
Ad Hoc Data and the Token Ambiguity Problem

Qian Xi1, Kathleen Fisher2, David Walker1, and Kenny Q. Zhu1

1 Princeton University
2 AT&T Research

Abstract. PADS is a declarative language used to describe the syntax and seman-
tic properties of ad hoc data sources such as financial transactions, server logs and
scientific data sets. The PADS compiler reads these descriptions and generates a
suite of useful data processing tools such as format translators, parsers, printers
and even a query engine, all customized to the ad hoc data format in question. Re-
cently, however, to further improve the productivity of programmers that manage
ad hoc data sources, we have turned to using PADS as an intermediate language
in a system that first infers a PADS description directly from example data and
then passes that description to the original compiler for tool generation. A key
subproblem in the inference engine is the token ambiguity problem — the prob-
lem of determining which substrings in the example data correspond to complex
tokens such as dates, URLs, or comments. In order to solve the token ambiguity
problem, the paper studies the relative effectiveness of three different statistical
models for tokenizing ad hoc data. It also shows how to incorporate these mod-
els into a general and effective format inference algorithm. In addition to using
a declarative language (PADS) as a key intermediate form, we have implemented
the system as a whole in ML.

1 Introduction

An ad hoc data format is any data format for which useful data processing tools do
not exist. Examples of ad hoc data formats include web server logs, genomic data sets,
astronomical readings, financial transaction reports, agricultural data and more.

PADS [7,20] is a declarative language that describes the syntax and semantics of ad
hoc data formats. The PADS compiler, developed in ML, reads these declarative de-
scriptions and produces a series of programming libraries (parser, printer, validator and
visitor) and end-to-end tools (XML translator, query engine, reformatter, error monitor,
etc.). Consequently, PADS can dramatically improve the productivity of data analysts
who work with ad hoc data. However, PADS is not (yet) a silver bullet. It takes time for
new users to learn the language syntax and even experienced users can take hours or
days to develop descriptions for complex formats. Hence, to further improve program-
mer productivity, we have developed a system called LEARNPADS that automatically
generates end-to-end data processing tools directly from example data [9,8]. It uses ma-
chine learning techniques to infer a PADS description and then it passes that description
on to the PADS compiler. The compiler will in turn produce its suite of custom data
processing tools. Hence PADS now serves as a declarative intermediate language in the
tool generation process.

A. Gill and T. Swift (Eds.): PADL 2009, LNCS 5418, pp. 91–106, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

92 Q. Xi et al.

Our past experiments [9] have shown that LEARNPADS is highly effective when the
set of tokens it uses matches the tokens used in the unknown data set. For instance,
when the unknown data set contains URLs, dates and messages the inference system
will work very well when its tokenizer contains the correct corresponding definitions
for URLs, dates and messages used in the file. If the tokenizer does not contain these
elements, inference is still possible, but the inferred descriptions are generally much
more complex than they would be otherwise.

The challenge then is to develop a general-purpose tokenizer containing a wide vari-
ety of abstractions like URLs, dates, messages, phone numbers, file paths and more. The
key problem is that when using the conventional approach to building a tokenizer (i.e.,
regular expressions), as we did in our previous work, the definitions of basic tokens
overlap tremendously. For example, “January 24, 2008” includes a word made
up of letters, a couple of numbers, some spaces and English-like punctuation such as
the “,”. Does that mean this string should be treated as an arbitrary text fragment or is
it a date? Perhaps “January” an element of an string-based enumeration unconnected
to integers 24 and 2008? Perhaps the entire phrase should be merged with surround-
ing characters rather than treated in isolation? Doing a good job of format inference
involves identifying that the string of characters J-a-n-...-0-8 should be treated
as an indivisible token and that it is in fact a date. More generally, an effective format
inference engine for ad hoc data solves the Token Ambiguity Problem – the problem of
determining which substrings of a data file correspond to which token definitions in the
presence of syntactic ambiguity.

In this paper, we describe our attempts to solve the token ambiguity problem. In
particular, we make the following contributions:

– We redesign our format inference algorithm [9] to take advantage of information
generated from an arbitrary statistical token model. This advance allows the algo-
rithm to process a set of ambiguous parses, selecting the most likely parses that
match global criteria.

– We instantiate the arbitrary statistical token model with Hidden Markov Models
(HMMs), Hierarchical Maximum Entropy Models (HMEMs) and Support Vector
Machines (SVMs) and evaluate their relative effectiveness empirically. We also
compare the effectiveness of these models to our previous approach, which used
regular expressions and conventional prioritized, longest match for disambiguation.

– We augment our algorithm with an additional phase to analyze the complexity of
inferred descriptions and to simplify them when description complexity exceeds a
threshold relative to the underlying data complexity.

2 The Token Ambiguity Problem

Consider the log files generated by yum, a common software package manager. These
log files consist of a series of lines, each of which is broken into several distinct fields:
date, time, action taken, package name and version. Single spaces separate the fields.
For instance:

Ad Hoc Data and the Token Ambiguity Problem 93

Penum action {
install Pfrom("Installed");
update Pfrom("Updated");
erase Pfrom("Erased");

};
Pstruct version_hdr {

Pint major; ’:’;
}
Pstruct sp_version {

’ ’;
Popt version_hdr h_opt;
Pid version;

}

Precord Pstruct entry_t {
Pdate date;

’ ’; Ptime time;
’ ’; action m;
": "; Pid package;

Popt sp_version sv;
};
Psource Parray yum {

entry_t[];
};

Fig. 1. Ideal PADS description of yum.txt format

May 02 06:19:57 Updated: openssl.i686 0.9.7a-43.8
Jul 16 12:37:13 Erased: dhcp-devel
Dec 10 04:07:51 Updated: openldap.x86_64 2.2.13-4
...

Figure 1 shows an ideal PADS description of yum.txt written by a human expert.
The description is structured as a series of C-like type declarations. There are base types
like Pdate (a date), Ptime (a time) and Pint (an integer). There are also structured
types such as Penum (one of several strings), Pstruct (a sequence of items with dif-
ferent types, separated by punctuation symbols), Popt (an optional type) and Parray
(a sequence of items with the same type). PADS descriptions are often easiest read from
bottom to top, so the best place to start examining the figure is the last declaration in the
right-hand column. There, the declaration says that the entire source file (as indicated
by the Psource annotation) is an array type called yum. The elements of the array
are items with type entry_t. Next, we can examine the type entry_t and observe
that it is a new-line terminated record (as indicated by the Precord annotation) and
it contains a series of fields including a date, followed by a space, followed by a time,
followed by an action (which is another user-defined type), followed by a colon and a
space, etc. We leave the reader to peruse the rest of the figure.

Unfortunately, when we ran our original format inference algorithm [9] on this data
source, rather than inferring a compact 23-line description, our algorithm returned a
verbose 179-line description that was difficult to understand and even harder to work
with. After investigation, we discovered the problem. The data can be tokenized in
many ways, and the inference system was using a set of regular expressions to do the
tokenization that was a poor match for this data set. More concretely, consider the string
“2.2.13-4.” This string may be parsed by any of the following token sequences:

Option 1: [int] [.] [int] [.] [int] [-] [int]
Option 2: [float] [.] [int] [-] [int]
Option 3: [int] [.] [float] [-] [int]
Option 4: [id]

94 Q. Xi et al.

The best choice for this format is Option 4, id, because id can be used to parse
the data found at this point in all lines of the yum format. Unfortunately, the simplistic
disambiguation rules for the original system chose Option 2. Moreover, other lines are
tokenized in different ways. For instance, dhcp-devel, which also could have been
an id is tokenized as [word] and 0.9.7a-43.8 is tokenized as [float] [.]
[int] [char] [-] [float]. As each distinct tokenization of similar data re-
gions is introduced, the inference engine attempts to find common patterns and unify
them. However, in this case, unification was unsuccessful and the result was an overly
complex format.

The original inference algorithm disambiguates between overlapping tokens by using
the same strategy as common lexer-generators: It tries each token in a predefined order
and picks the first, longest token that matches. While effective for some data sources,
this simple policy makes fixed tokenization decisions up front, does not take contextual
information into account, and restricts the use of complex tokens like id, url and
message that shadow simpler ones.

3 The Format Inference Algorithm

Our new format inference algorithm consists of four stages: (1) building a statistical
token model from labeled training data; (2) dividing the text into newline-separated
chunks of data and finding all possible tokenizations of each chunk; (3) inferring a
candidate structure using the statistical model and the tokenizations; and (4) applying
rewriting rules to improve the candidate structure. Because this algorithm shares the
general structure of our earlier work [9], we focus on the salient differences here.

Training the statistical models. To speed up the training cycle, we created a tool ca-
pable of reading any PADS description and labelling the described data with the tokens
specified in the description. This way, all data for which we have PADS descriptions
can serve as a training suite. As we add more descriptions, our training data improves.
Currently, the training suite is biased towards systems data, and includes tokens for in-
tegers, floats, times, dates, IP addresses, hostnames, file paths, URLs, words, ids and
punctuation. Parsing of tokens continues to use longest match semantics and hence
the string “43.8” can be parsed by sequences such as [int] [.] [int] or [int]
[.] [float] or [float], but not by [float] [.] [int] or [float] [.]
[float]. We have experimented with a number of statistical models for tokenization,
which we discuss in Section 4.

Tokenization. When inferring a description, the algorithm computes the set of all pos-
sible tokenizations of each data chunk. Because these sequences share subsequences,
we organize them into a directed acyclic graph called a SEQSET. For example, Figure 2
shows the SEQSET for the substring “2.2.13-4”.

Each edge in the SEQSET represents an occurrence of a token in the data, while
each vertex marks a location in the input. If a token edge ends at a vertex v, then v
indicates the position immediately after the last character in the token. The first vertex
in a SEQSET marks the position before the first character in its outgoing edges.

Ad Hoc Data and the Token Ambiguity Problem 95

float

40 41 42 43 44 46 48

47

int
float

int dot int dot int int

id

dash
float

float

float

Fig. 2. SEQSET from parsing string “2.2.13-4”

type description (* abstract syntax of pads description *)
type seqset (* the seqset data structure *)
type seqsets = seqset list

(* A top-level description guess *)
datatype prophecy =

BaseProphecy of description
| StructProphecy of seqsets list
| ArrayProphecy of seqsets * seqsets * seqsets
| UnionProphecy of seqsets list

(* Guesses the best top-level description *)
fun oracle : seqsets -> prophecy

(* Implements a generic inference algorithm *)
fun discover (sqs:seqsets) : description =
case (oracle sqs) of

BaseProphecy b => b

| StructProphecy sqss =>
let Ts = map discover sqss in
struct { Ts }

| ArrayProphecy (sqsfirst,sqsbody,sqslast) =>
let Tfirst = discover sqsfirst in
let Tbody = discover sqsbody in
let Tlast = discover sqslast in
struct { Tfirst; array { Tbody }; Tlast; }

| UnionProphecy sqss =>
let Ts = map discover sqss in
union { Ts }

Fig. 3. A generic structure-discovery algorithm in Pseudo-ML

Structure discovery. The structure discovery phase uses a top-down, divide-and-conquer
algorithm outlined in Figure 3 in the pseudo-ML function discover. Each invocation
of discover calls the oracle function to guess the structure of the data represented
by the current set of SEQSETs. The oracle can prophesy either a base type, a struct,
an array or a union. The oracle function also partitions the input SEQSETs into sets

96 Q. Xi et al.

int
44 46 48

47

int

int int

dash

float

float

float

dot
43 43

int
40 41 42

float

dot

Fig. 4. Cutting SEQSET for “2.2.13-4” after the first float token

of sub-SEQSETs, each of which corresponds to a component in the guessed structure.
The discover function then recursively constructs the structure of each set of sub-
SEQSETs.

How does the oracle produce its prophecy? First, it uses the trained statistical
model to assign probabilities to the edges in the input SEQSETs. Next, it computes for
each SEQSET the most probable token sequence (MPTS) among all the possible paths
using a modified Viterbi algorithm [22], which we discuss in Section 4. Then, based on
the statistics of the tokens in the MPTSs, the oracle predicts the structure of the current
collection of SEQSETs using the heuristics designed for our earlier algorithm [9].

As an example, consider applying the oracle to determine the top-level structure of
the first line in yum.txt. It would predict the following:

struct {date; ’ ’; time; ’ ’; word; ’:’; ’ ’; id; TBD}

i.e., a struct containing nine sub-structures including TBD, which is a sub-structure
whose form will be determined recursively. At this point, the oracle partitions every
SEQSET in the input into nine parts, corresponding to sub-structure boundaries, i.e.,
at the vertices after tokens date, space, time, etc. During partitioning, the oracle
removes SEQSET edges that cross partition boundaries because such edges are irrelevant
for the next round of structure discovery. For example, if the oracle cuts after the first
float token in the SEQSET in Figure 2, then it removes the id edge and the float
edge between vertices 42 and 46, creating the two new SEQSETs in Figure 4. Finally,
the oracle function returns the predicted structure as a “prophecy” along with the
partitioned SEQSETs.

Format refinement with blob-finding. The refinement phase, which follows structure
discovery, tries to improve the initial rough structure by applying a series of rewriting
rules. We have modified the earlier algorithm to use a “blob-finding” rule. This rule tries
to identify data segments with highly complex, structured descriptions where none of
the individual pieces of the description describe much of the data. Intuitively, such oc-
currences correspond to places where the data contained a high degree of variation, and
the inference algorithm built a description that enumerated all the possible variations in
painstaking detail. The blob rule replaces such complexity with a single blob token. A
typical example of this kind of data is free-form text comments that sometimes appear
at the end of each line in a log file. The blob-finding rule reduces the overall complexity
of the resulting description and hence makes it more readable.

The format refinement algorithm applies the blob-finding rule in a bottom-up fash-
ion. It converts into a blob each sub-structure that it deems overly complex and for

Ad Hoc Data and the Token Ambiguity Problem 97

which it can find a terminating pattern. The PADS parser uses the terminating pattern to
find the extent of the blob. The algorithm merges adjacent blobs.

To decide whether a given structure is a blob, the algorithm computes the variance
of the structure, which measures the total number of union/switch/enum branches and
different array lengths in the structure. When the ratio between the variance and the
amount of the data described by the structure exceeds a threshold, the algorithm decides
to convert the structure to a blob if it can find a terminating sequence.

4 Statistical Models

A key component of the format inference algorithm described in the previous section is
a selection of the best token sequence from each SEQSET. To prioritize sequences, the
algorithm assigns probabilities using a statistical token model. This section describes
three such models that we have experimented with.

Character-by-character Hidden Markov Model (HMM). The first model we investigate
is the classic first-order, character-by-character Hidden Markov Model (HMM) [22].
An HMM is a statistical model that includes one set of states whose values we can
observe and a second set whose values are hidden and we wish to infer. The hidden
states determine, with some probability, the values of the observable states. In our case,
we can observe the sequence of characters in the input string and wish to infer the
token that is associated with each character. The model assumes the probability that
we see a particular character depends upon its associated token and moreover, since
the HMM is first-order, the probability of observing a particular token depends upon
the previous token but no other earlier tokens. The picture below illustrates the process
of generating the character sequence “2.2.13-4” from a token sequence. Hidden HMM
states are white and observables are shaded. Notice particularly that the adjacent digits
“1” and “3” are generated from two consecutive instances of the token int, when in a
true token sequence, both characters are generated from a single int token. A postpass
will clean this up, but such situations are dealt with more effectively by the HMEMs
described in the following subsection.

 4

start int int int int intdot dot dash

 2 . 2 . 1 3 −

Finally, since our training data is limited, we employ one further approximation in
our model. Instead of modelling every individual character separately, we classify char-
acters using a set of boolean features including features for whether the character is (a) a
digit, (b) an upper-case alphabetic letter, (c) white space, or (d) a particular punctuation
character such as a period. We call the feature vectors involving (a)-(d) observations.

Let Ti denote the ith hidden state; its value ranges over the set of all token names.
Let Ci denote the observation emitted by hidden state Ti. Three parameters determine

98 Q. Xi et al.

the model: the transition matrix P(Ti|Ti−1), the sensor matrix P(Ci|Ti) and the ini-
tial probabilities P(Ti|begin). We compute these parameters from the training data as
follows:

P(Ti|Ti−1) =
occurrences where Ti follows Ti−1

occurrences of Ti−1
(1)

P(Ci|Ti) =
occurrences of Ci annotated with Ti

occurrences of Ti
(2)

P(T1|begin) =
occurrences of T1 being first token

number of training chunks
(3)

Given these parameters and a fixed input, we want to find the token sequence with the
highest probability, i.e., from the input sequence C1, C2, ..., Cn, we want to find the to-
ken sequence T1, T2, ..., Tn that maximizes the conditional probability P(T1, T2, ..., Tn|
C1, C2, ..., Cn). This probability is defined as usual:

P(T1, T2, ..., Tn|C1, C2, ..., Cn) ∝ P(T1, T2, ..., Tn, C1, C2, ..., Cn)

= P(T1|begin) ·
n∏

i=2

P(Ti|Ti−1) (4)

To calculate the highest probability token sequence from this model, we run a slightly
modified variant of the Viterbi algorithm over the SEQSET.

Because the character-by-character HMM is first-order and employs only single
character features, it cannot capture complex features in the data such as a substring
“http://” which indicates a strong likelihood of being part of a URL. One obvious
solution is increasing the order of the HMM. However, since the token length is vari-
able in our application, it is not clear what the order should be. In addition, increasing
the order also increases the complexity exponentially. Instead, in the next sections, we
pursue two hybrid methods that incorporate existing classification techniques into the
HMM framework.

Hierarchical Maximum Entropy Model (HMEM). The character-by-character HMM
extracts a set of features from each character to create an observation and then runs a
standard HMM over these observations. In contrast, the Hierarchical Maximum Entropy
Model (HMEM), which we will explore next, extracts a set of features from each sub-
string, uses the Maximum Entropy (ME) procedure [24,19] to produce an observation
and runs a standard HMM over these new kinds of observations. Using the sequence
“2.2.13-4” as our example again, the corresponding HMEM may be drawn as follows:

intstart int int intdot dot

 2 . 2 . 13 − 4

dash

Ad Hoc Data and the Token Ambiguity Problem 99

Formally, let Ti be the ith hidden state or token in the sequence (denoted by a white
node in picture above) and let Si be the substring annotated by Ti. Suppose the number
of tokens in the chunk is l; then the target probability is as follows.

P(T1, T2, ..., Tn|S1, S2, ..., Sl) ∝ P(T1|begin) ·
l∏

i=2

P(Ti|Ti−1) ·
l∏

i=1

P(Si|Ti) (5)

Equations (1) and (3) allow us to calculate the transition matrix and the initial prob-
ability. We can compute P(Si|Ti) using Bayes Rule,

P(Si|Ti) =
P(Ti|Si) · P(Si)

P(Ti)
(6)

Finally, since obtaining accurate estimates of P(Si) and P(Ti) appears to require
more training data than we currently have, we have further approximated by simply us-
ing P(Ti|Si) to estimate P(Si|Ti). Estimation of P (Ti|Si) through the ME procedure
involves using the following features (among others): (a) total number of characters in
the string, (b) the number of occurrences of certain punctuation characters, (c) the total
number of punctuation characters in the string, (d) the presence of certain substrings
such as “am”, “pm”, “January”, “Jan”, “january”, and (e) the presence of digit
sequences. When we substitute P(Ti|Si) for P(Si|Ti) in equation (5), we obtain the
following:

P(T1, T2, ..., Tn|S1, S2, ..., Sl) ∝ P(T1|begin) ·
l∏

i=2

P(Ti|Ti−1) ·
l∏

i=1

P(Ti|Si) (7)

Finally, notice that in equation (7), the number of tokens in a sequence will determine
the number of terms in the product. Consequently, a sequence with more tokens will
produce more terms, which our experiments have shown produces a significant bias
towards shorter token sequences. To avoid such bias, we modify Equation (7) to use the
average log likelihood.

logP(T1, T2, ..., Tn|S1, S2, ..., Sl)

∝ logP(T1|begin) +
∑l

i=2 logP(Ti|Ti−1) +
∑l

i=1 logP(Ti|Si)
l

(8)

Using average log likelihood guarantees that the algorithm will not select shorter token
sequences unless the average value of all conditional probabilities P(Ti|Si) exceeds a
threshold.

To find the highest probability sequence for a chunk under this model, we imple-
mented a modified Viterbi algorithm that takes into account the number of tokens in the
sequence. In what follows, let the number of characters in the chunk be n and the num-
ber of tokens be l. Let Ci be the character at position i, and PTi be the partial token that
emits the character Ci. Then P(PT1, PT2, ..., PTi|C1, C2, ..., Ci, k) is the probability
of a partial token sequence PT1, PT2, ..., PTi conditioned on a substring of characters
C1, C2, ..., Ci, collectively emitted by a sequence of k tokens. Now, let Ti be a token

100 Q. Xi et al.

that ends at position i and let Si be the corresponding substring. The probability of the
most likely partial token sequence up to position i is

max
PT1,...,PTi

logP(PT1, PT2, ..., PTi, PTi+1|C1, C2, ..., Ci+1, k + 1) ∝

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

logP(Si+1|Ti+1) + max
Ti+1−δ

(logP(Ti+1|Ti+1−δ)+

max
PT1,...,PTi−1

logP(PT1, ..., PTi|C1, ..., Ci, k)),

if i + 1 is the end of an edge in SEQSET, δ is the length of token Ti+1;

max
PT1,...,PTi

logP(PT1, ..., PTi|C1, ..., Ci, k + 1)

otherwise.

(9)

The left-hand-side of (9), known as a forward message, contains the token sequence
up to a position i in the chunk as well as the lengths of the tokens. At the last position
n, we compute l from

max
l

log
P(TP1, TP2, ..., TPn|C1, C2, ..., Cn, l)

l
(10)

and select the last token in the most likely token sequences. After tracing backwards
through the chain of messages, we obtain the most likely token sequences. The modified
Viterbi algorithm is linear to the number of characters n in the chunk.

We saw there were some problems with the basic HMM model that motivated the
use of the HMEM model. What further problems plague the HMEMs? The most wor-
risome problem is that the HMEM is a generative model that simulates the procedure
of generating the data, and estimates the target conditional probability by a joint proba-
bility. Therefore, it is biased towards tokens with more occurrences in the training data.
In practice, we found that when particular tokens appear infrequently in our training
data, the algorithm would never identify them, even when they had clear distinguish-
ing features. These difficulties motivated us to explore the effectiveness of Hierarchical
Support Vector Machines (HSVM), which use a discriminative model as opposed to a
generative one.

4.1 Hierarchical Support Vector Machines (HSVM)

An HSVM is exactly the same as an HMEM except it uses a Support Vector Machine
(SVM) [5] as opposed to Maximum Entropy to classify tokens. Basically, an SVM mea-
sures the target conditional probability P(Ti|Si) by generating hyperplanes that divide
the feature vector space according to the positions of training data points. The hyper-
planes are positioned so that the data points (feature vectors in our case) are separated
into classes with the maximum margin between any two classes. The data points that
lie on the margins (or boundaries) of each class are called support vectors.

5 Evaluation

We use sample files from twenty different ad hoc data sources to evaluate our overall in-
ference algorithm and the different approaches to probabilistic tokenization. These data

Ad Hoc Data and the Token Ambiguity Problem 101

sources, many of which are published on the web [20], are mostly system-generated log
files of various kinds and a few ASCII spreadsheets describing business transactions.
These files range in size from a few dozen lines to a few thousand.

To test a given tokenization approach on a particular sample file, we first construct a
statistical model from the other nineteen sample files using the given approach. We then
use the resulting model to infer a description for the selected file. We repeat this process
for all three tokenization approaches (HMM, HMEM, and HSVM) and all twenty sam-
ple files. We use three metrics described in the following sections to evaluate the results:
token accuracy, quality of description and execution time.

Token accuracy. To evaluate tokenization accuracy for a model M on a given sample
file, we compare the most likely sequence of tokens predicted by M , denoted Sm, with
the ideal token sequence, denoted S. We define S to be the sequence of tokens generated
by the hand-written PADS description of the file. We define three kinds of error rates,
all normalized by |S|, the total number of tokens in S:

token error =
number of misidentified tokens in Sm

|S|

token group error =
number of misidentified groups in Sm

|S|

token boundary error =
number of misidentified boundaries in Sm

|S|

The token error rate measures the number of times a token appears in S but the same
token does not appear in the same place in Sm. A token group is a set of token types
that have similar feature vectors and hence are hard to distinguish, e.g., hex string
and id, which both consist of alpha-numeric characters. The token group error rate
measures the number of times a token from a particular token group appears in S but
no token from the same group appears in the same location in Sm. Intuitively, if the
algorithm mistakes a token for another token in the same token group, it is doing better
than choosing a completely unrelated token type. The token boundary error rate mea-
sures the number of times there is a boundary between tokens in S but no corresponding
boundary in Sm. This relatively coarse measure is interesting because boundaries are
important to structure discovery. Even if the tokens are incorrectly identified, if the
boundaries are correct, the correct structure can be still discovered.

Table 1 lists the token error, token group error, and token boundary error rates of the
twenty benchmarks. The results from the original LEARNPADS system are presented
in columns marked by lex. The original system produces high error rates for many
files because the lexer is unable to resolve overlapping tokens effectively. HMM relies
heavily on transition probabilities, which require a lot of data to compute to a use-
ful precision. Because we currently have insufficient data, HMM generally does not
perform as well as HMEM and HSVM. In the case of asl.log, corald.log and
coralwebsrv.log, HMM’s failure to detect some punctuation characters causes the
entire token sequences to be misaligned and hence gives very high error rates.

102 Q. Xi et al.

Table 1. Tokenization errors

Data source Token Error (%) Token Group Error (%) Token Boundary Error (%)
lex HMM HMEM HSVM lex HMM HMEM HSVM lex HMM HMEM HSVM

1967Transactions 30 30 18.93 18.93 11.07 11.07 0 0 11.07 11.07 0 0
ai.3000 70.23 15.79 18.98 11.20 70.23 14.68 17.26 10.27 53.53 12.34 4.79 4.00
yum.txt 19.44 13.33 21.80 0 19.17 11.73 21.80 0 19.17 11.49 21.80 0
rpmpkgs.txt 99.66 2.71 15.01 0.34 99.66 2.14 14.67 0 99.66 0.23 14.67 0
railroad.txt 51.94 9.47 6.48 5.58 51.94 9.36 5.93 5.58 46.08 8.77 5.41 5.58
dibbler.1000 15.72 43.40 11.91 0.00 15.72 36.78 11.91 0.00 4.54 13.33 13.15 0.00
asl.log 89.92 98.91 8.94 5.83 89.63 98.91 8.94 5.83 83.28 98.54 6.27 3.29
scrollkeeper.log 18.58 28.48 18.67 9.86 18.58 18.77 8.96 0.12 18.58 17.83 8.96 0.12
page log 77.72 15.29 0 7.52 72.76 15.29 0 7.52 64.70 5.64 0 5.64
MER T01 01.csv 84.56 23.09 31.32 15.40 84.56 23.09 31.22 15.40 84.56 7.71 13.20 0.02
crashreporter 51.89 7.91 4.99 0.19 51.85 7.91 4.96 0.14 51.34 7.91 4.92 0.14
ls-l.txt 33.73 18.70 19.96 6.65 33.73 18.23 19.96 6.65 19.70 7.45 19.76 6.45
windowserver last 73.31 14.98 10.16 3.24 71.50 14.98 10.07 3.15 69.18 11.16 8.05 3.14
netstat-an 13.89 17.83 9.61 9.01 12.51 15.44 5.95 5.95 12.51 14.90 5.80 5.20
boot.txt 10.67 25.40 9.37 2.77 3.99 25.10 9.14 2.43 3.34 14.48 8.27 1.69
quarterlyincome 82.99 5.52 1.98 1.98 82.99 4.22 1.53 1.54 77.53 1.54 1.53 1.54
corald.log 84.86 100 5.67 3.02 83.11 98.25 3.93 1.27 81.76 97.80 1.27 1.27
coraldnssrv.log 91.04 18.17 10.64 5.23 91.04 18.17 9.33 5.22 83.07 14.37 4.11 3.92
probed.log 1.74 27.99 16.50 16.50 1.74 27.99 16.50 16.50 1.75 27.98 16.42 16.42
coralwebsrv.log 86.67 100 8.75 23.99 86.67 100 8.75 23.99 81.90 98.33 8.75 23.81

Quality of description. To assess description quality quantitatively, we use the Mini-
mum Description Length Principle (MDL) [13], which postulates that a useful measure
of description quality is the sum of the cost in bits of transmitting the description (the
type cost) and the cost in bits of transmitting the data given the description (the data
cost). In general, the type cost measures the complexity of the description, while the
data cost measures how loosely a given description explains the data. Increasing the
type cost generally reduces the data cost, and vice versa. The objective is to minimize
both. Table 2 shows the percentage change in the type and data costs of the descriptions
produced by the new algorithm using each of the three tokenization schemes when com-
pared to the same costs produced by the original LEARNPADS system. In both cases,
the measurements were taken before the refinement case.

For most of the data sources, the probabilistic tokenization scheme improved the
quality of the description by reducing both the type and the data costs. In the files
dibbler.1000, netstat-an and coralwebsrv.log, a few misidentified to-
kens cause the resulting descriptions to differ significantly from the ones produced by
the original system.

In another experiment, a human expert judged how each description compared to
the original LEARNPADS results, focusing on the readability of the descriptions, i.e.,
whether the descriptions present the structure of the data sources clearly. In this exper-
iment, the judge rated the descriptions one by one, on a scale from -2 (meaning the
description is too concise and it loses much useful information) to 2 (meaning the de-
scription is too precise and the structure is unclear). The score of a good description
is therefore close to 0, which means the description provides sufficient information for

Ad Hoc Data and the Token Ambiguity Problem 103

Table 2. Increase (+%) or decrease (-%) in type cost and data cost before refinement

Data source Type Cost Data Cost
HMM HMEM HSVM HMM HMEM HSVM

1967Transactions -39.661 -27.03 -27.03 -2.80 -2.80 -2.80
ai.3000 -26.27 +4.44 -19.27 -3.16 -6.85 -12.68
yum.txt -57.60 +50.93 -76.27 -1.55 -7.93 -1.05
rpmpkgs.txt -92.03 -76.29 -91.86 +1.47 -0.00 +1.47
railroad.txt -31.86 -20.88 -22.93 -29.54 -29.22 -29.16
dibbler.1000 +611.22 +17.83 +7.03 -19.88 -22.11 -22.10
asl.log -75.71 -22.33 -25.54 +8.57 -15.13 -17.53
scrollkeeper.log -14.55 -58.86 -21.18 -7.77 -9.98 -11.36
page log 0 0 0 -11.46 -11.67 -11.67
MER T01 01.csv -8.59 -12.74 -12.74 -25.59 -24.15 -24.14
crashreporter +4.03 -8.66 -12.73 -9.38 -9.41 -12.45
ls-l.txt -74.61 -51.32 -39.30 +0.10 -7.26 -2.18
windowserver last -62.84 -33.29 -56.18 +6.93 -11.12 -9.87
netstat-an +147.07 -12.00 -21.63 +14.18 +6.74 +7.65
boot.txt -72.60 -38.95 -71.29 +5.26 -6.54 -5.03
quarterlyincome -18.36 -18.36 -18.36 -32.04 -32.51 -32.51
corald.log -4.75 -5.53 -5.53 -27.28 -29.81 -29.81
coraldnssrv.log -1.86 -2.03 -5.86 +59.53 +59.53 +59.53
probed.log -14.61 -33.48 -33.48 +59.53 +63.18 +63.18
coralwebsrv.log -8.75 +94.58 -71.55 -49.30 -15.91 +13.36

Table 3. Qualitative comparison of descriptions learned using probabilistic tokenization to de-
scriptions learned by original LEARNPADS algorithm

Data source lex HMM HMEM HSVM Data source lex HMM HMEM HSVM
1967Transactions 0 0 0 0 crashreporter 2 0 1 1
ai.3000 1 1 1 0 ls-l.txt 2 0 1 1
yum.txt 2 -1 1 0 windowserver last 2 0 1 1
rpmpkgs.txt 2 -1 -2 0 netstat-an 2 -2 0 0
railroad.txt 2 1 1 1 boot.txt 2 -1 1 1
dibbler.1000 0 2 0 0 quarterlyincome 1 1 1 1
asl.log 2 -2 2 2 corald.log 0 1 1 0
scrollkeeper.log 1 2 1 1 coraldnssrv.log 0 1 1 -1
page log 0 0 0 0 probed.log 0 0 0 0
MER T01 01.csv 0 1 0 0 coralwebsrv.log 0 1 1 -1

the user to understand the data source and the user can easily understand the structure
from the description. Table 3 shows that on average, HMEM and HSVM outperform
the original system denoted by lex.

Execution time. Compared to the original system, statistical inference requires extra
time to construct SEQSETs and compute probabilities. We measured the execution times
on a 2.2 GHz Intel Xeon processor with 5 GB of memory. The original algorithm takes

104 Q. Xi et al.

anywhere from under 10 seconds to 25 minutes to infer a description, while the new
system requires a few seconds to several hours, depending on the amount of test data
and the statistical model used. In general, the character-by-character HMM model is the
fastest, while HSVM is most time-consuming.

We have performed a number of experiments (not shown due to space constraints)
that demonstrate that execution time is proportional to the number of lines in the data
source. Moreover, we have found that for most descriptions, a relatively small repre-
sentative sample of the data is sufficient for learning its structure with high accuracy.
For instance, out of the twenty benchmarks we have, seven data sources have more than
500 records. Preliminary results show that for these seven data sources, we can generate
descriptions from just 10% of the data that can parse 95% of records correctly.

6 Related Work

In the last two decades, there has been extensive work on classic grammar induction
problems [25,11,3,1,6], XML schema inference [3,10], information extraction [17,15,2],
and other related areas such as natural language processing [4,14] and bioinformatics
[16]. Machine learning techniques have played a very important role in these areas.
Our earlier paper [9] contains an extensive comparison of our basic format inference
algorithm to others that have appeared in the literature.

One of the most closely related pieces of work to this paper is Soderland’s WHISK
system [23], which extracts useful information from semi-structured text such as styl-
ized advertisements from an online community service called Craig’s List [12]. In the
WHISK system, the user is presented with a few online ads as training data and is
asked to label which bits of information to extract. Then the system learns extraction
rules from labeled data and uses them to retrieve more wanted information from a much
larger collection of data. The WHISK system differs from our system in several ways.
First, WHISK, as well as other information extraction systems, have a clear and fixed
token set, defined by words, numbers, punctuations, HTML tags and user pre-specified
semantic classes, etc. Second, WHISK only focuses on certain bits of information,
namely, single or multiple fields in records, whereas we not only identify useful fields,
but also obtain the organization and relations of these fields by generating the complete
description of the entire data file. Last, in WHISK, the extraction rules learned from a
particular domain can only be used on data from the same domain. For example, rules
learned from sample on-line rental ads are only relevant to other rental ads, and cannot
be applied to software job postings. But the statistical token models we learned in our
system can be applied to many different types of data, as shown in the experiments we
have done in Section 5.

Also closely related is the work on text table extraction by Pinto and others [21]. Text
tables can be viewed as special ad hoc data with a tabular layout. There are often clear
delimiters between columns in the table, and table rows are well defined with new line
characters as their boundaries. Because of its tabular nature, the data studied has less
variation in general. The goal of their work is to identify tables embedded in free text
and the types of table rows such as header, sub-header and data row, etc, whereas we are
learning the entire structure of the data. To this end, Pinto et al. use Conditional Random

Ad Hoc Data and the Token Ambiguity Problem 105

Fields (CRFs) [18], a statistical model that is useful in learning from sequence data with
overlapping features. Their system extracts features from white space characters, text
between white spaces and punctuations. Although not explicitly stated, words, numbers
and punctuations are used as fixed set of tokens.

To summarize, problems studied by previous efforts in grammar induction and infor-
mation extraction do not typically suffer from token ambiguities that we see in ad hoc
data, because tags cleanly divide XML and web-based data, while spaces and known
punctuation symbols separate natural language text. In contrast, the separators and to-
ken types found in ad hoc data sources such as web logs and financial records are far
more variable and ambiguous.

7 Conclusion

Ad hoc data is unpredictable, poorly documented, filled with errors, and yet ubiquitous.
It poses tremendous challenges to the data analysts that must analyze, vet and trans-
form it into useful information. Our goal is to alleviate the burden, risk and confusion
associated with ad hoc data by using the declarative PADS language and system.

In this paper, we describe our continuing efforts to develop a format inference en-
gine for the PADS language. In particular, we show how to redesign our format infer-
ence algorithm so that it can take advantage of information generated from an arbitrary
statistical token model and we study the effectiveness of three candidate models: Hid-
den Markov Models (HMMs), Hierarchical Maximum Entropy Models (HMEMs) and
Support Vector Machines (SVMs). We show that each model in succession is generally
more accurate than the last, but at an increased performance cost.

Acknowledgement. This material is based upon work supported by the NSF under
grants 0612147 and 0615062. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily reflect
the views of the NSF.

References

1. Angluin, D.: Inference of reversible languages. Journal of the ACM 29(3), 741–765 (1982)
2. Arasu, A., Garcia-Molina, H.: Extracting structured data from web pages. In: SIGMOD, pp.

337–348 (2003)
3. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise DTDs from XML data.

In: VLDB, pp. 115–126 (2006)
4. Borkar, V., Deshmukh, K., Sarawagi, S.: Automatic segmentation of text into structured

records. In: SIGMOD, New York, NY, USA, pp. 175–186 (2001)
5. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. Software (2001),

http://www.csie.ntu.edu.tw/∼cjlin/libsvm
6. Chen, S.F.: Bayesian grammar induction for language modeling. In: Proceedings of the 33rd

Annual Meeting of the ACL, pp. 228–235 (1995)
7. Fisher, K., Gruber, R.: PADS: A domain specific language for processing ad hoc data. In:

PLDI, pp. 295–304 (June 2005)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

106 Q. Xi et al.

8. Fisher, K., Walker, D., Zhu, K.Q.: LearnPADS: Automatic tool generation from ad hoc data.
In: SIGMOD (June 2008)

9. Fisher, K., Walker, D., Zhu, K.Q., White, P.: From dirt to shovels: Fully automatic tool gen-
eration from ad hoc data. In: POPL (January 2008)

10. Garofalakis, M.N., Gionis, A., Rastogi, R., Seshadri, S., Shim, K.: XTRACT: A system for
extracting document type descriptors from XML documents. In: SIGMOD, pp. 165–176
(2000)

11. Gold, E.M.: Language identification in the limit. Information and Control 10(5), 447–474
(1967)

12. Craig’s List (2008), http://www.craigslist.org/
13. Grünwald, P.D.: The Minimum Description Length Principle. MIT Press, Cambridge (2007)
14. Heeman, P.A., Allen, J.F.: Speech repairs, intonational phrases and discourse markers: Mod-

eling speakers’ utterances in spoken dialog. Computational Linguistics 25(4), 527–571
(1999)

15. Hong, T.W.: Grammatical Inference for Information Extraction and Visualisation on the Web.
Ph.D. Thesis, Imperial College, London (2002)

16. Kulp, D., Haussler, D., Reese, M.G., Eeckman, F.H.: A generalized hidden markov model
for the recognition of human genes in DNA. In: Proceedings of the Fourth International
Conference on Intelligent Systems for Molecular Biology, pp. 134–141 (1996)

17. Kushmerick, N.: Wrapper induction for information extraction. PhD thesis, University of
Washington, Department of Computer Science and Engineering (1997)

18. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. In: ICML, pp. 282–289 (2001)

19. MEGA model optimization package (2007),
http://www.cs.utah.edu/∼hal/megam/

20. PADS project (2007), http://www.padsproj.org/
21. Pinto, D., McCallum, A., Wei, X., Croft, W.B.: Table extraction using conditional random

fields. In: SIGIR, New York, NY, USA, pp. 235–242 (2003)
22. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recog-

nition. Proceedings of the IEEE 77(2) (February 1989)
23. Soderland, S.: Learning information extraction rules for semi-structured and free text. Ma-

chine Learning 34(1-3), 233–272 (1999)
24. Adam, L., Berger, T., Vincent, J., Della Pietra, Stephen, A.: A maximum entropy approach

to natural language processing. Computational Linguistics 22(1) (March 1996)
25. Vidal, E.: Grammatical inference: An introduction survey. In: ICGI, pp. 1–4 (1994)

http://www.craigslist.org/
http://www.cs.utah.edu/~hal/megam/
http://www.padsproj.org/

	Ad Hoc Data and the Token Ambiguity Problem
	Introduction
	The Token Ambiguity Problem
	The Format Inference Algorithm
	Statistical Models
	Hierarchical Support Vector Machines (HSVM)

	Evaluation
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

