels. The more we know about a certain
subject, a yes/no decision is harder to take about it; in a postmodern society, with a
higher rate of educated people, even the public debates are more nuanced, the pros
and cons lists are longer.

As a typical postmodernist cultural item we can point again Star Trek, but in
its later versions The Third Generation, etc. The popular and impressing futurist
technology that was the asset of the first series is now often beginning to fail, of
course in the worst possible moments. The members of the Enterprise crew, that
were originally pictured as classical stone curved characters, are now beginning to
manifest occasional psychic alienation symptoms.

We think that the postmodernist vision can be naturally associated with futur-
ist Alvin Toffler’s Third wave – the post-industrial society, that was characterized
by demassification, diversity, knowledge-based production, and the acceleration of
change [12]. In 2007, we can say that Toffler’s score is 3-1. From the four claimed
items, he was mistaking (partially) only the demassification, the other are perfectly
matching the actual postmodernist vision. The diversity is now an obvious attribute
of the globalization, the knowledge-based society is the postmodernist developed
version of the previous modernist information based society and the changes con-
tinued to accelerate.

Although useful distinctions can be drawn between the modernist and postmod-
ernist eras, this does not erase the many continuities present between them. As no-
ticed by A. Toffler, the three waves (pre-industrial, industrial and post-industrial) are
coexisting. In a certain sense postmodernism is not as much a choice as a conviction.

18.4 Postmodernism and Science

Some scientific discoveries undermined the very essence of the modernist ideology:
the rationalism and the materialism. We will name only three such scientific shocks:
Albert Einstein’s Relativity Theories, Werner Heisenberg’s Uncertainty Principle
and George Lemaitre’s Big Bang Theory on the beginning of the universe. The rela-
tivity put in cause the classical mechanics, one of the poles of modernism, a typical
yes/not scientific discipline. Einstein itself failed to offer a deterministic explana-
tion of the material world. Heisenberg showed that our precise knowledge about
sub atomic particles is fundamentally bounded by physical laws. On its side, the big
bang theory shacked the idyllically image of the classical materialism: the matter
was not created and will never disappear, the time has no beginning and will last
forever and the space is endless.

As an anecdote, some (many) years ago, when we asked our Marxist philosophy
professor, who was torturing the theory of the expansion of the Universe (which
was inducing the idea of its possible Creation), what explanation can be however
be given to the Hubble’s law by the Marxism, he answered approximately that “we
didn’t find yet an acceptable explanation, but we are sure to find it sometimes, in
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the future”. Of course, after a deeper analysis of the big bang’s consequences, the
materialism of the postmodernist era accepted the big bang idea, because this is not
necessarily a proof of the existence of God, as some Marxists were fearing.

The XXth century quantum physics and astronomy showed tensioned evolutions,
where thesis and anti-thesis were constantly emerging. This is also true for anthro-
pology, medicine and biology. All these facts build the belief that truth is more
relative than the Enlightenment thinkers had believed [9].

18.5 Postmodernism and Control Engineering

“Whereas modern science had previously dealt with matter and energy, postmodern
science focuses on form and pattern” [9]. This is leading us towards a new funda-
mental vision of the Universe, as a triad matter – energy – information, where the
information has a leading role. This vision is much older, even the first words of St.
John’s Gospel – where the God is identified with Logos (λoγoσ) – can be interpreted
in this sense, if we accept among the meanings of the word logos (thought, speech,
account, meaning, reason, proportion, principle, standard) and the Information, a
notion that was not known in Antiquity. The mathematical model of the Information
was defined by Claude Shannon only in 1948 (Fig. 18.1).

We think that is not a coincidence that Postmodernism is contemporary to Elec-
tronics, the first technology that allow us to feasibly control as well energy and in-
formation. In industrial processes information is acting by means of the intelligent
control. The intelligent control at its turn is powered by the Artificial Intelligence AI.
Although the modernist shaped minds are objecting the approach, the most notable
advances in AI are linked to a typical postmodernist concept, the Soft Computing,
that is clustering fuzzy logic, neural networks, genetic algorithms and evolutionary
computing [13], [10], etc.

The electrical engineering disciplines: electronics, computers, automate control,
etc. can illustrate some effects with corrosive influence on the modernist rationalistic
scientific common sense; we will name only three:

a) the Leon Chua’s circuit, essentially with only two capacities, one inductivity,
a resistor and two diodes (Fig. 18.2) is able to generate a chaotic dynamic [16];

Fig. 18.1. The matter – energy – information triad



18.5 Postmodernism and Control Engineering 381

Fig. 18.2. The Chua’s circuit

Fig. 18.3. The negative feedback amplifier

b) the precision of the negative feedback electronic amplifiers is not depending
of the majority of its components, excepting the feedback network; the precision
is given essentially by the negative feedback (Fig. 18.3). The classical mechanical
assertion “the strength of a chain is given by its weakest link” is now replaced by its
electronic counterpart: “the quality of an amplifying chain is given by its strongest
link (the negative reaction)”.

The gain of the negative feedback amplifier is A f ( f ) = A( f )
1+β( f )·A( f ) where A( f ) is

the gain of the original amplifier, β( f ) is the gain of the passive feedback network
and f is the frequency. As one can remark, if A( f ) is sufficiently great, the gain
becomes A f ( f ) = 1

β( f ) , which is depending only of the feedback network β( f ). The
feedback network can be easily realized with great precision and stability. In other
words, several cheap amplifying stages producing a low quality but great A( f ), can
be transformed by the negative feedback reaction into a high quality amplifier.

A quite similar effect is characterizing the close loop control systems: the pre-
cision of the steady regimes is not depending of the components’ precision, except
the feedback transducer; the simple presence of an integrative block in any point of
the loop is able to eliminate the steady errors.

c) the switching controllers’ effect: a switching system can be potentially desta-
bilized by an appropriate choice of the switching signal, even if the switching is
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between a number of Hurwitz-stable close loop systems. This phenomenon can pro-
duce catastrophes. For instance, in rare and unpredictable situations, the perturba-
tions produced when switching between automate pilot and manual pilot may cause
fatal airplane crashes. Reliable reports on such accidents are not easy to find, but it
is unanimously accepted that the on-line switching of two different controllers may
produce uncontrollable transient regimes and instability. This effect can not be ex-
plained by the conventional system theory in terms of frequency analysis, because its
basic tool, the transfer function, is defined for null initial conditions, while the real
applications has usually non-null initial conditions. Studying the systems by consid-
ering null initial conditions is simplifying a lot the manipulation of the equations,
is revealing the characteristic behavior of the systems and it helps the comparisons
between systems and the construction of the general theory of systems. But on the
other hand, this quest for generalization can produce unexpected failures in specific
conditions.

This is perhaps the most illustrative of the previous examples. The operational
calculus (Laplace) is offering a comprehensive image for all the linear systems. The
linear system theory established the conventional linear PID control and it can be
easily associated to the modernist vision (universality, coherence, etc.) For nonlinear
systems on the other hand, frequency analysis has few chances to produce satisfactory
results, considering the huge diversification of the problems and the lack of a unified
theory. In the case of barely controllable systems (highly nonlinear, time varying,
etc.) the only unified approach is, for the time being, the heuristic one. Despite their
inherent lack of rigor, the heuristic solutions can be always applied and may be very
flexible and comprehensive. The theoretical tool that can help us in this matter is
time analysis, performed with the help of the phase trajectory. This kind of analyze
is not able to reveal too much information on the internal structure of the systems,
but is very helpful in applications, supporting the heuristic control decisions. The
heuristic approach is totally opposite to the Cartesian rigorous modernist vision, but
it is relevant for postmodernism. Although it can not be mathematically proved, the
heuristics are bringing extremely positive results in most of the applications.

The classical mathematical approach: hypothesis → conclusion → demonstra-
tion is now beginning to be replaced by a less elegant but more pragmatic method-
ology: hypothesis→ conclusion→ computer simulation/experimental tests. Instead
of solving the differential equations, one let the computers to integrate them, numer-
ically. As a result of this, most of the industrial products, including the 15 million
items Airbus 380, are in our postmodernist days designed with the help of dedicated
software, that are embedding general and specific knowledge of the domain, often
acquired by simulations and represented linguistically by expert systems. The lack
of a rigorous theory is compensated by serious experimental tests for validation.

The final section of the chapter will illustrate these considerations.

18.6 Postmodernism and Fuzzy Logic

The Postmodern truth is fragmented, subjective and stemmed from approximate
reasoning [9]. Epistemologically, this nuanciation of truth is unanimously associated
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with Lotfi A. Zadeh’s fuzzy logic [9], [11], [14], [8], etc. The Aristotelian two valued
logic, true and false, was dominating more than two millenniums the philosophy.
After George Boole described it mathematically, it get involved into technology,
most of all into the control engineering, by the sequential control (relays, electronic
digital circuits, PLCs, etc.). The climax of the Boolean logic was the conceiving and
the development of the digital computers, the particular item that changed the world
more that the landing on the Moon. The achievements of the digital technology are
obvious and undeniable; however in certain situations it showed some limitations.
These situations are generically characterized by the presence of different types
and levels of uncertainty. If we are not able to classify a concept as true or false
then the Boolean logic simply collapses. The uncertainty is anyway a constant of
the human reasoning, which operates in a symbolic and qualitative manner. That
is why before fuzzy logic, AI encountered enormous difficulties at the computer
implementing stage.

The fuzzy logic is able to cope with uncertainty because it accepts for the mem-
bership functions not only two values 0 (false) and 1 (truth), but all the interval
bounded by 0 and 1. If the membership function of an element to a certain concept
is 0.5, it means that we are not at all sure if the element is belonging to the con-
cept or not, and the fuzziness is maximum. Using fuzzy sets we can represent world
knowledge affected by uncertainty in digital computers, as fuzzy linguistic vari-
ables, perfectly compatible with human reasoning. Further on, fuzzy logic is able
to produce inferences using fuzzy variables and specific yet very simple operations:
min-max, prod-sum, etc. The software items that are producing logic inferences by
control rules, based on previous human expert knowledge, are the expert systems.
The postmodernist version of the expert systems are the fuzzy expert systems.

In science and technology uncertainty may be caused by our poor knowledge or
incorrect information on the system we are dealing with. This is happening when
we are not disposing of an appropriate mathematical model of the system, by differ-
ent reasons: too much complexity, inappropriate sensors, insufficient experimental
data, etc. In these circumstances fuzzy logic is producing feasible solutions. Besides
the uncertainty caused by our qualitative reasoning and our lack of knowledge, the
result of our senses – our perceptions – are uncertain too [14]. Generally speak-
ing, uncertainty is a fundamental attribute of life. That is why fuzzy logic may be
successfully applied whenever applications address human beings, or any other bi-
ological system. This is the case of air conditioning systems, greenhouses and other
related applications. For instance the flexibility offered by the very nature of the
fuzzy expert systems and the vague perception of the “comfortable temperature”
concept can be converted into energy savings, by means of few specific very simple
control rules. Here is an example of such a rule:

IF temperature is moderate low
AND change of temperature is positive

THAN save energy.

Constantin Virgil Negoita wrote about the echoes of the fuzzy concept in Eastern
Europe a crisp true: “In Eastern Europe, everybody liked the idea of a fuzzy set.



384 18 Postmodernism and Control Engineering

Probably because it was coming from California, promising liberties”. Perhaps this
conclusion can be extended to other geographical regions, although the subject is
not spared by controversies.

At the first glance working with fuzzy logic seems very simple, but this is only
an appearance. Liberty is useless and can become even dangerous without intel-
ligence and responsibility. The fuzzy logic in itself is not able to point solutions,
solve control problems or even learn automatically how to do such tasks. Used by
untrained and inexperienced engineers, the fuzzy systems becomes inconsistent, the
choice of the input and output variables, their fuzzyfication, the inference and the
defuzzyfication became labyrinthic.

The fuzzy logic is rather a way of representing and processing knowledge in com-
puters, that can produce extremely effective results if we already know the solutions.
Thanks to its simplicity we are free to concentrate on reasoning, almost forgetting
about methodology. This explains why the fuzzy sets and logic represents now a
widely spread ingredient in almost any hybrid AI recipe, working amazingly well in
any possible combination: fuzzy-expert, neuro-fuzzy, genetic-fuzzy, reinforcement
fuzzy learning, etc.

18.7 An Example: The Switching Controllers Effect

The Switching Controllers Effect SCE consists in unpredictable shocks or oscilla-
tions that may occur in control systems, when two or more controllers are switched
[7], or when parts of the same controller are switched [4]. Detailed and precise
studies of the switching linked phenomena were reported mostly for the linear sys-
tems [1]. Two relevant conclusions proved by specific benchmark studies and an
extended overview of the existing literature are presented in [7]. The conclusions
are the following:

– a switching system can be potentially destabilized by an appropriate choice of
the switching signal, even if the switching is between a number of Hurwitz-
stable close loops systems; this possibility exists even if the switched systems
are identical;

– the switching effects are related to the realization of the control system.

The lack of a unified theory is hardening the study of the nonlinear switching
systems. The conventional frequency analysis (using transfer functions) has few
chances to produce positive results even for the linear case, taking into consider-
ation the fact that this theory is essentially founded on the hypothesis of the null
initial conditions. That is why switching Hurwitz-stable systems can be destabilized
by appropriate choices of the switching signals. There are some plausible explana-
tions for the switching controllers effect:

– a commutation represents a discontinuity by itself, transitory effects are inherent;
that is why the control algorithms need a perfect initialization for the moment of
the switching. However this task is not very easy and demands special care and
extra costs.
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Fig. 18.4. The d.c. driver and the two switched PI and PD controllers

– the digital control systems are fundamentally affected by the digitization oper-
ation (sampling and encoding); that is why most of the time the digital control
systems are actually working in open loop and odd unexpected dynamic effects
are sometimes possible.

– the nonlinearities of the controlled processes and of the controllers themselves
(most of all the saturation).

We performed a study on SCE by simulations, using a simple control system. The
most difficult task in these cases is to produce a SCE, in fact they appear very seldom
and only in particular conditions. That is why we managed to provoke it only after
a certain setting out of tune of the controllers. Let us consider the case of a d.c.
electric drive (P = 12kW, Unom = 220 V, nnom = 685 rpm) whose speed is controlled
either by a PI controller (proportional gain = 25, integral = 10 gain) or by a PD one
(proportional = 25 gain, derivative = 0.1 gain) [3]. The main window of the Matlab-
Simulink model is presented in fig. 18.4. This configuration is taking advantage of
the precision of the PI controller in steady regimes and the robustness of the PD
controller in transient regimes.

The scenario of the simulations is the following: we will impose a 600 rpm speed
step with no load torque, that should be accomplished in one second and we will in-
troduce a loading torque at t = 5s. The basic idea is to switch from the PD controller
to the PI one after 5s, for instance at t = 7s. Such way the control system is working
perfectly normal. Now let us change permute PI to PD. The first controller will be
the PI and the PI to PD switching moment will anticipate the loading of the drive,
for instance at t = 3s. The SCE appears and the system becomes unstable as one can
see in fig. 18.5.

Other empirical observations drawn from simulations performed in [3] and [7]:

– the instability may evolve in both senses: positive as in fig. 18.3 but also negative;
– the instability appears as well in the case of same type controllers;
– the instability is finally producing the saturation of the controller, but its causes

are not necessarily linked to the saturation;
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Fig. 18.5. Instability induced by a PI to PD commutation at t = 3s

– changing the parameters of the integration used for the simulation is producing
significant changes and even the disappearing of the instability.

When simulating on computers, the integration method and even its toleration have
a major impact on SCE: for instance, the following results are entirely depending of
these factors and even of the computer and its operation system. The same Matlab
mdl file is producing largely different results when running on different computers:
SCE may not appear at all or may be huge. We can conclude that the instability is
appearing mainly in digital systems and it is linked to the sampling operation and
the integration method. Since the conventional system theory’s tool – the frequency
analysis performed by means of the Laplace operational calculus - is useless in
this case, we will replace it with the phase trajectory of the error PTE. Originally
the phase trajectory was introduced by Jules Henri Poincaré (1854-1912), whose
mathematical approach was occasionally accused of being too intuitional and not
too rigorous. Usually PTE refers to the control error in close loop control systems.
In this case the error er will be defined as the difference between the outputs of the
switching controllers PI(t) and PD(t) [3]:

er(t) = PI(t) - PD(t)

er and its derivate cer, corresponding to the fig. 18.5 simulation, are shown in
fig. 18.6.

The PTE is resulting after filtering the high frequency components, as shown in
fig. 18.7.
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Fig. 18.6. The error and its derivate, for the fig. 18.5 simulation

Fig. 18.7. The PTE and the not recommendable switching in the first quadrant
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PTE can be used for analyzing the causes of the oscillatory or unstable commuta-
tions, as well as for choosing the low risk switching moment. A first observation
is that the commutations executed while PTE is located into the first or the third
quadrants present high instability risks, which is not the case for the second and the
fourth quadrants. Our observations are pointing a particular high risk zone in the
first and the third quadrants, limited by max(cer) and max(er) [3]. In other words,
the instability risk appears when the two controllers’ outputs are very different and
their tendency is to increase the difference. The transitory regime that is appearing
after such a non-natural commutation is accompanied by parasite oscillations. If the
frequency of these oscillations is matching the sampling frequency of the digital
controller, we obtain the mechanism that is standing behind SCE. A common sense
conclusion (nobody will ever succeed to entirely reject the common sense, not even
the postmodernism), is strongly recommending for commutations only the second
and the fourth quadrants. When the controllers’ outputs are close to each other and
their tendency is to decrease the difference, we will obtain smooth commutations,
with no instability risks. Simple and effective switching devices can be imagined
having in mind this criterion [2].

As a conclusion, intuistic and qualitative solutions based on time analysis may
solve control problems affected by uncertainty, replacing the bulky and exhaustive

Fig. 18.8. The phase trajectory, the linguistic phase trajectory and their interpolative imple-
mentation
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frequency analysis. This is a natural approach, since our brains are not working
numerically, but in a symbolic and qualitative manner.

We will close this chapter pointing the linguistic phase trajectory as a fundamen-
tal tool that takes advantage of the organic matching between fuzzy logic and the
qualitative time analysis. I few words, the linguistic phase trajectory is defined as
the trajectory of the fired linguistic control rules of a fuzzy controller. If we use the
tabular representation of the fuzzy linguistic control rules by means of the McVicar-
Whelan tables, the trajectory is created by the table locations that are touched by
the evolving spot of the phase trajectory. The McVicar-Whelan tables can be easily
implemented by look-up tables or other interpolative networks [5], [6]. The above
mentioned tools are illustrated in fig. 18.8.

A fuzzy interpolative switching device, able to avoid SCE, can be build using
only two simple linguistic rules:

IF er is positive great AND cer is positive great THEN don’t switch controllers.
IF er is negative great AND cer is negative great THEN don’t switch controllers.
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3. Bǎlas, M., Bǎlas, V., Dragomir, T.L.: On the Switching Controllers’ Issue and Smooth
Controller Switching by Phase Trajectory Qualitative Analysis. In: The 6th International
Conference on Recent Advances in Soft Computing (Abstracts + CD), Canterbury, July
10-12, pp. 63–68 (2006)
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Chapter 19
Fuzzy Mechanisms for Qualitative Causal
Relations

Joao Paulo Carvalho and José Alberto B. Tomé

19.1 Introduction

Fuzzy systems main asset over competing techniques has always been the capability
to model expert qualitative knowledge. However, probably due to the limited scien-
tific appeal, there has always been a scientific trend to disregard this simple but ef-
fective asset in favor of more hard-mathematical aspects of fuzzy systems. This can
prove to be a mistake, especially when approaching qualitative real world dynamic
systems, like, for instance, Social, Economical or Political Systems. Such systems
are composed of a number of dynamic concepts or actors which are interrelated in
complex ways usually including feedback links that propagate influences in compli-
cated chains. Axelrod [1] introduced Cognitive Maps (CMs) as a way to represent
and analyze the structure of those systems, but techniques that allow simulating the
evolution of cognitive maps through time, what one could call Dynamic Cognitive
Maps (DCM), were not available or had serious limitations during more than two
decades [5], [9]. Fuzzy sets should have been regarded as the ideal “tool” when con-
sidering modeling such systems. However, proper qualitative modeling was consec-
utively disregarded even when fuzzy systems were used by Kosko to approach the
problem (Fuzzy Cognitive Maps) [3], [4], [5], [11], [12], [13]. Rule Based Fuzzy
Cognitive Maps (RB-FCM) were introduced has a qualitative technique to solve the
limitations of previous approaches to this problem. They can be used as a tool by
non-engineers and/or non-mathematicians since they eliminate the need for complex
mathematical knowledge when modeling dynamic qualitative systems.

Causal relations are the major way in which understanding about the world is
organized. This turns causal relations modeling into probably the most important
issue in Cognitive Map modeling. This work presents a method to implement Fuzzy
Causal Relations that can be used in RB-FCM. The procedure is based on a new
fuzzy operation that simulates the “accumulative” property associated with causal
relations – the Fuzzy Carry Accumulation (FCA). The FCA allows a great flexibility
in the addition and removal of concepts and links among concepts while keeping
compatibility with classic fuzzy operations.

19.2 Causality

Causality is probably the most important mean to explain a posteriori events in the
real world. According to Huff [18], the following statements can easily explain this
fact:

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 393–415.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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• Causal relations are the major way in which understanding about the world is
organised;

• Choice among alternative actions (decision processes) involve causal evaluation.

Representing causality is therefore a major issue when modeling real world systems.
Causality representation can be divided into three major approaches: Minimalist,
Probabilistic and Deterministic.

The minimalist approach is the one used in Causal and Cognitive Maps (CM), as
introduced by Axelrod [1], Eden [15],[16], Laukkanen [25], [26] or Cossette [14].
In such CM, structural analysis is the most important considered aspect. Therefore
causality does not need to be concretized: the simple indication of the existence of
a causal relation (and eventually its sign), is more than enough to model causality.

The probabilistic approach does not describe the causality effects. It simply mod-
els the causal occurrence probability and the propagation of its effects on a model.
It is the approach used in Bayes networks and Influence diagrams. Until the end of
the 80’s it was not considered by many as a proper way to model causality .

The deterministic approach, which is concerned with the description of causal
relations effects, is the one that is most coherent with philosophy’s causation princi-
ple: “Every fact has a cause, and given the same conditions, the same cause always
produces the same effect”. This approach is the one followed in Forrester’s Systems
Dynamics theory, or in Kosko’s Fuzzy Causal Maps, and has as primal goal, the
simulation of the dynamics of causal effects.

No matter the approach used, causality definition has always been subject to huge
controversy. The discussion on which event is the cause of another one is an is-
sue that is highly dependent on the subject being analyzed, and on the motivations
and involvement of the ones analyzing it. Furthermore, eventual moral implications
should never be ignored. Finding the cause(s) of the “injuries suffered by Alice
when Bob lost control of the bike while giving her a ride” is a problem that simply
cannot have a single unanimous answer. What was/were the causes? The accident?
The poor tire conditions? The massive rain? Bob’s fatigue? Several other causes
can be hypothesized, and probably there wouldn’t be a single cause, but a serial
or parallel sequence of multiple events. An even bigger problem appears when one
introduces the notion of scale to the analysis. By “zooming in” one could conclude
that the cause of the injuries was the impact against a tree; if instead of a tree there
was a lawn, she could have left the accident uninjured. By “zooming out” one could
conclude that the cause of the injuries was the fact that Alice’s mechanic did not fix
her car on time, which led her to accepting the ride from Bob...

Being so difficult to establish a unanimous cause, it is interesting how one can
easily accept plenty of causal-effect relations without considering the above issues.
For example, everyone would agree that the discovery of penicillin saved of millions
of lives, or that a crash in the stock market ruins the economies of many people.
However, even in these widely accepted examples, it is possible to “zoom in” Ch.
Guimelli [17], or “out” and find plenty of other intermediate cause-effect events.

Therefore, the definition of a direct causal relation is always dependent on the
context being considered, and it is always possible to find an intermediate event that
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ruins the notion of “direct causal effect” . This fact is very relevant when considering
the theoretical assumptions usually accepted when defining causality.

Causality can be defined as a relation of events: something that is, exists, or hap-
pens and makes something happen. An event can be the result of more than one
cause, and it is possible that a single of those causes could or couldn’t be sufficient
to cause the event. Usually the notion of event is associated to a physical or ab-
stract entity: “the accident”, “the car”, “inflation”, “health”, etc. On a causal map,
this entity is referred as a Concept. Therefore, causality always involves one or
more concepts. There can be several concepts causing the event (“the antecedent
concepts”).

Most authors usually associate causality with the following additional
properties [28]:

• Transitivity –
If A causes B, and B causes C, then A is also considered to cause C;

• Irreflexivity – An event cannot cause itself;
• Antisimmetry – If A causes B, then B cannot cause A.

However, the last two properties are incoherent when one considers the existence
of feedback links and the assumption that one can never have a direct causal effect.
To show this fact, it is enough to consider the example presented in figure 19.1
that represents a recursive reduction of a causal cycle by eliminating intermediate
concepts. These two properties are usually introduced to simplify the mathematical
analysis in probabilistic approaches.

Since the causal relations we are trying to establish in this work will be mainly
used in dynamic causal maps to model real world qualitative systems, we will use a
deterministic causality approach. We will also assume that:

• Causality is transitive, reflexive and symmetric.
• Indirect causality can be transformed in direct causality as long as the resulting

relation can be modeled in order to represent a causal effect that is equivalent to
the effect of the eliminated intermediate relations.

• Since a causal effect can only be noticed if it causes a change in the consequent
concept, a causal concept can always be represented by the variation suffered by
a real world entity. For example, while modeling a causal effect on road traf-
fic intensity, instead of using the traffic intensity absolute value (“traffic is now
intense”), we can use its variation (“traffic gets more intense”).

Fig. 19.1. Reduction of a causal cycle to a single reflective causal concept
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• An event can have different simultaneous causes. The effects of those causes are
accumulative. The accumulative effect is not necessarily linear.

Note that according to these assumptions, an event cannot force a value on a causal
concept. It can only change its value by a given amount on a given direction. There-
fore events that cause opposite effects tend to cancel each other, and events that
cause effects with the same sign tend to reinforce each other. This allows us to
model the effect of each cause independently.

19.3 Fuzzy Systems and Qualitative Causal Relations in
Cognitive Maps

As we have seen in the previous section, causality is “accumulative”. For example,
we can say that if concept A and concept B each cause concept C to increase “little”,
then C will increase “more than a little”. If two concepts A and B have the exact op-
posite effect on C, then C will not change. If A affects“little” and B affects “much”,
then C will surely increase “more than much”. The effect when both decrease is
similar. If one tries to model this type of knowledge using fuzzy systems there is
a major difference: fuzzy rules tend to reinforce each other. If A and B cause C to
increase “little” with a belief of 0.3 and 0.6, then concept C will increase “little”
with a stronger belief (0.9). If A causes C to increase “little” and B causes C to
increase “much”, then C would increase somewhere between “little” and “much”.
Only opposed effects produce a similar result, since the rule results tend to nullify
each other.

This essential intrinsic difference causes a total incompatibility in the use of fuzzy
to represent causal relations. Therefore, in order to introduce causal relations in
fuzzy systems, it is necessary to find new ways to make both worlds compatible. It
is important to note that several fuzzy additive systems exist (like Kosko’s SAMs
[24] for instance), which are not accumulative in the above sense. Those systems
add the beliefs of the variables (y-axis), not the values in their universe of discourse
(UoD− x-axis), which means that they can not be used to emulate the intended
accumulative causal behaviour.

To represent causality in FCM, Kosko [21], [22] different approach that is not
compatible with classic fuzzy systems: to obtain the value of a concept, the value of
each of its inputs (concepts) [-1..1] is multiplied by a weight [-1..1]; then the results
are added and passed by a non-linearity, just like a common neuron in a Neural Net-
work. However, the use of fuzzy sets, logic and inference in its traditional rule based
form, as introduced by Zadeh [29] and developed throughout over 40 years is par-
ticularly more adequate to represent the qualitative knowledge involved in causal
maps due to its linguistic nature [19] than the approach used by Kosko. Besides,
FCM have been shown to have severe limitations when modeling causal knowledge
[9]. So, it seemed a straightforward solution to try to implement causal maps starting
from a traditional rule based fuzzy architecture with feedback in order to overcome
FCM weaknesses. However, since traditional fuzzy operations can not emulate the
effects of causality, there was one important problem to solve while trying to create
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a Rule Based Fuzzy Causal Map: the implementation of fuzzy mechanisms to im-
plement qualitative causal relations. The purpose of this work is to present versatile
fuzzy mechanisms that allow the implementation of causality by the use of fuzzy
If· · ·Then rules.

The proposed mechanisms should also be versatile enough to maintain FCM
strong points, i.e., allow easy introduction and removal of concepts and/or rules
in CM.

The following sections introduce Fuzzy Causal Relations (FCR) and a new opera-
tion that combines the effect of several FCR, the Fuzzy Carry Accumulation (FCA),
which allows the simulation of the accumulative effect that characterizes causality
while maintaining compatibility with rule based fuzzy systems.

19.4 Fuzzy Causal Relations (FCR)

Modeling the causal accumulative effect of n concepts over a single causal concept
is perfectly possible using standard rule based fuzzy systems. However, it simply is
not versatile or even feasible due to the combinatorial rule explosion associated with
the increase of antecedents in rule based fuzzy systems. On causal maps it is very
common to find causal relations with a high number of antecedents, hence the need
for new mechanisms to implement fuzzy causality. FCR were developed as a way to
model qualitative causal relations while maintaining compatibility with rule based
fuzzy systems and guaranteeing the versatility to allow easy addition and removal
of causal antecedents by avoiding the need to modify the entire rule base whenever
a single antecedent was added or removed.

A FCR models a cause-effect relation between a single antecedent fuzzy concept
and a single consequent that is a fuzzy causal concept. The relation is modeled using
fuzzy rules. A fuzzy causal concept always represents a variation.

Note that a FCR only involves two concepts. To model several causal effects,
one FCR is used for each antecedent and the effects are accumulated using the FCA
operation1.

A FCR is modeled by a Causal Fuzzy Rule base (CFRB). Since the FCR have a
single antecedent and a single consequent, all rules on a CFRB have the following
structure:

If Antecedent (is/varies) X , then Consequent (varies) Y

where X and Y are the linguistic terms defined on the antecedent and on the causal
consequent. Note that the antecedent can either represent an absolute value or a
variation, but the consequent is always a variation.

In order for a FCR to be valid, the CFRB that defines it must be consistent. A
CFRB is said to be consistent only and only if it contains one rule for each linguistic
term defined in the antecedent concept.

FCR area much more versatile than the causal relations used in FCM [9]. They
can be used to model the non-linear, asymmetric and/or non-monotonic causal

1 See section 1.5.
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relations that are common in real-world qualitative dynamic systems, such as eco-
nomic, social or political systems [4], [6], [8].

19.5 Fuzzy Carry Accumulation

The Fuzzy Carry Accumulation (FCA) is a fuzzy operation that simulates a causal
accumulative effect. The principles behind the FCA can be easily explain by an ex-
ample where we use singletons. Consider the following three fuzzy concepts where
thw fuzzy set Increase of concept Robbery is a singleton at x = 0.5:

• Two antecedents (Police_Vigilance, Wealth_of _Residents);
• One consequent (Robbery).

Also consider the following fuzzy rules:

• If Police_Vigilance Decrease Then Robbery Increase;
• If Wealth_of _Residents Increase_Much Then Robbery Increase.

Suppose that when applying the two rules we obtain Increase (µ = 0.8) and Increase
(µ = 0.4). How should these consequents be combined in order to produce the accu-
mulative effect? Note that, as we saw above2, the result should represent a variation
larger than Increase.

Since the two rules have identical consequents, in a traditional fuzzy system the
result would be Robbery = 0.5 (after defuzzification), even when the sum of the
membership degrees is greater than 1. However, since we want the result to reflect a
cumulative fuzzy causal effect something must be changed. Therefore we introduce
the concept of the fuzzy carry accumulation on a single point of the UoD:

• If the sum of the consequents membership degrees is lower or equal to 1, then
the FCA performs as a standard fuzzy operation. Example: If the rule results are
Increase (µ = 0.3) and Increase (µ = 0.4), then the inference result is Increase
with µ = 0.7. The rationale behind this behaviour is that I do not fully believe
that the result should be more than Increase.
However,

• If the sum of the consequents membership degrees is greater than 1, then there is
an overflow of the reminder (just like a carry in a sum operation) towards a value
representing a larger variation.

The overflow of the reminder will cause the result of concept Robbery (after de-
fuzzification) to be larger than Increase. Figure 19.2 gives a pictorial representation
of the above example.

If the rules involved represent a decrease, then the carry is performed in the op-
posite direction.

In the case where the reminders exceed the value 1 (which can happen when we
have several antecedents), then the excess of the reminders is also carried over.

2 See section 1.3.
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Fig. 19.2. Fuzzy Carry Accumulation with singletons

The above example is a simple one where the consequents have the same linguis-
tic term. But what happens if the consequents involve different linguistic terms – for
example Increase and Increase_Much? Since we know that the result must be larger
than the largest consequent, the solution is to shift the smaller consequent towards
the larger one and perform the accumulation afterwards. This shift operation arises
several problems and constraints that will affect the implementation of the FCA,
since there must be a way of retaining and distinguishing the original value of the
shifted set. Due to these constraints, fuzzy causal operations can not be implemented
with singletons. Singletons were used simply to show the FCA principles.

When we use fuzzy sets instead of singletons, the FCA operation must be applied
at every point of the UoD. The overflow of the sum at each point is added to the
sum of the µ of both sets at the next point of the UoD. When overflow exists, it is
carried over to the next point, provoking an increase of the value of the resulting set
centroid. However, as when operating singletons, it is still necessary to shift the set
that represents a lower variation towards the one with the largest variation. Shifting
a fuzzy set while maintaining its meaning is not a problem with a trivial solution,
unless one imposes several restrictions to the mbf of the involved fuzzy sets.

Fig. 19.3. Morphology of a Linguistic Term



400 19 Fuzzy Mechanisms for Qualitative Causal Relations

The next sections present solutions to the issues that had to be solved in order
to allow the implementation of FCA. These issues were essentially related with the
necessity to shift a fuzzy set while maintaining its identity, and with the saturation
of the FCA operation. In order to provide a better understanding of those sections,
figure 19.3 represents the terminology used to represent the morphology of a lin-
guistic fuzzy set.

The notation “A@B” was established to express the FCA operation between 2
fuzzy sets A and B.

19.5.1 Maintaining the Identity of a Shifted Fuzzy Set:
Interpolated Linguistic Terms and Causal Output Sets

The linguistic terms that define a fuzzy variable are completely described by their
membership function (mbf). If one shifts a linguistic term, the support of the mbf is
changed, and the meaning of the linguistic term is no longer the same, even keeping
the shape of the mbf. For example, the linguistic term the represents a “Tall man” in
figure 19.4, looses its meaning when shifted towards 0, even while maintaining its
distinguish shape. Therefore, the shift operation that was identified as necessary on
a FCA looses its purpose unless one finds a way to keep the semantic meaning of a
shifted fuzzy set.

On a causal concept all linguistic terms represent a degree of variation of the con-
cept. In order to guarantee that the degree of variation represented by the linguistic
term is not lost when its fuzzy set is shifted, one opted to impose a strict relation
between the semantic meaning of the linguistic term and its area and support set
size: the larger the variation indicated by a causal linguistic term, the larger its area
and support set size must be (19.1):

∀(A,B) ∈ F (X), A > B⇔ xsizeA∧AreaA ≥ AreaB, (19.1)

where A and B are two linguistic terms defined on a fuzzy causal concept.
These properties should also apply to any fuzzy set resulting from the inference

of a fuzzy causal rule base that uses those linguistic terms. However, standard fuzzy
rule inference is not compliant with these properties; especially the one concerning

Fig. 19.4. The identity of a fuzzy set is dependent on its position on the UoD
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Fig. 19.5. U is a fuzzy set resulting from the inference of a FCR

the support set size. Figure 19.5, where Max-Dot inference is used in the following
2 rules, shows a clear example of this fact:

If Antecedent Decrease (D), then Consequent Increase (I)
If Antecedent Decrease_Much (DM), then Consequent Increase_Much (IM)

The example presents a situation where

µ = D(Antecedent) = 0.3 and µDM(Antecedent) = 0.7.

The resulting fuzzy set U indicates a variation between Increase and Increase_Much,
but it is clearly visible that xsizeU > xsizeIM . This means that xsizeU cannot be used
to define the degree of variation of the concept. However, the area of U can be used
to represent the degree of variation as long as the following conditions are respected:

i. The membership degree of all linguistic terms must be complementary, i.e., its
sum must be 1 in every point of the variable UoD(X):

∀x ∈ X , ∀(A0,A1 . . .An) ∈ F(X),∑
i=0

nµAi(X) = 1 (19.2)

ii. All linguistic terms must have the same basic shape (trapezoidal, S, etc.), and
their membership functions must cross with their neighbours when µ = 0.5.

iii.The inference method must preserve both the shape and the centroid’s
x-coordinate of the consequent linguistic term; the Max-Dot method is an ex-
ample of an adequate method.

iv. The fuzzy sets that result from the inference of the rule base must be summed.
As a result one obtains a single fuzzy set, which we will call U .

The above conditions guarantee that the area of the fuzzy set that results from
the inference of the rule base describing a FCR is univocally and semantically
related with the with the variation that it represents.

In order to obtain a set with a support that also gives an indication of the vari-
ation degree, it is necessary to transform U on an Interpolated Linguistic Term
(ILT) [7].

An ILT, is a fuzzy set that is univocally related with the active consequents
of a rule based fuzzy inference. Given U , obtained respecting restrictions i. to
iv., we call ILTU (the Interpolated Linguistic Term of U), to the fuzzy set that
respects the following conditions:
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v. ILTU and the term set of the fuzzy variable where U is defined must have the
same shape.

vi. The x-coordinate of the centroid of ILTU and the x-coordinate of U must be the
same:

xCILTU = xCU ⇔
(∫

x µILTU (x) · xdx∫
x µILTU (x)dx

)
=
(∫

x µU(x) · xdx∫
x µU(x)dx

)
(19.3)

vii. U and ILTU must have the same Area:

AreaILTU = AreaU ⇔
∫

x
µILTU (x)dx =

∫
x
µU(x)dx (19.4)

viii. ILTU is normal, i.e.:

{∃x ∈ X |µILTU (x) = 1}⇔ ILTU1 �= � ©⇔ xtopILTU > 0, (19.5)

ix. If A and B are the terms involved in the inference of U , then the size of
ILTU1 ,xtopILTU , is a function of A and B’s xtop and of A,B and U’s xC:

xtopILTU = min{xtopA,xtopB}+
∣∣∣∣ xCu− xCA

xCB− xCA
× (xtopA− xtopB)

∣∣∣∣ (19.6)

x. If A and B are the terms involved in the inference of U , then the size of the inner
base of ILTU ,biILTU , is a function of A and B’s bi and of A,B and U’s xC:

biILTU = min{biA,biB}+
∣∣∣∣xCU − xCA

xCB− xCA
× (biA−biB)

∣∣∣∣ (19.7)

Conditions viii. and ix. impose to xtopILTU a value between xtopA and xtopB. This
value is a univocal function of the position of xCU relative to xCA and xCB. For ex-
ample, if xCU = xCA, then xtopILTU = xtopA; if xCU = xCB, then xtopILTU = xtopB; if
xCU is equidistant form xCA and xCB, its size is the average of xtopA and xtopB; etc.
When xtopA = xtopB,xtopILTU is constant and independent from xCU . Condition x
applies the same principles to the calculus of biILTU .

ILT are groundbreaking in a sense that they tamper the usual fuzzy rule based
inference method. However, they are very simple and basic mechanisms, and can
be used as alternative representations for the fuzzy sets obtained by fuzzy rule base
inference. ILT can also be seen as a 2-dimensional interpolation of the linguistic
terms involved in the consequents of that inference. When used in causal concepts,
where all linguistic terms represent variations, ILT are referred as Causal Output
Sets (COS).

One can infer the following results regarding causal output sets3:

• The inner slope of COSU ,siCOSU , is given by:

3 Proof of this conclusions can be found in [5].
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Fig. 19.6. COSU is the linguistic term A

siCOSU =

⎧⎪⎪⎨⎪⎪⎩
1

min{siA ,siB}+
∣∣∣∣∣ XCU

−XCA
XCB

−XCA
×(siA−siB)

∣∣∣∣∣
, i f COSU represents a positive variation

− 1

min(siA ,siB)+

∣∣∣∣∣ XCU
−XCA

XCB
−XCA

×(siA−siB)

∣∣∣∣∣
, i f COSU represents a negative variation

(19.8)

• COSU is unique and is the result of the inference of a maximum of two fuzzy
rules.

• When COSU results from the inference of a single rule, then COSU ≡ U ≡ A,
where A is the linguistic term of the consequent of the active rule (figure 19.6).

• The size of the support of COSU−xsizeCOSU− gives an indication of the variation
degree we are trying to model, and it is guaranteed that, if A > B, then:

AreaB < AreaCOSU < AreaA (19.9)

xsizeB < xsizeCOSU < xsizeA (19.10)

One can conclude that COSU is a fuzzy set that satisfies the necessary requisites to
be shifted without loosing its identity. Therefore it can be used on FCA operations.
Figure 19.7 shows a pictorial representation of a causal output set. The notation
COS+ was established to indicate a causal output set representing a positive varia-
tion. COS− is used to indicate a negative variation.

The calculus of a COS is not as immediate as most operations involving fuzzy
sets. Nevertheless it is computationally efficient, and on a current computer it can
be used on RB-FCM containing dozens of concepts and thousands of rules without

Fig. 19.7. COS example
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any noticeable delay. The following algorithm can be used to calculate COSU (the
algorithm assumes a positive variation).

COSU + Calculation Algorithm:

1. Calculate xCU and AreaU ;
2. Calculate xtopCOSU ;
3. Assume in f (COSU1) = 0;
4. Calculate COSU1 = in f (COSU1)+ xtopCOSU;
5. Calculate siCOSU ;
6. Calculate in f (suppCOSU) = in f (COSU1)− siCOSU ;
7. Using the previous data and knowing that the COS is a trapezoid,

one can immediately compute COSU for x ∈ (in f (suppCOSU),sup(COSU1)).
8. Calculate the area of COSU for x ∈ (in f (suppCOSU),sup(COSU1)).

Call this area the Attributed Area of COSU .
9. Calculate the remaining area to atribute = AreaU – Attributed Area of COSU .
10.Knowing that the remaining area is a triangle, sup(suppCOSU) can be obtained

numerically using the value obtained in 9.
11.It is now possible to calculate inf(COSU1) and recalculate all parameters previ-

ously claculated using inf(COSU1)=0.
12.Calculate the abscissa of the COSU centroid and shift COSU in order to obtain

xCCOSU = xCU .

End of Algorithm

19.5.2 Variation Output Sets (VOS)

As we have seen, a FCR defines a causal relation between two fuzzy concepts using
a fuzzy rule base. The result of the inference of the FCR is a COS (which is an ILT).
When a causal concept is causally affected by more than one concept, the causal
output sets resulting from each FCR must be accumulated using a FCA. The result
of the accumulation of the COS is called a Variation Output Set (VOS) (19.11).

COS1@COS2 = VOS (19.11)

A VOS is not an ILT. Note that in case of a single FCR there is only one COS which
is simultaneously a VOS. The result of the accumulation of a VOS with a COS
is also a VOS, which means that one can infer several FCR sequentially. A VOS
that represents a positive variation is called VOS+, one that represents a negative
variation is called VOS−.

19.5.3 Variation Degree of a Fuzzy Set on a Causal Relation

The application of the FCA between two VOS fuzzy sets involves shifting the one
that represents the smaller variation degree (varD). Therefore one must define a
measure for the variation degree of a VOS. This problem has an immediate solution
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Fig. 19.8. Which set represents a larger variation degree?

Fig. 19.9. xsizeVOS > xsizeCOS does not imply varDVOS > varDCOS

when dealing with singletons or with crisp sets, but can be quite delicate when
fuzzy sets are involved. Figure 19.8 shows an example where selecting the set that
indicates the largest variation degree is not trivial.

If all sets involved were ILT, the problem would not exist since the set with the
lowest xsize would be the one representing the smaller variation. However, a VOS
is not an ILT, and the most common FCA operation is between a COS and a VOS. If
the VOS is the result of several small variations and the COS represents a medium
(or even large) variation, it is possible that xsizeVOS > xsizeCOS , while varDVOS <
varDCOSVOS. Figure 19.9 represents such case.

Several methods were studied to solve this problem [5]. In the end we chose the
following one:

Given two VOS fuzzy sets4 A and B, use the abscissa of the smaller point that has
µ = 1 to decide which represents the higher variation degree (19.12), (19.13). The
set with the larger xmin represents the larger varD.

xminA1 = min(|A1|) (19.12)

xminB1 = min(|B1|) (19.13)

This method characterizes the degree of variation by one of the most reliable fea-
tures of a VOS, and provides a correct FCA operation as long as the involved VOS
share the same basic shape (for example, both are trapezoids), which is one of the
pre-requisites of FCR.

4 Remember that a COS is both an ILT and VOS.
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19.5.4 Shifting the VOS Representing the Lowest Variation

After settling the identification of the set that represents the smallest variation de-
gree, it is necessary to shift it towards the other set. This shifting operation must
guarantee that when the FCA operation is applied on the largest set and on the
shifted set, the resulting set will be a VOS representing a variation that is larger than
the largest variation of the involved sets. Several options were considered during
development [5]. In the end the following option was chosen:

Definition – Shi f tA→B:
Given two VOS, A and B, where A represents a smaller variation, the shift operation
consists in shifting A until condition (19.14) is satisfied.

min(|suppA|) = min(|B1|) (19.14)

End of Definition

This shift operation not only allows the resulting set of A@B to be a VOS, but also
exhibits proper qualitative semantics, since A is shifted to the abscissas point of B
that indicates a larger variation while still having maximum membership degree5.
The chosen method also has the advantage of guaranteeing that when several FCR
are present, the diVOS will always be equal to the diCOS representing the largest
suffered effect.

19.5.5 FCA Saturation

Saturation, which can be defined as a maximum capacity after which a process no
longer follows the laws defining it, is a natural phenomenon in most processes. On
a causal concept, saturation is the equivalent of reaching the maximum variation
degree on a given time interval – if the causal concept is defined on a RB-FCM, the
time interval is the time defined for a single iteration [13]. This section is dedicated
to the definition of mechanisms to model and deal with a possible saturation caused
by the FCA operation.

FCA saturation is an important technical problem since it can limit the maximum
theoretical value of a causal concept, as can be seen in the following example:

Since on a FCA the largest COS is never shifted, the effect of a very large number
of very small causal effects would never be correctly represented due to the fact
that the resulting VOS would always have inner base and inner slope equal to the
largest COS (which in this example is very small)6. Therefore, the centroid of the
VOS would always have abscissas value close to 0.5, even with the accumulation
of an infinite number of very small variations. However, given enough very small
variations, the causal concept should nevertheless saturate. Figure 19.10 shows a
pictorial representation of the FCA saturation problem.

5 See section 1.5.
6 See section 1.5.6.
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Fig. 19.10. FCA saturation problem

The represented VOS is the result of the accumulation of several identical COS.
In this situation it is impossible to obtain xCVOS close to the maximum value of the
concept.

Let us start by defining FCA saturation: one can say that the result of the
FCA operation is saturated when µVOS(1) = 1 (positive variation saturation) or
µVOS(−1) = 1 (negative saturation variation). The solution to the problem involves
finding a way to shift the VOS centroid – xCVOS –, even after FCA saturation. Note
that the xCVOS can be shifted until reaching the saturation value, but should never
pass it.

Several approaches to this problem were studied by the authors [5]. The proposed
solution starts by extending the domain of the resulting VOS over 1, as long as we
have carries from previous points in the domain. Then the VOS should be shifted
towards the larger variation direction by an amount indicated by the dimension of
the support set of the VOS extension over 1 (Figure 19.11). The obtained saturated
VOS (VOSS) can be defined by (19.15) and (19.16).

µVOSS(x) = µVOS(x− satShi f t), 0≤ x≤ 1, (19.15)

Fig. 19.11. Solving FCA saturation problem
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where

satShi f t = min{(max(suppECVOS)−min(suppECVOS)),(1− (suppVOS))}
(19.16)

is the shift resulting from the saturation process. As a result of the shift, xCVOS can
never pass 1.

The proposed method has the advantage of maintaining VOS shape, which allows
the identification of the largest involved effect (using the inner slope).

Since this procedure does not maintain the VOS area, the total area of all involved
COS must be stored somewhere7.

19.5.6 Formalization of the FCA Operation

The former sections provided a framework that allows a formal definition of the
FCA operation.

The FCA is an operation that simulates the accumulation of two COS each rep-
resenting a variation with the same sign. Its behaviour depends on whether the COS
indicate positive or negative variations. Therefore one can define two symmetrical
operations: FCA+ and FCA−. The way how one deals with the aggregation of the
FCA+ and FCA− -results is presented in 1.6. This section is dedicated to the for-
malization of the FCA+ operation. All results and conclusions can be extrapolated
to FCA− operations.

The FCA+ operation between two causal output sets A and B, A@B, can be de-
fined as:

Definition – A@B: Given two VOS fuzzy sets (A,B)*F (X), where varDA≥ varDB

(i.e., A represents a larger variation degree than B), and X is a discrete, or dis-
cretizable normalized interval [0,1], that can be extended if saturation occurs (i.e.,
X = 0,x1, ...,1, ...,xn), then the Fuzzy Carry Accumulation operation between A and
B, A@B, is an operation that aggregates both sets according to (19.17).

µA@B(xi) = min{1,µA(xi)+ carry(xi−1)}. (19.17)

where: shi f tB = min(A1)−min(suppB). (19.18)

carry(xi) = max{0,µA(xi)+ µB(xi− shi f tB)+ carry(xi−1)} (19.19)

carry(x−1) = 0 (19.20)

shift represents the shifting amount of the fuzzy set that represents the smaller
variation8.

If the operation results in saturation9, then the resulting fuzzy set must be shifted
according with (19.15) and (19.16).

7 See section 1.6.
8 See section 1.5.3.
9 See section 1.5.5.
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Fig. 19.12. A pictorial example of the FCA+ operation A@B

End of definition

Figure 19.12 gives a pictorial example of a FCA+ operation.
Note that:

a) Up to the UoD point of the largest µ, the resulting set is equal to the ILT that
represents the largest variation (19.21):

µA@B(xi) = µA(xi), 0≤ xi ≤min(A1) (19.21)

b) While carry≥ 0,µA@B = 1;
c) If carry = 0, µA@B = µA + µshi f tB;
d) If there is saturation, the result is shifted towards a direction indicating a larger

variation;
e) The FCA maintains the total area of A, B, as long as there is no saturation.

Even being an operation that transforms two fuzzy sets on a single fuzzy set,
the FCA is not an aggregation operation since it does not respect the boundary
conditions [20] indicated by (19.22).

(µA1(xi) = µA2(xi) = · · ·= µAn(xi) = 0)∧ (µA1@A2···@An(xi) �= 0)can be True.
(19.22)

This is not unexpected since the main goal of the FCA is to shift the resulting fuzzy
set towards zones representing larger variation in the UoD. Therefore one can say
that the FCA is a new type of fuzzy operation, whose effect is equivalent to a seman-
tic transposition of membership values towards UoD values. The axioms of classic
fuzzy operations usually try to guarantee coherence in the membership degree do-
main of the involved fuzzy sets.

Even though the boundary conditions are not respected, the FCA is commutative

(A@B = B@A) (19.23)

and associative

(A@B@C) = (A@B@C) (19.24)

which are essential conditions to guarantee easy removal or addition of antecedents
in fuzzy causal relations. Proving that the FCA is commutative is simple, since
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the FCA always involve detecting and shifting the set that represents the smaller
variation and therefore the order of the operators is irrelevant. Proving associativity
is more difficult and involves dividing and analysing the resulting VOS in different
sections. Complete proof of these properties has been previously published [5].

∀xi ∈ X , µA@B(xi) = µB@A(xi)⇔VOSA,B = VOSB,A (19.25)

∀xi ∈ X , µ(A@B)@C(xi) = µA@(B@C)(xi). (19.26)

19.6 Modelling the Effect of Several FCR on a Fuzzy Concept

As we have seen, a Fuzzy Causal Relation (figure 19.13) is used to model the causal
effect of a single antecedent fuzzy concept on a single consequent fuzzy concept.
The result of the inference of a FCR is a COS. When we have several different
causes affecting the same consequent, each causal effect is modelled by a FCR, and
the resulting accumulated causal effect is obtained by the application of the FCA
between all resulting COS. Since the FCA is accumulative and associative, one can
infer all FCR sequentially, and we can apply the FCA sequentially as each COS is
obtained. The final causal effect is modeled by the resulting VOS

VOSFCR0···FCRn = (COSn@(· · · (COS1@COS0))). (19.27)

Since the FCA implies shifting fuzzy sets and overflows in the direction of a larger
variation, it is necessary to differentiate the rule consequents that indicate a positive
variation (a positive causal effect, an increase, an improvement) from the rule conse-
quents that indicate a negative variation. The FCA can only be applied between COS
representing variations of equal sign, i.e., between COS− and COS− (or VOS−),
or between COS+ and COS+ (or VOS+).

The following algorithm describes the procedures involved in the calculation of a
causal effect described using fuzzy causal rule bases. On a Rule Based Fuzzy Causal
Map these procedures are applied to each causal relation in all iterations:

Fuzzy Causal Inference Algorithm: Given n + 1 fuzzy concepts (A0,A1, · · · ,An)
causally related with fuzzy causal concept C through a set of n + 1 fuzzy causal
relations (FCR0,FCR1, ...,FCRn), each defined through a set of n + 1 fuzzy rule
bases (FRB0,FRB1, ...FRBn):

Fig. 19.13. Fuzzy Causal Relations
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A) For all i * [0,n], infer eachFCRi:

1. Infer all rules in FCRi (at most 2 can be active simultaneously) and obtain the
resulting fuzzy sets A,B (at most 2) applying the Max-Dot method.

2. If there are 2 active rules:
a. Calculate U = A + B
b. Obtain COSU :

i. Calculate the abscissa coordinate of the centroid of U,xCU

ii. Calculate the area of U,AreaU

iii. Calculate COSU = ILTU
10

Else, only one rule is active and we obtain a single fuzzy set A, and:
a. U = A
b. COSU = U = A
c. Calculate AreaU

3. Define if we are dealing with a positive or a negative variation (COS+ or
COS−). From here on ± will be used to indicate either + or −.

4. Add AreaU to the total positive or negative area amount (TotalArea±).
5. If VOS± � ©=, thenVOS±= COSU Else: calculate COSU @VOS± to obtain

the new VOS:
a. Find which set among VOS and COS represents the smaller variation:

i. Calculate varD : varDVOS = min(|VOS1|),varDCOS = min(|COS1|)
ii. Subtract varDVOS from varDCOS to find which is smaller.

b. Calculate shift amount: shi f t = |varDCOS− varDVOS|
c. Apply equations (19.17) to (19.20).

After all FCR are inferred, one obtains 2 fuzzy sets, VOS+ and VOS−, which repre-
sent the total positive and negative accumulated variations resulting from all causal
effects.

B) If the FCA± saturated, i.e. µVOS+(1) = 1 or µVOS−(−1) = 1:

6. Calculate the saturation extension:
satShi f t = (max(suppECVOS)−min(suppECVOS)),
up to the maximum (1−min(suppVOS))

7. Shift VOS by the amount given by satShi f t : VOS(x) = VOS(x− satShi f t)
8. If µVOS+(1) = 0 or µVOS−(−1) = 0, then the causal concept saturated and the

VOS becomes a singleton at x = 1 or x =−1.

End of Algorithm

One should note once again that, as the FCA is commutative and associative, the
inference order is irrelevant. This is extremely important since it allows us to easily
simulate causal simultaneity.

The VOS+ and the VOS− fuzzy sets represent the positive and negative cumula-
tive effects of all antecedent concepts. The VOS shape gives us lots of information
regarding the active rules, such as:

10 See section 1.5.1.
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• The internal slope indicates which was the largest (and most imprecise) suffered
effect;

• If the inner and outer slopes are similar, then all causes had similar effects;
• If the core is large when compared to the core associated with the largest varia-

tion, then there were several effects.

The reunion of the VOS+ and VOS− gives us the final VOS. On a system with
feedback, such as a RB-FCM, the final VOS must necessarily be defuzzified before
being used as an input in the next iteration [10]. The defuzzification operation cannot
be the standard centre of gravity method due to a possible previous saturation during
the FCA operation. This means that it is necessary to store the area of all COS used
to obtain the VOS± and use those values in the defuzzification process. The crisp
value of a causal concept is calculated using (19.20).

VariConcept =
xCVOS− ·AreaVOS + xCVOS+ ·AreaVOS+

AreaVOS−+ AreaVOS+
(19.28)

19.7 Applications and Concluding Remarks

Fuzzy Causal Relations were initially developed as one of the fundamental mecha-
nisms in Rule Based Fuzzy Cognitive Maps, which are a tool to model and simulate
the dynamics of qualitative systems. It is therefore natural that most FCR applica-
tions are related with RB-FCM. Although most of the details presented here have
only been available through direct contact with the authors, it is currently possible
to find FCR applications in the literature, in areas as diverse as Economics [8], Ed-
ucation [27], Forest Fire Modeling [6] or modeling the behavior of Fishing Fleet
Skippers [4].

Both the FCR and the FCA operation are subject to a series of restrictions and
calculations that on a first approach might prevent their widespread inclusion on
fuzzy systems. However, as long as the FCA operation is made available as part
of a procedure library (such as Fuzzy Mathlab, for example), implementing fuzzy
causal relations is quite straight forward, and resumes to writing the rules of the
FRB. Users only need to be aware of the following points:

• On a causal concept:

o the mbf of all linguistic terms must be ILTs and respect (19.1);
o the mbf of linguistic terms representing positive and negative variations can

not cross, not even being neighbours.

• On concepts that are antecedents on a FCR, the conditions i and ii of 1.5.1 (mbfs
must cross at µ = 0.5 and be complementary) must be respected;

• FRB must be consistent11.

Note that since all causal concepts are variations, their linguistic terms can usually
be represented by standard sets that comply with the above restrictions

11 See section 1.4.
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Fig. 19.14. Standard linguistic terms of a causal concept: Huge Decrease, Large Decrease,
. . ., Huge Increase. x-scale values are normalized values. There is no direct relation no real
world values. Levels and V-L relations [8], [11] are used to associate variations with real
world values.

(figure 19.14). Such sets can be made available for different granularities. This fur-
ther simplifies and accelerates the process of modeling fuzzy causality, and allows
the FCR and the FCA operation to extend the capabilities of fuzzy sets in what
concerns modeling qualitative systems.
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Chapter 20
On the Relation between Fuzzy and Quantum
Logic

Ingo Schmitt, Andreas Nürnberger, and Sebastian Lehrack

20.1 Introduction

Fuzzy logic is a well-established formalism in computer science being strongly in-
fluenced by the work of Zadeh [17, 16]. It provides us with a means to deal with
vagueness and uncertainty. Fuzzy logic is based on t-norms and t-conorms for inter-
section and union, respectively, on membership values of fuzzy sets.

Quantum logic was developed in the context of quantum mechanics. In contrast
to fuzzy logic, the logic is not based on membership values but on vector subspaces
identified by projectors. The lattice of all projectors provides us with a lattice oper-
ations interpreted as conjunction and disjunction.

Interestingly, there are relations between both theories. The interaction of a pro-
jector with a normalized vector produces a value which can be interpreted directly as
fuzzy membership value. This paper shows, that under some circumstances the con-
junction of projectors directly corresponds to the t-norm algebraic product in fuzzy
logic. However, in contrast to fuzzy logic which is defined on fuzzy sets, quantum
logic takes the producing projectors into consideration. As result, we are able to
overcome the problem of idempotence for the algebraic product. Furthermore, if we
restrict projectors to be mutually commuting we obtain a logic obeying the rules of
the Boolean algebra. Thus, quantum logic gives us more insights into the semantics
behind the fuzzy norms algebraic product and algebraic sum.

In the following, we first give in section 20.2 a brief introduction to Fuzzy Logic
and then introduce in more detail in section 20.3 the concepts of Quantum Logic.
Finally, we discuss in section 20.4 the relations between both theories.

20.2 Conjunction and Disjunction in Fuzzy Logic

If humans describe objects, they effectively use linguistic terms like, for instance,
small, old, long, fast. However, classical set theory is hardly suited to define sets of
objects that satisfy such linguistic terms. Let us, for examples, assume a person being
assigned to the set of tall persons. If a second person is only insignificantly smaller,
it should also be assigned to this set, and thus it seems reasonable to formulate a
rule like “a person who is less than 1mm smaller than a tall person is also tall” to
define our set. However, if we repeatedly apply this rule, obviously persons of any

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 417–438.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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size will be assigned to the set of tall persons. Any threshold for the concept tall will
be hardly justifiable. On the other hand, it is easy to find persons that are tall and
small, respectively. Modelling the typical cases is not the problem, but the penumbra
between the concepts can hardly be appropriately modelled with classical sets.

The main principle of fuzzy set theory is to generalize the concept of set mem-
bership [17]. In classical set theory a characteristic function

1IA :Ω→ {0,1}
1IA(ω) =

{
1, if ω ∈ A

0, otherwise,
(20.1)

defines the memberships of objects ω ∈ Ω to a set A ⊂ Ω. In fuzzy set theory the
characteristic function is replaced by a membership function

µM :Ω→ [0,1], (20.2)

that assigns numbers to objects ω ∈ Ω according to their membership degree to a
fuzzy set M. A membership degree of one means that an object fully belongs to the
fuzzy set, zero means that it does not belong to the set. Membership degrees between
zero and one correspond to partial memberships. Membership degrees can be used to
represent different kinds of imperfect knowledge, including similarity, preference,
and uncertainty. However, no framework is provided to model the semantics of an
element or how the membership values had been derived.

Common fuzzy sets are so-called fuzzy numbers (or fuzzy intervals) that assume a
value of one for a single value a∈ IR (or interval [a,b]⊂ IR), and have monotonously
decreasing membership degrees with increasing distance from this core. Fuzzy num-
bers can be associated with linguistic terms like, for example, “approximately a”. In
fuzzy rule based systems, typically parameterized membership functions are used,
where these are in most cases either triangular, trapezoidal, or Gaussian shaped (cf.
Figure 20.1):

µx0,σ(x) = exp

(
− (x− x0)2

2σ2

)
. (20.3)

If the complete input range is covered by overlapping fuzzy sets, this is called fuzzy
partition. If their number is sufficiently small, the fuzzy sets M are usually associ-
ated with linguistic terms, e.g. AM ∈ {small, medium, large}.

Conjunctions and disjunctions of fuzzy membership degrees are evaluated by so-
called t-norms and t-conorms, respectively:

Definition 1. A t-norm% : [0,1]2→ [0,1] is a commutative and associative function
that satisfies %(a,1) = a and a≤ b⇒%(a,c)≤%(b,c).

Definition 2. A t-conorm⊥ : [0,1]2→ [0,1] is a commutative and associative func-
tion that satisfies ⊥(a,0) = a and a≤ b⇒⊥(a,c)≤⊥(b,c).

For a,b ∈ {0,1}, all t-norms (t-conorms) behave like the traditional conjunction
(disjunction). For the values in between, however, different behaviors are possible.
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Fig. 20.1. Examples of typical fuzzy sets

[17] suggest the usage of max for union, min for intersection and 1−µ(x) for the
complement. While there are more functions available [7, 19], every intersection
operator has to be a t-norm.

First, we will consider min/max the standard because it is the only idempotent
and first proposed set of functions [17]. [8] shows that the application of min/max
differs from the intuitional understanding of a combination of values (see below).
Furthermore, the binary min/max functions return only one value. This leads to a
value dominance of one of the two input values while the other one is completely
ignored [12, 6, 8]. Thus, min/max cannot express influences or grades of importance
of both values on a result, e.g. max(0.01,1) gives the same result as max(0.9,1)
although the values of the second pair do not differ very much from a human point
of view.

The form of the complement shows that the fuzzy set theory and its logic does
not form a Boolean algebra because the conjunction of x with its complement is not
equal 0:

x∧¬x = min(x,1− x) �= 0 e.g. for x = 0.5

To overcome the problem of value dominance, parameterized functions have been
presented such as Waller-Kraft [15] or Paice [8, 7]. Their parameter basically reg-
ulates the behavior of the function between the extrema of a t-norm or t-conorm
resulting in a more comprehensible behavior for a human.

Alternatively, another pair of norms has been proposed: the algebraic product
a ·b for intersection and the algebraic sum a + b−a ·b for union [7]. They provide
means to express statements that involve both values and therefore attenuate the
dominance problem of min/max. In contrast to min/max the algebraic product is
not idempotent and thus no distributivity holds. This can be easily shown:

x∧ x = x2 �= x.

If it is not possible to define exact membership degrees it is sometimes useful to
consider only the qualitative order of items. Thus we can define the concept of an
L-Fuzzy-Set using the lattice concept:
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Definition 3. Let (L,+,,) be a lattice with lmin being the smallest element and lmax

being the biggest element. Then a L-Fuzzy-Set η of X is a mapping from the base
set X to the set L, i.e.

η : X → L.

L(X) represents the set of all L-Fuzzy-Sets of X.

20.3 Conjunction and Disjunction in Quantum Logic

The development of quantum mechanics dates back to the beginning of the last cen-
tury. The early theoretical foundations were strongly influenced by physicists such
as Einstein, Planck, Bohr, Schrödinger and Heisenberg. Quantum mechanics deals
with specific phenomena of elementary particles such as uncertainty of measure-
ments in closed microscopic physical systems and entangled states. In recent years,
quantum mechanics became an interesting topic for computer scientists who try to
exploit its power to solve computationally hard problems. Introductions to quantum
logic for non-physicists can be found, e.g., in [5, 2, 11].

20.3.1 Mathematical and Physical Foundations

This subsection gives a short introduction to the formalism of quantum mechanics
and shows its relation to probability theory. After introducing some notational con-
ventions, we briefly present the four postulates of quantum mechanics. Here, we
assume the reader being familiar with linear algebra.

The formalism of quantum mechanics deals with vectors of a complex separable
Hilbert space H. For simplicity we present in the following the real-value view of
the formalism. However, the approach can be defined likewise on complex and real
vector space.

The Dirac notation [3] provides us an elegant means to formulate basic concepts
of quantum mechanics:

• A so-called ket vector |x〉 represents a column vector identified by x. Let two

special predefined ket vectors be |0〉=
(

1
0

)
and |1〉=

(
0
1

)
.

• The transpose of a ket |x〉 is a row vector 〈x| called bra whereas the transpose of
a bra is again a ket. Both form together a one-to-one relationship.

• The inner product between two kets |x〉 and |y〉 returning a scalar equals the
scalar product defined as the product of 〈x| and |y〉. It is denoted by a bra(c)ket
’〈x|y〉’. The norm of a ket vector |x〉 is defined by || |x〉 || ≡√〈x|x〉.

• The outer product between two kets |x〉 and |y〉 is the product of |x〉 and 〈y| and
is denoted by ’|x〉〈y|’. It generates a linear operator expressed by a matrix.

• A projector p = ∑i |i〉〈i| is a symmetric (pt = p) and idempotent (pp = p) lin-
ear operator defined over a set of orthonormal vectors |i〉. Multiplying a pro-
jector with a state vector |ϕ〉 means to project the vector onto the respective
vector subspace. Each projector p is bijectively related to a closed subspace via
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p↔ vsp(H) := {p|ϕ〉 | |ϕ〉 ∈H}. Despite a projector can be constructed from an
arbitrary orthonormal basis |i〉, the derived projector ∑i |i〉〈i| will be always the
identity operator of the respective subspace vsp(H). We can conclude this from
the following completeness relation for orthonormal vectors. Let |i〉 be a vec-
tor of an orthonormal basis for vsp(H). Then an arbitrary vector |ψ〉 ∈ vsp(H)
can be expressed as |ψ〉 = ∑i vi|i〉 in vsp(H) for some set of scalars vi. Note that
〈i|v〉= vi and therefore

p|ψ〉 =

(
∑

i
|i〉〈i|

)
|ψ〉=∑

i
|i〉〈i|ψ〉=∑

i
vi|i〉= |ψ〉

Since the last equation is true for all |ψ〉 it follows that p is the identity operator
for vsp(H).

• The tensor product between two kets |x〉 and |y〉 is denoted by |x〉⊗|y〉 or short by
|xy〉. If |x〉 is m-dimensional and |y〉 n-dimensional then |xy〉 is an m·n-dimensional
ket vector. The tensor product of two-dimensional kets |x〉 and |y〉 is defined by:

|xy〉 ≡ |x〉⊗ |y〉 ≡
(

x1

x2

)
⊗
(

y1

y2

)
≡

⎛⎜⎜⎝
x1y1

x1y2

x2y1

x2y2

⎞⎟⎟⎠ .

The tensor product between two matrices A and B is analogously defined:

AB≡ A⊗B≡
(

x1 x2

x3 x4

)
⊗
(

y1 y2

y3 y4

)
≡

⎛⎜⎜⎝
x1y1 x1y2 x2y1 x2y2

x1y3 x1y4 x2y3 x2y4

x3y1 x3y2 x4y1 x4y2

x3y3 x3y4 x4y3 x4y4

⎞⎟⎟⎠ .

Next, we sketch the famous four postulates of quantum mechanics:

Postulate 1

Every closed physical microscopic system corresponds to a separable complex
Hilbert space1 and every state of the system is completely described by a normalized
(the norm equals one) ket vector |ϕ〉 of that space.

Postulate 2

Every evolution of a state |ϕ〉 can be represented by the product of |ϕ〉 and an
orthonormal2 operator O. The new state |ϕ′〉 is given by |ϕ′〉 = O|ϕ〉. It can be
easily shown that an orthonormal operator cannot change the norm of a state:
||O|ϕ〉 ||= || |ϕ〉 ||= 1.

1 For simplicity, we restrict ourselves to the vector space R
n.

2 An operator O is orthonormal if and only if OtO = OOt = I holds where the symbol ’t ’ denotes
the transpose of a matrix and ’I’ denotes the identity matrix.
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Postulate 3

A central concept in quantum mechanics is the nondeterministic measurement of a
state which means to compute the probabilities of different outcomes. If a certain
outcome is measured then the system is automatically changed to that state. Here,
we focus on a simplified measurement given by projectors (each one represents one
possible outcome). The probability of an outcome corresponding to a projector p
and a given state |ϕ〉 is defined by

〈ϕ|p|ϕ〉 = 〈ϕ|
(
∑

i

|i〉〈i|
)
|ϕ〉=∑

i

〈ϕ|i〉〈i|ϕ〉

Thus, the probability value equals the squared length of the state vector |ϕ〉 after
its projection onto the subspace spanned by the vectors |i〉. Due to normalization,
the probability value, furthermore, equals geometrically the squared cosine of the
minimal angle between |ϕ〉 and the subspace represented by p.

Figure 20.2 illustrates the connection between quantum mechanics and proba-
bility theory for the two-dimensional case. Please notice that the base vectors |0〉
and |1〉 are orthonormal. The measurement of the state |ϕ〉 = a|0〉+ b|1〉 with
|| |ϕ〉 || = 1 by applying the projector |0〉〈0| provides the squared portion of |ϕ〉
on the base vector |0〉 which equals a2. Analogously, the projector |1〉〈1| provides
b2. Due to Pythagoras and the normalization of |ϕ〉 both values sum up to one. In
quantum mechanics where |0〉〈0| and |1〉〈1| represent two independent outcomes
of a measurement the values a2 and b2 give the probabilities of the respective
outcomes.

Postulate 4

This postulate defines how to assemble various quantum systems to one system. The
base vectors of the composed system are constructed by applying the tensor product
’⊗’ to the subsystem base vectors.

1

1 |0〉

a

b|ϕ〉

〈ϕ|0〉〈0|ϕ〉= a2

〈ϕ|1〉〈1|ϕ〉= b2

a2 +b2 = 1

|1〉

Fig. 20.2. Pythagoras and probabilities
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20.3.2 Lattice of Projectors

Following [18], we develop here the main concepts of quantum logic originally de-
veloped by von Neumann [14]. Applying quantum logic on projectors will give us
the capability to measure state vectors on complex conditions. The starting point is
the set P of all projectors of a vector space H of dimensions greater than two. We
want to remind that each projector p ∈ P is bijectively related to a closed subspace
via p↔ vsp(H) := {p|ϕ〉 | |ϕ〉 ∈H}. The subset relation on the corresponding sub-
spaces forms a complete partially ordered set (poset) of the projector set P whereby
p1 ≤ p2 ⇔ vsp1(H)⊆ vsp2(H). Thus, we obtain a lattice3 with the binary operations
meet (+) and join (,) being defined as

p1+ p2 := p ↔ vsp(H) := vsp1(H)∩ vsp2(H)
p1, p2 := p ↔ vsp(H) := closure(vsp1(H)∪ vsp2(H))

whereby the closure operation generates here the set of all possible vector linear
combinations. Furthermore, the orthocomplement (¬) is defined as

¬p1 := p ↔ vsp(H) := {|ϕ〉 ∈H | ∀|ψ〉 ∈ vsp1(H) : 〈ψ|ϕ〉= 0}.

In quantum logic the orthocomplement can be interpreted as negation operator.

20.3.3 Boolean Sublattice

Quantum logic in general does not constitute a Boolean algebra since the dis-
tribution law is violated. To confirm this statement, we consider three projectors
p1, p2 and p3 in a two-dimensional vector space H. The projectors are specified as
p1 = |0〉〈0|, p2 = |1〉〈1|, and p3 = |v〉〈v| whereby |v〉 = (|0〉+ |1〉)/√2. We can
observe that the closure of vsp1(H)∪vsp2(H) spans the whole vector space H. Con-
trarily, the intersections vsp3(H)∩ vsp1(H) and vsp3(H)∩ vsp2(H) collapse to the
null vector expressed here by the projector p0. Thus, we obtain

p3+ (p1, p2) = p3 �= p0 = p0, p0 = (p3+ p1), (p3+ p2)

violating the distribution law.
Fortunately, there exist sublattices of projectors which set up a Boolean alge-

bra. To identify these convenient sublattices we have to take the commutativity of
projectors into account.

Definition 4 (commuting projectors). Two projectors p1 and p2 of a vector space
H are called commuting projectors if and only if p1 p2 = p2 p1 holds.

From linear algebra we know that two projectors p1 = ∑i |i〉〈i| and p2 = ∑ j | j〉〈 j|
commute if and only if their ket vectors |i〉 and | j〉 are vectors of the same orthonor-
mal basis B = {|k1〉, . . . , |kn〉} for the underlying n-dimensional vector space [2].

3 The laws of commutativity, associativity, and absorption are fulfilled.
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In that case, we can define Bp1 ⊆B and Bp2 ⊆B as sets of orthonormal vectors which
form the projectors p1 =∑i∈Bp1

|i〉〈i| and p2 =∑ j∈Bp2
| j〉〈 j|. If two projectors com-

mute then their join corresponds to the union of the respective sets of underlying
base vectors and their meet to the intersection. Thus, we can redefine the meet, join
and orthocomplement operation for commuting projectors.

Corollary 1 (sublattice operations for commuting projectors). Let p1 and p2 be
two commuting projectors. The lattice operations can be adapted to:

p1+ p2 := ∑
k∈Bp1∩Bp2

|k〉〈k| (20.4)

p1, p2 := ∑
k∈Bp1∪Bp2

|k〉〈k| (20.5)

¬p1 := ∑
k∈B\Bp1

|k〉〈k| (20.6)

All projectors over one given orthonormal basis form a Boolean algebra. This is
affirmed by Stone’s representation theorem for Boolean algebras [13]. It states that
every Boolean algebra is isomorphic to a field of sets and its corresponding union
and intersection operation. Here, the field of sets is the common orthonormal basis
B = {|k1〉, . . . , |kn〉} and the respective algebra is given by its power set 2B forming
a subset lattice.

A sublattice of projectors is shown in Figure 20.3.
Each projector is constructed by a subset of the same orthonormal basis which con-
tains three vectors. The bit code refers to the selected basis vectors from the under-
lying orthonormal basis. The code [110], for example, refers to the vector subspace
spanned by the first two basis vectors.

join (�)
[110]

p6 ≡ p2� p3
[011][101]

[111]

p4 ≡ p1� p2 p5 ≡ p1� p3

p3 ≡ p5� p6
[001]

p1� p2� p3

[100] [010]
p1 ≡ p4� p5 p2 ≡ p4� p6

[000]

p4� p5� p6

meet (�)

Fig. 20.3. Sublattice of commuting projectors



20.3 Conjunction and Disjunction in Quantum Logic 425

Actually, quantum logic can be seen as a generalization of a Boolean algebra: The
sublattice over every equivalence class comprising commuting projectors constitutes
a Boolean algebra.

A concise overview of further important results for quantum logic is given in
[1, 9, 10].

20.3.4 Mapping Objects to State Vectors

In this subsection we want to briefly explain the main ideas of mapping objects into
the vector space formalism of quantum mechanics.

Following, we distinguish between single-attribute and multi-attribute objects.
We start our considerations with the encoding of a single-attribute object with at-
tribute A into a separated local vector space HA. Later we will merge different
single-attribute spaces HAi to a global multi-attribute one represented by H. Here
we only exemplarily describe the mapping of an arbitrary non-negative, numerical
value a ∈ [0,∞) to its corresponding state vector |a〉. The state vector |a〉 is located
in HA and represents the current value of the attribute A.

Please recall that state vectors need to be normalized. Therefore, we cannot di-
rectly map a value to a one-dimensional ket vector. Instead we need at least two di-
mensions. A two-dimensional quantum system in the field of quantum computation
is called a qubit (quantum bit). Since every normalized linear combination of two
basis vectors |0〉= (1,0)t and |1〉= (0,1)t is a valid qubit state vector we can encode
infinitely many values. That is, we take advantage of the superposition principle of
quantum mechanics. Please notice that no more than two vectors can be encoded as
pairwise independent (orthogonal) state vectors within a one-qubit system. So, for
the one-qubit encoding the state vector |a〉 is embedded in a two-dimensional vector
space spanned by |0〉 and |1〉.
Definition 5 (mapping numerical values to qubit states). The normalized qubit
state vector |a〉 for a numerical value a ∈ [0,∞) is defined by

a "→ |a〉= 1√
a2 + 1

(
1
a

)
.

Thus, the numerical value is expressed by the normalized ratio between the two
basis vectors |0〉 and |1〉.
A more complex object contains more than one attribute value. Therefore, we have
to adapt our mapping to a multi-attribute version. A multi-attribute object can be
regarded as a state vector in a composite quantum system. Adopting Postulate 4,
we use the tensor product for constructing multi-attribute state vectors and vector
spaces out of single-attribute ones.

Definition 6 (multi-attribute objects as tensor products of single-attribute
states). Assume, an object o = (a1, . . . ,an) contains n attribute values and |a1〉, . . . ,
|an〉 are their respective state vectors which are embedded in separated Hilbert
spaces HA1 ,. . . ,HAn , respectively. Then, the ket vector
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|o〉= |a1〉⊗ . . .⊗|an〉= |a1..an〉

represents the object o in a global Hilbert space H = IA1 ⊗ . . .⊗ IAn whereby IAi is
the identity matrix of HAi .

20.3.5 Measurement of Projectors

In this subsection we will investigate the measurement of projectors in more de-
tail. In quantum logic projectors are combined to new projectors before any mea-
surement w.r.t. an object takes place. Thus, a projector can be constructed from
an arbitrary logical condition formula by applying the meet (+), join (,) and
orthocomplement (¬) on projectors. A projector therefore embodies the complete
semantics of a well-formed condition.

In general, the measurement of a projector p on a given state vector |a〉 is already
introduced (Postulate 3) as

〈a|p|a〉 = 〈a|
(
∑

i

|i〉〈i|
)
|a〉=∑

i

〈a|i〉〈i|a〉.

Later we will describe a restriction on the structure of complex conditions which al-
lows us to simplify the measurement significantly. Before we will turn our attention
to the measurement of projectors generated by complex conditions, we investigate
the single-attribute case.

Constructing and Measurement of Single-Attribute Projectors

The generation of a certain single-attribute projector corresponds to the encoding
of the respective attribute. For instance, we explore here an object o with a nu-
merical attribute A (Definition 5) and a projector pc determined by the numerical
condition ’A = c’. Thus, the projector pc is given by pc = |c〉〈c|. It is related to an
one-dimensional subspace in the single-qubit system HA. Computing the degree of
matching between state vector |o〉=|a〉 and the projector pc = |c〉〈c| yields

〈o|pc|o〉= 〈a|pc|a〉= 〈a|c〉〈c|a〉= (1 + ac)2

(a2 + 1)(c2 + 1)

whereby |a〉 = 1√
a2+1

(
1
a

)
and |c〉 = 1√

c2+1

(
1
c

)
. The resulting expression is

equivalent to the squared cosine of the enclosed angle between |a〉 and |c〉.
There are different encoding techniques for further domains which influence the

construction of projectors [12]. In every case we have to preserve the Boolean char-
acter of our algebra which is based on commuting projectors. In particular, it must
be guaranteed that only orthogonal conditions per attribute are used. Otherwise, the
commutativity of the involved projectors would be violated.

For example, it is not possible to support different conditions on the same nu-
merical attribute A. To exemplify that case we assume two conditions ’A = c1’ and
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’A = c2’ generating two one-dimensional projectors in HA. In general, these projec-
tors would not be orthogonal and therefore not commuting. That is, their projectors
cannot be based on one common set of orthonormal basis vectors. In consequence
of this fact, there is no proper way to express the condition ’A = c1 ∨A = c2’ in a
single-qubit system HA.

But there also exists a special case for a measurement in which this effect does
not occur. Assume, we are only interested in a Boolean result (true≡ 1 or f alse≡ 0)
for a measurement on a condition ’B = c’. The type of attribute B is called Boolean
condition attribute and the constant c is given by a value of the attribute domain DB.
Before we present the measurement of a state vector |b〉 on condition ’B = c’ we
have to briefly clarify the mapping of |b〉 into its corresponding Hilbert space HB.
The main idea is to bijectively assign each possible attribute value dv∈DB to exactly
one basis vector for HB. Thus, a value of DB with |DB|= n is expressed by a vector of
a predefined basis of HB =Rn. So, the vector space HB is spanned by the predefined
set of n orthonormal basis vectors |dv〉 where each |dv〉 corresponds bijectively to a
value dv ∈ DB. Let now C ⊆ DB contain the required values of a condition over the
attribute B. Such a condition is expressed by the projector pC = ∑c∈C |c〉〈c|.

Since all possible projectors pC on the domain DB are based on the same basis
they commute to each other. In consequence, the introduced adapted meet, join
and orthocomplement operation can be applied and those projectors altogether
constitute a Boolean algebra.

The following theorem shows that quantum measurement (Postulate 3) for con-
ditions on these special attributes yields either 1 or 0 as result.

Theorem 1 (measuring Boolean condition attributes). Let B be a Boolean con-
dition attribute and |b〉 an object state vector in HB. The measurement result of a
projector pC (C ⊆ DB) is given by

〈b|pC|b〉=
{

1 : b ∈C
0 : otherwise.

Proof

〈b|pC|b〉 = 〈b|
(
∑
c∈C

|c〉〈c|
)
|b〉= ∑

c∈C

〈b|c〉〈c|b〉

Due to orthonormality of the basis vectors |c〉we can write 〈b|c〉= δ(b,c) where δ is
the Kronecker delta. That is, the measurement yields the value 1 only if b∈C holds.
Otherwise, we obtain the value 0. +,
Next we shift to a projector over a single-attribute Ai applying to a multi-attribute
object |o〉 = |a1 . . .an〉. A condition ’Ai = c’ on a multi-attribute object must be pre-
pared accordingly to the definition of a multi-attribute object (Definition 6). Thus,
a single-attribute projector |c〉〈c| needs to be combined with all orthonormal basis
vectors (expressed by the identity matrix IA j ) of the non-restricted attributes.
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Definition 7 (applying single-attribute projectors to multi-attribute objects)
Assume, ’Ai = c’ is a condition on attribute Ai. Its projector pc expressing the con-
dition against an n-attribute object is given by

pc = IA1⊗ . . .⊗ IA(i−1)⊗|c〉〈c|⊗ IA(i+1)⊗ . . .⊗ IAn.

The following measurement formula yields the measurement value for a given ob-
ject |o〉=|a1..an〉.

〈a1..an|IA1⊗ . . .⊗ IA(i−1)⊗|c〉〈c|⊗ IA(i+1)⊗ . . .⊗ IAn |a1..an〉=
〈a1|IA1 |a1〉 . . . 〈a(i−1)|IA(i−1) |a(i−1)〉〈ai|c〉〈c|ai〉 ∗
〈a(i+1)|IA(i+1)|a(i+1)〉 . . . 〈an|IAn |an〉= 〈ai|c〉〈c|ai〉.

The result equals the measurement of the single-attribute object case. That is, the
computation of the measurement becomes very easy since we can completely ignore
non-restricted attributes.

Constructing and Measurement of Multi-Attribute Projectors

A projector over different attributes is based on a complex condition which is con-
structed by recursively applying conjunction, disjunction and negation on atomic
conditions. Here, we want to regard a select-condition ’Ai = c’ with an arbitrary
constant c as an atomic condition. For combining two projectors conjunctively (∧)
we apply the meet operator returning a new projector. Analogously, disjunction (∨)
corresponds to the join operator and the negation (¬) of a condition is related to the
orthocomplement of a projector. Despite dealing with probability values, quantum
logic behaves like Boolean algebra if involved projectors do commute. We assume
for the rest of this work a sublattice of commuting projectors, respectively a Boolean
algebra.

To support the measurement of a combined projector we can directly exploit the
structure of the underlying condition. We require conditions to be combined with
disjoint sets of restricted attributes. That means, no attribute is restricted by more
than one operand of a conjunction or disjunction. We will call this kind of conditions
non-overlapping w.r.t. to a set of attributes.

Based on the requirement of disjoint conditions we develop simple evaluation
rules for logical operations (∧, ∨ and ¬) to measure a combined projector. In partic-
ular, the measurement of atomic conditions and the application of these evaluation
rules are sufficient to compute the measurement of a projector generated by a com-
plex condition.

Negation

The following theorem relates the orthocomplement of projectors to the measure-
ment of a negated condition.
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Theorem 2 (measurement of negated projectors). Assume, a projector pc ex-
pressing an arbitrary condition c is given. The measurement of the negated con-
dition by applying p¬c on an object |o〉 equals the subtraction of the non-negated
measurement from 1:

〈o|p¬c|o〉= 1−〈o|pc|o〉.

Proof. The orthocomplement for projectors can be also expressed as ¬p ≡ I− p
encompassing all projectors orthogonal to p. The expression I stands for the identity
matrix. Exploiting this formula and a state vector, we obtain

〈o|p¬c|o〉 = 〈o|I− pc|o〉= 〈o|I|o〉− 〈o|pc|o〉= 1−〈o|pc|o〉. +,

The introduced negation for the measurement extends Boolean negation. However,
if a measurement returns a probability value between 0 and 1 then the effect may be
surprising. For example, assume an attribute A of the three-valued domain {a,b,c} is
given. Surprisingly, as shown in Table 20.1, the negated condition ’¬A = b’ does not
equal the condition ’A = a∨A = c’. Instead, that condition yields the dissimilarity
between the attribute value and the value b. Thus, the measurement value of the
value a is smaller than 1. This effect is the direct consequence of dealing with values
between 0 and 1.

Table 20.1. Negation values

query object value
condition a b c

A = b 0.75 1 0.75
¬(A = b) 0.25 0 0.25

Conjunction

We will deduce from the following theorem that the measurement of a projector
pa∧b generated by conjunctively combined conditions a and b can be evaluated as
algebraic product, if we require disjoint sets of restricted attributes.

Theorem 3 (measurement of projectors generated by conjunctively combined
non-overlapping conditions)
Let pa = p1

a⊗ . . .⊗ pn
a be a projector on n attributes and k restrictions on the at-

tributes {a1, ..,ak} ⊆ [1, ..,n] with

pi
a =

{
an ai-restriction : i ∈ {a1, ..,ak}
I : otherwise

and pb = p1
b⊗ . . .⊗ pn

b be a further projector with l restrictions on the attributes
{b1, ..,bl} ⊆ [1, ..,n]

pi
b =

{
a bi-restriction : i ∈ {b1, ..,bl}
I : otherwise
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and {a1, ..,ak}∩{b1, ..,bl}= /0. Then, computing the measurement of the projector
pa∧b = p1

a∧b⊗ . . .⊗ pn
a∧b on an object |o〉 yields

〈o|pa∧b|o〉= 〈o|pa|o〉〈o|pb|o〉.

Proof. The meet operation of projectors is defined over the intersection of the cor-
responding subspaces. Thus, we obtain following derivation

pa+ pb = (p1
a⊗ . . .⊗ pn

a)+ (p1
b⊗ . . .⊗ pn

b)
= (p1

a+ p1
b)⊗ . . .⊗ (pn

a+ pn
b)

= p1
a∧b⊗ . . .⊗ pn

a∧b whereby

p1
a∧b ↔ vsp1

a∧b
(H) = vsp1

a
(H)∩ vsp1

b
(H),

. . . ,

pn
a∧b ↔ vspn

a∧b
(H) = vspn

a
(H)∩ vspn

b
(H)

Due to the disjointness {a1, ..,ak}∩{b1, ..,bl}= /0 the vector space of every attribute
restriction is intersected with H producing identical restrictions. Thus, all restriction
are simply taken over and the projector pa∧b is obtained as pa∧b = p1

a∧b⊗ . . .⊗ pn
a∧b

with

pi
a∧b =

⎧⎨⎩
an ai-restriction : i ∈ {a1, ..,ak}
a bi-restriction : i ∈ {b1, ..,bl}
I : otherwise

Due to these restrictions and the rule 〈a1b1|a2b2〉= 〈a1|a2〉〈b1|b2〉 the measurement
of the projector pa∧b on an object |o〉 can be calculated by

〈o|pa∧b|o〉 = 〈o|p1
a∧b⊗ . . .⊗ pn

a∧b|o〉
= 〈o|p1

a|o〉 . . . 〈o|pk
a|o〉︸ ︷︷ ︸

〈o|pa|o〉

〈o|p1
b|o〉 . . . 〈o|pl

b|o〉︸ ︷︷ ︸
〈o|pb|o〉

〈o|I1|o〉 . . .〈o|Im|o〉︸ ︷︷ ︸
1

= 〈o|pa|o〉〈o|pb|o〉

whereby m = n−(k+ l) is the number of unrestricted attributes. Thus, the measured
results for conjunctively combined disjoint projectors are simply multiplied. +,
This important result can be exemplified by the following measurement of multi-
attribute object o. It is formed by two arbitrary numerical attributes A1 and A2. The
state vector |o〉= |a1〉⊗ |a2〉= |a1a2〉 is located in the vector space H = HA1⊗HA2

whereby HA1 and HA2 stand for single-qubit systems. The corresponding condition
of interest is given by ’A1 = c1 ∧A2 = c2’. Initially, we can regard the conditions
’A1 = c1’ and ’A2 = c2’ as atomic conditions integrated in HA1 and HA2 . Then,
the conditions are expressed by the two projectors pc1 = |c1〉〈c1| in HA1 and pc2 =
|c2〉〈c2| in HA2 . Before we can combine pc1 and pc2 in H, we have to map the both
single-attribute projectors to H. We label the extended projectors in H as p′c1

and
p′c2

and their respective sets of orthonormal vectors as Bp′c1
and Bp′c2

.
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For the construction of p′c1
and p′c2

the original vectors |c1〉 and |c2〉 must be
combined with an orthonormal basis of the respective oppositional vector space
HAi (Definition 7). So, the vector |c1〉 needs to be combined with all vectors of an
arbitrary orthonormal basis for HA1 , and an orthonormal basis for HA2 needs to be
combined with the vector |c2〉. Here, we choose {|c1〉, |c1〉} for HA1 and {|c2〉, |c2〉}
for HA2 , respectively. Please notice that the overline notation denotes the negation
of a vector: |ϕ〉= |¬ϕ〉. Thus, we obtain

A1 = c1 : Bp′c1
= {|c1c2〉, |c1c2〉}

⇒ p′c1
= |c1c2〉〈c1c2|+ |c1c2〉〈c1c2|

A2 = c2 : Bp′c2
= {|c1c2〉, |c1c2〉}

⇒ p′c2
= |c1c2〉〈c1c2|+ |c1c2〉〈c1c2|

The projectors p′c1
and p′c2

are commuting because they are based on the same or-
thonormal basis {|c1c2〉, |c1c2〉, |c1c2〉, |c1c2〉} for H. Therefore, we are able to
combine the projectors p′c1

and p′c2
by applying the adapted meet Operation (20.4)

for commuting projectors:

pc1∧c2 = ∑
k∈(Bp′c1

∩Bp′c2
)
|k〉〈k|= |c1c2〉〈c1c2|

The expected result is obtained when we compute the measurement on the state
vector |o〉= |a1a2〉.

〈o|pc1∧c2 |o〉 = 〈a1a2|c1c2〉〈c1c2|a1a2〉
= 〈a1|c1〉〈a2|c2〉〈c1|a1〉〈c2|a2〉
= 〈a1|c1〉2 ∗ 〈a2|c2〉2
= 〈a1|pc1 |a1〉 ∗ 〈a2|pc2 |a2〉

The last equation shows the simple multiplication of the single-attribute measure-
ment results for this example.

Disjunction

We know that a Boolean algebra respects the de Morgan law [4]. Therefore, we can
compute the measurement for the disjunction of non-overlapping conditions over
conjunction and negation and obtain

〈o|pa∨b|o〉 = 1− (1−〈o|pa|o〉)(1−〈o|pb|o〉)
= 〈o|pa|o〉+ 〈o|pb|o〉− 〈o|pa∧b|o〉.

We are now able to define evaluation rules for the measurement of complex non-
overlapping conditions on multi-attribute objects.
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Definition 8 (negation, conjunction and disjunction of non-overlapping condi-
tions). Let c1 and c2 be two commuting conditions which do not contain overlapping
atomic conditions. For the evaluation w.r.t. a given object o we define:

evalo(¬c1) = 1− evalo(c1) (20.7)

evalo(c1∧ c2) = evalo(c1)∗ evalo(c2) (20.8)

evalo(c1∨ c2) = evalo(c1)+ evalo(c2)−
evalo(c1∧ c2) (20.9)

To evaluate overlapping conditions we have to apply an evaluation and transforma-
tion algorithm which exploits the already introduced rules and the following special
case of mutually excluding conditions.

Theorem 4 (measurement of projectors generated by disjunctively combined
exclusive conditions). Assume, a projector pc1∨c2 is determined by the condition
c1∨ c2 whereby c1 ≡ (u∧ e1) and c2 ≡ (¬u∧ e2) are commuting exclusive subcon-
ditions. Moreover, the literals u and ¬u represent two mutually excluding atomic
conditions and the subformulas e1 and e2 can be formed by arbitrary conditions.
Computing the measurement of the projector pc1∨c2 on an object |o〉 yields

〈o|pc1∨c2 |o〉= 〈o|pc1 |o〉+ 〈o|pc2|o〉.

Proof. Since the projectors pc1 and pc2 are commuting we can apply the adaptedjoin
Operation (20.5) to measure pc1∨c2 . Let Bpc1

and Bpc2
the sets of orthonormal basis

vectors for pc1 and pc2 . We can state that the intersection of Bpc1
and Bpc2

is always
empty because the first component of each basis vector |u . . .〉 for pc1 is different from
the first component of each basis vector |¬u . . .〉 for pc2 . Thus, we obtain

〈o|pc1∨c2 |o〉 = 〈o|
⎛⎝ ∑

k∈Bpc1
∪Bpc2

|k〉〈k|
⎞⎠ |o〉

= ∑
k∈Bpc1

〈o|k〉〈k|o〉+ ∑
k∈Bpc2

〈o|k〉〈k|o〉

= 〈o|
⎛⎝ ∑

k∈Bpc1

|k〉〈k|
⎞⎠ |o〉+ 〈o|

⎛⎝ ∑
k∈Bpc2

|k〉〈k|
⎞⎠ |o〉

= 〈o|pc2 |o〉+ 〈o|pc2|o〉 +,

Based on the last theorem we can formulate a further evaluation rule.

Definition 9 (disjunction of overlapping exclusive conditions). Let c1 and c2 be
two commuting, exclusive and overlapping conditions. We can formulate the fol-
lowing evaluation rule:

evalo(c1∨ c2) = evalo(c1)+ evalo(c2). (20.10)
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input: condition c
output: non-overlapping or mutually excluding condition c

(1) transform expression c into
disjunctive normal form x̂1∨ . . .∨ x̂m

where x̂i are conjunctions of literals
(2) simplify expression c by applying

idempotence and invertibility4rules
(3) if there is an overlap on a

attribute between some conjunctions x̂i then
(3a) let u be a literal of an attribute

common to at least two conjunctions
(3b) replace all conjunctions x̂i of c

with (u∧ x̂i)∨ (¬u∧ x̂i)
(3c) simplify c by applying idempotence,

invertibility, and absorption and obtain
c = (u∧ x̂1)∨ . . .∨ (u∧ x̂m1 )∨
(¬u∧ x̂m1+1)∨ . . .∨ (¬u∧ x̂m2 )

(3d) replace c with (u∧ e1)∨ (¬u∧ e2) where
e1 = x̂1∨ . . .∨ x̂m1 ,e2 = x̂m1+1∨ . . .∨ x̂m2

(3e) continue with step (3) for e1 and e2
(4) transform innermost disjunctions to

conjunctions and negations by applying
de-Morgan-law

Fig. 20.4. Transformation algorithm to resolve overlaps

Our evaluation algorithm transforms expressions with overlapping conditions into
exclusive ones by applying Boolean rules. To compute the measurement of the trans-
formed conditions the rules of Definition 8 and 9 are used.

Evaluation algorithm

The algorithm evaluates a given condition w.r.t. a given object. We will show that
our evaluation is based on simple boolean transformations and basic arithmetic op-
erations. The algorithm for transforming an condition c is given in Figure 20.4.

Analyzing the transformation result, we observe that the subformulas of the
innermost disjunctions (the leaves of the corresponding tree) are mutually non-
overlapping on attributes5 before we apply the fourth step. Thus, we can directly
apply Formula (20.9). All other disjunctions are based on exclusive subformu-
las (generated by step (3d)). That is, we can apply Formula (20.10) and simply
add the scores. Since, furthermore, all conjunctions are based on non-overlapping
subformulas Formula (20.8) directly applies. The fourth step is to simplify arith-
metic calculations of multiple disjunctions.

4 Invertibility: a∨¬a = 1,a∧¬a = 0,¬¬a = a.
5 Otherwise the algorithm would not have stopped.
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(1)(2)

(3a)(3b)(3c)

(4)

(3d)

(1− eo)(1− (1−dogo)(1−ho))

c≡ (d∧ ((e∧ f )∨ (¬e∧g)))∨h

(e∧d∧ f )∨ (¬e∧d∧g)∨h

(e∧d∧ f )∨ (e∧h)∨ (¬e∧d∧g)∨ (¬e∧h)

(e∧ ((d∧ f )∨h))∨ (¬e∧ ((d∧g)∨h))

(e∧¬(¬(d∧ f )∧¬h))∨ (¬e∧¬(¬(d∧g)∧¬h))

u = e

arithmetic evaluation w.r.t. data object o:
evalo(c) = eo (1− (1−do f o)(1−ho))+

Fig. 20.5. Example transformations and arithmetic evaluation

Finally, we demonstrate the evaluation algorithm using a object o formed by five
attributes. Assume, the condition c is given by

c≡ (A1 = d∧ ((A2 = e∧ (A3 = f ))∨ (A2 = ¬e∧A4 = g)))∨A5 = h

whereby d, . . . ,h are numerical constants. Note that A2 = e and A2 =¬e are orthog-
onal conditions. Hence, their corresponding projectors are commuting, despite they
restrict the same attribute. Consequently, we can still apply the introduced evalua-
tion rules for commuting projectors.

In Figure 20.5 we abbreviate atomic conditions and attributes to the labels of the
corresponding constants d, . . . ,h whereby do stands for the expression evaloA1 (d).

Summarising, we can emphasise again that we are now able to evaluate an ar-
bitrary commuting condition by means of the transformation algorithm and simply
arithmetic operations.

20.4 Fuzzy Logic Versus Quantum Logic

After recapitulating fuzzy logic in Section 20.2 and introducing quantum logic we
will interrelate and compare concepts from both worlds. Both logics deal with non-
Boolean fulfillments of object conditions. Table 20.2 shows correspondences be-
tween their underlying concepts.

The basic connection between a measurement by a projector p and a fuzzy set s
with respect to an object o is given by

µs(o) = 〈o|p|o〉.
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Table 20.2. Correspondences between quantum and fuzzy logic concepts

quantum logic fuzzy logic
normalized vector object
projector measurement fuzzy set
projector complement complement of a fuzzy set
lattice operations fuzzy set operations
- meet on disjoint projectors - t-norm algebraic product
- join on disjoint projectors - t-conorm algebraic sum

Both logics follow different ways of combining conditions being graphically de-
picted in Figure 20.6:

µs1∩s2(o) =%(µs1 ,µs2) versus 〈o| + (p1, p2)|o〉
µs1∪s2(o) =⊥(µs1 ,µs2) versus 〈o| , (p1, p2)|o〉

In fuzzy logic, conjunction, disjunction are directly based on a t-norm (%) and a t-
conorm (⊥) on membership values. In quantum logic, however, these operation are
performed on projectors before any evaluation takes place. This fundamental differ-
ence gives quantum logic an advantage by allowing us to consider query semantics
during combining complex conditions. Thus, we are able to see that the conjunc-
tive combination only of disjoint conditions in quantum logic yields the same result
as the algebraic product in fuzzy logic. The test on disjointness, however, is not
feasible in fuzzy logic since a t-norm is defined purely on membership values.

That property of the quantum approach allows us to differentiate semantical cases
during the evaluation. Thus, if we restrict our quantum conditions to commuting
projectors then all rules of a boolean algebra are obeyed. This is impossible in fuzzy

¬
〈o|p|o〉

[0,1]p = ∑i |i〉〈i|

fuzzy set s
μs(o)

[0,1]

�

�

∩

∪

¬

Fig. 20.6. Construction of complex conditions in quantum and in fuzzy logic and their
evaluations
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=

〈o|p1� p2|o〉
[0,1]p1� p2

[0,1]
μp1∧p2(o) = 〈o|p1|o〉〈o|p2|o〉

[0,1]

μp1(o) = 〈o|p1|o〉
μp2(o) = 〈o|p2|o〉

〈o|p1� p2|o〉 = μp1∧p2(o)

= μp1(o)∗μp2(o)

= 〈o|p1|o〉〈o|p2|o〉

Fig. 20.7. CQQL evaluation of conjunctively combined and disjoint conditions on object o

logic because required semantics (conditions are commuting) is hidden behind the
fuzzy sets. From this point of view we conclude, that quantum logic can takes more
condition semantics into account than fuzzy logic can do.

A bridge between quantum logic and fuzzy logic can be established if we use
the generalized definition of a fuzzy set over conditions which is called a L-fuzzy
set. The lattice operations meet(∧), join(∨), and complement are then used for
conjunction, disjunction and negation on conditions. The lattice is, of course, our
projector lattice.

This bridge in combination with the algebraic product as t-norm and the algebraic
sum as t-conorm is depicted in Figure 20.7 where we assume disjoint conditions. We
use the by-pass over the projector lattice in order to prove that the algebraic product
provides correct answers. In practice, we can directly apply the algebraic product
on object evaluations but only if the underlying conjunctively combined conditions
are disjoint.

20.5 Conclusion

In our contribution we investigated the relation between concepts from fuzzy logic
and quantum logic. For commuting conditions we could show that quantum logic
follow the rules of a Boolean algebra. As main difference between fuzzy and quan-
tum logic we identified the way how conditions are combined by conjunction and
disjunction with respect to a given object: combination in quantum logic is per-
formed before and in fuzzy logic after object evaluation takes place. Therefore, in
quantum logic we are able to test conditions to be combined on disjointness. In case
of disjointness the effect of quantum combination coincides with the the fuzzy com-
bination using algebraic product and norm. If disjointness is not fullfilled then an
algorithm basing on rules from Boolean algebra is presented which converts any
complex condition into a disjoint or a overlapping exclusive condition.
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Besides theoretical insights into the relation between both worlds we learnt we
how to use the t-norms algebraic product and sum in order to obtain a Boolean
algebra.

In future work we will investigate how to deal with non-commuting conditions.
Furthermore, we plan to construct a complete database query language in order to
integrate concepts from information retrieval into classical database systems.
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Chapter 21
Fuzzy Cluster Analysis
from the Viewpoint of Robust Statistics

Frank Klawonn and Frank Höppner

21.1 Introduction

Fuzzy cluster analysis has been initiated in the beginning of the seventies by Bezdek
[1], [3] and Dunn [12]. The ideas were partly motivated by the problems caused by
the binary or crisp assignment of data to unique clusters as for instance in the case
of the popular c-means clustering algorithm. Handling ambiguous and noisy data in
order to overcome these problems was one important issue.

Although such concepts of robustness were part of the motivation for introducing
fuzzy clustering, serious attempts to a rigorous analysis of robustness issues in fuzzy
clustering have not been made until the mid-nineties.

In this paper, we provide a brief review on robustness issues in fuzzy cluster
analysis. We address problems and questions that have not been solved or treated
completely so far. But we also would like to draw the attention to those results that
are available and that can help in applying the methods of fuzzy clustering in a
suitable manner.

We start with an overview on prototype-based clustering, emphasising special
forms of fuzzy cluster analysis like noise clustering in section 21.2. In order to
keep the paper self-contained, a short detour on issues in robust statistics is needed
in section 21.3. Section 21.4 brings together fuzzy cluster analysis and ideas from
robust statistics, showing that fuzzy cluster analysis fits quite well into the scheme
of robust statistics. In the final conclusions in section 21.5 we address consequences
for fuzzy clustering drawn from the robustness considerations and derive possible
approaches to improve fuzzy clustering.

21.2 Cluster Analysis

Cluster analysis aims at dividing a data set into groups or clusters that consist of
similar data. There is a large number of clustering techniques available with different
underlying assumptions about the data and the clusters to be discovered. A simple
and common popular approach is the so-called c-means clustering as for instance
described by Duda and Hart [11]. For the c-means algorithm it is assumed that the
number of clusters is known or at least fixed, i.e. the algorithm will partition a given

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 439–455.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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data set X = {x1, . . . ,xn} ⊂ Rp into c clusters. Since the assumption of a known or
a priori fixed number of clusters is not realistic for many data analysis problems,
there are techniques based on cluster validity considerations that allow to determine
the number of clusters for the c-means algorithm as well. However, the underlying
algorithm remains more or less the same, only the number of clusters is varied and
the resulting clusters or the overall partition is evaluated. Therefore, in this paper we
do not consider how to determine the number of clusters and assume a fixed given
number of clusters.

21.2.1 Objective Function-Based Clustering

From the purely algorithmic point of view, the c-means clustering approach can be
described as follows. Each of the c clusters is represented by a cluster prototype
vi ∈ Rp, also simply called prototype. These prototypes are chosen randomly or in
a suitable fashion in the beginning. Afterwards each data vector is assigned to the
nearest prototype (with respect to the Euclidean distance). Then each prototype is
replaced by the centre of gravity of those data assigned to it. The alternating as-
signment of data to the nearest prototype and the update of the prototypes as cluster
centres is repeated until the algorithm converges, i.e. no more changes happen.

This algorithm can also be seen as a strategy for minimizing the following objec-
tive function

f =
c

∑
i=1

n

∑
j=1

ui jdi j (21.1)

under the constraints

c

∑
i=1

ui j = 1 for all j = 1, . . . ,n (21.2)

where ui j ∈ {0,1} indicates whether data vector x j is assigned to cluster i (ui j = 1)
or not (ui j = 0). di j =‖ x j − vi ‖2 is the squared Euclidean distance between data
vector x j and cluster prototype vi.

Since this is a non-trivial constraint nonlinear optimisation problem with contin-
uous parameters vi and discrete parameters ui j, there is no obvious analytical so-
lution. Therefore an alternating optimisation scheme, alternatingly optimising one
set of parameters while the other set of parameters is considered as fixed, seems
to be a reasonable approach for minimizing (21.1). The above mentioned c-means
clustering algorithm follows exactly this strategy.

It should be noted that choosing the (squared) Euclidean distance as a measure
for the distance between data vector ui j and cluster i is just one choice out of many.
Later on, we will also consider other distance measures and forms of prototypes as
they can be found in the overviews by Bezdek et al. [5] or Höppner et al. [17].

The constraint ui j ∈{0,1} requires that each data point must be assigned uniquely
to one single cluster. In this way, even noisy data points are enforced to be assigned
artificially to a unique cluster and thus inflict an error on the cluster prototype of the
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corresponding cluster. Furthermore, cluster boundaries are very often not sharp and
the assignment of a data point close to the boundary between clusters to a unique
cluster gives the wrong impression of well-separated clusters.

For this reason, the constraint ui j ∈ {0,1} is relaxed to ui j ∈ [0,1]. However,
even with this relaxed constraint the minimum of the objective function (21.1) under
the general constraint (21.2) is still found at ui j ∈ {0,1}. Therefore, an additional
parameter m, the so-called fuzzifier, was introduced by Bezdek [1], [3] and Dunn1

[12], and the objective function (21.1) is replaced by

f =
c

∑
i=1

n

∑
j=1

um
i jdi j. (21.3)

Note that the fuzzifier m does not have any effects, when hard clustering, i.e. ui j ∈
{0,1}, is applied. The fuzzifier m > 1 is not subject of the optimisation process and
has to be chosen in advance. A typical choice is m = 2.

The fuzzy clustering approach with the objective function (21.3) under the con-
straints (21.2) and the assumption ui j ∈ [0,1] is called probabilistic clustering, since
due to the constraints (21.2) the membership degree ui j can be interpreted as the
probability that x j belongs to cluster i. Nevertheless, due to the fuzzifier, a strict
probabilistic interpretation as for instance in the case of expectation maximisation
(EM) clustering introduced by Dempster et al. [12] is not possible.

The relaxed constraint ui j ∈ [0,1] for fuzzy cluster analysis still leads to a non-
linear optimisation problem, however, in contrast to hard clustering, with all pa-
rameters being continuous. The common technique for minimizing this objective
function is similar as in hard clustering, alternatingly optimise either the member-
ship degrees or the cluster parameters while considering the other parameter set
as fixed.

Taking the constraints (21.2) into account by Lagrange functions, the minimum of
the objective function (21.3) with respect to the membership degrees is obtained at

ui j =
1

∑c
k=1

(
di j
dk j

) 1
m−1

, (21.4)

when the cluster parameters, i.e. the distance values di j, are considered to be fixed.
(If di j = 0 for one or more clusters, we deviate from (21.4) and assign x j with
membership degree 1 to the or one of the clusters with di j = 0 and choose ui j = 0
for the other clusters i.) For a derivation of equation (21.4), we refer to Bezdek [3].

If the clusters are represented by simple cluster prototypes vi ∈ Rp and the
distances di j are the squared Euclidean distances of the data to the corresponding
cluster prototypes as in the hard c-means algorithm, the minimum of the objective
function (21.3) with respect to the cluster prototypes is obtained at

vi =
∑n

j=1 um
i jx j

∑n
j=1 um

i j
, (21.5)

1 Only for the specific choice m = 2.
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when the membership degrees ui j are considered to be fixed. For a derivation of
equation (21.5), we refer again to Bezdek [3]. The cluster prototypes are still the
cluster centres. However, using [0,1]-valued membership degrees means that we
have to compute weighted cluster centres. The fuzzy clustering scheme using alter-
natingly equations (21.4) and (21.5) is called fuzzy c-means algorithm (FCM).

21.2.2 Noise Clustering and Other Variants

One of the problems of the above described approach to fuzzy cluster analysis is
caused by the constraints specified in equation (21.2) enforcing that each data point
must be assigned to the overall degree one to the clusters. As an example consider
only two clusters. A data point roughly in the middle between the two clusters will
have a membership degree of approximately 0.5 to both cluster, which seems to
be a suitable choice, indicating that the data point fits both clusters equally well.
However, an outlier, i.e. a data point far away from both clusters, will also have
a membership degree of approximately 0.5 to both cluster. Here the membership
degree 0.5 means that the outlier fits equally badly to both clusters.

Noise clustering, proposed by Davé [8], tries to solve this problem by introducing
an additional noise cluster. All data points have a fixed (large) distance δ to the noise
cluster. In this way, data points that are near the border between two clusters still
have a high membership degree to both clusters as in probabilistic clustering. But
data points that are far away from all clusters will be assigned to the noise cluster
and have no longer a considerable membership degree to other clusters.

Besides noise clustering, there are also other approaches to avoid problems
caused by the strict probabilistic constraints (21.2). Krishnapuram and Keller [26]
introduced possibilistic clustering where the probabilistic constraint is completely
dropped and an additional term in the objective function is introduced to avoid the
trivial solution ui j = 0 for all i, j. However, the aim of possibilistic clustering is ac-
tually not to find the global minimum of the corresponding objective function, since
this is obtained when all clusters are identical as shown by Timm and Kruse [28].

Another approach that emphasizes a probabilistic interpretation in fuzzy cluster-
ing is described by Flores-Sintas et al. [13] where membership degrees as well as
membership probabilities are used for the clustering. In this way, some of the prob-
lems of the standard FCM scheme can be avoided as well. However, this approach
assumes the use of the Euclidean or a Mahalanobis distance and is not suitable for
arbitrary cluster shapes as in shell clustering.

Keller [19] introduced additional adaptive weights to reduce the influence of out-
liers to the clustering results.

A solution to another problem caused by the objective function (21.3) in connec-
tion with the constraints (21.2) is discussed by Klawonn and Höppner [22], [23].
Due to equation (21.4), zero membership degrees will never occur, except in the
extremely rare case when a data point has zero distance to a cluster prototype. As
a consequence, all data points will always influence all cluster prototypes, no mat-
ter how well they are covered by any cluster prototype or how far away they are
from another cluster prototype. By choosing a small fuzzifier m > 1, this effect can
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be reduced, but not completely eliminated. One of the reasons for introducing the
fuzzifier was that the original objective function (21.1) without a fuzzifier would
lead to crisp membership degrees, even when the constraint ui j ∈ {0,1} is relaxed
to ui j ∈ [0,1]. Replacing ui j in the objective function (21.1) by um

i j to obtain the
modified objective function (21.3) means nothing else than to apply a suitable trans-
formation to the ui j. Instead of the transformation u �→ um based on the fuzzifier m,
other transformations g : [0,1]→ [0,1] are also possible, for instance

g(u) = αu2 +(1−α)u (21.6)

or

g(u) =
1

eα−1
(eαu−1) . (21.7)

In both cases, α is a control parameter similar to the fuzzifier m. These two alterna-
tive transformations do not only satisfy suitable general constraints like monotonic-
ity, but lead also to tractable computation schemes for the membership degrees ui j,
although they are slightly more complicated than the simple equation (21.4). Both
transformations lead to zero membership degree of a data point to a cluster far away
from it, at least when the data point is well covered by another cluster.

21.2.3 Other Cluster Prototypes

So far, we have only considered modifications concerning the membership degrees
ui j, but have not touched the cluster prototypes and the related distances di j in the
objective function (21.3). Gustafson and Kessel [14] extended the cluster prototypes
by covariance matrices, so that clusters could not only have the shape of (hyper-)
spheres, but of ellipsoids.

Bock [6] and later on Bezdek [3] introduced clusters in the form of affine sub-
spaces. The corresponding clustering algorithm is called uzzy c-varieties algorithm
(FCV). A cluster prototypes describes an r-dimensional hyperplane

vi+ < ei,1, . . . ,ei,r >=

{
y ∈Rp | (∃t ∈ Rr)

(
y = vi +

r

∑
s=1

tsei,s

)}
, (21.8)

defined by a point vi and r (orthogonal) vectors ei,1, . . . ,ei,r spanning the hyperplane.
The distance of a data point x j to the cluster prototype is the difference between the
squared lengths of the vector (x j−vi) and its projection to the hyperplane associated
with the cluster prototype. This is the same as the squared distance of x j to the
hyperplane. The distance is zero if and only if the point x j belongs to the hyperplane.

There are many other cluster shapes that can be described by suitable cluster pro-
totypes and an adequate distance function. In principle, almost any cluster shape
would be possible, however, for the price that the computations for the parameters
of the prototypes become extremely complicated. Since the clustering algorithms
are usually based on an iteration scheme in which the membership degrees and the
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cluster prototypes are updated alternatingly, it is highly recommended that there ex-
ists an explicit solution for the optimal cluster prototypes, assuming the membership
degrees to be fixed. Cluster prototypes have even been extended to boundaries of ge-
ometric shapes like circles or ellipses. These techniques are called shell clustering.
For overviews we refer to Krishnapuram et al. [25] and Klawonn et al. [24].

A detailed discussion of different cluster shapes is not the topic of this paper.
Nevertheless, it is important to notice that more complex cluster prototypes lead to
two significant problems. The objective function (21.3) tends to have more local
minima, leading to bad clustering results, i.e. the alternating optimisation strategy
gets stuck in a local minimum, although the data set might contain clear cluster
structures. In addition to the problem of local minima, the clustering result is also
more sensitive to noise and outliers. In order to discuss these topics, we briefly
introduce some fundamental notions from robust statistics in the following section.

21.3 Notions from Robust Statistics

Classical statistics mainly focuses on procedures that are optimal – for instance in
terms of efficient estimators – given the model assumptions are correct. For exam-
ple, assuming that a sample comes from a normal distribution, the most efficient
estimator for the expected value is the mean value. The same applies to the least
squares method for linear regression. As long as the model assumption2

yi = β0 +β1xi1 + . . .+βkxik + εi = x�i β+ εi (21.9)

where the εi are independent normal distributions with zero mean and the same
variance for all i and the βi are the unknown regression coefficients.

However, it is well known that even single outliers can have extreme influence
on the mean value or on the estimation of the coefficients of the regression function.
Robust statistics deals with such problems.

21.3.1 Robustness

Classical statistics assumes that the data represent independent samples from the
same distribution Fmodel, the “model”. Robust statistics assumes that the data are
partly corrupted, i.e. the ideal model distribution Fmodel is mixed with an unknown
noise distribution.

F = (1− ε) ·Fmodel + ε ·Frandom. (21.10)

The aim of robust statistics is the development of methods that perform well even
under the imperfect conditions (21.10). For an overview on robust statistics and
related methods, we refer to Huber [18] and Hoaglin et al. [15].

2 Note that each data point (xi1, . . . ,xik) has been extended by the constant component xi0 = 1 in
the last part of the equation in order to simplify the notation.
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21.3.2 Resistance

Of course, even robust statistics cannot cope with the situation when the influence of
the noise distribution Frandom in equation (21.10) becomes too strong. Nevertheless,
methods from robust statistics try to cope with as much distortion from the noise
distribution as possible. One way to analyse robust methods is to consider Frandom is
“random noise”. However, it is not always clear for every model what random noise
means. Another way to investigate robust methods is to consider the influence of
single data points and of extreme outliers.

The influence curve shows, how a single data point added to the data will change
the estimation of the model parameters. Influence curves are very helpful to analyse
the influence of data points to single parameters of a model. The breakdown point
is the proportion of extreme outliers that can be included in the data set without
(drastically) changing the estimation of the model parameters. For instance, the
mean has a breakdown point of zero, since a single extreme outlier x → ∞ will
also let the mean tend to infinity. In contrast, the median has a breakdown point of
(almost) 50%, because the median depends only on the point or two points in the
middle of the ordered data.

In this paper we will mainly focus on resistance consideration concerning fuzzy
cluster analysis.

21.3.3 M-estimators and Robust Regression

Before we view fuzzy cluster analysis from the viewpoint of robust statistics,
we need another notion from robust statistics, the so-called M-estimators. An M-
estimator for a model parameter or vector of model parameters θ is based on mini-
mizing a suitable error function indicating how well the choice of θ fits the data. It
is sufficient to consider the case of linear regression here.

Given a data set of measured values3 (x1,y1), . . . ,(xn,yn), the aim is to determine
a linear model

yi = b0 + b1xi1 + . . .+ bkxik + ei = x�i b + ei (21.11)

defined by the coefficient vector b and to minimize the errors ei.
The objective function to be minimized is

n

∑
i=1

ρ(ei) =
n

∑
i=1

ρ(yi− x�i b) (21.12)

where ρ is a suitable error measure.
A suitable error measure should at least satisfy the following properties:

ρ(e) ≥ 0 (21.13)

ρ(0) = 0 (21.14)

3 Note that the xi can be vectors.
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Table 21.1 Error measures ρ for different approaches

Method ρ(e)
Least squares e2

Huber

{ 1
2 e2 if |e| ≤ k,
k|e|− 1

2 k2 if |e|> k.

Bisquare

⎧⎨⎩ k2

6

(
1−
(

1−( e
k

)2
)3
)

, if |e| ≤ k,

k2

6 , if |e|> k.

ρ(e) = ρ(−e) (21.15)

ρ(ei) ≥ ρ(e j) if |ei| ≥ |e j|. (21.16)

Parameter estimation (here the estimation of the parameter vector b) based on an
objective function of the form (21.12) and an error measure satisfying (21.13)–
(21.16) is called an M-estimator. The classical least squares approach is based on
the quadratic error, i.e. ρ(e) = e2. Table 21.1 provides the error measure ρ for the
classical least squares method as well as for two approaches from robust statistics.

In order to understand the more general setting of an error measure ρ satisfying
(21.13) – (21.16), it is useful to consider the derivative of the error measure ψ= ρ′.

Taking the derivatives of the objective function (21.12) with respect to the pa-
rameters bi, we obtain a system of (k + 1) linear equations

n

∑
i=1
ψi(yi− x�i b)x�i = 0. (21.17)

Defining w(e) = ψ(e)/e and wi = w(ei), (21.17) can be rewritten in the form

n

∑
i=1

ψi(yi− x�i b)
ei

· ei · x�i =
n

∑
i=1

wi · (yi− x�i b) · x�i = 0. (21.18)

Solving this system of linear equations corresponds to solving a standard least
squares problem with (non-fixed) weights in the form

n

∑
i=1

w2
i e2

i . (21.19)

However, the weights wi depend on the residuals ei, the residuals depend on the
coefficients bi and the coefficients depend on the weights. Therefore, it is in general
not possible to provide an explicit solution to the system of equations. Instead, the
following iteration scheme is applied.

1. Choose an initial solution b(0), for instance the standard least squares solution
setting all weights wi = 1.

2. In each iteration step t, calculate the residuals e(t−1) and the corresponding

weights w(t−1) = w
(

e(t−1)
)

determined by the previous step.
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Table 21.2 The computation of the weights for the corresponding approaches

Method w(e)
Least squares 1

Huber

{
1 if |e| ≤ k,
k/|e|, if |e|> k.

Bisquare

{(
1−( e

k

)2
)2

if |e| ≤ k,

0, if |e|> k.

3. Compute the solution of the weighted least squares problem ∑n
i=1 w2

i e2
i , i.e.

b(t) =
(

X�W (t−1)X
)−1

X�W (t−1)y. (21.20)

This iterative algorithm shows an obvious resemblance with the alternating optimi-
sation scheme of fuzzy clustering. The weights for robust regression play a similar
role as the membership degrees in fuzzy clustering and the regression coefficient
correspond to the parameters of the cluster prototypes.

Table 21.2 lists the formulae for the weights in the regression scheme based on
the error measures listed in table 21.1.

Figure 21.1 shows the graph of the error measure and the weighting function for
the standard least squares approach. The error measure ρ increases in a quadratic
manner with increasing distance. The weights are always constant. This means that
extreme outliers will have full influence on the regression coefficients and can cor-
rupt the result completely.

In the more robust approach by Huber the change of the error measure ρ switches
from a quadratic increase for small errors to a linear increase for larger errors.
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Fig. 21.1 The error measure ρ and the weight w for the standard least squares approach
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Fig. 21.2 The error measure ρ and the weight w for Huber’s approach

As a result, only data points with small errors will have the full influence on the
regression coefficients. For extreme outliers the weights tend to zero. This is illus-
trated by the corresponding graphs in figure 21.2.

The bisquare approach is even more drastic than Huber’s approach. For larger
errors the error measure ρ does not increase at all, but remains constant. As a con-
sequence, the weights for outliers drop to zero when they are too far away from the
regression curve. This means that extreme outliers have no influence on the regres-
sion curve at all. The corresponding graphs for the error measure and the weights
are shown in figure 21.3.

Fig. 21.3 The error measure ρ and the weight w for the bisquare approach
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21.4 Robustness Issues in Fuzzy Clustering

In the previous section, a relation between M-estimators and cluster analysis has al-
ready been established where the membership degrees in fuzzy cluster analysis take
the part of the weights in robust regression. In this section, we take a closer look at
this connection and other robustness issues in fuzzy clustering. The next subsection
first provides an exact correspondence between a special case of the fuzzy clustering
algorithm FCV and robust regression.

21.4.1 A Simple Fuzzy Regression Model

Let us consider the special case of FCV with a single cluster in combination with
noise clustering. This means that the single cluster represents a linear regression
function. It can be shown easily that the cluster results from weighted least squares
regression with the membership degrees to the power of m as weights. The mem-
bership degree of a data point x to the single cluster is given by

u =
1

1 +
(

d2

δ

) 1
m−1

(21.21)

where d is proportional to the distance of x to the cluster, m is the fuzzifier and δ is
the noise distance. The membership degree to the noise cluster is 1−u. Figure 21.4
shows this curve. The weight is given by w = um.

It neither corresponds to the Huber nor to the bisquare weight curve in figures
21.2 and 21.3, respectively. In contrast to the Huber weight curve, the weight one
is only assumed for a residual or error of zero. But like the Huber weight curve,
it only approaches zero for larger residuals, but does never reach zero. In this as-
pect it differs strongly from the bisquare weight curve. Before we continue our

Fig. 21.4 The membership degree for FCV
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investigations on weight curves for clustering in more general terms, we consider
general convergence aspects of the alternating optimisation scheme.

21.4.2 Convergence Issues and the Avoidance of Local Minima

It was shown by Bezdek [2] and later on in the corrected paper by Bezdek et al. [4]
that the fuzzy c-means algorithm does always converge to a local minimum or, in
the worst case, to a saddle point of the objective function (21.3). The convergence
conditions were further elaborated and generalised to other algorithms by Höppner
and Klawonn [16]. Nevertheless, the problem of local minima remains. This is not
a specific problem of fuzzy clustering, but already a problem for classical hard c-
means clustering. Figure 21.5 illustrates this problem by a very simple example,
how c-means clustering can get stuck in a local minimum. The indicated partition
of the data into clusters does not correspond to our intuition. The cluster prototypes
are marked by crosses. The problem here is that the prototype on the right-hand side
covers two clusters and the other two prototypes have to compete for data in one
cluster. However, since all data points in the two clusters in the right-hand side of
the figure are closer to the single prototype on the right-hand side, the other two
prototypes will never “take any notice” of these data points and cannot be attracted
by them.

In this case, fuzzy clustering might even be able to overcome this problem. Since
the membership degrees in fuzzy clustering are (almost) never zero, the two pro-
totypes on the left-hand side will at least be slightly attracted by the data points
on the right-hand side, so that fuzzy clustering is able to escape certain local min-
imum. Klawonn [20], [21] has demonstrated that at least in certain settings the in-
troduction of the fuzzifier can smooth out undesired local minimum in the objective
function (21.1).

Nevertheless, the introduction of the fuzzifier can also lead to new problems.
For instance, in the case when clusters of highly different densities exist. Then the
large number of data points from a very dense cluster will still attract the cluster

Fig. 21.5 An undesired local minimum for c-means clustering
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prototypes of other clusters, even if the dense cluster is well covered by a cluster
prototype. We will come back to this problem later on.

21.4.3 Fuzzy Clustering and M-estimators

Although it was very often empirically claimed that fuzzy clustering is more robust,
it took more than twenty years for the first in depth investigations of robustness
properties of fuzzy clustering initiated among others by Nasraoui and Krishnapu-
ram [27] and carried out in more detail by Davé and R. Krishnapuram [9]. These
authors and Choi and Krishnapuram [7] have established relations between fuzzy
clustering – especially noise and possibilistic clustering – and M-estimators and
also W-estimators, another class of estimators from robust statistics. In subsection
21.4.1 we have demonstrated on which concepts the relation between robust estima-
tors and fuzzy clustering is based. For further analysis, the objective function (21.3)
was generalised by the above mentioned authors to the form

f =
c

∑
i=1

n

∑
j=1

um
i jρ(di j). (21.22)

It would lead to far to discuss all details here and we refer to the original works.
Instead, in the next subsection we want to point out some problems that still remain
and are caused by the fuzzifier.

21.4.4 Resistance Properties of Fuzzy Cluster Analysis

It is quite obvious that standard fuzzy clustering is not at all resistant to extreme
outliers. For FCM, for extreme outliers x with ‖ x ‖→ ∞, the distance to all cluster
prototypes of such outliers will also tend to infinity. In this case, we can see from
update equation (21.4) for the membership degrees that the membership degrees
for the outliers will all converge to 1/c. So the outliers with their (almost) infinite
distance will also draw the cluster prototypes away from the data.

The situation changes when noise clustering is applied. Let us again consider a
data point x j with ‖ x j ‖→ ∞ and its influence on cluster prototype i. Apart from
the normalising nominator in equation (21.5), its contribution to the location of the
prototype is ui jx j. Let us just consider the length ‖ ui jx j ‖ of this vector. For a finite
prototype vi and for x j with large norm ‖ x j ‖, we have, assuming c ordinary clusters
and one noise cluster with noise distance δ

‖ x j− vi ‖≈‖ x j ‖=
√

di j (21.23)

when di j denotes the squared Euclidean distance. This implies

lim
‖x j‖→∞

‖ ui jx j ‖ = lim
‖x j‖→∞

ui j
√

di j (21.24)
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= lim
‖x j‖→∞

√
di j

∑c
k=1

(
di j
dk j

) 1
m−1 +

(
di j
δ

) 1
m−1

(21.25)

= lim
d→∞

√
d

c +
(

d
δ
) 1

m−1

(21.26)

= lim
d→∞

1
c√
d

+ δ
−1

m−1 d
3−m

2m−2

(21.27)

= lim
d→∞

δ
1

m−1 d
m−3
2m−2 (21.28)

=

⎧⎨⎩
0 if 1 < m < 3,√
δ if m = 3,

∞ if m > 3.
(21.29)

This implies that for a fuzzifier smaller than 3, the noise cluster will prevent the
other clusters from being corrupted by extreme outliers. However, for a fuzzifier
larger than 3, even the noise cluster cannot protect the other clusters from being
inflicted by extreme outliers.

No matter, wether a noise cluster is introduced or not, due to equation (21.4),
outliers and all other data will still have an influence on all clusters. In terms of
robust statistics, this is very much in the spirit of Hubert’s error measure. The in-
fluence of outliers is gradually reduced, but never completely reduced to zero. The
more drastic bisquare approach, removing the influence of outliers completely, can
only be achieved when the simple fuzzifier transformation g(u) = um is replaced
by generalised transformations as mentioned in equations (21.6) and (21.7). In this
case, extreme outliers will be covered by the noise cluster completely and have zero
membership degree to all other clusters.

21.5 Conclusions

Robustness issues have been neglected in fuzzy cluster analysis for quite a long
time and still have not been investigated and exploited in full detail. Especially the
problem of non-zero membership degrees for all – outliers as well as data points
from other clusters – caused by equation (21.4) has not been a serious issue until
recently. Two approaches might be needed:

(a) On the one hand it is reasonable not to neglect outliers completely as for in-
stance in Hubert’s approach in robust regression and in the case of the standard
fuzzifier in fuzzy clustering. When outliers are ignored completely or mem-
bership degrees are set to absolutely zero, this can easily lead to the problems
illustrated in figure 21.5 and the danger of getting stuck in local minima of the
objective function.

(b) On the other hand, for larger data sets and especially for clusters with different
densities, the avoidance of zero membership degrees leads to undesired results.
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In this case, the global minimum of the objective function might not coincide
with the intuitive partition into clusters.

In this sense, it seems reasonable – apart from making sure to find a good initiali-
sation for clustering – to start the clustering procedure in terms of approach (a) in
order give each cluster a chance to “see” all data in the beginning. But for better
resistance and robustness purposes in the later stage of the clustering procedure it
might be advisable to switch to approach (b) to remove the influence of outliers
completely as well as to stop data from dense clusters to influence other cluster
prototypes. Little work has been carried out in this direction so far.
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Chapter 22
On the Usefulness of Fuzzy Sets in Data Mining

Eyke Hüllermeier

22.1 Introduction

Tools and techniques that have been developed during the last 40 years in the field
of fuzzy set theory (FST) have been applied quite successfully in a variety of ap-
plication areas. A prominent example of the practical usefulness of corresponding
techniques is fuzzy control [21]. Yet, fuzzy tools and fuzzy extensions of existing
methods have also been used and developed in many other fields, ranging from re-
search areas like approximate reasoning over optimization and decision support to
concrete applications like image processing, robotics, and bioinformatics, just to
name a few.

While aspects of knowledge representation and reasoning have dominated re-
search in FST for a long time, problems of automated learning and knowledge
acquisition have more and more come to the fore in recent years [17, 16]. There
are several reasons for this development, notably the following: Firstly, there has
been an internal shift within fuzzy systems research from “modeling” to “learning”,
which can be attributed to the awareness that the well-known “knowledge acquisi-
tion bottleneck” seems to remain one of the key problems in the design of intelligent
and knowledge-based systems. Secondly, this trend has been further amplified by
the great interest that the fields of knowledge discovery in databases (KDD) and its
core methodological component, data mining, have attracted in recent years [13].

In this chapter, we shall argue that data mining is indeed another promising appli-
cation area of FST or, stated differently, that FST is useful for data mining. To this
end, we begin with a brief introduction to data mining in general and association
analysis, a special data mining method that we shall use to illustrate ideas and basic
concepts, in particular. In Section 22.3, we start our main discussion with comments
on a recent paper in which the usefulness of a fuzzy extension of association rule
mining was questioned. Then, in Section 22.4, we give a brief overview of potential
advantages of fuzzy approaches. One of these advantages, which is in our opinion of
special importance, will be discussed and exemplified in more detail: The increased
expressive power of fuzzy approaches for expressing and discovering patterns of in-
terest in data. Finally, in Section 22.5, we point out some additional complications
that can be caused by fuzzy extensions. The chapter ends with some concluding
remarks in Section 22.6.

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 457–470.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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The style of presentation in this chapter is non-technical and mainly aims at con-
veying some basic ideas and insights, often by using relatively simple examples; for
technical details we shall give pointers to the literature.

22.2 Data Mining

According to a widely accepted definition, KDD refers to the non-trivial process of
identifying valid, novel, potentially useful, and ultimately understandable structure
in data [13]. The central step within the overall KDD process is data mining the
application of computational techniques to the task of finding patterns and models
in data.

Before proceeding, let us also make a note on the methodological focus of this
chapter. In particular, we would like to distinguish between pattern discovery and
model induction. While we consider the former to be the core problem of data min-
ing that we shall focus on, the latter is more in the realm of machine learning where
predictive accuracy is often the most important evaluation measure. According to
our view, data mining is of a more explorative nature, and patterns discovered in a
data set are usually of a local and descriptive rather than of a global and predictive
nature. Needles to say, however, this is only a very rough distinction and simplified
view; on a more detailed level, the transition between machine learning and data
mining is of course rather blurred.1

In the remainder of this section, we introduce the basics of association analy-
sis, which is not only one of the most important and frequently used data mining
techniques, but in a sense also prototypical of the data mining field and, therefore,
ideally suited for conveying some basic ideas and key concepts. Besides, association
analysis is especially interesting from a FST point of view, as it deals with patterns
that are expressed in the form of IF–THEN rules, which have always been of major
concern in fuzzy systems.

22.2.1 Association Analysis

Association analysis [1, 23] is a widely applied data mining technique that has been
studied intensively in recent years. The goal in association analysis is to find “inter-
esting” associations in a data set, that is, dependencies between so-called itemsets A
and B expressed in terms of rules of the form “IF A THEN B”, or A ⇀ B for short.
To illustrate, consider the well-known example where items are products and a data
record (transaction) I is a shopping basket such as {butter,milk,bread}. The
intended meaning of an association A ⇀ B is that, if A is present in a transaction,
then B is likely to be present as well. A standard problem in association analysis
is to find all rules A ⇀ B the support (relative frequency of transactions I with

1 Our distinction between machine learning and data mining can roughly be seen as a “modern”
or extended distinction between descriptive and inductive statistics. We note, however, that this
view is not an opinio communis; for example, some people prefer having an even more general
view of data mining that includes machine learning as a special case.
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A ∪B ⊆ I ) and confidence (relative frequency of transactions I with B ⊆ I among
those with A ⊆ I ) of which reach user-defined thresholds minsupp and minconf,
respectively.

In the above setting, a single item can be represented in terms of a binary (0/1-
valued) attribute reflecting the presence or absence of the item, i.e., the latter is
considered as a feature of a transaction. To make association analysis applicable to
data sets involving numerical attributes, such attributes are typically discretized into
intervals, and each interval is considered as a new binary feature. For example, the
attribute temperature might be replaced by two binary attributes cold and warm,
where cold = 1 (warm = 0) if the temperature is below 10 degrees and warm = 1
(cold= 0) otherwise.

An obvious extension is to use fuzzy sets (fuzzy partitions) instead of intervals
(interval partitions), and corresponding approaches to fuzzy association analysis
have been proposed by several authors (see e.g. [6, 7] for recent overviews). In
the fuzzy case, the presence of a feature subset A = {A1 . . .Am}, that is, a compound
feature considered as a conjunction of primitive features A1 . . .Am, is specified as

A(x) = A1(x)⊗A2(x)⊗ . . .⊗Am(x), (22.1)

where Ai(x) ∈ [0,1] is the degree to which x has feature Ai, and ⊗ is a t-norm serv-
ing as a generalized conjunction. Given a database in the form of N data records
(transactions) x1 . . .xN , the support and confidence of a (candiate) rule A ⇀ B are
then defined, respectively, as follows:

supp(A ⇀ B) =
N

∑
i=1

A(xi)⊗B(xi) (22.2)

conf(A ⇀ B) = ∑N
i=1 A(xi)⊗B(xi)
∑N

i=1 A(xi)

There are different motivations for a fuzzy approach to association rule mining.
In particular, several authors have emphasized that, by allowing for “soft” rather
than crisp boundaries of intervals, fuzzy sets can avoid certain undesirable threshold
or “boundary effects” (see e.g. [24]). The latter refers to the problem that a slight
variation of an interval boundary may already cause a considerable change of the
evaluation of an association rule, and therefore strongly influence the data mining
result; we come back to this issue shortly in Section 22.3.

In Section 22.4, we shall emphasize another potential advantage of fuzzy asso-
ciation analysis, namely the fact that association rules can be represented in a more
distinctive way. In particular, working with fuzzy instead of binary features allows
for discovering gradual dependencies between variables.

22.3 Questioning the Usefulness of Fuzzy Extensions

In the recent paper Fuzzy versus quantitative association rules: A fair data driven
comparison by H. Verlinde, M. De Cock, and R. Boute [25], the authors raise the
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interesting question whether or not a fuzzy extension of association analysis is ac-
tually useful. In particular, they call the practical relevance of the aforementioned
boundary effect into question. To this end, they compare the results produced by
fuzzy and non-fuzzy rule mining (using, respectively, a fuzzy partition and the in-
duced non-fuzzy partition that replaces fuzzy sets by their 0.5-cuts) for three dif-
ferent data sets. Since the results obtained appear to be quite similar, they conclude
that “in real applications the net difference is very likely to be too small to really
justify the fuzzy approach”.

A critical examination of this kind is not only important but also remarkable.
In fact, it seems that, not only in data mining but also in many other fields, the
“fuzzification” of existing methods is sometimes regarded as an end in itself, without
critically investigating the need for an extension and, hence, complication of that
kind. In this particular case, however, we think that the experimental investigation
is not extensive enough to warrant the conclusions drawn from the results. In fact,
the authors’ experimental setup can be criticized for the following reasons:

• The authors employ (fuzzy c-means [4]) clustering for the purpose of discretiz-
ing numerical data. They correctly point out that in many papers, artificial ex-
amples are constructed “by hand” in such a way as to enforce a boundary effect
(cf. Section 22.2.1). On the other hand, by partitioning the data using a cluster-
ing approach, the data regions of high density will automatically be located in
the middle of an interval, so that a boundary effect is almost excluded from the
start. Thus, one may argue that this discretization method is biased toward the
authors’ “no effect by fuzzification” hypothesis.

• In their experiments, the authors restrict themselves to the most simple type
of association, namely rules with a single antecedent and a single consequent.
Moreover, for every data set, they selected a rather small subset of only 5 or 6
attributes. These are both very strong simplifications that call the significance of
the experimental results into question.

• To quantify the difference between fuzzy and non-fuzzy association analysis,
the authors first order the complete set of potential association rules according
to a quality measure (either support or confidence); this is possible because, by
restricting the analysis to rules involving only two items and data sets with at
most 6 attributes, the overall number of candidate rules is quite limited. Then,
they compare the two rankings in terms of the Spearman rank correlation. We
do not find this measure very suitable in this context, mainly because it gives the
same weight to every rank. Instead, in association analysis, the higher ranks are
definitely more important than the lower ones, as a user will typically be most
interested in the top rules.

Due to the above reasons, we conducted a comparative study based on an alternative
and, in our opinion, more thorough experimental setup. To make the results compa-
rable, we used the same data sets as in [25] and also the same generalized operators
for set intersection (conjunction) and cardinality, namely the min-operator and the
sigma-count (sum of membership degrees). Regarding the discretization methods
used to define fuzzy partitions, we already mentioned that a clustering approach,
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even though it is data-driven, is perhaps not as objective and fair as it should be. In
addition to discretization by clustering, we therefore used two other and arguably
even more basic methods, namely fuzzy variants of equi-with and equi-frequency
partitioning. Finally, as a measure to quantify the similarity of the results, we did
not only use the Spearman rank correlation but also a top-K variant thereof, that is,
a variant that puts emphasis on the K best association rules (in terms of support or
confidence).

Interestingly enough, based on the results of our experiments (see [18] for a de-
tailed exposition), we come to very different conclusions. In fact, our findings show
that, by using alternative partitioning methods and considering more complex as-
sociation rules, the similarity between fuzzy and non-fuzzy rule mining becomes
much smaller and in some cases completely disappears.

Even though we consider our findings as an invalidation of the opposite claim
raised in [25], we do not regard them as a proof of the usefulness of fuzzy association
analysis. Essentially, the results only show that there is indeed a significant difference
between fuzzy and conventional rule mining, without saying, however, which of the
two approaches is better. Yet, as will be argued in the next section, we indeed believe
that fuzzy extensions offer a number of potential advantages in data mining.

22.4 Advantages of Fuzzy Data Mining

In the literature, several merits and advantages of fuzzy data mining have been high-
lighted, including the following (see [17] for a more detailed discussion):

• Graduality: The ability to represent gradual concepts in a thorough way, which is
one of the core features of fuzzy sets, is also of primary importance in the context
of data mining. In fact, patterns of interest are often inherently vague and do have
boundaries that are non-sharp in the sense of FST.

• Granularity: Granular computing including FST as one its main constituents, is
an emerging paradigm of information processing emphasizing the idea that in-
formation can be processed on different levels of abstraction, and that the choice
of a reasonable level depends on the problem at hand [2]. As a means to trade off
accuracy against efficiency and interpretability, granular computing is also rele-
vant for ML&DM, not only for the model induction or pattern discovery process
itself, but also for data pre- and post-processing, such as data compression and
dimensionality reduction [20].

• Interpretability: Fuzzy sets have the capability to interface quantitative patterns
with qualitative knowledge structures expressed in terms of natural language,
thereby allowing to represent such patterns in a linguistic and hence comprehen-
sible way [5].

• Robustness: Fuzzy methods are often claimed to be more robust, e.g., toward
small variations of the data, than non-fuzzy methods.

• Representation of Uncertainty: Extracting knowledge from data is inseparably
connected with uncertainty. In this regard, uncertainty formalisms related to FST,
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such as possibility theory [9], are potentially useful, as they can complement
probability theory in a reasonable way.

• Generalized Operators: The large repertoire of generalized logical (e.g., t-norms
and t-conorms) and arithmetical (e.g., Choquet- and Sugeno-integral) opera-
tors that have been developed in FST and related fields can also be applied in
data mining, e.g., for modeling patterns and representing relationships between
attributes.

As a thorough discussion of all of the above points is clearly beyond the scope of this
paper, our subsequent discussion will focus on an aspect that we consider especially
important, namely the contribution of FST to an increased expressiveness for feature
representation and dependency analysis: Many data mining methods proceed from
a representation of the entities under consideration in terms of feature vectors, i.e.,
a fixed number of features or attributes, each of which represents a certain property
of an entity. For example, if these entities are employees, possible features might
be gender, age, and income. A common goal of feature-based methods, then, is to
analyze relationships and dependencies between the attributes. In this section, it will
be argued that the increased expressiveness of fuzzy methods, which is mainly due
to the ability to represent graded properties in an adequate way, is useful for both
feature extraction and dependency analysis.

22.4.1 Fuzzy Features and Patterns

Many features of interest, and therefore the patterns expressed in terms of these
features, are inherently fuzzy. As an example, consider the so-called “candlestick
patterns” which refer to certain characteristics of financial time series [19]. These
patterns are believed to reflect the psychology of the market and are used to support
investment decisions. Needless to say, a candlestick pattern is fuzzy in the sense
that the transition between the presence and absence of the pattern is gradual rather
than abrupt.

To give an even simpler example, consider a finite time series of the form

x = (x(t1),x(t2) . . .x(tn)) ∈ Rn.

To bring one of the topical application areas of fuzzy data mining into play, namely
bioinformatics,one may think of x as the expression profile of a gene in a microar-
ray experiment, i.e., a timely ordered sequence of expression levels. For such pro-
files, the property (feature) of “having a peak” might be of interest, e.g., to enable
the discovery of (biologically meaningful) patterns such as “most cell cycle-related
genes have a peak after approximately 20 minutes”. Needless to say, this pattern
is inherently vague, in the sense that it will not always be possible to decide in an
unequivocal way whether or not a peak is present in an expression profile (and if so,
whether it occurs after around 20 minutes).

Another example of a fuzzy feature is the shape of a cell nucleus, which might be
important, e.g., in the context of a classification problem. Fig. 22.1 shows a number
of ideal shapes that one may want to distinguish. Again, of course, it is clear that
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Fig. 22.1. Different shapes of a cell nucleus

a categorization of a concrete cell can be ambiguous, e.g., as its shape is somehow
in-between round and oval. This suggests a fuzzy representation in which a concrete
nucleus x is characterized in terms of a membership vector

µ(x) = (µ1,µ2 . . .µ5) ∈ [0,1]5, (22.3)

where µ1 is the degree to which x is round, µ2 the degree to which it is oval, and so
forth.

The fuzzification of a property such as “shape” is clearly more interesting than
the fuzzification of simple one-dimensional attributes in terms of fuzzy partitions,
as commonly found in the literature. It is, however, also more difficult, as the de-
termination of the degrees µi in (22.3) is non-trivial. Nevertheless, fuzzy set-based
modeling techniques offer a large repertoire for generalizing the formal (logical)
description of a property, including generalized logical connectives such as t-norms
and t-conorms, fuzzy relations such as MUCH-SMALLER-THAN, and fuzzy quantifiers
such as FOR-MOST. Making use of these tools, it becomes possible to formalize
“vague patterns” like the ones mentioned above in a suitable way; see [19] for a
concrete example of a formalization of that kind, namely the modeling of the afore-
mentioned candlestick patterns.

22.4.2 Mining Gradual Dependencies

On a logical level, the meaning of a standard (association) rule A ⇀ B is captured
by the material conditional, i.e., the rule applies unless the consequent B is true and
the antecedent A is false. On a natural language level, a rule of that kind is typically
understood as an IF–THEN construct: If the antecedent A holds true, so does the
consequent B .

As explained in Section 22.2.1, the Boolean predicates A and B can be replaced
by corresponding fuzzy predicates which assume truth values in the unit interval
[0,1]. Consequently, the material implication operator has to be replaced by a gen-
eralized connective, that is, a suitable [0,1]× [0,1]→ [0,1] mapping. In this regard,
two things are worth mentioning. Firstly, the choice of this connective is not unique,
instead there are various options. Secondly, depending on the type of operator em-
ployed, fuzzy rules can have quite different semantical interpretations [11].

The type of (association) rules discussed in Section 22.2.1 belongs to the class
of conjunction-based rules, where the antecedent and consequent are combined
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in terms of a t-norm such as minimum or product. Thus, in order to satisfy a
conjunction-based rule, both the antecedent and the consequent must be true (to
some degree).

This type of rules can be contrasted with implication-based fuzzy rules, in which
the antecedent A and the consequent B are combined by means of an implication
operator. In particular, when choosing a residuated implication, such rules can be
understood as “THE MORE the antecedent A is true, THE MORE the consequent
B is true” [22, 10], for example “The larger an object, the heavier it is”. In order
to satisfy a gradual fuzzy rule of that kind, the consequent must be at least as true
as the antecedent. In the context of association analysis, this leads to using different
types of support and confidence measures [14, 8].

The important point to notice is that a distinction between different types of as-
sociations, having different semantic interpretations, cannot be made for non-fuzzy
rules. Formally, the reason is that fuzzy extensions of logical operators all coincide
on the extreme truth values 0 and 1. Or, stated the other way round, a differentiation
can only be made on intermediary truth degrees. In particular, the consideration of
gradual dependencies does not make any sense if the only truth degrees are 0 and 1.

In fact, in the non-fuzzy case, the point of departure for analyzing and evalu-
ating a relationship between features or feature subsets A and B is a contingency
table:

B(y) = 0 B(y) = 1
A(x) = 0 n00 n01 n0•
A(x) = 1 n10 n11 n1•

n•0 n•1 n

In this table, n00 denotes the number of examples x for which A(x) = 0 and
B(x) = 0, and the remaining entries are defined analogously. All common evaluation
measures for association rules, such as support (n11/n) and confidence (n11/n1•) can
be expressed in terms of these numbers.

In the fuzzy case, a contingency table can be replaced by a contingency diagram
an idea that has been presented in [15]. A contingency diagram is a two-dimensional
diagram in which every example x defines a point

(α,β) = (A(x),B(x)) ∈ [0,1]× [0,1].

A diagram of that type is able to convey much more information about the depen-
dency between two (compound) features A and B than a contingency table. Con-
sider, for example, the two diagrams depicted in Fig. 22.2. While the upper diagram
suggests a relatively strong (the more–the more) dependency between A and B , the
two properties appear to be unrelated according to the lower diagram. Now, con-
sider the non-fuzzy case in which the fuzzy sets A and B are replaced by crisp
sets Abin and Bbin, respectively, for example by using a [0,1]→{0,1} mapping like
α �→ (α> 0.5). Then, identical contingency tables are obtained for the first and the
second scenario (in the first diagram, the four quadrants contain the same number
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Fig. 22.2. Two contingency diagrams reflecting different types of dependencies between fea-
tures A and B

of points as the corresponding quadrants in the second diagram). In other words, the
two scenarios coincide and cannot be distinguished in the non-fuzzy case.

In [15], it was suggested to analyze contingency diagrams by means of techniques
from statistical regression analysis. Amongst other things, this offers an alternative
to the logic-based approach (via implication operators) to discovering gradual de-
pendencies. For example, the fact that a linear regression line with a significantly
positive slope (and high enough quality indexes, like a coefficient of determination,
R2) can be fit to the data suggests that indeed a higher A(x) tends to result in a
higher B(x), i.e., the more x has feature A the more it has feature B . This is the
case, for example, in the first diagram in Fig. 22.2. In fact, the data in this diagram
supports an association A ⇀ B quite well in the sense of the THE MORE–THE
MORE semantics, whereas it does not support the non-fuzzy rule Abin ⇀ Bbin.

Note that a contingency diagram can be derived not only for simple but also for
compound features of the form (22.1), that is, feature subsets representing conjunc-
tions of simple features. The problem, then, is to derive regression-related quality
indexes for all potential association rules in a systematic way, and to filter out those
gradual dependencies which are well-supported by the data in terms of these in-
dexes. For corresponding mining methods, including algorithmic aspects and com-
plexity issues, we refer to [15]; see also [3] for an alternative, non-parametric
approach to mining fuzzy gradual dependencies.
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22.5 Complications Caused by Fuzzy Extensions

In the previous sections, we have outlined several potential advantages of fuzzy
data mining, with a special focus on the increased expressiveness of fuzzy patterns.
Needless to say, these advantages of fuzzy extensions do not always come for free
but may also produce some complications, either at a computational or at a con-
ceptual level. This section is meant to comment on this point, albeit very briefly. In
fact, since the concrete problems that may arise are rather application-specific and
depend on the concrete method, a detailed discussion is beyond the scope of this
chapter.

Regarding computational aspects, scalability is an issue of utmost importance
in data mining. Therefore, the usefulness of fuzzy extensions presupposes that
fuzzy patterns can be mined without sacrificing computational efficiency. Fortu-
nately, efficient algorithmic solutions can be assured in many cases, mainly because
fuzzy extensions can usually resort to the same algorithmic principles as non-fuzzy
methods.

To illustrate, consider again the case of association rule mining, the first step
of which typically consists of finding the frequent itemsets that is, the itemsets
A = {A1 . . .Am} satisfying the support condition supp(A)≥ minsupp. Starting with
[1], several efficient algorithms have been developed for this purpose. For exam-
ple, in order to prune the search space, the well-known Apriori principle exploits
the property that every superset of an infrequent itemset is necessarily infrequent
by itself or, vice versa, that every subset of a frequent itemset must also be fre-
quent (downward closure property). In the fuzzy case, where an itemset is a set
A = {A1 . . .Am} of fuzzy features (items), the support is usually defined by (22.2).
So, the key difference to the non-fuzzy case is that the support is no longer an inte-
ger but a real-valued measure. Apart from that, however, it has the same properties
as the non-fuzzy support, in particular the aforementioned closure property, which
means that the basic algorithmic principles can be applied in exactly the same way.

Of course, not all adaptations are so simple. For example, in the case of implica-
tion-based association rules [14, 8], the generation of candidate rules on the basis of
the support measure becomes more intricate due to the fact that the measure is now
asymmetric in the antecedent and the consequent part, that is, the support of a rule
A ⇀ B is no longer the support of the itemset A ∪B .

Apart from computational issues, fuzzy extensions may of course also produce
complications at a conceptual level which are of a more principled nature. We con-
clude this section with a discussion of one such complication that concerns the scor-
ing of patterns in terms of frequency-based evaluation measures. An example of this
type of measure, which is quite commonly used in data mining, is the support mea-
sure in association analysis: A pattern P is considered “interesting” if it is supported
by a large enough number of examples; this is reflected by the support condition
supp(P)≥ minsupp.

As already mentioned above, in the fuzzy case, the individual support given to
a pattern P by an example xi is not restricted to 0 and 1. Instead, every example
xi can support a pattern to a certain degree si ∈ [0,1]. For example, in the case
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of association rule mining, an example xi supports a candidate rule A ⇀ B to the
degree si = A(xi)⊗B(xi). Moreover, resorting to the commonly employed sigma-
countfor computing the cardinality of a fuzzy set [26], the overall support of the
pattern is given by the sum of the individual degrees of support.

The problem here is that this sum, as a one-dimensional aggregation operator,
does not provide any information about the (statistical) distribution of the si. In par-
ticular, since several small si can compensate for a single large one, it may happen
that the overall support appears to be quite high, even though none of the si is close
to 1. In this case, one may wonder whether the pattern is really well-supported. In-
stead, it seems reasonable to require that a well-supported pattern should at least
have a few examples xi that can be considered as true prototypes, that is, with an si

close to 1.
To address this problem, we propose the concept of strong fuzzy support (see [12]

for a related proposal). Consider a pattern P modeled in terms of a fuzzy set such
that, for every example xi, P(xi) ∈ [0,1] denotes the degree to which P is supported
by xi. Now, the idea is to replace the standard support condition

supp(P) =
N

∑
i=1

P(xi)≥ minsupp, (22.4)

by the following strong support condition:

supp(P) df= min
α∈[0,1]

suppα(P)
Sα/S0

≥ minsupp, (22.5)

where

suppα(P) =
1
N ∑

xi :P(xi)≥α
P(xi)

Sα =
∫

Pα
P(x)dx

Thus, suppα(P) is the support of P coming from the examples that strongly support
P, namely those with P(xi)≥α. Moreover, Sα/S0 corresponds to the expected strong
support, that is, the expected support of an example xi such that P(xi) ≥ α, given

Fig. 22.3. Illustration of the concept of strong fuzzy support. Sα corresponds to the area of
the shaded region, while S0 corresponds to the total area under the membership function of
the fuzzy pattern P.
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that the examples are distributed in a uniform way; see Fig. 22.3 for an illustration.
Obviously, (22.5) is more demanding than (22.4), which is recovered for α= 0 but
does not require the inequality to hold for 0 < α≤ 1.

The purpose of the above discussion is to point out that fuzzy extensions of data
mining methods have to be applied with some caution. On the other hand, the discus-
sion also suggests that additional complications caused by fuzzy extensions, either
at a computational or conceptual level, can usually be solved in a satisfactory way.
In other words, such complications do usually not prevent from using fuzzy meth-
ods, at least in the vast majority of cases, and by no means annul the advantages
thereof.

22.6 Concluding Remarks

The aim of this chapter is to provide evidence for the assertion that fuzzy set the-
ory can contribute to data mining in a substantial way. To this end, we have mainly
focused on the increased expressiveness of fuzzy approaches that allows one to rep-
resent features and patterns in a more adequate and distinctive way. More specif-
ically, we argued that many features and patterns of interest are inherently fuzzy,
and modeling them in a non-fuzzy way will inevitably lead to unsatisfactory results.
Apart from extracting and modeling features, we also argued that fuzzy methods
are useful for representing dependencies between features. As an example, we have
shown that such methods allow for representing gradual dependencies, which is not
possible in the case of binary features.

Further merits of fuzzy data mining, including a possibly increased interpretabil-
ity and robustness as well as adequate means for dealing with (non-stochastic) un-
certainty and incomplete information, have been outlined briefly in Section 22.4.
Albeit presented in a quite concise way, these merits should give an idea of the high
potential of fuzzy methods in data mining.
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Chapter 23
The Uncertainty Associated with a Type-2
Fuzzy Set

Sarah Greenfield and Robert I. John

23.1 Introduction

Type-2 fuzzy sets were developed initially in 1975 by Zadeh [11]. They responded to
the major shortcoming of type-1 fuzzy sets by offering a conceptual scheme within
which the effects of uncertainties in fuzzy inferencing may be modelled and min-
imised ([7], p. 117). However, there are a number of issues to be resolved by re-
searchers in type-2 fuzzy logic. This chapter concerns itself with two aspects of
type-2 fuzzy sets – how can we describe them from a logic perspective and how can
we characterise the uncertainty associated with a type-2 fuzzy set?

23.1.1 Type-1 Fuzzy Sets and Uncertainty

Type-1 membership functions are of questionable accuracy as their derivation pro-
cess tends to be subjective or reliant on large sets of data.

The practical application of fuzzy sets is within a fuzzy inferencing system (FIS).
Uncertainty in type-1 FISs derives from at least four sources, according to Mendel
and John ([7], p. 117):

“There are (at least) four sources of uncertainties in type-1 FLSs1: (1) The
meanings of the words that are used in the antecedents and consequents of
rules can be uncertain (words mean different things to different people). (2)
Consequents may have a histogram of values associated with them, especially
when knowledge is extracted from a group of experts who do not all agree.
(3) Measurements that activate a type-1 FLS may be noisy and therefore un-
certain. (4) The data that are used to tune the parameters of a type-1 FLS may
also be noisy. All of these uncertainties translate into uncertainties about fuzzy
set membership functions. Type-1 fuzzy sets are not able to directly model
such uncertainties because their membership functions are totally crisp. On
the other hand, type-2 fuzzy sets are able to model such uncertainties because
their membership functions are themselves fuzzy.”

Sources 1 and 4 apply to type-1 fuzzy sets in isolation, and 2 and 3 only in the
context of a FIS.
1 FLS stands for ‘Fuzzy Logic System’, which is another term for ‘Fuzzy Inferencing System’.

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 471–483.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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23.1.2 Can Type-1 Fuzzy Sets Model Uncertainty?

We have seen that it is very difficult, if not impossible, to determine a type-1 mem-
bership function. Type-1 fuzzy sets, employing crisp numbers in their membership
functions, have no way of modelling the uncertainties described in the previous sec-
tion. Using crisp numbers, possibly expressed to several decimal places, to represent
degrees of membership, seems rather counterintuitive. Klir and Folger ([6], p. 12)
comment:

“. . . it may seem problematical, if not paradoxical, that a representation of fuzzi-
ness is made using membership grades that are themselves precise real num-
bers. Although this does not pose a serious problem for many applications, it
is nevertheless possible to extend the concept of the fuzzy set to allow the dis-
tinction between grades of membership to become blurred. Sets described in
this way are known as type 2 fuzzy sets.”

It may be objected that the type-1 membership function does reflect the certainty
of a proposition. Does not a membership grade of 1 imply certain truth, a grade of
0 certain falsehood, and a grade of 0.5 total uncertainty? But really what is being
quantified here is not uncertainty but vagueness. This is what lies behind the com-
mon use of fuzziness as a so-called measure of uncertainty for type-1 fuzzy sets
([10], p. 5384).

We have seen that the type-1 fuzzy set is not capable of representing uncertainty
(other than in the sense of vagueness). We now look at the type-2 fuzzy set, which is
believed by many to provide an intuitive model for the uncertainty associated with
a group of propositions.

23.2 The Type-2 Fuzzy Set

There are two ways (at least) to consider type-2 fuzzy sets. One is ‘formally’ in their
own right and the other is by their relation to type-1 fuzzy sets. Before presenting
a formal definition, we consider how we might arrive at a type-2 fuzzy set from a
type-1 fuzzy set.

23.2.1 Blurring a Type-1 Membership Function

Mendel and John describe how the type-2 fuzzy set, a three-dimensional structure,
may be formed from the two-dimensional type-1 fuzzy set ([7], p. 118):

“Imagine blurring the type-1 membership function . . . Then, at a specific value
of x, say x′, there no longer is a single value for the membership function (u′);
instead the membership function takes on values wherever the vertical line in-
tersects the blur. Those values need not all be weighted the same; hence, we can
assign an amplitude distribution to all of those points. Doing this for all x ∈ X ,
we create a three-dimensional membership function – a type-2 membership
function – that characterizes a type-2 fuzzy set.”
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At this point it is important to highlight the fact that a function, by definition, maps
a given domain value to a unique co-domain value. It immediately follows that once
a function is blurred, it is no longer a function. Therefore the so-called ‘blurred
membership function’ is not actually a function. We now define a type-2 fuzzy set
more formally.

23.2.2 Formal Definition of a Type-2 Fuzzy Set

Mendel and John ( [7], p. 82) formally define a type-2 fuzzy set thus:

Definition 1 (Type-2 Fuzzy Set). A type-2 fuzzy set, denoted Ã, is characterized by
a type-2 membership function µÃ(x,u), where x ∈ X and u ∈ Jx ⊆ [0,1], i.e.,

Ã = {((x,u),µÃ(x,u)|∀x ∈ X ,∀u ∈ Jx ⊆ [0,1])}

in which 0≤ µÃ(x,u)≤ 1. Ã can also be expressed as

Ã =
∫

x∈X

∫
u∈Jx

µÃ(x,u)/(x,u) Jx ⊆ [0,1]

where
∫ ∫

denotes union over all admissible x and u, µÃ(x) is the secondary mem-
bership function, and Jx is the domain of µÃ(x).

So, type-2 fuzzy sets have a third dimension. This has advantages and disadvantages.
From a modelling perspective type-2 sets provide more ‘degrees of freedom’ and are
now starting to be used in applications, e.g. [2], [5]. However, they are computation-
ally expensive – again this is being addressed, e.g. [1], [3], [4]. Most applications to
date have been using interval type-2 fuzzy logic. Interval type-2 fuzzy sets are type-
2 fuzzy sets in which the secondary grade is unity [8]. Because they are widely used
they are important but our view is that the uniformity of the third dimension reduces
the efficacy compared with the more general case – generalised type-2 fuzzy sets.

23.3 Type-2 Fuzzy Sets and Uncertainty

A type-1 fuzzy set models truth. A type-1 membership function, represented by a
crisp number, has no way of representing uncertainty, and therefore assumes total
certainty at every point. This is the weakness addressed by type-2 fuzzy sets.

Type-2 fuzzy sets do model uncertainty. How is the type-2 fuzzy set able to per-
form this feat that the type-1 fuzzy set is unable accomplish? According to Mendel
and John ([7], p. 117), it is the extra third dimension of type-2 fuzzy sets that gives
them this desirable facility:

“Membership functions of type-1 fuzzy sets are two-dimensional, whereas
membership functions of type-2 fuzzy sets are three-dimensional. It is the
new third-dimension of type-2 fuzzy sets that provides additional degrees of
freedom that make it possible to directly model uncertainties.”
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Mendel and John believe the third dimension holds the key to modelling uncertainty,
but do not make explicit how this modelling takes place. However in this section we
propose a mechanism by which type-2 fuzzy sets model uncertainty. We begin by re-
lating the story of an unfortunate detective nicknamed ‘Inspector Clueless’. Through
no fault of his own he often finds himself unable to solve the cases assigned to him.
His futile efforts shed light on the principles involved in uncertainty modelling.

23.3.1 Inspector Clueless and the Definite Contradictory
Witnesses

Let us imagine that an audacious crime has taken place whereby a priceless piece
of jewellery is stolen from public display in full view of several witnesses. Inspec-
tor Clueless is assigned to the case, and immediately sets about interviewing the
witnesses, hoping to build a picture of the perpetrator.

The first witness says, “All I can remember is that he was tall. I am certain of
that.” In spite of being given a rather incomplete description, because of the total
certainty of the witness, Clueless is confident that he is looking for a tall man.

He moves on to the second witness, who says, “The only thing I can tell you
is that he was definitely of medium height.” On hearing this, Clueless’s confidence
erodes. The two witnesses are not in agreement. The fact that they are both certain
does not help. If one of them were certain and the other not, them at least he would
feel justified in looking for a villain who matched the description of the certain
witness. But based on the information he has been given, all he can say is that he is
not looking for a short man.

He thinks that the third witness might shed some light, but she only adds to his
sense of bewilderment by stating, “He was short. That’s all I know. Of that there is
no doubt in my mind.” Now Clueless, in spite of having three witnesses claiming
certainty, knows absolutely nothing about the criminal’s height. The interviews were
fruitless; the amount of information gained was nil. We shall use this scenario as a
way of exploring the uncertainty of type-1 and type-2 fuzzy sets.

23.3.2 Propositions under Different Types of Logic

We now look at how the various logics, from classical logic through to generalised
type-2 fuzzy logic, handle propositions.

Classical Logic

In classical logic a proposition is either true or false, which is why this form of logic
is also known as ‘crisp logic’ (in contrast to to ‘fuzzy logic’). In classical logic the
statement

The perpetrator is tall.

is equivalent to the statement
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‘The perpetrator is tall.’ is true.

Similarly, the statement

The perpetrator is not tall.

is equivalent to the statement

‘The perpetrator is tall.’ is false.

The statements

‘The perpetrator is tall.’ is true.

and

‘The perpetrator is tall.’ is false.

are meta-statements, as they are statements about statements.

Type-1 Fuzzy Logic

A type-1 fuzzy statement, such as

The perpetrator is tall to degree 0.8.

is equivalent to the meta-statement

The statement ‘The perpetrator is tall.’ has a truth-value of 0.8.

Interval Type-2 Fuzzy Logic

As we have seen, we can convert the statement

The perpetrator is tall to degree 0.8.

to the meta-statement

The statement ‘The perpetrator is tall.’ has a truth-value of 0.8.

This meta-statement can in turn be converted into the meta-meta-statement

“The statement ‘The perpetrator is tall.’ has a truth-value of 0.8.” is true.

which may be rephrased as the meta-meta-statement

“The statement ‘The perpetrator is tall.’ has a truth-value of 0.8.” has a truth
value of 1.

Thus we have arrived at an interval type-2 fuzzy set, one whose FOU2 has 0 area,
in which the truth value of 1 corresponds to the obligatory secondary membership
grade of 1. The interval set would be more typical (i.e. have an FOU of area greater
than 0) if conflicting claims were being made about the perpetrator’s height. For
instance, if two additional meta-meta-statements were introduced:

2 FOU stands for ’Footprint Of Uncertainty’, the projection of the T2FS on the x− y plane.
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“The statement ‘The perpetrator is tall.’ has a truth-value of 0.5.” has a truth
value of 1.

and

“The statement ‘The perpetrator is tall.’ has a truth-value of 0.2.” has a truth
value of 1.

then the interval set would be modelling three incompatible propositions.

Generalised Type-2 Fuzzy Logic

We have seen how an interval type-2 fuzzy set is capable of modelling a number
of incompatible statements. Now we shall alter the two of the three meta-meta-
statements from the last section. We shall keep the meta-meta-statement

“The statement ‘The perpetrator is tall.’ has a truth-value of 0.5.” has a truth
value of 1.

as it is. The meta-meta-statement

“The statement ‘The perpetrator is tall.’ has a truth-value of 0.8.” has a truth
value of 1.

we change to

“The statement ‘The perpetrator is tall.’ has a truth-value of 0.8.” has a truth
value of 0.6.

and the meta-meta-statement

“The statement ‘The perpetrator is tall.’ has a truth-value of 0.2.” has a truth
value of 1.

we alter to

“The statement ‘The perpetrator is tall.’ has a truth-value of 0.2.” has a truth
value of 0.4.

This trio of meta-meta-statements, whereby the meta-statements have different de-
grees of truth, may be modelled by a generalised type-2 fuzzy set. In this case it
would be a normal set, as one of the meta-meta-statements has a truth value of 1.

23.3.3 Type-2 Fuzzy Sets and Uncertainty

We are now in a position to clarify how type-2 fuzzy sets model uncertainty.
Every point on the FOU created by blurring a type-1 membership function rep-

resents a meta-statement. These meta-statements are incompatible. Their incompat-
ibility is related to the observation we made in section 23.2.1 that a blurred type-1
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membership function is not a function at all, as the domain value is mapped onto
more than one co-domain value (primary membership grade).

The type-2 membership function corresponds to a series of meta-meta-statements,
providing a commentary on the type-1 membership grades in the blurred type-1
membership function (or FOU). Thus a type-2 set is actually giving form to a group
of related but incompatible propositions.

23.4 Quantifying Uncertainty

23.4.1 Assumptions

The following analysis concerns type-2 fuzzy sets which are both convex and nor-
mal. Geometrically the type-2 fuzzy set may be viewed as a surface represented by
(x,y,z) co-ordinates within a unit cube. (For ease of calculation, the x and y-axes are
scaled from 0 to 1.) It is also assumed that the amount of uncertainty represented by
a type-2 fuzzy set is solely a property of that fuzzy set, irrespective of the manner of
the set’s creation. In particular it is irrelevant whether its creation occurred during
the operation of an FIS.

23.4.2 Definitions

A type-2 fuzzy set has many secondary membership grades, each corresponding to a
meta-meta statement. Each secondary membership grade quantifies the uncertainty
of the primary membership grade, or meta-statement, with which it is associated.
We define the certainty and the uncertainty of a primary membership grade, before
defining the uncertainty associated with a type-2 fuzzy set.

Definition 2 (Certainty of a Primary Membership Grade). For a given domain
value, x, and a primary membership grade, u, the certainty C(x,u) is the secondary
membership grade with which it is associated. I.e.

C(x,u) = µÃ(x,u).

Definition 3 (Uncertainty of a Primary Membership Grade). The uncertainty of
a primary membership grade of a type-2 fuzzy set (U(x,u)) is its certainty (µÃ(x,u))
subtracted from 1. I.e.

U(x,u) = 1−µÃ(x,u).

Definition 4 (Uncertainty of a Type-2 Fuzzy Set). The uncertainty, UÃ, of a type-
2 fuzzy set Ã, is a value in the range [0,1] whereby 0 represents certainty and 1
complete lack of certainty.

23.4.3 Measurement Constraints

Minimum Uncertainty

The least amount of uncertainty possible is 0. This corresponds to a type-2 fuzzy set
in which every secondary membership function is a vertical line with height unity,
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of zero volume, originating from a linear FOU. Such a type-2 fuzzy set is equivalent
to, and reducible to, a type-1 fuzzy set.

Maximum Uncertainty

At the other extreme, the greatest amount of uncertainty possible is 1. There is only
one type-2 fuzzy set having an uncertainty of 1. It is an interval set for which the
support for each vertical slice’s secondary membership function is the complete
interval [0,1]. The area of the FOU is 1. This type-2 fuzzy set may be described as a
unit cube (whose volume is, of course, 1). It is fitting that it has an uncertainty of 1,
as, being essentially formless, like a blank sheet of paper, it is really saying nothing;
it is conveying no information whatsoever! As it is as informative as a blank piece
of paper, we shall term it the blank type-2 fuzzy set.

Definition 5 (Blank Type-2 Fuzzy Set). The blank type-2 fuzzy set is an interval
type-2 fuzzy set whose FOU fills the region between the lines x = 0 and x = 1 and
y = 0 and y = 1.

23.4.4 Quantifying the Uncertainty Represented by a Vertical
Slice

Vertical Slice of an Interval Type-2 Fuzzy Sets

Compare the vertical slices of the two continuous interval type-2 fuzzy sets depicted
in figures 23.1 and 23.2.

Consider the question “Which slice is associated with more uncertainty?” We
would argue that the fuzzy set represented by figure 23.2, even though it takes a
value of 1 (certainty of an individual meta-meta-statement) over a wider support, has
more uncertainty. Certainty of many irreconcilable alternatives implies uncertainty
about all of them. It is as if the wider the support of the interval set, the more the
certainty is ‘diluted’, giving a higher uncertainty value.

� y

�
z

Fig. 23.1. Vertical slice of an interval type-2 fuzzy set in which the secondary membership
function has a narrow support
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� y

�
z

Fig. 23.2. Vertical slice of an interval type-2 fuzzy set in which the secondary membership
function has a wide support

Vertical Slice of a Generalised Type-2 Fuzzy Sets

Consider the type-2 FOU depicted in figure 23.3 which is sliced vertically through
x = 0.6. The slice’s secondary membership function may take many shapes; three
possibilities are shown in figures 23.6 to 23.4.

The ‘tapering’ secondary membership function depicted in figure 23.4is not unlike
the case of a type-1 fuzzy set presented in the form of a type-2 fuzzy set, i.e. having
an uncertainty of 0. As the support of the secondary membership function is slightly
greater than 0, there must be a small amount of uncertainty associated with it.

In the interval case (figure 23.5), there is the maximum quantity of uncertainty
possible with an secondary membership function built upon this support. The trian-
gular membership function falls (figure 23.6) between the vertical secondary mem-
bership function and the interval secondary membership function. It is reasonable
to assume that it has half the uncertainty of the interval slice.

� x

�
y

0.6

Fig. 23.3. FOU of a type-2 fuzzy set, intersected by vertical slice at x = 0.6
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� y

�
z

Fig. 23.4. ‘Tapering’ secondary membership function

� y

�
z

Fig. 23.5. Rectangular secondary membership function, as in an interval type-2 fuzzy set

� y

�
z

Fig. 23.6. Triangular secondary membership function

Drawing all these observations together, we suggest that the amount of uncer-
tainty in a vertical slice is equal to the area under the membership function. So, now
we consider the uncertainty represented by the whole type-2 fuzzy set.
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23.4.5 Quantifying the Uncertainty Represented by a Generalised
Type-2 Fuzzy Set

It follows that the amount of uncertainty in a normal generalised type-2 fuzzy set
equals the volume of the type-2 fuzzy set, i.e. the volume of the space between the
secondary grades surface and the x− y plane.

23.5 Normality and the Volume Measure of Uncertainty

The foregoing discussion has solely been concerned with normal type-2 fuzzy sets
(section 23.4.1). We now consider whether the stipulation of normality may be
relaxed, i.e. whether the volume measure of uncertainty would still work for a
non-normal type-2 fuzzy set. Before offering a more formal analysis, we return to
the thorough but fruitless detective work of Inspector Clueless.

23.5.1 Inspector Clueless and the Unobservant Contradictory
Witnesses

Inspector Clueless is called to investigate another crime, which strongly resembles
the first crime. As before he sets about interviewing the witnesses.

The first witness says, “I think he was tall, but I’m not very sure.” So he moves
on to the second witness, who says, “He was rather nondescript really. I would
say he was of medium height, but I can’t be sure.” The third witness states, “He
looked short, but I wasn’t really paying attention.” As before, Clueless feels he know
nothing about the criminal’s height. But this time, the witness are far from certain
of their contradictory recollections.

23.5.2 Uncertain Contradictory Propositions

We shall now interpret these witnesses’ statements as a type-2 fuzzy set. Let us
assume that the certainty of each individual’s statement (truth value of each meta-
meta-statement) is 0.2. The type-2 set that would model this situation would be
similar to a blank fuzzy set except that the secondary membership grades would all
take the value of 0.2. We term this sort of fuzzy set a truncated blank fuzzy set.

Definition 6 (Truncated Blank Type-2 Fuzzy Set). The truncated blank type-2
fuzzy set is a type-2 fuzzy set whose FOU fills the region between the lines x = 0
and x = 1 and y = 0 and y = 1, and whose secondary membership grades are all of
an equal value greater than 0 and less than 1.

The question now reduces to, “Does a truncated blank set represent less uncertainty
than a non-truncated blank set?” After all, its volume is less. This is equivalent to
asking, “Is Inspector Clueless more certain about the suspect’s height in the second
case than in the first case?” The answer would have to be, “No”. In other words, it
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doesn’t make any difference how certain the witnesses are, if they are all certain to
the same extent. To obtain the expected uncertainty measurement, it is essential to
pre-normalise the set, i.e. scale up the secondary grades so that their maximum is 1.

Suppose an additional witness were to come forward claiming complete certainty
for his height observation. If the set were normalised prior to calculating the volume,
then the new witness’ contribution would bring down the uncertainty value, which
is our intuitive expectation. But if the set were not pre-normalised, the new certain
information would increase the volume, so adding to the uncertainty measurement.
This is contrary to our instincts.

We conclude, therefore, that before the volume measure is applied, the type-2
fuzzy set must be normalised if it is not already normal.

23.6 Conclusions and Further Work

In this article we have approached the question of modelling uncertainty from a
type-2 fuzzy logic perspective. For the first time we have considered the nature of
the uncertainty contained in a type-2 fuzzy set. We have presented a new meta-
statement model for type-2 fuzzy sets and followed this by quantifying the uncer-
tainty represented by a type-2 fuzzy set. Generalised type-2 fuzzy sets are of the
most interest and we have explored the quantification of uncertainty in these sets.
In conclusion type-2 fuzzy sets clearly capture a higher order uncertainty and this
article clarifies the mechanism of the uncertainty modelling and provides a new un-
certainty measure. Future work will include:

Real World Problems. We would like to apply this theoretical approach to real
world problems to investigate the practical usefulness of these measures.

Calculus of Uncertainty. We believe there may be the beginnings here of a cal-
culus of uncertainty and future research will investigate whether this can be
defined.

Uncertainty Flowing through an FIS. We would like to investigate the possibility
tracing uncertainty as it flows through an FIS3.

The Type-Reduced Set. Wu and Mendel [9] argue that the length of the TRS of an
interval set provides a measure of the uncertainty of the set. We would like to
extend this idea to generalised sets, and compare the generalised TRS measure
with the volume measure.

Higher Type fuzzy Sets. It would be interesting to extend the concepts presented
here to fuzzy sets of type higher than 2.
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Chapter 24
Fuzziness – Representation of Dynamic Changes
by Ordered Fuzzy Numbers

Witold Kosiński, Piotr Prokopowicz, and Darek Kacprzak

24.1 Preface

In our daily life there are many cases when observations of objects in a population
are fuzzy, inaccurate. Fuzzy concepts have been introduced in order to model such
vague terms as observed values of some physical or economical terms. Measured
physical fields or observed economical parameters may be inaccurate, noisy or dif-
ficult to measure and to observe with an appropriate precision because of technical
reasons.

Discussion about the source of this inaccuracy is one of the aims of this publica-
tion. The present authors want here to demonstrate that the essential reason of the
lack of precision in human’s observation is changeability. The more changeability is
experienced the more inaccurate, more fuzzy assessments are. Several examples are
given which manifest that object. Classical fuzzy sets are too poor to describe them.
The new model of ordered fuzzy numbers (OFN) is shortly presented with proper-
ties which are in accordance with the influence of changeability on the increase of
the inaccuracy in observations of the environment. At the same time the new model
makes possible to deal with fuzzy inputs quantitatively, exactly in the same way as
with real numbers. The new model of fuzzy numbers [23], [24], [25] was defined
by two first authors together with Dominik Ślȩzak in 2002. Interesting thing is that
the new interpretations supplied by the OFN model can be treated as an extent of
classic proposals so we do not need to abandon existing ideas to deal with new ones.
Beside a little bit of different interpretation, the new model of fuzzy numbers has a
lot of useful mathematical properties, in the particular we are getting rid of the main
problem in a classical fuzzy numbers – the unbounded increase of inaccuracies with
next calculations. Moreover, thanks to the new attempt we can define – based on the
arithmetic of ordered fuzzy numbers – new methods of processing information deal-
ing with fuzzy control [34], [36]. At last but not least the set of new fuzzy numbers
has a partial ordering.

In this chapter we will repeat our main arguments presented in the series of pa-
pers [12], [14], [19], [18], [22], [24], [23], [25] that lead to a generalization of the
classical concept of fuzzy numbers and then to new definition of ordered fuzzy num-
bers and their algebra. We will summarize recent concepts related to the algebra of
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ordered fuzzy numbers which becomes the efficient tool in dealing with unprecise,
fuzzy quantitative terms.

The organization of the chapter is following. In Section 24.2 we are discussing
sources of uncertainty, and in Section 24.3 critiques of convex fuzzy numbers.
A generalization of the classical concept of fuzzy numbers and the definition
of ordered fuzzy numbers (OFN) and their algebra and topology, are given in
Section 24.4. Then in Section 24.5.1 integral representations of linear defuzzyfica-
tion functionals on ordered fuzzy numbers are given. In Section 24.6 next examples
of appearance of ordered fuzzy numbers are pointed out. In Section 24.7 the next
interpretations of the orientation of ordered fuzzy numbers in economical set-up
are presented. The Chapter ends with Appendix where main operations on ordered
fuzzy numbers are shortly repeated and presented.

24.2 Changes as Source of Uncertainty

We can ask a question: which kind of person is an expert? A possible answer seems
obvious – he/she is a specialist in solving some kind of problems which can be
described by a set of parameters. Those parameters should be at least in a number of
few variables, in other way he/she could solve only one unique problem and it could
be difficult say about him/her – the expert. So we can say: more solvable problems
with more variables and with wider ranges of values the person can describe, the
better expert he/she is. In fact if the one is a high class expert then he/she probably
does not call a changeable his/her common situations, however another non-expert
will see many changes around on the expert place. Point is the changes in this article
should be treated relatively, not only in straight meaning of word changes. Now we
can analyze some examples.

Let us imagine a situation, in which Mr. D. – an expert in assessing the distance –
came on picnic out of the city. Let us establish, that while resting on the grass he has
a good view on the nearby valley, where a supermarket was built and many people
are arriving for shopping. There is a crossroad with a quite busy way at the end of
the valley, and the majority of customers must stop there before living the valley.
Observing cars which are starting from the parking lot Mr. D. can very accurate
(the more accurate, the better expert he is) assess how long the road distance they
must pass before reaching the crossroad. Now let us suppose a fuzzy number A
(Fig. 24.1) represents his assessment. However, Mr. D.’s assessment of the distance
from the place a given car stars to the crossroad becomes less precise when the car
is in motion. The cause is the dynamics of the observed car. Faster the car drives, the

Fig. 24.1. Assessments of Mr.D.
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Fig. 24.2. Assessments of Mr.V.

less certain assessment is. Now let us allow fuzzy numbers B and C to represent the
opinion about the distance in the tenth and twentieth seconds of observation of the
moving car. It is of course pre-arranged script of assessments, however, intuitively
the majority of people will confirm the fact that “fuzziness” of consecutive numbers
should increase, at least till the moment of reaching the monotonous speed of the
observed phenomenon.

Let us elaborate the example. Let us suppose the Mr. D. is greatly enjoying the
picnic in the company of his friends and Mr. V. – an expert in assessing the velocity
of moving objects. Mr. V. is observing the valley and he is able to describe with a
high precision the speed of monotonously moving lorry, and this represents a fuzzy
number S. However, the certainty of his assessment is less when he is trying to
establish a velocity of a motorbike which is overtaking the lorry; in this case he gives
a fuzzy number T (Fig. 24.2). Moreover, if the motorbike all the time is speeding
up and then slowing down overtaking next vehicles on the road, the precision of the
assessment of Mr. V. is smaller and smaller. This represents a fuzzy number U in
Fig. 24.2.

Alike as in the case of Mr. D. in the moment when well identified situations (i.e.
monotonous speed of the object) begin to change, the uncertainty of assessments of
Mr. V. is growing.

One can look for different examples showing the more changeable situations
where the uncertainty (as well as fuzziness) of assessments is growing. They could
concern very different situations e.g. the teacher does not have a problem with as-
sessing the pupil if his progress for the entire semester is monotonously growing,
however, when the pupil once writes a very good work, another time a very crummy
one, so in the course of the semester, the justice assessment is difficult and doubts
can easily appear. Another example refers to prices of shares on stock exchange.
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When changes are very dynamic even the best experts will have some difficulties in
assessing and a large portion of the uncertainty of their predictions will appear.

Perhaps we should not regard dynamics of changes in observed parameters as the
only source of uncertainties, however, we can see that it obviously influences the
precision of expert’s assessments. We can give some reasons for linking uncertainty,
and inaccuracy with dynamics of changes. Main of these reasons is an imprecise
term now. It is very hard for people to determine the exact moment of carrying the
assessment out. Very notion now is a very inaccurate term. Sometimes it is indicating
the given second, other time an hour and yet another time can mean even years
(especially at economic assessments). Every change has a specific property which
is a direction. In next part of this publication a new model of fuzzy numbers will
be introduced – the ordered fuzzy numbers. They form a good tool to represent
the imprecision understood exactly as a result of changes observed in values of
parameters.

Let us look for another example from the economy and consider a financial com-
pany, which has two units A and B. Expert made opinion about the income of both
units. For A he said: “income is stated on level 4 millions and this is a downward
trend”. For B he said: “income is stated on level 3 millions and this is a upward
trend”. He could describe incomes of both units by two (convex) fuzzy numbers.
However, how one can describe the trend and also the escalation of that trend?
Are convex fuzzy numbers or that of L - R type sufficient? The answer is no or
at least difficult to give. In the model we have recently proposed, such trend and
its escalation are possible to describe in the most natural way, by equipping each
fuzzy number with an additional feature, called the orientation. Before we pass to
the presentation of the new model let us consider the next example. Let us consider
a couple: Mr. Big and Mrs. Big. Mr. Big made during the last 5 years 75, around 80,
65, 77, 70 (everything in thousand US dollars). This may be described by a convex,
positive fuzzy number H with a support reaching from, say, 60 to 81, linearly grow-
ing from zero to one on [60,65] and dropping back to 0 on [80,81]. The goal is the
crisp 100. Now, Mrs. Big also has some earnings. For tax reasons, it is inconvenient
for them to exceed 100, to support their lifestyle, it is unacceptable to make less. As
a freelance, she can adopt her level of income to that of her husband. Her income W
should be calculated from the fuzzy algebraic equation W = 100−H since it must
be is related to the fuzzy income H of her husband Mr. Big. Notice that in the clas-
sical model of convex fuzzy numbers this algebraic equation has no solution for the
crisp total income 100 of the couple. However, working with our new model of or-
dered fuzzy numbers such an equation has solution, when the both fuzzy incomes H
and W are represented by ordered fuzzy numbers. Moreover, the sum H +W makes
sense and gives a crisp number 100. It is the orientation – the new feature of OFN’s
– which is responsible for it as well as the operation of addition. Moreover, the ori-
entations of the fuzzy incomes of Mr. Big and Mrs. Big are different. The ordered
fuzzy number W with the support reaching from 19 to 40, is linearly growing from
zero to one on the interval [19,20] and dropping back to 0 on the interval [35,40] .
Compare Fig. 24.3, where the small square at the x axis of each graph denotes the
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Fig. 24.3. Fuzzy incomes of Mr.Big and Mrs. Big and their crisp goal

starting point of drawing of each curve; its meaning will be more evident after the
main Definition 1 is given in Section 24.6.

24.3 Critiques of Convex Fuzzy Numbers

As long as one works with (convex) fuzzy numbers that possess continuous mem-
bership functions the two procedures used in operations on them: the extension prin-
ciple and the α-cut and interval arithmetic method give the same results [2] as far
as their arithmetic. However, approximations of fuzzy functions and operations are
needed if one wants to follow the extension principle and stay within L−R numbers.
It leads to some drawbacks as well as to unexpected and uncontrollable results of
repeatedly applied operations [38], [39].

The results of multiply operations on the convex fuzzy numbers are leading to
the large growth of the fuzziness, and depend on the order of operations since the
distributive law, which involves the interaction of addition and multiplication, does
not hold there. Moreover, a simple algebraic equation A + X = C with given (con-
vex) fuzzy numbers A and C may not possess any solution within (convex) fuzzy
numbers, when A and C are arbitrary. It means that the set of all (convex) fuzzy
numbers cannot be equipped with a linear structure.

Classical fuzzy numbers are very special fuzzy sets defined on the universe of all
real numbers. If for a fuzzy set A defined on reals R, we call

• the core of A as the (classical) set of those x ∈ R for which its membership
function µA(x) = 1, and

• the α-sf cut of A as a (classical) set A[α] = {x∈R : µA(x)≥α}, for eachα∈ [0,1],
and

• the support of A as the (classical) set supp A = {x ∈ R : µA(x) > 0},
then we are ready to define the so-called convex fuzzy numbers as those fuzzy sets
A’s on R that satisfy three conditions [2], [3], [5], [32], [38]: a) the core of a fuzzy
number A is nonempty, b) α-cuts of A are closed, bounded intervals, and c) suppA
is bounded. Since no assumption about continuity of the membership function µA

of the fuzzy number has been made all crisp numbers are fuzzy numbers, as well.
However, in most cases one assumes that membership function of a fuzzy number
A satisfies convexity assumptions [32].
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Our main observation made in [18] was: to define arithmetic operations on fuzzy
numbers inverse parts of convex membership functions should be used in order to
be in agreement with operations on the crisp real numbers.

Let us look for the operation on crisp numbers. If two crisp numbers, say 1 and
3, are regarded as fuzzy numbers, their representation must be in terms of two char-
acteristic functions of one-elements sets1 : χ{3} and χ{5}.

By adding 3 and 5 we perform a particular addition of χ{3} and χ{5} in which
the support of those functions are added, i.e. χ{3}+ χ{5} = χ{8}, but not the val-
ues of the functions. In the same way, if we multiply the both numbers we have
χ{3} ·χ{5} = χ{15}.

Let us come back for a while to convex fuzzy numbers. Partial invertibility of
membership functions of a convex fuzzy number A makes it possible to define two
functions a1,a2 on [0,1] that give lower and upper bounds of each α-cut of the
membership function µA of the number A

A[α] := {x ∈R : µA(x)≥ α}= [a1(α),a2(α)], (24.1)

where boundary points are given for each α ∈ [0,1] by

a1(α) = µA|−1
incr(α) and a2(α) = µA|−1

decr(α) . (24.2)

In (24.2) the symbol µA|−1
incr denotes the inverse function of the increasing part of the

membership function µA|incr, the other symbol refers to the decreasing part µA|decr

of µA. Then we can see that the membership function µA of A is completely defined
functions a1 : [0,1]→R and a2 : [0,1]→ R. In terms of them arithmetic operations
on the set of convex fuzzy numbers can be defined. For example if A and B are two
convex fuzzy numbers with the corresponding functions a1,a2 and b1,b2 for A and
B, respectively, then the result C = A + B is defined [2], [3, 32] in terms of their
α-cuts and the functions as follows:

C[α] = A[α]+ B[α], C[α] = [a1(α)+ b1(α), a2(α)+ b2(α)], α ∈ [0,1]. (24.3)

One can do the same for subtraction, however, according to the interval arithmetic
[9] if D = A−B, then the difference of two intervals is defined

D[α] = [a1(α)−b2(α), a2(α)−b1(α)], α ∈ [0,1]. (24.4)

This definition of difference prevents from obtaining as a result an improper (or
directed) interval and consequently – an improper convex fuzzy number, which does
not possess the membership functions.

Notice that if G = [2,4] and H = [3,5] then G−H = [2,4]− [3,5] = [2− 5,4−
3] = [−3,1]. Two next operations: multiplication and division may be defined ac-
cordingly. Notice, that in subtraction of the same fuzzy number A, i.e. for C = A−A,

1 Here characteristic function of the one-element set {r} is defined by: χ{r}(x) = 1, if x = r and
χ{r}(x) = 0 if x �= r.
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we get C[α] = [a1(α)− a2(α),a2(α)− a1(α)] which represents non-crisp, fuzzy
zero, unless a1(α) = a2(α) for each α.

However, when the classical denotation for independent and dependent variables
of the membership functions, namely x and y is used, and we look once more at
(24.1)–(24.2), and if we put y = α and use x for the denotation of values of the
functions a1 and a2, then we will get for two “wings” of the graph of A possible
representations:

x = a1(y) and x = a2(y) , y ∈ [0,1] , (24.5)

In what follows we will use the approach (24.5) in the representation of so-called
ordered fuzzy numbers which can be identified with pairs of continuous functions
defined on the interval [0,1].

24.4 Ordered Fuzzy Numbers

Now we would like to refer to one of the very first representations of a fuzzy set
defined on a universe X (the real axis R, say) of discourse, i.e. on the set of all
feasible numerical values (observations, say) of a fuzzy concept (say: variable or
physical measurement). In that representation [10], [42] a fuzzy set (read here: a
fuzzy number) A is defined as a set of ordered pairs {(x,µx)}, where x ∈ X and
µx ∈ [0,1] has been called the grade (or level) of membership of x in A. At that
stage, no other assumptions concerning µx have been made. Later on, one assumed
that µx is (or must be) a function of x. However, originally, A was just a relation in the
product space X× [0,1]. We know that not every relation must be a functional one.
It is just a commonly adopted point of view, that such a kind of relation between
µx and x should exist, which leads to a membership function µA : X → [0,1] with
µx = µA(x). In our opinion the point of view which lead to the representation

A = {(x,y)|x ∈ R, y = µA(x) ∈ [0,1]} (24.6)

may be too restrictive and here most of the above and earlier quoted problems have
their origin.

We would like here, however, to form new intuitions concerning the fuzzy reals.
In our opinion the existence of the membership function is from one side a very
convenient fact as far as a simple interpretation in the set-theoretical language is
concerned, however, on the other side, it implies an extra restrictions. Operations on
real numbers were introduced several 1000 years ago without any correspondence to
characteristic functions of one-element sets. Of course first the operation of addition
had been introduced between natural numbers, because counting in the trade was
necessary. Integers appeared very late comparing with the natural numbers as a need
for the representation of subtraction. Hence the human being was able to solve a
simple equation a + x = c uniquely, with a and c natural.

In our approach the concept of membership functions has been weakened by
requiring a mere membership relation. Hence in our approach the representation
(24.6) is replaced by the curve representation
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A = {(x,y) ∈R× [0,1] : x = x̂(t),y = ŷ(t), t ∈ [t0, t f ] is curve parameter} . (24.7)

In the application the parametric representation (x̂(t), ŷ(t)) can be identified with the
so-called fuzzy observation, introduced in our earlier paper [25]. Hence the concept
of the orientation naturally arises.

Before our approach will be elaborated we should mention that Klir [11] was the
first, who in 1997 has revised fuzzy arithmetics to take relevant requisite constraint
(the equality constraint, exactly) into account and obtained A− A = 0 as well as
the existence of inverse fuzzy numbers for the arithmetic operations. Some partial
results of the similar importance were obtained by Sanchez [37] by introducing an
extended operation of a very complex structure.

In the series of papers [14], [18], [19], [22], [23], [24], [25] we have introduced
and then developed main concepts of the space of ordered fuzzy numbers in which
the membership relation (24.7) is realized, in fact by the pair of functions: the func-
tions a1,a2 defined for each convex fuzzy number by (24.1) are our patterns.

Definition 1. By an ordered fuzzy number A we mean an ordered pair of two con-
tinuous functions

A = (xup,xdown)

called the up-branch and the down-branch, respectively, both defined on the closed
interval [0,1] with values in R.

The continuity of both parts implies their images are bounded intervals, say UP
and DOWN, respectively (Fig. 24.4a)). If we use the symbols UP = [lA,1−A ] and
DOWN = [1+

A , pA] to mark boundaries and add the third interval CONST = [1−A ,1+
A ],

then we can see that are in fact three subintervals appearing in splitting the support
of each convex fuzzy number, discussed above in [27] the idea of modelling fuzzy
numbers by means of quasi-convex functions [31] has been discussed. It is the prop-
erty of any strictly quasi-concave function defined on an interval, that its domain can
be split into three subintervals such that on the first the function is increasing on the
second is constant and on the third is decreasing; some of them may confine to
a point. Following this fact in [18] we have continued this work by defining new
fuzzy numbers as those possessing strictly quasi-concave membership functions.
Notice that in general neither lA ≤ 1−A nor 1+

A ≤ pA must hold (i.e. xup(1) does not
need to be less than xdown(1)). In this way we can reach improper intervals, which
have been already discussed in the framework of the extended interval arithmetic
by Kaucher[8] and called by him directed intervals, i.e. such [n,m] where n may be
greater than m.

In general, the functions xup,xdown need not to be invertible, if we assume,
however, that: 1) they are monotonous: xup is increasing, and xdown is decreas-
ing, and 2) xup ≤ xdown (pointwise), then we may define the membership func-
tion µ(x) = x−1

up (x), if x ∈ [xup(0),xup(1)] = [lA,1−A ], and µ(x) = x−1
down(x), if x ∈

[xdown(1),xdown(0)] = [1+
A , pA] and µ(x) = 1 when x ∈ [1−A ,1+

A ].
In this way we have obtained the membership function µ(x),x ∈ R. When the

functions xup and/or xdown are not invertible or the second condition is not satisfied
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Fig. 24.4. a) Ordered fuzzy number, b) Ordered fuzzy number with membership function, c)
Arrow denotes the order of inverted functions and the orientation

then the membership curve (or relation) can be defined, composed of the graphs of
xup and xdown and the line y = 1 over the core {x ∈ [xup(1),xdown(1)]}.

It is worthwhile to point out that a class of ordered fuzzy numbers (OFNs) repre-
sents the whole class of convex fuzzy numbers [2], [3], [5], [32], [38] with continu-
ous membership functions.

In Fig. 24.4 c) to the ordered pair of two continuous functions (here just two affine
functions) xup and xdown corresponds a membership function of a convex fuzzy num-
ber with an extra arrow which denotes the orientation of the closed curve formed
below. This arrow shows that we are dealing with the ordered pair of functions. A
pair of continuous functions (xdown,xup) determines different ordered fuzzy num-
ber than the pair (xup,xdown). Graphically the curves (xup,xdown) and (xdown,xup) do
not differ, however, the corresponding curves determine two different ordered fuzzy
numbers, they differ by the orientation which we have denoted in Fig. 24.4c) by
an arrow.

The original definition of the ordered fuzzy numbers [22], [23], [24] has been
recently generalized by the first author W. Kosinski [15] by admitting for the pair
(xup,xdown) to be functions of bounded variation. In this way the case of convex
fuzzy numbers with piecewise constant membership functions can be also described
by the present approach. Jumps of the first order discontinuity of functions xup and
xdown in the y variable corresponds to a constancy subinterval in the x variable [15].

In what follows we will stay within our first definition of ordered fuzzy number
as a pair of continuous functions.

Notice that if some of the conditions 1) or 2) for xup and xdown formulated above
are not satisfied the construction of the classical membership function is not pos-
sible. It is worthwhile to point out that a class of ordered fuzzy numbers (OFN)
contains (better to say – represents) the whole class of convex fuzzy numbers [3],
[32] with continuous membership functions. However, the class of OFN is larger.
When the functions xup and(or) xdown are not invertible or the second condition



494 24 Fuzziness – Representation of Dynamic Changes by Ordered Fuzzy Numbers

xup ≤ xdown is not satisfied a generalized membership function µ̃A : R→ [0,1] can
be appointed as [16], [35]:

µ̃A(x) =

⎧⎨⎩
max(x−1

up (x),x−1
down(x)) if x ∈ supp A and x �∈ (1−A ,1+

A )
1 if x ∈ (1−A ,1+

A )
0 if x �∈ supp A

(24.8)

Here x−1
up (x) is the inverse image of x under xup and x−1

down(x) – the inverse image of
x under xdown.

Notice that even for ordered fuzzy numbers represented by pairs of affine func-
tions of the variable y there are pairs to which any trapezoidal type member-
ship function does not correspond (compare the requirement of the invertibility of
xup and xdown and the condition following it formulated after Definition 1), some
of them are improper (as it was noticed already [23], [24], [25] and shown in
Fig. 24.10).

24.4.1 Operations on OFN

Now, in the most natural way, the operation of addition between two pairs of such
functions has been defined as the pairwise addition of their elements. This is ex-
actly the same as the operation defined in section 24.3 on α-cuts of A and B, cf.
equation (24.3). As long as we are adding ordered fuzzy numbers which possess
their classical counterparts in the form of trapezoidal type membership functions,
and moreover, are of the same orientation, the results of addition are in agrement
with the α-cut and interval arithmetic. However, this does not hold, in general, if
the numbers have opposite orientations, for the result of addition may lead to im-
proper intervals as far as some α-cuts are concerned. In this way we are close to the
Kaucher arithmetic [8] with improper intervals.

Definition 2. Let A = ( fA,gA),B = ( fB,gB), C = ( fC,gC) and S = ( fS,gS) are math-
ematical objects called ordered fuzzy numbers and r ∈ R a real (crisp) number.
The scalar multiplication S = rA of a crisp number2. r ∈ R times an ordered fuzzy
number A ∈ R is defined by

fS = r fA, gS = rgA , (24.9)

and the sum C = A + B, subtraction C = A−B, product C = A ·B, and division
C = A÷B are defined by formula

fC(y) = fA(y)� fB(y) and gC(y) = gA(y)� gB(y) (24.10)

where “�” works for “+”, “−”, “·”, and “÷”, respectively, and where A÷B is
defined, if the functions | fB| and |gB| are bigger than zero.

2 Notice that a crisp number r ∈R is the ordered fuzzy number (r†, r†), with r†(s) = r, s ∈ [0,1].
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It is easy to notice that the subtraction of B is the same as addition of the opposite
of B. Hence the assumed definitions of the arithmetic operations on ordered fuzzy
numbers [23] ensure that the operation of subtraction is compatible with the linear
structure of OFN’s, i.e. A−B := A +(−1)B. Thanks to this definition we will have
A−A = 0, where 0 is the crisp zero.

In Appendix a particular and useful representation of “trapesoidal” ordered fuzzy
numbers is given together with some examples of results of algebraic operations.
The representations (24.20) and (24.21) are for our disposal to find the result of the
subtraction A−B in the form of the corresponding tetrad.

Notice that if for A = ( f ,g) we define its complement Ā = (−g,− f ) (please note
that Ā �= (−1) ·A), then the sum A + Ā gives a fuzzy zero 0̃ = ( f − g,−( f − g)) in
the sense of the classical fuzzy number calculus.

Additionally, the following, more set-theoretic operations can be defined:

Definition 3. Let A = ( fA,gA),B = ( fB,gB) and C = ( fC,gC) are mathematical ob-
jects called ordered fuzzy numbers. The maximum C = A∨ B and the minimum
C = A∧B are defined by formula

fC(y) = f unc{ fA(y), fB(y)} and gC(y) = f unc{gA(y),gB(y)} (24.11)

where “ f unc” works for “max” and “min”, respectively.

Many operations can be defined in this way, suitable for the pairs of functions.
Algebraic operations on OFN give a unique possibility to define new types of

compositional rules of fuzzy inference which play a key role in approximate reason-
ing when conclusions from a set of fuzzy If–Then rules are to derive. Examples of
such compositional rules of inference were given, based on the multiplication oper-
ator in which all fuzzy sets are OFN’s, in a Ph.D. Thesis of the second author [35]
(Prokopowicz P.). Moreover, to determine activation level of multi-condition rules
(or firing strength of the fuzzy rule) new methods of aggregation of their premise
parts were also proposed [35], [36]. These aspects will be the subject of the next
article [21].

The Fuzzy Calculator, called zCalc has been already created as a calculation tool,
by our co-worker Mr.Roman Koleśnik [12]. It lets an easy future use of all mathe-
matical objects described as ordered fuzzy numbers.

24.5 Topology and Linear Defuzzyfication Functionals

Let R be a universe of all OFN’s. Notice that this set is composed of all pairs of
continuous functions defined on the closed interval I = [0,1] and is isomorphic to
the linear space of real 2D-vector valued functions defined on the unit interval I with
the norm of R as follows

||A||= max(sup
s∈I
| fA(s)|,sup

s∈I
|gA(s)|) if A = ( fA,gA) .
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The space R is topologically a Banach space3. Neutral element of addition in R
is a pair of constant function equal to crisp zero. It is also a Banach algebra with
unity: the multiplication has a neutral element – the pair of two constant functions
equal to one, i.e. the crisp one.

A relation of partial ordering in R can be introduced by defining the subset of
’positive’ ordered fuzzy numbers: a number A = ( f ,g) is not less than zero, and write

A≥ 0 iff f ≥ 0,g≥ 0. (24.12)

In this way the set R becomes a partially ordered ring for which the theory of such
rings may be applied.

24.5.1 Representation of Defuzzyfication Functionals

Defuzzyfication is a main operation in fuzzy controllers and fuzzy inference sys-
tems [4], [28], [33] where fuzzy inference rules appear, in the course of which to a
membership function representing classical fuzzy set a real number is attached. We
know a number of defuzzyfication procedures from the literature [3], [33]. Since
fuzzy numbers are particular case of fuzzy sets the same problem appears when
rule’s consequent part is a fuzzy number. Then the problem arises what can be done
when a generalization of classical fuzzy number in the form of an ordered fuzzy
number follows? Are the same defuzzyfication procedures applicable? The answer
is partial positive: if the ordered fuzzy number is proper one, i.e. its membership
relation is a function, then the same procedure can be applied. What to do, however,
when the number is improper, i.e. the relation is by no means of functional type?

In the case of fuzzy rules in which ordered fuzzy numbers appear as their con-
sequent part we need to introduce a new defuzzyfication procedure. In this case the
concept of functional, even linear, which maps elements of the Banach space into
reals, will be useful.

The Banach space R with its Tichonov product topology of C([0,1])×C([0,1])
may lead to a general representation of linear and continuous functional on R . Ac-
cording to the Banach-Kakutami-Riesz representation theorem [41] any linear and
continuous functional φ̄ on a Banach space C(S) of continuous functions defined on
a compact topological space S is uniquely determined by a Radon measure ν on S
such that

φ̄( f ) =
∫

S
f (s)ν(ds) where f ∈C(S). (24.13)

It is useful to remind that a Radon measure is a regular signed Borel measure (or dif-
ferently: a difference of two positive Borel measures). A Borel measure is a measure
defined on σ-additive family of subsets of S which contains all open subsets.

In the case when the space S is the interval [0,1] each Radon measure is repre-
sented by a Stieltjes integral [30] with respect to a function of a bounded variation,

3 One should add that a Banach structure of an extension of convex fuzzy numbers was introduced
by Goetschel and Voxman [7], however, they were only interested in the linear structure of this
extension.
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i.e. for any continuous functional φ̄ on C([0,1]) there is a function of bounded vari-
ation hφ such that

φ̄( f ) =
∫ 1

0
f (s)dhφ(s) where f ∈C([0,1]). (24.14)

It is rather obvious that in the case of the product space R each bounded linear
functional is given by a sum of two bounded, linear functionals defined on the factor
space C([0,1]), i.e.

φ(A) = φ((xup,xdown)) =
∫ 1

0
xup(s)ν1(ds)+

∫ 1

0
xdown(s)ν2(ds) (24.15)

where the pair of continuous functions (xup,xdown) ∈R represents an ordered fuzzy
number A and ν1,ν2 are two Radon measures on [0,1].

Remark 1. Due to the general representation (24.15) and the functional representa-
tion (24.14) a linear and bounded functional on the space R can be identified with
a pair of functions of bounded variation.

From the above formula an infinite number of defuzzyfication procedures can be de-
fined. The standard defuzzyfication procedure in terms of the area under membership
relation can be defined. In the present case, however, the area is calculated in the y-
variable, since the ordered fuzzy number is represented by a pair of continuous func-
tions in y variable (cf. equation (1)). Moreover to each point s∈ [0,1] a Dirac delta (an
atom) measure can be related, and such a measure represents a linear and bounded
functional which realizes corresponding defuzzyfication procedure. For such a func-
tional to a pair of functions (xup,xdown) a sum (or in a more general case – a linear
combination axup(s)+ bxdown(s) ) of their values at this point is attached.

For example if we take Dirac atomic measure, concentrated at s = 1, and define

ν1 = aδ1 i ν2 = bδ1

where δ1 is the atomic measure of {1} then the value of the defuzzyfication operator
(functional) in (24.15) calculated at A = (xup,xdown) will be

φm(A) = axup(1)+ bxdown(1) (24.16)

and if a + b = 1/2, then it is a mean value of both functions (from the core of xup

and xdown).
Different choice of the measures may lead to the surface area under the graphs of

the function and the first moment. For example if

ν1 = a(s)λ i ν2 = b(s)λ (24.17)

where λ is the Lebesgue measure of the interval [0,1] of the real line, and a(s),b(s)
are integrable function on the interval, then in the case of positive oriented number
A = (xup,xdown) with xup ≤ xdown and
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b(s) =−a(s) = 1 (24.18)

the defuzzyfication functional (24.15) calculated at A = (xup,xdown) will give the
surface area contained between graphs of xup and xdown. If, however, in (24.17)
we put

b(s) =−a(s) = s (24.19)

we will get the first moment of this area.
Discussion of other linear functional as well as their non-linear generalization

is done in other papers [14], [16]. Notice here, only, that the nonlinear functional
corresponding to the classical Mamdani [3], [33], [40] center of gravity will be
obtained as the ratio of the functional (24.15) with the measures ν1 and ν2 defined by
(24.17) and (24.19) to the functional (24.15) with the measures defined by (24.17)
and (24.18).

24.6 Ordered Fuzzy Numbers around Us

Model of ordered fuzzy numbers provides some interesting properties [13], [14],
[25], [35], [36], which open new areas for calculating and processing vague infor-
mation. Very important for every idea is how it refers to the real life. The interpre-
tation of OFNs together with their orientation will be presented here.

A common use of fuzzy numbers is presentation and operation on imprecise data.
In general, that is also a source of the idea of all fuzzy sets. Interpretation of the or-
dered fuzzy numbers is compatible with the general idea of the fuzzy sets. However,
there exists a new property – the orientation. By using OFNs we can describe any
imprecise value in the real-life processes. The parts up-branch and down-branch of
OFN can be related to an opinion of an expert about dynamic changes of the an-
alyzed value. The up-branch describes the behaviour of the value before the very
moment when the opinion was made, and the down-branch describes value in af-
terwards. In that way we expand existing interpretation of fuzzy numbers. We can
still use OFNs in the way as usual when we ignore the orientation, but we can also
use the orientation to put more complex information about the evaluation made by
OFNs. Let us look at the example in which we have an imprecise opinion “slow”
about the speed of a vehicle as OFN A (see Fig. 24.5). We can ignore the orientation
and use this OFN as fuzzy data by saying speed 15 is surely slow and speeds 13 and
20 are slow in degree little more than 50%.We can also take into consideration the
orientation of OFN and can say: it is “slow in the speed-up process”.

Fig. 24.5. An example of the OFNs describing “slow in speed-up process”
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Fig. 24.6. Income in two units of financial company

Fig. 24.7. Total income of company as the sum of A and B

We have two OFNs where “wide” of branches (up and down) are different. Num-
ber B is more “wide” than A. What does it mean? We can find answer if we make
more deep (but simply) analysis. If the expert has made up-branch of A from 5 to 4
millions then he considers possible range of changes as 1 million. Up-branch of B
was made from 1 to 3 millions so he considers range of changes as 2 millions. To
sum up, we understand the number B as an information about more dynamic process
than A. Another thing is the direction that shows that A is a decreasing process and
B is an increasing one.

In real life we could expect total income of analyzed company about 7 millions.
Additional, if the increasing process of B was more dynamic than decreasing of A
then we expect in total also increasing process, however less dynamic than for B. If
we use OFN model and add numbers A and B according to definition then we get
expected results (Fig. 24.7).

Here we can return to our example of the Bigs in Section 24.2 and Fig. 24.3. It is
now obvious that the small square appearing on the graphs W and H plays the role
of the arrow in OFN. The fuzzy number W has the opposite orientation to that of
the number H. Moreover, their algebraic sum is the crisp 100, the goal of the Bigs,
i.e. the total income of the couple.

24.7 Ordered Fuzzy Numbers in Economics

Economics is the social science that studies the production, distribution and con-
sumption of goods and services. One of the basic tools used in economics are eco-
nomic models. A model is a theoretical construction which represents economic
processes with a set of variables and a set of logical and quantitative relationships
between them. The application of these variables in models involves the knowledge
of their numerical values. However, in reality many economic variables are diffi-
cult to be measured with precision. In addition imprecise terms, such as high eco-
nomic growth, high unemployment, low inflation are commonly used. One method
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to model imprecise terms is application of fuzzy sets and numbers, in particular
ordered fuzzy numbers (OFN).

For example ordered fuzzy numbers can be used to model production levels in
various economy branches (or a separate firm, sector and the like) which are applied
in economic models (e.g. input-output model [29] by Leontief) to calculate other
economic variables. Each number represents an aggregated opinion of a group of
experts (or a single expert) who analyse a level of production in various branches
of economy to anticipate the future. Experts’ analyses take into consideration three
factors: branch’s economic situation, possibilities of production changes and finan-
cial consequences for the branch. The elements listed above are reflected in ordered
fuzzy numbers as follows:

• orientation− an economic situation in a branch (a slump or a boom),
• support − a possible obtainable level of production which doesn’t worsen the

financial outcome,
• membership function − a financial result (e.g. profit).

Orientation allows to divide ordered fuzzy numbers into two groups:

• OFN with positive orientation,
• OFN with negative orientation.

The detailed description of these groups is presented in the next two subsections.

24.7.1 OFN with Positive Orientation – A Boom in the Branch in
the Future

The ordered fuzzy number B depicted in Figure 24.8 has positive orientation since
its arrow is directed from left to right. Assume that this number describes production
levels in a branch, which according to experts is going to boom in the nearest future.
A boom in the branch suggests increasing the production level and improving the
financial result which is measured with the membership function.

Suppose that the point lB describes the production level in the branch in the period
preceding the research. Then the value of the membership function µB(lB) = 0 con-
stitutes the reference value (i.e. the financial result in the previous period), to which
experts compare the financial result obtained at the higher production level. Specific
elements of OFN with positive orientation can be interpreted in the following way:

• point lB describes the initial level of production, which can be maintained without
changing the financial result. The boom encourages the branch to increase this
level of production and improve the financial result,

• the up-branch (with its range UPB = (lB,1−B )) shows that an increasing level of
production (above lB level) ensures a better financial result for the branch (i.e.
shows an increasing value of the membership function). It results from the fact
that the branch could have had unused means of production (e.g. machines, de-
vices), which can be used without considerable financial outlays. Consequently,
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Fig. 24.8. Ordered fuzzy number B with positive orientation

an income from selling additional products (above lB level) exceeds extra input
to obtain higher profits,

• the constant part (with its range CONSTB = [1−B ,1+
B ]) describes an optimal level

of production which ensures the best financial result in this economic situation. A
further increase of production (above 1−B level) requires higher costs (e.g. buying
new machines, devices), which balance a higher additional income,

• the down-branch (with its range DOWNB = (1+
B , pB)) shows that a further in-

crease in production (above 1+
B level) weakens financial results (in comparison

with the constant part). This level of production involves higher costs (e.g. buy-
ing new production lines, fixed costs), which absorb a higher income to a larger
extent. Additionally, problems with selling excess production may appear, which
on the one hand, may decrease the income, on the other hand, may increase stor-
ing costs of unsold output,

• point pB describes a maximum level of production which does not worsen the
financial result. A further increase of production (above pB level) involves huge
cost (e.g. building a new factory, storing unsold output) and is unprofitable.

24.7.2 OFN with Negative Orientation – A Slump in the Branch
in the Future

The ordered fuzzy number S depicted in Figure 24.9 has negative orientation since
its arrow is directed from right to left. It characterises production levels in a branch
which according to experts will undergo a downturn in the economy. Decreasing
demand in the branch forces to reduce the production level, which can improve the
financial results and alleviate the slump.

Suppose that the point lS describes the production level in the branch in the
previous period. To obtain interpretation of the membership function analogous to
the membership function OFN with positive orientation, we assume that the value
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Fig. 24.9. Ordered fuzzy number S with negative orientation

µS(lS) = 0 specifies the expected financial result (probably negative, loss) which
the branch would suffer unless changing the production level. At the same time it
is the references value, to which experts compare the financial results obtained at
lower production level. Specific elements of OFN with negative orientation can be
interpreted as follows:

• point lS describes the initial level of production. A bad condition of the branch,
a decreasing income and increasing costs (e.g. storing unsold output) force the
branch to reduce the level of production (below lS level),

• the up-branch (with its range UPS = (lS,1−S )) shows that reducing the production
level (below lS level) improves financial results (i.e. shows an increasing value of
the membership function). A decrease in income is lower than a decrease in the
costs connected with buying raw materials and storing the unsold output,

• the constant part (with its range CONSTS = [1−S ,1+
S ] describes an optimal level

of production which ensures the best financial result in this economic situation
and secure selling the full output,

• the down-branch (with its range function DOWNS = (1+
S , pS)) describes that a

further decrease in the level of production (below 1+
S level) weakens financial

results (in comparison with the constant part). A lower income is absorbed by
the activity costs of the branch (e.g. fixed costs),

• point pS shows a minimum level of production ensuring functioning the branch.
A further decrease in production (below pS level) may result in imminent
bankruptcy.

24.8 Conclusions

The ordered fuzzy numbers are tool for describing and processing vague informa-
tion. They expand existing ideas. Their “good” algebra opens new areas for calcu-
lations. Beside that, new property (orientation) and its interpretation presented in
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this paper can open new areas for using fuzzy numbers. Important fact (in author’s
opinion) is that thanks to OFNs we can join without complication classical field
of fuzzy numbers with new ideas. We can use the OFNs instead the convex fuzzy
numbers and if we need to use extended properties we can use them easily. One of
directions of the future work with the OFNs are rules in the inference system for a
fuzzy controller with new rules. The OFN can contain much more information than
the classical fuzzy number – so why do not use it?

Appendix

Operations on Ordered Fuzzy Numbers

If we want to add two pairs of affine functions (i.e. two particular type of ordered
fuzzy numbers) defined on [0,1] the final result is easy to obtain, if we apply a
mnemotechnic method known in the interval analysis and pointed out by the author
in the last paper [15]. If for any pair of affine functions ( f ,g) of y ∈ [0,1] we form
a quaternion (tetrad) of real numbers according to the rule [ f (0), f (1),g(1),g(0)]
(which correspond to the presented in Section 24.4 four numbers lA,1−A ,1+

A , pA),
then this tread uniquely determines the ordered fuzzy number A. If (e,h) =: B is
another pairs of affine functions then the sum A + B = ( f + e,g + h) =: C will be
uniquely represented by the tread

[ f (0)+ e(0), f (1)+ e(1),g(1)+ h(1),g(0)+ h(0)] . (24.20)

In the assumed Definition 2 the operation of subtraction is compatible with the
linear structure of OFN’s, i.e. A−B := A + (−1)B, and the representations (24.3)
and (24.20) are for our disposal to find the result D = A− B in the form of the
corresponding tread. However, the present operation of subtraction is not the same
as that copied in the previous subsection for convex fuzzy numbers from the α-
cut and interval arithmetic method, since now, if we use the same denotation as in
(24.4), we will have

D[α] = [a1(α)−b1(α), a2(α)−b2(α)], α ∈ [0,1].

Thanks to this definition we will have A−A = 0, where 0 is the crisp zero.
If for A = (xup,xdown) we define its complement Ā = (−xdown,−xup) (please note

that Ā �= (−1) ·A), then the sum A+ Ā gives a fuzzy zero 0̃ = (xup− xdown,−(xup−
xdown)) in the sense of the classical fuzzy number calculus.

Fig. 24.10. Sum of two convex OFN’s as an improper convex number
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Fig. 24.11. Multiplication

Fig. 24.12. Inverse of B

If to A = (xup,xdown) we attach the corresponding number of the opposite orien-
tation A⊥ = (xdown,xup) then we can see that the difference between them is a fuzzy
zero, i.e.

A−A⊥ = (xup− xdown,−(xup− xdown))
like before and for fuzzy arithmetic based on both extension principle and α-cut.

In Fig. 24.10 we can follow the operation of addition using the tread representa-
tion of two trapezoidal ordered fuzzy numbers of the opposite orientations, namely
C = [7,6,7,8] = [1,2,3,5]+ [6,4,4,3] = A + B.

In the similar way, if we want to multiply an OFN, say A, by a scalar r ∈ R then
the product rA will have its tread representation in the form

rA←→ [rxup(0),rxup(1),rxdown(1),rxdown(0)] (24.21)

where
A←→ [xup(0),xup(1),xdown(1),xdown(0)] .

For better presentation of the advantages of the new operations on OFN we are
adding extra Fig. 24.11 for the multiplications, Fig. 24.12 for the inverse of B, and
Fig. 24.13 for the division A/B.

Notice that the inverse 1/B of the ordered fuzzy number B is defined as such an
ordered fuzzy number for which the product B · (1/B) gives the crisp one, i.e. an
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Fig. 24.13. Division A/B

ordered fuzzy number represented by the pair of constant functions (1†,1†), where
1†(y) = 1 for all y ∈ [0,1].

In the figures the unit on the x axis corresponds to the subsequent strokes unless
it is explicitly denoted on the figure 24.13 with the inverse.
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Chapter 25
Meta Sets – Another Approach to Fuzziness

Bartłomiej Starosta and Witold Kosiński

25.1 Preface

In this chapter we present the concept of a meta set, which is an alternative to a fuzzy
set [6]. Similarly to fuzzy sets, the meta sets are meant to describe and represent
imprecise data or collections. However, meta sets are better fitted within the classical
set theory. In particular, “elements” of meta sets are also meta sets. The language of
meta sets resembles the language of the Zermelo–Fraenkel set theory [2] (ZFC) and
many properties of crisp sets are reflected in the meta sets theory.

As oppose to fuzzy sets, which involve quite complex ideas like real function,
meta sets are defined using simple – from the set-theoretic point of view – and
well known notions. This enables easier and more efficient algorithmisation and
computer implementations of relations and operations for meta sets.

The definition of a meta set, although similar to the definition of a fuzzy set, is
much more general. In fact, meta sets generalise fuzzy sets, or even intuitionistic
fuzzy sets [1], as they allow for expressing a hesitancy degree.

In practical applications we mostly deal with finite sets. Therefore we have dis-
tinguished a subclass of meta sets which correspond to finite sets. We have managed
to define basic algebraic operations for such sets, and have proved that they satisfy
the axioms of Boolean algebra.

Although the algebraic operations are the main topic of this chapter, we start with
the general introduction to the concept of a meta set. The section 25.2 establishes
some well known definitions and notations. The section 25.3 presents fundamentals
of meta sets. In the section 25.4 we introduce some important class of meta sets and
define basic relations and operations for them. Finally, the section 25.5 contains the
proof that these operations satisfy the Boolean algebra axioms.

25.2 Preliminary Definitions and Terminology

We will denote the binary tree (the full and infinite one) with the symbol�. The root
of the binary tree, denoted with �, is its largest element. Nodes of the tree � will
be called conditions. Thus, for all p ∈ �, we have p ≤ �. Comparable conditions
(either p ≤ q or p ≥ q), are denoted with the symbol p� q. Incomparable ones
((¬(p≤ q)∧¬(p≥ q)) are denoted with p⊥q. If p,q ∈� are arbitrary conditions,
then we say that the condition p is stronger than the condition q, whenever p ≤ q.
If p≥ q, then we say that the condition p is weaker than the condition q. A stronger

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 509–532.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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Fig. 25.1 Conditions and the order in the binary tree �. Arrows point at the larger element,
ı. e. the weaker condition.

condition is meant to designate a stipulation which is harder to satisfy than the one
described by some weaker condition.

A condition in the binary tree � may be viewed as a finite binary sequence. We
will specify a condition using square brackets surrounding consecutive elements of
the appropriate sequence, as depicted on the Fig. 25.1: [0] and [1] are direct descen-
dants of the root �. [00], [01], [10], [11] is the second generation, and so on.

A set C⊂� is called a chain in�, if ∀p,q∈C (p≤ q∨q≤ p). A set A⊂� is called
antichain in �, if ∀p,q∈A (p �= q→ p⊥q). Thus, a chain consists of pairwise com-
parable conditions, whereas an antichain consists of mutually incomparable con-
ditions. The empty set /0 is a chain, as well as an antichain. On the Fig. 25.1, the
elements { [00], [01], [100]} form a sample antichain. A maximal antichain is an an-
tichain which cannot be extended by adding new elements – it is a maximal element
with respect to inclusion of antichains. Examples of maximal antichains on the Fig.
25.1 are { [0], [1]} or { [00], [01], [1]} or even {�}. A branch is a maximal chain in
the tree �. Note that p� q only, if there exists a branch containing p and q simul-
taneously. Similarly, p⊥ q whenever no branch contains both p and q. Let R ⊂ �
and p ∈�. If R includes as a subset an antichain A such that ∀q∈A (q≤ p), then we
say, that R includes an antichain below p. R includes a maximal antichain below p if
the antichain A cannot be extended to another antichain below p by adding elements
stronger than p.

A level in the tree� is the set of all conditions of the same length seen as binary
sequences. The level number is the length of the condition. Thus, the level number
0 contains only the root �, and the level number 1 contains the elements [0] and
[1]. The Fig. 25.1 displays the levels 0 . . .3 of the binary tree. A subtree rooted at a
condition p is the full subtree of the tree �, whose root is the element p. It consists
of all the conditions stronger than p (including p). On the Fig. 25.1 the subtree
rooted at [01] consists of the conditions { [01], [010], [011]}.

25.3 Meta Sets

A meta set is a set, which is not fully precised, but – potentially – it might be pre-
cised in various ways. It might acquire various particular representations, which
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are ordinary crisp sets, depending on some external circumstances. These external
circumstances will be formalised as interpretations of the meta set determined by
branches in the binary tree �. The properties of the crisp sets which are interpreta-
tions of a meta set determine the properties of the meta set itself.

25.3.1 Fundamental Definitions

Elements of crisp sets are other crisp sets. Similarly, elements of meta sets should
be other meta sets. However, being an element of a meta set means much more than
in the case of a crisp set, as it must consider the degree of partial membership of the
element to the meta set. Because of this reason, the actual elements of a meta set
(viewed as a crisp set) are ordered pairs. The first element of such a pair is a meta set
– the potential element. The second element of the pair is a condition in the binary
tree�, which determines the degree of membership.

Definition 1. A meta set is a crisp set which is either the empty set /0, or which has
the form:

τ= {〈σ, p〉 : σ is a meta set, p ∈�} .

Here � is the binary tree and 〈·, ·〉 denotes an ordered pair.

Note, that the above definition is recursive, however, founded by the empty set /0
which itself is a meta set too. We denote meta sets with small Greek letters: τ, η, σ.
The class of all meta sets is denoted with the letter M.

Formally, this is a definition by induction on the well founded relation∈. The well
foundedness of ∈ is directly implied by the Axiom of Foundation in the Zermelo–
Fraenkel set theory1. A justification for such type of definition is presented in the
discussion following the definition of a �-name2.

The first element of an ordered pair contained in a meta set τ, which is another
meta set, is called a potential element of τ. Thus meta sets are potential elements of
other meta sets, whereas their real elements (from the crisp sets point of view) are
ordered pairs.

We may perceive a meta set as a crisp set, whose elements (as well as elements of
elements, and so on) are labelled with nodes of the tree �. Each potential element
may be labelled with multiple different labels constituting this way multiple pairs
which are elements of the meta set.

From the point of view of the crisp set theory a meta set is a relation (i.e. a subset
of a Cartesian product) between the set of its potential elements and the binary tree
�. Mostly, this relation is not a function, as it is in the case of fuzzy sets, as each
potential element may be labelled with different conditions.

Definition 2. The domain of a meta set τ, denoted with dom(τ), is the set of its
potential elements:

dom(τ) = {σ : 〈σ, p〉 ∈ τ} .

1 Theorem 4.1 in [2, Ch. III, §4].
2 Definition 2.5 in [2, Ch. VII, §2].
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Definition 3. The range of the meta set τ is the set:

ran(τ) = { p : 〈σ, p〉 ∈ τ} .

Thus, the domain of a meta set is the domain of the relation which the meta set is.
According to this we easily see that:

τ⊂ dom(τ)× ran(τ)⊂ dom(τ)×� . (25.1)

Definition 4. Let τ and σ be arbitrary meta sets. The set

τ[σ] = { p ∈� : 〈σ, p〉 ∈ τ}

is called the image of the meta set τ at the meta set σ in the tree �.

The image τ[σ] might be the empty set /0, if σ is not a potential element of τ. Gener-
ally, the image τ[σ] is a set of conditions describing the degree of membership of σ
in τ. We can easily see that:

ran(τ) =
⋃

σ∈dom(τ)
τ[σ] , (25.2)

τ =
⋃

σ∈dom(τ)
{σ}× τ[σ] . (25.3)

Let us consider some examples. The simplest meta set is the empty set /0. It may be
used as a potential element of other meta sets:

τ= {〈 /0, p〉} , τ[ /0] = { p} , dom(τ) = { /0} , ran(τ) = { p} ,

σ= {〈 /0, p〉 ,〈 /0,q〉} , σ[ /0] = { p,q} , dom(σ) = { /0} , ran(σ) = { p,q} .

In the first case the degree of membership of /0 in τ is represented by the one-element
subset of � which is { p}. In the second example the degree of membership is
represented by two-element subset (assuming p �= q): { p,q}.

As we will see further, if p�q, then the stronger condition will not contribute any
additional membership information above the weaker one, the stronger condition is
in such case redundant. On the other hand, if p⊥q, then both conditions contribute
independent membership information and together, as { p,q}, describe the degree
of the membership of /0 in τ.

It is easy to reflect ordinary crisp sets within the class of meta sets. Similarly to
the definition 1 of a meta set, we define by induction on the ∈ relation the class of
canonical meta sets, which correspond to crisp sets.

Definition 5. A meta set τ̌ is called a canonical meta set, if it is the empty set, or if
it has the form:

τ̌= {〈σ̌,�〉 : σ̌ is a canonical meta set} .

We denote the class of canonical meta sets with the symbol Mc. Thus, a canonical
meta set is a meta set whose domain includes only canonical meta sets or is empty,
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and whose range ran(τ̌) ⊂ {�} contains at most one element � ∈ � which is the
root of the tree�. We decorate variables corresponding to canonical meta sets with
theˇ(\check) accent.

Another very important class of meta sets constitute meta sets which are heredi-
tarily finite sets.

Definition 6. A meta set τ is a hereditarily finite meta set, if its domain and range
are finite sets, and each potential element is also a hereditarily finite meta set.

We denote the class of hereditarily finite meta sets with the symbol MF. In other
words:

τ ∈MF if |dom(τ)| <ℵ0 ∧ |ran(τ)|<ℵ0 ∧ ∀σ∈dom(τ) σ ∈MF . (25.4)

25.3.2 Interpretations of Meta Sets

An interpretation of a meta set is a crisp set. It represents some point of view on
the meta set. Each meta set may have many different interpretations. In general
there may be continuum (2ℵ0) of them. The properties of interpretations imply the
properties of the meta set.

An interpretation of a meta set is determined by a branch in the tree �.

Definition 7. Let τ be a meta set and let � ⊂� be a branch. The interpretation of
the meta set τ, given by the branch�, is the crisp set:

τ� = {σ� : 〈σ, p〉 ∈ τ∧ p ∈�} .

The process of generating the interpretation of the meta set consists in two stages. In
the first stage we remove all the ordered pairs, whose second elements are conditions
which do not belong to the branch �. The second stage replaces the remaining
pairs with their first elements which are other meta sets. This two-stage process is
repeated at all levels of membership hierarchy. As the result we obtain a crisp set.

Let us have a look at some examples. 0 = /0, 1 = {0}, and 2 = {0,1} are initial
ordinal numbers. 0̌ = 0, 1̌ =

{〈
0̌,�
〉}

and 2̌ =
{〈

0̌,�
〉
,
〈
1̌,�
〉}

are canonical meta
sets corresponding to these ordinals. For an arbitrary branch�⊂�:

/0� = /0= 0 ,

1̌� = {〈 /0,�〉}
�

= { /0}= 1 ,

2̌� =
{〈
/0,�
〉
,
〈{〈 /0,�〉} ,�〉}

�
= { /0,{ /0}}= {0,1}= 2 .

Indeed, � ∈� for all�, so interpretations of the given canonical meta set are inde-
pendent of the chosen branch �. For all branches they are equal crisp sets. There-
fore, we may treat them as crisp sets.

Proposition 1. If �′ and �′′ are different branches and τ̌ is a canonical meta set,
then:

τ̌�′ = τ̌�′′ .
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Now, let p,q ∈� and p⊥q, for instance: p = [01], q = [00]. Further, let

σ=
{〈

1̌, p
〉
,
〈
2̌,q
〉}

.

If� is a branch, then we may easily see that:

p ∈� → σ� = {1} , (since q �∈�)

q ∈� → σ� = {2} , (since p �∈�)

p �∈�∧q �∈� → σ� = 0 = /0 . (in this case [1] ∈�)

The above three cases are mutually exclusive, because p⊥ q⊥ [1], so these con-
ditions cannot lie on the same branch. It turns out that depending on the selected
branch� we obtain different crisp sets as interpretations of the given meta set σ.

25.4 First Order Meta Sets

The first order meta sets constitute a very important subclass of meta sets, especially
from the point of view of computer applications. They may be viewed as meta sets
whose potential elements are crisp sets. The first order meta sets resemble fuzzy sets,
as they represent “fuzzy” collections of “crisp” entities. In this case the membership
relation becomes “fuzzy” only on the first level of the membership hierarchy.

25.4.1 Introduction

In general, interpretations of potential elements of meta sets may vary depending
on the branch determining the interpretation. Consider for instance τ = {〈 /0, p〉}
and σ= {〈τ,�〉}, where p �= � is an arbitrary condition. Depending on the branch
�, the set σ� may have variable contents. It will always contain a single element,
however this element may be different for different branches.

σ� = {τ� }=

{
{{ /0}} if p ∈�, since τ� = { /0} ,

{ /0} if p �∈�, since τ� = /0 .

This variability of elements makes analysis of meta sets difficult. Besides, in many
circumstances – especially in applications – we would like to have meta sets, whose
elements are identical in all interpretations. The first order meta sets satisfy this
requirement.

From the above example it is also evident, that our construction does not fol-
low the path of generalising the classical type 1 fuzzy sets to the type 2 fuzzy sets
[7]. The meta sets of higher orders are ordinary meta sets, but their “elements” are
variable in the manner presented above, i.e. they vary depending on interpretations.

Elements of a first order meta set are ordered pairs of form 〈σ̌, p〉. Its first element
is a canonical meta set, which assures that elements of interpretations are always the
same, independently of the branch determining the interpretation (see proposition 1).



25.4 First Order Meta Sets 515

Definition 8. A meta set is called the first order meta set, when it is empty or it has
the form:

τ1 = {〈σ̌, p〉 : p ∈�, and σ̌ is a canonical meta set}
We denote the class of the first order meta sets with the symbol M1. More important
is its subclass of hereditarily finite meta sets (which are first order meta sets as well).
We denote this class with the symbol MF1.

Thus:

MF1 = MF∩M1 . (25.5)

The potential elements of the considered here meta sets of the class MF1 are canon-
ical meta sets, which are hereditarily finite. We denote the class of such sets with
the symbol MFc. Thus:

MFc = MF∩Mc . (25.6)

We will need some technical definitions to express relations between the meta sets
in terms of subsets of the binary tree.

Definition 9. We say that the set R⊂� covers p ∈�, whenever R contains a finite
maximal antichain below p, or it contains a condition weaker than p.

We use the symbol R | p to denote that R covers p. If R = /0, then the sentence R | p
(i.e. /0 | p) is false for each p ∈�. Note also that { p} covers p.

Definition 10. Let Q,R are arbitrary subsets of�. We say that Q and R are equiva-
lent if:

∀q∈Q R | q ∧ ∀r∈R Q | r .

We denote the equivalence of the sets Q and R with the symbol Q‖R. Note that the
sentences Q‖ /0 and /0 ‖R are always false for non-empty Q, R (as /0 | p is false). On
the other hand the sentence /0 ‖ /0 is true.

The equivalence of the sets Q and R means, that if a branch� in� contains some
condition from Q, then it must also contain a condition from R, and vice versa.

25.4.2 Relations

In this paper we define the membership relation of a hereditarily finite canonical
meta set in a first order meta set, and we further focus on the relations and operations
for such meta sets. The general definitions and discussion of conditional relations
for meta sets, which are based entirely on the interpretation technique, are presented
in [3].

Definition 11. Let σ̌ ∈MFc, and τ ∈MF1. We say that σ̌ is a meta member of τ, if
τ[σ̌] contains a finite maximal antichain in �.
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We denote the meta membership of σ̌ in τ using the symbol σ̌ ε τ. In other words
σ̌ ε τ, if each branch� contains some condition from the image τ[σ̌]. This guarantees
that σ̌� is a member of τ� for any �.

Definition 12. Let σ̌∈MFc, τ∈MF1, and p∈�. We say, that σ̌ is a meta member
of τ under the condition p (σ̌ εp τ), if τ[σ̌] covers p.

Thus σ̌ εp τ ↔ τ[σ̌] | p. The conditional membership is meant to describe the partial
membership of an element to a set. The condition p measures the degree of the
membership. The stronger condition, the weaker membership. On the other hand,
the weakest condition � describes the full (unconditional) membership, i.e. σ̌ ε� τ
is equivalent to σ̌ ε τ.

Definition 13. Let τ,σ ∈MF1. We say that τ is a meta subset of σ (τ⊂∼ σ), if:

∀η̌∈dom(τ)∀q∈τ[η̌] σ[η̌] | q .

In other words τ⊂∼ σ, if ∀η̌∈dom(τ)∀q∈τ[η̌] η̌ εq σ. The definition says, that τ is a meta
subset of σ, whenever for each potential element η̌ of τ, and for each condition
q from the image τ[η̌], the image of σ at η̌ covers the condition q. It means that,
σ[η̌] contains a finite maximal antichain below q, or it contains a condition weaker
than q.

Proposition 2. Let τ,σ ∈MF1. If τ⊂∼ σ, then dom(τ) ⊂ dom(σ).

Proof. Directly from the definition. If η̌ ∈ dom(τ) and q ∈ τ[η̌], then σ[η̌] �= /0 must
be true for σ[η̌] | q to be true. Therefore, η̌ ∈ dom(σ).

Definition 14. Let τ,σ ∈MF1. We say that τ is meta equal to σ (τ≈ σ), whenever:

∀µ̌∈dom(τ)∪dom(σ) τ[µ̌]‖σ[µ̌] .

It is possible to similarly define conditional versions of other relations for the first
order hereditarily finite meta sets too. They reflect relations that are satisfied to some
degree, other than certainty.

The presented here definitions of relations for MF1 meta sets, as well as their
conditional versions, are equivalent [4] to definitions for the general case, developed
using interpretations.

25.4.3 Algebraic Operations

In this section we define basic algebraic operations like the sum, the intersection
and the difference for the first order hereditarily finite meta sets,

Definition 15. Let τ, η ∈MF1. The meta sum of τ and η, denoted with the symbol
∪∼ , is their set-theoretic sum:

τ∪∼ η = τ∪η .
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The following important facts are obvious, so they do not require proofs.

Lemma 1. τ,η ∈MF1 → τ∪∼ η ∈MF1.

Proposition 3. If τ,η ∈MF1, then dom(τ∪∼ η) = dom(τ)∪dom(η).

The intersection of two meta sets is not so easy to define as the meta sum was. We
will need some additional notions.

Definition 16. Let P,Q⊂� are arbitrary subsets of the tree�. The half convolution
of the set P below Q is the set:

P�Q =
{

p ∈ P : ∃q∈Q q≥ p
}

.

The half convolution of the set P over Q is the set:

P� Q = Q�P = {q ∈ Q : ∃p∈P p≥ q} .

It is easy to see, that P � Q ⊂ P. If P = /0 or Q = /0, then P � Q = /0. If r ∈ P � Q
and � ⊂ � is a branch containing r, then �∩Q �= /0, i.e. the branch � contains
some element of Q too. This explains the meaning of the half convolution. Thus, the
following implication holds for any branch�:

�∩ (P�Q) �= /0 → �∩Q �= /0∧�∩P �= /0 . (25.7)

Definition 17. Let P,Q⊂� are arbitrary subsets of the tree �. The convolution of
the sets P and Q is the set:

P �Q = (P� Q)∪ (P�Q) .

Directly from the definition we obtain:

P�Q =
{

p ∈ P : ∃q∈Q q≥ p
}∪{q ∈Q : ∃p∈P p≥ q} . (25.8)

If any of the sets P, Q is empty, then their convolution is empty too.
Let r ∈ P � Q and at the same time r ∈ �, for some branch �. If r ∈ P, then

�∩Q �= /0, and conversely: if r ∈ Q, then �∩P �= /0.
We assume that the convolution and the half convolution operators have the same

priority: higher than the sum and lower than the intersection. This is illustrated by
the following equality.

P∪Q�R∩S = P∪ (Q� (R∩S)) . (25.9)

Anyway, we will avoid ambiguous notation.
We will need the convolution to define the intersection of the hereditarily finite

first order meta sets.

Definition 18. Let τ,η ∈MF1. The meta intersection of τ and η is the meta set:

τ∩∼ η = {〈ξ, p〉 : ξ ∈ dom(τ)∩dom(η)∧ p ∈ τ[ξ]�η[ξ]} .
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The potential elements of the intersection τ∩∼ η might be – but do not necessarily
have to be – only those meta sets, which are simultaneously the potential elements of
τ and η. In particular there may exist ξ ∈ dom(τ)∩dom(η) such, that τ[ξ]�η[ξ] =
/0, and then ξ is not a potential element of the intersection, as ξ �∈ dom(τ∩∼ η). The
degree of membership of a potential element to the intersection is determined by the
degree of its membership to both arguments. Thus, directly from the definition we
obtain:

Proposition 4. If τ,η ∈MF1, then dom(τ∩∼ η)⊂ dom(τ)∩dom(η).

For the image of the intersection we have ran(ξ∩∼ µ) ⊂ ran(ξ)∪ ran(µ), because
for η ∈ dom(ξ∩∼ µ) holds (ξ∩∼ µ)[η] = ξ[η] � µ[η] ⊂ ξ[η]∪ µ[η]. This implies the
following property.

Lemma 2. τ,η ∈MF1 → τ∩∼ η ∈MF1.

The definition of the difference of meta sets is much more complex, than the defi-
nitions of sum and intersection. Contrary to the definition of the difference of crisp
sets, in the case of meta sets the difference of τ and η contains not only those “ele-
ments” from τ, which are not “members” of η, but also such “elements”, that some-
how occur in τ as well as in η. In particular, if τ “contains more” σ than η does,
then the difference of τ and η should contain some quantity of σ. To express these
subtleties we will need additional notions.

We start with introducing some usefull notation. Let P⊂� be a set of conditions
from the tree�. By P� we understand the set of conditions comparable to elements
of P:

P� = {q ∈� : ∃p∈P p�q} . (25.10)

Similarly, by P⊥ we understand the set of conditions incomparable to any element
of P:

P⊥ = {q ∈� : ∀p∈P p⊥q} . (25.11)

Elements of P� lie on branches determined by the elements of P. No element of
the set P⊥ lies on the same branch with any element of P. If P = /0, then P� = /0
and P⊥ =�. It should also be clear that P⊂ P�. On the other hand, if � ∈ P, then
P� =� and P⊥ = /0. However, if p �= �, then { p}� consists of the subtree with the
root p and a branch containing p. Moreover:

Proposition 5. Let P⊂�.

P�∪P⊥ =� ,

P�∩P⊥ = /0 .

Let P = { [11]}. P� consists of the subtree with the root [11] plus the element [1]
plus the root �. P⊥ contains two subtrees with the roots [0] and [10], i.e. it contains
conditions stronger than [0] and [10]. Note, that the conditions [0], [10] and [11]
constitute a final maximal antichain.
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Let P ⊂ � be a set of conditions. By max(P) we denote the set of maximal
elements in P.

Thus

p ∈max(P) if, and only if p ∈ P∧∀q∈P (q≥ p→ q = p) . (25.12)

We see that max( /0) = /0 and max(�) = {�}. An important property of the set
max(P) is, that each element of P is comparable to some element of max(P). More-
over, each such element is stronger than its counterpart from max(P). In the above
example max(P⊥) = { [0], [10]}.
Proposition 6. Let P ⊂ �. The set max(P) of maximal elements in P is a maximal
antichain in P.

Proof. Elements of the set max(P) are pairwise incomparable, so it is an antichain.
Moreover, each element of P is comparable to some element of max(P), so it is the
maximal antichain in P.

Lemma 3. If P is a finite subset of �, then the set max(P⊥) is a maximal finite
antichain in P⊥.

Proof. If �∈ P, then P⊥ = /0 and max(P⊥) = /0, so obviously max(P⊥) is a maximal
finite antichain in P⊥. Further we assume, that � �∈ P.

The fact, that max(P⊥) is a maximal antichain in P⊥ follows from the proposition
6. We show, that if P is finite, then max(P⊥) is finite too.

Denote the set of conditions stronger than the given p ∈ � with the symbol
p≤. In other words it is the subtree rooted at p: p≤ = {q ∈� : q≤ p}. Note, that
max(p≤) = { p}, as well as:

max(q≤∪ r≤) =

{
{max(q,r)} if q� r ,

{q,r} if q⊥ r .

The above formula may be generalised to an arbitrary number of operands.
For a condition s �= �, the set of conditions incomparable to s, i.e. {s}⊥, is a

finite sum of subtrees: {s}⊥ = s≤1 ∪ . . .∪ s≤n , where n is the number of the tree level
containing s, and si is a condition from the level i. For instance, the sn is the only
sibling of s, and the sn−1 is the sibling of the parent of s and sn (if it exists, i.e. when
s is not a direct descendant of the root). Thus, applying the above formula we see
that:

max({s}⊥) = max(s≤1 ∪ . . .∪ s≤n )⊂ {s1, . . . ,sn }
is a finite set. Further, note that for Q,R⊂� holds (Q∪R)⊥ = Q⊥∩R⊥. If so, then
for P = { p1, . . . , pm } we obtain:

P⊥ = { p1, . . . , pm }⊥ = { p1 }⊥ ∩ . . .∩{ pm }⊥
m⋂

i=1

{ pi }⊥ .
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By substituting consecutive { pi }⊥ with sums we obtain:

P⊥ =
m⋂

i=1

{ pi }⊥
m⋂

i=1

ni⋃
j=1

p≤i j .

By multiplying the appropriate sums we obtain the equality:

P⊥ =
k⋃

i=1

m⋂
j=1

p≤i j

for some k (k = n1 · . . . ·nm). Taking into account the fact, that:

q≤∩ r≤ =

⎧⎪⎨⎪⎩
/0 if q⊥ r ,

q≤ if q≤ r ,

r≤ if q≥ r

we have:

P⊥ =
k⋃

i=1

m⋂
j=1

p≤i j =
k⋃

i=1

Pi , where Pi =

{
p≤i ji

for
⋂m

j=1 p≤i j = p≤i ji
,

/0 for
⋂m

j=1 p≤i j = /0 .

Thus, max(P⊥) is a finite set, because max(P⊥) ⊂ { p1, . . . , pk }, where each pi =
pi ji from the above formula, for some ji, in the cases, when the intersections are
not empty.

Note, that for P �= /0, the set max(P�) is always finite, as it contains the single ele-
ment: �. In the general case, for an arbitrary P, the set max(P) may be infinite. Con-
sider for example the infinite antichain: P = { [0], [10], [110], [1110], . . .}. Clearly,
max(P) = P.

We now introduce the definition of the boundary. It represents a “complement”
of σ to τ in the case when their domains are equal.

Definition 19. Let τ,η ∈MF1. The boundary of the meta set η in the meta set τ is
the set:

η̃τ =
{
〈ξ, p〉 : ξ ∈ dom(τ)∩dom(η)∧ p ∈ τ[ξ]∩η[ξ]⊥∪max(η[ξ]⊥)� τ[ξ]

}
.

If dom(τ)∩dom(η) = /0, then, of course, η̃τ = /0. If ξ∈ dom(τ)∩dom(η), then η̃τ[ξ]
consists of:

• those conditions from τ[ξ] which are incomparable to conditions from η[ξ] (i.e.
elements of τ[ξ]∩η[ξ]⊥), and

• those maximal elements in η[ξ]⊥, which have some weaker condition from τ[ξ]
above. In other words, they are conditions incomparable to conditions from η[ξ],
for which there exists no weaker condition incomparable to any element of
η[ξ], but there exists a weaker condition from τ[ξ].
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As an example explaining the above definition let us consider meta sets τ= {〈σ̌, p〉}
and η= {〈σ̌,q〉} for some canonical σ̌∈MF1, and conditions p = [1] and q = [11].
The meta set σ̌ belongs to τ “to a higher degree” than to η, as σ̌ εp τ, σ̌ εq η and
q ≤ p. In other words, for each branch such that σ̌� ∈ η� we also have σ̌� ∈ τ�.
We want to define the boundary of η in τ in such a manner, that it will be not
empty in this case, and will behave like the set-theoretic difference of τ and η in
interpretations. To be more precise: for� such, that σ̌� ∈ η� and σ̌� ∈ τ� hold (i.e.
[11] ∈�), or σ̌� �∈ η� and σ̌� �∈ τ� hold (in this case [0] ∈�), the interpretations
determined by�, of the boundary η̃τ should be the empty set. On the other hand, for
� such, that σ̌� �∈ η� and σ̌� ∈ τ�, ([10] ∈�) any interpretation of the boundary
should contain σ̌�. But this precisely means that η̃τ[σ̌] contains a maximal finite
antichain below [10]. This is how we define the boundary of η in τ. Indeed, τ[σ̌]∩
η[σ̌]⊥ = { [1]}∩{ [11]}⊥ = /0, as { [11]}⊥ is the sum of two subtrees rooted at [0]
and [10]. In this case τ[σ̌]⊂ η[σ̌]�, because p is comparable to q. On the other hand
max(η[σ̌]⊥) = { [0], [10]}. But only the element r = [10] has an element from τ[σ̌]
above it (it is p = [1], of course). Thus, the half convolution max(η[σ̌]⊥) � τ[σ̌]
contains only the condition r, and finally η̃τ = {〈σ̌,r〉}. Now, if� is a branch such,
that r = [10] ∈ �, then η̃τ

�
= { σ̌� }, τ� = { σ̌� } and η� = /0. If [0] ∈ �, then

η̃τ
�

= τ� = η� = /0. If [11] ∈ �, then η̃τ
�

= /0 and τ� = η� = { σ̌� }. Therefore,
η̃τ
�

= τ��σ� for all �.
We see, that the boundary of η in τ behaves like the difference of τ and η in the

case, when their domains are equal. We consider the general case further. Prior to
this we state two important properties of the boundary.

Proposition 7. If τ,η ∈MF1, then dom(η̃τ)⊂ dom(τ)∩dom(η).

The above proposition follows directly from the definition. It is worth noting that
we can’t have equality here instead of inclusion, as for some ξ ∈ dom(τ)∩dom(η)
there may occur simultaneously τ[ξ]∩η[ξ]⊥ = /0 and max(η[ξ]⊥)�τ[ξ] = /0. In such
a case ξ �∈ dom(η̃τ).

If dom(τ) = dom(η), then it is possible that η̃τ = /0 (e.g. τ̃τ = /0), but it is also
possible that η̃τ = τ. Consider for example τ = {〈σ̌, [0]〉} and η = {〈σ̌, [1]〉} for
some canonical σ̌. We have dom(τ) = dom(η) = { σ̌}, and τ[σ̌] = { [0]} and η[σ̌] =
{ [1]}. It is easy to see that η[σ̌]� contains the root � and the subtree rooted at [1],
whereas η[σ̌]⊥ consists of the subtree rooted at [0]. Therefore τ[σ̌]∩η[σ̌]⊥ = { [0]}.
In this case also max(η[σ̌]⊥) = { [0]}, so max(η[σ̌]⊥)� τ[σ̌] = { [0]}. This implies
η̃τ = τ, because η̃τ[σ̌] = { [0]} = τ[σ̌]. It is never possible that η̃τ = η, as for ξ ∈
dom(η̃τ)∩dom(η) there is always η̃τ[ξ]∩η[ξ] = /0, because η̃τ[ξ]⊂ η[ξ]⊥.

Lemma 4. If τ,η ∈MF1, then η̃τ ∈MF1.

Proof. It is enough to show that for ξ ∈ dom(τ)∩dom(η) the sets τ[ξ]∩η[ξ]⊥ and
max(η[ξ]⊥)� τ[ξ] are finite. The finiteness of the former one is implied by the as-
sumption, as τ[ξ]∩η[ξ]⊥ ⊂ τ[ξ], and τ∈MF1. The finiteness of the latter set follows
from the fact that max(η[ξ]⊥)� τ[ξ] is included in max(η[ξ]⊥), which is finite by
the lemma 3 and by the assumption that η ∈MF1.
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If dom(τ)⊂ dom(η), then the boundary η̃τ is the meta difference of τ and η. In the
general case we must add something to η̃τ to obtain their meta difference.

Definition 20. Let τ,η ∈MF1. The difference of the meta sets τ and η is the meta
set:

τ�∼η = τ�dom(τ)�dom(η)∪ η̃τ .

The expression τ�dom(τ)�dom(η) denotes the restriction of the domain of the relation
τ (a meta set is a relation) to the set

dom(τ)�dom(η), i.e. dom(τ�dom(τ)�dom(η)) = dom(τ)�dom(η).

Let us have a look at the above definition. If dom(τ)∩dom(η) = /0, then τ�∼η= τ. It
is clear that τ�∼ τ= /0. Indeed, τ�dom(τ)�dom(τ) = /0 and τ̃τ = /0. If dom(τ) = dom(η),
then the first operand to the sum is empty and then τ�∼ η = η̃τ. In such a case it is
possible that τ�∼η= /0 even if τ �= η.

Let σ = τ�∼ η. If ξ �∈ dom(τ), then ξ �∈ dom(σ) independently of the fact that
ξ ∈ dom(η) holds or not. If ξ ∈ dom(τ) and ξ �∈ dom(η), then ξ ∈ dom(σ) always
holds. If ξ∈ dom(τ)∩dom(η), then ξ∈ dom(σ), whenever ξ∈ dom(η̃τ), i.e. at least
one of the sets τ[ξ]∩η[ξ]⊥, max(η[ξ]⊥)�τ[ξ] is not empty. The above, together with
the proposition 7 imply:

Proposition 8. If τ,η ∈MF1, then dom(τ�∼η)⊂ dom(τ).

The lemma 4 implies the following important property.

Lemma 5. τ,η ∈MF1 → τ�∼η ∈MF1.

25.5 The Boolean Algebra of Meta Sets

In this section we will prove that algebraic operations for meta sets satisfy the ax-
ioms of Boolean algebra.

Note, that by lemmas 1, 2 and 5, for the given first order hereditarily finite meta
sets τ,η ∈MF1, the results of operations τ∪∼ η, τ∩∼ η and τ�∼ η are also first order
hereditarily finite meta sets.

25.5.1 Some Properties of the Convolution

We start with some technical lemmas. First, note that the convolution operation is
commutative.

Proposition 9. If P,Q⊂�, then P� Q = Q�P.

The obvious proof follows directly from the definition 17. The half convolution and
the convolution are distributive over the sum, what proves the next proposition.
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Proposition 10. Let P,Q,S ⊂�. The following equalities hold:

P� (Q∪S) = P�Q∪P�S , (25.13)

P� (Q∪S) = P�Q∪P�S , (25.14)

P� (Q∪S) = P�Q∪P�S . (25.15)

Proof. To begin with, note, that if P = /0, then P � (Q∪S) = /0, as well as P � Q =
P � S = /0. If Q = /0, then P � Q = /0 and the first equality is satisfied. Similarly for
S = /0. The same rule applies for the operators � and �. Thus, we may assume that
all the sets P,Q,S are not empty.

To prove (25.13) pick up s ∈ P� (Q∪S). By the definition s ∈ P and there exists
t ≥ s such, that t ∈ Q∪S. If t ∈ Q, then s ∈ P�Q, and if t ∈ S, then s ∈ P � S.
Therefore, P� (Q∪S)⊂ P� Q∪P�S. On the other hand, if t ∈ P �Q, then, of
course, P � (Q∪S), and similarly for P � S. This way we obtain P � Q∪P � S ⊂
P� (Q∪S).

Analogously we prove the second equality (25.14). To prove the third one we
display the convolution (applying the definition) as the sum of half convolutions,
assuming the following notation:

L︷ ︸︸ ︷
P� (Q∪S) =

LL︷ ︸︸ ︷
P � (Q∪S)∪

LR︷ ︸︸ ︷
P � (Q∪S) ,

RLL︷ ︸︸ ︷
P �Q∪

RLR︷ ︸︸ ︷
P �Q∪

RRL︷ ︸︸ ︷
P �S∪

RRR︷ ︸︸ ︷
P �S =

RL︷ ︸︸ ︷
P�Q∪

RR︷ ︸︸ ︷
P �S .

We must show that L = RL∪RR, i.e.:

LL ∪LR = RLL∪RLR∪RRL∪RRR .

We obtain this equality by adding both sides of equalities (25.13) and (25.14).

The convolution is associative, what will be shown in the lemma 6. We will need
the following properties of convolution and half convolution to prove it.

Proposition 11. For arbitrary P,Q,R⊂�:

(P�Q)�R = (P �R)�Q .

Proof. If any of the sets P,Q,R is empty, then the left hand side and the right hand
side of the equality is also the empty set. Therefore, we assume that P,Q,R are not
empty.

If p ∈ (P�Q)� R, then p ∈ P, as well as ∃q∈Q q ≥ p and ∃r∈R r ≥ p. The fact,
that p ∈ (P �R)� Q also means that p ∈ P, as well as ∃r∈R r ≥ p and ∃q∈Q q ≥ p.
Thus, the left hand side and the right hand side of the equality represent the same
subset of P.
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Proposition 12. For arbitrary P,Q,R⊂�:

(P�Q)�R = P� (Q�R) .

Proof. Similarly as before we may assume, that P,Q,R are not empty.
If p ∈ (P�Q) � R, then p ∈ P and ∃q∈Q q ≥ p and ∃r∈R r ≥ p. Two cases are

possible: p≤ q≤ r and p≤ r ≤ q. In the first case we have p ∈ P� (Q�R)⊂ P�

(Q�R). Similarly, in the second case holds p ∈ P� (R �Q)⊂ P� (Q�R).
If p ∈ P � (Q�R), then p ∈ P, and there exists s ∈ Q � R such, that p ≤ s. On

the other hand, s ∈Q�R means, that ∃q∈Q s = q or ∃r∈R s = r. The first case implies
the existence of r ∈ R such, that s = q≤ r, so we have p≤ q≤ r. In the second case
∃q∈Q s = r ≤ q and p ≤ r ≤ q holds. The first part of the proof implies that in both
cases p ∈ (P�Q)�R.

Lemma 6. The convolution is associative, i.e. for any P,Q,S ⊂ � the following
equality holds:

(P�Q)�S = P� (Q�S) .

Proof. If any of the sets P,Q,S is empty, then both sides of the equality represent
the empty set, so we further assume P,Q,S �= /0.

Let us display the convolution as the sum of half convolutions, assuming the
following notation (we apply the proposition 10):

L︷ ︸︸ ︷
(P�Q)�S =

LL︷ ︸︸ ︷
(P�Q∪P�Q)�S∪

LR︷ ︸︸ ︷
(P� Q)�S ,

=

LLL︷ ︸︸ ︷
(P�Q)�S∪

LLR︷ ︸︸ ︷
(Q�P)� S∪

LRR︷ ︸︸ ︷
S � (P �Q) ,

R︷ ︸︸ ︷
P� (Q�S) =

RL︷ ︸︸ ︷
P� (Q�S)∪

RR︷ ︸︸ ︷
P � (Q�S∪Q�S) ,

=

RL︷ ︸︸ ︷
P� (Q�S)∪

RRL︷ ︸︸ ︷
(Q�S)�P∪

RRR︷ ︸︸ ︷
(S �Q)�P .

By the proposition 12, we have LLL = RL. Further, the proposition 11 gives us LLR =
RRL. Combining the propositions 9 and 12 obtain we LRR = RRR.

25.5.2 The Field of Meta Sets

Analogously to the field of sets in the crisp set theory we define the field of meta
sets. This structure will form the basis for the Boolean algebra of meta sets.

Definition 21. Let δ ∈MF1 be a non-empty meta set and let D ⊂MF1 be a non-
empty family of meta subsets of δ (i.e. λ ∈ D → λ ⊂∼ δ). The family D is called the
field of meta sets on δ, when the following axioms are satisfied:
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λ ∈D → δ�∼λ ∈D , (25.16)

λ ∈D ∧ρ ∈D → λ∪∼ ρ ∈D , (25.17)

λ ∈D ∧ρ ∈D → λ∩∼ ρ ∈D . (25.18)

Usually, the definition of the field of sets involves only the first axiom together with
one of the second or the third, as another is implied by de Morgan’s laws. In the
world of meta sets these laws do not hold with the strict equality, however they do
hold with the meta equality:3.

δ�∼ (α∪∼ β) ≈ (δ�∼α)∩∼ (δ�∼ β) , (25.19)

δ�∼ (α∩∼ β) ≈ (δ�∼α)∪∼ (δ�∼ β) . (25.20)

As this is not enough to make the axioms 25.17 and 25.18 equivalent, we need both
in the definition.

We now prove two simple and well known properties of algebraic operations for
crisp sets in the case of meta sets.

Lemma 7. If α,δ ∈MF1 and α⊂∼ δ, then α∩∼ (δ�∼α) = /0.

Proof. Because α⊂∼ δ, then from the propositions 2, 4 and 8 follows:

dom(α∩∼ (δ�∼α)) ⊂ dom(α)∩dom(δ�∼α)⊂ dom(α)∩dom(δ) = dom(α) .

Let then ξ∈ dom(α). We will show, thatα[ξ]�(δ�∼α)[ξ] = /0, that is α[ξ]�α̃δ[ξ] = /0
and α[ξ]� α̃δ[ξ] = /0 (because (δ�∼α)�dom(α) = α̃δ). The definition 19 of the bound-
ary implies the following:

α̃δ[ξ] =
{

p ∈� : p ∈ δ[ξ]∩α[ξ]⊥∨ p ∈max(α[ξ]⊥)�δ[ξ]
}
⊂ α[ξ]⊥ .

Moreover, α[ξ] �α[ξ]⊥ = /0, as no element from the set of conditions incompara-
ble to α[ξ] may occur above any condition from α[ξ]. Therefore α[ξ]� α̃δ[ξ] = /0.
Similarly, α[ξ]�α[ξ]⊥ = /0, because when p ∈ α[ξ]⊥, then p is incomparable to any
condition from α[ξ], so it cannot have any condition from α[ξ] above itself. This
implies α[ξ]� α̃δ[ξ] = /0.

Lemma 8. If D is a field of meta sets on δ, then /0 ∈D and δ ∈D.

Proof. A field of meta sets is not empty by the definition. Let then ξ ∈ D. In that
case also δ�∼ ξ ∈ D. The lemma 7 implies (ξ ⊂∼ δ, as ξ ∈ D), that ξ∩∼ (δ�∼ ξ) = /0.
The family D is closed with respect to ∩∼ operation, so /0 ∈ D. That is why also
δ�∼ /0= δ ∈D.

3 It will follow from the theorem 1.
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25.5.3 The Main Theorem

In this section we will prove that the algebraic operations for the first order meta
sets satisfy the well known axioms of Boolean algebra. The theorem 1 presents all
these axioms adopted to the meta sets notation.

Theorem 1. Let δ ∈MF1 be a non-empty first order meta set, and let D be a field
of meta sets on δ. If α,β,γ ∈D then the following equalities hold:

α∪∼ (β∪∼ γ)≈ (α∪∼ β)∪∼ γ , (25.21)

α∩∼ (β∩∼ γ)≈ (α∩∼ β)∩∼ γ , (25.22)

α∪∼ β≈ β∪∼ α , (25.23)

α∩∼ β≈ β∩∼ α , (25.24)

α∪∼ (α∩∼ β)≈ α , (25.25)

α∩∼ (α∪∼ β)≈ α , (25.26)

α∪∼ (β∩∼ γ)≈ (α∪∼ β)∩∼ (α∪∼ γ) , (25.27)

α∩∼ (β∪∼ γ)≈ (α∩∼ β)∪∼ (α∩∼ γ) , (25.28)

α∪∼ (δ�∼α)≈ δ , (25.29)

α∩∼ (δ�∼α)≈ /0 . (25.30)

Thus, D is a Boolean algebra.

We will split the proof into a number of lemmas.

Lemma 9. If α,β,γ ∈MF1, then α∩∼ (β∩∼ γ) = (α∩∼ β)∩∼ γ .

Proof. Let η= β∩∼ γ and let ξ= α∩∼ β. As we may easily see, the equality dom(η) =
dom(β)∩dom(γ) holds, as well as dom(ξ) = dom(α)∩dom(β). Moreover, let τ=
α∩∼ (β∩∼ γ) = α∩∼ η and σ= (α∩∼ β)∩∼ γ= ξ∩∼ γ. We have:

dom(τ) = dom(α)∩dom(η) ,

= dom(α)∩dom(β)∩dom(γ) ,

= dom(ξ)∩dom(γ) ,

= dom(σ) .

For µ ∈ dom(τ) the formula τ[µ] = α[µ]�η[µ] holds. The lemma 6 implies:

τ[µ] = α[µ]�η[µ] ,
= α[µ]� (β[µ]� γ[µ]) ,

= (α[µ]�β[µ])� γ[µ] ,
= ξ[µ]� γ[µ] ,
= σ[µ] .
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We have shown that domains of the sets represented by the left and the right hand
sides are equal, and that the images of appropriate potential elements are also equal.
Thus both sides of the equality are equal.

Note, that we have proved the strong (crisp) equality =, not the meta equality ≈
required by the theorem 1. The above lemma allows for omitting parentheses and
using the notation:

α∩∼ β∩∼ γ = α∩∼ (β∩∼ γ) = (α∩∼ β)∩∼ γ . (25.31)

Lemma 10. If α,β ∈MF1, then α∪∼ (α∩∼ β)≈ α.

Proof. Let τ = α∪∼ (α∩∼ β). From the propositions 3 and 4 follows that dom(τ) =
dom(α). By the definition 14 we need to show that for µ ∈ dom(α) holds τ[µ]‖α[µ].
In other words, for p ∈ α[µ] we must show τ[µ] | p, and similarly, for q ∈ τ[µ] the
relation α[µ] | q must hold.
τ[µ] | p means, that τ[µ] contains a maximal finite antichain below p, or τ[µ] con-

tains a condition weaker than p. If p ∈ α[µ], then this is obvious, as α[µ] ⊂ τ[µ], so
p ∈ τ[µ], and for any a ∈ A always holds A | a, because {a} | a for any a.

Now, let us consider q ∈ τ[µ]. We will show α[µ] | q. If q ∈ α[µ], then, of course,
α[µ] | q. In the converse case, when q ∈ τ[µ]�α[µ], we have

q ∈ (α∪∼ (α∩∼ β)) [µ]�α[µ] = α[µ]∪ (α∩∼ β)[µ]�α[µ] ⊂ (α∩∼ β)[µ] .

Thus, by the definitions 18 and 17,

q ∈ α[µ]�β[µ] = α[µ]�β[µ]∪α[µ]�β[µ] .

If it were that q ∈ α[µ]�β[µ], then q ∈ α[µ], what would contradict the assumption
that q ∈ τ[µ]�α[µ]. Therefore q ∈ β[µ]�α[µ], which means, that q ∈ β[µ] and there
exists r ∈ α[µ] such, that q ≤ r. This implies α[µ] | q and finally τ[µ] ‖α[µ], what
gives τ≈ α.

Lemma 11. If α,β,γ ∈MF1, then: α∩∼ (β∪∼ γ) = (α∩∼ β)∪∼ (α∩∼ γ).
Proof. If α = /0, then both sides of the equality represent empty sets. If β = /0 or
γ= /0, then we get the identity. Further we assume that all the sets are not empty.

Let λ= α∩∼ (β∪∼ γ), and let ρ= (α∩∼ β)∪∼ (α∩∼ γ). Also, let 〈ξ, p〉 ∈ λ. By proposi-
tions 3 and 4 we obtain:

ξ ∈ dom(α∩∼ (β∪∼ γ)) ⊂ dom(α)∩dom(β∪∼ γ) ,

= dom(α)∩ (dom(β)∪dom(γ)) ,

= dom(α)∩dom(β)∪dom(α)∩dom(γ) .

Additionally, the definition of the meta sum implies, that p ∈ α[ξ]� (β∪ γ)[ξ]. The
proposition 10 implies that:

α[ξ]� (β∪ γ)[ξ] = α[ξ]�β[ξ] ∪ α[ξ]� γ[ξ] .
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If ξ ∈ dom(α)∩ dom(β), then p ∈ α[ξ] � β[ξ]. Directly from the definition of the
meta intersection follows, that in this case 〈ξ, p〉 ∈ α∩∼ β. Similarly, if ξ ∈ dom(α)∩
dom(γ), then p ∈ α[ξ]� γ[ξ], and this case 〈ξ, p〉 ∈ α∩∼ γ. Thus, we have, 〈ξ, p〉 ∈ ρ,
and consequently λ⊂ ρ.

Now let 〈ζ,q〉 ∈ ρ. We see that ζ ∈ dom(α)∩dom(β)∪dom(α)∩dom(γ), so ζ∈
dom(α)∩ (dom(β∪∼ γ)). Similarly as before, there are two cases possible for q: if
ζ ∈ dom(α)∩dom(β), then q ∈ α[ξ]�β[ξ]⊂ α[ξ]� (β∪∼ γ)[ξ], and if ζ ∈ dom(α)∩
dom(γ), then q ∈ α[ξ]� γ[ξ]⊂ α[ξ]� (β∪∼ γ)[ξ]. Thus 〈ζ,q〉 ∈ λ, and finally ρ⊂ λ.

Lemma 12. If α,δ ∈MF1 and α⊂∼ δ, then α∪∼ (δ�∼α)≈ δ.

Proof. Assume the following notation: λ = α∪∼ (δ�∼ α). First, note that dom(λ) =
dom(δ). Indeed, because α⊂∼ δ, so the propositions 2, 3 and 8 imply:

dom(λ) = dom(α)∪dom(δ�∼α)⊂ dom(δ) .

On the other hand, from the definition 20 of the meta difference�∼ follows:

dom(δ) = (dom(δ)�dom(α))∪dom(α)
⊂ dom(δ�∼α)∪dom(α)
= dom(λ) .

Let µ∈ dom(λ). To show the equality λ≈ δ, we must prove λ[µ]‖δ[µ], i.e. the equiv-
alence of images λ[µ] and δ[µ]. By the definition 10 of the equivalence this means,
that for p ∈ λ[µ] must hold δ[µ] | p, and for q ∈ δ[µ] must hold λ[µ] | q. According
to the definition 9 of the covering relation we must show, that δ[µ] contains a finite
maximal antichain below p or it contains some condition above p. Similarly for the
set λ[µ] and the condition q.

Let p ∈ λ[µ]. Note, that λ[µ] = α[µ]∪ (δ�∼ α)[µ]. If p ∈ α[µ], then δ[µ] | p, as
α⊂∼ δ (see definition 13). In the converse case p∈ (δ�∼α)[µ]�α[µ]. If µ∈ dom(δ)�
dom(α), then α̃δ[µ] = /0, and because in this case holds

(δ�∼α)[µ] = δ�dom(δ)�dom(α)[µ]⊂ δ[µ] ,

so p ∈ δ[µ] and, of course, δ[µ] | p. However, if p ∈ dom(δ)∩dom(α), then because
(δ�∼α)[µ] = α̃δ[µ] holds in this case, so p ∈ α̃δ[µ] and by the definition 19, p ∈ δ[µ]
or ∃q≥p q ∈ δ[µ]. In both cases δ[µ] | p.

Now, let q ∈ δ[µ]. We show, that λ[µ] | q. By the definition of the difference we
obtain:

λ[µ] = α[µ]∪ (δ�∼α)[µ] = α[µ]∪δ�dom(δ)�dom(α)[µ]∪ α̃δ[µ] .

If µ �∈ dom(α), then α[µ] = α̃δ[µ] = /0, so λ[µ] = δ[µ] and we get λ[µ] | p. Therefore,
we assume that µ ∈ dom(α), and in such case λ[µ] = α[µ]∪ α̃δ[µ]. If q ∈ α[µ]⊥,
then also q ∈ δ[µ]∩α[µ]⊥, and by the definition 19 of the boundary and the above
equality we have q ∈ α̃δ[µ]⊂ λ[µ], which implies λ[µ] | q. Let then q ∈ α[µ]�, i.e. q
is comparable to some condition from α[µ]. If there exists r ≥ q such, that r ∈ α[µ],
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then clearly λ[µ] | q, as α[µ] ⊂ λ[µ], so λ[µ] contains r. In the converse case there
must exist r < q such, that r ∈ α[µ]. Thus, we have a condition from λ[µ] ⊃ α[µ],
which lies below q and we have no conditions from λ[µ] above q (as α̃δ[µ]⊂ α[µ]⊥,
and q∈ α[µ]�). We will prove, that R = {r ≤ q : r ∈ λ[µ]} contains a finite maximal
antichain below q. This will imply that λ[µ] | q.

Let S =
{

s≤ q : s ∈ α[µ]⊥
}

. If S = /0, then each condition stronger than q is
comparable to some element of α[µ], which – by the assumption – lies below q.
The set max(α[µ]) contains an antichain below q, which is maximal below q (by
the previous sentence) and finite, as α ∈ MF1. Similarly, the set R∩max(α[µ]),
and, consequently, R have this property. In the case when S = /0, the above implies
λ[µ] | q.

So, assume that S �= /0. We see that max(S) ⊂ α̃δ[µ], as for s ∈ max(S) holds
s ∈ max(α[µ]⊥)� δ[µ], because s ≤ q and q ∈ δ[µ]. Thus, max(S) ⊂ R and max(S)
is a finite antichain (the lemma 3). The set R∩max(α[µ]) is also a finite antichain,
and the sum R∩max(α[µ])∪max(S) contains a maximal antichain below q, because
each condition stronger than q, either is comparable to some element from α[µ] (and
then also it is comparable to some element from R∩max(α[µ])), or it is not (and then
it is comparable to some element of max(S)). Because R∩max(α[µ])∪max(S)⊂ R,
then R includes a finite maximal antichain below q, so it covers q and, consequently,
λ[µ] | q.

Now we are ready to prove the main theorem 1.

Proof. Recall, that = implies ≈.
The axioms 25.21, 25.23 are obvious, 25.24 follows from the proposition 9.
The axiom 25.22 follows from the lemma 9.
The axiom 25.25 follows from the lemma 10.
The axiom 25.26 follows from 25.25 and 25.28 and from the fact, that α∩∼ α= α

(as P �P = P), in the following way:

α∩∼ (α∪∼ β)≈ (α∩∼ α)∪∼ (α∩∼ β) , (from 25.28)

= α∪∼ (α∩∼ β) , (since α∩∼ α= α)

≈ α . (from 25.25)

The distributive law 25.27 follows easily from other axioms:

α∪∼ (β∩∼ γ)≈ α∪∼ (α∩∼ β)∪∼ (β∩∼ γ) , (by 25.25)

≈ [α∩∼ (α∪∼ γ)]∪∼ [(β∩∼ α)∪∼ (β∩∼ γ)] , (by 25.26, 25.24)

≈ [α∩∼ (α∪∼ γ)]∪∼ [β∩∼ (α∪∼ γ)] , (by 25.28)

≈ (α∪∼ β)∩∼ (α∪∼ γ) . (by 25.24, 25.28)

The distributive law 25.28 follows from the lemma 11.
The axiom 25.29 is a consequence of the lemma 12.
The axiom 25.30 is a consequence of the lemma 7.
This ends the proof of the theorem.
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25.6 Conclusions and Further Work

We have explained a basic idea of a meta set and have defined fundamental concepts
related to them, in particular the interpretation of a meta set. For the important sub-
class MF1 we have defined set-theoretic relations and algebraic operations. These
relations coincide [4] with the relations defined in the general case for arbitrary meta
sets [3] by means of the interpretations.

We have focused on M1 meta sets here, as they are most common in applications.
Their theory is the simplest to comprehend and they are closest to the well known
fuzzy sets. The first order meta sets represent fuzzy collections of entities which may
be described by means of ordinary crisp sets, i.e. the “elements” of such collections
are constant and precisely defined. Moreover, as in computer applications we mostly
deal with finite collections of data, then further restricting ourselves to the class
MF1 of the first order hereditarily finite meta sets does not really seem a drawback.

The way we have defined relations and operations for MF1 meta sets allow for
straightforward and efficient computer implementations. The appropriate algorithms
will operate on subsets of the binary tree, or – using another representation – on
binary sequences that arise due to encoding of elements of the binary tree in a pro-
gramming language. Although the sequences will be finite due to computer limita-
tions, we do not consider it a shortcoming, since data we deal with in applications
have finite nature.

The fact that the operations for meta sets satisfy the Boolean algebra axioms is
significant, as it allows for using them in contexts, where traditional crisp sets do
not apply, because some kind of fuzziness is required. Note also, that “elements”
of meta sets are other meta sets, what makes them applicable in situations, where
fuzzy sets are not enough, because the structure of elements is important.

The meta sets theory is under development. The interpretation technique plays
the key role in understanding meta sets as well as in defining their properties. For
instance, we have managed to define the cardinality of a meta set as well as equinu-
merability of MF1 meta sets [5].

List of Symbols

� the binary tree, p. 509
� the root of the tree �, p. 509
p⊥q incomparable conditions, p. 509
p�q comparable conditions, p. 509
dom(τ) the domain of the meta set τ, p. 511
ran(τ) the range of the meta set τ, p. 512
τ[σ] the image of the meta set τ at the meta set σ, p. 512
M the class of meta sets, p. 511
Mc the class of canonical meta sets, p. 512
M1 the class of the first order meta sets, p. 515
MF the class of hereditarily finite meta sets, p. 513
MFc the class of hereditarily finite, canonical meta sets, p. 515
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MF1 the class of the first order, hereditarily finite meta sets, p. 515
τ̌ a canonical meta set, p. 512
τ� the interpretation of the meta set τ given by the branch�, p. 513
R | p the set R covers the condition p, p. 515
Q‖R the sets Q and R are equivalent, p. 515
τ ε σ τ is a meta member of σ, p. 515
τ εp σ τ belongs to σ under the condition p, p. 516
τ⊂∼ σ τ is a meta subset of σ, p. 516
τ≈ σ τ is meta equal σ, p. 516
τ∪∼ σ the meta sum of τ and σ, p. 516
τ∩∼ σ the meta intersection of τ and σ, p. 517
P�R the half convolution of P below R, p. 517
P�R the half convolution of P over R, p. 517
P�R the convolution of P and R, p. 517
max(P) the set of maximal elements in P, p. 519
P� the set of conditions comparable to any condition in P, p. 518
P⊥ the set of conditions incomparable to all condition in P, p. 518
η̃τ the boundary of η in τ, p. 520
τ�∼σ the meta difference of τ and σ, p. 522
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Chapter 26
Regression Model Based on Fuzzy Random
Variables

Junzo Watada and Shuming Wang

26.1 Introduction

Classical model of regression analysis is an effective statistical one to deal with sta-
tistical data. In the past two decades, to cope with fuzzy environment where human
subjective estimation is influential in regression models, various fuzzy regression
models are presented for fuzzy input-output data through the theory of fuzzy sets
and possibility. For instance, Tanaka et al. [22] presented linear regression analysis
to cope with fuzzy data in stead of statistical data. Tanaka and Watada [25] [26]
[29] presented possibilistic regression analysis based on the concept of possibility
in stead of fuzziness. Watada et al. built fuzzy time-series model using intersection
of fuzzy numbers [32] [34]. Also Watada tried to solve fuzzy regression model for
fuzzy data [33] but it should employ heuristic methods to solve production between
fuzzy numbers. Watada and Mizunuma [35] and Yabuuchi and Watada [28] built
switching fuzzy regression model to analyze mixed data obtained from plural sys-
tems. Linguistic regression model is proposed by Toyoura and Watada [27]. On the
other hand, the concept of fuzzy statistics plays a central role in building a fuzzy
regression model [30] as well as the concept of fuzzy numbers.

In practical applications, statistical data may include both stochastic and fuzzy
information simultaneously. For example, in a factory, the lifetime of some kinds of
elements may be described like this: “about 5 months" with probability 0.2, “about
3 months" with probability 0.4, and “about 2 months" with probability 0.4, where
“about 5 months", “about 3 months" and “about 2 months" are all linguistically
value which can be characterized by fuzzy numbers or fuzzy variables. In such a
case, the lifetime of the elements has the distribution as below:

X ∼
⎛⎝ 5̃ 3̃ 2̃

0.2 0.4 0.4

⎞⎠
which cannot be described only by one of the random or fuzzy variables. Therefore,
we have to combine the two and provide a new tool so as to study such two-fold
uncertain data. Fuzzy random variable was introduced by Kwakernaak [11, 12] in
1978 to study randomness and fuzziness simultaneously. It was defined as a measur-
able function from a probability space to a collection of fuzzy numbers. Since then,
its variants as well as extensions were developed by other researchers for different

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 533–545.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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purposes, e.g., Kruse and Meyer [10], Liu and Liu [14], and Puri and Ralescu [19].
Furthermore, Wang and Watada studied T -independence condition for fuzzy ran-
dom vectors [37], discussed the fuzzy renewal process with a queueing application
[38], and derived several analytical properties for distribution functions and critical
value functions of fuzzy random variables [39].

Based on fuzzy random variables and the expected value operators, this paper
aims to build a regression model for fuzzy random values. The remainder of this pa-
per is organized as follows. In Section 26.2, we recall some preliminaries on fuzzy
random variables. Section 3 discusses regression model based on fuzzy random
variables. In Section 4, an illustrative example is provided to explain the proposed
fuzzy random regression analysis model. Finally, concluding remarks are given in
Section 26.5.

26.2 Preliminaries

26.2.1 Fuzzy Variables

Possibility theory was introduced by Zadeh [41] in 1978 to study fuzzy events. This
theory has become the fundamental framework to study possibilistic uncertainty.
Fuzzy variable is a critical concept in the possibility theory, which was for the first
time introduced by Kaufmann [9]. After that, Nahmias [16] and Wang [36] gener-
alize the concept of fuzzy variable to pattern space and ample space, respectively.
Before introducing fuzzy random variables, we first recall the concept of fuzzy vari-
able which is the basis of the former.

Given a universe Γ, let Pos be a set function defined on the power set P (Γ) of Γ.
The set function Pos is said to be a possibility measure if it satisfies the following
conditions:

[P1] Pos( /0) = 0, and Pos(Γ) = 1;

[P2] Pos(
⋃

i∈I Ai) = supi∈I Pos(Ai) for any subclass {Ai | i ∈ I} of P (Γ),
where I is an arbitrary index set.

The triplet (Γ,P (Γ),Pos) is called a possibility space. Based on possibility measure,
a self-dual set function Cr, named credibility measure, is defined as follows [13]:

Cr(A) =
1
2

[1 + Pos(A)−Pos(Ac)] , A ∈ P (Γ) (26.1)

where Ac is the complement of A.
Let ℜ be the set of real numbers. A function Y : Γ→ ℜ is said to be a fuzzy

variable defined on Γ (see Nahmias [16]), and the possibility distribution µY of Y
is defined by µY (t) = Pos{Y = t}, t ∈ ℜ, which is the possibility of event {Y =
t}. Through the possibility distribution µY of fuzzy variable Y , the possibility and
credibility of event {Y ≤ r} can be given respectively by



26.2 Preliminaries 535

Pos{Y ≤ r}= sup
t≤r

µY (t), and

Cr{Y ≤ r}= 1
2

[
1 + sup

t≤r
µY (t)− sup

t>r
µY (t)

]
.

(26.2)

The credibility explains the distinguishness between an event and its compliment
event. When both events are not distinguished, then the credibility of the event takes
0.5.

Example 1. Assume that Y =(c,al ,ar)T is a triangular fuzzy variable, the possibility
distribution is

µY (x) =

⎧⎨⎩
(x−al)/(c−al), if al ≤ x≤ c
(ar− x)/(ar− c), if c≤ x≤ ar

0, otherwise.

Definition 1 ([13]). Let Y be a fuzzy variable. The expected value of Y is defined as

E[Y ] =
∫ ∞

0
Cr{Y ≥ r}dr−

∫ 0

−∞
Cr{Y ≤ r}dr (26.3)

provided that one of the two integrals is finite.

Particularly, for nonnegative fuzzy variable Y , since Cr{Y ≤ r} = 0 for any r < 0,
we have E[Y ] =

∫ ∞
0 Cr{Y ≥ r}dr

Example 2. Let Y be a triangular fuzzy variable (3,2,4)T . Calculate the expected
value E[Y ].

Recall the possibility distribution of triangular fuzzy variable Y = (3,2,4)T is

µY (t) =

⎧⎨⎩
t−2, if 2≤ t < 3
4− t, if 3≤ t < 4
0, otherwise.

(26.4)

From (26.1), for any r ≥ 0, we can compute

Cr{Y ≥ r} =
1
2

[
sup
t≥r

µY (t)+ 1− sup
t<r

µY (t)
]

=

⎧⎨⎩
1, if r ≤ 2
(4− r)/2, if 2 < r ≤ 4
0, otherwise.

It follows from Definition 1 that

E[ξ] =
∫ ∞

0
Cr{Y ≥ r}dr = 2 +

∫ 4

2

4− r
2

dr = 3.

Actually, for any triangular fuzzy variable Y = (c,al ,ar)T , from (26.1) and (26.3),
we can compute the expected value of Y as
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E[Y ] =
al + 2c + ar

4
.

26.2.2 Fuzzy Random Variables

Fuzzy random variables have been studied by a number of researchers. Kwaker-
naak [11, 12] introduced the concept of fuzzy random variable and defined it as a
map from a probability space to a collection of fuzzy numbers under some mea-
surability conditions, and proposed the first definition of the expected value oper-
ator of fuzzy random variables. Following the approach Kwakernaak, Kruse and
Meyer [10] formalized the mathematical model in [11, 12], and defined a fuzzy
random variable as a fuzzy observation of a classical real-valued random variable
under different measurability conditions. Kruse and Meyer [10] also presented a def-
inition of expected value operator based on their fuzzy random variables. Puri and
Ralescu [19] introduced another mathematical approach for fuzzy random variables.
In Puri and Ralescu’s approach, a fuzzy random variable is viewed as a mechanism
associating a fuzzy set with each experimental outcome, where the fuzzy set is in a
collection of all normalized fuzzy numbers whose α-level sets are compact convex
subsets of the set of real numbers ℜ. And, in Puri and Ralescu [19], the expected
value is defined through the Aumann integral [1] of a random set. Considering there
are some occasions that the scalar expected values of fuzzy random variables may be
more convenient in modeling fuzzy random optimization problems, Liu and Liu [14]
presented a definition for fuzzy random variables with scalar expected value oper-
ators based on fuzzy variable [16] and possibility measure [41]. Since the scalar
expected values of fuzzy random variables are needed in dealing with the inclusion
relation in the fuzzy regression model for fuzzy random data, some related concepts
in [14] will be utilized, which are introduced as follows.

Definition 2 ([14]). Suppose that (Ω,Σ,P) is a probability space, Fv is a collection
of fuzzy variables defined on possibility space (Γ,P (Γ),Pos). A fuzzy random vari-
able is a map X : Ω→ Fv such that for any Borel subset B of ℜ, Pos{X(ω) ∈ B} is
a measurable function of ω.

Suppose X is a fuzzy random variable on Ω, from the above definition, we know for
each ω ∈Ω, X(ω) is a fuzzy variable. Further, a fuzzy random variable X is said to
be positive if for almost every ω, fuzzy variable X(ω) is positive almost surely.

Example 3. Let V be a random variable defined on probability space (Ω,Σ,Pr). De-
fine that for every ω ∈Ω,

X(ω) = (V (ω)+ 2,V(ω)−2,V(ω)+ 6)T

which is a triangular fuzzy variable defined on some possibility space (Γ,P (Γ),Pos).
Then, X is a (triangular) fuzzy random variable.

To a fuzzy random variable X on Ω, for each ω ∈Ω, the expected value of the fuzzy
variable X(ω), denoted by E[X(ω)], has been proved to be a measurable function
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of ω (see [14]), i.e., it is a random variable. Based on such fact, the expected value
of the fuzzy random variable X is defined as the mathematical expectation of the
random variable E[X(ω)].

Definition 3 ([14]). Let X be a fuzzy random variable defined on a probability space
(Ω,Σ,P). The expected value of X is defined as

E[X ] =
∫
Ω

[∫ ∞

0
Cr{X(ω)≥ r}dr−

∫ 0

−∞
Cr{X(ω)≤ r}dr

]
P(dω). (26.5)

Example 4. Consider the triangular fuzzy random variable X defined in Example 3.
Suppose the V is a discrete random variable, which takes values V1 = 3 with prob-
ability 0.2, and V2 = 6 with probability 0.8. Try to calculate the expected value
of X .

From the distribution of random variable V , we know the fuzzy random variable X
takes fuzzy variables X(V1) = (5,1,9)T with probability 0.2, and X(V2)= (8,4,12)T

with probability 0.8. Further, we need to compute the expected values of fuzzy
variables X(V1) and X(V2), respectively. That is

E[X(V1)] =
1 + 2×5 + 9

4
= 5,

and

E[X(V2)] =
4 + 2×8 + 12

4
= 8.

Finally, by Definition 3, the expected value of X is

E[X ] = E[X(V1)]×0.2 + E[X(V2)]×0.8 = 7.4.

26.3 Regression Model Based on Fuzzy Random Variables

Fuzzy Arithmetic or fuzzy Arithmetic operations with fuzzy numbers by the exten-
sion principle [17], [18], [40] have been studied in [2]-[16]. These studies are done
through the concept of possibility. In 1984, Sanchez [20] discussed the solution
of fuzzy equations in the same way as described in the fuzzy relational equations.
Tanaka and Watada [26] pointed out that Fuzzy equations described by Sanchez can
be regarded as possibilistic equations from our viewpoint.

A possibilistic system has been applied to the linear regression analysis [22],
[23]. In this paper our main concerns are on properties of possibilistic linear
model and a new formulation of fuzzy linear regression model in the case of
fuzzy random variables. A possibilistic linear system can be used as a model
for interval analysis whose examples are possibilistic linear regression discussed
here [24].
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Regression Model of Fuzzy Random Data

Table 26.1 illustrates data dealt here. Yi, Xik for all i = 1. · · · ,N and k = 1, · · · ,K are
fuzzy random data defined probabilistically as

Yi =
MYi⋃
t=1

{(Yt
i ,Y

t,l
i ,Yt,r

i )T , pt
i}, Xik =

MXik⋃
t=1

{(Xt
ik,X

t,l
ik ,Xt,r

ik )T ,qt
ik},

respectively. The notations mean all data are given fuzzy numbers with its proba-
bility, where fuzzy variables (Yt

i ,Y
t,l
i ,Yt,r

i )T and (Xt
ik,X

t,l
ik ,Xt,r

ik )T are obtained with
probability pt

i and qt
ik, respectively, for i = 1,2, · · · ,N, k = 1,2, · · · ,K and t =

1,2, · · · ,MYi or t = 1,2, · · · ,MXik .
Let us denote fuzzy linear model using symmetric fuzzy coefficients Ā1

∗
, · · · , ĀK

∗

as follows:

Ȳi
∗ = Ā1

∗Xi1 + · · ·+ ĀK
∗XiK , (26.6)

where Ȳ ∗i denotes estimation and Ā∗k = ([Āl
k + Ār

k]/2, Āl
k, Ā

r
k)T symmetric triangular

fuzzy coefficient when triangular fuzzy random data Xik are given for i = 1, · · · ,N
and k = 1, · · · ,K as shown in table 26.1.

When we know fuzzy random output Yi =
⋃MYi

t=1{(Yt
i ,Y

t,l
i ,Yt,r

i )T , pt
i} are given at

the same time, we can decide fuzzy random linear model so that the estimation of
the model includes all given fuzzy random outputs. Therefore, the following relation
should hold:

Ȳi
∗ = Ā1

∗Xi1 + · · ·+ ĀK
∗XiK ⊃

FR
Yi, i = 1, . . .N (26.7)

where ⊃
FR

is a fuzzy random inclusion relation. The fuzzy random inclusion relation

⊃
FR

can be defined in various ways, for instance, the chance based inclusion, the

expected value based inclusion, and so on. In this paper, we employ the expected
value based inclusion as illustrated in Equation (26.9), which combines the fuzzy
inclusion relation at grade h with expected values of fuzzy random variables.

Table 26.1 Input – Output Fuzzy Random Data

No. Output Inputs
i Y X1 X2 · · · Xk · · · , XK

1 Y1 X11 X12 · · · X1k · · · , X1K
2 Y2 X21 X22 · · · X2k · · · , X2K
...

...
...

...
...

...
j Yi Xj1 Xi2 · · · Xik · · · , XiK
...

...
...

...
...

...
N YN XN1 XN2 · · · XNk · · · XNK
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Under the fuzzy arithmetic calculations, the problem to obtain a fuzzy linear
regression model results in the following mathematical programming problem:

Regression Model of Fuzzy Random Data

min
Ā

J(Ā) =
K
∑

k=1
(Ār

k− Āl
k)

subject to
Ār

k ≥ Āl
k ≥ 0,

Ȳi
∗ = Ā1

∗Xi1 + · · ·+ ĀK
∗XiK ⊃

FR
Yi,

for i = 1, . . .N,k = 1, · · · ,K.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(26.8)

This formulation is defined using fuzzy random variables. But when the expectation
of these data [37] are taken as shown in table 26.2, we can formulate the new model.
This model is corresponding to a conventional regression model. Furthermore, we
can discuss confidence interval when we take variance of fuzzy random variable
into consideration. The discussion of variance of fuzzy random variable will be left
for a subsequent paper.

Table 26.2 Expectation of Input – Output Fuzzy Random Data

No. Output Inputs
i E(Y ) E(X1) E(X2) · · · E(Xi) · · · , E(XK)
1 E(Y1) E(X11) E(X12) · · · E(X1i) · · · , E(X1K)
2 E(Y2) E(X21) E(X22) · · · E(X2i) · · · , E(X2K)
...

...
...

...
...

...
j E(Yj) E(Xj1) E(Xj2) · · · E(Xji) · · · , E(XjK)
...

...
...

...
...

...
N E(YN) E(XN1) E(XN2) · · · E(XNi) · · · E(XNK)

Regression Model of Expected Fuzzy Random Data

Let us consider the expectation (table 26.2) of fuzzy random variable (table 26.1).
Then it will be a conventional fuzzy regression model as in the following:

min
Ā

J(Ā) =
K
∑

k=1
(Ār

k− Āl
k)

subject to
Ār

k ≥ Āl
k ≥ 0,

Ȳi
∗ = Ā1

∗E(Xi1)+ · · ·+ ĀK
∗E(XiK)⊃∼

h

E(Yi),

for i = 1, . . .N,k = 1, . . . ,K,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(26.9)

where ⊃∼
h

denotes fuzzy inclusion relation at grade h.
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Table 26.3 Expectation of Input – Output Fuzzy Random Data

No. Output Inputs
i E(Y ) E(X1) · · · E(XK)

1
MY1

∑
t=1

2Y t
1 +Y t ,r

1 +Y t ,l
1

4
pt

1

MX11

∑
t=1

2Xt
11 +Xt ,r

11 +Xt,l
11

4
qt

11 · · ·
MX1K

∑
t=1

2Xt
1K +Xt,r

1K +Xt,l
1K

4
qt

1K

2
MY2

∑
t=1

2Y t
2 +Y t ,r

2 +Y t ,l
2

4
pt

2

MX21

∑
t=1

2Xt
21 +Xt ,r

21 +Xt,l
21

4
qt

21 · · ·
MX2K

∑
t=1

2Xt
2K +Xt,r

2K +Xt,l
2K

4
qt

2K

...
...

...
...

j
MYj

∑
t=1

2Y t
j +Y t,r

j +Y t,r
j

4
pt

j

MXj1

∑
t=1

2Xt
j1 +Xt ,r

j1 +Xt,l
j1

4
qt

j1 · · ·
MXjK

∑
t=1

2Xt
jK +Xt,r

jK +Xt,l
jK

4
qt

jK

...
...

...
...

N
MYN

∑
t=1

2Y t
N +Y t ,r

N +Y t,r
N

4
pt

N

MXN1

∑
t=1

2Xt
N1 +Xt,r

N1 +Xt,l
N1

4
qt

N1 · · ·
MXNK

∑
t=1

2Xt
NK +Xt,r

NK +Xt,l
NK

4
qt

NK

Although the mathematical programming (26.8) is obtained to solve the fuzzy re-
gression model, the problem is not easy to solve, because the product between a fuzzy
parameter and a fuzzy value distorts the shape of a triangular fuzzy number. The prob-
lem results in heuristic algorithm as mentioned in Watadaet al. [33]. On the other hand,
the mathematical programming (26.9) is a conventional fuzzy regression model. It is
easily solved. This model can be corresponding to a conventional regression model.
When we consider the variance of fuzzy random variable, it is possible to build a
confidence interval for the regression model of expected fuzzy random variables.

26.4 An Explanatory Example

Next, as an explanatory example for the usage of the model, we will discuss the
fuzzy regression model based on the expectation of fuzzy random variables using
triangular fuzzy numbers as shown in table 26.3. Let h = 0. That is, we take the
expectation of all fuzzy random data as defined in Definition 3.

Fuzzy regression model of expected fuzzy random data

min
Ā

J(Ā) = ∑
k
(Ār

k− Āl
k)

subject to
Ār

k ≥ Āl
k ≥ 0,

MYi

∑
t=1

|2Y t
i +Y t,r

i +Y t,l
i |

4
pt

i ≤
K
∑

k=1
Ār

k

(
MXik

∑
t=1

|2Xt
ik +Xt,r

ik +Xt,l
ik |

4
qt

ik

)
,

MYi

∑
t=1

|2Y t
i +Y t,r

i +Y t,l
i |

4
pt

i ≥
K
∑

k=1
Āl

k

(MXik

∑
t=1

|2Xt
ik +Xt,r

ik +Xt,l
ik |

4
qt

ik

)
,

for i = 1, . . . ,N,k = 1, . . . ,K.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26.10)
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This calculation is obtained directly from Examples 1 and 3. The model (26.10) is a
simple LP problem. The model (9) can be obtained the solution so that the regression
model includes all the expectations. We show a numerical example of simple linear
regression for fuzzy random data based on expected values.

Example 5. Assume that the input and output fuzzy random data are as follows:

X1 =
(
(2,1,3)T ,0.3;(3,2,4)T ,0.7

)
, Y1 =

(
(12,10,16)T ,0.2;(14,12,16)T ,0.8

)
;

X2 =
(
(3,2,4)T ,0.5;(4,3,5)T ,0.5

)
, Y2 =

(
(14,10,16)T ,0.4;(18,16,20)T ,0.6

)
;

X3 =
(
(6,4,8)T ,0.5;(8,6,10)T ,0.5

)
, Y3 =

(
(17,16,18)T ,0.8;(20,18,22)T ,0.2

)
;

X4 =
(
(12,10,14)T ,0.25;(14,12,16)T ,0.75

)
, Y4 =

(
(22,20,24)T ,0.3;(26,24,28)T ,0.7

)
;

X5 =
(
(14,12,16)T ,0.5;(16,14,18)T ,0.5

)
, Y5 =

(
(30,32,34)T ,0.4;(32,36,40)T ,0.6

)
;

X6 =
(
(18,16,20)T ,0.2;(21,20,22)T ,0.8

)
, Y6 =

(
(42,40,44)T ,0.5;(46,44,48)T ,0.5

)
.

The fuzzy regression model of expected fuzzy random data for the given data is

Ȳi
∗ = Ā∗E(Xi).

From table 26.3, the expectation of the input-output data can be calculated as:

E[X1] =
2×2 + 1 + 3

4
×0.3 +

2×3 + 2 + 4
4

×0.7 = 2.7,

E[Y1] =
2×12 + 10 +16

4
×0.3 +

2×14 + 12 +16
4

×0.7 = 13.7;

similarly,

E[X2] = 3.5,E[X3] = 7,E[X4] = 13.5,E[X5] = 15,E[X6] = 20.4;

E[Y2] = 16.2,E[Y3] = 17.6,E[Y4] = 24.8,E[Y5] = 34.4,E[Y6] = 44.

From (26.10), the fuzzy regression model of expected fuzzy random data corre-
sponding to the given input-output data can be formulated as follows:

min
Ā

J(Ā) = Ār− Āl

subject to
Āl ≤ Ār,

2.7Āl ≤ 13.7≤ 2.7Ār,
3.5Āl ≤ 16.2≤ 3.5Ār,

7Āl ≤ 17.6≤ 7Ār,
13.5Āl ≤ 24.8≤ 13.5Ār,

15Āl ≤ 34.4≤ 15Ār,
20.4Āl ≤ 44≤ 20.4Ār,

0 ≤ Ār, Āl.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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By solving this LP problem, we obtain the optimal solution is Āl = 1.837037 and
Ār = 5.074074. Therefore, the following fuzzy regression model for fuzzy random
data is obtained:

Ȳi
∗ = Ā∗E(Xi) =

(
[Āl + Ār]

2
, Āl, Ār

i

)
T

E(Xi) = (3.456,1.837,6.911)TE(Xi).

26.5 Concluding Remarks

In this paper, employing fuzzy random variables, we built a regression model for
fuzzy random data. Taking their expectation we can simplify the model as shown in
Equation (26.10). This model illustrates that we can take the expectation of fuzzy
random data without considering the fuzziness of fuzzy random variables. There-
fore, the width of fuzzy regression model will be narrowed because we do not con-
sider the fuzziness of all fuzzy random data. But this result is more significant in
real applications. On the other hand, we can discuss confidence interval considering
the variance of fuzzy random variables in the future work.
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Chapter 27
Optimal Workers’ Placement
in an Industrial Environment

Shamshul Bahar Yaakob and Junzo Watada

27.1 Introduction

In an industrial environment, human factors are defined as interdisciplinary study
aimed at optimization of work systems relating to physical and psychological char-
acteristics of workers, investigate the complexity and generally vague relationships
between people, machines, and physical environments. The main objective of such
investigation is to bridge the gap between human capacities and job requirements,
and to also to make a conducive and productive workplace.

A study about the human factors discipline arose as a reaction to the need to
consider how the worker manages to cope with his work environment. However,
because of (1) natural imprecision and uncertainty inherent to complex human-
centered systems, and (2) lack of related research methodology, this objective has
not been easy to fulfill [14]. Conventional scientific thinking, based on crisp logic
is oriented towards exact quantitative methods of analysis. Due to vagueness, such
methods link uncertainty with randomness only and unsuccessful to identify the
worker and job based uncertainties. Furthermore, based on the principle of incom-
patibility, precision and significance become almost mutually exclusive characteris-
tics at a high level of complexity. Hence, an effort to make precise and yet significant
statements about the complexity of the relationships between workers, jobs, and en-
vironments may be an illusive task, and the conventional modeling methods may
not have much relevance here.

An innovative methodology in the discipline of human factors is needed to con-
sider for imprecision and vagueness of such relationships. Zadeh [21], stated that
“Although the conventional mathematical techniques have been and will continue
to be applied to the analysis of humanistic systems, it is clear that the great com-
plexity of such systems call for approaches that are significantly different in spirit as
well as in substance from the traditional methods-method which are highly effective
when applied to mechanistic systems, but are far too precise in relation to systems
in which human behavior plays an important role.”

According to Zimmerman [24], the real situations are frequently not crisp and
deterministic and this phenomenon is cannot be described precisely. The conven-
tional human factors methodologies try to ignore system complexities, and believed
that existing properties of mathematics match to some existing relationships char-
acteristic to the system under investigation [21].

R. Seising (Ed.): Views on Fuzzy Sets and Systems, STUDFUZZ 243, pp. 547–565.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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Fuzziness is a type of deterministic uncertainty. It describes degree vagueness
[17]. Uncertainty measured by fuzziness refers to the degree to which event occurs.
Although such uncertainty arises at all levels of cognitive processes, people have
the abilities to understand and utilize vagueness which is difficult to analyze within
the conventional scientific thinking framework. Hence, awareness of vagueness, im-
plicit in human behavior, should be the base of any human factor studies.

Zadeh [22] indicates that for a systematic treatment of vagueness and uncertainty
due to fuzziness in both quantitative and qualitative ways a conceptual framework
is needed in the human factors area. Here, the theory of fuzzy sets represents an ef-
fort for constructing such a framework. Singleton [16] points out that “most human
characteristics have very complex contextual dependencies which are not readily
expressible in tabulations of numbers even in multivariate equations.” So far, there
is evidence that people realize vague concepts, for example in concepts of a natu-
ral language that can be represented by fuzzy sets, and manipulate them according
to the rules of fuzzy logic [15], [4]. Workers’ placement is mainly concerned with
seeking the optimal matching between workers and jobs within the constraints of
available human resources and jobs. The evaluation of workers is important for de-
cision makers (DMs) to select better workers under various evaluation criteria in an
industrial environment [7], [12]. The aim of this research is to help the DMs make
more effective selections from optional candidates [1].

The workers’ placement is concerned with seeking the optimal matching between
the workers and jobs within the constraints of available human resources and jobs
[5], [8]. In non-fuzzy conventional workers’ placement approaches, the evaluation
of workers’ suitability tends to use exact values. Kim et al discussed it from per-
sonal network [9], [10]. However, due to the vagueness of job demands as well as
the complexity of human attributes, the exact evaluation of workers’ suitability is
quite difficult. The fuzzy theory developed by Zadeh [22], [23] and the concept of
fuzzy numbers presented by Dubois and Prade [6] can be applied to improve the
assessments and the expressions for the assessment results in an industrial environ-
ment. Liang and Wang [12] and Kim et al. [11] applied the concepts of combining
the fuzzy set theory and weighted complete bipartite graphs to develop a polynomial
time algorithm for solving personnel placement in a fuzzy environment.

In an industrial environment, an evaluation of workers’ relationship, i.e., a group
evaluation is also important as well as individual evaluation. In this paper, we de-
velop a new method in which the workers’ relationship is included to determine
the optimal workers’ placement. The triangular fuzzy numbers [12] are used to de-
scribe the suitability of workers and the approximate reasoning of linguistic values
[23], [2]. The fuzzy addition, subtraction and multiplication derived based on the
extension principle [19] are used to implement our algorithm.

In the following section, fuzzy numbers and linguistic variables are briefly rein-
troduced. Section 27.3 describes about workers’ placement problem, and the inclu-
sion of the relationship among the workers is proposed and discussed. Section 27.4
shows typical examples are also presented in order to demonstrate the effectiveness
of our proposal and Section 27.5 concludes this section with some remarks.
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27.2 Fuzzy Numbers and Linguistic Variables

27.2.1 The Concept of Fuzzy Numbers

In many situations people are only able to characterize numeric information impre-
cisely. For example people use terms like “about 5, “near 0,” “more or less than 10.”
These are examples of what are called fuzzy numbers. A fuzzy number is a quantity
whose value is imprecise, rather than exact as is the case with ordinary numbers.
Any fuzzy number can be thought of as a function whose domain is a specified set,
usually the set of real numbers, and whose range is the span of non-negative real
numbers between, and including, 0 and 1000. Each numerical value in the domain
is assigned a specific grade of membership where 0 represents the smallest possible
grade, and 1000 is the largest possible grade.

As formally known fuzzy numbers represent the real world more realistically
than ordinary numbers. For example, that you are evaluating along a highway where
the speed limit is 55 miles an hour. You try to hold your speed at exactly 55 mph,

Fig. 27.1. Fuzzy numbers
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but your car lacks “cruise control,” so your speed varies from moment to moment. If
you graph your instantaneous speed over a period of several minutes and then plot
the result in rectangular coordinates, you will get a function that looks like one of
the curves shown below.

These three functions is known as membership functions, are all convex where
the grade starts at zero, rises to a maximum, and then declines to zero again as the
domain increases. Yet, some fuzzy numbers have concave, irregular, or even chaotic
membership functions. There is no limitation on the shape of the membership curve,
as long as each value in the domain corresponds to one and only one grade in the
range and the grade never less than 0 or more than 1000.

Using the theory of fuzzy subsets we can represent these fuzzy numbers as fuzzy
subsets of the set of real numbers. However, in order to use these fuzzy numbers
in any intelligent system we must be able to perform arithmetic operations on these
numbers. In particular we must be able to add, subtract, multiply, and etc. with fuzzy
numbers. With fuzzy numbers, we can make approximate comparisons. It is quite
possible, for example, to ask if an input person’s age is approximately equal to about
30. This is often very useful when our data or imprecise, or when we don’t want
the rigidity of accepting a person 30 years old but rejecting one thirty years plus
one day old. Fuzzy numbers are used in various fields such as statistics, computer
programming, engineering, and experimental science. The concept takes into ac-
count the fact that all phenomena in the physical universe have a degree of inherent
uncertainty.

27.2.2 The Concepts of Linguistic Variables

Just like an algebraic variable takes numbers as values, a linguistic variable takes
words or sentences as values [24]. In order to evaluate the workers’ suitability, the
considerations are usually from multiple aspects, for example leadership, experi-
ence, self-confidence, communication skill, etc. and the evaluation data of the work-
ers’ suitability under each of the criteria, as well as the importance of the criteria
are very often assessed by linguistic terms, for example, “very good”, “poor”, etc..
Since quite a few evaluation data were done in linguistic terms, the exact evaluation
of workers’ suitability is almost impossible.

Here, by using the linguistic variable with values which are not numbers but
words of the natural language. A linguistic variable is interpreted as a label for a
fuzzy restriction on the values of the base variable. The fuzzy restrictions are char-
acterized by the compatibility functions. Each such functions associates with each
value of the base variable a number in the interval [0, 1] representing the compat-
ibility with the fuzzy restriction. Typical values of linguistic variables contain not
only the primary terms. For example such as ’good’ or ’poor’, but also hedges such
as ’very’ or ’more or less’, fuzzy connectives such as ’or’ and ’and’ and the negation
’not’. The hedges, connectives, and negation are used as modifiers of the operands
in a context-dependent situation. The modification of the meaning of primary terms
can be done as follows
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very poor . . . poor2 → f 2(u)
not poor . . . 1- poor→ 1− f (u)
more or less good . . . good0.5 → f 0.5(u)
extremely good . . . very(very good) = good4 → f 4(u)

27.2.3 Scope of This Study

The aim of the fuzzy set theory is to deal with problems which have a source of
vagueness. The membership function fz(x) of the fuzzy set Z represents the degree
of membership or the grade of x in the fuzzy set Z. The larger fz(x), the stronger the
belonging degree of x in Z. Under a fuzzy environment fuzzy numbers are useful in
promoting the representation and the information processing. A fuzzy number z in
R(real line) is a triangular one, if its membership function

fz :→ [0,1] is defined as follows :

fz(x) =

⎧⎪⎨⎪⎩
x−a
b−a , a < x < b
x−c
b−c , b < x < c

0, otherwise

where −∞ < a = b = c < ∞. The triangular fuzzy number can be denoted by
z =< a,b,c >. By using the extension principle [23], the fuzzy sum⊕, and the fuzzy
subtraction " of any two triangular fuzzy numbers are also triangular fuzzy num-
bers. The product of any two triangular fuzzy numbers is an approximate triangular
fuzzy number. For example, let zl = (al,b1,cl) and z2 = (a2,b2,c2). Then, zl⊕ z2 =
(al +a2,bl +b2,cl +c2),zl"−z2 = (al−c2,b2−bl,cl−a2) and g⊗z = (ga,gb,gc).
Here g is a real number. If a1 ≥ 0 and a2 ≥ 0, then zl⊗ z2 = (a1a2,b1b2,c1c2). The
triangular fuzzy numbers are used to denote the fuzzy suitability of workers and
the approximate reasoning of linguistic values. The center value of “b” presents
the maximal grade of fz(x) and is the most possible value of the workers’ suit-
ability. The “a” and “c” are the upper and the lower bounds of available area of
the workers’ suitability. Linguistic descriptions of complex situations or strategies
generally include fuzzy denotations [18]. In this paper, the triangular fuzzy num-
ber is employed and assigned to a linguistic variable. For example, a set of very
slow, slow, normal, fast, very fast is described by a set of triangular fuzzy num-
bers (2,3,4),(4,6,9),(9,11,13),(13,16,18),(18,19,20). The mutual compatibility
functions of these linguistic values are subjectively defined by the DMs. The lin-
guistic values are used to characterize the DMs’ linguistic assessments about criteria
weightings and workers’ suitability relative to various evaluation criteria.

The proposed evaluation method represents final suitability scores using fuzzy
numbers. During ranking process, fuzzy numbers are defuzzified to obtain their best
non-fuzzy performance values (BNP) [18]. There are various defuzzification ap-
proaches have been proposed [3]. In this study, in order to rank fuzzy numbers, the
center of area (COA) approach has been selected because this method is simple, prac-
tical and does not involve evaluator preference. The COA method generates the center
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of gravity of the possibility distribution of a fuzzy number. Meanwhile, the BNP value
of a triangular fuzzy number Z = (a,b,c) can be obtained by equation 27.1.

BNP =
a +[(c−a)+ (b−a)]

3
(27.1)

Therefore, the workers are ranked according to the BNP values of their suitability
score.

27.3 Workers’ Placement Problem

In this section, the evaluation including the relationship among the workers is de-
veloped in order to tackle the workers’ placement problems efficiently. By using the
concepts of triangular fuzzy numbers and linguistic variables, the workers’ suitability
evaluation is performed. The evaluation criteria may be classified into three factors:

a. Social factors include communication skill, professional knowledge, coopera-
tion, leadership, sense of responsibility, relationship to other members, etc.

b. Performance factors include speed, quality, attendance condition, late coming,
overtime, experience, etc.

c. Mental factors include intelligence, problem solving ability, creativity, self-
confidence, etc.

In this paper the relationship is evaluated by that between two workers. The rela-
tionship evaluation is performed via the sum of all the evaluation results between
any couple of workers. This prescription can be generally applied to any size of the
worker group, and is appropriate for our purpose and for computations. The DMs
may also choose a linguistic weighting set W = not important, not so important,
normal, important, very important to evaluate the importance of each criterion. In
general each criterion has its importance weight depending on the nature of jobs.
Therefore in the following computation method the weighted sum is performed (see
equation 27.2). Suppose the following situation: the DMs are responsible for as-
sessing the suitability of m workers (Pi, i = 1, . . .m) under each of the k criteria
(Ct ,t = 1, . . .k). Let e(J, i,Ct ) = (a,b,c) be a triangular fuzzy number, which is a
rating assigned to a worker Pi by the DMs for a criterion (Ct) for a job (J). Let
W (J,Ct) be the importance weight of the criterion Ct for the job J. The DMs can
fix the total worker number assigned to each job depending on the job feature, if
required. If not, the total worker number is also determined in our algorithm. When
the ranking order is determined, the center values of fuzzy triangle numbers are
primarily used. If there is a tie on the grade value (a,b,c), then the subtraction
((c− b)− (b− a)) between (the upper bound – the center value) and (the center
value – the lower bound) of the triangle number is employed to fix the ranking or-
der. This prescription is based on the following: a worker having a larger value of
(c− b)− (b− a) may have relatively a high ability. The computation flow of our
method shown in Figure 27.2 is as follows:
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Step 1:
Determine the evaluation criteria. Select the appropriate rating scale to assess
the importance weights of the criteria and the suitability of the workers to the
criteria. Assign the linguistic variables to the triangular fuzzy numbers. Tabulate
suitability ratings (S) assigned to each worker (P) for each criterion (Ct) by each
DM. Tabulate importance weightings (W (J,Ct )) assigned to each criterion (Ct)
for each job (J) by the DMs.

Step 2:
A fuzzy suitability ranking of each worker Pi for the job J can be obtained by
standard fuzzy arithmetic operations:

Eeval =
1
k ∑t=1

ke(J, iCt)W ( j,Ct ) (27.2)

In equation 27.2 the summation result is divided by the total number k of criteria
employed so that Eeval(J, i) does not depend on k. The ranking order is deter-
mined by the total grade value Eeval(J, i) for each job J.

Step 3:
In order to find possible combinations PCs, the DMs assign a fuzzy triangle num-
ber to the minimum grade value required for each job.

Step 4:
Based on the workers’ suitability evaluation result, the possible combinations
PCs are obtained in order of the ranking each worker having a larger grade value
is selected and assigned to the PC. The total grade value for the possible combi-
nation Epc(J) for the job J is as follows:

EPC(J) =∑
t

PCEeval(J, i) (27.3)

where the summation is performed over all members of the PC. The results are
listed in the ranking order based on the total grade value EPC(J) for the possible
combinations for each job. If any PC does not satisfy the minimum grade value,
return to Step 3.

Step 5:
Evaluate the relationship among the workers in a combination for a job: the rela-
tionship among the workers is computed as follows:

ERL(J) = WRL(J)⊗
[

1

f C2
∑
i, j

eRL(i, j)

]
(27.4)

where fC2 = f ( f−1)
2 ,eRL(i, j) is a value assigned to the relationship between two

workers (Pi andPj) in the combination, the summation is taken over all couples
of workers in the job J,WRL(J) is the importance weight of the relationship for
the job J, and ERL(J) is the total relationship-evaluation value. The summation
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Fig. 27.2. Proposed method

is normalized by f C2 so that ERL(J) does not depend on the number ( fC2) of
couples of workers. The relationship among the workers is evaluated only for
possible combinations in order to save computation time. The final evaluation is
computed as follows:

Ecomb(J) = EPC(J)+ ERL(J) (27.5)

The result for final evaluation is listed in the ranking order based on the grade
value Ecomb(J).

Step 6:
If the total job number T J is one, the highest-grade combination is the best one.
When the total job number T J is more than one, the DMs specify if one worker
can be assigned to plural jobs or not, depending on the job nature. If one worker
is not assigned to plural jobs, an overlapped assignment of one worker is checked
and avoided in the total combination construction. Based on this information, the
total final combination evaluation TEcomb is as follows:

TEcomb =∑J = 1T JEcomb(J). (27.6)

The result for the total final evaluation TEcomb is listed in the ranking order.
The combination that has the highest grade value is the result for the workers’
placement problem.
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27.4 An Illustrative Examples and Discussion

In this section, a typical example problem of workers’ placement is designed to
demonstrate the effectiveness of the method that has been proposed in this paper.
An example is focused on a production line in an industrial environment.

27.4.1 Examples Description

Case 1: the number of grouping workers in each job is fixed to be three by the DMs.
Suppose that the DMs want to find the better workers’ placement for a production
line. The information for the problem is as follows:

(a)the workers are 20 persons that are identified by ID number from 1 to 20,
(b)there are 5 evaluation criteria. The five evaluation criteria are categorized in Table

27.1. The importance weight W (J,Ct ) of each criterion Ct for the job J presented
in Table 27.3,

(c)each worker should be assigned to only one job,
(d)the number of jobs is 3,
(e)the importance weight WRL(J) of the relationship is as shown in Table 27.6(b)

and
(f) the number of grouping workers in each job fixed to be 3 by the DMs.

Case 1: Stepwise description of workers’ evaluation and placement is as follows:

Step 1:
The DMs input the grade of the linguistic values of workers for related criteria.
The assessment data is listed in Table 27.2 where the workers’ names are identi-
fied by the ID number. In Table 27.2, the assignment between linguistic variables
and fuzzy triangular grade numbers is also presented. To evaluate the relative
importance of the five criteria, the DMs fix the linguistic weighting scales. The
linguistic weighting scales for different criteria are presented in Table 27.3.

Step 2:
By using equation 27.1, a fuzzy suitability ranking order of each worker is ob-
tained. The result of workers’ evaluation is listed in the ranking order as shown
in Table 27.4 for the job 1.

Step 3:
The DMs input the information about the minimum grade value required.

Table 27.1. The workers’ evaluation criteria

Evaluation criteria
Speed
Quality
Leadership
Professional knowledge
Self-confidence
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Table 27.2. Ratings e(J, i,Ct) of workers under the five evaluation criteria

ID no. Speed Quality Leadership Professional Self-
knowledge confidence

1 slow A vgood A C
2 fast C good B D
3 vslow D bad B A
· · · · · ·
· · · · · ·

20 normal B normal C B

a vslow: very slow; b vbad: very bad; c vfast: very fast; d vgood: very good.

Speed Quality Leadership Professional Self- Grade
knowledge confidence e(J, i,Ct)

vslowa E vbada E E <2,3,4>
slow D bad D D <4,6,9>

normal C normal C C <9,11,13>
fast B good B B <13,16,18>

V f astc A vgoodd A A <18,19,20>

Table 27.3. Weighting scale W (J,Ct) for assessing the importance of each criterion
(a)

Job Speed Quality Leadership Professional Self-
knowledge confidence

1 normal important not so important normal not so important
2 important normal normal not important important
3 important very important normal important normal

(b)

# Linguistic Grade
value W (J,Ct)

1 not important <0.5,1.0,1.5>
2 not so important <1.5,2.0,2.5>
3 normal <2.5,3.0,3.5>
4 important <3.5,4.0,4.5>
5 very important <4.5,5.0,5.5>

Step 4:
By using equation 27.2, the possible combinations are computed as shown in
Table 27.5. The best combination is (13, 14, 8), (1, 11, 6) and (4, 9, 14) for the
three jobs with the center value 275.9 of the total grade value.

Step 5:
Aggregate the ratings for relationship among the workers are shown in
Table 27.6. The DMs input the grade values for related workers. By using
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Table 27.4. Result for workers’ evaluation in raking order with grade values eeval(J, i)

JOB 1
Total Grade = 95.8 Workers’ID = 13
Total Grade = 90.7 Workers’ID = 14
Total Grade = 88.3 Workers’ID = 8
Total Grade = 86.6 Workers’ID = 16
Total Grade = 84.5 Workers’ID = 4
Total Grade = 81.2 Workers’ID = 19
Total Grade = 76.9 Workers’ID = 9
Total Grade = 75.9 Workers’ID = 10
Total Grade = 73.7 Workers’ID = 15
Total Grade = 69.9 Workers’ID = 5
Total Grade = 64.4 Workers’ID = 7
Total Grade = 60.8 Workers’ID = 18
Total Grade = 54.0 Workers’ID = 6
Total Grade = 53.3 Workers’ID = 11
Total Grade = 50.9 Workers’ID = 17
Total Grade = 47.2 Workers’ID = 1
Total Grade = 45.7 Workers’ID = 12
Total Grade = 42.2 Workers’ID = 2
Total Grade = 42.2 Workers’ID = 20
Total Grade = 26.0 Workers’ID = 3

Table 27.5. Result for workers’ combination via EPC(J) without the evaluation for relation-
ship among the workers (Case 1: the number of grouping workers in each job is fixed to be 3
by ths DMs)

JOB 1
Ranking top 10 beforethe evaluation for relationships as follows:
(13, 14, 8) grade value is 91.6
(13, 14, 16) grade value is 91.0
(13,14,4) grade value is 90.3
. . .. . .
JOB 2
Ranking top 10 beforethe evaluation for relationships as follows:
(1, 11, 6) grade value is 93.8
(1, 11, 20) grade value is 93.0
(1, 11, 16) grade value is 92.6
. . .. . .
JOB 3
Ranking top 10 before the evaluation for relationships as follows:
(4, 9, 10) grade value is 90.5
(4, 9, 19) grade value is 89.6
(4, 9, 3) grade value is 88.6
. . .. . .
The best combination is (13, 14, 8), (1, 11, 6), (4. 9, 10) and the total grade value is 275.9
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equation 27.3, the relationship grade among the workers is computed. By using
equation 27.4, the combination of the workers is evaluated. The result is shown
in Table 27.7.

Step 6:
By using equation 27.5, the total grade value of the final combination is com-
puted. The result for the final combination is listed in Table 27.7. The best com-
bination is ((13, 14, 16), (1, 11, 10), (4, 9, 19)) for the three jobs with the center
value 539.6 of the total grade value.

In Tables 27.5-27.7 only the center values of the triangle numbers are presented
for clarity. Table 27.5 shows the grade value of the workers’ suitability indices by
using the previous method in which the evaluation of the workers’ relationship is not
included. In other words, Table 27.5 shows the result of the individual evaluation.
By using the method presented in this paper, both the individual evaluation and the
group one are performed, and the result is presented in Table 27.7. Without the group
evaluation, the center value of the fuzzy grade for the best combination ((13, 14, 8),
(1, 11, 6), (4, 9, 14)) in Table 27.5 is 275.9. Even for this fixed combination, we can
compute and include the relationship-evaluation grade values, and it is 415.9. After
the evaluation for relationship among the workers, the center grade value 539.6 for
the best combination in Table 27.7 is higher than the total grade value 415.9 for the
best combination in Table 27.5 by 29.7%.

Table 27.6. Rating scale for assessing the relationship between two workers, and weighting
scale WRL(J) for assessing the importance of the relationship

(a)

Linguistic value Grade eRL(i, j)
1 worst <0,1,2>
2 poor <1,4,6>
3 fair <6, 10, 14>
4 good <14,16,18>
5 best <18,19,20>

(b)

Job Relationship
1 very important
2 important
3 very important

(c)

Linguistic values Grade WRL(J)
1 not important <0.5, 1.0, 1.5>
2 no so important <1.5, 2.0, 2.5>
3 normal <2.5, 3.0, 3.5>
4 important <3.5, 4.0, 4.5>
5 very important <4.5, 5.0, 5.5>
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Table 27.7. Result for workers’ combination via Ecomb(J) with the evaluation for relationship
among the workers (Case 1: the number of grouping workers in each job is fixed to be 3 by
the DMs.)

Result after the evaluation for relationships Workers’RelationshipResults
Job 1 Ecomb(J) ERL(J)
(13,14,16) grade value is 186.0 95.0
(13,14,4) grade value is 175.3 85.0
(13,14,8) grade value is 1141.6 50.0
. . . . . . . . . . . . . . .
JOB 2
(1,11,20) grade value is 169.0 76.0
(11,6,20) grade value is 154.7 64.0
(1,11,16) grade value is 152.6 60.0
. . . . . . . . . . . . . . .
JOB 3
(4,9,19) grade value is 184.6 95.0
(4,9,3) grade value is 163.6 75.0
(4,9,10) grade value is 140.5 50.0
. . . . . . . . . . . . . . .
The best combination is (13,14,16), (1,11,20), (4,9,19) and the total grade value TEcomb is 539.6

Case 2: the number of grouping workers in each job is not fixed. Each worker must
be assigned to one job. Suppose that the DMs want to find the better workers’ place-
ment for a production line. The information for the problem is as follows:

(a)the workers are 20 persons that are identified by ID number from 1 to 20,
(b)there are 5 evaluation criteria,
(c)each worker should be assigned to only one job,
(d)the number of jobs is 5 and
(e)the number of grouping workers in each job are not fixed.

A stepwise description of workers’ evaluation and placement is as follows:

Step 1:
Same with Case 1.

Step 2:
Same with Case 1.

Step 3:
The DMs input the information about the minimum grade value required.

Step 4:
By using equation 27.3, the possible combinations are computed as shown in
Table 27.8. The best combination is (13, 14, 8, 16), (1, 11, 6, 20), (4, 9, 10, 19),
(17, 12, 3, 15) and (5, 18, 2, 7) for the three jobs with the center value 549.0 of
the total grade value.

Step 5:
By using equation 27.4, the relationship grade among the workers is computed.
By using equation 27.5, the combination of the workers is evaluated.
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Table 27.8. Result for workers’ combination via EPC(J) without the evaluation for relation-
ship among the workers (The number of the job is 5 and each worker must be assigned to one
job)

Job 1
(13,14,8,16) grade value is 90.4
(13,14,8,4) grade value is 89.8
(13,14,16,4) grade value is 89.4
. . . . . . . . . . . . . . .
Job 2
(1,11,6,20) grade value is 92.4
(1,11,6,16) grade value is 92.1
(1,11,20,16) grade value is 91.5
. . . . . . . . . . . . . . .
Job 3
(4,9,10,19) grade value is 88.3
(4,9,10,3) grade value is 87.6
(4,9,19,3) grade value is 86.9
. . . . . . . . . . . . . . .
JOB 4
Ranking top 10 before the evaluation for relationships as follows:
(17,12,3,15) grade value is 91.7
(17,12,3,6) grade value is 90.5
(17,12,15,6) grade value is 90.1
. . . . . . . . . . . . . . .
JOB 5
Ranking top 10 before the evaluation for relationships as follows:
(5,18,2,7) grade value is 91.2
(5,18,2,14) grade value is 90.5
(5,18,7,14) grade value is 89.8
. . . . . . . . . . . . . . .
The best combination is (13,14,8,16), (1,11,6,20), (4,9,10,19),(17,12,3,15)
and the total grade value is 549.0

Step 6:
By using equation 27.6, the total grade value of the final combination is com-
puted. The result for the final combination is listed in Table 27.9. The best com-
bination is ((13, 14, 8, 16), (1, 11, 6, 20), (4, 9, 10, 19), (17, 12, 3, 15), (5, 18, 2,
7)) for the three jobs with the center value 791.9 of the total grade value,

In Tables 27.8 and 27.9 only the center values of the triangle numbers are presented
for clarity. Table 27.8 shows the grade value of the workers’ suitability indices by
using the previous method in which the evaluation of the workers’ relationship is
not included. In other words, Table 27.4 shows the result of the individual evalu-
ation. By using the method presented in this paper, both the individual evaluation
and the group one are performed, and the result is presented in Table 27.9. Without
the group evaluation, the center value of the fuzzy grade for the best combination
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Table 27.9. Result for workers’ combination via Ecomb(J) with the evaluation for relationship
among the workers (The number of job is 5 and each worker must be assiged to one job)

Result after the evaluation for relationships Workers’RelationshipResults
Job 1 Ecomb(J) ERL(J)
(13,14,8,4) grade value is 174.8 85.0
(13,14,16,4) grade value is 169.4 80.0
(13,8,16,4) grade value is 163.8 75.0
. . . . . . . . . . . . . . .
JOB 2
(1,11,20,16) grade value is 163.5 72.0
(11,6,20,16) grade value is 161.7 72.0
(1,11,6,16) grade value is 148.1 56.0
. . . . . . . . . . . . . . .
JOB 3
(9,10,19,3) grade value is 179.3 95.0
(4,10,19,3) grade value is 160.0 75.0
(4,9,10,3) grade value is 157.6 70.0
. . . . . . . . . . . . . . .
JOB 4
(17,12,15,6) grade value is 147.1 57.0
(12,3,15,6) grade value is 145.7 57.0
(17,3,15,6) grade value is 139.8 51.0
. . . . . . . . . . . . . . .
JOB 5
(5,18,2,7) grade value is 127.2 91.2
(5,18,7,14) grade value is 121.8 90.5
(18,2,7,14) grade value is 121.3 89.8
. . . . . . . . . . . . . . .
The best combination is (13,14,8,4), (1,11,20,16), (9,10,19,3),(17,12,15,6), (5,18,2,7)
and the total grade value T Ecomb is 791.9

((13, 14, 8, 16), (1, 11, 6, 20), (4, 9, 10, 19), (17, 12, 3, 15), (5, 18, 2, 7)) in Ta-
ble 27.8 is 549.0. Even for this fixed combination, we can compute and include the
relationship-evaluation grade values, and it is 659.1. After the evaluation for rela-
tionship among the workers, the center grade value 791.9 for the best combination
in Table 27.9 is higher than the total grade value 659.1 for the best combination
in Table 27.8 by 20.1%. It is concluded that by using our method a more effective
solution is obtained for the workers’ placement in an industrial environment.

27.4.2 Discussion

The theory of fuzzy sets has been successfully applied in the modeling of imprecise
systems in various disciplines such as cognitive psychology, information processing
and control, decision-making, biological and medical, sociology and linguistic, im-
age processing and pattern recognition and artificial intelligence. In this study, based
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on the industrial environment, workers’ placement is mainly concerned with seek-
ing the optimal matching between workers and jobs with the constraints of available
human resources and jobs. In this research, a new method was proposed to solve the
problem of workers’ placement in an industrial environment. The proposed method
includes the evaluation of relationship among the workers. In this method, not only
the individual evaluation but also the group evaluation are performed and included to
find out the better combination. In order to make the more convincing and accurate
decision, the group evaluation is required. The relationship among the workers in
the group is one of the important factors which should be evaluated. The proposed
method was applied to typical application examples. The results demonstrate that
the workers’ relationship is one of the important factors and our method is effective
for the decision making process. In conventional (non-fuzzy) workers’ placement
approaches, the evaluation of workers’ suitability tends to use exact values. How-
ever, due to the vagueness of job demands as well as the complexity of human at-
tributes, the exact evaluation of workers’ suitability is quite difficult. To evaluate the
workers’ suitability in an industrial environment, the evaluation is usually performed
from multiple aspects such as leadership, communication skill, self-confidence, etc.
The evaluation data of the workers’ suitability under each criterion as well as the
importance weight of the criteria are very often assessed by linguistic terms, for
example “very good”, “very bad”, etc. Since a vague evaluation data is provided in
fuzzy linguistic variables, it is rather difficult to make a suitable workers’ placement
by using the conventional workers’ placement approaches. By using the applications
of the fuzzy sets theory and the concepts of triangular fuzzy numbers, the expression
and assessments under fuzzy environment can be improved. In this research, the tri-
angular fuzzy numbers are used to compute the workers’ evaluation and placement.
In order to evaluate the workers’ suitability, the evaluation criteria are classified into
three factors: social, performance and mental factors. For instance, the social fac-
tors include leadership, communication skill, etc. The performance factors include
speed, quality, etc. and the mental factors include self-confidence, intelligence, etc.
In order to make an evaluation smoothly, in this research four types of weighting
scale techniques are available: manual weighting scale, equal weighting scale, en-
hanced weighting scale and rank weighting scale. From the four types of weighting
scale methods, the DMs can select the scaling method depending on their career
levels that they have on the problems.

27.5 Conclusions

A new proposal was presented to solve the problem of workers’ placement in an
industrial environment. The relationship among the workers in the group (relation-
ship) is one of the important factors. In order to make a more convincing and accu-
rate decision, the group evaluation is required. In this paper, not only the individual
evaluation but also the group evaluation are performed and included to find a bet-
ter combination. We applied the proposed method to typical application examples.
The results demonstrate that the workers’ relationship is one of the key issues and
our proposal is effective for the decision making process. The domain of workers’
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placement illustrated in this paper is focused on a production line in an industrial
environment. It may be also applied to other types of placement problems. In this
paper, five levels of linguistic values are designated in the rating and weighting
scales. However, the number of levels can be adjusted correspondingly based on the
needs of detailed evaluation and the available data characteristics. In general, the
advantages found in the present method include that it can efficiently characterize
the variation of workers’ performance not only for individuals but also for a group
of workers. The efficiency and effectiveness of the decision making process can be
enhanced. By using the proposed method, the DMs also may maximize workers’
utilization and increase the job effectiveness. This paper was focused on the group
evaluation among the workers assigned to a group via the fuzzy approach. In gen-
eral the workers’ placement problem consists of several key issues including the
selection of evaluation criteria, the evaluation methods, an optimization scheme and
so on. These issues, except for those solved in the former papers [1], [7], [8], [12]
and this paper, should also be studied in the future. Since fuzziness becomes an im-
portant role in human cognition and performance, more research is needed to fully
explore the potential of this concept in human factors’ field. It is shows that the
theory of fuzzy set and systems will allow to deal with natural vagueness, no dis-
tributional subjectivity, and impression of human-centered systems which are too
imprecise to admit the use of conventional methods of analysis.
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Marius M. Bălaş is Associate Professor in the Department
of Automatics and Applied Software at the Faculty of Engi-
neering, University “Aurel Vlaicu” Arad (Romania). He holds
a Ph.D. in Applied Electronics and Telecommunications from
Polytechnic University of Timisoara since 2001. He is author
of more than 60 research papers in refereed Journals and In-
ternational Conferences. His research interests are in Fuzzy In-
terpolative Methodology of Controllers, Fuzzy Modelling and
Control, Fuzzy Systems, Electronics. Dr. Marius M. Bălaş is
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Valentina E. Bălaş is Associate Professor in the Depart-
ment of Automatics and Applied Software at the Faculty of
Engineering, University “Aurel Vlaicu” Arad (Romania). He
holds a Ph.D. in Applied Electronics and Telecommunications
from Polytechnic University of Timisoara since 2003. He is
author of more than 60 research papers in refereed journals
and International Conferences. His research interests are in
Fuzzy Control, Smart Sensors, Information Fusion, Electronics,
Measurements, System Theory and Automatics. Dr. Valentina
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