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Abstract. Although applications of functional programming are diverse,
most examples deal with modest amounts of data – no more than a few
megabytes. This paper describes how Haskell has been used to address a
challenging astrophysics visualization problem, where the complete un-
compressed dataset is nearly a terabyte. Our solution makes extensive
use of three novel domain-specific languages: to specify data resources,
to abstract over rendering operations, and most significantly, to design
the desired visualization. The result is a powerful framework for time-
varying multi-field visualization. This approach represents a significant
departure from standard practices in the visualization field, and has ap-
plication well beyond the original problem. That our solution consists of
less than 4.5K lines of code is itself a notable result. This paper motivates
and describes the overall architecture of our solution, and technical fea-
tures of the DSLs that are used in place of the traditional visualization
pipeline.

1 Introduction

Drawings, diagrams and graphs have a long history of use within scientific dis-
covery, e.g. Snow’s map correlating cholera cases with water pump location in
London, 1854. Use of computer graphics for visualizing data is usually traced
to an influential 1987 report produced for the National Science Foundation of
the United States [1]. Data from instruments and supercomputer simulation
was accumulating faster than it could be interpreted, and the report called for
new methods to process these ‘firehoses’. Visualization became established as
a new research field within computing, and foundational work on data models,
processing paradigms and depiction techniques for large-scale data led to rapid
progress [2,3]. Much of this work concentrated on scientific visualization, where
the data are located within some physical space. Data that has no ‘natural’ spa-
tial component, for example metabolic networks, web sites, market trends, etc.,
is addressed by information visualization. The relationship between these two
branches of visualization has been the subject of much debate [4]. Our concern
is with scientific visualization.
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Huge dataset size is one of the defining characteristics of the field; other is-
sues that arise include the need to design a new bespoke interactive tool for
every new problem, typically by building a set of toolkit components into a so-
called ‘pipeline’ (actually a directed graph). As an example, the widely-used open
source VTK [3] toolkit has components written in C++, that can be plumbed
together by Tcl scripts. This paper reports how we tackled these and other issues
in a declarative way: through the creation of several domain-specific languages
(DSLs), embedded in Haskell, to address a major design challenge problem, the
2008 IEEE Visualization Design Contest [5]. Three DSLs, respectively for large
dataset management, for low-level rendering and interaction, and for high-level
description of the desired picture, capture many of the interesting architectural
aspects of the domain. The middle-level components for generating visual depic-
tions are also implemented in Haskell [6,7]. In total, the code size is extremely
small, especially given the range and flexibility of visualisations it can deal with.
The use of the DSL strategy gave us a new and elegant way of combining visual-
ization techniques, as well as an efficient way of managing large data resources.

Section 2 introduces the contest and explains its importance and relevance to
practical applications of scientific visualization. Our solution utilises a two-stage
pipeline, separating the management of datasets from the synthesis of pictures.
The architecture is described in Section 3, with data management and picture
synthesis forming sections 4 and 5. Section 6 sets out an evaluation of our work.
We contrast our approach to the contest with entries from previous years, and
reflect on the design decisions that were made. In the conclusion, Section 7,
we pay particular attention to our use of domain-specific languages, and their
further potential within visualization.

2 The IEEE Visualization Design Contest

Since its inception in 1990, IEEE Visualization has been the leading forum for
research in the field. In 2004, the conference instituted a visualization contest, de-
signed “to foster comparison of novel and established techniques, provide bench-
marks for the community, and to create an exciting venue for discussion”.

The logistical difficulties presented by the contest can be appreciated from an
outline of the 2008 edition [5]. The dataset comprises 200 timesteps from an as-
trophysics simulation, modelling interaction between a radiation ionisation front
and primordial gas within a 0.6 × 0.25 × 0.25-parsec volume of space (sampled
as a regular 600 × 248 × 248-point grid). Understanding this interaction would
provide new insight into structure formation in the early universe, and the con-
test itself sought answers to six specific questions relating to these interactions.
At each point in the space, the simulation tracks ten scalars and one 3D vector,
with the scalars recording temperature and density of the gas, and the relative
densities of 8 chemical species. Data are stored using a 11-character ASCII rep-
resentation of fixed-precision format numbers; uncompressed, the total size of
the dataset would be ≈960GB.
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Tackling the visualization design contest requires access to domain expertise,
robust and scalable software, and significant time to explore the problem and
solution space. Past entries have used mature off-the-shelf systems, either com-
mercial products including the open-source VTK, or the output of long-running
research initiatives.

In a series of papers [8,6,7] we have explored the use of a functional language
such as Haskell to reconstruct visualization techniques, taking advantage of lazy
evaluation to implement streaming of data, and the expressive type system to cre-
ate new kinds of generic abstraction. This work provides a necessary foundation
for our solution. However, it was not in itself sufficient. Central to the 2008 de-
sign contest is the problem of time-varying multi-field data, a challenge in many
visualization applications. Although our previous implementations supported a
combination of techniques, for the most part they only supported visualization
of a single field within a single timestep.

3 Architecture of a Solution

Before designing a solution, we need first to unpack the problem. Visualization
is used in three ways: to present known data, to confirm a known hypothesis, or
to discover what might be present within unseen data. The six contest questions
fall into the latter two categories. Five ask about interactions between specific
fields. For example, here is question two:

“Over 100 chemical reactions occur in primordial H and He (many of
which are driven by radiation in the I-front) but what most interests
those studying first structure formation in the universe is H2. It allowed
primeval gas clouds to collapse and form the first stars before galaxies
later coalesced. Where is H2 most prevalent in the simulation?” [5]

Although this question only mentions one field (H2) explicitly, the answer has to
be framed in terms of the relationship between H2 concentrations and other fea-
tures, e.g. the hottest regions, and the advancing I-front. This requires multiple
fields. The final question is more open-ended and invites wholesale exploration:

“Question 5 posed a very specific hypothesis about the cause of tur-
bulence. The broader question of interest, and the one for which visu-
alization offers the most promise of displaying something unexpected,
is ‘What is causing the turbulence?’ Can you do an open-ended visu-
alization of all variables to try and help answer this question? This is
the ‘seeing the unexpected’ question that will hopefully provide new hy-
potheses.” [5]

Putting aside the temporal element for now, there are two general strategies for
dealing with multi-field data. (1) combine a number of standard techniques; for
example, extracting an isosurface from one field and colouring it by probing into
a second field, or by using multiple cutting planes. Or (2) use a visual technique
designed specifically to expose relationships between fields. Scatterplots can be
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Fig. 1. System architecture

used for two or three fields, while parallel coordinates generalise to higher di-
mensions [9], but in both cases it is difficult to see correlation with 3D spatial
locations, or features (e.g. the shockwave) mentioned in the contest questions.
These needs could be addressed by brushing and other forms of interaction, but
we took an early decision to focus our work on the first strategy, combining
standard techniques within the physical space of the simulation.

For dealing with time, there are again two general strategies; either (1) repre-
sent it explicitly as a spatial dimension, for example plotting a graph with time
as one axis, or (2) represent it implicitly, by using animation. Following a meeting
with astrophysicists to obtain a better understanding of the problem, we were
encouraged to explore animation. As we will see, our solution actually creates
interesting possibilities for combining time and space within one representation.
It consists of two stages:

Stage I: Data Management – conversion of datasets into a more compact binary
representation, support for fixed-precision calculation, selection of fields, slic-
ing, and downsampling.

Stage II: Picture Synthesis – specification of picture parameters, selection of
files, synthesis and rendering of geometry, and interaction.

These stages are loosely coupled, driven by separate executables, and linked
through the filesystem. Figure 1 shows the structure, and highlights the central
role of three DSLs in mediating the transformation from data to rendered im-
age. The architecture maps onto the remainder of the paper as follows: Section 4
is concerned with Stage I, including the DSL for managing transformation and
downsampling of data. Section 5 addresses the design of Stage II. The visu-
alization process (Section 5.1) constructs a graphical scene from the specifica-
tion of a desired picture. Both the scene (Section 5.2) and the picture language
(Section 5.3) are structured as DSLs, and it is this strategy that provides the
expressive power to explore the complexity of multi-field data.
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4 Stage I: Data Management

The contest data consists of 400 primary files, 200 holding the scalar field values
for each timestep, and a further 200 carrying the vector (velocity) data. Within
a scalar file, the value for each of the 10 fields is given for the first point, then
the 10 values for the second point, and so on. Consequently the entire file must
be traversed, even if only one or two fields are of interest. We decided to define
our own storage model for this data, and at the same time to convert the ASCII
encoding into a more compact binary form.

4.1 Fixed-Precision Values

Numeric computation in visualization and computer graphics often uses the 32
or 64-bit IEEE floating point representation, and it would have been straightfor-
ward to convert the given fixed-precision representation into this form. However,
as part of the analysis we would need to carry out derivation of new fields from
the existing data, for example computing the turbulence of the flow as the mag-
nitude of the velocity field curl. The numerical ranges for some fields are large
and, concerned about loss of precision, we decided to work as much as possi-
ble using our own fixed-precision representation. Each value was represented in
mantissa-exponent format, with 15 bits for each value (plus a sign bit). Inter-
nally, this format was stored using a Haskell constructor with two 16-bit integer
components, while externally values could be stored as 4 bytes in a binary file.

This representation required support from a small library of arithmetic oper-
ations, which we defined first in Haskell, as an instance of the Num type class.
More importantly we utilised SmallCheck [10] to test expected properties of the
system, for example commutativity:

prop plusCommutes :: FixedPrecision → FixedPrecision → Bool
prop plusCommutes x y = x + y ≡ y + x

This was invaluable in quickly teasing out a number of bugs. Just as importantly,
having established confidence in the Haskell ‘specification’, we were able to use
it as a reference model for implementing the fixed precision library within C.
Functions in the C implementation were exposed to Haskell via the FFI, and
equivalence between C and Haskell representations was tested via commuting-
diagram properties, e.g.

prop times :: FixedPrecision → FixedPrecision → Bool
prop times x y = (x ∗ y) ≡ fromCFP (toCFP x ∗ toCFP y)

4.2 Downsampling DSL

We next addressed the resolution and bounds of the data. There are good reasons
for not working directly from the full 600×248×248-point grid at each timestep:
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– A standard strategy in visualization is to first gain an overview of the data,
and then descend into lower levels of detail, saving unnecessary computation.

– Our volume renderer has a very simple implementation, but one based on
nested lists, and could not render the volume at full resolution.

– Our astrophysics colleagues suggested that for a number of the contest tasks,
2D slices might provide a more useful view (see Section 5.1).

So we needed a flexible mechanism for extracting subsets of the data, both by
downsampling, and/or by restricting the range of one or more dimensions. Our
implementation consisted of three components:

– a regular naming scheme for resources (files) that encodes information about
the spatial bounds, sampling, and fields;

– a high-level planner that, given the specification of a required resource, com-
putes the cheapest plan for generating that resource from the available files;
and

– a worker program that implements a given plan.

The naming scheme forms a tiny DSL in its own right. Three examples of the
resource naming conventions are:

x0-599y0-247z0-247t10.DGHH+HeHe+He++H-H2H2+.dat
x0-4-599y0-4-247z0-4-247t100.G.dat
x0-599y0-247z124t60.H2xD.dat

The first example specifies a full-resolution sampling of the entire grid, at
time step 10, containing each of the 10 scalar attributes (D, G, H, H+, etc). In
the second specification, the grid at time 100 has been downsampled, with every
4th sample selected in each spatial dimension, and only the G scalar component
selected. The final example specifies a 2D slice at time step 60 corresponding
to the plane z = 124, with full resolution along the remaining two axes, and
carrying a derived field H2xD, the product of H2 and D.

The planner, implemented in Haskell, takes a resource specification as para-
meter, and then inspects the available files, deciding the cheapest method for
generating the resource. Selection is implemented by defining a partial order
over data files. This is an inclusion relation defined in terms of data files’ bounds
(spatial and temporal), granularity (spatial and temporal) and the set of fields
present. After selecting the least dominator under the ordering, the planner in-
vokes a worker. The worker, implemented in C for performance reasons, converts
the plan into a tight set of nested for-loops that traverse the input and generate
the output resource. It takes the worker around two minutes to downsample/slice
from the largest resource file (1.48Gb), whilst starting from the least dominator
can often reduce the time to a few seconds. In the case of derived fields, part
of the worker traversal involves per-point numeric computation over selected
samples from the input.
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5 Stage II: Picture Synthesis

Before the announcement of the design contest, we had already implemented a
modest library of 3D visualization techniques, specifically:

– isosurface extraction;
– hedgehog rendering of a vector field;
– probing; and
– pseudo-volume rendering.

Experience gained in implementing these algorithms is reported in [7]. For ad-
dressing the contest tasks, three further techniques were implemented:

– slice visualization;
– 2D contouring; and
– 3D scatterplot.

Building on the Stage I work, we were easily able to adapt our infrastructure
to process contest datasets, obtaining initial results such as the volume rendering
of gas density, and isosurfaces of gas temperature, shown in Figure 2.

Fig. 2. Left: gas density as a volume rendering. Right: isosurfaces for gas temperature
at 2.5K (blue), 16K (green) and 20K Kelvin (red). Both pictures are generated from
time step 60, downsampled to a 150 × 62 × 62 grid.

This figure highlights both the power of visualization to present data, and the
limitations of standard 3D techniques for this particular challenge. The aim is to
explore correlations between multiple fields. Superimposing 3D representations,
even where they are known to be disjoint, creates problems of occlusion. This
problem is avoided in Section 5.1 by utilising 2D techniques.

In Section 5.2 we introduce the rendering layer that mediates between specific
visualization techniques and low-level graphical IO. Then Section 5.3 describes
the high-level DSL for creating the compound images that enable effective ex-
ploration of the dataset.
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5.1 Contours and Slices

Isosurfaces are a 3D generalisation of an older method for depicting scalar fields,
the contour plot. Contour plots have the advantage that nesting of contours
can be easily seen and interpreted. Contouring a field at regular intervals also
highlights areas of high gradient, a feature that we found useful in addressing
one of the contest questions. Similarly, a 2D slice through a dataset can also be
rendered directly, by using a transfer function to associate a colour with each
point, and then smooth-shading the resulting mesh. Figure 3 shows the same
datasets as Figure 2, this time using slicing and contouring on a single plane.
We found these images more useful in revealing details of the underlying field. In
particular the contour plot reveals a region of hot gas embedded within the shell
of the shockwave. As we shall see, these representations are also more amenable
to composition.

The implementation of contouring provides a compelling example of the value
of abstraction, and Haskell’s type class system. Following our initial work on the
‘marching cubes’ algorithm [6], we generalised our dataset representation and
implementation of the algorithm, to be independent of dimension, geometric
organisation, and cell-shape. The signature of our isosurfacing algorithm now
consists almost entirely of type variables and constraints:

isosurface :: (Interp a, InvInterp a, Interp g,Cell c v ,Enum v) ⇒
a → [c v a ] → [c v g ] → [ [g ] ]

It requires three parameters: a threshold to be extracted (type a), a stream of
sample values (also a), and a stream of the geometric locations g at which the
samples were obtained. The two streams are structured into topological cells c
defining local neighbourhoods within the grid. A cell c in turn is simply some
instance of a type predicate that describes the capability to select a vertex v,

Fig. 3. Left: gas density as a slice. Right: contour lines for gas temperature, range 2K,
3K . . . 21K Kelvin. Both pictures again from time step 60, now at full resolution within
the plane z = 124.
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and a case table that maps a marking, indicating which vertices of the cell are
above a threshold, to the list of cell edges that are intersected by the surface. It
took us less than one hour to implement 2D contouring as a specific instance of
this generalised algorithm. We had only to:

1. define a data constructor for 2D (square) cells;
2. implement the two Cell methods—the case table consisting of just 16 lines;
3. implement a function to turn a stream of values (samples or geometry) into

a stream of square cells, a simpler instance of the technique described in [6];
and

4. wrap the output of the “isosurfacer” with the appropriate geometry for ren-
dering at a set of line segments.

5.2 Rendering and Interaction DSL

The output of a single visualization algorithm, such as isosurfacing, contouring,
or volume rendering, is a bag of primitives: coloured line segments, triangles,
and surface normals. These must then be rendered to a display, in some fashion
that allows for interactive exploration, e.g. rotation, translation and zooming
of the “camera”. Ultimately, the visualization front-end is implemented using
the HOpenGL library that we have found to provide an excellent interface to
OpenGL and GLUT [11]. However, rendering and event handling in OpenGL are
handled through callbacks, which represent an unfortunately low-level intrusion
into the functional environment of our visualization system. To mitigate this, we
have implemented an intermediate layer, in the form of a scene-graph [12] ab-
straction for purely functional event handling. This provides a DSL for graphics,
and serves as the target language into which the picture DSL, described in the
next section, is compiled:

type HsHandler a = Maybe (Event → a → a)
type HsMovie = (Bool , [HsScene ], [HsScene ])
data HsScene

= Camera (HsHandler HsView) HsView HsScene
| Geometry (HsHandler [HsGeom ]) PrimitiveMode [HsGeom ]
| Transform (HsHandler HsTransform) HsTransform
| Group (HsHandler [HsScene ]) [HsScene ]
| Compiled HsCompiledHandler Extent DisplayList
| Switch HsScene HsScene HsScene
| Imposter HsScene HsScene
| Animate (HsHandler HsMovie) HsMovie
| Special (IO ())

There are expressions in this DSL for: scene geometry, transformations, groups
of subtrees, compiled scenes (OpenGL display lists), and animations. Each ani-
mation is represented as a pair of lists along with a ‘playing’ flag. The lists hold
the frames yet to be played, and the frames that have been played. The Animate
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event handler can be instantiated with a basic movie player supporting playback,
pausing, and stepping through individual frames. Lazy evaluation means that
one frame can be on the display while the next frame is still being generated.

In response to OpenGL’s callback architecture, the rendering module uses
a global IORef to store the root of the scene. Most scene expressions include
an event handler, a pure function over the expression’s substructure. When an
OpenGL callback is invoked, for example due to a mouse or timer event, the
scene graph is traversed: for each expression with a handler, a new expression is
generated by evaluating the handler with the new event and previous expression
as parameters. After the new scene description is computed, its value is written
back to the IORef.

Although this solution hides some of the non-functional features of OpenGL’s
architecture, there is clearly room for further improvement. One possible di-
rection is work on functional reactive programming; the Yampa library has for
example been used to create interactive graphics applications [13], though it is
unclear how well this would interface with the structured approach to rendering
adopted here.

5.3 The Picture DSL

Slicing and contouring yielded simple static views of a single timeframe, but our
greatest insights came from creating compound images and animations that ex-
posed the relationship between fields over time. To achieve this, we wrote a small
DSL of pictures that provides a task-oriented vocabulary, mediating between the
rendering and data-management languages. A picture is either the output from
one of our visualization techniques, or a compound of simpler pictures:

data Picture = Contour Colour (Range Float) DataExpr
| Surface Colour (Range Float) DataExpr
| Volume Colour DataExpr
| Slice Colour DataExpr
| Scatter DataExpr DataExpr DataExpr
| Draw [Picture ]
| Anim [Picture ]

There are two kinds of compound picture; Draw combines a list of sub-
pictures within one display frame, while Anim creates an animation, render-
ing pictures into successive frames. Novel combinations of time and space are
possible, e.g. by composing slices from multiple timesteps into one frame, or an-
imating a plane moving through a single timestep. Picture uses a small number
of supporting definitions. For example, the Range type provides a vocabulary
for sampled intervals:

data Eq a ⇒ Range a = Single a
| Range a a
| Sampled a a a
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It is used to specify the thresholds at which a scalar field is contoured or surfaced,
and is also used to describe the spatial sampling of grids. The Colour data type
specifies a number of schemes for mapping sample values onto colours, while
DataExpr is used to select the time-volume-field to be visualized, including
support for derived fields. (DataExpr compiles straightforwardly to the resource
management scheme outlined in Section 4.2.) Embedding of the DSL within
Haskell allows the use of host-language features such as comprehensions and
let-sharing, to generate animations with an elegant specification:

overDensity =
let slice t s = Use (From (Range 0 599) (Range 0 247) (Single 124) t s)
in Anim [ Draw [Slice mblues (slice t D)

,Contour mgreens (Sampled 200 400 1000) (slice t Mv)
,Contour reds (Sampled 0 0.02 0.4) (slice t H2xD)
]

| t ← [5, 10 . . 195]]

This example creates an animation showing correlation between the shockwave
(as captured by overall gas density D), turbulence (Mv), and the absolute den-
sity of H2, captured by the derived field H2xD. Figure 4 shows a snapshot from
the animation, revealing that H2 formation (white) is concentrated in regions
bracketed by the shockwave (blue) and higher-turbulence regions (green).

Evaluation of a picture DSL expression is carried out in the context of an
environment that carries the various data grids referenced from within the ex-
pression. A Picture expression is interpreted by a function eval picture that
pattern matches each of the Picture constructors, extracts appropriate grids
from the environment, and constructs an expression in the scene graph DSL for

Fig. 4. Combination of gas density (slice), turbulence (green contours), and absolute
H2 concentration (white contours)
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rendering the visualised geometry. Here, for example, are the cases for Contour
and the two compound picture types:

eval picture :: Environment → Picture → HsScene
eval picture env (Contour pal thresholds dexpr )

= Group static geomlist
where

levels = range to list thresholds
nr levels = float ◦ length $ levels
field = eval data env dexpr
plane = slice plane dexpr
mkgrid = squareGrid (cell size 2D field plane)
points = mkgrid $ plane points dexpr field
values = mkgrid $ samples field
colour = transfer pal 1.0 1.0 nr levels
contours = map (λt → concat $ isosurface t values points) levels
colours = map colour [1.0 . .nr levels ]
geomlist = zipWith contour geom contours colours

eval picture env (Draw ps)
= Group static (map (eval picture env) ps)

eval picture env (Anim ps)
= Animate anim control (True,map (eval picture env) ps , [ ])

The brevity of the compound cases, Draw and Anim, is particularly pleasing.
Constructors for compound pictures are interpreted directly in terms of an anal-
ogous low-level rendering constructor acting on the interpretation of the sub-
pictures. Composition of pictures is thus essentially an application of map. The
only differences between the interpretations of Contour (2D) and Surface (3D)
are (i) the mkgrid function for Surfaces builds a cubic grid, and (ii) the geometry
is constructed by surface geom rather than contour geom.

6 Comparisons with Other Approaches

Previous entries to the visualization contest have used large-scale visualization
tools such as VTK and Amira, and/or specialised graphics hardware. We used
a small, lightweight Haskell library running on a modest desktop PC. A direct
comparison is difficult. Our solution consists of less than 4000 lines of Haskell
and 630 lines of C, whilst for example VTK [3], a powerful toolkit for visualiza-
tion developed over more than a decade, consists of nearly 1000 C++ classes,
and 600K lines of code. Even comparing specific features such as isosurfacing is
non-trivial; the VTK module has to deal with more complex data and execution
models, but excludes the machinery for building and executing pipelines, which
arguably should be counted. Despite these caveats, this overall comparison, along
with the figures presented in [7] do highlight the brevity and expressive power
that come with functional abstractions.
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We found it necessary to use C to implement data conversion and selection. A
Haskell utility for converting the input data files into our binary fixed-precision
format required ≈45 minutes per file. The C utility runs in less than 2 minutes
per file. When processing 200 files, this is a significant difference. Haskell’s sup-
port for generating tight, fast loops is not yet ideal. Although it might have
been possible to utilise recent work on ByteString fusion [14], our experience
has been that, for very simple tasks over large data, the effort required to per-
suade a Haskell compiler to generate fast code is more time-consuming than
simply writing it in a lower-level language. Any worries about the correctness
of the low-level implementation were mitigated through initial specification and
automated testing in Haskell.

Our major success was the high-level DSL for pictures, which gave us con-
siderable freedom to explore the data. We are far from the first to realise the
benefits of this approach in the context of graphics. ‘Picture combinators’ go
back at least as far as Henderson’s 1982 paper on functional geometry, recently
revisited [15], and Arya’s work on functional animation [16] provides a rich set
of operators for constructing movies. More recently, Elliott has produced a se-
ries of papers showing the value of DSLs for image manipulation (Pan [17]) and
graphical synthesis (Vertigo [18]).

7 Conclusions and Prospects

This paper is not just about the use of Haskell for one specific problem, however
challenging. The rationale for the IEEE visualization contest is to explore new
approaches to difficult visualization problems. The scenario explored here, with
large volumes of multifield data, is one that is found widely in practice. Our
contribution is to show how functional languages enable rapid exploration of
new visualization techniques, and a particularly elegant way of describing novel
combinations of technique.

Brevity is particularly valuable in the context of exploratory visualization.
Although we started with a number of algorithms already implemented, the
contest tasks required new infrastructure and techniques. These were developed
on the fly within the four weeks in which the authors were working towards an
entry. Isosurfacing and volume-rendering were reused, but slicing, contouring,
animation, 3D scatterplots, and of course the fixed precision library and down-
sampling infrastructure were all new. Even so, we would estimate that less than
1000 lines of Haskell were written or modified specifically for the contest.

The practical implication is that, when faced with a novel visualization
problem, it may well be easier to write a new bespoke technique in 20-30
lines of Haskell than to assemble a collection of coarse-grained modules
within a large toolkit, let alone create a set of new modules.

Our picture DSL was implemented only in the final week of the contest. Ini-
tially, we had concentrated on data management and visualization techniques.
The driver for change was the need to include animation. At this point we fi-
nally appreciated how much our previous ad-hoc construction of pictures was
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a hindrance. With the picture DSL, we were able to make rapid progress. Sig-
nificant insights emerged literally within the final hour before submission. Even
then, we did not fully exploit our system. We had for example implemented a
3D scatterplot, to explore correlations between ion concentrations. Given our
animation facilities, it would be interesting to create a time-varying scatterplot,
showing how the relative concentrations evolve over time as the shock-front
passes through space.

The primitives of our picture DSL can be seen as analogs to the modules of a
pipelined architecture [3]. However, we are working towards a different strategy.
The contour code in Section 5.1 uses stream-based operations that generalise our
initial work [6]. We would like to exploit these, and possibly a similar library on
array-like structures, to provide an intermediate language for visualization algo-
rithms. We see a visualization system as a hierarchy of languages. At the top, a
declarative result specification (the picture DSL) is interpreted within a language
of stream/array operations, which are then mapped onto a language for dataset
management (cf our ‘Stage I’ as described in Section 4), generating datasets
on demand, before finally a rendering language constructs scenes for display
and interaction. Stages I and II would then be coupled directly, with the down-
sampler invoked directly from the visualization engine to provide datasets on
demand.

The work presented here addresses scientific visualization. There is another
challenge where functional programming may provide profoundly new insights,
namely providing new levels of abstraction for managing information visualiza-
tion (aka infovis). A key challenge here is the diversity of both data organization
and visual metaphor. As a result, tools tend to be specialised to limited types of
data and/or applications, and it is difficult to identify generic, reusable abstrac-
tions. The first task in any infovis application is to impose some structure on
the data, one that enables translation into a suitable visual representation, for
example a tree or graph. Could the strategy of creating layers of DSLs help also
to structure infovis applications? An equally interesting question is whether the
richer type system of functional languages, possibly including ideas like poly-
typism, can be used to find unexplored regularities within both data and dis-
play techniques. Recent work [19] on using Haskell for visual analytics, a new
synthesis of information visualization and statistical analysis, suggests that the
conversation between functional programming and visualization has only just
begun.

Source code for our implementation is available from the project web site,
www.comp.leeds.ac.uk/funvis/
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