
Interoperating Logic Engines

Paul Tarau1 and Arun Majumdar2

1 Department of Computer Science and Engineering
University of North Texas

Denton, Texas, USA
tarau@cs.unt.edu

2 Vivomind Intelligence, Inc.
Rockville, Maryland, USA

arun@vivomind.com

Abstract. We introduce a new programming language construct, Inter-
actors, supporting the agent-oriented view that programming is a dialog
between simple, self-contained, autonomous building blocks.

We define Interactors as an abstraction of answer generation and re-
finement in Logic Engines resulting in expressive language extension and
metaprogramming patterns.

As a first step toward a declarative semantics, we sketch a pure Prolog
specification showing that Interactors can be expressed at source level,
in a relatively simple and natural way.

Interactors extend language constructs like Ruby, Python and C#’s
multiple coroutining block returns through yield statements and they
can emulate the action of fold operations and monadic constructs in
functional languages.

Using the Interactor API, we describe at source level, language ex-
tensions like dynamic databases and algorithms involving generation of
infinite answer streams.

Keywords: Prolog language extensions, logic engines, semantics of
metaprogramming constructs, generalized iterators, agent oriented pro-
gramming language constructs.

1 Introduction

Agent programming constructs have influenced design patterns at “macro level”,
ranging from interactive Web services to mixed initiative computer human in-
teraction. Performatives in Agent communication languages [1] have made these
constructs reflect explicitly the intentionality, as well as the negotiation process
involved in agent interactions. At a more theoretical level, it has been argued that
interactivity, seen as fundamental computational paradigm, can actually expand
computational expressiveness and provide new models of computation [2].

In a logic programming context, the Jinni agent programming language [3]
and the BinProlog system [4] have been centered around logic engine constructs
providing an API that supported reentrant instances of the language processor.
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This has naturally led to a view of logic engines as instances of a generalized
family of iterators called Fluents [5], that have allowed the separation of the first-
order language interpreters from the multi-threading mechanism, while providing
a very concise source-level reconstruction of Prolog’s built-ins.

Building upon the Fluents API described in [5], this paper will focus on bring-
ing interaction-centered, agent oriented constructs from software design frame-
works and design patterns to programming language level.

The resulting language constructs, that we shall call Interactors, will express
control, metaprogramming and interoperation with stateful objects and external
services. They complement pure Horn Clause Prolog with a significant boost in
expressiveness, to the point where they allow emulating at source level virtually
all Prolog builtins, including dynamic database operations.

Interruptible Iterators are a new Java extension described in [6]. The underly-
ing construct is the yield statement providing multiple returns and resumption
of iterative blocks, i.e. for instance, a yield statement in the body of a for loop
will return a result for each value of the loop’s index.

The yield statement has been integrated in newer Object Oriented languages
like Ruby [7,8] C# [9] and Python [10] but it goes back to the Coroutine Iterators
introduced in older languages like CLU [11] and ICON [12].

Interactors can be seen as a natural generalization of Interruptible Iterators
and Coroutine Iterators. They implement the the more radical idea of allow-
ing clients to communicate to/from inside blocks of arbitrary recursive compu-
tations. The challenge is to achieve this without the fairly complex interrupt
based communication protocol between the iterator and its client described in
[6]. Towards this end, Interactors provide a structured two-way communication
between a client and the usually autonomous service the client requires from a
given language construct, often encapsulating an independent component.

2 First Class Logic Engines

Our Interactor API is a natural extension of the Logic Engine API introduced
in [5]. An Engine is simply a language processor reflected through an API that
allows its computations to be controlled interactively from another Engine very
much the same way a programmer controls Prolog’s interactive toplevel loop:
launch a new goal, ask for a new answer, interpret it, react to it.

A Logic Engine is an Engine running a Horn Clause Interpreter with LD-
resolution [13] on a given clause database, together with a set of built-in opera-
tions. The command

new_engine(AnswerPattern,Goal,Interactor)

creates a new Horn Clause solver, uniquely identified by Interactor, which
shares code with the currently running program and is initialized with Goal
as a starting point. AnswerPattern is a term, usually a list of variables occur-
ring in Goal, of which answers returned by the engine will be instances. Note
however that new engine/3 acts like a typical constructor, no computations are
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performed at this point, except for allocating data areas. In our actual implemen-
tation, with all data areas dynamic, engines are lightweight and engine creation
is extremely fast.

The get/2 operation is used to retrieve successive answers generated by an
Interactor, on demand. It is also responsible for actually triggering computations
in the engine. The query

get(Interactor,AnswerInstance)

tries to harvest the answer computed from Goal, as an instance of AnswerPattern.
If an answer is found, it is returned as the(AnswerInstance), otherwise the
atom no is returned. As in the case of the Maybe Monad in Haskell, returning
distinct functors in the case of success and failure, allows further case analy-
sis in a pure Horn Clause style, without needing Prolog’s CUT or if-then-else
operation.

Note that bindings are not propagated to the original Goal or AnswerPattern
when get/2 retrieves an answer, i.e. AnswerInstance is obtained by first stan-
dardizing apart (renaming) the variables in Goal and AnswerPattern, and then
backtracking over its alternative answers in a separate Prolog interpreter. There-
fore, backtracking in the caller interpreter does not interfere with the new Inter-
actor’s iteration over answers. Backtracking over the Interactor’s creation point,
as such, makes it unreachable and therefore subject to garbage collection.

An Interactor is stopped with the stop/1 operation that might or might not
reclaim resources held by the engine. In our actual implementation we are using
a fully automated memory management mechanism where unreachable engines
are automatically garbage collected.

So far, these operations provide a minimal Coroutine Iterator API, powerful
enough to switch tasks cooperatively between an engine and its client and em-
ulate key Prolog built-ins like if-then-else and findall [5], as well as higher
order operations like fold and best of.

3 From Fluents to Interactors

We will now describe the extension of the Fluents API of [5] that provides a
minimal bidirectional communication API between interactors and their clients.

The following operations provide a “mixed-initiative” interaction mechanism,
allowing more general data exchanges between an engine and its client.

3.1 A Yield/Return Operation

First, like the yield return construct of C# and the yield operation of Ruby
and Python, our return/1 operation

return(Term)

will save the state of the engine and transfer control and a result Term to its
client. The client will receive a copy of Term simply by using its get/2 operation.
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Similarly to Ruby’s yield, our return operation suspends and returns data from
arbitrary computations (possibly involving recursion) rather than from specific
language constructs like a while or for loop.

Note that an Interactor returns control to its client either by calling return/1
or when a computed answer becomes available. By using a sequence of return/
get operations, an engine can provide a stream of intermediate/final results to
its client, without having to backtrack. This mechanism is powerful enough to
implement a complete exception handling mechanism (see [5]) simply by defining

throw(E):-return(exception(E)).

When combined with a catch(Goal,Exception,OnException), on the client
side, the client can decide, upon reading the exception with get/2, if it wants
to handle it or to throw it to the next level.

3.2 Interactors and Coroutining

The operations described so far allow an engine to return answers from any
point in its computation sequence. The next step is to enable an engine’s client
to inject new goals (executable data) to an arbitrary inner context of an engine.
Two new primitives are needed:

to_engine(Engine,Data)

used to send a client’s data to an Engine, and

from_engine(Data)

used by the engine to receive a client’s Data.
A typical use case for the Interactor API looks as follows:

1. the client creates and initializes a new engine
2. the client triggers a new computation in the engine, parameterized as follows:

(a) the client passes some data and a new goal to the engine and issues a
get operation that passes control to it

(b) the engine starts a computation from its initial goal or the point where
it has been suspended and runs (a copy of) the new goal received from
its client

(c) the engine returns (a copy of) the answer, then suspends and returns
control to its client

3. the client interprets the answer and proceeds with its next computation step
4. the process is fully reentrant and the client may repeat it from an arbitrary

point in its computation

Using a metacall mechanism like call/1 (which can also be emulated in terms
of engine operations [5]) or directly through a source level transformation [14],
one can implement a close equivalent of Ruby’s yield statement as follows:
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ask_engine(Engine,Query, Result):-
to_engine(Engine,Query),
get(Engine,Result).

engine_yield(Answer):-
from_engine((Answer:-Goal)),
call(Goal),return(Answer).

The predicate ask engine/3 sends a query (possibly built at runtime) to an en-
gine, which in turn, executes it and returns a result with an engine yield opera-
tion. The query is typically a goal or a pattern of the form AnswerPattern:-Goal
in which case the engine interprets it as a request to instantiate AnswerPattern
by executing Goal before returning the answer instance.

As the following example shows, this allows the client to use, from outside,
the (infinite) recursive loop of an engine as a form of updatable persistent state.

sum_loop(S1):-engine_yield(S1=>S2),sum_loop(S2).

inc_test(R1,R2):-
new_engine(_,sum_loop(0),E),
ask_engine(E,(S1=>S2:-S2 is S1+2),R1),
ask_engine(E,(S1=>S2:-S2 is S1+5),R2).

?- inc_test(R1,R2).
R1=the(0 => 2),
R2=the(2 => 7)

Note also that after parameters (the increments 2 and 5) are passed to the
engine, results dependent on its state (the sums so far 2 and 7) are received
back. Moreover, note that an arbitrary goal is injected in the local context of
the engine where it is executed. The goal can then access the engine’s state
variables S1 and S2. As engines have separate garbage collectors (or in simple
cases as a result of tail recursion), their infinite loops run in constant space,
provided that no unbounded size objects are created.

4 A (Mostly) Pure Prolog Specification

At a first look, Interactors deviate from the usual Horn Clause semantics of
pure Prolog programs. A legitimate question arises: are they not just another
procedural extension, say, like assert/retract, setarg, global variables etc.?

We will show here that the semantic gap between pure Prolog and its extension
with Interactors is much narrower than one would expect. The techniques that
we will describe can be seen as an executable specification of Interactors within
the well understood semantics of logic programs (SLDNF resolution).

Toward this end, we will sketch an emulation, in pure Prolog, of the key
constructs involved in defining Interactors.
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There are four distinct concepts to be emulated:

1. we need to eliminate backtracking to be able to access multiple answers at
a time

2. we need to emulate copy term as different search branches and multiple uses
of a given clause require fresh instances of terms, with variables standardized
apart

3. we need to emulate suspending and resuming an engine
4. engines should be able to receive and return Prolog terms

We will focus here on the first two, that are arguably less obvious, by providing
actual implementations. After that, we will briefly discuss the feasibility of the
last two.

4.1 Metainterpreting Backtracking

First, let’s define a clause representation, that can be obtained easily with a source-
to-source translator. Clauses in the database are represented with difference-list
terms, structurally isomorphic to the binarization transformationdescribed in [14].
The code of a classic Prolog naive reverse + permutation generator program
becomes:

:-op(1150,xfx,<=).

clauses([
[app([],A,A) |B]<=B,
[app([C |D],E,[C |F]) |G]<=[app(D,E,F) |G],

[nrev([],[]) |H]<=H,
[nrev([I |J],K) |L]<=[nrev(J,M),app(M,[I],K) |L],

[perm([],[]) |N]<=N,
[perm([O |P],Q) |R]<=[perm(P,S),ins(O,S,Q) |R],

[ins(T,U,[T |U]) |V]<=V,
[ins(W,[X |Y],[X |Z]) |X0]<=[ins(W,Y,Z) |X0]

]).

Note that we can assume that variables are local to each clause and therefore
they have been standardized apart accordingly1.

First, let’s define the basic inference step (equivalent to an LD-resolution step,
[13]) as a simple “arrow composition” operation:

compose(F1,F2,A<=C):-copy_term(F1,A<=B),copy_term(F2,B<=C).

We can now add a new “arrow” to a list of existing arrows, provided that the
composition succeeds:

1 Allowing shared variables would bring a different, but nevertheless interesting se-
mantics, with “inter-clausal variables” seen as write-once global variables.
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match_one(F1,F2,Fs,[NewF |Fs]):-compose(F1,F2,F3),!,NewF=F3.
match_one(_,_,Fs,Fs).

We can see an arrow as representing the current goal. The next step is to let an
arrow select from a list of clauses the ones that match:

match_all([],_,Fs,Fs).
match_all([Clause |Cs],Arrow,Fs1,Fs3):-
match_one(Arrow,Clause,Fs1,Fs2),
match_all(Cs,Arrow,Fs2,Fs3).

We can add a stopping condition to mark the success of an LD-derivation as
matching an arrow of the form Answer<=[]

derive_one(Answer<=[],_,Fs,Fs,As,[Answer |As]).
derive_one(Answer<=[G |Gs],Cs,Fs,NewFs,As,As):-
match_all(Cs,Answer<=[G |Gs],Fs,NewFs).

With these building blocks in place, the result of the LD-derivations of all answer
instances of a query can be defined as:

all_instances(AnswerPattern,Goal,Clauses,Answers):-
Gs=[AnswerPattern<=[Goal]],
derive_all(Gs,Clauses,[],Answers).

where derive all lifts the derivation process to progressively solve all existing
and newly generated goals:

derive_all([],_,As,As).
derive_all([Arrow |Fs],Cs,OldAs,NewAs):-
derive_one(Arrow,Cs,Fs,NewFs,OldAs,As),
derive_all(NewFs,Cs,As,NewAs).

Finally, we can integrate the clause database:

all_answers(X,G,R):-clauses(Cs),all_instances(X,G,Cs,R).

and try out a few goals:

?- all_answers(Xs+Ys,app(Xs,Ys,[1,2,3]),Rs).
Rs = [[]+[1, 2, 3], [1]+[2, 3], [1, 2]+[3], [1, 2, 3]+[]]

?- all_answers(P,perm([1,2,3],P),Ps).
Ps = [[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]]

Note, that for non-ground queries, answers computed this way keep variable
equalities as expected:

?- List=[A,B,B,A],all_answers(R,nrev(List,R),Rs).
List = [A, B, B, A],
Rs = [[_A, _B, _B, _A]]

Note that, except for relying on copy term and a cut that can be replaced with
a negation as failure, the metainterpreter is entirely written in pure Prolog.
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4.2 Emulating copy term

We can emulate the effect of copy term in the previously described metainter-
preter by observing that a logical variable can be “split” into two new ones and
consequently a Prolog term can be recursively deconstructed and rebuilt as two
fresh terms, identical to it up to uniform variable renamings.
fork_term(’$v’(T1,T2), R1,R2):-R1=T1,R2=T2.
fork_term(T, T1,T2):-
nonvar(T),functor(T,F,N),(F/N) \== (’$v’/2),
functor(T1,F,N),functor(T2,F,N),
fork_args(N,T,T1,T2).

fork_args(0,_,_,_).
fork_args(I,T,T1,T2):-I>0,
I1 is I-1,arg(I,T,X),
fork_term(X,A,B),
arg(I,T1,A),arg(I,T2,B),
fork_args(I1,T,T1,T2).

One can see that this produces indeed two fresh copies of the original term:
?- fork_term(f(A,B,g(B,A)),T1,T2).
A = ’$v’(_A1, _A2),
B = ’$v’(_B1, _B2),
T1 = f(_A1, _B1, g(_B1, _A1)),
T2 = f(_A2, _B2, g(_B2, _A2)).

Note that functor and arg can be seen as generic abbreviations for predicates
describing the building/decomposition operations for each function symbol oc-
curring in the program and $v/2 can be assumed to be any function symbol not
occurring in the program. Along the lines of [15] one can see that this function-
ality can be also expressed through a simple program transformation provided
that nonvar/1 can be expressed using negation as failure as
nonvar(X):- not(X=0),not(X=1).

We will obtain a slightly different definition of composition, that would require
replacing both the clause and the resolvent with one of the copies while using
the other pair of copies for the arrow compositions.
compose(F1,F2, A<=C, NewF1,NewF2):-

fork_term(F1,A<=B,NewF1),
fork_term(F2,B<=C,NewF2).

One can now see that after propagating the extra arguments through the clauses
of the metainterpreter described in subsection 4.1, together with the source
level transformations we just mentioned, a metainterpreter that does not re-
quire copy term can be derived.

4.3 Implementing Suspend/Resume and Term/Exchanges

The metainterpreter described in subsection 4.1 can be easily modified to re-
turn the current goal list when observing a return(X) instruction and then
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be resumed at will, by adding a clause similar to the one handling the case
Answer<=[]. At this point, data exchange operations and to engine and from
engine can be implemented through an extra argument added to the metain-
terpreter.

5 Interactors and Higher Order Constructs

As a first glimpse at the expressiveness of the Interactor API, we will implement,
in the tradition of higher order functional programming, a fold operation [16]
connecting results produced by independent branches of a backtracking Prolog
engine:

efoldl(Engine,F,R1,R2):-
get(Engine,X),
efoldl_cont(X,Engine,F,R1,R2).

efoldl_cont(no,_Engine,_F,R,R).
efoldl_cont(the(X),Engine,F,R1,R2):-
call(F,R1,X,R),
efoldl(Engine,F,R,R2).

Classic functional programming idioms like reverse as fold are then implemented
simply as:

reverse(Xs,Ys):-
new_engine(X,member(X,Xs),E),
efoldl(E,reverse_cons,[],Ys).

reverse_cons(Y,X,[X |Y]).

Note also the automatic deforestation effect [17] of this programming style -
no intermediate list structures need to be built, if one wants to aggregate the
values retrieved from an arbitrary generator engine with an operation like sum
or product.

6 Emulating Dynamic Databases with Interactors

The gain in expressiveness coming directly from the view of logic engines as an-
swer generators is significant. We refer to [5] for source level implementations of
virtually all essential Prolog built-ins. The notable exception is Prolog’s dynamic
database, requiring the bidirectional communication provided by interactors.

The key idea for implementing dynamic database operations with Interactors
is to use a logic engine’s state in an infinite recursive loop.

First, a simple difference-list based infinite server loop is built:

queue_server:-queue_server(Xs,Xs).

queue_server(Hs1,Ts1):-
from_engine(Q),server_task(Q,Hs1,Ts1,Hs2,Ts2,A),return(A),
queue_server(Hs2,Ts2).
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Next we provide the queue operations, needed to maintain the state of the
database.

server_task(add_element(X),Xs,[X |Ys],Xs,Ys,yes).
server_task(push_element(X),Xs,Ys,[X |Xs],Ys,yes).
server_task(queue,Xs,Ys,Xs,Ys,Xs-Ys).
server_task(delete_element(X),Xs,Ys,NewXs,Ys,YesNo):-
server_task_delete(X,Xs,NewXs,YesNo).

Then we implement the auxiliary predicates supporting various queue opera-
tions:

server_task_remove(Xs,NewXs,YesNo):-
nonvar(Xs),Xs=[X |NewXs],!,YesNo=yes(X).

server_task_remove(Xs,Xs,no).

server_task_delete(X,Xs,NewXs,YesNo):-
select_nonvar(X,Xs,NewXs),!,YesNo=yes(X).

server_task_delete(_,Xs,Xs,no).

select_nonvar(X,XXs,Xs):-nonvar(XXs),XXs=[X |Xs].
select_nonvar(X,YXs,[Y |Ys]):-nonvar(YXs),YXs=[Y |Xs],
select_nonvar(X,Xs,Ys).

Next, we put it all together, as a dynamic database API.
We can create a new engine server providing Prolog database operations:

new_edb(Engine):-new_engine(done,queue_server,Engine).

We can add new clauses to the database

edb_assertz(Engine,Clause):-
ask_engine(Engine,add_element(Clause),the(yes)).

edb_asserta(Engine,Clause):-
ask_engine(Engine,push_element(Clause),the(yes)).

and we can return fresh instances of asserted clauses

edb_clause(Engine,Head,Body):-
ask_engine(Engine,queue,the(Xs-[])),
member((Head:-Body),Xs).

or remove them from the the database

edb_retract1(Engine,Head):-Clause=(Head:-_Body),
ask_engine(Engine,

delete_element(Clause),the(yes(Clause))).

Finally, the database can be discarded by stopping the engine that hosts it:

edb_delete(Engine):-stop(Engine).

The following example shows how the database generates the equivalent of
clause/2, ready to be passed to a Prolog metainterpreter.
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test_clause(Head,Body):-
new_edb(Db),

edb_assertz(Db,(a(2):-true)),
edb_asserta(Db,(a(1):-true)),
edb_assertz(Db,(b(X):-a(X))),

edb_clause(Db,Head,Body).

As a side note, combining this emulation with the metainterpreter described
in section 4, provides an executable specification of Prolog’s dynamic database
operations in pure Prolog, worth investigating in depth, as future work.

Externally implemented dynamic databases can also be made visible as In-
teractors and reflection of the interpreter’s own handling of the Prolog database
becomes possible. As an additional benefit, multiple databases can be provided.
This simplifies adding module, object or agent layers at source level. By com-
bining database and communication Interactors, software abstractions like mo-
bile code and autonomous agents can be built as shown in [18]. Encapsulating
external stateful objects like file systems or external database or Web service in-
terfaces as Interactors can provide a uniform interfacing mechanism and reduce
programmer learning curves in practical applications of Prolog.

Moreover, Prolog operations traditionally captive to predefined list based im-
plementations (like DCGs) can be made generic and mapped to work directly
on Interactors encapsulating file, URL and socket Readers.

7 Simplifying Algorithms: Interactors and Combinatorial
Generation

Various combinatorial generation algorithms have elegant backtracking imple-
mentations. However, it is notoriously difficult (or inelegant, through the use of
impure side effects) to compare answers generated by different OR-branches of
Prolog’s search tree.

7.1 Comparing Alternative Answers

Optimization problems, selecting the “best” among answers produced on alter-
native branches can easily be expressed as follows:

– running the generator in a separate logic engine
– collecting and comparing the answers in a client controlling the engine

The second step can actually be automated, provided that the comparison cri-
terion is given as a predicate

compare_answers(First,Second,Best)

to be applied to the engine with an efold operation

best_of(Answer,Comparator,Generator):-
new_engine(Answer,Generator,E),
efoldl(E,compare_answers(Comparator),no,Best),
Answer=Best.
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compare_answers(Comparator,A1,A2,Best):-
if((A1\==no,call(Comparator,A1,A2)),Best=A1,Best=A2).

?-best_of(X,>,member(X,[2,1,4,3])).
X=4

Clearly, a similar mechanism can be used to count the number of solutions
without having to accumulate them to a list.

7.2 Encapsulating Infinite Computations Streams

An infinite stream of natural numbers is implemented as:

loop(N):-return(N),N1 is N+1,loop(N1).

The following example shows a simple space efficient generator for the infinite
stream of prime numbers:

prime(P):-prime_engine(E),element_of(E,P).

prime_engine(E):-new_engine(_,new_prime(1),E).

new_prime(N):-N1 is N+1,
if(test_prime(N1),true,return(N1)),new_prime(N1).

test_prime(N):-
M is integer(sqrt(N)),between(2,M,D),N mod D =:=0

Note that the program has been wrapped, using the element of predicate de-
fined in [5], to provide one answer at a time through backtracking. Alternatively,
a forward recursing client can use the get(Engine) operation to extract primes
one at a time from the stream.

8 Applications of Interactors and Practical Language
Extensions

Interactors and Multi-Threading. As a key difference with typical multi-
threaded Prolog implementations like Ciao-Prolog and SWI-Prolog [19,20], our
Interactor API is designed up front with a clear separation between engines and
threads as we prefer to see them as orthogonal language constructs.

While one can build a self-contained lightweight multi-threading API solely
by switching control among a number of cooperating engines, with the advent
of multi-core CPUs as the norm rather than the exception, the need for native
multi-threading constructs is justified on both performance and expressiveness
grounds. Assuming a dynamic implementation of a logic engine’s stacks, Inter-
actors provide lightweight independent computation states that can be easily
mapped to the underlying native threading API.
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A minimal native Interactor based multi-threading API has been implemented
in [3] on top of a simple thread launching built-in:

run_bg(Engine,ThreadHandle).

This runs a new Thread starting from the engine’s run() predicate and returns
a handle to the Thread object. To ensure that access to the Engine’s state is
safe and synchronized, we hide the engine handle and provide a simple produc-
er/consumer data exchanger object, called a Hub. Some key components of the
multi-threading API, partly designed to match Java’s own threading API are:

– bg(Goal): launches a new Prolog thread on its own engine starting with
Goal.

– hub ms(Timeout,Hub): constructs a new Hub - a synchronization device on
which N consumer threads can wait with collect(Hub,Data) (similar to
a synchronized from engine operation) for data produced by M producers
providing data with put(Hub,Data) (similar to a synchronized from engine
operation.

Associative Interactors. The message passing style interaction shown in the
previous sections between engines and their clients, can be easily generalized to
associative communication through a unification based blackboard interface [21].
Exploring this concept in depth promises more flexible interaction patterns, as
out of order ask engine and engine yield operations would become possible,
matched by association patterns.

9 Interactors Beyond Logic Programming Languages

We will now compare Interactors with similar constructs in other programming
paradigms.

9.1 Interactors in Object Oriented Languages

Extending Interactors to mainstream Object Oriented languages is definitely of
practical importance, given the gain in expressiveness. An elegant open source
Prolog engine Yield Prolog has been recently implemented in terms of Python’s
yield and C#’s yield return primitives [22]. Extending Yield Prolog to support our
Interactor API only requires adding the communication operations from engine
and to engine. In older languages like Java, C++ or Objective C one needs to
implement a more complex API, including a yield return emulation.

9.2 Interactors and Similar Constructs in Functional Languages

Interactors based on logic engines encapsulate future computations that can be
unrolled on demand. This is similar to lazy evaluation mechanisms in languages
like Haskell [23]. Interactors share with Monads [24] the ability to sequentialize
functional computations and encapsulate state information. With higher order
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functions, monadic computations can pass functions to inner blocks. On the
other hand, our ask engine / engine yield mechanism, like Ruby’s yield, is
arguably more flexible, as it provides arbitrary switching of control (coroutining)
between an Interactor and its client. The ability to define Prolog’s findall con-
struct as well as fold operations in terms of Interactors, is similar to definition
of comprehensions [24] in terms of Monads.

10 Conclusion

We have shown that Logic Engines encapsulated as Interactors can be used
to build on top of pure Prolog a practical Prolog system, including dynamic
database operations, entirely at source level. We have also provided a sketch of
an executable semantics for Logic Engine operations in pure Prolog. This shows
that, in principle, their exact specification can be expressed declaratively.

In a broader sense, Interactors can be seen as a starting point for rethinking
fundamental programming language constructs like Iterators and Coroutining
in terms of language constructs inspired by performatives in agent oriented pro-
gramming.

Beyond applications to logic-based language design, we hope that our language
constructs will be reusable in the design and implementation of new functional
and object oriented languages.

Among real world applications of these ideas, we have been pursuing a new
model of natural language understanding [25]wheremultiple concurrently process-
ing agents, using lightweight interpretation engines implemented as interactors
transform text into semantic model structures for reasoning in the Oil and Gas
exploration and production domain.
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