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Preface

Declarative languages have long promised the ability to rapidly create easily
maintainable software for complex applications. The International Symposium
of Practical Aspects of Declarative Languages (PADL) provides a yearly fo-
rum for presenting results on the principles the implementations and especially
the applications of declarative languages. The PADL symposium held January
19–20, 2009 in Savannah, Georgia was the 11th in this series.

This year 48 papers were submitted from authors in 17 countries. The Pro-
gram Committee performed outstandingly to ensure that each of these papers
submitted to PADL 2009 was thoroughly reviewed by at least three referees
in a short period of time. The resulting symposium presented a microcosm of
how the current generation of declarative languages are being used to address
real applications, along with on-going work on the languages themselves. The
program also included two invited talks, “Inspecting and Preferring Abductive
Models” by Luis Moniz Pereira and “Applying Declarative Languages to Com-
mercial Hardware Design” by Jeff Lewis. Regular papers presented a variety of
applications, including distributed applications over networks, network verifica-
tion, user interfaces, visualization in astrophysics, nucleotide sequence analysis
and planning under incomplete information. PADL 2009 also included ongoing
work on the declarative languages themselves. Multi-threaded and concurrent
Prolog implementation was addressed in several papers, as were innovations for
tabling in Prolog and functional arrays in Haskell. Recent applications have also
sparked papers on meta-predicates in Prolog and a module system for ACL2.
While the majority of this work was within the functional and logic program-
ming paradigms, a paper also described improvements to PADS, a specialized
language for processing data in ad hoc formats. Finally, the symposium also
included papers whose contribution is mainly theoretical but whose practicality
seems direct: these papers focussed on typed datalog and goal-directed querying
of normal logic programs.

The PADL symposium was co-located with the ACM Symposium on Princi-
ples of Programming Languages (POPL 2009). We thank the University of Texas
at Dallas, the University of Kansas, and the Centre for Research in Artificial In-
telligence, Universidade Nova de Lisboa for their support. Finally, we would like
to thank Gopal Gupta whose vision was instrumental in initiating the PADL
symposia, and whose efforts have helped sustain them over more than a decade.

November 2008 Andy Gill
Terrance Swift
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On Preferring and Inspecting Abductive Models

Luı́s Moniz Pereira1, Pierangelo Dell’Acqua2, and Gonçalo Lopes1

1 Departamento de Informática, Centro de Inteligência Artificial (CENTRIA),
Universidade Nova de Lisboa 2829-516 Caparica, Portugal

lmp@di.fct.unl.pt, goncaloclopes@gmail.com
2 Dept. of Science and Technology - ITN, Linköping University Norrköping, Sweden

pierangelo.dellacqua@itn.liu.se

Abstract. This work proposes the application of preferences over abductive logic
programs as an appealing declarative formalism to model choice situations. In
particular, both a priori and a posteriori handling of preferences between abduc-
tive extensions of a theory are addressed as complementary and essential mech-
anisms in a broader framework for abductive reasoning. Furthermore, both of
these choice mechanisms are combined with other formalisms for decision mak-
ing, like economic decision theory, resulting in theories containing the best ad-
vantages from both qualitative and quantitative formalisms. Several examples are
presented throughout to illustrate the enounced methodologies. These have been
tested in our implementation, which we explain in detail.

Keywords: Abduction, Preferences, Logic Programming, XSB-Prolog, Smodels.

1 Introduction

Much work in logic program semantics and procedures has focused on preferences be-
tween rules of a theory [5] and among theory literals [1,2], with or without updates.
However, the exploration of the application of preferences to abductive extensions of a
theory has still much to progress. An abductive extension is, by definition, a defeasible
construct, and allows greater flexibility in enforcing preference relations. From our per-
spective, handling preferences over abductive logic programs has several advantages,
and allows for easier and more concise translation into normal logic programs (NLP)
than those prescribed by more general and complex rule preference frameworks.

In [5], a preliminary theory of revisable preferences between abducible literals was
presented, and applied to theory revision, along with a formal semantics based on the
definition of abductive stable models, illustrated in the paper with a number of ap-
plications and applied also to mutual preference revision in [15]. In [10] pre- and post-
preferences on abducibles are employed to prospectively generate and filter likely agent
preferred future scenarios. In [12], pre- and post-preferences on abducibles are applied
to model and solve classic moral dilemmas.

Here we broaden the framework to account for more flexible and powerful means
to express preferences between abducibles, over and above a priori relevancy rules em-
bedded in a program’s theory. We show there are many advantages as well to preferring
a posteriori, i.e. to enact preferences on the computed models, after the consequences of

A. Gill and T. Swift (Eds.): PADL 2009, LNCS 5418, pp. 1–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 L.M. Pereira, P. Dell’Acqua, and G. Lopes

opting for one or another abducible are known, by means of inspection points that ex-
amine specific side-effects of abduction. The advantages of so proceeding stem largely
from avoiding combinatory explosions of abductive solutions, by filtering both irrele-
vant as well as less preferred abducibles. We combine these choice mechanisms with
other formalisms for decision making, resulting in theories containing the best advan-
tages from both qualitative and quantitative formalisms. Several examples are presented
throughout to illustrate the enounced methodologies. These have been tested in our im-
plementation, which we explain in detail.

2 Abductive Framework

2.1 Basic Abductive Language

LetL be a first order propositional language defined as follows. As usual, we study non-
ground programs and their declarative semantics in terms of the set of all their ground
instances, so that grounded literals can be envisaged as propositional constants. This
does not preclude employing non-ground abductive programs for knowledge represen-
tation, though their practical use requires of course correct implementation techniques
regarding non-ground abduction, an issue shared by constructive negation, so that the
two are usefully combined. An inroad into these implementation techniques is to be
found in [8].

Assume given an alphabet (set) of propositional atoms containing the reserved atom
⊥ to denote falsity. A literal in L is an atom A or its default negation notA, the latter
expressing that the atom is false by default (CWA).

Definition 1. A rule in L takes the form A ← L1, . . . , Lt where A is an atom and
L1, . . . , Lt (t ≥ 0) are literals.

We follow the standard convention and call A the head of the rule, and the conjunction
L1, . . . , Lt its body. When t = 0 we write the rule simply as A, that is without ‘←’. An
integrity constraint is a rule whose head is ⊥.

Definition 2. A goal or query in L has the form ?−L1, . . . , Lt, where L1, . . . , Lt (t ≥
1) are literals.

A (logic) program P over L is a finite (countable) set of rules. We adopt the convention
of using ’;’ to separate rules, thus we write a program P as {rule1; . . . ; rulen}.

Every program P is associated with a set of abduciblesA consisting of literals which
(without loss of generality) do not appear in any rule head of P . Abducibles may be
thought of as hypotheses that can be used to extend the current theory in order to provide
hypothetical solutions or possible explanations for given queries. Given an abductive
solution, to test whether a certain abducible has been abduced, L contains the reserved
abducible abduced(a), for every abducible a �= abduced(.) in L. Thus, abduced(a)
acts as a constraint that is satisfied in the solution if the abducible a is indeed assumed.
It can be construed as meta-abduction in the form of abducing to check (or passively
verify) that a certain abduction is adopted.

Example 1. Let P = {p ← abduced(a), a; q ← abduced(b)} with set of abducibles
AP = {a, b, abduced(a), abduced(b)}. Then, P has four intended models: M = {},
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M2 ={p, a, abduced(a)}, M3 ={q, b, abduced(b)}, and M4 = {p, q, a, b, abduced(a),
abduced(b)}. The set {q, abduced(b)} is not an intended model since the assumption
of abduced(b) requires the assumption of b.

Given a set of abducibles A, we write A∗ to indicate the subset of A consisting of all
the abducibles in A distinct from abduced(.), that is:

A∗ = { a : a �= abduced(.) and a ∈ A}.

Hypotheses Generation. The production of alternative explanations for a query is a
central problem in abduction, because of the combinatorial explosion of possible ex-
planations. In our approach, preferences among abducibles can be expressed in order to
discard irrelevant assumptions. The notion of expectation is employed to express pre-
conditions for enabling the assumption of an abducible. An abducible can be assumed
only if there is an expectation for it, and there is not an expectation to the contrary. In
this case, we say that the abducible is considered. These expectations are expressed by
the following rules, for any given abducible a ∈ A∗:

expect(a)← L1, . . . , Lt

expect not(a) ← L1, . . . , Lt

Note that L does not contain atoms of the form expect(abduced(.)) and of the form
expect not(abduced(.)).

Example 2. Let P = {p ← a; q ← b; expect(a); expect(b); expect not(a) ← q} with
set of abducibles AP = {a, b, abduced(a), abduced(b)}. Then, P has three intended
models: M = {expect(a), expect(b)}, M2 = {p, a, abduced(a), expect(a), expect(b)}
and M3 = {q, b, abduced(b), expect(a), expect(b)}. It is not possible to assume both
a and b because the assumption of b makes q true which in turn makes expect not(a)
true preventing a to be assumed.

This notion of considered abducible allows to divide the abductive process into two dis-
tinct moments: the generation of hypotheses and the pruning of the unpreferred ones.
Computation of preferences between models is problematic when both generation and
comparison get mixed up, as mentioned in [2] which, however, does not introduce ab-
ductive preference and defeasibility also into generation like we do, but relegates all
preference handling to posterior filtering. The two approaches could be conjoined.

Enforced Abduction. To express that the assumption of an abducible enforces the
assumption of another abducible, L contains reserved atoms of the form a ≺ b, for any
abducibles a, b ∈ A∗. The atom a ≺ b states that the assumption of b enforces the
assumption of a, active abduction behavior. That is, if b is assumed, then a ≺ b forces a
to be assumed provided that a can be considered. Note that the abducibles a, b are both
required to be different from abduced(.) since they belong to A∗.

Example 3. Let P = {p ← a; a ≺ b; b ≺ a; expect(a); expect(b)} with set of ab-
ducibles AP = {a, b, abduced(a), abduced(b)}. Then, P has two intended models
for abduction: M = {a ≺ b, b ≺ a, expect(a), expect(b)} and M2 = {a ≺ b, b ≺
a, a, b, p, expect(a), expect(b), abduced(a), abduced(b)} due to active abduction be-
havior of a ≺ b and b ≺ a preventing intended models containing either a or b alone.
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Conditional Abduction. The assumption of an abducible a can be conditional on the
assumption of another abducible b. The reserved atom a � b in L, for any abducible
a, b ∈ A∗, states that a can be assumed only if b is (without assuming it for the purpose
of having a), passive abduction behavior. That is, a � b acts as a check passively con-
straining the assumption of a to the assumption of b (passive abduction behavior). Note
that the abducibles a, b are required to be different from abduced(.).

Example 4. Let P = {p ← a; q ← b; a � b; expect(a)} with set of abducibles AP =
{a, b, abduced(a), abduced(b)}. Then, there exists only one intended model of P : M =
{a � b, expect(a)}. Note that M2 = {a � b, b, q, expect(a), abduced(b)} and M3 =
{a � b, a, p, expect(a), abduced(a)} are not intended models. In fact, M2 is not a model
since b cannot be assumed (there is no expectation for it). This fact also prevents the
assumption of a (due to a � b) and consequently M3 is not a model.

Cardinality Constrained Abduction. To constrain the number of assumed abducibles,
L contains reserved atoms of the form L {l1, . . . , ln} U where n ≥ 1, every li is
an abducible in A, and L and U are natural numbers representing, respectively, the
lower and upper bounds on the cardinality of abducibles. L {l1, . . . , ln} U states that
at least L and at most U abducibles in {l1, . . . , ln} must be assumed (active abduction
behavior). Since the abducibles li belong to A, they can also take the form abduced(.).

2.2 Declarative Semantics

The declarative semantics of programs over L is given in terms of abductive stable
models. Let P be a program and AP the abducibles in P . A 2-valued interpretation
M of L is any set of literals from L that satisfies the condition that, for any atom
A, precisely one of the literals A or not A belongs to M . Interpretation M satisfies a
conjunction of literals L1, . . . , Lt, if every literal Li in the conjunction belongs to M .
We need the notion of default assumptions of P with respect to an interpretation M ,
where a default literal not A is considered an atom, and not not A ≡ A.

Default(P, M) =
{not A : there exists no rule A← L1, . . . , Lt in P such that M � L1, . . . , Lt}

Abducibles are false by default since we made the assumption that abducibles are not
defined by any rule in P . An interpretation M is a stable model of P iff:

1. M � ⊥ and
2. M = least(P ∪Default(P, M)), where least indicates the least model.

Let C be L {l1, . . . , ln}U . Then, we let W (C, M) be the number of abducibles in
{l1, . . . , ln} satisfied by an interpretation M :

W (C, M) = | {l : l ∈ {l1, . . . , ln} and M � l} |

Given a set of abducibles ∆, we write ∆∗ to indicate :

∆∗ = {a : a �= abduced(.) and a ∈ ∆}
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Definition 3. Let ∆ ⊆ AP be a set of abducibles. M is an abductive stable model with
hypotheses ∆ of P iff:

1. M � ⊥
2. M = least(Q ∪Default(Q, M)), where Q = P ∪∆
3. M � expect(a) and M � expect not(a), for every a ∈ ∆∗

4. for every a ∈ ∆∗, if M � a then M � abduced(a)
5. for every atom a ≺ b, if M � a ≺ b, M � expect(a), M � expect not(a) and

M � b, then M � a
6. for every atom C of the form L {l1, . . . , ln}U , if M |= C then L ≤W (C, M)
≤ U

7. for every a ∈ ∆∗, if M � abduced(a) then M � a
8. for every atom a � b, if M � a � b and M � a, then M � b

Example 5. Let P = {p ← abduced(a); expect(a)} and AP = {a, abduced(a)}.
Then, M = {p, a, abduced(a), expect(a)} is an abductive stable model with hypothe-
ses ∆ = {a, abduced(a)}, while M2 = {p, abduced(a), expect(a)} is not since condi-
tion (7) of Def. 3 is not fulfilled.

Definition 4. ∆ is an abductive explanation for goal G in P iff there exists a model M
such that M is an abductive stable model with hypotheses ∆ of P and M � G.

Definition 5. ∆ is a strict abductive explanation for goal G in P iff there exists a model
M such that:

1. ∆ is a minimal set for which:
– M � G
– M � ⊥
– M = least(Q ∪Default(Q, M)), where Q = P ∪∆
– M � expect(a) and M � expect not(a), for every a ∈ ∆∗

– for every a ∈ ∆∗, if M � a then M � abduced(a)
– for every atom a ≺ b, if M � a ≺ b, M � expect(a), M � expect not(a) and

M � b, then M � a
– for every atom C of the form L {l1, . . . , ln}U , if M |= C then

L ≤W (C, M) ≤ U
2. for every a ∈ ∆∗, if M � abduced(a) then M � a
3. for every atom a � b, if M � a � b and M � a, then M � b

Note that in Def. 5 condition (2) is not subject to minimization. The reason for this is
clarified by the next example.

Example 6. Reconsider P of Example 5. Suppose that the goal G is ?−p. It holds that
∆ = {a, abduced(a)} is an abductive explanation for G in P , but it is not strict since
∆ is not a minimal set satisfying condition (1) of Def. 5. Indeed, the minimal set is
∆2 = {abduced(a)}. Hence, there exists no strict abductive explanation for G in P .

The following property relates abductive explanations to strict abductive explanations.

Proposition 1. Let G be a goal and ∆ a strict abductive explanation for G in P . Then,
∆ is an abductive explanation for G in P .
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3 Pragmatics

3.1 Constraining Abduction

Quite often in domain problems it happens the assumption of abducibles is subject to the
fulfillment of certain conditions, including other assumptions, which must be satisfied.
This requirement is expressed by exploiting constrained abduction, a � b.

Example 7. Consider a scenario where there is a pub that is open or closed. If the light
is on in the pub then it is open or being cleaned. Late at night, one can assume the pub
is open if there are people inside. The pub being located in an entertainment district,
there is noise around if there are people in the pub or a party nearby. This scenario is de-
scribed by the program P withAP = {open , cleaning , party , people, abduced(open),
abduced(cleaning), abduced(party), abduced(people)}.

light ← open,not cleaning
light ← cleaning ,not open ,not abduced(people)
open � people ← late night
noise ← party
noise ← people

expect(open) expect(cleaning) expect(party) expect(people)

Thus, in case it is night (but not late night) and one does observe lights in the pub,
then one has two equally plausible explanations for it: {open} or {cleaning}. Oth-
erwise (late night is a given fact), there is a single explanation for the lights being
on: {cleaning}. If instead it is late night and one hears noise too (i.e. the query is
?−light ,noise), then one will have three abductive explanations: {open, people},
{party, cleaning} and {open, party , people}. The last one reflects that the pub may
be open with late customers simultaneously with a party nearby, both events producing
noise.

3.2 Preferring Abducibles

Now we illustrate how to express preferences between considered abducibles. We em-
ploy construct L 〈l1, . . . , ln〉U to constrain the number of abducibles possibly assumed.
The construct has a passive abduction behavior and it is defined as:

L 〈l1, . . . , ln〉U ≡ L {abduce(l1), . . . , abduce(ln)}U

for any abducible l1, . . . , ln in A∗. The next example illustrates the difference between
L 〈l1, . . . , ln〉U and L {l1, . . . , ln}U .

Example 8. Consider a situation where Claire drinks either tea or coffee (but not both).
Suppose that Claire prefers coffee over tea when sleepy, and doesn’t drink coffee when
she has high blood pressure. This situation is described by program P over L with
abduciblesAP = {tea, coffee, abduced(tea), abduced(coffee)}:
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drink ← tea expect(tea)
drink ← coffee expect(coffee)

expect not(coffee)← blood pressure high

0 〈tea, coffee〉 1
coffee ≺ tea ← sleepy

In the abductive stable model semantics, this program has two models, one with tea the
other with coffee. Adding literal sleepy , enforced abduction comes into play, defeating
the abductive stable model where only tea is present (due to the impossibility of simul-
taneously abducing coffee). If later we add blood pressure high , coffee is no longer
expected, and the transformed preference rule no longer defeats the abduction of tea
which then becomes the single abductive stable model, despite the presence of sleepy .

3.3 Abducible Sets

Often it is desirable not only to include rules about expectations for single abducibles,
but also to express contextual information constraining the powerset of abducibles.

Example 9. Consider a situation where Claire is deciding what to have for a meal
from a limited buffet. The menu has appetizers (which Claire doesn’t mind skipping,
unless she’s very hungry), three main dishes, from which one can select a maximum
of two, and drinks, from which she will have a single one. The situation, with
all possible choices, can be modelled by program P over L with set of abducibles
AP={bread , salad , cheese,fish,meat , veggie,wine, juice, water , abduced(bread),
abduced(salad), abduced(cheese), abduced(fish), abduced(meat), abduced(veggie),
abduced(wine), abduced(juice), abduced(water )}:

0 {bread , salad , cheese} 3← appetizers main dishes ≺ appetizers
1 {fish,meat , veggie} 2← main dishes drinks ≺ appetizers
1 {wine, juice,water} 1 ← drinks appetizers ← very hungry

2 {appetizers ,main dishes , drinks} 3

Here we model appetizers as the least preferred set from those available for the meal.
It shows we can condition sets of abducibles based on the generation of literals from
other cardinality constraints plus preferences among them.

3.4 Modeling Inspection Points

When finding an abductive solution for a query, one may want to check whether some
other literals become true or false strictly within the abductive solution found, without
performing additional abductions, and without having to produce a complete model to
do so. Pereira and Pinto [11] argue this type of reasoning requires a new mechanism.
To achieve it, they introduce the concept of inspection point, and show how to employ
it to investigate side-effects of interest. Procedurally, inspection points are construed as
a form of meta-abduction, by “meta-abducing” the specific abduction of checking (i.e.
passively verifying) that a corresponding concrete abduction is indeed adopted. That is,
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one abduces the checking of some abducible A, and the check consists in confirming
that A is part of the abductive solution by matching it with the object of the abduced
check.

In their approach the side-effects of interest are explicitly indicated by the user wrap-
ping the corresponding goals with a reserved construct inspect/1. Procedurally, inspect
goals must be solved without abducing regular abducibles, only “meta-abducibles” of
the form abduced/1.

Example 10. Consider the following program taken from [11], where tear gas , fire,
and water cannon are abducibles.

⊥ ← police , riot ,notcontain
contain ← tear gas contain ← water cannon
smoke ← fire smoke ← inspect(tear gas)
police riot

Note the two rules for smoke . The first states one explanation for smoke is fire, when
assuming the hypothesis fire. The second states tear gas is also a possible explanation
for smoke. However, the presence of tear gas is a much more unlikely situation than the
presence of fire; after all, tear gas is only used by police to contain riots and that is truly
an exceptional situation. Fires are much more common and spontaneous than riots. For
this reason, fire is a much more plausible explanation for smoke and, therefore, in order
to let the explanation for smoke be tear gas , there must be a plausible reason – imposed
by some other likely phenomenon. This is represented by inspect(tear gas) instead
of simply tear gas . The inspect construct disallows regular abduction – only meta-
abduction – to be performed whilst trying to solve tear gas . I.e., if we take tear gas as an
abductive solution for fire, this rule imposes that the step where we abduce tear gas is
performed elsewhere, not under the derivation tree for smoke . The integrity constraint,
since there is police and a riot , forces contain to be true, and hence, tear gas or
water cannon or both, must be abduced. smoke is only explained if, at the end of the
day, tear gas is abduced to enact containment. Abductive solutions should be plausible,
and smoke is explained by tear gas if there is a reason, a best explanation, that makes
the presence of tear gas plausible; in this case the riot and the police. Plausibility is an
important concept in science in lending credibility to hypotheses.

4 A Posteriori Preferences

A desirable result of encoding abduction semantics over models of a program is that we
immediately obtain the consequences of committing to any one hypotheses set. Rules
which contain abducibles in their bodies can account for the side-effect derivation of
certain positive literals in some models, but not others, possibly triggering integrity
constraints or indirectly deriving interesting consequences simply as a result of accept-
ing a hypothesis.

Preferring a posteriori, only after model generation is achieved, is thus needed. How-
ever, cause and effect is not enough to draw conclusions and decide, due to the problem
of imperfect information and uncertain conditions. To resolve these problems, combin-
ing causal models with probabilistic information about models is required.
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4.1 Utility Theory

Abduction can be seen as a mechanism to enable the generation of the possible futures
of an agent, with each abductive stable model representing a possibly reachable scenario
of interest. Preferring over abducibles enacts preferences over the imagined future of
the agent. In this context, it is unavoidable to deal with uncertainty, a problem decision
theory is ready to address using probabilities coupled with utility functions.

Example 11. Suppose Claire is spending a day at the beach and she is deciding what
means of transportation to adopt. She knows it is usually faster and more comfortable
to go by car, but she also knows, because it is hot, there is possibility of a traffic jam. It
is also possible to use public transportation (by train), but it will take longer, though it
meets her wishes of being more environment friendly. The situation can be modeled by
the abductive logic program:

go to(beach)← car expect(car )
go to(beach)← train expect(train)
hot 1 {car , train} 1

probability (traffic jam , 0.7)← hot
probability (not traffic jam , 0.3)← hot

utility(stuck in traffic,−8)
utility(wasting time,−4)

utility(comfort , 10)
utility(environment friendly , 3)

By assuming each of the abductive hypotheses, the general utility of going to the beach
can be computed for each particular scenario:

Assume car
Probability of being stuck in traffic = 0.7
Probability of a comfortable ride = 0.3
Expected utility = 10 * 0.3 + 0.7 * -8 = -2.6

Assume train
Expected utility = -4 + 3 = -1

It should be clear that enacting preferential reasoning over the utilities computed for
each model has to be performed after the scenarios are available, with an a posteriori
meta-reasoning over the models and their respective utilities.

5 Implementation

The abductive framework described above has been implemented in the ACORDA [10]
logic programming system, designed to accomodate abduction in evolving scenarios.
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5.1 XSB-XASP Interface

Prolog is the most accepted means to codify and execute logic programs, and a useful
tool for research and application development in logic programming. Several stable
implementations were developed and refined over the years, with plenty of working
solutions to pragmatic issues, ranging from efficiency and portability to explorations of
language extensions. XSB-Prolog1 is one of the most sophisticated, powerful, efficient
and versatile, focusing on execution efficiency and interaction with external systems,
implementing logic program evaluation following the Well-Founded Semantics (WFS).

The semantics of Stable Models is a cornerstone for the definition of some of the
most important results in logic programming of the past decade, providing an increase
in logic program declarativity and a new paradigm for program evaluation. However,
the lack of some important properties of previous language semantics, like relevancy
and cumulativity, somewhat reduces its applicability in practice, namely regarding ab-
duction.

The XASP interface [3,4] (XSB Answer Set Programming), part of XSB-Prolog, is
a practical programming interface to Smodels[9]. XASP allows to compute the models
of a Normal LP, and also to effectively combine 3- with 2-valued reasoning.

This is gotten by using Smodels to compute the stable models of the residual pro-
gram, one that results from a query evaluation in XSB using tabling[16]. The residual
program is formed by delay lists, sets of undefined literals for which XSB could not
find a complete proof, due to mutual loops over default negation in a set, as detected
by the tabling mechanism. This method allows obtaining 2-valued models, by comple-
tion of the 3-valued ones of XSB. The integration maintains the relevance property for
queries over our programs, something Stable Model semantics does not enjoy. In Stable
Models, by its very definition, it is necessary to compute whole models of a given pro-
gram. In the ACORDA implementation framework we sidestep this issue, using XASP
to compute the query relevant residual program on demand, usually after some degree
of transformation. Only the resulting residual program is sent to Smodels for computa-
tion of its abductive stable models. This is one of the main problems which abduction
over stable models has been facing: it always needs to consider each abducible in a pro-
gram, and then progressively defeat those irrelevant for the problem at hand. It is not
so in our framework, since we can begin evaluation with a top-down derivation for a
query, which immediately constrains the set of abducibles to those relevant to the satis-
faction and proof of that query. Each query is conjoined with not ⊥ to ensure Integrity
Constraints satisfaction.

An important consideration in computing consequences, cf. Section 4, is not having
to compute whole models of the program to obtain just a specific consequences subset,
the one useful to enact a posteriori preferences. This is avoided by computing models
just for the residual program corresponding to the consequences we wish to observe.
Consequences which are significant for model preference are thus computed on the
XSB side, and their residual program is then sent to Smodels. A posteriori preference
rules are evaluated over the computed models, and are just consumers of considered

1 Both the XSB Logic Programming system and Smodels are freely available at:
http://xsb.sourceforge.net and http://www.tcs.hut.fi/Software/
smodels

http://xsb.sourceforge.net
http://www.tcs.hut.fi/Software/smodels
http://www.tcs.hut.fi/Software/smodels
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abducibles that have indeed been produced, meaning that any additional abductions are
disallowed.

5.2 Top-Down Proof Procedure

In our implementation we aim for query-driven evaluation of abductive stable models,
so that only the relevant part of the program is considered for computation. Computa-
tion of such models is performed in two stages. First XSB computes the Well-Founded
Model (WFM) of the program w.r.t. the query, by supporting goal derivations on any
considered expected abducibles, that are not otherwise being defeated; cf. Section 2.1.
We aim to dynamically collect only those abducibles necessary to prove the query. We
can assume them neither true nor false at this stage, so they end up undefined in the
derivation tree. This is achieved by coding considered abducibles thus:

consider(A) ← expect(A), not expect not(A), abduce(A)
abduce(A)← not abduce not(A)

abduce not(A) ← not abduce(A)

The latter two rules encode an abducible as an even-loop over default negation. They
warrant any considered abducible is undefined in the WFM of the program, and hence
contained in the residual program computed by the XSB Prolog meta-interpreter; cf.
Section 5.1. In this way, any query which is supported on abductive literals will also
have its entire derivation tree contained in the XSB’s residual program. We can then use
this tree as a partial program which is sent to Smodels for model computation. After the
stable models of these partial programs are computed, all even-loops will be solved by
either assuming the abduction, or assuming its negation.

5.3 Program Transformation

Now we consider a first-order propositional languageL# containing rules as defined in
Def. 1. Programs over L# are constrained to satisfy given properties.

Definition 6. Let Γ and Σ be sets of rules over L#. Then (Γ, Σ) is a restricted pro-
gram.

The basic idea is that Γ contains the rules formalizing the application domain while Σ
formalizes the properties Γ must satisfy. Every restricted program is associated with a
set of abduciblesA(Γ,Σ). In the sequel let ∆ ⊆ A(Γ,Σ) be some subset.

Definition 7. M is a valid stable model with hypotheses ∆ of (Γ, Σ) iff M � ⊥, M =
least(Γ+ ∪Default(Γ+, M)), where Γ+ = Γ ∪∆ and M � Σ.

A valid stable model is an abductive stable model (conditions (1) and (2)) satisfying the
wffs in Σ (condition (3)).

Definition 8. ∆ is a valid explanation for goal G in (Γ, Σ) iff M is a valid stable
model with hypotheses ∆ of (Γ, Σ) and M � G.



12 L.M. Pereira, P. Dell’Acqua, and G. Lopes

Definition 9. ∆ is a strict valid explanation for goal G in (Γ, Σ) iff:

1. ∆ is a minimal set for which:
– M � ⊥
– M = least(Γ+ ∪Default(Γ+, M)), where Γ+ = Γ ∪∆
– M � G

2. M � Σ

We define transformation γ mapping programs over L to restricted ones over L#.

Definition 10. Let P be a program over L with set of abducibles AP . The restricted
program γ(P ) = (Γ, Σ) over L# with set of abducibles A(Γ,Σ) = AP is defined as
follows.

Γ consists of:

1. all the rules in P
2. ⊥ ← a,not expect(a)
⊥ ← a, expect not(a)
for every abducible a ∈ A∗

P

3. ⊥ ← a,not abduced(a)
for every abducible a ∈ A∗

P

4. ⊥ ← a ≺ b, expect(a),not expect not(a), b,not a
for every rule a ≺ b ← L1, . . . , Lt in P

5. ⊥ ← L {l1, . . . , ln}U, count([l1, . . . , ln], N), N ≤ L
⊥ ← L {l1, . . . , ln}U, count([l1, . . . , ln], N), N ≥ U
for every rule L {l1, . . . , ln}U ← L1, . . . Lt in P

Σ consists of:
6. ⊥ ← abduced(a), not a

for every abducible a ∈ A∗
P

7. ⊥ ← a � b, a,not b
for every rule a � b← L1, . . . , Lt in P

Remark 1. We assume given the atom count([l1, . . . , ln], m) that holds if m is the num-
ber of abducibles belonging to [l1, . . . , ln] that are assumed. That is, if C is the atom
L {l1, . . . , ln}U , then we have that M � count([l1, . . . , ln], m) iff W (C, M) = m, for
any interpretation M .

Remark 2. If P contains inspection points, then apply the transformation γ to Π(P )
(cf. Definition 6 of [11]) instead of to P directly.

Theorem 1. Let P be a program over L with set of abducibles AP . M is an abduc-
tive stable model with hypotheses ∆ ⊆ AP of P iff M is a valid stable model with
hypotheses ∆ of γ(P ).

Theorem 2. Let P be a program over L. ∆ ⊆ AP is a strict abductive explanation for
goal G in P iff ∆ is a strict valid explanation for G in γ(P ).
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5.4 Computation of Abductive Stable Models

In this second stage, Smodels will thus be used to compute abductive stable models
from the residual program obtained from top-down goal derivation. Determination of
relevant abducibles is performed by examining the residual program for ground literals
which are arguments to consider/1 clauses. Relevant preference rules are pre-evaluated
at this stage as well, by querying for any such rules involving any pair of the relevant
abducible set.

The XASP package [3] allows the programmer to collect rules in an XSB clause
store. When the programmer has determined enough clauses were added to the store to
form a semantically complete sub-program, it is then committed. This means informa-
tion in the clauses is copied to Smodels, coded using Smodels data structures, so that
stable models of those clauses can be computed and returned to XSB to be examined.

When both the relevant abducibles and preference rules are determined, a variation
of transformation γ is applied, with every encoded clause being sent to the XASP store,
reset beforehand in preparation for the stable models computation. Once the residual
program, transformed to enact preferences, is actually committed to Smodels, we obtain
through XASP the set of abductive stable models, and identify each one by their choice
of abducibles, i.e. those consider/1 literals collected beforehand in the residual program.

5.5 Inspection Points

Given the top-down proof procedure for abduction, implementing inspection points
becomes just a matter of adapting the evaluation of derivation subtrees falling under
inspect/1 literals at meta-interpreter level. Basically, considered abducibles evaluated
under inspect/1 subtrees are codified thus:

consider(A) ← abduced(A)
abduced(A)← not abduced not(A)

abduced not(A) ← not abduced(A)

All abduced/1 predicates are collected during computation of the residual program
and later checked against the abductive stable models themselves. Every abduced(a)
predicate must pair with a corresponding abducible a for the model to be accepted; cf.
transformation γ.

Let L∗ be a first order propositional language defined as L except that L∗ contains
atoms of the form inspect(.), ea(., .) and ca(., .), while it does not contain any atom of
the form a ≺ b, a � b and abduced(.). The transformation below maps programs over
L into programs over L∗.

Definition 11. Let P be a program over L. Let Q be the set of all the rules obtained by
the rules in P by replacing abduced(a) with inspect(a), a ≺ b with ea(a, b) and a � b
with ca(a, b). Program Π(P ) over L∗ consists of all rules in Q together with rules:

⊥ ← not a, inspect(b), L1, . . . , Lt for every ea(a, b)← L1, . . . , Lt in Q,
⊥ ← inspect(a),not inspect(b), L1, . . . , Lt for every ca(a, b) ← L1, . . . , Lt in Q.
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5.6 A Posteriori Choice Mechanisms

If a single model emerges from computation of the abductive stable models, goal eval-
uation can terminate. When multiple models still remain, there is opportunity to in-
troduce a posteriori choice mechanisms, which are domain-specific for a program. We
account for this specificity by providing an implementation hook the user can adopt for
introducing specific code for this final selection process, in addition to the a posteriori
choice mechanisms in Section 4.

6 Conclusions

We have addressed issues of formalizing the combination of abduction with prefer-
ences, and its implementation, in an original way. Namely, we introduced the notion
of expectable defeasible abducibles, enabled by the situation at hand and guided by
the query, and catered for a priori preferences amongst abducibles; all mechanisms de-
signed to cut down on the combinatory explosion of untoward abduction, that is relying
only on a posteriori preferences to filter what should not have been generated in the first
place. In regard to a posteriori preferences, we defined the notion of inspection points
to cater for observing relevant side-effects of abductive solutions, and enable a posteri-
ori choices without generating complete models which show all side-effects. In all, we
showed how a combination of cardinality constraints, preferences and inspection points
can be used to govern and constrain abduction, and how these mechanisms, coupled
with a posteriori ones, are an important tool for knowledge representation in modeling
choice situations where agents need to consider present and future contexts to decide
about them. Finally, we showed the advantages of implementing our framework as a
hybrid state-of-art declarative XSB-Prolog/Smodels system, to efficiently combine top-
down query-oriented abductive backward chaining, and side-effect model generating
forwards-chaining, respectively for constraining abducibles to preferred ones relevant
for a goal, and to compute the consequences of assuming them in each scenario.

We cannot presume to survey and compare the present work with the by now formi-
dable stock of separate works on abduction and on preferences in logic programming,
though we have referred to some along the exposition. Our intent has been the rather
original introduction of new features mentioned above, and their combination and im-
plementation, and in that respect we know not of competitive similar attempts. How-
ever, regarding inspection points, in [14], a technical problem is detected with the IFF
abductive proof procedure [7], in what concerns the treatment of negated abducibles
in integrity constraints (e.g. their examples 2 and 3). They then specialize IFF to avoid
such problems and prove correctness of the new procedure. The problems detected refer
to the active use an IC of some not A, where A is an abducible, whereas the intended use
should be a passive one, simply checking whether A is proved in the abductive solution
found, as in our inspection points (though these more generally apply to any literal). To
that effect they replace such occurrences of not A by not provable(A), in order to ensure
that no new abductions are allowed during the checking.

In the way of future developments and application topics, in [13], arguments are
given as to how epistemic entrenchment can be explicitly expressed as preferential rea-
soning. And, moreover, how preferences can be employed to determine believe
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revisions, or, conversely, how belief contractions can lead to the explicit expression
of preferences. [6] provides a stimulating survey of opportunities and problems in the
use of preferences, reliant on AI techniques.

On a more general note, it appears to us that the practical use and implementation
of abduction in knowledge representation and reasoning, by means of declarative lan-
guages and systems, has reached a point of maturity, and of opportunity for develop-
ment, worthy the calling of attention of a wider community of potential practitioners.
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Abstract. This paper proposes a declarative description of user interfaces that
abstracts from low-level implementation details. In particular, the user interfaces
specified in our framework are executable as graphical user interfaces for desk-
top applications as well as web user interfaces via standard web browsers. Thus,
our approach combines the advantages of existing user interface technologies in
a flexible way without demands on the programmer’s side. We sketch an imple-
mentation of this concept in the declarative multi-paradigm programming lan-
guage Curry and show how the integrated functional and logic features of Curry
are exploited to enable a high-level implementation of this concept.

1 Motivation

The implementation of a good user interface for application programs is a necessary but
often non-trivial and tedious task. In order to support programmers in the implementa-
tion of user interfaces, one can find specific libraries that reflect different approaches
to the construction of user interfaces. From a user’s perspective, there are two kinds of
user interfaces (UIs) that are currently the most important ones on conventional desktop
computers:

Graphical User Interfaces (GUIs): These are user interfaces that followed the early
textual user interfaces on single host computers. GUIs enabled non-expert users to
easily interact with application programs. They provide a good reaction time (since
they run on the local host) and are relatively easy to install as any other program,
i.e., usually they are distributed with the executable of the application program.
On the negative side, application programs with GUIs require some installation
efforts if many users want to use them on their desktops, because one has to install
them on all desktops that might have different configurations or operating systems.
Moreover, they are difficult to maintain during their life time since updates must be
performed on all existing installations.

Web User Interfaces (WUIs): These are user interfaces that became popular with the
world-wide web and its opportunities for user interaction via dynamic web pages.
In this case, the application runs on a web server and the user interacts with the
application via a standard web browser. Thus, applications with WUIs are relatively
easy to install for many users since every single user needs only a web browser on
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his local host (which is usually already installed). Moreover, such applications are
easy to maintain since one has to update the central installation on the web server
only. On the negative side, WUIs have a moderate reaction time (since the web
server is contacted for every state-changing interaction) and a complete application
is more difficult to install on a single host (since one has to install and configure a
web server).

A few years ago, there was also another important difference between GUIs and WUIs:
the model of interaction. In application with GUIs, the user could immediately change
the content of many widgets by mouse events, whereas with WUIs, each page contain-
ing user input has to be sent to the web server which returns a new web page with some
modified content. However, this disadvantage of WUIs has been decreased or omitted
by the development of the Ajax framework that supports an interaction with a web
server without submitting and receiving complete new pages from the web server [7].

From these considerations, it is reasonable to combine the advantages of both kinds
of user interfaces in a single framework so that the programmer has no additional burden
to select between GUIs or WUIs (or both) for his application. This paper presents a
concrete proposal of such a concept and its implementation in the declarative multi-
paradigm language Curry.

In the following section, we review the main features of functional logic program-
ming and Curry as required in this paper. Section 3 describes the concepts of our
framework followed by a few examples shown in Section 4. Implementation issues and
extensions are sketched in Sections 5 and 6 before we conclude in Section 7 with a
discussion of related work.

2 Functional Logic Programming and Curry

In this section we review the basic concepts of functional logic programming with Curry
that are relevant for this paper. More details can be found in a recent survey on func-
tional logic programming [13] and in the definition of Curry [17].

Functional logic languages integrate the most important features of functional and
logic languages to provide a variety of programming concepts to the programmer. Mod-
ern languages of this kind [8,17,19] combine the concepts of demand-driven evaluation
and higher-order functions from functional programming with logic programming fea-
tures like computing with partial information (logic variables), unification, and non-
deterministic search for solutions. This combination, supported by optimal evaluation
strategies [1] and new design patterns [2], leads to better abstractions in application
programs, e.g., as shown for programming with databases [3,6] or web programming
[10,12,14]. The declarative multi-paradigm language Curry [8,17] is a functional logic
language extended by features for concurrent programming. In the following, we re-
view the elements of Curry that are relevant to understand the contents of this paper.
Further features (e.g., constraints, search strategies, concurrency, declarative I/O, mod-
ules), more details about Curry’s computation model, and a complete description of the
language can be found in [17].

From a syntactic point of view, a Curry program is a functional program extended
by the possible inclusion of free (logic) variables in conditions and right-hand sides of
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defining rules. Curry has a Haskell-like syntax [22], i.e., (type) variables and function
names usually start with lowercase letters and the names of type and data construc-
tors start with an uppercase letter. The application of f to e is denoted by juxtaposition
(“f e”). A Curry program consists of the definition of functions and data types on which
the functions operate. Functions are first-class citizens and evaluated lazily. To provide
the full power of logic programming, functions can be called with partially instanti-
ated arguments and defined by conditional equations with constraints in the conditions.
Function calls with free variables are evaluated by a possibly nondeterministic instanti-
ation of demanded arguments (i.e., arguments whose values are necessary to decide the
applicability of a rule) to the required values in order to apply a rule.

In general, functions are defined by rules of the form “f t1 . . . tn | c = e” with f
being a function, t1, . . . , tn patterns (i.e., expressions without defined functions) with-
out multiple occurrences of a variable, the (optional) condition c is a constraint (e.g.,
a conjunction of equations), and e is a well-formed expression which may also con-
tain function calls, lambda abstractions etc. A rule can be applied if its left-hand side
matches the current call and its condition, if present, is satisfiable.

The following Curry program defines the data types of Boolean values, possible
values, and polymorphic lists, and functions to compute the concatenation of lists and
the last element of a list:

data Bool = True | False
data Maybe a = Nothing | Just a
data List a = [] | a : List a

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

last :: [a] -> a
last xs | ys ++ [x] =:= xs = x where x,ys free

[] (empty list) and : (non-empty list) are the constructors for polymorphic lists (a is a
type variable ranging over all types and the type “List a” is written as [a] for con-
formity with Haskell). The concatenation function “++” is written with the convenient
infix notation. The (optional) type declaration (“::”) of the function “++” specifies that
“++” takes two lists as input and produces an output list, where all list elements are of
the same (unspecified) type.1

As one can see in this example, logic programming is supported by admitting func-
tion calls with free variables (see “ys ++ [x]” above) and constraints in the condition of
a defining rule. For instance, the equation “ys ++ [x] =:= xs” is solved by instantiat-
ing the first argument ys to the list xs without the last argument, i.e., the only solution
to this equation satisfies that x is the last element of xs. In order to support some con-
sistency checks, extra variables, i.e., variables of a rule not occurring in a pattern of the
left-hand side, must be declared by “where...free” (see the rule defining last).

A constraint is any expression of the built-in type Success. For instance, an equa-
tional constraint e1 =:= e2 is satisfiable if both sides e1 and e2 are reducible to unifi-

1 Curry uses curried function types where α->β denotes the type of all functions mapping ele-
ments of type α into elements of type β.
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able constructor terms. Specific Curry systems also support more powerful constraint
structures, like arithmetic constraints on real numbers or finite domain constraints (e.g.,
PAKCS [15]).

The operational semantics of Curry, described in detail in [8,17], is based on an
optimal evaluation strategy [1] which is a conservative extension of lazy functional
programming and (concurrent) logic programming. Curry also offers standard features
of functional languages, like higher-order functions, modules, or monadic I/O (which is
identical to Haskell’s I/O concept [27]). Thus, “IO α” denotes the type of an I/O action
that returns values of type α. For instance, the predefined I/O action getChar has the
type “IO Char”, i.e., it returns the next character from the keyboard when it is applied.
Similarly, the predefined I/O action readFile has the type “String -> IO String”,
i.e., it takes a string (the name of a file) and returns the contents of the file when it is
applied.

3 Specifying User Interfaces

In this section we describe our proposal for the declarative programming of user inter-
faces that can be executed either on a local host as a GUI (e.g., by the use of Tcl/Tk
[21]) or as a WUI on a web server that is accessed by a standard web browser.

In order to develop appropriate abstractions for high-level UI programming, one has
to analyze the essential components of these programming tasks. Based on earlier work
on programming GUIs and WUIs with functional logic languages [9,10,12], one can
distinguish the following ingredients of UI programming:

Structure: Each UI has a specific hierarchical structure which typically consists of
basic elements (also called widgets), like text input fields or selection boxes, and
composed elements, like rows or columns of widgets. Thus, UIs have a tree-like
structure which can be easily specified by an algebraic data type in a declarative
language.

Functionality: If the user interacts with UI elements by mouse or keyboard clicks,
these UI elements emit some events on which the application program should react.
A convenient way to connect the application program to such events is the concept
of event handlers, i.e., functions that are associated to events of some widget and
that are called whenever such an event occurs. Usually, the event handlers use the
functionality of the application program to compute some data that is shown in the
widgets of the UI. Thus, event handlers are associated to some widgets but need
to refer to other widgets independently of the structural hierarchy. This means that
UIs have not only a hierarchical (layout) structure but also a logical (graph-like)
structure that connects the event handlers with various widgets of the UI structure.
In previous works on GUI and WUI programming [9,10] it has been shown that
free (logic) variables are an appropriate feature to describe this logical structure
and to avoid many problems that occur if fixed strings are used as references to UI
elements as in traditional GUI programming (e.g., [21,26]) or WUI programming
(e.g., [4,20]).

Layout: In order to support a visually appealing appearance of a UI, it should be pos-
sible to influence the standard layout of a UI. Whereas in older approaches layout



20 M. Hanus and C. Kluß

and structural information are often mixed (e.g., as in Tcl/Tk or older versions of
HTML, and similarly in previous approaches to declarative GUI/WUI program-
ming [9,10]), it has been realized that these issues should be distinguished in order
to obtain clearer and reusable implementations. For instance, current versions of
HTML recommend the use of cascading style sheets (CSS) to separate structure
from layout.

The distinction between structure, functionality, and layout and their appropriate mod-
elling in a declarative programming language are the key ingredients to our framework
for UI programming. Although parts of these ideas can be found in our previous works
[9,10,12], our current novel approach abstracts more from the underlying technology
(Tcl/Tk, HTML/CGI) so that it enables a common method to specify user interfaces.
In the following, we propose a concrete description of the structure, functionality, and
layout of UIs in the language Curry by presenting appropriate data types and operations
on them. In principle, one can transfer these ideas also to other declarative languages
(where some restrictions might be necessary). However, we will see that the combined
functional and logic programming features of Curry are exploited for our high-level and
application-oriented description of UIs.

As already discussed, UIs have a hierarchical structure that can be appropriately
described by the following data type:

data UIWidget = Widget WidgetKind -- kind of widget
(Maybe String) -- possible contents
(Maybe UIRef) -- possible reference
[Handler] -- event handlers
[StyleClass] -- layout elements
[UIWidget] -- subwidgets

In order to avoid unnecessary restrictions, the definition of a widget is quite general.
In principle, one could also enumerate all kinds of widgets and distinguish between
widgets having no structure (basic widgets) and widgets with structure (e.g., rows,
columns). For the sake of generality, we have chosen one widget constructor where
the concrete kind of widget is given as the first component (of type WidgetKind). The
last two components are a list of layout elements (see below) and the widgets contained
in this widget, respectively. The second component contains the possible contents of
the widget (e.g., the entry string of a text input field, Nothing for widget combinators
like row or column), the third component a possible reference to a widget used by other
event handlers, and the fourth component a list of handlers for the various events that
can occur in this widget. Concrete examples for widgets are shown below after we have
discussed the other data types used in widgets.

Event handlers need to refer to other widgets independently of the widget hierar-
chy. Therefore, a widget can be equipped with an identity used as a reference by event
handlers. Many approaches to user interface programming, like Tcl/Tk or HTML/CGI,
use string constants as identifiers. Such approaches are error prone since a typo in a
string constant causes a run-time error which is usually not detected at compile time.
In order to provide a more reliable approach, we adapt the idea of previous works on
declarative GUI and WUI programming [9,10] and make the type of widget references
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abstract. Thus, one cannot construct “wrong” identifiers but has to use free variables
(whose declarations are checked at compile time) for this purpose. Therefore, our UI
library contains a type declaration

data UIRef = ...

where only the type name UIRef but no data constructor is exported, i.e., UIRef is an
abstract type. Since no constructor of this data type is available to the user of the UI
library, the only reasonable way to use values of type UIRef is with a free variable (see
below for a concrete example).

In general, event handlers are used for two main purposes. Either they should per-
form some calculations and show their results in some specific widgets of the UI, i.e.,
they influence the state of the UI, or they should change the state of the underlying
application program, e.g., the execution of an event handler might change some appli-
cation data that is stored in a file or database. In order to support the latter functionality,
the result type of an event handler is always “IO ()”, i.e., an event handler might have
a side effect on the external world. Since there are also I/O actions to influence the state
of the UI (see below), this result type of event handlers ensures that event handlers can
influence the state of the UI as well as the state of the application program.

Furthermore, the calculations and actions performed by event handlers usually de-
pend on the user inputs stored in the widgets of the interface, i.e., these input values
must be passed as parameters to the event handlers. This can be adequately modelled
by an environment parameter that is conceptually a mapping from widget references to
the string values stored in the widgets. In order to abstract from the concrete implemen-
tation of such environments, our UI library contains the type declaration

data UIEnv = ...

where only the type name UIEnv is exported. Moreover, the UI library contains the type
declarations

data Command = Cmd (UIEnv -> IO ())

data Handler = Handler Event Command

where Event is the type of possible events issued by user interfaces:

data Event = DefaultEvent | FocusIn | FocusOut
| MouseButton1 | MouseButton2 | MouseButton3
| KeyPress | Return | Change | DoubleClick

Therefore, each element in the list of event handlers of a widget specifies a command
(an I/O action depending on the value of some environment) that is executed whenever
the associated event occurs.

The type WidgetKind specifies the different kinds of widgets supported by our li-
brary. Some constructors of this type are

data WidgetKind = Col | Row | Label | Button | Entry
| TextEdit Int Int | ...

The constructors Col and Row specify combinations of widgets as columns and rows,
respectively. Label is a widget containing a string not modifiable by the user, Button
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is a simple button, Entry is an entry field for a line of text, and TextEdit is a widget
to edit larger text areas (the parameters are the height and width of the edit area).

Since it is tedious to define all widgets of a user interface by using the constructor
Widget only, the library contains a number of useful abbreviations, like

col ws = Widget Col Nothing Nothing [] [] ws
row ws = Widget Row Nothing Nothing [] [] ws

label str = Widget Label (Just str) Nothing [] [] []

entry ref str = Widget Entry (Just str) (Just ref) [] [] []

button cmd label =
Widget Button (Just label) Nothing

[Handler DefaultEvent (Cmd cmd)]) [] []

For instance, a simple UI showing the text “Hello World!” and a button to exit the UI
can be specified as follows:

col [label "Hello World!",
button exitUI "Stop"]

exitUI is a predefined event handler to terminate the UI. The environment passed
to event handlers can be accessed and modified by the predefined I/O actions
getValue and setValue that take a widget reference as their first argument. Thus,
“getValue r e” returns the value of the widget referenced by r w.r.t. environment
e, and “setValue r v e” updates the value of the widget referenced by r so that it
becomes visible to the user.

In order to influence the layout of UIs, widgets can take a list of style parameters
of type StyleClass. This type contains options to align the widget or the text con-
tained in it, set the font and color of the widget’s text, set the background color, and so
on. The styles of a widget can be dynamically changed by predefined operations like
setStyles, addStyles, etc.

4 Examples

In order to demonstrate the concrete application of our concept, we show a few pro-
gramming examples in this section. As a first example, consider a simple counter UI
shown in Fig. 1. Using our library, its structure and functionality is specified as follows:

counterUI = col [label "A simple counter:",
entry val "0",
row [button incr "Increment",

button reset "Reset",
button exitUI "Stop" ]]

where
val free

reset env = setValue val "0" env

incr env = do v <- getValue val env
setValue val (show (readInt v + 1)) env
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Fig. 1. A simple counter UI executed as a GUI (left) and as a WUI (right)

The free variable val (of type UIRef) denotes the reference to the entry field containing
the string representation of the counter’s value. It is used by the event handler reset to
set the value of this entry widget to "0". The event handler incr reads the current value
of this widget (by “getValue val env”) before replacing it by its incremented value
(since the values in the widgets are strings, the string is transformed into an integer by
“readInt v”).

The UI specification can be executed by the predefined I/O action runUI that takes a
string (usually shown as the label of the window containing the UI) and a UI specifica-
tion as parameters. For instance, the counter UI shown above is executed by evaluating
the main expression

runUI "Counter Demo" counterUI

Many interactive applications contain a state which is shown and modified by a UI. We
want to demonstrate the implementation of such kinds of UIs with our concept by a
simple desk calculator UI shown in Fig. 2. The implementation of this UI requires the
access of the UI to some state that can be modified by the event handlers associated to
the different buttons. In our application, the value of the state is a pair (d,f) containing
the current operand d and an accumulator function f that is applied to d when the button
“=” is pressed (this idea is due to [26]). In order to allow the change of the state’s
value by any event handler of the calculator UI, we model the calculator’s state with
IORefs, a concept from Haskell to deal with mutable state. IORefs are references to
stateful objects, where their states can only be accessed and changed by the predefined
I/O actions readIORef and writeIORef (in order to ensure referential transparency).
Thus, the calculator UI can be implemented as follows (where the parameter stref of
type IORef(Int,Int->Int) is an IORef to the calculator’s state):

calcUI stref =
col [entryS [Class [Bg Yellow]] display "0",

row (map cbutton [’1’,’2’,’3’,’+’]),
row (map cbutton [’4’,’5’,’6’,’-’]),
row (map cbutton [’7’,’8’,’9’,’*’]),
row (map cbutton [’C’,’0’,’=’,’/’])]

where

display free

cbutton c = button (buttonPressed c) [c]
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Fig. 2. A simple desk calculator UI executed as a GUI (left) and as a WUI (right)

buttonPressed c env = do
state <- readIORef stref
let (d,f) = processButton c state
writeIORef stref (d,f)
setValue display (show d) env

The operator entryS is similar to entry but has a further first argument to spec-
ify the initial layout of this widget (here: the background color). Note that we ex-
ploit the higher-order features of Curry to create the individual buttons by the generic
function cbutton in a compact way. Each button has an associated event handler
buttonPressed that reads the current state, modifies it, and shows the new operand
in the entry widget referenced by the variable display. The actual update of the state
depending on the selected button is computed by the operation processButton:

processButton :: Char -> (Int,Int->Int) -> (Int,Int->Int)
processButton b (d,f)
| isDigit b = (10*d + ord b - ord ’0’, f)
| b==’+’ = (0,((f d) +))
| b==’-’ = (0,((f d) -))
| b==’*’ = (0,((f d) *))
| b==’/’ = (0,((f d) ‘div‘))
| b==’=’ = (f d, id)
| b==’C’ = (0, id)

Finally, the complete application is executed by evaluating the operation main that first
creates a new IORef object and then runs the UI with this object:

main = do stref <- newIORef (0,id)
runUI "Calculator" (calcUI stref)

We have already mentioned that the use of free variables as references to UI elements
avoids the construction of wrong identifiers that might happen if strings are used as
identifiers, as in scripting languages like Tcl/Tk, HTML/CGI, PHP, etc. Moreover,
this also improves compositionality in the construction of UIs. For instance, if fixed
strings are used as reference identifiers, there might be name clashes between different
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Fig. 3. A UI with four independent counters executed as a GUI

references when independent UIs are composed in a larger UI. Due to the use of free
variables that represent fresh values every time they are introduced, such name clashes
are avoided in our library. For instance, consider the simple counter UI above. Each
use of counterUI introduces its own fresh local reference variable val. Thus, we can
easily put four different counters in one UI by

counter4 = col [row [counterUI,counterUI],
row [counterUI,counterUI]]

so that “runUI "4 counters" counter4” creates a UI with four independent
counter UIs (see Fig. 3). This property of compositionality is particularly useful if one
combines various UIs into complex web pages (see below).

The use of free variables for fresh references in data structures is a specific functional
logic design pattern called “locally defined global identifier” [2]. An alternative would
be a global counter to create unique references that is threaded through the construction
of the user interface. Such an approach leads either to a monadic programming style
with an imperative flavor [5,18] or puts some restrictions on the possible dependencies
between input fields and buttons [25].

5 Implementation Issues

The definition of the components to specify a user interface, as discussed in Section 3,
are contained in a library UI so that one has to import this library in order to define an
interface. However, such an interface is not executable without specifying whether it
should be run as a GUI or a WUI. For this purpose, our framework provides two imple-
mentations of the general UI concept by transforming UIs into GUIs or into WUIs. The
necessary functionality is contained in the libraries UI2GUI and UI2HTML, respectively.
In order to execute a UI as a GUI (as shown in the left-hand sides of Fig. 1 and 2), one
has to import the library UI2GUI (which has the same interface as UI) instead of UI,
i.e., one has to put the import declaration

import UI2GUI

at the beginning of the module containing the corresponding UI specification. In order
to execute a UI as a WUI (as shown in the right-hand sides of Fig. 1 and 2), one has
to replace UI2GUI by UI2HTML in the import declaration, and everything else is left
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unchanged (apart from the command to generate an executable from the corresponding
Curry program).

The implementation of the library UI2GUI is straightforward by exploiting the exist-
ing Curry library GUI [9] and mapping UI elements into corresponding GUI elements.
Thus, the main function runUI is implemented in this library by transforming the main
term and all its subterms of type UIWidget into the corresponding GUI widgets and
then calling the main function runGUI of the GUI library.

The implementation of the library UI2HTML is more advanced since the existing
Curry library HTML [10] does not support server interaction inside a web page. Since
this is possible by the Ajax framework [7], we have added extensions to the HTML li-
brary (based on Ajax) to support the interaction model implied by the UI library. Based
on these extensions, the main function runUI is implemented in the library UI2HTML by
transforming terms of type UIWidget into corresponding HTML expressions that are
put into an HTML form that contains the HTML input elements and JavaScript code to
implement the interaction with the web server.

In typical web applications, a user interface is not the single entity of a web page but
often embedded in a larger web page (containing headers, navigation bars, other input
elements, explaining text, etc). In order to put UIs as elements into larger web pages,
our library UI2HTML also exports a function ui2hexps that maps a UI specification
into an HTML expression that can be inserted into an HTML page constructed with the
HTML library [10]. Since the references used in UIs (of type UIRef discussed above)
and the references used in the HTML library to access the values of the input elements
are of different type2, there are also conversion functions between these kinds of refer-
ences. Thus, the values set in a UI can be used to influence values or elements in the
surrounding web page, and vice versa.

6 Extended UI Programming

The structure of UI specifications is a generalization compared to previous proposals
for GUI or WUI programming. In this section, we discuss two possibilities to extend
previous more specialized approaches to interface programming by exploiting our UI
approach.

6.1 Transforming GUIs into WUIs

Since the structure of UI elements is very similar to the elements of the Curry library
GUI, which has been already used for various applications (e.g., [11,16,23]), one can
also use our concept of UIs to enable the execution of such GUI-based desktop ap-
plications as web applications. For this purpose, we have also implemented a library
GUI2HTML that provides the same interface as the library GUI but executes a GUI as
a WUI by exploiting the library UI2HTML. For instance, we have used this implemen-
tation to execute the Curry analysis environment CurryBrowser (its implementation

2 This is necessary because UI references must be more general in order to support their mapping
into GUIs or WUIs.
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consists of almost 4000 lines of Curry code), which is written in Curry and has a quite
advanced graphical user interface (see [11]), in a standard web browser. The only nec-
essary change was the replacement of the import of the library GUI by the import of the
library GUI2HTML in the source code of the CurryBrowser implementation.

6.2 Type-Safe UIs

[12] presented a technique to construct type-safe WUIs in a high-level manner. The
basic idea is to provide a set of typed WUIs for basic data types, like wInt for
integers or wString for strings, and a set of combinators for typed WUIs, like
wPair for pairs, wTriple for triples, wList for lists, etc. For instance, the expres-
sion “wlist (wPair wInt wString)” specifies a WUI to manipulate values of type
[(Int,String)]. One of the important properties of such typed WUIs is the fact that
the user can only enter values of the correct type, i.e., if the user attempts to enter ill-
typed values, an error message appears and the user has to correct the value. Thus, the
application program need not check the values, provide error messages etc. A further
important aspect is the possibility to constrain the type of allowed values by any com-
putable predicate. For instance, if the predicate correctDate checks whether a triple
of integers forms a legal date, one can specify by

wTriple wInt wInt wInt ‘withCondition‘ correctDate

a WUI where one can enter only legal dates.
We can apply the same idea to UIs in order to obtain type-safe WUIs (similarly to

[12]) as well as type-safe GUIs (which have not been considered before). Therefore, we
have implemented two libraries TypedUI2HTML and TypedUI2GUI that provide almost
the same interface as [12] (i.e., it has all the entities, like wInt, wString, wPair, for
specifying typed UIs) and an operation typedui2ui to map a typed UI specification
together with an initial (type-correct) value into a standard UI widget that allows only
the manipulation of type-correct data. In addition, typedui2ui also returns operations
to access, set, and update the value shown in the typed UI. For instance, the following
program defines a UI containing a list (xs) of integers that can be together incremented
or reset, and a button to compute their sum:

counters :: [Int] -> UIWidget
counters xs =
col [label "A list of counters:", widget,

row [button (updval (map (+1))) "Increment all",
button (setval (repeat 0)) "Reset all",
button compute "Compute sum:", entry sval ""]]

where
sval free

(widget,getval,setval,updval) = typedui2ui (wList wInt) xs

compute env = do cs <- getval env
setValue sval (maybe "" (show . sum) cs) env

Note that the derived operations getval, setval, and updval access or manipulate
values of type [Int], i.e., the implementation checks whether all widgets contain only
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integer values (in contrast to the counterUI example in Section 4). As a consequence,
getval returns a Maybe value, i.e., it returns Nothing if some of the current input
fields contain illegal values. This is also the reason why the operation compute uses
the standard function maybe in order to return the empty string as the sum value if
the current content cs is Nothing. The result of this construction is a standard UI,
i.e., we can create a type-safe GUI or WUI for a list of four integers by executing
“runUI "Counters" (counters [1..4])”.

7 Conclusions and Related Work

We described a framework to implement user interfaces in a high-level, declarative man-
ner. Our approach is based on separating the structural, functional, and layout aspects
of a user interface. We showed that the features available in functional logic languages
can be exploited to provide appropriate specifications of these issues. The hierarchical
structure of UIs can be easily specified as term structures. The associated functionality
can be specified by attaching event handlers (i.e., functions) to the elements of these
term structures. The connections of event handlers to the individual widgets of the UI
can be described by logic variables. This avoids typical programming errors in untyped
scripting languages and supports compositionality in the construction of complex UIs.
Finally, the concrete layout is separated from the structural and functional aspects of
the UI. This supports the use of the same UI specification in different contexts, i.e.,
one can create either graphical user interfaces for desktop applications or web-based
user interfaces from such descriptions only by importing the appropriate libraries. This
simplifies the programming efforts to combine the advantages of existing user interface
technologies. Finally, our framework also enables the transformation of existing GUI
applications into web applications, the embedding of UIs into arbitrary HTML pages,
and the construction of type-safe UIs. Although this functionality is a distinctive feature
of our approach based on declarative programming techniques, we discuss some related
work in the following.

Approaches to construct UIs in a declarative manner have been intensively studied
in the functional programming community, e.g., [5,18,20,24,25,26]. Although there are
approaches to create GUIs for different platforms [18] from the same base code, none
of them support the unified creation of GUIs and WUIs.

Adobe AIR3 enables the use of the same base code to create applications that run in
a web browser as well as on a desktop. In contrast to our approach, Adobe AIR is not
based on standard features of web browsers but requires specific software to be installed
on the client’s side. Another related work is the Google Web Toolkit4 (GWT). GWT is
a framework to implement dynamic web pages for Java programs similarly to GUI pro-
gramming in order to create highly interactive web applications with reasonable efforts.
GWT does not support the use of the same program to generate both GUI and WUI ap-
plications in contrast to our approach where concrete implementations (GUIs or WUIs)
are automatically inferred from a single UI description. Moreover, because of the applied
declarative programming concepts, our concrete UI descriptions are more compact.

3 http://www.adobe.com/devnet/air/
4 http://code.google.com/webtoolkit/

http://www.adobe.com/devnet/air/
http://code.google.com/webtoolkit/
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Another popular method to construct UIs are graphical editors that support the con-
struction of the UI’s layout, e.g., Cocoa’s Interface Builder5. Similarly to our approach,
such UI editors also advocate the separation of layout and functionality by binding
the graphical UI objects to the code of the base application. Although these graphical
editors are useful to define the layout of appealing UIs in a simple manner, the con-
nection of a constructed UI with the application code is less trivial than in our event
handler model using a single implementation language. Moreover, a textual represen-
tation of UIs as program entities is precise and compact (all information about the UI
is contained in the program), and it allows the application of standard programming
techniques to construct complex UIs from application-oriented UI elements, e.g., as
shown in [12] or Section 6.2 above. Another possibility is the generation of the textual
UI specification from the data model of the application, e.g., one could generate the UIs
to manipulate the application data from an entity-relationship model, as in the Ruby on
Rails framework6 (a similar framework for Curry is currently being developed).

The various features of the declarative base language Curry, in particular, algebraic
data types, functions as first class citizens, logic variables, and polymorphic types, have
shown to be useful to support the high-level, compact, and reliable specification of UIs
that can be used in different contexts. The implementation of our concept as sketched
in Section 5 is freely available with the latest distribution of PAKCS [15]. For future
work it might be interesting to explore whether the same or a slightly modified concept
can be also used to create user interfaces for other architectures, e.g., mobile devices.
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Abstract. Although applications of functional programming are diverse,
most examples deal with modest amounts of data – no more than a few
megabytes. This paper describes how Haskell has been used to address a
challenging astrophysics visualization problem, where the complete un-
compressed dataset is nearly a terabyte. Our solution makes extensive
use of three novel domain-specific languages: to specify data resources,
to abstract over rendering operations, and most significantly, to design
the desired visualization. The result is a powerful framework for time-
varying multi-field visualization. This approach represents a significant
departure from standard practices in the visualization field, and has ap-
plication well beyond the original problem. That our solution consists of
less than 4.5K lines of code is itself a notable result. This paper motivates
and describes the overall architecture of our solution, and technical fea-
tures of the DSLs that are used in place of the traditional visualization
pipeline.

1 Introduction

Drawings, diagrams and graphs have a long history of use within scientific dis-
covery, e.g. Snow’s map correlating cholera cases with water pump location in
London, 1854. Use of computer graphics for visualizing data is usually traced
to an influential 1987 report produced for the National Science Foundation of
the United States [1]. Data from instruments and supercomputer simulation
was accumulating faster than it could be interpreted, and the report called for
new methods to process these ‘firehoses’. Visualization became established as
a new research field within computing, and foundational work on data models,
processing paradigms and depiction techniques for large-scale data led to rapid
progress [2,3]. Much of this work concentrated on scientific visualization, where
the data are located within some physical space. Data that has no ‘natural’ spa-
tial component, for example metabolic networks, web sites, market trends, etc.,
is addressed by information visualization. The relationship between these two
branches of visualization has been the subject of much debate [4]. Our concern
is with scientific visualization.
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Huge dataset size is one of the defining characteristics of the field; other is-
sues that arise include the need to design a new bespoke interactive tool for
every new problem, typically by building a set of toolkit components into a so-
called ‘pipeline’ (actually a directed graph). As an example, the widely-used open
source VTK [3] toolkit has components written in C++, that can be plumbed
together by Tcl scripts. This paper reports how we tackled these and other issues
in a declarative way: through the creation of several domain-specific languages
(DSLs), embedded in Haskell, to address a major design challenge problem, the
2008 IEEE Visualization Design Contest [5]. Three DSLs, respectively for large
dataset management, for low-level rendering and interaction, and for high-level
description of the desired picture, capture many of the interesting architectural
aspects of the domain. The middle-level components for generating visual depic-
tions are also implemented in Haskell [6,7]. In total, the code size is extremely
small, especially given the range and flexibility of visualisations it can deal with.
The use of the DSL strategy gave us a new and elegant way of combining visual-
ization techniques, as well as an efficient way of managing large data resources.

Section 2 introduces the contest and explains its importance and relevance to
practical applications of scientific visualization. Our solution utilises a two-stage
pipeline, separating the management of datasets from the synthesis of pictures.
The architecture is described in Section 3, with data management and picture
synthesis forming sections 4 and 5. Section 6 sets out an evaluation of our work.
We contrast our approach to the contest with entries from previous years, and
reflect on the design decisions that were made. In the conclusion, Section 7,
we pay particular attention to our use of domain-specific languages, and their
further potential within visualization.

2 The IEEE Visualization Design Contest

Since its inception in 1990, IEEE Visualization has been the leading forum for
research in the field. In 2004, the conference instituted a visualization contest, de-
signed “to foster comparison of novel and established techniques, provide bench-
marks for the community, and to create an exciting venue for discussion”.

The logistical difficulties presented by the contest can be appreciated from an
outline of the 2008 edition [5]. The dataset comprises 200 timesteps from an as-
trophysics simulation, modelling interaction between a radiation ionisation front
and primordial gas within a 0.6 × 0.25× 0.25-parsec volume of space (sampled
as a regular 600× 248× 248-point grid). Understanding this interaction would
provide new insight into structure formation in the early universe, and the con-
test itself sought answers to six specific questions relating to these interactions.
At each point in the space, the simulation tracks ten scalars and one 3D vector,
with the scalars recording temperature and density of the gas, and the relative
densities of 8 chemical species. Data are stored using a 11-character ASCII rep-
resentation of fixed-precision format numbers; uncompressed, the total size of
the dataset would be ≈960GB.
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Tackling the visualization design contest requires access to domain expertise,
robust and scalable software, and significant time to explore the problem and
solution space. Past entries have used mature off-the-shelf systems, either com-
mercial products including the open-source VTK, or the output of long-running
research initiatives.

In a series of papers [8,6,7] we have explored the use of a functional language
such as Haskell to reconstruct visualization techniques, taking advantage of lazy
evaluation to implement streaming of data, and the expressive type system to cre-
ate new kinds of generic abstraction. This work provides a necessary foundation
for our solution. However, it was not in itself sufficient. Central to the 2008 de-
sign contest is the problem of time-varying multi-field data, a challenge in many
visualization applications. Although our previous implementations supported a
combination of techniques, for the most part they only supported visualization
of a single field within a single timestep.

3 Architecture of a Solution

Before designing a solution, we need first to unpack the problem. Visualization
is used in three ways: to present known data, to confirm a known hypothesis, or
to discover what might be present within unseen data. The six contest questions
fall into the latter two categories. Five ask about interactions between specific
fields. For example, here is question two:

“Over 100 chemical reactions occur in primordial H and He (many of
which are driven by radiation in the I-front) but what most interests
those studying first structure formation in the universe is H2. It allowed
primeval gas clouds to collapse and form the first stars before galaxies
later coalesced. Where is H2 most prevalent in the simulation?” [5]

Although this question only mentions one field (H2) explicitly, the answer has to
be framed in terms of the relationship between H2 concentrations and other fea-
tures, e.g. the hottest regions, and the advancing I-front. This requires multiple
fields. The final question is more open-ended and invites wholesale exploration:

“Question 5 posed a very specific hypothesis about the cause of tur-
bulence. The broader question of interest, and the one for which visu-
alization offers the most promise of displaying something unexpected,
is ‘What is causing the turbulence?’ Can you do an open-ended visu-
alization of all variables to try and help answer this question? This is
the ‘seeing the unexpected’ question that will hopefully provide new hy-
potheses.” [5]

Putting aside the temporal element for now, there are two general strategies for
dealing with multi-field data. (1) combine a number of standard techniques; for
example, extracting an isosurface from one field and colouring it by probing into
a second field, or by using multiple cutting planes. Or (2) use a visual technique
designed specifically to expose relationships between fields. Scatterplots can be
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Fig. 1. System architecture

used for two or three fields, while parallel coordinates generalise to higher di-
mensions [9], but in both cases it is difficult to see correlation with 3D spatial
locations, or features (e.g. the shockwave) mentioned in the contest questions.
These needs could be addressed by brushing and other forms of interaction, but
we took an early decision to focus our work on the first strategy, combining
standard techniques within the physical space of the simulation.

For dealing with time, there are again two general strategies; either (1) repre-
sent it explicitly as a spatial dimension, for example plotting a graph with time
as one axis, or (2) represent it implicitly, by using animation. Following a meeting
with astrophysicists to obtain a better understanding of the problem, we were
encouraged to explore animation. As we will see, our solution actually creates
interesting possibilities for combining time and space within one representation.
It consists of two stages:

Stage I: Data Management – conversion of datasets into a more compact binary
representation, support for fixed-precision calculation, selection of fields, slic-
ing, and downsampling.

Stage II: Picture Synthesis – specification of picture parameters, selection of
files, synthesis and rendering of geometry, and interaction.

These stages are loosely coupled, driven by separate executables, and linked
through the filesystem. Figure 1 shows the structure, and highlights the central
role of three DSLs in mediating the transformation from data to rendered im-
age. The architecture maps onto the remainder of the paper as follows: Section 4
is concerned with Stage I, including the DSL for managing transformation and
downsampling of data. Section 5 addresses the design of Stage II. The visu-
alization process (Section 5.1) constructs a graphical scene from the specifica-
tion of a desired picture. Both the scene (Section 5.2) and the picture language
(Section 5.3) are structured as DSLs, and it is this strategy that provides the
expressive power to explore the complexity of multi-field data.
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4 Stage I: Data Management

The contest data consists of 400 primary files, 200 holding the scalar field values
for each timestep, and a further 200 carrying the vector (velocity) data. Within
a scalar file, the value for each of the 10 fields is given for the first point, then
the 10 values for the second point, and so on. Consequently the entire file must
be traversed, even if only one or two fields are of interest. We decided to define
our own storage model for this data, and at the same time to convert the ASCII
encoding into a more compact binary form.

4.1 Fixed-Precision Values

Numeric computation in visualization and computer graphics often uses the 32
or 64-bit IEEE floating point representation, and it would have been straightfor-
ward to convert the given fixed-precision representation into this form. However,
as part of the analysis we would need to carry out derivation of new fields from
the existing data, for example computing the turbulence of the flow as the mag-
nitude of the velocity field curl. The numerical ranges for some fields are large
and, concerned about loss of precision, we decided to work as much as possi-
ble using our own fixed-precision representation. Each value was represented in
mantissa-exponent format, with 15 bits for each value (plus a sign bit). Inter-
nally, this format was stored using a Haskell constructor with two 16-bit integer
components, while externally values could be stored as 4 bytes in a binary file.

This representation required support from a small library of arithmetic oper-
ations, which we defined first in Haskell, as an instance of the Num type class.
More importantly we utilised SmallCheck [10] to test expected properties of the
system, for example commutativity:

prop plusCommutes :: FixedPrecision → FixedPrecision → Bool
prop plusCommutes x y = x + y ≡ y + x

This was invaluable in quickly teasing out a number of bugs. Just as importantly,
having established confidence in the Haskell ‘specification’, we were able to use
it as a reference model for implementing the fixed precision library within C.
Functions in the C implementation were exposed to Haskell via the FFI, and
equivalence between C and Haskell representations was tested via commuting-
diagram properties, e.g.

prop times :: FixedPrecision → FixedPrecision → Bool
prop times x y = (x ∗ y) ≡ fromCFP (toCFP x ∗ toCFP y)

4.2 Downsampling DSL

We next addressed the resolution and bounds of the data. There are good reasons
for not working directly from the full 600×248×248-point grid at each timestep:
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– A standard strategy in visualization is to first gain an overview of the data,
and then descend into lower levels of detail, saving unnecessary computation.

– Our volume renderer has a very simple implementation, but one based on
nested lists, and could not render the volume at full resolution.

– Our astrophysics colleagues suggested that for a number of the contest tasks,
2D slices might provide a more useful view (see Section 5.1).

So we needed a flexible mechanism for extracting subsets of the data, both by
downsampling, and/or by restricting the range of one or more dimensions. Our
implementation consisted of three components:

– a regular naming scheme for resources (files) that encodes information about
the spatial bounds, sampling, and fields;

– a high-level planner that, given the specification of a required resource, com-
putes the cheapest plan for generating that resource from the available files;
and

– a worker program that implements a given plan.

The naming scheme forms a tiny DSL in its own right. Three examples of the
resource naming conventions are:

x0-599y0-247z0-247t10.DGHH+HeHe+He++H-H2H2+.dat
x0-4-599y0-4-247z0-4-247t100.G.dat
x0-599y0-247z124t60.H2xD.dat

The first example specifies a full-resolution sampling of the entire grid, at
time step 10, containing each of the 10 scalar attributes (D, G, H, H+, etc). In
the second specification, the grid at time 100 has been downsampled, with every
4th sample selected in each spatial dimension, and only the G scalar component
selected. The final example specifies a 2D slice at time step 60 corresponding
to the plane z = 124, with full resolution along the remaining two axes, and
carrying a derived field H2xD, the product of H2 and D.

The planner, implemented in Haskell, takes a resource specification as para-
meter, and then inspects the available files, deciding the cheapest method for
generating the resource. Selection is implemented by defining a partial order
over data files. This is an inclusion relation defined in terms of data files’ bounds
(spatial and temporal), granularity (spatial and temporal) and the set of fields
present. After selecting the least dominator under the ordering, the planner in-
vokes a worker. The worker, implemented in C for performance reasons, converts
the plan into a tight set of nested for-loops that traverse the input and generate
the output resource. It takes the worker around two minutes to downsample/slice
from the largest resource file (1.48Gb), whilst starting from the least dominator
can often reduce the time to a few seconds. In the case of derived fields, part
of the worker traversal involves per-point numeric computation over selected
samples from the input.
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5 Stage II: Picture Synthesis

Before the announcement of the design contest, we had already implemented a
modest library of 3D visualization techniques, specifically:

– isosurface extraction;
– hedgehog rendering of a vector field;
– probing; and
– pseudo-volume rendering.

Experience gained in implementing these algorithms is reported in [7]. For ad-
dressing the contest tasks, three further techniques were implemented:

– slice visualization;
– 2D contouring; and
– 3D scatterplot.

Building on the Stage I work, we were easily able to adapt our infrastructure
to process contest datasets, obtaining initial results such as the volume rendering
of gas density, and isosurfaces of gas temperature, shown in Figure 2.

Fig. 2. Left: gas density as a volume rendering. Right: isosurfaces for gas temperature
at 2.5K (blue), 16K (green) and 20K Kelvin (red). Both pictures are generated from
time step 60, downsampled to a 150 × 62 × 62 grid.

This figure highlights both the power of visualization to present data, and the
limitations of standard 3D techniques for this particular challenge. The aim is to
explore correlations between multiple fields. Superimposing 3D representations,
even where they are known to be disjoint, creates problems of occlusion. This
problem is avoided in Section 5.1 by utilising 2D techniques.

In Section 5.2 we introduce the rendering layer that mediates between specific
visualization techniques and low-level graphical IO. Then Section 5.3 describes
the high-level DSL for creating the compound images that enable effective ex-
ploration of the dataset.
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5.1 Contours and Slices

Isosurfaces are a 3D generalisation of an older method for depicting scalar fields,
the contour plot. Contour plots have the advantage that nesting of contours
can be easily seen and interpreted. Contouring a field at regular intervals also
highlights areas of high gradient, a feature that we found useful in addressing
one of the contest questions. Similarly, a 2D slice through a dataset can also be
rendered directly, by using a transfer function to associate a colour with each
point, and then smooth-shading the resulting mesh. Figure 3 shows the same
datasets as Figure 2, this time using slicing and contouring on a single plane.
We found these images more useful in revealing details of the underlying field. In
particular the contour plot reveals a region of hot gas embedded within the shell
of the shockwave. As we shall see, these representations are also more amenable
to composition.

The implementation of contouring provides a compelling example of the value
of abstraction, and Haskell’s type class system. Following our initial work on the
‘marching cubes’ algorithm [6], we generalised our dataset representation and
implementation of the algorithm, to be independent of dimension, geometric
organisation, and cell-shape. The signature of our isosurfacing algorithm now
consists almost entirely of type variables and constraints:

isosurface :: (Interp a, InvInterp a, Interp g,Cell c v ,Enum v)⇒
a → [c v a ] → [c v g ]→ [ [g ] ]

It requires three parameters: a threshold to be extracted (type a), a stream of
sample values (also a), and a stream of the geometric locations g at which the
samples were obtained. The two streams are structured into topological cells c
defining local neighbourhoods within the grid. A cell c in turn is simply some
instance of a type predicate that describes the capability to select a vertex v,

Fig. 3. Left: gas density as a slice. Right: contour lines for gas temperature, range 2K,
3K . . . 21K Kelvin. Both pictures again from time step 60, now at full resolution within
the plane z = 124.
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and a case table that maps a marking, indicating which vertices of the cell are
above a threshold, to the list of cell edges that are intersected by the surface. It
took us less than one hour to implement 2D contouring as a specific instance of
this generalised algorithm. We had only to:

1. define a data constructor for 2D (square) cells;
2. implement the two Cell methods—the case table consisting of just 16 lines;
3. implement a function to turn a stream of values (samples or geometry) into

a stream of square cells, a simpler instance of the technique described in [6];
and

4. wrap the output of the “isosurfacer” with the appropriate geometry for ren-
dering at a set of line segments.

5.2 Rendering and Interaction DSL

The output of a single visualization algorithm, such as isosurfacing, contouring,
or volume rendering, is a bag of primitives: coloured line segments, triangles,
and surface normals. These must then be rendered to a display, in some fashion
that allows for interactive exploration, e.g. rotation, translation and zooming
of the “camera”. Ultimately, the visualization front-end is implemented using
the HOpenGL library that we have found to provide an excellent interface to
OpenGL and GLUT [11]. However, rendering and event handling in OpenGL are
handled through callbacks, which represent an unfortunately low-level intrusion
into the functional environment of our visualization system. To mitigate this, we
have implemented an intermediate layer, in the form of a scene-graph [12] ab-
straction for purely functional event handling. This provides a DSL for graphics,
and serves as the target language into which the picture DSL, described in the
next section, is compiled:

type HsHandler a = Maybe (Event → a → a)
type HsMovie = (Bool , [HsScene ], [HsScene ])
data HsScene

= Camera (HsHandler HsView) HsView HsScene
| Geometry (HsHandler [HsGeom ]) PrimitiveMode [HsGeom ]
| Transform (HsHandler HsTransform) HsTransform
| Group (HsHandler [HsScene ]) [HsScene ]
| Compiled HsCompiledHandler Extent DisplayList
| Switch HsScene HsScene HsScene
| Imposter HsScene HsScene
| Animate (HsHandler HsMovie) HsMovie
| Special (IO ())

There are expressions in this DSL for: scene geometry, transformations, groups
of subtrees, compiled scenes (OpenGL display lists), and animations. Each ani-
mation is represented as a pair of lists along with a ‘playing’ flag. The lists hold
the frames yet to be played, and the frames that have been played. The Animate
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event handler can be instantiated with a basic movie player supporting playback,
pausing, and stepping through individual frames. Lazy evaluation means that
one frame can be on the display while the next frame is still being generated.

In response to OpenGL’s callback architecture, the rendering module uses
a global IORef to store the root of the scene. Most scene expressions include
an event handler, a pure function over the expression’s substructure. When an
OpenGL callback is invoked, for example due to a mouse or timer event, the
scene graph is traversed: for each expression with a handler, a new expression is
generated by evaluating the handler with the new event and previous expression
as parameters. After the new scene description is computed, its value is written
back to the IORef.

Although this solution hides some of the non-functional features of OpenGL’s
architecture, there is clearly room for further improvement. One possible di-
rection is work on functional reactive programming; the Yampa library has for
example been used to create interactive graphics applications [13], though it is
unclear how well this would interface with the structured approach to rendering
adopted here.

5.3 The Picture DSL

Slicing and contouring yielded simple static views of a single timeframe, but our
greatest insights came from creating compound images and animations that ex-
posed the relationship between fields over time. To achieve this, we wrote a small
DSL of pictures that provides a task-oriented vocabulary, mediating between the
rendering and data-management languages. A picture is either the output from
one of our visualization techniques, or a compound of simpler pictures:

data Picture = Contour Colour (Range Float) DataExpr
| Surface Colour (Range Float) DataExpr
| Volume Colour DataExpr
| Slice Colour DataExpr
| Scatter DataExpr DataExpr DataExpr
| Draw [Picture ]
| Anim [Picture ]

There are two kinds of compound picture; Draw combines a list of sub-
pictures within one display frame, while Anim creates an animation, render-
ing pictures into successive frames. Novel combinations of time and space are
possible, e.g. by composing slices from multiple timesteps into one frame, or an-
imating a plane moving through a single timestep. Picture uses a small number
of supporting definitions. For example, the Range type provides a vocabulary
for sampled intervals:

data Eq a ⇒ Range a = Single a
| Range a a
| Sampled a a a
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It is used to specify the thresholds at which a scalar field is contoured or surfaced,
and is also used to describe the spatial sampling of grids. The Colour data type
specifies a number of schemes for mapping sample values onto colours, while
DataExpr is used to select the time-volume-field to be visualized, including
support for derived fields. (DataExpr compiles straightforwardly to the resource
management scheme outlined in Section 4.2.) Embedding of the DSL within
Haskell allows the use of host-language features such as comprehensions and
let-sharing, to generate animations with an elegant specification:

overDensity =
let slice t s = Use (From (Range 0 599) (Range 0 247) (Single 124) t s)
in Anim [ Draw [Slice mblues (slice t D)

,Contour mgreens (Sampled 200 400 1000) (slice t Mv)
,Contour reds (Sampled 0 0.02 0.4) (slice t H2xD)
]

| t ← [5, 10 . . 195]]

This example creates an animation showing correlation between the shockwave
(as captured by overall gas density D), turbulence (Mv), and the absolute den-
sity of H2, captured by the derived field H2xD. Figure 4 shows a snapshot from
the animation, revealing that H2 formation (white) is concentrated in regions
bracketed by the shockwave (blue) and higher-turbulence regions (green).

Evaluation of a picture DSL expression is carried out in the context of an
environment that carries the various data grids referenced from within the ex-
pression. A Picture expression is interpreted by a function eval picture that
pattern matches each of the Picture constructors, extracts appropriate grids
from the environment, and constructs an expression in the scene graph DSL for

Fig. 4. Combination of gas density (slice), turbulence (green contours), and absolute
H2 concentration (white contours)
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rendering the visualised geometry. Here, for example, are the cases for Contour
and the two compound picture types:

eval picture :: Environment → Picture → HsScene
eval picture env (Contour pal thresholds dexpr )

= Group static geomlist
where

levels = range to list thresholds
nr levels = float ◦ length $ levels
field = eval data env dexpr
plane = slice plane dexpr
mkgrid = squareGrid (cell size 2D field plane)
points = mkgrid $ plane points dexpr field
values = mkgrid $ samples field
colour = transfer pal 1.0 1.0 nr levels
contours = map (λt → concat $ isosurface t values points) levels
colours = map colour [1.0 . .nr levels ]
geomlist = zipWith contour geom contours colours

eval picture env (Draw ps)
= Group static (map (eval picture env) ps)

eval picture env (Anim ps)
= Animate anim control (True,map (eval picture env) ps , [ ])

The brevity of the compound cases, Draw and Anim, is particularly pleasing.
Constructors for compound pictures are interpreted directly in terms of an anal-
ogous low-level rendering constructor acting on the interpretation of the sub-
pictures. Composition of pictures is thus essentially an application of map. The
only differences between the interpretations of Contour (2D) and Surface (3D)
are (i) the mkgrid function for Surfaces builds a cubic grid, and (ii) the geometry
is constructed by surface geom rather than contour geom.

6 Comparisons with Other Approaches

Previous entries to the visualization contest have used large-scale visualization
tools such as VTK and Amira, and/or specialised graphics hardware. We used
a small, lightweight Haskell library running on a modest desktop PC. A direct
comparison is difficult. Our solution consists of less than 4000 lines of Haskell
and 630 lines of C, whilst for example VTK [3], a powerful toolkit for visualiza-
tion developed over more than a decade, consists of nearly 1000 C++ classes,
and 600K lines of code. Even comparing specific features such as isosurfacing is
non-trivial; the VTK module has to deal with more complex data and execution
models, but excludes the machinery for building and executing pipelines, which
arguably should be counted. Despite these caveats, this overall comparison, along
with the figures presented in [7] do highlight the brevity and expressive power
that come with functional abstractions.



Huge Data But Small Programs 43

We found it necessary to use C to implement data conversion and selection. A
Haskell utility for converting the input data files into our binary fixed-precision
format required ≈45 minutes per file. The C utility runs in less than 2 minutes
per file. When processing 200 files, this is a significant difference. Haskell’s sup-
port for generating tight, fast loops is not yet ideal. Although it might have
been possible to utilise recent work on ByteString fusion [14], our experience
has been that, for very simple tasks over large data, the effort required to per-
suade a Haskell compiler to generate fast code is more time-consuming than
simply writing it in a lower-level language. Any worries about the correctness
of the low-level implementation were mitigated through initial specification and
automated testing in Haskell.

Our major success was the high-level DSL for pictures, which gave us con-
siderable freedom to explore the data. We are far from the first to realise the
benefits of this approach in the context of graphics. ‘Picture combinators’ go
back at least as far as Henderson’s 1982 paper on functional geometry, recently
revisited [15], and Arya’s work on functional animation [16] provides a rich set
of operators for constructing movies. More recently, Elliott has produced a se-
ries of papers showing the value of DSLs for image manipulation (Pan [17]) and
graphical synthesis (Vertigo [18]).

7 Conclusions and Prospects

This paper is not just about the use of Haskell for one specific problem, however
challenging. The rationale for the IEEE visualization contest is to explore new
approaches to difficult visualization problems. The scenario explored here, with
large volumes of multifield data, is one that is found widely in practice. Our
contribution is to show how functional languages enable rapid exploration of
new visualization techniques, and a particularly elegant way of describing novel
combinations of technique.

Brevity is particularly valuable in the context of exploratory visualization.
Although we started with a number of algorithms already implemented, the
contest tasks required new infrastructure and techniques. These were developed
on the fly within the four weeks in which the authors were working towards an
entry. Isosurfacing and volume-rendering were reused, but slicing, contouring,
animation, 3D scatterplots, and of course the fixed precision library and down-
sampling infrastructure were all new. Even so, we would estimate that less than
1000 lines of Haskell were written or modified specifically for the contest.

The practical implication is that, when faced with a novel visualization
problem, it may well be easier to write a new bespoke technique in 20-30
lines of Haskell than to assemble a collection of coarse-grained modules
within a large toolkit, let alone create a set of new modules.

Our picture DSL was implemented only in the final week of the contest. Ini-
tially, we had concentrated on data management and visualization techniques.
The driver for change was the need to include animation. At this point we fi-
nally appreciated how much our previous ad-hoc construction of pictures was
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a hindrance. With the picture DSL, we were able to make rapid progress. Sig-
nificant insights emerged literally within the final hour before submission. Even
then, we did not fully exploit our system. We had for example implemented a
3D scatterplot, to explore correlations between ion concentrations. Given our
animation facilities, it would be interesting to create a time-varying scatterplot,
showing how the relative concentrations evolve over time as the shock-front
passes through space.

The primitives of our picture DSL can be seen as analogs to the modules of a
pipelined architecture [3]. However, we are working towards a different strategy.
The contour code in Section 5.1 uses stream-based operations that generalise our
initial work [6]. We would like to exploit these, and possibly a similar library on
array-like structures, to provide an intermediate language for visualization algo-
rithms. We see a visualization system as a hierarchy of languages. At the top, a
declarative result specification (the picture DSL) is interpreted within a language
of stream/array operations, which are then mapped onto a language for dataset
management (cf our ‘Stage I’ as described in Section 4), generating datasets
on demand, before finally a rendering language constructs scenes for display
and interaction. Stages I and II would then be coupled directly, with the down-
sampler invoked directly from the visualization engine to provide datasets on
demand.

The work presented here addresses scientific visualization. There is another
challenge where functional programming may provide profoundly new insights,
namely providing new levels of abstraction for managing information visualiza-
tion (aka infovis). A key challenge here is the diversity of both data organization
and visual metaphor. As a result, tools tend to be specialised to limited types of
data and/or applications, and it is difficult to identify generic, reusable abstrac-
tions. The first task in any infovis application is to impose some structure on
the data, one that enables translation into a suitable visual representation, for
example a tree or graph. Could the strategy of creating layers of DSLs help also
to structure infovis applications? An equally interesting question is whether the
richer type system of functional languages, possibly including ideas like poly-
typism, can be used to find unexplored regularities within both data and dis-
play techniques. Recent work [19] on using Haskell for visual analytics, a new
synthesis of information visualization and statistical analysis, suggests that the
conversation between functional programming and visualization has only just
begun.

Source code for our implementation is available from the project web site,
www.comp.leeds.ac.uk/funvis/
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Abstract. Boyer and Moore’s ACL2 theorem prover combines first-
order applicative Common Lisp with a computational, first-order logic.
While ACL2 has become popular and is being used for large programs,
ACL2 forces programmers to rely on manually maintained protocols for
managing modularity. In this paper, we present a prototype of Modular
ACL2. The system extends ACL2 with a simple, but pragmatic func-
tional module system. We provide an informal introduction, sketch a
formal semantics, and report on our first experiences.

1 A Logic for Common Lisp, Modules for ACL2

In the early 1980s, the Boyer and Moore team decided to re-build their Nqthm
theorem prover [1] for a first-order, functional sub-language of a standardized,
industrial programming language: Common Lisp [2]. It was an attempt to piggy-
back theorem proving on the expected success of Lisp and functional program-
ming. Although Common Lisp didn’t succeed, the ACL2 system became the
most widely used theorem prover in industry. Over the past 20 years, numerous
hardware companies and some software companies turned to ACL2 to verify
critical pieces of their products [3]; by 2006, their contributions to the ACL2
regression test suite amounted to over one million lines of code. The ACL2 team
received the 2005 ACM Systems Award for their achievement.1

During the same 20 years, programming language theory and practice have
evolved, too. In particular, programming language designers have designed, im-
plemented, and experimented with numerous module systems for managing large
functional programs [4]. One major goal of these design efforts has been to help
programmers reason locally about their code. That is, a module should express
its expectations about imports, and all verification efforts for definitions in a
module should be conducted with respect to these expectations. Common Lisp
and thus ACL2, however, lack a proper module system. Instead, ACL2 program-
mers emulate modular programming with Common Lisp’s namespace manage-
ment mechanisms, or by hiding certain program fragments from the theorem
prover. Naturally, the manual maintenance of abstraction boundaries is difficult
and error prone. Worse, it forces the programmer to choose between local rea-
soning and end-to-end execution, as functions hidden from the theorem prover
cannot be run.
1 campus.acm.org/public/pressroom/press releases/3 2006/software.cfm
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Over the past year, we have investigated the design of a module system for
ACL2. Specifically, we have extended ACL2’s language with modules and pro-
duced two translations for modular programs: a compiler to ACL2 executables
and a logic translator to ACL2 proof obligations. With the latter, programmers
can now reason locally about individual modules. One goal is to empower ACL2
programmers with large code bases to gradually migrate their monolithic pro-
gram into a modular world. Another goal is to expand Rex Page’s [5] use of this
industrial-strength theorem prover in software engineering courses to teach theo-
rem proving in a modular setting. Without modules, such a software engineering
course simply isn’t convincing enough.

This paper is our first report on bringing this module technology to ACL2. In
section 2, we demonstrate our module system and its prototype implementation.
In section 3, we present our formal model of the module system. We have also
implemented several projects as modules; in section 4 we describe the positive
and negative outcomes of these experiments. Section 5 presents related work,
and the last section sketches our future challenges.

2 Reasoning with Modules

ACL2. The ACL2 theorem prover is similar to a LISP read-eval-print loop;
it accepts events such as function definitions or logical conjectures from the
user, verifies each in turn, and updates the logical state for the next event. Its
interface is purely text-based; the system comes with an Emacs mode as the
preferred interface for professional ACL2 users.

Four years ago, Rex Page (Oklahoma University) started the ambitious effort
of teaching a senior-level course sequence on software engineering in ACL2 [5].
Students reported difficulty with the text-based interface to ACL2; in response,
Felleisen and Vaillancourt produced Dracula [6] as a graphical user interface
for ACL2. Dracula has since been used in courses on software engineering and
symbolic logic [7].

Dracula. Dracula is a language level in the DrScheme integrated development
environment. It provides a simulation of Applicative Common Lisp (ACL), the
executable component of ACL2. Dracula incorporates DrScheme’s usual pro-
gramming tools, including a syntax checker, stack traces, unit testing, and a
functional, graphical toolkit geared toward novice programmers. It provides an
interface to the ACL2 theorem prover for the logical component.

Figure 1 shows a screenshot of Dracula in action. The left-hand side of the
Dracula interface provides two windows for formulating and executing programs:
the definitions window, where users edit their programs, and the interactions
window, where users may try out their functions.

The right-hand side of the display is Dracula’s interface to the ACL2 theorem
prover. It provides buttons to invoke ACL2 and to send each term from the
definitions window to the theorem prover. Dracula paints the terms green when
ACL2 proves them sound and red when it fails. Green terms are locked from
further editing to faithfully represent ACL2’s logical state; users may edit red
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Fig. 1. The Dracula graphical user interface

terms or undo the admission of green terms to edit those. Below the control
buttons, Dracula shows the theorem prover’s output; above them, it shows a
proof tree, naming key checkpoints for quick diagnosis of a failed attempt.

Figure 1 shows a program with two functions and two theorems. The functions
are insert , which adds a single element to a set, and join, which adds multiple
elements. The theorems insert/no-duplicates and join/no-duplicates state that
the functions preserve the the uniqueness of set elements.

Dracula’s simulation of ACL ignores the theorems, as they are logical rather
than executable, and compiles the rest. As we can see in the interactions window,
join produces the expected output when given ’(1 2 3) and ’(4 5 6) as input.

In contrast, the ACL2 theorem prover attempts to verify the logical soundness
of each term successively. First it checks insert , which it must prove terminating
for all inputs—a requirement of all functions in ACL2’s logic. Next ACL2 checks
insert/no-duplicates , for which it must prove that the conjecture expression pro-
duces a true value (non-nil). Free variables in defthm conjectures (such as x
and xs) are implicitly universally quantified over all ACL2 values. ACL2 repeats
the verification process for join and join/no-duplicates .

ACL2 successfully admits all these terms. The ACL2 output window displays
a list of rules used in the proof of join/no-duplicates . The list includes the def-
initions of insert and add-to-set-eql , but not insert/no-duplicates . Rather than
using the lemma proved above to reason about join, ACL2 re-examined the de-
finition of insert to prove the uniqueness of its elements. The theorem prover’s
search strategies often prefer to delve into a function definition rather than use
an existing lemma, resulting in duplicated proofs that span several functions.



Toward a Practical Module System for ACL2 49

Fig. 2. A modular program in Dracula

Modular ACL2. Figure 2 shows a version of the join program in our new
language, Modular ACL2. The definitions window contains two interfaces, two
modules, a link clause, and an invoke clause.

Interfaces contain signatures and contracts. A signature declares a function,
providing its name and argument list. A contract declares a logical property that
may refer to the signatures. Interfaces may also include other interfaces. This
allows them to refer to other signatures in their contracts, extending them with
new properties or stating relationships between multiple interfaces. The IInsert
interface contains a signature insert and a contract insert/no-duplicates . They
have the same arity and state the same property as the previous insert and
insert/no-duplicates , but the interface does not provide a definition for insert .
The IJoin interface similarly contains a signature and the join/no-duplicates
contract for join.

Modules contain definitions, import clauses, and export clauses. The im-
port and export clauses each name an interface. Definitions form the body of
the module; they may refer to functions from imported interfaces, and rely on the
properties declared by imported contracts. Conversely, the body of the module
must define all functions declared in exported modules in a way that satisfies the
associated contracts. A link clause constructs a new module from two existing
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modules. The exports of all the modules are combined, and the imports of each
module are connected to the matching exports of any prior module.2

The MInsert module contains the same definition of insert we saw before and
exports IInsert . This obligates insert to satisfy insert/no-duplicates . The MJoin
module imports IInsert . This allows it to call the binary function insert and
assume insert/no-duplicates holds. It then defines join as before, and exports
IJoin. Once again, join must satisfy join/no-duplicates . This time, however, its
soundness is not with respect to a concrete definition of insert , but rather with
respect to the imported signature and its associated contract.

The MSet module in our example provides IInsert from MInsert and IJoin
from MJoin; the reference to insert in MJoin is resolved to the definition in
MInsert . Linking is applicative; the original MJoin is unchanged and may later
be linked to a different implementation of IInsert . Finally, our example program
invokes MSet , making its exported functions available outside the module.

As with standard ACL, Dracula compiles the modular program to an ex-
ecutable form and disregards the logical aspects. It compiles insert and join,
links them together, and provides them for use in the interactions window.

Reasoning locally. The ACL2 GUI allows the user to verify each module sep-
arately using the theorem prover. Once the user selects a module, Dracula pro-
vides ACL2 with stubs (abstract functions) representing its imported signatures
and axioms (unproven logical rules) asserting its imported contracts. Dracula
then passes the body of the module to ACL2. Once that is admitted, it sends
ACL2 a theorem corresponding to each exported contract. If ACL2 admits all
three stages—stubs and axioms for imports, body definitions, and theorems for
exports—the module is guaranteed to satisfy its export interface for any sound
implementation of its import interface.

The presence of stubs and axioms may seem troubling; these are unverified
assumptions added to ACL2’s logical state. Using them is sound with respect to
a fully linked program, however. The interface imported by one module must be
linked to an export from another, so contracts assumed as axioms in one module
must be proved as theorems in another before the whole program is verified.

Dracula only admits primitive modules, such as MInsert and MJoin, via
ACL2. It safely disregards linked modules, such as MSet ; once MInsert and
MJoin have been verified separately, they can be linked to any module with a
matching interface without need for re-verification.

In figure 2, we see that ACL2 has admitted MJoin. This time the proof of
join/no-duplicates does not refer to the definitions of insert or add-to-set-eql ;
instead, it uses the imported contract insert/no-duplicates .

Manual modularization in ACL2. ACL2 has mechanisms for abstract rea-
soning and proof reuse. Certain definitions in a book (separate file) or encap-
sulate block (lexical scope) may be declared local, which hides some or all of
their definition from the remaining proof, but renders them unexecutable as well.
2 As ACL2 does not allow forward references, neither do linked modules; this prevents

cyclic definitions and preserves each module’s termination proofs.
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These abstract proofs may later be applied to concrete functions, but the rules
must be applied on a theorem-by-theorem basis, and no executable content is
reused. Logical rules may be selectively disabled in the global theory, but they
may be re-enabled later, defeating abstraction boundaries.

Worse, these mechanisms require the programmer to maintain the invariants
of an abstraction boundary manually, setting up a “negative interface” by declar-
ing which logical entities are not available for reasoning rather than which are.
ACL2 can simulate a normal, “positive interface” by layering these mechanisms,
but not a reusable, externally stated one.

3 The Dual Semantics of Modules

The purpose of our module system is to enable programmers to develop units of
code in isolation and to reason about them independently. This informal specifi-
cation implies the need for two additions to core ACL2: modules and interfaces.
For an untyped language such as ACL2, a module consists of definitions and
manages the scope of names. An interface describes the functions that a mod-
ule provides in terms of signatures and contracts, which play the role of both
obligations on the exporting module and promises for the importing one.

Naturally a module can use the services of another module, i.e., it can im-
port functions and rely on the contracts that hold for them. Using just those
contracts and the definitions in the module, a programmer must be able to ver-
ify the module’s export interface. That is, it is the task of the module system
to reformulate the imported contracts and the module body so that the ACL2
theorem prover can verify the exported contracts from these premises.

Another design choice concerns the connection between modules. One alter-
native is to used fixed links between modules, specified via interfaces. The other
one is to think of modules as relations from interfaces to interfaces and to link
modules separately. Based on our experience with Scheme units [8,9] and ML
functors [4], we have chosen the second alternative. Finally, we also decided to
separate module invocation from module linking. The rest of the section presents
a model of Modular ACL2, its syntax and two semantic mappings.

Syntax. Figure 3 shows the core syntax of ACL2 and Modular ACL2. ACL2
has two variable namespaces: function parameters and local variables (v), and
functions and theorems (n). Modular ACL2 introduces a third namespace for
modules and interfaces (N ).

An ACL2 program consists of of a sequence of def initions and expressions.
Definitions give names to functions, stubs, theorems, or axioms, or may in turn
be a sequence of other definitions. Expressions include variables, literal constants,
function application, conditionals, and variable bindings.

Modular programs consist of a sequence of top-level forms including in-
terface definitions, primitive module definitions, linking specifications, module
invocations, and expressions from the core language. An interface contains
Specifications, including signatures, contracts, and other included interfaces, as
described in section 2. A primitive module contains a sequence of Def initions,
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prog = top . . .
top = def | expr
def = (defun n (v . . . ) expr)

| (defstub n (v . . . ) t)
| (defthm n expr)
| (defaxiom n expr)
| (progn def . . . )

expr = v | const
| (n expr . . . )
| (cond (expr expr) . . . )
| (let ((v expr) . . . ) expr)

const = t | nil | number | string

Prog = Top . . .
Top = Ifc | Mod | Link | Inv | expr
Ifc = (interface N Spec . . . )

Mod = (module N Def . . . )
Link = (link N (N N ))
Inv = (invoke N )

Spec = (sig n (v . . . ))
| (con n expr)
| (include N )

Def = Imp | Exp | def
Imp = (import N )
Exp = (export N (n n) . . . )

Fig. 3. The core grammars of ACL2 (left) and Modular ACL2 (right)

extended from ACL2 to allow imports and exports via interfaces. Exported
interfaces allow renaming, in case the internal and external names of a func-
tion differ. A compound module links together two other modules.3 Fully-linked
modules—those whose imports have all been resolved—may be invoked, making
their declared exports available to top level expressions.

Dual Semantics. Modular ACL2 programs can be verified logically, and they
can be executed. For this reason, modules in a program are either translated
into ACL2 proof obligations, or linked together and run as an ACL2 program.

The two semantics are closely related, so that verification has meaning with
respect to execution. Specifically, once a module is verified, its exports are guar-
anteed to satisfy their contracts whenever the implementations of their imports
satisfy theirs as well. Put another way, once every module in a program has been
verified, every contract must hold true at run-time.

We do not present the straightforward description of a static semantics for
determining the syntactic well-formedness of programs. In order for a Modular
ACL2 program to translate to well-formed ACL2, it must avoid forward refer-
ences, name clashes within interfaces and modules, modules that import one
interface without importing another that it includes, and a few other errors.

Logical Semantics. A Modular ACL2 program is verified by tranforming each
primitive module into an ACL2 proof obligation stating that its definitions sat-
isfy its exported contracts, predicated on the correctness of its imports. We
represent this transformation as the function L (for “Logical”) that consumes
a Modular ACL2 program and produces a sequence of ACL2 programs, one for
each module. Figure 4 shows the definition of L and its auxiliary functions.

The L function transforms a program by invoking LT with two accumulators:
a list of interfaces and a list of obligations. This function traverses the top-
level definitions of a modular program. Each interface LT encounters is added
to Γ . Each primitive module is transformed into a proof obligation; the proof
3 In our full implementation, imported interfaces allow renaming as well, and com-

pound modules may link any number of modules.
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L : Prog → prog . . .

L(Prog) = LT (ε,Prog , ε)
LT : (Ifc . . . ,Top . . . , prog . . .) → prog . . .

LT (Γ, ε, Φ) = Φ
LT (Γ, Ifc Top . . . , Φ) = LT (Γ Ifc,Top . . . , Φ)
LT (Γ,Mod Top . . . , Φ) = LT (Γ,Top . . . , Φ LM(Γ,Mod))
LT (Γ,Top0 Top . . . , Φ) = LT (Γ,Top . . . , Φ) where Top0 = Link | Inv | expr
LM : (Ifc . . . ,Mod) → prog
LM(Γ, (module N Def . . . )) = LD(Γ, ε,Def . . . , ε)
LD : (Ifc . . . ,n → n,Def . . . , def . . .) → prog
LD(Γ, ρ, ε, ∆) = ∆
LD(Γ, ρ, def Def . . . , ∆) = LD(Γ, ρ,Def . . . , ∆ def )
LD(Γ, ρ, (import N ) Def . . . , ∆) = LD(Γ, ρ,Def . . . , ∆ LI(Spec . . . , ε))

where Γ (N ) = (interface N Spec . . . )
LD(Γ, ρ, (export N (n1 n2) . . . ) Def . . . , ∆) = LD(Γ, ρ[n2/n1 . . .],Def . . . , ∆ ∆′)

where Γ (N ) = (interface N Spec . . . )
and LE(ρ′, Spec . . . , ε) = ∆′

LI : (Spec . . . , def . . .) → def . . .

LI(ε, ∆) = ∆
LI((include N ) Spec . . . , ∆) = LI(Spec . . . , ∆)
LI((sig n (v . . . )) Spec . . . , ∆) = LI(Spec . . . , ∆ (defstub n (v . . . ) t))
LI((con n e) Spec . . . , ∆) = LI(Spec . . . , ∆ (defaxiom n e))
LE : (n → n,Spec . . . , def . . .) → def . . .

LE(ρ, ε, ∆) = ∆
LE((include N ) Spec . . . , ∆) = LE(ρ,Spec . . . , ∆)
LE(ρ, (sig n (v . . . )) Spec . . . , ∆) = LE(ρ,Spec . . . , ∆)
LE(ρ, (con n e) Spec . . . , ∆) = LE(ρ,Spec . . . , ∆ (defthm ρ�n� ρ�e�))

Fig. 4. Translation from Modular ACL2 to one proof obligation per module

obligation is added to Φ. Link clauses, invocations, and expressions are ignored,
as they carry no additional logical obligations.

Within the definition of L and its helpers, Γ is treated as an environment.
The notation Γ (N ) represents looking up an interface by name.

The LM function converts a module to a proof obligation by calling LD
on its internal definitions. The LD function traverses the module’s definitions,
accruing a substitution that associates external names with internal names as
declared by export clauses, and a list ∆ of resulting definitions. The function
converts imported signatures and contracts to stubs and axioms with LI and
exported contracts to conjectures (defthm) with LE respectively. Regular ACL2
definitions are left as-is.

Executable Semantics. In addition to a logical meaning, we also need a reg-
ular run-time semantics for modular programs. Modular ACL2 programs are
translated to executable form by two main processes. One is the successive
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E : Prog → prog
E(Prog) = ET (ε, ε,Prog , ε)
ET : (Top . . . ,n → n,Top . . . , def . . .) → prog
ET (Γ, ρ, ε, ∆) = ∆
ET (Γ, ρ, Ifc Top . . . , ∆) = ET (Γ Ifc, ρ,Top . . . , ∆)
ET (Γ, ρ,Mod Top . . . , ∆) = ET (Γ EM(Γ,Mod), ρ,Top . . . , ∆)
ET (Γ, ρ,Link Top . . . , ∆) = ET (Γ EL(Γ,Link), ρ,Top . . . , ∆)
ET (Γ, ρ, Inv Top . . . , ∆) = ET (Γ, ρ ρ′,Top . . . , ∆ ∆′) where EI(Γ, Inv) = (ρ′, ∆′)
ET (Γ, ρ, expr Top . . . , ∆) = ET (Γ, ρ,Top . . . , ∆ ρ�expr�)
EM : (Top . . . ,Mod) → Mod
EM(Γ, (module N Def . . . )) = (module N Imp . . . def Exp . . . )
where sort(Def . . .) = Imp . . . def . . . (export N 1 (n1 n2) . . . ) . . .
and (n3 . . . ) . . . = names(Γ (N 1)) . . .
and Exp . . . = (export N 1 (n3 [n2/n1 . . .]�n3�) . . . ) . . .
EL : (Top . . . ,Link) → Mod
EL(Γ, (link N (N 1 N 2))) = (module N Imp . . . def . . . Exp . . . )
where Γ (N 1) =
(module N 1 (import A1) . . . def 1 . . . (export B1 (b1 a1) . . . ) . . . )
and Γ (N 2) =
(module N 2 (import A2) . . . def 2 . . . (export B2 (b2 a2) . . . ) . . . )
and A3 . . . = (A2 . . .) − (A1 . . . B1 . . .)
and b3 . . . = names(Γ ((A2 . . .) ∩ (B1 . . .)) . . .)
and ρ1 = freshen(def 1 . . .)
and ρ2 = freshen(def 2 . . .)
and ρ3 = [ρ1�[a1/b1 . . .]�b3��/b3 . . .]
and Imp . . . = (import A1) . . . (import A3) . . .
and def . . . = ρ1�def 1� . . . ρ2�ρ3�def 2�� . . .

and Exp . . . = (export B1 (b1 ρ1�a1�) . . . ) . . .
(export B2 (b2 ρ2�ρ3�a2��) . . . ) . . .

EI : (Top . . . , Inv) → (n → n, def . . .)
EI(Γ, (invoke N )) = ([ρ�n2�/n1 . . .], ρ�def � . . .)
where Γ (N ) = (module N def . . . (export N ′ (n1 n2) . . . ) . . . )
and ρ = freshen(def . . .)

sort(Def . . .) : Sort module body into imports, definitions, and exports.
names(Ifc . . .) : Extract the names of signatures from interfaces.
freshen(def . . .) : Produce a substitution giving fresh names to definitions.

Fig. 5. Translation from Modular ACL2 to an executable program

linking of each compound module into a primitive one. The other is the extrac-
tion of definitions from each invoked primitive module; these are concatenated
with top-level expressions. We perform this transformation with the function
E (for “Executable”), shown in figure 5 along with some auxiliary translation
functions. To simplify the presentation, we introduce a and b for function and
theorem names, and A and B for interface and module names. We use Γ as an
environment again, this time for both interfaces and modules.
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This E function invokes ET with an empty environment, substitution, and
sequence of result terms. The ET function adds interfaces to the environment,
as well as primitive modules reduced to canonical form by EM . All modules
in the environment contain imports first, then internal definitions, and finally
exports with fully explicit external/internal name associations. Compound mod-
ules are converted to primitive modules by EL and stored in the environment.
The EI function extracts definitions and a substitution from a module in the
environment, which ET uses to splice the module’s body into the top level and
link top-level expressions to it.

The EL function combines two primitive modules into one. It looks up their
definitions in the environment, then extracts their imports, exports, and internal
definitions. The definitions are given fresh names and linked together by substi-
tuting names exported (from N 1) and imported (to N 2) across a shared interface.
Finally, EL concatenates both sets of source imports (except any resolved by
linking), definitions, and exports.

4 Experience with Modules

Designing a new language is insufficient; one must program in it to determine
its merit. We have therefore added a prototype of Modular ACL2 to Dracula
and have used it to convert a number of ACL2 programs into modular shape.
In this section, we present our experience writing, verifying, and executing three
illustrative examples. We then demonstrate the advantages of modules for ACL2
and explain the most serious problem encountered.

Illustrative Experiments. The Worm game is illustrative of the projects as-
signed to freshmen at Northeastern University and the courses at Oklahoma.

The top-left box in figure 6 displays a concise description of the game. The im-
plementation consists of three main modules implementing the food, the worm,
and the game itself. These are supported by three other modules, defining a
pseudorandom number generator, basic point geometry, and the game grid. We
implemented the game and verified two nontrivial properties: the worm’s tail
stays within the grid during the game, and it never crosses itself. Figure 6 shows
portions of the game and point interfaces.

Graph traversal is the first canonical ACL2 case study [3]. The task is to
represent directed graphs, implement an algorithm to find a path from one node
to another, and prove the algorithm always produces a valid path.4

We designed our graph traversal program around two interfaces: one for rep-
resenting a graph, the other for the search algorithm. See figure 7 for details. A
successful find-path is guaranteed to produce a path, specified by pathp in IGraph
as a list of adjacent nodes. We produced four modules in total: neighbors list and
edge list representations of graphs, and depth-first and breadth-first search. The
modules are interchangeable; either graph representation may be linked with
either search algorithm.

4 The original case study also proves that it finds a path so long as one exists.
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Game Description:
The player directs a constantly-
moving worm on a grid. The grid
has walls and, somewhere, a piece of
food. If the worm eats the food, the
worm grows in length and a new piece
of food appears. If the worm runs into
a wall or its own tail, the game ends.

(interface IPoint
(sig point-uniquep (pt pts))
(sig points-uniquep (pts))
(con points-uniquep/nil
(points-uniquep nil))

(con points-uniquep/cons
(implies
(and (pointp pt)

(point-listp pts)
(point-uniquep pt pts)
(points-uniquep pts))

(points-uniquep (cons pt pts)))))

(interface IGame
(include IPoint)
(sig live-gamep (v))
(sig uncrossedp (v))
(sig worm-tail (g))
(sig game-tick (g))
(con uncrossedp/worm-tail
(implies (uncrossedp g)

(points-uniquep (worm-tail g))))
(con initial-game/uncrossedp
(uncrossedp (initial-game)))

(con game-tick/uncrossedp
(implies (and (uncrossedp g)

(live-gamep g))
(uncrossedp (game-tick g))))

(con game-key/uncrossedp
(implies (and (uncrossedp g)

(live-gamep g)
(stringp k))

(uncrossedp (game-key g k)))))

Fig. 6. Interface excerpts from the Worm game

(interface IGraph
(sig graphp (v))
(sig nodep (g n))
(sig edgep (g a b))
(sig pathp (g x y p))
(con pathp/one
(iff (pathp g x y (list a))

(and (equal x a) (equal y a) (nodep g a))))
(con pathp/append
(implies
(and (edgep g b c) (pathp g a b p) (pathp g c d q))
(pathp g a d (append p q)))))

(interface IFindPath
(include IGraph)
(sig find-path (g x y))
(con find-path/pathp
(implies
(and (graphp g)

(nodep g x)
(nodep g y)
(find-path g x y))

(pathp
g x y
(find-path g x y)))))

Fig. 7. Interface excerpts from the graph search program

Different strategies for implementing language interpreters suggest natural ex-
ercises in proving equivalence of two recursive algorithms. In our interpreters, an
expression is either an integer or a binary operator +,−, or ∗ applied to two expres-
sions. Our small-step interpreter reduces the leftmost redex in an expression, pro-
ducing a new expression until no reductions remain. Our alternative interpreter
uses a big-step strategy. We specified the program in four interfaces: expressions,
big-step evaluation, small-step reductions, and equivalence between the two.
Figure 8 shows some representative excerpts.
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(interface ILanguage ;; datatypes
(sig exprp (v))
(sig calcp (v))
(sig calc (f a b)))

(interface IBigStep
(include ILanguage)
(sig eval (e))
(con eval/plus
(equal (eval (calc ’+ a b))

(+ (eval a) (eval b)))))

(interface IEquivalence
(include ILanguage)
(include IBigStep)
(include ISmallStep)
(con eval=last-reduction
(implies (exprp e)

(equal (last (reduce-all e))
(list (eval e))))))

(interface ISmallStep
(include ILanguage)
(sig reduce (e))
(sig reduce-all (e))
(con reduce/plus
(implies
(and (integerp a) (integerp b))
(equal (reduce (calc ’+ a b)) (+ a b))))

(con reduce/left
(implies (calcp a)

(equal (reduce (calc f a b))
(calc f (reduce a) b))))

(con reduce-all/calcp
(implies
(and (exprp e) (calcp e))
(equal (reduce-all e)

(cons e (reduce-all (reduce e)))))))

Fig. 8. Interface excerpts from the interpreter program

Theorem Mono. Mod.
game-tick/uncrossedp 845.95 0.06
game-tick/gamep 387.12 0.03
game-tick/in-bounds 362.97 0.03
connected-gamep/gamep 173.55 0.03
game-key/uncrossedp 148.65 0.05
game-key/in-bounds 64.58 0.03
game-key/gamep 64.24 0.02
uncrossedp/gamep 10.75 0.01

Theorem Mono. Mod.
game-mouse/uncrossedp 8.82 0.01
connected-wormp/wormp 3.00 0.06
worm-turn/uncrossed-wormp 0.48 0.10
worm-move/uncrossed-wormp 0.38 0.05
worm-grow/uncrossed-wormp 0.25 0.04
worm-turn/in-bounds-wormp 0.23 0.06
random-nat/range 0.10 0.10
modulo/range 0.08 0.08

Fig. 9. Time (in seconds) to verify theorems from two versions of the Worm game

Performance Improvements. Programming in a modular style naturally re-
duces the scope of ACL2’s proof search space and improves the engine’s efficiency.
Plain ACL2 typically requires “hints”—e.g., restrictions of the global theory—
to complete or speed up a proof. Modules restrict theories by design and in a
disciplined manner; it is often unnecessary to guide the search.

Our modular verification of the Worm game required no hints at all; the
verification takes just a few seconds per module. We compared this to a näıve
translation into a monolithic ACL2 proof. We concatenated the contents of the
modules and inserted the contracts of each module’s exports as theorems. ACL2
was able to verify the monolithic version as well, but took several orders of
magnitude longer.
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Figure 9 shows the CPU time (in seconds) used to prove the slowest nine
theorems from each version of the Worm game. The modular version never takes
over a tenth of a second, while the monolithic proof peaks at several minutes.
Near the end of the monolithic program, proof attempts had the entirety of
the game to inspect, while the modular proof started with a clean slate per
module. The slow performance measured here does not reflect the professional
ACL2 user’s experience; rather, such ACL2 users refine their proofs by manually
maintaining abstraction boundaries that occur naturally with modules.

Conciseness and Reuse. Modular design also promotes abstraction and code
reuse. Standard ACL2 programs cannot, in general, change their implementation
strategy without adjusting the accompanying theorems. Put differently, separat-
ing implementations and specifications imposes a serious cost of manual coding
and, because of that, prevents common patterns of code reuse and refactoring.

In contrast, Modular ACL2 encourages and simplifies reuse. Clients of our
graph modules may swap representations or search algorithms freely in a link
clause without changing a single defthm. Even undergraduates can now pro-
gram for reuse in ACL2.

Limitations. Unfortunately, our gains in terms of local reasoning come with a
serious loss, best illustrated with our interpreter example. In this example, our
final equivalence proof imports ILanguage, IBigStep, and ISmallStep (fig. 8),
representing respectively the grammar and two interpreters. Sadly, while a nat-
ural modularization calls for this organization, doing so prevents ACL2’s search
engine from finding an inductive proof.

The key problem is that, on one hand, ACL2 associates induction schemes
with function definitions, and that, on the other hand, Modular ACL2’s inter-
faces hide function definitions. For the specific case of our interpreters, the main
theorem must perform induction on the structure of expressions and of the two
interpreter algorithms. Because these definitions are hidden behind module bar-
riers, ACL2’s proof engine can’t possibly find a proof. The only way to expose
the induction schemes to ACL2 is to provide a concrete function definition, but
exposing eval and reduce-all defeats the abstraction boundaries of ISmallStep
and IBigStep.

From a high level perspective, we have traded improved local reasoning for
a loss in global reasoning. Naturally we consider this a major limitation of our
current approach. Induction is a critical aspect of ACL2, and inductive proofs
should not be limited to individual modules. Hence, our next step in designing
Modular ACL2 is to add a linguistic mechanism for specifying induction princi-
ples across interfaces and verifying their correct implementation as exports.

5 Related Work

The design of the module system derives from PLT Scheme’s unit system [8,9],
with linking semantics based on mixins [10,11]. More precisely, Modular ACL2
contributes contracts to the unit model, but inherits the idea of linking primitive
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and compound modules in hierarchical shape. It subtracts recursive linking as
this would complicate ACL2’s termination proofs.

Coq [12,13], Twelf [14], and similar proof assistants adopt an ML-like module
system for encapsulating proofs about metatheory. Our modules and interfaces
correspond closely to ML’s functors and signatures. Modular ACL2 can express
type specifications via contracts and sharing constraints via interface inclusion; it
cannot currently express nested modules. However, we face different challenges,
having chosen to work with a first-order functional language and an automated
theorem prover with idiosyncratic limitations. We must deal with the lack of ab-
stract induction schemes, the inexpressibility of higher-order logical statements
such as a module’s proof obligation, and the lack of execution-preserving proof
abstraction mechanisms.

Extended ML (EML) [15] equips SML [16] with logical properties and a verifi-
cation semantics. The language is designed around the methodology of beginning
with an abstract specification and refining it step-by-step to a concrete imple-
mentation. EML offers signatures, structures, and functors, any of which may
contain axioms, analogous to our modules and interfaces with contracts. EML
also offers the abstract term “?” for specified but unimplemented types, values,
or structures; Modular ACL2’s stubs and axioms serve a similar purpose. EML
has the benefit of SML’s powerful type system, but lacks a theorem prover. In
contrast, Modular ACL2 is based on the industry’s leading, general-purpose,
automated theorem prover.

Some theorem proving languages also provide named scopes, such as Isabelle’s
locales [17], Coq’s sections [18], and the “little theories” of IMPS [19]. These
scopes allow local and global definitions, and export the global ones by translat-
ing or abstracting over the local ones. They provide a lightweight approach to
abstraction and namespace management, but do not support explicit interfaces
or introduce abstraction beyond that of the underlying language.

6 Conclusion

While Boyer and Moore took an existing functional language and constructed a
theorem prover for it, we have chosen to take an existing theorem prover and to
equip it with a pragmatic module system. Thus far, we have designed a series
of models and prototypes. In this paper, we present the first version that makes
modular programming truly practical. Our examples in this paper illustrate how
Modular ACL2 introduces and encourages information hiding and code reuse.
As a result, Modular ACL2 naturally improves the performance of the proof
search engine. Novices to the system now easily succeed with complex proofs
where before professionals would have had to manually encode search strategies.

Unsurprisingly, the development of Modular ACL2 pinpoints the major prob-
lem with modularization of ACL2 programs: the hiding of inductive structures.
We intend to tackle this challenging problem over the next year and expect to
report progress on Modular ACL2 then. In the meantime, we will deploy and
maintain our implementation to get feedback through classroom experience.
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Abstract. In this paper, we present our initial design and implementa-
tion of a declarative network verifier (DNV). DNV utilizes theorem prov-
ing, a well established verification technique where logic-based axioms
that automatically capture network semantics are generated, and a user-
driven proof process is used to establish network correctness properties.
DNV takes as input declarative networking specifications written in the
Network Datalog (NDlog) query language, and maps that automatically
into logical axioms that can be directly used in existing theorem provers
to validate protocol correctness. DNV is a significant improvement com-
pared to existing use case of theorem proving which typically require
several man-months to construct the system specifications. Moreover,
NDlog, a high-level specification, whose semantics are precisely compiled
into DNV without loss, can be directly executed as implementations,
hence bridging specifications, verification, and implementation. To vali-
date the use of DNV, we present case studies using DNV in conjunction
with the PVS theorem prover to verify routing protocols, including even-
tual properties of protocols in dynamic settings.

Keywords: Declarative networking, network protocol verification,
domain-specific languages, theorem proving.

1 Introduction

In recent years, we have witnessed a proliferation of new overlay networks [24]
that use the existing Internet to enable deployable network evolution and in-
troduce new services. Concurrently, as sophisticated, bandwidth-intensive, and
even mission-critical services are being deployed over heterogeneous network in-
frastructure, there is increased demand for new network routing protocols that
can flexibly adapt to a wide range of variability in network connectivity and
data traffic patterns. This has cummulated into recent efforts at clean-slate ef-
forts aimed at redesigning the Internet.

Given the proliferation of new architectures and protocols, there is a growing
consensus on the need for formal software tools and programming frameworks
that can facilitate the design, implementation, and verification of new protocols.
This has lead to several recent proposals broadly classified as: (1) algebraic and

A. Gill and T. Swift (Eds.): PADL 2009, LNCS 5418, pp. 61–75, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



62 A. Wang et al.

logic frameworks [11,9] that enable protocol correctness in the design phase;
(2) testing platforms [16,27] that provide mechanisms for runtime verification
and distributed replay, and (3) programming toolkits [8,14] that enable network
protocols to be specified, implemented, and model-checked.

In this paper, we present our initial design and implementation of a declarative
network verifier (DNV). Our work is a significant step towards bridging network
specifications, protocol verification, and implementation within a common lan-
guage and system. DNV achieves this unified capability via the use of declarative
networking [20,19,18], a declarative domain-specific approach for specifying and
implementing network protocols, and theorem proving, a well established verifi-
cation technique based on logical reasoning.

In declarative networking, network protocols are specified using a declara-
tive logic-based query language called Network Datalog (NDlog). In prior work,
it has been shown that traditional routing protocols can be specified in a few
lines of declarative code [20], and complex protocols such as Chord DHT [31]
in orders of magnitude less code [19] compared to traditional imperative imple-
mentations. This compact and high-level specifications enables rapid prototype
development, ease of customization, optimizability, and the potentiality for pro-
tocol verification. When executed, these declarative networks result in efficient
implementations, as demonstrated by the P2 declarative networking system [1].

Recent significant advances in model checking of network protocol implemen-
tations include MaceMC [13] and CMC [7]. Compared to these proposals, DNV
has the advantage that it achieves complete verification for networks of arbitrary
size, a long-standing challenge in any practical network verification system. In-
complete verification is a common limitation in MaceMC and CMC due to the
the state-explosion problem, particularly when used to verify large networks
with complex protocol behavior. In addition, since DNV directly verifies declar-
ative networking specifications, an explicit model extraction step via execution
exploration is not required.

This paper makes the following two contributions. First, we propose DNV, a
declarative network verifier that leverages declarative networking’s connection
to logic programming to automatically compile high-level NDlog program into
formal specifications as axioms without semantics loss, which can be further used
in a theorem prover to validate protocols. A semi-automated proof guided by
the user is then carried out and mechanically checked in a general-purpose the-
orem prover to establish the protocol correctness properties. High-level NDlog
programs that have been verified in DNV can be directly executed as imple-
mentations, hence bridging specifications and implementations within a unified
declarative framework.

Second, we demonstrate that DNV enables the verification of network pro-
tocols in dynamic settings, where protocols continuously update network state
based on incoming network events. DNV achieves this via its use of declarative
networking which incorporates the notion of periodic soft-state [26] maintenance
of network state into its query language and semantics. Soft state is central
and critical in networking implementations because in a very simple manner it
provides eventually correct semantics in the face of reordered messages, node
disconnection, and other unpredictable occurrences.
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DNV aims to provide a practical solution towards network protocol verifica-
tion, one that achieves a unifying framework that combines specifications, verifi-
cation, and implementation. Our work is a significant improvement over existing
usage of theorem proving [12,10] which typically require several man-months
to develop the system specifications, a step that DNV reduces to a few hours
through the use of declarative networking. To our best knowledge, DNV is also
one of the first attempts at using theorem proving to verify eventual semantics
of protocols in dynamic settings.

2 Background: Declarative Networking

In this section, we will provide a brief overview of declarative networking. Inter-
ested readers are referred to references [20,19,18,17] for more details.

2.1 Datalog Language

Declarative networks are specified using Network Datalog (NDlog), a distributed
logic-based recursive query language first introduced in the database community
for querying network graphs. NDlog is primarily a distributed variant of Dat-
alog. We first provide a short review of Datalog, following the conventions in
Ramakrishnan and Ullman’s survey [25]. A Datalog program consists of a set of
declarative rules. Each rule has the form p :- q1, q2, ..., qn., which can be
read informally as “q1 and q2 and ... and qn implies p”. Here, p is the head of
the rule, and q1, q2,...,qn is a list of literals that constitutes the body of the rule.
Literals are either predicates with attributes (which are bound to variables or
constants by the query), or boolean expressions that involve function symbols
(including arithmetic) applied to attributes. In Datalog, rule predicates can be
defined with other predicates in a cyclic fashion to express recursion. The or-
der in which the rules are presented in a program is semantically immaterial;
likewise, the order predicates appear in a rule is not semantically meaningful.
Commas are interpreted as logical conjunctions (AND). The names of predicates,
function symbols, and variable names begin with an upper letter, while constants
names begin with an lowercase letter. An optional Query rule specifies the output
of interest (i.e. result tuples).

2.2 Path-Vector Protocol

We present an example NDlog program that implements the path-vector proto-
col [23], a standard textbook route protocol used for computing paths between
any two nodes in the network.

p1 path(@S,D,P,C):- link(@S,D,C),P=f_init(S,D).
p2 path(@S,D,P,C):- link(@S,Z,C1), path(@Z,D,P2,C2),C=C1+C2,

P=f_concatPath(Z,P2), f_inPath(P2,S)=false.
p3 bestPathCost(@S,D,min<C>):-path(@S,D,P,C).
p4 bestPath(@S,D,P,C):- bestPathCost(@S,D,C), path(@S,D,P,C).
Query bestPath(@S,D,P,C).
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The program takes as input link(@S,D,C) tuples, where each tuple corresponds
to a copy of an entry in the neighbor table, and represents an edge from the node
itself (S) to one of its neighbors (D) of cost c. NDlog supports a location specifier in
each predicate, expressed with @ symbol followed by an attribute. This attribute
is used to denote the source location of each corresponding tuple. For example,
link tuples are stored based on the value of the S field.

Rules p1-p2 recursively derive path(@S,D,P,C) tuples, where each tuple repre-
sents the fact that the path from S to D is via the path P with a cost of C. Rule
p1 computes one-hop reachability trivially given the neighbor set of S stored in
link(@S,D,C). Rule P2 computes transitive reachability as follows: if there exists
a link from S to Z with cost C1, and Z knows about a shortest path P2 to D
with cost C2, then transitively, S can reach D via the path f concatPath(Z,P2)

with cost C1+C2. Note that p1-p2 also utilizes two list manipulation functions to
maintain path vector p: f init(S,D) initializes a path vector with two elements
S and D, while f concatPath(Z,P2) prepends Z to path vector P2.

Rules p3-p4 take as input hop tuples generated by rules p1-p2, and then derive
the hop along the path with the minimal cost for each source/destination pair.
The output of the program is the set of bestPathHop(@S,D,Z,C) tuples, where
each tuple stores the next hop Z along the shortest path from S to D. To prevent
computing paths with cycles, an extra predicate f inPath(P, S) = false is used
in rule p2, where the function f inPath(P, S) returns true if node S is in the
path vector P.

The execution model of declarative networks is based on a distributed variant
of the standard evaluation technique for Datalog programs that is commonly
known as semi-näıve (SN) evaluation [18], with modifications to enable pipelined
asynchronous evaluation suited to a distributed setting. Reference [18] provides
details on the implementation and execution model of declarative networking.

For the purposes of formal verification, we do not consider the location spec-
ifiers within the proof. This does not affect the program in terms of the set of
eventual facts being generated but does affect the notion of data distribution.
Our extended technical report [32] elaborate this issue in greater detail.

3 Overview of DNV

Figure 1 provides an overview of DNV’s basic approach towards unifying speci-
fications, verification, and implementation within a common declarative frame-
work. DNV takes as input NDlog program specifications of the declarative
protocol (see Section 2 for an example). Since most theorem provers leverage
type information, DNV further includes a Type Schema with the NDlog program
specifications. This is not unlike a database-like schema storing the attribute
types of all network state being used.

In order to carry out the formal verification process, the NDlog programs
and schema information are automatically compiled into formal specifications
recognizable by a standard theorem prover (e.g. PVS [21], Coq [3]) using the
axiom generator. As depicted in the left-part of Figure 1, At the same time, the
protocol designer specifies high-level invariant properties of the protocol to be
checked via two mechanisms: invariants can be written directly as theorems into
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Fig. 1. DNV overview block diagram. Arrows denote flow of information.

the theorem prover, or expressed as NDlog rules which are then automatically
translated into theorems using the axiom generator. The first approach increases
the expressiveness of invariant properties, where one can reason with invariants
that can be only expressible in higher order logic. The second approach has
restricted expressiveness based on NDlog’s use of Datalog, but has the added
advantage that the same properties expressed in NDlog can be verified by both
theorem prover and at runtime.

From the perspective of network designers, as depicted in the left part of
Figure 1, they reason about their protocols using the high-level protocol specifi-
cations and invariant properties. The NDlog high-level specifications are directly
executed and also proved within the theorem prover. Any errors detected in the
theorem prover can be corrected by changing the NDlog specifications. Our ini-
tial DNV prototype uses the PVS theorem prover, due to its substantial support
for proof strategies which significantly reduce the time required in the actual
proof process. However, the techniques describe in this paper are agnostic to
other theorem provers. We have also validated some of the verification presented
in this paper using the Coq [3] prover.

To illustrate the verification process, we step through the path-vector protocol
example, shown in Section 2. For ease of exposition, we defer the treatment of
soft-state derivations and events to Section 4, focusing instead on traditional
hard-state data (with infinite lifetimes) that are valid until explicitly deleted.

3.1 Axiom Generation: From NDlog Rules to PVS Axioms

The first step in DNV involves the automatic generation of PVS formalization
(or axioms) directly from NDlog rules. Based on the proof-theoretic semantics of
Datalog [30], there is a natural and automatic mapping from NDlog rules to PVS
axioms.1 Before showing the actual PVS encoding for the path-vector protocol,
it is informative to understand the proof-theoretic semantics of p1 and p2 as
inference rules used in proof system:

The inference rule p1 expresses the logical statement ∀(S, D, P, C).link
(S, D, C) ∧ P = finit(S, D) =⇒ path(S, D, P, C).
1 The equivalence of NDlog’s proof-theoretic semantics and operational semantics

guarantees that DNV is sound in the sense that, the correctness property established
by DNV corresponds precisely to the operational semantics of NDlog execution.
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Rule p2 is slightly more complex as some attribute variables do not appear in
the resulting head. The general technique to express these variables is in terms
of existential quantification. Accordingly, rule p2 expresses the logical statement
that ∀(S, D, P, C).∃(C1, C2, Z, P2).link(S, Z, C1)∧ bestPath(Z, D, P2, C2)∧C =
C1 + C2 ∧ P = fconcatPath(Z, P2) =⇒ path(S, D, P, C).

From the above logical statements, DNV generates the following axioms:

path_generate: AXIOM
FORALL (S,D,Z:Node)(C:Metric)(P:Path):(link(S,D,C) AND P=f_init(S,D)) OR
((EXISTS (P2:Path)(C1,C2:Metric):(link(S,Z,C1) AND bestPath(Z,D,P2,C2)

AND C=C1+C2 AND P=f_concatPath(Z,P2))) =>path(S,D,P,C)
path_close: AXIOM
FORALL (S,D,Z:Node)(C:Metric)(P):path(S,D,P,C)=>

((link(S,D,C) AND P=f_init(S,D)) OR (EXISTS (Z:Node)(P,P2:Path)
(C1,C2:Metric): (link(S,Z,C1) AND bestPath(Z,D,P2,C2) AND C=C1+C2
AND P=f_concatPath(Z,P2))))

The first path generate axiom is generated in a straightforward manner from
rules p1 and p2, where the logical OR indicates that path facts can be gener-
ated from either rule. The path close axiom indicates that the path tuple is the
smallest set derived by the two rules, ensuring that these axioms automatically
generated in DNV correctly reflected the minimal model of NDlog semantics.
The list manipulation functions f concatPath and f init are predefined from
PVS primitive types. We omit this discussion due to space constraints.

PVS provides inductive definitions that allows the two axioms above to be
written in a more concise and logically equivalent form:

path(S,D,(P: Path),C): INDUCTIVE bool =
(link(S,D,C) AND P=f_init(S,D) AND Z=D) OR (EXISTS (C1,C2:Metric)
(Z2:Node) (P2:Path): link(S,Z,C1) AND path(Z,D,P2,C2) AND
C=C1+C2 AND P=f_concatPath(S,P2) AND f_inPath(S,P2)=FALSE)

The universal quantifiers over the attributes to path (i.e. S,D,Z...) are im-
plicitly embedding and existential quantifiers such as C1 and C2 are explicitly
stated. DNV axiom generator always produces this inductive definition, and em-
ploys the axiom form only in the presence of mutual dependencies among the
head predicates which makes PVS inductive definition impossible. Also note that
the use of f inPath(S,P2)=FALSE constraint prevents loops in path.

Accordingly, NDlog rules p3-p4 are automatically compiled into PVS formal-
ization in a similar way:

bestPathCost(S,D,min_C): INDUCTIVE bool =
(EXISTS (P:Path): path(S,D,P,min_C)) AND (FORALL (C2:Metric):

(EXISTS (P2:Path): path(S,D,P2,C2)) => min_C<=C2)
bestPath(S,D,P,C):INDUCTIVE bool =
bestPathCost(S,D,C) AND path(S,D,P,C)

In addition to the above PVS encoding for NDlog rules, type definitions are pro-
duced automatically from the database schema information. For instance, given
a database schema definition for link(src:string, dst:string, metric:integer)

the correspondingPVS type declaration is link:[Node,Node,Metric -> bool] where
Node is declared as a string type and Metric as an integer type.
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3.2 Proving Route Optimality in the Path-Vector Protocol

The next step involves proving actual properties in PVS. Properties are expressed
as PVS theorems and serve as starting points (or goals) in the proof construction
process. We illustrate this process by verifying the route optimality property in
the path-vector protocol expressed in the following PVS bestPathStrong theorem:
bestPathStrong: THEOREM
FORALL (S,D:Node) (C:Metric) (P:Path): bestPath(S,D,P,C) =>

NOT (EXISTS (C2:Metric) (P2:Path): path(S,D,P2,C2) AND C2<C)

The above theorem specifies that for a given bestPath(S,D,P,C) from S to D,
P is the optimal path, i.e. there does not exist another path P2 from S to D with
lower cost C2.

Given the above theorem, one can then utilize PVS to carry out the proof
process. PVS performs the proof in a goal-directed fashion, in this case, start-
ing from the bestPathStrong goal, and then recursively reducing it to subgoals
until all subgoals are trivially true. PVS has approximately 100 built-in proof
strategies, of which 20 are usually sufficient to automate a majority of the proof
effort. We display the strawman proof process that does not utilize any user-
defined proof strategies specific to declarative network beyond PVS’s built-in
proof commands:
("" (skosimp*) (expand bestPath) (prop) (expand bestPathCost)
(prop) (skosimp*) (inst -2 C2!1) (grind))

The proof script reflects the interactive proof process in PVS directed by the
user, where PVS takes care of all low level proof details and allows the user
to concentrate on high-level proof strategies. Without going into details of each
PVS command, we provide a high-level intuition of each step. The first com-
mand skosimp* performs repeated skolemization that removes universal quanti-
fiers S,D,C and P in the theorem. Skolemization is generally the first proof step
to try in proving any universal quantified theorems. The subsequent two expand

commands are used to unfold the earlier inductive definition shown in 3.1, each
followed by prop that performs proportional simplification. Then skosimp* is
employed to remove universal quantifiers and inst to instantiate the existential
quantified variable with proper instance (C2!1). The rest of the proof is complete
by using PVS’s grind command which performs skolemization, heuristic instan-
tiation, propositional simplification and decision procedures for linear arithmetic
and equality.

Once the above proof script is supplied, PVS requires only fraction of a second
to carry out the actual proof. When the proof is completed, it covers all instances
of the network. This is in contrast to model checking, which explores only specific
network instances. In addition to proving the route optimality property of the
declarative path-vector protocol, we have proven properties such as the potential
cycles in the protocol if the cycle check (enforced using the f inPath function)
is removed.

The strawman proof process here is restricted to PVS’s built-in proof com-
mands, and does not utilize any user-defined proof strategies that exploits
domain-specific information. As a result, the proof requires an expert in declar-
ative network and theorem proving. Given that our target users are network
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designers, the proof process should ideally be automated. In reference [32], we
discuss the potential of using domain-specific PVS strategies tailored to declar-
ative networking to support the proof construction.

4 Soft-State, Events and Network Dynamics

Up to this point, we have limited our verification to a subset of the complete ND-
log language by omitting the treatment of soft-state tuples (i.e. predicates). This
simplification enables us to generate axioms recognizable by a theorem prover
directly from NDlog programs without having to worry about the semantics of
time and data expiration. In practice, soft-state data and events are central in
network protocols, and adopted in many declarative network implementations.
In the rest of this section, we will introduce the soft-state model in declarative
networking, describe how rules with soft-state predicates (referred as soft-state
rules) can be verified in a similar fashion as shown in Section 3, by first rewrit-
ing soft-state rules into logically equivalent rules with only hard-state predicates
(i.e.hard-state rules).

4.1 Soft-State Model in Declarative Networking

Declarative networking incorporates support for soft-state [26] derivations com-
monly used in networks. In the soft state storage model, all data (input and
derivations) has an explicit “time to live” (TTL) or lifetime, and all expired
tuples must be explicitly reinserted with their latest values and a new TTL or
they are deleted.

To support soft-state, an additional language feature is added to the NDlog
language, in the form of a materialize [19] declaration at the beginning of each
NDlog program that specifies the TTL of predicates. For example, the expression
materialized(link,10,keys(1,2)) specifies that the link tuple is stored at a table
with primary key set to the first and second attributes (denoted by keys(1,2)
and that each link tuple has a lifetime of 10 seconds2. If the TTL is set to
infinity, the predicate will be treated as hard-state.

The soft-state storage semantics are as follows. When a tuple is derived, if
there exists another tuple with the same primary key but differs on other at-
tributes, an update occurs, in which the new tuple replaces the previous one. On
the other hand, if the two tuples are identical, a refresh occurs, in which the
existing tuple is extended by its TTL.

For a given predicate, in the absence of any materialize declaration, it is
treated as an event predicate with lifetime set to zero. Since events are not
stored, they are primarily used to trigger other rules or in response to network
events. Reference [17] provides more details on how soft-state storage model and
events are implemented within a declarative networking engine.

2 Following the conventions of the P2 declarative networking system, attribute 0 is
reserved for the predicate name.
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4.2 Soft-State to Hard-State Rewrite in DNV

The rule rewrite consists of two steps. First, all soft-state predicates of the
form p(...) where “...” refer to predicate arguments, are translated into an
equivalent hard-state predicate of the form p(...,Tc,Tl), where the additional
attributes Tc and Tl denote the creation time and lifetime of each tuple p re-
spectively. This initial rewrite step makes explicit the creation time and lifetime
by adopting Tc, Tl in each soft-state predicate. Event predicates are rewritten
in a similar fashion. However, Tl is omitted since events have zero lifetime by
definition.

After the first step, additional constraints reflecting soft-state semantics are
added to ensure that all soft-state facts only process with other facts valid within
the same window period of time, as expressed in terms of constraints over Tc and
Tl. Consider soft-state rules of the form, e : −e1, s1, s2, ..., sn. This rule triggered
by input event e1 with creation time Tce1, takes as input both the triggering
event and several soft-state predicates s1, s2, ..., sn, and generates a event. The
rewritten equivalent hard-state rules is of the form:

e(..., T ce1) : −e1(..., T ce1), s1(..., T cs1, T ls1), s2(..., T cs2, T ls2), ..., sn(..., T csn, T lsn),
. T cs1 < Tce1 ≤ Tcs1 + tls1, ..., T csn < Tce1 ≤ Tcsn + T lsn.

Since the event e1 directly triggers the derivation of e, the creation time of
the derived event e is set to be the same as that of the input e1 (i.e. Tce1). An
additional n constraints Tcsi < Tce1 ≤ Tcsi +T lsi are added to ensure that only
soft-states si with valid time interval [Tcsi, T csi+T lsi] that always overlaps with
Tce1 are used to generate e.

Another possible class of soft-state rules are of the form, e : −s1, s2, ..., sn,
where an event e is generated by sets of soft-states. The main difference compared
to the previous soft-state rule is the lack of a triggering event. The rewritten
hard-state rule is of the form:

e(..., T c) : −s1(..., T cs1, T ls1), s2(..., T cs2, T ls2), ..., sn(..., T csn, T lsn), T c=max< Tcs1,

. T cs2, ..., T csn >,Tcs1 < Tc ≤ Tcs1 + tls1, ..., T csn < Tc ≤ Tcsn + T lsn.

Note that Tc is set to the max of all possible creation times of the input
soft-state predicates (since the derived fact is true only when all the input facts
are present).

The same rewrite process applies to rules that derive soft-state predicates s
instead of events e. The main difference is an additional Tl attribute to s in
the rewritten rule. This Tl attribute is set to the to the declared lifetime in
corresponding table for s (indicated in the materialize statement). We omit the
presentation due to space constraints.

5 Case Study: Distance-Vector in a Dynamic Network

In this section, we illustrate the capability of DNV in reasoning about eventual
semantics of protocols in dynamic networks. We base our illustration on the ver-
ification of the distance-vector protocol, commonly used for computing shortest
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routes in a network. Due to space constraints, we are not able to show exhaus-
tively all the PVS specifications and proofs. The interested reader is referred to
reference [6] for the complete PVS axioms, theorems, and proofs.

5.1 Distance Vector Protocol Specification in NDlog

The following soft-state NDlog program implements the distance-vector protocol,
computing best paths with least cost:

materialize(hop,10,keys(1,2,3)).
materialize(bestHop,10,keys(1,2)).
materialize(bestHopCost,10,keys(1,2)).
dv1 hop(@S,D,D,C) :- link(@S,D,C).
dv2 hop(@S,D,Z,C) :- hopMsg(@S,D,Z,C).
dv3 bestHopCost(@S,D,min<C>) :- hop(@S,D,Z,C).
dv4 bestHop(@S,D,Z,C) :- bestHopCost(@S,D,C), hop(@S,D,Z,C).
dv5 hopMsg(@N,D,S,C1+C2):-periodic(@S,5),bestHop(@S,D,Z,C1),link(@S,N,C2).
Query bestHop(@S,D,Z,C)

This program derives soft-state predicates hop, bestHop, and bestHopCost with
TTL of 10 seconds, and an event predicate hopMsg, and takes as input link tuples
which represents dynamic network topology and is implemented by some periodic
neighbor maintenance mechanism [6].

First, rules dv1-dv2 derive hop(@S,D,Z,C) tuples, where Z denotes the next hop
(instead of the entire path) along the path from S to D. Second, the protocol is
driven by the periodic generation of hopMsg(@S,D,Z,C) in rule dv5, where each
node S advertises its knowledge of all possible best hops table (bestHop) to all
its neighbors. Note that bidirectional connectivity and cost is assumed. Each
node receives the advertisements as hopMsg events (rule dv2) which it then stores
locally in its hop table. Finally, Rules dv3-dv4 compute the best hop for each
source/destination pair in a similar fashion as the earlier path-vector protocol.

Unlike the path-vector protocol presented in Section 2.2, the distance-vector
protocol computes only the next hop along the best path, and hence does not
store the entire path between any two nodes.

5.2 Soft-State Rewrite and Automated Axiom Generation

The following NDlog rules dv1-dv6 shows the equivalent hard-state rules after
applying the soft-state rewrite process described in Section 4.2.

dv1 hop(@S,D,D,C,Tc,10) :- link(@S,D,C,Tc,10).
dv2 hop(@S,D,Z,C,Tc,10) :- hopMsg(@Z,D,W,C2,Tc2), Tc=Tc2+5, C=C2+1.
dv3 bestHopCost(@S,D,min<C>,Tc,10) :- hop(@S,D,D,C,Tc,10).
dv4 bestHop(@S,D,Z,C,Tc,10) :- bestHopCost(@S,D,C,Tc,10),

hop(@S,D,Z,C,Tc1,10), Tc1<Tc<=Tc1+10.
dv5 hopMsg(@N,D,Z,C,Tc) :- periodic_dv(@S,5,Tc), bestHop(@S,D,Z,C,Tc1,10),

link(@S,N,C,Tc2,10), Tc2<Tc<=Tc2+10, Tc1<Tc<=Tc1+10.
dv6 periodic_dv(@S,5,Tc) :- periodic_dv(@S,5,Tc2), Tc=Tc2+5
Query bestHop(@S,D,Z,C,Tc,Tl)
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Rules dv1-dv5 are the corresponding hard-state rewrites, and dv6 emulates the
behavior of periodic streams employed in dv5, as described in Section 4.2. We
introduce an extra constraint Tc=Tc2+5 in rule dv2. This condition is required so
that causality of rule execution is preserved within one interval: resulting hopMsg

events generated within one periodic interval derives hop facts used in the next
period internal and not vice versa. We note that this addition constraint is
automatically added: required only in cases when rules depend on each other in
a cyclical fashion (e.g. hop derived in dv1-dv2, hopMsg in dv5, and bestHop in dv4),
a dependency that can be detected via static check.

Based on this rewritten program, the automatically generated PVS axioms
are as follows:

hopMsg(S,D,Z,C,Tc): INDUCTIVE bool =
(EXISTS (Tc2,T3:Time): bestHop (S,D,Z,C,Tc2,10) AND periodic(S,5,Tc)

AND link(S,D,Tc3,10) AND Tc2<Tc<=Tc2+10 AND Tc3<Tc<=Tc3+10 AND C=1)
hop(S,D,Z,C,Tc,Tl): INDUCTIVE bool =
(link(S,D,Tc,10) AND Z=D AND Tl=10 AND C=1) OR (EXISTS (C2:Metric)

hopMsg(S,D,Z,C2,Tc2) AND C=C2+1 AND Tl=10 AND Tc=Tc2+5)
bestHopCost(S,D,MIN_C,Tc,Tl): INDUCTIVE bool =
(EXISTS (Z:Node): hop(S,D,Z,MIN_C,Tc) AND Tl=10) AND

(FORALL (C:Metric): (EXISTS (Z:Node): hop(S,D,Z,C,Tc,10))=>MIN_C<=C)
bestHop_refresh: AXIOM
FORALL (S,D,Z:Node) (C:Metric) (Tc:Time): bestHopCost(S,D,C,Tc,10)

AND hop(S,D,Z,C,Tc,10)=>bestHop(S,D,Z,C,Tc,10)
bestHop_close: AXIOM
FORALL (S,D,Z:Node) (C:Metric) (Tc:Time): bestHop(S,D,Z,C,Tc,10)

=> (bestHopCost(S,D,C,Tc,10) AND hop(S,D,Z,C,Tc,10))
periodic_dv(S,I,Tc): INDUCTIVE bool =
EXISTS (Tc2:Time): periodic_dv(S,I,Tc2) AND Tc=Tc2+5 AND I=5

Recall automatic axiom generation process in Section 3.1, PVS axioms would
be explicitly used in face of mutual dependencies between rules (that derive
bestHop, hop, and hopMsg). To break the dependency, we therefore specify dv4
with two axioms bestHop refresh and bestHop close.

5.3 Eventual Convergence Proof in a Stable Network

The lack of knowledge of the entire path in the distance-vector protocol comes
at the expense of potential update loops in the presence of link updates. This
is a well-known limitation of the distance-vector protocol, commonly known as
the count-to-infinity problem.

Our verification is performed on a 4-node network instance as shown in
Figure 2. Note that this instance represents a loop consisting of three nodes
(a, b, and c) that can reach the rest part of the network via a fourth node d, and
the results of this verification apply to any arbitrary network that contains such
a loop. For ease of exposition we do not consider computation of link tuple here
and supply this network instance using the following PVS inductive definition,
where each clause connected by logical operator OR represents a link between two
nodes:
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link(S,D,C,Tc,Tl): INDUCTIVE bool =
((S=a AND D=b AND C=1 AND Tl=10 AND (EXISTS (i:posnat): Tc=5*i)) OR
((S=b AND D=c AND C=1 AND Tl=10 AND (EXISTS (i:posnat): Tc=5*i)) OR
...
((S=a AND D=d AND C=1 AND Tl=10 AND (EXISTS (i:posnat): Tc=5*i))

Network convergence is expressed using the following theorem:

bestHopCost_converge: THEOREM
EXISTS (j:posnat): FORALL (S,D:Node)(C:Metric)(i:posnat): (i>j)
=> bestHopCost(S,D,C,5*i,10) = bestHopCost(S,D,C,5*j,10)

Given an input network, the distance-vector protocol requires a number of
rounds of communication among all nodes, for route advertisements (in the form
of hopMsg) to be propagated in the network. In the above theorem, the existential
quantified variable j denotes the initial number of periodic intervals (set to be at
least the network diameter) required to propagate all route advertisements. The
theorem states that for any arbitrary time i after j, the value of bestHopCost

always converges (i.e. no longer changes).

5.4 Count-to-Infinity Analysis in a Dynamic Network

In the final DNV example, we demonstrate the capability of DNV to prove the
presence of the count-to-infinity problem in the distance-vector protocol. This is
a well-studied limitation where the protocol potentially diverges (i.e. not reach
steady state) in the presence of link failures.

Before showing the actual proofs, we provide a textbook

a

d

b c

Fig. 2. Network
Dynamics

example [23] that clearly demonstrates the problem intuitively.
Revisiting the network in Figure 2, when link(a,d) fails, node
a would advertises this information to its immediate neighbors
b and c. However, despite the fact that d is no longer reachable
from either a b or c, based on information that c can reach d

in two hops, b would conclude that it can reach d in three
hops. Node c makes a similar conclusion. In the next round of
updates, node a learns that b and c can reach d in three hops, and updates its
distance to d as four accordingly. This cycle continues indefinitely, resulting in
the count-to-infinity problem.

The proof requires a network scenario that results in a count-to-infinity prob-
lem. Using the example described above, we supply this network dynamics using
the following PVS inductive definition:

link (S,D,C,Tc): INDUCTIVE bool =
((S=a AND D=b AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc<100)) OR
((S=b AND D=a AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc<100)) OR
...
((S=a AND D=d AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc<100)) OR
((S=d AND D=a AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc<100)) OR
((S=a AND D=b AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc>=100)) OR
((S=b AND D=a AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc>=100)) OR
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...
((S=c AND D=b AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc>=100)) OR
((S=b AND D=c AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc>=100))

The definition indicates that the link(a,d) and link(d,a) facts are only
present before time 100, denoting that a link failure between nodes a and d

happens at time 100. The count-to-infinity theorem is expressed as follows:

bestHop_increase_to_infinity: THEOREM
FORALL (a,b,d:Node)(t:Time)(c:Metric):(t>100 AND bestHop(a,d,b,c,t,10))=>
(EXISTS (t’:Time)(c’:Metric):(t’>t AND c’>c AND bestHop(a,d,b,c’,t’,10)))

The theorem above states that if the distance vector protocol diverges, the
best hop from a to d will increase indefinitely over time, a symptom of the
count-to-infinity problem. In reference [6], we have the complete proof of this
theorem, as well as addition theorems that further verify the presence of the
count-to-infinity problem. Interestingly, we have been able to prove a stronger
PVS theorem specific to a three-node network cycle: ∀b, d, a, c, t.(∃i.t = i×5∧t >
100) =⇒ (bestHop(b, d, a, c, t, 10) =⇒ bestHop(b, d, a, c+2, t+10, 10)), which
expresses the precise pattern that the value of cost argument increases by 2 at
every two update intervals of 10 seconds.

We further verify that a well-known solution to this problem, known as the
split-horizon solution can avoid any two-node cycle, and show that this solution
is insufficient for fixing the count-to-infinity problem in a three-node cycle. Refer
to our extended technical report [32] for more details.

6 Related Work

We briefly survey existing work on network protocol verification.
Classical theorem proving has been used in the past few decades for verifi-

cation of network protocols [29,5,10,4]. Despite extensive work, this approach
is generally restricted to protocol design and standards, and cannot be directly
applied to protocol implementation. A high initial investment based on domain
expert knowledge is often required to develop the system specifications accept-
able by some theorem prover (up to several man-months). Therefore, even after
successful proofs in the theorem prover, the actual implementation is not guar-
anteed to be error-free. DNV avoids this problem by using a common executable
declarative networking language that can be directly verified in a theorem prover.

Runtime verification techniques (e.g. [15,16,27]) is a mechanism for checking
at runtime that a system does not violate expected properties. Since declarative
networks utilize a distributed query engine to execute its protocols, these checks
can be expressed as monitoring queries in NDlog. However, any runtime veri-
fication scheme will incur additional runtime overheads, and subtle bugs may
require a long time to be encountered. Moreover, the properties can be checked
in this case are restricted to those can be expressed in NDlog. In particular,
any universal quantified properties, such as bestPathStrong we demonstrated in
Section 3.2 is not checkable in runtime verification based on NDlog query engine.

Model checking is a collection of algorithmic techniques for checking tempo-
ral properties of system instances based on exhaustive state space exploration.
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Recent significant advances in model checking network protocol implementa-
tions include MaceMC [13] and CMC [7]. Compared to DNV, these approaches
are sound as well, but not complete in the sense that the large state space persis-
tent in network protocols often prevents complete exploration of the huge system
states. While the heuristics used in exploration maximize the chances of detect-
ing property violations, they are typically inconclusive and restricted to small
network instances and temporal properties.

By adopting a theorem-proving based approach in this paper, DNV is more
expressive and flexible compared to MaceMC and CMC, since higher-order log-
ics can be used to specify network properties. In addition, since DNV directly
verifies declarative networking specifications, an explicit model extraction step
via execution exploration is not required.

7 Future Work

We are in the process of applying DNV to more complex overlay networks,
and reasoning about routing protocols, particularly when integrated with poli-
cies [11,9]. Our initial experiences suggest that DNV is a promising approach
towards a unified framework that integrates specification, implementation, and
verification. Moving forward, we have identified a few areas of future work, in
the areas of domain specific proof strategies [22,2], proof automation [33,34,28].
We further plan to leverage PVS’s support for CTL (variant of temporal logic)
model-checking [21] to integrate model checking into DNV. Our extended re-
port [32] details our ongoing and future work.
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3. Bertot, Y., Castéran, P.: Interactive theorem proving and program development.

coq’art: The calculus of inductive constructions (2004)
4. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for

distance vector routing protocols. J. ACM 49(4), 538–576 (2002)
5. Cardell-Oliver, R.: On the use of the hol system for protocol verification. In:

TPHOLs, pp. 59–62 (1991)
6. DNV use cases for protocol verification,

http://www.seas.upenn.edu/∼anduo/dnv.html
7. Engler, D., Musuvathi, M.: Model-checking large network protocol implementa-

tions. In: NSDI (2004)

http://p2.cs.berkeley.edu
http://www.seas.upenn.edu/~anduo/dnv.html


Declarative Network Verification 75

8. Rodriguez, A., et al.: MACEDON: Methodology for Automatically Creating, Eval-
uating, and Designing Overlay Networks. In: NSDI (2004)

9. Feamster, N., Balakrishnan, H.: Correctness Properties for Internet Routing. In:
Allerton Conference on Communication, Control, and Computing (2005)

10. Felty, A.P., Howe, D.J., Stomp, F.A.: Protocol verification in nuprl. In: Y. Vardi,
M. (ed.) CAV 1998. LNCS, vol. 1427. Springer, Heidelberg (1998)

11. Griffin, T.G., Sobrinho, J.L.: Metarouting. In: ACM SIGCOMM (2005)
12. Havelund, K., Shankar, N.: Experiments in theorem proving and model checking

for protocol verification. In: Gaudel, M.-C., Woodcock, J.C.P. (eds.) FME 1996.
LNCS, vol. 1051. Springer, Heidelberg (1996)

13. Killian, C., Anderson, J., Jhala, R., Vahdat, A.: Life, death, and the critical tran-
sition: Finding liveness bugs in systems code. In: NSDI (2007)

14. Killian, C.E., Anderson, J.W., Braud, R., Jhala, R., Vahdat, A.M.: Mace: language
support for building distributed systems. In: PLDI (2007)

15. Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance
based on formal specifications. In: PDPTA (1999)

16. Liu, X., Guo, Z., Wang, X., Chen, F., Tang, X.L.J., Wu, M., Kaashoek, M.F.,
Zhang, Z.: D3S: Debugging Deployed Distributed Systems. In: NSDI (2008)

17. Loo, B.T.: The Design and Implementation of Declarative Networks (Ph.D. Dis-
sertation). Technical Report UCB/EECS-2006-177, UC Berkeley (2006)

18. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis,
P., Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative Networking: Language,
Execution and Optimization. In: ACM SIGMOD (2006)

19. Loo, B.T., Condie, T., Hellerstein, J.M., Maniatis, P., Roscoe, T., Stoica, I.: Im-
plementing Declarative Overlays. In: ACM SOSP (2005)

20. Loo, B.T., Hellerstein, J.M., Stoica, I., Ramakrishnan, R.: Declarative Routing:
Extensible Routing with Declarative Queries. In: ACM SIGCOMM (2005)

21. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.K.: PVS: Combining
Specification, Proof Checking, and Model Checking. In: Alur, R., Henzinger, T.A.
(eds.) CAV 1996. LNCS, vol. 1102. Springer, Heidelberg (1996)

22. Owre, S., Shankar, N.: Writing PVS proof strategies. In: STRATA 2003 (2003)
23. Peterson, L., Davie, B.: Computer Networks: A Systems Approach, 4th edn. Mor-

gan Kaufmann, San Francisco (2007)
24. Peterson, L., Shenker, S., Turner, J.: Overcoming the Internet Impasse Through

Virtualization. In: HotNets-III (2004)
25. Ramakrishnan, R., Ullman, J.D.: A Survey of Research on Deductive Database

Systems. Journal of Logic Programming 23(2), 125–149 (1993)
26. Raman, S., McCanne, S.: A model, analysis, and protocol framework for soft state-

based communication. In: SIGCOMM, pp. 15–25 (1999)
27. Reynolds, P., Killian, C., Wiener, J.L., Mogul, J.C., Shah, M.A., Vahdat, A.: Pip:

Detecting the Unexpected in Distributed Systems. In: NSDI (2006)
28. Riazanov, A., Voronkov, A.: The design and implementation of vampire. AI Com-

mun. 15(2), 91–110 (2002)
29. Rushby, J.: Specification, proof checking, and model checking for protocols and

distributed systems with PVS. In: Tutorial FORTE X/PSTV XVII 1997 (1997)
30. Abiteboul, S., et al.: Foundations of Databases. Addison-Wesley, Reading (1995)
31. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A

Scalable P2P Lookup Service for Internet Applications. In: SIGCOMM (2001)
32. Wang, A., Basu, P., Loo, B.T., Sokolsky, O.: Declarative Network Verification. Uni-

versity of Pennsylvania Department of Computer and Information Science Techni-
cal Report No. MS-CIS-08-34 (2008)

33. Yices, http://yices.csl.sri.com
34. Z3, http://research.microsoft.com/projects/Z3/

http://yices.csl.sri.com
http://research.microsoft.com/projects/Z3/


Operational Semantics for Declarative
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Abstract. Declarative Networking has been recently promoted as a
high-level programming paradigm to more conveniently describe and
implement systems that run in a distributed fashion over a computer
network. It has already been used to implement various networked sys-
tems, e.g., network overlays, Byzantine fault tolerance protocols, and
distributed hash tables. Declarative Networking relies upon a rule-based
programming language that resembles Datalog and allows one to declar-
atively specify the flow of networking events. However, the presence of
asynchronous communication, distribution, and imperative modification
of the program state in Declarative Networking applications have been
an obstacle for defining its semantics. Currently, the reference semantics
is determined by the runtime environment only, which hinders further ap-
plication development and makes any efforts to develop program analysis
and verification tools impossible. In this paper, we propose an operational
semantics for Declarative Networking that addresses these problems. The
semantics is parameterized to keep open a design space required at the
current stage of the language development. We also report on our first
experience with an interpreter for Declarative Networking applications
that implements the proposed semantics.

Keywords: Declarative networking, programming language semantics,
distributed systems.

1 Introduction

Design and implementation of distributed systems is a challenging task that re-
quires research efforts from various perspectives. In addition to improvements
achieved by applying more sophisticated communication protocols, novel system
designs, and more efficient algorithms, programming languages can make a sig-
nificant impact on the implementation process by supporting the programmer
with adequate constructs and primitives, e.g., control statements, type systems,
and libraries [1,2,3,4,5,6]. In this line of research, Declarative Networking stands
out as a high-level programming paradigm to more conveniently describe and
implement distributed applications that run over computer networks [5].

The leading thought behind the Declarative Networking approach is to carry
over declarative programming techniques inspired by Datalog to the domain of
systems and networking applications. It builds upon a rule-based programming
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language called P2 that allows the programmer to declaratively specify the flow
of networking events. Compared to the traditional approaches that use general
purpose imperative languages, e.g., C++ [7] and Java [8], the implementations
written in P2 reduce the code base size by several orders of magnitude, while
improving its clarity and succinctness.

The distinctive features offered by Declarative Networking attracted interest
in the networking and distributed systems community, in both academia and
industry. A growing number of implementation efforts have chosen P2 as the
programming language. The main applications are various network protocols,
including sensor networks, Byzantine fault tolerance, and distributed hash tables,
see e.g. [9,4,10,11]. The literature describing the resulting systems attributes
their success, to a large extent, to the Declarative Networking paradigm.

The initial success and increasing adoption of Declarative Networking encour-
ages the development of program analysis and verification tools for applications
written in P2. These tools require a program semantics as a starting point, e.g.,
in order to simulate the execution of P2 programs on symbolic inputs, or to trace
the flow of communication events through a sequence of rule invocations.

Unfortunately, a well-defined semantics for P2 has not been identified yet.
Asynchronous communication, distribution, and presence of imperative modi-
fications of the program state have been an obstacle. An additional source of
complexity comes from its database-oriented setting that uses distributed query
processing machinery as a basic vocabulary to define semantics. The existing
specifications are incomplete and represented in an informal style that allows
contradicting interpretations, as we show by examples in Section 3. Currently,
P2 semantics is implicitly determined by the runtime environment [12], which in
turn deviates from the descriptions in the literature [13,5]. This state of affairs
hinders further development of Declarative Networking applications and makes
any efforts to provide program analysis and verification tools for P2 impossible.

In this paper, we propose a parameterized operational semantics for Declara-
tive Networking, which addresses the open questions about the semantics of P2
programs. The semantics is given by a state transition system and is represented
by an algorithm that defines the transition relation of a given P2 program. The
algorithm contains a collection of parameters that determine the main character-
istics of P2 computations, e.g., when the effect of rule application is propagated
to the program state. We avoided a presentation of the algorithm with some
fixed valuation of the parameters, since any commitment to a particular set of
design choices might be premature at this stage of the language’s development.

In order to show the applicability of our approach we have also developed
a P2 interpreter which simulates the execution of the parametrized semantics
presented in this paper. This allows one to experiment with different choices of
semantics and have a better understanding on the impact that these parameters
have. This implementation, moreover, is a first stepping stone towards the de-
velopment of verification and symbolic execution tools. Moreover, after coupling
it with a networking back-end, it will also provide a full-fledged P2 interpreter.
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In summary, our proposed semantics generalizes and unifies both specifica-
tions as presented in the literature and determined by the runtime environment.
This can be used as a starting point for the development of new interpreters,
verification and analysis tools built on top of a formally defined semantics.

Related Work. The challenges of distributed programming are addressed by ac-
tive efforts in development of adequate programming languages and extensions.
The recent developments include Acute [6], Alice [14], Curry [3], Erlang [1], Jo-
Caml [2], Mace [4], and P2 [5]. The recurrent theme is to provide high-level
programming abstractions for dealing with distributed computation and com-
munication. Most of these languages follow functional and logic programming
paradigms and their combinations. Mace is an exception that provides means for
the specification of distributed protocols as transition systems that are compiled
to C++. Statically typed functional languages Acute, Alice, and JoCaml extend
the type discipline to values that are communicated over the network [2,15,6].
Curry, which is based on multiple paradigms, strives for a seamless integration
of distribution in the context of logical variables, non-determinism, and search.

Many of the above efforts provide experimental platforms for studying dis-
tributed programming languages. Moreover, the languages Erlang, Mace, and
P2 have been proven successful from the application development perspective.
Erlang is widely used to develop telecommunication software, while Mace and P2
have gained increasing interest in the systems and networking community. The
main applications are network protocols, including overlays, sensor networks,
Byzantine fault tolerance, and distributed hash tables, see e.g. [9,4,10,11].

In comparison with the above languages, P2 stands out due to its simplicity
and declarative foundations, while providing sufficient capabilities to develop
state-of-the-art networking applications. Its increasing adoption by systems and
networking researchers motivates our interest in its semantics, which provides a
foundation for the development of program analysis tools for P2.

We note that besides P2, Datalog has been the basis for the development of
other successful domain specific languages, e.g., for mining software artefacts us-
ing relational queries [16] and pointer alias analysis for imperative programs [17].
Tuples, which are atomic pieces of data in Datalog, are successfully applied as
a communication primitive for distributed programming, as pioneered by the
Linda system [18].

Our work can be seen as a parallel to what SLD resolution does for logic
programming systems such as Prolog. Although any implementation may follow
a particular strategy for the rule evaluation, any such strategy must conform to
SLD resolution, which serves as the reference semantics of Prolog systems. Simi-
larly, we wish to provide such a semantics foundation for declarative networking
programming languages.

2 P2 by Example

In this section, we briefly present the P2 language used for Declarative Network-
ing. Our description follows [10].
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Program states. P2 programs manipulate tables, i.e., sets of tuples, as in
relational databases. We distinguish between materialized tuples that are stored
in a distributed fashion among nodes in the network, and event tuples that carry
data between nodes and signal the occurrence of a particular event at a node.

A P2 program starts with a declaration of materialized tables. It lists the
materialized tables, and specifies the primary keys for each of them. We consider
as events all tuples in tables that are not declared as materialized. For example,
the declarations

materialize(neighbor, keys(1,2)).
materialize(sequence, keys(1)).

specify that whenever a neighbor or sequence tuple is produced by a node, it
should also be stored in a table with the corresponding name. The keys decla-
ration specifies the fields that define the primary key of each table. At any time
during execution, the runtime system ensures that there is at most one tuple
stored for any valuation of the tuple positions appearing in the key declaration.
In our example, the declaration requires that there is at most one sequence tuple
for each value of the first position.

The declaration of materialization can also constrain the lifetime and quantity
of tuples that a table can store [10]. Since these constraints are seldom in the
existing P2 code base and can be simulated within the P2 language, we choose
to omit them for clarity of presentation.

Program rules. Rules are the main component specifying computations of a
P2 program. They are represented by constructs of the form ‘head :− body.’
where body is a list of predicates applied to variables and constants, and head is
a predicate applied to a subset of variables that appear in the body of the rule.
The order of appearance of predicates in the rule, and of rules in the program
text is irrelevant.

For example, we consider the following rule.

refresh(@X) :- periodic(@X, E, 3).

The periodic predicate in the body of the rule is a special built-in event predicate.
It is automatically generated every 3 seconds by the P2 runtime environment
at the node with the address X , and is instantiated with a unique value E.
An optional fourth parameter can be used in the periodic predicate to indicate
how many times should the event be generated. With respect to the declaration
above, both refresh and periodic are events (i.e. they are not materialized). An
intuitively reading of this rule is “generate a refresh event tuple at node X
whenever there is a periodic event tuple at node X with the values E and 3.”
Note a convention that the first field of predicates appearing in the rule denotes
the address of the node where the corresponding tuple resides. It is additionally
marked by the ‘@’ symbol.

As another example, consider the following two rules.

sequence(@X, NewSeq) :- refresh(@X), sequence(@X, CurSeq),
NewSeq := CurSeq + 1.

send_updates(@X) :- refresh(@X).
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The first rule specifies that every time that a refresh event is seen at the node X ,
the current value stored at the materialized sequence table is read, incremented,
and a tuple with the new value is inserted into the sequence table at the same
node. Since the primary key of the sequence table includes only the address field,
each node can store at most one tuple in this table. The insertion of the new
tuple into the table will implicitly remove the previous tuple with the old value.
The second rule in the example produces a new send updates event tuple every
time there is a refresh event tuple at the node X .

So far, we have only seen rules that are evaluated at a single network node.
The following rule illustrates how distributed computation is performed in P2.

update(@Y, X, S) :- send_updates(@X), neighbor(@X, Y),
sequence(@X, S).

Intuitively, this rule can be read as “every time there is a send updates at a
node X , for every neighbor tuple stored at X with value Y and every sequence
tuple stored at X with value S send an update event tuple to the node Y with
the values X and S.” In a networked system, an execution of this rule at a node
X notifies its neighbors about the current sequence number of X .

Finally, we introduce a few more features of P2.

delete neighbor(@X, Y) :- purge(@X),
last_update(@X, Y, LastTime), f_now(@X) - LastTime > 20.

The keyword delete appears in the head of the rule. It is used in P2 to request
deletion of tuples from a table whenever the body of the rule is satisfied. The
built-in function f now returns the current wall-clock time of a node. In order
to execute this rule, assume that purge is an event that is periodically generated
at the node X and that last update is another materialized table storing the
time stamp of the last update event received from a node Y . Then, this rule will
remove Y from the set of X ’s neighbors if it has not received an update from Y
within an interval of 20 seconds.

3 From Declaration to Execution

The P2 language can greatly simplify network protocol development, however the
ease with which a P2 program can be turned into a working implementation is
often overstated in previous work on Declarative Networking. In many situations,
the existing description of the language is not precise enough to determine how
a P2 should be interpreted. In this section, we illustrate such cases by examples.

Event creation vs. effect. First, we consider the program given in Figure 1. It
consists of the rules presented in the previous section. As described above, every
time that a refresh event is generated the node’s sequence number is incremented
and a send updates event tuple is generated. Then, the update event will forward
the current sequence number to all neighbor nodes. Though, at this point we
need to decide what should be the value of the current sequence number. Should
it be the value before or after executing the increment?
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materialize(neighbor, keys(1,2)).
materialize(sequence, keys(1)).

refresh(@X) :- periodic(@X, E, 3).

sequence(@X, NewSeq) :- refresh(@X), sequence(@X, CurSeq),
NewSeq := CurSeq + 1.

send_updates(@X) :- refresh(@X).

update(@Y, X, S) :- send_updates(@X), neighbor(@X, Y),
sequence(@X, S).

Fig. 1. An example P2 program in which a node increments and sends its sequence
number to all of its neighbors. Various event processing schemes are conceivable where
the sequence number value either before or after the increment is sent by the last rule.

There might exist reasons to prefer one choice over the other, or even to
declare that the P2 runtime environment can make an arbitrary choice among
the two options. Unfortunately, the existing work on the P2 language does not
address such corner cases. The documentation of the P2 runtime [12] does not
go beyond an informal introduction to the language, leaving open ambiguities
such as the one presented here. A recent work [5] gives a formal definition of
both the syntax and semantics of a subset of the P2 language that does not deal
with event tuples, i.e. all tables are materialized. Thus, it does not clarify how
interactions between event processing and table updates should be handled.

Algorithms 5.1 and 5.3 in [13] implicitly suggest that updates are immedi-
ately applied after evaluating each individual rule. In our example this means
that the sequence number is incremented before sending the update. An experi-
mental evaluation using the current implementation of P2 exhibits the opposite
semantics in which events that are addressed to the same node that generated
it, so-called internal events, are propagated and evaluated before any updates
are applied to the materialized store.1 This means that we observed an update
event that contains the old sequence number.

Internal vs. external events. Under-specified semantics can lead to other sig-
nificant deviation between possible outcomes. See the example shown in Figure 2.
The presented program maintains three materialized tables that are initialized
after the declaration. Besides a neighbor table, every node contains ten store
tuples and a sequence number that is initialized to zero.

The first rule specifies that a node will increment its sequence number each
time that it receives a ping event. The second rule causes a node, upon receiving
a broadcast event, to send ten ping events to each neighbor node. Finally, the
last rule causes the node node1 to generate a broadcast event after five seconds
1 We used runStagedOverlog executable from the P2 distribution that is compiled

from the revision 2114 of the publicly available code from the anonymous SVN
server https://svn.declarativity.net/p2/trunk/

https://svn.declarativity.net/p2/trunk/
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materialize(neighbor, keys(1,2)).
materialize(store, keys(1,2)).
materialize(sequence, keys(1)).

neighbor(@X, "node1").
neighbor(@X, "node2").
neighbor(@X, "node3").

store(@X, 1).
store(@X, 2).
...
store(@X, 10).

sequence(@X, 0).

sequence(@X, New) :- ping(@X), sequence(@X, Old),
New := Old + 1.

ping(@Y) :- broadcast(@X), neighbor(@X, Y), store(@X, _).

broadcast(@X) :- periodic(@X, E, 5, 1), X = "node1".

Fig. 2. In this example, a node node1 sends ten ping messages to each neighbor. Upon
receiving a ping message, each node increments own sequence number.

of activity. After all events have been sent, received, and processed by the cor-
responding nodes, one would expect that the program reaches a state in which
every node stores the sequence number ten. However, this is not the case for the
current P2 implementation.

The reason for a different outcome is rooted in the fact that node1 sends ten
ping events to itself, whereas other nodes receive them from node1. At the node
node1, events will be processed simultaneously. They will refer to the current
sequence value zero, and each rule invocation will result in updating it to one.
Meanwhile, all other nodes will receive and process the incoming ping events
one after another, and iteratively increment their respective sequence numbers,
as we would expect, from zero to ten.

We argue that the observed behavior of the P2 program is unexpected, since
the first two rules do not contain any predicates that should be evaluated differ-
ently on different nodes.

4 P2 Programs

In this section, we present a definition of P2 programs, which is used to define
their operational semantics in Section 5.

A distributed P2 program P = 〈L,D,K,R, S0〉 consists of
– L : a set of predicate symbols,
– D : a set of data elements,
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– K : a keys-declaration,
– R : a set of declarative rules,
– S0 : an initial state.

Predicates and tuples. Each predicate symbol in p ∈ L is associated with an
arity n that is strictly greater than zero. A predicate is an expression of the form
p(v1, . . . , vn), where p ∈ L is a predicate symbol of arity n and v1, . . . , vn are
variables from a set of variables V . We will also often use the notation p(v), where
v is a sequence of variables of the appropriate length. A tuple is obtained by, given
a predicate p(v), applying a substitution σ : V → D to maps all the variables
in the predicate to values from the data domain. The assumption that the arity
of each predicate is strictly greater than zero is due to the convention that the
first argument of a predicate as well as the first position of a corresponding tuple
represent its address. Henceforth, we shall omit the ‘@’ symbol.

The set of predicate symbols is partitioned into two disjoint sets of material-
ized and event predicate symbols M and E , respectively. We have

L =M � E .

Tuples obtained from materialized predicates are called materialized tuples. Sim-
ilarly, we obtain event tuples by applying substitutions to event predicates.

Key declarations. A keys-declaration is a function K that maps each mate-
rialized predicate symbol p ∈ M of arity n to a subset K(p) ⊆ {1, . . . , n} of
indices of its fields. We assume that 1 ∈ K(p) for all materialized predicates,
i.e., the address of a predicate is always an element of its key. Given a materi-
alized tuple m = p(c1, . . . , cn), we write K↓m to denote the tuple obtained by
removing all fields that are not included into the set K(p). For example, given
m = p(c1, c2, c3, c4) and K(p) = {1, 3}, we obtain K↓m = p(c1, c3).

We say that a set of materialized tuples M is keys-inconsistent if M contains
a pair of tuples m and m′ such that m �= m′ but K↓m = K↓m′, i.e., it contains
two tuples with the same key but different values. Otherwise, we say that the
set of materialized tuples is keys-consistent.

Rules. In order to avoid some of the concerns with the interpretation of P2
programs discussed in the previous section, we include an action specification
as part of the rule declaration. Formally, an action is a keyword in the set
A = {add, delete, send, exec}. These keywords correspond to adding and deleting
materialized tuples from tables, as well as sending external events and executing
internal events. A rule in a P2 program

α h(v)︸ ︷︷ ︸
head

:−
optional︷ ︸︸ ︷
t(v0) , m1(v1), . . . , mn(vn).︸ ︷︷ ︸

body

consists of a head and a body separated by the ‘:−’ symbol such that
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– α ∈ A is an action and h(v) is a predicate,
– the body may contain an event predicate t(v0) called trigger,
– the rest of the body consists of materialized predicates mi(vi), for 1 ≤ i ≤ n,
– all variables in the head must appear in the body of the rule.

We require the following correspondence between the action and head predicate:

– if the rule action is add or delete then h(v) must be a materialized predicate,
and otherwise h(v) must be an event predicate,

– if the rule action is exec then all predicates appearing in the rule must have
the same address, i.e., either the same variable or the same constant at the
first position.

If a trigger is present in the rule then we call it a soft-rule. Otherwise we say that
the rule is a materialized-rule. Intuitively, triggers are used to control which rules
have to be evaluated and when, i.e. a soft-rule is not evaluated until an event
that matches its trigger is seen by a node. Materialized rules (without triggers)
are evaluated whenever an update is made to any of the predicates on its body.

Note that a rule can contain predicates referring to different addresses (except
for exec rules). We need to make an additional assumption on the interplay
between addresses appearing in the rule to ensure the possibility of its execution
in a distributed setting, as formalized by the following definitions.

Given a rule r, let x and y be the addresses of two predicates in the body of r.
We say that x is linked to y, denoted x � y, if there is a predicate p(x, v) in the
body of r such that y occurs among the set of parameters v. x is connected to y
if x �∗ y, where �∗ is the reflexive and transitive closure of �. An address x
is a source in the body of r, if x �∗ y for all addresses y that also appear in the
body of r. Finally, we say that a rule is well-connected if its body has at least
one source. From now on, we shall only consider P2 programs whose rules are
well-connected.

Local and basic rules. Execution in distributed setting requires a further
distinction of P2 rules. We say that a rule is local if all predicates in its body
have the same address and i) either the rule action is send, or ii) the address of
the head is equal to the address of the predicates in the body. In particular, exec
rules are always local. Finally, a basic rule is both soft and local. We say that a
P2 program is local (resp. basic) if it only contains local (resp. basic) rules.

We illustrate different rule kinds on the following example. Here, we assume
materialized predicates m, n, and p together with event predicates e and t.

r1 : send e(x, y) :− m(x, z), m(y, z).
r2 : delete m(w, v) :− e(x, y, v), n(y, v, z), m(z, w).
r3 : send t(y) :− m(x, v), n(x, v, y).
r4 : add m(x, w) :− m(x, u), m(x, v), p(x, u, v, w).
r5 : add m(x, w) :− t(x), m(x, u), m(x, v), n(x, u, v, w).

The rule r1 is invalid since x and y are disconnected in its body. All other rules
are well-connected. Rules r3–r5 are local. Soft rules are r2 and r5, while all
other rules are materialized. The only basic rule r5, i.e., it is soft and local.
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States. We define a state of a P2 program to be a pair S = 〈M, E〉 that consists
of a materialized store M and an external event queue E. The store M is a keys-
consistent set of materialized tuple. The queue E is a multi-set of event tuples.
The initial state S0 shall be used to start the program execution, as described
in the next section.

5 Semantics of Basic P2

We present the operational semantics for P2 programs, i.e., we show how program
rules are evaluated with respect to the current state of the program and define
the resulting state. In this section, we only consider P2 programs that contain
only basic rules. Section 6 presents a transformation from an arbitrary program
to a basic one. Such incremental approach simplifies the exposition and separates
the rule localization from rule execution.

Figure 3 shows a procedure Evaluate for the execution of basic P2 programs.
It consists of two nested loops. We refer to an iteration of the outer and inner
loops as step and round, respectively. The state of the program under execution
is maintained by the pair S = 〈M, E〉, which contains the materialized store and
the external event queue. We use an auxiliary function Update that updates
the materialized store. Note that this function is non-deterministic, since a P2
program can attempt to simultaneously add several tuples that are not keys-
consistent. In such case, the resulting materialized store depends on the choice
of tuples in line 2 of Update.

At each step, some events are selected from the external event queue, and then
several rounds are executed to compute the effects of applying the program rules
triggered by the selected events. We leave several choices open as parameters of
the execution procedure, e.g., how many events are selected for processing at
each step and when updates are actually applied to the materialized store.

It is important to note is that although Evaluate is described from the
global perspective on the state of the program, its adaption to the distributed
perspective is straightforward. In the distributed perspective, each node executes
the same procedure Evaluate. Since rules are basic, they can be executed
locally without requiring any information about the tuples stored at other nodes.
The only change required in the exposition of the procedure is at line 10, where
events may be sent over the network using an appropriate transport mechanism
instead of being added directly to the local event queue E.

The following are the design choices left open in the Evaluate procedure:

– External selection: We do not specify which events and how many of them
are selected at line 3 from the external event queue to be processed at each
step. Two possible choices are: (1) to non-deterministically select one event
from the queue, or (2) to select all current events in the queue.

– Internal selection: Similarly, we do not specify which events to select from
the internal event queue I at line 6. Again, we could select either (1) one
non-deterministically chosen, or (2) all events in the queue.
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procedure Evaluate

input
P = 〈L, D, K, R, S0〉 : a basic program

vars
M : materialized store
E : external event queue
�,� : set of tuples to add and delete
I, J : internal event queues

begin
1: 〈M, E〉 := S0

2: while E 	= ∅ do � step loop
3: I := select and remove elements from E
4: 〈�,�〉 := 〈∅, ∅〉
5: while I 	= ∅ do � round loop
6: J := select and remove elements from I
7: for each rule α h(v) :− t(v0), m1(v1), . . . , mn(vn) ∈ R
8: and subst. σ such that t(v0)σ ∈ J and mi(vi)σ ∈ M

do
9: case a of

10: send : E := E ∪ {h(v)σ}
11: exec : I := I ∪ {h(v)σ}
12: add : � := � ∪ {h(v)σ}
13: delete : � := � ∪ {h(v)σ}
14: end case
15: if update after each round then
16: M := Update(M, K, �,�)
17: 〈�,�〉 := 〈∅, ∅〉
18: if
19: if use only one cycle then break while
20: done � end round loop
21: E := E ∪ I
22: if update after each step then M := Update(M, K, �,�)
23: done � end step loop

end.

function Update

input
M : a set of materialized tuples
K : a keys-declaration
�,� : sets of tuples to add and delete

begin
1: M := M \ �
2: for each m ∈ � do
3: M := (M \ {m′ | K↓m = K↓m′}) ∪ {m}

end.

Fig. 3. Parametrized procedure for evaluating basic P2 rules, and its auxiliary function
to update the materialized store
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– Update: As the execution proceeds, the procedure uses the pair of sets of
tuples 〈�,�〉 to record the updates that have to be applied to the materi-
alized store. These updates can be atomically applied either: (1) at the end
of every round in line 15, or (2) at the end of every step in line 22.

– Number of cycles: Evaluate processes events using two cycles, viz., the
round and the step cycles. By breaking the internal loop at line number 19,
we achieve an execution behavior with only one evaluation cycle.

These design choices are independent, although some combinations of parameters
are not viable. For example, if considering only one cycle, then the choice
when to apply the materialized updates becomes irrelevant. Moreover, only the
cumulative effect of both selection functions is important, i.e., if they select in
conjunction either one or all events to process at each iteration.

If the variant with two cycles is used with step updates, then the internal
selection function becomes irrelevant. As no changes to the materialized store are
performed within the evaluation of rounds, the sets E and �,� do not depend,
when exiting the inner loop, on the particular choice of internal selection.

Emulating P2 implementation. To the best of our knowledge, the set of
parameters required to emulate the semantics currently implemented in P2 cor-
responds to the version with two evaluation cycles, selecting one external event
for processing each step, fully propagating the internal events in rounds until
fix-point, and updating only after the end of the step.

Recall that the original definition of P2 rules, see [10], does not specify the
actions, except for rules whose action is delete. If the head of the rule contains a
materialized predicate then the rule is implicitly assumed to have a add action.
We observe that in our formalization a basic rule of the form

h(x, v) :− t(y, v0), m1(v1), . . . , mn(vn).

where h(x, v) is an event predicate corresponds to the pair of rules below.

send h(x, v) :− t(y, v0), m1(v1), . . . , mn(vn), x �= y.

exec h(x, v) :− t(y, v0), m1(v1), . . . , mn(vn), x = y.

The explicit treatment of rule actions makes visible whether the effect of evalu-
ating these rules is different depending on whether x and y are equal addresses.
Furthermore, if we would like a node to send a message to itself, but behave as
if the message was received from the network, we have now the possibility to
write a rule

send h(x, v) :− t(y, v0), m1(v1), . . . , mn(vn).

This scheme can be used to modify the program given in Figure 2 such that all
nodes exhibit the same behavior, i.e., count up to ten.
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6 Reduction to Basic Rules

The procedure Evaluate for the execution of P2 program, as presented in the
previous section, assumed that the input program consists of basic rules. In this
section, we relax this assumption and show how any program with well-connected
rule can be transformed into a basic one. The transformation proceeds in two
steps by first making the rules local, and then turning materialized rules into
soft rules. Since these transformation can be automatically performed by the P2
runtime environment, they liberate the programmer from the burden of ensuring
the local availability of tuples necessary to rule execution and event handling to
signal updates to the materialized store.

Rule localization. Let r be a well connected rule of the form

α h(v) :− p1(x, v1), . . . , pk−1(x, vk−1), pk(yk, vk), . . . , pn(yn, vn).

such that x �= yi for each k ≤ i ≤ n, and x � yk. Let v′ be a sequence of the
variables that appear in the set {v0, . . . , vi−1}, and let |v′| denote its length.
In particular, we have that yk occurs in v′, and there is at most one event
predicates among p1, . . . , pk−1 (recall that a rule can have at most one trigger).
If all these predicates are materialized we define β to be add action and q be
a fresh materialized predicate of arity |v′| + 2 with keys-declaration K(q) that
contains all predicate fields, i.e., K(q) = {1, . . . , |v′|+ 2}. Otherwise, we have
β = send and q is a fresh event predicate symbol of arity |v′|+ 2.

Now the original rule r is replaced by the pair of rules

β q(yk, x, v′) :− p1(x, v1), . . . , pk−1(x, vk−1).
α h(v) :− q(yk, x, v′), pk(yk, vk), . . . , pn(yn, vn).

Note that the first rule has a local body, and the second rule is a well-connected
rule with exactly one address variable less than the original rule r. By iteratively
applying the above transformation to the non-local rules in the program, we
obtain a P2 program whose rules have local bodies.

After applying this transformation some rules may still not be local, since the
address in the head of a materialized update may not be equal to the address in
the rule body. Such rules have the form

α h(y, v) :− p1(x, v1), . . . , pn(x, vn).

where x �= y and α is either add or delete action. We replace each of these rules
by the pair below

send u(y, v) :− p1(x, v1), . . . , pn(x, vn).
α h(y, v) :− u(y, v).

where u is a fresh event predicate symbol of arity |v|+1. Now all rules are local.
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Rule softening. We replace all materialized rules in the program, after rule
localization procedure was applied, by soft rules as follows. First, for each mate-
rialized predicate m we create a fresh event predicate m̂ of the same arity. Then,
we replace each materialized rule of the form

α h(v) :− m1(v1), . . . , mn(vn).

by n soft rules such that for each 1 ≤ i ≤ n we insert

α h(v) :− m̂i(vi), m1(v1), . . . , mn(vn).

where the new update event m̂i serves as the rule trigger.
Finally, we create rules that generate update events whenever a new tuple is

inserted to a table. For this purpose for each add rule of the form

add m(v) :− t(v0), m1(v1), . . . , mn(vn).

we create a fresh event predicate u of the same arity as m, and replace the rule
by the three basic rules below.

exec u(v) :− t(v0), m1(v1), . . . , mn(vn).
add m(v) :− u(v).

send m̂(v) :− u(v).

We note that more sophisticated methods can be defined to localize and soften
a set of well connected rules. For example, such methods may seek for opportuni-
ties to distribute the evaluation of the body among different nodes. We leave the
development of optimized localization and softening methods for future work,
since this paper focuses on a definition of semantics for basic rules. Our local-
ization method can be viewed as a generalization of the rule localization rewrite
procedure defined by Loo et al. [5] for rules containing at most two different
addresses.

Moreover, similar to the treatment of localization in [5] our semantics to-
gether with the transformations is eventually consistent under the bursty update
network model for P2 programs that contains only materialized rules with add
actions. (Such rules define almost-Datalog programs, since they still contain
function symbols.) This kind of consistency means that if after a burst of up-
dates the network eventually quiesces then the models defined by our semantics
correspond to those of the standard semantics of Datalog.

7 Conclusions

We presented a definition and operational semantics for the P2 programming
language, which provides a programming foundation for Declarative Networking.
Our work addresses questions that were left open by the existing literature on
Declarative Networking. The main contribution of our semantics is in its utility
as a starting point for the development of program analysis and verification
tools for Declarative Networking, as well as advancing the evolution of the P2
language, its interpreters and runtime environments.
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Abstract. PADS is a declarative language used to describe the syntax and seman-
tic properties of ad hoc data sources such as financial transactions, server logs and
scientific data sets. The PADS compiler reads these descriptions and generates a
suite of useful data processing tools such as format translators, parsers, printers
and even a query engine, all customized to the ad hoc data format in question. Re-
cently, however, to further improve the productivity of programmers that manage
ad hoc data sources, we have turned to using PADS as an intermediate language
in a system that first infers a PADS description directly from example data and
then passes that description to the original compiler for tool generation. A key
subproblem in the inference engine is the token ambiguity problem — the prob-
lem of determining which substrings in the example data correspond to complex
tokens such as dates, URLs, or comments. In order to solve the token ambiguity
problem, the paper studies the relative effectiveness of three different statistical
models for tokenizing ad hoc data. It also shows how to incorporate these mod-
els into a general and effective format inference algorithm. In addition to using
a declarative language (PADS) as a key intermediate form, we have implemented
the system as a whole in ML.

1 Introduction

An ad hoc data format is any data format for which useful data processing tools do
not exist. Examples of ad hoc data formats include web server logs, genomic data sets,
astronomical readings, financial transaction reports, agricultural data and more.

PADS [7,20] is a declarative language that describes the syntax and semantics of ad
hoc data formats. The PADS compiler, developed in ML, reads these declarative de-
scriptions and produces a series of programming libraries (parser, printer, validator and
visitor) and end-to-end tools (XML translator, query engine, reformatter, error monitor,
etc.). Consequently, PADS can dramatically improve the productivity of data analysts
who work with ad hoc data. However, PADS is not (yet) a silver bullet. It takes time for
new users to learn the language syntax and even experienced users can take hours or
days to develop descriptions for complex formats. Hence, to further improve program-
mer productivity, we have developed a system called LEARNPADS that automatically
generates end-to-end data processing tools directly from example data [9,8]. It uses ma-
chine learning techniques to infer a PADS description and then it passes that description
on to the PADS compiler. The compiler will in turn produce its suite of custom data
processing tools. Hence PADS now serves as a declarative intermediate language in the
tool generation process.
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c© Springer-Verlag Berlin Heidelberg 2009
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Our past experiments [9] have shown that LEARNPADS is highly effective when the
set of tokens it uses matches the tokens used in the unknown data set. For instance,
when the unknown data set contains URLs, dates and messages the inference system
will work very well when its tokenizer contains the correct corresponding definitions
for URLs, dates and messages used in the file. If the tokenizer does not contain these
elements, inference is still possible, but the inferred descriptions are generally much
more complex than they would be otherwise.

The challenge then is to develop a general-purpose tokenizer containing a wide vari-
ety of abstractions like URLs, dates, messages, phone numbers, file paths and more. The
key problem is that when using the conventional approach to building a tokenizer (i.e.,
regular expressions), as we did in our previous work, the definitions of basic tokens
overlap tremendously. For example, “January 24, 2008” includes a word made
up of letters, a couple of numbers, some spaces and English-like punctuation such as
the “,”. Does that mean this string should be treated as an arbitrary text fragment or is
it a date? Perhaps “January” an element of an string-based enumeration unconnected
to integers 24 and 2008? Perhaps the entire phrase should be merged with surround-
ing characters rather than treated in isolation? Doing a good job of format inference
involves identifying that the string of characters J-a-n-...-0-8 should be treated
as an indivisible token and that it is in fact a date. More generally, an effective format
inference engine for ad hoc data solves the Token Ambiguity Problem – the problem of
determining which substrings of a data file correspond to which token definitions in the
presence of syntactic ambiguity.

In this paper, we describe our attempts to solve the token ambiguity problem. In
particular, we make the following contributions:

– We redesign our format inference algorithm [9] to take advantage of information
generated from an arbitrary statistical token model. This advance allows the algo-
rithm to process a set of ambiguous parses, selecting the most likely parses that
match global criteria.

– We instantiate the arbitrary statistical token model with Hidden Markov Models
(HMMs), Hierarchical Maximum Entropy Models (HMEMs) and Support Vector
Machines (SVMs) and evaluate their relative effectiveness empirically. We also
compare the effectiveness of these models to our previous approach, which used
regular expressions and conventional prioritized, longest match for disambiguation.

– We augment our algorithm with an additional phase to analyze the complexity of
inferred descriptions and to simplify them when description complexity exceeds a
threshold relative to the underlying data complexity.

2 The Token Ambiguity Problem

Consider the log files generated by yum, a common software package manager. These
log files consist of a series of lines, each of which is broken into several distinct fields:
date, time, action taken, package name and version. Single spaces separate the fields.
For instance:
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Penum action {
install Pfrom("Installed");
update Pfrom("Updated");
erase Pfrom("Erased");

};
Pstruct version_hdr {

Pint major; ’:’;
}
Pstruct sp_version {

’ ’;
Popt version_hdr h_opt;
Pid version;

}

Precord Pstruct entry_t {
Pdate date;

’ ’; Ptime time;
’ ’; action m;
": "; Pid package;

Popt sp_version sv;
};
Psource Parray yum {

entry_t[];
};

Fig. 1. Ideal PADS description of yum.txt format

May 02 06:19:57 Updated: openssl.i686 0.9.7a-43.8
Jul 16 12:37:13 Erased: dhcp-devel
Dec 10 04:07:51 Updated: openldap.x86_64 2.2.13-4
...

Figure 1 shows an ideal PADS description of yum.txt written by a human expert.
The description is structured as a series of C-like type declarations. There are base types
like Pdate (a date), Ptime (a time) and Pint (an integer). There are also structured
types such as Penum (one of several strings), Pstruct (a sequence of items with dif-
ferent types, separated by punctuation symbols), Popt (an optional type) and Parray
(a sequence of items with the same type). PADS descriptions are often easiest read from
bottom to top, so the best place to start examining the figure is the last declaration in the
right-hand column. There, the declaration says that the entire source file (as indicated
by the Psource annotation) is an array type called yum. The elements of the array
are items with type entry_t. Next, we can examine the type entry_t and observe
that it is a new-line terminated record (as indicated by the Precord annotation) and
it contains a series of fields including a date, followed by a space, followed by a time,
followed by an action (which is another user-defined type), followed by a colon and a
space, etc. We leave the reader to peruse the rest of the figure.

Unfortunately, when we ran our original format inference algorithm [9] on this data
source, rather than inferring a compact 23-line description, our algorithm returned a
verbose 179-line description that was difficult to understand and even harder to work
with. After investigation, we discovered the problem. The data can be tokenized in
many ways, and the inference system was using a set of regular expressions to do the
tokenization that was a poor match for this data set. More concretely, consider the string
“2.2.13-4.” This string may be parsed by any of the following token sequences:

Option 1: [int] [.] [int] [.] [int] [-] [int]
Option 2: [float] [.] [int] [-] [int]
Option 3: [int] [.] [float] [-] [int]
Option 4: [id]
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The best choice for this format is Option 4, id, because id can be used to parse
the data found at this point in all lines of the yum format. Unfortunately, the simplistic
disambiguation rules for the original system chose Option 2. Moreover, other lines are
tokenized in different ways. For instance, dhcp-devel, which also could have been
an id is tokenized as [word] and 0.9.7a-43.8 is tokenized as [float] [.]
[int] [char] [-] [float]. As each distinct tokenization of similar data re-
gions is introduced, the inference engine attempts to find common patterns and unify
them. However, in this case, unification was unsuccessful and the result was an overly
complex format.

The original inference algorithm disambiguates between overlapping tokens by using
the same strategy as common lexer-generators: It tries each token in a predefined order
and picks the first, longest token that matches. While effective for some data sources,
this simple policy makes fixed tokenization decisions up front, does not take contextual
information into account, and restricts the use of complex tokens like id, url and
message that shadow simpler ones.

3 The Format Inference Algorithm

Our new format inference algorithm consists of four stages: (1) building a statistical
token model from labeled training data; (2) dividing the text into newline-separated
chunks of data and finding all possible tokenizations of each chunk; (3) inferring a
candidate structure using the statistical model and the tokenizations; and (4) applying
rewriting rules to improve the candidate structure. Because this algorithm shares the
general structure of our earlier work [9], we focus on the salient differences here.

Training the statistical models. To speed up the training cycle, we created a tool ca-
pable of reading any PADS description and labelling the described data with the tokens
specified in the description. This way, all data for which we have PADS descriptions
can serve as a training suite. As we add more descriptions, our training data improves.
Currently, the training suite is biased towards systems data, and includes tokens for in-
tegers, floats, times, dates, IP addresses, hostnames, file paths, URLs, words, ids and
punctuation. Parsing of tokens continues to use longest match semantics and hence
the string “43.8” can be parsed by sequences such as [int] [.] [int] or [int]
[.] [float] or [float], but not by [float] [.] [int] or [float] [.]
[float]. We have experimented with a number of statistical models for tokenization,
which we discuss in Section 4.

Tokenization. When inferring a description, the algorithm computes the set of all pos-
sible tokenizations of each data chunk. Because these sequences share subsequences,
we organize them into a directed acyclic graph called a SEQSET. For example, Figure 2
shows the SEQSET for the substring “2.2.13-4”.

Each edge in the SEQSET represents an occurrence of a token in the data, while
each vertex marks a location in the input. If a token edge ends at a vertex v, then v
indicates the position immediately after the last character in the token. The first vertex
in a SEQSET marks the position before the first character in its outgoing edges.
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Fig. 2. SEQSET from parsing string “2.2.13-4”

type description (* abstract syntax of pads description *)
type seqset (* the seqset data structure *)
type seqsets = seqset list

(* A top-level description guess *)
datatype prophecy =

BaseProphecy of description
| StructProphecy of seqsets list
| ArrayProphecy of seqsets * seqsets * seqsets
| UnionProphecy of seqsets list

(* Guesses the best top-level description *)
fun oracle : seqsets -> prophecy

(* Implements a generic inference algorithm *)
fun discover (sqs:seqsets) : description =
case (oracle sqs) of

BaseProphecy b => b

| StructProphecy sqss =>
let Ts = map discover sqss in
struct { Ts }

| ArrayProphecy (sqsfirst,sqsbody,sqslast) =>
let Tfirst = discover sqsfirst in
let Tbody = discover sqsbody in
let Tlast = discover sqslast in
struct { Tfirst; array { Tbody }; Tlast; }

| UnionProphecy sqss =>
let Ts = map discover sqss in
union { Ts }

Fig. 3. A generic structure-discovery algorithm in Pseudo-ML

Structure discovery. The structure discovery phase uses a top-down, divide-and-conquer
algorithm outlined in Figure 3 in the pseudo-ML function discover. Each invocation
of discover calls the oracle function to guess the structure of the data represented
by the current set of SEQSETs. The oracle can prophesy either a base type, a struct,
an array or a union. The oracle function also partitions the input SEQSETs into sets
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Fig. 4. Cutting SEQSET for “2.2.13-4” after the first float token

of sub-SEQSETs, each of which corresponds to a component in the guessed structure.
The discover function then recursively constructs the structure of each set of sub-
SEQSETs.

How does the oracle produce its prophecy? First, it uses the trained statistical
model to assign probabilities to the edges in the input SEQSETs. Next, it computes for
each SEQSET the most probable token sequence (MPTS) among all the possible paths
using a modified Viterbi algorithm [22], which we discuss in Section 4. Then, based on
the statistics of the tokens in the MPTSs, the oracle predicts the structure of the current
collection of SEQSETs using the heuristics designed for our earlier algorithm [9].

As an example, consider applying the oracle to determine the top-level structure of
the first line in yum.txt. It would predict the following:

struct {date; ’ ’; time; ’ ’; word; ’:’; ’ ’; id; TBD}

i.e., a struct containing nine sub-structures including TBD, which is a sub-structure
whose form will be determined recursively. At this point, the oracle partitions every
SEQSET in the input into nine parts, corresponding to sub-structure boundaries, i.e.,
at the vertices after tokens date, space, time, etc. During partitioning, the oracle
removes SEQSET edges that cross partition boundaries because such edges are irrelevant
for the next round of structure discovery. For example, if the oracle cuts after the first
float token in the SEQSET in Figure 2, then it removes the id edge and the float
edge between vertices 42 and 46, creating the two new SEQSETs in Figure 4. Finally,
the oracle function returns the predicted structure as a “prophecy” along with the
partitioned SEQSETs.

Format refinement with blob-finding. The refinement phase, which follows structure
discovery, tries to improve the initial rough structure by applying a series of rewriting
rules. We have modified the earlier algorithm to use a “blob-finding” rule. This rule tries
to identify data segments with highly complex, structured descriptions where none of
the individual pieces of the description describe much of the data. Intuitively, such oc-
currences correspond to places where the data contained a high degree of variation, and
the inference algorithm built a description that enumerated all the possible variations in
painstaking detail. The blob rule replaces such complexity with a single blob token. A
typical example of this kind of data is free-form text comments that sometimes appear
at the end of each line in a log file. The blob-finding rule reduces the overall complexity
of the resulting description and hence makes it more readable.

The format refinement algorithm applies the blob-finding rule in a bottom-up fash-
ion. It converts into a blob each sub-structure that it deems overly complex and for
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which it can find a terminating pattern. The PADS parser uses the terminating pattern to
find the extent of the blob. The algorithm merges adjacent blobs.

To decide whether a given structure is a blob, the algorithm computes the variance
of the structure, which measures the total number of union/switch/enum branches and
different array lengths in the structure. When the ratio between the variance and the
amount of the data described by the structure exceeds a threshold, the algorithm decides
to convert the structure to a blob if it can find a terminating sequence.

4 Statistical Models

A key component of the format inference algorithm described in the previous section is
a selection of the best token sequence from each SEQSET. To prioritize sequences, the
algorithm assigns probabilities using a statistical token model. This section describes
three such models that we have experimented with.

Character-by-character Hidden Markov Model (HMM). The first model we investigate
is the classic first-order, character-by-character Hidden Markov Model (HMM) [22].
An HMM is a statistical model that includes one set of states whose values we can
observe and a second set whose values are hidden and we wish to infer. The hidden
states determine, with some probability, the values of the observable states. In our case,
we can observe the sequence of characters in the input string and wish to infer the
token that is associated with each character. The model assumes the probability that
we see a particular character depends upon its associated token and moreover, since
the HMM is first-order, the probability of observing a particular token depends upon
the previous token but no other earlier tokens. The picture below illustrates the process
of generating the character sequence “2.2.13-4” from a token sequence. Hidden HMM
states are white and observables are shaded. Notice particularly that the adjacent digits
“1” and “3” are generated from two consecutive instances of the token int, when in a
true token sequence, both characters are generated from a single int token. A postpass
will clean this up, but such situations are dealt with more effectively by the HMEMs
described in the following subsection.

 4

start int int int int intdot dot dash

 2   .  2  .  1 3   −

Finally, since our training data is limited, we employ one further approximation in
our model. Instead of modelling every individual character separately, we classify char-
acters using a set of boolean features including features for whether the character is (a) a
digit, (b) an upper-case alphabetic letter, (c) white space, or (d) a particular punctuation
character such as a period. We call the feature vectors involving (a)-(d) observations.

Let Ti denote the ith hidden state; its value ranges over the set of all token names.
Let Ci denote the observation emitted by hidden state Ti. Three parameters determine
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the model: the transition matrix P(Ti|Ti−1), the sensor matrix P(Ci|Ti) and the ini-
tial probabilities P(Ti|begin). We compute these parameters from the training data as
follows:

P(Ti|Ti−1) =
occurrences where Ti follows Ti−1

occurrences of Ti−1
(1)

P(Ci|Ti) =
occurrences of Ci annotated with Ti

occurrences of Ti
(2)

P(T1|begin) =
occurrences of T1 being first token

number of training chunks
(3)

Given these parameters and a fixed input, we want to find the token sequence with the
highest probability, i.e., from the input sequence C1, C2, ..., Cn, we want to find the to-
ken sequence T1, T2, ..., Tn that maximizes the conditional probability P(T1, T2, ..., Tn|
C1, C2, ..., Cn). This probability is defined as usual:

P(T1, T2, ..., Tn|C1, C2, ..., Cn) ∝ P(T1, T2, ..., Tn, C1, C2, ..., Cn)

= P(T1|begin) ·
n∏

i=2

P(Ti|Ti−1) (4)

To calculate the highest probability token sequence from this model, we run a slightly
modified variant of the Viterbi algorithm over the SEQSET.

Because the character-by-character HMM is first-order and employs only single
character features, it cannot capture complex features in the data such as a substring
“http://” which indicates a strong likelihood of being part of a URL. One obvious
solution is increasing the order of the HMM. However, since the token length is vari-
able in our application, it is not clear what the order should be. In addition, increasing
the order also increases the complexity exponentially. Instead, in the next sections, we
pursue two hybrid methods that incorporate existing classification techniques into the
HMM framework.

Hierarchical Maximum Entropy Model (HMEM). The character-by-character HMM
extracts a set of features from each character to create an observation and then runs a
standard HMM over these observations. In contrast, the Hierarchical Maximum Entropy
Model (HMEM), which we will explore next, extracts a set of features from each sub-
string, uses the Maximum Entropy (ME) procedure [24,19] to produce an observation
and runs a standard HMM over these new kinds of observations. Using the sequence
“2.2.13-4” as our example again, the corresponding HMEM may be drawn as follows:

intstart int int intdot dot

 2   .  2  .  13 −   4

dash
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Formally, let Ti be the ith hidden state or token in the sequence (denoted by a white
node in picture above) and let Si be the substring annotated by Ti. Suppose the number
of tokens in the chunk is l; then the target probability is as follows.

P(T1, T2, ..., Tn|S1, S2, ..., Sl) ∝ P(T1|begin) ·
l∏

i=2

P(Ti|Ti−1) ·
l∏

i=1

P(Si|Ti) (5)

Equations (1) and (3) allow us to calculate the transition matrix and the initial prob-
ability. We can compute P(Si|Ti) using Bayes Rule,

P(Si|Ti) =
P(Ti|Si) ·P(Si)

P(Ti)
(6)

Finally, since obtaining accurate estimates of P(Si) and P(Ti) appears to require
more training data than we currently have, we have further approximated by simply us-
ing P(Ti|Si) to estimate P(Si|Ti). Estimation of P (Ti|Si) through the ME procedure
involves using the following features (among others): (a) total number of characters in
the string, (b) the number of occurrences of certain punctuation characters, (c) the total
number of punctuation characters in the string, (d) the presence of certain substrings
such as “am”, “pm”, “January”, “Jan”, “january”, and (e) the presence of digit
sequences. When we substitute P(Ti|Si) for P(Si|Ti) in equation (5), we obtain the
following:

P(T1, T2, ..., Tn|S1, S2, ..., Sl) ∝ P(T1|begin) ·
l∏

i=2

P(Ti|Ti−1) ·
l∏

i=1

P(Ti|Si) (7)

Finally, notice that in equation (7), the number of tokens in a sequence will determine
the number of terms in the product. Consequently, a sequence with more tokens will
produce more terms, which our experiments have shown produces a significant bias
towards shorter token sequences. To avoid such bias, we modify Equation (7) to use the
average log likelihood.

logP(T1, T2, ..., Tn|S1, S2, ..., Sl)

∝ logP(T1|begin) +
∑l

i=2 logP(Ti|Ti−1) +
∑l

i=1 logP(Ti|Si)
l

(8)

Using average log likelihood guarantees that the algorithm will not select shorter token
sequences unless the average value of all conditional probabilities P(Ti|Si) exceeds a
threshold.

To find the highest probability sequence for a chunk under this model, we imple-
mented a modified Viterbi algorithm that takes into account the number of tokens in the
sequence. In what follows, let the number of characters in the chunk be n and the num-
ber of tokens be l. Let Ci be the character at position i, and PTi be the partial token that
emits the character Ci. Then P(PT1, PT2, ..., PTi|C1, C2, ..., Ci, k) is the probability
of a partial token sequence PT1, PT2, ..., PTi conditioned on a substring of characters
C1, C2, ..., Ci, collectively emitted by a sequence of k tokens. Now, let Ti be a token
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that ends at position i and let Si be the corresponding substring. The probability of the
most likely partial token sequence up to position i is

max
PT1,...,PTi

logP(PT1, PT2, ..., PTi, PTi+1|C1, C2, ..., Ci+1, k + 1) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

logP(Si+1|Ti+1) + max
Ti+1−δ

(logP(Ti+1|Ti+1−δ)+

max
PT1,...,PTi−1

logP(PT1, ..., PTi|C1, ..., Ci, k)),

if i + 1 is the end of an edge in SEQSET, δ is the length of token Ti+1;

max
PT1,...,PTi

logP(PT1, ..., PTi|C1, ..., Ci, k + 1)

otherwise.

(9)

The left-hand-side of (9), known as a forward message, contains the token sequence
up to a position i in the chunk as well as the lengths of the tokens. At the last position
n, we compute l from

max
l

log
P(TP1, TP2, ..., TPn|C1, C2, ..., Cn, l)

l
(10)

and select the last token in the most likely token sequences. After tracing backwards
through the chain of messages, we obtain the most likely token sequences. The modified
Viterbi algorithm is linear to the number of characters n in the chunk.

We saw there were some problems with the basic HMM model that motivated the
use of the HMEM model. What further problems plague the HMEMs? The most wor-
risome problem is that the HMEM is a generative model that simulates the procedure
of generating the data, and estimates the target conditional probability by a joint proba-
bility. Therefore, it is biased towards tokens with more occurrences in the training data.
In practice, we found that when particular tokens appear infrequently in our training
data, the algorithm would never identify them, even when they had clear distinguish-
ing features. These difficulties motivated us to explore the effectiveness of Hierarchical
Support Vector Machines (HSVM), which use a discriminative model as opposed to a
generative one.

4.1 Hierarchical Support Vector Machines (HSVM)

An HSVM is exactly the same as an HMEM except it uses a Support Vector Machine
(SVM) [5] as opposed to Maximum Entropy to classify tokens. Basically, an SVM mea-
sures the target conditional probability P(Ti|Si) by generating hyperplanes that divide
the feature vector space according to the positions of training data points. The hyper-
planes are positioned so that the data points (feature vectors in our case) are separated
into classes with the maximum margin between any two classes. The data points that
lie on the margins (or boundaries) of each class are called support vectors.

5 Evaluation

We use sample files from twenty different ad hoc data sources to evaluate our overall in-
ference algorithm and the different approaches to probabilistic tokenization. These data
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sources, many of which are published on the web [20], are mostly system-generated log
files of various kinds and a few ASCII spreadsheets describing business transactions.
These files range in size from a few dozen lines to a few thousand.

To test a given tokenization approach on a particular sample file, we first construct a
statistical model from the other nineteen sample files using the given approach. We then
use the resulting model to infer a description for the selected file. We repeat this process
for all three tokenization approaches (HMM, HMEM, and HSVM) and all twenty sam-
ple files. We use three metrics described in the following sections to evaluate the results:
token accuracy, quality of description and execution time.

Token accuracy. To evaluate tokenization accuracy for a model M on a given sample
file, we compare the most likely sequence of tokens predicted by M , denoted Sm, with
the ideal token sequence, denoted S. We define S to be the sequence of tokens generated
by the hand-written PADS description of the file. We define three kinds of error rates,
all normalized by |S|, the total number of tokens in S:

token error =
number of misidentified tokens in Sm

|S|

token group error =
number of misidentified groups in Sm

|S|

token boundary error =
number of misidentified boundaries in Sm

|S|

The token error rate measures the number of times a token appears in S but the same
token does not appear in the same place in Sm. A token group is a set of token types
that have similar feature vectors and hence are hard to distinguish, e.g., hex string
and id, which both consist of alpha-numeric characters. The token group error rate
measures the number of times a token from a particular token group appears in S but
no token from the same group appears in the same location in Sm. Intuitively, if the
algorithm mistakes a token for another token in the same token group, it is doing better
than choosing a completely unrelated token type. The token boundary error rate mea-
sures the number of times there is a boundary between tokens in S but no corresponding
boundary in Sm. This relatively coarse measure is interesting because boundaries are
important to structure discovery. Even if the tokens are incorrectly identified, if the
boundaries are correct, the correct structure can be still discovered.

Table 1 lists the token error, token group error, and token boundary error rates of the
twenty benchmarks. The results from the original LEARNPADS system are presented
in columns marked by lex. The original system produces high error rates for many
files because the lexer is unable to resolve overlapping tokens effectively. HMM relies
heavily on transition probabilities, which require a lot of data to compute to a use-
ful precision. Because we currently have insufficient data, HMM generally does not
perform as well as HMEM and HSVM. In the case of asl.log, corald.log and
coralwebsrv.log, HMM’s failure to detect some punctuation characters causes the
entire token sequences to be misaligned and hence gives very high error rates.
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Table 1. Tokenization errors

Data source Token Error (%) Token Group Error (%) Token Boundary Error (%)
lex HMM HMEM HSVM lex HMM HMEM HSVM lex HMM HMEM HSVM

1967Transactions 30 30 18.93 18.93 11.07 11.07 0 0 11.07 11.07 0 0
ai.3000 70.23 15.79 18.98 11.20 70.23 14.68 17.26 10.27 53.53 12.34 4.79 4.00
yum.txt 19.44 13.33 21.80 0 19.17 11.73 21.80 0 19.17 11.49 21.80 0
rpmpkgs.txt 99.66 2.71 15.01 0.34 99.66 2.14 14.67 0 99.66 0.23 14.67 0
railroad.txt 51.94 9.47 6.48 5.58 51.94 9.36 5.93 5.58 46.08 8.77 5.41 5.58
dibbler.1000 15.72 43.40 11.91 0.00 15.72 36.78 11.91 0.00 4.54 13.33 13.15 0.00
asl.log 89.92 98.91 8.94 5.83 89.63 98.91 8.94 5.83 83.28 98.54 6.27 3.29
scrollkeeper.log 18.58 28.48 18.67 9.86 18.58 18.77 8.96 0.12 18.58 17.83 8.96 0.12
page log 77.72 15.29 0 7.52 72.76 15.29 0 7.52 64.70 5.64 0 5.64
MER T01 01.csv 84.56 23.09 31.32 15.40 84.56 23.09 31.22 15.40 84.56 7.71 13.20 0.02
crashreporter 51.89 7.91 4.99 0.19 51.85 7.91 4.96 0.14 51.34 7.91 4.92 0.14
ls-l.txt 33.73 18.70 19.96 6.65 33.73 18.23 19.96 6.65 19.70 7.45 19.76 6.45
windowserver last 73.31 14.98 10.16 3.24 71.50 14.98 10.07 3.15 69.18 11.16 8.05 3.14
netstat-an 13.89 17.83 9.61 9.01 12.51 15.44 5.95 5.95 12.51 14.90 5.80 5.20
boot.txt 10.67 25.40 9.37 2.77 3.99 25.10 9.14 2.43 3.34 14.48 8.27 1.69
quarterlyincome 82.99 5.52 1.98 1.98 82.99 4.22 1.53 1.54 77.53 1.54 1.53 1.54
corald.log 84.86 100 5.67 3.02 83.11 98.25 3.93 1.27 81.76 97.80 1.27 1.27
coraldnssrv.log 91.04 18.17 10.64 5.23 91.04 18.17 9.33 5.22 83.07 14.37 4.11 3.92
probed.log 1.74 27.99 16.50 16.50 1.74 27.99 16.50 16.50 1.75 27.98 16.42 16.42
coralwebsrv.log 86.67 100 8.75 23.99 86.67 100 8.75 23.99 81.90 98.33 8.75 23.81

Quality of description. To assess description quality quantitatively, we use the Mini-
mum Description Length Principle (MDL) [13], which postulates that a useful measure
of description quality is the sum of the cost in bits of transmitting the description (the
type cost) and the cost in bits of transmitting the data given the description (the data
cost). In general, the type cost measures the complexity of the description, while the
data cost measures how loosely a given description explains the data. Increasing the
type cost generally reduces the data cost, and vice versa. The objective is to minimize
both. Table 2 shows the percentage change in the type and data costs of the descriptions
produced by the new algorithm using each of the three tokenization schemes when com-
pared to the same costs produced by the original LEARNPADS system. In both cases,
the measurements were taken before the refinement case.

For most of the data sources, the probabilistic tokenization scheme improved the
quality of the description by reducing both the type and the data costs. In the files
dibbler.1000, netstat-an and coralwebsrv.log, a few misidentified to-
kens cause the resulting descriptions to differ significantly from the ones produced by
the original system.

In another experiment, a human expert judged how each description compared to
the original LEARNPADS results, focusing on the readability of the descriptions, i.e.,
whether the descriptions present the structure of the data sources clearly. In this exper-
iment, the judge rated the descriptions one by one, on a scale from -2 (meaning the
description is too concise and it loses much useful information) to 2 (meaning the de-
scription is too precise and the structure is unclear). The score of a good description
is therefore close to 0, which means the description provides sufficient information for
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Table 2. Increase (+%) or decrease (-%) in type cost and data cost before refinement

Data source Type Cost Data Cost
HMM HMEM HSVM HMM HMEM HSVM

1967Transactions -39.661 -27.03 -27.03 -2.80 -2.80 -2.80
ai.3000 -26.27 +4.44 -19.27 -3.16 -6.85 -12.68
yum.txt -57.60 +50.93 -76.27 -1.55 -7.93 -1.05
rpmpkgs.txt -92.03 -76.29 -91.86 +1.47 -0.00 +1.47
railroad.txt -31.86 -20.88 -22.93 -29.54 -29.22 -29.16
dibbler.1000 +611.22 +17.83 +7.03 -19.88 -22.11 -22.10
asl.log -75.71 -22.33 -25.54 +8.57 -15.13 -17.53
scrollkeeper.log -14.55 -58.86 -21.18 -7.77 -9.98 -11.36
page log 0 0 0 -11.46 -11.67 -11.67
MER T01 01.csv -8.59 -12.74 -12.74 -25.59 -24.15 -24.14
crashreporter +4.03 -8.66 -12.73 -9.38 -9.41 -12.45
ls-l.txt -74.61 -51.32 -39.30 +0.10 -7.26 -2.18
windowserver last -62.84 -33.29 -56.18 +6.93 -11.12 -9.87
netstat-an +147.07 -12.00 -21.63 +14.18 +6.74 +7.65
boot.txt -72.60 -38.95 -71.29 +5.26 -6.54 -5.03
quarterlyincome -18.36 -18.36 -18.36 -32.04 -32.51 -32.51
corald.log -4.75 -5.53 -5.53 -27.28 -29.81 -29.81
coraldnssrv.log -1.86 -2.03 -5.86 +59.53 +59.53 +59.53
probed.log -14.61 -33.48 -33.48 +59.53 +63.18 +63.18
coralwebsrv.log -8.75 +94.58 -71.55 -49.30 -15.91 +13.36

Table 3. Qualitative comparison of descriptions learned using probabilistic tokenization to de-
scriptions learned by original LEARNPADS algorithm

Data source lex HMM HMEM HSVM Data source lex HMM HMEM HSVM
1967Transactions 0 0 0 0 crashreporter 2 0 1 1
ai.3000 1 1 1 0 ls-l.txt 2 0 1 1
yum.txt 2 -1 1 0 windowserver last 2 0 1 1
rpmpkgs.txt 2 -1 -2 0 netstat-an 2 -2 0 0
railroad.txt 2 1 1 1 boot.txt 2 -1 1 1
dibbler.1000 0 2 0 0 quarterlyincome 1 1 1 1
asl.log 2 -2 2 2 corald.log 0 1 1 0
scrollkeeper.log 1 2 1 1 coraldnssrv.log 0 1 1 -1
page log 0 0 0 0 probed.log 0 0 0 0
MER T01 01.csv 0 1 0 0 coralwebsrv.log 0 1 1 -1

the user to understand the data source and the user can easily understand the structure
from the description. Table 3 shows that on average, HMEM and HSVM outperform
the original system denoted by lex.

Execution time. Compared to the original system, statistical inference requires extra
time to construct SEQSETs and compute probabilities. We measured the execution times
on a 2.2 GHz Intel Xeon processor with 5 GB of memory. The original algorithm takes
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anywhere from under 10 seconds to 25 minutes to infer a description, while the new
system requires a few seconds to several hours, depending on the amount of test data
and the statistical model used. In general, the character-by-character HMM model is the
fastest, while HSVM is most time-consuming.

We have performed a number of experiments (not shown due to space constraints)
that demonstrate that execution time is proportional to the number of lines in the data
source. Moreover, we have found that for most descriptions, a relatively small repre-
sentative sample of the data is sufficient for learning its structure with high accuracy.
For instance, out of the twenty benchmarks we have, seven data sources have more than
500 records. Preliminary results show that for these seven data sources, we can generate
descriptions from just 10% of the data that can parse 95% of records correctly.

6 Related Work

In the last two decades, there has been extensive work on classic grammar induction
problems [25,11,3,1,6], XML schema inference [3,10], information extraction [17,15,2],
and other related areas such as natural language processing [4,14] and bioinformatics
[16]. Machine learning techniques have played a very important role in these areas.
Our earlier paper [9] contains an extensive comparison of our basic format inference
algorithm to others that have appeared in the literature.

One of the most closely related pieces of work to this paper is Soderland’s WHISK
system [23], which extracts useful information from semi-structured text such as styl-
ized advertisements from an online community service called Craig’s List [12]. In the
WHISK system, the user is presented with a few online ads as training data and is
asked to label which bits of information to extract. Then the system learns extraction
rules from labeled data and uses them to retrieve more wanted information from a much
larger collection of data. The WHISK system differs from our system in several ways.
First, WHISK, as well as other information extraction systems, have a clear and fixed
token set, defined by words, numbers, punctuations, HTML tags and user pre-specified
semantic classes, etc. Second, WHISK only focuses on certain bits of information,
namely, single or multiple fields in records, whereas we not only identify useful fields,
but also obtain the organization and relations of these fields by generating the complete
description of the entire data file. Last, in WHISK, the extraction rules learned from a
particular domain can only be used on data from the same domain. For example, rules
learned from sample on-line rental ads are only relevant to other rental ads, and cannot
be applied to software job postings. But the statistical token models we learned in our
system can be applied to many different types of data, as shown in the experiments we
have done in Section 5.

Also closely related is the work on text table extraction by Pinto and others [21]. Text
tables can be viewed as special ad hoc data with a tabular layout. There are often clear
delimiters between columns in the table, and table rows are well defined with new line
characters as their boundaries. Because of its tabular nature, the data studied has less
variation in general. The goal of their work is to identify tables embedded in free text
and the types of table rows such as header, sub-header and data row, etc, whereas we are
learning the entire structure of the data. To this end, Pinto et al. use Conditional Random
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Fields (CRFs) [18], a statistical model that is useful in learning from sequence data with
overlapping features. Their system extracts features from white space characters, text
between white spaces and punctuations. Although not explicitly stated, words, numbers
and punctuations are used as fixed set of tokens.

To summarize, problems studied by previous efforts in grammar induction and infor-
mation extraction do not typically suffer from token ambiguities that we see in ad hoc
data, because tags cleanly divide XML and web-based data, while spaces and known
punctuation symbols separate natural language text. In contrast, the separators and to-
ken types found in ad hoc data sources such as web logs and financial records are far
more variable and ambiguous.

7 Conclusion

Ad hoc data is unpredictable, poorly documented, filled with errors, and yet ubiquitous.
It poses tremendous challenges to the data analysts that must analyze, vet and trans-
form it into useful information. Our goal is to alleviate the burden, risk and confusion
associated with ad hoc data by using the declarative PADS language and system.

In this paper, we describe our continuing efforts to develop a format inference en-
gine for the PADS language. In particular, we show how to redesign our format infer-
ence algorithm so that it can take advantage of information generated from an arbitrary
statistical token model and we study the effectiveness of three candidate models: Hid-
den Markov Models (HMMs), Hierarchical Maximum Entropy Models (HMEMs) and
Support Vector Machines (SVMs). We show that each model in succession is generally
more accurate than the last, but at an increased performance cost.
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Abstract. This paper presents the logic programming concept of thread-
based competitive or-parallelism, which combines the original idea of
competitive or-parallelism with committed-choice nondeterminism and
speculative threading. In thread-based competitive or-parallelism, an
explicit disjunction of subgoals is interpreted as a set of concurrent
alternatives, each running in its own thread. The individual subgoals
usually correspond to predicates implementing different procedures that,
depending on the problem specifics, are expected to either fail or succeed
with different performance levels. The subgoals compete for providing an
answer and the first successful subgoal leads to the termination of the
remaining ones. We discuss the implementation of thread-based compet-
itive or-parallelism in the context of Logtalk, an object-oriented logic
programming language, and present experimental results.

Keywords: Or-parallelism, speculative threading, implementation.

1 Introduction

Or-parallelism is a simple form of parallelism in logic programs [1], where the
bodies of alternative clauses for the same goal are executed concurrently. Or-
parallelism is often explored implicitly, possibly with hints from the program-
mer to guide the system. Common uses include search-oriented applications, such
as parsing, database querying, and data mining. In this paper, we introduce a
different, explicit form of or-parallelism, thread-based competitive or-parallelism,
that combines the original idea of competitive or-parallelism [2] with committed-
choice nondeterminism [3] and speculative threading [4]. Committed-choice non-
determinism, also known as don’t-care nondeterminism, means that once an
alternative is taken, the computation is committed to it and cannot backtrack
or explore in parallel other alternatives. Committed-choice nondeterminism is
useful whenever a single solution is sought among a set of potential alternatives.
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Speculative threading allows the exploration of different alternatives, which can
be interpreted as competing to provide an answer for the original problem. The
key idea is that multiple threads can be started without knowing a priori which
of them, if any, will perform useful work. In competitive or-parallelism, different
alternatives are interpreted as competing for providing an answer. The first suc-
cessful alternative leads to the termination of the remaining ones. From a declar-
ative programming perspective, thread-based competitive or-parallelism allows
the programmer to specify alternative procedures to solve a problem without car-
ing about the details of speculative execution and thread handling. Another key
point of thread-based competitive or-parallelism is its simplicity and implemen-
tation portability when compared with classical or-parallelism implementations.
The ISO Prolog multi-threading standardization proposal [5] is currently im-
plemented in several systems including SWI-Prolog, Yap and XSB, providing a
highly portable solution given the number of operating systems supported by
these Prolog systems. In contrast, most or-parallelism systems described in the
literature [1] are no longer available, due to the complexity of maintaining and
porting their implementations.

Our research is driven by the increasing availability of multi-core computing
systems. These systems are turning into a viable high-performance, affordable
and standardized alternative to the traditional (and often expensive) parallel
architectures. The number of cores per processor is expected to continue to
increase, further expanding the areas of application of competitive or-parallelism.

The remainder of the paper is organized as follows. First, we present in
more detail the concept of competitive or-parallelism. Second, we discuss the
implementation of competitive or-parallelism in the context of Logtalk [6], an
object-oriented logic programming language, and compare it with classical or-
parallelism. Next we present experimental results. Follows a discussion on how
tabling can be used to take advantage of partial results gathered by speculative
computations. We then identify further potential application areas where com-
petitive or-parallelism can be useful. Finally, we outline some conclusions and
describe further work. In the remaining of the paper, the expression competi-
tive or-parallelism will be used interchangeably with the expression thread-based
competitive or-parallelism.

2 Thread-Based Competitive Or-Parallelism

The concept of thread-based competitive or-parallelism is based on the interpre-
tation of an explicit disjunction of subgoals as a set of concurrent alternatives,
each running in its own thread. Each individual alternative is assumed to imple-
ment a different procedure that, depending on the problem specifics, is expected
to either fail or succeed with different performance results. For example, one al-
ternative may converge quickly to a solution, other may get trapped into a local,
suboptimal solution, while a third may simply diverge. The subgoals are inter-
preted as competing for providing an answer and the first subgoal to complete
leads to the termination of the threads running the remaining subgoals. The
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semantics of a competitive or-parallelism call are simple. Given a disjunction of
subgoals, a competitive or-parallelism call blocks until one of the following sit-
uations occurs: one of the subgoals succeeds; all the subgoals fail; or one of the
subgoals generates an exception. All the remaining threads are terminated once
one of the subgoals succeeds or an exception is thrown during the execution of
one of the running threads. The competitive or-parallelism call succeeds if and
only if one of the subgoals succeeds. When one of the subgoals generates an ex-
ception, the competitive or-parallelism call terminates with the same exception.1

When two or more subgoals generate exceptions, the competitive or-parallelism
call terminates with one of the generated exceptions.

For example, assume that we have implemented several methods for calculat-
ing the roots of real functions.2 In Logtalk, we may then write:

find_root(F, A, B, Error, Zero, Method) :-
threaded((

bisection::find_root(F, A, B, Error, Zero), Method = bisection
; newton::find_root(F, A, B, Error, Zero), Method = newton
; muller::find_root(F, A, B, Error, Zero), Method = muller
)).

In this example, the competitive or-parallelism call (implemented by the Logtalk
built-in meta-predicate threaded/1) returns both the identifier of the fastest
successful method and its result. Depending on the function and on the initial
interval, one method may converge quickly to the root of the function while the
others may simply diverge. Thus, by avoiding committing to a specific method
that might fail for some functions, the competitive or-parallelism call allows a
solution to be found corresponding to the fastest, successful method.

Consider now a different example, the generalized water jugs problem. In this
problem, we have several jugs of different capacities and we want to measure a
certain amount of water. We may fill a jug, empty it, or transfer its contents to
another jug. As in our previous example, we may apply several methods to solve
this problem. The water jugs state-space can be explored using e.g. breadth-first,
depth-first, or hill-climbing search strategies. We could write:

solve(WaterJug, Liters, Jug1, Jug2, Steps) :-
threaded((

depth_first::solve(WaterJug, Liters, Jug1, Jug2, Steps)
; hill_climbing::solve(WaterJug, Liters, Jug1, Jug2, Steps)
; breadth_first::solve(WaterJug, Liters, Jug1, Jug2, Steps)
)).

Different heuristics could also be explored in parallel. As before, without knowing
a priori the amount of water to be measured, we have no way of telling which
method or heuristic will be faster. This example is used later in this paper to
provide experimental results.
1 If we want the computation to proceed despite the exception generated, we can

convert exceptions into failures by wrapping the thread subgoal in a catch/3 call.
2 The full source code of this example is included in the current Logtalk distribution.
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These examples illustrate how thread-based competitive or-parallelism distin-
guish itself from existing or-parallel systems by allowing fine-grained control at
the goal level using an explicit parallelism construct. As in most implementa-
tions of or-parallelism, the effectiveness of competitive or-parallelism relies on
several factors. These factors are discussed in detail next.

3 Implementation

In this section we discuss the implementation of competitive or-parallelism in the
context of Logtalk, given the core predicates found on the ISO standardization
proposal for Prolog threads [5].

3.1 Logtalk Support

Logtalk is an open source object-oriented logic programming language that can
use most Prolog implementations as a back-end compiler. Logtalk takes advan-
tage of modern multi-processor and multi-core computers to support high level
multi-threading programming, allowing objects to support both synchronous
and asynchronous messages without bothering with the details of creating and
destroying threads, implement thread communication, or synchronizing threads.

Competitive or-parallelism is implemented in Logtalk using the built-in meta-
predicate threaded/1, which supports both competitive or-parallelism and in-
dependent (and quasi-independent) and-parallelism.

The threaded/1 predicate proves a conjunction or disjunction of subgoals
running each subgoal in its own thread.3 When the argument is a conjunction
of goals, a call to this predicate implements independent and-parallelism seman-
tics. When the argument is a disjunction of subgoals, a call to this predicate
implements the semantics of competitive or-parallelism, as detailed in the previ-
ous section. The threaded/1 predicate is deterministic and opaque to cuts and,
thus, there is no backtracking over completed calls.

The choice of using Prolog core multi-threading predicates to implement com-
petitive or-parallelism provides several advantages in terms of simplicity and
portability when compared with traditional, low-level or-parallelism implemen-
tation solutions. Nevertheless, three problems must be addressed when exploiting
or-parallelism: (i) multiple binding representation, (ii) work scheduling, and (iii)
predicate side-effects. These problems are addressed in the sections below.

3.2 Multiple Binding Representation

The multiple binding representation is a crucial problem for the efficiency of
classical or-parallel systems. The concurrent execution of alternative branches
3 The predicate argument is not flattened; parallelism is only applied to the outermost

conjunction or disjunction. When the predicate argument is neither a conjunction
nor a disjunction of subgoals, no threads are used. In this case, the predicate call is
equivalent to a call to the ISO Prolog standard predicate once/1.
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of the search tree can result in several conflicting bindings for shared variables.
The main problem is that of efficiently representing and accessing conditional
bindings.4 The environments of alternative branches have to be organized in such
a way that conflicting conditional bindings can be easily discernible.

The multiple binding representation problem can be solved by devising a
mechanism where each branch has some private area where it stores its con-
ditional bindings. A number of approaches have been proposed to tackle this
problem (see e.g [1]). Arguably, the two most successful ones are environment
copying, as implemented in the Muse [7] and YapOr [8] systems, and binding
arrays, as implemented in the Aurora system [9]. In the environment copying
model, each worker maintains its own copy of the environment (stack, heap,
trail, etc) in which it can write without causing binding conflicts. In this model,
even unconditional bindings are not shared. In the binding arrays model, each
worker maintains a private array data structure, called the binding array, where
it stores its conditional bindings. Each variable along a branch is assigned to a
unique number that identifies its offset entry in the binding array.

In a competitive or-parallelism call, only the first successful subgoal in the
disjunction of subgoals can lead to the instantiation of variables in the original
call. This simplifies our implementation as the Prolog core support for multi-
threading programming can be used straightforward. In particular, we can take
advantage of the Prolog thread creation predicate thread create/3. Each new
Prolog thread created by this predicate runs a copy of the goal argument using
its own set of data areas (stack, heap, trail, etc). Its implementation is similar
to the environment copying approach but simpler as only the goal is copied.
As each thread runs a copy of the goal, no variables are shared across threads.
Thus, the bindings of shared variables occurring within a thread are independent
of bindings occurring in other threads. This operational semantics simplifies
the problem of multiple binding representation in competitive or-parallelism,
which results in a simple implementation with only a small number of lines of
Prolog source code. Nevertheless, because each thread is running a copy of the
original goal, thus breaking variable bindings, we need a solution for retrieving
the bindings of the successful thread; our implementation solution is presented
later. Copying a goal into a thread and copying the successful bindings back
to the following computations may result in significant overhead for goals with
large data structures arguments. Thus, we sacrifice some performance in order
to provide users with an high-level, portable implementation.

3.3 Work Scheduling

Even though the cost of managing multiple environments cannot be completely
avoided, it may be minimized if the operating-system’s scheduler is able to divide
efficiently the available work between the available computational units during
execution. In classical or-parallelism, the or-parallel system usually knows the

4 A binding of a variable is said to be conditional if the variable was created before
the last choice point, otherwise it is said to be unconditional.
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number of computational units (processors or cores) that are available in the
supporting architecture. A high-level scheduler then uses this number to create
an equal number of workers (processes or threads) to process work. The sched-
uler’s task of load balancing and work dispatching, from the user’s point-of-view,
is completely implicit, i.e., the user cannot interfere in the way work is scheduled
for execution. This is a nice property as load balancing and work dispatching
are usually complex tasks due to the dynamic nature of work.5

In competitive or-parallelism, the problem of work scheduling differs from clas-
sical or-parallelism due to the use of explicit parallelism. The system can also
know the number of computational units that are available in the supporting
architecture, but the user has explicit control over the process of work dispatch-
ing. This explicit control can lead to more complex load balancing problems,
as the number of running workers (threads) can easily exceed the number of
available computational units (processors or cores). Our current implementation
delegates load balancing to the operating-system thread scheduler. However, we
can explicitly control the number of running threads using parametric objects
with a parameter for the maximum number of running threads. This is a simple
programming solution, used in most of the Logtalk multi-threading examples.

In classical or-parallelism, another major problem for scheduling is the pres-
ence of pruning operators like the cut predicate. When a cut predicate is exe-
cuted, all alternatives to the right of the cut are pruned, therefore never being
executed in a sequential system. However, in a parallel system, the work cor-
responding to these alternatives can be picked for parallel execution before the
cut is executed, therefore resulting in wasted computational effort when pruning
takes place. This form of work is known as speculative work [14]. An advanced
scheduler must be able to reduce to a minimum the speculative computations
and at the same time maintain the granularity of the work scheduled for execu-
tion [15,16].

In competitive or-parallelism, the concept of speculative work is part of its
operational semantics, not because of the cut’s semantics as the threaded/1
predicate is deterministic and opaque to cuts, but because of the way subgoals
in a competitive or-parallelism call are terminated once one of the subgoals
succeeds. In this case, the speculative work results from the computational effort
done by the unsuccessful or slower threads when pruning takes place. We can
view the threaded/1 predicate as an high-level green cut predicate that prunes
all the alternatives to the left and to the right of the successful subgoal. For now,
we have postponed working on an advanced, high-level scheduler.

3.4 Thread Results and Cancellation Issues

Logtalk multi-threading support uses message queues to collect thread results.
This allows execution to be suspended while waiting for a thread result to be
posted to a message queue, avoiding polling, which would hurt performance.

5 A number of different scheduling strategies have been proposed to efficiently deal
with this problem on classical or-parallelism; see e.g. [10,11,12,13].
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Each thread posts its result to the message queue of the parent thread within the
context of which the competitive or-parallelism call is taking place. The results
posted by each thread are tagged with the identifiers of the remaining threads of
the competitive or-parallelism call. This allows the cancellation of the remaining
threads once a successful result (or an exception) is posted. In Logtalk, a tem-
plate with the thread tags and the original disjunction subgoals is constructed
when compiling a competitive or-parallelism call. The template thread tags are
instantiated at run-time using the identifiers of the threads created when exe-
cuting the competitive or-parallelism call. The first successful thread unifies its
result with the corresponding disjunction goal in the template, thus retrieving
any variable bindings resulting from proving the competitive or-parallelism call.6

The effectiveness of competitive or-parallelism relies on the ability to cancel
the slower threads once a winning thread completes (or throws an exception),
as they would no longer be performing useful work. But canceling a thread may
not be possible and, when possible, may not be as fast as desired if a thread is in
a state where no interrupts are accepted. In the worst case scenario, some slower
threads may run up to completion. Canceling a thread is tricky in most low-level
multi-threading APIs, including POSIX threads. Thread cancellation usually
implies clean-up operations, such as deallocating memory, releasing mutexes,
flushing and possibly closing of opened streams.

In Prolog, thread cancellation must occur only at safe points of the underlying
virtual machine. In the case of the ISO Prolog multi-threading standardization
proposal, the specified safe points are blocking operations such as reading a term
from a stream, waiting for a message to be posted to a message queue, or thread
sleeping. These blocking operations allow interrupt vectors to be checked and
signals, such as thread cancellation, to be processed. Therefore, the frequency of
blocking operations determines how fast a thread can be canceled. Fortunately,
to these minimal set of cancellation safe points, the compilers currently imple-
menting the proposal often add a few more, e.g., whenever a predicate enters its
call port in the traditional box model of Prolog execution. In practical terms this
means that, although tricky in its low-level implementation details, it is possible
to cancel a thread whenever necessary. The standardization proposal specifies a
predicate, thread signal/2, that allows signaling a thread to execute a goal as
an interrupt. Logtalk uses this predicate for thread cancellation. Some current
implementations of this predicate fail to protect the processing of a signal from
interruption by other signals. Without a solution for suspending further signals
while processing an interrupt, there is the danger in corner cases of leaving dan-
gling, zombie threads when canceling a thread whose goal recursively creates
other threads. This problem is expected to be solved in the short term.

3.5 Side-Effects and Dynamic Predicates

The subgoals in a competitive or-parallelism call may have side-effects that may
clash if not accounted for. Two common examples are input/output operations
6 For actual implementation details and programming examples, the reader is invited

to consult the sources of the Logtalk compiler, which are freely available online [17].
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and asserting and retracting clauses for dynamic predicates. To prevent conflicts,
Logtalk and the Prolog compilers implementing the ISO Prolog multi-threading
standardization proposal allow predicates to be declared synchronized, thread
shared (the default), or thread local. Synchronized predicates are internally pro-
tected by a mutex, thus allowing for easy thread synchronization. Thread private
dynamic predicates may be used to implement thread local dynamic state.

In Logtalk, predicates with side-effects can be declared as synchronized by
using the synchronized/1 directive. Calls to synchronized predicates are pro-
tected by a mutex, thus allowing for easy thread synchronization. For example:

:- synchronized(db_update/1). % ensure thread synchronization
db_update(Update) :- ... % predicate with side-effects

A dynamic predicate, however, cannot be declared as synchronized. In order to
ensure atomic updates of a dynamic predicate, we need to declare as synchronized
the predicate performing the update.

The standardization proposal specifies that, by default, dynamic predicates
are shared by all threads. Thus, any thread may call and may assert and retract
clauses for the dynamic predicate. The Prolog compilers that implement the
standardization proposal allow dynamic predicates to be instead declared thread
local.7 Thread-local dynamic predicates are intended for maintaining thread-
specific state or intermediate results of a computation. A thread local predicate
directive tells the system that the predicate may be modified using the built-in
assert and retract predicates during execution of the program but, unlike normal
shared dynamic data, each thread has its own clause list for the predicate (this
clause list is empty when a thread starts). Any existing predicate clauses are
automatically reclaimed by the system when the thread terminates.

4 Experimental Results

We chose the generalized water jug problem to provide the reader with some
experimental results for competitive or-parallelism. In this problem, two water
jugs with p and q capacities are used to measure a certain amount of water. A
third jug is used as an accumulator. When p and q are relatively prime, it is
possible to measure any amount of water between 1 and p + q [18]. This is a
classical state-space search problem, which we can try to solve using blind or
heuristic search methods. In this experiment, we used competitive or-parallelism
(COP) to simultaneously explore depth-first (DF), breadth-first (BF), and hill-
climbing (HC) search strategies. Depending on the values of p and q, the required
number of steps to measure a given amount of water can range from two steps
(in trivial cases) to several dozens of steps.8 Moreover, the number of potential
nodes to explore can range from a few nodes to hundreds of thousands of nodes.
7 Due to syntactic differences between these Prolog compilers, directives for specifying

both thread local and thread shared dynamic predicates are not yet specified in the
standardization proposal.

8 There is an upper bound to the number of steps necessary for measuring a certain
amount of water [19]. In this simple experiment we ignored this upper bound.
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Our experimental setup used Logtalk 2.33.0 with SWI-Prolog 5.6.59 64 bits
as the back-end compiler on an Intel-based computer with four cores and 8 GB
of RAM running Fedora Core 8 64 bits.9 Table 1 shows the running times, in
seconds, when 5-liter and 9-liter jugs were used to measure from 1 to 14 liters of
water. It allows us to compare the running times of single-threaded DF, HC, and
BF search strategies with the COP multi-threaded call where one thread is used
for each individual search strategy. The results show the average of thirty runs.
We highlight the fastest method for each measure. The last column shows the
number of steps of the solution found by the competitive or-parallelism call. The
maximum solution length was set to 14 steps for all strategies. The time taken
to solve the problem ranges from 0.000907 to 8.324970 seconds. Hill climbing is
the fastest search method in six of the experiments. Breadth-first comes next as
the fastest search method in five experiments. Depth-first search is the fastest
search method only in three experiments. Repeating these experiments with
other capacities for the water jugs yields similar results.

Table 1. Measuring from 1 to 14 liters with 5-liter and 9-liter jugs

Liters DF HC BF COP Overhead Steps
1 26.373951 0.020089 0.007044 0.011005 0.003961 5
2 26.596118 12.907172 8.036822 8.324970 0.288148 11
3 20.522287 0.000788 1.412355 0.009158 0.008370 9
4 20.081001 0.000241 0.001437 0.002624 0.002383 3
5 0.000040 0.000240 0.000484 0.000907 0.000867 2
6 3.020864 0.216004 0.064097 0.098883 0.034786 7
7 3.048878 0.001188 68.249278 0.008507 0.007319 13
8 2.176739 0.000598 0.127328 0.007720 0.007122 7
9 2.096855 0.000142 0.000255 0.003799 0.003657 2
10 0.000067 0.009916 0.004774 0.001326 0.001295 4
11 0.346695 5.139203 0.587316 0.404988 0.058293 9
12 14.647219 0.002118 10.987607 0.010785 0.008667 14
13 0.880068 0.019464 0.014308 0.029652 0.015344 5
14 0.240348 0.003415 0.002391 0.010367 0.007976 4

These results show that the use of competitive or-parallelismallows us to quickly
find a sequence of steps of acceptable length to solve different configurations of
the water jug problem. Moreover, given that we do not know a priori which
search method will be the fastest for a specific measuring problem, competitive
or-parallelism is a better solution than any of the individual search methods.

The overhead of the competitive or-parallelism calls is due to the implicit
thread and memory management, plus low-level Prolog synchronization tasks.

The asynchronous nature of thread cancellation implies a delay between the
successful termination of a thread and the cancellation of the other competing
threads. Moreover, the current Logtalk implementation only returns the result
9 The experiments can be easily reproduced by the reader by running the query
logtalk load(mtbatch(loader)), mtbatch(swi)::run(search, 30).



116 P. Moura, R. Rocha, and S.C. Madeira

of a competitive or-parallelism call after all spawned threads are terminated.
An alternative implementation where cancelled threads are detached in order to
avoid waiting for them to terminate and being joined proved tricky and unreliable
due to the reuse of thread identifiers by the back-end Prolog compilers.

The initial thread data area sizes and the amount of memory that must be
reclaimed when a thread terminates can play a significant role on observed over-
heads, depending on the Prolog compiler memory model and on the host oper-
ating system. Memory allocation and release is a possible contention point at
the operating-system level, as testified by past and current work on optimized,
multi-threading aware memory allocators. (see e.g. [20]).

Low-level SWI-Prolog synchronization tasks also contribute to the observed
overheads. In the current SWI-Prolog version, dynamic predicates are mutex
locked even when they are declared thread local (in this case collisions occur
when accessing the shared data structures used by SWI-Prolog to find and up-
date local predicate definitions). Logtalk uses dynamic predicates to represent
the method lookup caches associated with dynamic binding. While in previous
versions the lookup caches are thread shared, the current Logtalk release uses
thread local lookup caches. This change had a small impact on performance in
Linux but provided a noticeable performance boost on MacOS X. Table 2 shows
the results for the dynamic predicate used for the main lookup cache when run-
ning the query mtbatch(swi)::run(search, 20) in both Linux and MacOS.

Table 2. Mutex locks and collisions

Linux MacOS X
Locks Collisions Locks Collisions

Thread shared 1022796427 3470000 907725567 17045455
Thread local 512935818 846213 458574690 814574

Thus, by simply making the lookup caches thread local, we reduced the num-
ber of collisions by 75% in Linux and 94% in MacOS X. Although different
hardware is used in each case, is worth noting that, with a thread shared lookup
cache, the number of collisions in MacOS X is five times the number of collisions
in Linux. This is in accordance with our experience with other multi-threading
tests where the Linux implementation of POSIX threads consistently outper-
forms that of MacOS X (and also the emulation of POSIX threads in Windows).

We are optimizing our implementation in order to minimize the thread man-
agement overhead. There is also room for further optimizations on the Prolog
implementations of core multi-threading support. Nevertheless, even with the
current implementations, our experimental results are promising.

5 The Role of Tabling

In complex problems, such as the ones discussed in the previous section, some
of the competing threads, even if not successful, may generate intermediate
results useful to other threads. Thus, dynamic programming in general, and
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tabling [21,22] in particular, is expected to play an important role in effective
problem solving when using competitive or-parallelism.

In multi-threading Prolog systems supporting tabling, tables may be either
private or shared between threads. In the latter case, a table may be shared once
completed or two or more threads may collaborate in filling it. For applications
using competitive or-parallelism, the most interesting uses of tabling will likely
require the use of shared tables.

While thread-private tables are relatively easy to implement, all other cases
imply sharing a dynamic data structure between threads, with all the associated
issues of locking, synchronization, and potential deadlock cases. Thus, despite
the availability of both threads and tabling in Prolog compilers such as XSB,
Yap, and recently Ciao [23], the implementation of these two features such that
they work together seamlessly implies complex ties to one another and to the un-
derlying Prolog virtual machine. Nevertheless, promising results are described in
a recent PhD thesis [24] and currently implemented in XSB [25]. In the current
Yap version, tabling and threads are incompatible features; users must chose
one or the other when building Yap. Work is planned to make Yap threads
and tabling compatible. Ciao features a higher-level implementation of tabling
when compared with XSB and Yap, which requires minimal modifications to
the compiler and the abstract machine. This tabling support, however, is not
yet available in the current Ciao stable release [26]. It will be interesting to see if
this higher-level implementation makes the use of tabled predicates and thread-
shared tables easier to implement in a multi-threading environment. These Pro-
log implementations are expected to eventually provide robust integration of
these two key features. Together with the expected increase on the number of
cores per processor, we can foresee a programming environment that provides
all the building blocks for taking full advantage of competitive or-parallelism.

6 Potential Application Areas

Competitive or-parallelism support is useful when we have several algorithms to
perform some computation and we do not know a priori which algorithm will
be successful or will provide the best performance. This pattern is common to
several classes of problems in different application areas. Problems where optimal
solutions are sought may also be targeted when optimality conditions or quality
thresholds can be incorporated in the individual algorithms.10

Interesting applications usually involve solving problems whose computational
complexity implies using heuristic approaches with suboptimal solutions. In
these cases, each thread in a competitive or-parallelism call can tackle a dif-
ferent starting point, or apply a different heuristic, in order to find a solution
that, even if not optimal, is considered good enough for practical purposes.

A good example are biclustering applications (see e.g [27,28]), which provide
multiple opportunities for applying speculative threading approaches, such as
10 The cost or quality of the solutions being constructed by each algorithm may also

be shared between threads.
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competitive or-parallelism. Most instances of the biclustering problem are NP-
hard. As such, most algorithmic approaches presented to date are heuristic and
thus not guaranteed to find optimal solutions [27]. Common application areas
include biological data analysis, information retrieval and text mining, collab-
orative filtering, recommendation systems, target marketing and database re-
search. Given the complexity of the biclustering problem, the most promising
algorithmic approaches are greedy iterative search and distribution parameter
identification [27]. Both are amenable to speculative threading formulations.

Greedy iterative search methods are characterized by aggressively looking for
a solution by making locally optimal choices, hoping to quickly converge to a
globally good solution [29]. These methods may make wrong decisions and miss
good biclusters when trapped in suboptimal solutions. Finding a solution sat-
isfying a quality threshold often implies several runs using different starting
points and possibly different greedy search strategies. Therefore, we may spec-
ulatively try the same or several greedy algorithms, with the same or different
starting points, hopefully leading to different solutions satisfying a given quality
threshold. In this case, the returned solution will be the first solution found that
satisfies the quality metric and not necessarily the best solution. Note that this is
a characteristic of greedy search, irrespective of the use of speculative threading.

Distribution parameter identification approaches assume that biclusters were
generated from an underlying statistical model. Models are assumed to be defined
by a fixed statistical distribution, whose set of parameters may be inferred from
data. Different learning algorithms can be used to identify the parameters more
likely to have generated the data [30]. This may be accomplished by iteratively
minimizing a certain criterion. In this context, we can speculatively try different
algorithms to infer the statistical model given the same initialization parameters,
try different initialization parameters for the same distribution (using the same
or different algorithms), or even assume different statistical models.

With the increasing availability of powerful multi-core systems, the parallel
use of both greedy search and distribution parameter identification in bicluster-
ing applications is a promising alternative to current biclustering algorithms. In
this context, high-level concepts, such as competitive or-parallelism, can play an
important role in making speculative threading applications common place.

7 Conclusions and Future Work

We presented the logic programming concept of thread-based competitive or-
parallelism, resulting from combining key ideas of competitive or-parallelism,
committed-choice nondeterminism, speculative threading, and declarative pro-
gramming. This concept is fully supported by an implementation in Logtalk, an
open-source object-oriented logic programing language. We provided a descrip-
tion of our implementation and discussed its semantic properties, complemented
with a discussion on thread cancellation and computational performance issues.
This concept is orthogonal to the object-oriented features of Logtalk and can
be implemented in plain Prolog and in non-declarative programming languages
supporting the necessary threading primitives.
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Competitive and classical or-parallelism target different classes of problems.
Both forms of or-parallelism can be useful in non-trivial problems and can be
supported in the same programming language. Competitive or-parallelism pro-
vides fine-grained, explicit control at the goal level of the tasks that should be
executed in parallel, while classical parallel systems make use of implicit paral-
lelism with possible parallelization hints at the predicate level.

For small problems, the benefits of competitive or-parallelism may not out-
weigh its inherent overhead. For computationally hard problems, this overhead is
expected to be negligible. Interesting problems are characterized by the existence
of several algorithms and heuristics, operating in a large search-space. In this
context, we discussed potential applications where competitive or-parallelism
can be a useful tool for problem solving.

Meaningful experimental results, following from the application of compet-
itive or-parallelism to real-world problems, require hardware that is becoming
common place. Consumer and server-level computers containing from two to six-
teen cores, running mainstream operating-systems, are readily available. Each
processor generation is expected to increase the number of cores, broadening the
class of problems that can be handled using speculative threading in general,
and competitive or-parallelism in particular.

Most research on speculative threading focus on low-level support, such as
processor architectures and compiler support for automatic parallelization. In
contrast, competitive or-parallelism is a high-level concept, targeted to program-
mers of high-level languages. In the case of Logtalk, thread-based competitive
or-parallelism is supported by a single and simple to use built-in meta-predicate.

We found that core Prolog support for multi-threading programming provides
all the necessary support for implementing Logtalk parallelism features. From
a pragmatic perspective, this is an important result as (i) it leads to a simple,
high-level implementation of both competitive or-parallelism and independent
and-parallelism [31] that translates to only a few hundred lines of Prolog source
code; (ii) it ensures wide portability of our implementation (the programmer can
choose between SWI-Prolog, XSB, or Yap as the back-end compiler for exploring
Logtalk multi-threading features on POSIX and Windows operating-systems).

Ongoing work focuses on improving and expanding the Logtalk support for
multi-threading programming. In particular, we are fine-tuning the Logtalk
implementation and working closely with the Prolog developers in the spec-
ification and implementation of the ISO standardization proposal for Prolog
multi-threading programming. Major goals are minimizing the implicit over-
head of thread management and testing our implementation for robustness in
corner cases such as exhaustion of virtual memory address space in 32 bits
systems. Future work will include exploring the role of tabling in competitive
or-parallelism, implementing a load-balancing mechanism, and applying com-
petitive or-parallelism to field problems.
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Abstract. The Prolog primitive thread_cancel/1, which simply can-
cels a thread as recommended in ISO/IEC DTR 13211-5:2007, is con-
spicuously absent in well-maintained, widely used multithreaded Prolog
systems. The ability to cancel a thread is useful for application develop-
ment and is critical to Prolog embeddability. The difficulty of cancelling
a thread is due to the instant mapping of Prolog multithreading prim-
itives to the native-machine thread methods. This paper reports on an
attempt to implement thread cancellation using self-blocking threads. A
thread blocks at the same safe execution point where the state of the
underlying virtual machine is defined. A blocked thread awaits a notifi-
cation to resume or terminate. A resumed thread may be redirected to
self-block by a blocking primitive. Experimental results based on a pro-
totype implementation show that using self-blocking threads not only
simplifies the implementation of thread cancellation but also improves
the performance of message-passing primitives.

Keywords: Prolog, concurrency, threads.

1 Introduction

Explicit expressions of concurrency advance Prolog’s standing as a practical
programming language capable of exploiting modern multiprocessor computers.
Prolog programs consist largely of static code, knowledge expressed as facts and
rules, accessible to any number of execution threads running concurrently, in
parallel or otherwise. Additionally, due to their declarative and high-level na-
ture, Prolog programs retain and expose opportunities for parallel execution
unparalleled in conventional programming languages. To facilitate expressions
of concurrency, a thread model is proposed in ISO/IEC DTR 13211-5:2007 [1],
variants of which are implemented in well-maintained, widely used Prolog sys-
tems, such as Ciao [2], SWI-Prolog [3], XSB [4], Yap [5] and others. The model
includes a set of low-level primitives for thread creation, synchronization and
communication. In addition to sharing the static database on a read-only basis,
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Prolog threads may modify and share the dynamic database in a mutually ex-
clusive manner. Recent research in definition and implementation of high-level
parallelism primitives shows that a relevant speedup is obtainable by exploiting
parallelism expressly at the source-language level [6,7]. As this research activity
illustrates, there are situations in which a need to cancel a thread arises after
the thread has already started.

The need for cancelling a thread is illustrated by the high-level primitive
threaded/1 defined in [6]. Given a conjunction of well-formed goals, this prim-
itive simulates an and-parallel operator executing the goals concurrently using
a dedicated thread for each goal. The primitive succeeds if all goals succeed;
otherwise, if a goal fails or raises an exception, it fails. Hence, once a thread
at some point returns a failure result for a goal it has executed, the remaining
threads should be cancelled since they serve no purpose at that point. A similar
need for cancelling a thread arises when a threaded goal executes successfully as
part of a deterministic disjunction executing concurrently. These and other prac-
tical examples, such as an asynchronously generated cancel condition initiated
by a user request to exit a running program, show that thread cancellability is
a desirable method of Prolog threads.

The option of cancelling a Prolog thread is provided by the primitive
thread cancel/1, described in [1] as follows:

thread cancel/1 cancels a thread. Any mutexes held by the thread shall
be automatically released. The main Prolog thread cannot be cancelled.
Other than this, any thread can cancel any other thread. It is expected
that all the resources consumed by the thread be released upon thread
cancellation.

Prolog systems, however, implement thread cancel/l in a variable way. XSB
shares the responsibility for cancelling a thread with the programmer, whereas
SWI-Prolog defers the implementation of thread cancel/l altogether to the
programmer, with the insight that the primitive is best implemented depending
on the thread model of the problem at hand. In Ciao, the outcome of cancelling
a thread is partly defined and depends wholly on the state of the target thread.
The implementation of thread cancel/l in these and other otherwise-compliant
Prolog systems suggests that the above description for thread cancel/1 may
be easier said than done.

The difficulty of cancelling a thread is due to blocking functions. Standard
library functions, such as read, accept, wait, are subject to blocking as they
are dependent on external events, e.g., the availability of input, establishment
of a network connection, occurrence of a specified event. A thread attempting
to cancel a blocked thread must be able to interact with the function inside
which the target thread is blocked. The interaction may be initiated by either
the cancelling thread, by means of signalling, or the cancelled thread, by means
of polling. The latter method is adapted by POSIX threads [8], on which the
majority of Prolog systems is based.
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Also referred to as Pthreads, POSIX threads is a set of C functions for man-
aging threads, mutual exclusion and condition variables.1 A Prolog thread is
directly mapped to a POSIX thread, running a Prolog engine within a multi-
engined Prolog virtual machine. Cancelling a Prolog thread in the context of
POSIX threads is a well-defined process insofar as the semantics of the latter is
concerned.

POSIX specifies a subset of blocking functions as cancellation points. A block-
ing function designated as cancellation-point is expected to call an internal or
external Pthreads function, e.g., pthread testcancel, at sufficient intervals and
be prepared for the possibility that the function may not return due to the thread
being cancelled. Consequently, any function calling a cancellation-point function
must be equally prepared to give up control without further notice. A function
prepares for the possible loss of control by registering thread-specific cleanup
functions to be executed in the event of thread cancellation. The process of can-
celling a Prolog thread may, thus, proceed as follows. Given a proper accounting
of consumed resources using pthread cleanup push and pthread cleanup pop
within every lexical scope containing a cancellation point, a thread cancels an-
other thread asynchronously by calling pthread cancel, which flags the target
thread as cancelled and returns immediately. If the target thread is active, the
Prolog engine traps the thread at a safe execution point and destroys it by ex-
iting the thread startup function. Otherwise, if the target thread is blocked or
is to block, Pthreads takes over control at the next cancellation point and be-
gins the actual cancellation process by calling the thread cleanup functions in
a last-in-first-out order. Apart from excluding certain blocking functions, most
notably pthread mutex lock, from the standard list of cancellation points, the
process of cancelling a POSIX thread seems transparent enough to support an
orderly cancellation of the adjoining Prolog thread.

However, as evident by the lack of support for thread cancel/1 in well-
maintained Prolog systems, the direct mapping approach to thread cancellation
faces implementation issues related, in part, to Prolog signals and garbage col-
lection. As recommended in [1], a Prolog thread should be able to signal another
thread to execute a goal as a soft interrupt at safe points, including, for exam-
ple, the point at which a Prolog thread is suspended waiting for a message from
a message queue. At that point, neither POSIX signals nor Pthreads cancella-
tion points provide a mechanism for processing Prolog signals. While a Prolog
thread can process a POSIX signal, thus receive a Prolog signal, it can not ex-
ecute the signal, while the thread is blocked by a cancellation-point function.
Similarly, memory and atom garbage collection algorithms require a high level
of cooperation among Prolog threads incompatible with low-level mapping of
Prolog threads to Pthreads. For example, when an active Prolog thread triggers
atom garbage-collection, all other threads must suspend and produce their list
of atoms. Here, again, a Prolog thread blocked by a cancellation-point function
can not be guaranteed to heed a garbage-collection interrupt in any specifiable
1 Condition variables are synchronization objects that allow threads to wait for certain

events (conditions) to occur.
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manner. In order to effect a working level of cooperation among Prolog threads,
a high-level mapping of Prolog threads to Pthreads is required.

This paper reports on an attempt to implement thread cancellation using
self-blocking threads. A self-blocking thread blocks at the same safe execution
point where the state of the underlying Prolog engine is defined. A blocked
thread awaits a notification to resume or terminate. A resumed thread may be
reinstructed to self-block by a blocking primitive. Experimental results based
on a proof-of-concept implementation show that using self-blocking threads is
a viable approach for creating Prolog threads with the provision of facilitating
their cancellation at any point during execution.

Section 2 presents the approach of self-blocking threads in the context of
enabling synchronous cancellation of active and blocked threads. Section 3 in-
cludes implementation notes related to select blocking primitives. Section 4
presents the results of a performance comparison between self-blocking and
directly-mapped threads. Section 5 briefly describes existing implementations
of thread cancel/1. Section 6 concludes with a summary of the cost-benefits
of self-blocking threads.

2 An Execution Engine and Self-block

Cancelling an active thread is a straightforward task. The thread is simply tagged
as cancelled and the actual cancellation takes place upon the thread reaching a
safe execution point. Cancelling a blocked thread, on the other hand, is a complex
task requiring the consent and cooperation of the blocking function. Figure 1(a)
shows a conceptual depiction of active and blocked threads inside the execution
engine of a Prolog virtual machine. The difficulty of cancelling a thread lies with
those threads that are blocked as a result of calling blocking functions. Figure 1(b)
depicts the same threads in a new formation: active threads continue to be active;
blocked threads are blocked on their own accord, using a self-blocking mechanism.
The blocking functions are replaced by their cooperative counterparts, which are
asynchronous, persistent and capable of instructing threads to block (suspend) or
unblock (resume) as it may be warranted during execution. The task of cancelling
a blocked thread is specifiable independent of the cancel method of the underlying
native thread.

A blocking function directs a calling thread to self-block by returning a code
indicating a pending result, based on which the thread self-blocks (suspends)
waiting to be resumed or cancelled. A blocked thread is resumed by notifying
the thread to continue execution from the point at which it was suspended, and
is cancelled by notifying the thread to exit using the same control path used
by an active thread exiting normally. A blocked thread may also be notified
to perform atom-garbage collection or execute a goal as an interrupt. Multiple
notifications are serialized using mutual exclusion. A notifying thread acquires
exclusive control of the target thread prior to notification, with the caveat that
control is granted only if the thread is suspended. A thread is suspended using
the interrupt-vector mechanism commonly used in single-threaded systems to
break into the top-level loop.
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(a) Direct mapping (b) Self-blocking

Fig. 1. Graphical depiction of active and blocked threads

2.1 Implementing the Self-block

The self-block is implemented using a standard synchronization composite of a
mutex, condition variable and counter. Each thread is associated with a compos-
ite instance, which is initialized upon thread creation in sync with the creating
thread. A blocking thread atomically unlocks the mutex and waits for the con-
dition variable to be signalled by another thread. A signalling thread locks the
mutex momentarily and signals the condition variable of the target thread. A
blocked thread whose condition variable has been signalled re-locks its mutex,
increments the counter and resumes execution. In addition to its standard role
of preventing a race condition, the mutex is used to query the status of a thread.
A thread queries the status of another thread by attempting to lock its mutex. If
the attempt is successful, the thread is idle; otherwise, it is running. The counter
is intended to be used in a test-yield loop to compel a signalled thread to assume
ownership of its mutex.

The start-up algorithm for self-blocking threads is outlined in Figure 2. The
algorithm takes a Prolog engine as input and proceeds as follows. First, it ini-
tializes a synchronization composite and swaps a reference to it with that of the
temporary composite initialized by the creating thread for synchronizing with
the current, newly created, thread (Lines 1-3). Second, it momentarily locks the
mutex and signals the condition variable of the creating thread so that the lat-
ter may proceed (Line 4). Third, the algorithm iteratively suspends and resumes
calling the execution engine for as often as the latter indicates a pending result
(Lines 6-10). Lastly, the synchronization composite is destroyed and the native
thread of control exits detaching from the adjoining Prolog engine.

2.2 Implementing thread cancel/1

Cancelling a thread involves first suspending the thread, then destroying it. Since
suspending and destroying a thread are well-defined tasks, they are implemented
by the predicates thread suspend/1 and thread destroy/1. With a negligible
risk of raising an unintended exception, thread cancel/1 is defined as follows:
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thread_cancel(Thread) :-
thread_suspend(Thread),
thread_destroy(Thread).

The algorithms for implementing thread suspend and thread destroy are listed
in Figure 3 and 4, respectively. Both algorithms begin by decoding the target
thread thread from the current actual arguments of the calling thread self . It
is assumed that access to shared resources, such as the list of existing threads
list of threads, is serialized using a locking mechanism.

Input : A Prolog engine self
initialize (composite = {mutex,condition,counter})1:
lock (mutex)2:
swap (self.composite, composite)3:
lock (mutex), signal (condition), unlock (mutex)4:
composite ← self.composite5:
do6:

wait (condition, mutex)7:
counter ← counter + 18:
execution engine (self)9:

while self.result is a pending result10:
terminate (composite)11:

Fig. 2. Start-up algorithm of self-blocking threads

thread ← decode (self,1)1:
lock (thread resource)2:
if thread /∈ list of threads then3:

unlock (thread resource)4:
throw existence error5:

end6:
if thread.reference > 0 then7:

unlock (thread resource)8:
throw permission error9:

end10:
if thread = self then11:

unlock (thread resource)12:
thread.signal ← thread.signal ∨13:
suspend signal
return signal result14:

end15:
thread.reference ← thread.reference + 116:
unlock (thread resource)17:
thread.signal ← thread.signal ∨18:
suspend signal
lock (thread.mutex)19:
if thread.result �= signal result then20:

thread.signal ← thread.signal ∧21:
¬suspend signal

end22:
unlock (thread.mutex)23:
lock (thread resource)24:
thread.reference ← thread.reference − 125:
unlock (thread resource)26:
goto next instruction27:

Fig. 3. thread suspend algorithm

thread ← decode (self,1)1:
lock (thread resource)2:
if thread /∈ list of threads then3:

unlock (thread resource)4:
throw existence error5:

end6:
if thread = self ∨ thread.reference �= 07:
∨ ¬ trylock(thread.mutex) then8:

unlock (thread resource)9:
throw permission error10:

end11:
destroy (thread)12:
unlock (thread resource)13:
goto next instruction14:

Fig. 4. thread destroy algorithm



128 A. Suleiman and J. Miller

The algorithm for thread suspend starts by locking the list of existing threads
and performing a series of tests, including whether the target thread is non-
existent (Lines 3-6), referenced by other threads (Lines 7-10) or itself the calling
thread (Lines 11-14), in which cases it throws an appropriate error-term or re-
turns a pending result; otherwise, it increments the reference counter of the
target thread and unlocks the list of existing threads (Lines 15-16). Next, the
algorithm suspends the target thread by first setting its interrupt vector, then
locking its mutex momentarily (Lines 17-22). Since it is possible that the target
thread suspends for a reason other than having been interrupted, the thread
interrupt vector is reset based on the return result. Lastly, the algorithm decre-
ments the reference counter of the target thread and continues execution with
the following instruction (Lines 23-26). Chances are that the next instruction
to be executed corresponds to thread destroy. In a like manner, thread destroy
algorithm destroys a target thread, provided the thread exists, is idle, different
from the calling thread and unreferenced by any other threads.

3 Implementing Thread-Blocking Predicates

Blocking predicates, be they built-in or user-defined, i.e., foreign, block by in-
structing the calling thread to self-block. For Prolog systems that provide a
foreign-language interface, blocking foreign code communicates its blocking in-
structions by calling an appropriate interface function. The following are imple-
mentation notes related to select blocking predicates.

get code(+Stream, ?Code) gets the character code of a single character from
the (non-standard) input stream Stream and unifies it with the term Code.
The predicate behaves like the standard built-in get code/2, except that if the
stream position of Stream is end-of-stream and eof action(suspend) is a prop-
erty of Stream, then the calling thread suspends, with the expectation that the
foreign module that created Stream (e.g., an embedding application or shared
library) will call an appropriate interface function to resume the calling thread
when new characters become available.

thread get message(+Queue, ?Term) searches the message queue Queue for
a term unifiable with the term Term. If a term is found, the term is unified
with Term and deleted from Queue. Otherwise, if a term is not found, the
calling thread is added to a waiting list associated with Queue and instructed to
block (suspend). The search, deletion and addition are performed in a mutually
exclusive manner.

thread send message(+Queue, @Term) searches the waiting list of the message
queue Queue for a thread whose receiving term is unifiable with the term Term. If
a thread is found, then the thread is deleted from the waiting list, the receiving
term is unified with Term, and the thread is instructed to unblock (resume).
Otherwise, if a receiving thread is not found, Term is added to Queue. The
search, deletion and addition are performed in a mutually exclusive manner.
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mutex lock(+Mutex) acquires the Prolog mutex Mutex blocking if necessary. If
Mutex is already acquired by a thread other than the calling thread, then the
calling thread is added to a waiting list associated with Mutex and instructed to
suspend. If Mutex is previously acquired by the calling thread, then the recursion
counter of Mutex is incremented. Otherwise, if Mutex is free, the calling thread
acquires Mutex. The conditionals and corresponding actions are performed in a
mutually exclusive manner.

mutex unlock(+Mutex) releases the Prolog mutex Mutex. If Mutex is acquired
by the calling thread and the recursion counter of Mutex is greater than zero,
then the recursion counter is decremented. If Mutex is acquired by the calling
thread and the recursion counter of Mutex is zero, then Mutex is first released,
then acquired by the first thread, if any, on the waiting list of Mutex and the
thread is instructed to resume. The conditionals and corresponding actions are
performed in a mutually exclusive manner.

sleep(+Interval) suspends execution of the calling thread for the interval In-
terval. If Interval is an integer greater than zero, then the calling thread Self is
suspended immediately and resumed after Interval is elapsed as follows. If an
alarm is already set for a thread Thread and is expected to set off after interval
Interval thread is elapsed, and Interval > Interval thread, then the pair (Self, Inter-
val - Interval thread) is inserted into list List, containing ordered pairs of alarms
to be set and threads to be resumed. Otherwise, if Interval < Interval thread,
then the alarm is cancelled, a new alarm is created to set off after Interval is
elapsed, and the pair (Thread, Interval thread - Interval) is inserted into List.
The insertion and cancellation are performed in a mutually exclusive manner.
The alarm is a special thread that sleeps synchronously for and on behalf of the
intervals and threads in List.

4 Performance Evaluation

A prototype Prolog implementation was developed to assess the performance of
self-blocking threads on two popular operating systems: Linux and Windows.
The prototype is a simple compiler and emulator comparable in performance to
SWI-Prolog [3]. A select number of multithreading primitives were implemented
using the self-blocking method, as described in Section 3, and the direct mapping
method, as implemented in SWI-Prolog. The method in effect is determined at
build time using conditional compilation. Three performance parameters were
measured: thread-creation time, message-passing time and synchronization time.
The latter parameters were also measured using SWI-Prolog. All measurements
were obtained by averaging ten runs per input per program. The computing
environment is comprised of a single computer, equipped with Intel Core 2 Quad
processor (2.5GHz), 3GB RAM (800MHz), dual-bootable with Linux Debian
version 4.0 and Windows Vista (32-bit).

It should be noted that although both Linux and Windows use one-to-one
mapping between user threads and kernel threads, Linux threads appear to be
considerably more lightweight than Windows threads, possibly due in part to
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the Windowing system of Windows being an integral part of Windows kernel.
The objective of this evaluation is to compare the performance of self-blocking
threads to that of directly mapped threads. A thread performance comparison
between Linux and Windows is outside the scope of this paper, let alone the
interests of its authors.

4.1 Thread Creation

As described in Section 2.1, the procedure for creating a self-blocking thread
requires that the calling thread blocks until the newly created thread initializes
its self-blocking mechanism. The thread-creation time parameter is intended to
quantify the overhead incurred by self-blocking threads during thread creation.

The execution time of thread creation of self-blocking and directly mapped
threads was measured directly using two simple programs written in C. The
first program measures the execution time of thread creation of directly mapped
threads. It trivially creates a variable number of threads by calling the func-
tion pthread create, tracking the wall time elapsed using the function clock.
The second program measures the execution time of thread creation of self-
blocking threads. It has the structure of the first program except that the call
to pthread create is embedded in a new function responsible for synchronizing
the calling thread with the thread to be created. The new function initializes a
temporary synchronization composite comprised of a mutex and condition vari-
able, and calls pthread create, passing a reference to the composite. It then
calls pthread cond wait and blocks waiting for the composite to be signalled
by the newly created thread. Meanwhile, the new thread first initializes its self-
blocking mechanism, then signals the composite of the calling thread so that the
latter may proceed.

As shown in Table 1, self-blocking threads are more expensive to create than
directly mapped threads. The average execution time of thread creation of a
self-blocking thread is about twice that of a directly mapped thread on both
Linux and Windows. On Linux, the execution time of thread creation increases
as the number of threads increases, approaching a measurable value when the
number of threads equals or exceeds 1, 000. On Windows, the execution time of
thread creation is stable, around 200 µs per self-blocking thread and 100 µs per
directly mapped thread, regardless of the number of threads.2

4.2 Message Passing

The message-passing time parameter was first measured for the case of a single
sender/receiver, where neither implementation method has an apparent advan-
tage over the other. Here, passing a message involves sending the message and
waking up the receiving thread. The time measurements were obtained using
2 On Windows, according to spawn-time measurement results obtained from Prototype

and SWI-Prolog, the execution time of POSIX thread creation is the dominant
component of the execution time of Prolog thread creation.
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Table 1. Comparison of average execution time of thread creation (µs per thread)

# of
threads

Linux Windows
Direct mapping Self-blocking Direct mapping Self-blocking

100 0 0 107 205
200 0 0 106 207
500 0 0 106 206
1000 2 6 107 205
2000 7 12 106 204
4000 10 15 106 204

the program described in [9]. The program involves passing a message between
N threads M times. The threads are linked in a ring structure. The message
is an integer specifying the number of times the message is to be passed. Upon
receiving the integer-message, a thread decrements the integer and passes it to
the next thread. The message passing between threads continues until the inte-
ger becomes less than zero, at which point a thread simply exits. The program
is listed in Figure 5. The message-passing time measurements were estimated
for select numbers of threads performing message passing 1, 000, 000 times. The
results are presented in Table 2.3

start(N, M) :- setup(0, Thread, Thread) :- !.
N1 is N - 1, setup(N, Thread, NextThread) :-
thread_self(Thread), Goal = process(Thread),
setup(N1, Thread, NextThread), thread_create(Goal, NewThread, [detached(true)]),
thread_send_message(NextThread, M), N1 is N - 1,
catch(process(NextThread), _, true). setup(N1, NewThread, NextThread).

process(Thread) :-
repeat,

thread_get_message(M),
M1 is M - 1,
thread_send_message(Thread, M1),
M1 < 0,

!.

Fig. 5. Program for measuring simple message-passing time

Overall, the performance of self-blocking threads and directly mapped threads
are comparable on both Linux and Windows. On a closer examination, however,
the self-blocking approach is consistently, albeit slightly, faster than the direct
mapping approach as implemented in both the prototype and SWI-Prolog. The
number of threads that can be created in SWI-Prolog is limited to less than 100
threads, thus the time measurements corresponding to numbers of threads equal
or exceeding 100 are unobtainable. The simple message-passing time is relatively
stable, around 4 µs on Linux, 12 µs on Windows, per message, for a range of 10
3 For assurance and sheer curiosity, the time measurements of Java threads were also

obtained and presented. On Linux, Java threads perform simple message passing
twice as fast as Prolog threads using either approach. The Java speedup is likely
due to Prolog’s need to validate, in a mutually exclusive manner, the existence of a
thread prior to accessing its message queue. The question as to why Java threads
were unable to maintain a similar speedup factor on Windows is outstanding.
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Table 2. Comparison of average execution time of threads performing simple message-
passing (µs per message)

(a) Average execution time on Linux

# of
threads

self-blocking direct mapping
SWI-Prolog

5.6.61
Java

1.6.0 06

10 5.86 5.90 5.99 3.03
20 4.36 5.26 4.73 2.94
40 4.26 4.78 4.58 2.91
80 4.02 4.53 4.94 3.21

100 4.15 4.38 – 3.24
200 4.12 4.38 – 3.35

(b) Average execution time on Windows

# of
threads

self-blocking direct mapping SWI-Prolog
5.6.61

Java
1.6.0 06

10 11.75 13.21 14.54 11.75
20 11.95 12.20 13.71 11.75
40 11.95 12.73 13.29 11.22
80 11.95 12.48 13.38 11.26

100 12.04 12.83 – 11.39
200 12.78 13.51 – 11.39

to 400 threads. However, this parameter is likely to increase as the number of
threads increases due in part to cache exhaustion due, in turn, to the uncommon
memory requirements of Prolog threads.

The message-passing time parameter was, second, measured for the case of
multiple senders/receivers, where self-blocking threads have a decisive advan-
tage over directly-mapped threads. Here, message passing may involve a series
of time-consuming operations, including adding (copying) a sender’s message to
a message queue, searching a list of waiting receivers for one whose skeletal mes-
sage matches a newly added message, searching a message queue for a message
matching a receiver’s skeletal message, waking up potential receivers or just a
matching receiver, and adding a new receiver to a list of waiting receivers.

The classic concurrency problem of the dining philosophers was used to il-
lustrate the speed advantage of self-blocking threads in programs that require
extensive message passing. The solution found in [10] was adapted to obtain wall
time measurements for a variable number of philosophers. The measurements are
depicted graphically in Figure 6.

As expected, self-blocking threads outperform directly mapped threads, by a
factor of 2 on Linux and by an order of magnitude on Windows. The source of
the speedup is transparent. In the self-blocking approach, a new sender signals at
most one potential receiver, whereas in the direct-mapping approach, the sender
must signal all waiting receivers, even though only one of which might succeed
in getting the sender’s message while the other receivers will attempt in vain to
unify their skeletal messages with the old messages of previous senders. In addi-
tion to performing needless unification, the majority of receivers effects needless
task-switches performed by the operating system at the behest of unassuming
senders.
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Fig. 6. The Dining Philosophers benchmark (10, 000 eat-think cycle per philosopher)

4.3 Synchronization

The synchronization time parameter was measured using a simple program,
which creates a variable number of threads, each of which updates a shared
resource 10, 000 times. Mutual exclusion is achieved using a global mutex and
the synchronization primitives mutex lock/1 and mutex unlock/1. The average
execution time per mutual exclusion was estimated by subtracting the wall time
required to execute an equal number of updates sequentially. The results are
presented in Table 3.

The performance of self-blocking and directly mapped threads in programs
that require extensive synchronization varies depending on the implementation of
Prolog mutex. For implementations potentially compliant with [1], self-blocking
threads compare favorably to directly mapped threads on Linux. On Windows,
the former (self-blocking) threads outperform the latter threads by a factor as
high as 1.7. Moreover, on Windows, the prototype’s compliant implementation

Table 3. Comparison of average execution time of threads updating a shared resource
(µs per mutual exclusion)

(a) Average execution time on Linux

# of
threads self-blocking

direct mapping
(compliant)

direct mapping
(incompliant)

SWI-Prolog
5.6.61

10 7.53 7.97 0.56 0.86
20 7.90 8.01 0.75 0.95
40 7.47 8.52 0.91 1.02
80 7.53 8.70 0.96 1.08

100 6.88 8.78 0.99 –
200 7.89 8.93 1.01 –

(b) Average execution time on Windows

# of
threads

self-blocking
direct mapping

(compliant)
direct mapping
(incompliant)

SWI-Prolog
5.6.61

10 11.06 16.10 1.53 11.31
20 10.90 17.04 1.49 11.91
40 10.46 17.37 1.51 12.52
80 10.89 17.39 1.49 12.49

100 10.57 17.52 1.49 –
200 10.75 18.18 1.48 –
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using self-blocking threads outperforms SWI-Prolog incompliant implementation
using directly mapped threads. The criteria for compliance, for the purpose of
this comparison, is that a Prolog mutex is indestructible while it is in use, e.g.,
one or more threads are blocked attempting to acquire the mutex. As shown in
Table 3, lifting this requirement of indestructibility can result in a synchroniza-
tion speed characteristic of low-level programming languages, however, to the
negation of the premise of using self-blocking threads, which is to provide a safe
and user-friendly Prolog multithreaded environment.

5 Related Work

While Prolog systems agree on how to create threads, they differ widely on how
to cancel them.

SWI-Prolog [3] and Yap [5] defer the implementation of thread cancel/1 to
the programmer with the insight that thread cancellation is best implemented
based on the thread model of the application at hand. In the boss/worker thread
model, for example, thread cancel/1 may be implemented by communicating
to the thread to be cancelled a specially coded message instructing the thread
to exit or abort. In a computation-intensive application, for another example,
cancelling a thread may be achieved by signalling the thread to execute a goal
quoting a control primitive, such as thread exit(cancelled).

In XSB [4], thread cancelation is a joint responsibility of the system and
the application. The latter initiates the process of canceling a thread by call-
ing thread cancel/1, giving the thread to be cancelled as an argument. For its
part, XSB internally flags the given thread as canceled and waits for the thread
execution to reach a call or execute port, at which point XSB throws a cancela-
tion error ending its role in the thread cancelation process. The target thread,
henceforth, is expected to catch the error, release any allocated resources and
exit voluntarily.

Ciao [2] provides a primitive named eng kill/1, which attempts to cancel
the thread associated with a given goal identifier. The attempt may succeed,
fail, block or render the system in an unstable state, depending on whether,
irrespectively, the thread to be cancelled is trappable at a standard port, the
goal identifier is valid, the thread is blocked by a system call, or other noted,
however unspecified, situations.

Other Prolog systems, such as BinProlog and Qu-Prolog, provide other vari-
ations on the theme of thread cancellation. However, the primitives tasked with
cancelling a thread are summarily documented. Attempts to learn of the in-
ternals of these primitives, through haphazard queries written with ill intents,
showed that thread cancellation in these systems is problematic.

6 Conclusion

This paper presented an experimental implementation approach for creating
Prolog threads with the provision of facilitating their destruction at any point
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during execution. The approach is based on self-blocking threads, a common
implementation technique for managing thread interactions in multithreaded
applications. The ability to cancel a thread safely and synchronously improves
Prolog’s standing as a useful programming language, capable of expressing vari-
able solutions to complex concurrent problems for prototyping or production
purposes. Additionally, it preserves the integrity of Prolog’s traditional top-level
loop program and improves Prolog’s embeddability into multi-paradigm, multi-
language applications.

Thread cancellability with self-blocking threads increases the complexity of
system and extension development, as might be expected of features of high-
level programming languages. Standard library functions, such as seek, sleep,
select, may not be used directly to implement built-in and library predicates.
Instead, these functions are reemployed within newly designed, more complex
functions which are reentrant, persistent, asynchronous and able to communicate
intermediate results. This added complexity may be viewed as a fair price, paid
at the right layer in the right currency, C, in exchange for preserving Prolog’s
dictum of combining simplicity and power at the user level.

Although native in their own right, self-blocking threads exhibit the program-
mability of green threads,4 as they are at most one standard port away from
relinquishing processor control and one wake-up call from regaining it. As such,
they are fit to yield the main benefits of both native and green multithreaded
environments, namely parallelism and portability. Used in this capacity, the self-
blocking approach constitutes a cost-efficient compromise between using native
preemptive threads [11] and nonnative cooperative threads [12].

The performance of self-blocking threads compares favorably to that of di-
rectly mapped threads, despite that the time cost of creating a self-blocking
thread is twice that of a directly mapped thread, due to the initial cost of the
former’s self-blocking mechanism. Self-blocking threads support a wide range of
algorithms for implementing message passing, a primary means of thread com-
munication and synchronization [1]. For programs that require extensive message
passing, experimental results showed that execution times vary by up to an or-
der of magnitude, depending on the operating system and the algorithm used
for matching the messages of senders and receivers. Given that directly mapped
threads can hardly do without a message queue and message passing, the run
time advantage of self-blocking threads should offset the initial cost of their
self-blocking mechanisms.

The utility of self-blocking threads extends beyond simplifying thread can-
cellation to enabling the implementation of high-level features, such as the sep-
aration of thread creation and execution, the implementation of suspend and
resume primitives, backtracking, multiple executions and execution modes. The
ability to separate thread creation from execution, proposed in passing in [13],
facilitates the implementation of a high level API, which subsumes the one rec-
ommended in [1], which in turn facilitates the implementation of yet higher-level

4 Green threads are threads that are scheduled by a virtual machine instead of natively
by the underlying operating system.
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parallel operators analogous to those introduced in [6] and [7]. Experiments are
being conducted to evaluate the merits of new multithreading primitives in terms
of simplicity and expressiveness, as well as performance.
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Abstract. We introduce a new programming language construct, Inter-
actors, supporting the agent-oriented view that programming is a dialog
between simple, self-contained, autonomous building blocks.

We define Interactors as an abstraction of answer generation and re-
finement in Logic Engines resulting in expressive language extension and
metaprogramming patterns.

As a first step toward a declarative semantics, we sketch a pure Prolog
specification showing that Interactors can be expressed at source level,
in a relatively simple and natural way.

Interactors extend language constructs like Ruby, Python and C#’s
multiple coroutining block returns through yield statements and they
can emulate the action of fold operations and monadic constructs in
functional languages.

Using the Interactor API, we describe at source level, language ex-
tensions like dynamic databases and algorithms involving generation of
infinite answer streams.

Keywords: Prolog language extensions, logic engines, semantics of
metaprogramming constructs, generalized iterators, agent oriented pro-
gramming language constructs.

1 Introduction

Agent programming constructs have influenced design patterns at “macro level”,
ranging from interactive Web services to mixed initiative computer human in-
teraction. Performatives in Agent communication languages [1] have made these
constructs reflect explicitly the intentionality, as well as the negotiation process
involved in agent interactions. At a more theoretical level, it has been argued that
interactivity, seen as fundamental computational paradigm, can actually expand
computational expressiveness and provide new models of computation [2].

In a logic programming context, the Jinni agent programming language [3]
and the BinProlog system [4] have been centered around logic engine constructs
providing an API that supported reentrant instances of the language processor.
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This has naturally led to a view of logic engines as instances of a generalized
family of iterators called Fluents [5], that have allowed the separation of the first-
order language interpreters from the multi-threading mechanism, while providing
a very concise source-level reconstruction of Prolog’s built-ins.

Building upon the Fluents API described in [5], this paper will focus on bring-
ing interaction-centered, agent oriented constructs from software design frame-
works and design patterns to programming language level.

The resulting language constructs, that we shall call Interactors, will express
control, metaprogramming and interoperation with stateful objects and external
services. They complement pure Horn Clause Prolog with a significant boost in
expressiveness, to the point where they allow emulating at source level virtually
all Prolog builtins, including dynamic database operations.

Interruptible Iterators are a new Java extension described in [6]. The underly-
ing construct is the yield statement providing multiple returns and resumption
of iterative blocks, i.e. for instance, a yield statement in the body of a for loop
will return a result for each value of the loop’s index.

The yield statement has been integrated in newer Object Oriented languages
like Ruby [7,8] C# [9] and Python [10] but it goes back to the Coroutine Iterators
introduced in older languages like CLU [11] and ICON [12].

Interactors can be seen as a natural generalization of Interruptible Iterators
and Coroutine Iterators. They implement the the more radical idea of allow-
ing clients to communicate to/from inside blocks of arbitrary recursive compu-
tations. The challenge is to achieve this without the fairly complex interrupt
based communication protocol between the iterator and its client described in
[6]. Towards this end, Interactors provide a structured two-way communication
between a client and the usually autonomous service the client requires from a
given language construct, often encapsulating an independent component.

2 First Class Logic Engines

Our Interactor API is a natural extension of the Logic Engine API introduced
in [5]. An Engine is simply a language processor reflected through an API that
allows its computations to be controlled interactively from another Engine very
much the same way a programmer controls Prolog’s interactive toplevel loop:
launch a new goal, ask for a new answer, interpret it, react to it.

A Logic Engine is an Engine running a Horn Clause Interpreter with LD-
resolution [13] on a given clause database, together with a set of built-in opera-
tions. The command

new_engine(AnswerPattern,Goal,Interactor)

creates a new Horn Clause solver, uniquely identified by Interactor, which
shares code with the currently running program and is initialized with Goal
as a starting point. AnswerPattern is a term, usually a list of variables occur-
ring in Goal, of which answers returned by the engine will be instances. Note
however that new engine/3 acts like a typical constructor, no computations are
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performed at this point, except for allocating data areas. In our actual implemen-
tation, with all data areas dynamic, engines are lightweight and engine creation
is extremely fast.

The get/2 operation is used to retrieve successive answers generated by an
Interactor, on demand. It is also responsible for actually triggering computations
in the engine. The query

get(Interactor,AnswerInstance)

tries to harvest the answer computed from Goal, as an instance of AnswerPattern.
If an answer is found, it is returned as the(AnswerInstance), otherwise the
atom no is returned. As in the case of the Maybe Monad in Haskell, returning
distinct functors in the case of success and failure, allows further case analy-
sis in a pure Horn Clause style, without needing Prolog’s CUT or if-then-else
operation.

Note that bindings are not propagated to the original Goal or AnswerPattern
when get/2 retrieves an answer, i.e. AnswerInstance is obtained by first stan-
dardizing apart (renaming) the variables in Goal and AnswerPattern, and then
backtracking over its alternative answers in a separate Prolog interpreter. There-
fore, backtracking in the caller interpreter does not interfere with the new Inter-
actor’s iteration over answers. Backtracking over the Interactor’s creation point,
as such, makes it unreachable and therefore subject to garbage collection.

An Interactor is stopped with the stop/1 operation that might or might not
reclaim resources held by the engine. In our actual implementation we are using
a fully automated memory management mechanism where unreachable engines
are automatically garbage collected.

So far, these operations provide a minimal Coroutine Iterator API, powerful
enough to switch tasks cooperatively between an engine and its client and em-
ulate key Prolog built-ins like if-then-else and findall [5], as well as higher
order operations like fold and best of.

3 From Fluents to Interactors

We will now describe the extension of the Fluents API of [5] that provides a
minimal bidirectional communication API between interactors and their clients.

The following operations provide a “mixed-initiative” interaction mechanism,
allowing more general data exchanges between an engine and its client.

3.1 A Yield/Return Operation

First, like the yield return construct of C# and the yield operation of Ruby
and Python, our return/1 operation

return(Term)

will save the state of the engine and transfer control and a result Term to its
client. The client will receive a copy of Term simply by using its get/2 operation.
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Similarly to Ruby’s yield, our return operation suspends and returns data from
arbitrary computations (possibly involving recursion) rather than from specific
language constructs like a while or for loop.

Note that an Interactor returns control to its client either by calling return/1
or when a computed answer becomes available. By using a sequence of return/
get operations, an engine can provide a stream of intermediate/final results to
its client, without having to backtrack. This mechanism is powerful enough to
implement a complete exception handling mechanism (see [5]) simply by defining

throw(E):-return(exception(E)).

When combined with a catch(Goal,Exception,OnException), on the client
side, the client can decide, upon reading the exception with get/2, if it wants
to handle it or to throw it to the next level.

3.2 Interactors and Coroutining

The operations described so far allow an engine to return answers from any
point in its computation sequence. The next step is to enable an engine’s client
to inject new goals (executable data) to an arbitrary inner context of an engine.
Two new primitives are needed:

to_engine(Engine,Data)

used to send a client’s data to an Engine, and

from_engine(Data)

used by the engine to receive a client’s Data.
A typical use case for the Interactor API looks as follows:

1. the client creates and initializes a new engine
2. the client triggers a new computation in the engine, parameterized as follows:

(a) the client passes some data and a new goal to the engine and issues a
get operation that passes control to it

(b) the engine starts a computation from its initial goal or the point where
it has been suspended and runs (a copy of) the new goal received from
its client

(c) the engine returns (a copy of) the answer, then suspends and returns
control to its client

3. the client interprets the answer and proceeds with its next computation step
4. the process is fully reentrant and the client may repeat it from an arbitrary

point in its computation

Using a metacall mechanism like call/1 (which can also be emulated in terms
of engine operations [5]) or directly through a source level transformation [14],
one can implement a close equivalent of Ruby’s yield statement as follows:
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ask_engine(Engine,Query, Result):-
to_engine(Engine,Query),
get(Engine,Result).

engine_yield(Answer):-
from_engine((Answer:-Goal)),
call(Goal),return(Answer).

The predicate ask engine/3 sends a query (possibly built at runtime) to an en-
gine, which in turn, executes it and returns a result with an engine yield opera-
tion. The query is typically a goal or a pattern of the form AnswerPattern:-Goal
in which case the engine interprets it as a request to instantiate AnswerPattern
by executing Goal before returning the answer instance.

As the following example shows, this allows the client to use, from outside,
the (infinite) recursive loop of an engine as a form of updatable persistent state.

sum_loop(S1):-engine_yield(S1=>S2),sum_loop(S2).

inc_test(R1,R2):-
new_engine(_,sum_loop(0),E),
ask_engine(E,(S1=>S2:-S2 is S1+2),R1),
ask_engine(E,(S1=>S2:-S2 is S1+5),R2).

?- inc_test(R1,R2).
R1=the(0 => 2),
R2=the(2 => 7)

Note also that after parameters (the increments 2 and 5) are passed to the
engine, results dependent on its state (the sums so far 2 and 7) are received
back. Moreover, note that an arbitrary goal is injected in the local context of
the engine where it is executed. The goal can then access the engine’s state
variables S1 and S2. As engines have separate garbage collectors (or in simple
cases as a result of tail recursion), their infinite loops run in constant space,
provided that no unbounded size objects are created.

4 A (Mostly) Pure Prolog Specification

At a first look, Interactors deviate from the usual Horn Clause semantics of
pure Prolog programs. A legitimate question arises: are they not just another
procedural extension, say, like assert/retract, setarg, global variables etc.?

We will show here that the semantic gap between pure Prolog and its extension
with Interactors is much narrower than one would expect. The techniques that
we will describe can be seen as an executable specification of Interactors within
the well understood semantics of logic programs (SLDNF resolution).

Toward this end, we will sketch an emulation, in pure Prolog, of the key
constructs involved in defining Interactors.
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There are four distinct concepts to be emulated:

1. we need to eliminate backtracking to be able to access multiple answers at
a time

2. we need to emulate copy term as different search branches and multiple uses
of a given clause require fresh instances of terms, with variables standardized
apart

3. we need to emulate suspending and resuming an engine
4. engines should be able to receive and return Prolog terms

We will focus here on the first two, that are arguably less obvious, by providing
actual implementations. After that, we will briefly discuss the feasibility of the
last two.

4.1 Metainterpreting Backtracking

First, let’s define a clause representation, that can be obtained easily with a source-
to-source translator. Clauses in the database are represented with difference-list
terms, structurally isomorphic to the binarization transformationdescribed in [14].
The code of a classic Prolog naive reverse + permutation generator program
becomes:

:-op(1150,xfx,<=).

clauses([
[app([],A,A) |B]<=B,
[app([C |D],E,[C |F]) |G]<=[app(D,E,F) |G],

[nrev([],[]) |H]<=H,
[nrev([I |J],K) |L]<=[nrev(J,M),app(M,[I],K) |L],

[perm([],[]) |N]<=N,
[perm([O |P],Q) |R]<=[perm(P,S),ins(O,S,Q) |R],

[ins(T,U,[T |U]) |V]<=V,
[ins(W,[X |Y],[X |Z]) |X0]<=[ins(W,Y,Z) |X0]

]).

Note that we can assume that variables are local to each clause and therefore
they have been standardized apart accordingly1.

First, let’s define the basic inference step (equivalent to an LD-resolution step,
[13]) as a simple “arrow composition” operation:

compose(F1,F2,A<=C):-copy_term(F1,A<=B),copy_term(F2,B<=C).

We can now add a new “arrow” to a list of existing arrows, provided that the
composition succeeds:

1 Allowing shared variables would bring a different, but nevertheless interesting se-
mantics, with “inter-clausal variables” seen as write-once global variables.
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match_one(F1,F2,Fs,[NewF |Fs]):-compose(F1,F2,F3),!,NewF=F3.
match_one(_,_,Fs,Fs).

We can see an arrow as representing the current goal. The next step is to let an
arrow select from a list of clauses the ones that match:

match_all([],_,Fs,Fs).
match_all([Clause |Cs],Arrow,Fs1,Fs3):-
match_one(Arrow,Clause,Fs1,Fs2),
match_all(Cs,Arrow,Fs2,Fs3).

We can add a stopping condition to mark the success of an LD-derivation as
matching an arrow of the form Answer<=[]

derive_one(Answer<=[],_,Fs,Fs,As,[Answer |As]).
derive_one(Answer<=[G |Gs],Cs,Fs,NewFs,As,As):-
match_all(Cs,Answer<=[G |Gs],Fs,NewFs).

With these building blocks in place, the result of the LD-derivations of all answer
instances of a query can be defined as:

all_instances(AnswerPattern,Goal,Clauses,Answers):-
Gs=[AnswerPattern<=[Goal]],
derive_all(Gs,Clauses,[],Answers).

where derive all lifts the derivation process to progressively solve all existing
and newly generated goals:

derive_all([],_,As,As).
derive_all([Arrow |Fs],Cs,OldAs,NewAs):-
derive_one(Arrow,Cs,Fs,NewFs,OldAs,As),
derive_all(NewFs,Cs,As,NewAs).

Finally, we can integrate the clause database:

all_answers(X,G,R):-clauses(Cs),all_instances(X,G,Cs,R).

and try out a few goals:

?- all_answers(Xs+Ys,app(Xs,Ys,[1,2,3]),Rs).
Rs = [[]+[1, 2, 3], [1]+[2, 3], [1, 2]+[3], [1, 2, 3]+[]]

?- all_answers(P,perm([1,2,3],P),Ps).
Ps = [[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]]

Note, that for non-ground queries, answers computed this way keep variable
equalities as expected:

?- List=[A,B,B,A],all_answers(R,nrev(List,R),Rs).
List = [A, B, B, A],
Rs = [[_A, _B, _B, _A]]

Note that, except for relying on copy term and a cut that can be replaced with
a negation as failure, the metainterpreter is entirely written in pure Prolog.
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4.2 Emulating copy term

We can emulate the effect of copy term in the previously described metainter-
preter by observing that a logical variable can be “split” into two new ones and
consequently a Prolog term can be recursively deconstructed and rebuilt as two
fresh terms, identical to it up to uniform variable renamings.
fork_term(’$v’(T1,T2), R1,R2):-R1=T1,R2=T2.
fork_term(T, T1,T2):-
nonvar(T),functor(T,F,N),(F/N) \== (’$v’/2),
functor(T1,F,N),functor(T2,F,N),
fork_args(N,T,T1,T2).

fork_args(0,_,_,_).
fork_args(I,T,T1,T2):-I>0,
I1 is I-1,arg(I,T,X),
fork_term(X,A,B),
arg(I,T1,A),arg(I,T2,B),
fork_args(I1,T,T1,T2).

One can see that this produces indeed two fresh copies of the original term:
?- fork_term(f(A,B,g(B,A)),T1,T2).
A = ’$v’(_A1, _A2),
B = ’$v’(_B1, _B2),
T1 = f(_A1, _B1, g(_B1, _A1)),
T2 = f(_A2, _B2, g(_B2, _A2)).

Note that functor and arg can be seen as generic abbreviations for predicates
describing the building/decomposition operations for each function symbol oc-
curring in the program and $v/2 can be assumed to be any function symbol not
occurring in the program. Along the lines of [15] one can see that this function-
ality can be also expressed through a simple program transformation provided
that nonvar/1 can be expressed using negation as failure as
nonvar(X):- not(X=0),not(X=1).

We will obtain a slightly different definition of composition, that would require
replacing both the clause and the resolvent with one of the copies while using
the other pair of copies for the arrow compositions.
compose(F1,F2, A<=C, NewF1,NewF2):-

fork_term(F1,A<=B,NewF1),
fork_term(F2,B<=C,NewF2).

One can now see that after propagating the extra arguments through the clauses
of the metainterpreter described in subsection 4.1, together with the source
level transformations we just mentioned, a metainterpreter that does not re-
quire copy term can be derived.

4.3 Implementing Suspend/Resume and Term/Exchanges

The metainterpreter described in subsection 4.1 can be easily modified to re-
turn the current goal list when observing a return(X) instruction and then



Interoperating Logic Engines 145

be resumed at will, by adding a clause similar to the one handling the case
Answer<=[]. At this point, data exchange operations and to engine and from
engine can be implemented through an extra argument added to the metain-
terpreter.

5 Interactors and Higher Order Constructs

As a first glimpse at the expressiveness of the Interactor API, we will implement,
in the tradition of higher order functional programming, a fold operation [16]
connecting results produced by independent branches of a backtracking Prolog
engine:

efoldl(Engine,F,R1,R2):-
get(Engine,X),
efoldl_cont(X,Engine,F,R1,R2).

efoldl_cont(no,_Engine,_F,R,R).
efoldl_cont(the(X),Engine,F,R1,R2):-
call(F,R1,X,R),
efoldl(Engine,F,R,R2).

Classic functional programming idioms like reverse as fold are then implemented
simply as:

reverse(Xs,Ys):-
new_engine(X,member(X,Xs),E),
efoldl(E,reverse_cons,[],Ys).

reverse_cons(Y,X,[X |Y]).

Note also the automatic deforestation effect [17] of this programming style -
no intermediate list structures need to be built, if one wants to aggregate the
values retrieved from an arbitrary generator engine with an operation like sum
or product.

6 Emulating Dynamic Databases with Interactors

The gain in expressiveness coming directly from the view of logic engines as an-
swer generators is significant. We refer to [5] for source level implementations of
virtually all essential Prolog built-ins. The notable exception is Prolog’s dynamic
database, requiring the bidirectional communication provided by interactors.

The key idea for implementing dynamic database operations with Interactors
is to use a logic engine’s state in an infinite recursive loop.

First, a simple difference-list based infinite server loop is built:

queue_server:-queue_server(Xs,Xs).

queue_server(Hs1,Ts1):-
from_engine(Q),server_task(Q,Hs1,Ts1,Hs2,Ts2,A),return(A),
queue_server(Hs2,Ts2).
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Next we provide the queue operations, needed to maintain the state of the
database.

server_task(add_element(X),Xs,[X |Ys],Xs,Ys,yes).
server_task(push_element(X),Xs,Ys,[X |Xs],Ys,yes).
server_task(queue,Xs,Ys,Xs,Ys,Xs-Ys).
server_task(delete_element(X),Xs,Ys,NewXs,Ys,YesNo):-
server_task_delete(X,Xs,NewXs,YesNo).

Then we implement the auxiliary predicates supporting various queue opera-
tions:

server_task_remove(Xs,NewXs,YesNo):-
nonvar(Xs),Xs=[X |NewXs],!,YesNo=yes(X).

server_task_remove(Xs,Xs,no).

server_task_delete(X,Xs,NewXs,YesNo):-
select_nonvar(X,Xs,NewXs),!,YesNo=yes(X).

server_task_delete(_,Xs,Xs,no).

select_nonvar(X,XXs,Xs):-nonvar(XXs),XXs=[X |Xs].
select_nonvar(X,YXs,[Y |Ys]):-nonvar(YXs),YXs=[Y |Xs],
select_nonvar(X,Xs,Ys).

Next, we put it all together, as a dynamic database API.
We can create a new engine server providing Prolog database operations:

new_edb(Engine):-new_engine(done,queue_server,Engine).

We can add new clauses to the database

edb_assertz(Engine,Clause):-
ask_engine(Engine,add_element(Clause),the(yes)).

edb_asserta(Engine,Clause):-
ask_engine(Engine,push_element(Clause),the(yes)).

and we can return fresh instances of asserted clauses

edb_clause(Engine,Head,Body):-
ask_engine(Engine,queue,the(Xs-[])),
member((Head:-Body),Xs).

or remove them from the the database

edb_retract1(Engine,Head):-Clause=(Head:-_Body),
ask_engine(Engine,

delete_element(Clause),the(yes(Clause))).

Finally, the database can be discarded by stopping the engine that hosts it:

edb_delete(Engine):-stop(Engine).

The following example shows how the database generates the equivalent of
clause/2, ready to be passed to a Prolog metainterpreter.
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test_clause(Head,Body):-
new_edb(Db),

edb_assertz(Db,(a(2):-true)),
edb_asserta(Db,(a(1):-true)),
edb_assertz(Db,(b(X):-a(X))),

edb_clause(Db,Head,Body).

As a side note, combining this emulation with the metainterpreter described
in section 4, provides an executable specification of Prolog’s dynamic database
operations in pure Prolog, worth investigating in depth, as future work.

Externally implemented dynamic databases can also be made visible as In-
teractors and reflection of the interpreter’s own handling of the Prolog database
becomes possible. As an additional benefit, multiple databases can be provided.
This simplifies adding module, object or agent layers at source level. By com-
bining database and communication Interactors, software abstractions like mo-
bile code and autonomous agents can be built as shown in [18]. Encapsulating
external stateful objects like file systems or external database or Web service in-
terfaces as Interactors can provide a uniform interfacing mechanism and reduce
programmer learning curves in practical applications of Prolog.

Moreover, Prolog operations traditionally captive to predefined list based im-
plementations (like DCGs) can be made generic and mapped to work directly
on Interactors encapsulating file, URL and socket Readers.

7 Simplifying Algorithms: Interactors and Combinatorial
Generation

Various combinatorial generation algorithms have elegant backtracking imple-
mentations. However, it is notoriously difficult (or inelegant, through the use of
impure side effects) to compare answers generated by different OR-branches of
Prolog’s search tree.

7.1 Comparing Alternative Answers

Optimization problems, selecting the “best” among answers produced on alter-
native branches can easily be expressed as follows:

– running the generator in a separate logic engine
– collecting and comparing the answers in a client controlling the engine

The second step can actually be automated, provided that the comparison cri-
terion is given as a predicate

compare_answers(First,Second,Best)

to be applied to the engine with an efold operation

best_of(Answer,Comparator,Generator):-
new_engine(Answer,Generator,E),
efoldl(E,compare_answers(Comparator),no,Best),
Answer=Best.
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compare_answers(Comparator,A1,A2,Best):-
if((A1\==no,call(Comparator,A1,A2)),Best=A1,Best=A2).

?-best_of(X,>,member(X,[2,1,4,3])).
X=4

Clearly, a similar mechanism can be used to count the number of solutions
without having to accumulate them to a list.

7.2 Encapsulating Infinite Computations Streams

An infinite stream of natural numbers is implemented as:

loop(N):-return(N),N1 is N+1,loop(N1).

The following example shows a simple space efficient generator for the infinite
stream of prime numbers:

prime(P):-prime_engine(E),element_of(E,P).

prime_engine(E):-new_engine(_,new_prime(1),E).

new_prime(N):-N1 is N+1,
if(test_prime(N1),true,return(N1)),new_prime(N1).

test_prime(N):-
M is integer(sqrt(N)),between(2,M,D),N mod D =:=0

Note that the program has been wrapped, using the element of predicate de-
fined in [5], to provide one answer at a time through backtracking. Alternatively,
a forward recursing client can use the get(Engine) operation to extract primes
one at a time from the stream.

8 Applications of Interactors and Practical Language
Extensions

Interactors and Multi-Threading. As a key difference with typical multi-
threaded Prolog implementations like Ciao-Prolog and SWI-Prolog [19,20], our
Interactor API is designed up front with a clear separation between engines and
threads as we prefer to see them as orthogonal language constructs.

While one can build a self-contained lightweight multi-threading API solely
by switching control among a number of cooperating engines, with the advent
of multi-core CPUs as the norm rather than the exception, the need for native
multi-threading constructs is justified on both performance and expressiveness
grounds. Assuming a dynamic implementation of a logic engine’s stacks, Inter-
actors provide lightweight independent computation states that can be easily
mapped to the underlying native threading API.
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A minimal native Interactor based multi-threading API has been implemented
in [3] on top of a simple thread launching built-in:

run_bg(Engine,ThreadHandle).

This runs a new Thread starting from the engine’s run() predicate and returns
a handle to the Thread object. To ensure that access to the Engine’s state is
safe and synchronized, we hide the engine handle and provide a simple produc-
er/consumer data exchanger object, called a Hub. Some key components of the
multi-threading API, partly designed to match Java’s own threading API are:

– bg(Goal): launches a new Prolog thread on its own engine starting with
Goal.

– hub ms(Timeout,Hub): constructs a new Hub - a synchronization device on
which N consumer threads can wait with collect(Hub,Data) (similar to
a synchronized from engine operation) for data produced by M producers
providing data with put(Hub,Data) (similar to a synchronized from engine
operation.

Associative Interactors. The message passing style interaction shown in the
previous sections between engines and their clients, can be easily generalized to
associative communication through a unification based blackboard interface [21].
Exploring this concept in depth promises more flexible interaction patterns, as
out of order ask engine and engine yield operations would become possible,
matched by association patterns.

9 Interactors Beyond Logic Programming Languages

We will now compare Interactors with similar constructs in other programming
paradigms.

9.1 Interactors in Object Oriented Languages

Extending Interactors to mainstream Object Oriented languages is definitely of
practical importance, given the gain in expressiveness. An elegant open source
Prolog engine Yield Prolog has been recently implemented in terms of Python’s
yield and C#’s yield return primitives [22]. Extending Yield Prolog to support our
Interactor API only requires adding the communication operations from engine
and to engine. In older languages like Java, C++ or Objective C one needs to
implement a more complex API, including a yield return emulation.

9.2 Interactors and Similar Constructs in Functional Languages

Interactors based on logic engines encapsulate future computations that can be
unrolled on demand. This is similar to lazy evaluation mechanisms in languages
like Haskell [23]. Interactors share with Monads [24] the ability to sequentialize
functional computations and encapsulate state information. With higher order
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functions, monadic computations can pass functions to inner blocks. On the
other hand, our ask engine / engine yield mechanism, like Ruby’s yield, is
arguably more flexible, as it provides arbitrary switching of control (coroutining)
between an Interactor and its client. The ability to define Prolog’s findall con-
struct as well as fold operations in terms of Interactors, is similar to definition
of comprehensions [24] in terms of Monads.

10 Conclusion

We have shown that Logic Engines encapsulated as Interactors can be used
to build on top of pure Prolog a practical Prolog system, including dynamic
database operations, entirely at source level. We have also provided a sketch of
an executable semantics for Logic Engine operations in pure Prolog. This shows
that, in principle, their exact specification can be expressed declaratively.

In a broader sense, Interactors can be seen as a starting point for rethinking
fundamental programming language constructs like Iterators and Coroutining
in terms of language constructs inspired by performatives in agent oriented pro-
gramming.

Beyond applications to logic-based language design, we hope that our language
constructs will be reusable in the design and implementation of new functional
and object oriented languages.

Among real world applications of these ideas, we have been pursuing a new
model of natural language understanding [25]wheremultiple concurrently process-
ing agents, using lightweight interpretation engines implemented as interactors
transform text into semantic model structures for reasoning in the Oil and Gas
exploration and production domain.
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Abstract. Most real-world applications have come to rely on the ma-
ture technology of relational databases for persistent storage, interacting
through SQL embedded in the host programming language. Using logic
programming we present a higher-level alternative to SQL, close in spirit
to natural language, yielding much more concise expressions that are eas-
ier to understand and promote better code maintenance. This is achieved
using the flexible operator syntax and the deductive capabilities, first to
compile a clausal representation of the database scheme from a high-level
description, and then to interpret queries and commands, through the
compiled scheme, into SQL statements.

1 Introduction

About a decade ago we launched a large project to build an information system
development platform, and a full-blown academic management system on top,
using almost exclusively logic programming to achieve high levels of abstraction
in the code. The goals were met [1] but little reporting was made of the scientific
achievements. One of them was a novel database interaction technology, whose
overview is the purpose of this paper, allowing a high-level management of a stan-
dard relational database from within the logic programming code. The approach
is very different from that of deductive databases (see eg. [2,3]), where database
tables (the extensional database) are viewed as predicates in logic programs, with
joins expressed through variable sharing. We relied instead on natural language
principles to design a variable-free structural language for queries and commands
of remarkable conciseness and readability, using the atomic terminology for con-
cepts and attributes introduced in a given scheme definition, itself expressed in
another concise and readable structural language. The explicit representation in
logic programming of a database scheme has been advocated before [4], but with
a rather low-level approach to encode basic set-theoretic constructions and using
the corresponding encoding of the relational calculus as a query language. We
are unaware of other approaches similar in spirit to our own, whose aim is not to
impose the logic programming syntax and semantics on the relational model but
� The work reported here was carried out while the author was affiliated with the

Faculty of Sciences and Technology, New University of Lisbon.

A. Gill and T. Swift (Eds.): PADL 2009, LNCS 5418, pp. 152–167, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



High-Level Interaction with Relational Databases in Logic Programming 153

rather to use its intrinsic deductive power and flexibility to process very high-
level database management languages, providing access to the robust relational
database technology inside highly maintainable (compact and natural) code.

The framework works as follows. A database scheme definition is written in
a language we have designed (itself a novelty in terms of conceptual modelling),
and a processor is invoked to compile the scheme into a simple clausal form
(just facts). The compiled scheme is used in two ways. One is to feed a Web-
based meta-information system that we built as part of our project, allowing
developers to navigate the scheme through all relevant conceptual links, and
to create, backup, or delete the corresponding database tables. The other use
is in the query and command processing machinery, that translates compact
conceptual expressions into SQL, typically deducing implicit joins in queries
and implicit multiple table operations in commands.

The whole treatment revolves around the simple notion of concept with at-
tributes, some of which define identity. The natural language phrase “the a of c”
turns simply to a/c in our query language, with a either a textual or inherited
attribute of c, inheritance involving an implicit join. Chaining and conjunction
yield other natural paraphrases, ie. (a,b)/c/d for “the a and b of the c of d.

In this paper we can aim only at a cursory overview of the approach, trying to
illustrate with a few examples the declarative nature of the proposed languages
and how their processing is implemented. All the examples are taken from the
domain of academic management, necessarily simplified for the purpose at hand.

2 The Scheme

We first give an informal overview of the language used to define the scheme,
followed by a formal abstract model of the scheme syntax and semantics, and
then a brief summary of the compiled form.

2.1 The Scheme Definition Language

For defining a database scheme we devised a corresponding scheme definition
language (SDL), with a few design principles in mind, namely simplicity and
expressiveness.

We consider irrelevant, and detrimental to our simplicity goal, the traditional
distinction between entities and relationships. We find it much simpler to have a
uniform view of concepts, encompassing real-world notions of entities, relation-
ships, situations, events, acts, etc., all amenable to a simple semantics of sets of
individuals with an inner structure given by the notion of local attributes, some
of which determine identity. Concepts and attributes can and should be named
systematically with nouns, leading to very natural query expressions based on
noun phrases, in contrast to the proliferation of verbal-based properties in the
OWL language [5] and the non-uniformity this raises for relational querying.

The basic concepts are the predefined data types T that are usual in relational
databases: { int, num, date, time} ∪ { str(n) | n is a positive numeral } with
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predefined interpretations as the sets of, respectively, integers, numbers, dates,
time points and strings of at most n characters, plus a few other data types for
large textual and binary objects.

A structured concept has an atomic name and a number of lexical attributes
also identified by atomic names, each of a given data type. The semantic intuition
is that the concept denotes a set of individuals and each of its lexical attributes
denotes a total function from that set to the attribute’s data type, yielding
the elementary pieces of information (values of the given types) characterizing
the individual members of the concept in a given database. The individuals
themselves are uniquely identified in a standard manner by an identity subset
of the lexical attributes, the others being called dependent because there is a
functional dependency from the identity to each one of them.

We illustrate this with a simple example using our SDL syntax:

organization_type << abbreviation : str(2)
>> name : str(20).

The concept organization_type has just two lexical attributes, abbreviation
and name, respectively the identity (under <<) and a dependent one (under >>),
both typed as (differently sized) strings. The concept corresponds to a database
table with the same name and attributes, abbreviation being the primary key.

Both the formal and intuitive understanding of the scheme benefit from con-
sidering a total ordering of each concept’s lexical attributes, implicitly expressed
in the SDL definition. So an individual organization_type in a database on
this scheme might be eg. the tuple (dp, Department), whose identity is just its
prefix (dp).

The choice of concept and attribute names affects the readability of queries.
We have a simple guideline, namely using always singular noun phrases such
that “the a of the c” makes sense for any attribute a of a concept c.

Let us now consider a simple definition of an organization:

organization << code : int = auto
>> name : str(60),

type : organization_type.

The comma is used to group more that one attribute under >> (in this case) or
<< (in general). The decision to use integer codes as identifiers, expressed here
under <<, is a very common practice in databases when we expect a large number
of individual members of a concept. The equation to auto expresses an implicit
value assignment, on the creation of a new tuple, by auto-incrementing the cur-
rent largest code; this is a handy standard feature in databases. The attribute
named type is constrained to belong not to a data type but to another concept
(organization_type), ie. we are defining a conceptual attribute giving rise to
a foreign key in the corresponding database table. What are the corresponding
lexical attributes? Their sequence and data types must match those of the re-
ferred concept’s identity, in this case the single attribute abbreviation:str(2)
of organization_type. As for the name(s), in the present case of a unary refer-
ence the standard choice is to use the conceptual attribute name (type) also for
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its single lexical attribute. In the sequel we’ll see how to treat the case of non-
unary references . Summing up, the organization table has the tuple of lexical
attributes ( code:int, name:str(40), type:str(2)), the primary key ( code )
and a foreign key from ( type ) to ( abbreviation) in organization_type.

The previous SDL definition of organization can be simplified in several
ways. We must point out, first, that in order to have a single-pass SDL compiler
we require that a concept definition that refers to other concepts must come after
their own definitions, eg. in this case organization after organization_type.
Given the abundance of entities with reference code:int=auto and lexical at-
tribute name (of multiple sizes), it is very useful to define a corresponding suitable
abstraction, which we can do with three mechanisms. First, we simply omit the
identity part of a definition to implicitly assume << code:int=auto. Second,
we can define virtual concepts that do not generate database tables but are
blueprints for other concepts or conceptual attributes. Third, we can use terms
with logical variables as names of virtual concepts parameterizing eg. string size.
Using the ‘*’ prefix to mark a concept as virtual, we then present this definition
of virtual entities of variable-size name:

* entity(N) >> name : str(N).

The definition of an organization simply becomes, using sub-concept notation:

organization : entity(40) >> type.

Comparing with the previous definition of organization, the term to the left of
>> has the effect of the previous first two lines, through instantiated inheritance
from the virtual concept, and using just type achieves the effect of the previous
last line, because when facing such an atomic attribute definition the compiler
checks if the possessive composition of attribute and concept names, in this case
organization_type1, is a previously defined concept, as indeed we assume here.

Things get more interesting when defining concepts identified by more than
one attribute, as shown next for a course edition.

year : int.
* type(S,N) << code : str(S) >> name : str(N).
period_type : type(2,20).
* period << - type, - number : int.
* edition << year, period.
course : type(6,60) >> credits : int, department : organization.
course_edition << course, edition >> lecturer : employee.

The first line defines a data subtype, with no attached semantics but useful for ex-
pressiveness. The virtual variable-sizes type is used in defining the database con-
cept period_type, meant to contain tuples such as eg. (s, semester). The virtual
period’s attribute type, as explained before, implicitly references period_type,
this being an already defined concept. The prefixing by ‘-’ of both attributes

1 This is language-dependent. For French we would get type_de_organization.
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of period signals the contextual (rather than global) nature of their names:
when a conceptual attribute is a period, the corresponding sub-attribute names
are constructed using the already mentioned possessive composition with the
referring attribute, eg. the lexical attributes of edition are year, period_type
and period_number. Non-prefixed identity attributes, as those of edition, have
global names, so course_edition has the lexical attributes course (it has a
unary reference), year, period_type and period_number.

Consider now the enrollment of a student in a course edition, valid only if the
student is registered in that year.

registration << student, year.
enrollment << registration, course_edition >> ? grade.

When expanding the identity attributes of enrollment we merge the resulting
lexical attributes, ending up with student (assuming a unary reference), year,
course, period_type and period_number. The single attribute year is present
in both foreign keys associated with registration and course_edition. Con-
ceptual attributes not only allow very compact scheme definitions, as shown,
but are also crucial to the power of the query language, as we can use eg.
lecturer/course_edition/enrollment for “the lecturer of the course edition
of the enrollment”. The ? prefix on grade signals it as null, a common conve-
nience for allowing database states where the value of grade is not (yet) defined
for certain enrollment tuples.

Let us look at sub-concepts. We may wish for example to make persons a
subtype of agents (to cater for computational agents):

agent : entity(60) >> common_name: str(30), identifier: str(20).
person : agent >> sex: str(1).

The database concept agent gets both its identity attribute code and the de-
pendent attribute name from the virtual concept entity, to which are added
common_name and identifier. When declaring person an agent, however, since
this is a database (rather than virtual) concept we get from it only the identity
attributes, ie. code, to which is added the non-referential sex. Inheritance, eg.
of name to person from agent, is in the query language, as shown later.

Another useful feature is sub-attribute inheritance, exemplified below:2

student >> number, < person, study_program.

Each student corresponds to a person in a study program. So student is not a
sub-concept of person and gets its own (implicit) code identifier. But a student
“is a” person in the sense of corresponding to a unique one (it’s an attribute), and
we unambiguously say eg. “the name of the student” for the name of the student’s
person. Indeed, name/student will do that in our query language, because the
< prefix in the above definition allows the inheritance of a student’s person’s
attributes as its own, through the implicit join.

2 The prefix < binds tighter than the comma.
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More features are available but not described here for lack of space: predefined
values, composite names, comments, concept extension, and patterns for generic
sets of concepts (eg. graphs with nodes and arcs/paths).

2.2 The Abstract Scheme Model

In the formal treatment we implicitly assume universal quantification of meta-
variables in the appropriate domains, including positive integer indexes on se-
quences to denote the corresponding element. We use fin to denote restriction to
finite sets, and + for finite non-empty sequences. We refer to the domains dom
of functions using implicit currying.

A conceptual scheme has an abstract syntactic structure built from the set of
data types T and a set of names N disjoint from T and including {*, {}}.

Definition 1. A conceptual scheme is a 4-tuple 〈C, A, T, R〉 with a concept
set C ⊂fin N and mappings for attributes A : C → N ⇀ N+, lexical types
T : C → N ⇀ T and conceptual references R : C ⇀ N ⇀ ℘fin(C), satisfying
the following conditions:

1. the lexical attributes are L(c) = dom(T (c)) = { a | A(c, a) = a } ⊂fin N ;
2. A(c, a)i ∈ L(c) and A(c, a)i = A(c, a)j ⇒ i = j;
3. C × {*, {}} ⊆ dom(A), with the self A(c, *) a permutation3 of L(c) and the

identity A(c, {}) a prefix thereof;
4. dom(R(c)) ⊆ dom(A(c)) \ {*};
5. c′ ∈ R(c, a) ⇒ τ(c′, {}) = τ(c, a), the tuple type τ : dom(A) → T + being

defined by τ(c, a)i = T (c, A(c, a)i);
6. c′ ∈ R(c, {})⇒ A(c′, {}) = A(c, {}).

We can see that each concept has a non-empty finite set of lexical attributes with
corresponding data types, and possibly a disjoint set of non-lexical attributes
mapped to tuples of lexical ones. The lexical attributes of c are ordered in its
self A(c, *), starting with its identity A(c, {}). An attribute a of c may reference
other concepts R(c, a), its lexical tuple A(c, a) having the same tuple type as
the identity of every referred concept. Non-lexical attributes without conceptual
references correspond to virtual concepts in the scheme definition language.

The semantics of a conceptual scheme characterize its possible databases, a
notion lifted from the semantic domains of values [[ τ ]] for the data types τ ∈ T .

Definition 2. A database ∆ for a scheme 〈C, A, T, R〉 is a mapping of C where:
1. τ(c, *) = τ1 · · · τn ⇒ ∆(c) ⊆fin [[ τ1 ]]× · · · × [[ τn ]];
2. x, y ∈ ∆(c), x �= y ⇒ π(c, {}, x) �= π(c, {}, y), a projection π being defined by

π(c, a, t)i = tj ⇔ A(c, a)i = A(c, *)j ;
3. c′ ∈ R(c, a), t ∈ ∆(c) ⇒ ∃t′ ∈ ∆(c′) . π(c, a, t) = π(c′, {}, t′).

3 We mean a sequence where each element of L(c) appears exactly once.
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Each tuple in ∆(c) is an individual member (values for self) of the concept
c. Condition 1 ensures type correctness for all database tuples. The role of {}
as identity (primary key) is enforced by condition 2. Finally, any conceptual
reference (foreign key) is satisfied in the database by condition 3.

Non-lexical attributes are not strictly needed for defining keys through pro-
jections (their lexical tuples would suffice), but they are essential for writing
compact and abstract scheme definitions and queries. Sub-attribute inheritance
is not reflected in the scheme model, being irrelevant for the relational database
implementation, but is also very useful for the query and command languages.

2.3 The Compiled Scheme

A scheme definition is compiled into a logic program consisting solely of facts
for a few predicates expressing the defined scheme model 〈C, A, T, R〉.

For the database concepts we assert
dc(c) ⇔ c ∈ C

For attributes it pays to pre-compile the distinctions of identity vs. dependent
and lexical vs. generic, which we do with these four predicates:

ila(c,a,t) ⇔ T (c, a) = t, ∃i a = A(c, {})i

dla(c,a,t) ⇔ T (c, a) = t, ∀i A(c, {})i �= a
iga(c,a,[a1,· · ·,an]) ⇔ A(c, a) = a1 · · · an, ∀i∃j ai = A(c, {})j

dga(c,a,[a1,· · ·,an]) ⇔ A(c, a) = a1 · · · an, ∃i∀j ai �= A(c, {})j

For the concept references we use

cr(c,a,c′)⇔ c′ ∈ R(c, a)

Here are a few example clauses for the scheme presented before:

dc( agent ). rc( organization, type, organization_type ).
ila( person, code, int ). rc( person, {}, agent ).
iga( person, code, [code] ). dla( agent, name, str(60) ).
dga( course_edition, edition, [year,period_type,period_number] ).

Besides the coding of the abstract model two extra types of information are
generated: attributes with a default assignment, whose paradigmatic case is
that of auto-increment of codes, eg. ada(agent,code,auto); and sub-attribute
inheritance, eg. sai(student,person).

In reality our scheme definition compiler produces two outputs: the clauses
mentioned above, which are used for all runtime database management opera-
tions in the application(s) built over the scheme, and a variant with more details,
eg. virtual concepts, named data types and online comments, used in the auto-
matic Web-based scheme documentation system.

3 Queries

We can launch queries with a backtrackable call (Query <? Tuple) or a deter-
minate (Query <?> Tuple_list). The Query term must be a valid conceptual
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expression, defining a database view yielding a sequence of value tuples, repre-
sented in the answer term as <tuple> ::= <value> | <value>,<tuple>.4

The conceptual expressions are built using a variety of infix and prefix op-
erators, taking advantage of the flexible precedence definition mechanism (a
standard feature of Prolog) to minimize the use of parenthesis.

As an example, the query for “the name and sex of the students enrolled in
courses of the CS department in 2008/09” can be represented by a term whose
main operators, besides the usual conjunction and equality, are ‘/’ (“of the”)
and ‘$’ (“for which”):

( name, sex ) / student /
enrollment $ ( acronym/department/course = ’CS’, year = 2009 )

The form of the expression is close to its natural language counterpart, certainly
much closer than the corresponding SQL statement

select distinct a1.name, p1.sex
from enrollment e1, course c1, organization o1,

student s1, agent a1, person p1,
where e1.course = c1.code

and c1.department = o1.code and o1.acronym = ’CS’
and e1.year = 2009 and e1.student = s1.code
and s1.person = a1.code and s1.person = p1.code

where many more concepts have to be made explicit, along with aliases and join
equations. Attribute chains like “the acronym of the department of the course”
are explicit in our conceptual expression and effective towards its readability,
whereas they are scattered and therefore hidden in the SQL syntax.

The default ordering of answers is database-dependent. We can specify as-
cending or descending order on given selection attributes by prefixing them with
*> or *<, respectively. Prefixing an intermediate attribute in the selection with
? puts its identity in the selection tuple. So, returning to our example, the alter-
native selection sub-term (*< sex, *> name) / ? student would ask for the
descending sex, ascending name and code of the students.

By default the SQL distinct qualifier is applied to the selection, yielding
distinct tuples (the view of answers as sets). This can be overridden with the
?? prefix, eg. using ?? grade / enrollment $ ( course_edition = CE ) one
can retrieve the multiset of grades for a particular course edition, useful for
computing a histogram, say.

A very useful feature in most applications is to have parameters under
global assignment whose current values are reflected in the queries. For exam-
ple, the query for the students enrolled in the course edition (assumed to be
contextually assigned) is student/enrollment$(@course_edition). Its pars-
ing calls course_edition=@CE to retrieve the current value, and then compiles
the constraint course_edition=CE. Usage is very flexible for scheme-defined
parameters, eg. course_edition=@CE succeeds with CE=(123,2009,s,1) after
4 We can avoid lists because <value>s are themselves not lists.
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the assignments year@=2009, course@=123 and period@=(s,2), and conversely
year =@ Y succeeds with Y=2008 after course_edition@=(95,2008,s,1).

Constraints under $ can be grouped inside nested conjunctions and disjunc-
tions. A common individual constraint is <attribute-chain> <op> <value>, with
<attribute-chain> ::= <attribute> | <attribute-chain> / <attribute-chain> and
appropriate <op>s (=, \=, >, etc.) and <value>s (@<parameter> is a value). The
common case of identity valuation, {}=V, can simply be written {V}.

Sometimes we need to express constraints using sub-queries instead of explicit
values, as in “the current year lecturers that were also students (here)” with
lecturer/enrollment$(@year,person/lecturer^person/student). The op-
erator ^ (“is a”) assumes an attribute chain on the left but a query on the right,
so student is here the database concept and not the attribute of enrollment.

The dual operator of ^ is ~ (“is not a”). Both exist also as prefix (rather than
infix) operators (meaning respectively “there is a” and “there isn’t a”) over
query expressions. But if we use eg. A$(· · ·^B$X· · ·) we generally want, inside X,
to relate attributes of B to attributes of A. For the latter we use the * prefix to
move one level up in the context of attribute interpretation. As an example we
can express ”the students enrolled this year in only one course” with

student / enrollment$( @year, ~enrollment$( @year, *student,
course \= *course )

where *student can be read as “the same student” and is just shorthand for
student = *student, equating the student of the inner and outer enrollments.

Similar conceptual contexts can appear in the selection part of a query, eg.
for “the current courses and the lecturers that ever taught them” we can use

( course, lecturer/enrollment$( *course ) ) / enrollment$( @year )

Queries such as this, yielding for each course a number of lecturers, suggest
the usefulness of packing the answer accordingly. This is achieved by using “;”
instead of “,” where the grouping is needed. So, each solution of the alternative
query (course;lecturer· · ·)/· · · <? CL binds CL to a term c:[l1,· · ·,ln] with
a course c and a list of lecturers li of c.

We can use group selections such as sum (+), average (+/) or count (#), eg.
(#student,course)/enrollment$· · · for “the number of students enrolled in
each course· · ·”, the grouping being implicit in the remaining selection elements.

4 Commands

The major commands are + <constrained-concept>, - <constrained-concept>
and <constrained-concept> -+ <equalities>, standing respectively for the cre-
ation, deletion and update of concept members. They are much more powerful
than their strict SQL counterparts, which we also make available (essentially
for implementing the former) as respectively =+, =- and =-+. We can call for
example +person$(sex=f,name=N,common_name=CN,identifier=I), that will
start by calling agent$(name=N,common_name=CN,identifier=I)=+C to create
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a new tuple for agent, returning the auto-incremented new self code C, and
then create the person sub-instance with =+person$({C},sex=f).

We can also take advantage of parameters. Imagine the code for a Web service
for students to enroll in courses. Upon its invocation the parameters student,
year, etc. have assigned values, and when the student clicks on a course its code
gets passed and assigned to course, nothing more being needed than to call
+enrollment$(@student,@course_edition).

Even more powerful is the update command. We can simply use, for exam-
ple, @student-+(identifier=I) to update the student’s identifier in the agent
tuple whose code is that of the student’s code. The true power comes across
when updating an identity attribute. Since this implies a change in the iden-
tity, that change has to be propagated all over the database tables where the
concept instance is present. In order not to violate foreign keys this has to per-
formed by creation and deletion, instead of immediate update, and in the correct
order when chasing dependencies. The compiled scheme clauses have all the in-
formation for this reasoning to be performed flawlessly, which in some cases
would be a daunting task if done manually. If, for example, there was some
reason to change the code of a course, expressing it can be deceptively simple,
just @course-+(code=C), and in the end the course code will have changed in
course, course_edition, enrollment, etc.

Deletion is similarly powerful, but presents more occasion for ambiguity and
inconsistency. Deleting a concept instance implies, much as for identity updates,
to chase dependencies in order to eliminate the instance from the database. But
while this is sound for sub-concepts and derived concepts (where it is part of
the identity), what about super-concepts and dependent concepts (where it is a
dependent attribute)? In both cases we may have a strong or weak reading of
the deletion, respectively deleting or not the super-instance or derived concept.
If for the super-concept it might make sense (delete the individual, not just the
fact that it belongs to a node in the hierarchy), for derived concepts it is hard to
justify (say, delete enrollments with a peculiar grade that is being deleted). So
we opt for the weak reading, resulting in failure if any of the hard cases happens.

Speaking of failure, it should be mentioned that we provide contextual trans-
actions (in_transaction:Exec) that can be nested. Actually any command
raises an exception if not called under a transaction.

5 Implementation

In the sequel we present code fragments in Prolog, although the actual implemen-
tation was made using a compositional alternative dialect. We sometimes omit
actual procedure arguments and their treatment, and show unfoldings of actual
definitions, to keep the presentation manageable by focusing on the essentials
and the cases being illustrated.

The implementation of the query and command processing takes clear advan-
tage of two hallmarks of logic programming: its deductive search capabilities,
and its distinctive use of partially instantiated terms.
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The heart of the processing is the handling of a <constrained-concept> ::=
<concept> [ $ <constraints> ], an expression that appears both in queries and
commands, through a procedure hcc whose clauses are

hcc( C$X, K, B$W ) :- !, h_co( C, B ), h_cs( X, [B|K]$W ).
hcc( C, _, B$W ) :- h_co( C, B ).

The “inputs” are the <constrained-concept> C$X and a context stack K which is
the (possibly empty) list of concept bases (see next) under which C$X is inter-
preted. The “outputs” are the concept base B that becomes associated to C, and
the where-list W derived from handling the constraints X in the context extended
with B. In the second clause there are no constraints under C and W is returned
free, because the where-list is global and constructed by incremental instantia-
tion always keeping a free tail. We see the sharing of that global structure in the
recursive hadling of a conjunction of constraints:

h_cs( (A,B), KW ) :- !, h_cs( A, KW ), h_cs( B, KW ).

The penalty of having to traverse a partially instantiated where-list to update
its tail is low (the lists are short) and compensated by the efficiency of single
argument passing in many clauses, as above, rather than using difference-lists.

We handle a concept by first checking it to be such and then performing the
initial partial binding of the concept base using a new identifier:

h_co( C, b(I*C,_,_) ) :- dc( C ), new_co_id( C, I ).

A concept base b(I*C,N,J) corresponds to a particular instance I of the data-
base table C. The variable N, initially free, is a boolean witness that gets bound
when it is deemed that the instance is actually needed (not always). The initially
free J is meant to collect information on the joins with other concept instances,
being always a free-tail list with elements T:B where B is a joined concept base
and T the join type, one of s (sub- or super-concept) or a(A) (attribute A). J acts
as a cache for joins implicit in attribute resolution, as will become clear next.

Consider as a first example the query name/student${1}. It goes through
hcc(student${1},[],BW), calling h_cs({1},[b(s1*student,N,J)]$W) for a
new identity s1.5 This goes on to handle a single constraint through

hsc( {V}, KW ) :- !, hrc( =,{},V, KW ).
hrc( Op,L,R, K$W ) :- hra( L,K, A), hrv( R,K, V), brc( Op,A,V, W).

We have to handle a relational attribute (hra) and a relational value (hrv), and
build the relational constraint (brc). The relational attribute must be local, ie.
resolved from the current concept base B at the top of the context K:

hra( E, [B|_], LT ) :- ha( E, B, AB ), glt( AB, LT ).

We invoke a generic procedure to handle an attribute that returns an attribute
base AB, from which we get its lexical tuple LT. In our simple case of identity

5 We use the first letter of the concept name and an associated counter.
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E={} we get AB=B=b(s1*student,_,_) and LT=(code/s1), given the scheme
clause iga(student,{},[code]). Since the call to hrv in this case simply yields
V=1, the call to brc finally constructs the equality constraint and makes sure it
belongs to W by calling is_in((code/s1)=1,W). Given the clauses

is_in( X, [X|_] ) :- !.
is_in( X, [_|L] ) :- is_in( X, L ).

called with a free-tail list this either checks the element is already there or puts
it at the end with another free tail. So, hcc(student${1},[],BW) is solved with
BW=B$W=b(s1*student,_,_)$[(code/s1)=1|_]. After this it’s time for the call
hs(name,[b(s1*student,_,_)],S-[]) to handle the selection part of the query
(with a difference-list result). The atomic (attribute) selection case is

hs( A, [B|_], SS ) :- iqo( O ), ha( A, B, AB ), as( AB, O, SS ).

where iqo yields the implicit query order (0, / or \) that goes with the computed
attribute base AB to add as selection. Handling the attribute goes through

ha( A, B, AB ) :- cb_c( B, C ), gal( A,C, L ), hl( L,B, AB ).

that starts by extracting the concept from the base—the trivial unit clause is
cb_c( b(_*C,_,_), C )—to call the major deductive procedure on the scheme
to get the attribute location of an attribute (chain) of a concept, finally handling
the location relative to the concept base to get the attribute base. The result
of gal(name,student,L) is L=@(a(person),person,@(s,agent,name)), with
two indirections. The first expresses the need to join the attribute person (of
a student instance) with the identity of (an instance of) the database concept
person. The second expresses an identity join (from person) to its super-concept
(could be sub-) agent to arrive at the local attribute name. The search for this
location is done by implementing a sensible notion of inheritance with overrid-
ing: first we check if the attribute name is local to student (it isn’t); then we
go recursively up the “is-a” hierarchy calling cr(student,{},S) (failing); next
is the check for local sub-attribute inheritance (sai(student,X),ga(X,name)
succeeds with X=person (ga is an abstraction of iga or dga), and we proceed
from there); finally, failing the previous attempts we would go down for the
sub-concepts.

Handling the location updates the concept base joins, retrieving or creat-
ing concept instance identifiers. In our case the joins are new, so we end up
with B= b(s1*student,n,[a(person):b(p1*person,_,[s:b(a1*agent,n,_)|
_])|_]). Notice the deduced need (n) for student (because of a join on its at-
tribute person) and agent (to get its attribute name) but not for the person
concept, since the join can be made directly to its super-concept agent. The
computed attribute base is AB=(name/b(a1*agent,n,_)). Adding this selection
(eg. with implicit ascending order O=(/)) results in S=[name/a1:(/)], using
the scheme clause dga(agent,name,[name]) to connect the generic to lexical
attributes.

The next processing stage extracts the from-list of needed concept instances
while updating the where-list with the implicit join conditions. In our example
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we get F=[s1*student,a1*agent] and W=[code/s1=1,person/s1=code/a1].
Finally we invoke the SQL translator sql(q(D,S,F,W),SQL)6 whose code is
rather straightforward.

An SQL query is delivered to a previously set-up database connection via
the predicate db_query(Q,I). If successful the call returns in I an integer han-
dler for retrieving the answer tuples one at a time, with either the determinate
db_fetch(I,T) or the backtrackable db_back(I,T). The elements of T corre-
spond to their data types, eg. integers and atoms for int and str(_), d(y,m,d)
for a date with year y, month m and day d.

6 Manifold Attributes

Most concepts and attributes in the real world have a temporal nature, ie. their
individual values change with time. When this happens with a periodic regu-
larity, as with the course editions in an educational institution, the temporal
structure is explicitly ascribed to attributes in the scheme (we’ve used year,
period). Most of the temporal variability is, however, non-periodic. An agent’s
identifier should be changeable at any time, as well as its name (eg. through
marriage). We may wish to register such changes in the database, to be able to
look at the evolution of things, but also wish to retain simplicity in most queries,
saying eg. “the student’s identifier” to mean the current (real-time) value.

Another prevalent variability is that of names, acronyms, etc. with language
(eg. English, French). Again, we ideally want a database scheme accomodating
the multi-lingual variability but avoiding explicit mention of language in queries
and commands where it can be assumed in context.

We can achieve these goals with special notation in the scheme definition lan-
guage, and the corresponding treatment in the query and command languages,
for what we call manifold attributes. Temporal and multi-lingual are (the most
common) examples of manifold types.

6.1 Temporal Attributes

For a temporal attribute we have to specify its granularity (date, moment) and
existence (continuous, discontinuous). For example, the following definitions

name(N) : str(N).
identifier(N) : str(N).
* entity(N) >> @- name(N).
agent : entity(60) >> @ identifier(20).

declare the agent’s name continuous (defined at all times) and identifier dis-
continuous, with change (for both) registered by date. Continuity affects the con-
sistency checks on database changes, but not the scheme. The temporal manifold
is considered local, meaning that independently marked temporal attributes of a

6 D is a boolean “distinct” global flag.
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given concept (name and identifier in our example) acquire independent vari-
ability (one may change without the other doing so). So, this definition actually
gives rise to three concepts, implicitly defined by

agent.
agent_with_name << agent, start: date

>> end: date, name(60).
agent_with_identifier << agent, start: date

>> end: date, identifier(20).

With this scheme the query name/student${1}, in the absence of a value for
the contextual parameter temporal_validity, is deduced to be equivalent to

name / agent_with_name$( start=<today, end>today, agent= *person )
/ student${1}

where today is a conventional global value computed (and cached) in context.
We see from the translation that the convention for a temporal interval is that
start is included and end excluded.

Regarding commands, the creation + agent$(name=N) is equivalent to

agent =+ A,
=+ agent_with_name$(agent=A,start=min_date,end=max_date,name=N)

with appropriate conventional values min_date and max_date. Registering the
change of a continuous temporal attribute A to a value V at time T typically
involves the pattern

C$(end=max_date) =-+ (end=T), =+ C$(start=T,end=max_date,A=V).

6.2 Multi-lingual Attributes

The multi-lingual manifold type, contrary to the temporal, is global rather than
local. By this we mean that marked attributes of a given concept are all grouped
together for the manifold variation. For example, if we define

* entity(N) >> $ name(N).
agent : entity(60) >> $ common_name : str(30).

we get two multi-lingual attributes name and common_name of agent that vary
together under each language, the translation being equivalent to

agent >> language, name(60), common_name : str(30).
ml_agent << agent, language >> name(60), common_name: str(30).

The multi-lingual manifold type, besides being global, is existential, meaning
that at least one variety of the attributes must exist for some value of the man-
ifold type (language in this case). This explains why we keep the attributes in
the original concept, along with the extra manifold type, for which we assume
there is a scheme definition such as
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language << acronym : str(2) >> name(20).

The language attribute in the table agent is interpreted as the default for its
name and common_name. Tuples in ml_agent yield the available translations.

The working of the query name/student${1} is more subtle and complex than
for the temporal case, and always returns a value (the manifold is existential).
If the language parameter has no currently assigned value, the selection is from
the (default) agent table. If assigned, eg. language=@en, then en (English) is
the choice language for multi-lingual attribute selection: for the given agent
identity, if a tuple with language=en exists, in either agent or ml_agent, then
its name is returned, otherwise the default name in the agent table. This is
achieved through an automatically generated database view.

6.3 Manifold Combination

Manifolds can be combined. A good final definition for temporal and multi-
lingual agent attributes is

agent : entity(60) >> @ $ ( name(60), common_name : str(30) ),
@ identifier(20).

This expresses that, as should be expected, the name and common name change
together over time, and for each such change we have to provide values in a
default language (this itself may change!) plus eventual translations in other lan-
guages. The identifier may change independently, and is language-independent.

7 Conclusions and Further Work

We have shown how to interact with relational databases using a vastly more ef-
fective language than SQL, following natural language principles of noun phrase
composition with implicit conceptual relations and contextual definite references.
The language has been implemented with high reliance on the distinguishing fea-
tures of logic programming, namely structural unification and implicit backtrack-
ing, to reason over a compiled version of a database scheme. This compilation is
also a deductive task carried out by a logic program, over a scheme description
in a language that exploits inheritance and a simple theoretically sound model
to achieve also a high level of conciseness and readability. Generic treatment of
manifold phenomena such as temporal and multi-lingual attributes is incorpo-
rated in the scheme definition and database interaction languages, resulting in
very powerful effects with little effort.

The architecture is available to developers of Prolog applications through the
scheme compiler, the resulting online scheme documentation, and a few interface
predicates for queries and commands. A team of around ten people has used it
for years to build a very large real-world academic management system [1].

There are several directions for improving and building on this work. One
can offer the query and command languages as a stand-alone database interface
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(Web) service, or embed it in other programming languages capable of calling
Prolog. One can achieve static optimizations of the code by partial evaluation,
which should be a reasonably manageable endeavour since we are using a purely
compositional alternative to Prolog. A major challenge is to tackle the problem
of scheme change. This is a fact of life for most real-world applications, and
generally a nightmare for the software development teams. One would have to
jump from a purely static view of a scheme to a much higher-level plane where
to express the process of scheme change rather than purely its result, and use
this to deduce the impacts, and proceed with the necessary changes, on both the
current relational database structure and the database interaction code.

On the political rather than technical side it would be interesting to promote
these languages as complementary to the current dogmatic choice of languages
for the semantic Web, as we believe there is a misguided misconception of what
is “content”, and an approach favouring a question-answering paradigm of how
to acquire useful information, tapping on the immense potential of existing re-
lational databases, is no less adequate than the idea of extracting “knowledge”
as structured data to be reasoned upon.
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Abstract. Static type safety is an important feature of many commer-
cial programming languages, as has become apparent in our experience
developing LogicBlox—a Datalog-based platform for building enterprise-
scale systems for corporate planning. Existing approaches to enhancing
Datalog (and Prolog) with type safety are problematic for LogicBlox ap-
plications because (1) they do not support inclusion constraints, which
are crucial for database reasoning, and (2) their worst-case running
times are exponential in the size of the programs. In the LogicBlox
environment—where clients interactively add and execute programs and
queries—efficient compilation and execution are critical, and so a PTIME
type-checking algorithm is preferred. Furthermore, one of the central de-
sign goals of LogicBlox is to express the compiler itself in Datalog, which
in general excludes exponential-time algorithms.

This paper presents a definition of type safety for Datalog which can
express inclusion constraints along with an efficient (PTIME) and sound
(but not complete) type-checking algorithm, proposes work-arounds for
some common limitations of the algorithm, and indicates how the type-
checking algorithm itself may be represented in Datalog.

Keywords: Datalog, Type System, Deductive Databases, Meta-
compilation.

1 Introduction

LogicBlox is a commercial platform for building enterprise-scale corporate plan-
ning and pricing applications, which feature analyses that require aggregation
across very large data sets, combined with simulation and modeling techniques.
As traditional relational databases are not well-suited for applications of this
kind, the LogicBlox environment is founded on proprietary database technology,
fronted by a Datalog-like logic programming language. We use the LogicBlox
language for three separate purposes: (1) to describe graphical user interfaces
and the behavior of the applications, (2) to specify the database schemas and ac-
tive rules, and (3) to express queries on the interaction between the applications
and databases.
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Datalog [1,2,3] is a syntactic subset of Prolog introduced in the 1980s for data-
base processing. By supporting a limited, safe form of recursion, Datalog con-
siderably extends the expressive power of traditional database query languages,
most notably SQL, at the same time—unlike Prolog—allowing SQL’s set-at-a-
time evaluation. Also similarly to SQL, the programs in Datalog are guaranteed
to terminate, which obviates its need for extra-logical constructs such as Pro-
log’s “cut” operator. As Datalog is not fully Turing-complete, its expressiveness
is still limited. However, for ordered databases, Datalog has been shown to cap-
ture the complexity class of PTIME [4,5]1, which is a significant improvement
over SQL. After its introduction as a smarter version of SQL in the 1990’s, Dat-
alog lost the interest of researchers for a time, until recently re-gaining attention
in applications falling outside of the realm of traditional database reasoning,
which include: program analysis [6,7,8], networks [9,10], security protocols [11],
knowledge representation [12], robotics [13] and gaming [14].

The use of Datalog in building applications for commercial customers exposed
to us the need to enhance the language in a variety of ways, such as adding
support for: negation, aggregation, functional dependencies, update rules, and
constraints. Furthermore, we realized that the efficiency of compilation and eval-
uation is paramount, because queries and programs are often executed between
users’ actions and software response. We have also found a real need for strong
static typing, dictated by at least these reasons:

Increased safety. Datalog programs must be capable of maintaining the in-
tegrity of a database with respect to given database schemas. The typing
approach we present in this work is a superset of the traditional referential
integrity constraints.

Early error reporting. Transactions over large databases may run for several
hours or even days. Static detection of type errors can—and does—result in
significant time savings for the customers.

Better performance. Information deduced during type checking is used by
the low-level database engine to perform a number of optimizations, in-
cluding run-time code generation, efficient data storage, and elimination of
unnecessary run-time checks.

Motivated by these real-world requirements, our paper makes the following
contributions:

1. It presents a type system for Datalog which, unlike other known logic pro-
gramming type systems, (i) naturally represents inclusion constraints, (ii)
naturally supports subtyping (although remaining monomorphic), and (iii)
is implementable by an algorithm which is PTIME (worst-case) in the size
of the program;

2. It indicates how our type-checking algorithm can be expressed in Datalog
itself; and

3. It provides a discussion of the incompleteness of the proposed type system.
1 A programming language L captures a complexity class P if L can express every

algorithm in P , and if every algorithm in P is expressible in L.
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Our type system has been implemented as a part of the LogicBlox develop-
ment environment. The type algorithms are written in C++ and compiled on
the Linux (both 32- and 64-bit), Windows, and Macintosh platforms.

Roadmap. We begin with an overview of Datalog, including the relevant subset
of LogicBlox extensions (Sections 2 and 3). Next, we discuss the notions of type
safety in our implementation of Datalog, and present our type system (Sections 4
and 5). Then, we outline how our type checking algorithm can be implemented
in Datalog as a part of meta-compilation strategy (Section 6). Before concluding
with a discussion of related and future work (Section 8), we discuss the practical
limitation of the incompleteness of our type-checking algorithm, and present
some thoughts on how to overcome them in practice (Section 7).

2 Datalog (with Extensions)

We use, possibly subscripted, ?x, ?y, ?z to denote logical variables, a, b, c, to
denote arbitrary constant values, k, n, m to denote numerical values, f , g to
denote arbitrary function symbols, and p, q to denote logical predicates.

A Datalog program is a collection of clauses specifying a set of logical pred-
icates. A predicate of the form f(?x1, . . . , ?xn) defines a n-ary relation f . A
(regular) clause of the form Head <- Body asserts that, for any assignment of
values to the variables, Head is true under the condition that Body is true. A
unit clause, or a fact, has an empty body, and indicates predicates that are true
under all conditions. Datalog supports recursion by allowing the same predicates
to appear in both heads and bodies of the clauses.

The goal of a Datalog computation is to find the instances of the intensional
predicates—predicates appearing in the heads of one or more regular program
clauses—based on the data provided for the extensional predicates—predicates
appearing only in the regular clause bodies and the facts. Given an interpre-
tation (in the sense of first-order logic) for each of the extensional predicates
(together called the extensional database), the computation calculates a satisfy-
ing interpretation for each of the intensional predicates.

Example 1. Consider the following Datalog definition of the ancestor relation:

ancestor(?x,?y) <- parent(?x,?y). (1)
ancestor(?x,?y) <- parent(?x,?z), ancestor(?z,?y). (2)

The logical meaning of the recursive clause (2) is that, for any assignment of
values to the variables ?x = a, ?y = b, and ?z = c, if both parent(a,c) and
ancestor(c,b) are true, then ancestor(a,b) must also be true. The program
computes the intensional predicate ancestor based on the facts provided for the
extensional predicate parent.

2.1 Syntax

The context-free grammar for the extension of Datalog underlying our approach
is shown in Figure 1. A program consists of zero or more statements. A statement
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is a rule terminated with a ‘.’. A rule is an atom (the head of the rule), followed
by a ‘←’, followed by a well-formed formula (the body of the rule). A well-formed
formula is either an empty formula or a conjunction. A conjunction is one or more
literals, separated by the conjunction symbol ‘,’. A literal is an atom, possibly
preceded by a negation sign ‘!’. An atom is a functor applied to a parenthesized
list of terms. A functor is an identifier naming a predicate. The arity of the atom
is the number of its arguments. A term is either a constant or a variable. A
constant is an arbitrary identifier.2 A variable is an identifier preceded by the
variable indicator ‘?’.

P ≡ S∗

S ≡ R.
R ≡ A ←W
W ≡ ε | C
C ≡ L | L, C
L ≡ A | !A
A ≡ p(T ∗)
T ≡ ?x | a

Fig. 1. Extended
Datalog Syntax

In addition to complying with the context-free grammar, a
program is required to satisfy the following context-sensitive
restrictions:

1. All atoms sharing the same functor f must have the
same arity n = |f |.

2. Every variable occurring in the head of a rule must also
occur in its body.

Note that a predicate may appear in the head of more
than one rule. For a predicate q, the all set of rules with q
in their heads is called the procedure of q.

2.2 Semantics

The logical semantics of a Datalog programP is a conjunction of closed well-formed
formulas of first-order logic (FOL). Each rule in P is understood as a conditional
logical formula, where the (suitably quantified) body is the condition, and the
(suitably quantified) head is the consequence. Disjunction, conjunction and nega-
tion in the rule are given their standard FOL meanings, as are variables and con-
stants. In addition, every variable is universally quantified over the entire rule.

The operational semantics of a Datalog program is dictated by the specific
evaluation algorithm used to compute a model conforming to the logical se-
mantics. Our presentation remains independent of any particular operational
semantics, relying only on the logical semantics. One area where operational se-
mantics may vary is for Datalog extended with negation. It is well known that
introducing negation leads to ambiguity concerning which logical model is the
”natural” choice for the evaluation algorithm. Numerous operational semantics
incorporating negation have been proposed, from disallowing the use of nega-
tion in recursion (global stratification [2]), to allowing the algorithm to fail to
resolve some facts (e.g., the Well-Founded Semantics [15]). In our type-checking
approach, we assume that: (1) negation does not occur in the heads of the rules,
(2) the computed model is minimal, and (3) the use of negation is safe, meaning
that every variable occurring inside a negative literal also occurs inside a positive
literal in the same rule.
2 Datalog terms are a subset of Prolog terms in the sense that only nullary function

symbols are allowed.
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2.3 Syntactic Sugar

According to the grammar in Figure 1, a non-empty body of a rule must be a
conjunction of atoms. This restriction is unnecessary, as we can transform any
logical formula in a rule body, with atoms arbitrarily nested using negation,
conjunction and disjunction, into a set of logically equivalent rules, by (1) trans-
lating that formula into Disjunctive Normal Form (DNF), and (2) if the resulting
disjunction has more than one alternative, splitting the rule into a separate rule
for each alternative, duplicating the original head atom for each new rule. Fur-
thermore, the body of a rule can contain an embedded universal quantification.
A rule of the form:

A← C1, all(?x∗ : Wif →Wthen), C2.

is logically equivalent to the following two rules (where the ?y∗ are all the vari-
ables inside the quantification not in ?x∗):

W ≡ ε | D
D ≡ C | D; C
C ≡ U | U, C
U ≡ L | (W ) | !(W ) | Q
Q ≡ all(?x∗ : W →W )

Fig. 2. Extended Rule Body
Syntax (enhancement to
Figure 1)

A ← C1, !existsNot(?y∗), C2.

existsNot(?y∗)←Wif, !Wthen.

If the rules resulting from the above transforma-
tions are syntactically correct (for example, if nega-
tion is safe), then the original rule can be considered
correct. Therefore, in the following, we allow unre-
stricted use of negation, conjunction, disjunction,
and universal quantification in rule bodies. Figure 2

formalizes these syntax extensions.

3 Constraints

Most database applications require some form of constraints (e.g., referential
integrity constraints [3]). Unlike a rule, which calculates new values for a pred-
icate, a constraint restricts the predicate’s domain. We support constraints by
means of a special nullary predicate fail().

Example 2. A typical referential integrity constraint for the ancestor program
would require that any value occurring in the first argument of parent(?x,?y)
also occurs in person(?x). This constraint can be expressed as a rule:

fail() <- parent(?x,?y),!person(?x).

which defines fail() to be true if, for any assignment of values ?x = a, ?y = b,
parent(a, b) is true, but person(a) is false.

Adding support for constraints extends the usual operational semantics of Dat-
alog by allowing programs to fail. Failure indicates that no satisfying interpreta-
tions which also assign fail() false can be found for the intensional predicates.
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S ≡ R.
| Z.

Z ≡ fail()←W
| W →W

Fig. 3. Constraint Syntax
(enhancement of Figure 1)

Constraints expressed using fail() may be diffi-
cult to read. Hence—as a notational convenience—
we introduce a positive form of a constraint, with
syntax shown in Figure 3. A positive constraint is a
clause in which the ‘→’ is used instead of the the
rule’s ‘←’. The body of a positive constraint is to the
left of the ‘→’, whereas the head is to the right. In
general, the meaning of a positive constraint W1 →
W2 is the same as the rule fail()←W1, !(W2).

Example 3. The positive form of the constraint from Example 2 is:

parent(?x,?y) -> person(?x).

The simplest form of a constraint is an arity constraint: p(?x1, ..., ?xk)→ ., used
to introduce the predicate p and identify its arity (k).

4 Type Safety

4.1 Background

We view a type as a set of values. Therefore, we define types for Datalog as
unary predicates. A type declaration is a constraint of the form p(?x1, ..., ?xm) →
t1(?x1), ..., tm(?xm) (with all ?xis distinct), which requires that any value occur-
ring in the ith argument of the predicate p (denoted p.i) must also occur in the
predicate ti. We say that p.i has type ti (denoted p.i � ti). This notion of type
declaration corresponds to the notions of inclusion constraints3, and referential
integrity constraints in database literature, giving our approach a practical value
in Datalog applications in this area.

Since the type declaration is a constraint, it is logically equivalent to a rule
with fail() in the head. Thus, one way to process such a declaration would be to
evaluate the rule along with the rest of the program, and then check whether the
fail() predicate is true, in which case the evaluation would fail. This strategy
corresponds to checking an inclusion constraint at run time, which amounts to
dynamic type checking.

But we want to check as much statically as possible. Clearly since—by
definition—the data supplied for the extensional predicates is arbitrary, any
type-checking for an extensional predicate must be dynamic. However, static
reasoning is possible for the intensional predicates. For a declaration Z of an
intensional predicate q, the compiler can attempt to logically derive Z from the
rules for q (given the type declarations of the extensional predicates). If the
derivation succeeds, Z may be removed from the run-time evaluation of the pro-
gram. If the derivation fails, the compiler can provide a warning that the rule
may cause run-time failure. We formalize this intuition in the following sections.
3 Stating that whenever values occur in certain columns in a database, then those

values must also occur in some other columns.
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% Types
person(?x) -> .
gender(?x) -> .

% Values
gender(male) <- .
gender(female) <- .

% Extensional predicates
parent(?x,?y) -> person(?x), person(?y).
hasGender(?x,?g) -> person(?x), gender(?g).

% Intensional predicates
father(?x,?y) <- parent(?x,?y), hasGender(?x,male).
father(?x,?y) -> person(?x), person(?y).

Fig. 4. Example Datalog Program

Example 4. Consider the program in Figure 4. The program defines two types,
person and gender, providing the latter with two predefined values, male and
female. The program also gives type declarations for the extensional predicates
parent(?x,?y), and hasGender(?x,?g). Using the types and extensional pred-
icates, the program specifies a rule calculating the father(?x,?y) predicate.
Finally, a type declaration for father requires that both arguments are of type
person. The goal of the type-checker is to prove, from the extensional declara-
tions (of parent and hasGender), that the declaration of father will hold for
any well-typed extensional database. The basic insight for this proof is straight-
forward: from the rule, it is apparent that any value v (?x = v) occurring in the
first argument of father (denoted father.1) must also occur in both parent.1
and gender.1. From the declarations of these two predicates, it is clear that v
must also occur in person. The proof for father.2 is similar.

4.2 Type System

Figure 5 shows the definition of our type system for Datalog programs. Note
that no type environment is needed because Datalog has no nested syntactic
structures. We annotate each type rule with an identifier rn, and enclose the
program statements in curly-braces, to differentiate them from type judgments.

A type judgment can be (1) a simple inclusion, (2) a disjunctive inclusion, or
(3) a conjunctive inclusion. A simple inclusion, written τ � µ, asserts that, for
any extensional database, every value in τ is also in µ (µ is also called a type
bound of τ). A disjunctive inclusion, written τ � (µ1; ...; µm) where τ and µis
are type expressions, asserts that, for any extensional database, every value in τ
is also in at least one of the µis. A conjunctive inclusion, written (µ1, ..., µm) � ρ,
is complementary to the disjunctive inclusion, and asserts that every value that
is in all of the µis must be in ρ.

A type expression can be (1) a name of a unary predicate, written t, (2) the
type of the ith argument of predicate p, written p.i, or (3) the type of the variable
?x within the rule r, written r : ?x.

The type rule Given asserts the initial type judgments that can be obtained
from the extensional type declarations. The type rule Body asserts that the type
of a variable ?x, occurring in the ith position of a predicate p in the body of
some program rule, is restricted to the type of p.i. The type rule SimpleTrans

applies transitivity to the subtype relation.
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{p(x1, ..., xk) → ..., ti(xi).}
p is extensional

� p.i � t.i
(Given)

fail() < −p1(?x), ..., pm(?x).
� (p1, ..., pm) � fail()

(Excl)

{r : A ← ..., p(..., ?x, ...), ....}
x is the i-th argument of p

� r : ?x � p.i
(Body)

{r1 : q(..., ?xj , ...) ← W1}
. . .

{rm : q(..., ?xj , ...) ← Wm}
the ri’s form q’s procedure

� q.j � (r1 : ?xj ; ...; rm : ?xj)
(Head)

� τ � µ � µ � ρ

� τ � ρ
(SimpleTrans)

� τ � (µ1; ...; µm)
for every i, � µi � ρ or � µi � τ

� τ � ρ
(DisjTrans)

� (µ1, ..., µm) � ρ
for every i, � τ � µi or � ρ � µi

� τ � ρ
(ConjTrans)

{q(..., ?xj , ...) → ..., t(?xj), ....}
not � q.j � t

warn(”?xj is not a subtype of t”)
(Unsafe)

� r : ?x � fail
warn(”var ?x in rule r is contradictory”)

(Empty)

Fig. 5. Type Rules - Unary Inclusion

The type rule Head relates the type bound of q.i to the bounds discovered
in each of the rules rj from q’s procedure. Every value v in q.i must have been
derived by an application of at least one rj , and so v must obey the type bound of
the corresponding variable from that rule. This is true because of the minimality
of the computed model requires that q does not contain any values other than
those derived by the rules in q’s procedure. Thus, the type rule Head introduces
a disjunctive type judgment (when there is more than one rule in q’s procedure),
which is then used by the type rule DisjTrans.

The type rule DisjTrans makes the general assertion that, for any disjunctive
inclusion τ � (µ1; ...µm), if a type expression ρ is a type bound for every µi,
then it is also a type bound for τ. In effect, this type rule finds the least common
supertype for all µis. A subtlety in the type rule DisjTrans is the “or” condition,
covering the case when τ includes itself. This situation can occur in recursive
rules, such as rule (2) in Example 1. If a head predicate q is present in the body
of a rule, the type rule Body produces type judgments of the form r : ?x � q.i.
However, the type rule Head produces a disjunctive inclusion of ?x: q.i � ...; r :
?x; .... Thus, since r : ?x provides no information about a type bound for q.i, only
those disjuncts not contained in q.i are included in deducing the type bound.

Finally the type rule Unsafe verifies what has been proven against the in-
tensional type declarations. If a type declaration required that an argument of
an intensional predicate has a particular type, but that type cannot be inferred
from the rules, then a warning is issued.

The type rules ConjTrans and Empty are discussed in Section 5.
Example 5. The type rules can be applied to the program in Figure 4 as follows
(we refer to the rule father(?x,?y) <- parent(?x,?y), hasGender(?x,male).
as r1):
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1. Applying Given to the extensional declarations yields the type judgments:
parent.1 � person, parent.2 � person, hasGender.1 � person, and
hasGender.2 � gender.

2. Applying Body to rule r1 yields type judgments: r1 : ?x � parent.1, r1 :
?x � hasGender.1, and r1 :?y � parent.2

3. Applying Head to r1 yields: father.1 � r1 : ?x, and father.2 � r1 :?y.
4. ApplyingSimpleTransyields father.1 � parent.1 andfather.2 � parent.2.
5. Applying SimpleTrans again yields father.1 � person and father.2 �

person.
6. The objective of the proof has been achieved, and applying Unsafe fails to

find any missing inclusions.

Despite the simplicity of our approach to type checking, based on inclusion
constraints, presented type system has features comparable to more complex
type systems, in particular:

Sub-Typing. A type declaration of a unary predicate in effect defines a subtype
relationship. For example, the type declaration boy(?x) -> person(?x).
states that the type boy is a subtype of person. Whenever a variable of type
person is required, the type rules will allow the variable to have type boy
instead.

Multiple “Inheritance”. The type rules allow a predicate argument to be
declared with more than one type. For example, the following program will
be handled perfectly well by the type system.

thing(?x) -> .
big(?x) -> thing(?x).
red(?x) -> thing(?x).
myBalloon(?x) -> big(?x), red(?x).

5 Type Consistency

Most type systems assume that the types do not overlap, except that the su-
pertypes contain their subtypes. However, in logic programs such disjointness
must be explicitly declared. For example, according to the logical meaning of
the following program, the types man and woman may have common elements:

person(?x) ->.
man(?x) -> person(?x).
woman(?x) -> person(?x).

A function common in type systems is verifying that the same object is not re-
quired to belong to non-overlapping types (we follow Gregor Meyer [16] in calling
this type consistency, although our approach to checking it differs significantly
from his). Hence, it is desirable to allow declarations asserting that types are
disjoint. A declaration of this kind can be formulated by means of an exclusion
constraint of the form fail() ← p1(?x), ..., pm(?x). The type rule Excl turns
such a constraint into a conjunctive inclusion with supertype fail.



Typed Datalog 177

So suppose, for instance, that a program contains the exclusion constraint
fail()← man(?x), woman(?x).. If that program were also to contain a rule r
with some variable ?x occurring as an argument to both man and woman, then the
type rule Body would infer the type judgments r : ?x � man and r : ?x � woman.
Consequently, the type rule ConjTrans, working with the exclusion constraint,
infers r : ?x � fail, which in turn triggers the type rule Empty to produce a
warning.

6 Meta-compilation

Pursuant to our design goal of expressing the LogicBlox compiler in (extended)
Datalog, we translate the type system from Section 4.2 into an equivalent Dat-
alog program. The starting point of this translation is the meta-model—a set
of predicates capturing the syntax of the language (without constraints) from
Figure 1. Figure 6 shows the declarations of the meta-model predicates. In the
meta-model, the program subject to type checking is represented as a set of
facts. Note that each syntactic construct (rule, atom, term, etc.) is associated
with a unique constant. Also note that some of the predicate arguments (e.g.,
the second argument of name or value) are untyped, as assigning a type to them
would serve no useful purpose. The type declarations in the program (both for
extensional and intensional predicates) are captured by the argType predicate,
which associates a predicate/argument-index pair (?p, ?i) with a type (?t).

To illustrate the encoding, Figure 7 lists the meta-model facts representing
the declaration and rule for the father predicate from the program in Figure 4.

The type rules of Figure 5 can now be expressed as shown in Figure 8. The
first four rules determine which predicates are intensional (appear in the head
of some program rule), and which are extensional (otherwise). The next three
rules declare the predicates simpleInclPred (representing type judgements of
the form p.i � q.j), simpleInclVar (representing type judgments of the form
r : x � p.i), and disjIncl (representing type judgments of the form p.i � (r1 :
?x1; ...rm : ?xm)).

The translation of the type rules is straightforward except for two cases. Firstly,
because of the two forms of ”simpleIncl” judgments, the type rule SimpleTrans

% Rule Syntax
Rule(?r) -> .
head(?r,?a) -> Rule(?r), Atom(?a).
body(?r,?a) -> Rule(?r), Atom(?a).

Atom(?a) -> .
functor(?a,?p) -> Atom(?a),

Predicate(?p).
arg(?a,?i,?t) -> Atom(?a), Term(?t).
negated(?a) -> Atom(?a).

Term(?t) -> .

Variable(?x) -> Term(?x).
name(?x,?n) -> Variable(?x).

Constant(?c) -> Term(?c).
value(?c,?v) -> Constant(?c).

% Type Declarations
argType(?p,?i,?t) -> Predicate(?p),

Predicate(?t).

Fig. 6. Meta-Model Predicates
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% Datalog Syntax.
Rule(r3).
head(r3,a1).
body(r3,a2).
body(r3,a3).

Atom(a1).
functor(a1,father).
arg(a1,1,x1).
arg(a1,2,x1).

Atom(a2).
functor(a2,parent).
arg(a2,1,x1).
arg(a2,2,x2).

Atom(a3).
functor(a3,hasGender).

arg(a3,1,v1).
arg(a3,2,c1).

Term(x1).
Variable(x1).
name(x1,x).

Term(x2).
Variable(x2).
name(x1,y).

Constant(c1).
value(c1,male).

% Type Declarations.
argType(father,1,person).
argType(father,2,person).

Fig. 7. Example Meta-Model

must be split into two separate clauses. Secondly, the type rule DisjTrans re-
quires the use of the all quantifier. Despite these differences, this specification of
the type system closely follows the formal specification of Figure 5.

Indeed these advanced semantics become important in this case, because—
after transforming the all construct (as described in Section 2.3)—the type-
checking program contains recursion through negation. Intuitively, this is right
because evaluation of the type rule DisjTrans may provide a new type bound
for some predicate argument, which in turn might be used by the type rule Body,
and so on. Thus, the type-checking program is not globally stratified. Using
the Well-Founded Semantics approach to negation can guarantee termination of
the evaluation, but will not guarantee in general that the resulting model will be
complete (the truth or falsity of some of the facts may be undetermined). So the
translation into (extended) Datalog has at once indicated important information
about the type rules.

7 Limitations

Clearly, placing limitations on the running time of the type-checking algorithm
results in limitations of the completeness of the type inference. We now present
two common cases of valid inferences that cannot be discovered by our algorithm.

Example 1: Cascading Disjunctive Inclusions. The type rule DisjTrans

handles disjunctive inclusions with every immediate supertype having a simple
inclusion leading to the common supertype. However, the immediate supertypes
may be related to the common supertype by another disjunctive inclusion, in
which case the type rule DisjTrans is not sufficient. For example, consider the
following program:
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Intensional(?p) -> Predicate(?p).
Intensional(?p) <- head(?r,?a), functor(?a,?p).
Extensional(?p) -> Predicate(?p).
Extensional(?p) <- Predicate(?p), !Intensional(?p).
simpleInclPred(?p,?i,?q,?j) -> Predicate(?p), Predicate(?q).
simpleInclVar(?r,?x,?p,?i) -> Rule(?r), Variable(?x), Predicate(?p).
disjIncl(?p,?i,?r,?x) -> Predicate(?p), Rule(?r), Variable(?x).

% Given
simpleInclPred(?p,?i,?q,1) <- argType(?p,?i,?t), Extensional(?p).

% Body
simpleInclVar(?r,?x,?p,?i) <- body(?r,?a), arg(?a,?i,?x), Variable(?x).

% SimpleTrans
simpleInclPred(?p,?i,?r,?k) <- simpleInclPred(?p,?i,?q,?j),

simpleInclPred(?q,?j,?r,?k).
simpleInclVar(?r,?x,?q,?j) <- simpleInclVar(?r,?x,?p,?i),

simpleInclPred(?p,?i,?q,?j).

% Head
disjIncl(?q,?j,?r,?x) <- head(?r,?a), functor(?a,?q), arg(?a,?j,?x).

% DisjTrans
simpleInclPred(?p,?i,?q,?j) <-

all(?r,?x : disjIncl(?p,?i,?r,?x)) -> ( simpleInclVar(?r,?x,?q,?j)
; simpleInclVar(?r,?x,?p,?i) ).

% Unsafe
warn(?q,?j,?t) <- Intensional(?q), argType(?q,?j,?t),

!simpleInclPred(?q,?j,?t,1).

Fig. 8. Type-Checking Algorithm as an Extended Datalog Program

a(?x) <- b1(?x), ... ; b2(?x), ... .
b1(?x) <- c1(?x), ... ; c2(?x), ... .
d(?x) <- c1(?x) ; c2(?x) ; b2(?x) .
% derive the following:
a(?x) -> d(?x).

The following type judgments can be deduced from the program rules: a �
(b1; b2), b1 � (c1; c2), c1 � d, c2 � d, and b2 � d.

The type rule DisjTrans cannot apply here because the required intermedi-
ate supertypes—c1, c2 and b2—are separated into two disjunctions. However,
the programmer can guide the compiler by introducing a type defined as the
disjunction of c1 and c2 using the rule: t(?x) <- c1(?x) ; c2(?x). Based on
this rule, the type rules Body and Head enable derivation of the following type
judgments: c1 � t, c2 � t, and t � (c1; c2).
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These additional type judgments allow the type rule DisjTrans to make two
new deductions: b1 � t, and t � d. By the type rule SimpleTrans, b1 � d.
Finally, the type rule DisjTrans can be applied to connect a and d: a � d,
which is the desired inclusion.

Example 2: Mixing Conjunctive and Disjunctive Inclusions. A more
complex issue arises when the inference requires combining disjunction and con-
junction. For example, the following program sets up a conjunction of disjunc-
tions in the type judgments:

% a1, a2, a3, and a4 are extensional.
b1(?x) <- a1(?x) ; a2(?x).
b2(?x) <- a3(?x) ; a4(?x).

c(?x) <- b1(?x), b2(?x), ... .

d(?x) <- a1(?x), a3(?x) ;
a1(?x), a4(?x) ;
a2(?x), a3(?x) ;
a2(?x), a4(?x).

% derive the following:
c(?x) -> d(?x).

The soundness of the desired inference depends on being able to distribute
conjunctions across disjunctions, which our efficient type rules are not strong
enough to do.

8 Related and Future Work

Typed Prolog. There is a rich history of research in typing Prolog and Data-
log, all of which differ from the work presented here in the following two ways.
First, the worst-case running times of the type-checking algorithms is exponen-
tial, which prevent expressing them in Datalog. Second, none of the algorithms
directly captures the notion of inclusion constraints, which is critical in database
applications.

One well-known example is the Mycroft-O’Keefe type system [17,18], which
adapts the Hindley-Milner algorithm to Prolog. While allowing a limited form
of parametric polymorphism and type inference, it does not support subtyping
(the simplest form of an inclusion constraint), making the expression of inclusion
constraints inconvenient. Various proposals for supporting polymorphism have
been made [19,16]. One avenue for future research would be to introduce para-
metric polymorphism into the LogicBlox language while maintaining the ability
to express inclusion constraints.

Datalog Typing. In their pioneering paper, Fruhwirth et al. [20] present a type
system using unary predicates as types – an idea also adopted above. However
our approach differs significantly in respect to how Datalog is used to express
the types, and also with respect to the already mentioned issue of exponen-
tial running time. Recently de Moor et al. [21] have presented a non-Cartesian
type-checking algorithm for Datalog. The system supports inclusion constraints
and subtyping (but not polymorphism), but with an exponential running time.
A non-Cartesian type system, instead of validating the type of each argument
independently, considers tuples of types, capturing correlated values of multiple
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arguments. An interesting and useful question is whether such notions can be
implemented efficiently in Datalog.

Chase Algorithms. In the database community there is a wealth of literature
on deducing inclusion dependencies using chase algorithms (for a good recent re-
view of chase techniques, see [22]). Chase techniques suffer from exponential-time
complexity with the introduction of disjunction. Possibly, the insights garnered
in creating the efficient type-checking algorithm for LogicBlox could provide
techniques for improvements in this domain.

Meta-Modeling. Finally, the only case of combining Datalog with meta-
modeling that we are aware of is Evita Raced [23]), which features a bootstrapped
meta-circular compiler implemented in Datalog, and applied to a meta-model
similar to the one presented in this paper. That version of Datalog, however, has
no type system, and does not support constraints.
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Abstract. Analysis of biological data often involves large data sets and
computationally expensive algorithms. Databases of biological data con-
tinue to grow, leading to an increasing demand for improved algorithms
and data structures. Despite having many advantages over more tradi-
tional indexing structures, the Bloom filter is almost unused in bioinfor-
matics. Here we present a robust and efficient Bloom filter implementation
in Haskell, and implement a simple bioinformatics application for indexing
and matching sequence data. We use this to index the chromosomes that
make up the human genome, and map all available gene sequences to it.
Our experiences with developing and tuning our application suggest that
for bioinformatics applications, Haskell offers a compelling combination
of rapid development, quality assurance, and high performance.

1 Introduction

A central part of bioinformatics involves work with biological sequences. These
sequences represent molecules of DNA, RNA, and protein, all of which are struc-
tured as long chains of smaller building blocks. For computational purposes,
these chains are usually represented as strings over fixed alphabets. For instance,
the nucleotides of DNA are represented using the alphabet of A (for adenine),
C (cytosine), G (guanine), and T (thymine).

Since the introduction of large-scale sequencing in the early 1990s, public se-
quence databases have doubled in size every 18 months. The U.S. National Cen-
ter for Biotechnology Information’s GenBank database now contains 110 million
nucleotide sequences, totaling 200GB of data1.

Over the past two decades, the cost of generating new sequences has dropped
by three orders of magnitude. As this trend is likely to continue, the rate
at which biological sequences are produced will increase dramatically. For in-
stance, the newest generations of pyrosequencing technologies produce hundreds
of megabytes of sequence data per run [19][23][7].

Much of bioinformatics research involves the development of “throwaway”
code that integrates preexisting components to create focused analytic tools that

1 http://www.nih.gov/news/health/apr2008/nlm-03.htm
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have short lifespans. For many tasks, such as accessing and manipulating data
from the more than 1 000 known public databases [10], languages like Python
and Perl are widely used, with performance-critical analysis delegated to code
written in languages such as C and C++.

An ideal situation for bioinformaticians is to be able to develop new ana-
lytic tools rapidly, without sacrificing speed or correctness. With these goals in
mind, we used Haskell to prototype some novel uses of Bloom filters for sequence
analysis.

1.1 Sequence Similarity

The core of sequence analysis is the search for similarity between sequences.
Similarity provides the basis for many important tasks, for example:

– Genes are usually identified based on their similarity to known proteins and
gene transcripts.

– The sequencing process commonly produces only fragments of the true se-
quence. These fragments are clustered by similarity, and then assembled by
joining fragments whose ends are similar.

– Identifying similar regions of genomes from different organisms can reveal
evolutionary relationships between those organisms, and shed light on the
mechanisms of evolution.

Applications like these are ubiquitous. They are usually computationally expen-
sive due to the size of the data sets involved.

A commonly used metric for sequence similarity is the edit distance or Lev-
enshtein distance, which is the number of edit operations needed to transform
one sequence into another. The edit distance between two sequences n and m
can be calculated using dynamic programming in O(nm) time [11][22][20]. This
approach quickly becomes impractical for large sequences, and heuristic methods
are usually used instead.

1.2 Word-Based Approaches

Heuristic approaches typically start by identifying fixed-size exact matches, called
k-words2. Once a sufficient number of matches is identified, they are used as a
starting point (or seed) to construct a more accurate alignment or comparison
score.

The choice of k-word size is influenced by several factors. Sequences often
contain errors introduced by the sequencing process, or differ due to mutations.
Words should therefore be short enough that the number of false negatives is
reasonable. For instance, if the data have a (rather severe) error rate of 5%, a
word size of less than 20 will ensure that hits can be found. On the other hand,
shorter words are less likely to be unique in a data set, which increases the chance
of false positives. The inherent non-randomness of genes and genomes amplifies
this problem.
2 These are also known as q-grams, or k-tuples.
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An index can store k-words either directly, using tables, or in a sparse data
structure. The simplest approach is to use each word as an index in a table of size
αk, where α is the alphabet size. This approach is used by e.g. blat [13], which
by default indexes words of length 11. To reduce the density of the index, blat

only indexes non-overlapping words and removes words that occur frequently in
the data set. As the table grows exponentially with word size, available memory
limits the possible word lengths. Although longer words are often desirable, to
make efficient use of memory they require sparse data structures like hash tables
or search trees. This incurs additional overheads in space and time.

1.3 Suffix Trees and Arrays

Suffix trees [25] and suffix arrays [18] provide interesting alternatives to word-
oriented indexing, as they allow searching for words of arbitrary length. They
form the basis of several tools for sequence analysis, e.g. [2][16][12]. While both
suffix trees and suffix arrays can be constructed in linear time, and can perform
lookups of a length-m string in O(m) time, this comes at a cost of about 12m
bytes per position with 32-bit pointers [1]. Suffix structures are thus memory
intensive. Unlike the word-based approaches, it is not straightforward to reduce
memory use by omitting frequent or overlapping words. In addition, while the
sensitivity of word-based indexing can be improved using gapped words [24], it
is not clear how to apply this approach to suffix structures.

1.4 Bloom Filters

The Bloom filter [4] is a set-like data structure that uses space efficiently. Unlike
a normal set data structure, its query operation is probabilistic: it may report
false positives. The error rate is tunable: an application that can tolerate a higher
error rate will consume less memory than one with stricter needs.

For example, to represent a 400 000-element set with a 1% false positive rate,
a Bloom filter will use 0.46MB of memory. If we reduce the false positive rate
to 0.01%, the space consumption doubles, to 0.91MB. The size of a Bloom filter
does not depend on the sizes of its elements. In our case, this property offers the
prospect of efficiently indexing long sequences.

A Bloom filter is implemented as an m-bit array and a family of h distinct
hash functions. The empty set is represented as a zeroed bit array. To add an
element, we compute h hashes over it. We use each hash value as an offset into the
array, and set each corresponding bit to 1. To query the set for membership, we
compute h hashes over the input. If any corresponding bit is not 1, the element
is not present in the array. False positives arise if distinct values hash to the
same offsets for all h hash functions.

Although Bloom filters are widely used in networking [5] and formal meth-
ods [9], they are almost unknown in bioinformatics. In the sections that follow,
we discuss their use to implement solutions to some typical bioinformatics prob-
lems, and investigate how they perform on massive data sets.
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2 Methods

2.1 A Fast Bloom Filter in Haskell

We implemented a Bloom filter in Haskell. Our library is general purpose in na-
ture3, and provides typical Haskell interfaces to construct and query immutable
Bloom filters:

fromList :: (a -> [Hash]) -- family of hash functions
-> [a] -- elements to add
-> Bloom a

elem :: a -> Bloom a -> Bool

To achieve a false positive rate of 0.1% for an input list of known size, we use a
family of 10 hash functions. Building a Bloom filter requires many modifications
to a bit array, in this case 10 per element added. We use the ST monad [15] to
efficiently make in-place modifications to this bit array, then freeze it to present
an immutable interface to consumers of the library.

We avoid developing many independent hash functions by using Dillinger and
Manolios’s technique of double hashing [9]. We compute two hashes over a value,
and combine their results using cheap algebraic operations to produce further
hash values on demand. Although the resulting hash values are not independent,
analysis has shown them to provide good enough dispersion for practical use [14].

We double our hashing performance by computing both hashes in a single
traversal of an element, by using Haskell’s foreign function interface (FFI) to
invoke Jenkins’s hashlittle2 implementation4.

We also use a power-of-two table size, so that we can perform cheap bit-
manipulation operations to turn a hash value into a valid array index.

2.2 Indexing Sequences with Bloom Filters

We used the Bloom filter to implement a simple indexing scheme for biological
sequences. As with other indexing schemes, the sequences are cut into fixed-
length overlapping fragments that can be stored in the Bloom filter.

We allow a choice of word length and overlap (the distance between the be-
ginnings of successive words). These parameters can be tuned to optimize the
trade-off between sensitivity, specificity, and resulting index size. For instance,
given the sequence GATTACCA, a word length of 3, and an overlap of 2, the
index would store the three words GAT, TTA, and ACC. In our test application,
we use a word size of 30 and an overlap of 6. The Bloom filter is configured to
give a false positive rate of 0.005. As our implementation limits filter sizes to
powers of two for efficiency, the observed false positive rate may be substantially
lower in practice.

3 http://hackage.haskell.org/cgi-bin/hackage-scripts/package/bloomfilter
4 http://burtleburtle.net/bob/hash/

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/bloomfilter
http://burtleburtle.net/bob/hash/
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To calculate a distance between a query sequence and a target sequence, we
index the target using a Bloom filter, then score the query sequence against
it. If the Bloom filter uses an overlap of 1—i.e. every word from the target
sequence is used in the Bloom filter—the score is the number of words from the
query that match the filter. With larger overlaps, we match every word from
the query sequence against the filter, but remove matches that occur closer than
the overlap. Typically, such matches arise from spurious similarities to unrelated
parts of the target, or highly repetitive sequences.

We can also calculate the expected number of false positives introduced by
the Bloom filter, to quantify their effect on result quality. Under the assumption
that the probability of a false positive result is word-independent, we can model
false positives using a binomial distribution. Given a number of lookups n and
false positive rate p, the expected number of false positives is np, with standard
deviation

√
np(1− p).

We implemented a simple application that reads a set of fasta-formatted files
containing target sequences, and builds a Bloom filter for each. Query sequences
are then read from standard input, and matched against the Bloom filters, and
the best hit is reported.

To compare the efficiency of Bloom filter indexing to other approaches, we
also implemented versions of the application that use a balanced binary tree
(using the standard Haskell module Data.Set) with ByteString elements. Since
comparison of strings requires time proportional to their lengths, this is not
an optimal strategy, and we therefore also implemented a version using words
encoded as integers [17].

2.3 Applications and Data

We benchmarked our program in two different settings. We began by filtering
ESTs for contaminants. We then clustered ESTs by matching them to chromo-
somes.

Sets of expressed sequence tags, or EST s, are an important source of ge-
nomic information. These sequences are produced from messenger RNA gene
transcripts. ESTs are usually incomplete, and thus represent fragments of genes.
In addition, error rates are high—typically about 0.5–1% even in regions of rel-
atively high quality.

The current release of GenBank contains over eight million human ESTs,
representing 4.2 gigabytes of data. We downloaded these from the University of
California, Santa Cruz web site5.

The human genome is about 3 billion nucleotides in length, split into 23 chro-
mosomes. We downloaded the set of sequences representing these chromosomes
from UCSC6.

An EST originates from a gene that resides on a chromosome. Knowing the
location of each EST helps with a number of tasks, among which are identifying

5 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/est.fa.gz
6 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/chromFaMasked.zip

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/chromFaMasked.zip
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the gene; identifying its full extent and internal structure; and discovering or
identifying surrounding patterns that regulate the expression of the gene. We
thus used our application to cluster ESTs by identifying their chromosomes of
origin. An EST is assigned to the chromosome with most matching k-words if
the number of matches is statistically significant.

Our second application filtered sequences for contamination. As part of the
sequencing process, the molecules to be sequenced are inserted into a host organ-
ism (typically the bacterium E. coli) for mass production. Occasionally, genomic
DNA from the host organism is retrieved and sequenced instead of the desired
sequence, thus contaminating the resulting sequence data with unwanted se-
quences. It is therefore necessary to screen sequence data by comparing it to the
E. coli genome, and remove the offending sequences before further analysis.

While human chromosomes range up to 240 megabases (Mb) in size, the 5Mb
E. coli genome is relatively small. To provide a smaller test case for compar-
ing different indexing implementations, we also downloaded the genome for one
strain of E. coli from GenBank7 .

All tests were performed on a single core of a 2.4GHz Intel Core2 processor,
using version 6.8.3 of the ghc Haskell compiler.

3 Results

We randomly selected ESTs in sets of various sizes, and benchmarked the three
different indexing implementations by matching the ESTs against the E. coli
genome. The times are shown in Figure 1, we see that while integer matching
is faster than strings, the Bloom filter substantially outperforms both. A linear
regression shows that the Bloom filter indexing stage takes only 1.7 seconds,
compared to 20.2 for the Integer-encoded and 11.9 for the string-based indexing.
Similarly, the Bloom filter matches 1718 sequences per second, compared to
589 and 310 for the Integer and string based indexes, respectively.

Perhaps more important than time spent is memory consumption. Time af-
fects how long we must wait for a result, but excessive memory consumption
prevents us from successfully processing large sequences. While the set based
implementations allocate 160–190MB of memory (as measured by top) for this
test, the Bloom filter application runs in a mere 20MB, of which the Bloom filter
itself uses only 2MB.

By comparing the outputs from the set-based and the Bloom-filter-based im-
plementations, we can measure the number of actual false positives generated.
The results from the 10K data set are displayed in Figure 2. Here, 76.5% of the
sequences generated no false matches, and only 370 sequences had two or more
false matches.

Figure 2 also shows the expected number of false matches, calculated sep-
arately for each sequence. Here, we see clearly that due to the power of two
rounding of the Bloom filter size, the observed false positive rate is lower than
the requested rate.
7 http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore\&id=56384585

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=56384585


Using Bloom Filters for Large Scale Gene Sequence Analysis in Haskell 189

 0

 50

 100

 150

 200

 250

 300

10K 20K 40K 80K

ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

data set size

set
iset

bloom

Fig. 1. Times (in seconds) using the Bloom filter, sets of ByteStrings, and sets of
integers to index the E. coli genome, and match sets of sequences against it

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

0 1 2 3 4

se
qu

en
ce

s

false matches

observed
expected

Fig. 2. False positives introduced by the Bloom filter from the 10K data set. 7 652
of the sequences have no false matches, 1 978 have one false match, 345 have two, 22
have three, and 3 sequences have four false matches. Also the expected false positives,
calculated as described in Section 2.2.

Finally, we built Bloom filters for the 23 chromosomes constituting the hu-
man genome, and matched all ESTs against them. Indexing the chromosomes
took 26 minutes, and the resulting Bloom filters consumed from 16 to 64MB of
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Fig. 3. Matching sequences by chromosome. As the chromosome sequences used have
had repetitive regions masked, a large fraction of sequences are left unmatched.

memory, depending on chromosome size. The total memory used for the entire
genome was 864MB. Matching the set of eight million ESTs against the Bloom
filters took 49 hours. The resulting distribution of sequence locations is shown
in Figure 3.

The chromosome sequences used here were masked, where repetitive regions
were erased to avoid false positives. Many genes reside in masked regions, which
seems to be the most likely explanation for 916 583 sequences that failed to
match any of the chromosome. Manual checks have confirmed this for a small
sample. Other possible explanations can be low quality sequence causing false
negatives, or contamination.

4 Discussion and Conclusion

4.1 Performance Tuning Experiences

Early profiling of our application’s performance indicated that the Bloom filter
library accounted for over 70% of run time, even though we had addressed per-
formance early on by double hashing in a single pass and using power-of-two sizes
for bit arrays. Further investigation caused us to make a number of substantial
changes. These all remained internal to the Bloom filter implementation, and
did not affect its public interface.

By default, the ghc compiler checks the bounds of array accesses at run time,
and we had somehow missed this early on. Switching to the alternative “unsafe”
interfaces doubled our performance, by eliminating branches from an inner loop.

The lazy variant of the ByteString data type represents strings in chunked
form [8], so a sequence can straddle multiple chunk boundaries. The Jenkins
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hash functions operate over contiguous C strings. To address this, we began by
concatenating chunks into one contiguous string. In addition, the ByteString
library by default makes a defensive copy of data that must remain immutable,
to protect it from modification by native code. We were thus copying every
ByteString at least once, and those that straddled a chunk boundary twice. We
reimplemented the Jenkins hash code to operate incrementally over ByteString
chunks and eliminated the defensive copying from the ByteString library, thereby
doubling our performance.

ghc performs runtime safety checks on the bounds of bit-shifting operations.
Even given constant shift values, we were unable to predict the circumstances
under which ghc would eliminate those checks from our code. To ensure uni-
form branch-free performance, we implemented our own bit-shifting functions
using ghc’s word-level primitives. The branches thereby eliminated netted us a
performance gain of perhaps 20%.

Many of our low-level optimizations were motivated by reading dumps from
ghc’s simplifier phase, using Stewart’s ghc-core tool8. Although simplifier out-
put is challenging to read, with some experience it gives a clear picture of when
unnecessary memory allocations, or unboxing and reboxing operations, are oc-
curring.

Faced with a number of potentially unsafe code transformations, we used the
QuickCheck testing tool [6] to give ourselves statistical confidence that our code
remained correct. We found its ability to provide us with a test case when a test
failed to be invaluable in quickly directing us to the sources of bugs. For instance,
when we rewrote the Jenkins hashing code to consume chunks incrementally, we
wrote a QuickCheck property to ensure that the hash of a contiguous string was
the same as the hash of a chunked string. Checking this property over successively
larger random inputs exposed three subtle errors in our handling of boundary
conditions during chunk traversal.

The final speed of our Bloom filter was approximately five times better than
when we began, and came within 8% of a C program that we had written to
offer a point of comparison. This experience suggests that low-level Haskell per-
formance tuning can be highly profitable. With extensive use of QuickCheck, we
keep the risk of unsafe changes low, and create working code more quickly.

While we have begun writing about the practicalities of Haskell performance
analysis and tuning in [21], there remains plenty of scope for further compiler
improvements; more experience reports; and better tool support to assist pro-
grammers in writing faster (but still safe!) Haskell code.

4.2 Bloom Filters, Bioinformatics and Haskell

The Bloom filter is a tremendously useful data structure: in settings such as ours,
it holds substantial advantages over traditional indexing schemes by allowing
indexing of large data sets with long word sizes quickly, and with low memory
consumption.

8 http://hackage.haskell.org/cgi-bin/hackage-scripts/package/ghc-core

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/ghc-core
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The industry-standard alignment tool blast [3] aligns approximately 40 se-
quences per second when aligning the 10K data set against the E. coli genome.
As blast identifies the alignments while our indexing merely detect the pres-
ence of a similarity, this result is not directly comparable to the results reported
above. Nonetheless, it illustrates the potential benefit of using the Bloom filter
as a preprocessing stage to eliminate unlikely candidates for a match.

To turn our sample implementation into an industry strength tool, there are
many options to be explored: The impact of false positives could be reduced by
requiring two or more consecutive (that is, spaced apart by exactly the overlap
length) matches. Instead of counting matches along the length of the sequence,
we could count matches within a fixed-size region (window). We could improve
sensitivity by using gapped word indices [24]. Sequence quality should be taken
into account. Our objective here has been to demonstrate the efficacy of Bloom
filters in this application, and we therefore defer exploring these possibilities for
the future.

We developed our prototype over the course of a few days, using preexist-
ing Haskell libraries to parse sequence data and manipulate Bloom filters. The
application-specific code amounted to 75 lines.

The field of bioinformatics is, in a sense, divided in two. On one side are
standard algorithms and data structures, which must be highly optimized to
deal with large data sets. These are typically implemented in C. On the other
side are analysis pipelines, often project-specific, which combining such tools to
perform a complete analysis. Here, rapid development is important, and scripting
languages are often used.

We have demonstrated that we can address both sides of this divide with
Haskell.The efficient implementationof crucial data structures suchasByteStrings
and Bloom filters allows the application programmer to implement pipelines of
functions, and from there entire tools, in a straightforward, even näıve, way, and
still achieve both excellent performance and a high degree of confidence in results.
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Abstract. Tabling is an implementation technique that overcomes some
limitations of traditional Prolog systems in dealing with redundant
sub-computations and recursion. The performance of tabled evaluation
largely depends on the implementation of the table space. Arguably, the
most successful data structure for tabling is tries. However, while tries
are efficient for variant based tabled evaluation, they are limited in their
ability to recognize and represent repeated answers for different calls. In
this paper, we propose a new design for the table space where tabled
subgoal calls and/or answers are stored only once in a common global
trie instead of being spread over several different tries. Our preliminary
experiments using the YapTab tabling system show very promising re-
ductions on memory usage.

Keywords: Tabling Logic Programming, Table Space, Implementation.

1 Introduction

Tabling [1,2] is an implementation technique where intermediate answers for
subgoals are stored and then reused whenever a repeated call appears. The per-
formance of tabled evaluation largely depends on the implementation of the table
space – being called very often, fast lookup and insertion capabilities are manda-
tory. Applications can make millions of different calls, hence compactness is also
required. Arguably, the most successful data structure for tabling is tries [3].
Tries meet the previously enumerated criteria of efficiency and compactness.

Used in applications that pose many queries, possibly with a large number
of answers, tabling can build arbitrarily many and/or very large tables, quickly
filling up memory. A possible solution for this problem is to dynamically abolish
some of the tables. This can be done using explicit tabling primitives or using
a memory management strategy that automatically recovers space among the
least recently used tables when memory runs out [4]. An alternative approach is
to store tables externally in a relational database management system and then
reload them back only when necessary [5].

A complementary approach to the previous problem is to study how less
redundant, more compact and more efficient data structures can be used to bet-
ter represent the table space. While tries are efficient for variant based tabled
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evaluation, they are limited in their ability to recognize and represent repeated
answers for different calls. In [6], Rao et al. proposed a table organization us-
ing Dynamic Threaded Sequential Automata (DTSA) which recognizes reusable
subcomputations for subsumption based tabling. In [7], Johnson et al. proposed
an alternative to DTSA, called Time-Stamped Trie (TST), which not only main-
tains the time efficiency of the DTSA but has better space efficiency.

In this paper, we propose a different approach. We propose a new design
for the table space where all tabled subgoal calls and/or answers are stored in
a common global trie instead of being spread over several different trie data
structures. Our approach resembles the hash-consing technique [8], as it tries
to share data that is structurally equal. An obvious goal is to save memory
usage by reducing redundancy in the representation of tabled calls/answers to
a minimum. We will focus our discussion on a concrete implementation, the
YapTab system [9,10], but our proposals can be easy generalized and applied to
other tabling systems.

The remainder of the paper is organized as follows. First, we briefly introduce
some background concepts about tries and the table space. Next, we describe
YapTab’s new design for the table space organization using the common global
trie and then, we describe how we have extended YapTab to provide engine
support for our new design. At last, we present some preliminary experimental
results and we end by outlining some conclusions.

2 Table Space

The basic idea behind tabling is straightforward: programs are evaluated by
storing answers for tabled subgoals in an appropriate data space, called the
table space. Repeated calls to tabled subgoals1 are not re-evaluated against the
program clauses, instead they are resolved by consuming the answers already
stored in their table entries. During this process, as further new answers are
found, they are stored in their tables and later returned to all repeated calls.

Within this model, the table space may be accessed in a number of ways: (i)
to find out if a subgoal is in the table and, if not, insert it; (ii) to verify whether
a newly found answer is already in the table and, if not, insert it; and (iii) to
load answers to repeated subgoals. With these requirements, a correct design
of the algorithms to access and manipulate tabled data is critical to achieve an
efficient implementation. YapTab uses tries which is regarded as a very efficient
way to implement the table space [3].

A trie is a tree structure where each different path through the trie data
units, the trie nodes, corresponds to a term. Each root-to-leaf path represents
a term described by the tokens labelling the nodes traversed. Two terms with
common prefixes will branch off from each other at the first distinguishing token.
For example, the tokenized form of the term p(X, q(Y, X), Z) is the stream of
6 tokens: p/3, V AR0, q/2, V AR1, V AR0, V AR2. Variables are represented using
1 We say that a subgoal repeats a previous subgoal if they are the same up to variable

renaming.
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the formalism proposed by Bachmair et al. [11], where each variable in a term
is represented as a distinct constant. Formally, this corresponds to a function,
numbervar(), from the set of variables in a term t to the sequence of constants
V AR0, ..., V ARN , such that numbervar(X) < numbervar(Y ) if X is encoun-
tered before Y in the left-to-right traversal of t.

Internally, the trie nodes are 4-field data structures. The first field stores the
node’s token, the second field stores a pointer to the node’s first child, the third
field stores a pointer to the node’s parent and the fourth field stores a pointer
to the node’s next sibling. Each node’s outgoing transitions may be determined
by following the child pointer to the first child node and, from there, continuing
through the list of sibling pointers. To increase performance, YapTab enforces
the substitution factoring [3] mechanism and implements tables using two levels
of tries - one for subgoal calls, the other for computed answers. More specifically,
the table space of YapTab is organized in the following way:

– each tabled predicate has a table entry data structure assigned to it, acting
as the entry point for the predicate’s subgoal trie.

– each different subgoal call is represented as a unique path in the subgoal trie,
starting at the predicate’s table entry and ending in a subgoal frame data
structure, with the argument terms being stored within the path’s nodes.

– the subgoal frame data structure acts as an entry point to the answer trie.
– each different subgoal answer is represented as a unique path in the answer

trie. Oppositely to subgoal tries, answer trie paths hold just the substitu-
tion terms for the free variables which exist in the argument terms of the
corresponding subgoal call.

– the leaf’s child pointer of answers is used to point to the next available an-
swer, a feature that enables answer recovery in insertion order. The subgoal
frame has internal pointers that point respectively to the first and last an-
swer on the trie. Whenever a repeated subgoal starts consuming answers,
it sets a pointer to the first leaf node. To consume the remaining answers,
it must follow the leaf’s linked list, setting the pointer as it consumes an-
swers along the way. Answers are loaded by traversing the answer trie nodes
bottom-up.

An example for a tabled predicate t/2 is shown in Figure 1. Initially, the
subgoal trie is empty. Then, the subgoal t(a(1),X) is called and three trie
nodes are inserted: one for the functor a/1, a second for the constant 1 and
one last for variable X. The subgoal frame is inserted as a leaf, waiting for the
answers. Next, the subgoal t(a(2),X) is also called. It shares one common node
with t(a(1),X) but, having a/1 a different argument, two new trie nodes and
a new subgoal frame are inserted. At the end, the answers for each subgoal are
stored in the corresponding answer trie as their values are computed. Note that,
for this particular example, the completed answer trie for both subgoal calls is
exactly the same.
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:- table t/2.

t(a(X),a(Y)) :- a(X), a(Y).
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answer
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a/1
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Fig. 1. YapTab’s original table design

3 Common Global Trie

We next describe YapTab’s new design for the table space organization. In this
new design, all tabled subgoal calls and/or answers are now stored in a common
global trie (GT) instead of being spread over several different trie data structures.
The GT data structure still is a tree structure where each different path through
the trie nodes corresponds to a subgoal call and/or answer. However, here a path
can end at any internal trie node and not necessarily at a leaf trie node.

The previous subgoal trie and answer trie data structures are now represented
by a unique level of trie nodes that point to the corresponding terms in the GT
(see Figure 2 for details). For the subgoal tries, each node now represents a
different subgoal call where the node’s token is the pointer to the unique path in
the GT that represents the argument terms for the subgoal call. The organization
used in the subgoal tries to maintain the list of sibling nodes and to access the
corresponding subgoal frames remains unaltered. For the answer tries, each node
now represents a different subgoal answer where the node’s token is the pointer
to the unique path in the GT that represents the substitution terms for the
free variables which exist in the argument terms. The organization used in the
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Fig. 2. YapTab’s new table design

answer tries to maintain the list of sibling nodes and to enable answer recovery
in insertion order remains unaltered. With this organization, answers are now
loaded by following the pointer in the node’s token and then by traversing the
corresponding GT’s nodes bottom-up.

Figure 2 uses again the example from Figure 1 to illustrate how the GT’s
design works. Initially, the subgoal trie and the GT are empty. Then, the first
subgoal t(a(1),X) is called and three nodes are inserted in the GT: one to
represent the functor a/1, another for the constant 1 and a last one for variable
X. Next, a node representing the path inserted in the GT is stored in the subgoal
trie (node labeled call1). The token field for the call1 node is made to point
to the leaf node of the GT’s inserted path and the child field is made to point to
a new subgoal frame. For the second subgoal call, t(a(2),X), we start again by
inserting the call in the GT and then we store a node in the subgoal trie (node
labeled call2) to represent the path inserted in the GT.

As we saw in the previous example, for each subgoal call we have two answers:
the terms a(1) and a(2). However, as these terms are already represented in
the GT, we need to store only two nodes, in each answer trie, to represent them
(nodes labeled answer1 and answer2). The token field for these answer trie
nodes are made to point to the corresponding term representation in the GT.
With this example we can see that paths in the GT can end at any internal trie
node (and not necessarily at a leaf trie node) and that a common path in the
GT can simultaneously represent different subgoal and answer terms.
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4 Implementation Details

We then describe in more detail the data structures and algorithms for YapTab’s
new table design based on the GT. We start with Figure 3 showing in more detail
the table organization previously presented in Figure 2.

Internally, tries are represented by a top root node, acting as the entry
point for the corresponding subgoal, answer or global trie data structure. For
the subgoal tries, the root node is stored in the corresponding table entry’s
subgoal trie root node data field. For the answer tries, the root node is stored

subgoal trie

answer trieanswer trie

root
node

a/1

global trie

VAR0 VAR0

2 1

root
node

root
node

root
node

call2 call1

answer2 answer1 answer1answer2

subgoal frame for t(a(2),VAR0)

answer_trie_root_node

subgoal frame for t(a(1),VAR0)

answer_trie_root_node

GT_ROOT_NODE

subgoal_trie_root_node

table entry for t/2

Fig. 3. Implementation details for YapTab’s new table design
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trie_node_check_insert(TRIE_NODE parent, TOKEN t) {
child = parent->child
if (child == NULL) { // the list of sibling nodes is empty

child = new_trie_node(t, NULL, parent, NULL)
parent->child = child

} if (is_not_a_hash_table(child)) { // sibling nodes without hashing
sibling_nodes = 0 // to count the number of sibling nodes
do { // check if token t is already in the list of siblings
if (child->token == t)

return child
sibling_nodes++
child = child->sibling

} while (child)
child = new_trie_node(t, NULL, parent, parent->child)
if (sibling_nodes > MAX_SIBLING_NODES_PER_LEVEL) { // alloc new hash
hash = new_hash_table(child)
parent->child = hash

} else
parent->child = child

} else { // sibling nodes with hashing
hash = child
bucket = hash_function(hash, t) // get the hash bucket for token t
child = bucket
sibling_nodes = 0
while (child) { // check if token t is already in the hash bucket
if (child->token == t)

return child
sibling_nodes++
child = child->sibling

}
child = new_trie_node(t, NULL, parent, bucket)
if (sibling_nodes > MAX_SIBLING_NODES_PER_BUCKET) // expand hash
expand_hash_table(hash)

}
return child

}

Fig. 4. Pseudo-code for the trie node check insert() procedure

in the corresponding subgoal frame’s answer trie root node data field. For the
global trie, the root node is stored in the GT ROOT NODE global variable.

Regarding the trie nodes, remember that they are internally implemented as
4-field data structures. The first field (token) stores the token for the node and
the second (child), third (parent) and fourth (sibling) fields store pointers,
respectively, to the first child node, to the parent node, and to the sibling node.

Traversing a trie to check/insert for new calls or for new answers is imple-
mented by repeatedly invoking a trie node check insert() procedure for each
token that represents the call/answer being checked. Given a trie node parent
and a token t, the trie node check insert() procedure returns the child node
of parent that represents the given token t. Figure 4 shows the pseudo-code for
this procedure.

Initially, the procedure checks if the list of sibling nodes is empty. If this is the
case, a new trie node representing the given token t is initialized and inserted
as the first child of the given parent node. To initialize new trie nodes, we use a
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new trie node() procedure with four arguments, each one corresponding to the
initial values to be stored respectively in the token, child, parent and sibling
fields of the new trie node.

Otherwise, if the list of sibling nodes is not empty, the procedure checks
if they are being indexed through a hash table. Searching through a list of
sibling nodes is initially done sequentially. This could be too expensive if we
have hundreds of siblings. A threshold value (MAX SIBLING NODES PER LEVEL)
controls whether to dynamically index the nodes through a hash table, hence
providing direct node access and optimizing search. Further hash collisions are
reduced by dynamically expanding the hash tables when a second threshold value
(MAX SIBLING NODES PER BUCKET) is reached for a particular hash bucket.

If not using hashing, the procedure then traverses sequentially the list of
sibling nodes and checks for one representing the given token t. If such a node
is found then execution is stopped and the node returned. Otherwise, a new
trie node is initialized and inserted in the beginning of the list. If reaching the
threshold value MAX SIBLING NODES PER LEVEL, a new hash table is initialized
and inserted as the first child of the given parent node.

If using hashing, the procedure first calculates the hash bucket for the given
token t and then, it traverses sequentially the list of sibling nodes in the bucket
checking for one representing t. Again, if such a node is found then execu-
tion is stopped and the node returned. Otherwise, a new trie node is initialized
and inserted in the beginning of the bucket list. If reaching the threshold value
MAX SIBLING NODES PER BUCKET, the current hash table is expanded.

To manipulate tries we use two interface procedures. For traversing a trie to
check/insert for new calls or for new answers we use the

trie_check_insert(TRIE_NODE root, SUBGOAL_CALL_ANSWER goal)

procedure, where root is the root node of the trie to be used and goal is the
subgoal call/answer to be inserted. The trie check insert() procedure invokes
repeatedly the previous trie node check insert() procedure for each token
that represents the given goal and returns the reference to the leaf node repre-
senting its path. Note that inserting a term requires in the worst case allocating
as many nodes as necessary to represent its complete path. On the other hand,
inserting repeated terms requires traversing the trie structure until reaching the
corresponding leaf node, without allocating any new node.

To load a term from a trie back to the Prolog engine we use the

trie_load(TRIE_NODE leaf)

procedure, where leaf is the reference to the leaf node of the term to be returned.
When loading a term, the trie nodes are traversed in bottom-up order.

When inserting terms in the table space we need to distinguish two situa-
tions: (i) inserting tabled calls in a subgoal trie structure; and (ii) inserting
answers in a particular answer trie structure. The former situation is handled
by the subgoal check insert() procedure as shown in Figure 5 and the lat-
ter situation is handled by the answer check insert() procedure as shown in
Figure 6.
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subgoal_check_insert(TABLE_ENTRY te, SUBGOAL_CALL call) {
st_root_node = te->subgoal_trie_root_node
if (GT_ROOT_NODE) { // new table design

leaf_gt_node = trie_check_insert(GT_ROOT_NODE, call)
leaf_st_node = trie_node_check_insert(st_root_node, leaf_gt_node)

} else { // original table design
leaf_st_node = trie_check_insert(st_root_node, call)

}
return leaf_st_node

}

Fig. 5. Pseudo-code for the subgoal check insert() procedure

In the original table design, the subgoal check insert() procedure simply
uses the trie check insert() procedure to check/insert the given call in the
subgoal trie corresponding to the given table entry te. In the new design based
on the GT, the subgoal check insert() procedure now first checks/inserts
the given call in the GT. Then, it uses the reference to the GT’s leaf node
representing call (leaf gt node in Figure 5) as the token to be checked/inserted
in the subgoal trie corresponding to the given table entry te. Note that this
is done by calling the trie node check insert() procedure, thus if the list
of sibling nodes in the subgoal trie exceeds the MAX SIBLING NODES PER LEVEL
threshold value, then a new hash table is initialized as described before.

answer_check_insert(SUBGOAL_FRAME sf, ANSWER answer) {
at_root_node = sf->answer_trie_root_node
if (GT_ROOT_NODE) { // new table design

leaf_gt_node = trie_check_insert(GT_ROOT_NODE, answer)
leaf_at_node = trie_node_check_insert(at_root_node, leaf_gt_node)

} else { // original table design
leaf_at_node = trie_check_insert(at_root_node, answer)

}
return leaf_at_node

}

Fig. 6. Pseudo-code for the answer check insert() procedure

The answer check insert() procedure works similarly. In the original ta-
ble design, it checks/inserts the given answer in the answer trie corresponding
to the given subgoal frame sf. In the new design based on the GT, it first
checks/inserts the given answer in the GT and, then, it uses the reference to
the GT’s leaf node representing answer (leaf at node in Figure 6) as the to-
ken to be checked/inserted in the answer trie corresponding to the given sub-
goal frame sf. Again, if the list of sibling nodes in the answer trie exceeds the
MAX SIBLING NODES PER LEVEL threshold value, a new hash table is initialized.

Finally, the answer load() procedure is used to consume answers. Figure 7
shows the pseudo-code for it. In the original table design, it simply uses the
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answer_load(ANSWER_TRIE_NODE leaf_at_node) {
if (GT_ROOT_NODE) { // new table design

leaf_gt_node = leaf_at_node->token
answer = trie_load(leaf_gt_node)

} else { // original table design
answer = trie_load(leaf_at_node)

}
return answer

}

Fig. 7. Pseudo-code for the answer load() procedure

trie load() procedure to load from the answer trie the answer given by the
trie node leaf at node. In the new design based on the GT, the answer load()
procedure first accesses the GT’s leaf node represented in the token field of
the given trie node leaf at node (leaf gt node in Figure 7). Then, it uses
the trie load() procedure to load from the GT back to the Prolog engine the
answer represented by the obtained GT’s leaf node.

On completion of a subgoal, a strategy exists that avoids answer recovery using
bottom-up unification and performs instead what is called a completed table
optimization [3]. This optimization implements answer recovery by top-down
traversing the completed answer trie and by executing specific WAM-like code
from the answer trie nodes. This is implemented by extending the answer trie
nodes with a fifth field where the WAM-like instructions are stored. With our new
design, the nodes in the GT can belong to several different subgoal/answer tries,
and thus this optimization is no longer possible. In the experimental section that
follows, we have thus disabled this optimization, but to be fair when comparing
YapTab with and without GT support, in both designs, the answer trie nodes
include this fifth field.

Another potential problem of having nodes that can belong to several different
subgoal/answer tries occurs when abolishing tables to reclaim space. Currently,
YapTab does not support table abolish operations when using GT’s design. A
possible solution is to have an extra field in GT’s trie nodes to count the number
of external references to each node and only allow deletion when the number of
references reaches zero.

5 Preliminary Experimental Results

We next present some preliminary experimental results comparing YapTab with
and without support for the common global trie data structure. The environment
for our experiments was an AMD Athlon XP 2800+ with 1 GByte of main
memory and running the Linux kernel 2.6.24-19.

To evaluate the impact of our proposal, first we have defined a tabled predicate
t/5 that simply stores in the table space terms defined by term/1 facts, and then
we used a top query goal test/0 to recursively call t/5 with all combinations
of one and two free variables in the arguments.



One Table Fits All 205

An example of such code for functor terms of arity 1 (500 terms in total) is
shown next.

:- table t/5.
t(A,B,C,D,E) :- term(A), term(B), term(C), term(D), term(E).

term(f(1)).
term(f(2)).
...
term(f(499)).
term(f(500)).

test :- t(A,f(1),f(1),f(1),f(1)), fail.
...
test :- t(f(1),f(1),f(1),f(1),A), fail.
test :- t(A,B,f(1),f(1),f(1)), fail.
...
test :- t(f(1),f(1),f(1),A,B), fail.
test.

We experimented the test/0 predicate with 7 different kinds of 500 term/1
facts: integers, atoms and functor terms of arity 1 to 5. Table 1 shows the mem-
ory usage, in KBytes, and the running times, in milliseconds, to store to the
tables (first execution of the program) and to load from the tables (second ex-
ecution of the program where the tables are already completed) the complete
set of subgoals/answers for YapTab with (column YapTab+GT ) and without
(column YapTab) support for the common global trie data structure.

The results in Table 1 show that GT support can reduce memory usage pro-
portionally to the depth and redundancy of the terms stored in the GT. In
particular, for functor terms of arity 2 to 5, the results show an increasing and
very significant reduction on memory usage. The results for integer and atoms
terms are also very interesting as they show that the cost of representing only
atomic terms in the GT (between 7% and 8% in these experiments) can be man-
ageable when we increase redundancy. Note that integers and atoms terms are
represented by a single node in the original YapTab design, and by an extra node
(therefore requiring two nodes) if using the GT approach.

Table 1. Memory usage (in KBytes) and store/load times (in milliseconds) for YapTab
with and without support for the common global trie data structure

Terms
YapTab (a) YapTab+GT (b) Ratio (b)/(a)

Mem Store Load Mem Store Load Mem Store Load
500 int 49074 490 155 52803 738 164 1.08 1.51 1.06
500 atom 49074 508 158 52803 770 167 1.08 1.52 1.06
500 f/1 49172 693 242 52811 1029 243 1.07 1.48 1.00
500 f/2 98147 842 314 56725 1298 310 0.58 1.54 0.99
500 f/3 147122 1098 377 60640 1562 378 0.41 1.42 1.00
500 f/4 196097 1258 512 64554 1794 435 0.33 1.43 0.85
500 f/5 245072 1418 691 68469 2051 619 0.28 1.45 0.90
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Table 2. Memory usage (in KBytes) and store/load times (in milliseconds) for YapTab
with and without support for the common global trie data structure

Data Set
YapTab (a) YapTab+GT (b) Ratio (b)/(a)

Mem Store Load Mem Store Load Mem Store Load
carcinogenesis 1020 42290 42211 993 43010 43103 0.97 1.02 1.02
mutagenesis 432 116139 7516 314 112443 7308 0.73 0.97 0.97

On the other hand, these results seem to indicate that memory reduction
comes at a price in execution time. With GT support, we need to navigate in
two tries when checking/inserting a term. Moreover, in some situations, the cost
of inserting a new term in an empty/small trie can be less than the cost of
navigating in the GT, even when the term is already stored in the GT. However,
our results seem to suggest that this cost decreases also proportionally to the
depth and redundancy of the terms stored in the GT.

The results obtained for loading terms do not suggest significant differences.
However and surprisingly, the GT approach showed to outperform the original
YapTab design in some experiments.

Next, we tested our approach with two well-known Inductive Logic Program-
ming (ILP) [12] benchmarks: the carcinogenesis and the mutagenesis data sets.
We chose these two data sets because they are good real-world applications to
test the two different situations observed in Table 1: the carcinogenesis data
set stores more atomic terms and the mutagenesis data set stores more diverse
terms. We used these data sets in a Prolog program that simulates the test phase
of an ILP system. For that, first we ran the April ILP system [13] for the two
data sets in order to collect the set of clauses generated for each. The simulator
program then uses the corresponding set of generated clauses to run the positive
and negative examples defined for each data set against them. Table 2 shows the
memory usage, in KBytes, and the running times, in milliseconds, to store to
the tables (first execution of the program) and to load from the tables (second
execution of the program where the tables are already completed) the complete
set of subgoals/answers for YapTab with (column YapTab+GT ) and without
(column YapTab) support for the common global trie data structure.

In general, the results in Table 2 confirmed the results obtained in Table 1 for
memory usage. YapTab’s GT support was able to reduce memory usage in both
data sets proportionally to the depth and redundancy of the terms stored in the
GT. In particular, for the carcinogenesis data set, memory usage showed to be
slightly less with GT support, thus confirming our belief that the cost of repre-
senting atomic terms in the GT can be manageable when we increase redundancy.

For the running times, the results in Table 2 are significantly better than the
results obtained in Table 1. The running times, both for storing and loading
the complete set of subgoals/answers, are almost the same for YapTab with
and without GT support. These results suggest that, at least for some class
of applications, GT support has potential to achieve significant reductions on
memory usage without compromising running time.



One Table Fits All 207

6 Conclusions and Further Work

We have presented a new design for the table space organization that uses a
common global trie to store terms in tabled subgoal calls and answers. Our goal
is to reduce redundancy in term representation, thus saving memory by sharing
data that is structurally equal. Our preliminary experiments using the YapTab
tabling system showed that our approach has potential to achieve significant
reductions on memory usage without compromising running time.

Further work will include exploring the impact of applying our proposal to
other real-world applications that pose many subgoal queries, possibly with a
large number of redundant answers, seeking real-world experimental results al-
lowing us to improve and expand our current implementation. In particular,
we intend to study how alternative/complementary designs for the table space
organization can further reduce redundancy in term representation.
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Recycle Your Arrays!
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Abstract. Purely functional arrays are notoriously difficult to imple-
ment and use efficiently due to the absence of destructive updates and
the resultant frequent copying. Deforestation frameworks such as stream
fusion achieve signficant improvements here but fail for a number of im-
portant operations which can nevertheless benefit from elimination of
temporaries. To mitigate this problem, we extend stream fusion with
support for in-place execution of array operations. This optimisation,
which we call recycling, is easy to implement and can significantly re-
duce array allocation and copying in purely functional array algorithms.

Keywords: Deforestation, Optimisation, Array Programming, Func-
tional Programming.

1 Introduction

Functional languages such as Haskell are wonderful because they allow
programs to be written at a high level of abstraction. However, this places a
significant burden on the compiler which must incorporate a large number of
sophisticated optimisations to achieve satisfactory performance. One such op-
timisation, fusion or deforestation [1], removes temporary data structures and
combines traversals when possible. A classical example is the transformation
map f ◦ map g �→ map (f ◦ g) which eliminates a temporary list by perform-
ing the two maps in lockstep instead of one after the other.

For the most part, research has concentrated on fusion for inductive data
structures, in particular lists [2,3,4]. In comparison, fusion of purely functional
array operations has received relatively little attention with functional array fu-
sion [5] and stream fusion [6,7,8] being notable recent exceptions. Unfortunately,
even these frameworks treat arrays as list-like sequences, concentrating on reg-
ular traversals like map or filter and completely neglecting operations that rely
on efficient indexing, such as updates, sorting etc. But often, these operations
are the very reason for choosing arrays over lists!

To understand the problem, consider the bulk update operation (//) which
yields an array obtained by updating an existing array with a list of index/value
pairs. For instance, 〈a, b, c, d , e〉 // [(0, x ), (2, y)] = 〈x , b, y, d , e〉.

Without optimisation, the term xs // ps // qs is evaluated by allocating a
temporary array ys = xs // ps and then creating another array zs = ys // qs
which is the final result of the computation. Obviously, we would like to perform

A. Gill and T. Swift (Eds.): PADL 2009, LNCS 5418, pp. 209–223, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the second update in-place, thus recycling ys and eliminating zs (we cannot
simply update xs without losing referential transparency). Existing fusion frame-
works are of no help here, though. They only implement loop fusion and these
two loops cannot be fused!

This example highlights the difference between loop fusion and the optimisation
we call recycling. Although both eliminate temporary arrays, the former does so by
reducing the number of loops in a programwhereas the latter removes unnecessary
array allocation and copying by executing operations in-place. Of course, fusing
loops is usually preferable but, as we have seen, not always possible.

In this paper, we extend the stream fusion framework with recycling capa-
bilities with the goal of executing as many array operations as possible in-place
even when loop fusion fails. Our approach relies on rewriting and is much less
powerful than techniques based on static analysis [9,10,11] or linear types [12]
but significantly easier to implement. It applies to all operations that rely on
destructive updates. For simplicity, we only consider bulk updates in this paper
and base our development on three representative use cases shown below. Note
that here and in the rest of the paper, map, filter etc. denote the corresponding
array operations, not standard Haskell list functions.

Term Expected evaluation strategy
(1) xs // ps // qs Perform the two updates in-place on a copy of

xs.
(2) map (+1) xs // ps Store the result of the map in a new array and

update it in-place.
(3) map (+1) (xs // ps) Update a copy of xs and then increment each

element in-place.

The rest of the paper is structured as follows. Section 2 describes a simple
implementation of arrays in Haskell and introduces stream fusion. In Section 3,
we develop a framework capable of optimising the first two use cases by providing
a pure interface to destructive array initialisation and integrating it with stream
fusion. In Section 4, we tackle the third example which requires more advanced
mechanisms for performing array operations in-place. Section 5 demonstrates the
feasibility of our approach on a simple algorithm and quantifies the performance
gains. Finally, in Section 6 we suggest future research directions and conclude.

2 Setting the Stage

The optimisations introduced in this paper operate on a fairly low-level represen-
tation of arrays. This means that they cannot operate directly on the standard
Haskell Array type. It is too abstract, does not provide access to its underlying
implementation and also supports rather sophisticated index spaces which would
significantly complicate the development.

Instead, we introduce our own array type Vector , a thin wrapper over the
low-level array primitives provided by the Glasgow Haskell Compiler (GHC)
which supports the mechanisms required by our framework. We also give a quick
introduction to stream fusion and show its implementation for Vector .
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— abstract data types
data Vector a
data MutableVector s a

— monadic operations
newMV :: Int → ST s (MutableVector s a)
readMV :: MutableVector s a → Int → ST s a
writeMV :: MutableVector s a → Int → a → ST s ()
unsafeFreezeMV :: MutableVector s a → ST s (Vector a)

— pure operations on mutable vectors
lengthMV :: MutableVector s a → Int
sliceMV :: MutableVector s a → Int → Int → MutableVector s a

— pure operations
index :: Vector a → Int → a
length :: Vector a → Int

Fig. 1. Basic vector operations

2.1 Arrays in Haskell

On the lowest level, arrays as provided by GHC live through two distinct phases.
In the first phase, a mutable array is allocated and initialised by means of destruc-
tive updates. This code is necessarily monadic. Once initialisation is complete,
the mutable array is frozen, i.e., converted to an immutable read-only array
which can then be freely used in purely functional code.

Figure 1 shows the basic data types and operations implementing such arrays.
Effects are encapsulated by the state transformer monad ST [13] which can be
embedded in pure code with the operator runST :

runST :: (forall s . ST s a) → a

The state token s ties a MutableVector to a particular ST computation. This is
crucial for ensuring referential transparency.

To get a feel for how to use these primitive operations, consider the following
implementation of map for Vector :

map :: (a → b) → Vector a → Vector b
map f xs = runST $ do v ← newMV n — allocate

mapM (put v) [0 .. n − 1] — initialise
unsafeFreezeMV v — freeze

where
n = length xs
put v i = writeMV v i (f (index xs i))

This code illustrates the standard pattern of allocating a MutableVector , ini-
tialising it and then freezing it to a Vector . Freezing is an unsafe operation
since for the sake of efficiency, it does not copy the array. Instead, the origi-
nal MutableVector and the frozen Vector share the same block of memory. This
implies that subsequent destructive writes to the mutable vector would change
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the value of the immutable one, thus violating referential transparency. It is the
programmer’s responsibility to ensure that this does not happen. Typically, the
mutable vector will not be used after freezing, as in the above example.

Later, we will rely on the support for constant time slicing provided by
MutableVector . The function sliceMV v i n extracts n elements starting from
index i from v . Again, the elements are not copied but, rather, aliased by the
slice such that updating the slice will also change the original vector and vice
versa.

2.2 Stream Fusion

Of course, the primitive vector operations are much too imperative for our taste.
We really want to program in terms of familiar combinators such as map, filter ,
zip etc. As the previous definition of map demonstrates, they are easily im-
plemented on top of the primitive interface. However, although correct, this
implementation is not very efficient when used in pipelines of computations.
For instance, when evaluating map f (map g xs) the result of map g xs is stored
in a temporary vector and then f is mapped over it in a second traversal. We
would like to fuse the two loops, in effect computing map (f ◦ g) xs and thus
eliminating the temporary.

Stream fusion achieves this by providing a coinductive, functional view of an
array, which we call a stream:

data Step s a = Yield a s | Skip s | Done
data Stream a = ∃s . Stream (s → Step s a) s Int

A stream is made up of three components: a stepping function, a seed and a
size hint which gives an upper bound on the number of elements in the stream.
Streams are traversed by repeatedly applying the stepping function to the cur-
rent seed. In each step, the function can yield the next element and a new seed
(Yield), return just a new seed without producing an element (Skip) or signal
the end of the stream (Done). We can easily provide Stream versions of standard
combinators such as map or filter . In the following, we use the suffix S to dis-
tinguish them from their vector counterparts. We only show the implementation
of mapS here and refer the reader to [7] for other stream combinators.

mapS :: (a → b) → Stream a → Stream b
mapS f (Stream next s n) = Stream next ′ s n

where
next ′ s = case next s of

Yield x s ′ → Yield (f x ) s ′

Skip s ′ → Skip s ′

Done → Done

Like all stream producers, mapS is not recursive. This is crucial since it al-
lows pipelines of stream transformers, like mapS f ◦ mapS g , to be fused and
optimised by general-purpose transformations such as inlining and constructor
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specialisation which GHC already implements [14,15]. The need to avoid recur-
sion is also the motivation for Skip which is necessary for filtering out elements.

Stream fusion itself relies on two functions which convert between streams
and vectors. Obtaining a Stream from a Vector is straightforward:

stream :: Vector a → Stream a
stream xs = Stream next 0 n

where
n = length xs
next i | i < n = Yield (index xs i) (i + 1)

| otherwise = Done

The inverse operation constructs a new Vector following the usual pattern of
allocation, initialisation and freezing identified in the previous section:

unstream :: Stream a → Vector a
unstream (Stream next s n) = runST $

do v ← newMV n
n ′ ← fill v s 0
unsafeFreezeMV (sliceMV v 0 n ′)

where
fill v s i = case next s of Yield x s ′ → do writeMV v i x

fill v s ′ (i + 1)
Skip s ′ → fill v s ′ i
Done → return i

While enough space for n elements is allocated initially, that is only an upper
bound on the actual length of the stream. After consuming the entire stream,
the exact number of elements becomes known and only the corresponding slice
of the vector is frozen. Note that in contrast to mapS and stream, unstream is
recursive. This does not interfere with optimisation since it is a pure consumer,
i.e., it does not produce a stream.

Based on the functions introduced in this section, we can implement typical
vector operations in terms of operations on streams:

map :: (a → b) → Vector a → Vector b
map f = unstream . mapS f . stream

The last missing ingredient in the fusion framework is a mechanism for elim-
inating unnecessary conversions from and to streams. GHC allows this to be
implemented as part of the library by specifying a rewrite rule which is applied
whenever possible during optimisation [16]:

〈stream/unstream〉 ∀s . stream (unstream s) �→ s

The semantics is straightforward: instead of creating a temporary vector from
the stream s and then converting it back to a stream, we can use s directly. The
following transformation sequence demonstrates this rule in action:
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map f (map g xs)
= {inline}

unstream (mapS f (stream (unstream (mapS g (stream xs)))))
= {apply stream/unstream}

unstream (mapS f (mapS g (stream xs)))

The resulting code only has one loop (unstream) and does not create any tem-
porary vectors, operating on streams instead. As mentioned above, after an-
other round of inlining GHC’s optimiser is capable of completely eliminating
any stream-related overheads, producing a tight, efficient loop which executes
the two mapS in lockstep.

3 Basic Recycling

Stream fusion only works for combinators which can be implemented in terms of
streams. Unfortunately, some crucial vector operations cannot be written in this
way. For instance, the bulk update operation (//) described in the introduction
has no efficient stream counterpart. We can, of course, implement (//) directly
by destructively updating a mutable copy of a vector:

(//) :: Vector a → [(Int , a)] → Vector a
xs // ps = runST $ do v ← newMV n

mapM (copy v) [0 .. n − 1]
mapM (put v) ps
unsafeFreezeMV v

where
n = length xs
copy v i = writeMV v i (index xs i)
put v (i , x ) = writeMV v i x

However, this implementation is, again, not optimal since it introduces superflu-
ous temporary vectors when used in pipelines. In particular, none of the three use
cases from the introduction are evaluated as desired. For instance, as discussed
previously, xs // ps // qs unnecessarily copies the result of xs // ps into a new
vector before updating it with qs . This is a great opportunity for recycling!

3.1 Combining Initialisers

While this particular example can be simply rewritten to xs // (ps ++ qs), we
are, of course, interested in a more general solution which is applicable to all array
operations that can benefit from recycling. Our approach is based on a data type
which encapsulates the allocation and initialisation of a MutableVector :

data New a = New (∀s . ST s (MutableVector s a))

New simply wraps a monadic initialiser which produces a MutableVector . Con-
structing a Vector from it is straightforward:
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new :: New a → Vector a
new (New init) = runST $ do { v ← init ; unsafeFreezeMV v }

We can also define an operation which produces a fresh, mutable copy of a
Vector :

clone :: Vector a → New a
clone xs = New $ do v ← newMV n

mapM (copy v) [0 .. n − 1]
return v

where
n = length xs
copy v i = writeMV v i (index xs i)

With these definitions in hand, we are now in the position to introduce the core
technique of our approach. First, we define all array operations that can benefit
from recycling (e.g. bulk update) as functions on New .

update :: New a → [(Int , a)] → New a
update (New init) ps = New $ do v ← init

mapM (put v) ps
return v

where
put v (i , x ) = writeMV v i x

The corresponding operations on Vector are now easily obtained with the help
of clone and new , as the following definition of (//) shows:

xs // ps = new (update (clone xs) ps)

The new definition has a crucial advantage: it makes array copying explicit and
is much more amenable to rewriting than the original monadic one. In fact, all
we need to do is eliminate unnecessary conversions between Vector and New .
This principle is quite similar to stream fusion, as is the rule implementing it:

〈clone/new〉 ∀p. clone (new p) �→ p

The rule encodes the basic idea of recycling: there is no need to copy a mutable
vector if it is immediately discarded. This simple mechanism is already sufficient
to handle the first use case from the introduction:

xs // ps // qs
= {inline}

new (update (clone (new (update (clone xs) ps))) qs)
= {apply clone/new}

new (update (update (clone xs) ps) qs)

The resulting code performs the two updates in-place and does not unnecessarily
copy vectors. As with stream fusion, inlining and other standard optimisations
further improve its performance.
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It is important to realise that the correctness of the rewrite rule crucially
depends on the fact that it does not operate directly on a vector but rather on a
computation which constructs one. This allows the clone/new pair to be safely
eliminated even if the computation is shared since it produces a new vector each
time it is executed.

3.2 Integrating Stream Fusion

The framework developed in the previous section is capable of eliminating tempo-
raries from adjacent applications of (//) and similar operations. But what about
map, filter and other combinators which benefit from loop fusion as opposed to
just recycling? Fortunately, it turns out that stream fusion can be seamlessly
integrated with our approach.

The key observation is that both unstream and clone can be implemented in
terms of a more primitive combinator which initialises a vector from a Stream:

fill :: Stream a → New a

Its definition is easily derived from the implementation of unstream given in
Section 2.2 – all we need to do is replace runST by the constructor New and
refrain from freezing the MutableVector . Of course, there is no need to duplicate
this code as we can now use fill in the definition of unstream:

unstream :: Stream a → Vector a
unstream s = new (fill s)

Analogously, clone can be easily rewritten to use the new combinator:

clone :: Vector a → New a
clone xs = fill (stream xs)

With these definitions, unstream and clone are no longer primitive with respect
to fusion. We need to reformulate our rewrite rules to account for this:

〈fusion〉 ∀s . stream (new (fill s)) �→ s
〈recycling〉 ∀p. fill (stream (new p)) �→ p

The rules are obtained from stream/unstream and clone/new simply by ex-
panding the definitions of the respective combinators. It is instructive to contrast
the roles played by the two rules:

– fusion is derived from the original stream fusion rule and eliminates tem-
porary immutable vectors by fusing loops;

– recycling eliminates unnecessary copying of mutable vectors during the ini-
tialisation phase.

The following example shows that the first rule implements stream fusion in the
new system:
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map f (map g xs)
= {inline}

new (fill (mapS f (stream (new (fill (mapS g (stream xs)))))))
= {apply fusion}

unstream (mapS f (mapS g (stream xs)))

It is also intructive to see how the recycling functionality developed in the pre-
vious section is still provided by the second rule:

xs // ps // qs
= {inline}

new (update (fill (stream (new (update (fill (stream xs)) ps)))) qs)
= {apply recycling}

new (update (update (fill (stream xs)) ps) qs)

But this is not all! By integrating stream fusion and recycling, the new system
is also able to handle the second use case from the introduction, as the following
transformation sequence shows:

map (+1) xs // ps
= {inline}

new (update (fill (stream (new (fill (mapS (+1) (stream xs)))))) ps)
= {apply fusion or recycling}

new (update (fill (mapS (+1) (stream xs))) ps)

In a sense, the last rewriting step performs both fusion and recycling which
explains why either of the two rewrite rules can be applied here. It can be seen
either as executing the update in-place or as fusing the map with the subsequent
stream-based copying. In any case, the nondeterminism does not lead to problems
since the two rewrite rules are confluent.

4 Recycling for Transformers

The last unsolved problem are computations in which transformers such as map
cannot be fused with preceding operations but can be executed in-place, as in
our third use case. Even with the framework developed in the previous section,
map (+1) (xs // ps) allocates two vectors where one would be sufficient. Here,
the elements are incremented after updating the array. This can be done in-place
but so far, we have not introduced any mechanisms for handling such cases.

Before explaining our solution, it is important to point out that this form of
in-place execution is only possible for a restricted set of array operations which
meet the following conditions:

– they do not change the type of the elements,
– they process the array sequentially and
– the result fits into the original array.

Fortunately, many important operations such as filtering and scanning fall into
this category. Calls to map can be optimised in this way (as in our example) as
long as they do not violate the first requirement.
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4.1 Monadic Streams

In the context of our fusion framework, we can observe that certain stream
transformers of type Stream a → Stream a can be executed in-place, thus re-
cycling mutable vectors. Since such in-place operations are necessarily monadic,
we must generalise streams to support monadic computations. Fortunately, this
generalisation is straightforward:

data MStream m a = ∃s . MStream (s → m (Step s a)) s Int

Monadic streams are parametrised by a monad m and the stepping function is
executed in that monad. MStream is strictly more general than Stream as the
latter can be obtained by instantiating the former at the identity monad Id :

type Stream a = MStream Id a

Most stream operations can be trivially reimplemented to work on monadic
streams. Again, we use mapS as an example:

mapS :: Monad m ⇒ (a → b) → MStream m a → MStream m b
mapS (MStream next s n) = MStream next ′ s n

where
next ′ s = do r ← next s

case r of
Yield x s ′ → return (Yield (f x ) s ′)
Skip s ′ → return (Skip s ′)
Done → return Done

It is easy to verify that the semantics of mapS remains unchanged for Stream
with the new definitions. In the rest of the paper, we will assume that streams
are defined as described above and that all stream operations have been suitably
generalised to monadic streams.

The main advantage of monadic streams is their ability to model mutable
arrays, whereas pure streams are only restricted to immutable ones. To make
use of this functionality, we must provide conversions from MutableVector to
MStream and back. The first direction is straightforward:

streamM :: MutableVector s a → MStream (ST s) a
streamM v = MStream next 0 n

where
n = lengthMVector v
next i | i < n = do x ← readMV v i

return (Yield x (i + 1))
| otherwise = return Done

Since our goal is to execute stream transformers in-place, the inverse operation
should overwrite an existing mutable vector rather than allocating a new one.
Unsurprisingly, its implementation is quite similar to unstream from Section 2.2:
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unstreamM :: MutableVector s a → MStream (ST s) a
→ ST s (MutableVector s a)

unstreamM v (MStream next s ) = do n ← loop s 0
return (sliceMV v 0 n)

where
loop s i = do r ← next s

case r of
Yield x s ′ → do writeMV v i x

loop s ′ (i + 1)
Skip s ′ → loop s ′ i
Done → return i

Note that unstreamM assumes that the vector is large enough to hold all elements
of the stream and correctly adjusts its length if there are fewer elements, as
required for in-place filtering.

The two conversions are sufficient to implement stream-based in-place trans-
forers for mutable vectors. This operation is provided as a function on New since
it will be later used in rewrite rules:

transform :: (∀m. Monad m ⇒ MStream m a → MStream m a)
→ New a → New a

transform f (New init) = New $ do v ← init
unstreamM v (f (streamM v))

Note that f must be polymorphic in the monad as the rewrite system introduced
below will instantiate it at the identity monad in addition to ST .

4.2 In-Place Stream Transformers

For the newly gained ability to execute stream transformers in-place to be useful,
pure stream operations must be replaced by their monadic counterparts when-
ever possible. Our fusion framework cannot identify such opportunities auto-
matically. Instead, we introduce a special combinator which allows us to “mark”
stream transformers which can benefit from recycling:

inplace :: (∀m. Monad m ⇒ MStream m a → MStream m a)
→ Stream a → Stream a

inplace f = f

Semantically, inplace simply restricts its polymorphic argument to the identity
monad. To the fusion system, however, it identifies the stream transformer as a
candidate for in-place execution. This information is used in the following rewrite
rule which ties together the mechanisms developed in this section:

〈inplace〉 ∀f p. fill (inplace f (stream (new p))) �→ transform f p

The rule eliminates an unnecessary array allocation (fill ) by executing the stream
transformer f in-place, thus recycling the vector created by p. It highlights the
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role of inplace since this transformation is only valid for some f . Again, it is our
reponsibility to identify and mark such transformers.

To handle the last use case, map must be marked as inplace but only if it
does not change the type of the elements. In fact, we can define a special version
of map which is always a candidate for in-place execution:

inplace map :: (a → a) → Vector a → Vector a
inplace map f = unstream . inplace (mapS f ) . stream

Note that inplace map has a more restrictive type than map but is semantically
equivalent otherwise. All we need to do now is replace map by inplace map if and
only if the types allow it. Fortunately, rewrite rules yet again provide a solution
here:

〈inplace map〉 map �→ inplace map

The type of inplace map constraints the applicability of the rule which is pre-
cisely what we want. In fact, this technique, known as specialisation, is so useful
that GHC’s support for it actually predates the rewrite rule mechanism.

With this piece of the puzzle in place, our framework is finally capable of
properly optimising the third use case:

map (+1) (xs // ps)
= {specialise with inplace map}

inplace map (+1) (xs // ps)
= {inline}

new (fill (inplace (mapS (+1)) (stream (new (update (clone xs) ps)))))
= {apply inplace}

new (transform (mapS (+1)) (update (clone xs) ps))

Expanding the remaining combinators and verifying that the array elements are
indeed incremented in-place is left as an exercise to the reader.

4.3 Monadic Stream Fusion

Interestingly, the last example would also be correctly optimised by rewriting
inplace f (stream (new p)) to stream (new (transform f p)) and subsequently ap-
plying either fusion or recycling. Although arguably simpler, such a rule would
interfere with stream fusion in some slightly more complex cases:

map (> 5) (map (+1) (xs // ps))
= {specialise, inline and apply fusion}

new (fill (mapS (> 5)
(inplace (mapS (+1)) (stream (new (update (clone xs) ps))))))

= {rewrite as described above}
new (fill (mapS (> 5)

(stream (new (transform (mapS (+1)) (update (clone xs) ps))))))
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Since mapS (> 5) cannot be executed in-place, mapS (+1) should not be, either!
Doing so effectively “unfuses” the two mapS , resulting in three loops instead of
two. In contrast, inplace avoids this pitfall by requiring that the output of the
stream transformer is immediately converted to a vector and not passed on to
another stream consumer.

Unfortunately, this does not completely solve the problem as demonstrated
by the following transformation sequence:

map (> 5) (map (+1) (xs // ps))
= {inline}

new (fill (mapS (> 5) (stream (new (fill
(inplace (mapS (+1)) (stream (new (update (clone xs) ps)))))))))

= {apply inplace}
new (fill (mapS (> 5) (stream (new (transform

(mapS (+1)) (update (clone xs) ps))))))

Here, inplace was applied before fusion, thus preventing the two mapS from
being fused. There are two ways to avoid this. Firstly, GHC provides a staging
mechanism for rewrite rules which would allow us to give precedence to fusion
over recycling. A better solution, however, is to undo the effects of inplace
if the vector is immediately converted back to a stream. The following rule
accomplishes this:

〈uninplace〉 ∀f p.
stream (new (transform f p)) �→ inplace f (stream (new p))

It is easy to verify that uninplace is equivalent to the inverse of inplace im-
mediately followed by fusion. In the problematic example, applying uninplace
after the last step restores the desired behaviour.

To ensure that the rewrite system is confluent two additional, fairly obvious,
rules are required:

〈inplace2〉 ∀f g s . inplace f (inplace g s) �→ inplace (f ◦ g) s
〈mfusion〉 ∀f g p. transform f (transform g p) �→ transform (f ◦ g) p

To see why they are necessary, consider all possible rewriting steps for the term
map (+1) (map (+1) (xs // ps)) where both maps can be executed in-place.

5 Benchmarks

To test our approach we have implemented the Rootfix algorithm [17] which,
given a tree labelled by numbers, computes the sum of labels on the path from
the root for each node. Thus, by labelling all nodes with 1 the algorithm can be
used to determine the depth of each node. It operates on a special array-based
encoding of a tree derived from its parenthetical representation. For instance,
the complete binary tree of depth 3 can be written as "((()())(()()))", i.e.,
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each node is represented by a pair of parentheses enclosing the parenthetical
representations of its children. The array encoding is obtained by storing the
indices of the left and right parentheses of all nodes in two separate arrays,
indexed by the preorder number of the nodes. For the complete binary tree, this
results in the two arrays 〈0, 1, 2, 4, 7, 8, 10〉 and 〈13, 6, 3, 5, 12, 9, 11〉.

Rootfix is a data parallel algorithm which is of particular importance to us
since we intend to employ the framework developed in this paper in the Data
Parallel Haskell project [6]. Its implementation is quite simple:

rootfix :: Num a ⇒ Vector a → Vector Int → Vector Int → Vector a
rootfix xs ls rs = let zs = replicate (length xs ∗ 2) 0

vs = zs /// zip ls xs /// zip rs (map negate xs)
sums = prescanl ′ (+) 0 vs

in
map (index sums) ls

Here, (///) is similar to (//) but takes a vector of value/index pairs instead of a
list and prescanl ′ computes the prefix sum of an array with a strict accumulator.
The numerous fusion and recycling opportunities are easy to spot and GHC does
a good job here, applying fusion three times, recycling twice and inplace once.

The performance improvements are encouraging. Recycling reduces the num-
ber of array allocations from 5 to 2 compared to stream fusion alone. For a
perfect binary tree of depth 23, the algorithm runs in 3517ms on a 2.6GHz Intel
Core 2 Duo, as opposed to 5040ms with only stream fusion, a speedup of roughly
1.4. The results are similar for other tree sizes (the shape of the tree does not
affect the performance). It remains to be seen how useful recycling will be for
larger algorithms but we expect it to provide significant benefits in many cases.

6 Conclusion

We have described an optimisation framework for array programs which extends
stream fusion with advanced recycling mechanisms for situation in which loop
fusion is not possible. The new system is able to optimise more programs than
stream fusion alone while remaining manageable with only 6 core rewrite rules.
Thanks to GHC’s excellent optimisation capabilities, it can be implemented as
a library and does not require changes to the compiler. The initial performance
gains are encouraging although the framework is yet to be tested in large real-
world programs.

While we have restricted ourselves to arrays and stream fusion, we believe
that the concepts developed in this paper are easily transferrable to other data
structures and fusion systems. Moreover, it would be interesting to see if our
approach can be extended to work across function boundaries and in particular
to recursive functions with single-threaded uses of arrays. Here, we envision a
system similar to constructor specialisation [14]. In the near future, we intend
to integrate recycling into the Data Parallel Haskell project which provided the
original motivation for this work.
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Abstract. The advantages of tabled evaluation regarding program ter-
mination and reduction of complexity are well known —as are the sig-
nificant implementation, portability, and maintenance efforts that some
proposals (especially those based on suspension) require. This implemen-
tation effort is reduced by program transformation-based continuation
call techniques, at some efficiency cost. However, the traditional formu-
lation of this proposal [1] limits the interleaving of tabled and non-tabled
predicates and thus cannot be used as-is for arbitrary programs. In this
paper we present a complete translation for the continuation call tech-
nique which, while requiring the same runtime support as the traditional
approach, solves these problems and makes it possible to execute arbi-
trary tabled programs. We also present performance results which show
that the resulting CCall approach offers a useful tradeoff that can be
competitive with other state-of-the-art implementations.

Keywords: Tabled logic programming, Continuation-call tabling, Im-
plementation, Performance, Program transformation.

1 Introduction

Tabling [2,3,4] is a strategy for executing logic programs which uses memoization
of already processed calls and their answers to improve several of the limitations
of SLD resolution. It brings termination for bounded term-size programs and im-
proves efficiency in programs which perform repeated computations. It has been
successfully applied to deductive databases [5], program analysis [6,7], reasoning
in the semantic Web [8], model checking [9], etc.

However, tabling also has certain drawbacks, including that predicates to be
tabled have to be carefully selected1 in order not to incur in undesired slow-
downs and, specially relevant to our discussion, that its efficient implementation
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predicates are to be tabled in order to ensure termination. This declaration triggers
a conservative analysis which may mark more predicates than strictly needed.
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is generally complex. In suspension-based tabling the computation state of sus-
pended tabled subgoals has to be preserved to avoid backtracking over them.
This is done either by freezing the stacks, as in the SLG-WAM [10], by copy-
ing to another area, as in CAT [11], or by using an intermediate solution as
in CHAT [12]. Linear tabling maintains instead a single execution tree without
requiring suspension and resumption of sub-computations. The computation of
the (local) fixpoint is performed by making subgoals “loop” in their alternatives
until no more solutions are found. This may force some computations to be re-
peated. Examples of this method are the linear tabling of B-Prolog [13,14] and
the DRA scheme [15]. Suspension-based mechanisms achieve very good perfor-
mance but, in general, require deeper changes to the underlying implementation.
Linear mechanisms, on the other hand, can usually be implemented on top of
existing sequential engines without major modifications.

The Continuation Call (CCall) approach to tabling [1] tries to combine the
best of both worlds: it is a suspension-based mechanism (and, therefore, it does
not need recomputation) which requires relatively simple additions to the Prolog
implementation / compiler,2 thus making maintenance and porting much easier.
In [16] we proposed a number of optimizations to the CCall approach and showed
that with such optimizations performance could be competitive with traditional
implementations. However, this was only partially satisfactory since the CCall
tabling approach is restricted to programs with no interleaving of tabled and
non-tabled predicate calls, and thus cannot execute general tabled programs.

In this paper we present an extension of the CCall translation which, while re-
quiring the same runtime support of the traditional proposal, overcomes the prob-
lem pointed out above. We also present a complexity comparison with CHAT and
performance results comparing with state-of-the-art implementations.

2 The Continuation Call Technique

We sketch now how tabled evaluation [4,10] works from a user point of view and
we briefly describe the Continuation Call technique, on which we base our work.

2.1 Tabling Basics

We will use as example the program in Figure 1, whose purpose is to determine
the reachability of nodes in a graph. Since the graph contains a cycle, the query
path(1,Z) will make the program loop forever under the standard SLD resolution
strategy, regardless of the order of the clauses. In this case, tabling changes the op-
erational semantics of the path/2 predicate to distinguish the first occurrence of a
path/2 goal (the generator) and subsequent calls which are identical up to variable
renaming (the consumers). The generator applies resolution using the program
clauses to derive answers for the goal. The consumer (the first recursive call in our
example) suspends the current execution path (using implementation-dependent
means) and starts execution on the second clause of predicate path/2. When this
branch finally succeeds, the answer generated for the initial query, path(1,1), is

2 As an example, no modification to the underlying engine is needed.
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:- table path/2.

path(X, Z):-
edge(X, Y),
path(Y, Z).

path(X, Z):-
edge(X, Z).

edge (1,1).

Fig. 1. A sample program

path(X, Y):- slg (path(X, Y)).
slg path (path(X, Z), Id):-

edge(X, Y),
slgcall (path cont(Id , [X], path(Y, Z))).

slg path (path(X, Z), Id):-
edge(X, Z),
answer(Id , path(X, Z)).

path cont(Id , [X], path(Y, Z)):-
answer(Id , path(X, Z)).

Fig. 2. The program in Figure 1 after being trans-
formed for tabled execution

inserted in the table entry associated with its generator. This makes it possible
to reactivate the consumer and to continue execution at the point where it was
stopped. Thus, consumers do not use SLD resolution, but obtain instead the an-
swers from the table where they were previously inserted by the generator. Pred-
icates not marked as tabled are executed according to SLD resolution, hopefully
with minimal overhead due to the availability of tabling.

2.2 CCall by Example

CCall implements tabling by a combination of program transformation and side
effects in the form of insertions into and retrievals from a table which relates
calls, answers, and the continuation code to be executed after consumers read
answers from the table. We will now sketch how the mechanism works using the
path/2 example (Figure 1). The original code is transformed into the program
in Figure 2, whose execution is shown in Figure 3.

Roughly speaking, the transformation for tabling is as follows: the predicate to
be actually tabled is a variation (slg path/2) of the initial predicate (path/2). In
order to preserve the previous interface, path/2 calls slg path/2 through a prim-
itive, slg/1, which keeps track of which invocation is a generator or a consumer
and makes sure that its argument is executed to completion. After completion,
it will return, on backtracking, all the solutions found for the tabled predicate.
To this end, slg/1 checks if the call has already been executed. If so, all of its
answers are returned on backtracking. Otherwise, slg/1 passes control to the
transformed version of its argument, slg path/2 (step 2).3 slg path/2 receives
in its first argument the original call to path/2 and in the second argument the
identifier of its generator, which is used to relate operations on the table with
this initial call. Each clause of slg path/2 is derived from a clause of the original
path/2 predicate by:
– Adding an answer/2 primitive at the end of each clause of the original tabled

predicate. answer/2 inserts answers in the entry of the table identified by its
first argument (step 7) after checking for redundant answers (i.e., step 10
does not insert the redundant answer) and fails.

3 A unique name has been created by simply prepending slg to the original predicate
name. Any means of constructing a unique predicate name can be used.
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?− path(1,Z).

1.− slg(path(1,Z)).

2.− slg_path(path(1,Z), id).

6.− edge(1,Z), answer(id, path(1,Z)).3.− edge(1,Y), slgcall(path_cont(id, [1], path(Y,Z))). 

4.− slgcall(path_cont(id, [1], path(1,Z))). 7.− answer(id, path(1,1)).

8.− fail.9.− path_cont(id, [1], path(1,1)).

10.− answer(id, path(1,1)).

11. fail.

5.− Suspension

14.− no.

12.− Complete

13.− Z = 1.

Fig. 3. Tabling execution of Figure 1

– Instrumenting calls to tabled predicates using the slgcall /1 primitive (step
4). If this tabled call is a consumer, path cont/3, along with its arguments,
is recorded as (one of) the continuation(s) of its generator and execution
suspends (step 5). If the tabled call is a generator, it is associated with
a new call identifier and execution follows using slg path/2 to derive new
answers (as done by slg/1 (step 1)). Besides, path cont/3 will be recorded
as a continuation of the generator identified by Id if the tabled call cannot
be completed (because there may be dependencies on previous generators).
The path cont/3 continuation will be called to consume found answers (step
9) or erased upon completion of its generator.

– Encoding the remaining of the clause body of path/2 after the recursive
call using path cont/3. This is constructed in a similar way to slg path/2,
i.e., applying the same transformation as for the initial clauses and calling
slgcall /1 if this clause contains another call to the tabled predicate.

The second argument of path cont/3 is a list of bindings needed to recover
the environment of the continuation call; in other words, the variables which are
reachable before a consumer is suspended and which can be necessary when the
consumer is resumed. In our example, when the execution suspends (step 5), the
value of X has to be saved since it will be used by the answer/2 primitive when
the consumer is resumed (step 10).

A safe approximation of the variables which should appear in this list is the set
of variables which appear in the clause before the tabled goal and which are used
in the continuation, including the answer/2 primitive. Variables appearing in the
tabled call itself do not need to be included, as they will be passed along anyway.

Key Contribution of CCall: A new predicate name is created for all points
where suspension can happen. Suspension is performed by saving this predicate
name (equivalent to saving a program counter), a list of bindings (equivalent
to protecting the environment from backtracking), and a generator identifier (to
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:- table t/1.

t(A):-
p(B),
A is B + 1.

t (0).

p(B):- t(B), B < 1.

Fig. 4. A program for which the origi-
nal CCall transformation fails

t(A):- slg (t(A)).
slg t (t(A), Id):-

p(B), A is B + 1,
answer(Id , t(A)).

slg t (t (0), Id):-
answer(Id , t (0)).

p(B):- t(B), B < 1.

Fig. 5. The program in Figure 4 after being
wrongly transformed for tabled execution

relate answers in the table with the generator). Resumption is performed by con-
structing a Prolog goal with the information saved on suspension plus the answer
which raised the resumption. This mechanism is significantly simpler to imple-
ment than other approaches such as SLG-WAM or CHAT, where non-trivial
extensions to the SLD abstract machine had to be introduced. Consequently,
porting and maintainability are simpler too, since CCall is independent of the
compiler. Creating a Prolog term on the heap is the only low-level operation to
be implemented.

3 Mixing Tabled and Non-tabled Predicates

The CCall approach to tabling, as originally proposed, has a serious limitation
which shows up when non-tabled predicates appear between a generator and
its consumers: the variables created during the execution of these non-tabled
predicates may be needed to correctly suspend and resume consumers. However,
CCall just saves the environment of the parent call.

3.1 Problems in the Original Transformation

As an example of the problem, Figure 4 shows a tabled program where tabled and
non-tabled execution (t/1 and p/1) are mixed. The translation of the program
is shown in Figure 5, following the rules in Section 2.2.

The execution of the program for query t(A) is shown in Figure 6. Execution
proceeds correctly until slg/1 is called again from p/1. At that point, execution
should suspend (and later resume), but slg/1 does not have any associated contin-
uation, and it does not have any pointer to the code to be executed on resumption
(partially in p/1 and partially in slg t /2): B < 1, A is B + 1, answer(Id , t(A)) is
lost on backtracking and it is not reachable when resuming. Consequently, the
second answer to the query, t(1), is lost.

The call to t(B) made by p(B) could have been translated using the slgcall /1
primitive, generating a continuation for the remaining code of p/1, but, even in
that case, the code segment “A is B + 1, answer(Id, t(A))” in the first clause of
slg t /1 would be lost anyway. This is an example of why all the frames between
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3. p(B), A is B + 1, answer(id, t (A)).

1. slg(t (A)).

?- t (A).

4. t(B), B < 1, A is B + 1, answer(id, t (A)).

5. slg(t(B)), B < 1, A is B + 1, answer(id,t(A). 

6. Suspension.

2. slg_t(t (A), id).

7. answer(id, t(0)).

10. .A = 0.

9. Complete.

8.− fail.

Fig. 6. Tabling execution of example of Figure 1

a consumer and its nearest generator have to be saved when suspending, and it
is not enough to save just the last one, as in the original CCall proposal.4

3.2 Marking Predicates as Bridges

To solve this problem, we have extended the translation to take into account a
new kind of predicates, named bridges. A bridge predicate is a non-tabled pred-
icate whose clauses generate frames which have to be saved in the continuation
of a consumer. In the example of Figure 4, p/1 would be a bridge predicate.

Bridge predicates are all the non-tabled predicates which can appear in the
execution tree of a query between a generator and each of its consumers, i.e., the
predicates whose environments lie in the local stack between the environment of
the generator and that of each of its consumers. Note that tabled predicates do
not need to be included as bridge predicates as their environment will be saved
already by the translation.

Thus, in order to determine a minimal set of bridge predicates, Bmin, we
need to locate the points where a consumer will appear. Detecting that a call
will definitely be a consumer is an undecidable problem (because it would need
identifying where infinite failures happen). Therefore, generating Bmin is also
undecidable and a safe approximation, which may mark as bridges some predi-
cates which do not need to be marked, has to be applied.

As we will see in Section 4, the disadvantages of such an over-approximation
are minor. Bridge predicates (with an extra argument) can be called when not
needed, incurring a small overhead, and some code may be duplicated (to ac-
cept a new argument for the case where a bridge predicate is called from a
tabled execution). The algorithm we have implemented (Figure 7) only detects

4 Which does work, however, when all the calls to the tabled predicates appear in the
body of a clause of a tabled predicate.
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Make a graph G with an edge (p1/n1, p2/n2) ⇔ p2/n2 is called from p1/n1
Bridges = ∅
FOR each predicate T in TABLED PREDICATES

Forward = All predicates reached from T in G
Backward = All predicates from which T is reached in G
Bridges = Bridges ∪ (Forward ∩ Backward)

Bridges = Bridges − TABLED PREDICATES

Fig. 7. Safe approximation to mark bridge predicates

tabled predicates which can recursively call themselves. For the examples used
for performance evaluation in Section 6, using the safe approximation algorithm
produces, on average, a slowdown of only 3% with respect to a perfect (manual)
characterization of bridge predicates.

4 A General Translation for Tabled Programs

In this section we present program transformation rules which take into account
bridge predicates. This transformation assumes that all the bridge predicates
(and possibly some more) have been marked by adding :− bridge P/N declara-
tions in the program.

As seen in Section 2.2, a continuation saves all the information needed to re-
sume a consumer, including environment variables and continuation code. Con-
sequently, the goal of the new translation is to associate a continuation with each
of the bridge calls within the scope of tabled execution (Figure 9). Continuations
for tabling will have a new argument (the continuation to be executed) and new
continuations are pushed onto this argument as they appear, in much the same
way as environments are pushed onto the local stack.

4.1 Translation Rules

The new translation rules are shown in the metaprogram in Figure 8, where
we have used a sugared Prolog-like language. We use for conciseness functional
syntax where needed [17]. Infix ‘◦’ is a generic concatenation function which joins
either atoms or (linear) structures. It may appear in an output head position
with the expected semantics.

The trans/2 predicate receives in its first argument the program clauses one
by one and returns in its second argument a list of clauses resulting from the
translation of the input clause. The first clause of trans/2 ensures that predi-
cates which are neither tabled nor bridges are not transformed.5 The second one
generates, for each tabled predicate, a single-clause predicate to maintain the
interface of the new predicate with the rest of the code (i.e., the first predicate
in Figure 9, left). The third clause of trans/2 translates clauses of tabled pred-
icates, and the fourth one translates clauses of bridge predicates, keeping the
original clauses as well so that they can be called from non-tabled predicates.
5 Predicates table/1 and bridge/1 (generated by the compiler from the corresponding

declarations) are used to check if their argument is a predicate head or a clause of a
tabled or bridge predicate, respectively.
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trans(C, C) :− \+ table(C), \+ bridge(C).
trans (( :− table P/N ), ( P(X1..Xn) :− slg(P(X1..Xn)) )).
trans (( Head :− Body ), LC) :−

table (Head),
Head tr =.. [ ’ slg ’ ◦ Head, Head, Id],
End = answer(Id, Head),
transBody(Head tr, Body, Id, [], End, LC).

trans (( Head :− Body ), [( Head :− Body ) | LC]) :−
bridge(Head),
Head tr =.. [Head ◦ ’ bridge’, Head, Id , Cont],
End = call(Cont),
transBody(Head tr, Body, Id, Cont, End, LC).

transBody ([], [], , , [], []).
transBody(Head, Body, Id, ContPrev, End, [( Head :− Body tr ) | RestBody tr]) :−

following (Body, Pref, Pred, Suff ),
getLBinds(Pref , Suff , LBinds),
updateBody(Pred, End, Id, Pref , LBinds, ContPrev, Cont, Body tr),
transBody(Cont, Suff, Id , ContPrev, End, RestBody tr).

following (Body, Pref, Pred, Suff) :−
member(Body, Pred),
( table (Pred); bridge(Pred)), !,
Body = Pref ◦ Pred ◦ Suff.

updateBody([], End, Id , Pref , LBinds, ContPrev, [], Pref ◦ End).
updateBody(Pred, End, Id, Pref , LBinds, ContPrev, Cont, Pref ◦ EndClause) :−

getNameCont(NameCont),
Cont = NameCont(Id, LBinds, Pred, ContPrev),
( bridge(Pred) −>

EndClause =.. [Pred ◦ ’ bridge’ , Pred, Id , Cont]
;

EndClause = Call(Cont)
).

Fig. 8. The Prolog code of the translation rules

A new predicate head (Head tr) is generated, and its body will result from
transforming the body literals appearing after a call to a tabled or a bridge
predicate. The variable End holds the code to appear as last goal of the body
corresponding to Head tr. This code can be answer/2, for clauses of tabled pred-
icates, or call (Cont), for clauses of bridge predicates. The latter will be used to
call a continuation which will be received as fourth argument of the generated
bridge predicate.

transBody/6 generates, in its last argument, the translation of the body of a
clause by processing, in each iteration, the code remaining until either the next
tabled / bridge call or the end the clause. In order to do that, following /4 splits
a clause body into three parts: a prefix, from the beginning of the body up to
the first occurrence of a tabled or bridge call, the tabled / bridge call itself, and
the rest of the clause (the suffix ).
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t(A) :− slg(t(A)).
slg t (t(A), Id) :−

p bridge (p(B), Id ,
slg t0 (Id , [A], p(B), [])).

slg t (t (0), Id) :− answer(Id, t (0)).

slg t0 (Id , [A], p(B), []) :−
A is B + 1,
answer(Id , t(A)).

p(B) :− t(B), B < 1.

p bridge (p(B), Id , Cont) :−
slgcall (p bridge0(Id , [], t(B), Cont)).

p bridge0(Id , [], t(B), Cont) :−
B < 1,
call (Cont).

Fig. 9. The program in Figure 4 after being transformed for tabled execution

The updateBody/8 predicate returns, in its last argument, the translation for
the prefix identified by following /4; the list of variables which have to be saved
in order to recover the environment of the consumer was already obtained by
getLBinds/3. The suffix will be transformed into a continuation to be associated
with a new predicate symbol, generated by getNameCont/1. The body of this
new predicate is generated by recursively calling transBody/6.

The first clause of updateBody/8 takes care of the base case, when there are
no calls to bridge or tabled predicates left, and the End of the clause, generated
by trans/2, is appended at the end of the body. Its second clause has two cases
which, respectively, generate code for a call to a bridge and a table predicate.

We will now refer to the example in Figure 4, assuming that a :− bridge p/1
declaration has been added to show how a translation would take place.

4.2 Correct Transformation of the Example

The translation of the first clause of t/1 is performed by the third clause of trans/2,
which makes the head of the translated clause, Head tr, to be slg t (t(A), Id) and
states that the final call of that clause has to be answer(Id , t(A)) —i.e., when the
clause successfully finishes, it adds the answer to the table.

transBody/6 then takes care of the rest of the body. It identifies the variables
which have to be saved (A, in this case) and classifies the body literals as follows:

Pref Pred Suff
(none) p(B) A is B + 1

updateBody/8 generates the body for the predicate associated with Head tr to
give the first clause of slg t /2, and generates the head ( slg t0 /4) of the clause
which corresponds to the translation of Suff. The body of Suff is generated in
the recursive call to the trans/6 predicate.

The translation of the second clause of t/1 is simpler, as it only has to add
answer(Id , t(0)) at the end of the body of the new predicate.

The original clause for the bridge predicate p/1 is kept to maintain its inter-
face. The translation for the single clause of p/1 is made by the fourth clause
of trans/2 where Head tr is unified with p bridge(p(B), Id , Cont) and End is
unified with call (Cont) to resume the pushed continuation. transBody/6 finds
an empty list of environment variables and unifies Pref, Pred and Suff with [] ,
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?- t (A).

1. slg(t (A)).

5. Suspension

10. 0 < 1, call(slg_t0(id, [A], p(0), [])).

12. A is 0 + 1, answer(id, t(A)).

11. call(slg_t0(id, [A], p(0), []).

13. answer(id, t(1)).

15. p_bridge0(id [A], t(1), slg_t0(id, [A], p(1), [])).9. p_bridge0(id, [], t(0), slg_t0(id, [A], p(0), [])).

16. 1 < 1, call(slg_t0(id, [A], p(1), [])).

17. fail

3. p_bridge(p(B), id, slg_t0(id, [A], p(B), [])).

2. slg_t(t (A), id).

18. Complete

19. A = 0.

20. A = 1.

14.− fail.

7. answer(id, t(0)).

8.− fail.4. slgcall(p_bridge0(id, [], t(B), slg_t0(id, [A], p(B), []))).

Fig. 10. New CCall tabling execution

t(B) and B < 1, respectively. The second clause of updateBody/8 generates the
body for the head Head tr and also the head of the continuation clause which
translates Suff (p bridge0/3). Its body is generated in the recursive call to the
trans/6 predicate by the first clause of updateBody/8, after appending Suff and
End, generated by trans/2.

4.3 Execution of the Transformed Program

The execution tree for the transformed program is shown in Figure 10. It is simi-
lar to that in Figure 6, but a continuation slg t0 ( id , [A], p(B), []) is passed to
the bridge call to p/1 (step 3). This continuation contains the code to be executed
after the execution of p(B) and the list [A] needed to recover the environment of
this remaining code. Consequently, there are two nested continuations associated
with the suspension (step 4): one continuation to execute the rest of the code
of p(B), p bridge0/4, and another one to execute the rest of the code of t(A),
slg t0 /4. As we can see, bridge predicates push continuations which are called
when a consumer is resumed.

After the first answer is found (step 7), this nested continuation is resumed
(step 9). After executing the remaining code of p(B) (step 10), the next pushed
continuation (fourth argument of p bridge0/4) is called to execute the remaining
code of t(A), and the second answer, t(1), is found (step 13). Again, the (nested)
continuation is resumed, but it fails at step 16. Finally, the tabled call can be
completed (step 18), and each of its answers are returned by backtracking (steps
19 and 20).
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5 Θ(CHAT) Is Not Comparable with Θ(CCall)

In this section we present a comparative analysis of the complexity of CCall
and CHAT, which is an efficient implementation of tabling with a comparatively
simple machinery. Since it is known that Θ(CHAT) is Θ(SLG-WAM) [18], the
final conclusion applies to the SLG-WAM as well.

The complexity analysis focuses on the operations of suspension and resump-
tion. The environment of a consumer has to be protected when suspending to
reinstall it when resuming. CCall achieves that by copying the continuation
associated with the consumer in a special memory area to be protected on back-
tracking. In the original implementation [1] this continuation is copied from the
heap to a separate table (when suspending) and back (when resuming). Alter-
natively, continuations can be saved in a special memory area with the same
data format as the heap [16]. This makes it possible to use WAM code directly
on them and, when resuming, they can be directly used as normal Prolog data,
without having to copy them each time a consumer is resumed.

On the other hand, CHAT freezes the heap and the frame stack when suspend-
ing. These areas are frozen by traversing the choice point stack. For all choice
points between the consumer choice point and its generator, their pointers to the
end of the heap and frame stack are changed the consumer choice point values.
By doing that, heap and frame stack are preserved on backtracking. However,
the consumer choice point and the trail segment between consumer and gener-
ator (with its associated values) have to be copied onto a special memory area.
This makes it possible to reinstall the values of the variables which were bound
when suspending (and which backtracking will unbind) when resuming.

Each consumer is suspended only once, and it can be resumed several times.
The rest of the operations, i.e., checking if a tabled call is a generator or a con-
sumer, are not analyzed, because they are common to both systems. In addition,
we will ignore the cost of working at the Prolog level, since this is an orthogonal
issue: CCall primitives could be compiled to WAM instructions and working at
Prolog level does not increase the complexity. Finally, for simplicity, we assume
that both systems use the same scheduling strategy and that the leader6 does
not change between the suspension and the resumptions of a consumer.

Θ(CCall): When suspending, CCall has to copy all the environments until the
last generator and the structures in the heap which hang from them. Let E be
the size of all the environments and H the size of the structures in the heap. The
time consumption when suspending is Θ(E + H). When resuming, CCall only
needs to perform pattern matching of the continuation against its clause. The
time taken by this matching depends on the size of the list of bindings, which
is known to be Θ(E). Since each consumer can be resumed N times, the time
consumption of resuming consumers is Θ(N×E).

Θ(CHAT): When suspending, CHAT has to traverse the frame and choicepoint
stacks, but with the improvements presented in [18], this time can be neglected
because a choice point is only traversed once for all the consumers, and only
6 The leader of a given consumer, C, is the generator which execute the completion

algorithm of the generator of C.
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the trail and the last choice point have to be copied. Let T be the trail size
and C the choice point size, which is bound by a constant for a given program.
The time consumption when suspending is: Θ(T). When resuming, CHAT has
to reinstall the values of the frame and the choice point. Since each consumer
can be resumed N times, the time consumption of resuming is Θ(N×T).

Analyzing the worst cases of both systems: We can conclude E + H ≥
T, because each variable can be only once in the trail, and then CCall is worse
than CHAT when suspending. On the other hand, if E < T , than CCall is better
than CHAT when resuming. Consequently, for a plausible general case, the more
resumptions there are, the better CCall behaves in comparison with CHAT, and
conversely. In any case, the worst and best cases for each implementation are
different, which makes them difficult to compare. For example, if there is a very
large structure pointed to from the environments, and none of its elements are
pointed to from the trail, CCall is slower than CHAT, since it has to copy all the
structure in a different memory area when suspending and CHAT does nothing
both when suspending and when resuming.

On the other hand, if all the elements of the structure are pointed to from the
trail, CCall has to copy all the structure on suspension in a different memory area
to protect it on backtracking, but it is ready to be resumed without any other
operation (just a unification with the pointer to the structure). CHAT has to
copy all the structure on suspension too, because all the structure is in the trail.
In addition, each time the consumer is resumed, all the elements of the structure
have to be reinstalled using the trail, and CHAT has to perform more operations
than CCall, and then, the more resumptions there are, the worse CHAT would
be in comparison with CCall. Anyway, as the trail is usually smaller than the
heap, we expect CHAT to outperform CCall in most cases.

6 Performance Evaluation

We have implemented the proposed technique as an extension of the Ciao sys-
tem [19], using the improvements presented in [16]. Tabled evaluation is provided
to the user as a loadable package [20] that implements the new directives and
user-level predicates, performs the program transformations, and links in the
low-level support for tabling.

Table 1 compares the proposed implementation of tabling with the latest ver-
sions of state-of-the-art systems, namely, XSB 3.1 (SLG-WAM), YapTab 5.1.3
(SLG-WAM) [21], and B-Prolog 7.1 on benchmarks also used in other similar
performance evaluations. We provide the raw time (in milliseconds) taken to
execute these benchmarks and the number of bridge predicates which appear in
the new translation. Measurements have been made with Ciao-1.13, using the
standard, unoptimized bytecode-based compilation, and with the CCall exten-
sions loaded. Note that we did not compare with CHAT, which was available
as a configuration option in the XSB system but which was removed in recent
XSB versions, since it was experimentally found to be overall slower than the
SLG-WAM [22]. All the executions were performed using local scheduling and
disabling garbage collection; in the end this did not impact execution times very
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Table 1. Comparing Ciao+CCall with XSB, YapTab, and B-Prolog

Program CCall XSB YapTab BProlog # Bridges
path 517.92 231.4 151.12 206.26 0
tcl 96.93 59.91 39.16 51.60 0
tcr 315.44 106.91 90.13 96.21 0
tcn 485.77 123.21 85.87 117.70 0
sgm 3151.8 1733.1 1110.1 1474.0 0
atr2 689.86 602.03 262.44 320.07 0
pg 15.240 13.435 8.5482 36.448 6
kalah 23.152 19.187 13.156 28.333 20
gabriel 23.500 19.633 12.384 40.753 12
disj 18.095 15.762 9.2131 29.095 15
cs o 34.176 27.644 18.169 85.719 14
cs r 66.699 55.087 34.873 170.25 15
peep 68.757 58.161 37.124 150.14 10

much. We used gcc 4.1.1 to compile all systems (when necessary), and executed
on Fedora Core Linux, kernel 2.6.9, on an Intel Xeon Deschutes processor.

The first benchmark is path, the same as Figure 1, which has been executed
with a linear (each node follows, and is followed by, only one node, as in a
chain) graph. Since this is a tabling-intensive program with no consumers in
its execution, the difference with other systems is mainly due to large parts of
the execution being done at Prolog level. The following five benchmarks, until
atr2, are also tabling intensive. As their associated environments are very small,
CCall is far from its worst case (see Section 5), and the difference with other
systems is similar to that in path and for a similar reason. The worst case in
this set is tcn because there are two calls to slgcall/1 per generator, and the
overhead of working at the Prolog level is duplicated.

B-Prolog, which uses linear tabling, suffers from performance problems when
costly predicates have to be recomputed: this is what happens in benchmarks
from pg until peep, where tabled and non-tabled execution is mixed. This is
a well-known disadvantage of linear tabling techniques which does not affect
suspension-based approaches. It has to be noted, however, that the latest ver-
sions of B-Prolog implement an optimized variant of its original linear tabling
mechanism [14] which tries to avoid reevaluation of looping subgoals.

The difference in speed for SLD execution, at least in those cases where the
program execution is large enough to be really significant, must also be taken
into account in order to compare the efficiency of our implementation. XSB was
shown to be between 1.8 and 2 times slower than Ciao (partially due to being
always prepared for tabling execution) and YapTab was about 1.5 times faster.7

In non-trivial benchmarks, from pg until peep, which at least in principle
should reflect more accurately what one might expect in larger applications using
tabling, execution times are in the end competitive with XSB or YapTab. This is
probably due to the fact that the raw speed of the basic engine in Ciao is higher

7 Note that the tabling-enabled version of Yap is somewhat slower than regular Yap.
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than in XSB and closer to YapTab, rather than to factors related to tabling
execution, but it also implies that the overhead of the approach to tabling used
is reasonable after the optimizations in [16]. In this context it should be noted
that in these experiments we have used the baseline, bytecode-based compilation
and abstract machine. Turning on global analysis and using optimizing compilers
and abstract machines [23,24,25] can improve the speed of both the SLD part
of the computation and (the Prolog part of) tabling.

7 Conclusions
We have presented an extension of the continuation call technique which elim-
inates its limitations when interleaving tabled and non-tabled predicates. Our
approach has the advantage of being easier to implement and maintain than
other techniques, which usually require non-trivial modifications to low-level
machinery. We expect the overhead caused by executing at Prolog level to be
reduced as the speed of the source language improves by using global analysis,
optimizing compilers, and better abstract machines. Accordingly, we expect the
performance of CCall to improve in the future and thus gradually gain ground
in the comparisons.

Although a non-optimal tabled execution is obviously a disadvantage, it is
worth noting that, since our implementation does not (or only very slightly [16])
changes the WAM or the Prolog compiler, the speed at which regular Prolog is
executed remains unchanged. In our case, executables which do not need tabling
have very little tabling-related code, as the data structures (for tries, etc.) are
handled by dynamic libraries loaded on demand, and only stubs are needed in
the regular engine. Additionally, the modular design of our approach gives better
chances of making it easier to port to other systems.
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Abstract. The paper presents novel techniques to process planning problem
specifications, expressed in a declarative description language, which enables the
description of planning problems with incomplete knowledge. The outcome is
improved performance and scalability of conformant planners. The paper pro-
poses two transformations of a planning problem specification, aimed at reduc-
ing the size of the initial belief state and the number of actions to be dealt with.
The two transformations have been implemented in a static analyzer and in a
companion heuristic search conformant planner (CPA+). The performance of the
resulting system is compared with other state-of-the-art conformant planners.

Keywords: Planning, Reasoning about Actions, Conformant Planning.

1 Introduction

Declarative languages have been extensively used in the field of reasoning about ac-
tions and change (RAC), both as domain-specific languages to describe planning do-
mains (e.g., the popular Planning Domain Definition Language (PDDL) [11] and the
action languages of Gelfond and Lifschitz [10]) as well as ideal paradigms to manipu-
late planning domains and compute solutions (e.g., the use of logic programming [9]).

A problem in RAC that has attracted the interest of several researchers is the con-
formant planning problem. Conformant planning is the problem of finding a sequence
of actions that achieves the goal from every possible initial state of the world [17]—
assuming that we have incomplete knowledge about the properties of the initial state.
One of the main difficulties encountered in the process of determining a conformant
plan is the high degree of uncertainty. In PDDL, the incompleteness of information
about the initial state is specified by special classes of statements, i.e., disjunctive and/or
mutual-exclusive statements, referred to as or- and oneof-clauses, respectively. Often,
oneof-clauses are used to specify the possible initial states and or-clauses are used to
eliminate infeasible states. As such, the number of possible initial states depends mainly
on the number and the size of the oneof-clauses—and these are often exponential in the
number of constants present in the problem instances. In fact, three out of six domains
in the last planning competition [3] have this property (Table 1).

Effective methodologies are required to deal with the large number of possible ini-
tial states. Some conformant planners, such as POND [6] and KACMBP [8], employ
a BDD representation of initial states, while others, such as CFF [4], adopt a CNF

A. Gill and T. Swift (Eds.): PADL 2009, LNCS 5418, pp. 239–253, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Table 1. Number of Constants/Possible Initial States

Instance # Cons/States Instance # Cons/States Instance # Cons/States Instance # Cons/States
comm-10 25/211 comm-15 35/216 comm-20 85/221 comm-25 140/226

coins-15 16/4 × 86 coins-20 17/9 × 86 coins-25 39/1020 coins-30 45/1025

sortnet-10 11/211 sortnet-15 216/16

representation. These types of encodings allow one to avoid dealing directly with the
exponential number of states, but they require extra work in determining the truth value
of a fluent after the execution of a sequence of actions. For instance, CFF needs to make
a call to a SAT-solver with the initial state and the sequence of actions; other planners
need to recompute the BDD representation, which could be quite expensive. This is
no surprise, since the problem of determining the truth value of a proposition after the
execution of a single action in an incomplete initial state is co-NP complete [1].

Another approach has been adopted in the planners cf2cs(ff) and CPA [15,20],
and further investigated in their successors t0 and CPA+ [16,19]. This approach relies
on an approximation semantics in reasoning with incomplete information [18]. The
planners cf2cs(ff) and t0 reduce the number of initial states to one, by transforming
the original problem to a classical planning problem and using FF, a state-of-the-art
classical planner [12], to find solutions. On the other hand, CPA and CPA+ reduce the
number of initial states by dividing them into groups and by using the intersection of
each group as its representative in the plan computation.

Although the idea of using approximation underlies both CPA+ and t0, the ma-
jor difference between them lies in their implementations. CPA+ could be seen as a
standard heuristic search forward planner. t0 follows a translational approach. The per-
formance of CPA+ depends on its heuristic function and its ability to approximate the
initial belief state to a more manageable size. The performance of t0 largely depends
on the performance of FF. t0 was the winner of the last planning competition1.

The success of t0 demonstrates that approximation-based conformant planners can
be competitive with heuristic search conformant planners. On the other hand, the com-
petitiveness of CPA+ shows that approximation can make up for the uninformative-
ness of its heuristic function. The list of challenging problems proposed by t0 raises
the question of whether more informative heuristics and other techniques could enable
heuristic search conformant planners to be more efficient and scalable. In particular, we
are interested in making planners like CPA+ competitive with t0.

In this paper, we investigate different techniques to improve performance and scala-
bility of conformant planners. The main contributions can be summarized as follows:

• We develop techniques for reducing the degree of uncertainty in the initial state.
In particular, we develop two transformations of a planning problem specification;
one transformation combines the oneof-clauses, while the other splits a planning
problem into a sequence of smaller problems. The first transformation is sound and
complete while the second one is sound and weakly-complete. These transforma-
tions are driven by the semantics of the underlying domain description language.

1 http://www.ldc.usb.ve/∼bonet/ipc5/

http://www.ldc.usb.ve/~bonet/ipc5/


Improving Performance of Conformant Planners 241

• We experimentally demonstrate that these transformations improve the performance
of CPA+ as well as other heuristic search planners. The transformations are imple-
mented as part of a static analyzer of PDDL specifications. The static analyzer is
implemented in Prolog—the features of Prolog are vital to this development.

• We experimentally demonstrate that a combination of these transformations and of
three well-known heuristics—i.e., the number of fulfilled subgoals, the cardinality,
and the graph distance—can be employed effectively in an approximation-based
planner to produce significant performance improvements.

2 Background: Declarative Planning Domain Specification

Following the notation in [15], we describe a problem specification as a tuple P =
〈F, O, I, G〉, where F is the set of propositions, O is a set of actions, I is a set of
clauses describing the initial state, and G is a set of clauses describing the goal state.
A literal is either a proposition p ∈ F or its negation ¬p. The complement of a literal
�, denoted by �̄, is defined as usual: if � = p ∈ F then �̄ = ¬p, and if � = ¬p for
some p ∈ F , then �̄ = p. We say that � and �̄ are complementary literals. For a set of
literals L, L = {�̄ | � ∈ L}. A conjunction of literals is often used interchangeably
with a set of its conjuncts. Each action a in O is associated with a precondition φ and
a set of conditional effects of the form ψ → �, where φ and ψ are sets of literals and �
is a literal. We often write pre(a) to denote the precondition φ of a, and a : ψ → � to
denote an effect ψ → � of a. In PDDL, this is declaratively described as a collection of
statements that compose the domain specification; for example, the declaration

(:action step-in
:parameters (?e - elevator ?f - floor ?p - pos)
:precondition (and (at ?f ?p) (shaft ?e ?p))
:effect (when (in ?e ?f) (and (inside ?e) (not (at ?f ?p)))))

describe an action step-in, listing its executability conditions (precondition)
and its conditional effects (effect).

The initial state is described as I = Id ∪ Io ∪ Ir where Id is a set of literals, Io

is a set of oneof-clauses, and Ir is a set of or-clauses of the form oneof(φ1, . . . , φn)
and or(φ1, . . . , φn), where each φi is a set of literals. A oneof-clause indicates that the
φi’s are mutually exclusive, while an or-clauses is a DNF representation of a formula.
G can contain literals or or-clauses. Given a oneof-clause or an or-clause o, we write
L ∈ o to denote that L is an element of o. lit(o) =

⋃
L∈o(L ∪ L̄).

A set of literals is consistent if it does not contain two complementary literals. A state
s is a consistent and complete set of literals, i.e., s is consistent, and for each p ∈ F ,
either p ∈ s or ¬p ∈ s. A partial state is a consistent set of literals. Given a state s and
an action a, a is executable in s if its precondition φ is a subset of s. The set of effects
of a in s, denoted by ea(s), is defined by: ea(s) = {l | ψ → l is an effect of a, ψ ⊆ s}.
The execution of a in a state s results in a successor state, denoted by succ(a, s), which
is defined by: succ(a, s) = s ∪ ea(s) \ ea(s) if a is executable in s; and succ(a, s) =
failed, otherwise.

In presence of incomplete information about the initial state, I describes a set of
states (a.k.a. a belief state). For example, I = {g, oneof(f,¬f)}, or in PDDL:
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(:init (and g (oneof f (not f))))

represents the belief state {{g, f}, {g,¬f}}. The function succ can be extended to
define the result of the execution of an action in a belief state, denoted by succ∗:

succ∗(a, S) =
{
{succ(a, s) | s ∈ S} if a is executable in every s ∈ S
failed otherwise

(1)

This function can be extended to compute the final belief state resulting from the exe-
cution of a plan as follows:

• ŝucc([a1, . . . , an], S) = S if n = 0, and
• ŝucc([a1, . . . , an], S)=succ∗(an, ŝucc([a1, . . . , an−1], S)) if n > 0.

Search-based conformant planners, such as CFF, employ ŝucc in plan computation.

Approximations: The notion of approximation used in CPA+, cf2cs(ff), and t0 has
been originally proposed in [18]. It is characterized by a function (succA) that maps an
action and a partial state to a partial state. Given a partial state δ, the effects of a in δ is
defined by: ea(δ) = {l | ψ → l is an effect of a, ψ ⊆ δ}. The possible effects of a in δ
are given by: pca(δ) = {l | ψ → l is an effect of a, ψ ∩ δ = ∅}. The successor partial
state from the execution of a in δ is defined by succA(a, δ) = (δ ∪ ea(δ)) \ pca(δ) if a
is executable in δ; and succA(a, δ) = failed, otherwise.

Similarly to succ∗ and ŝucc, succA can be extended to define succ∗A and ̂succA for
computing the result of the execution of an action sequence starting from a cs-state (i.e.,
a set of partial states), as implemented in CPA+.

Approximation-based Conformant Planners: CPA+ implements a best-first search al-
gorithm, whose nodes are sets of partial states. It uses succA to compute successor
nodes and the number of fulfilled subgoals as its heuristic function. CPA+ automatically
identifies an initial set of partial states that guarantees completeness. The performance
of CPA+ depends heavily on the size of the initial cs-state ([19]).

cf2cs(ff) uses the approximation in a different way. It translates a conformant
planning problem P into a classical planning problem K(P ) whose solutions can be
computed by a classical planner such as FF and are solutions of P . The transforma-
tion K(P ) is polynomial in the size of P , but incomplete. This issue has been recently
addressed by a new translation (KT,M (P )), which adds an extra parameter, called con-
formant width to the K(P ) translation process. KT,M (P ) is complete for T greater
than or equal to the width of the problem, but is exponential in it. A particular instance
of KT,M (P ), denoted by KS0(P ), is complete. t0 is a combination of KS0(P ) and
FF. Thus, both cf2cs(ff) and t0 deal with the incomplete information in the initial
situation by compiling it away. The trade-off is a new problem with a larger size.

3 Techniques and Solutions

We describe a number of techniques aimed at enhancing the performance and
scalability of heuristic search conformant planners, especially those that implement an
explicit representation of the belief states or of the cs-states, like CPA+. The
main objective is to reduce the size of cs-states considered during the construction of
a plan and remove unnecessary or non-promising alternatives during search.
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Fig. 1. Overall System

We will also introduce adaptations
of different heuristics for conformant
planning, such as the total sum and the
cardinality heuristics.

The proposed system is organized
as in Fig. 1. The first component is
a front-end, that acts as a static ana-
lyzer. The static analyzer is in charge
of performing a semantic analysis of
the domain specification and derive
semantic-preserving transformations (w.r.t. the possible world semantics). The trans-
formed specification produced by the static analyzer is then fed to the actual planner
(CPA+ or another planner, e.g., t0).

3.1 The Static Analyzer

Preliminary Definitions. Key to our analysis is the notion of dependence between
actions and propositions. Unless otherwise specified, we denote with P a specification
in the declarative domain specification language (PDDL in our case).

Definition 1. An action a depends on a literal � if (1) � ∈ pre(a), or (2) there exists an
effect a : φ → h in P and � ∈ φ, or (3) there exits an action b that depends on � and a
depends on some of the effects of b, i.e., b depends on � and there exists b : φ → h such
that a depends on h. By preact(�) we denote the set of actions depending on �.

Intuitively, the fact that a depends on � indicates that the truth value of � is going to im-
pact the execution of the action a. For a set of literals L, preact(L) =

⋃
�∈L preact(�).

Definition 2. Two literals � and �′ are distinguishable if � �= �′ and there is no action
that depends on both � and �′, i.e., preact(�) ∩ preact(�′) = ∅.

Obviously, the distinguishable relation is symmetric and irreflexive. Two set of liter-
als L1 and L2 are distinguishable if preact(L1) ∩ preact(L2) = ∅. The dependence
between a literal and an action, often used in reachability analysis, is defined next.

Definition 3. A literal � depends on an action a if (1) a : ψ → � is in P , and (2) there
exists an action b such that b : ψ → � is in P , the literal �′ appears in ψ or in pre(b),
and �′ depends on a. We denote with deps(a) the set of literals that depend on a.

Intuitively, � depends on a implies that � may be achieved by executing a. postact(�)
denotes the set of actions which � depends on, i.e., postact(�)={a | �∈deps(a)}.

Definition 4. Two literals � and �′ are independent if � �= �′ and there exists no action
that both � and �′ depend on, i.e., postact(�) ∩ postact(�′) = ∅.

Basic Simplifications. The static analyzer starts its operations with a number of ba-
sic normalization steps, aimed at reducing the number of propositions and the number
of actions present in the problem specification. We consider two basic steps: forward
reachability and goal relevance. Several planners implement these two steps.
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Forward reachability is used to detect (i) propositions whose truth value cannot be
affected by the actions in the problem specification (w.r.t. the initial state); (ii) actions
whose execution cannot be triggered w.r.t. the initial state. This process can be modeled
as a fixpoint computation.

Let I0 = Id∪
⋃

o∈Io lit(o)∪
⋃

o∈Ir lit(o). The set of forward applicable actions
is given by fwa(I0) = {a | a ∈ preact(�), �∈I0} and the relevant propositions is
fwp(I0)=I0∪{� | a ∈ fwa(I0), a : ψ → �∈P}.

Goal relevance proceeds in a similar manner, by detecting actions that are relevant
to the achievement of the goal. Let us denote with G0 the collection of propositions
present in the goal G. Then the backward applicable actions are bwa(G0) = {a | � ∈
G0, a ∈ fwp(I0) ∩ postact(�)}.
Combination of oneof-Clauses. The idea is based on the non-interaction between
actions and propositions in different sub-problems of a conformant planning problem.

Example 1. Let P = 〈{f, g, h, p, i, j}, O, I, G〉where I = { oneof(f, g), oneof(h, p),
¬i, ¬j}, G = i ∧ j, and O = {a : f → i, c : h → j, b : g → i, d : p → j}. It is
easy to see that the sequence α = [a, b, c, d] is a solution of P . Furthermore, the search
should start from the cs-state consisting of the four states: (a) {f,¬g, h,¬p,¬i,¬j},
(b) {¬f, g, h,¬p,¬i,¬j}, (c) {f,¬g,¬h, p,¬i,¬j}, and (d) {¬f, g,¬h, p,¬i,¬j}.

Let P ′ be the problem obtained from P by replacing I with I ′, where I ′ = {oneof
(f ∧ h, g ∧ p),¬i,¬j}. We can see that α is also a solution of P ′. Furthermore, each
solution of P ′ is a solution of P .

This transformation in interesting since the initial cs-state now consists only of two
states: {f,¬g, h,¬p,¬i,¬j} and {¬f, g,¬h, p,¬i,¬j}. In other words, the number
of states in the initial cs-state that a conformant planner has to consider in P ′ is 2,
while it is 4 in P . This transformation is possible because the set of actions that are
“activated” by f and g is disjoint from the set of actions that are “activated” by h and
p, i.e., preact({f, g}) ∩ preact({h, p}) = ∅. �

The above example shows that different oneof-clause can be combined into a single
oneof-clause, which effectively reduces the size of the initial state that a planner needs
to consider in its search for a solution. Theoretically, if the size of the two oneof-
clauses in consideration is m and n, then it is possible to achieve a reduction in the
number of possible partial states from m × n to m + n. Since in many problems the
size of the oneof-clauses increases with the number of objects, being able to combine
the oneof-clauses could provide a significant advantage for the planner.

Definition 5. Let P be a planning problem. Two oneof-clauses o1 and o2 are combin-
able if (i) lit(o1) ∩ lit(o2) = ∅; and (ii) lit(o1) is distinguishable from lit(o2).

For example, the two oneof-clauses in P (Example 1) are combinable. Let o1 =
oneof(L1, . . . , Ln) and o2 = oneof(S1, . . . , Sm). Assume that n ≥ m. A combi-
nation of o1 and o2, denoted by o1 ⊕ o2 (or o2 ⊕ o1) is the clause

oneof(L1 ∧ S1, . . . , Lm ∧ Sm, Lm+1 ∧ S1, . . . , Ln ∧ S1)

Intuitively, a combination of o1 and o2 is a oneof-clause whose elements are pairs
obtained by composing one element of o1 with exactly one element of o2. It is possible
to prove the following result.
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Proposition 1. Let P = 〈F, O, I, G〉 be a planning problem, where G is a conjunc-
tion of literals and o1 and o2 are two combinable oneof-clauses in P . Let P ′ =
〈F, O, I ′, G〉, where I ′ is obtained from I by replacing o1 and o2 by o1 ⊕ o2. Then,
every solution of P ′ is also a solution of P and vice versa.

Observe that the above proposition may not hold if P contains disjunctive goals.

Example 2. Let P = 〈{q, g, h, p, i, j}, O, I, G〉where G = or(i, j), I = {oneof(h, g),
oneof(p, q), ¬i, ¬j}, and O consists of a : p,¬q → i, c : p, q → i, b : g,¬h → j, and
d : g,¬h → j. It is easy to check that oneof(h, g) and oneof(q, p) are combinable.
Let P ′ be the problem obtained from P by replacing I with I ′ = {oneof(g ∧ q, h ∧
p),¬i,¬j}. Then, [a, b] is a solution of P ′ but not a solution of P . �

The combinable notion can be generalized as follows.

Definition 6. A set of oneof-clauses {o1, . . . , ok} is combinable if for each 1 ≤ i �=
j ≤ k we have that oi and oj are combinable.

Let ⊕(o1, . . . , ok) be the shorthand for (((o1 ⊕ o2)⊕ . . .) ⊕ ok). Proposition 1 can be
generalized as follows.

Proposition 2. Let P = 〈F, O, I, G〉 be a planning problem, where G is a conjunc-
tion of literals. Let {o1, . . . , ok} be a combinable set of oneof-clauses in P . Let P ′ =
〈F, O, I ′, G〉, where I ′ is obtained from I by replacing {o1, . . . , ok}with⊕(o1, . . . , ok).
We have that each solution of P ′ is a solution of P and vice versa.

Algorithm 1. COMBINABLE(P : planning problem)
Require: {o1, . . . , on}: oneof-clauses in P
1. S = {o1, . . . , on}
2. Q = ∅
3. while (S 	= ∅) do
4. pick o ∈ S and set s={o}
5. for all (o′ ∈ S ∧ o′ 	∈ s) do
6. if (o′ is combinable with every r ∈ s) then
7. s = s ∪ {o′}
8. end if
9. end for

10. S = S \ s
11. Q = Q ∪ {s}
12. end while
13. return Q

These results allow us to develop an algorithm for reducing the size of the initial
state by composing combinable sets of oneof-clauses in a planning problem P . We im-
plemented a greedy algorithm, whose running time is polynomial in the size of P , for
detecting sets of combinable oneof-clauses and replacing them with their correspond-
ing combination. This is possible since testing whether � and �′ are distinguishable can
be done in polynomial time in the size of P , and the number of pairs of literals that need
this test is quadratic in the number of propositions in P .2 Algorithms 1 and 2 show the
procedures to detect combinable groups of oneof-clauses and combine them.

2 The test for combinable can be improved using, e.g., union-find techniques.
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Algorithm 2. Composition of oneof-clauses

Require: {o(Li
1, . . . , L

i
ni

)}k
i=1 combinable oneofs

1. o = ∅
2. d[1, . . . , k] = [1, . . . , 1]
3. for (i=1 TO max(n1, . . . , nk)) do
4. c = true
5. for (j=1 TO k) do
6. c = c ∧ Lj

d[j]
7. if (j < nj) then
8. j = j + 1
9. end if

10. end for
11. o = o ∪ {c}
12. end for
13. return o

Goal Splitting. Reducing the size of the initial state only helps the planner to start the
search. It does not necessarily imply that the planner can find a solution. Furthermore,
Table 2 also shows that the technique is helpful only in three out of six domains of
the IPC-05. In this section, we present another technique, called goal-splitting, which
can be used in conjunction with the combination of oneof to deal with large planning
problems. This technique can be seen as a variation of the goal ordering technique in
[13] and it relies on the notion of dependence proposed in Def. 4. The key idea is
that if a problem P contains a subgoal whose truth value cannot be negated by the
actions used to reach the other goals, then the problem can be decomposed into smaller
problems with different goals, whose solutions can be combined to create a solution of
the original problem. This is illustrated in the following example.

Example 3. Consider the problem P of Example 1. It is easy to see that the two goals i
and j are independent and P can be decomposed into two sub-theories P1=〈F, O1, I, i〉
and P2 = 〈F, O2, I2, j〉 where O1 = {a : f → i, b : g → i} and O2 = {c : h →
j, d : p → j} with the following property: if α is a solution of P1 and β is a solution
of P2 where I2 = ̂succA(α, I1), then α; β is a solution of P .3 �

Let us start with a definition capturing the condition that allows the splitting of goals.

Definition 7. Let P = 〈F, O, I, G〉 be a planning problem and let � ∈ G. We say that
� is G-separable if, for each �′ ∈ G \ {�} we have that �̄ and �′ are independent.

The proof of the next above proposition is trivial, thanks to the fact that postact(G\{�})
does not contain any action that can make �̄ true.

Proposition 3. Let P = 〈F, O, I, G〉 be a planning problem and let � be G-separable.
Let P� = 〈F, postact(�), I, �〉 and α be a solution of P�. Let PG\{�} = 〈F, postact(G\
{�}), I ′, G \ {�}〉, where I ′ = ̂succA(α, I), and β be a solution of PG\{�}. Then, α; β
is a solution of P .

3 α; β denotes the concatenation of two sequences of actions.
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(:action go-up
:parameters (?e - elevator

?f ?nf - floor)
:precondition (dec_f ?nf ?f)
:effect (when (in ?e ?f)

(and (in ?e ?nf)
(not (in ?e ?f)))) )

action(go_up(E,F,NF)):-
elevator(E), floor(F),
floor(NF).

executable(go_up(E,F,NF),
[dec_f(NF,F)]):-

elevator(E),
floor(F), floor(NF).

causes(go_up(E,F,NF),
[in(E,NF),neg(in(E,F))],

[in(E,F)]) :-
elevator(E), floor(F), floor(NF).

Fig. 2. PDDL action and Prolog representation

On the other hand, it is easy to see that not every plan of P can be split into two parts
α and β such that α is a solution of P� and β is a solution of PG\{�}. We can prove,
however, that for each plan γ of P , there is a plan α for P� and a plan β for PG\{�} such
that γ is a permutation of α; β. This provides a weak form of completeness.

We note that the splitting proposed in Prop. 3 can be improved by also splitting the
propositions and initial states into different theories. We have implemented a general-
ized version of Prop. 3 to split a problem into a sequence of problems. This implemen-
tation also runs in polynomial time in the size of P .

Implementation of the Static Analyzer. The static analyzer is implemented in Prolog
(specifically, SICStus Prolog4). The choice of Prolog was natural, as it provides several
features needed by the problem at hand:
◦ The components of a problem specification have an obvious representation as Pro-

log terms and clauses; PDDL actions and fluents have parameters and they can be
encoded as complex terms, e.g., the action go up with parameters elevator, floor,
floor, is naturally represented by the term go up(Elev,Floor1,Floor2).

◦ PDDL statements can be readily mapped to a collection of Prolog rules; in partic-
ular, it allows us to keep a non-ground representation, and offers a quick access to
the various components of the domain specification. For example, the PDDL ac-
tion specification of the action go up is translated to the Prolog rules in Fig. 2.
Grounding can be obtained for free by simply collecting all valid instances of an
action (e.g., using setof). Unification allows us to easily select components of
the problem specification that meet desired requirements—e.g., a simple goal like
executable(go up(e0,X,Y),L) gives us access to the executability condi-
tions of any instance of the action go up targeting elevator e0.

◦ Most of the proposed transformations described are fixpoint computations, and
these can be elegantly encoded in Prolog.

◦ Viewing action specifications as Prolog clauses, allows us to write elegant meta-
interpreters to perform abstract executions; for example, if we represent an ap-
proximate state as an ordered list L of terms (representing the fluent literals that
hold in that partial state), then determining the executable actions and the derived

4 An implementation in SWI Prolog is also available at http://www.cs.nmsu.
edu/˜tson/CpA/

http://www.cs.nmsu.edu/~tson/CpA/
http://www.cs.nmsu.edu/~tson/CpA/
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consequences from applying such actions can be reduced to simple Prolog state-
ments, a findall applied to the goal executable(A,C), ord subset
(C,L), causes(A,Cons, ). Meta-interpreters allow us to simulate both pro-
gression (i.e., if action is applicable, applied it and repeat) and regression (i.e., from
the goal find actions that produce the goal and replace goal with their precondi-
tions). Note that abstractions of progressions and regression are needed to compute
forward reachability and goal relevance.

4 Experimental Results

We report on the effectiveness of the techniques and the heuristics described in the
previous section in improving the performance and scalability of the planner CPA+. We
also report on our experiment which shows that the oneof-combination can improve the
performance of other systems.

4.1 Static Analyzer

The analyzer implements the forward/backward simplifications, theoneof-combination,
and the goal-splitting algorithm. Its output is a sequence of simplified problems which
serve as input to the planners CPA(C) and CPA(2) (described next). The impact of dif-
ferent simplifications on domains from the IPC-05 is shown in Table 2. Results from
simplifications in other domains are omitted due to lack of space.

The first two columns show the reduction in the number of actions and proposi-
tions obtained by the forward/backward analysis. Each column contains the number
of action (resp. propositions) before and after the simplifications are made. The third
column details the number of subgoals in the original problem and the number of sub-
theories obtained through the goal-splitting algorithm. Domains with disjunctive goals
are marked with ‘/D’ in this column. The last column shows the reduction of the size
of the initial state by applying the oneof-combination, the original number of states
(as the product of the size of the oneof-clauses) and the new number of states. As it
can be seen, the number of actions (resp. propositions) reduces sometimes significantly,

Table 2. Size Reduction by Static Analyzer (IPC-05 Domains)

Problem # Actions # Prop. # Goal oneof

comm-20 5710/1968 4070/189 40/40 221/2
comm-25 15515/5153 10900/214 65/65 226/2
coins-25 5500/1870 1920/320 15/15 1020/105

coins-30 6000/2370 2425/376 20/20 1025/105

uts-25 110/110 121/21 10/10 10/10
uts-30 420/420 441/41 20/20 20/20
sortnet-10 121/55 132/11 10/1/D 211/211

sortnet-15 256/12 272/16 15/1/D 216/216

adder-2 8428/4810 42/28 31/1/D 16/16
adder-3 17820/9996 54/36 45/1/D 64/64
blw-2 24/24 19/19 3/1 18/18
blw-3 40/40 29/29 4/1 125/125
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especially in comm-25 and coins-30. However, the reduction ratio in the number of
the initial states is much more remarkable, in some cases in the order of several orders
of magnitude (e.g., comm and coins problems). The goals in these domains are also
independent and can be split.

4.2 Benchmarks

We use three test suites in our evaluation.

The IPC-05 domains [3]: This test suite consists of six domains used in the last plan-
ning competition. The adder domain is the synthesis of an adder Boolean circuit. The
coins domain has the goal of collecting coins from different, initially unknown, posi-
tions. The sortnet domain is a synthesis of sorting networks which has disjunctive
goals and a large number of possible initial states. The comm domain encodes a com-
munication protocol whose difficulty lies in the huge size of the initial state. The uts
domain is the computation of universal transversal sequence for graphs whose number
of actions and uncertainty are more manageable comparing to other domains. The suite
also contains some problems in the block-world domain.

Challenging domains [16]: This test suite consists of the domains that seem to be chal-
lenging for conformant planners, as suggested in [16]. They are variations of the grid
problems. dispose is about retrieving objects whose initial location is unknown and
placing them in a trash can at a given location. push-to is a variation where objects
can be picked up only at two designated positions to which all objects have to be pushed
to. 1-dispose is a variation of dispose. look-n-grab is about picking up the
objects that are sufficiently close, and dumping them in the trash can before continuing.

Other IPC domains: The third test suite contains some domains from the distribution
of CFF and t0, such as the ring, safe, and logistics domains. In the ring
domain, one can move in a cyclic fashion (either forward or backward) around a n-room
building to lock windows. Each room has a window and the window can be locked
only if it is closed. The uncertainty is that the initial state of windows is unknown.
The goal is to have all windows locked. In the safe domain, a safe has one out of n
possible combinations, and one must try all combinations in order to open the safe. The
logistics domain is the ‘incomplete version’ of the well-known logistics domain.
The uncertainty is in the initial position of each package within its origin city.

4.3 Planners

We experimented with two systems, CPA(C) and CPA(2), which are two modified
versions of CPA+. CPA+ is a best-first heuristic search planner that relies on the no-
tion of approximation described earlier. CPA(2) makes use of the heuristic hcs(Σ) =
(hcard(Σ), hsub(Σ)), where (given a cs-state Σ)
• hcard(Σ) is the cardinality heuristic, defined as hcard(Σ) = |Σ|.
• hsub(Σ) counts how many of the components of the goal are satisfied in Σ.

CPA(C) uses the heuristic function hcss(Σ) = (hcard(Σ), hsub(Σ), hsum(Σ)), where
• hsum(Σ) is the total sum heuristic, defined as hsum(Σ) =

∑
δ∈Σ d(δ), where d(δ)

is the well-known sum heuristic value of the problem given that the initial state is
δ ∪ {¬p | p ∈ F, p �∈ δ, ¬p �∈ δ} [14].
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The systems uses the transformed problem specification produced by the static analyzer.
We compare these systems with t0 (a total new implementation, obtained from the au-
thors of t0), CFF (linux version, downloaded fromhttp://members.deri.at/˜
joergh/cff.html), and POND (version 1.1.1). We do not compare our systems
with other planners as they have been compared to t0 and CFF by others (e.g., [4,16]).
These systems were run with the default setting. All experiments have been performed
on a Linux Intel 3.06GHz chipset with 1GB of RAM.

4.4 Experiments

We report some key results (the others are omitted due to lack of space). All timings are
expressed in seconds.

IPC-05 Domains. Table 3 shows the results of our experiments with the IPC-05 do-
mains. The execution time for CPA(C)/CPA(2)/CPA+ is reported in two columns: the
time used by the static analyzer (tS) and the time to compute the solution (each corre-
sponding column). We report next to the time the length of the plan found.

The effects of the oneof-combination and goal-splitting techniques can be seen
clearly in the three domains comm, coins, and uts where CPA(C)/CPA(2) can solve
more problems and are much faster than CPA+. t0 is more consistent and has better
performance in most of the domains applicable to it. CPA(C) is comparable to CFF in
most problems except comm-25. POND tends to be faster in smaller problems but it
does not seem to scale up well in larger problems comparing to CPA(C) or CPA(2). It
should be mentioned that the combined heuristics hcss (resp. hcs) is not admissible and

Table 3. IPC05 (Time in sec., TO-Time out (30 min), NA-Not Applic., AB-Out of Memory)

Problem tS CPA(C) CPA(2) CPA+ t0 CFF POND

adder-01 10.35 109.91/1134 /TO 47.995/8 NA NA / TO
adder-02 86.76 /TO /TO /TO NA NA / TO
blw-01 0.12 0.006/9 0.007/8 0.018/4 NA NA 0.01/6
bwl-02 0.13 0.124/64 0.162/26 1016.21/107 NA NA 0.12/34
bwl-03 0.18 6.876/1338 11.036/198 /TO NA NA 7.69/80
coins-10 0.18 0.065/52 0.204/65 180/56 0.088/26 1.02/38 1.07/46
coins-15 0.49 2.26/279 8.148/425 /AB 0.26/81 7.35/79 21.1/124
coins-20 0.66 13.279/928 26.428/580 /AB 0.32/108 38.19/143 211.19/153
comm-15 3.64 0.085/95 0.369/95 /TO 0.192/110 0.22/95 23.34/98
comm-20 141.45 0.731/239 5.108/239 /TO 0.864/278 13.33/239 / TO
comm-25 1081.35 /TO 716.264/672 /TO 3.996/453 109.49/389 / TO
sortnet-05 0.11 0.023/12 0.025/12 3.573/15 NA NA 0.01/12
sortnet-10 0.24 4.205/39 4.135/39 / TO NA NA 0.05/38
sortnet-15 0.52 427.473/65 419.885/65 /TO NA NA 0.28/65
uts-05 0.22 0.193/30 0.75/43 50.308/39 0.348/29 0.34/28 0.74/33
uts-10 0.93 4.531/61 30.007/87 /TO 3.536/59 55.49/58 26.16/68
uts-15 0.2 0.416/88 1.776/80 101.461/66 0.168/47 0.04/29 1.19/46
uts-20 0.89 15.375/156 52.003/138 /TO 4.832/85 1.64/59 111.54/88
uts-25 0.23 0.326/52 1.479/34 81.604/50 0.256/34 1.51/33 0.72/32
uts-30 0.86 6.144/76 26.452/74 /TO 2.632/67 25.65/66 39.88/68

http://members.deri.at/~joergh/cff.html
http://members.deri.at/~joergh/cff.html
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Table 4. Challenging Domains (d:dispose/lng:look-n-grab)

Prob. oneof tS CPA(C) t0 Prob. oneof tS CPA(C) t0
d-4-1 16/16 .39 .091/76 .276/57 d-4-2 162/16 .32 .260/90 .324/86
d-4-3 163/16 .39 .908/107 .588/139 d-8-1 64/64 3.18 7.848/695 27.849/291
d-8-2 642/64 5.77 36.359/800 113.459/422 d-8-3 643/64 8.66 2195.733/951 352.946/457
push-4-1 16/16 .2 .17/148 .520/64 push-4-2 162/16 .39 .704/288 .992/87
push-4-3 163/16 .46 2.176/448 3.056/118 push-8-1 64/64 3.36 9.091/991 2536.62/473
push-8-2 642/64 6.41 61.634/2634 /AB push-8-3 643/64 9.77 160.528/3462 /AB
1-d-4-1 16/16 .23 .640/309 0.444/70 1-d-4-2 162/162 .3 17.491/239 /AB
1-d-4-3 163/163 .48 /AB /AB 1-d-8-1 64/64 2.69 246.569/3617 672.306/468
lng-4-1-1 16/16 .29 0.149/279 0.504/12 lng-4-2-1 16/16 .39 0.004/8 0.824/4
lng-4-3-1 16/16 .47 0.035/8 0.988/4 lng-8-1-1 64/64 3.29 11.73/2216 680.206/140

this is reflected in the length of the solutions found by CPA(C) or CPA(2). They are
often longer than those found by other planners. It is also interesting to note that only
CPA+ and CPA(C) can solve the adder-01 problem. This domain has a very large
number of actions, whose preconditions are empty—the cardinality heuristic does not
help since the number of states is constant in every step of the computation. The number
of satisfied subgoals seems to guide the search better than the total sum heuristic.

Challenging Domains. Table 4 contains the results of our experiments with the chal-
lenging problems from [16]. They are generated by the scripts that come with t0. The
other planners are unable to deal with these domains. It should be noted that the perfor-
mance of t0 on these problems is different than the results presented in [16]. We learned
from the authors of t0 that the version of t0 that we obtained is a new implementation,
and hence its performance is occasionally different. We report only the performance of
CPA(C), since it is almost identical to CPA(2), while CPA+ is capable of solving only
a few of these problems. The oneof-column gives the number of initial states before
and after the oneof-combination. The results indicate that CPA(C) is faster than t0 in
most of these domains. It can also solve more problem instances compared to t0. Also
in this case, we observed that the lengths of the solutions are often longer than those
returned by t0, sometimes up to 30 times longer. Since CPA(2) and CPA(C) yield sim-
ilar results, we believe that the better performance of these planners is due to both the
oneof-combination and the cardinality heuristic.

Domains from Other IPCs. Table 5 reports the results of our experiment with well-
known domains from previous IPCs. In these domains, CFF seems to perform best.
However, CFF times out when solving safe-50, while both t0 and CPA(C) can
solve this instance. CPA(C) and POND seem to be comparable, even though CPA(C)
can solve more instances. t0 is better than CPA(C) and POND in larger problems but
slower in smaller ones.
Impact of oneof-Combination and Goal-Splitting on POND and CFF. We tested
the effectiveness of the two simplifications on POND and CFF. Since a combination
of several oneof-clauses is a oneof-clause whose elements are conjunctions of literals,
we can only test this optimization with another planner—POND—being the only one
that accepts this type of inputs. Table 6 shows the results of our experiment in the comm
and coins domains. As we can see, the performance of POND improves in these
problems, and the improvement is more significant when the size of the problem is
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Table 5. Domains from Previous IPCs

Prob. tS CPA(C) t0 CFF POND Prob. tS CPA(C) t0 CFF POND

ring-2 .07 .004/7 .068/5 .0/7 .01/6 ring-3 .11 .02/8 .052/8 .11/15 .12/13
ring-4 .08 .138/13 .072/13 2.0/25 4.56/16 ring-5 .16 .832/22 .068/17 46/45 282/20
safe-05 .08 .002/5 .052/5 .0/5 .02/10 safe-10 .09 .013/10 .052/10 .01/10 /TO
safe-30 .11 .608/30 .112/30 4.26/30 /TO safe-50 .16 4.591/50 72.28/50 /TO /TO
l-2-2-2 .25 .071/49 .056/16 .0/16 4.23/17 l-2-2-4 .34 15.66/526 .076/26 .01/26 / TO
l-2-3-2 .35 2.23/159 .056/17 .01/17 / TO l-2-3-3 .46 / TO .116/24 .0/24 / TO

Table 6. oneof-Combination in POND (Time for solving the original/modified problem)

Problem Orig/Modified Problem Orig/Modified Problem Orig/Modified

comm-15 23.34/12.68 comm-16 221.86/147.29 comm-17 >1h
comm-17-1 275/206.88 coins-5 0.04/0.03 coins-10 1.07/0.84
coins-15 21.1/22.19 coins-20 211.19/178.26

large. However, this technique does not help POND to scale up: it stops with coins-17
and comm-21 (comm-17-1 is smaller than comm-17 but larger than comm-16).

Table 7. Impact of Goal-Splitting on CFF in the
coins Domain

coins p21 p23 p25 p27 p30

24.48 103.14 2.13 6.37 68.09

The goal-splitting technique is use-
ful in other planners. Table 7 shows
some results of our experiments with
CFF in the coins domain. All prob-
lems in this table cannot be solved by
CFF if they were not subject to goal-
splitting. The difficulty in these prob-
lems lies in the large number of elevators and coins. The goal-splitting technique di-
vides each problem into a sequence of sub-problems, each dealing with one coin but
still keeping all elevators. This proved to be difficult for POND and t0 (cut-off after 5
minutes). On the other hand, CFF can deal with it and goes on solving all subsequent
problems. We observed that CFF spends most of the time finding the solution for the
first problem. This is reasonable since the location of the elevators is unknown in the
first problem and some of these locations will be known at the end of the first solution.

5 Conclusions and Future Work

In this paper, we investigated semantic analysis and transformations for a traditional
declarative specification language used in reasoning about actions and change. The trans-
formations, implemented by a static analyzer, enabled significant gains in performance
and scalability of a conformant planner. We demonstrated the usefulness of the simpli-
fications and the heuristics by implementing them in the planners CPA(C) and CPA(2).
These planners are competitive with state-of-the-art conformant planners in several do-
mains, and they outperform t0 in several challenging domains. These results provide a
good indication in support of the proposed techniques.

One of our main goals in the near future is to continue this line of research, to address
the problems related to the number of actions in the planning problems. This problem
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can be seen in the adder domain, in which the actions are fairly simple but the number
of actions is rather large; in particular, the number of actions that can be executed in
each iteration of the search is also large, as the preconditions of every action are always
satisfied. It appears that none of the techniques discussed in this manuscript is accurate
enough to guide the search in these situations. We would also like to investigate methods
to improve the quality of the solutions.
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Abstract. For practical applications, the use of top-down query-driven proof-
procedures is essential for an efficient use and computation of answers using
Logic Programs as knowledge bases. Additionally, abductive reasoning on de-
mand is intrinsically a top-down search method. A query-solving engine is thus
highly desirable.

The current standard 2-valued semantics for Normal Logic Programs (NLPs),
the Stable Models (SMs) semantics, does not allow for top-down query-solving
because it does not enjoy the relevance property — and moreover, it does not
guarantee the existence of a model for every NLP. To overcome these current
limitations we introduce here a new 2-valued semantics for NLPs — the Layered
Models semantics — which conservatively extends the SMs, enjoys relevance
and guarantees model existence among other useful properties. Moreover, for
existential query answering there is no need to compute total models, but just the
partial models that sustain the answer to the query, or one might simply know a
model one exists without producing it; relevance ensures these can be extended
to total models.

A first implementation of a query-solving engine based on this new semantics
is presented and described here. It uses the XSB-Prolog engine and its XASP
interface to Smodels, thereby providing a useful tool built as a hybrid of the two
systems and taking advantage of the best of each.

Conclusions and further work end the paper.

Keywords: Smodels, XSB-XASP, Relevance, Semantics.

1 Introduction

The semantics of Stable Models (SM) is a cornerstone for the definition of some of the
most important results in logic programming of the past two decades, providing an in-
crease in logic programming declarativity and a new paradigm for program evaluation.
When we need to know the 2-valued truth value of all the literals in a logic program
for the problem we are modeling and solving, the only solution is to produce complete
models. In such a case, tools like SModels [13] or DLV [5] can be adequate because they
can indeed compute whole models. However, the lack of some important properties of
language semantics, like relevance, cumulativity and guarantee of model existence (en-
joyed by, say, Well-Founded Semantics [10] (WFS)), somewhat reduces its applicability
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in practice, namely regarding abduction, creating difficulties in required pre- and post-
processing. But WFS in turn does not produce 2-valued models, though these are often
desired, nor guarantees 2-valued model existence.

Furthermore, in SM semantics, in an abductive reasoning situation, computing the
whole model entails pronouncement about each of the abducibles whether or not they
are relevant to the problem at hand, and subsequently filtering the irrelevant ones. When
we just want to find an existential answer to a query, we either compute a whole model
and check if it entails the query (the way SM semantics does), or, if the underlying
semantics we are using enjoys the relevance property — which SM semantics do not—
we can simply use a top-down proof-procedure (à la Prolog), and abduce by need. In
this second case, the user does not pay the price of computing a whole model, nor the
price of abducing all possible abducibles or their negations, and then filtering irrelevant
ones, because the only abducibles considered will be those needed for answering the
query.

The current standard 2-valued semantics for NLPs, the Stable Models [11] seman-
tics, does not allow for top-down query-solving precisely because it does not enjoy
the relevance property — and moreover, does not guarantee the existence of a model.
Furthermore, frequently there is no need to compute whole models, like its implemen-
tations do, but just the partial models that sustain the answer to a query. Relevance
ensures these can be extended to whole models.

To overcome these inherent limitations we developed a new 2-valued semantics for
NLPs— the Layered Models (LM) semantics— which conservatively extends the SMs,
and enjoys relevance and guarantee of model existence and other useful properties.

The core reason SM semantics fails to guarantee model existence for every NLP is
that it does not provide a semantics to Odd Loops Over Negation (OLONs)1. In fact,
the SM semantics community uses its inability to handle odd loops as a means to write
Integrity Constraints (ICs).

Example 1. Odd Loop Over Negation as Integrity Constraint. Indeed, using Stable
Models, one would write an IC in order to prevent X being in any model with the
single rule for some atom ‘a’: a ← not a, X . Since the SM semantics cannot provide a
semantics to this rule whenever X holds, this type of OLON is used as IC.

The LM semantics provides a semantics to all NLPs. ICs are implemented with rules
for reserved atom falsum, of the form falsum ← X , where X is the body of the
IC we wish to prevent being true. This does not prevent falsum from being in some
models. To avoid them the user must either conjoin goals with not falsum or, if in-
consistency examination is desired, a posteriori discard such models. LM semantics
separates OLON semantics from IC compliance.

After a brief note on notation and background definitions, we present the formal
definition of LM semantics and overview its useful properties. A section describing
the current implementation follows and the directions in the development of the next
version of our query-solving engine. Conclusions and future work close the paper.

1 OLON is a loop with an odd number of default negations in its circular call dependency path.
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2 Background Notation and Definitions

Definition 1. Logic Rule. A Logic Rule r has the general form
A← B1, . . . , Bn, not C1, . . . , not Cm where A, the Bi and the Cj are atoms.

We call A the head of the rule — also denoted by head(r). And body(r) denotes the
set {B1, . . . , Bn, not C1, . . . , not Cm} of all the literals in the body of r. Throughout
this paper we will use ‘not ’ to denote default negation. When the body of the rule is
empty, we say the head of rule is a fact and we write the rule just as h.

Definition 2. Logic Program. A Logic Program (LP for short) P is a (possibly infinite)
set of ground Logic Rules of the form in Definition 1.

In this paper we focus solely on NLPs, those whose heads of rules are positive literals,
i.e., simple atoms; and there is default negation just in the bodies of the rules. Hence,
when we write simply “program” or “logic program” we mean a NLP.

3 Layering of Normal Logic Programs

The well-known notion of stratification of LPs has been studied and used for decades
now. But the common notion of stratification does not cover all LPs, i.e., there are some
LPs which are non-stratified.

Example 2. Stratified vs Non-Stratified Programs. Consider the following two pro-
grams P1 and P2. P1 is stratified, according to the usual notion of stratification, whereas
P2 is not.

P1 : x← a a ← not b b← not c P2 : x← a a ← not b b← not a

Informally, in P1, we say atom ‘a’ is in a stratum above of that of ‘b’, because there is
a rule for ‘a’ with ‘b’ in its body; we say ‘a’ depends on ‘b’. But in P2 that dependency
is symmetrical: ‘b’ also depends on ‘a’, and we cannot say if ‘a’ is in a stratum above
of that of ‘b’ or vice-versa.

Definition 3. Layering of a Logic Program P . Given a normal logic program P build
a dependency graph G(P ) such that the atoms of P are the nodes of G(P ), and there
is an arc from a node A to a node B iff there is a rule in P with head B such that A
appears in its body.

A layering function l/1 is just any function defined over the atoms of a program P ,
assigning each atom an integer, such that:

– If there is a path in G(P ) from A to B, and there is a path in G(P ) from B to A
then l(A) = l(B).

– If there is a path in G(P ) from A to B, and there is no path in G(P ) from B to A
then l(A) < l(B).

A layering of program P is a partition P1, . . . , Pn of P such that Pi contains all
rules whose head is an atom A such that l(A) = i.
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Amongst the several possible layerings of a given program P we can always find the
least one, i.e., the layering with the least number of layers. Throughout the rest of the
paper when we refer to the program’s layering we will always mean such least layering
(easily seen to be unique).

Definition 4. Direct Dependency. We say an atom A directly depends on an atom B
in P iff there is at least one rule of P with head A and with B or not B in the body.

Definition 5. Dependency. We say an atom A depends on an atom B in P iff there is
a path in G(P ) from A to B.

Definition 6. Relevant part of P for A. The Relevant part of P for some atom A is the
subset of rules of P with head A plus the set of rules of P whose heads A depends on,
cf [6].

In example 2 above, although P2 has no stratification, it has a layering: its bottom layer
L1

P2
is comprised of rules a ← not b, and b ← not a; and its second layer L2

P2
contains

only the rule x ← a.
Due to the definition of dependency, this definition of layer does not coincide with

that of stratum for usual stratification [2], nor does it coincide with the layer definition
of [17]. The original definition of stratification [2] was made on predicate names rather
than atoms. By abandoning the restriction of a finite number of strata of [2], the defini-
tion of Local Stratification (that now applies to atoms) of Przymusinski [17] is obtained.
It copes with infinite ground programs, such as:

a(X)← not b(s(X)) b(s(X))← not a(X)

Still, whereas the ground instance of this program (assuming at least one unary con-
stant symbol) is not locally stratified, its ground version comprises just one layer.

The layering of P is said to be depth-bound iff there is one “bottom” layer comprised
of rules whose heads are not above any other literal, i.e., iff L1

P = ∅.
In practice, all useful programs have a depth-bound layering, but for theoretical com-

pleteness we show that the Layered Models semantics — defined in the sequel — also
deals with programs with depth-unbound layering.

A typical case of a program with a depth-unbound layering (actually the only one
with real theoretical interest, to the best of our knowledge) was presented by François
Fages in [9]. We repeat it here for illustration and explanation.

Example 3. Program with depth-unbound layering.

p(X)← p(s(X)) p(X)← not p(s(X))

Ground (layered) version of this program, assuming there only one constant 0 (zero):

p(0) ← p(s(0)) p(0)← not p(s(0))
p(s(0)) ← p(s(s(0))) p(s(0)) ← not p(s(s(0)))

p(s(s(0))) ← p(s(s(s(0)))) p(s(s(0))) ← not p(s(s(s(0))))
... ←

...
... ←

...
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The only layered model of this program is {p(0), p(s(0)), p(s(s(0))) . . .} or, in a
non-ground form, {p(X)}. The theoretical interest of this program lies in that, although
it has no OLONs it still has no SMs either because no rule is supported (under the usual
notion of support), thereby showing there is a whole other class of NLPs to which the
SMs semantics provides no model.

4 Layered Models Semantics

Definition 7. Layered Model of P . Let P1, . . . , Pn be the least layering of program
P . An interpretation M is a Layered Model of P iff

∀1≤i≤nM |≤i is a minimal model of
⋃

1≤j≤i

Pj

where M |≤i denotes the restriction of M to atoms in layer i or a layer before i. I.e.

M |≤i = M ∩ {A : l(A) ≤ i}

Intuitively, each minimal model up to and including some layer i must extend a
minimal model of the layers below i.

Mark that, by definition, the minimal models up to and including a given layer respect
the minimal models up to the layers preceding it. This ensures that the truth assignment
to atoms in loops in higher layers are consistent with the truth assignments in loops in
lower layers and that these take precedence in their truth labeling.

Note that this is a more general definition than that of perfect models [18], which
improves on it, but with similar structure. Perfect model semantics talks about “least
models” rather than “minimal models” because in strata there can be no loops and so
there is always a unique least model which is also the minimal model. Now layers,
as opposed to strata, may contain loops and thus there is not always a least model, so
layers resort to minimal models, and these are guaranteed to exist (it is well known,
every normal program has minimal models).

It is worth noting that atoms with no rules and appearing in the bodies of some rule
are necessarily “placed” in the lowest layer. Any minimal model of this layer will con-
sider these atoms (with no rules) to be false. This ensures compliance with the Closed
World Assumption (CWA).

Example 4. Atom with no rules. Consider program P = {a ← not b}. In this case

the least layering of P assigns l(b) = 1 and l(a) = 2, and therefore P1 = {} and
P2 = {a ← not b}. Necessarily, M1 = {} (which means b is false, and says nothing
about a), and M2 = {a}. Notice that, although {b} is a minimal model of P , it is a non-
minimal model of layer 1 and, hence, it is rejected by our Layered Models definition.

Example 5. Layered Models versus Stable Models. Consider program P :
a ← not b b ← not c c ← not a, x
x← not y y ← not x
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The rules for x and y are in the same layer which is immediately below the layer
containing the rules for a, b and c. This program has only one Stable Model: SM =
{y, b} but, besides that one, it has also other LMs: M1 = {x, a, b}, M2 = {x, a, c} and
M3 = {x, b, c}. As proven in Theorem 4 in section 5, all SMs of a given program are
also LMs of it, thereby showing that the Layered Models semantics is a conservative
generalization of the Stable Models semantics. In this example, the SM = {y, b} is no
exception: it is a minimal model of the program, and {y} is also a minimal model of
layer 1. All other LMs in the example are not SMs.

Besides the lower layer atoms they depend on (if any), atoms involved in loops have
no particular raison d’être in a model other than being part of a minimal model solution
for the respective loop(s), i.e., their only support lies on lower layers. This is true for
ELONs as well as OLONs. Thus, loops are just a way to write arbitrary disjunctive
choices (viz. shifting rule of [7]). In this example there is no particular reason to choose
x or y; we cannot say any of them to be supported for some reason. The same reasoning
applies to the top layer where the OLON over a, b, and c resides, provided that in the
lower layer the truth of x has been adopted. The apparent lack of support of a in model
{a, b, x} is due to adopting the usual (classical) notion of support (where every atom
true in a model must be supported by all the literals of a body of one of its rules), instead
of adopting the new layered support (every atom true in a model must be classically
supported just on the lower layers literals of a body of its rules).

The principle used by LMs to provide semantics to any NLP — whether is has OLONs
or not, whether it is depth-bound or not — is to accept all, and only, the minimal models
that respect the layers of the program. The principle used by SMs to provide semantics
to some NLPs is just a “stability” (fixed-point) condition imposed on the SMs by the
Gelfond-Lifschitz operator. This stability condition is too restrictive and it even gives
rise to some incongruences.

Example 6. Even Loop Over Negation2 vs Odd Loop Over Negation. Consider P1:
a ← not b b ← not a. It has two SMs: SM1 = {a}, SM2 = {b}. Now add the rules
a ← b and b ← a. The ELON is kept, but two OLONs appear now. The program
now has no SMs, but it still has one LM = {a, b}.

The example shows the incongruence in the SMs semantics when dealing with loops: it
treats OLONs differently from ELONs and this incongruence stems from the stability
requirement which, in our opinion, is too restrictive. The intended semantics of a loop
over default negation, be it either an ELON or an OLON, be it written on purpose or
be it produced by a series of updates or merges of different NLPs, is a disjunction. In
example 6 above, the intended semantics of the ELON a ← not b b ← not a is,
usually, a∨ b, and that is actually achieved by the SM semantics in this case. But in the
same manner of thinking, the intended semantics of program a ← not b b ← not c
c ← not a would be (a∨b)∧(b∨c)∧(c∨a); that is not achieved by the SM semantics.
LM semantics succeeds in doing so, while at the same time having upper layers’ choices
respect their lower layers’ choices.

2 An Even Loop Over Negation (ELON), analogously to an OLON, is a loop in the dependency
call graph with an intervening even number of default negations.
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5 Properties of the Layered Models Semantics

5.1 Existence

Theorem 1. Existence. Every Normal Logic Program has a Layered Model.

Proof. By construction, it is always possible to find a layering for P and, therefore, its
least layering. It is always possible to find a minimal model for layer 1 and, moreover,
for each layer above it is always possible to find a minimal model for it which includes
a minimal model of the previous layer. "#

5.2 Relevance

[6] presents definitions of the Relevance and Cumulativity properties of a semantics of
logic programs. We recall them here for self containment.

Definition 8. Relevance. A semantics for logic programs is said to be Relevant iff for
every program P a ∈ Sem(P )⇔ a ∈ Sem(RelP (a)).

Theorem 2. Relevance of Layered Models semantics. The LM semantics is relevant.

Proof. According to definition 7, the LM semantics of a program P is the intersection
of its LMs. So, a ∈ LM(P ) ⇔ ∀LMP (M)a ∈ M . For the LM semantics the relevance
property is expressed by a ∈ LM(P )⇔ a ∈ LM(RelP (a)).
⇒: We assume a ∈ LM(P ), so we can take any M such that LMP (M) holds, and

conclude that a ∈ M . Assuming, by absurd, that a /∈ LM(RelP (a)) this means that
there is at least one LM of RelP (a) where a is false, i.e., where not a is true. Since
every LM of P satisfies its subsets we conclude there must be at least one LM of P
containing the LM of RelP (a) where a is false. But this means that a /∈ LM(P ) which
is an absurd contradicting the initial assumption a ∈ LM(P ).
⇐: Assume a ∈ LM(RelP (a)). Take the whole P ⊇ RelP (a). Again, a will be in

every LM of P because a is in all LMs of RelP (a), and every LM of P always contains
one LM of RelP (a). "#
Relevance is the property that makes it possible to implement a top-down call-directed
query-derivation proof-procedure — a highly desirable feature if one wants an efficient
theorem-proving system that does not need to compute a whole model to answer a
query. These methods are designed to try and identify whether a query literal belongs
to some LM, and to partially produce a LM supporting a positive answer. The partial
solution is guaranteed extendable to a full LM because of relevance.

5.3 Cumulativity

Definition 9. Cumulativity. A semantics is Cumulative iff for every program P

∀a,b(a ∈ Sem(P ) ∧ b ∈ Sem(P ))⇒ a ∈ Sem(P ∪ {b})
Theorem 3. Cumulativity of Layered Models semantics. LM semantics is cumulative.

Proof. By definition 7, the semantics of a program P is the intersection of its LMs.
So, a ∈ LM(P ) ⇔ ∀LMP (M)a ∈ M . For the LM semantics cumulativity becomes
expressed by

∀a,b(a ∈ LM(P ) ∧ b ∈ LM(P ))⇒ a ∈ LM(P ∪ {b})
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Let us assume a ∈ LM(P )∧ b ∈ LM(P ). If there is a path from b to a in P , then a
depends on b and there exist i ≥ j such that b ∈Mj and a ∈Mi, and M ⊇ Mi ⊇Mj .
It comes trivially that adding b as a fact to P does not change a’s truth-value since every
Mi including a already included b.

If there is no path from b to a it means that a does not depend on b’s truth-value,
and since the LM semantics is relevant, a’s truth-value will remain unchanged just by
adding b as a fact to P . "#

5.4 Stable Models Extension

Theorem 4. Stable Models Extension. Any Stable Model is a Layered Model of P .

Proof. Assume M is a SM of P . It is well known that every SM is also a minimal
model. By definition of SM we know M is the least model of P/M (which results from
deleting from P all the rules with not a in the body where a ∈ M , and then deleting
all remaining not x). The least model can be calculated by iterating the well-known
TP operator [8]. This operator gives as a result an interpretation that differs from the
interpretation it takes only by some atoms which are heads of rules whose bodies were
true in the input interpretation. This means the atoms in J \ I , where J = TP (I), are in
a layer above those of I . At each iteration of TP the previous interpretation atoms are
kept. Hence we can conclude T i

P ({}) = Mi, and, therefore, M is a LM. "#

In example 5 we present a program with a SM — show it to be a LM as well — and
other non-SMs LMs.

Some NLPs have no SMs but, by Theorem 1, all have at least one LM. The relation
between the Layered Models and the Revised Stable Models ([14,16]) is not yet fully
studied, but, at first glance, they seem equivalent. The thorough analysis of the relation
between these two semantics remains as future work, for now.

Due to lack of space, the complexity analysis of this semantics is left out of this
paper. Nonetheless, a brief note is due. Theorem 1 guarantees every NLP has at least
one LM, hence the complexity of finding if one LM exists is trivial, when compared to
SMs semantics. The whole point of having a new semantics enjoying relevance is to be
able to do brave reasoning (finding if there is any model of the program where some
atom a is true) without necessarily computing a whole model, just the relevant subset of
the program for a and computing the respective submodel, guaranteed extendable to a
whole one. Cautious reasoning (finding out if some atom a is in all models) boils down
to finding if a is unconditionally true given its dependency graph.

6 Examples

Example 7. A joint vacation problem. Three friends are planning a joint vacation.
First friend says “I want to go to the mountains, but if that’s not possible then I’d rather
go to the beach”. The second friend says “I want to go traveling, but if that’s not possible
then I’d rather go to the mountains”. The third friend says “I want to go to the beach, but
if that’s not possible then I’d rather go traveling”. However, traveling is only possible if
the passports are OK. They are OK if they are not expired, and they are expired if they
are not OK. We code this information as the following NLP:
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beach ← not mountain
mountain ← not travel
travel ← not beach, passport_ok

passport_ok ← not expired_passport
expired_passport ← not passport_ok

It is easy to see that the first three rules forming an OLON over beach, mountain,
and travel are in layer 2; and the rules for passport_ok and expired_passport are
in layer 1. This program has only one SM: {expired_passport, mountain}. But,
looking at the rules relevant for passport_ok we find no irrefutable reason to assume
expired_passport to be true. The LM semantics allows passport_ok to be true yield-
ing three other models besides the SM; those are:

LM1 = {beach, mountain, passport_ok}, LM2 = {beach, travel, passport_ok},
and LM3 = {travel, mountain, passport_ok}.

The first layer has two minimal models: {passport_ok} and {expired_passport}.
Assuming the first minimal model, the second layer has three minimal models which
correspond to LM1, LM2, and LM3 above. Assuming the second minimal model
(where expired_passport is true), the second layer has only one minimal model: the
SM mentioned above {expired_passport, mountain} (which also a LM).

Example 8. N-Queens. When considering the SM semantics, the classical example
of the N-Queens problem (apart from diagonal attack prevention) can be expressed as
the following NLP (where we assume there are some facts for the rows and for the
columns):

hasQueen(X, Y ) ← row(X), column(Y ), not noQueen(X, Y )
noQueen(X, Y ) ← row(X), column(Y ), column(Y Y ), not eq(Y, Y Y ),

hasQueen(X, Y Y )
noQueen(X, Y ) ← column(Y ), row(X), row(XX), not eq(X, XX),

hasQueen(XX, Y )

In this program there are, apparently, two OLONs via both rules for noQueen/2:
hasQueen/2 depends on not noQueen/2 which, in turn, depends on hasQueen/2.
We can think of these OLONs, under SM semantics, as providing ICs to eliminate mod-
els where we have two mutually attacking queens. However, the rules for noQueen/2
are applicable (have the remaining context literals of their bodies true) only when
not eq(X, XX) (or not eq(Y, Y Y )) hold. This means the two queens are not attacking
each other and so, the OLONs never get a chance to act as ICs to eliminate models. The
undesired models with mutually attacking queens are eliminated by the not eq(X, XX)
and not eq(Y, Y Y ) literals. In this particular case, the LMs coincide with the SMs. If
we delete the not eq/2 occurrences, LM still computes the correct models because a
queen cannot attack itself, which is solved by the minimal model. Not so for the SM.

Example 9. Map coloring. Again, considering the SM semantics, the rules for any
individual node of the classical problem of map coloring can be expressed as the fol-
lowing NLP (where we assume there are some facts for nodes and for the edges):
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col(C, red) ← node(C), not col(C, blue), not col(C, green)
col(C, blue) ← node(C), not col(C, red), not col(C, green)
col(C, green)← node(C), not col(C, blue), not col(C, red)

One can argue that there are OLONs here which, under the SM semantics, work as
ICs preventing some undesired models. That is actually not the case in this situation:
no OLON acts as an IC under SM semantics because every OLON has a symmetri-
cal one (e.g, the OLON col(C, red) ← not col(C, blue) ← not col(C, green) ←
not col(C, red) is symmetrical to OLON col(C, red) ← not col(C, green) ←
not col(C, blue) ← not col(C, red)) and both together form an ELON which is solv-
able by SM semantics.

In this example, since every SM is also a LM, and there are no more minimal models
besides the SMs, we conclude the LM and SM semantics coincide.

7 Implementation

7.1 XSB-XASP Interface

The Prolog language has been for quite some time one of the most accepted means
to codify and execute logic programs, and as such has become a useful tool for re-
search and application development in logic programming. Several stable/production
stage implementations have been developed and refined over the years, with plenty of
working solutions to pragmatic issues ranging from efficiency and portability to explo-
rations of language extensions. The XSB Prolog system3 is one of the most sophis-
ticated, powerful, efficient and versatile among these implementations, with a focus
on execution efficiency and interaction with external systems, implementing program
evaluation following the WFS for NLPs. The XASP interface [3,4] (standing for XSB
Answer Set Programming), is included in XSB Prolog as a practical programming in-
terface to Smodels [13], one of the most successful and efficient implementations of the
SMs over generalized LPs. The XASP system allows one not only to compute the mod-
els of a given NLP, but also to effectively combine 3-valued with 2-valued reasoning.
The latter is achieved by using Smodels to compute the SMs of the so-called residual
program, the one that results from a query evaluated in XSB using tabling [20]. A resid-
ual program is represented by delay lists, that is, the set of undefined literals for which
the program could not find a complete proof, due to mutual dependencies or loops over
default negation for that set of literals, detected by the XSB tabling mechanism. This
method allows to obtain any two-valued semantics in completion to the three-valued
semantics the XSB system produces.

Such integration allows to make use of relevance for queries. In SMs it is necessary to
compute all complete models for the whole program. In our implementation framework,
we sidestep this issue, by using XASP to compute the query relevant residual program
on demand. After some degree of transformation, the resulting residual program is sent
to Smodels for computation of stable models of the relevant sub-program. The top-down
computation, to boot, helps in partly or totally grounding the residual program.

3 Both the XSB Logic Programming system and Smodels are freely available at:
http://xsb.sourceforge.net and http://www.tcs.hut.fi/Software/
smodels

http://xsb.sourceforge.net
http://www.tcs.hut.fi/Software/smodels
http://www.tcs.hut.fi/Software/smodels


264 L.M. Pereira and A.M. Pinto

7.2 Top-Down Query-Solving Implementation Using the Layered Models
Semantics

The intended use of LM semantics implementation is to provide a tool for existential
querying — much like Prolog — but dealing effectively, and in a 2-valued fashion, with
all kinds of loops over negation.

In top-down querying, layers are inherently found by a loop-detection mechanism
in the call-graph descending search, this being facilitated by the implementation of
XSB Prolog [19]. In practice top-down querying using the LMs semantics corresponds
to finding and solving the OLONs (through the minimal choices of which atoms to
assume true), making sure minimal models found to solve an OLON respect the WFM
of the layers below it. This is guaranteed because XSB’s residual program computation
mechanism simplifies the original program, preserving its layering and semantics, and
reducing it according to its WFM. OLON detection and reduction is performed on the
residual program.

This first implementation of the LMs semantics is mainly intended to be a proof-of-
concept, more than a high-end efficient and optimized final one. By their very nature,
depth-unbound programs cannot be solved in full generality. We leave them unsolved,
for now, and will consider solvable cases in the next implementation. This implemen-
tation is moreover limited to call-consistent programs, i.e., those where the top-down
querying ensures the groundness of the queried literal in each step in the derivation
tree. Also reserved for the future, is the employing of constructive negation as a way to
constrain free variables under default negation, without having to fully ground them.

The present meta-interpreter allows the user to consult a Knowledge Base (KB) —
in the form of a finite grounded NLP — and then to pose queries which are solved in
a top-down fashion, obtaining as a result a partial LM — if there is one inclusive of
the query. Upon backtracking other partial models are returned. The meta-interpreter
is comprised of two components: one takes care of the OLONs and the other solves
ELONs in a manner compatible with the ICs.

Residual Program. After launching a query in a top-down fashion we must obtain
the relevant residual part of the program for the query. This is achieved in XSB Prolog
using the get_residual/2 predicate. According to the XSB Prolog’s manual “ the
predicate get_residual/2 unifies its first argument with a tabled subgoal and its
second argument with the (possibly empty) delay list of that subgoal. The truth of the
subgoal is taken to be conditional on the truth of the elements in the delay list”. The
delay list is the list of literals whose truth value could not be determined to be true nor
false, i.e., their truth value is undefined in the WFM of the program.

It is possible to obtain the residual clause of a solution for a query literal, and in turn
the residual clauses for the literals in its body, and so on. This way we can reconstruct
the complete relevant residual part of the KB for the literal — we call this a residual
program or reduct for that solution to the query.

More than one such residual program can be obtained for the query, on backtracking.
Each reduct consists only of partially evaluated rules, with respect to the WFM, whose
heads are atoms relevant for the initial query literal, and whose bodies are just the
residual part of the bodies of the original KB’s rules. This way, not only do we get just
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the relevant part of the KB for the literal, we also get precisely the part of those rules
bodies still undefined, i.e., that are involved in Loops Over Negation.

Example 10. Solving OLONs. Consider the program:

a ← not a, b b ← c c← not b, not a

which coincides with its residual. Solving a query for a, we use its rule and immediately
detect the OLON on a. The leaf not a is removed; the rest of the body {b} is kept as
the Context under which the OLON on a is “active” — if b were to be false there would
be no need to solve the OLON on a’s rule. After all OLONs have been solved, we use
the Contexts to create new rules that preserve the meaning of the original ones, except
these new ones have no dependency on OLONs. The current Context for a is now just
{b} instead of the original {not a, b}.

Solving now a query for b, we go on to solve c — {c} is b’s current Context. Solving
c we find leaf not b. We remove c from b’s Context, and add c’s body {not b, not a} to
it. The OLON on b is detected and the not b is removed from b’s Context which finally
is just {not a}. As it can be seen so far, updating Contexts is similar to performing a
Partial Evaluation plus OLON detection and resolution by removing the dependency
on the OLON. The new rule for b has its final Context {not a} as body. I.e., the new
rule for b is b ← not a. Again, continuing a’s final Context calculation, we remove b
from a’s Context and add {not a} to it. This additional OLON is detected and not a
is removed from a’s Context which now becomes empty. Since we already exhausted
a’s dependency call-graph, the final body for the new rule for a is now empty: a will
be added as a fact. Moreover, a new rule for b will be added: b ← not a. Final program
sent to Smodels:

a ← not a, b a b ← c b ← not a c← not b, not a

it has only one SM = {a} the only LM of the program. Mark layering is respected
when solving OLONs: a’s final rule depends on the answer to b’s final rule.

Dealing with Integrity Constraints. ICs are written as just falsum ← IC_Body.
not falsum is conjoined to the user’s query causing the ICs to be included in the
residual program which is then sent to Smodels.

Interaction with Smodels. When the meta-interpreter reaches the point where all the
relevant OLONs have been successfully and consistently solved, all OLONs resolutions
are incorporated in the residual program as new rules which do not depend on any
OLONs.

Another two rules are added to the Smodels clause store: one creates an auxiliary rule
for the initially posed query; with the form: lmGoal :- Query, where Query
is the query conjunct posed by the user. The second rule just prevents Smodels from
having any model where the lmGoal does not hold, having the form:

falsum :- not falsum, not lmGoal

This time, we deliberately create an OLON and send it to Smodels as a way of
creating an IC that prevents our top goal from being false. It is thence the Smodels
implementation the one responsible for solving the ELONs. Notice that since all the
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OLONs resolutions have added new alternative rules that do not depend on any OLONs
to the residual program, all the OLONs become now “harmless” in what the SMs are
concerned. The OLONs became inactive, already solved in favour of their positive head
— cf. [14]. XSB’s XASP communication with Smodels permits the programmer to
use a “Smodels clause store” to which several rules can be added. This clause store is
then sent to Smodels which will consider only those rules when computing a model.
After adding all the original residual relevant rules, and also the newly created rules
(with the OLON-dependency-free-Contexts as bodies) to the Smodels clause store, the
SMs of the stored program are obtained by asking Smodels to compute one model
(and on backtracking to compute others, if we so wish). All of this is encapsulated
by predicate getOneSM(-Clauses,+SM). The SM obtained is a partial LM of the
original program containing only the literals relevant for the query.

Pseudo-Code for the Query-Solving Engine. Next we present, in a succinct way, the
pseudo-code for the main procedure of our query-solving engine.

lmquery(+QueryList, -RelevantPartialLM) :-
1. Compute the residual part of the program relevant for

the query
2. Select and remove the first literal from query and add

it to the ancestors list
3. If an OLON is detected in the ancestors list

3.1. Subtract the ancestors from the current Context
3.2. Create a new rule for the head of the OLON

whose body is the current Context
else
3.3. Pick one rule for the selected literal and add

its body to the current Context
endif

4. Send the residual relevant part of the program, plus
the newly created rule to Smodels

5. Get one Stable Model as the RelevantPartialLM

The source code for this implementation of the LM meta-interpreter can be found at
http://centria.di.fct.unl.pt/∼amp/software/ software.html.
Examples and usage instructions are also available on this web page.

8 Conclusions and Future Work

Having defined a more general 2-valued semantics for NLPs much remains to be ex-
plored, in the way of properties, complexity, comparisons (namely with the likely equiv-
alent Revised Stable Models[14], where more examples, including practical ones, can
be found), implementations, and applications, contrasting its use to other semantics em-
ployed heretofore for KRR, though SM has been compared often enough.

That the LM semantics includes the SM semantics and that it always exists and ad-
mits top-down querying is a novelty making us look anew at 2-valued semantics use
in KRR. LMs’ implementation, because of its relevance property, can avoid the need

http://centria.di.fct.unl.pt/$sim $amp/software/software.html
http://centria.di.fct.unl.pt/$sim $amp/software/software.html
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to compute whole models and all models, and hence SM’s apodictic need for complete
groundness and the difficulties it begets for problem representation. Moreover, abstract
partial models, instead of ground ones, may be produced directly by the residual, a sub-
ject for further investigation. An efficient engine level implementation is underway at
XSB-engine level, that we intend to make a practical and usable alternative to Smodels
[13] or DLV [5], where these can be replaced with advantage. This second implemen-
tation will include abduction [1], as well as constructive negation mechanisms [12].

The above reported convivial hybrid implementation of LMs and SMs, demonstrates
the usefulness and praticality of a NLP semantics, and attending mechanisms, promot-
ing a best of both worlds stance, and attract closer together the LP communities. The
applications afforded by LMs are all those of SMs, which it extends, plus those re-
quiring OLONs for model existance, and those where OLONs actually are employed
for problem representation. The guarantee of model existance is essential in applica-
tions where knowledge sources are diverse (like in the semantic web), and where the
bringing together of such knowledge (automatically or not) can give rise to OLONs
that would otherwise prevent the resulting program from having a semantics, thereby
brusquely terminating the application. A similar situation can be brought about by self-
and mutually-updating programs, including in the learning setting, where unforeseen
OLONs would stop short an ongoing process if the SM semantics were in use. Finally,
codings of ICs via odd loops in SM semantcs found in the literature can be readily
transposed to IC coding in LM semantics.Hence, apparently there is only to gain in
exploring the adept move from SMs to their more general extension of LMs.

Another topic for future work is exploring the definition of a Well-Founded Layered
Model (WFLM). In a nutshell, the WFLM is a partial model which, at each layer, is
the intersection of the all LMs. Floating conclusions are disallowed by this definition.
Incidental to this topic is the relationship of the WFLM to O-semantics [15]. It is readily
apparent that the former extends the latter.

Yet another topic consists in defining partial model schemas, that can provide an-
swers to queries in terms of abstract non-ground model schemas encompassing several
instances of ground partial models. This is closely related to consistent abduction of
non-ground literals.
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Abstract. This paper identifies potential security loopholes in the im-
plementation of support for meta-predicates. Closing these loopholes de-
pends on three conditions: a clear distinction between closures and goals,
support for an extended meta-predicate directive that allows the specifi-
cation of closures, and the availability of the call/2-N family of built-in
meta-predicates. These conditions provide the basis for a set of simple
safety rules that allows meta-predicates to be securely supported. These
safety rules are currently implemented by Logtalk, an object-oriented
logic programming language, and may also be applied in the context of
Prolog predicate-based module systems. Experimental results illustrate
how these rules can prevent several security problems, including acciden-
tal or malicious changes to the original meta-predicate arguments and
bypassing of predicate scope rules and predicate scope directives.

Keywords: Logic-programming, meta-predicates, security.

1 Introduction

Prolog and Logtalk [1,2] meta-predicates are predicates with one or more ar-
guments that are called as goals on the body of a predicate clause. A typical
example is the findall/3 predicate whose second argument is used for generating
solutions that are collected into a list. Meta-arguments may also be closures. In
the context of this paper, a closure is defined as a callable term used to construct
a goal by appending one or more arguments. The archetypal example is a list
mapping predicate that succeeds when a closure can be successfully applied to
each element in the list. Meta-predicates are particularly useful in the presence
of an encapsulation mechanism such as a module system or an object-oriented
extension. Defining an exported or public meta-predicate within a module or an
object allows client modules and objects to reuse predicates customized by calls
to local predicates.

Meta-predicates require special care in the context of Prolog module sys-
tems and object-oriented extensions as meta-calls must be executed in the meta-
predicate calling context and not in the meta-predicate definition context.
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A recent paper [3] showed that the implementation of meta-predicates found
in most Prolog predicate-based module systems allows a module to call non-
exported predicates of another module, thus breaking encapsulation. This prob-
lem is usually absent from atom-based module systems such as XSB [4] where
atoms, including predicate functors, are internally tagged with the definition
module. The lack of enforcement of module encapsulation can, however, be
thought as a consequence of the original design goals of module systems. Tradi-
tional Prolog module systems never aimed to fulfill any security role, being de-
signed instead as a simple solution for partitioning code in different namespaces.
Moreover, in most Prolog module systems, any module predicate can be called
by using explicit module qualification (Ciao [5,6] and ECLiPSe [7] are notable
exceptions, only allowing calls to exported module predicates). Prolog extensions
such as Logtalk, however, are designed to enforce encapsulation and predicate
scope rules. In this case, meta-predicates must be properly supported without
the danger of providing the means of accidental or malicious bypassing of predi-
cate scope directives. The same paper also exposed flaws in the Logtalk support
of meta-predicates which allowed bypassing of predicate scope directives. These
flaws resulted from clever use of closures and from unsafe handling of goal ex-
ecution context in the presence of meta-calls. During our research to correct
these problems, we uncovered other meta-predicate implementation flaws that
are not necessarily related to bypassing of predicate scope directives. In fact,
potential loopholes exist that may allow accidental or carefully crafted meta-
predicate definitions to change the original meta-predicate call. These changes
may allow calling a different predicate in the calling context or calling the in-
tended predicate with corrupted arguments. Calling a predicate different from
the one specified in the original meta-predicate call is always a flaw, even when
the called predicate is public or exported. Corrupting the original meta-predicate
arguments can be done conditionally, resulting in hard to find problems as only
specific usage patterns will lead to compromised results.

Correcting these flaws can be accomplished by finding and implementing a
set of safety rules that ensures secure compilation and use of meta-predicates.
Although our research takes place in the context of the Logtalk programming
language, these safety rules are equally relevant in the context of predicate-
based Prolog module systems (the proposed safety rules are not tied to the
semantic differences between objects and modules). These safety rules are useful
even in the context of module systems that allow the :/2 control construct
to bypass predicate scope rules, promoting better coding standards for meta-
predicate definitions.

This paper is organized as follows. Section 2 describes an extended meta-
predicate declaration directive, which supports the specification of both goals
and closures as meta-arguments. Section 3 discusses how meta-calls can be con-
structed from closures. Section 4 enumerates potential loopholes in the imple-
mentation of meta-predicate support. Section 5 presents and discusses the safety
rules applied by Logtalk to compile and execute meta-predicates. Section 6
identifies limitations imposed by our safety rules on meta-predicate definitions.



Secure Implementation of Meta-predicates 271

Section 7 presents experimental results in testing common Prolog module sys-
tems for the loopholes discussed in this paper. Section 8 presents our conclusions
on safe compilation and use of meta-predicates, together with some remarks on
the importance of increasing the awareness of security issues among the Logic
Programming community.

2 Extended Meta-predicate Directive

User meta-predicates are declared using meta-predicate directives. These di-
rectives use a meta-predicate template to specify which arguments are meta-
arguments, i.e. which arguments will be used as goals or closures in the body
of the meta-predicate clauses. In plain Prolog, meta-predicate directives are op-
tional and primarily useful for cross-reference tools. When module or object
systems are present, meta-predicates directives are required for proper compila-
tion of meta-predicates. An example of a Logtalk meta-predicate directive where
the meta-arguments are goals is:

:- meta_predicate(findall(*, ::, *)).

In meta-predicate templates, the atom :: represents a meta-argument that will
be called as a goal. Normal arguments are represented by the atom *. This is
similar to the declaration of meta-predicates found in most Prolog compilers and
in the ISO Prolog standard for modules [8] (the atom :: is used instead of the
atom : for consistency with the Logtalk message sending operators). A positive
integer, N, specifies a closure that will be used to construct a call by appending
N arguments. For example:

| ?- map(double, [1, 2, 3], L).
L = [2, 4, 6]
yes

The corresponding meta predicate/1 directive would be:

:- meta_predicate(map(2, *, *)).

The first argument in the map/3 template specifies that the meta-argument is a
closure that will be used to construct a meta-call by appending two arguments.
In the example above, this requires the existence of a double/2 predicate in the
calling context of the meta-predicate.

The use of non-negative integers to specify closures was first introduced in
Quintus Prolog [9] for providing information to predicate cross-reference tools.
A description of this usage can also be found on a recent Prolog standardization
proposal [10]. Other Prolog compilers, such as SICStus Prolog [11] and YAP [12],
also accept this notation for compatibility with existing code. As discussed later
in this paper, the support for specifying closures in meta-predicate directives is
essential to ensure safe compilation and use of meta-predicates. The Ciao Prolog
system defines an alternative but equivalent syntax for specifying closures, using
a compound term pred(I) where I is the number of extra arguments.
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3 From Closures to Meta-calls

Given a closure and its additional arguments, the corresponding meta-call is
constructed by appending the extra arguments to the existing ones. Although it
is always possible to use the standard predicate =../2 and a list append predicate
to construct the meta-call, the preferable and simpler solution is to use the call/N
family of built-in meta-predicates found in Logtalk and in most Prolog compilers.
The first argument of these predicates must be a closure, with the remaining
arguments being interpreted as the closure extra arguments. For example, the
query call(integer, 3) is equivalent to the query integer(3). These predicates
provide improved performance when compared with the explicit construction of
meta-calls (which requires building temporary lists).

As discussed later in the paper, the use of the call/N family of built-in meta-
predicates is mandatory when working with closures as they avoid the introduc-
tion of new variables to explicitly represent the constructed meta-calls.

4 Potential Meta-predicate Loopholes

When reasoning about meta-predicate semantics, it is helpful to define a set of
terms which helps us visualize how and where meta-calls take place:

Definition context. This is the object or module containing the meta-predicate
definition.

Calling context. This is the object or module from which a meta-predicate is
called. This can be the object or module where the meta-predicate is defined
in the case of a local call or another object or module assuming that the
meta-predicate is within scope.

Execution context. This comprises both the calling context and the definition
context. It includes all the information needed for the language runtime to
execute a meta-predicate call.

Our research is focused on three potential loopholes when implementing meta-
predicate support. The first loophole can be exploited to corrupt the original
meta-arguments when a meta-predicate is executed:

Making malicious changes to meta-arguments. Using unification with the
meta-arguments may allow a meta-predicate to test for specific goals and clo-
sures and modify them before making the corresponding meta-calls. This po-
tential loophole can be exploited by testing only for some very specific usage
patterns, thus making its detection harder.

The two following loopholes can be exploited to bypass predicate scope directives
or to break predicate scope rules. In the case of Logtalk, predicate scope rules
are supported using predicate scope directives (object predicates are private by
default). In the case of Prolog module systems, it should not be possible to call
non-exported predicates from client modules.
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Hijacking of the predicate execution context. Hijacking a predicate exe-
cution context may allow a meta-predicate to gain access to predicates within
the calling context other than the ones specified in the meta-predicate call.

Using closures for constructing unintended meta-calls. A potential loop-
hole exists when appending additional arguments to a closure in order to con-
struct a meta-call. This loophole can be exploited by constructing a call to a
predicate with the same functor of the closure but with an arity different to
that intended by the caller of the meta-predicate.

5 Compiling Meta-predicates for Safety

This section describes four safety rules, illustrated with examples,1 intended
to close the loopholes discussed above in the context of predicate-based encap-
sulation module and object systems. The ideal rules would allow catching all
problems at compile time. Unfortunately, as we will illustrate in this section,
this is not always possible. Some deceiving meta-predicates definitions consti-
tute perfectly valid code; the potential for trouble resulting only from the use
of such definitions. For these cases, the compiler can still print a warning. At
runtime, our safety rules ensure that any inappropriate use of a meta-predicate
definition is caught by generating an appropriate exception.

The first two rules check for the context for meta-predicate calls. The last two
rules check for the consistency of meta-predicate directives and the consistency
between meta-predicate directives and meta-calls. The rules presentation is con-
ceptual: actual implementations may choose to combine the first and second
rules and combine the third and fourth rules. The first three rules are expected
to be implemented at the compiler level. The fourth rule may be implemented
instead in a programming code style or policy checker.

(a) The meta-arguments on a meta-predicate clause head must be variables.

This simple rule helps to prevent a meta-predicate from modifying the original
arguments of a meta-call. By testing and acting upon the actual meta-arguments,
a meta-predicate could try to make a meta-call different from the original one
to be executed in the calling context. Consider the following example (a):

:- object(library).

:- public(map/3).
:- meta_predicate(map(*, 2, *)).
map(In, scale(_), Out) :-

!, map_(In, scale(3), Out).
map(In, Closure, Out) :-

map_(In, Closure, Out).

1 These examples use Logtalk objects. Converting them to Prolog modules requires
replacing object directives with module directives, removing the explicit predicate
scope directives, and rewriting the meta-predicate directives.
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:- meta_predicate(map_(*, 2, *)).
map_([], _, []).
map_([X| Xs], Closure, [Y| Ys]) :-

call(Closure, X, Y),
map_(Xs, Closure, Ys).

:- end_object.

The map/3 meta-predicate in this library object behaves as expected except when
the closure argument unifies with the term scale( ). In this case, the original
predicate argument is simply ignored and replaced by a fixed value. Assume now
that we define the following client object:

:- object(client).

:- public(double/2).
double(Ints, Doubles) :-

library::map(Ints, scale(2), Doubles).

scale(Scale, X, Xscaled) :-
Xscaled is X*Scale.

:- end_object.

In the absence of this safety rule, the compromised behavior of the map/3 meta-
predicate could be illustrated by the following goal:

| ?- client::double([1,2,3], Doubles).
Doubles = [3,6,9]
yes

By implementing this safety rule, Logtalk generates a compile time error2 for
the first clause of the map/3 predicate in the library object:

type_error(variable, scale(_))

This rule is, however, easy to circumvent by simply moving the unification from
the meta-predicate clause head into the clause body. The meta-predicate map/3

in the example above can be easily rewritten as:

map(In, Closure, Out) :-
( Closure = scale(_) ->

map_(In, scale(3), Out)
; map_(In, Closure, Out)
).

Despite this weakness, there are three reasons to include this rule. First, it pro-
vides a necessary condition for the second safety rule, described next. Second,
rule violations result in compile time errors, which are always preferable to run-
time errors. Third, it is trivial to implement: the compiler can apply it before
any other rule by simply checking the meta-arguments in the clause heads.
2 Arguably, this error is more of a representation error than a type error; nevertheless,

we decided to follow the practice established by the current ISO Prolog standard.
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(b) Meta-calls whose arguments are not variables appearing in meta-argument
positions in the clause head must be compiled as calls to local predicates.

This rule applies to the compilation of both meta-predicates and normal predi-
cates. It prevents hijacking of the execution context, which could otherwise be
used to call predicates in the calling context not passed as meta-arguments. This
problem can occur with e.g. a naive implementation of execution context passing
from a clause head to the goals in the clause body.

This rule is trivial to implement when compiling clauses of normal predicates:
any meta-call in a clause body must be compiled as a local meta-call. This rule
is also easy to implement when compiling clauses of meta-predicates since the
corresponding meta-predicate directive is mandatory.

As a consequence of this rule, when a meta-predicate calls a second meta-
predicate, the meta-arguments executed in the calling context will be strictly the
ones coming from the call to the first meta-predicate. That is, the programmer
cannot use a second meta-predicate to construct a meta-call different from the
one intended by the original caller of the meta-predicate. Consider the following
example (b1):

:- object(library).

:- public(meta/2).
:- meta_predicate(meta(::, ::)).
meta(Goal1, Goal2) :-

call(Goal1), call(Goal2).

:- public(meta/1).
:- meta_predicate(meta(::)).
meta(Goal1) :-

meta(Goal1, local).

local :-
write(’local predicate in object library’), nl.

:- end_object.

The rule requires that client calls to the meta/1 predicate must result in the
interpretation of local/0 as a call to a local predicate, thus executed in the
context of the object library. We use the following client object to illustrate the
correct behavior:

:- object(client).

:- public(test/0).
test :-

library::meta(goal).

goal :-
write(’goal meta-argument in object client’), nl.
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local :-
write(’local predicate in object client’), nl.

:- end_object.

This safety rule will ensure the following result:

| ?- client::test.
goal meta-argument in object client
local predicate in object library
yes

Meta-calls can also appear in the body of normal predicates. This rule ensures
that an object cannot hijack the execution context of the original, non meta-
predicate call and use it through a local meta-predicate to construct arbitrary
calls to predicates in the calling context. Therefore, we cannot convert a normal
argument into a meta-argument by calling a local meta-predicate. Consider the
following simplified version of an example found in [3] (b2):

:- object(library).

:- meta_predicate(meta(::)).
meta(Goal) :-

call(Goal).

:- public(normal/1).
normal(Arg) :-

meta(Arg).

:- end_object.

In this case, the argument in the meta-predicate call, Arg, must be interpreted
as a local meta-call. Consider now the following client object:

:- object(client).

:- public(test/0).
test :-

library::normal(term).

term :-
write(’Some local, private predicate.’).

:- end_object.

This safety rule will ensure the following result:

| ?- catch(client::test, E, write(E)).
E = error(existence_error(procedure,term), context(object,library,_))
yes
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Therefore, the predicate term/0 in the object client (which is the calling context
for the normal/1 predicate) will not be called.

Although the two examples above make use of additional user-defined meta-
predicates whose meta-arguments are goals, the rule also applies when working
with closures and when calling built-in meta-predicates. For example, consider
the following tentative exploit (b3) using the call/1 built-in meta-predicate and a
meta-predicate definition that does not comply with the corresponding directive
(as two arguments are appended to the closure instead of one):

:- object(library).

:- public(m/2).
:- meta_predicate(m(1, *)).
m(Closure, Arg) :-

Closure =.. List,
list::append(List, [Arg, _], NewList),
Call =.. NewList,
call(Call).

:- end_object.

With this safety rule in place, the meta-call call(Call) above is compiled as a
local meta-call since the variable Call does not occur in the head of the meta-
predicate clause in a meta-argument position. The following definition of a simple
client object illustrates the consequences of the meta-predicate definition above:

:- object(client).

:- public(test/1).
test(X) :-

library::m(a, X).

a(1). a(2).

a(3, three). a(4, four).

:- end_object.

After compiling and loading these two objects, an example test query would be:

?- catch(client::test(X), E, true).
E = error(existence_error(procedure, a/2), context(object, library,_))
yes

As the exception term shows, the meta-call is compiled and executed as a local
call in the context of the library object. Without this safety rule in place, a
faulty implementation would wrongly call the predicate a/2 defined in the object
client:
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?- catch(client::test(X), E, true).
X = 3 ;
X = 4
yes

The above example shows that meta-predicates with meta-arguments that are
closures cannot be defined using call/1 calls as explicitly constructing the meta-
call from the closure results in a new variable not occurring in the clause head. It
follows that the use of the call/2-N built-in predicates is mandatory for defining
meta-predicates that work with closures. This is subsumed by the third rule:

(c) Meta-predicate closures must be used within a call/2-N built-in predicate
call that complies with the corresponding meta-predicate directive.

The number of additional arguments appended to a closure in a call/2-N call
must comply with the meta-predicate declaration; simply ensuring that a closure
is a variable occurring in a meta-argument position is not a sufficient condition.
This rule ensures that a meta-predicate cannot construct a predicate call with
the same functor but with a different arity of the original meta-argument. For
example, a meta-predicate definition (c) such as:

:- meta_predicate(map(1, *)).
map(Closure, [Element| Rest]) :-

..., call(Closure, Element, Result), ...

would result in the following compile time error:

arity_mismatch(closure, call(map, Element, Result), map(1, *))

The call/3 meta-call in this example does not comply with the meta-predicate
specification, which requires a single additional argument. In fact, the actual
meta-call would not be the one that the programmer intended when calling the
meta-predicate. Moreover, the call could correspond either to a predicate in the
calling context that is not within scope of the meta-predicate definition context
or to a non-existing predicate (which would result in a runtime existence error).

(d) The meta-predicate arity should be equal to the sum of the extra arguments
specified by each closure plus the number of normal, non meta-arguments.

Assume that we correct the meta-predicate directive used to illustrate the pre-
vious rule in order to be consistent with the call/2-N call by writing (d):

:- meta_predicate(map(2, *)).

Trying to compile the updated code would result in the following error:

arity_mismatch(closure, map(Closure, [Element| Rest]), map(2, *))

This error results from the meta-predicate directive specifying a closure requir-
ing two extra arguments while only one normal argument is declared. This is
potentially misleading for a client that may expect the library meta-predicate
to call a unary predicate based on the meta-predicate arity.
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6 Known Limitations

6.1 Closures with a Variable Number of Arguments

The proposed safety rules and the extended meta-predicate directive do not
support the specification of meta-predicates that allow a variable number of
arguments to be appended to a closure. This restriction makes some common
meta-predicates such as apply/2 useless as a public or exported predicate. The
usual definition of this predicate is:

apply(Closure, Args) :-
Closure =.. List,
append(List, Args, NewList),
Call =.. NewList,
call(Goal).

As the variable Goal is not a meta-argument in the clause head, the meta-call
call(Goal) is compiled as a call to a local predicate (as per the second safety
rule) and not as a call to a predicate in the calling context of the meta-predicate.
This restriction is not considered, however, a serious limitation as the number
of extra closure arguments is usually known a priori, therefore allowing the use
of the call/2-N built-in meta-predicates.

6.2 Meta-predicates Implemented in Foreign Code

Prolog compilers often include libraries with predicates implemented using a
foreign language interface. It is also possible to implement meta-predicates this
way. A common example is the implementation of callbacks to Prolog code in
the context of GUI extensions (see e.g. the SWI-Prolog XPCE package [13]). In
this case, the verification of the safety rules described in the previous section
would require manual verification of the source code in the foreign language. It
should be noted, however, that the use of foreign language resources rises its
own set of security issues that goes well beyond meta-predicates issues.

7 Prolog Module Systems

In this section, we test five Prolog compilers for the potential meta-predicates
loopholes described earlier: Ciao 1.10#8, ECLiPSe 5.10#141, SICStus Prolog
4.0.2, SWI-Prolog 5.6.59, and YAP 5.1.3. Although there are other Prolog com-
pilers supporting predicate-based module systems, we believe this is a represen-
tative set of module implementation solutions.

Our experiments are complicated by two problems. First, the details of the
module versions of the examples in Section 4 differ for each compiler due to the
lack of a de-facto standard for Prolog module systems.3 In particular, the five
3 The full source code used in the examples for both Logtalk and the tested Prolog

compilers is available at http://logtalk.org/papers/simp/mptests.tar.gz

http://logtalk.org/papers/simp/mptests.tar.gz
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tested systems provide three different materializations of a meta-predicate decla-
ration directive. Second, the documentation of the Prolog module systems often
forces us to resort to experimentation in order to find out the exact operational
semantics of modules, meta-predicate directives, and meta-calls.

The experimental results are presented in Table 1. In this table, a value of
N/A means that the meta predicate/1 directive or its equivalent does not support
the specification of meta-predicate templates. The results for the example (d)

indicate if a Prolog compiler checks for the consistency between meta-predicate
directives and the number of extra arguments required by the declared closures.
This consistency check should result, at least, in a compilation warning but it is
not performed by any of the tested Prolog compilers.

Table 1. Experimental results for the safety rule examples

Examples Ciao ECLiPSe SICStus SWI (mp) SWI (mt) YAP
(a1) ok wrong ok wrong wrong ok
(a2) ok ok wrong ok ok wrong
(b1) ok wrong ok wrong wrong ok
(b1) ok wrong ok wrong wrong ok
(b2) ok ok ok wrong ok ok
(b3) ok wrong wrong wrong wrong wrong
(c) ok N/A wrong wrong N/A wrong
(d) wrong wrong wrong wrong wrong wrong

The conversion of the Logtalk example (a) into Prolog module code rises an
interesting issue with the module systems of SICStus Prolog and YAP. These sys-
tems expand meta-arguments in goals appearing in the body of meta-predicate
clauses but not in the head of meta-predicate clauses. As a consequence, the first
clause of the map/3 is never used, making the test result for these Prolog compilers
misleading. One workaround is to rewrite this clause using explicit module qual-
ification, which allows all the clauses to be used. Although this rewrite defeats
the purpose of the meta-predicate directive, it is also a possible exploit vector.
Therefore, we chose to split the example (a) in two tests. Test (a1) uses the same
exact clauses as in example (a). Test (a2) uses explicit module qualification for
the scale/1 arguments in the first clause of the meta-predicate map/3.

The results for test (a2) are interesting and a bit surprising. While the results
for SICStus Prolog and YAP are expected, the changes in test (a2) allow both
ECLiPSe and SWI-Prolog to return correct results, reversing the bad score in
test (a1) (it is worth noting that the module systems of ECLiPSe and SWI-
Prolog are distinct). The Ciao compiler is not fooled by these tricks.

Another interesting result concerns the (b2) and (b3) examples of our second
security rule, (b). All compilers behaved correctly in example (b2). However,
with the exception of Ciao, all compilers provided a wrong answer for example
(b3), allowing access to a private predicate, a/2, in the client module, instead of
restricting the access to the predicate a/1 used as argument in the meta-predicate
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call. In this case, these Prolog compilers acted properly when meta-arguments
are goals but not when the meta-arguments are closures.

Some brief, Prolog compiler-specific comments about the results follow:

Ciao. This is the only tested Prolog compiler that disallows writing meta-
predicate directives inconsistent with the meta-predicate definitions. It is also
the Prolog compiler that scored the best test results (as expected, giving the
emphasis by Ciao developers in static code analysis). The test results for the
third example of our second security rule (b3) are particularly interesting. The
Ciao compiler correctly catches our attempts to specify a closure with a single
extra argument while, at the same time, defining the meta-predicate to call the
closure with two extra arguments.4 Correcting the meta-predicate directive to
specify a closure with two extra arguments, however, results in the definition
of a meta-predicate that only allows a single extra argument to be passed. The
Ciao compiler fails to warn the user of this potential problem when compiling
the example (d).

ECLiPSE. This compiler does not provide a meta predicate/1 directive, re-
lying instead on a proprietary tool/2 directive whose arguments are predicate
indicators. Thus, this directive does not allow the programmer to define meta-
predicate templates. The test examples are modified to use the tool/2 directive
and the built-in predicate @/2 as suggested in the ECLiPSe documentation.

SICStus Prolog. This compiler allows the specification of closures in the direc-
tive meta predicate/1 but only for compatibility with existing code. Correcting
the directive in the test example (b3) to make it consistent with the meta-
predicate definition does not lead to a correct answer.

SWI-Prolog. We present two sets of results for SWI-Prolog. The first set, mp,
uses an emulation of the meta predicate/1 directive provided in the compatibility
libraries distributed with SWI-Prolog. The second set, mt, uses the SWI-Prolog
native directive module transparent/1 whose argument is a predicate indicator.
Therefore, it does not allow the programmer to define meta-predicate templates.
We are discussing with the main SWI-Prolog developer the possible implemen-
tation of our safety rules as a component of a general style or policy checker,
integrated with the current cross-referencer tool. This would allow existing code
to be checked for possible violations without the danger of breaking it.

YAP. Similarly to SICStus Prolog, YAP accepts the specification of closures
in the meta predicate/1 directive but only for compatibility with existing code.
Correcting the directive in the example (b3) to match the meta-predicate defin-
ition does not result in a correct answer. The safety rules described in this paper
are expected to be implemented in a forthcoming version of YAP. Their use is
expected to be optional, enabled by a Prolog compiler flag.
4 There is a typo in the Ciao documentation of the meta-predicate specification for clo-

sures. The notation pred(N) indicates the number of extra arguments, with the
closure being used within a call/N+1 predicate, not within a call/N predicate
as described in the documentation.
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8 Discussion and Conclusions

The safety rules described in this paper fix all known flaws on the Logtalk
support for meta-predicates.5 These rules may also be adapted and applied in
the context of predicate-based Prolog module systems in order to correct the
flaws uncovered by our experiments. However, given the syntactic and semantic
differences among the implementations of Prolog modules systems, the existence
of other loopholes is to be expected. Nevertheless, the lack of a formal guarantee
that the proposed rules close all loopholes in current implementations should
not excuse not fixing the known loopholes.

The safety rules are easy to implement and computationally inexpensive, as
exemplified in the current Logtalk compiler implementation. These rules enjoy
the nice property of all the required computations being performed at compile
time. In the worst case, some of the rules imply that the use of a flawed meta-
predicate definition results in a runtime exception due to the meta-calls being
compiled as calls to local predicates and not as calls in the meta-predicate call-
ing context. This is an unfortunate consequence of the fact that some safety
violations only occur when using meta-predicate definitions that, per se, con-
stitute perfectly valid code. It follows that the worst case cannot be improved
by finding stronger compiler checking rules. At best, the compiler could issue a
warning when compiling a public meta-predicate whose meta-calls are compiled
as a local calls for safety reasons.

The extended meta predicate/1 directive described in this paper provides es-
sential information for preventing misuse of closures. We show that specifying
closures using positive integers is not just an optional feature, useful for cross-
reference and documenting tools or for compatibility reasons, but a necessary
feature for safe compilation and use of meta-predicates.

Calls constructed from closures must be made by using the call/2-N built-in
predicates. This allows the consistency between the meta-predicate directives
and definitions to be checked at compile time, preventing loopholes when ap-
pending arguments to a closure in order to construct a meta-call. The call/2-N

family of built-in predicates is already provided by most Prolog compilers and
is included in the current draft of the ISO Prolog Core revision standardization
proposal.6

There is currently no formal proof that the described safety rules are sufficient
to prevent highjacking of predicate execution context and the misuse of closures
in the context of Logtalk. In the case of Prolog module systems each module
system needs a proof, as there is no de-facto standard. These proofs would need
to be based on formal descriptions of the module systems, to be provided by
their authors; these descriptions are beyond the scope of this paper.

5 All the safety rules are implemented by the Logtalk compiler since version 2.30.6.
6 In the case of Logtalk, although its current version uses a Prolog system as a back-end

compiler, its implementation of the call/2-N built-in predicate does not depend
on the availability of the call/2-N Prolog built-in predicates.
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The problems described in this paper are representative of what can go wrong
when using meta-predicates in field applications where security is a basic require-
ment. It is worth noting that the flaws described in this paper are not always
evident from a quick inspection of compromised source code (which, by itself,
assumes its availability). Despite existing research on improving module systems
(see e.g. [3,6]), security concerns are often overlooked by Prolog implementors
and programmers. Secure implementation of meta-predicates is just one of the
topics where compilers and language runtimes must perform securely. In a sce-
nario of increasing industrial use of Prolog-based solutions, either in embedded
form or as stand-alone applications, preemptive thinking about security issues
is necessary. In this regard, the Prolog community is still far from the security
mindset found in other programing communities.
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