
Declarative Programming of User Interfaces�

Michael Hanus and Christof Kluß

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
{mh,ckl}@informatik.uni-kiel.de

Abstract. This paper proposes a declarative description of user interfaces that
abstracts from low-level implementation details. In particular, the user interfaces
specified in our framework are executable as graphical user interfaces for desk-
top applications as well as web user interfaces via standard web browsers. Thus,
our approach combines the advantages of existing user interface technologies in
a flexible way without demands on the programmer’s side. We sketch an imple-
mentation of this concept in the declarative multi-paradigm programming lan-
guage Curry and show how the integrated functional and logic features of Curry
are exploited to enable a high-level implementation of this concept.

1 Motivation

The implementation of a good user interface for application programs is a necessary but
often non-trivial and tedious task. In order to support programmers in the implementa-
tion of user interfaces, one can find specific libraries that reflect different approaches
to the construction of user interfaces. From a user’s perspective, there are two kinds of
user interfaces (UIs) that are currently the most important ones on conventional desktop
computers:

Graphical User Interfaces (GUIs): These are user interfaces that followed the early
textual user interfaces on single host computers. GUIs enabled non-expert users to
easily interact with application programs. They provide a good reaction time (since
they run on the local host) and are relatively easy to install as any other program,
i.e., usually they are distributed with the executable of the application program.
On the negative side, application programs with GUIs require some installation
efforts if many users want to use them on their desktops, because one has to install
them on all desktops that might have different configurations or operating systems.
Moreover, they are difficult to maintain during their life time since updates must be
performed on all existing installations.

Web User Interfaces (WUIs): These are user interfaces that became popular with the
world-wide web and its opportunities for user interaction via dynamic web pages.
In this case, the application runs on a web server and the user interacts with the
application via a standard web browser. Thus, applications with WUIs are relatively
easy to install for many users since every single user needs only a web browser on

� This work was partially supported by the German Research Council (DFG) under grant Ha
2457/5-2.

A. Gill and T. Swift (Eds.): PADL 2009, LNCS 5418, pp. 16–30, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Declarative Programming of User Interfaces 17

his local host (which is usually already installed). Moreover, such applications are
easy to maintain since one has to update the central installation on the web server
only. On the negative side, WUIs have a moderate reaction time (since the web
server is contacted for every state-changing interaction) and a complete application
is more difficult to install on a single host (since one has to install and configure a
web server).

A few years ago, there was also another important difference between GUIs and WUIs:
the model of interaction. In application with GUIs, the user could immediately change
the content of many widgets by mouse events, whereas with WUIs, each page contain-
ing user input has to be sent to the web server which returns a new web page with some
modified content. However, this disadvantage of WUIs has been decreased or omitted
by the development of the Ajax framework that supports an interaction with a web
server without submitting and receiving complete new pages from the web server [7].

From these considerations, it is reasonable to combine the advantages of both kinds
of user interfaces in a single framework so that the programmer has no additional burden
to select between GUIs or WUIs (or both) for his application. This paper presents a
concrete proposal of such a concept and its implementation in the declarative multi-
paradigm language Curry.

In the following section, we review the main features of functional logic program-
ming and Curry as required in this paper. Section 3 describes the concepts of our
framework followed by a few examples shown in Section 4. Implementation issues and
extensions are sketched in Sections 5 and 6 before we conclude in Section 7 with a
discussion of related work.

2 Functional Logic Programming and Curry

In this section we review the basic concepts of functional logic programming with Curry
that are relevant for this paper. More details can be found in a recent survey on func-
tional logic programming [13] and in the definition of Curry [17].

Functional logic languages integrate the most important features of functional and
logic languages to provide a variety of programming concepts to the programmer. Mod-
ern languages of this kind [8,17,19] combine the concepts of demand-driven evaluation
and higher-order functions from functional programming with logic programming fea-
tures like computing with partial information (logic variables), unification, and non-
deterministic search for solutions. This combination, supported by optimal evaluation
strategies [1] and new design patterns [2], leads to better abstractions in application
programs, e.g., as shown for programming with databases [3,6] or web programming
[10,12,14]. The declarative multi-paradigm language Curry [8,17] is a functional logic
language extended by features for concurrent programming. In the following, we re-
view the elements of Curry that are relevant to understand the contents of this paper.
Further features (e.g., constraints, search strategies, concurrency, declarative I/O, mod-
ules), more details about Curry’s computation model, and a complete description of the
language can be found in [17].

From a syntactic point of view, a Curry program is a functional program extended
by the possible inclusion of free (logic) variables in conditions and right-hand sides of

18 M. Hanus and C. Kluß

defining rules. Curry has a Haskell-like syntax [22], i.e., (type) variables and function
names usually start with lowercase letters and the names of type and data construc-
tors start with an uppercase letter. The application of f to e is denoted by juxtaposition
(“f e”). A Curry program consists of the definition of functions and data types on which
the functions operate. Functions are first-class citizens and evaluated lazily. To provide
the full power of logic programming, functions can be called with partially instanti-
ated arguments and defined by conditional equations with constraints in the conditions.
Function calls with free variables are evaluated by a possibly nondeterministic instanti-
ation of demanded arguments (i.e., arguments whose values are necessary to decide the
applicability of a rule) to the required values in order to apply a rule.

In general, functions are defined by rules of the form “f t1 . . . tn | c = e” with f
being a function, t1, . . . , tn patterns (i.e., expressions without defined functions) with-
out multiple occurrences of a variable, the (optional) condition c is a constraint (e.g.,
a conjunction of equations), and e is a well-formed expression which may also con-
tain function calls, lambda abstractions etc. A rule can be applied if its left-hand side
matches the current call and its condition, if present, is satisfiable.

The following Curry program defines the data types of Boolean values, possible
values, and polymorphic lists, and functions to compute the concatenation of lists and
the last element of a list:

data Bool = True | False
data Maybe a = Nothing | Just a
data List a = [] | a : List a

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

last :: [a] -> a
last xs | ys ++ [x] =:= xs = x where x,ys free

[] (empty list) and : (non-empty list) are the constructors for polymorphic lists (a is a
type variable ranging over all types and the type “List a” is written as [a] for con-
formity with Haskell). The concatenation function “++” is written with the convenient
infix notation. The (optional) type declaration (“::”) of the function “++” specifies that
“++” takes two lists as input and produces an output list, where all list elements are of
the same (unspecified) type.1

As one can see in this example, logic programming is supported by admitting func-
tion calls with free variables (see “ys ++ [x]” above) and constraints in the condition of
a defining rule. For instance, the equation “ys ++ [x] =:= xs” is solved by instantiat-
ing the first argument ys to the list xs without the last argument, i.e., the only solution
to this equation satisfies that x is the last element of xs. In order to support some con-
sistency checks, extra variables, i.e., variables of a rule not occurring in a pattern of the
left-hand side, must be declared by “where...free” (see the rule defining last).

A constraint is any expression of the built-in type Success. For instance, an equa-
tional constraint e1 =:= e2 is satisfiable if both sides e1 and e2 are reducible to unifi-

1 Curry uses curried function types where α->β denotes the type of all functions mapping ele-
ments of type α into elements of type β.

Declarative Programming of User Interfaces 19

able constructor terms. Specific Curry systems also support more powerful constraint
structures, like arithmetic constraints on real numbers or finite domain constraints (e.g.,
PAKCS [15]).

The operational semantics of Curry, described in detail in [8,17], is based on an
optimal evaluation strategy [1] which is a conservative extension of lazy functional
programming and (concurrent) logic programming. Curry also offers standard features
of functional languages, like higher-order functions, modules, or monadic I/O (which is
identical to Haskell’s I/O concept [27]). Thus, “IO α” denotes the type of an I/O action
that returns values of type α. For instance, the predefined I/O action getChar has the
type “IO Char”, i.e., it returns the next character from the keyboard when it is applied.
Similarly, the predefined I/O action readFile has the type “String -> IO String”,
i.e., it takes a string (the name of a file) and returns the contents of the file when it is
applied.

3 Specifying User Interfaces

In this section we describe our proposal for the declarative programming of user inter-
faces that can be executed either on a local host as a GUI (e.g., by the use of Tcl/Tk
[21]) or as a WUI on a web server that is accessed by a standard web browser.

In order to develop appropriate abstractions for high-level UI programming, one has
to analyze the essential components of these programming tasks. Based on earlier work
on programming GUIs and WUIs with functional logic languages [9,10,12], one can
distinguish the following ingredients of UI programming:

Structure: Each UI has a specific hierarchical structure which typically consists of
basic elements (also called widgets), like text input fields or selection boxes, and
composed elements, like rows or columns of widgets. Thus, UIs have a tree-like
structure which can be easily specified by an algebraic data type in a declarative
language.

Functionality: If the user interacts with UI elements by mouse or keyboard clicks,
these UI elements emit some events on which the application program should react.
A convenient way to connect the application program to such events is the concept
of event handlers, i.e., functions that are associated to events of some widget and
that are called whenever such an event occurs. Usually, the event handlers use the
functionality of the application program to compute some data that is shown in the
widgets of the UI. Thus, event handlers are associated to some widgets but need
to refer to other widgets independently of the structural hierarchy. This means that
UIs have not only a hierarchical (layout) structure but also a logical (graph-like)
structure that connects the event handlers with various widgets of the UI structure.
In previous works on GUI and WUI programming [9,10] it has been shown that
free (logic) variables are an appropriate feature to describe this logical structure
and to avoid many problems that occur if fixed strings are used as references to UI
elements as in traditional GUI programming (e.g., [21,26]) or WUI programming
(e.g., [4,20]).

Layout: In order to support a visually appealing appearance of a UI, it should be pos-
sible to influence the standard layout of a UI. Whereas in older approaches layout

20 M. Hanus and C. Kluß

and structural information are often mixed (e.g., as in Tcl/Tk or older versions of
HTML, and similarly in previous approaches to declarative GUI/WUI program-
ming [9,10]), it has been realized that these issues should be distinguished in order
to obtain clearer and reusable implementations. For instance, current versions of
HTML recommend the use of cascading style sheets (CSS) to separate structure
from layout.

The distinction between structure, functionality, and layout and their appropriate mod-
elling in a declarative programming language are the key ingredients to our framework
for UI programming. Although parts of these ideas can be found in our previous works
[9,10,12], our current novel approach abstracts more from the underlying technology
(Tcl/Tk, HTML/CGI) so that it enables a common method to specify user interfaces.
In the following, we propose a concrete description of the structure, functionality, and
layout of UIs in the language Curry by presenting appropriate data types and operations
on them. In principle, one can transfer these ideas also to other declarative languages
(where some restrictions might be necessary). However, we will see that the combined
functional and logic programming features of Curry are exploited for our high-level and
application-oriented description of UIs.

As already discussed, UIs have a hierarchical structure that can be appropriately
described by the following data type:

data UIWidget = Widget WidgetKind -- kind of widget
(Maybe String) -- possible contents
(Maybe UIRef) -- possible reference
[Handler] -- event handlers
[StyleClass] -- layout elements
[UIWidget] -- subwidgets

In order to avoid unnecessary restrictions, the definition of a widget is quite general.
In principle, one could also enumerate all kinds of widgets and distinguish between
widgets having no structure (basic widgets) and widgets with structure (e.g., rows,
columns). For the sake of generality, we have chosen one widget constructor where
the concrete kind of widget is given as the first component (of type WidgetKind). The
last two components are a list of layout elements (see below) and the widgets contained
in this widget, respectively. The second component contains the possible contents of
the widget (e.g., the entry string of a text input field, Nothing for widget combinators
like row or column), the third component a possible reference to a widget used by other
event handlers, and the fourth component a list of handlers for the various events that
can occur in this widget. Concrete examples for widgets are shown below after we have
discussed the other data types used in widgets.

Event handlers need to refer to other widgets independently of the widget hierar-
chy. Therefore, a widget can be equipped with an identity used as a reference by event
handlers. Many approaches to user interface programming, like Tcl/Tk or HTML/CGI,
use string constants as identifiers. Such approaches are error prone since a typo in a
string constant causes a run-time error which is usually not detected at compile time.
In order to provide a more reliable approach, we adapt the idea of previous works on
declarative GUI and WUI programming [9,10] and make the type of widget references

Declarative Programming of User Interfaces 21

abstract. Thus, one cannot construct “wrong” identifiers but has to use free variables
(whose declarations are checked at compile time) for this purpose. Therefore, our UI
library contains a type declaration

data UIRef = ...

where only the type name UIRef but no data constructor is exported, i.e., UIRef is an
abstract type. Since no constructor of this data type is available to the user of the UI
library, the only reasonable way to use values of type UIRef is with a free variable (see
below for a concrete example).

In general, event handlers are used for two main purposes. Either they should per-
form some calculations and show their results in some specific widgets of the UI, i.e.,
they influence the state of the UI, or they should change the state of the underlying
application program, e.g., the execution of an event handler might change some appli-
cation data that is stored in a file or database. In order to support the latter functionality,
the result type of an event handler is always “IO ()”, i.e., an event handler might have
a side effect on the external world. Since there are also I/O actions to influence the state
of the UI (see below), this result type of event handlers ensures that event handlers can
influence the state of the UI as well as the state of the application program.

Furthermore, the calculations and actions performed by event handlers usually de-
pend on the user inputs stored in the widgets of the interface, i.e., these input values
must be passed as parameters to the event handlers. This can be adequately modelled
by an environment parameter that is conceptually a mapping from widget references to
the string values stored in the widgets. In order to abstract from the concrete implemen-
tation of such environments, our UI library contains the type declaration

data UIEnv = ...

where only the type name UIEnv is exported. Moreover, the UI library contains the type
declarations

data Command = Cmd (UIEnv -> IO ())

data Handler = Handler Event Command

where Event is the type of possible events issued by user interfaces:

data Event = DefaultEvent | FocusIn | FocusOut
| MouseButton1 | MouseButton2 | MouseButton3
| KeyPress | Return | Change | DoubleClick

Therefore, each element in the list of event handlers of a widget specifies a command
(an I/O action depending on the value of some environment) that is executed whenever
the associated event occurs.

The type WidgetKind specifies the different kinds of widgets supported by our li-
brary. Some constructors of this type are

data WidgetKind = Col | Row | Label | Button | Entry
| TextEdit Int Int | ...

The constructors Col and Row specify combinations of widgets as columns and rows,
respectively. Label is a widget containing a string not modifiable by the user, Button

22 M. Hanus and C. Kluß

is a simple button, Entry is an entry field for a line of text, and TextEdit is a widget
to edit larger text areas (the parameters are the height and width of the edit area).

Since it is tedious to define all widgets of a user interface by using the constructor
Widget only, the library contains a number of useful abbreviations, like

col ws = Widget Col Nothing Nothing [] [] ws
row ws = Widget Row Nothing Nothing [] [] ws

label str = Widget Label (Just str) Nothing [] [] []

entry ref str = Widget Entry (Just str) (Just ref) [] [] []

button cmd label =
Widget Button (Just label) Nothing

[Handler DefaultEvent (Cmd cmd)]) [] []

For instance, a simple UI showing the text “Hello World!” and a button to exit the UI
can be specified as follows:

col [label "Hello World!",
button exitUI "Stop"]

exitUI is a predefined event handler to terminate the UI. The environment passed
to event handlers can be accessed and modified by the predefined I/O actions
getValue and setValue that take a widget reference as their first argument. Thus,
“getValue r e” returns the value of the widget referenced by r w.r.t. environment
e, and “setValue r v e” updates the value of the widget referenced by r so that it
becomes visible to the user.

In order to influence the layout of UIs, widgets can take a list of style parameters
of type StyleClass. This type contains options to align the widget or the text con-
tained in it, set the font and color of the widget’s text, set the background color, and so
on. The styles of a widget can be dynamically changed by predefined operations like
setStyles, addStyles, etc.

4 Examples

In order to demonstrate the concrete application of our concept, we show a few pro-
gramming examples in this section. As a first example, consider a simple counter UI
shown in Fig. 1. Using our library, its structure and functionality is specified as follows:

counterUI = col [label "A simple counter:",
entry val "0",
row [button incr "Increment",

button reset "Reset",
button exitUI "Stop"]]

where
val free

reset env = setValue val "0" env

incr env = do v <- getValue val env
setValue val (show (readInt v + 1)) env

Declarative Programming of User Interfaces 23

Fig. 1. A simple counter UI executed as a GUI (left) and as a WUI (right)

The free variable val (of type UIRef) denotes the reference to the entry field containing
the string representation of the counter’s value. It is used by the event handler reset to
set the value of this entry widget to "0". The event handler incr reads the current value
of this widget (by “getValue val env”) before replacing it by its incremented value
(since the values in the widgets are strings, the string is transformed into an integer by
“readInt v”).

The UI specification can be executed by the predefined I/O action runUI that takes a
string (usually shown as the label of the window containing the UI) and a UI specifica-
tion as parameters. For instance, the counter UI shown above is executed by evaluating
the main expression

runUI "Counter Demo" counterUI

Many interactive applications contain a state which is shown and modified by a UI. We
want to demonstrate the implementation of such kinds of UIs with our concept by a
simple desk calculator UI shown in Fig. 2. The implementation of this UI requires the
access of the UI to some state that can be modified by the event handlers associated to
the different buttons. In our application, the value of the state is a pair (d,f) containing
the current operand d and an accumulator function f that is applied to d when the button
“=” is pressed (this idea is due to [26]). In order to allow the change of the state’s
value by any event handler of the calculator UI, we model the calculator’s state with
IORefs, a concept from Haskell to deal with mutable state. IORefs are references to
stateful objects, where their states can only be accessed and changed by the predefined
I/O actions readIORef and writeIORef (in order to ensure referential transparency).
Thus, the calculator UI can be implemented as follows (where the parameter stref of
type IORef(Int,Int->Int) is an IORef to the calculator’s state):

calcUI stref =
col [entryS [Class [Bg Yellow]] display "0",

row (map cbutton [’1’,’2’,’3’,’+’]),
row (map cbutton [’4’,’5’,’6’,’-’]),
row (map cbutton [’7’,’8’,’9’,’*’]),
row (map cbutton [’C’,’0’,’=’,’/’])]

where

display free

cbutton c = button (buttonPressed c) [c]

24 M. Hanus and C. Kluß

Fig. 2. A simple desk calculator UI executed as a GUI (left) and as a WUI (right)

buttonPressed c env = do
state <- readIORef stref
let (d,f) = processButton c state
writeIORef stref (d,f)
setValue display (show d) env

The operator entryS is similar to entry but has a further first argument to spec-
ify the initial layout of this widget (here: the background color). Note that we ex-
ploit the higher-order features of Curry to create the individual buttons by the generic
function cbutton in a compact way. Each button has an associated event handler
buttonPressed that reads the current state, modifies it, and shows the new operand
in the entry widget referenced by the variable display. The actual update of the state
depending on the selected button is computed by the operation processButton:

processButton :: Char -> (Int,Int->Int) -> (Int,Int->Int)
processButton b (d,f)
| isDigit b = (10*d + ord b - ord ’0’, f)
| b==’+’ = (0,((f d) +))
| b==’-’ = (0,((f d) -))
| b==’*’ = (0,((f d) *))
| b==’/’ = (0,((f d) ‘div‘))
| b==’=’ = (f d, id)
| b==’C’ = (0, id)

Finally, the complete application is executed by evaluating the operation main that first
creates a new IORef object and then runs the UI with this object:

main = do stref <- newIORef (0,id)
runUI "Calculator" (calcUI stref)

We have already mentioned that the use of free variables as references to UI elements
avoids the construction of wrong identifiers that might happen if strings are used as
identifiers, as in scripting languages like Tcl/Tk, HTML/CGI, PHP, etc. Moreover,
this also improves compositionality in the construction of UIs. For instance, if fixed
strings are used as reference identifiers, there might be name clashes between different

Declarative Programming of User Interfaces 25

Fig. 3. A UI with four independent counters executed as a GUI

references when independent UIs are composed in a larger UI. Due to the use of free
variables that represent fresh values every time they are introduced, such name clashes
are avoided in our library. For instance, consider the simple counter UI above. Each
use of counterUI introduces its own fresh local reference variable val. Thus, we can
easily put four different counters in one UI by

counter4 = col [row [counterUI,counterUI],
row [counterUI,counterUI]]

so that “runUI "4 counters" counter4” creates a UI with four independent
counter UIs (see Fig. 3). This property of compositionality is particularly useful if one
combines various UIs into complex web pages (see below).

The use of free variables for fresh references in data structures is a specific functional
logic design pattern called “locally defined global identifier” [2]. An alternative would
be a global counter to create unique references that is threaded through the construction
of the user interface. Such an approach leads either to a monadic programming style
with an imperative flavor [5,18] or puts some restrictions on the possible dependencies
between input fields and buttons [25].

5 Implementation Issues

The definition of the components to specify a user interface, as discussed in Section 3,
are contained in a library UI so that one has to import this library in order to define an
interface. However, such an interface is not executable without specifying whether it
should be run as a GUI or a WUI. For this purpose, our framework provides two imple-
mentations of the general UI concept by transforming UIs into GUIs or into WUIs. The
necessary functionality is contained in the libraries UI2GUI and UI2HTML, respectively.
In order to execute a UI as a GUI (as shown in the left-hand sides of Fig. 1 and 2), one
has to import the library UI2GUI (which has the same interface as UI) instead of UI,
i.e., one has to put the import declaration

import UI2GUI

at the beginning of the module containing the corresponding UI specification. In order
to execute a UI as a WUI (as shown in the right-hand sides of Fig. 1 and 2), one has
to replace UI2GUI by UI2HTML in the import declaration, and everything else is left

26 M. Hanus and C. Kluß

unchanged (apart from the command to generate an executable from the corresponding
Curry program).

The implementation of the library UI2GUI is straightforward by exploiting the exist-
ing Curry library GUI [9] and mapping UI elements into corresponding GUI elements.
Thus, the main function runUI is implemented in this library by transforming the main
term and all its subterms of type UIWidget into the corresponding GUI widgets and
then calling the main function runGUI of the GUI library.

The implementation of the library UI2HTML is more advanced since the existing
Curry library HTML [10] does not support server interaction inside a web page. Since
this is possible by the Ajax framework [7], we have added extensions to the HTML li-
brary (based on Ajax) to support the interaction model implied by the UI library. Based
on these extensions, the main function runUI is implemented in the library UI2HTML by
transforming terms of type UIWidget into corresponding HTML expressions that are
put into an HTML form that contains the HTML input elements and JavaScript code to
implement the interaction with the web server.

In typical web applications, a user interface is not the single entity of a web page but
often embedded in a larger web page (containing headers, navigation bars, other input
elements, explaining text, etc). In order to put UIs as elements into larger web pages,
our library UI2HTML also exports a function ui2hexps that maps a UI specification
into an HTML expression that can be inserted into an HTML page constructed with the
HTML library [10]. Since the references used in UIs (of type UIRef discussed above)
and the references used in the HTML library to access the values of the input elements
are of different type2, there are also conversion functions between these kinds of refer-
ences. Thus, the values set in a UI can be used to influence values or elements in the
surrounding web page, and vice versa.

6 Extended UI Programming

The structure of UI specifications is a generalization compared to previous proposals
for GUI or WUI programming. In this section, we discuss two possibilities to extend
previous more specialized approaches to interface programming by exploiting our UI
approach.

6.1 Transforming GUIs into WUIs

Since the structure of UI elements is very similar to the elements of the Curry library
GUI, which has been already used for various applications (e.g., [11,16,23]), one can
also use our concept of UIs to enable the execution of such GUI-based desktop ap-
plications as web applications. For this purpose, we have also implemented a library
GUI2HTML that provides the same interface as the library GUI but executes a GUI as
a WUI by exploiting the library UI2HTML. For instance, we have used this implemen-
tation to execute the Curry analysis environment CurryBrowser (its implementation

2 This is necessary because UI references must be more general in order to support their mapping
into GUIs or WUIs.

Declarative Programming of User Interfaces 27

consists of almost 4000 lines of Curry code), which is written in Curry and has a quite
advanced graphical user interface (see [11]), in a standard web browser. The only nec-
essary change was the replacement of the import of the library GUI by the import of the
library GUI2HTML in the source code of the CurryBrowser implementation.

6.2 Type-Safe UIs

[12] presented a technique to construct type-safe WUIs in a high-level manner. The
basic idea is to provide a set of typed WUIs for basic data types, like wInt for
integers or wString for strings, and a set of combinators for typed WUIs, like
wPair for pairs, wTriple for triples, wList for lists, etc. For instance, the expres-
sion “wlist (wPair wInt wString)” specifies a WUI to manipulate values of type
[(Int,String)]. One of the important properties of such typed WUIs is the fact that
the user can only enter values of the correct type, i.e., if the user attempts to enter ill-
typed values, an error message appears and the user has to correct the value. Thus, the
application program need not check the values, provide error messages etc. A further
important aspect is the possibility to constrain the type of allowed values by any com-
putable predicate. For instance, if the predicate correctDate checks whether a triple
of integers forms a legal date, one can specify by

wTriple wInt wInt wInt ‘withCondition‘ correctDate

a WUI where one can enter only legal dates.
We can apply the same idea to UIs in order to obtain type-safe WUIs (similarly to

[12]) as well as type-safe GUIs (which have not been considered before). Therefore, we
have implemented two libraries TypedUI2HTML and TypedUI2GUI that provide almost
the same interface as [12] (i.e., it has all the entities, like wInt, wString, wPair, for
specifying typed UIs) and an operation typedui2ui to map a typed UI specification
together with an initial (type-correct) value into a standard UI widget that allows only
the manipulation of type-correct data. In addition, typedui2ui also returns operations
to access, set, and update the value shown in the typed UI. For instance, the following
program defines a UI containing a list (xs) of integers that can be together incremented
or reset, and a button to compute their sum:

counters :: [Int] -> UIWidget
counters xs =
col [label "A list of counters:", widget,

row [button (updval (map (+1))) "Increment all",
button (setval (repeat 0)) "Reset all",
button compute "Compute sum:", entry sval ""]]

where
sval free

(widget,getval,setval,updval) = typedui2ui (wList wInt) xs

compute env = do cs <- getval env
setValue sval (maybe "" (show . sum) cs) env

Note that the derived operations getval, setval, and updval access or manipulate
values of type [Int], i.e., the implementation checks whether all widgets contain only

28 M. Hanus and C. Kluß

integer values (in contrast to the counterUI example in Section 4). As a consequence,
getval returns a Maybe value, i.e., it returns Nothing if some of the current input
fields contain illegal values. This is also the reason why the operation compute uses
the standard function maybe in order to return the empty string as the sum value if
the current content cs is Nothing. The result of this construction is a standard UI,
i.e., we can create a type-safe GUI or WUI for a list of four integers by executing
“runUI "Counters" (counters [1..4])”.

7 Conclusions and Related Work

We described a framework to implement user interfaces in a high-level, declarative man-
ner. Our approach is based on separating the structural, functional, and layout aspects
of a user interface. We showed that the features available in functional logic languages
can be exploited to provide appropriate specifications of these issues. The hierarchical
structure of UIs can be easily specified as term structures. The associated functionality
can be specified by attaching event handlers (i.e., functions) to the elements of these
term structures. The connections of event handlers to the individual widgets of the UI
can be described by logic variables. This avoids typical programming errors in untyped
scripting languages and supports compositionality in the construction of complex UIs.
Finally, the concrete layout is separated from the structural and functional aspects of
the UI. This supports the use of the same UI specification in different contexts, i.e.,
one can create either graphical user interfaces for desktop applications or web-based
user interfaces from such descriptions only by importing the appropriate libraries. This
simplifies the programming efforts to combine the advantages of existing user interface
technologies. Finally, our framework also enables the transformation of existing GUI
applications into web applications, the embedding of UIs into arbitrary HTML pages,
and the construction of type-safe UIs. Although this functionality is a distinctive feature
of our approach based on declarative programming techniques, we discuss some related
work in the following.

Approaches to construct UIs in a declarative manner have been intensively studied
in the functional programming community, e.g., [5,18,20,24,25,26]. Although there are
approaches to create GUIs for different platforms [18] from the same base code, none
of them support the unified creation of GUIs and WUIs.

Adobe AIR3 enables the use of the same base code to create applications that run in
a web browser as well as on a desktop. In contrast to our approach, Adobe AIR is not
based on standard features of web browsers but requires specific software to be installed
on the client’s side. Another related work is the Google Web Toolkit4 (GWT). GWT is
a framework to implement dynamic web pages for Java programs similarly to GUI pro-
gramming in order to create highly interactive web applications with reasonable efforts.
GWT does not support the use of the same program to generate both GUI and WUI ap-
plications in contrast to our approach where concrete implementations (GUIs or WUIs)
are automatically inferred from a single UI description. Moreover, because of the applied
declarative programming concepts, our concrete UI descriptions are more compact.

3 http://www.adobe.com/devnet/air/
4 http://code.google.com/webtoolkit/

http://www.adobe.com/devnet/air/
http://code.google.com/webtoolkit/

Declarative Programming of User Interfaces 29

Another popular method to construct UIs are graphical editors that support the con-
struction of the UI’s layout, e.g., Cocoa’s Interface Builder5. Similarly to our approach,
such UI editors also advocate the separation of layout and functionality by binding
the graphical UI objects to the code of the base application. Although these graphical
editors are useful to define the layout of appealing UIs in a simple manner, the con-
nection of a constructed UI with the application code is less trivial than in our event
handler model using a single implementation language. Moreover, a textual represen-
tation of UIs as program entities is precise and compact (all information about the UI
is contained in the program), and it allows the application of standard programming
techniques to construct complex UIs from application-oriented UI elements, e.g., as
shown in [12] or Section 6.2 above. Another possibility is the generation of the textual
UI specification from the data model of the application, e.g., one could generate the UIs
to manipulate the application data from an entity-relationship model, as in the Ruby on
Rails framework6 (a similar framework for Curry is currently being developed).

The various features of the declarative base language Curry, in particular, algebraic
data types, functions as first class citizens, logic variables, and polymorphic types, have
shown to be useful to support the high-level, compact, and reliable specification of UIs
that can be used in different contexts. The implementation of our concept as sketched
in Section 5 is freely available with the latest distribution of PAKCS [15]. For future
work it might be interesting to explore whether the same or a slightly modified concept
can be also used to create user interfaces for other architectures, e.g., mobile devices.

References

1. Antoy, S., Echahed, R., Hanus, M.: A Needed Narrowing Strategy. Journal of the ACM 47(4),
776–822 (2000)

2. Antoy, S., Hanus, M.: Functional Logic Design Patterns. In: Hu, Z., Rodrı́guez-Artalejo, M.
(eds.) FLOPS 2002. LNCS, vol. 2441, pp. 67–87. Springer, Heidelberg (2002)

3. Braßel, B., Hanus, M., Müller, M.: High-Level Database Programming in Curry. In: Hudak,
P., Warren, D.S. (eds.) PADL 2008. LNCS, vol. 4902, pp. 316–332. Springer, Heidelberg
(2008)

4. Cabeza, D., Hermenegildo, M.: Internet and WWW Programming using Computational
Logic Systems. In: Workshop on Logic Programming and the Internet (1996),
http://clip.dia.fi.upm.es/Software/pillow/

5. Claessen, K., Vullinghs, T., Meijer, E.: Structuring graphical paradigms in TkGofer. In: Proc.
of the International Conference on Functional Programming (ICFP 1997), vol. 32(8), pp.
251–262. ACM SIGPLAN Notices (1997)

6. Fischer, S.: A Functional Logic Database Library. In: Proc. of the ACM SIGPLAN 2005
Workshop on Curry and Functional Logic Programming (WCFLP 2005), pp. 54–59. ACM
Press, New York (2005)

7. Garrett, J.J.: Ajax: A New Approach to Web Applications (2005),
http://AdaptivePath.com

8. Hanus, M.: A Unified Computation Model for Functional and Logic Programming. In: Proc.
of the 24th ACM Symposium on Principles of Programming Languages, Paris, pp. 80–93
(1997)

5 http://developer.apple.com/tools/interfacebuilder.html
6 http://www.rubyonrails.org/

http://clip.dia.fi.upm.es/Software/pillow/
http://AdaptivePath.com
http://developer.apple.com/tools/interfacebuilder.html
http://www.rubyonrails.org/

30 M. Hanus and C. Kluß

9. Hanus, M.: A Functional Logic Programming Approach to Graphical User Interfaces. In:
Pontelli, E., Santos Costa, V. (eds.) PADL 2000. LNCS, vol. 1753, pp. 47–62. Springer,
Heidelberg (2000)

10. Hanus, M.: High-level server side web scripting in curry. In: Ramakrishnan, I.V. (ed.) PADL
2001. LNCS, vol. 1990, pp. 76–92. Springer, Heidelberg (2001)

11. Hanus, M.: CurryBrowser: A Generic Analysis Environment for Curry Programs. In: Proc. of
the 16th Workshop on Logic-based Methods in Programming Environments (WLPE 2006),
pp. 61–74 (2006)

12. Hanus, M.: Type-Oriented Construction of Web User Interfaces. In: Proceedings of the 8th
ACM SIGPLAN International Conference on Principles and Practice of Declarative Pro-
gramming (PPDP 2006), pp. 27–38. ACM Press, New York (2006)

13. Hanus, M.: Multi-paradigm Declarative Languages. In: Dahl, V., Niemelä, I. (eds.) ICLP
2007. LNCS, vol. 4670, pp. 45–75. Springer, Heidelberg (2007)

14. Hanus, M.: Putting Declarative Programming into the Web: Translating Curry to JavaScript.
In: Proceedings of the 9th ACM SIGPLAN International Conference on Principles and Prac-
tice of Declarative Programming (PPDP 2007), pp. 155–166. ACM Press, New York (2007)

15. Hanus, M., Antoy, S., Braßel, B., Engelke, M., Höppner, K., Koj, J., Niederau, P., Sadre, R.,
Steiner, F.: PAKCS: The Portland Aachen Kiel Curry System (2008),
http://www.informatik.uni-kiel.de/∼pakcs/

16. Hanus, M., Koj, J.: An Integrated Development Environment for Declarative Multi-Paradigm
Programming. In: Proc. of the International Workshop on Logic Programming Environments
(WLPE 2001), pp. 1–14, Paphos, Cyprus (2001); Computing Research Repository (CoRR),
http://arXiv.org/abs/cs.PL/0111039

17. Hanus, M. (ed.): Curry: An Integrated Functional Logic Language (Vers. 0.8.2) (2006),
http://www.curry-language.org

18. Leijen, D.: wxHaskell – A portable and concise GUI library for Haskell. In: Proceedings of
the 2004 ACM SIGPLAN Workshop on Haskell, pp. 57–68. ACM Press, New York (2004)

19. López-Fraguas, F., Sánchez-Hernández, J.: TOY: A Multiparadigm Declarative System. In:
Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 244–247. Springer,
Heidelberg (1999)

20. Meijer, E.: Server Side Web Scripting in Haskell. Journal of Functional Programming 10(1),
1–18 (2000)

21. Ousterhout, J.K.: Tcl and the Tk toolkit. Addison-Wesley, Reading (1994)
22. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries—The Revised Report. Cambridge

University Press, Cambridge (2003)
23. Sadeghi, P.H., Huch, F.: The Interactive Curry Observation Debugger iCODE. Electronic

Notes in Theoretical Computer Science, vol. 177, pp. 107–122 (2007)
24. Sage, M.: FranTk - a declarative GUI language for Haskell. In: Proceedings of the 5th ACM

SIGPLAN International Conference on Functional Programming (ICFP 2000), pp. 106–117.
ACM Press, New York (2000)

25. Thiemann, P.: WASH/CGI: Server-side Web Scripting with Sessions and Typed, Com-
positional Forms. In: Krishnamurthi, S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS,
vol. 2257, pp. 192–208. Springer, Heidelberg (2002)

26. Vullinghs, T., Tuijnman, D., Schulte, W.: Lightweight GUIs for Functional Programming.
In: Swierstra, S.D. (ed.) PLILP 1995. LNCS, vol. 982, pp. 341–356. Springer, Heidelberg
(1995)

27. Wadler, P.: How to Declare an Imperative. ACM Computing Surveys 29(3), 240–263 (1997)

http://www.informatik.uni-kiel.de/~pakcs/
http://arXiv.org/abs/cs.PL/0111039
http://www.curry-language.org

	Declarative Programming of User Interfaces
	Motivation
	Functional Logic Programming and Curry
	Specifying User Interfaces
	Examples
	Implementation Issues
	Extended UI Programming
	Transforming GUIs into WUIs
	Type-Safe UIs

	Conclusions and Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

