
On Preferring and Inspecting Abductive Models

Luı́s Moniz Pereira1, Pierangelo Dell’Acqua2, and Gonçalo Lopes1

1 Departamento de Informática, Centro de Inteligência Artificial (CENTRIA),
Universidade Nova de Lisboa 2829-516 Caparica, Portugal

lmp@di.fct.unl.pt, goncaloclopes@gmail.com
2 Dept. of Science and Technology - ITN, Linköping University Norrköping, Sweden

pierangelo.dellacqua@itn.liu.se

Abstract. This work proposes the application of preferences over abductive logic
programs as an appealing declarative formalism to model choice situations. In
particular, both a priori and a posteriori handling of preferences between abduc-
tive extensions of a theory are addressed as complementary and essential mech-
anisms in a broader framework for abductive reasoning. Furthermore, both of
these choice mechanisms are combined with other formalisms for decision mak-
ing, like economic decision theory, resulting in theories containing the best ad-
vantages from both qualitative and quantitative formalisms. Several examples are
presented throughout to illustrate the enounced methodologies. These have been
tested in our implementation, which we explain in detail.

Keywords: Abduction, Preferences, Logic Programming, XSB-Prolog, Smodels.

1 Introduction

Much work in logic program semantics and procedures has focused on preferences be-
tween rules of a theory [5] and among theory literals [1,2], with or without updates.
However, the exploration of the application of preferences to abductive extensions of a
theory has still much to progress. An abductive extension is, by definition, a defeasible
construct, and allows greater flexibility in enforcing preference relations. From our per-
spective, handling preferences over abductive logic programs has several advantages,
and allows for easier and more concise translation into normal logic programs (NLP)
than those prescribed by more general and complex rule preference frameworks.

In [5], a preliminary theory of revisable preferences between abducible literals was
presented, and applied to theory revision, along with a formal semantics based on the
definition of abductive stable models, illustrated in the paper with a number of ap-
plications and applied also to mutual preference revision in [15]. In [10] pre- and post-
preferences on abducibles are employed to prospectively generate and filter likely agent
preferred future scenarios. In [12], pre- and post-preferences on abducibles are applied
to model and solve classic moral dilemmas.

Here we broaden the framework to account for more flexible and powerful means
to express preferences between abducibles, over and above a priori relevancy rules em-
bedded in a program’s theory. We show there are many advantages as well to preferring
a posteriori, i.e. to enact preferences on the computed models, after the consequences of

A. Gill and T. Swift (Eds.): PADL 2009, LNCS 5418, pp. 1–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 L.M. Pereira, P. Dell’Acqua, and G. Lopes

opting for one or another abducible are known, by means of inspection points that ex-
amine specific side-effects of abduction. The advantages of so proceeding stem largely
from avoiding combinatory explosions of abductive solutions, by filtering both irrele-
vant as well as less preferred abducibles. We combine these choice mechanisms with
other formalisms for decision making, resulting in theories containing the best advan-
tages from both qualitative and quantitative formalisms. Several examples are presented
throughout to illustrate the enounced methodologies. These have been tested in our im-
plementation, which we explain in detail.

2 Abductive Framework

2.1 Basic Abductive Language

Let L be a first order propositional language defined as follows. As usual, we study non-
ground programs and their declarative semantics in terms of the set of all their ground
instances, so that grounded literals can be envisaged as propositional constants. This
does not preclude employing non-ground abductive programs for knowledge represen-
tation, though their practical use requires of course correct implementation techniques
regarding non-ground abduction, an issue shared by constructive negation, so that the
two are usefully combined. An inroad into these implementation techniques is to be
found in [8].

Assume given an alphabet (set) of propositional atoms containing the reserved atom
⊥ to denote falsity. A literal in L is an atom A or its default negation notA, the latter
expressing that the atom is false by default (CWA).

Definition 1. A rule in L takes the form A ← L1, . . . , Lt where A is an atom and
L1, . . . , Lt (t ≥ 0) are literals.

We follow the standard convention and call A the head of the rule, and the conjunction
L1, . . . , Lt its body. When t = 0 we write the rule simply as A, that is without ‘←’. An
integrity constraint is a rule whose head is ⊥.

Definition 2. A goal or query in L has the form ?−L1, . . . , Lt, where L1, . . . , Lt (t ≥
1) are literals.

A (logic) program P over L is a finite (countable) set of rules. We adopt the convention
of using ’;’ to separate rules, thus we write a program P as {rule1; . . . ; rulen}.

Every program P is associated with a set of abducibles A consisting of literals which
(without loss of generality) do not appear in any rule head of P . Abducibles may be
thought of as hypotheses that can be used to extend the current theory in order to provide
hypothetical solutions or possible explanations for given queries. Given an abductive
solution, to test whether a certain abducible has been abduced, L contains the reserved
abducible abduced(a), for every abducible a �= abduced(.) in L. Thus, abduced(a)
acts as a constraint that is satisfied in the solution if the abducible a is indeed assumed.
It can be construed as meta-abduction in the form of abducing to check (or passively
verify) that a certain abduction is adopted.

Example 1. Let P = {p ← abduced(a), a; q ← abduced(b)} with set of abducibles
AP = {a, b, abduced(a), abduced(b)}. Then, P has four intended models: M = {},

On Preferring and Inspecting Abductive Models 3

M2 ={p, a, abduced(a)}, M3 ={q, b, abduced(b)}, and M4 = {p, q, a, b, abduced(a),
abduced(b)}. The set {q, abduced(b)} is not an intended model since the assumption
of abduced(b) requires the assumption of b.

Given a set of abducibles A, we write A∗ to indicate the subset of A consisting of all
the abducibles in A distinct from abduced(.), that is:

A∗ = { a : a �= abduced(.) and a ∈ A}.

Hypotheses Generation. The production of alternative explanations for a query is a
central problem in abduction, because of the combinatorial explosion of possible ex-
planations. In our approach, preferences among abducibles can be expressed in order to
discard irrelevant assumptions. The notion of expectation is employed to express pre-
conditions for enabling the assumption of an abducible. An abducible can be assumed
only if there is an expectation for it, and there is not an expectation to the contrary. In
this case, we say that the abducible is considered. These expectations are expressed by
the following rules, for any given abducible a ∈ A∗:

expect(a) ← L1, . . . , Lt

expect not(a) ← L1, . . . , Lt

Note that L does not contain atoms of the form expect(abduced(.)) and of the form
expect not(abduced(.)).

Example 2. Let P = {p ← a; q ← b; expect(a); expect(b); expect not(a) ← q} with
set of abducibles AP = {a, b, abduced(a), abduced(b)}. Then, P has three intended
models: M = {expect(a), expect(b)}, M2 = {p, a, abduced(a), expect(a), expect(b)}
and M3 = {q, b, abduced(b), expect(a), expect(b)}. It is not possible to assume both
a and b because the assumption of b makes q true which in turn makes expect not(a)
true preventing a to be assumed.

This notion of considered abducible allows to divide the abductive process into two dis-
tinct moments: the generation of hypotheses and the pruning of the unpreferred ones.
Computation of preferences between models is problematic when both generation and
comparison get mixed up, as mentioned in [2] which, however, does not introduce ab-
ductive preference and defeasibility also into generation like we do, but relegates all
preference handling to posterior filtering. The two approaches could be conjoined.

Enforced Abduction. To express that the assumption of an abducible enforces the
assumption of another abducible, L contains reserved atoms of the form a ≺ b, for any
abducibles a, b ∈ A∗. The atom a ≺ b states that the assumption of b enforces the
assumption of a, active abduction behavior. That is, if b is assumed, then a ≺ b forces a
to be assumed provided that a can be considered. Note that the abducibles a, b are both
required to be different from abduced(.) since they belong to A∗.

Example 3. Let P = {p ← a; a ≺ b; b ≺ a; expect(a); expect(b)} with set of ab-
ducibles AP = {a, b, abduced(a), abduced(b)}. Then, P has two intended models
for abduction: M = {a ≺ b, b ≺ a, expect(a), expect(b)} and M2 = {a ≺ b, b ≺
a, a, b, p, expect(a), expect(b), abduced(a), abduced(b)} due to active abduction be-
havior of a ≺ b and b ≺ a preventing intended models containing either a or b alone.

4 L.M. Pereira, P. Dell’Acqua, and G. Lopes

Conditional Abduction. The assumption of an abducible a can be conditional on the
assumption of another abducible b. The reserved atom a � b in L, for any abducible
a, b ∈ A∗, states that a can be assumed only if b is (without assuming it for the purpose
of having a), passive abduction behavior. That is, a � b acts as a check passively con-
straining the assumption of a to the assumption of b (passive abduction behavior). Note
that the abducibles a, b are required to be different from abduced(.).

Example 4. Let P = {p ← a; q ← b; a � b; expect(a)} with set of abducibles AP =
{a, b, abduced(a), abduced(b)}. Then, there exists only one intended model of P : M =
{a � b, expect(a)}. Note that M2 = {a � b, b, q, expect(a), abduced(b)} and M3 =
{a � b, a, p, expect(a), abduced(a)} are not intended models. In fact, M2 is not a model
since b cannot be assumed (there is no expectation for it). This fact also prevents the
assumption of a (due to a � b) and consequently M3 is not a model.

Cardinality Constrained Abduction. To constrain the number of assumed abducibles,
L contains reserved atoms of the form L {l1, . . . , ln} U where n ≥ 1, every li is
an abducible in A, and L and U are natural numbers representing, respectively, the
lower and upper bounds on the cardinality of abducibles. L {l1, . . . , ln} U states that
at least L and at most U abducibles in {l1, . . . , ln} must be assumed (active abduction
behavior). Since the abducibles li belong to A, they can also take the form abduced(.).

2.2 Declarative Semantics

The declarative semantics of programs over L is given in terms of abductive stable
models. Let P be a program and AP the abducibles in P . A 2-valued interpretation
M of L is any set of literals from L that satisfies the condition that, for any atom
A, precisely one of the literals A or not A belongs to M . Interpretation M satisfies a
conjunction of literals L1, . . . , Lt, if every literal Li in the conjunction belongs to M .
We need the notion of default assumptions of P with respect to an interpretation M ,
where a default literal not A is considered an atom, and not not A ≡ A.

Default(P, M) =
{not A : there exists no rule A ← L1, . . . , Lt in P such that M � L1, . . . , Lt}

Abducibles are false by default since we made the assumption that abducibles are not
defined by any rule in P . An interpretation M is a stable model of P iff:

1. M � ⊥ and
2. M = least(P ∪ Default(P, M)), where least indicates the least model.

Let C be L {l1, . . . , ln} U . Then, we let W (C, M) be the number of abducibles in
{l1, . . . , ln} satisfied by an interpretation M :

W (C, M) = | {l : l ∈ {l1, . . . , ln} and M � l} |

Given a set of abducibles Δ, we write Δ∗ to indicate :

Δ∗ = {a : a �= abduced(.) and a ∈ Δ}

On Preferring and Inspecting Abductive Models 5

Definition 3. Let Δ ⊆ AP be a set of abducibles. M is an abductive stable model with
hypotheses Δ of P iff:

1. M � ⊥
2. M = least(Q ∪ Default(Q, M)), where Q = P ∪ Δ
3. M � expect(a) and M � expect not(a), for every a ∈ Δ∗

4. for every a ∈ Δ∗, if M � a then M � abduced(a)
5. for every atom a ≺ b, if M � a ≺ b, M � expect(a), M � expect not(a) and

M � b, then M � a
6. for every atom C of the form L {l1, . . . , ln} U , if M |= C then L ≤ W (C, M)

≤ U
7. for every a ∈ Δ∗, if M � abduced(a) then M � a
8. for every atom a � b, if M � a � b and M � a, then M � b

Example 5. Let P = {p ← abduced(a); expect(a)} and AP = {a, abduced(a)}.
Then, M = {p, a, abduced(a), expect(a)} is an abductive stable model with hypothe-
ses Δ = {a, abduced(a)}, while M2 = {p, abduced(a), expect(a)} is not since condi-
tion (7) of Def. 3 is not fulfilled.

Definition 4. Δ is an abductive explanation for goal G in P iff there exists a model M
such that M is an abductive stable model with hypotheses Δ of P and M � G.

Definition 5. Δ is a strict abductive explanation for goal G in P iff there exists a model
M such that:

1. Δ is a minimal set for which:
– M � G
– M � ⊥
– M = least(Q ∪ Default(Q, M)), where Q = P ∪ Δ
– M � expect(a) and M � expect not(a), for every a ∈ Δ∗

– for every a ∈ Δ∗, if M � a then M � abduced(a)
– for every atom a ≺ b, if M � a ≺ b, M � expect(a), M � expect not(a) and

M � b, then M � a
– for every atom C of the form L {l1, . . . , ln} U , if M |= C then

L ≤ W (C, M) ≤ U
2. for every a ∈ Δ∗, if M � abduced(a) then M � a
3. for every atom a � b, if M � a � b and M � a, then M � b

Note that in Def. 5 condition (2) is not subject to minimization. The reason for this is
clarified by the next example.

Example 6. Reconsider P of Example 5. Suppose that the goal G is ?−p. It holds that
Δ = {a, abduced(a)} is an abductive explanation for G in P , but it is not strict since
Δ is not a minimal set satisfying condition (1) of Def. 5. Indeed, the minimal set is
Δ2 = {abduced(a)}. Hence, there exists no strict abductive explanation for G in P .

The following property relates abductive explanations to strict abductive explanations.

Proposition 1. Let G be a goal and Δ a strict abductive explanation for G in P . Then,
Δ is an abductive explanation for G in P .

6 L.M. Pereira, P. Dell’Acqua, and G. Lopes

3 Pragmatics

3.1 Constraining Abduction

Quite often in domain problems it happens the assumption of abducibles is subject to the
fulfillment of certain conditions, including other assumptions, which must be satisfied.
This requirement is expressed by exploiting constrained abduction, a � b.

Example 7. Consider a scenario where there is a pub that is open or closed. If the light
is on in the pub then it is open or being cleaned. Late at night, one can assume the pub
is open if there are people inside. The pub being located in an entertainment district,
there is noise around if there are people in the pub or a party nearby. This scenario is de-
scribed by the program P with AP = {open , cleaning , party , people, abduced(open),
abduced(cleaning), abduced(party), abduced(people)}.

light ← open,not cleaning
light ← cleaning ,not open ,not abduced(people)
open � people ← late night
noise ← party
noise ← people

expect(open) expect(cleaning) expect(party) expect(people)

Thus, in case it is night (but not late night) and one does observe lights in the pub,
then one has two equally plausible explanations for it: {open} or {cleaning}. Oth-
erwise (late night is a given fact), there is a single explanation for the lights being
on: {cleaning}. If instead it is late night and one hears noise too (i.e. the query is
?−light ,noise), then one will have three abductive explanations: {open, people},
{party, cleaning} and {open, party , people}. The last one reflects that the pub may
be open with late customers simultaneously with a party nearby, both events producing
noise.

3.2 Preferring Abducibles

Now we illustrate how to express preferences between considered abducibles. We em-
ploy construct L 〈l1, . . . , ln〉U to constrain the number of abducibles possibly assumed.
The construct has a passive abduction behavior and it is defined as:

L 〈l1, . . . , ln〉U ≡ L {abduce(l1), . . . , abduce(ln)} U

for any abducible l1, . . . , ln in A∗. The next example illustrates the difference between
L 〈l1, . . . , ln〉U and L {l1, . . . , ln} U .

Example 8. Consider a situation where Claire drinks either tea or coffee (but not both).
Suppose that Claire prefers coffee over tea when sleepy, and doesn’t drink coffee when
she has high blood pressure. This situation is described by program P over L with
abducibles AP = {tea, coffee, abduced(tea), abduced(coffee)}:

On Preferring and Inspecting Abductive Models 7

drink ← tea expect(tea)
drink ← coffee expect(coffee)

expect not(coffee) ← blood pressure high

0 〈tea, coffee〉 1
coffee ≺ tea ← sleepy

In the abductive stable model semantics, this program has two models, one with tea the
other with coffee. Adding literal sleepy , enforced abduction comes into play, defeating
the abductive stable model where only tea is present (due to the impossibility of simul-
taneously abducing coffee). If later we add blood pressure high , coffee is no longer
expected, and the transformed preference rule no longer defeats the abduction of tea
which then becomes the single abductive stable model, despite the presence of sleepy .

3.3 Abducible Sets

Often it is desirable not only to include rules about expectations for single abducibles,
but also to express contextual information constraining the powerset of abducibles.

Example 9. Consider a situation where Claire is deciding what to have for a meal
from a limited buffet. The menu has appetizers (which Claire doesn’t mind skipping,
unless she’s very hungry), three main dishes, from which one can select a maximum
of two, and drinks, from which she will have a single one. The situation, with
all possible choices, can be modelled by program P over L with set of abducibles
AP={bread , salad , cheese,fish,meat , veggie,wine, juice, water , abduced(bread),
abduced(salad), abduced(cheese), abduced(fish), abduced(meat), abduced(veggie),
abduced(wine), abduced(juice), abduced(water)}:

0 {bread , salad , cheese} 3 ← appetizers main dishes ≺ appetizers
1 {fish,meat , veggie} 2 ← main dishes drinks ≺ appetizers
1 {wine, juice,water} 1 ← drinks appetizers ← very hungry

2 {appetizers ,main dishes , drinks} 3

Here we model appetizers as the least preferred set from those available for the meal.
It shows we can condition sets of abducibles based on the generation of literals from
other cardinality constraints plus preferences among them.

3.4 Modeling Inspection Points

When finding an abductive solution for a query, one may want to check whether some
other literals become true or false strictly within the abductive solution found, without
performing additional abductions, and without having to produce a complete model to
do so. Pereira and Pinto [11] argue this type of reasoning requires a new mechanism.
To achieve it, they introduce the concept of inspection point, and show how to employ
it to investigate side-effects of interest. Procedurally, inspection points are construed as
a form of meta-abduction, by “meta-abducing” the specific abduction of checking (i.e.
passively verifying) that a corresponding concrete abduction is indeed adopted. That is,

8 L.M. Pereira, P. Dell’Acqua, and G. Lopes

one abduces the checking of some abducible A, and the check consists in confirming
that A is part of the abductive solution by matching it with the object of the abduced
check.

In their approach the side-effects of interest are explicitly indicated by the user wrap-
ping the corresponding goals with a reserved construct inspect/1. Procedurally, inspect
goals must be solved without abducing regular abducibles, only “meta-abducibles” of
the form abduced/1.

Example 10. Consider the following program taken from [11], where tear gas , fire,
and water cannon are abducibles.

⊥ ← police , riot ,notcontain
contain ← tear gas contain ← water cannon
smoke ← fire smoke ← inspect(tear gas)
police riot

Note the two rules for smoke . The first states one explanation for smoke is fire, when
assuming the hypothesis fire. The second states tear gas is also a possible explanation
for smoke. However, the presence of tear gas is a much more unlikely situation than the
presence of fire; after all, tear gas is only used by police to contain riots and that is truly
an exceptional situation. Fires are much more common and spontaneous than riots. For
this reason, fire is a much more plausible explanation for smoke and, therefore, in order
to let the explanation for smoke be tear gas , there must be a plausible reason – imposed
by some other likely phenomenon. This is represented by inspect(tear gas) instead
of simply tear gas . The inspect construct disallows regular abduction – only meta-
abduction – to be performed whilst trying to solve tear gas . I.e., if we take tear gas as an
abductive solution for fire, this rule imposes that the step where we abduce tear gas is
performed elsewhere, not under the derivation tree for smoke . The integrity constraint,
since there is police and a riot , forces contain to be true, and hence, tear gas or
water cannon or both, must be abduced. smoke is only explained if, at the end of the
day, tear gas is abduced to enact containment. Abductive solutions should be plausible,
and smoke is explained by tear gas if there is a reason, a best explanation, that makes
the presence of tear gas plausible; in this case the riot and the police. Plausibility is an
important concept in science in lending credibility to hypotheses.

4 A Posteriori Preferences

A desirable result of encoding abduction semantics over models of a program is that we
immediately obtain the consequences of committing to any one hypotheses set. Rules
which contain abducibles in their bodies can account for the side-effect derivation of
certain positive literals in some models, but not others, possibly triggering integrity
constraints or indirectly deriving interesting consequences simply as a result of accept-
ing a hypothesis.

Preferring a posteriori, only after model generation is achieved, is thus needed. How-
ever, cause and effect is not enough to draw conclusions and decide, due to the problem
of imperfect information and uncertain conditions. To resolve these problems, combin-
ing causal models with probabilistic information about models is required.

On Preferring and Inspecting Abductive Models 9

4.1 Utility Theory

Abduction can be seen as a mechanism to enable the generation of the possible futures
of an agent, with each abductive stable model representing a possibly reachable scenario
of interest. Preferring over abducibles enacts preferences over the imagined future of
the agent. In this context, it is unavoidable to deal with uncertainty, a problem decision
theory is ready to address using probabilities coupled with utility functions.

Example 11. Suppose Claire is spending a day at the beach and she is deciding what
means of transportation to adopt. She knows it is usually faster and more comfortable
to go by car, but she also knows, because it is hot, there is possibility of a traffic jam. It
is also possible to use public transportation (by train), but it will take longer, though it
meets her wishes of being more environment friendly. The situation can be modeled by
the abductive logic program:

go to(beach) ← car expect(car)
go to(beach) ← train expect(train)
hot 1 {car , train} 1

probability (traffic jam , 0.7) ← hot
probability (not traffic jam , 0.3) ← hot

utility(stuck in traffic, −8)
utility(wasting time, −4)

utility(comfort , 10)
utility(environment friendly , 3)

By assuming each of the abductive hypotheses, the general utility of going to the beach
can be computed for each particular scenario:

Assume car
Probability of being stuck in traffic = 0.7
Probability of a comfortable ride = 0.3
Expected utility = 10 * 0.3 + 0.7 * -8 = -2.6

Assume train
Expected utility = -4 + 3 = -1

It should be clear that enacting preferential reasoning over the utilities computed for
each model has to be performed after the scenarios are available, with an a posteriori
meta-reasoning over the models and their respective utilities.

5 Implementation

The abductive framework described above has been implemented in the ACORDA [10]
logic programming system, designed to accomodate abduction in evolving scenarios.

10 L.M. Pereira, P. Dell’Acqua, and G. Lopes

5.1 XSB-XASP Interface

Prolog is the most accepted means to codify and execute logic programs, and a useful
tool for research and application development in logic programming. Several stable
implementations were developed and refined over the years, with plenty of working
solutions to pragmatic issues, ranging from efficiency and portability to explorations of
language extensions. XSB-Prolog1 is one of the most sophisticated, powerful, efficient
and versatile, focusing on execution efficiency and interaction with external systems,
implementing logic program evaluation following the Well-Founded Semantics (WFS).

The semantics of Stable Models is a cornerstone for the definition of some of the
most important results in logic programming of the past decade, providing an increase
in logic program declarativity and a new paradigm for program evaluation. However,
the lack of some important properties of previous language semantics, like relevancy
and cumulativity, somewhat reduces its applicability in practice, namely regarding ab-
duction.

The XASP interface [3,4] (XSB Answer Set Programming), part of XSB-Prolog, is
a practical programming interface to Smodels[9]. XASP allows to compute the models
of a Normal LP, and also to effectively combine 3- with 2-valued reasoning.

This is gotten by using Smodels to compute the stable models of the residual pro-
gram, one that results from a query evaluation in XSB using tabling[16]. The residual
program is formed by delay lists, sets of undefined literals for which XSB could not
find a complete proof, due to mutual loops over default negation in a set, as detected
by the tabling mechanism. This method allows obtaining 2-valued models, by comple-
tion of the 3-valued ones of XSB. The integration maintains the relevance property for
queries over our programs, something Stable Model semantics does not enjoy. In Stable
Models, by its very definition, it is necessary to compute whole models of a given pro-
gram. In the ACORDA implementation framework we sidestep this issue, using XASP
to compute the query relevant residual program on demand, usually after some degree
of transformation. Only the resulting residual program is sent to Smodels for computa-
tion of its abductive stable models. This is one of the main problems which abduction
over stable models has been facing: it always needs to consider each abducible in a pro-
gram, and then progressively defeat those irrelevant for the problem at hand. It is not
so in our framework, since we can begin evaluation with a top-down derivation for a
query, which immediately constrains the set of abducibles to those relevant to the satis-
faction and proof of that query. Each query is conjoined with not ⊥ to ensure Integrity
Constraints satisfaction.

An important consideration in computing consequences, cf. Section 4, is not having
to compute whole models of the program to obtain just a specific consequences subset,
the one useful to enact a posteriori preferences. This is avoided by computing models
just for the residual program corresponding to the consequences we wish to observe.
Consequences which are significant for model preference are thus computed on the
XSB side, and their residual program is then sent to Smodels. A posteriori preference
rules are evaluated over the computed models, and are just consumers of considered

1 Both the XSB Logic Programming system and Smodels are freely available at:
http://xsb.sourceforge.net and http://www.tcs.hut.fi/Software/
smodels

http://xsb.sourceforge.net
http://www.tcs.hut.fi/Software/smodels
http://www.tcs.hut.fi/Software/smodels

On Preferring and Inspecting Abductive Models 11

abducibles that have indeed been produced, meaning that any additional abductions are
disallowed.

5.2 Top-Down Proof Procedure

In our implementation we aim for query-driven evaluation of abductive stable models,
so that only the relevant part of the program is considered for computation. Computa-
tion of such models is performed in two stages. First XSB computes the Well-Founded
Model (WFM) of the program w.r.t. the query, by supporting goal derivations on any
considered expected abducibles, that are not otherwise being defeated; cf. Section 2.1.
We aim to dynamically collect only those abducibles necessary to prove the query. We
can assume them neither true nor false at this stage, so they end up undefined in the
derivation tree. This is achieved by coding considered abducibles thus:

consider(A) ← expect(A), not expect not(A), abduce(A)
abduce(A) ← not abduce not(A)

abduce not(A) ← not abduce(A)

The latter two rules encode an abducible as an even-loop over default negation. They
warrant any considered abducible is undefined in the WFM of the program, and hence
contained in the residual program computed by the XSB Prolog meta-interpreter; cf.
Section 5.1. In this way, any query which is supported on abductive literals will also
have its entire derivation tree contained in the XSB’s residual program. We can then use
this tree as a partial program which is sent to Smodels for model computation. After the
stable models of these partial programs are computed, all even-loops will be solved by
either assuming the abduction, or assuming its negation.

5.3 Program Transformation

Now we consider a first-order propositional language L# containing rules as defined in
Def. 1. Programs over L# are constrained to satisfy given properties.

Definition 6. Let Γ and Σ be sets of rules over L#. Then (Γ, Σ) is a restricted pro-
gram.

The basic idea is that Γ contains the rules formalizing the application domain while Σ
formalizes the properties Γ must satisfy. Every restricted program is associated with a
set of abducibles A(Γ,Σ). In the sequel let Δ ⊆ A(Γ,Σ) be some subset.

Definition 7. M is a valid stable model with hypotheses Δ of (Γ, Σ) iff M � ⊥, M =
least(Γ+ ∪ Default(Γ+, M)), where Γ+ = Γ ∪ Δ and M � Σ.

A valid stable model is an abductive stable model (conditions (1) and (2)) satisfying the
wffs in Σ (condition (3)).

Definition 8. Δ is a valid explanation for goal G in (Γ, Σ) iff M is a valid stable
model with hypotheses Δ of (Γ, Σ) and M � G.

12 L.M. Pereira, P. Dell’Acqua, and G. Lopes

Definition 9. Δ is a strict valid explanation for goal G in (Γ, Σ) iff:

1. Δ is a minimal set for which:
– M � ⊥
– M = least(Γ+ ∪ Default(Γ+, M)), where Γ+ = Γ ∪ Δ
– M � G

2. M � Σ

We define transformation γ mapping programs over L to restricted ones over L#.

Definition 10. Let P be a program over L with set of abducibles AP . The restricted
program γ(P) = (Γ, Σ) over L# with set of abducibles A(Γ,Σ) = AP is defined as
follows.

Γ consists of:

1. all the rules in P
2. ⊥ ← a,not expect(a)

⊥ ← a, expect not(a)
for every abducible a ∈ A∗

P

3. ⊥ ← a,not abduced(a)
for every abducible a ∈ A∗

P

4. ⊥ ← a ≺ b, expect(a),not expect not(a), b,not a
for every rule a ≺ b ← L1, . . . , Lt in P

5. ⊥ ← L {l1, . . . , ln} U, count([l1, . . . , ln], N), N ≤ L
⊥ ← L {l1, . . . , ln} U, count([l1, . . . , ln], N), N ≥ U
for every rule L {l1, . . . , ln} U ← L1, . . . Lt in P

Σ consists of:
6. ⊥ ← abduced(a), not a

for every abducible a ∈ A∗
P

7. ⊥ ← a � b, a,not b
for every rule a � b ← L1, . . . , Lt in P

Remark 1. We assume given the atom count([l1, . . . , ln], m) that holds if m is the num-
ber of abducibles belonging to [l1, . . . , ln] that are assumed. That is, if C is the atom
L {l1, . . . , ln} U , then we have that M � count([l1, . . . , ln], m) iff W (C, M) = m, for
any interpretation M .

Remark 2. If P contains inspection points, then apply the transformation γ to Π(P)
(cf. Definition 6 of [11]) instead of to P directly.

Theorem 1. Let P be a program over L with set of abducibles AP . M is an abduc-
tive stable model with hypotheses Δ ⊆ AP of P iff M is a valid stable model with
hypotheses Δ of γ(P).

Theorem 2. Let P be a program over L. Δ ⊆ AP is a strict abductive explanation for
goal G in P iff Δ is a strict valid explanation for G in γ(P).

On Preferring and Inspecting Abductive Models 13

5.4 Computation of Abductive Stable Models

In this second stage, Smodels will thus be used to compute abductive stable models
from the residual program obtained from top-down goal derivation. Determination of
relevant abducibles is performed by examining the residual program for ground literals
which are arguments to consider/1 clauses. Relevant preference rules are pre-evaluated
at this stage as well, by querying for any such rules involving any pair of the relevant
abducible set.

The XASP package [3] allows the programmer to collect rules in an XSB clause
store. When the programmer has determined enough clauses were added to the store to
form a semantically complete sub-program, it is then committed. This means informa-
tion in the clauses is copied to Smodels, coded using Smodels data structures, so that
stable models of those clauses can be computed and returned to XSB to be examined.

When both the relevant abducibles and preference rules are determined, a variation
of transformation γ is applied, with every encoded clause being sent to the XASP store,
reset beforehand in preparation for the stable models computation. Once the residual
program, transformed to enact preferences, is actually committed to Smodels, we obtain
through XASP the set of abductive stable models, and identify each one by their choice
of abducibles, i.e. those consider/1 literals collected beforehand in the residual program.

5.5 Inspection Points

Given the top-down proof procedure for abduction, implementing inspection points
becomes just a matter of adapting the evaluation of derivation subtrees falling under
inspect/1 literals at meta-interpreter level. Basically, considered abducibles evaluated
under inspect/1 subtrees are codified thus:

consider(A) ← abduced(A)
abduced(A) ← not abduced not(A)

abduced not(A) ← not abduced(A)

All abduced/1 predicates are collected during computation of the residual program
and later checked against the abductive stable models themselves. Every abduced(a)
predicate must pair with a corresponding abducible a for the model to be accepted; cf.
transformation γ.

Let L∗ be a first order propositional language defined as L except that L∗ contains
atoms of the form inspect(.), ea(., .) and ca(., .), while it does not contain any atom of
the form a ≺ b, a � b and abduced(.). The transformation below maps programs over
L into programs over L∗.

Definition 11. Let P be a program over L. Let Q be the set of all the rules obtained by
the rules in P by replacing abduced(a) with inspect(a), a ≺ b with ea(a, b) and a � b
with ca(a, b). Program Π(P) over L∗ consists of all rules in Q together with rules:

⊥ ← not a, inspect(b), L1, . . . , Lt for every ea(a, b) ← L1, . . . , Lt in Q,
⊥ ← inspect(a),not inspect(b), L1, . . . , Lt for every ca(a, b) ← L1, . . . , Lt in Q.

14 L.M. Pereira, P. Dell’Acqua, and G. Lopes

5.6 A Posteriori Choice Mechanisms

If a single model emerges from computation of the abductive stable models, goal eval-
uation can terminate. When multiple models still remain, there is opportunity to in-
troduce a posteriori choice mechanisms, which are domain-specific for a program. We
account for this specificity by providing an implementation hook the user can adopt for
introducing specific code for this final selection process, in addition to the a posteriori
choice mechanisms in Section 4.

6 Conclusions

We have addressed issues of formalizing the combination of abduction with prefer-
ences, and its implementation, in an original way. Namely, we introduced the notion
of expectable defeasible abducibles, enabled by the situation at hand and guided by
the query, and catered for a priori preferences amongst abducibles; all mechanisms de-
signed to cut down on the combinatory explosion of untoward abduction, that is relying
only on a posteriori preferences to filter what should not have been generated in the first
place. In regard to a posteriori preferences, we defined the notion of inspection points
to cater for observing relevant side-effects of abductive solutions, and enable a posteri-
ori choices without generating complete models which show all side-effects. In all, we
showed how a combination of cardinality constraints, preferences and inspection points
can be used to govern and constrain abduction, and how these mechanisms, coupled
with a posteriori ones, are an important tool for knowledge representation in modeling
choice situations where agents need to consider present and future contexts to decide
about them. Finally, we showed the advantages of implementing our framework as a
hybrid state-of-art declarative XSB-Prolog/Smodels system, to efficiently combine top-
down query-oriented abductive backward chaining, and side-effect model generating
forwards-chaining, respectively for constraining abducibles to preferred ones relevant
for a goal, and to compute the consequences of assuming them in each scenario.

We cannot presume to survey and compare the present work with the by now formi-
dable stock of separate works on abduction and on preferences in logic programming,
though we have referred to some along the exposition. Our intent has been the rather
original introduction of new features mentioned above, and their combination and im-
plementation, and in that respect we know not of competitive similar attempts. How-
ever, regarding inspection points, in [14], a technical problem is detected with the IFF
abductive proof procedure [7], in what concerns the treatment of negated abducibles
in integrity constraints (e.g. their examples 2 and 3). They then specialize IFF to avoid
such problems and prove correctness of the new procedure. The problems detected refer
to the active use an IC of some not A, where A is an abducible, whereas the intended use
should be a passive one, simply checking whether A is proved in the abductive solution
found, as in our inspection points (though these more generally apply to any literal). To
that effect they replace such occurrences of not A by not provable(A), in order to ensure
that no new abductions are allowed during the checking.

In the way of future developments and application topics, in [13], arguments are
given as to how epistemic entrenchment can be explicitly expressed as preferential rea-
soning. And, moreover, how preferences can be employed to determine believe

On Preferring and Inspecting Abductive Models 15

revisions, or, conversely, how belief contractions can lead to the explicit expression
of preferences. [6] provides a stimulating survey of opportunities and problems in the
use of preferences, reliant on AI techniques.

On a more general note, it appears to us that the practical use and implementation
of abduction in knowledge representation and reasoning, by means of declarative lan-
guages and systems, has reached a point of maturity, and of opportunity for develop-
ment, worthy the calling of attention of a wider community of potential practitioners.

References

1. Brewka, G.: Logic programming with ordered disjunction. In: Kaufmann, M. (ed.) Proc. 18th
National Conference on Artificial Intelligence, AAAI 2002 (2002)

2. Brewka, G., Niemelä, I., Truszczynski, M.: Answer set optimization. In: Proc. IJCAI 2003,
pp. 867–872 (2003)

3. Castro, L., Swift, T., Warren, D.S.: XASP: Answer Set Programming with XSB and Smodels,
http://xsb.sourceforge.net/packages/xasp.pdf

4. Castro, L.F., Warren, D.S.: An environment for the exploration of non monotonic logic pro-
grams. In: Kusalik, A. (ed.) Proc. of the 11th Intl. Workshop on Logic Programming Envi-
ronments (WLPE 2001) (2001)

5. Dell’Acqua, P., Pereira, L.M.: Preferential theory revision. J. of Applied Logic 5(4), 586–601
(2007)

6. Doyle, J.: Prospects for preferences. Computational Intelligence 20(3), 111–136 (2004)
7. Fung, T.H., Kowalski, R.: The IFF Proof Procedure for Abductive Logic Programming. The

J. of Logic Programming 33(2), 151–165 (1997)
8. Neg-Abdual. Constructive Negation with Abduction,

http://centria.di.fct.unl.pt/∼lmp/software/contrNeg.rar
9. Niemelä, I., Simons, P.: Smodels: An implementation of the stable model and well-founded

semantics for normal logic programs. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR
1997. LNCS (LNAI), vol. 1265, pp. 420–429. Springer, Heidelberg (1997)

10. Pereira, L.M., Lopes, G.: Prospective logic agents. In: Neves, J., Santos, M.F., Machado,
J.M. (eds.) EPIA 2007. LNCS, vol. 4874, pp. 73–86. Springer, Heidelberg (2007)

11. Pereira, L.M., Pinto, A.M.: Notes on Inspection Points and Meta-Abduction in Logic
Programs. Work in progress (2008), http://centria.di.fct.unl.pt/∼lmp/
publications/online-papers/IP08.pdf

12. Pereira, L.M., Saptawijaya, A.: Modelling morality with prospective logic. In: Neves, J., San-
tos, M.F., Machado, J.M. (eds.) EPIA 2007. LNCS (LNAI), vol. 4874, pp. 99–111. Springer,
Heidelberg (2007)

13. Rott, H.: Change, Choice and Inference. Oxford University Press, Oxford (2001)
14. Sadri, F., Toni, F.: Abduction with Negation as Failure for Active and Reactive Rules. In:

Lamma, E., Mello, P. (eds.) AI*IA 1999. LNCS (LNAI), vol. 1792, pp. 49–60. Springer,
Heidelberg (2000)

15. Santana, P., Moniz Pereira, L.: Emergence of cooperation through mutual preference revi-
sion. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031, pp. 81–90.
Springer, Heidelberg (2006)

16. Swift, T.: Tabling for non-monotonic programming. Annals of Mathematics and Artificial
Intelligence 25(3-4), 201–240 (1999)

http://xsb.sourceforge.net/packages/xasp.pdf
http://centria.di.fct.unl.pt/~lmp/software/contrNeg.rar
http://centria.di.fct.unl.pt/~lmp/publications/online-papers/IP08.pdf
http://centria.di.fct.unl.pt/~lmp/publications/online-papers/IP08.pdf

	On Preferring and Inspecting Abductive Models
	Introduction
	Abductive Framework
	Basic Abductive Language
	Declarative Semantics

	Pragmatics
	Constraining Abduction
	Preferring Abducibles
	Abducible Sets
	Modeling Inspection Points

	A Posteriori Preferences
	Utility Theory

	Implementation
	XSB-XASP Interface
	Top-Down Proof Procedure
	Program Transformation
	Computation of Abductive Stable Models
	Inspection Points
	A Posteriori Choice Mechanisms

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

