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Abstract. Boyer and Moore’s ACL2 theorem prover combines first-
order applicative Common Lisp with a computational, first-order logic.
While ACL2 has become popular and is being used for large programs,
ACL2 forces programmers to rely on manually maintained protocols for
managing modularity. In this paper, we present a prototype of Modular
ACL2. The system extends ACL2 with a simple, but pragmatic func-
tional module system. We provide an informal introduction, sketch a
formal semantics, and report on our first experiences.

1 A Logic for Common Lisp, Modules for ACL2

In the early 1980s, the Boyer and Moore team decided to re-build their Nqthm
theorem prover [1] for a first-order, functional sub-language of a standardized,
industrial programming language: Common Lisp [2]. It was an attempt to piggy-
back theorem proving on the expected success of Lisp and functional program-
ming. Although Common Lisp didn’t succeed, the ACL2 system became the
most widely used theorem prover in industry. Over the past 20 years, numerous
hardware companies and some software companies turned to ACL2 to verify
critical pieces of their products [3]; by 2006, their contributions to the ACL2
regression test suite amounted to over one million lines of code. The ACL2 team
received the 2005 ACM Systems Award for their achievement.1

During the same 20 years, programming language theory and practice have
evolved, too. In particular, programming language designers have designed, im-
plemented, and experimented with numerous module systems for managing large
functional programs [4]. One major goal of these design efforts has been to help
programmers reason locally about their code. That is, a module should express
its expectations about imports, and all verification efforts for definitions in a
module should be conducted with respect to these expectations. Common Lisp
and thus ACL2, however, lack a proper module system. Instead, ACL2 program-
mers emulate modular programming with Common Lisp’s namespace manage-
ment mechanisms, or by hiding certain program fragments from the theorem
prover. Naturally, the manual maintenance of abstraction boundaries is difficult
and error prone. Worse, it forces the programmer to choose between local rea-
soning and end-to-end execution, as functions hidden from the theorem prover
cannot be run.
1 campus.acm.org/public/pressroom/press releases/3 2006/software.cfm
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Over the past year, we have investigated the design of a module system for
ACL2. Specifically, we have extended ACL2’s language with modules and pro-
duced two translations for modular programs: a compiler to ACL2 executables
and a logic translator to ACL2 proof obligations. With the latter, programmers
can now reason locally about individual modules. One goal is to empower ACL2
programmers with large code bases to gradually migrate their monolithic pro-
gram into a modular world. Another goal is to expand Rex Page’s [5] use of this
industrial-strength theorem prover in software engineering courses to teach theo-
rem proving in a modular setting. Without modules, such a software engineering
course simply isn’t convincing enough.

This paper is our first report on bringing this module technology to ACL2. In
section 2, we demonstrate our module system and its prototype implementation.
In section 3, we present our formal model of the module system. We have also
implemented several projects as modules; in section 4 we describe the positive
and negative outcomes of these experiments. Section 5 presents related work,
and the last section sketches our future challenges.

2 Reasoning with Modules

ACL2. The ACL2 theorem prover is similar to a LISP read-eval-print loop;
it accepts events such as function definitions or logical conjectures from the
user, verifies each in turn, and updates the logical state for the next event. Its
interface is purely text-based; the system comes with an Emacs mode as the
preferred interface for professional ACL2 users.

Four years ago, Rex Page (Oklahoma University) started the ambitious effort
of teaching a senior-level course sequence on software engineering in ACL2 [5].
Students reported difficulty with the text-based interface to ACL2; in response,
Felleisen and Vaillancourt produced Dracula [6] as a graphical user interface
for ACL2. Dracula has since been used in courses on software engineering and
symbolic logic [7].

Dracula. Dracula is a language level in the DrScheme integrated development
environment. It provides a simulation of Applicative Common Lisp (ACL), the
executable component of ACL2. Dracula incorporates DrScheme’s usual pro-
gramming tools, including a syntax checker, stack traces, unit testing, and a
functional, graphical toolkit geared toward novice programmers. It provides an
interface to the ACL2 theorem prover for the logical component.

Figure 1 shows a screenshot of Dracula in action. The left-hand side of the
Dracula interface provides two windows for formulating and executing programs:
the definitions window, where users edit their programs, and the interactions
window, where users may try out their functions.

The right-hand side of the display is Dracula’s interface to the ACL2 theorem
prover. It provides buttons to invoke ACL2 and to send each term from the
definitions window to the theorem prover. Dracula paints the terms green when
ACL2 proves them sound and red when it fails. Green terms are locked from
further editing to faithfully represent ACL2’s logical state; users may edit red
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Fig. 1. The Dracula graphical user interface

terms or undo the admission of green terms to edit those. Below the control
buttons, Dracula shows the theorem prover’s output; above them, it shows a
proof tree, naming key checkpoints for quick diagnosis of a failed attempt.

Figure 1 shows a program with two functions and two theorems. The functions
are insert , which adds a single element to a set, and join, which adds multiple
elements. The theorems insert/no-duplicates and join/no-duplicates state that
the functions preserve the the uniqueness of set elements.

Dracula’s simulation of ACL ignores the theorems, as they are logical rather
than executable, and compiles the rest. As we can see in the interactions window,
join produces the expected output when given ’(1 2 3) and ’(4 5 6) as input.

In contrast, the ACL2 theorem prover attempts to verify the logical soundness
of each term successively. First it checks insert , which it must prove terminating
for all inputs—a requirement of all functions in ACL2’s logic. Next ACL2 checks
insert/no-duplicates , for which it must prove that the conjecture expression pro-
duces a true value (non-nil). Free variables in defthm conjectures (such as x
and xs) are implicitly universally quantified over all ACL2 values. ACL2 repeats
the verification process for join and join/no-duplicates .

ACL2 successfully admits all these terms. The ACL2 output window displays
a list of rules used in the proof of join/no-duplicates . The list includes the def-
initions of insert and add-to-set-eql , but not insert/no-duplicates . Rather than
using the lemma proved above to reason about join, ACL2 re-examined the de-
finition of insert to prove the uniqueness of its elements. The theorem prover’s
search strategies often prefer to delve into a function definition rather than use
an existing lemma, resulting in duplicated proofs that span several functions.
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Fig. 2. A modular program in Dracula

Modular ACL2. Figure 2 shows a version of the join program in our new
language, Modular ACL2. The definitions window contains two interfaces, two
modules, a link clause, and an invoke clause.

Interfaces contain signatures and contracts. A signature declares a function,
providing its name and argument list. A contract declares a logical property that
may refer to the signatures. Interfaces may also include other interfaces. This
allows them to refer to other signatures in their contracts, extending them with
new properties or stating relationships between multiple interfaces. The IInsert
interface contains a signature insert and a contract insert/no-duplicates . They
have the same arity and state the same property as the previous insert and
insert/no-duplicates , but the interface does not provide a definition for insert .
The IJoin interface similarly contains a signature and the join/no-duplicates
contract for join.

Modules contain definitions, import clauses, and export clauses. The im-
port and export clauses each name an interface. Definitions form the body of
the module; they may refer to functions from imported interfaces, and rely on the
properties declared by imported contracts. Conversely, the body of the module
must define all functions declared in exported modules in a way that satisfies the
associated contracts. A link clause constructs a new module from two existing
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modules. The exports of all the modules are combined, and the imports of each
module are connected to the matching exports of any prior module.2

The MInsert module contains the same definition of insert we saw before and
exports IInsert . This obligates insert to satisfy insert/no-duplicates . The MJoin
module imports IInsert . This allows it to call the binary function insert and
assume insert/no-duplicates holds. It then defines join as before, and exports
IJoin. Once again, join must satisfy join/no-duplicates . This time, however, its
soundness is not with respect to a concrete definition of insert , but rather with
respect to the imported signature and its associated contract.

The MSet module in our example provides IInsert from MInsert and IJoin
from MJoin; the reference to insert in MJoin is resolved to the definition in
MInsert . Linking is applicative; the original MJoin is unchanged and may later
be linked to a different implementation of IInsert . Finally, our example program
invokes MSet , making its exported functions available outside the module.

As with standard ACL, Dracula compiles the modular program to an ex-
ecutable form and disregards the logical aspects. It compiles insert and join,
links them together, and provides them for use in the interactions window.

Reasoning locally. The ACL2 GUI allows the user to verify each module sep-
arately using the theorem prover. Once the user selects a module, Dracula pro-
vides ACL2 with stubs (abstract functions) representing its imported signatures
and axioms (unproven logical rules) asserting its imported contracts. Dracula
then passes the body of the module to ACL2. Once that is admitted, it sends
ACL2 a theorem corresponding to each exported contract. If ACL2 admits all
three stages—stubs and axioms for imports, body definitions, and theorems for
exports—the module is guaranteed to satisfy its export interface for any sound
implementation of its import interface.

The presence of stubs and axioms may seem troubling; these are unverified
assumptions added to ACL2’s logical state. Using them is sound with respect to
a fully linked program, however. The interface imported by one module must be
linked to an export from another, so contracts assumed as axioms in one module
must be proved as theorems in another before the whole program is verified.

Dracula only admits primitive modules, such as MInsert and MJoin, via
ACL2. It safely disregards linked modules, such as MSet ; once MInsert and
MJoin have been verified separately, they can be linked to any module with a
matching interface without need for re-verification.

In figure 2, we see that ACL2 has admitted MJoin. This time the proof of
join/no-duplicates does not refer to the definitions of insert or add-to-set-eql ;
instead, it uses the imported contract insert/no-duplicates .

Manual modularization in ACL2. ACL2 has mechanisms for abstract rea-
soning and proof reuse. Certain definitions in a book (separate file) or encap-
sulate block (lexical scope) may be declared local, which hides some or all of
their definition from the remaining proof, but renders them unexecutable as well.
2 As ACL2 does not allow forward references, neither do linked modules; this prevents

cyclic definitions and preserves each module’s termination proofs.
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These abstract proofs may later be applied to concrete functions, but the rules
must be applied on a theorem-by-theorem basis, and no executable content is
reused. Logical rules may be selectively disabled in the global theory, but they
may be re-enabled later, defeating abstraction boundaries.

Worse, these mechanisms require the programmer to maintain the invariants
of an abstraction boundary manually, setting up a “negative interface” by declar-
ing which logical entities are not available for reasoning rather than which are.
ACL2 can simulate a normal, “positive interface” by layering these mechanisms,
but not a reusable, externally stated one.

3 The Dual Semantics of Modules

The purpose of our module system is to enable programmers to develop units of
code in isolation and to reason about them independently. This informal specifi-
cation implies the need for two additions to core ACL2: modules and interfaces.
For an untyped language such as ACL2, a module consists of definitions and
manages the scope of names. An interface describes the functions that a mod-
ule provides in terms of signatures and contracts, which play the role of both
obligations on the exporting module and promises for the importing one.

Naturally a module can use the services of another module, i.e., it can im-
port functions and rely on the contracts that hold for them. Using just those
contracts and the definitions in the module, a programmer must be able to ver-
ify the module’s export interface. That is, it is the task of the module system
to reformulate the imported contracts and the module body so that the ACL2
theorem prover can verify the exported contracts from these premises.

Another design choice concerns the connection between modules. One alter-
native is to used fixed links between modules, specified via interfaces. The other
one is to think of modules as relations from interfaces to interfaces and to link
modules separately. Based on our experience with Scheme units [8,9] and ML
functors [4], we have chosen the second alternative. Finally, we also decided to
separate module invocation from module linking. The rest of the section presents
a model of Modular ACL2, its syntax and two semantic mappings.

Syntax. Figure 3 shows the core syntax of ACL2 and Modular ACL2. ACL2
has two variable namespaces: function parameters and local variables (v), and
functions and theorems (n). Modular ACL2 introduces a third namespace for
modules and interfaces (N ).

An ACL2 program consists of of a sequence of def initions and expressions.
Definitions give names to functions, stubs, theorems, or axioms, or may in turn
be a sequence of other definitions. Expressions include variables, literal constants,
function application, conditionals, and variable bindings.

Modular programs consist of a sequence of top-level forms including in-
terface definitions, primitive module definitions, linking specifications, module
invocations, and expressions from the core language. An interface contains
Specifications, including signatures, contracts, and other included interfaces, as
described in section 2. A primitive module contains a sequence of Def initions,
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prog = top . . .
top = def | expr
def = (defun n (v . . . ) expr)

| (defstub n (v . . . ) t)
| (defthm n expr)
| (defaxiom n expr)
| (progn def . . . )

expr = v | const
| (n expr . . . )
| (cond (expr expr) . . . )
| (let ((v expr) . . . ) expr)

const = t | nil | number | string

Prog = Top . . .
Top = Ifc | Mod | Link | Inv | expr
Ifc = (interface N Spec . . . )

Mod = (module N Def . . . )
Link = (link N (N N ))
Inv = (invoke N )

Spec = (sig n (v . . . ))
| (con n expr)
| (include N )

Def = Imp | Exp | def
Imp = (import N )
Exp = (export N (n n) . . . )

Fig. 3. The core grammars of ACL2 (left) and Modular ACL2 (right)

extended from ACL2 to allow imports and exports via interfaces. Exported
interfaces allow renaming, in case the internal and external names of a func-
tion differ. A compound module links together two other modules.3 Fully-linked
modules—those whose imports have all been resolved—may be invoked, making
their declared exports available to top level expressions.

Dual Semantics. Modular ACL2 programs can be verified logically, and they
can be executed. For this reason, modules in a program are either translated
into ACL2 proof obligations, or linked together and run as an ACL2 program.

The two semantics are closely related, so that verification has meaning with
respect to execution. Specifically, once a module is verified, its exports are guar-
anteed to satisfy their contracts whenever the implementations of their imports
satisfy theirs as well. Put another way, once every module in a program has been
verified, every contract must hold true at run-time.

We do not present the straightforward description of a static semantics for
determining the syntactic well-formedness of programs. In order for a Modular
ACL2 program to translate to well-formed ACL2, it must avoid forward refer-
ences, name clashes within interfaces and modules, modules that import one
interface without importing another that it includes, and a few other errors.

Logical Semantics. A Modular ACL2 program is verified by tranforming each
primitive module into an ACL2 proof obligation stating that its definitions sat-
isfy its exported contracts, predicated on the correctness of its imports. We
represent this transformation as the function L (for “Logical”) that consumes
a Modular ACL2 program and produces a sequence of ACL2 programs, one for
each module. Figure 4 shows the definition of L and its auxiliary functions.

The L function transforms a program by invoking LT with two accumulators:
a list of interfaces and a list of obligations. This function traverses the top-
level definitions of a modular program. Each interface LT encounters is added
to Γ . Each primitive module is transformed into a proof obligation; the proof
3 In our full implementation, imported interfaces allow renaming as well, and com-

pound modules may link any number of modules.
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L : Prog → prog . . .

L(Prog) = LT (ε,Prog , ε)
LT : (Ifc . . . ,Top . . . , prog . . .) → prog . . .

LT (Γ, ε, Φ) = Φ
LT (Γ, Ifc Top . . . , Φ) = LT (Γ Ifc,Top . . . , Φ)
LT (Γ,Mod Top . . . , Φ) = LT (Γ,Top . . . , Φ LM(Γ,Mod))
LT (Γ,Top0 Top . . . , Φ) = LT (Γ,Top . . . , Φ) where Top0 = Link | Inv | expr
LM : (Ifc . . . ,Mod) → prog
LM(Γ, (module N Def . . . )) = LD(Γ, ε,Def . . . , ε)
LD : (Ifc . . . ,n → n,Def . . . , def . . .) → prog
LD(Γ, ρ, ε, Δ) = Δ
LD(Γ, ρ, def Def . . . , Δ) = LD(Γ, ρ,Def . . . , Δ def )
LD(Γ, ρ, (import N ) Def . . . , Δ) = LD(Γ, ρ,Def . . . , Δ LI(Spec . . . , ε))

where Γ (N ) = (interface N Spec . . . )
LD(Γ, ρ, (export N (n1 n2) . . . ) Def . . . , Δ) = LD(Γ, ρ[n2/n1 . . .],Def . . . , Δ Δ′)

where Γ (N ) = (interface N Spec . . . )
and LE(ρ′, Spec . . . , ε) = Δ′

LI : (Spec . . . , def . . .) → def . . .

LI(ε, Δ) = Δ
LI((include N ) Spec . . . , Δ) = LI(Spec . . . , Δ)
LI((sig n (v . . . )) Spec . . . , Δ) = LI(Spec . . . , Δ (defstub n (v . . . ) t))
LI((con n e) Spec . . . , Δ) = LI(Spec . . . , Δ (defaxiom n e))
LE : (n → n,Spec . . . , def . . .) → def . . .

LE(ρ, ε, Δ) = Δ
LE((include N ) Spec . . . , Δ) = LE(ρ,Spec . . . , Δ)
LE(ρ, (sig n (v . . . )) Spec . . . , Δ) = LE(ρ,Spec . . . , Δ)
LE(ρ, (con n e) Spec . . . , Δ) = LE(ρ,Spec . . . , Δ (defthm ρ�n� ρ�e�))

Fig. 4. Translation from Modular ACL2 to one proof obligation per module

obligation is added to Φ. Link clauses, invocations, and expressions are ignored,
as they carry no additional logical obligations.

Within the definition of L and its helpers, Γ is treated as an environment.
The notation Γ (N ) represents looking up an interface by name.

The LM function converts a module to a proof obligation by calling LD
on its internal definitions. The LD function traverses the module’s definitions,
accruing a substitution that associates external names with internal names as
declared by export clauses, and a list Δ of resulting definitions. The function
converts imported signatures and contracts to stubs and axioms with LI and
exported contracts to conjectures (defthm) with LE respectively. Regular ACL2
definitions are left as-is.

Executable Semantics. In addition to a logical meaning, we also need a reg-
ular run-time semantics for modular programs. Modular ACL2 programs are
translated to executable form by two main processes. One is the successive
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E : Prog → prog
E(Prog) = ET (ε, ε,Prog , ε)
ET : (Top . . . ,n → n,Top . . . , def . . .) → prog
ET (Γ, ρ, ε, Δ) = Δ
ET (Γ, ρ, Ifc Top . . . , Δ) = ET (Γ Ifc, ρ,Top . . . , Δ)
ET (Γ, ρ,Mod Top . . . , Δ) = ET (Γ EM(Γ,Mod), ρ,Top . . . , Δ)
ET (Γ, ρ,Link Top . . . , Δ) = ET (Γ EL(Γ,Link), ρ,Top . . . , Δ)
ET (Γ, ρ, Inv Top . . . , Δ) = ET (Γ, ρ ρ′,Top . . . , Δ Δ′) where EI(Γ, Inv) = (ρ′, Δ′)
ET (Γ, ρ, expr Top . . . , Δ) = ET (Γ, ρ,Top . . . , Δ ρ�expr�)
EM : (Top . . . ,Mod) → Mod
EM(Γ, (module N Def . . . )) = (module N Imp . . . def Exp . . . )
where sort(Def . . .) = Imp . . . def . . . (export N 1 (n1 n2) . . . ) . . .
and (n3 . . . ) . . . = names(Γ (N 1)) . . .
and Exp . . . = (export N 1 (n3 [n2/n1 . . .]�n3�) . . . ) . . .
EL : (Top . . . ,Link) → Mod
EL(Γ, (link N (N 1 N 2))) = (module N Imp . . . def . . . Exp . . . )
where Γ (N 1) =
(module N 1 (import A1) . . . def 1 . . . (export B1 (b1 a1) . . . ) . . . )
and Γ (N 2) =
(module N 2 (import A2) . . . def 2 . . . (export B2 (b2 a2) . . . ) . . . )
and A3 . . . = (A2 . . .) − (A1 . . . B1 . . .)
and b3 . . . = names(Γ ((A2 . . .) ∩ (B1 . . .)) . . .)
and ρ1 = freshen(def 1 . . .)
and ρ2 = freshen(def 2 . . .)
and ρ3 = [ρ1�[a1/b1 . . .]�b3��/b3 . . .]
and Imp . . . = (import A1) . . . (import A3) . . .
and def . . . = ρ1�def 1� . . . ρ2�ρ3�def 2�� . . .

and Exp . . . = (export B1 (b1 ρ1�a1�) . . . ) . . .
(export B2 (b2 ρ2�ρ3�a2��) . . . ) . . .

EI : (Top . . . , Inv) → (n → n, def . . .)
EI(Γ, (invoke N )) = ([ρ�n2�/n1 . . .], ρ�def � . . .)
where Γ (N ) = (module N def . . . (export N ′ (n1 n2) . . . ) . . . )
and ρ = freshen(def . . .)

sort(Def . . .) : Sort module body into imports, definitions, and exports.
names(Ifc . . .) : Extract the names of signatures from interfaces.
freshen(def . . .) : Produce a substitution giving fresh names to definitions.

Fig. 5. Translation from Modular ACL2 to an executable program

linking of each compound module into a primitive one. The other is the extrac-
tion of definitions from each invoked primitive module; these are concatenated
with top-level expressions. We perform this transformation with the function
E (for “Executable”), shown in figure 5 along with some auxiliary translation
functions. To simplify the presentation, we introduce a and b for function and
theorem names, and A and B for interface and module names. We use Γ as an
environment again, this time for both interfaces and modules.
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This E function invokes ET with an empty environment, substitution, and
sequence of result terms. The ET function adds interfaces to the environment,
as well as primitive modules reduced to canonical form by EM . All modules
in the environment contain imports first, then internal definitions, and finally
exports with fully explicit external/internal name associations. Compound mod-
ules are converted to primitive modules by EL and stored in the environment.
The EI function extracts definitions and a substitution from a module in the
environment, which ET uses to splice the module’s body into the top level and
link top-level expressions to it.

The EL function combines two primitive modules into one. It looks up their
definitions in the environment, then extracts their imports, exports, and internal
definitions. The definitions are given fresh names and linked together by substi-
tuting names exported (from N 1) and imported (to N 2) across a shared interface.
Finally, EL concatenates both sets of source imports (except any resolved by
linking), definitions, and exports.

4 Experience with Modules

Designing a new language is insufficient; one must program in it to determine
its merit. We have therefore added a prototype of Modular ACL2 to Dracula
and have used it to convert a number of ACL2 programs into modular shape.
In this section, we present our experience writing, verifying, and executing three
illustrative examples. We then demonstrate the advantages of modules for ACL2
and explain the most serious problem encountered.

Illustrative Experiments. The Worm game is illustrative of the projects as-
signed to freshmen at Northeastern University and the courses at Oklahoma.

The top-left box in figure 6 displays a concise description of the game. The im-
plementation consists of three main modules implementing the food, the worm,
and the game itself. These are supported by three other modules, defining a
pseudorandom number generator, basic point geometry, and the game grid. We
implemented the game and verified two nontrivial properties: the worm’s tail
stays within the grid during the game, and it never crosses itself. Figure 6 shows
portions of the game and point interfaces.

Graph traversal is the first canonical ACL2 case study [3]. The task is to
represent directed graphs, implement an algorithm to find a path from one node
to another, and prove the algorithm always produces a valid path.4

We designed our graph traversal program around two interfaces: one for rep-
resenting a graph, the other for the search algorithm. See figure 7 for details. A
successful find-path is guaranteed to produce a path, specified by pathp in IGraph
as a list of adjacent nodes. We produced four modules in total: neighbors list and
edge list representations of graphs, and depth-first and breadth-first search. The
modules are interchangeable; either graph representation may be linked with
either search algorithm.

4 The original case study also proves that it finds a path so long as one exists.
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Game Description:
The player directs a constantly-
moving worm on a grid. The grid
has walls and, somewhere, a piece of
food. If the worm eats the food, the
worm grows in length and a new piece
of food appears. If the worm runs into
a wall or its own tail, the game ends.

(interface IPoint
(sig point-uniquep (pt pts))
(sig points-uniquep (pts))
(con points-uniquep/nil
(points-uniquep nil))

(con points-uniquep/cons
(implies
(and (pointp pt)

(point-listp pts)
(point-uniquep pt pts)
(points-uniquep pts))

(points-uniquep (cons pt pts)))))

(interface IGame
(include IPoint)
(sig live-gamep (v))
(sig uncrossedp (v))
(sig worm-tail (g))
(sig game-tick (g))
(con uncrossedp/worm-tail
(implies (uncrossedp g)

(points-uniquep (worm-tail g))))
(con initial-game/uncrossedp
(uncrossedp (initial-game)))

(con game-tick/uncrossedp
(implies (and (uncrossedp g)

(live-gamep g))
(uncrossedp (game-tick g))))

(con game-key/uncrossedp
(implies (and (uncrossedp g)

(live-gamep g)
(stringp k))

(uncrossedp (game-key g k)))))

Fig. 6. Interface excerpts from the Worm game

(interface IGraph
(sig graphp (v))
(sig nodep (g n))
(sig edgep (g a b))
(sig pathp (g x y p))
(con pathp/one
(iff (pathp g x y (list a))

(and (equal x a) (equal y a) (nodep g a))))
(con pathp/append
(implies
(and (edgep g b c) (pathp g a b p) (pathp g c d q))
(pathp g a d (append p q)))))

(interface IFindPath
(include IGraph)
(sig find-path (g x y))
(con find-path/pathp
(implies
(and (graphp g)

(nodep g x)
(nodep g y)
(find-path g x y))

(pathp
g x y
(find-path g x y)))))

Fig. 7. Interface excerpts from the graph search program

Different strategies for implementing language interpreters suggest natural ex-
ercises in proving equivalence of two recursive algorithms. In our interpreters, an
expression is either an integer or a binary operator +,−, or ∗ applied to two expres-
sions. Our small-step interpreter reduces the leftmost redex in an expression, pro-
ducing a new expression until no reductions remain. Our alternative interpreter
uses a big-step strategy. We specified the program in four interfaces: expressions,
big-step evaluation, small-step reductions, and equivalence between the two.
Figure 8 shows some representative excerpts.
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(interface ILanguage ;; datatypes
(sig exprp (v))
(sig calcp (v))
(sig calc (f a b)))

(interface IBigStep
(include ILanguage)
(sig eval (e))
(con eval/plus
(equal (eval (calc ’+ a b))

(+ (eval a) (eval b)))))

(interface IEquivalence
(include ILanguage)
(include IBigStep)
(include ISmallStep)
(con eval=last-reduction
(implies (exprp e)

(equal (last (reduce-all e))
(list (eval e))))))

(interface ISmallStep
(include ILanguage)
(sig reduce (e))
(sig reduce-all (e))
(con reduce/plus
(implies
(and (integerp a) (integerp b))
(equal (reduce (calc ’+ a b)) (+ a b))))

(con reduce/left
(implies (calcp a)

(equal (reduce (calc f a b))
(calc f (reduce a) b))))

(con reduce-all/calcp
(implies
(and (exprp e) (calcp e))
(equal (reduce-all e)

(cons e (reduce-all (reduce e)))))))

Fig. 8. Interface excerpts from the interpreter program

Theorem Mono. Mod.
game-tick/uncrossedp 845.95 0.06
game-tick/gamep 387.12 0.03
game-tick/in-bounds 362.97 0.03
connected-gamep/gamep 173.55 0.03
game-key/uncrossedp 148.65 0.05
game-key/in-bounds 64.58 0.03
game-key/gamep 64.24 0.02
uncrossedp/gamep 10.75 0.01

Theorem Mono. Mod.
game-mouse/uncrossedp 8.82 0.01
connected-wormp/wormp 3.00 0.06
worm-turn/uncrossed-wormp 0.48 0.10
worm-move/uncrossed-wormp 0.38 0.05
worm-grow/uncrossed-wormp 0.25 0.04
worm-turn/in-bounds-wormp 0.23 0.06
random-nat/range 0.10 0.10
modulo/range 0.08 0.08

Fig. 9. Time (in seconds) to verify theorems from two versions of the Worm game

Performance Improvements. Programming in a modular style naturally re-
duces the scope of ACL2’s proof search space and improves the engine’s efficiency.
Plain ACL2 typically requires “hints”—e.g., restrictions of the global theory—
to complete or speed up a proof. Modules restrict theories by design and in a
disciplined manner; it is often unnecessary to guide the search.

Our modular verification of the Worm game required no hints at all; the
verification takes just a few seconds per module. We compared this to a näıve
translation into a monolithic ACL2 proof. We concatenated the contents of the
modules and inserted the contracts of each module’s exports as theorems. ACL2
was able to verify the monolithic version as well, but took several orders of
magnitude longer.
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Figure 9 shows the CPU time (in seconds) used to prove the slowest nine
theorems from each version of the Worm game. The modular version never takes
over a tenth of a second, while the monolithic proof peaks at several minutes.
Near the end of the monolithic program, proof attempts had the entirety of
the game to inspect, while the modular proof started with a clean slate per
module. The slow performance measured here does not reflect the professional
ACL2 user’s experience; rather, such ACL2 users refine their proofs by manually
maintaining abstraction boundaries that occur naturally with modules.

Conciseness and Reuse. Modular design also promotes abstraction and code
reuse. Standard ACL2 programs cannot, in general, change their implementation
strategy without adjusting the accompanying theorems. Put differently, separat-
ing implementations and specifications imposes a serious cost of manual coding
and, because of that, prevents common patterns of code reuse and refactoring.

In contrast, Modular ACL2 encourages and simplifies reuse. Clients of our
graph modules may swap representations or search algorithms freely in a link
clause without changing a single defthm. Even undergraduates can now pro-
gram for reuse in ACL2.

Limitations. Unfortunately, our gains in terms of local reasoning come with a
serious loss, best illustrated with our interpreter example. In this example, our
final equivalence proof imports ILanguage, IBigStep, and ISmallStep (fig. 8),
representing respectively the grammar and two interpreters. Sadly, while a nat-
ural modularization calls for this organization, doing so prevents ACL2’s search
engine from finding an inductive proof.

The key problem is that, on one hand, ACL2 associates induction schemes
with function definitions, and that, on the other hand, Modular ACL2’s inter-
faces hide function definitions. For the specific case of our interpreters, the main
theorem must perform induction on the structure of expressions and of the two
interpreter algorithms. Because these definitions are hidden behind module bar-
riers, ACL2’s proof engine can’t possibly find a proof. The only way to expose
the induction schemes to ACL2 is to provide a concrete function definition, but
exposing eval and reduce-all defeats the abstraction boundaries of ISmallStep
and IBigStep.

From a high level perspective, we have traded improved local reasoning for
a loss in global reasoning. Naturally we consider this a major limitation of our
current approach. Induction is a critical aspect of ACL2, and inductive proofs
should not be limited to individual modules. Hence, our next step in designing
Modular ACL2 is to add a linguistic mechanism for specifying induction princi-
ples across interfaces and verifying their correct implementation as exports.

5 Related Work

The design of the module system derives from PLT Scheme’s unit system [8,9],
with linking semantics based on mixins [10,11]. More precisely, Modular ACL2
contributes contracts to the unit model, but inherits the idea of linking primitive
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and compound modules in hierarchical shape. It subtracts recursive linking as
this would complicate ACL2’s termination proofs.

Coq [12,13], Twelf [14], and similar proof assistants adopt an ML-like module
system for encapsulating proofs about metatheory. Our modules and interfaces
correspond closely to ML’s functors and signatures. Modular ACL2 can express
type specifications via contracts and sharing constraints via interface inclusion; it
cannot currently express nested modules. However, we face different challenges,
having chosen to work with a first-order functional language and an automated
theorem prover with idiosyncratic limitations. We must deal with the lack of ab-
stract induction schemes, the inexpressibility of higher-order logical statements
such as a module’s proof obligation, and the lack of execution-preserving proof
abstraction mechanisms.

Extended ML (EML) [15] equips SML [16] with logical properties and a verifi-
cation semantics. The language is designed around the methodology of beginning
with an abstract specification and refining it step-by-step to a concrete imple-
mentation. EML offers signatures, structures, and functors, any of which may
contain axioms, analogous to our modules and interfaces with contracts. EML
also offers the abstract term “?” for specified but unimplemented types, values,
or structures; Modular ACL2’s stubs and axioms serve a similar purpose. EML
has the benefit of SML’s powerful type system, but lacks a theorem prover. In
contrast, Modular ACL2 is based on the industry’s leading, general-purpose,
automated theorem prover.

Some theorem proving languages also provide named scopes, such as Isabelle’s
locales [17], Coq’s sections [18], and the “little theories” of IMPS [19]. These
scopes allow local and global definitions, and export the global ones by translat-
ing or abstracting over the local ones. They provide a lightweight approach to
abstraction and namespace management, but do not support explicit interfaces
or introduce abstraction beyond that of the underlying language.

6 Conclusion

While Boyer and Moore took an existing functional language and constructed a
theorem prover for it, we have chosen to take an existing theorem prover and to
equip it with a pragmatic module system. Thus far, we have designed a series
of models and prototypes. In this paper, we present the first version that makes
modular programming truly practical. Our examples in this paper illustrate how
Modular ACL2 introduces and encourages information hiding and code reuse.
As a result, Modular ACL2 naturally improves the performance of the proof
search engine. Novices to the system now easily succeed with complex proofs
where before professionals would have had to manually encode search strategies.

Unsurprisingly, the development of Modular ACL2 pinpoints the major prob-
lem with modularization of ACL2 programs: the hiding of inductive structures.
We intend to tackle this challenging problem over the next year and expect to
report progress on Modular ACL2 then. In the meantime, we will deploy and
maintain our implementation to get feedback through classroom experience.
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