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Preface

HiPEAC 2009 was the fourth edition of the HiPEAC conference series. This con-
ference series is largely associated with the FP7 Network of Excellence HiPEAC2.
The first three editions of the conference in Barcelona (2005), Ghent (2007) and
Göteborg (2008) attracted a lot of interest with more than 200 attendees at the
last two editions and satellite events. It is a great privilege for us to welcome
you to the fourth HiPEAC conference in the beautiful, touristic city of Paphos,
Cyprus.

The offerings of this conference are rich and diverse. We offer attendees a set
of seven workshops on topics that are central to the HiPEAC network roadmap:
multi-cores, simulation and performance evaluation, compiler optimizations, de-
sign reliability, reconfigurable computing, and interconnection networks. Addi-
tionally, a tutorial on design reliability is offered.

The conference program was as rich as last year’s. It featured many important
and timely topics such as multi-core processors, reconfigurable systems, compiler
optimization, power-aware techniques and more. The conference also offered two
keynote speeches: Tilak Agerwala from IBM Research presenting the view from
a major industry player, and François Bodin from CAPS-Entreprise presenting
the view of a start-up.

There were several social activities during the conference offering ample op-
portunity for informal interaction. These included a reception, an excursion to
various archeological sites and a banquet at a traditional tavern.

This year we received 97 paper submissions, of which 14 were co-authored by a
Program Committee member. Papers were submitted from 20 different nations
(approximately 46% from Europe, 15% from Asia, 32% from North America,
4% from Africa and the Middle East, and 3% from South America), which is an
indicator of the global visibility of the conference.

We had the luxury of having a strong Program Committee consisting of 30
experts in all areas within the scope of the conference. Each paper was typically
reviewed by four Program Committee members and in those cases where there
was a divergence of views, additional external reviews were sought. In all, we
collected a total of 394 reviews and we were happy to note that each paper was
rigorously reviewed before we made our final decision.

The Program Committee meeting was held in the new Informatics Forum
building at the University of Edinburgh, UK. Despite a long trip for many mem-
bers of the Program Committee, 20 attended the meeting. For virtually all pa-
pers, at least two reviewers were present in person. Other members participated
actively by telephone. The Program Committee meeting was also preceded by
an e-mail discussion of papers among the reviewers.

At the Program Committee meeting the non-Program Committee-authored
papers were discussed in the order of average score. When a paper was discussed
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where a participating member was either a co-author or had conflicts with that
paper, that person left the room. Program Committee-authored papers were
discussed in a separate block of time, and order was randomized to give Program
Committee members minimal information about the ranking of their paper. At
the end, we accepted 27 papers of which 8 are Program Committee papers,
yielding an acceptance rate of 28%.

The end result of the whole effort was a high-quality and interesting program
for the HiPEAC 2009 event.

The planning of a conference starts well in advance. Were it not for the
unselfish and hard work of a large number of devoted individuals, this conference
would not have been as successful as it was. First of all, a special thanks goes
to Yanos Sazeides from the University of Cyprus, who took care of the local
organization and more. Without his dedication and hard work, this conference
could never have been organized. We would like to thank all the team that
worked to make this conference successful: Stefanos Kaxiras (Patras) for putting
together an attractive pre-conference program; Wouter De Raeve (Ghent), our
Finance Chair for running the books; Hans Vandierendonck (Ghent) for timely
publicity campaigns; Basher Shehan and Ralf Jahr (Augsburg) for the hard work
in putting together the proceedings; Michiel Ronsse (Ghent) for administering
the submission and review system; and finally Sylvie Detournay and Klaas Millet
(Ghent) for administering the Web. We would also like to thank Per Stenström,
Steering Committee Chair, and Koen De Bosschere, Chair of the HiPEAC2
network, for the advice they provided with us.

Thanks to all of you!
Finally, we would also like to mention the support from the Seventh Frame-

work Programme of the European Union, represented by project officer Panagi-
otis Tsarchopoulos, for sponsoring the event and for the travel grants.

October 2008 André Seznec
Joel Emer

Mike O’Boyle
Margaret Martonosi
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Parallel H.264 Decoding on an Embedded Multicore Processor . . . . . . . . . 404
Arnaldo Azevedo, Cor Meenderinck, Ben Juurlink, Andrei Terechko,
Jan Hoogerbrugge, Mauricio Alvarez, and Alex Ramirez

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419



Keynote: Challenges on the Road to Exascale
Computing

Tilak Agerwala

VP of Systems, IBM Research

Abstract. Supercomputing systems have made great strides in recent
years as the extensive computing needs of cutting-edge engineering work
and scientific discovery have driven the development of more powerful
systems. In 2008, we saw the arrival of the first petaflop machine, which
quickly topped the Top500 list, while also occupying the number one
position on the Green500 list. Historic trends indicate that in ten years,
we should be at the exascale level. We believe that applications in many
industries will be materially transformed by exascale systems and will
drive systems not just to 1000X in raw performance but to equally dra-
matic improvements in data intensive computing and real time stream
processing.

Meeting the exascale challenge will require significant innovation in
technology, architecture and programmability. Power is a fundamental
problem at all levels; traditional memory cost and performance are not
keeping pace with compute potential; the storage hierarchy will have to
be re-architected; networks will be a much bigger part of the system cost;
reliability at exascale levels will require a holistic approach to architec-
ture design, and programmability and ease-of-use will be an essential
component to extract the promised performance at the exascale level.

In this talk, I will discuss the major challenges of exascale computing,
touching on the areas of technology, architecture, reliability, program-
mability and usability.

Biography of Tilak Agerwala
Tilak Agerwala is vice president, Systems at IBM Research. He is re-
sponsible for developing the next-generation technologies for IBM’s sys-
tems, from microprocessors to commercial systems and supercomputers,
as well as novel supercomputing algorithms and applications. Dr. Ager-
wala joined IBM at the T.J. Watson Research Center and has held ex-
ecutive positions at IBM in research, advanced development, marketing
and business development. His research interests are in the area of high
performance computer architectures and systems. Dr. Agerwala received
the W. Wallace McDowell Award from the IEEE in 1998 for outstanding
contributions to the development of high performance computers. He is
a founding member of the IBM Academy of Technology. He is a Fel-
low of the Institute of Electrical and Electronics Engineers. He received
his B.Tech. in electrical engineering from the Indian Institute of Tech-
nology, Kanpur, India and his Ph.D. in electrical engineering from the
Johns Hopkins University, Baltimore, Maryland.

A. Seznec et al. (Eds.): HiPEAC 2009, LNCS 5409, p. 1, 2009.
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Keynote: Compilers in the Manycore Era

François Bodin

CTO, CAPS

Abstract. Homogeneous multicore processors such as the ones pro-
posed by Intel or AMD have become mainstream. However heterogeneous
architectures, such as multicore associated with GPUs or with any hard-
ware specialized co-processors usually offer a much higher peak perfor-
mance/power ratio. When high performance and power efficiency has to
be achieved, specialized hardware is often the way to go. Combining a
general-purpose multicore with a highly parallel coprocessor, e.g., GPU,
allows to both achieve high speedups on parallel sections while maintain-
ing high performance on control sections.

However, programming such heterogeneous architectures is quite a
challenge for any application developer. The embedded market has been
living with it for decades but at a very high programming cost. The
general-purpose computing is now entering this era.

Manycore performance opens HPC to many new scientific and con-
sumer applications. New multimedia, medical and scientific applications
will be developed by hundreds of thousands of engineers across the world.
These applications, usually provided by ISV, will have to be tuned for
thousands of various platform configurations built with different hard-
ware units such as CPUs, GPUs, accelerators, PCIx buses, memories,
etc., each configuration having its own performance profile. Furthermore,
in most manycore systems, applications are in competition at run-time
for hardware resources like the memory space of accelerators. If ignored
this can lead to a global performance slowdown.

The past of parallel programming is scattered with hundreds of par-
allel languages, most of them were designed to address homogeneous ar-
chitectures and concerned a small and well-trained community of HPC
programmers.

With the new diversity of parallel hardware platforms and the new
community of non-expert developers, expressing parallelism is not suf-
ficient anymore. Resources management, application deployment, and
portable performance are interconnected issues that require to be ad-
dressed holistically.

As many decisions should be taken according to the available hard-
ware, resources management cannot be moved apart from parallel pro-
gramming. Deploying applications on various systems without having to
deal with thousands of configurations is the main concern of ISVs. The
grail of parallel computing is to be able to provide portable performance
by making hardware changes transparent for a large set of machines and
fluctuating execution contexts.

Are general-purpose compilers obsolete?
Compilers are keystone solutions of any approaches that deal with

previous challenges. But general-purpose compilers try to embrace so

A. Seznec et al. (Eds.): HiPEAC 2009, LNCS 5409, pp. 2–3, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Keynote: Compilers in the Manycore Era 3

many domains and try to serve so many constraints that they frequently
fail to achieve very high performance. They need to be deeply revisited!

Recent techniques are showing promises. Iterative compilation tech-
niques, exploiting the large CPU cycle count now available on every
PC, can be used to explore the optimization space at compile-time. Sec-
ond, machine-learning techniques, e.g. Milepost project (http://www.
milepost.eu/), can be used to automatically improve code generation
compilers strategies. Speculation can be used to deal with necessary but
missing information at compile-time. Finally, dynamic techniques can
select or generate at run-time the most efficient code adapted to the
execution context and available hardware resources.

Future compilers will benefit from past research, but they will also
need to combine static and dynamic techniques. Moreover, domain spe-
cific approaches might be needed to ensure success.

Biography of François Bodin
François Bodin cofounded CAPS (www.caps-entreprise.com) in 2002
while he was a Professor at University of Rennes I and since January
2008 he joined the company as CTO. His contribution includes new ap-
proaches for exploiting high performance processors in scientific com-
puting and in embedded applications. Prior to joining CAPS, François
Bodin held various research positions at University of Rennes I and at
the INRIA research lab. He has published over 60 papers in international
journals and conferences and he has supervised over 15 PhD thesis. Pro-
fessor François Bodin holds a Master’s in CS and a PhD in CS, both
from University of Rennes I.



Steal-on-Abort: Improving Transactional
Memory Performance through Dynamic

Transaction Reordering

Mohammad Ansari, Mikel Luján, Christos Kotselidis, Kim Jarvis,
Chris Kirkham, and Ian Watson

The University of Manchester
{ansari,mikel,kotselidis,jarvis,chris,watson}@cs.manchester.ac.uk

Abstract. In transactional memory, aborted transactions reduce per-
formance, and waste computing resources. Ideally, concurrent execution
of transactions should be optimally ordered to minimise aborts, but such
an ordering is often either complex, or unfeasible, to obtain.

This paper introduces a new technique called steal-on-abort, which
aims to improve transaction ordering at runtime. Suppose transactions
A and B conflict, and B is aborted. In general it is difficult to predict
this first conflict, but once observed, it is logical not to execute the two
transactions concurrently again. In steal-on-abort, the aborted transac-
tion B is stolen by its opponent transaction A, and queued behind A to
prevent concurrent execution of A and B. Without steal-on-abort, trans-
action B would typically have been restarted immediately, and possibly
had a repeat conflict with transaction A.

Steal-on-abort requires no application-specific information, modifica-
tion, or offline pre-processing. In this paper, it is evaluated using a sorted
linked list, red-black tree, STAMP-vacation, and Lee-TM. The evaluation
reveals steal-on-abort is highly effective at eliminating repeat conflicts,
which reduces the amount of computing resources wasted, and signifi-
cantly improves performance.

1 Introduction

In the future, software will need to be parallelised to take advantage of the
increasing number of cores in multi-core processors. Concurrent programming,
using explicit locking to ensure safe access to shared data, has been the domain
of experts, and is well-known for being challenging to build robust and cor-
rect software. Typical problems include data races, deadlock, livelock, priority
inversion, and convoying. The move to multi-cores requires adoption of concur-
rent programming by the majority of programmers, not just experts, and thus
simplifying it has become an important challenge.

Transactional Memory (TM) is a new concurrent programming model that
seeks to reduce programming effort, while maintaining or improving execution
performance, compared to explicit locking. TM research has surged due to the
need to simplify concurrent programming. In TM, programmers mark those

A. Seznec et al. (Eds.): HiPEAC 2009, LNCS 5409, pp. 4–18, 2009.
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Steal-on-Abort: Improving Transactional Memory Performance 5

blocks of code that access shared data as transactions, and safe access to shared
data by concurrently executing transactions is ensured implicitly (i.e. invisible
to the programmer) by the TM implementation.

The TM implementation compares each transaction’s data accesses against all
other transactions’ data accesses for conflicts. Conflicts occur when a transaction
has a) read a data element and another transaction attempts to write to it, or
b) written to a data element and another transaction attempts to read or write
to it. If conflicting data accesses are detected between any two transactions, one
of them is aborted, and usually restarted immediately. Selecting the transaction
to abort, or conflict resolution, is based upon a policy, sometimes referred to as
a contention management policy. If a transaction completes execution without
aborting, then it commits, which makes its changes to shared data visible to the
whole program.

Achieving scalability onmulti-core architectures requires, amongst other things,
the number of aborted transactions to be kept to a minimum. Aborted transactions
reduce performance, reduce scalability, and waste computing resources. Further-
more, in certain (update-in-place) TM implementations aborted transactions re-
quire extra computing resources to roll back the program to a consistent state.

The order in which transactions concurrently execute can affect the number
of aborts that occur, and thus affect performance. Although it may be possible
to determine an optimal order (or schedule) that minimises the number of aborts
given complete information a priori, in practice this is difficult to achieve. Often
complete information is impractical to obtain, simply not available for some
programs, e.g. due to dynamic transaction creation, or even if it is available, the
search space for computing the optimal order may be unfeasibly large.

This paper presents a new technique called steal-on-abort, which aims to
improve transaction ordering at runtime. When a transaction is aborted, it is
typically restarted immediately. However, due to close temporal locality, the im-
mediately restarted transaction may repeat its conflict with the original trans-
action, leading to another aborted transaction. Steal-on-abort targets such a
scenario: the transaction that is aborted is not restarted immediately, but in-
stead ‘stolen’ by the opponent transaction, and queued behind it. This prevents
the two transactions from conflicting again.

Crucially, steal-on-abort requires no application-specific information or con-
figuration, and requires no offline pre-processing. Steal-on-abort is implemented
in DSTM2 [1], a Software TM (STM) implementation, and evaluated using a
sorted linked list [2], red-black tree [2], STAMP-vacation [3], and Lee-TM [4,5].
The evaluation shows steal-on-abort to be highly effective at reducing repeat con-
flicts, which lead to performance improvements ranging from 1.2 fold to 290.4
fold.

The paper is organised as follows: Section 2 introduces steal-on-abort, its im-
plementation in DSTM2, the different steal-on-abort strategies developed, and
related work. Section 3 evaluates steal-on-abort, presenting results for transac-
tion throughput, repeat conflicts, and briefly examining steal-on-abort overhead.
Finally, Section 4 presents the conclusions.
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2 Steal-on-Abort

In most TM implementations, aborted transactions are immediately restarted.
However, we observed that the restarted transaction may conflict with the same
opponent transaction again, leading to another abort, which we refer to as a
repeat conflict. In general it is difficult to predict the first conflict between any
two transactions, but once a conflict between two transactions is observed, it
is logical not to execute them concurrently again (or, at least, not to execute
them concurrently unless the repeat conflict can be avoided). Using steal-on-
abort the aborter steals the abortee, and only releases its stolen transactions
after committing. This prevents them from being executed concurrently, which
reduces wasted work. However, steal-on-abort also aims to improve performance.
When a transaction is abort-stolen, the thread that was executing it acquires a
new transaction and begins executing it.

An advantage of steal-on-abort is that it complements existing contention
management policies. Since steal-on-abort is only engaged upon abort, exist-
ing contention management policies can continued to be used to decide which
transaction to abort upon conflict.

The remainder of this section explains the implementation of steal-on-abort in
DSTM2, and then explores the steal-on-abort design space by suggesting several
execution strategies. The implementation needs to support three key components
of steal-on-abort. First, each thread needs to be able to store the transactions
stolen by its currently executing transaction. Second, each thread needs to be
able to acquire a new transaction if its current transaction is stolen. Finally, a
safe mechanism for stealing active transactions is required.

2.1 Multiple Work Queue Thread Pool with Randomized Work
Stealing

DSTM2, like other STMs [6,7,8], creates a number of threads that concurrently
execute transactions. This is extended into a thread pool model, and application
threads submit transactional jobs to a transactional thread pool. As shown in
Figure 1, a work queue is added to each worker thread in the transactional thread
pool (java.util.concurrent.LinkedBlockingDeque, a thread-safe deque) to
store transactional jobs. A transactional job is simply an object that holds the
information needed to execute a transaction (e.g., pointer to a function, and
parameters). Multiple work queues are used as a single work queue would lead
to high serialisation overhead, and submitted jobs are round robin distributed
to work queues. Worker threads acquire transactions from the head of their own
queue when their current transaction commits, or is abort-stolen.

In order to keep worker threads busy, randomised work stealing [9] is imple-
mented as well. The terms work-steal and abort-steal are used to differentiate
between transactions being stolen due to work stealing, and due to steal-on-
abort, respectively. As shown in Figure 2, if a worker thread’s own work queue
is empty, it randomly selects another worker thread, and attempts to work-
steal a single transactional job from the tail of that thread’s work queue. If all
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Fig. 1. Worker threads have per-thread deques that store transactional jobs. Worker
threads take jobs from the head of their own deque.

Fig. 2. If a worker thread’s deque is empty, it work-steals a job from the tail of another
randomly selected worker thread’s deque

work queues are empty, the thread will attempt to work-steal from other worker
threads’ steal queues (described next).

2.2 Steal-on-Abort Operation

A private steal queue (also a java.util.concurrent.LinkedBlockingDeque)
is added to each worker thread to hold transactional jobs that are abort-stolen,
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Fig. 3. Steal-on-abort in action. Worker thread A is executing a transaction based on
Job 2, and worker thread B is executing a transaction based on Job 6. In step 1, thread
A’s transaction conflicts with, and aborts, Thread B’s transaction. In step 2, thread A
abort-steals thread B’s job, and places it in its own steal queue. In step 3, after thread
A finishes stealing, thread B gets a new job, and starts executing it.

as shown in Figure 3, which illustrates steal-on-abort in action. Each worker
thread has an additional thread-safe flag, called stolen.

A stealing worker thread attempts to abort its victim worker thread’s transac-
tion. If this attempt is successful, the stealing thread takes the job stored in the
victim thread’s currentJob variable, and stores it in its own steal queue. After
the job is taken, the victim thread’s stolen flag is set. If a victim thread detects
its transaction has been aborted, it waits for its stolen flag to be set. Once the
flag is set, the victim thread obtains a new job, stores it in currentJob, and
then clears the stolen flag. The victim thread must wait on the stolen flag,
otherwise access to the variable currentJob could be unsafe.

2.3 Programming Model Considerations

There are two important programming model changes to consider when using
a transactional thread pool. First, in our implementation, application threads
submit transactional jobs to the thread pool to be executed asynchronously,
rather than executing transactions directly. This requires a trivial change to the
application code.

Secondly, application threads that previously executed a transactional code
block, and then executed code that depended on the transactional code block
(e.g. code that uses a return value obtained from executing the transactional
code block), are not easily supported using asynchronous job execution. This
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dependency can be accommodated by using synchronous job execution; for ex-
ample, the application thread could wait on a condition variable, and be notified
when the submitted transactional job has committed. Additionally, the transac-
tional job object could be used to store any return values from the committed
transaction that may be required by the application thread’s dependent code.
This requires a simple modification to the implementation described already.
The use of asynchronous job execution, where possible, is preferred as it permits
greater parallelism: application and worker threads execute simultaneously.

2.4 Steal-on-Abort Strategies

Four different steal-on-abort strategies constitute the design space investigated
in this paper. Each strategy differs in the way stolen transactions are released.
The properties of each one are explained below.

Steal-Tail inserts abort-stolen jobs at the tail of the mainDeque once the current
transaction completes. This means the abort-stolen jobs will be executed last
since jobs are normally taken from the head of the deque, unless other threads
work-steal the jobs and execute them earlier. As mentioned earlier, jobs are cre-
ated and distributed in a round-robin manner to threads’ mainDeques. Therefore,
jobs created close in time will likely be executed close in time. Steal-Tail may
benefit performance in a benchmark, for example, where a job’s creation time
has strong affinity with its data accesses, i.e. jobs created close in time have
similar data accesses, which means they are likely to conflict if executed concur-
rently. Executing an abort-stolen job immediately after the current job may lead
it to conflict with other concurrently executing transactions since they are likely
to be those created close in time as well. Placing abort-stolen jobs at the tail
of the deque may reduce conflicts by increasing the temporal execution distance
between jobs created close in time.

Steal-Head inserts abort-stolen jobs at the head of the mainDeque once the
current transaction completes. This means the abort-stolen jobs will be executed
first. For benchmarks that do not show the affinity described above, placing jobs
at the head of the deque may take advantage of cache locality and improve
performance. For example, transaction A aborts and abort-steals transaction B.
Upon completion of transaction A, transaction B is started. At least one data
element is common to both transactions; the data element that caused a conflict
between them, and is likely to be in the local cache of the processor (or core).
The larger the data access overlap, the more likely performance is to improve.

Steal-Keep does not move abort-stolen jobs from a thread’s stealDeque to its
mainDeque once the current transaction completes. The thread continues to ex-
ecute jobs from its mainDeque until it is empty, and then executes jobs from
its stealDeque (when both are empty, work stealing is invoked as usual). The
motivation of Steal-Keep is to increase the average time to an abort-stolen job’s
re-execution, as it will be executed last by the current thread, and only work-
stolen by other threads if all other threads’ mainDeques are empty. Steal-Keep
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may reduce steal-on-abort overhead as it does not require jobs to be moved from
the stealDeque to the mainDeque after every transaction finishes, however, it
may increase the overhead of work stealing when the mainDeque of all threads
is empty.

Steal-Block causes an abort-stolen job’s second-order abort-stolen jobs to be
taken as well (thus a block of transactions is stolen). The hypothesis is that in
some benchmarks there is a strong data access affinity between aborted transac-
tions that extends further down the directed graph of aborted transactions. In
such benchmarks, Steal-Block aims to give greater performance improvements
by reordering transactions faster. However, it also increases steal-on-abort over-
head, as on every steal-on-abort operation the stealDeque must be traversed to
take the second-order abort-stolen transactions.

2.5 Limitations

There are two important limitations to steal-on-abort. First, steal-on-abort is
only useful when repeat conflicts occur, as queueing transactions eliminates the
chance of repeat conflicts. If an application has significant numbers of conflicts,
but they are mostly unique conflicts, then the benefit of steal-on-abort may be
reduced.

Second, in order to detect repeat conflicts, the TM implementation must sup-
port visible accesses, either read, write, or both. Using invisible reads and writes
only allow conflicts to be detected between an active transaction and a commit-
ted transaction. Repeat conflicts require the detection of conflicts between two
active transactions, as then one may abort, restart, and again conflict with the
same opponent, if the opponent is still active.

2.6 Related Work

Research in transaction reordering for improving TM performance has been lim-
ited. Bai et al. [10] introduced a key-based approach to co-locate transactions
based on their calculated keys. Transactions that have similar keys are predicted
to have a high likelihood of conflicting, and queued in the same queue to be exe-
cuted serially. Their implementation also uses a thread pool model with multiple
work queues, but they do not support work-stealing or abort-stealing.

Although their approach improves performance, its main limitation is the re-
quirement of an application-specific formula to calculate the keys. This makes
their technique of limited use without application-specific knowledge, and per-
formance is dependent on the effectiveness of the formula. For some applications
it may be difficult to create effective formulae, and in the extreme case ineffective
formula may degrade performance. In contrast, steal-on-abort does not require
any application-specific information.

Our recent work [11] attempts to reduce aborts by monitoring the percentage
of transactions that commit over a period of time. If the percentage is found
to deviate from a specified threshold then worker threads are added or removed
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from a transactional thread pool to increase or decrease the number of transac-
tions executed concurrently. Although this work does not target repeat conflicts,
it effectively schedules transactions to improve resource usage and execution
performance.

Recent work by Dolev et al. [12], called CAR-STM, has similarly attempted
to schedule transactions into queues based on repeat conflicts. CAR-STM also
supports the approach by Bai et al. to allow an application to submit a function
used to co-located transactions predicted to have a high likelihood of conflicting.
Unlike steal-on-abort, CAR-STM does not support the use of existing contention
management policies, does not implement work stealing to improve load balance
and parallel performance, and does not investigate strategies such as those in
Section 2.4.

Harris et al. [13] describe the retry mechanism, which allows an aborted
transaction to block, and wait for the condition that caused it to abort to change,
rather than restart immediately. However, retry must by explicitly called by the
programmer, whereas steal-on-abort operates transparently.

3 Evaluation

The evaluation aims to investigate the performance benefits of the steal-on-abort
strategies by executing several benchmarks using high contention configurations.
In this section, the term Normal refers to execution without steal-on-abort.
Steal-Tail, Steal-Head, Steal-Keep, and Steal-Block are abbreviated to Steal-T,
Steal-H, Steal-K, and Steal-Blk, respectively. All execution schemes (including
Normal) utilise the thread pool, and work stealing.

3.1 Platform

The platform used to execute benchmarks is a 4 x dual-core (8-core) Opteron
880 2.4GHz system with 16GB RAM, running openSUSE 10.1, and using Sun
Hotspot Java VM 1.6 64-bit with the flags -Xms4096m -Xmx14000m. Benchmarks
are executed using DSTM2 set to using the shadow factory, and visible reads.
DSTM2 always uses visible writes. Although read and write visibility affect the
amount of conflicts that occur, visible reads and writes are generally considered
to give higher performance than invisible reads and writes when a large number
of conflicts occur, and the benchmarks in this evaluation have large numbers
of conflicts (see next). Experiments are executed with 1, 2, 4, and 8 threads,
each run is repeated 9 times, and mean results are reported with ±1 standard
deviation error bars.

The published best contention manager (CM), called Polka [14], is used in
the evaluation. Upon conflict, Polka waits exponentially increasing amounts of
time for a dynamic number of iterations (equal to the difference in the number
of read accesses between the two transactions) for the opponent transaction to
commit, before aborting it. Polka’s default parameters are used for controlling
the exponentially increasing wait times [14].
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3.2 Benchmarks

The benchmarks used to evaluate steal-on-abort are a sorted linked list, red-
black tree, STAMP-vacation, and Lee-TM. Hereafter, they are referred to as List,
RBTree, Vacation, and Lee-TM, respectively. Evaluating steal-on-abort requires
the benchmarks to generate large amounts of transactional conflicts. Below, the
benchmarks are briefly described, along with the execution parameters used to
produce high contention.

List and RBTree transactionally insert or remove random numbers into a
sorted linked list or tree, respectively. List and RBTree are configured to perform
20,000 randomly selected insert and delete transactions with equal probability.
Additionally, after executing its code block, each transaction waits for a short
delay, which is randomly selected using a Gaussian distribution with a mean
duration of 3.2ms, and a standard deviation of 1.0. The delays are used to
simulate transactions that perform extra computation while accessing the data
structures. This also increases the number of repeat conflicts.

Vacation is a benchmark from the STAMP suite (version 0.9.5) ported to
DSTM2. It simulates a travel booking database with three tables to hold book-
ings for flights, hotels, and cars. Each transaction simulates a customer making
several bookings, and thus several modifications to the database. High contention
is achieved by configuring Vacation to build a database of 128 relations per ta-
ble, and execute 256,000 transactions, each of which performs 50 modifications
to the database.

Lee-TM is a transactional circuit routing application. Pairs of coordinates for
each route are loaded from a file and sorted by ascending length. Each transaction
attempts to lay a route from its start coordinate to its end coordinate in a three-
dimensional array that represents a layered circuit board. Routing consists of
two phases: expansion performs a breadth-first search from the start coordinate
looking for the end coordinate, and backtracking writes the route by tracing back
a path from the end coordinate to the start coordinate. For high contention, the
Lee-TM-t configuration [5] is used (i.e., no early release) with the mainboard.txt
input file, which has 1506 routes. This input file has relatively long transactions,
and a only minority of them cause contention so repeat conflicts should be limited
in comparison to the other benchmarks. Furthermore, later transactions are more
likely to conflict with each other because of large amounts of data accesses, and
Steal-Blk may offer better performance in such conditions.

3.3 Transaction Throughput

Figure 4 illustrates the throughput results. Cursory observation shows that
steal-on-abort always improves throughput over Normal execution, sometimes
by significant margins. Performance variance is generally minimal between the
steal-on-abort strategies compared to the difference with Normal, but Steal-Blk
is less effective in Vacation, and slightly more effective in Lee-TM, while Steal-H
is less effective in Lee-TM. Furthermore, Steal-K and Steal-T are the most con-
sistent performers, and thus for brevity the discussion will mainly focus on the
performance benefits of Steal-T.
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Fig. 4. Throughput results

In List, Steal-T improves average throughput over Normal by 46.7 fold with
2 threads, 14.6 fold with 4 threads, 2.4 fold with 6 threads, and 1.9 fold with 8
threads. Similarly, in RBTree the improvements are 40.0 fold, 6.1 fold, 2.0 fold,
and 1.6 fold respectively. In Vacation the improvements are 290.4 fold, 92.9 fold,
37.9 fold, and 6.1 fold, respectively.

Examining Lee-TM, Steal-T improves average throughput over Normal by 1.2
fold with 2 threads, 1.4 fold with 4 threads, and 1.3 fold with 8 threads. However,
Lee-TM results have high standard deviations, which increase with the number
of threads. This is caused by Lee-TM performance being sensitive to the order
in which transactions commit. As there are only 1506 routes, and most of the
contention due to the long transactions executed near the end, even aborting a
few long transactions in favour of other long transactions that have performed
less computation can significantly impact performance. As predicted, Steal-Blk
generally improves performance the most for Lee-TM.

3.4 Repeat Conflicts

Next, we examine the amount of time spent in repeat conflicts, and the effec-
tiveness of the steal-on-abort strategies at reducing repeat conflicts. Figure 5
shows histograms of the distribution of wasted work [15] (i.e. the amount of
time spent executing transactions that eventually aborted) for a given number
of conflicts with the same transaction. As an example, consider a transaction
A that is aborted seven times before it finally commits. Such a transaction has
seven lots of wasted work. Four aborts occur through conflict with a transaction
B, two with a transaction C, and one with a transaction D (seven in total).
The four lots of wasted work caused by conflicting with, and being aborted by,
transaction B are added to column ’4’, the two lots associated with C are added
to column ’2’, and the one lot associated with D is added to column ’1’. For
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Fig. 5. Wasted work distribution by number of repeat conflicts

brevity, only results from execution with eight thread results are discussed, al-
though better performance improvements were observed previously with fewer
threads (Figure 4).

Since steal-on-abort should targets repeat conflicts it should reduce the amount
of time in all but the first column. This is confirmed by the results in Figure 5:
Steal-T reduces time in the remaining columns (repeat conflicts) by 99% in List,
95% in RBTree, 99% in Vacation, and 58% in Lee-TM. Furthermore, the results
show that repeat conflicts represent a significant proportion of the total wasted
work for the high contention configurations used: 65% in List, 54% in RBTree,
96% in Vacation, and 17% in Lee-TM. The net reduction in wasted work using
Steal-T with 8 threads is 53% in List, 18% in RBTree, 93% in Vacation, and 13%
in Lee-TM.

However, steal-on-abort increases single conflict (non-repeat) wasted work for
List, RBTree, and Vacation. This is because repeat conflicts are being reduced
to single conflicts so their wasted work is allocated to the single conflict column.
However, the increase in single conflict wasted work is far less than the decrease
in repeat conflict wasted work. As a result, Lee-TM, which has far fewer repeat
conflicts than the other benchmarks, actually sees a fall in single conflict wasted
work. Thus, a side effect of steal-on-abort is to reduce the number of single (i.e.,
unique) conflicts that occur.

3.5 Committed Transaction Durations

Polka causes transactions to wait for their opponents, which increases the average
time it takes to execute a transaction that eventually commits. Since steal-on-
abort reduced the amount of time spent in repeat conflicts, it should also have
reduced the total number of conflicts, which in turn should have reduced the
average committed transaction’s duration.
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Fig. 6. Average Committed Transaction Duration (microseconds)

Figure 6 shows the results for the average committed transaction’s dura-
tion, which includes the overhead of steal-on-abort operations, and confirms
the hypothesis. Three of the four benchmarks reduce the average duration with
8 threads, except for List using Steal-H, which marginally increases the aver-
age duration. Only for Vacation do all the steal-on-abort strategies increase the
average duration, although this is still largely within the standard deviations.

3.6 Steal-on-Abort Overhead

We have not precisely measured the overhead of steal-on-abort as it consists of
small code blocks, some of which execute within transactions, and some outside
of transactions. However, as shown in Figure 6, Vacation’s transactions have
much shorter average durations than the other benchmarks, and consequently
Vacation’s increase in average duration in Figure 6 may be due to abort-stealing
overhead, which would indicate that the overhead is in the tens of microseconds
per transaction.

However, this overhead does not include the cost of moving transactions be-
tween deques, as that happens after a transaction completes. To measure that
cost the in-transaction metric (InTx), which is the proportion of execution time
spent in executing transactions, is presented in Figure 7. For the benchmarks
used in this evaluation there are two sources of out-of-transaction execution: work
stealing, and moving jobs from a thread’s stolenDeque to its mainDeque after
every transaction completes. Since Normal execution utilises work stealing, the
difference between Normal and steal-on-abort execution should approximately
represent the cost of moving jobs between the deques.

Figure 7 identifies that there is negligible overhead in moving jobs between
deques and work stealing in List, RBTree, and Lee-TM. However, in Vacation



16 M. Ansari et al.

Normal
Steal−T
Steal−K
Steal−H
Steal−Blk

  0.0
  0.1
  0.2
  0.3
  0.4
  0.5
  0.6
  0.7
  0.8
  0.9
  1.0

1 2 4 6 8

Pr
op

or
tio

n 
sp

en
t i

n 
tr

an
sa

ct
io

ns

Threads

List − Polka
Normal
Steal−T
Steal−K
Steal−H
Steal−Blk

  0.0
  0.2
  0.4
  0.6
  0.8
  1.0
  1.2

1 2 4 6 8

Pr
op

or
tio

n 
sp

en
t i

n 
tr

an
sa

ct
io

ns

Threads

RBTree − Polka

Normal
Steal−T
Steal−K
Steal−H
Steal−Blk

  0.0
  0.1
  0.2
  0.3
  0.4
  0.5
  0.6
  0.7
  0.8
  0.9
  1.0

1 2 4 6 8

Pr
op

or
tio

n 
sp

en
t i

n 
tr

an
sa

ct
io

ns

Threads

Vacation − Polka
Normal
Steal−T
Steal−K
Steal−H
Steal−Blk

  0.0
  0.1
  0.2
  0.3
  0.4
  0.5
  0.6
  0.7
  0.8
  0.9
  1.0

1 2 4 6 8

Pr
op

or
tio

n 
sp

en
t i

n 
tr

an
sa

ct
io

ns

Threads

Lee−TM − Polka

Fig. 7. Proportion of total time spent executing transactions

the overhead becomes visible, with most strategies observing an overhead of
3%. The average execution time of Vacation at 8 threads with Steal-T is 24.0
seconds, and given that 256,000 transactions are executed, the average overhead
of moving jobs is 2.8 microseconds per transaction. However, this cost is related
to the number of jobs moved between deques, and with Steal-T this averages to
2.2 jobs per completed transaction. Section 2.4 mention that Steal-Blk may have
higher overhead, and Vacation’s results identify Steal-Blk observing an overhead
of 5-10%.

4 Conclusions and Future Work

In well-engineered, scalable, concurrently programmed applications it is expected
that high contention conditions will occur only rarely. Nevertheless, when high
contention does occur it is important that performance degrades as little as
possible. It is also probable that some applications will not be as well-engineered
as expected, and thus may suffer from high contention more frequently.

This paper presented steal-on-abort, a new runtime approach that dynami-
cally reorders transactions with the aim of improving performance by reducing
the number of repeat conflicts. Steal-on-abort is a low overhead technique that
requires no application specific information or offline pre-processing.

Steal-on-abort was evaluated using the well-known Polka contention manager
with two widely used benchmarks in TM: sorted linked list and red-black tree,
and two non-trivial benchmarks: STAMP-vacation and Lee-TM. The bench-
marks were configured to generate high contention, which led to significant
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amounts of repeat conflicts. Steal-on-abort was effective at reducing repeat con-
flicts: Steal-Tail reducing by almost 60% even when repeat conflicts only ac-
counted for 17% of the total wasted work, and reducing by over 95% when repeat
conflicts accounted for 55% or more of the wasted work. This led to performance
improvements ranging from 1.2 fold to 290.4 fold.

We are encouraged by the results from the steal-on-abort evaluation, and we
plan to continue our investigation of the design space. In particular, we wish to
investigate the design of steal-on-abort when invisible reads and writes are used,
and the implementation of steal-on-abort for HTMs.
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Abstract. Heterogeneous architectures are currently widespread. With
the advent of easy-to-program general purpose GPUs, virtually every re-
cent desktop computer is a heterogeneous system. Combining the CPU
and the GPU brings great amounts of processing power. However, such
architectures are often used in a restricted way for domain-specific appli-
cations like scientific applications and games, and they tend to be used
by a single application at a time. We envision future heterogeneous com-
puting systems where all their heterogeneous resources are continuously
utilized by different applications with versioned critical parts to be able
to better adapt their behavior and improve execution time, power con-
sumption, response time and other constraints at runtime. Under such a
model, adaptive scheduling becomes a critical component.

In this paper, we propose a novel predictive user-level scheduler based
on past performance history for heterogeneous systems. We developed
several scheduling policies and present the study of their impact on
system performance. We demonstrate that such scheduler allows mul-
tiple applications to fully utilize all available processing resources in
CPU/GPU-like systems and consistently achieve speedups ranging from
30% to 40% compared to just using the GPU in a single application
mode.

1 Introduction

The objectives of this work are twofold. On the one hand, fully exploiting the
computing power available in current CPU/GPU-like heterogeneous systems and
thus, increasing overall system performance is pursued. On the other hand, ex-
ploring and understanding the effect of different scheduling algorithms for het-
erogeneous architectures is intended.

Currently almost every desktop system is an heterogeneous system. They both
have a CPU and a GPU, two processing elements (PEs) with different character-
istics but undeniable amounts of processing power. Some time ago programming
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a GPU for general purpose computations was a major programming challenge.
However, with the advent of GPUs designed with general purpose computation
in mind it has become simpler. Games still represent the big market for graphi-
cal card manufacturers, but thanks to execution models like CUDA [2] now it is
possible to use such GPUs as data parallel computing devices.

Applications with great amounts of data parallelism perform considerably
better on a GPU than on a CPU. [13] Thus, the GPU is seen as a device destined
to run very specific workloads. The current trend to program these systems is as
following: (1) Profile the application to be ported to a GPU and detect the most
expensive parts in terms of execution time and the most amenable ones to fit the
GPU-way of computing (i.e., data parallelism). (2) Port those code fragments
to CUDA kernels (or any other framework for general purpose programming on
GPU). Getting peak performance from GPUs is not extremely easy, so this can
be initially done in a fast way, despite not being very optimal. (3) Iteratively
optimize the kernels until the desired performance is achieved.

However, in the authors’ opinion, those architectures are currently being used
in a somewhat restricted way by domain-specific applications such as scientific
applications and games, and tend to be used by a single application at a time.
The authors envision future heterogeneous computing systems where all their
PEs are continuously utilized by different applications with versioned critical
parts to be able to better adapt their behavior and improve execution time,
power consumption, response time and other constraints at runtime. Under such
a model, adaptive scheduling becomes a critical component.

The proposal presented here consists of a novel predictive user-level scheduler
based on past performance history for heterogeneous systems. Several scheduling
policies have been developed and the study of their impact on system perfor-
mance is presented. Such scheduler allows multiple applications to fully utilize
all the PEs in CPU/GPU-like systems and consistently achieve speedups ranging
from 30% to 40% compared to just using the GPU in a single application mode.

This paper is structured as follows. In section 2 the scheduling framework
is introduced. Section 3 describes the experimental methodology followed for
this work. In section 4 the performance results for the scheduler are presented.
Section 6 concludes the paper and lists potential future work.

2 Code Scheduling

The heterogeneous scheduling system lies at the core of this work. This section
explains in detail its design and implementation. Additionally, a usage example
and some guidelines for the future are provided.

2.1 Scheduler Design

For this study, a function-level granularity for code versioning and scheduling is
used. Currently, a programmer has to indicate that a function can be executed
on both CPU and GPU providing explicit data transfer if needed. Considering
this study is performed on top of real hardware with a multi-ISA architecture,
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it does not seem feasible to use a granularity finer than function-level. Indeed,
that level seems a good choice for the programmer to provide both versions of
the code (CPU and GPU). It it important to mention that the generation of
function versions for every PE is orthogonal to this work and it is expected for
future compilers to be able to generate multiple versions which can be adap-
tively used at runtime. [6,7] Additionally, there are already studies which allow
to automatically generate a function version for one PE given the version for
another PE. [16]

The code scheduler has been implemented as a dynamic library for the GNU/
Linux OS. Being a process-level scheduler, parts of the library must be shared
among all the processes which use it (see Figure 1). Specifically the data for the
PE management and the task queues for each PE are shared (a task, composed
by a function and its arguments, is used as the basic unit of scheduling from now
on in this text). Other implementation options such as creating a kernel-level
scheduler have been considered. However, it poses many difficulties, involving a
longer development cost and the necessity to deal with NVIDIA’s proprietary
driver. Being simpler and, at the same time, enough to perform this study,
the implementation uses the dynamic library approach. The interface to the
scheduler is a set of C++ classes.

process process

private
area

private
area

shared area
(e.g., task queue)

OS

HW

...

scheduling library

...

Fig. 1. Call scheduler implementation overview

2.2 Usage

A matrix multiplication is used as an example of the scheduler usage. A typical
implementation would provide a function, matrix mul, which implements the
matrix multiply operation. This function would be called with two input matrices
and one output matrix. Additionally, the matrix size would be also provided:

matrix_mul(A,B,C,N);

If this function must run on several PEs, multiple implementations are nec-
essary. In the case of a CPU and a GPU they could be named matrix mul cpu
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and matrix mul gpu. Considering this is already done, the interaction with the
scheduler is quite simple. The user would get an instance of the main scheduler
class (CallScheduler). Then the user constructs a call (Func, Args) and executes
the schedule method. This creates a Task which is added to the queue for the
PE selected by the scheduling algorithm. Different algorithms can be plugged-in
in the scheduling system, thus making the system very flexible for trying new
scheduling algorithms. Following is the extra code necessary to be able to let the
scheduler select at runtime which PE will be used to perform the operation:

CallScheduler* cs = CallScheduler::getInstance();
MatrixMulFunc* f = new MatrixMulFunc();
MatrixMulArgs* a = new MatrixMulArgs(A,B,C,N);
cs->schedule(f,a);

where class MatrixMulArgs is a very simple class which just stores the values for
the arguments to the function and MatrixMulFunc is a wrapper which allows to
select the right function version to execute in a given PE. This is easily doable
because CUDA stores both versions in the same executable file. In our imple-
mentation just a call to either matrix mul cpu or matrix mul gpu is necessary.
Although it may seem a considerable amount of code, it is possible to use some
“syntactic sugar” which would allow, for instance, a source-to-source compiler
to generate all that code from a line similar to:

#pragma cs matrix_mul(A,B,C,N) matrix_mul_cpu matrix_mul_gpu

2.3 Scheduling Algorithms

In a heterogeneous scheduling process the following two steps can be distin-
guished: PE selection and task selection. The former is the process to decide
on which PE a new task should be executed. It does not mean the execution is
going to start at that time. The latter it is the mechanism to choose which task
must be executed next in a given PE. It typically takes place just after another
task finishes and its PE becomes free.

Several options have been tested for the first step. All the algorithms basically
follow a variant of the first-free (FF) design, meaning that tasks are first tried
to be scheduled in a PE which is not being used. As the results will show, this
approach does not work consistently good all the time and thus, new algorithms
based on performance-prediction have been developed.

For the second step, all the algorithms implemented in this work follow a first-
come, first-served (FCFS) design. It could be also possible to implement some
more advanced techniques such as work stealing in order to increase the load
balance of the different PEs. However, the main goal of the study was to find
algorithms which led to a good scheduling depending on the code to be executed
and the characteristics of the PEs present in the system. Thus, the study for
load balancing techniques is left for future work.

Several variants of different families of algorithms have been developed. The
following description gives the general scheme for these families. The specific
parts for every variant are abstracted as calls to functions (g and h).
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Algorithm 1 shows the general scheme for a FF design. It traverses the PE
list in search for a not busy one. As soon as one is found it is selected as the
target PE. If none is idle the algorithm must decide which PE to use. Several
variants have been tried and thus the algorithm contains a call to a function g
which will be responsible to select somehow a PE in case all of them are busy.

Algorithm 1. First-Free algorithm family
for all pe ∈ PElist do

if pe is not busy then
return pe

return g(PElist)

As the CPU and the GPU present different characteristics, the same function
may perform differently in both PEs. It could be the case that one of them
performs better for some kind of tasks. Therefore a modification to the previous
algorithm is introduced, allowing to queue more elements into one PE, thus
introducing a bias in the scheduling system. This can also be seen as a simple
load balancing mechanism. Algorithm 2 is still first-free-based, but in case all
the PEs are busy it will assign tasks to PEs following a distribution given by a
parameter k = (k1, . . . , kn). Given two PEs, a and b, the ratio ka/kb determines
the amount of work which will be given to them. For instance, with k = (1, 4)
the number of tasks given to the second PE will be four times bigger.

Algorithm 2. First-Free Round Robin (k)
for all pe ∈ PElist do

if pe is not busy then
return pe

if k[pe] = 0 ∀pe ∈ PElist then
set k with initial values

for all pe ∈ PElist do
if k[pe] ≥ 0 then

k[pe] = k[pe] − 1
return pe

The idea behind this algorithm is that if a set of applications is biased towards
one of the PEs, consistently obtaining better performance on it, the scheduler
may address the load imbalance by biasing the assignment towards the other
PE. However it may also happen that performance for an application drastically
differs depending on the PE where it is run. In those cases the previous algorithm
may not perform well. This observation motivated the introduction of a perfor-
mance history-based scheduler (algorithm 3). Basically a performance history is
kept for every pair of PE and task. During the initial phase, the performance
history is built by forcing the first n calls to the same function to execute on the
different n PEs. In the next phase every time a call to that function is made,
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the scheduler looks for any big unbalance between the performance on the dif-
ferent PEs. Thus, a list (allowedPE) is built where only the PEs without such a
big unbalance are kept. If that list came to be empty, g would determine which
PE to select. h performs the corresponding action when there is more than one
possibility to schedule the task.

Algorithm 3. Performance History Scheduling
if ∃pe ∈ PElist : history[pe, f ] = null then

return pe
allowedPE = {pe| � ∃pe′ : history[pe, f ]/history[pe′, f ] > θ}
if ∃pe ∈ allowedPE : pe is not busy then

return pe
if allowedPE = ∅ then

return g(PElist)
else

return h(allowedPE)

Relying on this performance prediction mechanism, a variant of algorithm 3
has been developed. It uses the performance history to predict the waiting time
for every PE. This version aims at a better load balancing among the PEs.

3 Experimental Methodology

The runtime CPU/GPU scheduler has been evaluated on a real machine with a
set of benchmarks. In the following subsections the benchmarks will be described
in detail as well as the experimental setup.

3.1 Workload

A mix of synthetic and real benchmarks have been used in order to evaluate the
performance speedup obtained with the use of the runtime code scheduler for
the CPU/GPU system. The benchmarks used are: matmul, ftdock, cp and sad.
Their performance characterization can be seen in table 1.

Table 1. Benchmark list characterization

Benchmark CPU GPU Speedup TX time Comp Time Ratio
cp 28.79s 0.39s 74X 0.13s 0.14s 1.08
sad 0.79s 0.87s ∼ 0.9X 0.11s 0.04s 0.36

FTDock 38.77s 19.99s ∼ 1.9X ∼ 0.03s 0.34s 11.75
matmul 38.52s 12.65s 3X 0.01s 0.04s 3.89

matmul is a synthetic benchmark which performs multiple square-matrix mul-
tiplications using either the ATLAS library [21] for the CPU and the CUBLAS
library [2] for the GPU. As can be seen in table 1, performance on GPU does not
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extremely differ from performance on CPU. As the input size is increased, the
GPU can better amortize the cost of bringing data in and out to main memory.
The matrices used are considerable large (1024 × 1024).

FTDock [8] is a real application which computes the interaction between two
molecules (docking). FFTW [5] is used in order to speedup this process. A hybrid
version has been developed allowing to execute any of the rotations either on
the CPU or the GPU. NVIDIA’s CUFFT library [2] is used for the GPU. The
changes introduced in the program are minimal since both libraries have almost
the same interface. Although the GPU version runs twice as fast, the difference
with the CPU is not big.

The Parboil Benchmark Suite [1] is a set of benchmarks designed to measure
the performance of a GPU platform. They are available from the Impact Re-
search Group at University of Illinois (UIUC). The benchmarks used here are cp
and sad. cp computes the coulombic potential at each grid point over on plane
in a 3D grid in which point charges have been randomly distributed. sad is used
in MPEG video encoders in order to perform a sum of absolute differences be-
tween frames. While sad performs almost equal on both PEs, cp does so much
more efficiently on the GPU. The application speedup is really large, thus, it is
really crucial to schedule the application to the right PE (the GPU in this case).
Due to some constraints, such as a big memory footprint for some of the others
benchmarks included in the suite, only those two benchmarks have been used
to evaluate the scheduling system. The GPU has a limited amount of memory,
but a recent work proposes an architecture which would remove this constraint
allowing to use virtual memory from the coprocessor (the GPU in this case) [9].

3.2 Experimental Setup

All the experiments have been run on real hardware. A machine with an Intel
Core 2 E6600 processor running at 2.40GHz and 2GB of RAM has been used.
The GPU is an NVIDIA 8600 GTS with 512MB of memory. The operating
system is Red Hat Enterprise Linux 5.

The execution of the benchmarks is organized as combinations of N bench-
marks running in parallel. In order to evaluate the scheduling system, different
values of N have been tried. The amount of memory on the GPU limits how
many processes can be concurrently run on it. Therefore, the values selected for
N are N = {4, 6}. In order to keep experimenting time under reasonable values,
fifteen randomly selected combinations have been chosen from all the possible
permutations. In early tests performed with all the executions it was not possible
to observe any significant change in the results, so the number selected seems a
good compromise between results accuracy and experimenting running time.

As a way to improve results accuracy, experiments are repeated a small
number of times and the results are averaged. The results obtained show that
variance is not very high between executions (< 6% for the prediction-based
algorithms).
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4 Evaluation

Every experiment is composed of the execution of several combinations of bench-
marks. Short names for the benchmark combinations are in the X-axis for some
of the following figures (first letter for every benchmark name is used).
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Fig. 2. CPU versus GPU performance

Figure 2 shows the performance obtained when running the combinations of
benchmarks on just the CPU or the GPU. The GPU performs much better
in around half of the cases and slightly better in the rest, with just one case
being the other way around. Considering most of the benchmarks fit quite well
the data-level parallelism paradigm, it is not surprising to see those results.
Although it would be interesting to study the effect of a more balanced set of
benchmarks, where some of the benchmarks performed better in the CPU than
the GPU, this situation is still very interesting for the study. As some of the
benchmarks perform much better on a specific PE, the scheduler must be very
careful about its decisions in order not to damage performance. It will be shown
that by using performance prediction algorithms the risk of scheduling a task on
a very poor performing PE can be greatly reduced.

For the rest of the performance graphs no bar for the CPU is plotted since
its performance is consistently worse than the one for the GPU. Therefore, the
baseline for speedup graphs is the performance of the GPU alone executing the
benchmarks serially (Figure 2). A trivial algorithm like a plain first-free one could
also be used as the baseline as well. However, current systems do not allow the
user to schedule tasks either on the CPU or the GPU, and thus it would not
reflect the real benefit against current ways of CPU/GPU-systems utilization.

In general the benchmarks run using the heterogeneous scheduler achieve a
considerable speedup compared to running them on a single PE. As can be seen
in Figures 3 and 4, the average speedup obtained compared to the baseline is
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between 30% and 40% (individual speedups for each combination are averaged
using the harmonic mean). This is obviously a noticeable speedup which confirms
to be worth to consider all the PEs in the system as resources where code can
be scheduled for execution.
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Fig. 3. Performance speedup for N = 4

4.1 First-Free Algorithms

Figures 3 and 4 show the relative speedup compared to the GPU for two first-
free algorithm variants (ff-fifo-gpu and ff-fifo-rrk:1,4). They work as described in
algorithms 1 and 2 in section 2. In case both PEs are busy, the first algorithm
chooses the GPU, while the second schedules four tasks to the GPU for each one
scheduled to the CPU in a round-robin way.

Despite being considerably simple, these algorithms perform well enough for
some cases, reaching up to a 60% speedup over the baseline for a specific case
(fffffc in Figure 4). However, they are quite sensible to heavily-biased tasks. If a
task performs much better on one PE than in the other ones, scheduling it on
the wrong PE will considerably degrade overall system performance. This can
be seen for instance in Figure 4 for the benchmark combination mmcccs. That
combination contains three times the benchmark cp, which is strongly biased
towards the GPU.

As first-free algorithmsblindly select a PEwithout taking into account the char-
acteristics of the PEs and the task to be scheduled, they eventually schedule cp to
the CPU, resulting in a dramatic loss of performance. This behavior can be ob-
served in Figure 6, where the distribution of PEs is shown for every benchmark
and scheduling algorithm. The figure shows how few executions of cp are placed
on the CPU. Even such a small percentage can greatly reduce performance, and if
cp is not scheduled to the CPU more times is because by the time cp executions on
the CPU finish, the rest of the benchmarks have already finished, leaving the GPU
free and allowing cp to be scheduled on the GPU the rest of the time.
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Fig. 4. Performance speedup for N = 6
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Nonetheless, despite being ill-suited for workloads with highly-biased tasks,
these algorithms perform quite acceptable in average, reaching around 10%
speedup for N = 4 and 20% for N = 6. Other FF variants have been evalu-
ated but they are not listed here since their performance was typically worse.

4.2 Predictive Algorithms

The algorithms studied here are two: history-gpu and estimate-hist. Both are
based on algorithm 3 described in section 2. They keep the performance history
for every pair (task, PE) in such a way that it is not allowed to schedule a task
on a PE if the performance ratio to all the other PEs is worse than a threshold
θ. Experimentally, the value θ = 5 has been selected.

Both algorithms determine the set of PEs which can be used to schedule a
task, allowedPE . After that, history-gpu looks for the first idle PE in that set and
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Fig. 6. PE distribution for different benchmarks and scheduling algorithms

if there is not such a PE, it selects the GPU as the target. A more fair version
which schedules a task randomly to any of the PEs in allowedPE has also been
evaluated, but the performance was not as good and results are not shown here.

The behavior of estimate-hist after allowedPE has been computed is quite
different. It basically estimates the waiting time in each queue and schedules the
task to the queue with the smaller waiting time (in case both queues are empty it
chooses the GPU). For that purpose the scheduler uses the performance history
for every pair (task, PE) to predict how long is going to take until all the tasks
in a queue complete their execution.

Both algorithms achieve significant speedups compared to the baseline. For
N = 4 estimate-hist has around a 30% speedup and history-gpu obtains a 20%
speedup. Those speedups become bigger when N = 6, reaching almost a 40%
in both cases. As can be seen in the Figures 3 and 4 both algorithms perform
consistently well across all benchmark combinations compared to first-free algo-
rithms. The main reason for that is the proper scheduling of cp to the GPU.
However there seem to be other factors as well, as for some combinations of
benchmarks where cp is not appearing (for instance, mmmfff in Figure 4) these
algorithms, and especially estimate-hist, perform noticeably better than first-free
based ones. The reason for that is that estimate-hist manages to better balance
CPU and GPU task queues. This observation can be seen in Figure 6 where both
predicting algorithms tend to schedule a higher percentage of the total number
of tasks executed on the system to the CPU. Obviously, this is done without
falling into scheduling a strongly-biased benchmark, as cp, to the CPU.

One interesting thing to note is the relatively poor results of estimate-hist
for N = 6, not being able to improve history-gpu performance as much as in
the N = 4 case. Due to the non-deterministic nature of scheduling there may
not be just a single explanation for this effect. However, it has been observed
how the prediction accuracy decreases by more than a 10% when the number of
concurrent tasks increases from N = 4 to N = 6. estimate-hist, having two levels
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of predictions, is more affected by this loss of accuracy than history-gpu. In order
to improve the analysis this effect it would be interesting to conduct new tests
on, for instance, quad-core machines where one or two cores can be freed from
executing tasks, thus reducing possible interferences.

4.3 Effect of the Number of Tasks on the Scheduler

The number of simultaneous benchmarks run in an experiment is denoted by the
value of N . As N increases, the number of tasks which compete for execution
raises as well. This effect can be seen in Figure 5, which shows the number of
waiting tasks that are in the queue every time a new task is being scheduled
on a PE. Left graph is for the case where there are four benchmarks running at
the same time, whereas right one depicts the case for six. The number of tasks
waiting at the queues substantially increases from one case to the other because
more processes are simultaneously using the scheduler.

If the number of tasks to be scheduled increases means it is possible to get
closer to fully use all the PEs in the system. Thus, the number of times that the
PEs are idle is reduced. Theoretically this must improve the throughput, as can
be seen in Figures 3 and 4. When running four benchmarks a speedup of around
30% is achieved, whereas for the case of six the speedup is around 40%.

However, increasing the number of tasks increases the pressure on all the PEs.
While on the GPU only tasks are being run, on the CPU parts of the benchmarks
not corresponding to tasks and other processes such as Linux system processes
are run at the same time as well. Increasing the number of tasks running on
the CPU leaves less processing power for non-task parts and in some cases the
overall performance may degrade.

In the future, and especially considering new processors with 4 and 8 cores,
it may be worth reserving some cores for non-task computations, in order to
decrease the interferences between task execution and other processes.

5 Related Work

Job and resource scheduling is a vastly explored topic. However, it seems just
a few studies target scheduling for heterogeneous architectures. It is true that
heterogeneity has been present in many scheduling studies, but it was mainly
from the perspective of distributed and grid systems. The area of scheduling for
heterogeneous architectures (i.e., within a single machine) is relatively new and
has not been studied in detail yet. Some of the few papers on this topic [12,19]
also agree on this lack of studies.

Scheduling for heterogeneous distributed systems is somehow similar to the
problem being dealt here. PEs across different machines or within a single machine
are heterogeneous and thus, they present different performance characteristics.
However, in the case of distributed systems, the scheduling is burdened with many
more complexities such as interprocessor communication (typically done across
some kind of external network), distributed management and variant amount of
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computing resources (some resources may disappear suddenly, whereas others can
turn up) [18,3].

Most of the studies related to heterogeneous distributed systems propose new
scheduling algorithms in order to improve the performance through job and re-
source allocation. They mathematically represent a program as a graph where
every node is a task which can be mapped on a PE. Tasks which depend on each
other are connected in the graph with the edge weight meaning the communica-
tion cost. The list of nodes is generated at compile time and the cost of running
tasks on every PE is known in advance. Some relevant works on this area are
[20,11,14,15]. However, communication cost in heterogeneous multicore systems
is several orders of magnitude smaller than in distributed systems.

A few papers [12,19] do study the effect of scheduling for heterogeneous archi-
tectures. Similarly to the schedulers for distributed systems, programs are also
represented as graphs with nodes corresponding to tasks in the program using
information known a priori. In order to conduct performance measurements they
mainly use random graphs as the input for the scheduler. This is one of the main
differences compared to this work, where all the measurements are conducted
on real hardware with a real software implementation and real applications.

In [4] a runtime scheduling system for the IBM Cell processor which eases ap-
plication partitioning among different PEs is presented. However, in that work
the heterogeneous architecture is viewed in the common way where the coproces-
sors are responsible for executing the computationally expensive parts while the
main PE is just used to control the coprocessors.

As far as the authors know, this is the first work which deals with scheduling
for a heterogeneous architecture using a real implementation and considering
the system as a pool of PEs, being able to schedule tasks to any PE.

Initially a set of “classical” scheduling algorithms have been used. FF (first-
free), FCFS (first come, first served), SJF (shortest job first) and RR (round-
robin) are very well-known algorithms. Because of its simplicity and its relatively
good performance, several variations of the FF algorithm have been tested in
this study. It is difficult to track down the origin of those algorithms, so the
reader is referred to Tanenbaum’s work [17] for their description.

6 Conclusions and Future Work

This work shows how using a predictive scheduler for a CPU/GPU-like hetero-
geneous architectures can improve overall system performance. By adaptively
scheduling versioned functions at run-time we can obtain speedups as high as
40% on average compared to perform the computation serially on the GPU.

Some specific applications achieve a large speedup when executed on a data-
processing architectures such as a GPU. For these applications, with speedups
over 100X , it may not be worth to execute computationally expensive parts
of them on the CPU. However, as this study demonstrates, there are other
applications which can greatly increase performance by using a system like the
one presented here.



32 V.J. Jiménez et al.

Different kinds of scheduling algorithms have been tried. first-free-based ones
perform noticeably well for some cases; however they fail to do so for biased
computations where one PE performs much better than the others. Performance
predicting algorithms, being able to avoid these cases and better balancing the
system load, perform consistently better. We intend to study new algorithms in
order to further improve overall system performance. Additionally, other bench-
marks with different characteristics will be also tried. We expect that with a
more realistic set of benchmarks (not only GPU-biased) the benefits of our sys-
tem would be increased.

The results show how the tasks can receive interferences from other computa-
tion occurring in the system. Exploring how the number of cores present in the
CPU affect that interference is an interesting future work. Additionally, a way
to couple (or even merge) the scheduler presented here with the OS scheduler
can greatly help to increase performance.

Finally, we plan to consider different program inputs and analyze their in-
fluence on predictive scheduling and run-time adaptation. We plan to use and
extend techniques such as clustering [10], code versioning and program phase
runtime adaptation [6,7] to improve the utilization and adaptation of all avail-
able resources in the future heterogeneous computing systems.
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Abstract. Iterative compilation is an efficient approach to optimize pro-
grams on rapidly evolving hardware, but it is still only scarcely used in
practice due to a necessity to gather a large number of runs often with
the same data set and on the same environment in order to test many
different optimizations and to select the most appropriate ones. Natu-
rally, in many cases, users cannot afford a training phase, will run each
data set once, develop new programs which are not yet known, and may
regularly change the environment the programs are run on.

In this article, we propose to overcome that practical obstacle using
Collective Optimization, where the task of optimizing a program lever-
ages the experience of many other users, rather than being performed in
isolation, and often redundantly, by each user. Collective optimization is
an unobtrusive approach, where performance information obtained after
each run is sent back to a central database, which is then queried for op-
timizations suggestions, and the program is then recompiled accordingly.
We show that it is possible to learn across data sets, programs and archi-
tectures in non-dynamic environments using static function cloning and
run-time adaptation without even a reference run to compute speedups
over the baseline optimization. We also show that it is possible to simul-
taneously learn and improve performance, since there are no longer two
separate training and test phases, as in most studies. We demonstrate that
extensively relying on competition among pairs of optimizations (program
reaction to optimizations) provides a robust and efficient method for cap-
turing the impact of optimizations, and for reusing this knowledge across
data sets, programs and environments. We implemented our approach in
GCC and will publicly disseminate it in the near future.

1 Introduction

Many recent research efforts have shown how iterative compilation can outper-
form static compiler optimizations and quickly adapt to complex processor archi-
tectures [33,9,6,24,16,10,20,31,27,26,18,19]. Over the years, the approachhas been
perfected with fast optimization space search techniques, sophisticated machine-
learning algorithms and continuous optimization [25,29,28,34,3,8,32,23,21]. And,
even though these different research works have demonstrated significant perfor-
mance improvements, the technique is far from mainstream in production envi-
ronments. Besides the usual inertia for adopting new approaches, there are hard
technical hurdles which hinder the adoption of iterative approaches.

A. Seznec et al. (Eds.): HiPEAC 2009, LNCS 5409, pp. 34–49, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The most important hurdle is that iterative techniques almost all rely on a
large number of training runs (either from the target program or other training
programs) to learn the best candidate optimizations. And most of the aforemen-
tioned articles run the same programs, generated with the exact same compiler
on the same architecture with the same data sets, and do this a large number
of times (tens, hundreds or thousands of times) in order to deduce the shape
of the optimization space. Naturally, in practice, a user is not going to run the
same data set multiple times, will change architectures every so often, and will
upgrade its compiler as well. We believe this practical issue of collecting a large
number of training information, relying only on production runs (as opposed to
training runs where results are not used) to achieve good performance is the
crux of the slow adoption of iterative techniques in real environments.

We propose to address this issue with the notion of Collective Optimization.
The principle is to consider that the task of optimizing a program is not an
isolated task performed by each user separately, but a collective task where
users can mutually benefit from the experience of others. Collective optimization
makes sense because most of the programs we use daily are run by many other
users, either globally if they are general tools, or within our or a few institutions
if they are more domain-specific tools. Achieving collective optimization requires
to solve both an engineering and a research issue.

The engineering issue is that users should be able to seamlessly share the out-
come of their runs with other users, without impeding execution or compilation
speed, or complicating compiler usage. The key research issue is that we must pro-
gressively improve overall program performance while, at the same time, we learn
how it reacts to the various optimizations, all solely using production runs ; in real-
ity, there is no longer such a thing as a training phase followed by a test/use phase,
both occur simultaneously. Moreover, we must understand whether it is possible
and how to learn across data sets, programs or platforms. An associated research
issue is to come up with a knowledge representation that is relevant across data
sets, programs and platforms. Finally, because a user will generally run a data set
only once, we must learn the impact of optimizations on program performance
without even a reference run to decide whether selected optimizations improved
or degraded performance compared to the baseline optimization.

In this article, we show that it is possible to continuously learn across data sets,
programs or platforms, relying solely on production runs, and progressively im-
proving overall performance across runs, reaching close to the best possible itera-
tive optimization performance, itself achieved under idealized (and non-realistic)
conditions. We show that extensively relying on competition among pairs of op-
timizations provides a robust and efficient method for capturing the impact of
optimizations on program performance, without requiring reference runs and
while remaining relevant across data sets, programs and architectures. While
most recent research studies are focused on learning across programs [28,3,7],
we find that, in practice, learning across data sets, and to a lesser extent, across
architectures, is significantly more important and useful. Finally, we present
a solution to the engineering issue in the form of an extension to GCC which
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relies on a central database for transparently aggregating runs results from many
users, and performing competitions between optimizations during runs.

2 Experimental Setup

In order to perform a realistic evaluation of collective optimization, each bench-
mark has to come with several data sets in order to emulate truly distinct runs. To
our knowledge, only the MiDataSets [13] data set suite based on the MiBench [17]
benchmark suite currently provides 20+ data sets for 26 benchmarks.

All programs are optimized using the GCC 4.2.0 compiler. The collective opti-
mization approach and framework are compatible with other compilers, but GCC
is now becoming a competitive optimization compiler with a large number of em-
bedded programtransformation techniques. We identified 88 programtransforma-
tions, called through corresponding optimization flags, that are known to influence
performance, and 8 parameters for each parametric optimization. These transfor-
mations are randomly selected to produce an optimization combination.

In order to unobtrusively collect information on a program run, and re-
optimize the program, GCC is modified so as to add to each program a routine
which is executed when the program terminates. This termination routine col-
lects several information about the program (a program identifier, architecture
and compiler identifiers, which optimizations were applied) and about the last
run (performance measurements; currently, execution time and profiling infor-
mation), and stores them into a remote database.

Then, it queries a server associated with the remote database in order to select
the next optimizations combination. The recompilation takes place periodically
(set by user) in the background, between two runs.1 No other modification takes
place until the next run, where the process loops again, as shown in Figure 1.
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Fig. 1. Collective Optimization Framework

1 Note that if the recompilation is not completed before another run starts, this latter
run just uses the same optimizations as the previous run, and the evaluation of the
new optimizations is just slightly delayed by one or a few runs.
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The programs were compiled and run on three architectures - AMD Athlon XP
2800+ (AMD32) - 5 machines, AMD Athlon 64 3700+ (AMD64) - 16 machines
and Intel Xeon 2.80GHz (IA32) - 2 machines.

3 Motivation

The experimental methodology of research in iterative optimization usually con-
sists in running many times the same program on the same data set and on
the same platform. Hence, it can be interpreted as an idealized case of collec-
tive optimization, where the experience of others (program, data set, platform)
would always perfectly match the target run. In other words, it is a case where
no experimental noise would be introduced by differences in data sets, programs
or platforms. Consequently, iterative optimization can be considered as a per-
formance upper-bound of collective optimization. Figure 2(a) shows the best
speedup achieved for each benchmark and each data set (averaged over 20 dis-
tinct data sets) over the highest GCC optimization level (-O3) by selecting the
best optimizations combination among 200 for each program and data set. This
experiment implicitly shows that collective optimization has the potential to
yield high speedups.
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Fig. 2. (a) Performance upper-bound of Collective Optimization (AMD Athlon 64
3700+, GCC 4.2.0), (b) Computing the probability distribution to select an optimiza-
tion combination based on continuous competition between combinations

4 Overview

This section provides an overview of the proposed approach for collective op-
timization. The general principle is that performance data about each run is
transparently collected and sent to a database; and, after each run, based on
all the knowledge gathered so far, a new optimizations combination is selected
and the program is recompiled accordingly. The key issue is which optimizations
combination to select for each new run, in order to both gather new knowledge
and keep improving average program performance as we learn.
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In collective optimization, several global and program-specific probability dis-
tributions capture the accumulated knowledge. Combinations are randomly se-
lected from one of several probability distributions which are progressively built
at the remote server.

The different “maturation” stages of a program. For each program, and
depending on the amount of accumulated knowledge, we distinguish three sce-
narios: (1) the server may not know the program at all (new program), (2) only
have information about a few runs (infrequently used or a recently developed
program), or (3) have information about many runs.

Stage 3: Program well known, heavily used. At that maturation stage, enough
runs have been collected for that program that it does not need the experience of
other programs to select the most appropriate optimizations combinations for it-
self. This knowledge takes the form of a program-specific probability distribution
called d3. Stage 3 corresponds to learning across data sets.

Stage 2: Program known, a few runs only. At that maturation stage, there is still
insufficient information (program runs) to correctly predict the best combina-
tions by itself, but there is already enough information to start “characterizing”
the program behavior. This characterization is based on the comparison of the
impact of optimizations combinations tried so far on the program against their
impact on other programs (program reaction to optimizations). If two programs
behave alike for a subset of combinations, they may well behave alike for all
combinations. Based on this intuition, it is possible to find the best matching
program, after applying a few combinations to the target program. Then, the
target program probability distribution d2 is given by the distribution d3 of the
matching program. This matching can be revisited with each additional infor-
mation (run) collected for the target program. Stage 2 corresponds to learning
across programs.

Stage 1: Program unknown. At that stage, almost no run has been performed,
so we leverage and apply optimizations suggested by the “general” experience
collected over all well-known programs. The resulting d1 probability distribution
is the unweighted average of all d3 distributions of programs which have reached
Stage 3. Stage 1 is an elementary form of learning across programs.

Selecting stages. A program does not follow a monotonic process from Stage
1 to Stage 3, even though it should intuitively mature from Stage 1 to Stage 2 to
Stage 3 in most cases. There is a permanent competition between the different
stages distributions (d1, d2, d3). At any time, a program may elect to draw op-
timizations combinations from any stage distribution, depending on which one
appears to perform best so far. In practice and on average, we find that Stage 3
(learning across data sets) is by far the most useful stage. Stage 1 and Stage 2
stages are respectively useful in the first ten, and the first hundreds runs of a
program on average, but Stage 3 rapidly becomes dominant. The competition
between stages is implemented through a “meta” distribution dm, which reflects
the current score of each stage distribution for a given program. Each new run is
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a two-step random process: first, the server randomly selects the distribution to
be used, and then, it randomly selects the combination using that distribution.
How scores are computed is explained in Section 5. Using that meta-distribution,
the distribution with the best score is usually favored.

5 Collective Learning

In this section, we explain in more detail how to compute the aforementioned
distributions to achieve collective learning.

5.1 Building the Program Distribution d3 Using Statistical
Comparison of Optimizations Combinations

Comparing two combinations C1, C2. In order to build the aforementioned dis-
tributions, one must be able to compare the impact of any two optimizations
combinations C1, C2 on program performance.

However, even the simple task of deciding whether C1 > C2 can become
complex in a real context. Since the collective optimization process only re-
lies on production runs, two runs usually correspond to two distinct data sets.
Therefore, if two runs with respective execution times T1 and T2, and where
optimizations combinations C1 and C2 have been respectively applied, are such
that T1 < T2, it is not possible to deduce that C1 > C2.

To circumvent that issue, we perform run-time comparison of two optimiza-
tions combinations using cloned functions. C1 and C2 are respectively applied
to the clones f1 and f2 of a function f . At run-time, for each call to f , either f1
or f2 is called; the clone called is randomly selected using an additional branch
instruction and a simple low-overhead pseudo-random number generation tech-
nique emulating uniform distribution. Even if the routine workload varies upon
each call, the random selection of the clone to be executed ensures that the aver-
age workload performed by each clone is similar. As a result, the non-optimized
versions of f1 and f2 account for about the same fraction of the overall execu-
tion time of f . Therefore, if the average execution time of the clone optimized
with C1 is smaller than the average execution time of the clone optimized with
C2, it is often correct to deduce that C1 is better than C2, i.e., C1 > C2. This
statistical comparison of optimizations combinations requires no reference, test
or training run, and the overhead is negligible.

We have shown in [14] the possibility to detect the influence of optimizations
for statically compiled programs with stable behavior using function cloning and
run-time low-overhead phase detection. Stephenson et al. [30] and Lau et al. [22]
demonstrated how to evaluate different optimizations for programs with irreg-
ular behavior in dynamic environments using random function invocations and
averaging collected time samples across a period of time. We combined these
techniques to enable run-time transparent performance evaluation for statically-
compiled programs with any behavior here.

On the first program run, profiling information is collected and sent to the
database. All the most time-consuming routines accounting for 75% or more of
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the total execution time and with an average execution time per call greater
than a platform-specific threshold are cloned. The purpose of this threshold is to
ensure that the overhead of the additional branch instruction remains negligible
(less than 0.1%) compared to the average execution time per function call. Since
profiling information is periodically collected at random runs, more routines can
be added during the next runs (for instance if different parts of the call graph
are reached depending on the data sets), the target routines are not set in stone
after the first run. More implementation details are provided in Section 6.

Computing d3. When two combinations C1 and C2 are compared on a pro-
gram using the aforementioned cloned routines, the only information recorded is
whether C1 > C2 or C1 < C2. Implicitly, a run is a competition between two op-
timizations combinations, and the winning combination scores 1 and the losing
is 0 as shown in Figure 2(b). These scores are cumulated for each combination
and program. The scores are then normalized per combination, by the number
of times the combination was tried (thus implicitly decreasing the average score
of the losing combination). Then the overall distribution is normalized so that
the sum of all combinations scores (probabilities) is 1.

Because this distribution only reflects the relative “merit” of each combina-
tion, and not the absolute performance (e.g., execution time or speedup), it is a
fairly resilient metric, tolerant to variations in measurements.

5.2 Building the Aggregate Distribution d1

d1 is simply the average of all d3 distributions of each program. d1 reflects the
most common cases: which optimizations combinations perform best in general.
It is also possible to compose more restricted aggregate distributions, such as
per architecture, per compiler, per programs subsets,. . . , though this is left for
future work.

5.3 Building the Matching Distribution d2

Stage 2 is based on the intuition that it is unlikely that all programs exhibit
widely different behavior with respect to compiler optimizations, or conversely
that, once the database is populated with a sufficient number of programs, it
is likely that a new program may favor some of the same optimizations combi-
nations as some of the programs already in the database. The main difficulty
is then to identify which programs best correspond to the current target one.
Therefore, we must somehow characterize programs, and this characterization
should reflect which optimizations combinations a program favors.

As for d3, we use the metric-independent comparison between two optimiza-
tions combinations C1 and C2. E.g., C1 > C2 is a reaction to program optimiza-
tions and is used as one characterization of the program. Let us assume that
C1 > C2 for the target program P and C1 > C2 for a program P ′ and C1 < C2
for a program P ′′ compared against P . Then, P ′ gets a score of 1, and P ′′ a score
of 0. The program with the best score is considered the matching program, and
d2 is set to the d3 of that program. In other words, for d2 we use a competition
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among programs. The more combinations pairs (reactions to optimizations) are
compared, the more accurate and reliable the program matching.

Still, we observed that beyond 100 characterizing combinations pairs (out
of C2

100 = 200×199
/ 2 = 19900 possible combinations pairs), performance barely

improves. In addition, it would not be practical to recompute the matching
upon each run based on an indefinitely growing number of characterizations.
Therefore, we restrict the characterization to 100 combinations pairs, which
are collected within a rolling window (FIFO). However, the window only con-
tains distinct optimizations combinations pairs. The rolling property ensures
that the characterization is permanently revisited and rapidly adapted if neces-
sary. The matching is attempted as soon as one characterization is available in
the window, and continuously revisited with each new modification of the rolling
window.

Cavazos et al. [7] have shown that it is possible to improve similar program
characterizations by identifying and then restricting to optimizations which carry
the most information using the mutual information criterion. However, these
optimizations do not necessarily perform best, they are the most discriminatory
and one may not afford to “test” them in production runs. Moreover, we will later
see that this approach could only yield marginal improvement in the start-up
phase due to the rapid convergence of Stage 3/d3.

5.4 Scoring Distributions

As mentioned in Section 4, a meta-distribution is used to select which stage
distribution is used to generate the next optimizations combination. For each
run, two distributions d and d′ are selected using two draws from the meta-
distribution (they can be the same distributions). Then, an optimizations com-
bination is drawn from each distribution (C1 using d and C2 using d′), which
will compete during the run. Scoring is performed upon the run completion; note
that if C1 and C2 are the same combinations, no scoring takes place.

Let us assume, for instance, that for the run, C1 > C2. If, according to d,
C1 > C2 also, then one can consider that d “predicted” the result right, and gets
a score of 1. Conversely, it would get a score of 0. The server also keeps track of
the number of times each distribution is drawn, and the distribution value in the
meta-distribution is the ratio of the sum of all its scores so far and the number
of times it was drawn. Implicitly, its score decreases when it gets a 0, increases
when it gets a 1, as for individual distributions.

This scoring mechanism is robust. If a distribution has a high score, but starts
to behave poorly because the typical behavior of the program has changed (e.g.,
a very different kind of data sets is used), then its score will plummet, and
the relative score of other distributions will comparatively increase, allowing to
discover new strong combinations. Note that d3 is updated upon every run (with
distinct combinations), even if it was not drawn, ensuring that it converges as
fast as possible.
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6 Collective Compiler

Program identification. At the moment, a program is uniquely identified us-
ing a 32-byte MD5 checksum of all the files in its source directory. This identifier
is sufficient to distinguish most programs, and it has the added benefit of not
breaking confidentiality: no usable program information is sent to the database.
In the future, we also plan to use the vector of program reactions to transfor-
mations as a simple and practical way to characterize programs based solely on
execution time.

Termination routine. In order to transparently collect run information, we
modified GCC to intercept the compilation of the main() function, and to insert
another interceptor on the exit() function. Whenever the program execution
finishes, our interceptor is invoked and it in turn checks whether the Collective
Stats Handler exists, invokes it to send program and run information to the
Collective Optimization Database. At any time, the user can opt in or out of
collective optimization by setting or resetting an environment variable.

Cloning. As mentioned before, optimizations combinations are evaluated
through cloned routines. These routines are the most time-consuming program
routines (top 3 routines and/or 75% or more of the execution time). They are
selected using the standard gprof utility. The program is profiled at the first
and then random runs. Therefore, the definition of the top routines can change
across runs. We progressively build an average ranking of the program routines,
possibly learning new routines as they are exercised by different data sets. The
speedups mentioned in the following performance evaluation section are provided
with respect to a non-instrumented version of the program, i.e., they factor in
the instrumentation, which usually has a negligible impact.

We modified GCC to enable function cloning and be able to apply different
optimizations directly to clones and original functions. This required changes
in the core of the compiler since we had to implement full replication of parts
of a program AST, and to change the optimization pass manager to be able to
select specific optimizations combinations on a function level. When GCC clones
a function, it inserts profiling calls at the prolog and epilog of the function,
replaces static variables and inserts additional instructions to randomly select
either the original or the cloned version.

Security. The concept of collective optimization raises new issues, especially
security. First, very little program information is in fact sent to the database.
The profile routine names are locally hashed using MD5, and only run-time
statistics (execution times) are sent. Second, while we intend to set up a global
and openly accessible database, we do expect companies will want to set up
their own internal collective optimization database. Note that they can then get
the best of both worlds: leverage/read information accessible from the global
database, while solely writing their runs information to their private database.
At the moment, our framework is designed for a single database, but this two-
database system is a rather simple evolution.
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7 Performance Evaluation

In Figure 3(a), Collective corresponds to the full process described in earlier sec-
tions, where the appropriate distribution is selected using the meta-distribution
before every run; performance is averaged over all programs (for instance, Run=1
corresponds to performance averaged over 1 random run for each program). For
each program, we have collected 20 data sets and can apply 200 different opti-
mizations combinations, for a total of 4000 distinct runs per program. The main
approximation of our evaluation lays in the number of data sets; upon each run,
we (uniformly) randomly select one among 20 data sets. However, several studies
have shown that data sets are often clustered within a few groups breeding sim-
ilar behavior [11], so that 20 data sets exhibiting sufficiently distinct behavior,
may be considered a non-perfect but reasonable emulation of varying program
behavior across data sets. In order to further assess the impact of using a re-
stricted number of data sets, we have evaluated the extreme case where a single
data set is used. These results are reported in Figure 3(b), see Single data set,
where a single data set is used per program in each experiment, and then, for
each x-axis value (number of runs), performance is averaged over all programs
and all data sets. Using a single data set improves convergence speed though only
moderately, suggesting Collective could be a slightly optimistic but reasonable
approximation of a real case where all data sets are distinct.

After 10000 runs per program, the average Collective speedup, 1.11, is fairly
close to the Best possible speedup, 1.13, the asymptotic behavior of single-data
set experiments. The other graphs (d1, d2, d3 ) report the evolution of the av-
erage performance of optimizations combinations drawn from each distribution.
At the bottom of the figure, the grey filled curve corresponds to the meta score
of d3, the black one to d2 and the white one to d1.

Learning across programs. While the behavior of d2 in Figure 3(a) suggests
that learning across programs yields modest performance improvements, this
experiment is partly misleading. d3 rapidly becomes a dominant distribution,
and as explained above, quickly converges to one or a few top combinations due
to restricted interval polling. d2 performance will improve as more characterizing
optimizations combinations pairs fill up the rolling window. And Figure 3(b)
shows that without d2, the meta distribution does not converge as fast or to an
as high asymptotic value.

Collective versus d3. While the better performance of d3 over Collective, in
Figure 3(a), suggests this distribution should solely be used, one can note its
performance is not necessarily the best in the first few runs, which is important
for infrequently used codes. Moreover, the average Collective performance across
runs becomes in fact very similar after d3 has become the dominant distribution,
since mostly d3 combinations are then drawn. But a more compelling reason for
privileging Collective over d3 is the greater robustness of collective optimization
thanks to its meta-distribution scheme.

In Figure 3(b), we have tested collective optimization without either d1, d2
or neither one. In the latter case, we use the uniform random distribution to
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Fig. 3. (a) Average performance of collective optimization and individual distributions
(bottom: meta-scores of individual distributions; grey is d3, black is d2, white is d1),
(b) Several collective optimization variants

discover new optimizations, and the meta-distribution arbitrates between d3 and
uniform; by setting the uniform distribution initial meta-score to a low value
with respect to d3, we can both quickly discover good optimizations without
degrading average performance;2 the uniform distribution is not used when only
d1 or d2 are removed. As shown in Figure 3(b), collective optimization converges
more slowly when either d1, d2 or both are not used. These distributions help
in two ways. d1 plays its main role at start-up, by bringing a modest average
2% improvement, and performance starts lower when it is not used. Conversely,
d2 is not useful at start-up, but provides a performance boost after about 50 to
100 runs when its window is filled and the matching is more accurate. d2 does in
fact significantly help improve the performance of Collective after 100 runs, but

2 This is important since the average speedup of the uniform distribution alone is 0.7.
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essentially by discovering good new optimizations, later adopted by d3, rather
than due to the intrinsic average performance of the optimizations combinations
suggested by d2.

Learning across architectures. Besides learning across data sets and programs,
we have also experimented with learning across architectures. We have collected
similar runs on an Athlon 32-bit (AMD32) architecture and an Intel 32-bit (IA32)
architecture (recall all experiments above are performed on an Athlon 64-bit ar-
chitecture), and we have built the d3 distributions for each program. At start-up
time, on the 64-bit architecture, we now use a d4 distribution corresponding
to the d3 distribution for this program but other architectures (and 19 data
sets, excluding the target data set); the importance of d4 will again be deter-
mined by its meta-score. The rest of the process remains identical. The results
are reported in curve Architectures on Figure 3(b). Start-up performance does
benefit from the experience collected on the other architectures. However, this
advantage fades away after about 2000 runs. We have also experimented with
simply initializing d3 with the aforementioned d4 instead of using a separate d4
distribution. However the results were poorer because the knowledge acquired
from other architectures was slowing down the rate at which d3 could learn the
behavior of the program on the new architecture.

8 Background and Related Work

Iterative or adaptive compilation techniques usually attempt to find the best pos-
sible combinations and settings of optimizations by scanning the space of all possi-
ble optimizations. [33,9,6,24,10,20,31,27,26,19] demonstrated that optimizations
search techniques can effectively improve performance of statically compiled pro-
grams on rapidly evolving architectures, thereby outperforming state-of-the-art
compilers, albeit at the cost of a large number of exploration runs.

Several research works have shown how machine-learning and statistical tech-
niques [25,29,28,34] can be used to select or tune program transformations based
on program features. Agakov et al. [3] and Cavazos et al. [8] use machine-learning
to focus iterative search using either syntactic program features or dynamic hard-
ware counters and multiple program transformations. Most of these works also
require a large number of training runs. Stephenson et al. [28] show more com-
plementarity with collective optimization as program matching is solely based
on static features.

Several frameworks have been proposed for continuous program optimiza-
tion [4,32,23,21]. Such frameworks tune programs either during execution or off-
line, trying different program transformations. Such recent frameworks like [21]
and [23] pioneer lifelong program optimization, but they expose the concept
rather than research practical knowledge management and selection strategies
across runs, or unobtrusive optimization evaluation techniques. Several recent
research efforts [14,22,30] suggest to use procedure cloning to search for best op-
timizations at run-time. In this article we combine and extend techniques from
[14] that are compatible with regular scientific programs and use low-overhead
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run-time phase detection, and methods from [30,22] that can be applied to pro-
grams with irregular behavior in dynamic environments by randomly executing
code versions and using statistical analysis of the collected execution times with
a confidence metric. Another recent research project investigates the potential
of optimizing static programs across multiple data sets [13] and suggests this
task is tractable though not necessarily straightforward.

The works closest to ours are by Arnold et al. [5] and Stephenson [30]. The sys-
tem in [5] collects profile information across multiple runs of a program in IBM
J9 Java VM to selectively apply optimizations and improve further invocations
of a given program. However it doesn’t enable optimization knowledge reuse from
different users, programs and architectures. On the contrary, Stephenson tunes a
Java JIT compiler across executions by multiple users. While several aspects of
his approach is applicable to static compilers, much of his work focuses on Java
specifics, such as canceling performance noise due to methods recompilation,
or the impact of garbage collection. Another distinctive issue is that, in a JIT,
the time to predict optimizations and to recompile must be factored in, while
our framework tolerates well long lapses between recompilations, including sev-
eral runs with the same optimizations. Finally, we focus more on the impact of
data sets from multiple users and the optimization selection robustness (through
competitions and meta-distribution).

9 Conclusions and Future Work

The first contribution of this article is to identify the true limitations of the
adoption of iterative optimization in production environments, while most stud-
ies keep focusing on showing the performance potential of iterative optimization.
We believe the key limitation is the large amount of knowledge (runs) that must
be accumulated to efficiently guide the selection of compiler optimizations. The
second contribution is to show that it is possible to simultaneously learn and
improve performance across runs. The third contribution is to propose multi-
level competition (among optimizations and their distributions which capture
different program knowledge maturation stages, and among programs) to un-
derstand the impact of optimizations without even a reference run for comput-
ing speedups, while ensuring optimization robustness. The program reactions
to transformations used to build such distributions provide a simple and prac-
tical way to characterize programs based solely on execution time. The fourth
contribution is to highlight that knowledge accumulated across data sets for a
single program is more useful, in the real and practical context of collective
optimization, than the knowledge accumulated across programs, while most it-
erative optimization studies focus on knowledge accumulated across programs;
we also conclude that knowledge across architectures is useful at start-up but
does not bring any particular advantage in steady-state performance. The fifth
and final contribution is to address the engineering issue of unobtrusively col-
lecting runs information for statically-compiled programs using function cloning
and run-time adaptation mechanism.



Collective Optimization 47

The collective optimization approach opens up many possibilities which can be
explored in the future. We plan to use it to automatically and continuously tune
default GCC optimization heuristic or individual programs using recent plugin
system for GCC [15,2] that allows to invoke transformations directly, change
their parameters, orders per function or even add plugins with new transfor-
mations to improve performance, code size, power, and so on. After sufficient
knowledge has been accumulated, the central database may become a powerful
tool for defining truly representative benchmarks. We can also refine optimiza-
tions at the data set level by clustering data sets and using our cloning and
run-time adaptation techniques to select the most appropriate optimizations
combinations or even reconfigure processor at run-time thus creating self-tuning
intelligent ecosystem. We plan to publicly disseminate our collective optimiza-
tion framework, the run-time adaptation routines for GCC based on [12,8] as
well as the associated central database at [1] in the near future.
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Abstract. In order to increase the speed of dynamic binary transla-
tion based simulators we consider the translation of large translation
units consisting of multiple blocks. In contrast to other simulators, which
translate hot blocks or pages, the techniques presented in this paper pro-
file the target program’s execution path at runtime. The identification
of hot paths ensures that only executed code is translated whilst at the
same time offering greater scope for optimization. Mean performance fig-
ures for the functional simulation of EEMBC benchmarks show the new
simulation techniques to be at least 63% faster than basic block based
dynamic binary translation.

1 Introduction

Simulators play an important role in the design of today’s high performance
microprocessors. They support design-space exploration, where processor char-
acteristics such as speed and power consumption are accurately predicted for
different architectural models. The information gathered enables designers to
select the most efficient processor designs for fabrication. Simulators also pro-
vide a platform on which experimental ISAs can be tested, and new compilers
and applications may be developed and verified. They help to reduce the overall
development time for new microprocessors by allowing concurrent engineering
during the design phase. This is especially important for embedded system-on-
chip designs, where processors may be extended to support specific applications.

The ever-increasing complexity ofmodern microprocessors exacerbates the cen-
tral challenge of achieving high-speed simulation whilst at the same time retaining
absolute modelling accuracy. Simulators must model the different processor units
which perform sophisticated functions and emulate events such as interrupts and
exceptions. Many embedded processors now incorporate memory management
hardware to support multi-tasking operating systems.

This paper is concerned with that class of simulator which provides accurate
and observable modelling of the entire processor state. This is possible to achieve
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by operating at the register transfer level, but such simulators are very slow. In
contrast, compiled simulation, which can be many orders of magnitude faster,
does not have the same degree of observability and can only be used in situations
where the application code is known in advance and is available in source form.
Programs which require an operating system or which are shrink-wrapped can
not benefit from compiled simulation.

Dynamic Binary Translation (DBT) on the other hand combines interpretive
and compiled simulation techniques in order to maintain high speed, observ-
ability and flexibility. However, achieving accurate state observability remains
in tension with high speed simulation. The Edinburgh High Speed (EHS) DBT
simulator developed at the Institute for Computing Systems Architecture, Ed-
inburgh University, was used to carry out this research.

Section 2 presents an overview of the EHS simulator and section 3 details the
different types of Large Translation Unit (LTU). Section 4 explains the profiling
methods used to identify the different translation-units, whilst section 5 describes
the mechanics of DBT simulation. Performance results are presented in section 6,
followed by related work in section 7 and the conclusions in section 8.

2 Simulator Overview

The Edinburgh High Speed simulator [13] presented in this paper is designed to
be target-adaptable, with the initial target being the ARC 700 processor which
implements the ARCompact instruction set architecture.

It can be run as either a user-level (emulated system calls) or system-level sim-
ulator. In full-system mode, the simulator implements the processor, its memory
sub-system (including MMU), and sufficient interrupt-driven peripherals to sim-
ulate the boot-up and interactive operation of a complete Linux-based system.

The simulator possesses two simulation modes: an interpretive mode which
provides precise observability after each instruction, and a DBT mode which pro-
vides similarly precise observability between successive basic blocks. By captur-
ing all architecturally visible CPU state changes the simulator is able to support
high speed hardware-software co-verification. The simulator’s underlying system
architecture for handling memory access, I/O, interrupts, and exceptions is the
same for both interpreted and translated modes. This means that the simulator
is able to switch, at basic block boundaries, between the two simulation modes
at runtime.

In DBT simulation mode, target binaries can be simulated at speeds in excess
of ten times faster than for interpretive mode. When operating in DBT mode
the simulator initially interprets all instructions, discovering and profiling basic
blocks as they are encountered. After interpreting a set number of blocks, the
target program’s execution path is analysed for frequently executed basic blocks,
or LTUs, which are then marked for binary translation. After the hot blocks, or
LTUs, have been dynamically translated and loaded, they are from that moment
on simulated by calling the corresponding translations directly.

The simulation of a target executable may be interrupted within a translated
block and restarted at the current program counter. This enables translated
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blocks to raise exceptions part-way through, after which the remaining instruc-
tions in the block will be interpreted.

The simulator can also be directed to retain the translations produced from
the simulation of a target executable. These translations can then be used by the
next simulation run of the same executable. This mechanism enables a library of
translations to be built up for a target program. The maximum simulation speed
for an executable can therefore be ascertained once all of the target instructions
have been translated by previous simulation runs.

3 Large Translation Units

Typically, in DBT simulators, the unit of translation is either the target instruction
or the basic block. By increasing the size of the translation-unit it is possible to
achieve significant speedups in simulation performance. Translation-units are the
objectswhich are dynamically compiled and loaded asTranslatedFunctions (TFs).
The TFs are then called directly to emulate the target code at very high speed.

The increase in performance is due to two main factors. Firstly, LTUs offer
the compiler greater scope for optimization across multiple blocks, rather than
just a single basic block. Secondly, more time is spent simulating within a given
TF and less time is spent returning to the main simulation loop.

In this paper we consider three different types of LTU, in addition to the
basic block translation-unit. An LTU in this context is a group of basic blocks
connected by control-flow arcs, which may have one or more entry and exit
points. The different translation modes incorporated into the EHS simulator
include Basic Block (BB), Strongly Connected Components (SCC), Control Flow
Graph (CFG) and Physical Page (Page).

In contrast to other DBT simulators, the EHS simulator profiles the target
program’s execution in order to discover hot paths rather than to identify hot
blocks or pages, areas of which may be infrequently executed. The target pro-
gram is profiled and the translation-units created on a per physical-page basis.
Figure 1 shows the different translation-unit types and and their entry points.
Example target-program CFGs are shown divided into separate translation-units
in accordance with DBT mode. The possible entry point/s into a translation-
unit varies with DBT mode. However, entry is always to the address of the first
instruction within a basic block.

In Basic Block DBT, those basic blocks which are frequently executed at
simulation time are identified and then sent for binary translation. When the
PC value subsequently matches a translated basic block’s start address, instead
of interpreting the block, the translated code associated with the basic block is
called directly.

In SCC DBT, the block execution path is analysed to discover SCCs (strongly
connected blocks) and linear block regions. Frequently executed SCCs (and lin-
ear regions) are then marked for translation. When the PC value subsequently
matches a translated SCC’s (or linear region’s) root block address, the translated
code associated with the SCC (or linear region) is called directly.
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Fig. 1. Different Types of Translation Unit. Each figure shows a target-program
CFG divided into DBT mode translation-units. Dotted lines indicate the separate
translation-units whilst thick-edged circles show the possible entry points.

In CFG DBT, the block execution path is analysed to discover the CFGs.
Frequently executed CFGs are then marked for translation. When the PC value
subsequently matches a translated CFG’s root block address, the translated code
associated with the CFG is called directly.

In Page DBT, the block execution path is analysed to discover the CFGs.
All the CFGs found are then binary translated as a whole. When the PC value
subsequently matches the start address of any block within a translated unit,
the translated code associated with the block is called directly.

4 Dynamic Execution Profiling

Simulation time is partitioned into epochs, where each epoch is defined as the
interval between two successive binary translations. During each epoch, new
translation-units may be discovered; previously seen but not-translated
translation-units may be re-interpreted; translated translation-units may be dis-
carded (e.g. self-modifying code); and translated translation-units may be ex-
ecuted. Throughout this process the simulator continues profiling those basic
blocks which are still being interpreted. The end of each simulation epoch is
reached when the number of interpreted basic blocks is equal to a predefined
number.

Execution profiles for each physical-page are built up during the simulation
epoch. For BB DBT this involves simply maintaining a count of the number of
times individual basic blocks have been interpreted. In LTU DBT (SCC, CFG or
Page) a page-CFG is produced for each physical-page. An LTU profile is created
by adding the next interpreted block to the page-CFG, as well as incrementing
the block’s execution count.

Figure 2 shows examples of the different types of page-CFG that may be
created during simulation. A page-CFG can consist of a single CFG or multiple
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(a) Separate (b) Combined (c) Mixed

Fig. 2. Example page-CFG Configurations. A page-CFG may contain any number
of (a) separate CFGs, (b) combined CFGs or (c) a mixture of both.

CFGs, in which case they may be separate, combined or a mixture of both types.
In order that a page-CFG is not ”broken” by an interrupt or an exception, the
block sequences for the different processor interrupt states are tracked separately.

At the end of each simulation epoch the page-CFGs are analysed to re-
trieve the constituent translation-units. In the case of SCC DBT, Tarjan’s algo-
rithm [12] is applied to each CFG in order to extract the SCC translation-units.
Regions of linear basic blocks are also identified as another translation-unit. In
CFG DBT, the translation-units are extracted by tracing the CFG paths start-
ing at each of the root nodes. No further processing is required for Page DBT
as the translation-unit is the page-CFG itself.

5 Dynamic Binary Translation

The Dynamic Binary Translation simulation process is outlined in Fig. 3. The sim-
ulator looks up the next PC address in a fast Translation Cache (TC) which re-
turn translations. The TC, which is indexed by basic block start address, contains
a pointer to the Translated Function (TF) for the corresponding translation-unit.

If the next PC address hits in the TC, its TF is called, thereby emulating
directly the translation-unit. In addition to performing all of the operations
within the translation-unit, all state information for the simulated processor,
including the PC value, is updated prior to exiting the TF.

If the next PC address misses in the TC, it is looked up (physical address)
in the Translation Map (TM). The TM contains an entry for every translated
translation-unit. Each TM entry contains the translation-unit’s entry address
and a pointer to its TF which is used to call the corresponding host-code function.
If the PC address hits in the TM the corresponding TF pointer is cached in the
TC and the TF called.

If the PC address also misses in the TM, the translation-unit at this address
has not yet been translated. The basic block must therefore be interpreted and
the appropriate profiling information gathered. In the case of BB DBT, an entry
for the basic block is cached in the Epoch Block Cache (EBC) to record all
blocks interpreted during the current epoch. In the case of LTU DBT, the basic
block is added to the Epoch CFG Cache (ECC) which builds up a page-CFG of
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Fig. 3. Simulation Flow Chart

the target program’s execution (interpreted) for the current epoch. Instances of
the epoch cache exist for each physical page.

At the end of each simulation epoch, a profiling analysis phase is initiated
prior to binary translation. In the case of BB DBT, the EBCs are scanned for
frequently executed blocks. In SCC and CFG DBT, the page-CFGs cached in the
ECCs are searched for frequently executed translation-units. No further analysis
is required for Page DBT.

Those translation-units which have been interpreted at least as many times as
the predefined translation threshold aremarked for translation.The metric used to
determine whether a translation-unit is hot depends on the translation-unit type.
For BB translation it is the number of executions, for SCC andCFG translation it is
the number of root node executions. Page translation-units are always translated.
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The hot translation-units are then translated in batches comprising of trans-
lation units from the same physical page. The grouping of translation-units in
this way enables all of the translations for a physical page to be easily discarded
if for example, a target page is overwritten by self-modifying code or reused by
a different process.

Each translation-unit is converted in to a C code function which emulates the
target instructions. The functions are then compiled using GCC in to a shared
library which is loaded by the dynamic linker. Finally, the TM is updated with
the address of each newly translated TF. The next time one of the recently
translated translation-units needs simulating, it will hit in the TM, an entry will
be added to the TC and its TF called.

Each target instruction within a basic block is translated in to C code which
emulates the instruction on the simulator. The processor state is updated by
each instruction, with the exception of the PC which is updated at the end of
the block, or on encountering an exception. An exception (MMU miss) causes an
immediate return from the TF to the main simulation loop. Any pending inter-
rupts are checked for at the end of each block before simulating the next block
within the translation-unit. If a pending interrupt exists control is transferred
back to the main simulation loop. All edges connecting basic blocks are recorded
during profiling. This enables the program’s control flow to be replicated within
TFs with the use of GOTO statements. In Page DBT, the C code function rep-
resenting a TF contains a jump table at the beginning so that simulation may
commence at any block within the translation-unit.

6 Results

In this section we present the results from simulating a subset of the EEMBC
benchmark suite on the Edinburgh High Speed simulator. The benchmarks were
run on the simulator in order to compare the performance of the four DBT
modes. All benchmarks were compiled for the ARC 700 architecture using gcc
version 4.2.1 with -O2 optimization and linked against uClibc. The EEMBC
lite benchmarks were run for the default number of iterations, and the simula-
tor operated in user-level simulation mode so as to eliminate the effects of an
underlying operating system.

The simulator itself was compiled, and the translated functions dynamically
compiled, with gcc version 4.1.2 and -O3 optimization. All simulations were
performed on the workstation detailed in table 1 running Fedora Core 7 under
conditions of minimal system load. The simulator was configured to use a simu-
lation epoch of 1000 basic blocks and a translation threshold of 1 to ensure that
every translation-unit would be translated. In addition it was setup to model
target memory with a physical page size of 8KB.

6.1 Performance

Figure 4 shows the simulation performance profiles for BB, SCC, CFG and Page
DBT simulation modes. Each benchmark was simulated three times, with each
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Table 1. Host Configuration

Model Dell OptiPlex
Processor 1 × Intel Core 2 Duo 6700
CPU frequency 2660 MHz
L1 caches 32KB I/D caches
L2 cache 4MB per dual-core
FSB frequency 1066 MHz
RAM 2GB, 800MHz, DDRII

successive simulation loading the translations produced by the previous simula-
tion/s. The ”outlined bars” show the percentage of total simulation time spent
performing compilation. No target instructions were interpreted (zero compila-
tion overhead) on the third simulation run, and this was the case for the majority
of benchmarks on the second run.

The third run represents the maximum possible simulation speed for a bench-
mark in a particular simulation mode. If dynamic compilation were performed
in parallel to the actual simulation, then simulation speeds very close the maxi-
mum possible could be attained on the first run. As many of these benchmarks
run for very short periods of time, the percentage of total simulation time spent
performing compilation can be very significant (see Fig. 4). However, for longer
simulations this percentage tends towards zero on the first run.

Overall, the three LTU DBT modes perform significantly better than BB
DBT. The speedups for each LTU DBT mode, compared to BB DBT, are shown
in Fig. 5 and summarized in table 2. LTU DBT simulation outperforms BB DBT
simulation for all benchmarks with the exception of the bezierfixed benchmark,
where BB DBT slightly outperforms SCC DBT. All LTU DBT simulation modes
result in a mean speedup of at least 1.63 compared to BB DBT. Page DBT per-
forms the best across all benchmarks with a mean speedup of 1.67 and standard
deviation of 1.21. However, SCC DBT exhibits the highest simulation speed in
9 out of 20 of the benchmarks, compared to 7 out of 20 for Page DBT.

6.2 Translated Functions

Table 3 shows the average and largest, static and dynamic, TF block sizes broken
down by benchmark. As expected, the average static TF block size for a given
benchmark is greater for CFG translation than for SCC translation, and likewise
greater for Page translation than for CFG translation.

Also, the average dynamic TF block size is greater for CFG based simulation
than for SCC based simulation, with the exception of the pktflowb4m bench-
mark. In the case of pktflowb4m, CFG and Page based simulation exhibit a
lower average dynamic block size than SCC simulation. This is due to the large
number of TFs called in CFG and Page based simulation which simulate only a
small number of basic blocks. For this benchmark, SCC simulation called 1,182
TFs which executed a single block, whereas CFG simulation called 283,038 TFs
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Fig. 4. Different DBT Mode Simulation Profiles
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Fig. 5. Performance Comparison. This figure compares the speedups, relative to
Basic Block based DBT, for each LTU simulation mode. The results shown are for the
third simulation run.

Table 2. Performance Summary

Speed (MIPS)

Interpretive BB SCC CFG Page
Slowest 24 124 233 217 259
Fastest 33 660 706 705 826
Median 29 278 446 445 461
Average 30 283 460 455 466
Speedup: Geo Mean 0.11 1.00 1.63 1.64 1.67
Speedup: Geo SD 1.48 1.00 1.27 1.26 1.21

The average speed is equal to the total number of instructions
divided by the total simulation time for all benchmarks.

which executed a single block and Page simulation called 282,816 TFs which
executed three blocks.

However, the average dynamic TF block size for Page based simulation is
not greater than for CFG based simulation, the sole exception being the ospf
benchmark. This stems from the fact that Page based simulation provides direct
entry to any block within a TF. This means that once a block has been translated,
it will always be called directly (it is never again interpreted) and therefore ceases
to be profiled. This is not a problem so long as there are no program phase
changes which result in new hot paths at memory addresses already translated.
However, phase changes affect Page based simulation particularly severely. They
can result in individual blocks, or small groups of blocks, on new hot paths being
viewed as isolated code segments which will then be translated as separate TFs.
This greatly reduces the average dynamic TF block size.

For a given benchmark and simulation mode there exists a TF (or multiple
TFs) which represents the the simulation of the target program’s main loop, or
part thereof. In the case of the rgbhpg benchmark, TFs with a dynamic block size
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Table 3. Translated Function Profiles

Benchmark Avg TF Size Avg Dynamic TF Size Largest TF Largest Dynamic TF
SCC CFG Page SCC CFG Page SCC CFG Page SCC CFG Page

aifftr 3.4 7.4 16.4 4.4 6.0 5.1 87 126 134 240127 240129 5120
bitmnp 5.0 10.6 33.1 10.3 14.4 10.8 54 79 116 10111 10113 10113
idctrn 3.0 12.9 25.4 11.5 123.9 9.2 34 97 114 8193 8801 8193
matrix 3.5 6.5 28.7 5.7 11.8 9.3 45 97 174 3419 3419 3419
cjpeg 3.6 6.5 20.8 12.6 42.1 40.5 51 72 108 69129 69129 69129
djpeg 3.7 6.2 20.0 48.8 80.5 77.4 43 94 121 64327 64327 64327
rgbhpg 3.7 6.3 25.3 39.7 59.4 26.5 43 87 125 75921 75925 75925
rgbyiq 3.9 6.6 31.0 3612.9 4921.7 4272.4 43 97 133 4607999 4608002 4608002
ospf 4.4 8.7 26.0 426.3 484.6 497.3 64 105 148 189599 189602 189602
pktflowb4m 4.4 7.4 31.3 2485.1 17.8 17.8 39 90 149 1171544 1171548 1171548
pktflowb512k 4.4 7.6 31.7 325.9 397.5 17.3 39 90 149 154794 154798 154798
routelookup 4.3 7.5 27.7 667.6 712.8 37.0 41 105 105 56453 56457 56457
bezierfixed 4.0 7.2 26.2 1029.9 7163.2 1057.4 43 105 135 187799 187802 187802
dither 4.0 6.0 28.6 33.6 30332.6 33.6 44 97 130 163838 290986 163841
rotate 8.3 16.5 34.5 34.5 121.9 4.7 100 105 134 16644 16648 16648
text 4.3 10.4 28.1 4.3 10.2 9.4 43 105 136 2590 3523 2605
autcor 3.4 7.2 29.6 4350.9 5323.8 4518.1 41 86 127 15567 15573 15573
fbital 4.0 9.5 25.7 148.1 508.4 508.0 34 73 111 10752 10754 10754
fft 3.8 7.9 31.3 32.8 102.0 69.6 41 99 123 10495 10498 10498
viterb 4.3 10.7 22.1 1498.2 2617.6 1520.5 34 77 108 22475 22511 22511
Average 4.2 8.5 27.2 739.1 2652.6 637.1 48.2 94.3 128.9 354088.8 360527.3 342343.3

of 75,921 blocks were called a total of 100 times, the same as the default number
of iterations for the target program. This is true for all the LTU simulation
modes, suggesting that the main loop, or part thereof, for rgbhpg is contained
within a strongly connected component.

6.3 Simulation Tasks

The total simulation time is divided between five main tasks. The main sim-
ulation loop calls TFs and interprets instructions; the library loading function
loads previously compiled translations from the shared libraries; the page-CFG
function adds interpreted blocks to the page-CFG (LTU DBT only); the pro-
file analysis function analyses page-CFGs in the ECC (BBs in the EBC) and
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Fig. 6. Bezierfixed Simulation Tasks. This figure shows the percentage of total
simulation time spent performing each of the five main tasks.
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identifies hot translation-units; and the dynamic compilation function compiles
hot translation-units and creates shared libraries.

Figure 6 shows how much time is spent performing each task for the bezierfixed
benchmark. On the first run, 80 - 92% of the time is spent compiling the hot
translation-units, with the rest of the time spent in the main simulation loop. On
successive runs however, almost 100% of the time is spent in the main simulation
loop. Time spent performing the other tasks is all but insignificant. This is the
general pattern observed for all benchmarks. BB based simulation outperformed
SCC based simulation for this benchmark because it spent an average of just
1.19 seconds in the main simulation loop, compared to 1.22 seconds for SCC.

7 Related Work

Previous work on high-speed instruction set simulation has tended to focus on
compiled and hybrid mode simulators. Whilst an interpretive simulator spends
most of its time repeatedly fetching and decoding target instructions, a compiled
based simulator fetches and decodes each instruction once, spending most of its
time performing the operations.

A statically-compiled simulator [7] which employed in-line macro expansion
was shown to run up to three times faster than an interpretive simulator. Target
code is statically translated to host machine code which is then executed directly
within a switch statement.

Dynamic translation techniques are used to overcome the lack of flexibility
inherent in statically-compiled simulators. The MIMIC simulator [6] simulates
IBM System/370 instructions on the IBM RT PC. Groups of target basic blocks
are translated in to host instructions, with an expansion factor of about 4 com-
pared with natively compiled source code. On average MIMIC could simulate
S/370 code at the rate of 200 instructions per second on a 2 MIPS RT PC.

Shade [4] and Embra [14] use DBT with translation caching techniques in
order to increase simulation speeds. Shade is able to simulate SPARC V8, SPARC
V9, and MIPS I code on a SPARC V8 platform. On average Shade simulates V8
SPEC89 integer and floating-point binaries 6.2 and 2.3 times slower respectively
than they run natively. The corresponding V9 binaries are simulated 12.2 and 4
times slower respectively.

Embra, which is part of the SimOS [11] simulation environment, can simulate
MIPS R3000/R4000binary code on a Silicon Graphics IRIX machine. In its fastest
configurationEmbracansimulateSPEC92benchmarksat speeds ranging from11.1
to 20 MIPS, corresponding to slowdowns of 8.7 to 3.5. The test machine used for
benchmarking was an SGI Challenge with four MIPS R4400, 150MHz processors.

More recently a number of research groups have developed retargetable in-
struction set simulators. The statically-compiled method exhibited in [3] applies
a static scheduling technique. Whilst this increases simulation performance, it
does so at the expense of flexibility. Compiled simulators were generated from
model descriptions of TI’s TMS320C54x and the ARM7 processors. The results
showed that for the TMS320C54X processor, static scheduling gave a speedup
of almost a factor of 4 when compared with dynamically scheduled simulation.
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For the ARM7 processor there was an observed speedup by a factor of 7, from
5 (dynamic) to 35.5 (static) MIPS.

The Ultra-fast Instruction Set Simulator [15] improves the performance of
statically-compiled simulation by using low-level binary translation techniques
to take full advantage of the host architecture. Results showed that deploy-
ing static compilation with this hybrid technique lead to a simulation speedup
of 3.5.

Just-In-Time Cache Compiled Simulation (JIT-CCS) [8] executes and then
caches pre-compiled instruction-operation functions for each instruction fetched.
The JIT-CCS simulation speed, with a reasonably large simulation cache, is
within 5% of a compiled simulator, and at least 4 times faster than an equivalent
interpretive simulator. The simulator was benchmarked by simulating adpcm
running on ARM7 and STM ST200 functional models. Running on a 1200MHz
Athlon based machine, adpcm could be simulated at up to 8 MIPS (ARM7 and
ST200).

The Instruction Set Compiled Simulation (IS-CS) simulator [10] was designed
to be a high performance and flexible functional simulator. To achieve this
the time-consuming instruction decode process is performed during the com-
pile stage, whilst interpretation is enabled at simulation time. Performance is
further increased by a technique called instruction abstraction which produces
optimized decoded instructions. A simulation speed of up to 12.2 MIPS is quoted
for adpcm (ARM7 functional model) running on a 1GHz Pentium III host.

The SimICS [5] full system simulator translates the target machine-code in-
structions in to an intermediate format before interpretation. During simulation
the intermediate format instructions are processed by the interpreter which calls
the corresponding service routines. A number of SPECint95 benchmarks were
simulated on a Sun Ultra Enterprise host (SunOS 5.x) resulting in a slowdown
by of a factor of 26 to 75 compared with native execution.

QEMU [1,2] is a fast simulator which uses an original dynamic translator.
Each target instruction is divided into a simple sequence of micro operations,
the set of micro operations having been pre-compiled offline into an object file.
During simulation the code generator accesses the object file and concatenates
micro operations to form a host function that emulates the target instructions
within a block. User-level simulation of the Linux BYTEmark benchmarks shows
a slowdown of 4 for integer code and a slowdown of 10 for floating point code
over native execution. System-level simulation results in a further slowdown by
a factor of 2.

SimitARM [9] increases simulation speed by enabling the tasks involved in
binary translation to be distributed amongst other processors. The simulator
interprets target instructions, identifying frequently executed pages for DBT.
When the execution count for a page exceeds a certain threshold it is compiled
by GCC into a shared library which is then loaded. Simulation Results for the
SPEC CINT2000 benchmarks running on a four processor host (2.8GHz P4)
showed an average simulation speed of 197 MIPS for the MIPS32 ISA and 133
MIPS for the ARM v4 ISA.



High Speed CPU Simulation Using LTU Dynamic Binary Translation 63

8 Conclusions

This paper used the Edinburgh High Speed simulator to illustrate and compare
three new DBT profiling techniques. It demonstrates that simulator performance
is significantly increased by translating Large Translation Units rather than basic
blocks. LTUs not only provide greater scope for optimization at compile time,
they also enable more target instructions to be simulated within a TF, resulting
in less time being wasted in the main simulation loop.

The EHS simulator identifies hot paths, rather than hot blocks or pages, by
dynamically profiling the target program’s execution path. The hot paths are
then decomposed in to LTUs which are dynamically compiled and loaded. The
results show all of the LTU simulation modes to be at least 1.63 times faster on
average than basic block based simulation.

Page DBT simulation performs the best across all benchmarks with a mean
speedup of 1.67. However, in order to attain optimal performance one would
require a simulator that was capable of dynamically switching between DBT
modes (BB, SCC, CFG and Page) dependent upon application behaviour and
host machine architecture. It would also be desirable for a simulator to detect
program phase changes so that existing TFs could be discarded in favour of
translating the current hot paths.
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Linköping university

S-58183 Linköping, Sweden
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Abstract. We solve the problem of integrating modulo scheduling with
instruction selection (including cluster assignment), instruction schedul-
ing and register allocation, with optimal spill code generation and schedul-
ing. Ourmethod is based on integer linear programming. We prove that our
algorithm delivers optimal results in finite time for a certain class of archi-
tectures. We believe that these results are interesting both from a theoreti-
cal point of view and as a reference point when devising heuristic methods.

1 Introduction

Many computationally intensive programs spend most of their execution time
in a few inner loops. This makes it important to have good methods for code
generation for loops, since small improvements per loop iteration can have a
large impact on overall performance.

The back end of a compiler transforms an intermediate representation into
executable code. This transformation is usually performed in three phases: in-
struction selection selects which instructions to use, instruction scheduling maps
each instruction to a time slot and register allocation selects in which registers
a value is to be stored. Furthermore the back end can also contain various op-
timization phases, e.g. modulo scheduling for loops where the goal is to overlap
iterations of the loop and thereby increase the throughput.

It is beneficial to integrate the phases of the code generation since this gives
more opportunity for optimizations. However, this integration of phases comes
at the cost of a greatly increased size of the solution space. In previous work [6]
we gave an integer linear program formulation for integrating instruction selec-
tion, instruction scheduling and register allocation. In this paper we will show
how to extend that formulation to also do modulo scheduling for loops. In con-
trast to earlier approaches to optimal modulo scheduling, our method aims to
produce provably optimal modulo schedules with integrated cluster assignment
and instruction selection.

The remainder of this paper is organized as follows: In order to give a more ac-
cessible presentation of the integer linear programming formulation for integrated
modulo scheduling, we first give, in Section 2, an integer linear program for inte-
grated code generation of basic blocks, which is adapted from earlier work [6]. In
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Section 3 we extend this formulation to modulo scheduling. Section 4 presents an
algorithm for modulo scheduling, and proves that it is optimal for a certain class
of architectures. Section 5 shows an experimental evaluation, Section 6 reviews
some related work, and Section 7 concludes.

2 Integer Linear Programming Formulation

In this section we introduce the integer linear programming formulation for basic
block scheduling. This model integrates instruction selection (including cluster
assignment), instruction scheduling and register allocation.

2.1 Optimization Parameters and Variables

Data Flow Graph. The data flow graph of a basic block is modeled as a di-
rected acyclic graph (DAG). The set V is the set of intermediate representation
(IR) nodes, the sets E1, E2 ⊂ V × V represents edges between operations and
their first and second operand respectively. Em ⊂ V × V represents data depen-
dences in memory. The integer parameters Opi and Outdgi describe operators
and out-degrees of the IR node i ∈ V , respectively.

Instruction Set. The instructions of the target machine are modeled by the
set P of patterns. P consists of the set P1 of singletons, which only cover one
IR node, the set P2+ of composites, which cover multiple IR nodes, and the set
P0 of patterns for non-issue instructions. The non-issue instructions are needed
when there are IR nodes in V that do not have to be covered by an instruction,
e.g. an IR node representing a constant value. The IR is low level enough so that
all patterns model exactly one (or zero in the case of constants) instructions of
the target machine.

For each pattern p ∈ P2+ ∪ P1 we have a set Bp = {1, . . . , np} of generic
nodes for the pattern. For composites we have np > 1 and for singletons np = 1.
For composite patterns p ∈ P2+ we also have EPp ⊂ Bp × Bp, the set of edges
between the generic pattern nodes. Each node k ∈ Bp of the pattern p ∈ P2+ ∪P1
has an associated operator number OPp,k which relates to operators of IR nodes.
Also, each p ∈ P has a latency Lp, meaning that if p is scheduled at time slot t
the result of p is available at time slot t + Lp.

Resources and Register Sets. For the integer linear programming model we
assume that the functional units are fully pipelined. Hence we can model the
resources of the target machine with the set F and the register banks by the
set RS. The binary parameter Up,f,o is 1 iff the instruction with pattern p ∈ P
uses the resource f ∈ F at time step o relative to the issue time. Note that this
allows for multiblock [9] and irregular reservation tables [15]. Rr is a parameter
describing the number of registers in the register bank r ∈ RS. The issue width
is modeled by ω, i.e. the maximum number of instructions that may be issued
at any time slot.
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Fig. 1. The Texas Instruments TI-C62x processor has two register banks and 8 func-
tional units [18]. The crosspaths X1 and X2 are modeled as resources, too.

For modeling transfers between register banks we do not use regular instruc-
tions (note that transfers, like spill instructions, do not cover nodes in the DAG).
Instead we use the integer parameter LX r,s to model the latency of a transfer
from r ∈ RS to s ∈ RS. If no such transfer instruction exists we set LX r,s = ∞.
And for resource usage, the binary parameter UX r,s,f is 1 iff a transfer from
r ∈ RS to s ∈ RS uses resource f ∈ F . See Figure 1 for an illustration of a
clustered architecture.

Lastly, we have the sets PDr,PS1 r,PS2 r ⊂ P which, for all r ∈ RS, contain
the pattern p ∈ P iff p stores its result in r, takes its first operand from r or
takes its second operand from r, respectively.

Solution Variables. The parameter tmax gives the last time slot on which an
instruction may be scheduled. We also define the set T = {0, 1, 2, . . . , tmax},
i.e. the set of time slots on which an instruction may be scheduled. For the
acyclic case tmax is incremented until a solution is found.

So far we have only mentioned the parameters which describe the optimization
problem. Now we introduce the solution variables which define the solution space.
We have the following binary solution variables:

– ci,p,k,t, which is 1 iff IR node i ∈ V is covered by k ∈ Bp, where p ∈ P ,
issued at time t ∈ T .

– wi,j,p,t,k,l, which is 1 iff the DAG edge (i, j) ∈ E1 ∪ E2 is covered at time
t ∈ T by the pattern edge (k, l) ∈ EPp where p ∈ P2+ is a composite pattern.

– sp,t, which is 1 iff the instruction with pattern p ∈ P2+ is issued at time
t ∈ T .

– xi,r,s,t, which is 1 iff the result from IR node i ∈ V is transfered from r ∈ RS
to s ∈ RS at time t ∈ T .

– rrr ,i,t, which is 1 iff the value corresponding to the IR node i ∈ V is available
in register bank rr ∈ RS at time slot t ∈ T .

We also have the following integer solution variable:

– τ is the first clock cycle on which all latencies of executed instructions have
expired.

2.2 Removing Variables by Doing Soonest-Latest Analysis

We can significantly reduce the number of variables in the model by performing
soonest-latest analysis [11] on the nodes of the graph. Let Lmin(i) be 0 if the
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Fig. 2. (i) Pattern p can not cover the set of nodes since there is another outgoing edge
from b, (ii) p covers nodes a, b, c

node i ∈ V may be covered by a composite pattern, and the lowest latency of
any instruction p ∈ P1 that may cover the node i ∈ V otherwise.

Let pred(i) = {j : (j, i) ∈ E} and succ(i) = {j : (i, j) ∈ E}. We can recursively
calculate the soonest and latest time slot on which node i may be scheduled:

soonest ′(i) =
{

0 , if |pred(i)| = 0
maxj∈pred(i){soonest ′(j) + Lmin(j)} , otherwise (1)

latest ′(i) =
{

tmax , if |succ(i)| = 0
maxj∈succ(i){latest ′(j) − Lmin(i)} , otherwise (2)

Ti = {soonest ′(i), . . . , latest ′(i)}
We can also remove all the variables in c where no node in the pattern p ∈ P
has an operator number matching i. Mathematically we can say that the matrix
c of variables is sparse; the constraints dealing with c must be rewritten to take
this into account (basically changing ∀i ∈ V, ∀t ∈ T to ∀i ∈ V, ∀t ∈ Ti).

2.3 Optimization Constraints

Optimization Objective. The objective of the integer linear program is to
minimize the execution time:

min τ (3)

The execution time is the latest time slot where any instruction terminates. For
efficiency we only need to check for execution times for instructions covering an
IR node with out-degree 0, let Vroot = {i ∈ V : Outdgi = 0}:

∀i ∈ Vroot, ∀p ∈ P, ∀k ∈ Bp, ∀t ∈ T, ci,p,k,t(t + Lp) ≤ τ (4)

Node and Edge Covering. Exactly one instruction must cover each IR node:

∀i ∈ V,
∑
p∈P

∑
k∈Bp

∑
t∈T

ci,p,k,t = 1 (5)
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Equation 6 sets sp,t = 1 iff the composite pattern p ∈ P2+ is used at time t ∈ T .
This equation also guarantees that either all or none of the generic nodes k ∈ Bp

are used at a time slot:

∀p ∈ P2+ , ∀t ∈ T, ∀k ∈ Bp

∑
i∈V

ci,p,k,t = sp,t (6)

An edge within a composite pattern may only be used if there is a corresponding
edge (i, j) in the DAG and both i and j are covered by the pattern, see Figure 2:

∀(i, j) ∈ E1 ∪ E2, ∀p ∈ P2+ , ∀t ∈ T, ∀(k, l) ∈ EPp,

2wi,j,p,t,k,l ≤ ci,p,k,t + cj,p,l,t (7)

If a generic pattern node covers an IR node, the generic pattern node and the
IR node must have the same operator number:

∀i ∈ V, ∀p ∈ P, ∀k ∈ Bp, ∀t ∈ T, ci,p,k,t(Opi − OPp,k) = 0 (8)

Register Values. A value may only be present in a register bank if: it was just
put there by an instruction, it was available there in the previous time step, or
just transfered to there from another register bank:

∀rr ∈ RS, ∀i ∈ V, ∀t ∈ T,

rrr ,i,t ≤
∑

p∈PDrr∩P
k∈Bp

ci,p,k,t−Lp + rrr ,i,t−1 +
∑

rs∈RS
(xi,rs,rr ,t−LXrs,rr ) (9)

The operand to an instruction must be available in the correct register bank
when we use it. A limitation of this formulation is that composite patterns must
have all operands and results in the same register bank:

∀(i, j) ∈ E1 ∪ E2, ∀t ∈ T, ∀rr ∈ RS,

BIG · rrr ,i,t ≥
∑

p∈PDrr∩P2+
k∈Bp

⎛
⎝cj,p,k,t − BIG ·

∑
(k,l)∈EPp

wi,j,p,t,k,l

⎞
⎠ (10)

where BIG is a large integer value.
Internal values in a composite pattern must not be put into a register (e.g. the

multiply value in a multiply-and-accumulate instruction):

∀p ∈ P2+ , ∀(k, l) ∈ EPp, ∀(i, j) ∈ E1 ∪ E2,∑
rr∈RS

∑
t∈T

rrr ,i,t ≤ BIG ·
(

1 −
∑
t∈T

wi,j,p,t,k,l

)
(11)
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If they exist, the first operand (Equation 12) and the second operand (Equa-
tion 13) must be available when they are used:

∀(i, j) ∈ E1, ∀t ∈ T, ∀rr ∈ RS, BIG · rrr ,i,t ≥
∑

p∈PS1rr∩P1
k∈Bp

cj,p,k,t (12)

∀(i, j) ∈ E2, ∀t ∈ T, ∀rr ∈ RS, BIG · rrr ,i,t ≥
∑

p∈PS2rr∩P1
k∈Bp

cj,p,k,t (13)

Transfers may only occur if the source value is available:

∀i ∈ V, ∀t ∈ T, ∀rr ∈ RS, rrr ,i,t ≥
∑

rq∈RS
xi,rr ,rq,t (14)

Memory Data Dependences. Equation 15 ensures that data dependences in
memory are not violated, adapted from [7]:

∀(i, j) ∈ Em, ∀t ∈ T
∑
p∈P

t∑
tj=0

cj,p,1,tj +
∑
p∈P

tmax∑
ti=t−Lp+1

ci,p,1,ti ≤ 1 (15)

Resources. We must not exceed the number of available registers in a register
bank at any time:

∀t ∈ T, ∀rr ∈ RS,
∑
i∈V

rrr ,i,t ≤ Rrr (16)

Condition 17 ensures that no resource is used more than once at each time slot:

∀t ∈ T, ∀f ∈ F ,∑
p∈P2+
o∈N

Up,f,osp,t−o +
∑
p∈P1
i∈V

k∈Bp

Up,f,oci,p,k,t−o +
∑
i∈V

(rr ,rq)∈(RS×RS)

UX rr ,rq,fxi,rr ,rq,t ≤ 1 (17)

And, lastly, Condition 18 guarantees that we never exceed the issue width:

∀t ∈ T,
∑

p∈P2+

sp,t +
∑
p∈P1
i∈V

k∈Bp

ci,p,k,t +
∑
i∈V

(rr ,rq)∈(RS×RS)

xi,rr ,rq,t ≤ ω (18)

3 Extending the Model to Modulo Scheduling

Software pipelining [3] is an optimization for loops where the following iterations
of the loop are initiated before the current iteration is finished. One well known
kind of software pipelining is modulo scheduling [16] where new iterations of the
loop are issued at a fixed rate determined by the initiation interval. For every
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Fig. 3. An example showing how an acyclic schedule (i) can be rearranged into a
modulo schedule (ii), A-L are target instructions

loop the initiation interval has a lower bound MinII = max (ResMII ,RecMII ),
where ResMII is the bound determined by the available resources of the proces-
sor, and RecMII is the bound determined by the critical dependence cycle in the
dependence graph describing the loop body. Methods for calculating RecMII
and ResMII are well documented in e.g. [10].

With some work the model in Section 2 can be extended to also integrate mod-
ulo scheduling. We note that a kernel can be formed from the schedule of a basic
block by scheduling each operation modulo the initiation interval, see Figure 3.
The modulo schedules that we create have a corresponding acyclic schedule, and
by the length of a modulo schedule we mean tmax of the acyclic schedule. We
also note that creating a valid modulo schedule only adds constraints compared
to the basic block case.

First we need to model loop carried dependences by adding a distance: E1, E2,
Em ⊂ V ×V ×N. The element (i, j, d) represents a dependence from i to j which
spans over d loop iterations. Obviously the graph is no longer a DAG since it
may contain cycles. The only thing we need to do to include loop distances in the
model is to change rrr ,i,t to: rrr ,i,t+d·II in Equations 10, 12 and 13, and modify
Equation 15 to

∀(i, j, d) ∈ Em, ∀t ∈ Text

∑
p∈P

t−II ·d∑
tj=0

cj,p,1,tj +
∑
p∈P

tmax+II ·dmax∑
ti=t−Lp+1

ci,p,1,ti ≤ 1 (19)

For this to work the initiation interval II must be a parameter to the solver.
To find the best initiation interval we must run the solver several times with
different values of the parameter. A problem with this approach is that it is
difficult to know when an optimal II is reached if the optimal II is not RecMII
or ResMII ; we will get back to this problem in Section 4.

The slots on which instructions may be scheduled are defined by tmax, and
we do not need to change this for the modulo scheduling extension to work.
But when we model dependences spanning over loop iterations we need to add
extra time slots to model that variables may be alive after the last instruction of
an iteration is scheduled. This extended set of time slots is modeled by the set
Text = {0, . . . , tmax + II · dmax} where dmax is the largest distance in any of E1
and E2. We extend the variables in xi,r,s,t and rrr ,i,t so that they have t ∈ Text
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Fig. 4. An example showing why Text has enough time slots to model the extended
live ranges. Here dmax = 1 and II = 2 so any live value from from Iteration 0 can not
live after time slot tmax + II · dmax in the acyclic schedule.

instead of t ∈ T , this is enough since a value created by an instruction scheduled
at any t ≤ tmax will be read, at latest, by an instruction dmax iterations later,
see Figure 4 for an illustration.

3.1 Resource Constraints

The inequalities in the previous section now only need a few further modifica-
tions to also do modulo scheduling. The resource constraints of the kind ∀t ∈
T, expr ≤ bound become ∀to ∈ {0, 1, . . . , II − 1},

∑
t∈Text

t≡to(mod II )
expr ≤ bound.

For instance, Inequality 16 becomes

∀to ∈ {0, 1, . . . , II − 1}, ∀rr ∈ RS,
∑
i∈V

∑
t∈Text

t≡to(mod II )

rrr ,i,t ≤ Rrr (20)

Inequalities 17 and 18 are modified in the same way.
Inequality 20 guarantees that the number of live values in each register bank

does not exceed the number of available registers. However if there are overlap-
ping live ranges, i.e. when a value i is saved at td and used at tu > td + II · ki

for some positive integer ki > 1 the values in consecutive iterations can not use
the same register for this value. We may solve this by doing variable modulo
expansion [10].

3.2 Removing More Variables

As we saw in Section 2.2 it is possible to improve the solution time for the integer
linear programming model by removing variables whose values can be inferred.
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Input: A graph of IR nodes G = (V, E), the lowest possible initiation interval MinII ,
and the architecture parameters
Output: Modulo schedule.
MaxII = tupper = ∞;
tmax = MinII ;
while tmax ≤ tupper do

Compute soonest ′ and latest ′ with the current tmax;
II = MinII ;
while II < min(tmax,MaxII ) do

solve integer linear program instance;
if solution found then

if II == MinII then
return solution; //This solution is optimal

fi
MaxII = II − 1 ; //Only search for better solutions.

fi
II = II + 1

od
tmax = tmax + 1

od

Fig. 5. Pseudocode for integrated modulo scheduling

Now we can take loop-carried dependences into account and find improved
bounds:

soonest(i) = max{soonest ′(i), max
(j,i,d)∈E

d �=0

(soonest ′(j) + Lmin(j) − II · d)} (21)

latest(i) = max{latest ′(i), max
(i,j,d)∈E

d �=0

(
latest ′(j) − Lmin(i) + II · d)} (22)

With these new derived parameters we create

Ti = {soonest(i), . . . , latest(i)}

that we can use instead of the set T for the variable ci,p,k,t.
Equations 21 and 22 differ from Equations 1 and 2 in two ways: they are

not recursive and they need information about the initiation interval. Hence,
soonest ′ and latest ′ can be calculated when tmax is known, before the integer
linear program is run, while soonest and latest can be derived parameters.

4 The Algorithm

Figure 5 shows the algorithm for finding a modulo schedule. Note that if there
is no solution with initiation interval MinII this algorithm never terminates (we
do not consider cases where II > tmax). In the next section we will show how to
make the algorithm terminate with optimal result.
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A valid alternative to this algorithm would be to set tmax to a fixed sufficiently
large value and then look for the minimal II . A problem with this approach is
that the solution time of the integer linear program increases superlinearly with
tmax. Therefore we find that beginning with a low value of tmax and increasing
it works best.

4.1 Theoretical Properties

In this section we will have a look at the theoretical properties of Algorithm 5
and show how the algorithm can be modified so that it finds optimal modulo
schedules in finite time for a certain class of architectures.

Definition 1. We say that a schedule s is dawdling if there is a time slot t ∈ T
such that (a) no instruction in s is issued at time t, and (b) no instruction in s
is running at time t, i.e. has been issued earlier than t, occupies some resource
at time t, and delivers its result at the end of t or later [9].

Definition 2. The slack window of an instruction i in a schedule s is a sequence
of time slots on which i may be scheduled without interfering with another in-
struction in s. And we say that a schedule is n-dawdling if each instruction has
a slack window of at most n positions.

Definition 3. We say that an architecture is transfer free if all instructions
except NOP must cover a node in the IR graph. I.e., no extra instructions such
as transfers between clusters may be issued unless they cover IR nodes. We also
require that the register file sizes of the architecture are unbounded.

Lemma 1. For a transfer free architecture every non-dawdling schedule for the
data flow graph (V, E) has length

tmax ≤
∑
i∈V

L̂(i)

where L̂(i) is the maximal latency of any instruction covering IR node i (com-
posite patterns need to replicate L̂(i) over all covered nodes).

Proof. Since the architecture is transfer free only instructions covering IR nodes
exist in the schedule, and each of these instructions are active at most L̂(i) time
units. Furthermore we never need to insert dawdling NOPs to satisfy depen-
dences of the kind (i, j, d) ∈ E; consider the two cases:

(a) ti ≤ tj : Let L(i) be the latency of the instruction covering i. If there is a time
slot t between the point where i is finished and j begins which is not used
for another instruction then t is a dawdling time slot and may be removed
without violating the lower bound of j: tj ≥ ti +L(i)−d · II , since d · II ≥ 0.

(b) ti > tj : Let L(i) be the latency of the instruction covering i. If there is a time
slot t between the point where j ends and the point where i begins which is
not used for another instruction this may be removed without violating the
upper bound of i: ti ≤ tj + d · II − L(i). (ti is decreased when removing the
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dawdling time slot.) This is where we need the assumption of unlimited reg-
ister files, since decreasing ti increases the live range of i, possibly increasing
the register need of the modulo schedule. 	


Corollary 1. An n-dawdling schedule for the data flow graph (V, E) has length

tmax ≤
∑
i∈V

(L̂(i) + n − 1).

Lemma 2. If a modulo schedule s with initiation interval II has an instruction
i with a slack window of size at least 2II time units, then s can be shortened by
II time units and still be a modulo schedule with initiation interval II .

Proof. If i is scheduled in the first half of its slack window the last II time slots
in the window may be removed and all instructions will keep their position in
the modulo reservation table. Likewise, if i is scheduled in the last half of the
slack window the first II time slots may be removed. 	

Theorem 1. For a transfer free architecture, if there does not exist a modulo
schedule with initiation interval ĨI and tmax ≤ ∑

i∈V (L̂(i)+2ĨI −1) there exists
no modulo schedule with initiation interval ĨI .

Proof. Assume that there exists a modulo schedule s with initiation interval ĨI
and tmax >

∑
i∈V (L̂(i) + 2ĨI − 1). Also assume that there exists no modulo

schedule with the same initiation interval and tmax ≤ ∑
i∈V (L̂(i) + 2ĨI − 1).

Then, by Lemma 1, there exists an instruction i in s with a slack window larger
than 2ĨI − 1 and hence, by Lemma 2, s may be shortened by ĨI time units and
still be a modulo schedule with the same initiation interval. If the shortened
schedule still has tmax >

∑
i∈V (L̂(i) + 2ĨI − 1) it may be shortened again, and

again, until the resulting schedule has tmax ≤ ∑
i∈V (L̂(i) + 2ĨI − 1). 	


Corollary 2. We can guarantee optimality in the algorithm in Section 4 for
transfer free architectures if every time we find an improved II , set tupper =∑

i∈V (L̂(i) + 2(II − 1) − 1).

5 Experiments

The experiments were run on a computer with an Athlon X2 6000+ processor
with 4 GB RAM. The version of CPLEX is 10.2.

5.1 A Contrived Example

First let us consider an example that demonstrates how Corollary 2 can be used.
Figure 6 shows a graph of an example program with 4 multiplications. Consider
the case where we have a non-clustered architecture with one functional unit
which can perform pipelined multiplications with latency 2. Clearly, for this
example we have RecMII = 6 and ResMII = 4, but an initiation interval of 6
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5 CNSTI44 CNSTI4

2 MULI41 MULI4

3 MULI4

0 MULI4

d=1 d=1

Fig. 6. A loop body with 4 multiplications. The edges between Node 3 and Node 0 are
loop carried dependences with distance 1.

is impossible since IR-nodes 1 and 2 may not be issued at the same clock cycle.
When we run the algorithm we quickly find a modulo schedule with initiation
interval 7, but since this is larger than MinII the algorithm can not determine
if it is the optimal solution. Now we can use Corollary 2 to find that an upper
bound of 18 can be set on tmax. If no improved modulo schedule is found where
tmax = 18 then the modulo schedule with initiation interval 7 is optimal. This
example is solved to optimality in 18 seconds by our algorithm.

5.2 DSPSTONE Kernels

Table 1 shows the results of our experiments with the algorithm from Section 4.
We used 5 target architectures, all variations of the Texas Instruments TI-C62x
DSP processor [18]:

– single: single cluster, no MAC, no transfers and no spill,
– trfree: 2 clusters, no MAC, no transfers and no spill,
– mac: 2 clusters, with MAC, no transfers and no spill,
– mac tr: 2 clusters, with MAC and transfers, no spill,
– mac tr spill: 2 clusters, with MAC, transfers and spill.

The kernels are taken from the DSPSTONE benchmark suite [20] and the depen-
dence graphs were generated by hand. The columns marked II shows the found
initiation interval and the columns marked tmax shows the schedule length. The
IR does not contain branch instructions, and the load instructions are side effect
free (i.e. no auto increment of pointers).

The time limit for each individual integer linear program instance was set
to 3600 seconds and the time limit for the entire algorithm was set to 7200
seconds. If the algorithm timed out before an optimal solution was found the
largest considered schedule length is displayed in the column marked To. We
see in the results that the algorithm finds optimal results for the dotp, fir and
biquad N kernels within minutes for all architectures. For the n complex updates
kernel an optimal solution for the single cluster architecture is found and for the
other architectures the algorithm times out before we can determine if the found
modulo schedule is optimal. Also for the iir kernel the algorithm times out long
before we can rule out the existence of better modulo schedules.
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Table 1. Experimental results with 5 DSPSTONE kernels on 5 different architectures

Architecture MinII II tmax time(s) To
single 5 5 17 36 -
trfree 3 3 16 41 -
mac 3 3 15 51 -
mac tr 3 3 15 51 -
mac tr spill 3 3 15 55 -

(a) dotp, |V | = 14

Architecture MinII II tmax time(s) To
single 6 6 19 45 -
trfree 3 3 16 33 -
mac 3 3 16 63 -
mac tr 3 3 16 65 -
mac tr spill 3 3 16 69 -

(b) fir, |V | = 20

Architecture MinII II tmax time(s) To
single 8 8 12 15 -
trfree 4 6 10 23 13
mac 4 6 10 65 12
mac tr 4 6 10 1434 11
mac tr spill 4 6 10 2128 11

(c) n complex updates, |V | = 27

Architecture MinII II tmax time(s) To
single 9 9 14 20 -
trfree 5 5 13 33 -
mac 5 5 13 63 -
mac tr 5 5 13 92 -
mac tr spill 5 5 13 191 -

(d) biquad N, |V | = 30

Architecture MinII II tmax time(s) To
single 18 21 35 179 39
trfree 18 19 31 92 72
mac 17 19 31 522 35
mac tr 17 20 29 4080 30
mac tr spill 17 20 29 4196 30

(e) iir, |V | = 38

We can conclude from these experiments that while the algorithm in Section 4
theoretically produces optimal results for transfer free architectures with the
tupper bound of Corollary 2, it is not realistic to use for even medium sized
kernels because of the time required to solve big integer linear programming
instances. However, in all cases, the algorithm finds a schedule with initiation
interval within 3 of the optimum.

6 Related Work

Ning and Gao [13] formulated an optimal method for modulo scheduling with
focus on register allocation. Altman et al. [2] presented an optimal method
for simultaneous modulo scheduling and mapping of instructions to functional
units. Cortadella et al. have presented an integer linear programming method
for finding optimal modulo schedules [5]. These formulations works only for non-
clustered architectures and do not include instruction selection. Nagarakatte and
Govindarajan [12] formulated an optimal method for integrating register alloca-
tion and spill code generation.

Heuristic methods for modulo scheduling on clustered architectures have been
presented by Stotzer and Leiss [17], and by Codina et al. [4]. Other notable
heuristics, which are not specifically targeted for clustered architectures, are due
to: Llosa et al. [11], Huff [8], and Pister and Kästner [14].
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The work presented in this paper is different from the ones mentioned above
in that it aims to produce provably optimal modulo schedules, also when the
optimal initiation interval is larger than MinII , and in that it integrates also
cluster assignment and instruction selection in the formulation.

Creating an integer linear programming formulation for clustered architec-
tures is more difficult than for the non-clustered case since the common method
of modeling live ranges simply as the time between definition and use can not
be applied. Our formulation does it instead by a novel method where values are
explicitly assigned to register banks for each time slot. This greatly increases the
solution space, but we believe that this extra complexity is unavoidable and in-
herent to the problem of integrating cluster assignment and instruction selection
with the other phases.

Touati [19] presented several theoretical results regarding the register need
in modulo schedules. One of the results shows that, in the absence of resource
conflicts, there exists a finite schedule duration (tmax in our terminology) that
can be used to compute the minimal periodic register sufficiency of a loop for
all its valid modulo schedules. Theorem 1 in this paper is related to this result
of Touati. We assume unbounded register files and identify an upper bound on
schedule duration, in the presence of resource conflicts.

7 Conclusions and Future Work

We have presented an optimal algorithm for modulo scheduling where cluster
assignment, instruction selection, instruction scheduling, register allocation and
spill code generation are integrated. For cases where the optimal initiation in-
terval is larger than MinII we have presented a way to prove that the found II
is optimal for transfer free architectures.

In 16 out of the 25 tests our algorithm found the optimal initiation interval.
In the other 9 cases we found initiation intervals but the algorithm timed out
before ruling out the existence of better modulo schedules.

A topic for future work is to compare the performance of our fully integrated
method to methods where instruction selection and cluster assignment are not
integrated with the other phases. We also want to find ways to relax the con-
straints on the machine model in the theoretical section.

Acknowledgements. This work was supported by VR and the CUGS graduate
school. We thank the anonymous reviewers for their constructive comments.
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Abstract. Software pipelining (or modulo scheduling) is a powerful
back-end optimization to exploit instruction and vector parallelism. Soft-
ware pipelining is particularly popular for embedded devices as it im-
proves the computation throughput without increasing the size of the
inner loop kernel (unlike loop unrolling), a desirable property to min-
imize the amount of code in local memories or caches. Unfortunately,
common media and signal processing codes exhibit series of low-trip-
count inner loops. In this situation, software pipelining is often not an
option: it incurs severe fill/drain time overheads and code size expansion
due to nested prologs and epilogs.

We propose a method to pipeline series of inner loops without increas-
ing the size of the loop nest, apart from an outermost prolog and epilog.
Our method achieves significant code size savings and allows pipelining
of low-trip-count loops. These benefits come at the cost of additional
scheduling constraints, leading to a linear optimization problem to trade
memory usage for pipelining opportunities.

1 Introduction

Software pipelining optimizes the exploitation of instruction-level parallelism
(ILP) inside inner loops, with a reduced code size overhead compared to ag-
gressive loop unrolling [24]. Even better, pipelining alone (without additional
unrolling for register allocation) does not increase loop kernel size: typically,
due to tighter packing of instructions, kernel size typically decreases on VLIW
processors.

Unfortunately, most applications contain multiple hot inner loops occurring
inside repetitive control structures; this is typically the case of streaming applica-
tions in media (or signal) processing, nesting sequences of filters (or transforms)
inside long-lived outer loops (e.g., the so-called time loop). As streaming appli-
cations are generally bandwidth bound, targeting many-core processors with a
high performance to off-chip-communication ratio, fitting more inner loops on a
single cache generally means higher performance.1 As a result, current compilers
have to trade ILP in inner loops for scratch-pad resources, leading to suboptimal
performance.
1 On multi-core architectures like the IBM Cell, although all efforts where made to

maximize inter-core/scratch-pad connectivity, intra-core register bandwidth is still
an order of magnitude higher.

A. Seznec et al. (Eds.): HiPEAC 2009, LNCS 5409, pp. 80–94, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Problem Statement

For the sake of simplicity, we will first consider two levels of nested loops, with a
single outer loop, called the global loop, enclosing one or more inner loops, called
phases.2 We show that the conflict between pipelining and code size can often be
a side-effect of separating the optimization of individual inner loops. We show
how to pipeline all phases without any overhead on the size of the global outer
loop.

Technically, we propose to modulo-schedule [24] phases while merging the
prolog of each outer iteration of a phase with the epilog of its previous outer
iteration. Such prolog-epilog merging is enabled by an outer loop retiming (or
shifting) [15,5] step, at the cost of a few additional constraints on modulo schedul-
ing. It is then possible to reintegrate the merged code block within the pipelined
kernel, restoring the loop to its original number of iterations. This operation is
not always possible, and depends on the outer loop’s dependence cycles. Indeed,
after software-pipelining, prolog-epilog merging may affect phases that are in de-
pendence with statements shifted by the software pipeline (along an inner loop).
This makes our problem more difficult than in the perfectly nested case [26].

We consider low-level code after instruction selection but before register al-
location; we thus ignore scalar dependences except def-use relations, and break
inductive def-use paths whenever a simple closed form exists. We assume all de-
pendences are uniform, modeled as constant distance vectors whose dimension is
the common nesting depth between the source and sink of the dependence [1]. We
capture all dependences in a directed graph G labeled with (multidimensional)
dependence vectors.

2.1 Running Example

Our running example is given in Fig. 2. Statements and phases are labeled. Both
intra-phase and inter-phase dependence vectors are shown.

The classical approach to the optimization of such an example is (1) to look
for high-level loop fusions that may improve the locality in inner loops, often
resulting in array contraction and scalar promotion opportunities [1,29], and (2)
to pipeline the phases (inner loops) whose trip count is high enough. We assume
the first loop fusion step has been applied, and that further fusion is hampered
by complex dependence patterns or mismatching loop trip counts. The result of
the second step is sketched using statement labels in Fig. 3; notice the modified
termination condition in pipelined phases. As expected, this improves ILP, at
the expense of code size and some loss of ILP in each phase’s prolog/epilog.

The alternative is to shift the prolog of each pipelined phase, advancing it by
one iteration of the global loop, then to merge it with the corresponding epilog of
the previous iteration of the global loop. This is not always possible, and we will
show in the following sections how to formalize the selection of phases subject
to pipelining as a linear optimization problem.

2 An analogy with a stream-oriented coarse grain scheduling algorithm [13].
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0
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Fig. 1. Phase depen-
dence graph

// Global loop
for(i=0;i<n;i++)

// Phase A

for(j1=0;j1<m1;j1++)
a1 t = x0[i][j1];
a2 t = t + 1;
a3 x1[i+1][j1] = t;

0,0

0,0

// Phase B

for(j2=0;j2<m2;j2++)
b1 t = x1[i][j2]
b2 x2[j2] = t;

0,0

1

// Phase C

for(j3=0;j3<m3;j3++)
c1 t = x2[j3];
c2 s = s + t;

0,0

0

// Phase D

for(j4=0;j4<m4;j4++)
d1 x1[i+2][j4] = s;
d2 s = x1[i+2][j4+1];

0,00,1

0

2

// Phase E

for(j5=0;j5<m5;j5++)
e1 t = x3[i][j5];
e2 x5[i+1][j5] = t;

0,0

1

// Phase F

for(j6=0;j6<m6;j6++)
f1 t = x5[i][j6];
f2 x3[i+3][j6] = t;

0,0

2
2

0

Fig. 2. Running ex-
ample

// Global loop
for(i=0;i<n;i++)

a1
a1‖a2
for(j1=0;j1<m1-2;j1++)
a1‖a2‖a3

a2‖a3
a3

b1
for(j2=0;j2<m2-1;j2++)
b1‖b2

b2

c1
for(j3=0;j3<m3;j3++)
c1‖c2

c2

for(j4=0;j4<m4-1;j4++)
d1
d2

e1
for(j5=0;j5<m5-1;j5++)
e1‖e2

e2

f1
for(j6=0;j6<m6-1;j6++)
f1‖f2

f2

Fig. 3. Pipelining
all phases

a1
a1‖a2
b1
c1
e1
f1
// Global loop
for(i=0;i<n;i++)

for(j1=0;j1<m1-2;j1++)
a1‖a2‖a3

a2‖a3
a3
a1
a1‖a2

for(j2=0;j2<m2-1;j2++)
b1‖ b2

b2
b1

for(j3=0;j3<m3;j3++)
c1‖c2

c2
c1

0

for(j4=0;j4<m4-1;j4++)
d1
d2

for(j5=0;j5<m5-1;j5++)
e1‖e2

e2
e1

for(j6=0;j6<m6-1;j6++)
f1‖f2

f2
f1

0

a2‖a3
a3
b2
c2
e2
f2

Fig. 4. Incorrect
anticipation

// Fill E
e1
for(j5=0;j5<m5;j5++)
e1‖e2

// Fill A, B, F
a1
a1‖a2
b1
f1

// Global loop
for(i=0;i<n-1;i++)

for(j1=0;j1<m1;j1++)
a1‖a2‖a3

for(j2=0;j2<m2;j2++)
b1‖b2

for(j3=0;j3<m3;j3++)
c1
c2

for(j4=0;j4<m4;j4++)
d1
d2

for(j5=0;j5<m5;j5++)
e1‖e2

for(j6=0;j6<m6;j6++)
f1‖f2

// Flush E
e2
for(j1=0;j1<m1;j1++)
a1‖a2‖a3

for(j2=0;j2<m2;j2++)
b1‖b2

for(j3=0;j3<m3;j3++)
c1
c2

for(j4=0;j4<m4;j4++)
d1
d2

for(j6=0;j6<m6;j6++)
f1‖f2

// Flush A, B, F
a2‖a3
a3
b2
f2

Fig. 5. Prolog-
epilog merging

Back to our running example, a possible solution is to pipeline and apply
prolog-epilog merging to phases A, B, E and F . The code after advancing the
prologs of pipelined phases is outlined in Fig. 4; notice the outermost prolog—
resulting from advancing the first global iteration of the phase prologs — and
epilog — the last global iteration of phase epilogs. Yet this code is incorrect, for
two reasons.
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– The inter-phase dependence from statement e2 to statement f1 is violated,
since f1 in the prolog of phase F has been anticipated before one full iteration
of phase E; some instances of this violation are depicted by a bold arc on
Fig. 4. To fix this violation, one may shift the whole phase E, advancing it
by one iteration of the global loop. This is possible since the only inter-phase
dependence targeting phase E (statement e1) has a non-null distance.

– A similar problem exists with the inter-phase dependence from statement
b2 to statement c1; some instances of this violation are depicted by a bold
dashed arc on Fig. 4. Yet we will see that this violation cannot be fixed
by shifting, due to the accumulation of shifting constraints on the cycle of
inter-phase dependences involving A, B, C and D. We choose not to pipeline
C in the following; we will later demonstrate the optimality of this choice
after formalizing the global optimization problem.

The final code after pipelining all phases but C,3 prolog-epilog merging, shift-
ing E, and collapsing the merged prologs and epilogs into the kernels is outlined
in Fig. 5; notice the modified trip count of the global loop, and the restored trip
count of the pipelined phases (due to prolog-epilog merging).

The body of the global loop recovered its original size, and prolog/epilog over-
head has disappeared. This major improvement was done at the minor expense
of the loss of ILP on phase D, and some extra code outside the global loop, due
to the global shifting of phase E.4

2.2 Inter-phase Dependences

In the following, shifting is understood as advancing the execution of a statement
by one or more iterations. For example, shifting b1 implies that the first iteration
of b1 (or more) will end up in a prolog of phase B; this prolog will have to be
merged with the epilog of this phase for the previous iteration of the outer loop.
Since the dependence from a3 to b1 is carried by the outer loop, its associated
distance (0) does not tell anything about the precise iterations of b1 within phase
B that are in dependence. Shifting b1 along the inner loop — by any positive
amount — is thus equivalent to shifting the whole phase B by 1 iteration of
the outer loop. This observation is key to converting our prolog-epilog merging
problem into a classical retiming one.

3 Characterization of Pipelinable Phases

From the global dependence graph G with multidimensional dependence vectors,
the phase dependence graph Gp is defined as follows: nodes of Gp are the phases;
an arc links a phase A to a phase B if and only if there is a path in G from
a statement a of A to statement b of B; to avoid spurious transitively covered
arcs, we also require this path to contain a single inter-phase arc; the distance
3 Attempting to pipeline D does not bring any ILP.
4 The first iteration of the global loop executes E only, while the last iteration executes

every phase but E.
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associated with an arc of Gp is the sum of the distances on the dimension of the
global loop, along the corresponding path from a to b in G.

Arcs in Gp will be called phase dependences. Each one correspond to one
inter-phase dependence and zero or more transitively-covered intra-phase de-
pendences; the distance of a phase dependence accounts for distances along the
outer dimension of intra-phase dependences.

Fig. 1 shows the phase dependence graph for the running example.

3.1 Causality Condition

Every time a phase is software pipelined, we just showed that merging its prolog
and epilog is equivalent — when considering Gp — to shifting the whole phase
by 1. To guarantee that all phases can be pipelined and their prolog and epilog
merged, it is thus sufficient that every forward arc (p, p′) in Gp has distance
dp,p′ > 0, and any backward arc has distance dp,p′ > 1.

This is of course too restrictive, and in general we are back to a traditional
retiming problem [15].

Let us define

kC
def=

∑
(p,p′)∈C

dp,p′ − nb backward edges(C). (1)

Theorem 1. For a given cycle, up to kC phases can be pipelined with prolog-
epilog merging.

Let us prove this result. Let a(i, p, j) denote an instance of instruction a, given
an iteration i of the global loop, a phase p and an iteration j of p. Let ta(i,p,j)
denote the execution time of a(i, p, j) and a(i, p) denote the set of instances of a
at global loop iteration i. Assuming b(i′, p′) depends on a(i, p) with dependence
distance d, we have

∀j, j′, ta(i,p,j) < tb(i′,p′,j′) and i ≤ i′.

Indeed, a phase dependence in Gp between p and p′ corresponds to depen-
dences between two sets of statement instances a(i, p) and b(i′, p′).

Software pipelining p′ may require shifting occurrences of instruction a. We
call cj the associated shifting distance along p′, ci the shifting distance along the
global loop, and we consider two cases.

Forward edge. If p′ depends on p with distance d and p′ follows p in the loop
nest, ci must be chosen such that d ≥ 0.

Backward edge. If p′ depends on p with distance d and p′ precedes p in the
loop nest, ci must be chosen such that d > 0.

We may compute ci, taking into account the global loop shifts over outgoing
arcs, the distance d, and whether p′ is pipelined or not. The global loop shifts
and d are the classical retiming variables and parameters. What happens to p′

can be modeled easily, as we previously observed in Section 2.2 that shifting
along an inner loop by any amount cj can be compensated by shifting along the
global loop by 1.
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Therefore software pipelining p′ will increase the total pressure over a cycle
by at most 1. This constraint can be modeled by decrementing the distance d
when p′ is pipelined. We are back to a classical retiming problem, from which
we deduce that p′ can be pipelined if decrementing d does not induce any cycle
with negative or null distance in Gp.

A simple recurrence on the number of pipelined phases concludes the proof.
This is only a lowerbound, asGp does not capture whether pipelining a phase re-

sults in an intra-phase shifting of statements involved in inter-phase dependences.

3.2 Necessary and Sufficient Condition

Without information about the statements involved as sink and source of phase
dependences, one may only assume that pipelining a phase will incur a shifting
constraint along the global loop. In this case, the sufficient condition becomes a
necessary one, and the previous proof can be extended to show that the number
of phases that can be pipelined while merging prologs and epilogs is exactly kC ,
as defined by (1).

Conversely, when considering the full dependence graph G, it is possible to con-
strain the pipelining of individual phases so that to forbid any inner loop shifting
on some specific statements (targets of inter-phase dependences). This will allow
to further pipeline some phases without impacting retimability of the global loop.
We will come back to this extension when describing the complete algorithm.

4 Global Optimization Problem

Based on Theorem 1, we can formalize the software pipelining of multiple inner
loops with prolog-epilog merging as a global optimization problem.

4.1 Multidimensional Knapsack Problem

First of all, the causality preservation condition in Theorem 1 needs to be
extended to cover the whole phase dependence graph Gp. Indeed, software-
pipelining kC phases for each (simple) cycle C may create a retiming conflict, as
a phase may belong to several cycles and can be chosen to be software-pipelined
for one cycle and not for another.

The point is not to pipeline exactly kC phases in each cycle C, but to minimize
the cycle count of the global loop. Since it is not possible to pipeline more than
kC phases (for a given cycle C), the problem leads to the maximization of an
objective function under some constraints. The objective function associated
with the (static) cycle count for the loop nest is the sum over all phases p of
profitp = seqtimep − mpIIp, where seqtimep is the number of cycles to execute
phase p and IIp is the initiation interval for the pipelined version of phase
p. Let belongsp,C ∈ {0, 1} denote whether phase p belongs to cycle C, and let
Xp ∈ {0, 1} denote whether phase p can be pipelined. The complete optimization
problem is stated in Fig. 6.

This is a multidimensional Knapsack problem, a well known NP-complete
problem; unlike the one-dimensional case, there is no known pseudo-polynomial
algorithm [20] but some heuristics give good results [22].
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Variables: ∀p ∈ {1, . . . , nb phases}, Xp ∈ {0, 1}

Objective: max
nb phases�

p=1

profitp ×Xp

Constraints: ∀C ∈ {1, . . . , nb cycles},
nb phases�

p=1

belongsp,C ×Xp ≤ kC

(2)

Fig. 6. Multidimensional knapsack problem to optimize the pipelining profit
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Variables: ∀p ∈ {1, . . . , nb phases}, Xp ∈ {0, 1}
∀a ∈ {1, . . . , nb arrays}, ∀p ∈ {1, . . . , nb phases}, Ra,p ∈ {0, 1}

Objective: max
nb phases�

p=1

profitp ×Xp

Constraints:
nb arrays�

a=1

nb phases�
p=1

sizeofa × Ra,p ≤ M

∀C ∈ {1, . . . , nb cycles},
nb phases�

p=1

belongsp,C×Xp≤ kC +nb phases×
nb arrays�

a=1

�
p∈C∧assigneda,p

Ra,p

(3)

Fig. 7. Optimizing the pipelining profit with array renaming

4.2 Dependence Removal

So far, we did not consider the applicability of data dependence removal tech-
niques, like privatization and renaming [8,16]. It is reasonable to assume scalar
variables have been renamed through conversion to SSA form [3], as is the case in
modern optimizing compilers; this guarantees the absence of output (write-after-
write) and anti (write-after-read) dependences on scalar variables. The case of
arrays requires significant static analysis and code generation effort (copy-in and
copy-out), and a memory overhead [8,16]. We are not worried by the overheads
of copy-in and copy-out, assuming it is amortized over many iterations of the
global loop. In addition, we will not consider privatization as the dependences we
try to remove involve distinct source and sink statements, where array renaming
applies. Nevertheless, since prolog-epilog merging is partly motivated by code
size improvements, the memory costs of array renaming must be severely con-
trolled. Our work is driven by embedded applications, and we assume a constant
bound M on the total memory available for array renaming. Since our technique
guarantees the size of the global loop (kernel) does not increase, it is easy to
compute such bound, given the original code size and memory footprint of the
global loop, for a given local memory configuration.

Removing a dependence may suppress a cycle, hence yield more pipelinable
phases, but it also consumes more memory. Overall, the solution is a compromise
between the pipelining profit (indirecly linked with the number of pipelinable
phases) and the need to keep the amount of extra memory below M . We can
model this tradeoff as an extension to the previous linear optimization prob-
lem. When renaming a left-hand side (LHS) occurrence of an array, incoming
anti-dependences and both incoming and outgoing output dependences to that
statement are removed.

We model the decision of renaming an array a in all LHS occurrences of
instructions of a phase p through a variable Ra,p ∈ {0, 1}. Such variables are
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multiplied to “big” constants, controlling which constraints should be nullified—
depending on which cycle is broken through array renaming. To capture the
correlation between the decision to rename an array and the removal of an inter-
phase dependence, it is important that the inter-phase dependence graph Gp is
a multi-graph: each distinct inter-phase arc in G must yield a distinct arc in Gp.
The complete optimization problem is stated in Fig. 7.

nb arrays denotes the number of arrays, and sizeofa denotes the size of array a,
i.e., the memory overhead of renaming one LHS occurrence, assigneda,p states that
arraya is assigned in p. The “big” constant is nb phases : it is multiplied by the sum
of all variables associated with renaming of some arraya in some phase p belonging
to a given cycle C. This constant is big enough that the constraint on a cycle C will
be nullified if and only if one or more renaming occurs along the cycle.

4.3 Prolog-Epilog Merging Algorithm

We may now outline the main steps of the algorithm, assuming a loop nest with
multiple phases enclosed by a single global loop. In this section, we focus on
solving our optimization problem without considering the impact on downstream
loop nest generation methods.

1. If kC ≥ nb phases for every cycle then software-pipeline each phase indepen-
dently.

2. Otherwise:
– solve the integer linear optimization problem to identify which are the

kC phases to pipeline;
– retime the global outer loop, considering phase dependences in Gp, re-

ducing their distance by one every-time the sink phase has been pipelined
and contains intra-phase shifted statements at the sink of an inter-phase
dependence; this step is guaranteed to terminate according to Theorem 1.

3. Pipeline all remaining phases with the additional constraint that any state-
ment at the sink of an inter-phase dependence may not be shifted; in a
modulo scheduling algorithm, this constraint can be modeled by forcing
such statements to be assigned to column 0 [24]. This step is guaranteed
not impact global retiming constraints.

4. Generate the kernel, prolog and epilog of the retimed global loop.
5. Generate code for the kernel, prolog and epilog of every pipelined phase.
6. Gather all prologs, hoist them before the global loop, after the prolog of the

retimed global loop, and execute them in the same order as phases in the
global loop.

7. Gather all epilogs, hoist them after the global loop, before the prolog of the
retimed global loop, and execute them in the same order as phases in the
global loop.

4.4 Code Generation

The previous algorithms yield multidimensional shifts resulting from phase
pipelining and global loop retiming. However, unlike code generation for single-
dimensional pipelining [25], we are not dealing with multiple repetitive patterns
in the phase kernels and can rely on the classical code generation methods [24].
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Code generation for the retimed global loop only involves classical loop peeling
and induction variable substitutions of multidimensional loop shifting [4].

Code generation for pipelined phases after prolog-epilog merging is almost
identical to the inner loop pipelining case, except for the following steps.

1. As the loop kernel is now collapsed with the merged prolog and epilog, the
trip count of a pipelined phase is not decreased by the pipeline depth from
the original trip count.

2. When the loop counter occurs in an expression of some shifted statement,
one needs to generate an extra induction variable and schedule an extra
integer addition in the kernel. In our case, if the statement is shifted by
k iterations, the extra induction variable needs to wrap-around [11] before
proceeding with the last k iterations of the phase. This requires an additional
comparison and a conditional move (or a simple mask in case of power-of-two
trip counts). These instructions are off the critical path and are not expected
to have a high overhead, except on small loop bodies. We will come back to
the evaluation of this overhead in the experimental section.

5 Back to the Running Example

Fig. 3 showed how to software pipeline all phases independently. This allows to
compute the initiation interval IIp for every phase p. The profit of pipelining a
phase is the difference in (static) execution cycles between executing the original
inner loop body and the pipelined version. Fig. 8 shows the profit for all phases
in the running example, assuming the trip counts of all phases are identical and
equal to m = m1 = · · · = m6.

The graph Gp was given in Fig. 1. It consists of two cycles, (ABCD) and
(CEF ). These cycles share phase C, which makes the optimization problem
even more interesting as a naive approach may select C to be pipelined for one
cycle but not for the other. Fig. 9 shows kC , the maximum number of phases
that can be pipelined for each cycle.

Overall, we face the optimization problem in Fig. 10. A greedy approximation
of the solution orders phases from the most profitable to the less profitable,
selecting as many phases as possible for software pipelining. A posssible result
for the running example is to pipeline A, C, and E, with a total profit of 4m.

The multidimensional knapsack solution is better: phases A, B, E, F are
pipelined, with a total profit of 5m. Fig. 11 shows the modified phase dependence
graph, where pipelined phases are shaded, and the decremented distances of
incoming arcs appear in a bold face — following the retiming model of the proof
of Theorem 1. Notice phase C is more profitable than B, but pipelining B instead
gives us a chance to choose another phase for the other cycle and increases the
total profit. This corresponds to a speedup of 13/(13 − 5) = 1.625.

As this example shows, it may be overall more effective to pipeline less prof-
itable phases but maximize the overall profit. This observation is very natural
when the phases have a different trip count, but our running example shows that
this may also occur when cycles in the phase dependence graph are not disjoint.
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Phase A B C D E F
Profit 2m 1m 1m 0 1m 1m

Fig. 8. Profit table

Cycle ABCD CEF
kC 2 2

Fig. 9. Constraints

���
��

Xj ∈ 0, 1
max(2X1 + X2 + X3 + X5 + X6)
X1 + X2 + X3 + X4 ≤ 2
X3 + X4 + X5 + X6 ≤ 2

Fig. 10. Linear program

A B C D E F
0 0 0

0

1

-1

2

Fig. 11. Phase dependence graph after pipelining A, B, E and F

Fig. 5 shows the final code, with prolog-epilog merging and generation of the
outermost prolog and epilog.

6 Related Work and Challenges

We do not aim at extending software pipelining to nested loops, unlike Muthuku-
mar and Doshi [19], Petkov et al. [21], Rong et al. [26,25] and earlier work on
multidimensional pipelining (see e.g. Ramanujam et al. [23]). We simply lever-
age the enclosing loop nest to amortize the fill/flush overhead associated with
software pipelining, and to control the code expansion in inner loops.

Compared to plain shifting of statement iterations, our technique involves a
more complex combination of affine scheduling [9] and iteration domain split-
ting (a.k.a. index-set splitting) [10]. This raises many issues, some of which are
discussed below.

6.1 Managing Register Pressure

There is an unfortunate side-effect of retiming a prolog (resp. epilog) along the
global loop: any live variable entering (resp. leaving) the pipelined kernel will
interfere with every variable in other phases. The effect on register pressure can
be disastrous [27]. There are multiple ways to tackle with this problem.

– The increased pressure is comparable to aggressive scheduling of unrolled
or fused loops [17,2]. This should be encouraging given the practical impor-
tance of loop fusion among loop optimizations for memory locality and ILP
enhancement.

– Spills resulting from inter-phase liveness can always be spilled outside phases.
This may turn out to be cheaper than executing the low-ILP prolog/epilog
of a deeply pipelined inner loop. It is even more likely to be shorter, espe-
cially on architectures with instruction set support for register spill/refill:
register stack engine on the Itanium [18], register windows on Sparc, or
multi-push/multi-pop operations on CISC instruction sets.



90 M. Fellahi and A. Cohen

6.2 Managing Code Size

Our method results in code growth outside the global loop only. This is nicer
to memory-constrained architectures, but it may still increase cache pollution
(or code-copying on local memories). Furthermore, code growth is amplified by
the global loop retiming induced by prolog-epilog merging. For innermost loops,
prolog and epilog collapsing is an alternative strategy consisting in guarding
the phases with rotating predicate registers [6,7]. This does not reduce pipeline
fill/flush delays however. In our case, pipeline depth has negligible influence on
execution time since prologs/epilogs are hoisted outside the global loop.

Muthukumar and Doshi extended the technique to multidimensional software
pipelining [19]. They do not target code size reduction, but increased through-
put on perfectly nested kernels with low-trip-count innermost loops. Iterations
corresponding to prologs and epilogs are shifted over the entire execution of the
innermost loop kernel, effectively overlapping iterations of an epilog with those
of the next prolog. Compared to prolog-epilog merging, collapsing is difficult to
generalize to imperfectly nested loops and incurs harder legality constraints. It
is also limited to ISAs with rotating predicate registers. Experimental results on
a prototype implementation inside Intel’s production compiler are encouraging
(despite register pressure challenges similar to ours); this motivates revisiting
Muthukumar and Doshi’s technique [19] in the context of prolog-epilog merging.

6.3 Multidimensional Scheduling

Thereareclearopportunities for integratingourtechniquewithother formsofmulti-
levelpipelining, or combinedpipeliningandparallelization, fusion, etc. [23,2,21,26].
E.g., considering phase C of the running example, it is possible to improve ILP by
shifting c1 by one iteration of the global loop. However our approach is not limited
to cases where the outer loop is parallel or where unroll-and-jam is legal.

High-level loop optimizations are also promising application of prolog-epilog
merging. The polyhedral model is an expressive way to define and search for
complex sequences of loop transformations [12]. Yet such complex transforma-
tions often induce code size expansion. One source of code duplication comes
from multidimensional shifts [28]. It seems possible to integrate our technique
in the code-generation phass of a polyhedral compilation tool [12].

7 Experiments

We studied common media and signal-processing applications, including GNU ra-
dio,802.11a(fromNokia),andpolyphase imageupscaling(fromPhilipsResearch).5

Combining preliminary transformations including inlining, loop rerolling, fusion
and if-conversion [1],we couldfindmanyoccurrences of the “global loopwithnested
phases” pattern. All these applications exhibit low-trip-count phases, reinforcing

5 Three benchmarks studied in the ACOTES and SARC FP6 European projects:
http://www.hitech-projects.com/euprojects/ACOTES, http://www.sarc-ip.org
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the motivation for prolog-epilog merging. This pattern is also found in many sci-
entific codes; since we target embedded systems, we only studied one of those: the
computationally intensive part of the 172.mgrid SPEC CPU2000fp benchmark.

Further experiments are conducted semi-automatically or by hand. This evalu-
ation allows to study the interplay between our technique and other optimizations.
It is a required step before undertaking a large integration effort into a back-end
optimizer. Figure 12 provides basic statistics about the four applications we stud-
ied. It demonstrates the widespread occurrence of loop nests amenable to prolog-
epilog merging. The varying trip-counts across neighboring phases (often due to
data-dependent control) indicates that loop fusion is not generally applicable. We
also verified the presence of many dependence cycles, at all depths, in the four
benchmarks; all such cycles contain output/anti-dependences. This confirms the
relevance of our global optimization problem with array renaming.

Benchmark Lines of code Phases at depth... Dependences �= trip counts
1 2 3 4 5 Flow Anti Output across phases

GNU radio 427 10 n.a. n.a. n.a. n.a. 3 3 0 100%
802.11a 1502 16 n.a. n.a. n.a. n.a. 5 5 2 50%

Upscaling 150 16 n.a. n.a. n.a. n.a. 17 17 10 25%
172.mgrid 502 5 3 20 17 4 37 37 92 100%

Fig. 12. Applicability of prolog-epilog merging

The rest of the section presents our first results on the polyphase image up-
scaling benchmark. This code iterates on SD (720×480) YUV video frames and
interpolates pixels to double the resolution in both dimensions (1440 × 960). It
accesses a N2 × 512 lookup-table and two N2 temporary arrays to iteratively
apply filtering, interpolation, and image-enhancement steps over N ×N blocks of
pixels. Most time is spent in three-dimensional, imperfectly nested loops, span-
ning over 150 lines of C code whose control-flow skeleton is depicted in Fig. 13.
The 16 phases are labeled A to P . Most of them have N2 iterations except a
couple with N2 − 1. The value of N can be as low as 2 for low-quality interpo-
lation and can grow beyond 5 for very high quality filtering. The default value
is N = 3 (a typical 3 × 3 stencil).

All 16 phases can be pipelined (independently of prolog-epilog merging): the
dependence graph for this kernel features some intra-phase loop-carried depen-
dences but those are associated with reductions and do not hamper pipelining.

for(ln = 0; ln < iheight; ln++) {
for(px = 0; px < iwidth; px++) {
//// Phase A
for(index = 0; index < N*N; index++) { ... }
...
//// Phase P
for(index = 0; index < N*N; index++) { ... }

}
}

Fig. 13. Skeleton of the interpolation code
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Fig. 14. Trading memory for performance
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There are no flow (read-after-write) inter-phase dependences, but many output
and anti-dependences on the two N2 temporary arrays; those dependences can
be removed through array renaming. The strongly connected components are
{A, B, C}, {D, E, H, K, N}, {F, G}, {I, J}, {L, M}, {O, P}.

To break all dependence cycles in the inter-phase dependence graph, the max-
imal renaming cost is 4 × N2 × 4 bytes: 4 dependences removed through the
renaming of arrays of N2 32 bit integers. This is very little, both w.r.t. the size
of most local memories or L2 caches, and w.r.t. the code size itself. It suggests
that array renaming may be a practical solution to allow to pipeline most phases
while maintaining the memory overhead close to zero.

Nevertheless, considering the default value N = 3, we evaluated the impact
of array renaming, varying the upper bound on memory expansion from 0 to
16N2 = 144 bytes. The static cycle count for one iteration of the global loop
is 1773; the linear optimization problem yields the profit (in static cycles) and
speedup figures in Fig. 14. This experiment exhibits 5 steps where extra memory
expansion translated into effective improvement of the total profit. It confirms
the soundness and relevance of the array renaming for pipelining tradeoff, but
more benchmarks should be studied before lessons about the analytical proper-
ties of this tradeoff can be learnt.

The next experiment we conducted concerns the interplay of our technique
with loop nest optimizers. We studied the behavior of ICC 10.1, the state-of-
the-art optimizing compiler from Intel, targeting the Itanium 2 processor (Madi-
son) 1.3GHz. Among the high-level loop transformations, ICC can perform loop
tiling, unroll-and-jam and loop fusion. Only the latter is relevant for this stream-
ing code with little temporal locality. The optimization log shows that 3 pairs of
phases are fused, the only relevant ones (in terms of performance) being phases
A and B. ICC fails to fuse two phases because of mismatching loop trip counts
(N2 − 1), and it fails to fuse phases L to P due to non-uniform or misaligned
dependences. After fusion, 13 phases remain to exercise our technique. This ex-
ample first shows that our technique is interesting as a complement to loop
fusion: phases A and B could be fused yet still exhibit opportunities for pipelin-
ing and prolog-epilog merging; in addition, our technique is applicable in cases
where loop fusion is not.

The last set of experiments aim to evaluate the overheads of prolog-epilog
merging w.r.t. plain inner loop pipelining. Those overheads correspond to the
extra instruction to compute shifted index variables (see Section 4.4) and to
the register pressure induced by live inter-phase variables (see Section 6.1). We
considered multiple architecture-compiler pairs: Intel Core 2 Duo 2.4GHz and
Intel Itanium 2 (Madison) 1.3GHz with GCC 4.3 and ICC 10.1, IBM Cell Pow-
erPC 3.2GHz with GCC 4.1, STMicroelectronics ST231 400MHz (embedded
VLIW, 4-issue) with st200cc 1.9.0B (Open64). We used -O3 optimization, with
pipelining turned off, with and without loop unrolling, and manually pipelined
the most significant phases (source-level). In all cases, prolog-epilog merging
performed better than unpipelined code, and sometimes even better than plain
pipelining (phase L with GCC). We also verified that lower values of N improve
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the benefit of prolog-epilog merging: no iteration is spent on fill/flush except
at the very beginning/end of the global loop [19]. This preliminary experiment
confirms that the intrinsic overheads of our technique can be amortized.

8 Conclusion

Software pipelining with prolog-epilog merging may appear as the most natural
extension to inner loop pipelining. Indeed, it avoids the code size and execution
time overhead of nested prologs and epilogs: these advantages over loop unrolling
are exactly the motivations that drove to the deign of software pipelining algo-
rithms [14]. We formalized the concept of prolog-epilog merging, combining in-
ner loop pipelining with multidimensional retiming. We combined our technique
with array renaming to improve the pipelinability of inner loops. This results
in a global scheduling and memory expansion tradeoff, modeled as a tractable,
integer linear optimization problem.
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Abstract. Wide instruction formats make it possible to control mi-
croarchitecture resources more precisely by the compiler by either en-
abling more parallelism (VLIW) or by saving power. Unfortunately, wide
instructions impose a high pressure on the memory system due to an in-
creased instruction-fetch bandwidth and a larger code working set/foot-
print.

This paper presents a code compression scheme that allows the com-
piler to select what subset of a wide instruction set to use in each program
phase at the granularity of basic blocks based on a profiling methodology.
The decompression engine comprises a set of tables that convert a narrow
instruction into a wide instruction in a dynamic fashion. The paper also
presents a method for how to configure and dimension the decompres-
sion engine and how to generate a compressed program with embedded
instructions that dynamically manage the tables in the decompression
engine.

We find that the 77 control bits in the original FlexCore instruction
format can be reduced to 32 bits offering a compression of 58% and a
modest performance overhead of less than 1% for management of the
decompression tables.

1 Introduction

Traditional RISC-like Instruction-Set-Architectures (ISAs) offer a fairly compact
coding of instructions that preserves precious instruction-fetch bandwidth and
also makes good use of memory resources. However, densely coded instructions
tend to increase the efficiency gap between general-purpose processors (GPPs)
and tailor-made electronic devices (ASICs) by not being capable of finely con-
trolling microarchitecture resources. In fact, with the advances in compiler tech-
nology it is interesting to let wider instructions expose a finer-grain control to
the compiler.
Very-Long-Instruction-Word (VLIW) ISAs do exactly this by exploiting par-

allelism across functional units, whereas architectures with exposed control such
as NISC [1] and FlexCore [2] do it in order to expose the entire control to the
compiler, thereby having a potential to reduce the efficiency gap between GPPs
and ASICs. In fact, recent VLIW ISAs such as IA-64 [3] use 128-bit instruction
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bundles containing three instructions each and FlexCore uses as many as 109
bits per instruction.
The downside of wider instructions, however, manifests itself in at least three

ways: a higher instruction-fetch bandwidth, a larger instruction working-set, and
a larger static code size. This may lead to higher power/energy consumption as
well as lower performance, which may in fact outweigh the gains of more efficient
use of microarchitecture resources.
Previous approaches to maintain the full expressiveness of wide instruction

formats and yet reducing the pressure on the memory system have been to code
frequently-used wide instructions more densely. Mips16 [4] and ARM Thumb [5]
provide a more dense alternative instruction set and it is possible to switch
between the wide and dense instruction formats. In another approach, a dictio-
nary is provided that expands a densely coded instruction into a wide instruction
either by coding a single wide instruction with a denser codeword [6,7] or by cod-
ing a sequence of recurring wide instructions with a denser codeword [8,9,10,11].
Regardless of the approach, the drawback of all these schemes is that they can
only utilize a fraction of the expressiveness of the wide instruction format either
because only a subset is compressed or because of the huge dictionaries needed,
which can incur significant run-time costs. Our aim is a more scalable approach
that can accommodate large programs.
This paper contributes with a novel code-compression scheme that utilizes

the full expressiveness of the wide instructions by coding the program in a dense
fashion. The decompression engine comprises a set of look-up tables (LUTs), each
used to compress a partition of the wide instruction word. The compression is
done off-line at compile-time by analyzing what subset of the wide instruction
set is used in each basic block through a profiling pass. We present an algorithm
for compression of the program using dense instructions and for management of
the decompression engine at run-time by changing the dictionary entries on-the-
fly and yet keeping the run-time costs low. The end result is a decompression
methodology that can utilize the full expressiveness of the wide instruction for-
mat with low run-time costs. The paper also presents a methodology for how
to configure and dimension the decompression engine under various constraints
such as keeping the latency of LUTs at a low level.
Based on the FlexCore [2] architecture, we show that the original 77-bit in-

struction word can be reduced by 58% with less than 1% percent run-time cost
in the number of executed instructions for manipulating the LUTs for a set of
media benchmarks from the EEMBC suite [12].
As for the rest of the paper, Section 2 describes our baseline architecture

model, the FlexCore architecture, followed by a description of the new compres-
sion scheme in Section 3. In Section 4, a method for selection of the configu-
ration of the LUTs is presented, and in Section 5 an algorithm for generating
the compressed program is shown. The experimental methodology and results
are presented in Sections 6 and 7, respectively. Related works are discussed in
Section 8 and the paper is concluded in Section 9.
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2 FlexCore

FlexCore [2] is an architecture with exposed control, based on the functional
units found in a typical five-stage general-purpose pipeline. The data-path con-
sists of a register file, an arithmetic-logic unit (ALU), a multiplier, a load/store
unit and a program-control unit connected to each other using a fully connected
interconnect and controlled using a wide control word. Figure 1 shows an il-
lustration of the architecture, with the control on top, and the interconnect at
the bottom of the figure. One unique property of the FlexCore architecture is
that it is possible to include hardware accelerators in the framework and use the
interconnect and the general control to flexibly configure a pipeline out of the
available datapath elements. Another novel aspect of FlexCore is that its control
space is a superset of a traditional five-stage general-purpose processor (GPP),
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Fig. 1. FlexCore, an architecture using a wide control word, a fully connected intercon-
nect, and the datapath units found in a typical early five-stage load/store architecture
such as MIPS 2000

Table 1. Control signals in the FlexCore architecture. Size given in number of bits.

Signal name Description Size Signal name Description Size
RegReadA Reg. A read address 5 PCOp PC operation 3
RegAStall Reg. A read stall 1 PCStall PC stall 1
RegReadB Reg. B read address 5 I_ALUA Inter. ALU A 4
RegBStall Reg. B read stall 1 I_ALUB Inter. ALU B 4
RegWrite Reg. write address 5 I_RegWrite Inter. Reg write 4
RegWE Reg. write-enable 1 I_LSWrite Inter. L/S Write 4
Buf1 Buf1 write-enable 1 I_LS Inter. L/S address 4
Buf2 Buf2 write-enable 1 I_Buf1 Inter. buf 1 4
ALUOp ALU operation 4 I_Buf2 Inter. buf 2 4
ALUStall ALU stall 1 I_CtrlFB Inter. ctrl feedback 4
LSOp L/S operation 2 MultStall Mult stall 1
LSSize L/S size 2 MultEnable Mult enable 1
LSStall L/S stall 1 I_MultA Inter. mult A 4
PC PC immediate select 1 I_MultB Inter. mult B 4
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making it possible to fall back on traditionally scheduled instructions found in
load/store architectures such as MIPS R2000, if needed.
While this architecture has been shown to be more efficient in terms of exe-

cution time and cycle count for embedded benchmarks than a five-stage single-
issue pipelined GPP counterpart, the cost in instruction-fetch bandwidth is three
times higher compared to a traditional GPP like MIPS R2000, and almost as
much in terms of static code size [2]. This makes FlexCore a suitable target archi-
tecture for code compression schemes, especially since embedded devices usually
have very tight constraints on memory usage and power/energy consumption.
The full control word for the FlexSoC, which consists of 109 signals (out of

which 32 comprise the immediate values), can be seen in Table 1. So 77 of the
109 bits are for control, which is the target in this study.

3 The Instruction Compression Scheme: Overview

The compression scheme leverages on the fact that during phases of the exe-
cution, some combinations of control bits will never appear in the instruction
stream. Since the expressiveness found in the wide instructions is thus not uti-
lized, a more efficient encoding scheme can be used. The encoding scheme uses
look-up tables (LUTs) to store bit patterns and the compressed instruction is a
list of indexes into these tables. The bits found in the tables are then merged to
form the decompressed instruction, which can then be executed. Figure 2 shows a
decompression structure with four LUTs that together generate the wide instruc-
tion. Because of the simple logic involved, and relatively small LUTs needed, we
will later show that decompression can be done with virtually no performance
overhead as part of the instruction fetch.
The contents of the LUTs can be changed using dedicated table-manipulating

instructions in the instruction stream. This allows the compiler to use small ta-
bles, whose contents are tuned for the particular phase of the execution. The
placement of these dedicated instructions will affect the quality of the final solu-
tion. The static number of table-manipulating instructions will affect the static
code size, whereas the number of table-manipulating instructions in the dynamic

Fig. 2. The instruction-decompression structure encompassing a number of LUTs that
expand different parts of the narrow instruction into the wide complete control word
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instruction stream will affect the performance overhead in terms of instruction
overhead and potentially more instruction-cache misses.
In this study, we adopt a straight-forward strategy – a single table-manipula-

ting instruction, called a LUT-load, updates a single entry in one look-up table.
While this makes our results pessimistic in terms of the overhead caused by the
table-manipulating instructions, we note that this is an area for improvement
that is subject for future research.
An important design trade-off in this scheme is the size and configuration of

the LUTs. The instruction size depends on both the number of tables, and the
size of each. The number of tables dictates the number of indices in the narrow
instruction format, and the number of entries dictates the number of bits needed
for each index. Also, the size of the tables will influence how often the contents
of the tables need to be updated. In the next section, we present a methodology
for dimensioning the decompression engine taking this into account.
The methodology also takes into account that many bits in the control word

are so called “don’t-care” values meaning that they can be set to either zero or
one, without affecting the correctness of the program. Don’t-care signals have
previously been used successfully in the NISC project [6]. The FlexCore-compiler
has been updated to generate programs where the “bits” can be 0, 1 or X, giving
the compression algorithm additional opportunities for optimizations.

4 A Method for Wide-Instruction Partitioning

In this section, we present a methodology to dimension the compression-engine
tables with respect to the number of tables, the number of entries in each ta-
ble, and the partitioning of the wide instructions across the tables. Since the
tables are fixed in the architecture, this design decision needs to be done before
fabrication, and is thus done only once.
The method consists of four steps, each one illustrated with examples using the

FlexCore control word. In the first step, the designer identifies bits in the control
word that are highly correlated and should always be placed in the same LUT.
These sets of bits are called sub-groups. Table 2 lists the sub-groups identified
in the FlexCore architecture.
In the next step, all possible subsets of the set of sub-groups are generated

to create possible LUT candidates. A candidate is a set of bits that together
could become a LUT in the design. An optimization is to already here remove
candidates which will not be in the final solution; for example if they are too
narrow or too wide. In FlexCore, for example, we might decide to only consider
candidates with a width between 7 and 16 bits because of delay and power
constraints. Here (RegA, RegB) is a candidate, but (Buf, I_Buf) is too narrow
to be a reasonable one, since too many small LUTs lead to a lower degree of
compression.
In the third step, LUT candidates are combined into groups called possible so-

lutions, so that the candidates in the group cover all the bits in the control word
once, and only once. One of many possible solutions in our example is the following
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Table 2. Sub-groups for the FlexCore architecture. Size given in number of bits.

Sub-group Signals included Size Sub-group Signals included Size
RegA RegReadA + RegAStall 6 Buf Buf1 + Buf2 2
RegB RegReadB + RegBStall 6 I_ALUA I_ALUA 4
RegW RegWrite + RegWE 6 I_ALUB I_ALUB 4
PC PC + PCOp + PCStall 5 I_RegW I_RegWrite 4
ALU ALUOp + AluStall 5 I_LS I_LSWrite + I_LS 8
LS LSOp + LSSize + LSStall 5 I_Buf1 I_Buf1 4

Mult MultStall + MultEnable 10 I_Buf2 I_Buf2 4
I_MultA + I_MultB I_CtrlFB I_CtrlFB 4

candidate list: (I_RegW, I_LS, RegW), (I_ALUB, I_Buf2), (I_ALUA, Mult),
(LS, PC), (ALU, I_CtrlFB Buf, I_Buf1) (RegB, RegA).
Finally, each of the possible solutions is evaluated using a user-defined cost

function. The cost function evaluates how good the possible solution is for a
given application (called workload), and returns a numerical result (lower is
better). This makes it possible to find a solution that is relevant for the type
of applications that will be executed on the system. In our experiments, we
have used cost functions for LUT-access time, compressed instruction width,
and energy efficiency. Several cost functions can be given with different priority,
and only if a high priority function ties, a lower is evaluated. This makes it easy
to add hard design-constraints, such as a maximum access time for the tables,
and to make sure that the design fits within a given power envelope.
The cost function will take the LUT configuration into account given by the

possible solution, and calculate the LUT sizes needed for the workload, so the
whole program can be executed without inserting LUT-loads. In the LUT size
calculation, don’t-care bits are greedily set to 0 or 1 if it makes it possible to
merge two entries into the same value. For example, if the LUT already holds the
entry 1X00X, and we try to add the entry X100X, the LUT would be updated
to hold the entry 1100X. With this information, the cost can be calculated and
returned. Once all the possible solutions have been evaluated, the designer is
presented with a list of the solutions with the lowest cost.
While each run of the algorithm gives a list of solutions tuned for that par-

ticular workload, we propose running it several times with different workloads.
Among all the saved solutions, the designer can pick one that works well for all
of the workloads.
One challenge in this methodology is to find a suitable workload. The workload

should, for the best solutions, produce LUTs that have a size that results in
an acceptable access time and power consumption. For the benchmarks used
in this paper, we selected a subset of the full program by running the EEMBC
benchmarks one iteration (using the flag -i1 ) and all the program counter-values
for the executed instructions were recorded. For each benchmark, the footprint
used was the subset of instructions selected by the program-counter trace.
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The algorithm also reports the size needed for each suggested LUT. Since the
compressed program can change the contents of each LUT, the distribution of
the sizes can be used to determine the final sizes for the LUTs.

5 Algorithm for Generation of a Compressed Program

In order to execute a program on a system using our proposed compression
scheme, the generated binaries need to be updated by inserting the LUT-load
instructions inside the binaries. We have developed an algorithm for generating a
compressed program with the LUT-loads placed to keep the performance penalty
low. One important approach is to avoid placing LUT-loads in basic blocks
that are frequently executed, such as inside inner loops. Since the original wide
instructions are compressed, it is possible to reduce the instruction footprint
size.
A profiling run is used to get the execution frequency for the basic blocks. We

can then estimate the performance overhead caused by the LUT-loads simply
by multiplying the number of required table manipulations in each basic block
with that block’s execution count.
In order to generate the final compressed program, the algorithm uses the un-

compressed program, a compiler-generated flow graph showing the relationship
between all basic blocks, profiling information at the basic block level, and the
LUT-table configuration.
The algorithm uses the flow graph as its main data structure and it associates

a complete list of entries with each basic block that are needed in the tables for
the basic block to be executed. An entry in this context means a value that is
present in a LUT in this basic block. If any basic block requires more entries
than the capacity of the tables, the basic block is split into several basic blocks.
The algorithm uses three flags, while updating the flow-graph. The flag L

(Load), is used for any entry that does not exist in all of the possible predecessors
to a given basic block. It is significant since only entries that are marked with
L will actually generate LUT-load instructions. The flag N (Needed) shows that
an instruction in the basic block requires the entry to be present in the LUT.
These entries can never be removed from the basic block, since the code would
not work without it. Finally, the flag X (Locked) is used by the algorithm to tag
an entry as processed. This makes it easy to process the entries one-by-one, and
make sure that all are visited once, and only once.
Initially, all entries in the flow-graph are scanned, and the L and N flags are set

according to the description above. Figure 3(a) shows a flow-graph for a simple
loop used to illustrate the algorithm, with each basic block annotated with its
execution count from the profiling run. Also, the entry 001010 for one particular
LUT is shown with its flags. The entry is initially stored in two different basic
blocks, but only marked with L in BB2, since the only path into BB3 is through
BB2. The performance penalty for this particular state is five, since a LUT-load
in BB2 would be executed five times.
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Name: BB2
Exec:  5

001010 (LN)

Name: BB3
Exec:  1

001010 (N)

Name: BB1
Exec:  1

(a) Before opti-
mization

Name: BB2
Exec:  5

001010 (NX)

Name: BB3
Exec:  1

001010 (NX)

Name: BB1
Exec:  1

001010 (LX)

(b) After opti-
mization

Fig. 3. Example of a simple flow-graph used to illustrate the algorithm. The graphs
show the locations a particular entry in one of the LUTs before and after BB2 is
optimized.

// Calculate possible cost achieveble by (recursively) moving
// entry up to all predecessors
optimizeLoad(current_node, entry)
if(recursionLevel > MAX || current_node.IsRootNode() == 0)

return INT_MAX
cost = 0;
loop over predecessors using pred

if(pred.HasEntry(entry) cost += 0
elseif(pred.IsFull()) return INT_MAX // No room to push the entry
else

cost_here = pred.ExecutionCount() // Cost if not pushed further
cost_push = optimizeLoad(pred, entry) // Cost if pushed further
if(cost_here <= cost_push)

cost += cost_here
else

cost += cost_push
pred.Add(entry) // Add speculatively

return cost

Fig. 4. Simplified pseudo-code for the recursive function. The complete version stores
LUT-updates locally and returns the solution.

The next step of the algorithm will process the entries marked with L one-
by-one, until all have been processed. The main idea behind the algorithm is to
look at one entry at a time to see if it is possible, with a lower cost, to make
sure the entry already exists in of the possible predecessors. This is done using
a recursive optimization function that works as follows.
For each entry that is marked L in the graph, the optimization function tries

to “push” the entry to all the predecessors of the basic block. The pseudo-code
in Figure 4 shows on a high-level how the function works. It keeps track of
the cost as it pushes the entry to the predecessors and returns the best cost
it can. The algorithm continues to recursively push the entry further until one
of several conditions occur: 1) the value already exists in a basic block; here
don’t-care values are greedily resolved to zeros or ones, if it helps to find a match
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2) the table in the basic block is full; 3) it reaches a root node in the graph; or
4) a maximum recursion depth has been reached. If the minimum cost found is
smaller than the current cost, the new entries are added to the affected basic
blocks and all the flags are updated. Being able to push entries marked with
L out of loops is essential for getting a well performing solution. Since each
optimization may increase the number of entries in the LUTs, the entries in the
basic blocks that have the most L-flags are processed first.
To keep the execution time of the algorithm down, the recursive depth should

be set. This bounds the computational complexity, which would otherwise be
O(n2), where n is the number of basic blocks. In our experiments, we have found
that very little improvement was found for a depth larger than 30, meaning a
load is at most pushed 30 basic blocks.
Figure 3(b) shows the resulting graph after the entry in BB2 has been

processed by the recursive function. The execution cost overhead associated with
this particular entry has now been reduced to one.
Using the graph it is trivial to generate a compressed program, by issuing

LUT-loads at the start of each basic block for each entry marked L. Because of
the extra instruction, some branch offsets may have to be recalculated.

6 Experimental Methodology

In order to evaluate our scheme, we have applied the table-configuration and
program compression algorithms to the FlexCore architecture and evaluated
them using the EEMBC [12] benchmarks Autocorr, FFT, and Viterbi. We have
only considered LUT candidates with a table width between 5 and 16 and table
sizes that are sufficiently fast and energy efficient according to our cost functions
to be defined below.

Table 3. Default LUT configuration used as a baseline for comparisons

Included signals Size (bits) Included signals Size (bits)
ALU + I_ALUA + I_ALUB 13 LS + I_LS 13
RegReadA 6 Buf + I_Buf1 + I_Buf2 10
RegReadB 6 PC + I_FB 9
RegWrite + I_RegWrite 10 Mult 10

To compare the selected solution with a baseline solution, we use a configu-
ration where signals that, to the best of our knowledge, fit together are placed
in the same table. These groups, referred to as the default configuration, can
be seen in Table 3. In our case study, we combined several cost functions with
different priorities to meet timing, size, and power constraints. Since a lower pri-
ority function is only evaluated if there is a tie between solutions using a higher
priority cost function, it is important to carefully design the cost functions so
that ties actually occur. The cost functions used in this study illustrate how this
can be done.
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The first cost function makes sure that the access time is below one nanosec-
ond for all LUTs. It is designed as a step function, which returns the value one if
the delay is below one nanosecond, and a larger value otherwise. The second cost
function makes sure we have a sufficiently small instruction format. By dividing
the resulting compressed instruction-size by eight (using integer division), the
output is quantized. Finally, ties among the solutions with the smallest instruc-
tions are broken using a third cost function, which adds the power values of all
the tables in the solution. For all functions, a lower cost is better.
Results on timing and power estimates come from RC-extracted layouts of

LUTs of various sizes – depth as well as width have been varied between 4 and
64. The LUTs were described in VHDL and taken through a Cadence Encounter
synthesis, placement-and-routing flow for a commercial 65-nm process technol-
ogy (low-power cell library with standard VT ). The estimates shown in Section 7
were obtained for the worst-case 125 ◦C corner at 1.1 V.

7 Experimental Results

7.1 Look-Up Table Configuration

The data used for the cost functions for delay and power is shown in Figure 5.
The graphs show how the LUT dimensions influence power and timing of the
decoder. The delay increases with the number of entries in the LUT. This comes
as no surprise since the multiplexers for reading and writing data into and out
of the LUT need to be wider, thus increasing the logic depth. However, the
width also has a negative effect on timing. This is due to longer wires that span
across the larger (wider) LUT, which increases the propagation delay. For the
power it is the opposite with the width being the more dominant factor. As the

(a) LUT Timing (b) LUT Power

Fig. 5. Timing and power estimates from RC-extracted 65-nm layouts of LUTs of
various sizes
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LUT becomes wider there are more signals and logic to switch, since there are
more bits to read or write in a single cycle, thus increasing the dynamic power.
However, an increased number of entries in a LUT also increases the power. This
is due to an increase in logic, which results in a higher static power as well as
longer wires that require more power for driving them. From Figure 5 one can
see that the power dissipation increases rapidly for LUTs wider than 16 bits.
The data motivated us to only look at LUTs that are less than 16 bits wide in
our case study.
As described in Section 4, the working sets used to decide on a LUT config-

uration were created by running the program once and only use the executed
instructions. For our benchmarks, only 45% to 60% of the entire set of instruc-
tions were executed during such a run. When using this subset of the instructions,
our algorithm provided solutions that met our design goals of an access time of
less than one nanosecond.
Table 4 shows the delay, number of bits per instruction, and the total power for

the default configuration (Table 3) as well as the configuration with the lowest
cost found for each of the benchmark subsets. Here we see that the default
configuration has a much higher access time than the configuration selected
by our algorithm. While the compressed instruction size is similar in the two
configurations, the selected configuration is more power efficient.

Table 4. Results for the table configurations that hold the complete program. Results
for both the algorithm-selected configuration (best), and the default configuration are
shown.

Benchmark Delay (ns) Inst. Width (bits) Power (mW)
Autocorr (best) 0.6 28 3.8
Autocorr (default) 1.7 27 5.0
FFT (best) 0.6 29 4.8
FFT (default) 1.8 28 4.7
Viterbi (best) 0.6 28 3.8
Viterbi (default) 1.8 27 5.3

The next step is to look at the best configuration for each benchmark, and find a
one that works overall best, i.e. for all benchmarks. The methodology used was to
consider the cost functions for the ten best solutions for each benchmark. Among
the possible solutions that had less than one nanosecond latency for all application,
we selected the solution that had the narrowest compressed instruction width.
Table 5 shows the selected configuration. For each LUT we also list the width

and the total number of entries needed to fit the entire program for each bench-
mark. With this info, we also list the sizes we use for each table. The sizes were
selected to make sure that only 32 bits are needed to index the LUTs. For our
configuration, the total number of bits stored in LUTs are only 1036 bits. The
final configuration compresses the 77 control signals (109 minus the immediate)
down to 32 bits, a compression ratio for each instruction of 58% (41% with the
32-bit immediate included).
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Table 5. Required number of entries for each table for each application and the size
chosen for our implementation. The selected sizes are chosen to get a total instruction
size of 32 bits for the control bits.

Included signals Group width Suggested size Chosen sizeAutocorr FFT Viterbi
I_RegW, I_LS 12 4 5 4 4
I_ALUB, I_Buf2 8 5 6 5 8
I_ALUA, Mult 14 4 8 4 8
LS, PC, 10 15 15 15 16
ALU, I_CtrlFB 9 16 17 16 16
Buf, I_Buf1 6 6 6 6 4
RegW 6 25 28 21 32
RegB 6 18 23 20 16
RegA 6 21 24 20 32

Table 6. Compression results for our benchmarks. Cost is the fraction of executed
LUT-loads when running our compressed program. Static code size only includes the
control bits targeted by our compression.

Dynamic Instruction Count Static Code Size

Benchmark Normal LUT-Loads Cost Uncompressed Compressed Compr.
Instr. Ratio

Autocorr 25096 268 1.1% 16.9kB 15.9kB 6%
FFT 169417 2086 1.2% 17.4kB 16.0kB 9%
Viterbi 293755 519 0.6% 15.9kB 14.0kB 12%

7.2 Program Generation

The next step is to generate code optimized for the selected table-configuration.
The benchmarks were compressed using the algorithm outlined above with a
maximum recursion level of 30. Table 6 lists the number of “normal” instructions
and LUT-loads executed when running the benchmarks. In terms of performance
overhead, the results clearly show that the algorithm is successful at placing the
LUT-loads. Using the pessimistic calculation that each entry takes one cycle to
change, we see that the overhead for changing the contents of the tables is about
one percent for all three applications.
Regarding the code size, the static code now contains the compressed instruc-

tions and the extra table of load instructions. For the three benchmarks, the
static code size targeted by our scheme only decreased by between 6% and 12%,
as seen in Table 6. The results can be explained by the fact that our algorithm
is optimized for the reduction of performance overhead, and not static code size.
In fact, very few LUT-loads were placed in the 90% most frequently executed
instructions, leading to a smaller instruction working set for these blocks. An
interesting expansion of this work would be to consider other optimization goals
for the compression algorithm.
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8 Related Work

The NISC project proposes the use of one or two look-up tables to efficiently store
programs for FPGA-based custom IPs [6]. While they achieve very high com-
pression ratios (3.3 times for their applications), the size of the tables becomes
quite large. Using their approach, with one static LUT, the EEMBC benchmarks
evaluated in our study would require between 300 to 400 entries each, making it
more suitable in an FPGA environment than to be placed in the latency-critical
front-end of an ASIC microarchitecture in which the clock frequency would be
heavily constrained.
IBM CodePack [7] is a compression method which enables unmodified cores to

run compressed instructions. The instructions are encoded using two tables, one
for the op-code and one for the operands. The compressed instructions access
the tables using variable length code-words. Because of the complexity of the
decompression, a cache is required to hide the decompression latency.
Benini et al. [13] increase the working set that can be placed in the instruc-

tion cache by storing the N most frequently executed instructions in a table,
and replace them in the code with log2(N) bit wide codewords. Dictionary-
based compression has also been used to replace sequences of instructions with
one codeword [10,11]. While it is not clear how these approaches scale as the in-
struction width increases and the compiler gets more opportunities to optimize
the control word, it is likely that the wider an instruction is, the less likely it is
to be reused.
Brorsson and Collin [14] extend previous work in dictionary-based compres-

sion by considering dictionary sharing between applications. Similar to our work,
they use an instruction for updating the state of the tables, though they only
change the contents of the LUTs during context switches, not between execution
phases in the same program.

9 Conclusion and Future Work

This paper presents a novel code compression approach which reduces the pres-
sure on the memory system in wide instruction architectures. Using FlexCore
as a case study we show that the scheme, which is based on small look-up ta-
bles that each compresses parts of the control word, can compress the 77-bit
control-word down to 32 bits with only 1% performance penalty because of the
instructions that update the LUTs.
To aid the designer in configuring and dimensioning the look-up tables, a

methodology using cost functions is presented. Also, a method to generate com-
pressed programs optimized for a low performance overhead is described.
Accurate profiling information is important for achieving an efficient com-

pressed program. In this study, instruction traces from the execution of the pro-
grams were used to get execution counts for each basic block. Another method
that could be used to get fast and accurate profiling information is to use sam-
pling techniques developed for feedback-driven compiler optimizations [15].
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The compression scheme focuses on compressing the control bits in the instruc-
tion word, leaving the immediate field untouched. Frequent value encoding [16]
and significance-width compression [17,18,19] are compression approaches, which
have been shown to be very effective at compressing memory traffic [20] and could
be a promising approach to use here as well, but this is left for future work.

Acknowledgments

The authors thank Lars Svensson for fruitful discussion on the compression algo-
rithm. We also thank Thomas Schilling for his work on the FlexCore tool-chain
and all the members of the FlexSoC project for their contribution to the Flex-
Core architecture.

References

1. Reshadi, M., Gorjiara, B., Gajski, D.: Utilizing horizontal and vertical parallelism
with a no-instruction-set compiler for custom datapaths. In: Proceedings of the
23rd International Conference on Computer Design (ICCD), pp. 69–76. IEEE Com-
puter Society, Los Alamitos (2005)

2. Thuresson, M., Själander, M., Björk, M., Svensson, L., Larsson-Edefors, P., Sten-
strom, P.: FlexCore: Utilizing exposed datapath control for efficient computing.
Journal of Signal Processing Systems (to appear, 2008); Accepted on the 4th of
March 2008

3. Huck, J., Morris, D., Ross, J., Knies, A., Mulder, H., Zahir, R.: Introducing the
IA-64 architecture. IEEE Micro. 20(5), 12–23 (2000)

4. Kissell, K.: MIPS16: High-density MIPS for the Embedded Market. Silicon Graph-
ics MIPS Group (1997)

5. Advanced RISC Machines Ltd.: An Introduction to THUMB (March 1995)
6. Gorjiara, B., Gajski, D.: FPGA-friendly code compression for horizontal mi-

crocoded custom IPs. In: Proceedings of the 2007 ACM/SIGDA 15th international
symposium on Field programmable gate arrays (ISFPGA), pp. 108–115. ACM
Press, New York (2007)

7. Game, M., Booker, A.: CodePack: Code Compression for PowerPC Processors.
International Business Machines (IBM) Corporation (1998)

8. Lefurgy, C.R.: Efficient execution of compressed programs. PhD thesis, Ann Arbor,
MI, USA, Chair-Trevor Mudge (2000)

9. Lefurgy, C., Piccininni, E., Mudge, T.N.: Reducing code size with run-time de-
compression. In: Proceedings of the Sixth International Symposium on High-
Performance Computer Architecture (HPCA), pp. 218–228. IEEE, Los Alamitos
(2000)

10. Corliss, M.L., Lewis, E.C., Roth, A.: DISE: A programmable macro engine for
customizing applications. In: Proceedings of the 30th Annual International Sym-
posium on Computer Architecture (ISCA), pp. 362–373. ACM Press, New York
(2003)

11. Thuresson, M., Stenstrom, P.: Evaluation of extended dictionary-based static code
compression schemes. In: Proceedings of the 2nd conference on Computing Fron-
tiers (CF), pp. 77–86. ACM Press, New York (2005)



A Flexible Code Compression Scheme Using Partitioned Look-Up Tables 109

12. EEMBC, the embedded microprocessor benchmark consortium (2008),
http://www.eembc.org

13. Benini, L., Macii, A., Nannarelli, A.: Cached-code compression for energy mini-
mization in embedded processors. In: Proceedings of the 2001 International Sympo-
sium on Low Power Electronics and Design (ISLPED), August 2001, pp. 322–327.
ACM Press, New York (2001)

14. Brorsson, M., Collin, M.: Adaptive and flexible dictionary code compression for
embedded applications. In: Proceedings of the international conference on com-
pilers, architectures and synthesis for embedded systems (CASES), pp. 113–124.
ACM Press, New York (2006)

15. Levin, R., Newman, I., Haber, G.: Complementing missing and inaccurate profil-
ing using a minimum cost circulation algorithm. In: Stenström, P., Dubois, M.,
Katevenis, M., Gupta, R., Ungerer, T. (eds.) HiPEAC 2007. LNCS, vol. 4917, pp.
291–304. Springer, Heidelberg (2008)

16. Yang, J., Gupta, R., Zhang, C.: Frequent value encoding for low power data buses.
ACM Transactions on Design Automation of Electronic Systems 9(3), 354–384
(2004)

17. Balakrishnan, S., Sohi, G.S.: Exploiting value locality in physical register files. In:
Proceedings of the 36th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), December 2003, pp. 265–276. IEEE, Los Alamitos (2003)

18. Brooks, D., Martonosi, M.: Dynamically exploiting narrow width operands to im-
prove processor power and performance. In: Proceedings of the Fifth International
Symposium on High-Performance Computer Architecture (HPCA), January 1999,
pp. 13–22. IEEE, Los Alamitos (1999)

19. Canal, R., González, A., Smith, J.E.: Software-controlled operand-gating. In: Pro-
ceedings of the 2nd International Symposium on Code Generation and Optimiza-
tion (CGO), March 2004, pp. 125–136. IEEE, Los Alamitos (2004)

20. Thuresson, M., Spracklen, L., Stenstrom, P.: Memory-link compression schemes: A
value locality perspective. IEEE Transactions on Computers 57(7), 916–927 (2008)



MLP-Aware Runahead Threads in a Simultaneous
Multithreading Processor

Kenzo Van Craeynest, Stijn Eyerman, and Lieven Eeckhout

Department of Electronics and Information Systems (ELIS), Ghent University, Belgium
{kevcraey,seyerman,leeckhou}@elis.UGent.be

Abstract. Threads experiencing long-latency loads on a simultaneous multith-
reading (SMT) processor may clog shared processor resources without making
forward progress, thereby starving other threads and reducing overall system
throughput. An elegant solution to the long-latency load problem in SMT proces-
sors is to employ runahead execution. Runahead threads do not block commit on
a long-latency load but instead execute subsequent instructions in a speculative
execution mode to expose memory-level parallelism (MLP) through prefetching.
The key benefit of runahead SMT threads is twofold: (i) runahead threads do
not clog resources on a long-latency load, and (ii) runahead threads exploit far-
distance MLP.

This paper proposes MLP-aware runahead threads: runahead execution is only
initiated in case there is far-distance MLP to be exploited. By doing so, useless
runahead executions are eliminated, thereby reducing the number of speculatively
executed instructions (and thus energy consumption) while preserving the perfor-
mance of the runahead thread and potentially improving the performance of the
co-executing thread(s). Our experimental results show that MLP-aware runahead
threads reduce the number of speculatively executed instructions by 13.9% and
10.1% for two-program and four-program workloads, respectively, compared to
MLP-agnostic runahead threads while achieving comparable system throughput
and job turnaround time.

1 Introduction

Long-latency loads (last D-cache level misses and D-TLB misses) have a big perfor-
mance impact on simultaneous multithreading (SMT) processors [23]. In particular, in
an SMT processor with dynamically shared resources, a thread experiencing a long-
latency load will eventually stall while holding resources (reorder buffer entries, issue
queue slots, rename registers, etc.), thereby potentially starving the other thread(s) and
reducing overall system throughput.

Tullsen and Brown [21] recognized this problem and proposed to limit the amount of
resources allocated by threads that are stalled due to long-latency loads. In their flush
policy, fetch is stalled as soon as a long-latency load is detected and instructions are
flushed from the pipeline in order to free resources allocated by the long-latency thread.
The flush policy by Tullsen and Brown, however, does not preserve memory-level paral-
lelism (MLP) [3,8], but instead serializes independent long-latency loads. This may hurt
the performance of memory-intensive (or, more precisely, MLP-intensive) threads. Eyer-
man and Eeckhout [6] therefore proposed the MLP-aware flush policy which first predicts
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the MLP distance for a long-latency load, i.e., it predicts the number of instructions one
needs to go down the dynamic instruction stream for exposing the available MLP. Subse-
quently, based on the predicted MLP distance, MLP-aware flush decides to (i) flush the
thread in case there is no MLP, or (ii) continue allocating resources for the long-latency
thread for as many instructions as predicted by the MLP predictor. The key idea is to flush
a thread only in case there is no MLP; in case there is MLP, MLP-aware flush allocates
as many resources as required to expose the available memory-level parallelism.

Ramirez et al. [17] proposed runahead threads in an SMT processor which avoid re-
source clogging on long-latency loads while exposing memory-level parallelism. The
idea of runahead execution [14] is to not block commit on a long-latency load, but to
speculatively execute instructions ahead in order to expose MLP through prefetching.
Runahead threads are particularly interesting in the context of an SMT processor be-
cause they solve two issues: (i) they do not clog resources on long-latency loads, and
(ii) they preserve MLP, and even allow for exploiting far-distance MLP (beyond the
scope of the reorder buffer).

A limitation of runahead threads in an SMT processor though is that they consume
execution resources (functional unit slots, issue queue slots, reorder buffer entries, etc.)
even if there is no MLP to be exploited, i.e., runahead execution does not contribute to
the performance of the runahead thread in case there is no MLP to be exploited, and
in addition, may hurt the performance of the co-executing thread(s) and thus overall
system performance. In this paper, we propose MLP-aware runahead threads. The key
idea of MLP-aware runahead threads is to enter runahead execution only in case there
is far-distance MLP to be exploited. In particular, the MLP distance predictor first pre-
dicts the MLP distance upon a long-latency load, and in case the MLP distance is large,
runahead execution is initiated. If not, i.e., in case the MLP distance is small, we fetch
stall the thread after having fetched as many instructions as predicted by the MLP dis-
tance predictor, or we (partially) flush the long-latency thread if more instructions have
been fetched than predicted by the MLP distance predictor.

MLP-aware runahead threads reduce the number of speculatively executed instruc-
tions significantly over MLP-agnostic runahead threads while not affecting overall SMT
performance. Our experimental results using the SPEC CPU2000 benchmarks on a
4-wide superscalar SMT processor configuration report that MLP-aware runahead
threads reduce the number of speculatively executed instructions by 13.9% and 10.1%
on average for two-program and four-program workloads, respectively, compared to
MLP-agnostic runahead threads, while yielding comparable system throughput and job
turnaround time. Binary MLP prediction (using the previously proposed MLP predic-
tor by Mutlu et al. [13]) along with an MLP-agnostic flush policy, further reduces the
number of speculatively executed instructions under runahead execution by 13% but
hurts system throughput (STP) by 11% and job turnaround time (ANTT) by 2.3% on
average.

This paper is organized as follows. We first revisit the MLP-aware flush policy
(Section 2) and runahead SMT threads (Section 3). Subsequently, we propose
MLP-aware runahead threads in Section 4. After detailing our experimental setup in
Section 5, we then present our evaluation in Section 6. Finally, we describe related
work (Section 7), and conclude (Section 8).
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2 MLP-Aware Flush

The MLP-aware flush policy proposed in [6] consists of three mechanisms: (i) it iden-
tifies long-latency loads, (ii) it predicts the load’s MLP distance, and (iii) it stalls fetch
or flushes the long-latency thread based on the predicted MLP distance. The first step
is trivial (i.e., a load instruction is labeled as a long-latency load as soon as the load is
found out to be an off-chip memory access, e.g., an L3 miss or a D-TLB miss). We now
discuss the second and third steps in more detail.

2.1 MLP Distance Prediction

Once a long-latency load is identified, the MLP distance predictor predicts the MLP
distance, or the number of instructions one needs to go down the dynamic instruction
stream in order to expose the maximum exploitable MLP for the given reorder buffer
size. The MLP distance predictor consists of a table indexed by the load PC, and each
entry in the table records the MLP distance for the corresponding load. There is one
MLP distance predictor per thread.

Updating the MLP distance predictor is done using a structure called the long-latency
shift register (LLSR), see Figure 1. The LLSR has as many entries as there are reorder
buffer entries divided by the number of threads (assuming a shared reorder buffer), and
there are as many LLSRs as there are threads. Upon committing an instruction from the
reorder buffer, the LLSR is shifted over one bit position from tail to head, and one bit
is inserted at the tail of the LLSR. A ‘1’ is inserted in case the committed instruction is
a long-latency load, and a ‘0’ is inserted otherwise. Along with inserting a ‘0’ or a ‘1’
we also keep track of the load PCs in the LLSR. In case a ‘1’ reaches the head of the
LLSR, we update the MLP distance predictor table. This is done by computing the MLP
distance which is the bit position of the last appearing ‘1’ in the LLSR when reading the
LLSR from head to tail. In the example given in Figure 1, the MLP distance equals 6.
The MLP distance predictor is updated by inserting the computed MLP distance in the
predictor table entry pointed to by the long-latency load PC. In other words, the MLP
distance predictor is a simple last value predictor, i.e., the most recently observed MLP
distance is stored in the predictor table.

processor
core

LLSR thread 0

LLSR thread 1

MLP distance
predictor thread 1

100000 11

MLP distance = 6

load PC

6
1 0 0000 11

Fig. 1. Updating the MLP distance predictor
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2.2 MLP-Aware Fetch Policy

The best performing MLP-aware fetch policy reported in [6] is the MLP-aware flush
policy and operates as follows. Say the predicted MLP distance equals m. Then, if more
than m instructions have been fetched since the long-latency load, say n instructions,
we flush the last n - m instructions fetched. If less than m instructions have been fetched
since the long-latency load, we continue fetching instructions until m instructions have
been fetched, and we then fetch stall the thread.

The flush mechanism requires checkpointing support by the microarchitecture. Com-
mercial processors such as the Alpha 21264 [11] effectively support checkpointing at
all instructions. If the microprocessor would only support checkpointing at branches
for example, the flush mechanism could flush the instructions past the first branch af-
ter the next m instructions. The MLP-aware flush policy resorts to the ICOUNT fetch
policy [22] in the absence of long-latency loads. The MLP-aware flush policy also
implements the ‘continue the oldest thread’ (COT) mechanism proposed by Cazorla
et al. [1]. COT means that in case all threads stall because of a long-latency load, the
thread that stalled first gets priority for allocating resources. The idea is that the thread
that stalled first is likely to be the first thread to get the data back from memory and
continue execution.

3 Runahead Threads

Runahead execution [4,14] avoids the processor from stalling when a long-latency load
hits the head of the reorder buffer. When a long-latency load that is still being serviced,
reaches the reorder buffer head, the processor takes a checkpoint (which includes the
architectural register state, the branch history register and the return address stack),
records the program counter of the blocking long-latency load, and initiates runahead
execution. The processor then continues to execute instructions in a speculative way
past the long-latency load: these instructions do not change the architectural state. Long-
latency loads executed during runahead send their requests to main memory but their
results are identified as invalid; and an instruction that uses an invalid argument also
produces an invalid result. Some of the instructions executed during runahead execu-
tion (those that are independent of the long-latency loads) may miss in the cache as
well. Their latencies then overlap with the long-latency load that initiated runahead
execution. And this is where the performance benefit of runahead comes from: it ex-
ploits memory-level parallelism (MLP) [3,8], i.e., independent memory accesses are
processed in parallel. When, eventually, the initial long-latency load returns from mem-
ory, the processor exits runahead execution, flushes the pipeline, restores the check-
point, and resumes normal execution starting with the load instruction that initiated
runahead execution. This normal execution will make faster progress because some of
the data has already been prefetched in the caches during runahead execution.

Whereas Mutlu et al. [14] proposed runahead execution for achieving high perfor-
mance on single-threaded superscalar processors, Ramirez et al. [17] integrate runahead
threads in an SMT processor. The reason for doing so is twofold. First, runahead threads
seek for exploiting MLP thereby improving per-thread performance. Second, runahead
threads do not stall on commit and thus do not clog resources in an SMT processor.
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This appealing solution to the shared resource partitioning problem in SMT processors
yields substantial SMT performance improvements, especially for memory-intensive
workloads according to Ramirez et al. (and we confirm those results in our evaluation).
The runahead threads proposal by Ramirez et al., however, initiates runahead execu-
tion upon a long-latency load irrespective of whether there is MLP to be exploited. As
a result, in case there is no MLP, runahead execution will consume resources without
contributing to performance, i.e., the runahead execution is useless because it does not
exploit MLP. This is the problem being addressed in this paper and for which we pro-
pose MLP-aware threads as described in the next section.

4 MLP-Aware Runahead Threads

An MLP-aware fetch policy as well as runahead threads come with their own benefits
and limitations. The limitation of an MLP-aware fetch policy is that it cannot exploit
MLP over large distances, i.e., the exploitable MLP is limited to (a fraction of) the
reorder buffer size. Runahead threads on the other hand can exploit MLP at large dis-
tances, beyond the scope of the reorder buffer, which improves performance substan-
tially for memory-intensive workloads. However, if MLP-agnostic — as in the original
description of runahead execution by Mutlu et al. [14] as well as in the follow-on work
by Ramirez et al. [17] — runahead execution is initiated upon every in-service long-
latency load that hits the reorder buffer head irrespective of whether there is MLP to be
exploited. As a result, runahead threads may consume execution resources without any
performance benefit for the runahead thread. Moreover, runahead execution may even
hurt the performance of the co-executing thread(s). Another disadvantage of runahead
execution compared to the MLP-aware flush policy is that more instructions need to
be re-fetched and re-executed upon the return of the initiating long-latency load. In the
MLP-aware flush policy on the other hand, instructions reside in the reorder buffer and
issue queues and need not be re-fetched, and, in addition, the instructions that are inde-
pendent of the blocking long-latency load need not be re-executed, potentially saving
execution resources and energy consumption.

To combine the best of both worlds, we propose MLP-aware runahead threads in
this paper. We distinguish two approaches to MLP-aware runahead threads.

Runahead threads based on binary MLP prediction. The first approach is to employ bi-
nary MLP prediction. We therefore use the MLP predictor proposed by Mutlu et al. [13]
which was originally developed for limiting the number of useless runahead periods,
thereby reducing the number of speculatively executed instructions under runahead ex-
ecution in order to save energy. The idea of employing the MLP predictor is to enter
runahead mode only in case the MLP predictor predicts there is far-distance MLP to be
exploited.

The MLP predictor by Mutlu et al. is a load-PC indexed table with a two-bit sat-
urating counter per table entry. Runahead mode is entered only in case the counter is
in the ‘10’ or ‘11’ states. A long-latency load which has no counter associated with
it, allocates a counter and resets the counter (to the state ‘00’). Runahead execution
is not entered in the ‘00’ and ‘01’ states; instead, the counter is incremented. During



MLP-Aware Runahead Threads in a Simultaneous Multithreading Processor 115

runahead execution, the processor keeps track of the number of long-latency loads gen-
erated. (Mutlu et al. count the number of loads generated beyond the reorder buffer; in
the SMT context with a shared reorder buffer, this translates to the reorder buffer size
divided by the number of hardware threads.) When exiting runahead mode, if at least
one long-latency load was generated during runahead mode, the associated counter is
incremented; if not, the counter is decremented if in the ‘11’ state, and is reset if in the
‘10’ state.

Runahead threads based on MLP distance prediction. The second approach to MLP-
aware runahead threads is to predict the MLP distance rather than to rely on a binary
MLP prediction. We first predict the MLP distance upon a long-latency load. In case
the predicted MLP distance is smaller than half the reorder buffer size for a two-thread
SMT processor and one fourth the reorder buffer size for a four-thread SMT processor
(i.e., this is what the MLP-aware flush policy can exploit), we apply the MLP-aware
flush policy. In case the predicted MLP distance is larger than half (or one fourth) the
reorder buffer size, we enter runahead mode. In other words, if there is no MLP or if
there is exploitable MLP over a short distance only, we reside to the MLP-aware flush
policy; if there is large-distance MLP to be exploited, we initiate runahead execution.

5 Experimental Setup

5.1 Benchmarks and Simulator

We use the SPEC CPU2000 benchmarks in this paper with their reference inputs. These
benchmarks are compiled for the Alpha ISA using the Compaq C compiler (cc) ver-
sion V6.3-025 with the -O4 optimization option. For all of these benchmarks we se-
lect 200M instruction (early) simulation points using the SimPoint tool [15,18]. We
use a wide variety of randomly selected two-thread and four-thread workloads. The
two-thread and four-thread workloads are classified as ILP-intensive, MLP-intensive or
mixed ILP/MLP-intensive workloads.

We use the SMTSIM simulator v1.0 [20] in all of our experiments. The processor
model being simulated is the 4-wide superscalar out-of-order SMT processor shown in
Table 1. The default fetch policy is ICOUNT 2.4 [22] which allows up to four instruc-
tions from up to two threads to be fetched per cycle. We added a write buffer to the
simulator’s processor model: store operations leave the reorder buffer upon commit and
wait in the write buffer for writing to the memory subsystem; commit blocks in case the
write buffer is full and we want to commit a store.

5.2 Performance Metrics

We use two system-level performance metrics in our evaluation: system throughput
(STP) and average normalized turnaround time (ANTT) [7]. System throughput (STP)
is a system-oriented metric which measures the number of jobs completed per unit of
time, and is defined as:

STP =
n∑
i=1

CPISTi
CPIMTi

,
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Table 1. The baseline SMT processor configuration

parameter value
fetch policy ICOUNT 2.4
pipeline depth 14 stages
(shared) reorder buffer size 128 entries
(shared) load/store queue 64 entries
instruction queues 64 entries in both IQ and FQ
rename registers 100 integer and 100 floating-point
processor width 4 instructions per cycle
functional units 4 int ALUs, 2 ld/st units and 2 FP units
branch misprediction penalty 11 cycles
branch predictor 2K-entry gshare
branch target buffer 256 entries, 4-way set associative
write buffer 8 entries
L1 instruction cache 64KB, 4-way, 64-byte lines
L1 data cache 64KB, 4-way, 64-byte lines
unified L2 cache 512KB, 8-way, 64-byte lines
unified L3 cache 4MB, 16-way, 64-byte lines
instruction/data TLB 128/512 entries, fully-assoc, 8KB pages
cache hierarchy latencies L2 (11), L3 (35), MEM (500)

with CPISTi and CPIMTi the cycles per instruction achieved for program i during
single-threaded and multi-threaded execution, respectively; there are n threads running
simultaneously. STP is a higher-is-better metric and equals the weighted speedup metric
proposed by Snavely and Tullsen [19].

Average normalized turnaround time (ANNT) is a user-oriented metric which quanti-
fies the average user-perceived slowdown due to multithreading. ANTT is computed as

ANTT =
1
n

n∑
i=1

CPIMTi

CPISTi
.

ANTT equals the reciprocal of the hmean metric proposed in [12], and is a lower-is-
better metric. Eyerman and Eeckhout [7] argue that both STP and ANTT should be
reported in order to gain insight into how a given multithreaded architecture affects
system-perceived and user-perceived performance, respectively.

When simulating a multi-program workload, simulation stops when 400 million in-
structions have been executed. At that point, program i will have executed xi million
instructions. The single-threaded CPISTi used in the above formulas equals single-
threaded CPI after xi million instructions. When we report average STP and ANTT
numbers across a number of multi-program workloads, we use the harmonic and arith-
metic mean for computing the average STP and ANTT, respectively, following the rec-
ommendations on the use of averages by John [10].

5.3 Hardware Cost

The performance numbers reported in the evaluation section assume the following hard-
ware costs. For both the binary MLP predictor and the MLP distance predictor we
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assume a PC-indexed 2K-entry table. (We experimented with a number of predic-
tor configurations, including the tagged set-associative table organization proposed by
Mutlu et al. [13] and we found the untagged 2K-entry to slightly outperform the tagged
organization by Mutlu et al.) An entry in the binary MLP predictor is a 2-bit field fol-
lowing Mutlu et al. [13]. An entry in the MLP distance predictor is a 3-bit field; one bit
encodes whether long-distance MLP is to be predicted, and the other two bits encode
the MLP distance within the reorder buffer in buckets of 16 instructions. The hardware
cost for a run-length encoded LLSR equals 0.7Kbits in total: 32 (maximum number of
outstanding long-latency loads) times 22 bits (11 bits for keeping track of the load PC
index in the 2K-entry MLP distance predictor, plus 11 bits for the encoded run length —
maximum of 2048 instructions — since the prior long-latency load miss). In summary,
the total hardware cost for the binary MLP predictor equals 4Kbits; the total hardware
cost for the MLP distance predictor (predictor table plus LLSR) equals 6.7Kbits.

6 Evaluation

6.1 MLP Distance Predictor

Key to the success of MLP-aware runahead threads is the accuracy of the MLP distance
predictor. The primary concern is whether the predictor can accurately estimate far-
distance MLP in order to decide whether or not to go in runahead mode.
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Fig. 2. Quantifying the accuracy of the MLP distance predictor

Figure 2 shows the accuracy of the MLP distance predictor. A true positive denotes
correctly predicted long-distance MLP and a true negative denotes correctly predicted
short-distance or no MLP; the false positives and false negatives denote mispredictions.
The prediction accuracy equals 61% on average, and the majority of mispredictions
are false positives. In spite of this relatively low prediction accuracy, MLP-aware runa-
head threads are effective as will be demonstrated in the next few paragraphs. Improv-
ing MLP distance prediction will likely lead to improved effectiveness of MLP-aware
runahead threads, i.e., reducing the number of false positives will reduce the number of
speculatively executed instructions and will thus increase energy saving opportunities
— this is left for future work though.
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6.2 Two-Program Workloads

We compare the following SMT fetch policies and architectures:

– ICOUNT [22] which strives at having an equal number of instructions from all
threads in the front-end pipeline and instruction queues. The following fetch poli-
cies extend upon the ICOUNT policy.

– The MLP-aware flush approach [6] predicts the MLP distance m for a long-latency
load, and fetch stalls or flushes the thread after m instructions since the long-latency
load.

– Runahead threads: threads go in runahead mode when the oldest instruction in the
reorder buffer is a long-latency load that is still being serviced [17].

– Binary MLP-aware runahead threads w/ ICOUNT: the binary MLP predictor by
Mutlu et al. [13] predicts whether there is far-distance MLP to be exploited, and a
thread only goes in runahead mode in case MLP is predicted. In case there is no
(predicted) MLP, we resort to ICOUNT.

– Binary MLP-aware runahead threads w/ flush: this is the same policy as the one
above, except that in case of no (predicted) MLP, we perform a flush. The trade-off
between this policy and the latter is that ICOUNT may exploit short-distance MLP
whereas flush does not, however, flush prevents resource clogging.

– MLP-distance-aware runahead threads: the MLP distance predictor by Eyerman
and Eeckhout [6] predicts the MLP distance. If there is far-distance MLP to be
exploited, the thread goes in runahead mode. If there is only short-distance MLP
to be exploited, the thread is fetch stalled and/or flushed according to the predicted
MLP distance.

Figures 3 and 4 compare these six fetch policies in terms of the STP and ANTT
performance metrics, respectively, for the two-program workloads. These results con-
firm the results presented in prior work by Ramirez et al. [17]: runahead threads im-
prove both system throughput and job turnaround time significantly over both ICOUNT
and MLP-aware flush: STP and ANTT improve by 70.1% and 43.8%, respectively,
compared to ICOUNT; and STP and ANTT improve by 44.3% and 26.8%, respec-
tively, compared to MLP-aware flush. These results also show that MLP-aware
runahead threads (rightmost bars) achieve comparable performance as MLP-agnostic
runahead threads. Moreover, MLP-aware runahead threads achieve a slight improve-
ment in both STP and ANTT for some workloads over MLP-agnostic runahead threads,
e.g., mesa-galgel achieves a 3.3% higher STP and a 3.2% smaller ANTT under MLP-
aware runahead threads compared to MLP-agnostic runahead threads. The reason for
this performance improvement is that preventing one thread from entering runahead
mode gives more resources to the co-executing thread thereby improving the perfor-
mance of the co-executing thread. For other workloads, on the other hand, MLP-aware
runahead threads result in slightly worse performance compared to MLP-agnostic runa-
head threads, e.g., the worst performance is observed for art-mgrid: 3% reduction in
STP and 0.3% increase in ANTT. These performance degradations are due to incorrect
MLP distance predictions.

Figures 3 and 4 also clearly illustrate the effectiveness of MLP distance prediction
versus binary MLP prediction. The MLP distance predictor is more effective than the
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Fig. 3. Comparing MLP-aware runahead threads against other fetch SMT policies in terms of STP
for two-program workloads: ILP-intensive workloads are shown on the left, MLP-intensive work-
loads are shown in the middle and mixed ILP/MLP-intensive workloads are shown on the right
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Fig. 4. Comparing MLP-aware runahead threads against other fetch SMT policies in terms
of ANTT for two-program workloads: ILP-intensive workloads are shown on the left, MLP-
intensive workloads are shown in the middle and mixed ILP/MLP-intensive workloads are shown
on the right

binary MLP predictor proposed by Mutlu et al. [13]: i.e., STP improves by 11% on
average and ANTT improves by 2.3% compared to the binary MLP-aware policy with
flush; compared to the binary MLP-aware policy with ICOUNT, the MLP distance pre-
dictor improves STP by 11.5% and ANTT by 10%. The reason is twofold. First, the
LLSR employed by the MLP distance predictor continuously monitors the MLP dis-
tance for each long-latency load. The binary MLP predictor by Mutlu et al. only checks
for far-distance MLP through runahead execution; as runahead execution is not initiated



120 K.Van Craeynest, S. Eyerman, and L. Eeckhout

0

1

2

3

4

5

6

v
o
rt

e
x
,p

a
rs

e
r,

cr
a
ft

y
,t

w
o
lf

fa
c
e
re

c,
cr

a
ft

y
,v

p
r,

si
x
tr

a
ck

sw
im

,p
e
rl

b
m

k
,v

o
rt

e
x
,g

cc
g
a
lg

e
l,
tw

o
lf
,g

cc
,g

a
p

fm
a
3
d
,t

w
o
lf
,v

o
rt

e
x
,p

a
rs

e
r

a
p
si

,a
rt

,c
ra

ft
y
,t

w
o
lf

g
zi

p
,w

u
p
w

,f
a
c
e
,c

ra
ft

y
a
p
si

,t
w

o
lf
,v

p
r,

si
x
tr

a
c
k

m
g
ri

d
,v

o
rt

e
x
,s

w
im

,t
w

o
lf

sw
im

,e
o
n
,p

e
rl

b
m

k
,m

e
s
a

p
a
rs

e
r,

w
u
p
w

is
e
,v

p
r,

m
c
f

e
q
u
a
k
e
,p

e
rl
b
m

k
,a

p
p
lu

,v
o
rt

e
x

a
rt

,m
g
ri
d
,a

p
p
lu

,g
a
lg

e
l

p
a
rs

e
r,

a
m

m
p
,f
a
ce

re
c,

m
c
f

sw
im

,p
e
rl

b
m

k
,g

a
lg

e
l,
tw

o
lf

fm
a
3
d
,t

w
o
lf
,a

p
si

,a
rt

g
zi

p
,w

u
p
w

is
e
,a

p
s
i,
tw

o
lf

e
q
u
a
k
e
,a

rt
,p

a
rs

e
r,

a
m

m
p

a
p
s
i,
m

e
s
a
,s

w
im

,e
o
n

m
cf

,s
w

im
,p

e
rl
b
m

k
,m

e
sa

m
cf

,g
a
lg

e
l,
v
o
rt

e
x
,g

c
c

w
u
p
w

is
e
,a

m
m

p
,v

p
r,

m
cf

sw
im

,g
a
lg

e
l,
p
a
rs

e
r,

w
u
p
w

is
e

lu
ca

s
,f
m

a
3
d
,e

q
u
a
k
e
,p

e
rl

m
e
s
a
,g

a
lg

e
l,
a
p
p
lu

,v
o
rt

e
x

g
a
lg

e
l,
fm

a
3
d
,a

rt
,m

g
ri
d

a
p
p
lu

,s
w

im
,m

cf
,e

q
u
a
k
e

a
p
p
lu

,g
a
lg

e
l,
sw

im
,m

e
sa

a
p
si

,m
e
s
a
,m

cf
,s

w
im

m
cf

,g
a
lg

e
l,
w

u
p
w

is
e
,a

m
m

p

a
v
g

S
T
P

ICOUNT MLP-aware flush Runahead threads MLP-aware runahead threads

Fig. 5. Comparing MLP-aware runahead threads against other fetch SMT policies in terms of
STP for four-program workloads
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Fig. 6. Comparing MLP-aware runahead threads against other fetch SMT policies in terms of
ANTT for four-program workloads

for each long-latency load, it provides partial MLP information only. Second, the MLP
distance predictor releases resources allocated by the long-latency thread as soon as
the short-distance MLP (within half the reorder buffer) has been exploited. The binary
MLP-aware policy on the other hand clogs resources (through the ICOUNT mecha-
nism) or does not exploit short-distance MLP (through the flush policy).

6.3 Four-Program Workloads

Figures 5 and 6 show STP and ANTT, respectively, for the four-program workloads.
The overall conclusion is similar as for two-program workloads: MLP-aware runa-
head threads achieve similar performance as MLP-agnostic runahead threads. The
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Fig. 7. Normalized speculative instruction count compared to MLP-agnostic runahead threads for
the two-program workloads

performance improvements are slightly higher though for the four-program workloads
than for the two-program workloads because the co-executing programs compete more
for the shared resources on a four-threaded SMT processor than on a two-threaded SMT
processor. Making the runahead threads MLP-aware provides more shared resources for
the co-executing programs which improves both single-program performance as well
as overall system performance.

6.4 Reduction in Speculatively Executed Instructions

As mentioned before, the main motivation for making runahead MLP-aware is to re-
duce the number of useless runahead executions, and thereby reduce the number of
speculatively executed instructions under runahead execution in order to reduce energy
consumption. Figure 7 quantifies the normalized number of speculatively executed in-
structions compared to MLP-agnostic runahead threads. MLP-aware runahead threads
reduce the number of speculatively executed instructions by 13.9% on average; this is
due to eliminating useless runahead execution periods. (We obtain similar results for
the four-program workloads with an average 10.1% reduction in the number of specu-
latively executed instructions; these results are not shown here because of space con-
straints.) Binary MLP-aware runahead threads with ICOUNT and flush achieve higher
reductions in the number of speculatively executed instructions (23.7% and 27%, re-
spectively), however, this comes at the cost of reduced performance (by 11% to 11.5%
in STP and 2.3% to 10% in ANTT) as previously shown.

7 Related Work

There are two ways of partitioning the resources in an SMT processor. One approach is
static partitioning [16] as done in the Intel Pentium 4 [9], in which each thread gets an
equal share of the resources. Static partitioning solves the long-latency load problem:
a long-latency thread cannot clog resources, however, it does not provide flexibility: a
resource that is not being used by one thread cannot be used by the other thread(s).
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The second approach, called dynamic partitioning, on the other hand provides flexi-
bility by allowing multiple threads to share resources, however, preventing long-latency
threads from clogging resources is a challenge. In dynamic partitioning, the fetch policy
typically determines what thread to fetch instructions from in each cycle and by con-
sequence, the fetch policy also implicitly manages the shared resources. Several fetch
policies have been proposed in the recent literature. ICOUNT [22] prioritizes threads
with fewer instructions in the pipeline. The limitation of ICOUNT is that in case of a
long-latency load, ICOUNT may continue allocating resources for the blocking long-
latency thread; by consequence, these resources will be hold by the blocking thread and
will prevent the other thread(s) from allocating these resources. In response to this prob-
lem, Tullsen and Brown [21] proposed two schemes for handling long-latency loads,
namely (i) fetch stall the long-latency thread, and (ii) flush instructions fetched passed
the long-latency load in order to deallocate resources. Cazorla et al. [1] improved upon
the work done by Tullsen and Brown by predicting long-latency loads along with the
‘continue the oldest thread (COT)’ mechanism that prioritizes the oldest thread in case
all threads wait for a long-latency load. Eyerman and Eeckhout [6] made the flush pol-
icy MLP-aware in order to preserve the available MLP upon a flush or fetch stall on a
long-latency thread.

An alternative approach is to drive the fetch policy through explicit resource parti-
tioning. For example, Cazorla et al. [2] propose DCRA which monitors the dynamic
usage of resources by each thread and strives at giving a higher share of the available
resources to memory-intensive threads. The input to their scheme consists of various
usage counters for the number of instructions in the instruction queues, the number of
allocated physical registers and the number of L1 data cache misses. Using these coun-
ters, DCRA dynamically determines the amount of resources required by each thread
and prevents threads from using more resources than they are entitled to. However,
DCRA drives the resource partitioning mechanism using imprecise MLP information
and allocates a fixed amount of additional resources for memory-intensive workloads
irrespective of the amount of MLP.

El-Moursy and Albonesi [5] propose to give fewer resources to threads that experi-
ence many data cache misses in order to minimize issue queue occupancies for saving
energy. They propose two schemes for doing so, namely data miss gating (DG) and
predictive data miss gating (PDG). DG drives the fetching based on the number of ob-
served L1 data cache misses, i.e., by counting the number of L1 data cache misses in
the execute stage of the pipeline. When the number of L1 data cache misses exceeds
a given threshold, the thread is fetch gated. PDG strives at overcoming the delay be-
tween observing the L1 data cache miss and the actual fetch gating in the DG scheme
by predicting L1 data cache misses in the front-end pipeline stages.

8 Conclusion

Runahead threads solve the long-latency load problem in an SMT processor elegantly
by exposing (far-distance) memory-level parallelism while not clogging shared proces-
sor resources. A limitation though of existing runahead SMT execution proposals is that
runahead execution is initiated upon a long-latency load irrespective of whether there is
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far-distance MLP to be exploited. A useless runahead execution, i.e., one along which
there is no exploitable MLP, thus wastes execution resources and energy.

This paper proposed MLP-aware runahead threads to reduce the number of useless
runahead periods. In case the MLP distance predictor predicts there is far-distance MLP
to be exploited, the long-latency thread enters runahead execution. If not, the long-
latency thread is flushed or fetch stalled per the predicted MLP distance. By doing so,
runahead execution consumes resources only in case of long-distance MLP; if not, the
MLP-aware flush policy frees allocated resources while exposing short-distance MLP, if
available. Our experimental results report an average reduction of 13.9% in the number
of speculatively executed instructions compared to MLP-agnostic runahead threads for
two-program workloads while incurring no performance degradation; for four-program
workloads, we report a 10.1% reduction in the number of speculatively executed in-
structions. Previously proposed binary MLP prediction achieves greater reductions in
the number of speculatively executed instructions (by 23.7% to 27% on average) com-
pared to MLP-agnostic runahead threads, however, it incurs an average 11% to 11.5%
reduction in system throughput and an average 2.3% to 10% reduction in average job
turnaround time.
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Abstract. This paper proposes an architecture for concurrent schedul-
ing of hard, soft and non real-time threads in embedded systems. It
is based on a superscalar in-order processor binary compatible to the
Infineon TriCore. The architecture allows a tight static WCET analy-
sis of hard real-time threads. To provide high performance anyway, the
absence of speculative elements like branch prediction and out-of-order
execution is compensated by multithreading, transforming the processor
into an in-order SMT processor.

The Priority Controller that manages the scheduling is able (1) to
assign fixed portions of time to hard real-time threads, (2) to control the
IPC of soft real-time threads and (3) to fairly distribute execution cycles
to non real-time threads. It is located within a separate unit outside the
pipeline to avoid prolonging the critical path.

We evaluate the processor using the EEMBC automotive benchmarks
and show that the overlapping of two soft real-time threads can be used
to either reduce the clock rate by 23% or to grant each thread 65%
of its single-threaded IPC. Even if a hard real-time thread is executed
predominantly, the remaining resources can be used by concurrent soft
real-time threads which reach a performance of 70% compared to their
single-threaded execution.

1 Introduction

Complex systems embedded in airplanes, cars and other industrial machinery
contain dozens of small microcontrollers, each one different and specially de-
signed for a certain purpose. To reduce costs, a current trend is to reduce the
number of microcontrollers by applying fewer microcontrollers of higher per-
formance, e. g. the so-called domain-based architecture proposed by Siemens
VDO [1].

Therefore future embedded microprocessors must execute multiple threads in
parallel. The most crucial challenge comes from the variety of threads: short or
long runtime; sporadic or periodic release; hard, soft or non real-time demands.

We present an architecture that is able to schedule this kind of mixed real-
time application on an SMT processor in order to maximize throughput while
meeting all deadlines. The contributions of this paper are:

A. Seznec et al. (Eds.): HiPEAC 2009, LNCS 5409, pp. 125–139, 2009.
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– A soft real-time scheduler that directly controls the IPC of multiple threads.
It is able to run a single thread with up to 100% of its single-threaded IPC,
while using spare resources by concurrent threads.

– A compatible round robin policy that allows fair scheduling for non real-time
threads. It uses the hardware extensions of the soft real-time scheduler and
thus needs no additional hardware.

– The soft real-time scheduler can be combined with a hard real-time scheduler
(published in [2]) to provide scheduling policies for mixed real-time demands.

The rest of the paper is organized as follows: in the next section the related
work is presented and section 3 gives an outline of the baseline processor and
the thread model. Section 4 discusses the limitations of the baseline architecture,
while section 5 gives a solution for soft real-time scheduling. The results of the
evaluation follow in section 6 and section 7 concludes the paper.

2 Related Work

Early SMT implementations focus on a high overall throughput, not on a
predictable distribution of execution time [3,4]. As these SMT processors are
enhancements of out-of-order superscalar processors, they are out-of-order ar-
chitectures, too. The scheduling decision takes place in the fetch stage and is
driven by information from the back-end of the pipeline [3].

Raasch et al. [4] improve the performance of a foreground thread by prioritiz-
ing it over the background threads. Real-time scheduling is not possible because
of the out-of-order pipeline that did not completely eliminate thread interfer-
ence. They also use time-slicing of the highest priority, but only to increase
fairness, not for concurrent real-time threads. The first paper directly address-
ing soft real-time for SMT processors [5] discusses only co-scheduling issues like
the distribution of workloads to thread slots.

Later proposals use explicit resource allocation to reach a target execution
time of a foreground thread, while using the spare resources for background
threads [6,7,8]. Dorai and Yeung [9] try to preserve, as much as possible, the
single-thread performance of the foreground thread, while allowing some progress
to the background threads. They reach 97% foreground performance and 50%
background performance compared to single-threaded execution.

The scheduler of Cazorla et al. [6] dynamically varies the amount of resources
given to the foreground thread to reach a given target IPC. If the target IPC
is between 30% and 80% of the single-threaded IPC the deviation is less than
1%. Exactly the same results (±1% if target IPC < 80%) are published by
Yamasaki et al. [7], who control the IPC by monitoring the resource usage and
adjusting the fetch priorities. Our scheduler is superior to these IPC controllers,
as it directly controls the IPC and therefore exactly reaches the target IPC (as
far as the processor is able to reach this IPC in single-threaded mode).

The Komodo processor [10] uses the technique of dilating hard real-time
threads and reduces the scheduling to a short round of 100 cycles. Brinkschulte
et al. [11] developed a closed control loop to control the IPC of a thread within
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the Komodo. While Komodo is only a scalar multithreaded processor, the Real-
time Virtual Multiprocessor (RVMP) [12] uses dilating to schedule hard real-time
threads on an SMT processor. But as its schedule is statically precalculated, it
cannot use dynamically occurring latencies.

The Virtual Simple Architecture (VISA) [13] guarantees the execution time of
a simple hypothetical processor, but executes the threads on a high-performance,
speculative processor. The progress of the speculative execution is monitored
and compared to the guaranteed performance. If it is lower, the processor falls
back to a direct, cycle-accurate emulation of the simple architecture to meet the
deadlines. If the deadline is of wide scope, VISA can be used to further increase
the scope. But if there is only a small scope, there is not enough time to try the
high-performance execution, because it must switch to the simple mode as soon
as the remaining scope meets the WCET of the simple architecture. By contrast,
our approach improves the real-time performance even with tight timing bounds.

3 Background

3.1 Baseline Architecture

The baseline architecture for our research is CarCore [2], an in-order SMT proces-
sor. It extends the superscalar in-order processor Infineon TriCore [14] by the
ability to schedule more than one thread simultaneously in one cycle. Respon-
sible for assigning multiple threads to multiple functional units is the Real-time
Issue Stage, located between the fetch and the decode stage (Fig.1). It is driven
by a simple priority scheduling policy to allow a fast scheduling decision within
one cycle even at high clock rates.

The priorities of the thread slots are not fixed, but can be altered at every
clock cycle, strictly speaking an additional unit, the so-called Priority Controller,

Fig. 1. CarCore Pipelines
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provides the priorities and recalculates them in every cycle. The separation of
issuing and priority calculation allows complex, time-consuming scheduling al-
gorithms to be implemented within an SMT pipeline.

3.2 Periodic Task Model

A real-time system is typically described by the periodic task model [15], where
a system consists of multiple periodic threads, which form a task set. Each
thread is characterized by two parameters: the time between the release of two
consecutive instances of the same thread (period) and the time by which an
instance has to complete (deadline). For tractability the deadline is generally
set equal to the period, i. e. a thread has to finish before its next instance is
released, but each thread Ti can have an individual period pi.

If all threads of a task set meet their deadlines, it is called a schedulable
hard real-time system. If the deadlines are usually met, but sporadic deadline
misses cannot be excluded (and do not harm), it is a soft real-time system. To
determine, if a task set is schedulable a third thread parameter is important, the
upper bound of the thread’s execution times, the Worst Case Execution Time
(WCET) wi.

Classic hard real-time scheduling policies like earliest deadline first (EDF) [15]
examine the task set at every thread suspend or release and switch thread exe-
cution if necessary. Therefore the frequency and duration of context switches is
unsteady, especially for unequal periods.

3.3 Dilated Threads

We use another method to distribute the execution time, also used by the Ko-
modo processor [10] and the RVMP [12]: The execution time is divided into
small intervals of time, called a round. The length of a round R is given by the
greatest common divisor of the periods

R = gcd(p1, ..., pN) (1)

Thereby the period of each thread can be expressed in number of rounds

pi = ni · R , ni ∈ N (2)

In a second step, the WCET of each thread is broken down to each round,
resulting in a Cycle Quantum ci,

ci =
wi
ni

=
wi · R

pi
(3)

If each thread is executed for ci cycles during a round, it will definitely meet its
deadline, Fig.2 illustrates this dilation of a thread. With this method, scheduling
decisions are reduced to decisions within one round.

We call this scheduling policy Dominant Time Sharing (DTS) described in [2].
The architecture provides one Dominant Meta Thread (DMT) that is executed
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Fig. 2. The periodic task model and dilated threads

as if it were the only thread on the processor. Its runtime behavior is the same
as on a single-threaded processor and therefore a static WCET analysis is pos-
sible, which in turn allows hard real-time scheduling. Further thread slots are
scheduled by fixed priorities and use the remaining processor resources to in-
crease throughput. For multiple hard real-time threads, time-sharing is used to
divide the DMT into several hard real-time threads. Within one round, each hard
real-time thread is the dominant thread for a fixed number of cycles, its cycle
quantum ci. The ratio ci

R matches the utilization, i. e. the fraction of execution
time a thread in the periodic task model demands.

For hard real-time systems, a WCET analysis is inalienable, therefore a certain
period of time (measured in cycles) must be guaranteed per round. But depend-
ing on the application, control of the really executed instructions (measured by
instructions per cycle, IPC) suits the needs of soft real-time threads better [6,7].
Integrated into our model, a requested IPC of bi results in a requested number
of executed instructions per round qi, called Instruction Quantum

qi = bi · R (4)

The underlying performance measurement (cycles or IPC) can be set individually
per thread, providing maximum flexibility to minimize the gap between real
execution time and deadline, resulting in larger schedulable task sets or a lower
required clock rate for a given task set. Using the instruction quantum instead
of the cycle quantum for soft real-time threads is the proposal of this paper.

4 Parallel Execution of Soft Real-Time Threads

The DTS scheduling algorithm permits multiple hard real-time threads, but
it uses the potential of SMT architectures only to a small extent. The only
advantage over single-threaded architectures is the chance of executing non real-
time threads concurrently, but the hard real-time threads themselves do not
benefit from the SMT architecture.

Applying the same algorithm to a single-threaded superscalar processor would
yield the same performance apart from the duration of context switches. But the
context switch times are constant and small compared to the length of a round
and could easily be compensated by a minor increase in clock frequency (which
would be possible due to a simpler processor layout).
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Fig. 3. Three soft real-time threads T1, T2, T3, each requiring one third of the execution
time (c1 = c2 = c3 = R

3 ), are overlapped within one round

Parallel execution of threads by resource sharing - the major advantage of
multithreaded processors - is not applied on different hard real-time threads,
but only on one hard real-time thread and several non real-time threads. Over-
lapped execution of hard real-time threads is not possible, as the worst case must
be considered, i.e. a thread demands all existent resources and leaves no spare
resources for concurrent threads. If all hard real-time threads have these high
resource claims, only one thread at a time can be executed and therefore time
slicing is the only possible solution for concurrent execution of hard real-time
threads. Because of this limitation, we focus on soft real-time requirements.

4.1 Parallel Execution of Dilated Threads

The method of dividing the processing time into rounds and distributing a cer-
tain fraction of it to every real-time thread is preserved. But instead of the
disjunctive execution of real-time threads all real-time thread slots are activated
at the beginning of a round.

Apparently one thread has the highest priority and thus is executed predom-
inantly. Only if latencies arise during its execution (because of memory accesses
or branches), the thread with the second highest priority can use the cycle for
execution. As an SMT processor has the ability to assign different functional
units to different threads within one single cycle, even functional units useless
for the priority thread can be occupied by lower priority threads. Consequently,
one thread runs at full speed at the beginning of a round and during its latencies
the lower priority threads already complete parts of their jobs.

As soon as the highest priority thread reached its fraction of the round, it
is suspended and the next real-time thread runs at maximum speed. The now
dominant thread already executed some of its instructions and therefore runs
for less cycles than given by its initial quantum. As the savings accumulate the
last real-time thread finishes its fraction several cycles before the actual end of
the round (see Fig. 3).

If the real-time tasks constantly finish prior to the end of the round, either
the remaining time can be used for an additional soft real-time thread or the
clock rate can be decreased. By lowering the clock rate the number of cycles per
round is reduced and the spare cycles can be eliminated. This saves energy while
the threads still meet their deadlines.
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4.2 Problems of Cycle Counting

The execution time of a thread is measured by a virtual clock that counts the
cycles. In a multithreaded system, not all threads are executed at the same speed
and therefore each thread needs its own virtual clock that measures its execution
time.

If a disjoint time-sharing scheduler (like DTS described in section 3.3) is used,
only the virtual clock of the active thread is enabled while the other clocks are
disabled. As soon as the active clock reaches its quantum (i. e. the respective vir-
tual clock reaches the end of its time interval), the clock is stopped, the scheduler
switches to the next thread and the appropriate virtual clock is resumed.

The timing becomes more difficult, if the threads overlap. Similar to the time-
sharing scheduler, a thread is suspended when the granted time on the virtual
clock has passed, but counting the virtual time is more challenging. At each cycle
there has to be a decision, which clocks to stop and which clocks to advance.

To present the problem we consider different short instruction traces of a two-
way SMT architecture (Fig. 4). Each grid shows the occupation of two different
functional units (horizontally) in certain cycles (vertically). Thread X has the
highest priority, its single-threaded trace is shown in the leftmost grid and it
never changes, no matter which other thread is co-scheduled. The single-threaded
traces of the co-scheduled threads A-D are shown in the upper row, the co-
scheduled traces in the lower row. The numbers next to the traces are the virtual
clocks of the low priority thread.

As the total absolute execution time of a thread is not of relevance for the
scheduler and the smallest period of time is a cycle, a cycle counter is used to
measure the virtual time. At the beginning of a round the counter is initialized
to the quantum of the corresponding thread and as virtual time goes by the
counter is decreased until it reaches 0 and the thread is suspended.

Fig. 4. Overlapping the high priority thread X with different other threads (A-D)
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It is easy to count the virtual clock of the thread with the highest priority
(X), because it is executed regardless of the other threads, as if it were the
only one. Its execution time corresponds exactly to its single-threaded execution
time (leftmost grid) and hence its virtual clock corresponds to the real clock.
Consequently the virtual clock counter, which equals the quantum (4) at the
beginning of the round, is decreased by one in every cycle and reaches 0 after 4
cycles (first column of Fig. 4).

The clock update is more tricky for a co-scheduled thread. As its priority
is lower, its execution is delayed in several cycles (thread A, cycles 1 and 4
in Fig. 4). At these cycles, the counter of thread A may not be decremented
(its virtual clock stalls). Such a stall cycle appears if a thread with a higher
priority occupies a functional unit, that the lower priority thread should use in
the same cycle, too. But if the lower priority thread has some latencies (e.g.
thread B in cycle 3), its counter must be decremented anyway (i. e. its virtual
clock continues), no matter if other threads (of any priority) use the cycle or not.

This relatively simple algorithm (decrement on issue or latency) is sufficient
for scalar multithreaded architectures [10,16], but superscalar multithreaded
(SMT) architectures pose another problem, as instructions that use different
functional units can be executed simultaneously within one cycle.

In cycle 3 the high priority thread X uses only one functional unit, the other
one could be used by another thread. But thread C would occupy both func-
tional units, if executed single-threaded (which was assumed when calculating
its WCET). Therefore the cycle counter may not be decreased until the whole
virtual cycle (using both functional units) was completed. The length of a virtual
cycle is not fixed to two, but depends on the surrounding instructions, e.g. in
cycle 4 thread X and thread D request only one functional unit each, hence both
counters are decreased.

To correctly update the clock it must be determined, how many functional
units a thread would occupy in single-threaded mode, i.e. how many instructions
can be issued simultaneously. As soon as all of these instructions are executed,
the virtual cycle counter can be decreased.

5 Instruction Counting

Besides counting the granted cycles, counting the really executed instructions
is another possibility to measure the progress of a thread. But there is no fixed
relation between the number of executed instructions and elapsed time. When
counting cycles, every cycle corresponds to a fixed time interval, however the
duration of an instruction depends on the kind of the instruction and relates to
a variable number of cycles and thus a variable period of time.

Therefore it is very difficult to grant a fixed number of executed instructions
within a fixed time interval (one round). Strictly speaking, the maximum duration
of any instruction must be assumed to all instructions within one round, leading to
a very lownumber of instructions per round.This practice uses only a small fraction
of the computing time, as in average the instructions are executed much faster.
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Because of the big gap between worst and average case, scheduling by instruc-
tion counting is improper for hard real-time threads, time-sharing as presented
in section 3.3 is much more applicable. But if it is exceptionally allowed not to
reach the instruction quantum within a round, i.e. only demanding soft real-time,
the procedure suits well.

5.1 Soft Real-Time

As both overlapping and instruction counting only achieve soft real-time de-
mands, it is obvious to bring them together to a new scheduling algorithm called
Periodic Instruction Quantum (PIQ). Furthermore, controlling the number of
executed instructions is intuitive and pleasant for real-time software developer
and an area of active research [6,7].

Similar to the cycle counter algorithm, the time is divided into rounds of
constant length. The length of a round is given by a number of cycles, not
instructions, to keep the temporal length fixed. Within a round, executed in-
structions are counted for each soft real-time thread separately, i.e. every thread
slot has its own counter that is initialized to its specific instruction quantum at
the beginning of each round. To decrease the counters when necessary, the Real-
time Issue Stage notifies in every cycle which thread slot was assigned to which
functional unit and the Priority Controller updates the counters accordingly.

The real-time threads get fixed priorities in descending order. As soon as a
thread (typically the highest priority one) reaches its instruction quantum it is
suspended and the priorities of the other threads are effectively risen. From the
time when all instruction counters reached zero till the end of the round, only
non real-time threads are executed or the sleep mode is activated to save energy.

If a round with an unexpected high computing demand occurs and not all
counters could reach zero before the end of the round, the quantum for the
next round is added to the remaining counter value, i. e. the unfinished threads
get more instructions in the next round. An overflow of the counters ought to
be avoided by a schedulability analysis, but throwing an exception might be a
practical solution, too.

5.2 Fair Non Real-Time Distribution

So far the remaining non real-time threads only have a fixed priority and are
executed accordingly. Therefore the assigned execution time is unequally dis-
tributed and declines rapidly with decreasing priorities. A fair (i.e. uniform)
distribution would be much more reasonable. To avoid further hardware costs,
the instruction counters of the PIQ scheduler can be used to realize a Round
Robin by Instruction Quantum (RRIQ) scheduling algorithm.

The non real-time threads get an instruction quantum and descending prior-
ities (naturally all lower than the real-time priorities) like the real-time threads,
too. Analogous the counters are decreased, if an instruction of the appropriate
thread slot is issued. But the limits of the rounds are ignored for the non real-
time threads: as soon as a counter reaches zero, the priority controller rises the
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priorities of the other non real-time threads and the completed thread is set to
the lowest priority but in return gets a new instruction quantum.

Setting the thread to the lowest priority nearly disables it, but every time
another thread reaches its instruction quantum, the priority of the former thread
is increased by one. Finally, when the thread reaches the highest priority, all other
non real-time threads were executed once for quantum instructions since the last
time the thread had the highest priority - fairness is granted.

An obvious extension would be to allow individual instruction quanta for every
thread slot, to give them different fractions of the total execution time. But the
weighting does not lead to the intended result, as the succession of the threads
can vary:

If a thread B with second highest priority (of the RRIQ threads) has a consid-
erably lower instruction quantum than thread A with the highest priority, it is
possible that thread B’s counter reaches zero before thread A and thus obtains
the lowest priority. As soon as thread A’s counter reaches zero, it follows thread
B, gets the lowest priority and thread B hence the second lowest one. After that,
thread B has a higher priority than thread A, contrary to the starting point.
Thread B has ”overtaken” thread A within the round robin queue.

Even with equal quanta the described special case is theoretically possible.
Thus the algorithm is not perfect, but in practice it is appropriate to equally
distribute the execution time without additional hardware costs.

6 Evaluation

We use 13 benchmarks from EEMBC AutoBech 1.1 [17], see Table 1. These
benchmarks consist of an initialization phase that is not part of the benchmark-
ing and a variable number of iterations of the actual benchmark code. Each
iteration uses the same input data. We pick iteration counts that result in a
single-threaded execution time of at least 1.2 mio cycles. The smallest iteration
number is 10 for idctrn. All benchmarks were compiled with -O3 optimization
of the Hightec GNU C/C++ compiler for TriCore [18].

By combining two benchmarks we constructed 169 task sets, named by two let-
ters, the first indicates the benchmark of the first thread, the second indicates the

Table 1. Used EEMBC benchmarks with low (left row) and high (right row) variation
of the local IPC

Abbr Name IPC Fluctuation Range
F aifirf 0.4584 0.080
H cacheb 0.4452 0.070
P pntrch 0.4204 0.065
U puwmod 0.4487 0.075
R rspeed 0.4575 0.085
T ttsprk 0.4227 0.075

Abbr Name IPC Fluctuation Range
A a2time 0.5122 0.265
B basefp 0.4652 0.180
M bitmnp 0.4462 0.235
C canrdr 0.3844 0.120
D idctrn 0.5653 0.275
I iirflt 0.5368 0.350
O tblook 0.4703 0.280
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second thread. There are combinations of the same benchmark (e.g. DD) and all
other combinations occur in two variants with different order (e.g. DI and ID).

6.1 Savings Due to Overlapping

The advantages of overlapping threads are evaluated by comparing the soft real-
time capable PIQ scheduling (section 5.1) to the hard real-time capable DTS
technique (section 3.3). Both algorithms are implemented using a round of 1200
cycles that should be distributed equally to the two threads of a task set. When
using DTS, both threads are executed alternately for 600 cycles, when using PIQ
each thread gets an individual instruction quantum that matches the number of
instructions this thread executes in 600 cycles on average (= 600×AverageIPC).

To check if both scheduling techniques provide equal progress, each task set
is executed with both scheduling algorithms and the termination times of the
threads are compared. As the deviation between DTS and PIQ termination time
never exceeds 2 rounds (i.e. 2400 cycles or 0.2% of the total execution time), the
throughput is considered as being equal. The small differences can be explained
by varying release times within a round and rounding errors as the instruction
quantum is integer.

When all threads within a round reached their instruction quantum, we call
the round saturated and the number of cycles from the beginning of the round
to the cycle when the round is saturated is called saturation time. To estimate
the possible savings by overlapping, a task set is scheduled by PIQ and the first
2000 rounds are considered to determine the minimum, maximum and average
saturation time.

Fig. 5 shows these three values for every task set. The task sets are plotted
from left to right, the letter at the x-axis indicates the benchmark of the first
thread. Due to space restrictions, the letter for the second thread is not given,
but the 13 task sets within a group of task sets with same primary thread are
arranged in the same order as the 13 task set groups themselves.
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Fig. 5. Minimum, maximum and average saturation time when scheduling two PIQ
threads
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Table 2. Number of task sets that do not exceed the round boundary (At 50% no task
set fails, thus this column gives the total number of task sets in the subsets)

IPC 50% 60% 65% 66% 67% 68% 69% 70% 71% 72% 73% 74% 75%
lolo 36 36 36 36 36 36 36 36 36 36 36 34 25
hilo 42 42 42 42 42 42 41 37 37 37 32 28 11
lohi 42 42 42 42 42 42 41 37 37 37 32 28 11
hihi 49 48 45 43 43 39 37 30 23 20 20 14 8
total 169 168 165 163 163 159 155 140 133 130 120 104 55

After 1027 cycles every round of every task set is saturated, as Fig. 5 shows.
Without the four combinations DD, DI, ID, II even 920 cycles are enough. There-
fore only 77% of any round are used, or with other words, the clock rate can be
reduced to 77% to save energy. Another possibility would be to put the processor
into sleep mode when the threads are satisfied and to resume it by a periodical
interrupt at the beginning of the next round. Assuming 10 cycles for suspending
and 10 cycles for resuming would yield an average of 37% idle time for each task
set (a minimum of 33.9% for AA and a maximum of 44.4% for TT).

6.2 Maximize Instruction Quantum of Two Threads

Another possibility to use the spare cycles at the end of a round, is to increase
the instruction quantum beyond 50%, but still give both threads the same per-
centage. The last row of Table 2 shows the number of task sets that are executed
correctly (i.e. every round is saturated before the next round starts) with IPCs
of more than 50% of single-threaded IPC.

A closer look at the failing task sets reveals that only task sets consisting of
certain benchmarks cause the scheduler to fail. Notable is the high IPC oscillation
of these benchmarks (Fig. 8, 9) compared to other benchmarks with smooth IPC
distribution (Fig. 6, 7). Therefore we divided the benchmarks into two groups
with low and high IPC oscillation. For classification we use the fluctuation range
of the local IPC. If the difference between highest and lowest local IPC is smaller
than 0.1, the benchmark is classified as low oscillating, else as high oscillating.

Determining the local IPC is difficult, because it must be calculated over an
interval of several cycles. The number of cycles is not defined, but can extremely
influence the result (Fig. 6 - 9 give the local IPC based on 200 or 1200 cycle
intervals and the average IPC). We choose an interval of 200 cycles, but even
with different intervals the two classes can easily be seperated.

Consequently the task sets can be divided into 4 groups with low oscillation
(lo) or high oscillation (hi) of the first and the second thread. Table 2 shows the
result: as expected, lolo task sets can be scheduled with higher relative IPCs
than the hihi task sets and lohi and hilo are in between with identical results
(i.e. it does not matter if the thread with the higher oscillation is the first or the
second one).
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Fig. 6. IPC of a2time (A)
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Fig. 7. IPC of aifirf (F)
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Fig. 8. IPC of idctrn (D)
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Fig. 9. IPC of iirflt (I)

Instead of granting every thread the same performance share, one thread can
get the maximum possible IPC and in return the IPC of the second thread can
be reduced to an amount that is still schedulable.

To determine the maximum target IPC, all task sets are executed with 50%
for the first thread and 10% for the second thread. Starting from this baseline,
the IPC of the first thread is increased until the first task set (DD) missed a
round boundary. The previous percentage is the maximum target IPC for the
first thread. In the second try the IPC of the first thread is set to this maximum
IPC and the percentage of the second thread is increased until a round of any
task set is not saturated. Table 3 shows the results when applying this procedure
on the whole task set and its four subsets.

6.3 Mixed Real-Time

Finally, we combined DTS and PIQ scheduling to provide one hard real-time
thread that runs as if it were single-threaded and two further soft real-time
threads with a controlled IPC. We obtain the results similarly to the maximum
target IPC in previous section: Initially the percentages of the PIQ threads are
set to 10% and increased until the first round violations occur, Table 4 shows the
results. The important difference is, that the hard real-time thread is privileged
over the PIQ threads and consumes lots of resources.
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Table 3. Max. target IPC depending on the task set’s IPC fluctuation characteristic

Group lolo lohi hilo hihi minimum
First Thread IPC 89% 89% 75% 75% 75%

Second Thread IPC 68% 63% 56% 49% 49%
Total Throughput 157% 152% 131% 124% 124%

Table 4. Maximum IPC for PIQ that are scheduled concurrently to a DTS scheduled
hard real-time Thread

DTS Thread lo hi
PIQ Threads lolo lohi hilo hihi lolo lohi hilo hihi

Second Thread IPC 57% 57% 55% 54% 61% 59% 47% 47%
Third Thread IPC 29% 21% 15% 21% 27% 16% 30% 24%
Total Throughput 186% 178% 170% 175% 188% 175% 177% 171%

7 Conclusion

We showed, that an in-order SMT processor suits very well the requirements of
hard and soft real-time systems. Our architecture supports privileged execution
of hard real-time threads, IPC control of soft real-time threads and a fair round
robin scheduler for non real-time threads. The IPC control can be used to re-
duce the energy consumption by 37% or to increase the throughput to at least
124%. Concurrent execution of one hard and two soft real-time threads allows a
throughput of more than 170%.
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Abstract. Modern embedded Systems-on-a-Chip deploy multiple programma-
ble cores to meet increasing performance requirements of video, graphics, and 
modem applications. However, software implementations of task scheduling 
and inter-task synchronization often limit performance improvements of multi-
cores. Remarkably, several demanding video applications (e.g. H.264 video de-
coding) rely on task dependency graphs that can be constructed from a simple 
dependency pattern. Based on such a pattern, our novel hardware task scheduler 
can quickly create, order, synchronize and map tasks to cores. We found that 
our hardware task scheduler speeds up a Quad HD H.264 video decoding by 
1.17 times compared to a chip multi-processor with a state-of-the-art hardware 
task queues. Moreover, our hardware task scheduler allows decreasing the 
number of cores needed to meet the real-time performance requirements for the 
H.264 decoder and, consequently, reduces the silicon area of the multicore by 
up to 12.5%. 

Keywords: Hardware task scheduler, task dependency patterns, H.264 video 
compression, embedded video processing. 

1   Introduction 

Modern embedded applications such as video, graphics, modems demand higher per-
formance from the same silicon area. To boost performance density embedded chips 
often deploy domain-specific multicore architectures. In many embedded multicore 
chips each core runs a relatively independent application (e.g. audio, video, 3D graph-
ics), requiring little synchronization and communication with other cores. However, if 
an application, such as the Quad HD H.264 video decoding, exceeds the compute 
power of a standalone core, the application may be split into tasks and run on several 
cores [1]. 

To run one application on several cores, tasks have to be created, scheduled in 
time, mapped to proper cores and synchronized. These task manipulations strongly 
depend on the application domain. For example, in web server applications many in-
dependent tasks constitute the overall workload and inter-task synchronization is rare. 
In the embedded video domain, on the other hand, several applications [1][2] can be 
parallelized using dependent tasks,  i.e. a task may start after one or several other 
tasks have finished. Such applications rely on inter-task dependency graphs. 
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Task scheduling and mapping to cores can be done statically at compile-time or 
dynamically at run-time. Modem applications often rely on static schedules to comply 
with hard real-time deadlines, whereas video decoding has more data-dependent exe-
cution time. For example, macroblock Vector Prediction in H.264 video decoding re-
quires between 20 and 1153 cycles [3]. Parallel workload with variable execution 
times is more amenable to dynamic scheduling to optimize load balancing. 

The main focus of our paper is embedded video applications (e.g. H.264 video 
compression), exhibiting variable execution time and inter-task dependencies. Dy-
namic run-time scheduling of tasks obviously incurs execution time overhead, that 
according to [3] can reach 114 cycles. For fine-grain tasks of 20 cycles this overhead 
drastically limits multicore speedups. Accelerating dynamic scheduling, therefore, 
may enable higher multicore performance. Remarkably, H.264 decoding parallelized 
at macroblock level [1] has a repetitive inter-task dependency pattern, which is suffi-
cient to build a task dependency graph for a complete video frame. Fig. 1 shows a 5x5 
macroblocks video frame and two dependencies of one macroblock from the H.264 
video decoder. These two relative dependencies repeat for all macroblocks and such 
repeated dependencies we call a repetitive dependency pattern. Note, that from the 
pattern we can construct the complete task dependency graph shown on the right in 
Fig. 1. In contrast to irregular task graphs that are difficult to capture in hardware, the 
repetitive nature of the inter-task dependencies prompts for hardware acceleration of 
the task scheduling overhead. 

Repetitive dependency patterns can also be found in other video decoding algo-
rithms, e.g. the transform coefficient prediction in VC-1 [4]. Furthermore, similar pat-
terns are present in the motion estimation algorithms [2], which are widely used in 
video encoding [5], as well as video post-processing such as motion-compensated 
frame rate up-conversion [6]. Note that although this paper focuses on video applica-
tions, repetitive inter-task dependency patterns occur in loop nests of other applica-
tions. Such dependencies are called loop-carried dependencies [7], which for certain 
loop nests exhibit a repetitive nature in the iteration space. 
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Fig. 1. An H.264 dependency pattern (left), a corresponding task graph (right) 
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Contributions of our paper include: 

1. identification of a repetitive dependency pattern as a basis for efficient 
hardware-accelerated task management; 

2. hardware task scheduler (HTS) architecture, enabling fine-grain task crea-
tion, scheduling, mapping and synchronization; 

3. evaluation of the multicore performance density gain due to the small HTS 
reducing the number of cores required to perform H.264 video decoding in 
real-time. 

The remainder of the paper is organized as follows. First, the Related work section 
outlines state-of-the-art in task scheduling. In Section 3 we detail our novel hardware 
task scheduler architecture and its programming model. Then, Section 4 describes the 
experimental setup used for performance evaluations. In Section 5 we discuss the 
speedup results of H.264 video decoding on up to 16 cores and Section 6 concludes 
our findings 

2   Related Work 

We distinguish between dynamic task management in software and hardware. 

2.1   Software Task Management 

Operating systems, thread libraries and run-time systems provide generic task man-
agement support with a fairly large overhead of hundreds to thousands of cycles due 
to the blocking nature of synchronizations, e.g. in Posix threads and real-time sema-
phores [8]. Certain run-time systems (e.g. Cell superscalar and SMP superscalar from 
Barcelona Supercomputer Center [9]) support dynamic task graph creation, while 
providing simplified programming models. For the embedded domain software task 
management can reach 114 cycles on a TriMedia core [3]. Although, the title of [10] 
contains “hardware task scheduler”, the paper describes a task scheduler running in 
software that schedules tasks on hardware blocks.  

Note that synchronization for software task management is often also implemented 
in software, e.g. based on Load Linked (LL) and Store Conditional (SC) [11] machine 
operations. Such machine operations enable building diverse synchronization primi-
tives (e.g. semaphores or barriers). 

2.2   Hardware-Accelerated Task Management 

Several research studies evaluated hardware task queues, for example, the Intel  
CARBON [14], Task Scheduling Unit [12] and the hardware support for multi-core 
scheduling [13]. In these studies task submission to a particular core is accelerated by 
hardware task queues, replacing software data structures and the corresponding syn-
chronization overhead. However, inter-task synchronization is still performed in soft-
ware. Instead of relying on memory-based instructions such as LL/SC, synchronization 
(between tasks) can be accelerated in hardware. For example, Cell Broadband Engine 
[18] introduces hardware mailboxes and semaphores, respectively. The drawback of 
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most hardware solutions for synchronization is the restricted number of simultaneously 
active synchronization primitives. 

Saez et al. in [15] describe a hardware scheduler accelerating combined scheduling 
of soft and hard real-time jobs on a uniprocessor. Our scheduler in contrast tackles the 
task scheduling problem for a multicore, involving complex task-to-core mapping. 
Furthermore, our task scheduler can create task dependency graphs, whereas the 
scheduler from [15] obtains a set of independent tasks from the program. Other archi-
tectures, such as NVIDIA Tesla [16], are also known to provide hardware accelera-
tion for task scheduling of independent tasks. 

Själander et al in [3] propose a programmable task management unit (TMU), which 
similarly to our Hardware Task Scheduler accelerates task creation and synchronization 
in hardware. TMUs exchange tasks via a centralized task queue. A TMU runs a look-
ahead program preparing tasks that will become ready in a short while. However, the 
programmable nature of the TMU implies a larger silicon area than that of our HTS. 

Själander reports that optimized software task manipulations can take about 114 
cycles [3], while a generic hardware-accelerated task scheduling can take 15 cycles 
for task dispatching and around 30 cycles for the synchronizations in software [12]. 
However, for fine-grain tasks executing of a few tens of cycles, we need even faster 
task scheduling. In order to achieve lower overhead, we propose to implement task 
creation, scheduling, mapping and synchronization in a dedicated Hardware Task 
Scheduler. 

3   Hardware Task Scheduler 

The main purpose of the Hardware Task Scheduler (HTS) is accelerating task man-
agement in hardware. First, the parallel program initializes the HTS with a depend-
ency pattern and loop boundaries sufficient to create a task dependency graph. Then, 
the HTS prepares available tasks for execution on cores, while gradually building the 
graph. The cores continuously ask for new tasks and inform the HTS when tasks fin-
ish. Finally, the HTS signals to all cores when the task graph is executed. 

L0 

slave
CoreN

L0 

slave
core1

L0 . . . . .

HW task scheduler 
Master port
Slave port

L0 

slave
CoreN

L0 

slave
core1

L0 . . . . .

Off-chip DDR SDRAM

System on a Chip

L1 

Slave
Core N

L1 

Slave
Core 1

L1 

Master
core

. . . . .

L2 Memory
To another HTS 

From another HTS 

L0 

slave
CoreN

L0 

slave
core1

L0 . . . . .

HW task scheduler 
Master port
Slave port
Master port
Slave port

L0 

slave
CoreN

L0 

slave
core1

L0 . . . . .

Off-chip DDR SDRAM

System on a Chip

L1 

Slave
Core N

L1 

Slave
Core 1

L1 

Master
core

. . . . .

L2 Memory
To another HTS 

From another HTS 

 

Fig. 2. The HTS in the multi-core system 
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Our System-on-a-Chip (SoC) consists of several homogeneous cores, shared mem-
ory and the HTS, which is connected to each core, see Fig. 2. 

The master core configures the HTS with a dependency pattern and loop bounda-
ries, whereas slave cores pull tasks from HTS. Note, that if the number of tasks ex-
ceeds the number of available processor cores, a core may execute several tasks se-
quentially. For large scale systems with several HTSs, each HTS can steal jobs from 
another HTS using his master interface, see “From another HTS” and “To another 
HTS” in Fig. 2. 

Cores interact with the HTS via a simple API including configuration, get task and 
release primitives. These primitives are implemented on top of Memory Mapped In-
put/Output (MMIO) read and write transaction and, therefore, they require no ISA ex-
tension and compiler modifications. 

3.1   Programming Model 

Mapping an application such as H.264 video decoding on a multicore with an HTS 
requires three steps: 

1. parallel kernel isolation; 
2. identification of the repetitive inter-task dependency pattern; 
3. HTS initialization and kick-off. 

In the first step the programmer identifies a kernel applied to different array elements, 
such as macroblocks, and isolates the kernel in a C function. This parallelization 
method corresponds to data partitioning, which provides scalable performance with 
video resolution growth. Interestingly, prior studies proposed automatic parallelization 
of loops with dependencies similar to H.264 [17]. Applied to our code such paralleliz-
ing compilers [22] help eliminate step 2. However, the programmer remains responsi-
ble for the code restructuring of step 1. Fig. 3 shows a sequential image filter code, 
where the macroblock kernel is already isolated in C function Process_MB(). For 
the second step we examine the kernel function in Fig.3 and discover that each (x,y) 
macroblock of the image depends on the value of two macroblocks (x-1,y) and 
(x+1,y-1). Such a dependency pattern is also depicted in Fig. 1. 

1. char Image [ImageHeight][ImageWidth]; 
2. /*kernel function*/ 
3. void Process_MB(int X, int Y){ 
4.   Image [X][Y] = Image[X-1][Y]+Image[X+1][Y-1]; 
5. } 
6. void Process_MB_seq(void){ 
7.   for (int Y=0; Y < ImageHeight; Y++) 
8.     for (int X =0; X < ImageWidth; X++){ 
9.       … 
10.       Process_MB(X, Y); 
11.       … 
12.     } 
13. } 

Fig. 3. Sequential kernel Process_MB() 
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In the final third step, the nested loop(s) are removed and replaced by the HTS ini-
tialization code, see Fig.4. The initialization code of the HTS includes passing the de-
pendency pattern (DependencyX and DependencyY), the function pointer 
(wrapper_p), and loop indices (ImageHeight and ImageWidth) to the HTS. 
For our example, arrays DependencyX and DependencyY will contain (-1,+1) 
and (0,-1), respectively. The kernel function is in-lined in a special wrapper HTS 
function (wrapper_p), which requests available tasks from the HTS and starts the 
kernel with arguments obtained from the HTS. Function TaskSchdulerIni-
tALL() will also kick-off the HTS, see line 4. Note line 10, where the master core 
starts executing the kernel tasks as well. 

1. void Process_MB_par(void){ 
2.   wrapper_t wrapper_p = &WRAPPER_Process_MB; 
3.   /*configure HTS*/ 
4.   TaskSchdulerInitALL (wrapper_p, 
5.     DependencyX, /*X coord of dependency array*/ 
6.     DependencyY, /*Y coord of dependency array*/ 
7.     ImageHeight, 
8.     ImageWidth, 
9.     Control);    /*start signal for HTS*/ 
10.   wrapper_p();   /*Start the kernel */ 
11. } 

Fig. 4. Parallelized kernel Process_MB() using the HTS 

The structure of the wrapper function is shown in Fig. 5. The wrapper reads the 
HTS status in line 5, and if there is a ready task we start up the kernel with the just 
read X and Y arguments in line 9. If the HTS reports that the task graph is done then 
the wrapper returns. Note that the accesses to the HTS hts_read() and 
hts_write() are MMIO loads and stores. 

1. #define WRAPPER(kernel_fun) 
2.   void WRAPPER_##kernel_fun(void){ 
3.     kernel_t kernel_fun_p = &kernel_fun; 
4.     while (1) { 
5.       Status = hts_read(HTS_STATUS); 
6.       X = hts_read(HTS_X); 
7.       Y = hts_read(HTS_Y); 
8.       if (Status == HTS_GETTASKSTART) { 
9.         kernel_fun_p(X,Y); 
10.         hts_write(HTS_CURTASKDONE); 
11.       } else if (Status == HTS_TASKGRAPHISDONE) 
12.           return; 
13.     } 
14.   } 

Fig. 5. HTS wrapper function 
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Initially, the boot loader of the multicore system triggers the slave cores to load the 
slave program from Fig. 6. Then, the slave program requests a function pointer to 
the parallelized kernel every time the HTS starts. 

1. void slave(void) { 
2.   int val1, start=0; 
3.   while (1) {/*wait until the HTS is started*/ 
4.   start = hts_read(HTS_CONTROLADDR); 
5.   if (start!=0) { 
6.     /*Read the function pointer from the HTS*/ 
7.     TaskSchedulerInitRead(&val); 
8.     /*Start the kernel on the slave core(s)*/ 
9.     ((wrapper_t) val)(); 
10.     } 
11.   } 
12. } 

Fig. 6. The slave program 

Note, that the kernel’s instruction code is part of the master core’s program, but 
thanks to shared memory the slave cores can easily jump to the loaded code compiled 
for the master core. When the kernel finishes, all slave cores return back to the slave 
function and wait for a next kernel. 

3.2   Architecture 

Fig. 7 shows the top-level architecture components of the HTS: 

• slave0 to slaveN slave ports connect to all cores and another external HTS act-
ing as a core; 

• Master Port allows task stealing from another HTS; 
• Control Unit orchestrates overall HTS operation; 
• Floating Ready Task FIFO holds tasks ready for execution but not assigned 

to a slave port; 
• Slave Ready Task FIFOs contain tasks ready for execution and assigned to 

slave ports; 
• Slave Candidate Buffers stores task candidates of an ongoing task; 
• Synchronization Buffer stores the coordinates of the last finished tasks; 
• Repetitive Dependency Pattern Buffer holds the X and Y relative coordi-

nates of the repetitive dependency pattern. 

Let us detail a typical HTS operation sequence. First, the master core executes a 
sequential part of application and encounters a parallel segment programmed for the 
HTS. Then, the master core writes a kernel’s function pointer, a repetitive dependency 
pattern and boundaries of the task graph to the HTS. The Control Unit stores the de-
pendency pattern in the Repetitive Dependency Pattern Buffer and submits the first 
task to a Slave Ready Task FIFO. In parallel, the Control Unit computes all possible 
candidates that could start executing once the first task is completed and stores them 
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Fig. 7. Hardware Task Scheduler organization 

in the proper Slave Candidate FIFO. The candidate calculation is performed by negat-
ing the dependency pattern. For example, dependency (-1,+2) will be generate task 
candidate (x+1,y-2) relatively to executing task (x,y). Typically, a task gener-
ates as many candidates as there are dependencies in the pattern, however, tasks lo-
cated on the boundary of the task graph may generate one or zero candidates. Hence, 
a new task for the dependency pattern from Fig. 3 generates two candidates and each 
candidate has two tasks that it will depend on. 

When a Slave interface signals the finish of a parent task execution, the Control 
Unit tries to promote candidate tasks from the corresponding Slave Candidate Buffer 
to a Slave Ready Task FIFO. The Control Unit reads one candidate per cycle and 
checks the following two conditions: 

1. if all parent tasks of the candidate have been completed; 
2. if no other duplicate candidate task was promoted. Note, that candidate dupli-

cates may be generated for a task depending on several other tasks. 

The two checks rely on task statuses captured in the Synchronization Buffer. A 
task status can be UNPROCESSED, PENDING, or FINISHED. In the beginning all 
tasks are UNPROCESSED. When a task is promoted to a Slave Ready Task FIFO, its 
status changes to PENDING. Finally, when a task completes, its status becomes FIN-
ISHED. The first check is satisfied, if our candidate’s parents statuses are FINISHED. 
The second check is true, if our candidate’s status is UNPROCESSED. If both checks 
are satisfied, then the candidate migrates to a Slave Ready Task FIFO and updates its 
status in the Synchronization Buffer. Otherwise, the Control Unit drops the candidate, 
because another unfinished parent task will promote this task in future or our candi-
date was a duplicate. The Synchronization Buffer is controlled by the centralized 
Control Unit, which orders all accesses to the buffer from multiple cores.  

Using the full cross-bar in Fig. 7 the Control Unit can map a candidate task to  
any of the Slave Ready FIFOs. The task-to-core mapping of the HTS is based on the 
Tail Submit principle from [12]. The Tail Submit improves data cache locality, by 
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mapping the child task to the parent core, which may already contain some data in the 
data cache required for the child task. If several child tasks are ready for execution af-
ter the finish of the parent task, we map the task on the same Y axis to the parent core 
and the other child tasks to the Floating Ready Task FIFO. Any idle processor can 
take a task from the floating FIFO, if its dedicated Slave Ready Task FIFO is empty, 
which may occur, for example, at the boundaries of the task graph. 

3.3   Implementation 

Table 1 shows estimates of area and power for various HTS configurations obtained 
by Register Transfer Level (RTL) synthesis of large blocks of the HTS for the CMOS 
45 nm worst-case TSMC library. The HTS grows with the number of cores due to the 
growth of core interfaces and task FIFOs per core. Furthermore, the application influ-
ences the size of the HTS by the required size of the synchronization buffer. In gen-
eral, the area and power of the HTS are smaller than 5% of the TriMedia TM3270 
core [21]. 

Table 1. Area and power estimates for various HTSs 

 1 core 2 cores 4 cores 8 cores 16 cores 
Area (mm2) 0.032 0.037 0.048 0.069 0.109SD 

720x560 Power (mW/MHz) 0.034 0.040 0.052 0.076 0.124
Area (mm2) 0.034 0.039 0.050 0.071 0.111HD 

1920x1080 Power (mW/MHz) 0.034 0.040 0.052 0.076 0.124
Area (mm2) 0.037 0.042 0.053 0.074 0.114QHD 

3840x2160 
Power (mW/MHz) 0.035 0.041 0.053 0.077 0.125

4   Evaluation Framework 

The HTS was modeled in the TTIsim simulator, which is part of the NXP TriMedia 
Compilation System v5.1 [19]. We extended the TTIsim to instantiate multiple 
TriMedia TM3270 VLIW cores [22]. Each core has a 64 KB data cache coupled to 
other cores’ caches and the shared memory via a MESI cache coherence protocol. The 
off-chip SDRAM is not modeled, however, a 40 cycle L1 refill latency is simulated. 

We evaluated HTS performance on the H.264 video decoding, which represents 
modern demanding video processing applications. The production quality H.264 co-
dec written in C++ was highly optimized for the TriMedia TM3270 processor and 
was task-level parallelized as described in [12]. Our evaluations exclude the CABAC 
entropy decoding of the H.264 video decoding, which is likely to be implemented in a 
dedicated hardware accelerator synchronizing with the cores using interrupts. We 
adapted the parallel H.264 codec with the HTS API described in Section 0. The video 
input sequences are taken from the SVT high definition Multi Format test set [20], 
available from Sveriges Television, and the Taurus Media Technik collection. The se-
quences are called ”CrowdRun” and “Tractor” with the following resolutions: Quad 
HD (QHD) 3840x2160 and Full HD (FHD) 1920x1080, respectively. The H264  
encode/decode profile used is the main profile. We simulated 25 frames from each 
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sequence. The H.264 application and the API were compiled with the production 
compiler TriMedia C/C++ compiler v5.1 and executed on the TTIsim simulator. 

We benchmarked the HTS against the hardware Task Scheduling Unit [12], based 
on the CARBON concept [14]. Furthermore, we compared the HTS versus the soft-
ware implementation, which uses the Task Pool (TP) model [12]. Both the TSU and 
Task Pool measurements were performed with the Tail Submit software optimization 
and without [12]. The Tail Submit optimization avoids task creation overhead by exe-
cuting a new task within the already running task. 

5   Experimental Result 

The simulation results are shown in Fig. 8 to 12. Fig. 8 and 9 shows the speedups of 
H.264 decoding versus the number of cores for the Full HD input stream. Fig. 10 and 
11 present results for the Quad HD input stream. The results clearly demonstrate that 
the HTS outperforms both the software and the state-of-the-art hardware implementa-
tions of task scheduling for all input streams. The HTS achieves this performance 
thanks to the low overhead of 15 cycles to create, schedule, map and synchronize 
tasks given a task dependency pattern. The mentioned cycle count includes 5 cycles 
of the internal operation of the HTS, 4 cycles in the clock domain bridges and, finally, 
6 cycles are spend in the application software accessing the HTS. 

The HTS enables relatively higher speedups for the MESI cache coherent memory, 
rather than for the idealized perfect memory without caches in Fig. 9 and 11. The 
speedup of HTS relative to TSU and TP using the MESI cache is 1.17 times, while 
the measured relative speedup using idealized perfect memory without caches is 1.05 
times. This can be attributed to efficient data locality scheduling of the HTS. Re-
markably, the Tail Submit optimization accounts for 26% and 14% performance im-
provement for TP and TSU, respectively, see Fig. 8. Although, the HTS does not 
profit from this optimization, it still outperforms the TSU and TP. Furthermore, by 
adding more cores to the system, the HTS shows higher scalability than the other ap-
proaches. 
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Fig. 8. H.264 Full HD speedup using caches with MESI 
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H.264 FHD speedup (perfect memory) 
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Fig. 9. H.264 Full HD speedup using caches with perfect memory 
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Fig. 10. H.264 Quad HD speedup using caches with MESI 
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Fig. 11. H.264 Quad HD speedup using caches with perfect memory 
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Fig. 12. Number of cores required to meet the real time, Full HD (left) and Quad HD (right) 

As shown in Fig. 12, the required number of cores to meet real-time with the HTS is 
3 for Full HD and 14 for Quad HD H.264 video decoding. On the other hand, the op-
timized software implementation as well as the TSU require 4 and 16 cores for Full 
HD and Quad HD, respectively. The area reduction thanks to the HTS can reach 25% 
and 12.5% for Full HD and Quad HD respectively, which is very important for low-
cost embedded systems. However, the speedups of the HTS, TP, and TSU for real-time 
Full HD are very close, therefore, we can claim area reduction only for Quad HD. 

6   Conclusion 

Based on a task dependency pattern, the hardware task scheduler can quickly create 
tasks, schedule them in time, synchronize and map tasks to cores. In contrast to hun-
dreds of cycles spent on task scheduling in software, the hardware task scheduler re-
quires only 15 cycles for both scheduling and synchronization. In general, the HTS 
speeds up the optimized software implementation of task scheduling and synchroniza-
tion by 1.173 times for parallelized Quad HD H.264 video decoding on a 16 cores 
processor. Moreover, due to the integrated acceleration of inter-task synchronization, 
the hardware task scheduler outperforms the state-of-the-art CARBON hardware task 
queues by 1.169 times. Furthermore, the hardware task scheduler allows decreasing 
the number of cores required to meet the real time for the H.264 decoder and, conse-
quently, reduces the silicon area by 12.5%. 
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Abstract. Power consumption has emerged as a key design concern across the
entire computing range, from low-end embedded systems to high-end supercom-
puters. Understanding the power characteristics of a microprocessor under design
requires a careful study using a variety of workloads. These workloads range from
benchmarks that represent typical behavior up to hand-tuned stress benchmarks
(so called stressmarks) that stress the microprocessor to its extreme power con-
sumption.

This paper closes the gap between these two extremes by studying techniques
for the automated identification of stress patterns (worst-case application behav-
iors) in typical workloads. For doing so, we borrow from sampled simulation the-
ory and we provide two key insights. First, although representative sampling is
slightly less effective in characterizing average behavior than statistical sampling,
it is substantially more effective in finding stress patterns. Second, we find that
threshold clustering is a better alternative than k-means clustering, which is typi-
cally used in representative sampling, for finding stress patterns. Overall, we can
identify extreme energy and power behaviors in microprocessor workloads with
a three orders of magnitude speedup with an error of a few percent on average.

1 Introduction

Energy, power, power density, thermal hotspots, voltage variation, and related design
concerns have emerged as first-class microprocessor design issues over the past few
years. And this is the case across the entire computing range, from low-end embed-
ded systems to high-end supercomputers. A detailed understanding of these issues is of
primary importance for designing energy-aware, power-aware and thermal-aware mi-
croprocessors, their power and thermal management strategies, their power supply unit,
and thermal package.

Understanding the power, energy and thermal characteristics of a microprocessor
under design requires appropriate benchmarking and simulation methodologies. At the
one end of the spectrum, researchers and engineers consider average workload behav-
ior. This is appropriate for studying a microprocessor’s average power consumption or
thermal map, however, it does not capture more extreme behaviors. At the other end
of the spectrum, stressmarks are being used to explore a microprocessor’s maximum
power consumption [9,10], maximum thermal hotspots [27], and maximum dI/dt be-
havior [16]. These stressmarks are typically hand-tuned, and push the microprocessor
to its extremes in order to understand the microprocessor’s worst-case behavior. These
stress patterns are not expected to occur during typical operation, however, they can
occur and therefore the microprocessor should be able to cope with them.

A. Seznec et al. (Eds.): HiPEAC 2009, LNCS 5409, pp. 153–167, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Microprocessors designed for maximum possible power consumption are not cost-
effective though because of the large gap between maximum and typical power con-
sumption. Dynamic thermal management (DTM) techniques [1,23] seek to exploit this
gap: the microprocessor cooling apparatus is designed for a wattage less than the max-
imum power consumption, and a dynamic emergency procedure guarantees that this
designed-for wattage level is never exceeded with minimal impact on overall perfor-
mance. Gunther et al. [11] report that DTM techniques based on clock gating permitted
a 20% reduction in the thermal design power for the Intel Pentium 4 processor. Devel-
oping and evaluating DTM mechanisms however requires adequate evaluation method-
ologies for quickly finding the extreme behaviors in typical workloads that are subject
to DTM.

Therefore, this paper closes the gap between the two ends of the power benchmarking
spectrum by studying ways of identifying stress patterns in typical workloads, also
called ‘worst-case execution behaviors’ by Tiwari et al. [25]. More specifically, the
goal of this work is to find stress patterns in typical workloads with the least possible
simulation time. Identifying stress patterns in typical workloads is important because
these stress patterns are expected to occur regularly in practice, much more often than
the stress patterns represented by hand-tuned stressmarks. The stress patterns are the
execution behaviors that DTM emergency procedures should adequately deal with.

We build on sampled simulation theory for identifying stress patterns in typical work-
loads. However, in contrast to sampled simulation for which the aim is to estimate av-
erage performance or power consumption by simulating a representative sample of the
entire program execution, the goal in this paper is to leverage sampled simulation the-
ory to find a sample of real program execution that includes stress patterns with extreme
workload behavior, e.g., max power, max energy, etc. There are two common ways
in sampled simulation, statistical sampling (as done in SMARTS [29]) and represen-
tative sampling (as done in SimPoint [22]). Our experimental results using the SPEC
CPU2000 benchmarks confirm that statistical sampling is generally more accurate than
representative sampling for estimating average behavior as shown in prior work [30],
however, the new insight provided in this paper is that representative sampling is sub-
stantially more effective in identifying stress patterns in typical workloads. The intuitive
explanation is that representative sampling uses knowledge about the program struc-
ture and execution to find representative sampling units, whereas statistical sampling is
largely agnostic to any notion of program structure and execution. Sampling units se-
lected through representative sampling therefore have a higher likelihood of including
extreme workload behaviors. In addition, we find that threshold clustering is a better
clustering method than k-means clustering (which is commonly used in representative
sampling such as SimPoint) for identifying sampling units with extreme workload be-
havior. The end result is that we can estimate stress patterns in typical workloads with a
three orders of magnitude simulation speedup compared to detailed simulation of entire
workloads with an error of at most a few percent on average.

In this paper, we make the following contributions:

– We close the gap between sampled simulation focusing on average workload be-
havior and hand-crafted stressmarks focusing on extreme behavior by identifying
stress patterns in typical workloads.
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– We make the case that representative sampling is substantially more effective in
finding extreme behaviors in microprocessor workloads than statistical sampling,
although statistical sampling is (slightly) more effective in capturing average be-
havior.

– The results in this paper motivate changing current simulation practice. Not only
does representative sampling using threshold clustering estimate average perfor-
mance and power nearly as accurate as statistical sampling, it is substantially more
accurate when it comes to estimating stress patterns. And although representative
sampling may be more commonly used than statistical sampling in current sim-
ulation practice, this paper shows that threshold clustering is substantially more
effective than k-means clustering (which is typically being used) for finding stress
patterns. In other words, representative sampling with threshold clustering is both
effective at estimating average performance as well as stress patterns, whereas
prevalent techniques (representative sampling with k-means clustering and statisti-
cal sampling) are only effective for estimating average performance.

– We show that the proposed method can be used for finding many different flavors of
extreme workload behaviors, such as high cache miss rate, low IPC, or low branch
predictability behaviors. These behaviors may be useful for understanding program
patterns that lead to these extremities.

We believe this work is timely as power is a primary design concern in today’s
computer systems, and we are in need for appropriate benchmarking and performance
analysis methodologies. In addition, stress patterns will become even more relevant as
we enter the multi-core era and the gap between average and peak power widens as
the number of cores increases. Benchmarking consortia have also recognized the need
for energy- and power-oriented benchmarks and associated benchmarking methodolo-
gies. For example, SPEC has developed the SPECpower ssj2008 benchmark suite [24],
which evaluates the performance and power characteristics of volume server class com-
puters. Likewise, EEMBC has released the EnergyBench benchmark suite, which re-
ports energy consumption while running performance benchmarks [18].

2 Sampled Simulation

In sampled simulation, only a limited number of sampling units from a complete bench-
mark execution are simulated in full detail. We refer to the selected sampling units
collectively as the sample. Sampled simulation only reports performance for the in-
structions in the sampling units, and discards the instructions in the pre-sampling units.
And this is where the dramatic performance improvement comes from: only the sam-
pling units, which account for only a small fraction of the total dynamic instruction
count, are simulated in a cycle-by-cycle manner.

There are three major issues with sampling: (i) what sampling units to select, (ii)
how to initialize a sampling unit’s architecture starting image, and (iii) how to accu-
rately estimate a sampling unit’s microarchitecture starting image. This paper only con-
cerns the first issue because the other two issues can be handled easily by leveraging
existing technology. For example, the architecture starting image (registers and mem-
ory state) can be set through fastforwarding or through checkpointing [26,28]; and the
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microarchitecture starting image (caches, branch predictors, etc.) can be estimated with
microarchitecture state warmup techniques — there is a wealth of literature covering
this area, see for example [5,8,12,19,26,28,29].

There are basically two major ways for determining what sampling units to select,
namely (i) statistical sampling, and (ii) representative sampling. We now discuss both
approaches.

2.1 Statistical Sampling

Statistical sampling takes a number of sampling units across the whole execution of the
program. These sampling units are chosen randomly or periodically in an attempt to
provide a representative cross-cut of the entire program execution.

Laha et al. [20] propose statistical sampling for evaluating cache performance. They
select multiple sampling units by randomly picking intervals of execution.

Conte et al. [5] pioneered the use of statistical sampling in processor simulation.
They made a distinction between sampling bias and non-sampling bias. Non-sampling
bias results from improperly constructing the microarchitecture starting image prior to
each sampling unit. Sampling bias refers to how accurate the sample is with respect to
the overall average. Sampling bias is fundamental to the selection of sampling units.

The SMARTS (Sampling Microarchitecture Simulation) approach by Wunderlich
et al. [29] proposes systematic sampling, which selects sampling units periodically
across the entire program execution, i.e., the pre-sampling unit size is fixed, as opposed
to random sampling. The potential pitfall of systematic or periodic sampling compared
to random sampling is that the sampling units may give a skewed view in case the
periodicity present in the program execution under measurement equals the sampling
periodicity or its higher harmonics. This does not seem to be a concern in practice
though as SMARTS achieves highly accurate performance estimates compared to de-
tailed entire-program simulation. The important asset of statistical sampling compared
to representative sampling, is that it builds on well-founded statistics theory, which en-
ables computing confidence bounds at a given confidence level.

2.2 Representative Sampling

Representative sampling contrasts with statistical sampling in that it first analyzes the
program execution to pick a representative sampling unit for each unique behavior. The
most well known representative sampling approach is the SimPoint approach proposed
by Sherwood et al. [22]. SimPoint picks a small number of sampling units that ac-
curately create a representation of the complete execution of the program. To do so,
they break an entire program execution into intervals — an interval is a contiguous
sequence of instructions from the dynamic instruction stream — and for each inter-
val they create a code signature. The code signature is a so called Basic Block Vector
(BBV) that counts the number of times each basic block is executed in the interval,
weighted with the number of instructions per basic block. After normalizing the BBVs
so that the BBV elements sum up to one, they then perform clustering to group intervals
with similar code signatures (BBVs) into so called phases. BBV similarity is quantified
by computing the Manhattan distance between two BBVs. The intuitive notion is that
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intervals of execution with similar code signatures have similar architectural behavior,
and this has been shown to be the case by Lau et al. [21]. Therefore, only one interval
from each phase needs to be simulated in order to recreate an accurate picture of the
entire program execution. They then choose a representative sampling unit from each
phase and perform detailed simulation on that representative unit. Taken together, these
sampling units (along with their respective weights) represent the complete execution
of a program. A sampling unit is called a simulation point in SimPoint terminology,
and each simulation point is an interval with on the order of millions, or tens to hun-
dreds of millions of instructions. The simulation points can be used across microar-
chitectures because the BBVs, based on which the simulation points are identified, are
microarchitecture-independent.

The clustering step in the SimPoint approach is a crucial step as it classifies inter-
vals into phases, with each phase representing distinct program behavior. There exist
a number of clustering algorithms; here, we discuss k-means clustering (which is used
by SimPoint) and threshold clustering (which we advocate in this paper for identifying
stress patterns in typical workloads).

K-means clustering. K-means clustering produces exactly k clusters and works as fol-
lows. Initially, k cluster centers are randomly chosen. In each iteration, the distance is
calculated for each interval to the center of each cluster, and the interval is assigned
to its closest cluster. Subsequently, new cluster centers are computed based on the new
cluster memberships. This algorithm is iterated until no more changes are observed
in the cluster memberships. It is well known that the result of k-means clustering is
dependent on the choice of the initial cluster centers. Therefore, SimPoint considers
multiple randomly chosen cluster centers and uses the Bayesian Information Criterion
(BIC) [22] to assess the quality of the clustering: the clustering with the highest BIC
score is selected.

Threshold clustering. Classifying intervals into phases using threshold clustering can
be done in two ways, using an iterative algorithm or using a non-iterative algorithm. The
iterative algorithm selects an instruction interval as a cluster center and then computes
the distance to all the other instruction intervals. If the distance measure is smaller than
a given threshold θ, the instruction interval is considered to be part of that cluster. Out
of all remaining instruction intervals (not part of previously formed clusters), another
interval is selected randomly as a cluster center and the above process is repeated. This
iterative process continues until all instruction intervals are assigned to a cluster/phase.
The θ threshold is expressed as a percentage of the maximum possible Manhattan dis-
tance between two intervals; the maximum Manhattan distance between two intervals
is 2 assuming normalized BBVs, i.e., the sum across all BBV elements equals one.

The non-iterative algorithm scans all intervals from the beginning until the end of
the dynamic instruction stream. If the interval is further away from any previously seen
cluster center than a given threshold θ, the interval is considered the center of a new
cluster. If not, the interval is assigned to the closest cluster. The non-iterative algorithm
is computationally more efficient and performs well for our purpose — we therefore
use the non-iterative approach in this paper.
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The important advantage of threshold clustering is that, by construction, it builds
phases for which its in-phase variability (in terms of BBV behavior) is limited to a
threshold θ. This is not the case for k-means clustering: the variability within a phase
can vary across phases.

3 Experimental Setup

3.1 Benchmarks and Simulators

We use the SPEC CPU2000 benchmarks and all of their reference inputs in our exper-
imental setup. These benchmarks were compiled and optimized for the Alpha ISA;
the binaries were taken from the SimpleScalar website; all benchmarks are run to
completion.

We use the SimpleScalar/Alpha v3.0 [3] superscalar out-of-order processor simu-
lator. The processor model is configured along the lines of a typical four-wide super-
scalar microprocessor such as the Alpha EV7 (21364). Power is estimated using Wattch
v1.02 [2] and HotLeakage [23] assuming a 70nm technology, 5.6GHz clock frequency
and 1V supply voltage. We assume an aggressive clock gating mechanism.

3.2 Sampled Simulation

For statistical sampling, we use periodic sampling, as done in SMARTS [29], i.e., we
select a sampling unit every n intervals. We will vary the sampling rate 1/n in the
results presented in this paper.

For representative sampling, we use SimPoint v3.0 with its default settings. In short,
SimPoint computes a BBV per interval, and subsequently performs k-means cluster-
ing on randomly projected 15-dimensional BBVs; SimPoint evaluates all values of k
between 1 and maxK and picks the best k and random seed per k based on the BIC
score of the clustering. We will vary the sampling rate by varying the SimPoint maxK
parameter. In the evaluation section of this paper, we will compare k-means clustering
versus threshold clustering. For doing so, we replace the k-means clustering algorithm
with the threshold clustering algorithm while leaving the rest of the SimPoint software
untouched.

In this paper, for both statistical and representative sampling, the interval size is set
to 1M (220) instructions unless mentioned otherwise, i.e., the stress patterns constitute
of 1M dynamically executed instructions. This choice does not affect the general con-
clusions in this paper though — the methodology can be applied to other interval gran-
ularities as well. In fact, we experiment with larger interval sizes — not reported here
because of space constraints — and obtain similar results as for the 1M-instruction in-
terval granularity. However, for smaller interval granularities, there may be practical
considerations that prohibit the use of representative sampling, the reason being that
the clustering algorithm may become very time-consuming for a large number of in-
tervals. Addressing the computational concerns of clustering large data sets is left for
future work.
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4 Evaluation

In the evaluation section, we now compare statistical sampling against representative
sampling for finding stress patterns in microprocessor workloads. This is done in a num-
ber of steps: we present per-benchmark max power stress patterns, as well as processor
component power stress patterns; we also evaluate the error versus simulation speedup
trade-off; and finally, we demonstrate the efficacy of the proposed technique for find-
ing other flavors of extreme behavior, such as max CPI, max cache miss rate and max
branch misprediction rate stress patterns.

4.1 Motivation

Before evaluating sampled simulation for identifying stress patterns in typical micro-
processor workloads, we first further motivate the problem by showing that the variabil-
ity over time in power consumption is significant within a single benchmark execution.
We therefore compute the power consumption on an interval basis, i.e., we compute the
power consumption per interval of 1M instructions in the dynamic instruction stream.
This yields a distribution of power consumption numbers. Figure 1 represents this dis-
tribution as a boxplot per benchmark. The box represents the 5% and 95% quartiles,
i.e., 90% of the data lies between these two markers, and thick horizontal line in the
box represents the median power consumption across the entire program execution.
The outliers are represented by the dashed lines that fall out of the box; the minimum
and maximum values are represented by the bottom and top horizontal lines at the ends
of the dashed lines, respectively.

The box plots clearly show that there is significant variability over time in power
consumption, and, more importantly within the context of this paper, there is a large
discrepancy in median versus max power consumption. In fact, for many benchmarks,
the max power consumption is substantially higher than its median power consumption,
e.g., for mcf the max power consumption is more than three times as high as its median
power consumption. And in addition, the bulk of the power consumption numbers falls
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Fig. 1. Boxplots characterizing the distribution of power consumption at the 1M-instruction in-
terval granularity; the boxes represent the 5% and 95% quartiles, and the thick horizontal line in
each box represents the median
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far below the max power consumption. This illustrates that finding stress patterns for
these benchmarks is challenging, i.e., we need to find one of the few intervals that
cause max power consumption out of the numerous intervals that constitute the entire
benchmark execution — there are typically tens or even hundreds of thousands of 1M-
instruction intervals per benchmark.

4.2 Per-Benchmark Stress Patterns

We now evaluate the efficacy of sampled simulation in finding stress patterns at the 1M-
instruction interval granularity. For doing so, we assume a 1000× simulation speedup
for both statistical and representative sampling compared to the simulation of the entire
program execution; we will consider other simulation speedups in Section 4.4. Simula-
tion speedup in this paper is defined as the number of instructions in the entire bench-
mark execution divided by the number of instructions in the sample. This simulation
speedup metric does not include the overhead of setting the architecture and microar-
chitecture starting images, as discussed in Section 2, however, state-of-the-art sampled
simulation methods use checkpointing to initialize a sampling unit’s starting image,
for which the overhead only depends on the number of sampling units (to a first-order
approximation). In other words, comparing sampling strategies in terms of simulation
speedup can be done by simply comparing the number of sampling units (intervals) in
the sample versus the entire program execution.

We simulate all sampling units selected by statistical and representative sampling,
respectively, and retain the max power consumption of any of these sampling units.
We then compare this sampled maximum against the max power consumption ob-
served across the entire benchmark execution — this is done by simulating the com-
plete benchmark execution while keeping track of the max power consumption at the
1M-instruction interval size. The percentage difference between the max power values
is called the error, which is a smaller-is-better metric: the smaller the error score, the
closer the stress pattern identified through sampled simulation reflects the real stress
pattern observed across the entire benchmark execution. Figure 2 shows the error in
estimating the maximum power consumption. We observe that statistical sampling is
less effective in finding stress patterns than representative sampling, i.e., the error can
be as high as 60% (and average error of 9.3%) for statistical sampling whereas repre-
sentative sampling is much more effective. Representative sampling with k-means clus-
tering achieves an average error of 3% (and 14% at most); representative sampling with
threshold clustering is even more effective with an average error of 2.3% and a maxi-
mum error of at most 11%. The reason for the difference in efficacy between statistical
sampling and representative sampling is that representative sampling selects sampling
units based on the benchmark execution and structure (through the BBVs that are be-
ing collected for finding the distinct phase behaviors), whereas statistical sampling is
largely agnostic to any notion of program structure and behavior. In other words, for
statistical sampling, the likelihood of hitting upon a stress pattern is inverse propor-
tional to the sampling rate, whereas representative sampling identifies distinct program
behavior by looking into the code that is being executed.

The reason why threshold clustering outperforms k-means clustering is that threshold
clustering, by construction, bounds the amount of variability within a cluster, whereas
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Fig. 2. Error in estimating max power stress patterns

k-means clustering does not. In other words, for a given simulation speedup, i.e., for a
given number of clusters, threshold clustering will yield more sparsely populated clus-
ters than k-means clustering; i.e., outliers in the data set will end up in separate clusters
in contrast to k-means clustering, which may group those outliers with its closest, albeit
relatively far away, cluster.

The end conclusion is that representative sampling with threshold clustering results
in a simulation speedup of three orders of magnitude compared to entire benchmark
simulation with an error of at most a few percent on average for finding stress pat-
terns in the SPEC CPU2000 benchmarks. And in addition, respresentative sampling
with threshold clustering is more effective than representative sampling with k-means
clustering and statistical sampling.

4.3 Processor Component Stress Patterns

In the previous section, the focus was on stress patterns for the entire processor. We
now look into stress patterns for individual processor components, such as the instruc-
tion window, functional units, caches, branch predictor, etc. This, in conjunction with
a microprocessor floorplan, could provide valuable information in terms of power den-
sity and thermal hotspots [23]. Figures 3 and 4 quantify the error in estimating average
and maximum per-component power consumption, respectively. (We assume a 1000×
simulation speedup and present average results computed across all benchmarks.) The
interesting observation from these graphs is that both statistical and representative sam-
pling are very accurate in estimating average processor component power consumption
(the average error is around 1% on average), however, representative sampling is by far
more effective in capturing stress patterns. For representative sampling with threshold
clustering, the processor component power error for the stress patterns is less than 5%,
whereas representative sampling with k-means clustering and statistical sampling lead
to an processor component power error of up to 10% and 20%, respectively.
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Fig. 3. Error in estimating average power consumption per processor component
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Fig. 4. Error in estimating max power consumption per processor component

4.4 Error Versus Simulation Speedup

The previously reported results assumed a simulation speedup of three orders of mag-
nitude (1000×). We now explore the trade-off between error and simulation speedup in
more detail, see Figure 5, which shows two graphs, one for estimating average power
consumption (left graph) and another one for estimating max power consumption (right
graph) — these graphs show average results across all benchmarks. The vertical and
horizontal axes show percentage error and simulation speedup with respect to simu-
lating the entire benchmark, respectively. For computing these graphs, we simulate all
sampling units; for the left graph, we then compute the average power consumption
across all sampling units, and compare it against the true average power consumption
computed by simulating the entire benchmark; for the right graph, we retain the largest
power consumption number of any of the sampling units and compare it against the
largest power consumption number observed across the entire program execution. For
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Fig. 5. Statistical sampling versus representative sampling: error as a function of simulation
speedup for estimating average power consumption (left graph) and max power (right graph)

statistical sampling, one sampling unit is selected every n intervals; this corresponds
to a simulation speedup of a factor n. For representative sampling, we set a maxK
parameter or θ threshold for the clustering yielding n clusters or sampling units; this
corresponds to a ntotal/n simulation speedup with ntotal the number of intervals in the
entire program execution.

We observe that statistical sampling is more accurate than representative sampling
for estimating average power consumption, see left graph Figure 5. The results in the
left graph confirm the earlier findings by Yi et al. [30] who provide a detailed compari-
son of statistical and representative sampling for estimating average performance: they
found that average performance is more accurately estimated through statistical sam-
pling, however, representative sampling has a better speed versus accuracy tradeoff.

However, when it comes to estimating max power consumption, representative sam-
pling is more effective, and threshold clustering is the most effective approach. In par-
ticular, representative sampling with threshold clustering finds an interval with a power
consumption number around 2% on average of the max power number found through
simulation of the entire benchmark at a simulation speedup of three orders of magni-
tude. For the same simulation speedup, statistical sampling achieves an error of 10% on
average. Or, reversely, for an error of 2%, statistical sampling only achieves a simulation
speedup around a factor of 40. In other words, representative sampling with threshold
clustering is both faster and more effective in capturing max power stress patterns.

4.5 Other Extreme Behaviors

Representative sampling with threshold clustering is effective at finding other flavors
of extreme behaviors as well, beyond power related stress patterns. Figure 6 shows
four examples, namely max CPI, max L1 D-cache miss rate, max L2 cache miss rate
and max branch misprediction rate stress patterns. In all four examples, representative
sampling with threshold clustering is the most effective approach; this is especially the
case for the CPI and cache miss rate extreme behaviors. These extreme behaviors can
provide valuable insight and understanding about problematic program behaviors and
patterns.
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(a) max CPI (b) max L1 D-cache miss rate
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(c) max L2 cache miss rate (d) max branch misprediction rate
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Fig. 6. Finding other flavors of stress patterns: max CPI (top left), max L1 D-cache miss rate (top
right), max L2 cache miss rate (bottom left), and max branch misprediction rate (bottom right)

5 Related Work

Stress testing. In VLSI circuit design, statistically generated test vectors are used to
stress a circuit by inducing maximum switching activity [4]. At the microarchitectural
level, engineers develop hand-crafted synthetic test cases, so called stressmarks, to es-
timate maximum power consumption of a microprocessor. This is common practice in
industry, see for example [9,10,27]. Recent work by Joshi et al. [17] proposes a frame-
work for automatically developing stressmarks by exploring the workload space using
an abstract workload model.

Power phase characterization. A lot of work has been done on characterizing time-
varying program behavior, and different authors have been proposing different ways for
doing so, such as code working sets [6], BBVs [22], procedure calls [13], and perfor-
mance data [7].

Isci and Martonosi [14] propose a methodology for tracking dynamic power phase
behavior in real-life applications using a real hardware setup. They measure total proces-
sor power consumption data using a digital multimeter and simultaneously collect raw
performance counter data. They then use the performance counter data to estimate
processor component power consumption numbers, which they subsequently use to
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identify power phase behavior at runtime using threshold clustering. Whereas the goal
of the work by Isci and Martonosi is on tracking power consumption and power phase
behavior at runtime, the focus of our work is on finding stress patterns to guide proces-
sor design under extreme workload behavior, which is a related but different problem.

In their follow-on work, Isci and Martonosi [15] compare clustering based on BBVs
versus processor component power numbers, and found both approaches to be effec-
tive, but processor component power numbers to be more accurate for tracking power
phase behavior. The downside of processor component power numbers though is that it
requires that the entire benchmark be measured in terms of its power behavior, which
may be costly in terms of equipment (in case of a real hardware setup) or which may be
too time-consuming (in case of a simulation setup). In addition, processor component
power numbers are specific to one particular microprocessor implementation. A BBV
profile is both inexpensive and fast to measure through software instrumentation, and, in
addition, is microarchitecture-independent, i.e., can be used across microarchitectures.
Since our goal is to find stress patterns to be used during the design of a processor, we
advocate the BBV approach because of its microarchitecture-independence, its low cost
and its fast computation.

6 Conclusion and Future Work

Power consumption has emerged as a key design concern over the entire range of com-
puting devices, from embedded systems up to large-scale data centers and supercomput-
ers. Understanding the power characteristics of workloads and their interaction with the
architecture however, is not trivial and requires an appropriate benchmarking method-
ology. Researchers and engineers currently use a range of workloads for gaining insight
into the power characteristics of processor architectures. On the one side, typical work-
loads such as SPEC CPU and other commercial workloads are used to assess average
power consumption. On the other side, hand-crafted stressmarks are being used to un-
derstand worst-case behavior in terms of a processor’s max power consumption. This
paper closed the gap between these two ends of the power benchmarking spectrum by
finding stress patterns in typical microprocessor workloads.

In this paper, we advocated and studied sampled simulation as a means of finding
these stress patterns efficiently. Although sampled simulation is a well studied and ma-
ture research area, the objective in this paper is completely different. While the goal of
sampled simulation traditionally has been on estimating average performance, the prob-
lem addressed in this paper is on estimating worst-case performance rather than average
performance, i.e., the goal is to find stress patterns in typical workloads without having
to simulate the complete benchmark execution. We found that although statistical sam-
pling is more effective than representative sampling for estimating average behavior,
representative sampling is substantially more effective than statistical sampling when it
comes to capturing extreme behavior. In addition, we found that threshold clustering is
substantially more effective than k-means clustering for finding stress patterns (which
is a frequently used clustering technique for representative sampling). Our experimen-
tal results using the SPEC CPU2000 benchmarks demonstrate that stress patterns at a
million-instruction granularity can be found with an error of a few percent on average
at a simulation speedup of three orders of magnitude.
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We believe that this work could lead to a new line of research towards finding stress
patterns in microprocessor workloads. Sampled simulation, which was traditionally
used for estimating average behavior, may benefit from specific enhancements towards
stress pattern identification. One focus of future research may be to improve the com-
putational requirements of the clustering algorithm in representative sampling so that
larger data sets and thus smaller granularity stress patterns may become feasible in prac-
tice. One example of a stress pattern that requires a small granularity is a dI/dt stress
pattern: stress patterns with large power swings over short periods of time are of interest
for studying the dI/dt problem [16] as the associated current swings may lead to ripples
on the voltage supply lines, which may introduce timing errors and/or cause circuits to
fail. Existing clustering algorithms however are too time-consuming when applied to a
large data set.
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Abstract. On multi-core architectures with software-managed memories, effec-
tively orchestrating data movement is essential to performance, but is tedious
and error-prone. In this paper we show that when the programmer can explic-
itly specify both the memory access pattern and the execution schedule of a
computation kernel, the compiler or run-time system can derive efficient data
movement, even if analysis of kernel code is difficult or impossible. We have
developed a framework of C++ classes for decoupled Access/Execute specifi-
cations, allowing for automatic communication optimisations such as software
pipelining and data reuse. We demonstrate the ease and efficiency of program-
ming the Cell Broadband Engine architecture using these classes by implement-
ing a set of benchmarks, which exhibit data reuse and non-affine access
functions, and by comparing these implementations against alternative imple-
mentations, which use hand-written DMA transfers and software-based caching.

1 Introduction

Architectures with software-managed memories can achieve higher performance and
power efficiency than traditional architectures with hardware-managed memories (e.g.
caches), but place additional burden on the programmer. For a traditional architecture,
the programmer typically designs a computation kernel and specifies the order in which
the kernel traverses the iteration space. To off-load the kernel to a co-processor equipped
with local memory, the programmer must additionally manage data movement, to en-
sure that data is smoothly streamed to and from local memory.

This additional step sounds easier than it actually is. The performance-conscious
programmer needs to consider issues such as the optimal data transfer sizes, alignment
constraints, exploiting data reuse, etc. Moreover, when the working set of a processor
is too large to fit in its local memory, the programmer has to use low-level optimisa-
tion techniques such as double buffering to overlap computation and communication.
Unfortunately, this harms code portability and maintainability.

In this paper, we introduce the decoupled Access/Execute (Æcute—pronounced
“acute”) programming model, which allows the programmer to express explicitly both
the memory access pattern and the execution schedule of a computation kernel, similar
to programming traditional architectures. We show that in many cases the compiler or
run-time system can derive efficient data movement even if analysis of kernel code is
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difficult or impossible, thus removing from the programmer the additional complexity
of managing data movement.

In the remainder of this paper we argue that decoupling access and execute is natural
when programming architectures with software-managed memories (§2) and introduce
decoupled Access/Execute specifications (§3). We discuss the prototype Æcute frame-
work (§4) and use examples adapted from linear algebra and signal processing (§3.1 and
§5) to show the ease of programming using the specifications. We present experimen-
tal results for our examples (§6) obtained on a Cell Broadband Engine (BE) processor
and compare them against alternative implementations, which use hand-written DMA
transfers and software-based caching. We review related work (§7) and conclude with
an outline of future work (§8).

2 Background

Since the 1980s, microprocessor designers have worked hard to preserve the illusion of
fast memory by providing hardware-managed caches. Sadly, increasing the number of
transistors dedicated to caches has been found to achieve diminishing effects on per-
formance. Moreover, optimising software for the memory hierarchy has become the
principal activity of performance-conscious programmers and compiler writers, who
“spend much of their time reverse-engineering and defeating the sophisticated mecha-
nisms that automatically bring data on to and off the chip” [1].

Given this unsatisfactory situation, designers have turned their attention to software-
managed memory hierarchies, where data is copied between memories under explicit
software control. Examples include the Cell BE architecture from Sony/Toshiba/IBM [1],
the CSX SIMD array architecture from ClearSpeed [2], and massively parallel architec-
tures from NVIDIA and ATI (still habitually called graphics processing units, GPUs).

Local memory is typically cheap to access (e.g. 6 cycles on Cell), and thus is akin
to an extended register file. One some architectures (e.g. on Cell and CSX), process-
ing elements can only access local memory, and need to invoke expensive data transfer
mechanisms to access remote memory. On other architectures (e.g. on GPUs), exploit-
ing local memory is not obligatory but is essential to performance.

Efficient programs are naturally separated into two parts: remote memory access to
copy operands in and to copy results out (often asynchronously), and execution in local
memory to produce the results. The access and execute parts can be thought of as two
concurrent instruction streams. For example, on Cell the execute part runs on an SPE,
while the access part is serviced by its DMA engine (Memory Flow Controller).

The separation is reminiscent of decoupled access/execute architectures [3], which
run (conceptually or physically) separate access and execute instruction streams. An-
other point of reference is data-prefetching in virtual shared memory, a shared memory
abstraction for computers with physically distributed memories [4]. A program runs
on two processors: the access processor prefetches remote data into local memory by
performing a partial evaluation of the program; the execute processor performs the full
evaluation. The scout-threads in Sun’s upcoming Rock processor [5] manifest the same
idea, by reading the instruction stream ahead during a memory access stall.
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Ideally, to hide the memory latency the access stream runs well in advance of the
execute stream. Occasionally the streams need to synchronise, for example, when the
execute stream computes an address required by the access stream. Topham et al. [6]
describe special compiler techniques to minimise the frequence of such loss of decou-
pling events.

Decoupled architectures use either a single original program or two programs de-
rived (manually or automatically) from the original program. We observe, however, that
deriving access and execute instruction streams from programs written in mainstream
programming languages such as C/C++ is hard, in particular, because of the difficulty
of dependence analysis in the presence of aliasing.

3 Decoupled Access/Execute Specifications

We propose a declarative programming model that allows the programmer to annotate
a computation kernel with both the execute (§3.2) and access (§3.3) metadata.

3.1 Motivating Example: The Closest-to-Mean Image Filter

The Closest-to-Mean (CTM) filter [7] is an effective mechanism for reducing noise in
near Gaussian environments, preserving edges more effectively than linear filters whilst
offering better performance than computationally expensive median-based filters. For a
sample set of vectors V with distance metric δ, the output for the CTM filter is given
by the following formula:

CTM (V ) = arg min
x∈V

δ(x, x),

where x denotes the sample average value, and arg minx∈V (expr) denotes a value of x
that minimises expr.

The CTM filter can be applied to a digital W × H image by mapping each pixel to a
CTM value for a (2K +1)× (2K +1) square sample of neighbouring pixels (for some
K > 0). Fig. 1 shows a CTM filter implementation in our prototype C++ framework.1

The class method kernel closely resembles the filter’s original kernel code, except that
accesses to arrays have been replaced with uses of Æcute access descriptors (§4.1).

3.2 Execute Metadata

Definition 1. Execute metadata for a kernel is a tuple E = (I, R, P ), where:

– I ⊂ Z
n is a finite, n-dimensional iteration space, for some n > 0;

– R ⊆ I × I , is a precedence relation such that (i1, i2) ∈ R iff iteration i1 must be
executed before iteration i2.

– P is a partition of I into a set of non-empty, disjont iteration subspaces.

1 Note that in all our examples we have compacted construction of member fields into their
declarations, to save space.
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class CTMFilter : public StreamKernel {
Neighbourhood2D_Read inputPointSet(iterationSpace, input, K);
Point2D_Write outputPointSet(iterationSpace, output);

CTMFilter( IterationSpace2D &iterationSpace,
int K, Array2D &input, Array2D &output ) {...}

...
void kernel( const IterationSpace2D::element_iterator &eit ) {

// compute mean
rgb mean( 0.0f, 0.0f, 0.0f );
for(int w = -K; w <= K; ++w) {
for(int z = -K; z <= K; ++z) {

mean += inputPointSet(eit, w, z); // input[x+w][y+z]
}

}
mean /= (2*K + 1) * (2*K + 1);
// compute closest to mean
rgb closest = inputPointSet(eit, 0, 0); // input[x][y]
for(int w = -K; w <= K; ++w) {
for(int z = -K; z <= K; ++z) {

rgb curr = inputPointSet(eit, w, z); // input[x+w][y+z]
if( dist(curr, mean) < dist(closest, mean) )
closest = curr;

}
}
outputPointSet(eit) = closest; // output[x][y]

}
}

Fig. 1. Æcute implementation code for the CTM filter

const int K = 2; // 5x5 filter

// 2D iteration space is equivalent to a doubly nested loop:
// parallel for (int x = K; x < W-K; ++x)
// parallel for(int y = K; y < H-K; ++y)
IterationSpace2D iterationSpace( K, W-K, K, H-K );

// 2D array descriptors
Array2D < rgb > inputArray( W, H, &input[0][0] );
Array2D < rgb > outputArray( W, H, &output[0][0] );

// Filter class instantiation
CTMFilter filter( iterationSpace, K, inputArray, outputArray );

// Filter invocation
filter.execute();

Fig. 2. Æcute setup and invocation code for the CTM filter
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The precedence relationship R specifies constraints on the execution schedule: if itera-
tions i1 and i2 are in the relationship, i1 must be executed before i2; otherwise, i1 and
i2 can be executed in any order.

The partition P indicates sets of iterations that it is sensible to execute on the same
processing element (e.g. a set of iterations that exhibit data reuse). In this paper, we
assume that the working set of each p ∈ P fits into local memory, assuming a set
number of buffers (e.g. two for double buffering); the programmer either partitions the
iteration space manually or opts to use a simple automatic partitioning method which
computes the maximum iteration subspace size based on this constraint.

In the CTM filter example, the iteration space is a two-dimensional rectangle congru-
ous with the image dimensions; if the input and output images are disjoint, the execution
schedule can be unconstrained, maximising parallelism; and the partition can be tiling
into rectangular w × h tiles, maximising locality:2

– I =
{
(x, y) : K ≤ x < W − K, K ≤ y < H − K

}
– R = ∅
– P =

{{(x, y) ∈ I : w(i − 1) ≤ x − K < wi, h(j − 1) ≤ y − K < hj} :
1 ≤ i < (W − 2K)/w, 1 ≤ j < (H − 2K)/h

}
3.3 Access Metadata

Let M be a set of memory locations.

Definition 2. Access metadata for a kernel is a tuple A = (Mr, Mw), where:

– Mr : I → P(M) specifies the set of memory locations Mr(i) that may be read on
iteration i ∈ I;

– Mw : I → P(M) specifies the set of memory locations Mw(i) that may be written
on iteration i ∈ I .

Often, the set of memory locations accessed on a given iteration is a function of the
iteration vector (in which case we say that the set is indexed by the iteration vector);
the set can also include locations that are independent of the iteration vector such as
scalars.

In the CTM filter example, the input and output memory locations are indexed:

– Mr =
{
input[x][y] : (x, y) ∈ I

}
;

– Mw =
{
output[x + w][y + z] : (x, y) ∈ I, −K ≤ w, z ≤ K

}
.

3.4 Æcute Specifications

Definition 3. An Æcute specification for a kernel is a tuple S = (A, E), where A and
E are its access and execute metadata.

Access metadata ‘knows’ about memory locations that may be accessed on each iter-
ation, while execute metadata ‘knows’ about iteration subspaces that are to be executed.

2 We assume, for simplicity, that the iteration space contains a whole number of tiles.
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Given an iteration subspace p ∈ P and access metadata, we can (over) approximate the
set of memory locations that the subspace may read and write: Mr(p) = {Mr(i) : i ∈
P} ∈ P(L) and Mw(p) = {Mw(i) : i ∈ P} ∈ P(L). Combining execute and access
metadata in the form of Æcute specifications enables powerful optimisations such as
software pipelining and exploiting data reuse.

In the CTM filter example, Æcute specifications can be used to trigger data prefetch-
ing of image rows into local memory, to ensure that the data is delivered in time for
processing.

4 Æcute C++ Framework

We have developed a prototype framework to support the Æcute concept, consisting of
a set of C++ descriptor classes (§4.1) and a run-time system (§4.2), which compile for
the Cell BE architecture.

4.1 The Æcute C++ Classes

The formal iteration space I is specified via an instance of an IterationSpace class,
which records the number of dimensions and size of each dimension, as in Fig. 2. Prac-
tically useful timestamp functions (T ) are available in our prototype via the definition
of serialised dimensions on iteration spaces, e.g. using the COLUMN_SERIAL directive.
Partitioning of the iteration space is performed in the current prototype with a call to
the setBlockSize function, which is parameterised with the size of a partition in each
dimension of the iteration space.

A kernel class contains a main kernel method parameterised by an iterator to be
executed on each point in the iteration space (e.g. see Fig. 1). The iterator is used to
access indexed memory locations.

The memory mappings Mr and Mw are defined by access descriptor classes. An
access descriptor object is created for each input or output associated with a kernel,
and is invoked from the kernel code, parameterised by an iterator, to gain access to
data. The prototype implementation supports the following access descriptor classes.
For each member of the iteration space:

– Point: returns a single element of the data structure.
– Neighbourhood: returns a set of memory locations within a given radius of a

primary address.
– Buffer: returns a set of points with per point addressing into the data structure

based on a combination of the primary address and buffer offset.

In each case the primary address is computed from the iteration space coordinates
provided by the Æcute iterator. To these coordinates we may apply a conversion func-
tion. In the examples of §5 we see Project, ReAddress, Identity and BitRev.
Project is an affine scaling function. ReAddress is a proxy for applying separate
conversions to each dimension: in our examples, the identity function Identity and a
custom bit-reversal function, BitRev. The prototype framework can be extended with
custom conversion functions for specific applications.
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4.2 The Æcute Run-Time System

The Æcute run-time system comprises two components: a PPE run-time and an SPE
run-time, an instance of which runs on each active SPE.

The PPE run-time spawns an SPE run-time process on each available SPE. Based
on an iteration space partitioning specified by the programmer, or via a partitioning ob-
tained automatically at run-time by querying access metadata, the PPE run-time gener-
ates a list of partition identifiers. Partition identifiers are farmed out to the SPEs, which
are responsible for executing the kernel iterations associated with each partition. Once
all partitions have been assigned, the PPE run-time waits for completion reports from
all SPEs before returning control to the main program.

On initialisation all access descriptors in the SPE instance create a series of buffers
based on the maximum partition size. At least one buffer will be present in each input
and output descriptor, and possibly more if the configuration specifies this.

An instance of the SPE run-time repeatedly receives a list of partition identifiers from
the PPE. The SPE instance takes each partition identifier in turn and converts that into a
set of iterations. The conversion is possible because the SPE code is constructed using
the same iteration space data as the PPE code. This information is partially static, and
partially based on parameters passed on construction from the PPE side.

The partition information is passed to the access descriptors assigned to the kernel,
which select available data buffers and construct appropriate DMA operations to copy
data in. When no buffer is available, a blocking call to wait on DMA writes is initiated
to allow buffers to be cleared and reused. The kernel checks that the data it needs for
a given partition identifier is available by querying the access objects, and will block
on the DMA reads if it is not. On completion of computation, partition completion
information is passed to the access objects which will perform DMA write backs and
free buffers as appropriate.

Double or triple buffering naturally occurs through this system, as a fixed buffer set
is automatically managed to ensure that data is always available, without additional pro-
grammer intervention. This multiple buffering enables dynamic software pipelining of
the execution to improve the efficiency of memory access. In addition, the run-time sys-
tem will maintain buffers without reloading, or without writing back early, if it detects
that it already had the appropriate data resident in an appropriate buffer.

5 Further Examples

5.1 Matrix-Vector Multiply

A matrix-vector multiply y = Ax can be implemented as a two-dimensional iteration
space of the dimensions of matrix A. Vectors x and y are one-dimensional, so we project
the iteration space to obtain the vector indices.

Æcute specification S = ((Mr, Mw), (I, T, P )):

– I = {(i, j) : 0 ≤ i < H, 0 ≤ j < W}
– R = {((i, j), (i, k)) : 0 ≤ i < H, 0 ≤ j < k < W}
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– Mr(i, j) = {A[i][j], x[j]}
– Mw(i, j) = {y[i]}
– P =

{{(i, j) ∈ I : h(k − 1) ≤ i < hk, w(l − 1) ≤ j < wl, } :
1 ≤ k < H/h, 1 ≤ l < W/w

}
(As before, we tile the iteration space, assuming local memory can hold the working set
for a rectangular tile of h × w iterations.)

The precedence relation indicates that the loop indexed by i is parallel and the loop
indexed by j is serial. This serialisation removes the requirement for PPE-side accumu-
lation of partial results. If the += operator could be guaranteed to be associative then the
j loop could also be specified as parallel, by setting R = ∅.

Æcute code. The kernel operates over the input matrix and vector and the output vector.
Note that we specify that the column dimension is serial, which preserves the order of
multiply-accumulate operations.

IterationSpace2D iterationSpace(W, H, COLUMN_SERIAL);
Array2D < float > inMatrix(H, W, pInMatrix);
Array1D < float > inVector(W, pInVector);
Array1D < float > outVector(H, pOutVector);
MatrixVectorMul matvec(iterationSpace, inMatrix, inVector, outVector);
// Matrix-vector multiply invocation
matvec.execute();

The MatrixVectorMul kernel class is roughly as follows:

class MatrixVectorMul : public StreamKernel {
Point2D_Read inputMatrix( iterationSpace, inMatrix);
Point2D_Read < Project2D1D< 1, 0 > >

inputVector( iterationSpace, inVector );
Point2D_Write < Project2D1D< 0,1 > >

outputVector( iterationSpace, outVector );

MatrixVectorMul( IterationSpace 2D iterationSpace,
Array2D inMatrix, Array1D inVector, Array1D outVector ){...}

void kernel( const IterationSpace2D::element_iterator &eit ) {
outputVector( eit ) += inputVector( eit ) * inputMatrix( eit );

}
};

where Project2D1D projects a 2D-space point onto a 1D-space point. For example,
Project2D1D<0,1> projects (i, j) onto j.

5.2 Bit-Reversal

Many radix-2 FFT algorithms start or end their processing with data permuted in bit-
reversed order. The reordering is typically done by a special subroutine, called
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bit-reversed data copy (often abbreviated, if inaccurately, to bit-reversal). We assume
that the subroutine reads an array x[ ] of N = 2n elements and writes these elements
into an array y[ ] of N elements, such that x and y do not overlap, in bit-reversed order.
That is, an element of the source array at the index written in binary as b0 . . . bn−1,
is copied to the target array at the index with reversed digits bn−1 . . . b0. The function
σn(i) reversing bits of index i having n bits can be implemented as [8]:

unsigned int reverse_bits(unsigned int n, unsigned int i) {
i = (i & 0x55555555) << 1 | (i >> 1) & 0x55555555;
i = (i & 0x33333333) << 2 | (i >> 2) & 0x33333333;
i = (i & 0x0f0f0f0f) << 4 | (i >> 4) & 0x0f0f0f0f;
i = (i<<24) | ((i & 0xff00)<<8) | ((i>>8) & 0xff00) | (i>>24);

return (i >> (32 - n));
}

Few programmers will recognise that this sequence of bit-wise operations and shifts im-
plies that y[ ] will contain a permutation of x[ ] and hence assignments can be performed
in any order. One cannot expect that a compiler will recognise this either.

In addition to obscuring parallelism, bit-reversed indexing is unfriendly to hardware-
managed caches: starting from a certain array size N = 2n, each access to y[ ] results
in a cache miss. To avoid cache associativity problems inherent in bit-reversals of large
arrays, the best approach, used by Carter and Gatlin in the so-called Cache Optimal
BitReverse Algorithm (COBRA) [9], introduces a cache-resident buffer.

If the buffer holds B2 elements, the iteration space is partitioned into N/B2 inde-
pendent subspaces. For each subspace, B source blocks of B elements each are copied
into the buffer, permuted in place, and then copied out from the buffer into B target
blocks of B elements each.

The permute kernel of COBRA can be off-loaded to a co-processor having local
memory. The challenge is to implement the copy in and copy out loops, where the copy
out loop uses a non-affine access function σn(i).

Somewhat surprisingly, implementing data movement code can take longer than im-
plementing the kernel proper (according to the experience of one of the authors). Again,
a desired alternative is to derive data movement from Æcute specifications.

Æcute specification S =
(
(Mr, Mw), (I, R, P )

)
:

– I = {t : 0 ≤ t < N/B2}
– R = ∅;
– P =

{{t} : t ∈ I
}

– Mr(t) = {x[u.t.v] : t ∈ I, 0 ≤ u < B, 0 ≤ v < B}
– Mw(t) = {y[u.σn(t).v] : t ∈ I, 0 ≤ u < B, 0 ≤ v < B}.

The precedence function indicates that the one-dimensional iteration space is un-
ordered. In this case each partition is a single element of the iteration space, because
the blocks are disjoint and fairly large. In the Æcute code below we see that the pro-
grammer can manually set the partition size.
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Æcute code As a result of the B × B blocking, it is natural to think of the input and
output arrays of N elements as two-dimensional, having N/B rows of B elements each.
IterationSpace1D iterationSpace(N/(B*B));
Array2D <float> inputData(B, N/B, pInputData);
Array2D <float> outputData(B, N/B, pOutputData);
BitReversal bitrev(iterationSpace, inputData, outputData);
bitrev.iterationSpace.setBlockSize( 1 );
// Bit-reversal invocation
bitrev.execute();

We iterate over independent subspaces t ∈ I , copying rows numbered as u.t, 0 ≤
u < B, into the local buffer, applying the kernel, and copying rows numbered as
u.σn(t), 0 ≤ u < B, from the local buffer.
class BitReversal : public StreamKernel< BitReversal > {

Buffer2D_Read
input(iterationSpace, inputData, B);

Buffer2D_Write < ReAddress2D< Identity, BitRev > >
output(iterationSpace, outputData, B);

BitReversal( IterationSpace 2D iterationSpace,
Array2D input, Array2D output ) {...}

// Do in place permutation
void kernel(const IterationSpace2D::element_iterator &eit){

...
}

};

ReAddress takes the (i, j) coordinate formed from the iteration space point and the
buffer coordinates and applies the specified pair of functions to i and j respectively.
BitRev reverses bits of the j value to correctly address the destination for the row by
calling the reverse_bits function shown earlier.

6 Experimental Evaluation

We use a 3.2GHz Cell processor on a Sony PlayStation 3 console, running Fedora Linux
(2.6.23.17-88.fc7), with IBM Cell SDK 2.1. We compiled the benchmark programs
using the highest optimisation settings, and executed them on all six SPEs that are
available to the programmer on a PlayStation 3.

6.1 Implementation

We evaluate our prototype Æcute framework against alternative implementations,
which use hand-written DMA transfers and a software-based SPE cache. The cache al-
lows remote data to be accessed in a familiar way, so that code can be quickly ported to
run on an SPE. In our experiments, we use the standard cache implementation provided
with SDK 2.1 [10]. We use a 4-way set associative cache with default “write-back”
write policy and “round-robin” replacement policy, and vary the number of cache sets
and line size on an application-specific basis.
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Fig. 3. Closest-to-mean filter

The kernel code is essentially the same, with minor changes to support the use of
Æcute framework classes and software cache functions.

6.2 Benchmark Details

We evaluate the benchmarks described in §3 and §5.

Closest-to-mean filter (§3.1). Fig. 3 shows execution time normalised to code with
hand-written DMA transfers. We consider two neighbourhood diameters N : 15 and
63, and two image sizes D × D where D is: 256 and 1024. These represent increasing
computation workload. We also consider three different iteration space tile sizes: 20×20
(default square size, which is calculated automatically under the constraint that the tile
footprint must fit into local memory); 5 × 40; and 40 × 5.

For D = 256 and N = 15, the best Æcute code performs within 40% of hand-
written code; for N = 63, within 15%: the increased workload amortises the overhead
of interpreting Æcute specifications. In contrast, the overhead of using the software
cache grows with increasing neighbourhood size (which perhaps can be remedied by
tuning the cache parameters). For D = 1024 and N = 63, the overhead drops to 12%.

We observe that no tile size was universally best. Given the simplicity of varying tile
sizes, the best tile size could be found by iterative search. In contrast, it is usually more
difficult to adapt code with hard-coded tile sizes.

Blocked DMA transfers, which are supported naturally by the partitioning and au-
tomated buffering in the Æcute system, and implemented in the hand written code,
improve the efficiency of memory traffic and enable both hand-written and Æcute code
perform far better than code using the software cache.

Matrix-vector multiply (§5.1). For this example we hand-vectorised the entire block
computation for efficiency. The hand written and software cache based code are simi-
larly vectorised for fair comparison. While the Æcute model looks promising for
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Fig. 4. Matrix-vector multiply normalised to execution time of hand written code

automatic vectorisation, it is important that the programmer retains full control over
kernel optimisations should automatic optimisations fail.

Fig. 4 shows normalised execution time for various matrix sizes. The best tile size
is 2–3 slower than hand-written code, but considerably faster than the software cache
implementation. The run-time overhead associated with the Æcute framework is signif-
icant for this example due to the low arithmetic density of the matrix-vector multiply
operation. The hand-written implementation requires less SPE-PPE communication:
the SPEs are able to compute results entirely independently.

Bit-reversal (§5.2). Fig. 5 plots execution time in milliseconds against n = log2 N ,
the bitwidth of the array index. We see smooth scaling of performance with the size
of the dataset. In addition, the performance of the Æcute implementation tracks that
of the hand-written implementation with a near-constant scaling. In this case, while
remote memory accesses are inherently non-contiguous due to bit-reversed indexing
in the algorithm, the system can construct efficient DMA list transfers from Æcute
specifications.

7 Related Work

Recent work by Solar-Lezama et al. on sketching [11] aims to automate the optimisation
of simple computation kernels. Where the Æcute model defines iteration spaces and
memory access patterns declaratively to localise memory access, sketching supports a
rough definition of an optimised implementation and attempts to search for a series of
transformations to convert one to the other.

Saltz et al. [12] propose run-time parallelisation of loop nests that defy compile-time
dependence analysis. At run-time, inspector procedures identify parallel wavefronts of
loop iterations, which executor procedures then distribute among processors. In con-
trast, our approach relies on the programmer to supply information that the compiler
may fail to extract from the program.
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The emergence of architectures having software-managed memories (in particular, of
Cell) has spurred the development of high-level programming abstractions, addressing
the issue of copying data between distributed memories.

Sequoia. The Sequoia language [13] from Stanford University abstracts parallelism and
communication by introducing tasks: side-effect free methods using the call-by-value-
result (CBVR) argument passing mechanism. The abstract machine model of Sequoia
is a tree of (physical or virtual) memory modules. Each task runs at a single node of the
tree and can directly access memory only at this node. Tasks can spawn subtasks on the
same node or child nodes. Upon calling a subtask, input data from the caller’s address
space is copied into the callee’s address space, output data is computed and then copied
out into the caller’s address space on return.

CellSs. CellSs [14] is a programming model for the Cell architecture from Barcelona
Supercomputing Centre. Similar to Sequoia, CellSs annotations to C programs specify
a task for execution on the SPEs and its arguments.

Sieve C++. In Sieve C++ [15][16], a C++ extension from Codeplay Software, the pro-
grammer can place a code fragment inside a sieve scope—a new lexical scope prefixed
with the sieve keyword—thereby instructing the compiler to delay writes to memory
locations defined outside of the scope (global memory), and apply them in order on
exit from the scope. The semantics of sieve scopes can be considered as generalising
to composite statements the semantics of the Fortran 90 single-statement vector as-
signments [17]. This semantics, named call-by-value-delay-result (CBVDR) [15], dis-
allows flow dependences and preserves name dependences on data in global memory,
and by restricting dependence analysis to data in local memory makes C++ code more
amenable to automatic parallelisation.
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8 Conclusion and Future Work

We have presented the concept of decoupled Access/Execute specifications and demon-
trated their convenience, flexibility and efficiency on three benchmark examples. Our
Æcute implementation automates the data movement element of the accelerator pro-
gramming task. The blocking of DMA transfers and construction of DMA lists enabled
by separating the memory access from computation results in more efficient memory
traffic.

We are looking into extending this work in several ways.
First, Æcute specifications may be thought of at a level of compiler intermediate rep-

resentation rather than a high level programming language. Thus, we plan to investigate
‘front-ends’ that will derive Æcute specifications from higher-level abstractions, in par-
ticular, from the polyhedral model [18]. In addition, we wish to investigate ‘back-ends’
for other accelerator architectures, such as GPUs.

Second, we plan to integrate Æcute specifications into a compiler, to reduce both the
overhead of interpreting Æcute specifications at run-time and the size of generated data-
movement code, which must be minimised to conserve precious local memory. As in
Gaster’s streaming extension to OpenMP [19], compiler support can be layered on top
of an extention and streamlining of the current Æcute classes, allowing the application
to work correctly with or without compiler support.

Adding compiler support is related to our work on metadata-enhanced component
programming [20], which uses Æcute-like metadata, describing the input-output inter-
faces of components, such that combining the components can optimise data flow at
run-time. We aim to achieve similar optimisations by applying fusion optimisations to
Æcute kernels.

Third, we plan to extend the expressivity of Æcute metadata to handle a larger set
of kernels, associated with full scale applications. The current Æcute implementation
supports only a limited range of partitioning options and mappings to data. We can
extend this by using a hierarchical partitioning and improving the search options, e.g.
for locality. In addition, we wish to support unstructured mesh based computations,
such as fluid flow. For unstructured data we need to extend the memory read and write
sets to support indirection while maintaining decoupling of access and execute.
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tiply, the anonymous reviewers and Alec-Angus Macdonald for their helpful comments,
and the EPSRC for funding this work through grant number EP/E002412/1.
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Abstract. This paper advocates the placement of Architecturally Visible Com-
munication (AVC) buffers between adjacent cores in MPSoCs to provide high-
throughput communication for streaming applications. Producer/consumer
relationships map poorly onto cache-based MPSoCs. Instead, we instantiate ap-
plication specific AVC buffers on top of a distributed consistent and coherent
cache-based system with shared main memory to provide the desired function-
ality. Using JPEG compression as a case study, we show that the use of AVC
buffers in conjunction with parallel execution via heterogeneous software pipelin-
ing provides a speedup of as much as 4.2x compared to a baseline single processor
system, with an increase in estimated memory energy consumption of only 1.6x.
Additionally, we describe a method to integrate the AVC buffers into the L1 cache
coherence protocol; this allows the runtime system to guarantee memory safety
and coherence in situations where the parallelization of the application may be
unsafe due to pointers that could not be resolved at compile time.

1 Introduction

The memory and communication architectures proposed for current and next genera-
tion multi- and many-core MPSoCs do not match the needs of streaming applications.
Streaming applications use the Synchronous Data Flow (SDF) model of computation
[11], in which coarse-grained communication is modeled as a pipeline; this pipeline,
in turn, can be viewed as the concatenation of a set of producer/consumer relation-
ships. The performance of streaming applications highly correlates with the ability of
the pipeline to effectively (1) overlap computation with communication and (2) balance
the workload across the multitude of cores in the system. The non-determinism im-
posed by packet-based on-chip networks is detrimental; likewise, buses and crossbars
do not support concurrent communication and quickly saturate as the number of cores
increases. Furthermore, cache-to-cache communication is a bottleneck, as the concur-
rent transfer of data from producer to consumer leads to an excess of coherence traffic
within the memory system. These sources of overhead suggest that alternative MPSoC
interconnect is required to support streaming applications.

The ideal communication architecture for a producer/consumer relationship is a
double-buffer placed between the producer and the consumer. The buffer is replicated
so that the producer can write to one buffer as the consumer concurrently reads from
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the other; this enforces the safety property that the producer cannot overwrite the con-
sumer’s data before it is read. When the producer and consumer are finished writing and
reading respectively, they swap buffers and repeat the process. This communication ar-
chitecture has already been used in Streamroller [10], a high-level synthesis system for
streaming applications; it also bears some principle similarities to the FIFO interface of
the Tensilica LX2 processor [18].

This paper advocates the instantiation of application-specific double buffers between
adjacent cores in MPSoCs in order to enhance memory system performance for stream
programs. We refer to each double buffer as a single Architecturally Visible Communi-
cation (AVC) buffer. AVC buffers can be viewed as a scratchpad memory that is shared
between two cores.

AVC buffers offer several distinct advantages over on-chip networks and bus-based
communication schemes: (1) communication is deterministic; network congestion and
bus saturation are wholly eliminated; (2) computation and communication are effec-
tively overlapped; compiler techniques to optimize load-balancing across cores already
exist; (3) each access to the AVC buffer is cheaper than a cache access: since there is no
tag array, and only one way (direct mapped), each access to the AVC buffer consumes
less energy and takes fewer cycles than a cache access; and (4) cache coherence traffic
for producer/consumer data is eliminated, reducing pressure on the memory subsystem.

At present, automatic parallelization methods [14,19] are not safe for streaming
applications written in languages such as C that permit arbitrary pointer arithmetic.
Profile-based algorithms are dependent on the dataset used, and therefore may not un-
cover all data-dependencies. It is conceivable that a pointer that could not be resolved
by the compiler may attempt to modify the contents of the AVC buffer. Furthermore, the
processor that executes this access may not be the producer or consumer of the data in
question. This access cannot execute, as the data has been statically removed from the
memory system by the compiler. To ensure program correctness, in the rare event that
a undiscovered data-dependence does occur during runtime, a safety engine is invoked
to dynamically resolve the coherence problem by removing data from the AVC buffer
and reinsert it into the memory system. Although this degrades performance, it may be
necessary to ensure the correctness of the program across all possible executions.

The remainder of the paper is organized as follows: Section 2 details the related
work in the domain. Section 3 discusses the specific problems that one could encounter
in the introduction of AVC buffers inside an MPSoC, and brings effective and efficient
solutions to all of them. We prove this in Section 4.2 by addressing a complete appli-
cation displaying all qualitative situations of interest, and by using the experimental
environment described in Section 4.1. Section 5 concludes the paper.

2 Related Work

In the Streamroller high-level synthesis system [10], high-throughput pipelines are
synthesized for streaming applications written in C; AVC buffers are placed between
adjacent pipeline stages. Unlike in our work, computing elements are dedicated loop
accelerators rather than processors. The Tensilica LX2 processor [18] allows the user to
instantiate FIFOs between communicating processors, similar in principle to our AVC
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buffers. Our AVC buffers, in contrast, are more general: the producer (consumer) may
write (read) the data from its buffer in any order, i.e., FIFO semantics are not imposed
on the communication medium.

One of the challenges is to compile sequential applications written in high-level lan-
guages, such as C/C++. Rul et al. [14] developed heavyweight, unsafe profile-based
methods to identify communication patterns in sequential programs. This method is
unsafe, as some communication patterns that are theoretically possible may not be in-
duced to occur by the input data used to collect the profile. The parallelization operates
under the assumption that inter-processor communication is expensive, so the authors
attempt to map producers and consumers onto the same target architecture. In this work
they introduce homogeneous, and heterogeneous software pipelining, where (1) in ho-
mogeneous software pipelining, each processor executes all kernels on a subset of the
input dataset in data parallel fashion, and (2) in heterogeneous software pipelining, each
processor executes one single kernel, and applies it to the complete input dataset. The
study of bzip2 in [14] concludes that homogeneous software pipelining is superior to
heterogeneous software pipelining; our results show that the inclusion of AVC buffers
leads to the opposite conclusion.

Thies et al. [19] described a semi-automated method to identify coarse-grained
pipeline parallelism in programs written in C. Similarly to our work, the authors con-
cluded that heterogeneous pipelining is superior to homogeneous pipelining for stream-
ing applications. Their method, however, requires that the programmer annotate the
code with explicit pipeline boundaries. In principle, their method could be made aware
of AVC-buffers and it could target a system such as ours. As our system is application-
specific, we give the programmer/compiler the freedom, in principle, to chose AVC
buffers of the appropriate size.

Streaming languages, such as StreamIt [2] are dedicated to streaming applications;
due to their favorable semantics, numerous compiler optimizations have been proposed,
many of which are relevant to this work. Sermulins et al. [15], in the context of a com-
piler for a single processor system, argued in favor of heterogeneous pipelining that has
many similarities to ours. Consider a simple pipeline with two stages, S and T. One
approach is to use an ordering ordering STSTST... for pipeline stage invocation. If the
instruction cache (I-cache) is large enough to hold S or T, but not both, then each invoca-
tion would cause a miss in the I-cache. On the other hand, a ordering similar in principle
to homogeneous pipelining would yield an invocation order of SS....STT....T, where S
is invoked N times followed by N invocations of T. The only I-cache miss would oc-
cur when the ordering transitions from S to T. The drawback is that S would produce
N times as much data before T could start consuming it; in principle, this could lead
to data cache misses. Their compiler, heuristically attempts to find the best invocation
ordering to minimize the aggregate overhead due to cache misses. What is important
to note is that the homogeneous pipeline organization creates the I-cache problem, as
each processor must execute each stage of the pipeline; heterogeneous pipelining, in
contrast, does not suffer from this drawback, as just one pipeline stage executes on each
processor through the duration of the application.

Several processor architectures for streaming applications have been proposed in
recent years. The Imagine [1], Storm-1 [9], and Merrimac supercomputer [3] employ
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wide SIMD pipelines that are fed by local register files (LRFs); a very wide streaming
register file (SRF) is placed between the LRFs and memory, leading to an effective over-
lap of computation and communication. The SODA architecture for software-defined
radio [13] contains a 32-way wide SIMD pipeline, a simpler scalar pipeline, and an
address generation pipeline; communication between these pipelines is accomplished
through scratchpad memories, with shuffle exchange networks to assist with serial-to-
parallel and parallel-to-serial conversion, which occurs at critical points in their appli-
cation domain. The Raw microprocessor [17] uses an a scalar operand on-chip network
to route streaming data between adjacent functional units; delays, which vary based on
the relative placement of tasks, are exposed to the compiler. Our MPSoC is most simi-
lar to Raw, as the processors themselves are simple 5-stage RISCs, without support for
SIMD operations and wide register files; however, our use of AVC buffers is similar to
the SRF/LRF and scratchpad memories, but for processor-to-processor communication.

Several compiler optimization methods for streaming programs targeting streaming
architectures have been proposed in recent years. Das et al. [4] focused on techniques
to effectively map data to the SRF, along with strip mining, loop unrolling and software
pipelining. Lin et al. [12] described a hierarchical modulo scheduling algorithm tar-
geting SODA, which used a general solver tool based on Satisfiability Modulo Theory
(SMT). These methods are tied to specific target processor architectures and attempt to
exploit features that are not present in our system.

Gordon et al. [6] developed several compiler optimizations targeting the Raw micro-
processor. Their work focuses on splitting and fusing tasks within the streaming appli-
cation’s intermediate representation, and then mapping them onto different processors
in the system. Their abstract model of communication is a FIFO, similar in principle to
the Tensilica LX processor feature described above [18]; however, it must be mapped
onto the resources of the target machine: in this case, Raw’s scalar operand network. In
a follow-up paper, Gordon et al. [5] refined their splitting and fusing to account for both
task and data parallelism, and introduced a new method for coarse-grained software
pipelining; they achieved an average improvement of 1.87x over their previous work.
In principle, these methods could easily be adapted to exploit the AVC buffers; the de-
velopment of automatic parallelization and compilation techniques targeting MPSoCs
with AVC buffers is left open for future work.

3 The Importance of Inter-processor Communication

This section begins with the assumption that all data dependencies can be resolved at
compile-time, including pointers. We show how the proposed ideas can be generalized
for the cases where all data-dependencies cannot be resolved.

3.1 Producer/Consumer Relationships

A producer/consumer relationship can be qualified as the sharing of a data structure
between two or multiple kernels/functions in a program. The shared data structure is in
its simplest form a scalar, but can also be a multidimensional array. In this work we as-
sume the shared data structures to be only a fraction of the size of the data caches. The
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Fig. 1. The four different types of producer/consumer relationships

rationale behind this assumption is that (1) excessively large data structures would lead
to extensive capacity misses inside the data-cache, thus increasing energy consumption
and impeding performance and (2) they would require large buffers (memory), thus
potentially increasing the processor’s critical path (see Section 3.5), and would con-
sume excessive silicon real estate. Producer/consumer relationships can be divided into
four different types as shown in Figure 1. Note, however, that a producer may, dur-
ing its execution, also read from the data structure; a consumer may also write to the
data structure during its execution. Additionally producer/consumer relationships can
be classified based on their access patterns (1) sequential access patterns occur when
the elements of the data structure are accessed in increasing/decreasing address order;
(2) random access patterns occur when the order of accessing the elements of the data
structure is random or cannot be resolved at compile time.

3.2 JPEG Compression Algorithm

For the remainder of the paper we use the JPEG compression algorithm as motivational
example and case study. Although JPEG compression is a relatively simple algorithm,
it is easy to understand, and representative for streaming applications.

Figure 2 shows the block diagram of the JPEG compression algorithm. The top of
Figure 2 shows the four kernels of the JPEG compression algorithm; the bottom shows a
schematic data-flow representation of the algorithm. The JPEG compression algorithm
contains four major producer/consumer relationships. The first three are between the
four kernels, and require a buffer containing 8x8 16-bit values. The fourth one is not
explicitly visible in Figure 2, as this relationship is between two consecutive entropy-
encoding steps. As the JPEG compression algorithm uses differential DC-component
compression, the entropy-encoding kernel has a producer/consumer relationship with
itself in form of three 8-bit scalars.

The access patterns can be quantified as: (1) sequential writes by the color space
conversion and quantization kernels; (2) random reads/writes by the discrete cosine
transformation and entropy encoding kernels. All producer/consumer relationships are
single producer/single consumer, except for the Discrete Cosine Transformation (DCT)
kernel. As the DCT-kernel performs its operations first column-wise, and then row-wise,
it can be viewed internally as a multiple producer/multiple consumer relationship.
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Fig. 2. The Block diagram of the JPEG compression algorithm as motivational example

3.3 Parallelization

In this work we apply synchronous software pipelining with static scheduling to per-
form parallelization. The synchronous nature of the pipelining is achieved by applying
hardware-barrier synchronization between the kernels of the program. A barrier can
be seen as a global clock to the system. Each processor can proceed from the barrier
if and only if all other processors have entered it. Contrary to synchronous software
pipelining, asynchronous software pipelining synchronizes by completion detection in
the form of locks/semaphores, and is beyond the scope of this work.

In software pipelining there are basically two styles: homogeneous, and heteroge-
neous pipelining. Figure 3 shows the two software pipelining styles applied to the
JPEG compression algorithm. Homogeneous software pipelining keeps the producer/
consumer relationships within the data cache of each processor; each processor, how-
ever, must store the complete program in its instruction cache. Heterogeneous software
pipelining, distributes the program code across the instruction caches of the different
processors without replication; moreover, it exposes the producer/consumer relation-
ship to the memory subsystem. The trade-off of which software pipelining style to
use therefore lies in the overhead induced by capacity misses in the cache versus pro-
ducer/consumer relationships exposed to the memory subsystem. As the cost of ex-
posing producer/consumer relationships is higher than the capacity-miss overhead (as
discussed in Section 3.5), most parallelization algorithms tend to prefer homogeneous
over heterogeneous software pipelining.

In our system, parallelization and the scheduling of kernels on processors is per-
formed statically at compile time; each kernel will have a direct connection to the ap-
propriate AVC buffer(s).

CPU 1
CPU 2
CPU 3
CPU 4
CPU 5 t

Color Space Conversion
Discrete Cosine Transformation
Quantization Low

Quantization High
Entropy Encoding

(a) Homogeneous software-pipeline.

CPU 1
CPU 2
CPU 3
CPU 4
CPU 5 t

Color Space Conversion
Discrete Cosine Transformation
Quantization Low

Entropy Encoding
Quantization High

(b) Heterogeneous software-pipeline.

Fig. 3. The two software pipelining styles applied to the JPEG compression algorithms
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Fig. 4. The exposure of producer/consumer relationships in three different memory subsystems

3.4 Coherence and Consistence

The introduction of distributed memory elements in a shared-memory system leads
to the situation where multiple-copies of the same data are dispersed throughout the
system. If these copies are read-only there is no problem; however if one of these copies
is assigned a new value then potential coherence and consistence violations may occur.

The sequential consistence model states that all read and write operations are ob-
served as atomic, and in program order. Our programming paradigm is based on this
consistence model. The consistence model is primarily enforced in software, but may
also be hardware-assisted. In this work we assume software-enforced consistence.

The coherence rule is less strict than the consistence rule, as it only requires all write
operations to be seen as atomic operations. In other words, a read operation should
always see the latest written value to the shared-memory, regardless of where the write
occurs. Coherence, in general, is enforced by the compiler in scratchpad memory-based
systems and by hardware in cache-based systems.

3.5 AVC-Buffers, Caches, and ScratchPad Memories

In a single processor system, producer/consumer relationships are generally hidden
from the memory subsystem. Although the shared data structures are allocated in main
memory, they will almost never leave the data-cache due to (1) explicit locking of the
cache-lines in which the shared data structures reside [7], or (2) implicit locking of the
cache-lines in which the shared data structures reside by exploiting the temporal lo-
cality of the data structure by using, for example, a Least Recently Used replacement
policy in the cache. In the rare case, when no inter-processor communication exists
(e.g., completely data-parallel algorithms), the same technique can be applied to cache-
based MPSoCs. Streaming applications, however, require inter-processor communica-
tion, and a coherence problem arises (see Section 3.4). An example of inter-processor
communication is an exposed producer/consumer relationship between two processors.
To insulate the programmer/compiler from the coherence problem, most MPSoCs are
provided with a hardware coherence protocol. Most prominent hardware coherence pro-
tocols are snoopy protocols with three or more states. The simplest snoopy protocol is
the Modified, Shared, and Invalid (MSI) states based protocol. More sophisticated pro-
tocols utilize MESI or MOESI states. It is beyond the scope of this work to describe the
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details of these protocols; however it is important to note that they severely impact on
the overhead induced due to exposed producer/consumer relationships. In this work we
utilize the most prominent MESI states-based hardware coherence protocol.

To understand the cost involved when a producer/consumer relationship is exposed
to the memory subsystem, we consider a single producer/single consumer relationship
as shown in Figure 1. The different stages involved in the coherence protocol are shown
in Figure 4(a). The communication starts by the consumer cache making a request (read
or write) to the memory subsystem for a shared data structure—as shown to the left in
Figure 4(a). The consumer’s cache will request the data structure, which is assumed to
exist in a modified state in the producer’s cache; thus, the data structure is invalid in
main memory. Next the producer’s cache will abort the consumer’s request, as it holds
the latest copy. As a reaction to this request/abort action, the producer’s cache will write
back the shared data structure to main memory as shown in the middle of Figure 4(a).
Finally the consumer’s cache will resume the memory request and copies the “correct”
data structure to itself from main memory, and execution can continue—shown to the
right of Figure 4(a). During the write-back stage, the producer is likely to stall (imped-
ing the producer’s performance), whilst the consumer is likely to stall during the whole
transfer. Furthermore, extra energy is consumed, and bus bandwidth is expended by
the write-back/read action to and from main memory. An improved version of on this
scheme is to merge the write-back stage, shown in the middle of Figure 4(a), with the
resumed memory request phase —shown to the right of Figure 4(a). This optimization
gives the consumer the possibility to “read” the values of the data structure during the
write-back phase. This optimization will be referred to as a cache-to-cache copy.

The scratchpad memory approach is different than that of a cache-base system, as
it provides coherence at compile-time. In Virtual Shared ScratchPad Memory (VSPM)
systems, each processor can access each of the scratchpads at different costs. To deal
with shared data structures in conjunction with the coherence problem, the compiler
places the shared data structure solely in one scratchpad memory. Coherence is guaran-
teed, and less energy is consumed, as the data structure is not copied to main memory.
Arguably, the impact on performance, in comparison to a cache-based system is equal,
or even higher, as each access to a remote scratchpad memory is transmitted on the bus;
direct access to a cache is much faster—shown in the left of Figure 4(b). Also the impact
of bus bandwidth is at least as large as the cache-based system, as remote scratchpad
accesses require bus transactions.

AVC buffers, as shown on the right of Figure 4(b), completely remove the pro-
ducer/consumer traffic from the memory subsystem. AVC buffers benefit both from this
removal, and from the fact that the buffers are moved forward in the processor pipeline
using the Instruction Set Extension (ISE) interface of the processor. This has a signif-
icant impact on the organization of the pipeline, as AVC buffer accesses occur during
the execute stage of the pipeline, rather than the write-back stage. This ensures that the
AVC buffer load/store operations take a single cycle and are atomic. If the cache access
takes multiple cycles (3 cycles for a hit, in our system), then the AVC buffer must spend
an extra 3 cycles before it commits. If we have a store to the cache followed by an AVC
buffer store, the AVC buffer store would commit and retire itself before the cache store
commits and retires, violating consistence. Thus, number of cycles required to access
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the AVC would need to be the same as the number required to access the cache. This
consistence issue is wholly avoided by placing the AVC buffer at the execute stage of
the pipeline; although the AVC buffer store occurs before the cache store finishes, the
instructions are retired in-order, guaranteeing consistence.

Moving the AVC buffer load/store to the execute stage of the pipeline makes these
operations single-cycle and atomic. The disadvantage is that the delay of the AVC-
buffer might impact the processor’s critical path if the buffer size is large (i.e., the
memory read access time exceeds the processor’s critical path delay). The AVC buffer
does not impact the bus bandwidth, which increases performance, and reduces energy
consumption per access compared to a cache and less to equal energy consumption per
access compared to scratchpad memories.

3.6 Execution Safety

The discussion in Sections 3.1–3.5 assumed that all the data-dependencies of the shared
data structures could be resolved at compile time or by the programmer. In this scenario,
we can completely remove the data structure from the memory subsystem and move
it into AVC-buffers; however, if we cannot resolve these data dependencies, we must
ensure that the correct execution of the program is not jeopardized (we henceforth refer
to the correct execution as safe).

In a scratchpad-based system all data structures with unresolved data-dependencies
cannot be safely allocated to the scratchpad memory. When applying AVC-buffers in
a scratchpad based system, we must take a similar approach, as otherwise coherence
cannot be guaranteed and safety is jeopardized.

In cache-based systems, unlike scratchpad-based systems, coherence is dynamically
enforced by the hardware coherence protocol. As our system contains caches as well
as AVC buffers, we can use the hardware coherence protocol to allow data structures
with unresolved data-dependencies to be candidates for AVC-buffer allocation. We
will refer to these data structures with unresolved data-dependencies as unsafe struc-
tures. To guarantee the safety of unsafe structures, a three stage approach is taken.
First, we allocate unsafe structures to both the AVC-buffers and main memory. Sec-
ondly, we transform the AVC-buffer into a coherence protocol-enhanced mini-cache. Fi-
nally, to prevent performance losses due to false sharing, we cache-block align all data
structures.

Block Tag Block offset
Start Block Index

Block Count

Data structure bytes Overhead bytes due to cache−block miss alignment

Data structure start address

Block state bits (MESI)

Fig. 5. The AVC buffer converted to a micro-cache
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The impact of the redundant allocation of data in both AVC-buffers and memory,
is minimal; we lose the advantage of freeing up main memory space by removing the
unsafe-structures from it; however, in all other systems this double allocation occurs
implicitly: the structure resides in both cache/scratchpad and memory.

The impact of the second action is more severe. The rationale behind the transfor-
mation is that in most cases the unsafe structure resides in the AVC-buffer in either
the exclusive or modified state. In the rare case that it is requested by the memory sub-
system it has to be reinserted into the memory sub-system by use of the coherence
mechanism similar to coherent caches. As the reinsertion into the memory sub-system
is rare, we can use a micro-cache architecture similar to a cache with segmented blocks.
Our micro-cache, however, only contains one segmented cache line, one tag, and one
pair of state-bits per segment (see Figure 5). Each segment of our cache line is the size
of one coherence-unit of the applied data caches (i.e., the size of a block inside the data
cache). The overhead of this approach is threefold: First, we introduce extra storage in
form of a tag, block count, and block-state bits. Second, we must implement a complete
cache controller with coherence protocol. Third, we can have overhead due to the fact
that the unsafe structures size in the AVC buffer is not a multiple of the size of the
coherence unit.

When the compiler allocates memory for all data structures, it may decide to place
safe and unsafe data structures continuously in such a manner that the boundary be-
tween the data structures is not aligned with the boundaries of the coherence units. This
possibly creates situations where the overhead bytes, as depicted in Figure 5, are oc-
cupied by other safe or unsafe data structures, in which there is a high chance of false
sharing. False sharing is a well-known effect in which the safe data structure invali-
dates the unsafe structure, or vice versa; as both structures are independent this coher-
ence traffic is redundant, reduces the AVC-buffer performance, and therefore should be
avoided. False sharing can be avoided by coherence unit aligning all unsafe structures,
which can be done automatically. The overhead bytes (as shown in Figure 5) do not
require memory elements in the AVC buffers due to cache-block alignment.

It should be noted that this coherent issue does not occur when programs are writ-
ten using streaming languages, such as StreamIt [2]. These languages do not support
arbitrary pointer arithmetic, and as a result, safety violations of this kind cannot occur.
Thus, this safety mechanism is only required if the application is written in an inherently
unsafe language, such as C.

4 Experiments

4.1 Experimental Setup

We implemented our AVC buffers by augmenting an OpenRISC-compatible platform
running on FPGA. The AVC buffers are coupled to the processors utilizing their In-
struction Set Extension (ISE) interface, where the extended instructions are solely AVC-
buffer load/store instructions. Furthermore, for the multi-processor case, we augmented
the architecture with a hardware barrier.

We parallelized the cjpeg program from the EEMBC denbench suite [8]. The code
has been parallelized by hand, while keeping in mind that automatic parallelization
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algorithms as presented in Section 2 may be able to perform the job as well. Care has
been taken to avoid false sharing by aligning all data structures on cache line bound-
aries. The parallelized versions of the JPEG compression are statically mapped onto the
5 processor system. Finally, the complete code-base has been cross-compiled using a
“newlib”-based gcc 3.4.4 tool-chain for the OpenRISC.

For all the experiments we used the same 24-bit RGB encoded picture of 1024x768
pixels, similar to the resolution of current high-end web-cams and standard portable
phones. For the energy consumption calculations we used CACTI [16] to determine the
read/write energy-consumption for different cache configurations in a 90 nm technology
The external memory and bus-access read/write energy consumption is estimated to be
792pJ per access. The energy values reported here only include the dynamic energy
consumed in the memory sub-system; this model does do not include processor and
leakage energy.

4.2 Experimental Results

To enable a fair comparison, we performed a performance-energy exploration of a sin-
gle processor-based system running the JPEG compression algorithm. Our baseline ar-
chitecture was the one that performed best with the minimal energy consumption; it
used a 4 kB direct mapped instruction cache, and an 8 kB 2-way set-associative data
cache. Next we analyzed the runtime of the different kernels of the JPEG compression
algorithm on the baseline architecture. This runtime breakdown guided the creation of
a heterogeneous software pipelined five processor architecture shown in Figure 6(a),
and a homogeneous version shown in Figure 7(a). Each of the processors of the two
systems uses a 4 kB direct mapped instruction cache, and an 8 kB 2-way set-associative
data cache with Level 1 MESI-states hardware coherence protocol.

We first accelerate the application by employing a write-through coherence policy,
which does not require a hardware coherence protocol implementation. As to be ex-
pected, on both the homogeneous and heterogeneous versions the bus is completely
saturated—as shown in Figure 6(b) and Figure 7(b), limiting the speedup to a factor of
1.7x compared to the baseline system. Next we accelerate the application on a five-core
system that employs a write-back policy with the MESI protocol for cache coherence
and snoopy cache-to-cache copies. When homogeneous pipelining is used, this sys-
tem offers a speedup of 3.3x; the speedup achieved by the same system with AVC
buffers is 3.4x compared to the baseline, a meager performance increase. Furthermore,
as the inter-processor communication is only three 8-bit scalars (one cache-block), the
influence of the cache-to-cache copy enhancement is minimal. When heterogeneous
pipelining is used, on the other hand, the speedup of the five core system is 3.2x com-
pared to the baseline, and increases to 4.2x through the addition of AVC buffers. Also
the influence of the inter-processor communication is clearly visible. As in the hetero-
geneous case, the size of the communicated data is three arrays of sixty-four 16-bit
values (four cache-blocks); the speedup of the system employing cache-to-cache copies
is 3.2x, compared to a 3.0x speedup for the system without cache-to-cache copy; both
systems enhanced with AVC-buffers show an equal speedup of 4.2x due to the removal
of the inter-processor communication.
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The use of AVC buffers in conjunction with heterogeneous pipelining is also benefi-
cial in terms of its ability to reduce the energy consumption of the memory subsystem.
Homogeneous pipelining without AVC buffers increased the memory subsystem energy
consumption by 3.1x compared to the baseline single processor system; the inclusion
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of AVC buffers reduced it to 2.7x. Heterogeneous pipelining without AVC buffers in-
creased the memory subsystem energy consumption by 3.9x; however the inclusion of
AVC buffers reduced it to 1.6x, which is quite low for a five core system.

Finally to ensure that the presented results are not biased by a poor choice of caches,
we performed an exhaustive energy-performance exploration for the cache-to-cache
copy enhanced write-back MPSoCs with and without AVC-buffer extension. The re-
sults of this exploration is shown in Figure 6(c) and Figure 7(c). Both figures show that:
(1) the results are consistent for all cache configurations; (2) the homogeneous software
pipelining clearly suffers cache pressure as described in Section 3.3; (3) the hetero-
geneous software pipelining, originally suffering memory-subsystem pressure due to
inter-processor communication, performs consistently better by adding AVC-buffers.
Thus we conclude that heterogeneous pipelining with AVC buffers is the best communi-
cation architecture for our five core MPSoC implementation of the JPEG compression.

5 Conclusion

This paper discusses a case study using JPEG compression that motivates the use of
Architecturally Visible Communication buffers to accelerate producer/consumer com-
munication in MPSoCs for streaming applications. Previous work on automated paral-
lelization has favored homogeneous over heterogeneous software pipelining due to the
high cost of core-to-core communication via the memory system. Because of this high
communication cost, the most efficient pipelining method mapped producers and con-
sumers of the same data onto the same core; however this approach does not effectively
overlap computation and communication, which is of great importance when accel-
erating streaming applications. Our results show that the inclusion of Architecturally
Visible Communication buffers yields the opposite result: providing a fast core-to-core
communication mechanism favors heterogeneous over homogeneous software pipelin-
ing; these results were consistent and robust over a wide variety of cache configurations.

Automated techniques to parallelize applications written in C are unsafe, as pointer
resolution is undecidable in the general case. For our work, the implication of the lack
of safety is that data structures that have been removed from the memory subsystem
and placed into Architecturally Visible Communication buffers can, theoretically, be
accessed by a pointer. Our safety mechanism transforms the Architecturally Visible
Communication buffer into a small cache that is connected to the coherence protocol;
when an extraneous pointer accesses data in the Architecturally Visible Communica-
tion buffer, it is moved back into the memory system; although this implies some per-
formance overhead, the occurrence of such pointer accesses is rare, thus mitigating its
impact on the performance of the system, while ensuring correctness and safety.
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Abstract. As the number of cores in CMPs increases, NoC is projected
to be the dominant communication fabric. Increase in the number of
cores brings an important issue to the forefront, the issue of chip power
consumption, which is projected to increase rapidly with the increase in
number of cores. Since NoC infrastructure contributes significantly to
the total chip power consumption, reducing NoC power is crucial. While
circuit level techniques are important in reducing NoC power, architec-
tural and software level approaches can be very effective in optimizing
power consumption. Any such technique power saving technique should
be scalable and have minimal adverse impact on performance. We pro-
pose a dynamic, communication link usage based, proactive link power
management scheme. This scheme, using a Markov model, proactively
manages communication link turn-ons and turn-offs, which results in
negligible performance degradation and significant power savings. We
show that our prediction scheme is about 98% accurate for the SPEC
OMP benchmarks and about 93% over all applications experimented.
This accuracy helps us achieve link power savings of up to 44% and an
average link power savings of 23.5%. More importantly, it incurs perfor-
mance penalties as low as 0.3% on average.

1 Introduction

Power inefficiency coupled with limited instruction level parallelism changed the
trend from increasing single core frequencies to having multiple relatively sim-
pler cores on a single chip. Driven by this need to have power efficient systems,
these chip multiprocessors (CMPs) have become the order of the day [26] [12]
[35] [3]. With the projected increase in the number of cores in CMPs [35], limited
scalability of bus structures and the need for more on-chip communication band-
width have become major issues. These issues have given rise to network-on-chip
(NoC) [6] [9] [11], which is a more scalable on-chip communication fabric.

The NoC framework addresses the scalability issue effectively. However, in
such an NoC based CMP, the issue of power consumption can become a serious
limiting factor. This is especially true since the power consumption is projected
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to increase rapidly as the size of NoCs increase. Therefore, there is a need to
develop a wide variety of techniques to reduce chip power consumption.

A major contributor to chip power consumption is the NoC infrastructure.
We found that, the NoC framework is responsible for as much as nearly 30%
of the total chip power consumption. Communication links form a significant
part of an NoC framework and their count increases with the number of cores
in a CMP. This calls for power-aware design and power saving schemes which
target not only power efficient cores but also power efficient link usage. Since,
with the increase in the number of cores and with a similar increase in the
number of communication links, possibility of more links being inactive increases
dramatically, there is a need for a scalable power saving scheme which can exploit
this effectively. Although circuit level and localized techniques are effective to
an extent, they are not proactive, and therefore, lose out on important power
saving opportunities. In this paper, we propose a completely proactive scheme
aimed at link power management.

There have been significant research efforts aimed at characterizing the execu-
tion intervals of single-threaded applications into phases [29]. A program phase
analysis is a technique of characterizing the program execution intervals into
phases based on the similarity in their behavior. In the past, phase characteri-
zation has been used in the context of performance [29] [7] and power [15] [13].
We propose that execution of a multi-threaded application on an NoC based
CMP can be characterized into phases based on the similarity across inter-core
communication patterns. In this context, by communication pattern, we mean
the usage of communication links in the system during execution. In case of a
shared NUCA cache [17], which we consider, this usage of communication links
is due to shared cache accesses and corresponding coherence traffic. The present
circuit-level and localized schemes do not use this high level phase character-
ization information in their link power management. We propose to use the
aforementioned phase characterization to implement a Markov based prediction
scheme, which predicts the link usage of the next interval. This prediction can be
used by a proactive link power management scheme to turn off predicted unused
links and also to turn on links that are predicted to be used. The key advantage
of this scheme is that, the links that are predicted to be used can be turned on
ahead of time such that the turn-on latency is hidden and the performance re-
mains unaltered. We show that this prediction based power management scheme
can be very beneficial in reducing link energy consumption. We also note that
this power saving scheme is remarkably scalable and can achieve increased power
savings with increase in the number of on-chip cores and communication links.

We wish to note three other important points here. Firstly, one of the impor-
tant goals of our scheme, apart from minimizing energy consumption, is also to
minimize the adverse impact on performance. We later show that, our scheme
is very accurate in predicting link usage and hence has almost negligible perfor-
mance impact. Secondly, our scheme can work along with other circuit-level and
localized hardware schemes to further maximize the benefits achieved. Thirdly,
as we illustrate later, our scheme is highly scalable and is generic enough to be
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adaptable across different NoC structures. To summarize, the main contribu-
tions of this paper are as follows:

• We classify the execution intervals of a multithreaded application executing
on two-dimensional mesh based CMP into phases during runtime based on their
similarity in communication link usage.

• We use this classification to implement a Markov prediction based, proactive
link power saving scheme. More precisely, we show that a small prediction table
can be maintained to make accurate predictions about the future communication
link usage during runtime.

• We show that our prediction scheme is highly accurate achieving a prediction
accuracy of over 98% in most applications and an average prediction accuracy of
about 93% over all the applications we tested. As a result of this high prediction
accuracy, the performance penalty incurred by our power management scheme
is practically negligible, with an average value of 0.3%. Finally, we present the
reduction in energy consumption, which is about 40% for two of the applications.
We also present the average energy savings we achieve, which is about 23.5%.

The rest of the paper is organized as follows. Section 2 briefly summarizes
the related work pertaining to our area. Section 3 provides a brief descrip-
tion of the NoC based CMP architecture we consider throughout this paper.
Section 4 makes a case for a prediction based approach to link power optimiza-
tion, and Section 5 provides a detailed description of phase classification based
on link usage. Section 6 talks about the prediction based schemes we employ, and
Section 7 provides a detailed description of how our power management scheme
is implemented. Section 8 talks about the experimental setup, methodology,
and results. Finally, we summarize and conclude with Section 9.

2 Related Work

With the growth of CMPs, there have been numerous efforts to optimize power
in these systems both in the bus based architectures and the NoC based ar-
chitectures. Isci et al analyze global dynamic power management policies for
CMPs and propose dynamic schemes that perform better than static schemes
[14]. Sharkey et al show that global power management outperforms local core-
level schemes [28]. Li and Martinez present a scheme to dynamically optimize
power consumption of a parallel application executing on a CMP under a given
performance constraint [22]. There have been similar efforts to develop power
management strategies in the context of NoCs. For example, Benini et al describe
an energy-efficient interconnect framework design [4]. By comparison, Simunic
et al use closed-loop control concepts to formulate a network-centric power man-
agement scheme [31]. There have also been prior research efforts targeting link
power savings. Soteriou and Peh propose a dynamic power management scheme
to turn off and turn on network links in a distributed fashion depending on net-
work utilization [33]. Shin et al present a static scheme using voltage scalable
links to optimize energy consumption [30]. Shang et al apply dynamic voltage
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scaling to optimize link energy consumption [27]. In comparison, Li et al use
profile information to implement a compiler based scheme which increases the
link idle periods, thereby enabling the hardware schemes to be more effective
in saving power [21]. They also propose a compiler-directed proactive scheme
which analyzes the program during compile time and inserts link-activate and
turn-off calls [20]. Our scheme differs from these link power management schemes
in being a dynamic, runtime scheme which proactively turns off and turns on
the interconnection links based on the prediction made by our online prediction
module. Also, our dynamic scheme is more general and more widely applicable
than compiler-based schemes which can be used only when the source code is
available and statically analyzable.

Another related area of work is program phase analysis. Sherwood et al pro-
pose the concept of identifying repetitive execution intervals called phases using
basic block vector (BBV) similarity [29]. Isci and Martonosi propose a phase
analysis scheme for power and demonstrate that performance counter based
schemes perform much better than control-flow based schemes such as those
based on basic block vector (BBV) analysis when it comes to power [15]. There
have been other attempts to use control flow information for program phase clas-
sification and consequent performance and power optimizations [13] [7]. Dhodap-
kar and Smith compare some of these techniques to detect program phases [8].
Perelman et al present a method to utilize phase analysis for parallel applications
running on shared memory processors [25].

In this work, we use a flavor of phase characterization in our power man-
agement scheme but with important differences. First of all, we use inter-core
communication as the basis for our phase characterization of multi-threaded
applications. More precisely, intervals of execution which have similar commu-
nication patterns are characterized into a single phase. Secondly, we use a more
fine grained form of phase analysis in our scheme, wherein, the length of instruc-
tion interval used is much shorter than those used in the prior schemes. This
is because, we observed that, the inter-core communication, which essentially
includes shared cache accesses and coherence traffic, exhibits repetitive behav-
ior but only when looked at in shorter intervals. We further elaborate on this
aspect in later sections. In essence, our goal is to identify repetitive behavior of
a parallel application execution based on its inter-core communication pattern
on the underlying NoC that connects the CMP nodes.

3 Target Architecture

We consider a two-dimensional mesh based NoC that connects the nodes of a
CMP, although our approach is equally applicable to other NoC structures. In
this architecture, each node (core) has a private level 1 (L1) cache. On the other
hand, the level 2 (L2) cache is shared among all the cores and is banked with
each core containing an L2 bank. Figure 1 shows a 4×4 mesh structure we use
to convey our idea. Most of the time, unless otherwise mentioned, we consider
this 16 core, 4×4 mesh based CMP with a shared L2 cache which is 16 banked
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Fig. 1. A 4×4 mesh NoC based CMP. Note that this is a block diagram and not the
actual layout, and the routers are not shown for clarity.

with each of the 16 cores containing an L2 bank. We use a static NUCA [17]
scheme in this work although our scheme can be similarly used with dynamic
NUCA [17] as well. We would like to emphasize that, in this paper, by “inter-
core communication”, we always mean an access made by a core to some other
core’s L2 bank.

4 Empirical Motivation

For any scheme aimed at link power savings to succeed, there should be consider-
able periods of execution during which some links are unused. If a multi-threaded
application executing on an NoC based CMP uses all of the communication links
during the entire period of execution, then any scheme aimed at saving link power
will have limited returns. Fortunately, that is not the case in real applications.
We profiled several parallel benchmarks from the SPEC OMP [2], NAS [1] and
Splash2 [32] benchmark suites running on a 4×4 mesh architecture described in
Figure 1. Profiling is done such that the execution is broken down into intervals
of 5000 instructions, and links used during these intervals are recorded at the end
of each such interval. We computed the percentage of such intervals during which
at least some of the links in the interconnect network are not in use. Figure 2(a)
shows our profiling results. As can be observed clearly, during a large percentage
of intervals, at least some links are unused. Specifically, on average, in only 10%
of intervals, all communication links are used. We also observed that the per-
centage increases slightly if the instruction interval is shortened. The number of
links that are unused in such intervals determine the “window of opportunity”,
which in other words, means the amount of power savings that can potentially
be extracted. The profiling results above serve as the key motivating factor for
the scheme we propose in the coming sections.

Another key factor which needs to be considered is the “repetitive phase
behavior” and hence possible “predictability” in parallel application’s link usage.
During execution, every time a new link usage pattern occurs, an important
question is how long does that link usage pattern last before it changes again.
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(a) (b)

Fig. 2. (a) shows the percentage of intervals during which at least a few links are
unused. We see that, on average, in only about 10% of intervals, all links are used.
(b) shows the number of intervals, a new link usage pattern lasts (repeats) before it
changes again to a different usage pattern.

Figure 2(b) shows the distribution of the number of times a link usage pattern
repeats before there is a change. On average, after 10% of link usage changes, link
usage remains the same for 21 to 50 intervals. After 3% of link usage changes, the
usage pattern remains the same for 11 to 20 intervals; after 6.6% changes, the
same usage remains for 6 to 10 intervals and after 19.1% changes, 2 to 5 times.
Overall, on average, whenever a new link usage pattern arises, on nearly 40%
of occasions, it remains for more than one interval before it changes again. It is
important to note that, we are talking about instruction intervals (intervals of
5000 instructions) here and hence the link usage pattern repeating twice implies
that the link usage remains the same for 2×5000, which is for 10,000 instructions.
This is an important statistic which hints at repetitiveness and predictability in
link usage patterns and possible success of predictive schemes.

5 Link Usage Based Phase Classification

Repetitive behavior is an execution characteristic of most applications. This
repetitive behavior can be on the basis of similarity in the basic blocks touched
or on the basis of similarity in performance metrics such as cache misses [15].
We use inter-core communication as the basis for characterizing the program
execution into phases. Therefore, we classify the execution intervals into phases
based on communication link usage. Each execution interval is an interval of
5000 instructions in our classification scheme. Since communication pattern is
an application characteristic, instruction interval can be customized for an indi-
vidual application by using profiling results. Although this interval length can
be configured and further tuned as mentioned above, we found that, an interval
of 5000 instructions works well for all applications we tested since it captures the
repetitive behavior in inter-core communication pattern well. The usage pattern
of communication links during execution depends on the data allocations and
the data access patterns exhibited by the application, which manifests itself as
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L2 bank accesses. This means that, as the execution of a parallel application
progresses, the L2 cache accesses and hence the communication link usage goes
through phases. In this work, we represent the communication link usage in the
form of a vector called “Link Vector”, and carry out our phase characterization
using this novel concept.

5.1 Link Vector

We represent the state of all the links in our NoC in the form of a link vector.
Each bit in a link vector represents a link in the NoC and there is bit for every
link. Consequently, the number of bits in the link vector is the same as the
number in links in the on-chip network. Bit value 1 implies a used state, which
means the link is being exercised, and a bit value of 0 implies an unused state,
which means the link is idle. For example, in the case of NoC illustrated in
Figure 1, the corresponding link vector contains 24 bits with each bit representing
the current state of a link in the 4×4 mesh. The link vector of an execution
interval is computed by ORing the link usage of all the instructions executed
during the instruction interval. This essentially means that, even if a link is used
only once during the entire interval, the link vector of the interval denotes that
link as being used during the interval. Hence the motivation to have shorter
instruction intervals when compared to considerably longer instruction intervals
used in other phase characterization works [15] [29]. The effect of aforementioned
scenario, where a link which is used only once during the interval and still being
considered as used during the entire interval, has been minimized considerably
by having shorter instruction intervals.

5.2 Runtime Classification

A simple way to identify phases is by using an identifier called “phase id” and a
simple way to store phase information is by maintaining a “phase table”, with
each row containing the link vector which represents the phase and a uniquely
assigned phase identifier. A runtime phase classification scheme would thus in-
volve recording all the phases that have been previously encountered in the phase
table and (at the end of every new interval) comparing the interval’s link vec-
tor with the link vectors of the previously-recorded phases (which essentially
involves searching the phase table). If there is a match, then that interval is
classified as belonging to that phase. If a match is not found, it is a new phase
and is added to the phase table with the link vector of the interval and a newly
assigned unique phase id. This process can be performed dynamically making it
a runtime classification scheme.

5.3 Classification Example

Figure 3(a) shows a snapshot of the link vectors (of intervals) during a period of
execution of the Wupwise benchmark from the SPEC OMP benchmark suite [2].
In this figure, “count”, present in each row, indicates the number of contiguous
intervals during which the same link vector repeats. The classification (mapping)
of intervals to phases which is based on the link vector similarity can be noted.
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Fig. 3. (a) shows a snapshot of link vectors of intervals during a period of execution
of the Wupwise multi-threaded benchmark and the phases they map to. Mapping is
done based on link vector similarity. (b) depicts a Markov based transition graph and
the corresponding prediction table. Prediction is made based on the probabilities con-
tained in the prediction table. The transition graph shows the transition probabilities
pictorially.

6 Markov Based Prediction

After classifying the intervals into phases as described in the last section, we
use a Markov based prediction mechanism to predict the probable link vector
of the next interval just before the end of the current interval. Markov based
schemes have been used in the past to implement BBV (basic block vector) based
phase prediction [19]. This prediction essentially provides the probable link usage
information of the next interval. This, in turn can be used to proactively turn
off the links which are predicted to be not used and pre-activate links that are
predicted to be used. This pre-activation is done just ahead of time so that the
activation latency is hidden and the link is ready for use when the next interval
begins. If the prediction turns out to be correct, we stand to save power. However,
if the prediction turns out to be wrong, there is a two-fold penalty. First, there
is the performance penalty in waiting for the correct links to power on which
had been turned off because of the misprediction. Secondly, there is also the
power penalty in turning off and then turning on additional links. Therefore,
prediction accuracies are crucial to the effectiveness of this scheme. We describe
two prediction schemes based on the Markov model in the next two subsections.

6.1 Basic Markov Prediction

Markov model is a prediction model used frequently in various domains [18] [16]
[24]. A specification of the Markov model contains a set of states and a table,
containing the transition probabilities from each state to every other state and
itself. With this specification, Markov model can make a prediction about the
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next state, given the present state. This prediction is based on the transition
probabilities. The transition probabilities are continuously built and updated as
and when state transitions happen, and therefore, these transition probabilities,
at any instant, are based on the previous transition history. A basic Markov
prediction involves considering the present state and searching the transition
probabilities from this present state to every state and choosing the transition
which has the maximum probability. In our context, a state is nothing but the
link vector of an interval. Figure 3(b) illustrates an example of this scheme. It
shows Markov based transition probabilities in the form of a graph and a pre-
diction table at the end of the execution chunk shown in Figure 3(a). Each state
in Figure 3(b) corresponds to a phase in the phase table of Figure 3(a). The
state S1 corresponds to phase 1, S2 to phase 2 and so on. As an example of
Markov based prediction, if the current state is S1, the next state is predicted
to be S1 again. As another example, if the current state is S2, then the next
predicted state is S1. As a simple illustration of the way transition probabilities
are continuously updated, if suppose, S4 now transitions to S2, the new transi-
tion probabilities from S4 to S1 and S4 to S4 still remain 0, but the transition
probability from S4 to S2 changes from 0 to 0.5 and, the transition probability
from S4 to S3 reduces from 1 to 0.5.

6.2 Markov Prediction Using a Threshold

This is similar to the basic Markov prediction scheme explained above with one
added quality. Instead of making a prediction based on the maximum probabil-
ity alone, we base the prediction on another parameter called the “threshold”.
Specifically, we pick the maximum probability prediction and then, check if its
probability is greater than or equal to the pre-specified threshold parameter,
and if so, we continue as before by choosing the maximum probability next state
as our prediction. However, if the maximum probability is less than the speci-
fied threshold value, we do not make any prediction. This scheme is intended to
weed out predictions which are based on insufficient previous data or are just
too close to call. Note that employing a threshold value, in general, decreases
the number of mispredictions, as we show later in the results section. For exam-
ple, in Figure 3(b), if the present state is S3, the previous scheme would have
predicted either state S1 or S4 to be the next state. In contrast, the threshold
based scheme with a threshold of 0.67 makes no prediction (for the present state
S3) since the maximum probability entry in the row is less than the pre-specified
threshold value. The threshold value is a configurable parameter and can be set
high if very little performance impact is tolerated and can be set low if some
performance impact can be tolerated with a possibility of higher energy savings.

7 Implementation

After having described the important concepts we employ, we now present the
implementation details of our scheme. Our proposed predictive link power man-
agement can be implemented in two possible ways. One way is to consider a
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global power manager which manages the power usage of the entire NoC based
CMP. Such a global power manager can be implemented as a separate microcon-
troller to manage chip-wide power usage by controlling the power management
of individual cores, as has been previously proposed [14]. It has also been shown
that such global power management can be much more efficient and beneficial
than local core-level power management schemes [28] [14]. We can extend such
a global power manager with a link power management module. Alternately,
predictive link management can be implemented using a helper thread which
runs parallel to the computation threads and manages the link power. In either
case, some hardware support is needed for our scheme to work.

7.1 Required Hardware

Figure 4 shows the hardware details of the link power management module we
propose to use. We assume the existence of hardware or software module which
can notify us whether a link was used in the previous instruction or not. We now
describe the main components and their functionality.

• Link Vector Register : This is a 24-bit register that collates the link vector
of an instruction interval. This register is reset at the beginning of each inter-
val. After each instruction in the interval, the new link usage information of
that previous instruction (in the form of link vector) is ORed into this register.
Therefore, at the end of the interval, this register contains the current link vector
for the entire interval. Since this is just a single 24-bit register and the operation
is relatively simple, its overheads are negligible.

• Link Vector Table: This is a 32-entry table that maps each 24-bit link
vector entry to a distinct 5-bit phase id. Since this table can contain 32 distinct
phases at any given time, phase id is a 5-bit entry. Each row also contains
two counters, “correct” and “misprediction”, which count the number of correct
predictions and the number of mispredictions, respectively. These counters are
used to enforce our replacement policy as will be described later. The link vector
table is turned on just before the end of each interval to make the prediction.
During the rest of the interval, this table is turned to a low-power drowsy mode
[10] and hence, the power overhead of maintaining such a table is minimal.

• Prediction Table: This is also a 32-row table. This table contains the Markov
transition probability information described in Section 6.1. To reiterate, it con-
tains the transition probabilities from each phase (represented by the phase id)
contained in the link vector table to all phases contained in the link vector table.
This is the table that is used to make the link vector predictions. Like the link
vector table, the prediction table is also turned on just before the end of each
interval and turned to a drowsy mode [10] otherwise, hence leading to negligible
power overhead.

7.2 Functionality

During each instruction interval (which includes 5000 instructions in our experi-
ments), the link usage vector is constructed and stored in the link vector register.
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Fig. 4. Hardware needed to implement the Markov based prediction scheme. The main
structures needed are the link vector register, the link vector table and the prediction
table.

Just before the end of an instruction interval, the link vector table is searched
to find if there is an entry which matches the value in the link vector register.
If a match is found, this means that this particular link usage phase has been
seen previously. The corresponding phase id is taken from the link vector table
and provided as an input to the prediction table. The prediction table outputs
the predicted phase id of the next interval. This predicted phase id is computed
using one of the two Markov based prediction schemes described earlier.

The link vector corresponding to the above predicted phase id is found by
searching the link vector table. This link vector represents the predicted link
usage during the next interval. Using this, the links which are predicted to be
unused are turned off and the links which are predicted to be used but are
presently switched off are turned on. We assume hooks to turn-on and turn-off
communication links to be present. This whole process is performed just before
the beginning of the next interval. How long before the beginning of the next
interval a link should be turned on depends on the time needed for the links to
turn on. As a result of this, communication links which are predicted to be used
are turned on ahead of time considering the link turn-on latency. By doing so,
link turn-on latency can be completely hidden and consequently, the potential
performance penalty can be avoided. If the prediction is correct, after turning
on and turning off appropriate links, the prediction table is updated with the
new transition probabilities as described in Section 6.1. On the other hand, if
the prediction is wrong, the correct links are turned on, incurring a performance
penalty equivalent to the link turn-on latency and also a power penalty. After
this, the appropriate counters are updated in the link vector table. If the pre-
diction is correct, the correct counter is incremented otherwise the misprediction
counter is incremented. Therefore, these two counters jointly maintain the in-
formation needed to calculate the prediction accuracy of this entry. Later, the
transition probabilities are updated as in the case of correct prediction.

7.3 Replacement Policy

The above description is for the case where a match is found in the link vector
table. If a match is not found, then this indicates a new phase and needs to be
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added to the link vector table and the prediction table. There are two possibili-
ties in this case:

• Tables are not full : This is the case where the link vector table and the pre-
diction table are not full. As is obvious, the new phase is added to the link vector
table as well as the prediction table. Since this is a new phase, no prediction is
made.

• Tables are full : If the tables are full, we need to find a victim to be evicted
to make space for this new phase. The victim is selected based on the prediction
accuracies. The entry with the lowest prediction accuracy is selected as the vic-
tim and evicted. This is where the correct and the misprediction counters come
into picture. Using these counters, the phase entry having the lowest prediction
accuracy is identified and evicted. The new phase is now added as described be-
fore. Using the above prediction accuracy based eviction scheme, the prediction
table entries which have not been predicting well are thrown out. This accuracy-
oriented replacement mechanism helps us to keep only the phases with good
prior predictions in the tables.

7.4 Discussion

An important requisite of any power saving scheme is two-fold. The first require-
ment is that of minimal performance penalty. Secondly and importantly, power
overhead to maintain the hardware needed for the power saving scheme should
be minimal and way lower than the power savings achieved. Since our phase
classification and prediction is for instruction intervals (of 5000 instructions)
and not for individual instructions, the link-usage prediction, link turn-ons and
turn-offs are done only once every 5000 instructions. Therefore, the overhead to
make the prediction, link reactivation latency and link reactivation penalty are
incurred at most only once every 5000 instructions. Also, the amount of stor-
age needed by predictive scheme is minimal. The link vector register is a 24-bit
register. The link vector table is a 32-entry table and so is the prediction table.
Since the link vector table and the prediction table are turned on fully only at
the end of each interval, the power penalty they incur is negligible in practice.
We factor all the penalties and overheads in our experiments and as can be seen
later, the benefits are still considerable. Also, since the prediction is done just
before the beginning of the next interval and since the computation is relatively
simple, the performance overhead is also expected to be minimal. In addition, as
we show in the sensitivity analysis later, by reducing the prediction table size,
overhead is dramatically lowered and still the prediction scheme performs really
well. We demonstrate later that, reducing the table sizes from 32 entries to 16
or 8 entries still achieves almost the same energy savings. Misprediction penalty
is another concern, but as we demonstrate in the next section, since prediction
accuracy is very high, this is not a significant factor either. Nevertheless, our
results below include all the performance and power overheads incurred by the
proposed mechanism. Also, since the technique employed by our scheme is very
generic and not tied any particular NoC structure, it is very scalable as NoC
sizes increase and is also adaptable across various NoC structures.



210 S.P. Muralidhara and M. Kandemir

8 Evaluation

8.1 Setup

As mentioned previously, we use a 4×4 mesh NoC based 16-core CMP in our ex-
periments. We assume a traditional X-Y routing policy in the NoC. The shared
L2 cache is 16 banked SNUCA (static non-uniform cache access) architecture
with a bank in every node and each bank is 2MB in size. The link power model
we use is taken from [34], and in this model, when a link is turned on, it con-
sumes the same power irrespective of whether it is transmitting data or not due
to the link signaling methodology. When a link is turned off, we assume it does
not consume any power as in [34]. Figure 5 presents the default configuration
we use in our experimental setup and in the power analysis. The power values
in the table are obtained from [5]. We use Simics [23] which is full-system sim-
ulator combined with a module we implemented to simulate a 4×4 mesh. This
setup is used to compute link usage, support routing, and evaluate link power
management.

Link frequency 1GHz
Link reactivation delay 1000cycles
Link reactivation energy 36.2nJ
Power of links for an on-chip switch 0.1446W
Process Technology (Interconnect) 0.07μm
Interconnect type 2D mesh NoC
Processor frequency 1GHz
Number of cores 16

Fig. 5. Default system configuration used

We tested our scheme with eight
parallel (multi-threaded) applica-
tions from three different bench-
mark suites to find the variation in
energy savings across different appli-
cations. We selected CG, IS and EP
applications from the NAS parallel
benchmark suite [1] among which IS
and EP are known to have a lot
of inter-core communications. From
the SPEC OMP benchmark suite [2], we selected Mgrid, Wupwise and Apsi ap-
plications. Further, we used the Ocean and Water-spatial applications from the
Splash2 benchmark suite [32].

(a) Prediction accuracy (b) Performance penalty (c) Energy savings

Fig. 6. Prediction accuracy, performance penalty and the resulting energy savings when
the basic Markov prediction scheme is used
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(a) Prediction accuracy (b) Performance penalty (c) Energy savings

Fig. 7. Prediction accuracy, performance penalty and the resulting energy savings in
the case of Markov prediction using a threshold

8.2 Results

In this section, we present the results for each of the two prediction schemes
we presented earlier. For both these schemes, namely, basic Markov prediction
and Markov prediction with threshold, we present the link vector prediction ac-
curacy, the performance penalty incurred and the link energy savings achieved.
An important point to be considered for the rest of this paper is that, whenever
we present energy savings, we always mean the effective resulting energy sav-
ings, which is the net energy savings achieved minus the link reactivation energy
overhead and the overheads due to additional hardware.

Basic Markov Prediction. Figure 6(a) shows the link vector prediction accu-
racy achieved by this scheme for various applications. The main observation is
the variation in the prediction accuracies across applications. As can be clearly
seen, most applications have prediction accuracies of well over 95%, with Wup-
wise, Mgrid and CG having accuracies over 99%. Compared to this, water-spatial
has a slightly lower prediction accuracy, probably due to the relatively shorter
execution time, which in turn results in smaller learning phases.

Figure 6(b) shows the performance penalties incurred for different applica-
tions, over the case where no link power management is employed. This met-
ric is a reflection of the prediction accuracy. The reason for the observed low
penalties is two-fold. The main reason is of course the very high link prediction
accuracy. Another reason is the fact that the links that are predicted to be used
are turned on ahead of time so that the turn-on latency is hidden and the links
are up by the time they are going to be used. The main triumph card of our
scheme is the extremely low performance penalties which virtually leaves the
original performance unaltered. This is in contrast to other hardware schemes
which in many cases incur penalties as high as 12%, as mentioned in [20]. In
contrast, our scheme results in penalties below 0.5% in most cases except for
water-spatial application, which incurs a penalty of 1.5%. As we demonstrate
later, the penalties can be further reduced to being almost negligible.
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Finally, Figure 6(c) shows the link energy savings achieved by this scheme and
as can be seen, Wupwise and CG achieve savings as high as 44% in communi-
cation energy. While we present only the NoC energy savings in detail here, our
experiments showed that, for the benchmarks we tested, NoC energy consump-
tion constitutes nearly 30% of the total on-chip energy consumption (on-chip
energy consumption includes energy consumed by the processing cores, NoC,
all cache accesses and other on-chip transactions). This clearly indicates that,
NoC energy consumption forms a major component of the total on-chip energy
consumption and any significant savings in NoC energy consumption is bound
to translate into significant savings in the total on-chip energy consumption.

Markov Prediction Using a Threshold. Figure 7(a), Figure 7(b) and Fig-
ure 7(c) show the prediction accuracy, performance penalty and the energy sav-
ings, respectively, resulting from this scheme with a pre-specified threshold of
0.5. Later, we also present the results with a different threshold value. Again,
the key thing to note is the fact that the performance penalty is further reduced
as can be seen in Figure 7(b) and yet the energy savings remain almost the same
as in the basic Markov prediction scheme. Hence, incorporating a pre-specified
threshold results in further fine tuning of the performance penalties. This hap-
pens since the threshold parameter filters out predictions which do not have a
good prediction history. Employing this scheme results in performance penalty
of less than 1% in all cases and less than 0.5% in all but one application.

8.3 Sensitivity Experiments

In this section, we study the sensitivity of our scheme to various parameters. We
alter aspects such as the prediction table size and present the variation in the
results. We first reduce the sizes of the link vector table and the prediction table.
We reduce the table sizes from 32 entries to 16 entries and 8 entries. Since these
tables are the major storage structures used in our prediction scheme, we intend
to reduce the sizes in order to further mitigate the power and computation
overheads. We use the Markov prediction scheme using a threshold of 0.5 as
presented previously. Figure 8 shows the new energy saving and the performance
penalty when the table sizes are reduced. As can be clearly seen, the energy gains
remain almost the same and surprisingly, there is also a slight reduction in the
performance penalty. This reduction is due to our prediction accuracy based
replacement policy, which throws out entries with lower prediction accuracies
due to the reduced table size, and in the process also reduces the number of
mispredictions we experience. These results show clearly that our scheme works
beneficially even when the hardware table sizes are as low as just 8 entries.

The two potential factors which can limit the gains achieved by our scheme
are the link reactivation energy and the link reactivation latency. In order to
find the dependence of the benefits achieved by our scheme on these factors, we
doubled the link reactivation latency and the link reactivation energy values.
We then tested the Markov prediction scheme using a threshold value of 0.5,
table size of 32 and with the new, doubled link reactivation latency and link
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(a) Energy savings (b) Performance penalty

Fig. 8. Energy saving and the performance penalty values when the table size is reduced
to 16 and 8 entries. The prediction scheme used here is the Markov prediction using a
threshold of 0.5.

(a) Energy savings (b) Performance penalty

Fig. 9. Energy savings and the performance penalty when the link reactivation energy
and the link reactivation latency values are doubled. The prediction scheme used here
is the Markov prediction using a threshold of 0.5.

(a) Energy savings (b) Performance penalty

Fig. 10. Energy savings and the performance penalty achieved in the case of Markov
prediction using a threshold when the threshold value is set to 0.8

reactivation energy values. The corresponding results can be seen in Figure 9.
There is a slight increase in the performance penalty, but even with the increase
it is well under 1% for all benchmarks except water-spatial, which has a penalty
of just over 1.5%. The reduction in energy savings is negligible as can be seen
in Figure 9. This clearly indicates that, even with high reactivation penalties, our
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scheme performs well and this in turn implies that, the energy saving achieved
is not overly sensitive to reactivation penalties.

In the Markov prediction scheme using a threshold, we had earlier used a
pre-specified threshold of 0.5. We increased the threshold to 0.8 to check for fur-
ther reduction in performance penalty. We repeat the experiments with Markov
prediction scheme using a threshold value of 0.8 this time around. Figure 10
shows the new results. There is indeed a reduction in performance penalty but
the energy savings achieved still remains largely same. This reduction in the
performance penalty is due to further fine tuning by the higher threshold value.
The higher threshold prevents predictions which do not necessarily have very
high probabilities and hence further decreases mispredictions.

9 Concluding Remarks

The goal of this paper is to propose a runtime, proactive scheme for link energy
reduction in NoC based CMPs. To that end, we have made the following con-
tributions. First, we have proposed a link usage based dynamic program phase
characterization and a technique to use this phase characterization to implement
a prediction based pro-active link power management scheme. Second, we have
employed this scheme and conducted experiments with various parallel bench-
marks and found that our scheme achieves up to 44% in energy savings, and an
average saving of about 23.5%. Third, we have found that the most important
advantage of our scheme is the remarkably low misprediction rate and hence the
low performance penalty which in most cases is below 0.5%.
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cedric.augonnet@inria.fr

Abstract. Developing streaming applications on heterogenous multi-processor
architectures like the Cell is difficult. Currently, application developers need to
know about hardware details to deal with issues like scheduling, memory man-
agement and communication/synchronization. Worse, with multiple alternatives
for communication available, developers spend significant time picking the most
appropriate one. A poor choice often results in bad performance. With Cell-
Space, we shield users from hardware details without compromising perfor-
mance. Its runtime is based on an evaluation of the different communication
primitives. In Cell-Space, developers specify a streaming application as a data
flow graph of interacting components. Both task- and data-parallelism are eas-
ily expressed and advanced features such as dynamic reconfiguration are fully
supported. Beneath a simple interface we include a slew of optimizations not
present in other Cell run time environments. We demonstrate the impact of these
optimizations and show that Cell-Space applications can efficiently exploit the
resources offered by the Cell.

1 Introduction

Streaming applications underly a variety of application domains including audio/video,
networking, and processing of extremely large data sets. Moreover, much of the con-
sumer electronics industry hinges on streaming. As streaming data is only valid for
a limited time, we are forced to process the data in line. On the one hand, keeping up
with growing data rates and processing demands is challenging even on modern proces-
sors. On the other hand, streaming applications exhibit much potential parallelism. For
instance, they may (a) process data in a pipeline of stages, or (b) spread it in a SIMD
fashion over a number of identical functional units, or (c) divide a stream in sub-streams
(e.g., audio and video) and process each of them differently. In fact, we would probably
like to use complex combinations of data and task parallelism.

Heterogeneous multi-core processors like the Cell [1] appear to be a perfect match
for these applications. After all, we can run the control part of an application on a
Cell’s general purpose Power core (the Power Processing element, or PPE) and push all
data processing to its specialized SIMD RISC cores (known as Synergistic Processing
Elements, or SPEs). The SPEs’ 128-bit SIMD organization and fast, private memory
make them ideal for stream processing. With eight such cores on a die, the Cell is

A. Seznec et al. (Eds.): HiPEAC 2009, LNCS 5409, pp. 216–230, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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one of the most powerful processors currently available. Moreover, vendors often pack
multiple Cells in a single blade server. As a result, the Cell is used in machines ranging
from game consoles to supercomputers [2].

However, in practice, complex communication and scheduling requirements make
streaming applications challenging even on single core architectures. Heterogeneous
multi-cores like the Cell add yet another difficulty layer. The question is then: why is it
so difficult to map streaming applications on the Cell? In our experience, the problem
is caused primarily by the need to find efficient solutions to the following issues:

1. Scheduling and resource utilization (load-balancing);
2. Memory management with distributed memory and inter-core data transfers;
3. Communication and synchronization (efficient notification messages).

Due to lack of high-level programming support, all of these issues have to be han-
dled explicitly by the application programmer, which implies that the programmer has
to worry about low-level, architecture-specific details. Making the wrong implemen-
tation decision results in poor performance, as all of the above issues are crucial for
efficiency. Asking application developers to worry about low-level hardware-specific
optimizations borders on the unreasonable and leads to poor portability.

To make matters worse, it is very difficult for the programmer to make an informed
decision about which mechanism to use for low-level implementation issues like how
to handle data transfers and synchronizations. The Cell offers a range of options but
it is unclear which are most suitable for what purposes. To achieve good performance,
programmers are forced to consider a host of design alternatives. For instance, they
must worry about: the pros and cons of interrupts versus DMA, the optimal size of code
executing on SPEs, how to split up their applications in components, how to schedule
jobs on SPEs and how to decide under what circumstances which parts of the applica-
tion should be scheduled on what SPEs, etc. These issues are in addition to developing
multi-buffering schemes which overlap processing, efficient data transfer, and dealing
with more than one Cell processor. The problem gets even uglier when application con-
figurations change at runtime (e.g., a TV that adds or removes picture-in-pictures, PiPs,
because the user presses a button).

In our opinion such demands on application developers are undesirable, unreason-
able, and unnecessary. Experience in the related field of network processors has shown
that it also poses a real threat to the success of the architecture.

Contributions. In this paper, we describe Cell-Space, a framework for developing
streaming applications on the Cell. In Cell-Space, developers use a high-level coordi-
nation language for constructing an application, in the form of a data flow graph, out of
components in a component library (see Fig. 1). The graph is first translated to an inter-
mediate XML-based language and, after various optimizations, compiled to C. When
the application is deployed, a runtime system on the PPE schedules the runnable com-
ponents in a load-balancing fashion over the available Cell processors. The components
in turn use a runtime library to run jobs on the SPEs. Cell-Space handles all com-
plex Cell-specific issues, including scheduling, memory management, data transfers,
communication and notification.
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Our main contributions are:

1. A high-level model which helps building streaming applications from components;
2. A runtime system which schedules components over the available cores in a load-

balancing fashion with support for reconfigurability;
3. A runtime library which encapsulates all of the previously mentioned complexity

such as multi buffering, synchronization mechanism, code size adaptation, etc.

The runtime library itself is based on an additional contribution, which is that we are
the first to report on the relative merits of the various communication and notification
mechanisms of the Cell. We evaluated these mechanisms and encapsulated the most
optimal mechanisms behind a convenient API. Finally, we evaluate the system not just
by means of synthetic micro-benchmarks, but also by way of real applications.

To the best of our knowledge, we are the first to design and implement such an inte-
grated approach for developing for Cell-like architectures which supports reconfigura-
bility. Moreover, even the various parts of Cell-Space offer advantages over competing
projects. For instance, the Cell runtime library in Cell-Space is considerably friendlier
than related projects like ALF and Charm++ [3,4]. At the same time, it provides a
slew of optimizations not present in its counterparts. Other run time systems exist that
schedule data flow graphs and balance the load over available processors, and some,
like StreamIt [5], even support the Cell processor. However, none of them seem to have
support for reconfigurability.

Paper outline. The focus of this paper will be on the components responsible for en-
suring good performance and utilization: the runtime library and, to a lesser extent,
the runtime system. Specifically, we will look at the way applications are structured
conceptually, how they are scheduled by the runtime, and how they use the runtime li-
brary for efficient communication and synchronization. The front-end and intermediate
representation are discussed in more detail in [6].

The remainder of this paper is organized as follows. First, we give a high-level
overview of Cell-Space in Sect. 2. Section 3 presents its implementation as well as
the various optimizations we perform. The impact of these optimizations and the over-
head of Cell-Space is evaluated in Sect. 4. Finally, Sect. 5 presents related work and
Sect. 6 concludes the paper.

2 The Cell-Space Architecture

Figure 1a sketches a high-level overview of the Cell-Space development model. Devel-
opers use a high-level front end for constructing data flow applications from a library of
Cell-Space components. The model has no implicit preference for any particular front
end. Obvious candidates for the front-end are GUI-based environments in which appli-
cations are constructed by clicking together components graphically. The only require-
ment is that the front-end generates programs in the Cell-Space intermediate language
which presents an application as an XML description of a data flow graph consisting of
connections and (possibly nested) components.

The XML-based intermediate language is not just a convenient target for the front-
end and an easy-to-parse input for the back-end. It also serves as source and target
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Fig. 1. High-level Cell-Space model

for various XSL transformations and optimizations, such as loop unrolling and conver-
sion of data parallelism to task parallelism where possible. As an aside, in practice the
language is quite readable for end users (sufficiently so that thus far we have not yet
bothered to write a mature front end, writing all of our applications directly in XML).

After the XML transformations, the intermediate representation is compiled to C
and eventually linked to the Space runtime system (Space-RTS, see Fig. 1b). Space-
RTS is responsible for scheduling the components for which all inputs are available on
the various processors in the system. The components themselves read data from their
input streams. Components may use the Cell runtime library (Cell-RTL) for running
jobs on the SPEs. Cell-RTL notifies the components using a call back mechanism when
the jobs have completed. When the component itself completes, it notifies Space-RTS.

The glue between Space-RTS and Cell-RTL is formed by so-called Cell components.
Towards the Cell-Space framework, Cell components act like normal components. At
the PPE, they adhere to the standard component interface, and use the primitives pro-
vided by the run time system for streaming and event communication. Internally, they
use the Cell-RTL library for offloading their computations to the SPEs. The basic in-
teraction in Cell-Space is illustrated in Fig. 1. Space-RTS schedules a Cell component
( 1©) which reads its input streams ( 2©) using Space-RTS’s streaming communication
interface, and uses Cell-RTL to run jobs ( 3©) on the SPEs to process this data. When
jobs complete, Cell-RTL invokes a call back function ( 4©) in the component, which
then writes the output data ( 5©) from the SPEs to its output streams. Finally, the Cell
component notifies Space-RTS ( 6©) that it has finished executing and thereby allows
Space-RTS to schedule its successors in the data flow graph.

Space-RTS – a runtime system for streaming applications. The Space-RTS runtime
system abstracts the programmer from difficulties of the parallel architecture, such as
load balancing, synchronization, and communication between the main components of
the streaming application. Space-RTS organizes the components in a data flow graph
that corresponds to the graph in the intermediate XML representation and provides
both streaming and event communication primitives to the components. Using central
and distributed queues, Space-RTS dynamically balances the load over the available
processors. In addition, it fully supports advanced constructs, such as end-user event
handling and dynamic reconfiguration. Due to its modular design, Space-RTS can easily
be extended to support even more advanced applications in the future.

Reconfigurability is sparked by events that are either caused by user actions (e.g., a
button to add a picture-in-picture), or generated by other components. It is a complex
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operation, that requires removing, adding, and changing components in a running data
flow graph. We handle asynchronous events by buffering them in event queues, which
are periodically emptied by a manager component.

Reconfiguration of the data flow graph is supported by the general component in-
terface which supports combining several components in groups. Components can be
dynamically created, destroyed, grouped, and connected at run time. To avoid race con-
ditions, the application parts that are reconfigured are made idle before reconfiguring.
As we control the activity within the data flow graph, this operation is always possible.

Dynamic load balancing greatly assists dynamic reconfiguration. With static load
balancing, the compiler generates a schedule for each possible configuration. The num-
ber of schedules grows exponentionally with the number of configuration options. Our
approach is more elegant as it does not require these schedules. Furthermore, since a
schedule captures the full application, the application is fully halted at each reconfigu-
ration. In our approach, the parts that are not reconfigured keep running at full speed.

Cell-RTL – a runtime library for running jobs on SPEs. Cell-RTL is the run time library
that facilitates Cell programming by providing a simple interface for using the SPEs.
Although Cell-RTL has been developed specifically for the Cell, its simple interface
and many optimizations may be applied to similar MPSoC architectures as well. The
API of Cell-RTL is based on offloading jobs to the SPEs. A job is a self-contained
application part that performs some computation at an SPE on input data and produces
output data. In streaming applications, these computations consist of kernels and filters,
to which Cell-RTL passes the local addresses of the input and output data at the SPE. All
jobs are represented by a higher-level Cell-Space component in a 1 : n relationship.
Thus, Cell-RTL is responsible for low-level synchronization and communication to the
jobs on the SPEs, while Space-RTS handles the higher-level synchronization between
Cell-Space components. Functionality-wise, Cell-RTL relieves the programmer of the
following difficult tasks:

– SPE management. Cell-RTL performs all SPE management tasks, including initial-
ization, memory management, scheduling, and exception handling.

– Load balancing. Cell-RTL dynamically assigns jobs to the SPEs, based on their
availability. When all SPEs are busy, Cell-RTL internally queues new jobs. When
an SPE completes a job, Cell-RTL sends a job from this queue to the SPE.

– Communication. Cell-RTL performs all communication with the SPEs, which in-
cludes transferring input and output data between main memory and SPE local
memory, sending jobs to the SPEs, and sending notification messages to the PPE.

– Synchronization. Because the SPEs run asynchronously to the PPE, Cell-RTL syn-
chronizes the PPE and the SPEs regularly.

In addition, we will now show that Cell-RTL implements a slew of optimizations
like multi-buffering, job chaining, and efficient communication.

3 Implementation

Conceptually, the responsibilities of Cell-RTL and Space-RTS mentioned in the pre-
vious section are straightforward. For instance, Space-RTS should track dependencies
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and schedule components when all required inputs are available. Similarly, a Cell-RTL
job has input and output buffers. Cell-RTL needs to DMA the input data to the SPE’s
local memory and relay results have back to the components running on the PPE. How-
ever, efficiently implementing these communication and synchronization mechanisms
requires a lot of knowledge about the low-level details of the Cell processor.

For Cell-Space, we systematically analyzed and evaluated various alternatives to
arrive at a highly efficient runtime. As mentioned earlier, by hiding the details behind
Space-RTS and Cell-RTL, Cell-Space shields developers from the complex implemen-
tation details and tradeoffs. Nevertheless, we believe that both the issues we considered
and our findings are essential for anyone developing applications or runtimes for Cell-
like processors. For this reason, we now discuss the most important results.

3.1 Asynchronous Notification

The nature of synchronization on processors like the Cell is such that upon comple-
tion of a computation cores need to notify other cores. This is typically done by means
of a small identifier, such as an integer. In Cell-Space, when a job is complete, the
SPE sends a single 32 bit notification message to the PPE. The Cell processor has
two special-purpose mechanisms which are intended for transferring these messages,
namely interrupts and outbound mailboxes. The default DMA communication mecha-
nism can also be used. Figure 2 shows the three approaches, which are described below.

For evaluation purposes, we created three versions of Cell-RTL using interrupts,
outbound mailboxes, and DMA, respectively. We describe each of them below. The
full evaluation is described in Sect. 4, but as a preliminary result we mention that,
surprisingly perhaps, DMA outperforms both special-purpose mechanisms. Cell-RTL
therefore uses DMA for notifications by default.

Interrupts. Using an interrupt outbound mailbox, an SPE can trigger an interrupt at the
PPE. The PPE then reads the 32 bit mailbox content. The PPE runs a separate thread
that is woken up at every SPE interrupt. It is similar to softirqs in the Linux kernel [7],
as this thread does not run in strict interrupt mode.

Although this approach is relatively straightforward, it has two main disadvantages.
First, interrupts are costly because they are handled by the OS [8]. When an interrupt
arrives, the interrupt handler is invoked. Also, the OS makes a context switch to the in-
terrupt handling thread. Second, interrupt communication does not scale because there
is only one interrupt mailbox for the entire Cell processor, which is shared among all
SPEs. When one SPE has sent an interrupt message, the other SPEs have to wait until
the PPE has processed it before they can send another interrupt message.

Mailbox. Besides the interrupt outbound mailbox, there is one normal outbound mail-
box per SPE, which also holds a 32 bit message. When the SPE uses this mailbox to
send a message to the PPE, no interrupt is generated. Therefore the PPE needs to poll
the mailbox periodically to see if a new message is available.

This approach has two different disadvantages. First, polling the outbound mailbox
for new messages incurs some overhead because it requires a system call to the OS.
Moreover, the mailbox resides on the SPE, and not on the PPE. For each poll, the
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Fig. 2. Notification approaches: (a) Interrupts, (b) Mailbox, (c) DMA

PPE makes a transaction over the internal element interconnect bus (EIB) to access the
mailbox at that SPE. Second, each SPE has only one mailbox slot. If an SPE wants to
acknowledge multiple jobs, it has to wait until the PPE has read the previous message.

In Cell-RTL, the PPE automatically polls all SPEs whenever the application submits
a job. The polling rate is therefore automatically adjusted to the job submission rate.
The application can also poll or wait explicitly in case it does not submit new jobs.

DMA. The SPEs can also use DMA for sending 32 bit messages to the PPE. Cell-RTL
assigns a special DMA region for each SPE to which it writes job acknowledgment
messages. These regions contain a fixed number of message slots, which are used in
cyclic order.

With the DMA approach, polling is done by simply reading memory. Similarly to
NAPI [9], multiple slots can easily be polled at once, draining all pending notifica-
tions in one go. Unsuccessful polls are usually done using the PPE’s internal cache,
without accessing the internal interconnect bus. By enforcing a maximum number of
outstanding jobs per SPE, the PPE ensures that the acknowledgment slot for a certain
job is always available. The statically allocated circular buffer is an efficient structure
as it provides a lock-free producer-consumer channel and incurs no runtime allocation.
Similar constructs are used in various other systems [9,10,11].

Unlike the other approaches, the SPE does not have to wait for the availability of
a mailbox slot when acknowledging a job. It only has to schedule an asynchronous
DMA request. Only when its DMA engine is fully occupied, it has to wait. However,
this condition is unlikely to occur, as the SPE DMA engine can queue up to 16 DMA
transfers. When the queue has an available slot, the DMA request is handed over to the
DMA engine and the SPE immediately continues processing other jobs.

Similarly to the mailbox approach, Cell-RTL automatically adjusts the polling rate to
the job submission rate by polling all notification buffers whenever a job is submitted.
Again, the application can poll or wait explicitly when it does not submit new jobs.

3.2 Multi-buffering and Chaining

Cell-RTL allows multiple pending jobs at a single SPE for overlapping communication
and computation using multi-buffering. Before executing a job, Cell-RTL initiates asyn-
chronous DMA transfers to fetch the input data for other pending jobs. It also sends the
output data using asynchronous DMA. While executing a job, Cell-RTL thus transfers
both the input data for subsequent jobs as well as the output data from previous jobs.
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Spawning small jobs on the SPEs is expensive as each job incurs notification and
transfer overheads. Cell-RTL therefore allows for the combination of several jobs into
a job chain, which is a list of jobs that is scheduled as one entity. Job chaining reduces
overhead as many costs, such as those of synchronization or memory allocation, are
incurred once per chain, rather than once per job. Job chaining also allows data transfer
and memory re-use between jobs in a chain, which eliminates data transfers to and from
main memory when the chain contains producer-consumer jobs.

3.3 Starting Jobs: Data Transfer and Asynchronous Execution

Stream
zero−copy

Cell−RTL
DMA

SPE

Fig. 3. Zero-copy protocol

The protocol for data transfer from the Space-
RTS streams to Cell-RTL jobs minimizes
copying (see Fig. 3). When the component
reads or writes a stream, it receives the ad-
dress in memory of a buffer in the stream
from Space-RTS. The component in turn enters this address in the job description of
the SPE jobs. Cell-RTL then submits the addresses to the SPEs. The PPE performs no
data copying at all, it only copies addresses. The SPE executing the job still transfers
the data to its local memory using DMA as it can not directly access main memory.

A normal Cell-Space component, which only uses the PPE, returns control to Cell-
Space after it has finished running and all output data streams have been written. When
a Cell-RTL component has submitted its jobs to Cell-RTL, it does not wait until Cell-
RTL has finished running these jobs. Instead, it returns control to Cell-Space which
allows Cell-Space to run other components, including other Cell-RTL components.
Running Cell-RTL components asynchronously has important advantages, First, there
is no context switching or thread management overhead as this approach requires only
a single thread. Second, the number of active Cell-RTL components is unlimited. Cell-
RTL always accepts new jobs and maintains an internal queue of pending jobs at which
jobs are put if all SPEs are busy. Third, the main processor and the SPEs are optimally
used. The main processor is always available for normal components as Cell-RTL com-
ponents do not wait. The SPEs are optimally used as Cell-RTL receives all jobs as soon
as Space-RTS schedules the corresponding Cell-RTL component.

4 Evaluation

We evaluate Cell-Space using two first-generation Cell processors. Each Cell proces-
sor has eight available SPEs. As Cell-Space distributes load over both processors, we
effectively have 16 SPEs and two PPEs. Both the PPEs and the SPEs run at 3.2 GHz. We
measure execution time using the built-in decrementer register, which ticks every 120
clock cycles. We repeated the experiments 11 times, after which we took the average.

We first measure the overhead of Cell-RTL using a synthetic SPE benchmark func-
tion, which executes a fixed number of cycles on the SPE when Cell-RTL invokes it.
The total number of cycles spent in all invocations of this function on all SPEs is divided
by the number of SPEs, which results in the average effective execution time (AEET).

On the PPE, we measure the total execution time (TET) on the application. The
measurement starts just before the application submits the first job to Cell-RTL and
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ends when all jobs have finished. It does not include initialization, e.g., set up cost, and
finalization, e.g., shutdown cost and printing the result of the measurement.

The relative and absolute overhead of using Cell-RTL are derived from the AEET
and the TET. The absolute overhead is the TET minus the AEET, which is zero in the
optimal case. The relative overhead is the absolute overhead divided by the AEET, and
is given as a percentage. These figures thus include the cost of DMA transfers and the
overhead of Cell-RTL. Cell-RTL has overhead both on the PPE side in the interaction
with the application and the SPEs, and in the management code that runs on the SPEs.

4.1 SPE Functions

We determine typical computation to communication ratios for SPE jobs by analyzing
several SPE functions that are used in real applications. We have created stand alone
SPE programs that run the specified function and measure the number of cycles used.
The total input and output data size is set to one quarter of the total SPE local memory,
which allows multi-buffering when these functions are used in real applications.

All functions in the SPE function library perform image processing. The input and
output pixels for these functions are represented using one byte per color component.
Using SIMD optimizations, they perform the following operations:

– The maximum function takes the maximum of corresponding values in its input
buffers. It processes 64 pixels of one byte at once.

– Yuv2rgb converts color pixel data in YUV format to RGB format. It converts 16
pixels at once.

– IDCT performs an Inverse Discrete Cosine Transform of 8x8 pixel blocks.
– The convolution functions apply a 5x1 or non-separated 3x3 Gaussian blurring ker-

nel to the input image. The input image contains a border of 8 pixels on the left and
right sides, which is not present in the output image. With the 3x3 kernel, additional
borders of 1 pixel are added at the top and bottom of the input image.

– The geometric transformer applies an affine transformation to the input image. Its
input is a block of pixels from the input image. Its output is the corresponding block
of pixels in the output image. Its arguments include the transformation matrix, and
the position of both the input and output block in the full images.

Table 1 lists the total number of bytes transferred for each kernel along with a mea-
sured decrementer tick count. From these figures, we compute the number of cycles
per transferred byte. This value differs by an order of magnitude. We take this into ac-
count when evaluating Cell-RTL because the computation to communication ratio has
a significant impact on the overhead of Cell-RTL.

4.2 Notification Approaches

We evaluate the different notification approaches modes described in Sect. 3.1 using a
synthetic benchmark application. The benchmark uses the three approaches with 16384
jobs with 32400 input bytes and 32400 output bytes. The number of decrementer ticks
per job is 540 or 5400 which leads to 1 or 10 clock cycles per transferred byte, respec-
tively. This ratio complies with the results from Sect. 4.1.
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Table 1. Computation to communication ratios
for various kernels

Kernel Bytes Ticks Cycles/B
Maximum 61952 346 0,670
yuv2rgb 61444 379 0,740
IDCT 8x8 51208 643 1,507
5x1 convolution 66740 4032 7,250
3x3 convolution 64238 4560 8,518
geom. transform 51248 8440 19,763 5 10 15
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Fig. 4. Notification approach comparison

Figure 4 shows the results of running these benchmarks on 1 to 16 SPEs Note the
logarithmic scale of the y axis. The figure shows three important results:

1. Computationally dense kernels should be preferred as we observed that a high com-
putation to communication ratio implies low overhead. Overhead is greatly reduced
by increasing the number of cycles per byte, for example, by combining multiple
operations that would otherwise be separate jobs.

2. The overhead increases with the number of SPEs, because there is more resource
contention. Also, load imbalance is more likely with more SPEs.

3. There are considerable differences between the various acknowledgment modes.
The DMA mode clearly outperforms the interrupt mode, which in turn outperforms
the mailbox mode. We conclude that the special interrupt and mailbox communi-
cation primitives in the Cell do not provide any added value over the default DMA
communication primitive. We have therefore chosen DMA as the notification mech-
anism within Cell-RTL. In our next experiments, we will only use DMA.

4.3 Multi-buffering

Cell-RTL performs multi-buffering on both input and output data. We evaluate this opti-
mization by varying the maximum number of jobs that Cell-RTL concurrently processes
on a single SPE. With one job per SPE, multi buffering is not possible. The multi-
buffering opportunities increase with the number jobs per SPE, however, when jobs
have 64kB of data, an SPE can only hold the data of three jobs because it has limited
memory.

Figure 5 shows that for small jobs with 1 cycle/byte, running multiple jobs per SPE
increases overhead. Because the memory bus is overloaded, processing the extra job
slots increases overhead. With 10 cycles/byte, multi-buffering decreases overhead from
13 % to 7.5 % with 13 or less SPEs. Beyond 13 SPEs, Cell-RTL’s aggressive multi-
buffering strategy overloads the bus with DMA transfers and overhead increases again.
Fortunately, job chaining overcomes this problem, as explained below. Since we mainly
run large jobs, we use 2 jobs per SPE in our other experiments because this setting yields
the best results for large jobs.
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Fig. 5. Evaluation of multi buffering: 1 to 4 pending jobs per SPE

4.4 Job Chaining

For evaluating the impact of using job chaining and persistent data, we run the synthetic
benchmark application using three modes:

– Basic. No optimizations are performed.
– Chaining. Instead of scheduling 16384 individual jobs, we schedule 4096 chains

with 4 jobs each, or 1024 job chains with 16 jobs each.
– Persistent data. We perform chaining and add persistent input buffers of 12960 or

32400 bytes, which is 20% or 50% of the total data, respectively. We only transfer
the persistent buffer with the first job of each chain, however, it remains on the SPE
during the execution of the chain. All jobs in the chain can therefore access and
even modify this buffer. We reduce the normal input and output buffers by 6480 or
32400 bytes, respectively. The total data size therefore remains equal.

Figure 6 shows the results using 8 and 16 SPEs. On other numbers of SPEs we ex-
perienced similar results. Chaining alone effectively reduces overhead: With chaining
and 10 cycles/byte, the overhead peak at 16 SPEs (40 %) is completely gone. With 10
cycles/byte, the overhead of Cell-RTL becomes less than 6%. Although using persis-
tent data reduces overhead, the overhead reduction with 20% persistent data is limited
because adding an extra persistent buffer increases buffer management overhead. With
50% persistent data, the overhead reduction is more prevalent.

4.5 Application Performance

We now show the effectiveness of Cell-Space using several challenging streaming
applications. All applications have an output component which normally stores the ap-
plication output in a file or displays it on the screen. Using these components, we have
verified the correctness of the application. Since we are interested in the performance of
Cell-Space, and the performance of external output devices can be a bottleneck, we re-
placed the output component by a dummy when performing benchmarks. We examine
the following applications:

– The JPiP application decodes 16 motion JPEG (MJPEG) streams with a resolution
of 1280x720 and combines them into a 4x4 tiled display. An advanced SPE kernel
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Fig. 6. Evaluation of chaining and persistent data

performs JPEG decompression and down scaling using the IDCT kernel, as men-
tioned in Sect. 4.1. When all 16 images have been decoded, the PPE blends them
into a 4x4 tiled display, which it sends to the output.

– The Edge-Rot application performs edge detection by rotating the input images
over 36 different angles. The SPEs perform the rotations using the geometric trans-
formation kernel. For each rotation angle, the PPE generates a border around the
input image which is needed for the following convolutions. The SPEs then perform
the actual edge detection using four different horizontal first order Gaussian deriv-
ative convolution kernels. After each horizontal kernel, the SPEs perform smooth-
ing using four different zero order vertical Gaussian derivative convolution kernels.
Then the SPEs take the maximum of all intermediate results and rotate the im-
age with the reverse of the original rotation angle. Finally, the SPEs aggregate the
results of all angles by again taking the maximum.

– The Edge-2D application uses a different algorithm for performing edge detection.
Instead of rotating the image, it uses rotated two dimensional convolution kernels.
For each of 36 different angles, the PPE generates a border around the input image.
Similarly to the Edge-Rot application, four different first order Gaussian derivative
convolution kernels in the rotated direction are combined with four different zero
order Gaussian derivative kernels in the perpendicular direction. The SPEs perform
these 16 convolutions and take the maximum of their results. Analogous to the
Edge-Rot application, the SPEs aggregate the results of all angles by again taking
the maximum.

The Edge-Rot and Edge-2D applications show that Cell-Space makes it easy to use
different kernels on the SPE: Edge-Rot uses the geometric transformation kernel, the
convolution kernel, and the maximum kernel. Cell-Space automatically balances the
load among the SPEs and performs multi buffering across different kernel types. Using
the same kernel across different applications is also easy: Edge-2D uses the same con-
volution kernel and maximum kernel as Edge-Rot. It only supplies different arguments
to the convolution kernel.
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Figure 7 shows the speedup of the applica-
tions on 1 to 16 SPEs, along with the speedup of
the synthetic benchmark application, which runs
1024 chains of 16 jobs without persistent data.
With 1 cycle/byte, the speedup of the synthetic
benchmark is limited to 5 because of increasing
overhead, as shown in Fig. 5. With 10 cycles/byte,
linear speedup is achieved as the overhead re-
mains constant.

The speedup of JPiP is limited to 11 because
it suffers from load imbalance. It executes only
16 coarse-grained SPE functions in parallel, with
varying compute intensities, as they decode dif-
ferent input files. Edge-2D and Edge-Rot achieve speedups of 9 and 12 on 16 SPEs,
respectively. They are unable to achieve perfect speedup because of the overhead in-
curred by running fine-grained functions on the SPEs. Edge-2D performs better than
Edge-Rot because its functions are more coarse-grained.

5 Related Work

Several other projects address the complexity of programming the Cell processor [12].
A challenge faced by most of these systems is that the particularities of Cell-like archi-
tectures (heterogeneous cores with local memories) make it hard to apply solutions for
scheduling and communication that are based on shared memory [11,13].

Many low-level details of programming the Cell processor are handled by the Linux
kernel, which has special system calls for using the SPEs. The libspe2 library provides
a layer on top of the kernel and provides basic functions for using the SPEs [14]. The
SPE tool chain provides a small communication library to the code that runs on the
SPEs. This environment does not solve problems like load balancing, synchronization
between PPE and SPE, and buffer management. These problems have to be solved by
adding another layer, such as Cell-RTL.

The Charm++ Offload API [3] and the Accelerated Library Framework (ALF) [4]
are similar to Cell-RTL in that they provide an API for offloading jobs to the SPEs
in the Cell processor. However, Cell-RTL has many optimizations that are not present
in these libraries. Moreover, Cell-RTL is more easy to use due to its simple API. An
important difference with ALF is that ALF only supports data parallelism, whereas
Cell-RTL supports both task and data parallelism.

Cell SuperScalar [15] and the Single Source Compiler [16] use compiler technology
for using the SPEs. The user has to specify the parallel parts of the application, which
are then automatically offloaded. The Single Source Compiler focuses on low-level par-
allelism, such as auto-SIMDization. Cell SuperScaler focuses on high-level parallelism
and maintains a data flow graph of pending tasks. Although these approaches are vi-
able for simple applications, we believe they will fail for streaming applications with
complex communication patterns and corresponding data dependencies.
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In the MultiCore Framework [17], the communication between the PPE and the SPEs
resembles streaming. However, full streaming applications with multiple interacting
components are not supported. Contrary to Cell-Space, The MultiCore Framework
uses the SPEs synchronously, which results in low resource utilization.

Gedae [18] is similar to Cell-Space as it creates applications from high-level data
flow specifications. It maps these specifications onto various hardware configurations,
including the Cell. Although the mapping process is dynamic, Gedae statically allocates
resources for the application components, whereas Cell-Space uses dynamic load ba-
lancing. Since Gedae focuses on data processing applications that do not have user
interaction, we believe it does not support dynamic reconfiguration.

Several frameworks for developing streaming applications have emerged, of which
the StreamIt language is the most notable example [19]. StreamIt expresses streaming
applications using sequential pipeline, parallel split/join, and feed back loop primitives,
which are also supported by Cell-Space. The StreamIt compiler detects parallelism in
the application and maps it onto an homogeneous MPSoC [20]. This mapping is sta-
tic, whereas Cell-Space uses dynamic load balancing. The StreamIt compiler supports
the Cell architecture using the Multicore Streaming Layer (MSL) [5], which executes
application kernels on the SPEs using static or dynamic load balancing. Contrary to
Cell-Space, the main processor only runs control code and can not be used for com-
putations in this system. Also, StreamIt does not support dynamic reconfiguration and
event communication, whereas Cell-Space fully supports these advanced features.

6 Conclusions

This paper presents Cell-Space, a framework for developing streaming applications for
heterogeneous multi-cores like the Cell. Developers construct applications by means of
data flow components that are then scheduled on the Cell’s Power core by a runtime sys-
tem which offers a convenient streaming communication interface. Components may
use the Cell runtime library for running jobs on the processor’s synergistic processing
elements. The frameworks shields developers from all low-level hardware mechanisms
that are essential for performance. By carefully evaluating the relative merits of the in-
dividual mechanisms and encapsulating these under a simple API, Cell-Space greatly
simplifies the development of streaming applications on the Cell without compromising
performance. We have evaluated performance by means of real applications such as a
16-stream tiled display, and two edge detection algorithms.
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15. Bellens, P., Pérez, J.M., Badia, R.M., Labarta, J.: CellSs: a programming model for the Cell

BE architecture. In: Proc. 2006 ACM/IEEE Supercomputing conf., p. 86. ACM Press, New
York (2006)

16. Eichenberger, A.E., O’Brien, J.K., O’Brien, K.M., Wu, P., Chen, T., Oden, P.H., Prener, D.A.,
Shepherd, J.C., So, B., Sura, Z., Wang, A., Zhang, T., Zhao, P., Gschwind, M.K., Archam-
bault, R., Gao, Y., Koo, R.: Using advanced compiler technology to exploit the performance
of the cell broadband engineTMarchitecture. IBM System Journal 45(1), 59–84 (2006)

17. Bouzas, B., Cooper, R., Greene, J., Pepe, M., Prelle, M.J.: Multicore framework: An API for
programming heterogeneous multicore processors. In: First Workshop on Software Tools for
Multi-Core Systems, Manhattan, New York, NY (March 2006)

18. Inc, G., http://www.gedae.com
19. Thies, W., Karczmarek, M., Amarasinghe, S.P.: StreamIt: A language for streaming applica-

tions. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196. Springer, Heidelberg
(2002)

20. Gordon, M., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data, and pipeline
parallelism in stream programs. In: Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, San Jose, CA (October 2006)



Adapting Application Mapping to Systematic
Within-Die Process Variations on Chip

Multiprocessors�

Yang Ding, Mahmut Kandemir, Mary Jane Irwin, and Padma Raghavan

Department of Computer Science & Engineering,
Pennsylvania State University, University Park, PA 16802, USA

{yding,kandemir,mji,raghavan}@cse.psu.edu

Abstract. Process variations, which lead to timing and power variations
across identically-designed components, have been identified as one of
the key future design challenges by the semiconductor industry. Using
worst case latency/power assumptions is one option to address process
variations. This option, while simplifying the problem, is becoming less
and less attractive as its performance and power costs keep increasing.
As a result, exploring options that allow the software to have knowledge
about the actual latency/power consumption values is critical for future
systems. Targeting systematic process variations, this paper makes two
contributions. First, we discuss how we can assign threads to the cores of
a chip multiprocessor (CMP) with process variations in mind and show
the energy-delay product (EDP) benefits such a process variation-aware
thread mapping can bring. Second, we study the benefits of varying the
frequencies on a subset of the cores to increase EDP savings. We propose
and evaluate integer linear programming based thread mapping schemes
in both studies. While these schemes operate with profile data, they can
be made to work with partial profiling as well with the help of curve
fitting. We tested our schemes using both sequential and multi-threaded
benchmarks from different suites and the results collected indicate that
we can achieve EDP savings as much as 73.4%, with an average saving
of 37.1% over a process variation agnostic scheme.

1 Introduction

Process variations have been identified as one of the key future design challenges
by the semiconductor industry [3,9]. As process technology moves into the deep
sub-micron regime, it is becoming increasingly difficult to control critical transis-
tor parameters such as gate-oxide thickness, channel length, and dopant concen-
tration. As a result, these parameters may have different values than nominal,
which may, in turn, lead to both power and timing variations across identically-
designed components. Such variations can occur within a chip die, called intra-
die variations, and across dies, called inter-die variations. Intra-die variations are
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usually caused by channel length disparities and nondeterministic placement of
dopant atoms, while inter-die variations are often due to processing tempera-
tures and other factors [10]. As the feature size in each technology generation
gets smaller, intra-die variations become increasingly important. At the same
time, chip multiprocessors (CMPs) are becoming the trend in both high per-
formance computing and embedded system domains. In the context of CMPs,
intra-die variations may mean that different processor cores can have different
power and performance characteristics (also called core-to-core variations).

Various parameter variations exist and continue to increase as process tech-
nologies advance. A general classification of parameter variations is provided by
Unsal et al. [33]. Unlike environmental variations in voltage, temperature or input
which change dynamically, most process variations are static. They usually stem
from manufacturing processes including chemical mechanical polishing, litho-
graphic exposure, resist coating, etc. Some variations are difficult to model or
are unpredictable; these are referred to as random variations. Other variations
which can be characterized are systematic variations. Systematic variations usu-
ally exhibit high degrees of spatial correlation. As pointed out by by Kahng
et al. [21], lens aberration-induced variations become increasingly important as
process margins reduce and reticle enhancement techniques improve. Our study
focuses on systematic variations that are caused primarily by the lens aberrations
in modern step-and-scan photolithography [13,14].

Many prior approaches have been proposed in the literature [7,16,22,26,27] to
cope with process variations at the circuit and microarchitecture levels, so that
their impact can be hidden from the software. For example, cores with different
maximum frequencies can be uniformly clocked at the lowest frequency within
a chip multiprocessor. Unfortunately, hardware approaches based on worst case
assumption usually waste potential resources and their effectiveness is limited
as technology scales further.

In this work, focusing on a CMP architecture, we look at the problem from
a different angle by considering how to adapt the application execution to the
core-to-core variations. First, given processor cores with different performance
and power characteristics (due to process variations), we want to study how
applications can make full use of such an architecture. Specifically, we examine
the tradeoff between performance and energy consumption by focusing on the
metric of energy-delay product (EDP) [17] and try to minimize its value. Our
experimental results show that we can reduce the value of the EDP metric by
about 11.7% on average by being careful about thread-to-core mapping when
the underlying CMP exhibits systematic process variations.

We then study the potential benefits by changing the core frequencies. In this
case, instead of clocking all the cores at the lowest frequency, we configure a sub-
set of the cores to their lowest frequency, which can be higher than the globally
(chip wide) lowest frequency. Different subsets of cores are considered because
the number of cores needed for computations can vary as the execution pro-
gresses. Although such approach can often improve performance, its impact on
the energy consumption and energy-delay product is not clear. Our experimental
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results clearly indicate that a process variation-aware thread-to-core mapping
(implemented using integer linear programming in this work) can save, on aver-
age, 37.1% EDP if core frequencies can be changed. While our schemes operate
with profile data, they can be made to work with partial profiling as well when
curve fitting (or a similar technique) is used.

The next section introduces the targeted CMP architecture and gives our
major assumptions. Section 3 analyzes how to map threads to processor cores of
a CMP based on several experiments that attempt to minimize the EDP under
the impact of systematic within-die process variations. Sections 4 investigates
design alternatives to utilize different maximum frequencies for different cores
within a single-chip multiprocessor. We discusses the related work in Section 5.
Finally, Section 6 summarizes our major conclusions.

2 Target CMP and Assumptions

In this study, we target at a 16-core (4 × 4) chip multiprocessor (CMP) archi-
tecture, as shown in Figure 1(a). Similar to the work by Humenay et al. [18],
we assume the variations in transistor gate length are larger in the Y dimension
than in the X dimension. This is because the critical dimension error caused
by lens aberrations varies in one direction but remains constant in the other
direction [21]. Consequently, the cores in different rows (also called bins) have
different power and performance characteristics, whereas the cores in the same
row are similar. Specifically, the cores in the top rows are faster but leakier (i.e.,
consume more leakage power), and the cores in the bottom rows are slower but
less leaky (because the channel length is larger). We define the processor cores
in one row of this CMP as a processor bin, with the bottom row in Figure 1(a)
as bin 1 and the top row as bin 4.

Due to the systematic process variations in the CMP, we assume that, as
compared to the frequency of cores in bin 1 (the slowest cores in the CMP), the
frequencies in bin 4, bin 3 and bin 2 are 15%, 10% and 5% faster, respectively.
We further assume that, as compared to the subthreshold leakage power in bin
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Fig. 1. (a) The targeted CMP architecture. Each row corresponds to a bin, with cores
having the same power/performance characteristics. Shadings correspond to the core
frequencies of the bins. (b) An example scenario of core availability when a new appli-
cation is delivered to our CMP.
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1, the subthreshold leakage power numbers are 60%, 40% and 20% more in bins
4, 3 and 2, respectively, because subthreshold leakage is proportional to channel
length. These numbers are reasonable when compared to the results in [18],
which are based on a general variation model. Note that the schemes that we
propose in this paper do not depend on specific latency/power values.

Subthreshold leakage power is just one of the several components in the to-
tal power consumption for a transistor. In our work, we consider three major
components including gate leakage power, subthreshold leakage power, and dy-
namic power. We target the 45nm process technology with Hi-k silicon technol-
ogy and refer to [9] in estimating the proportion of each power component in
the total power consumption. Gate leakage, subthreshold leakage and dynamic
power are reported there to contribute approximately 10%, 20% and 70% of
the total power consumption respectively in the 65nm process technology. The
corresponding numbers are 25%, 15% and 60% in the 45nm process technol-
ogy. However, these results did not consider the impact of using Hi-k [2] in the
45nm technology. To take the impact of the Hi-k technology into account, we
assume that, as compared to the 65nm technology, the 45nm technology with
Hi-k brings approximately 30% reduction in transistor-switching power and 10
times reduction in gate leakage power [2]. Therefore, we obtain the proportions
of power consumption as 1.5% for gate leakage power, 28.5% for subthreshold
leakage power, and 70% for dynamic power at a transistor level. As gate leakage
power is negligible in Hi-k technology when compared to subthreshold leakage
power, we consider only the subthreshold leakage power and dynamic power.

3 Mapping Application Threads to Cores

In this section, we first analyze how to map application threads to the different
cores of our CMP to minimize the energy delay product, and present experi-
mental data that illustrates the importance and potential of process variation
aware application mapping. After that, we present an integer linear program-
ming (ILP) based approach that uses profile data. Experimental results are then
provided to evaluate the effectiveness of our approach.

3.1 Process Variation Aware Thread Mapping

The energy-delay product (EDP) [17] is an important metric as it captures the
desire of both achieving high performance and reducing energy consumption.
EDP can be calculated based on the following equations:

EDP = Energy × Delay, (1)
Energy = Dynamic Energy + Leakage Energy

= Dynamic Power × Delay + Leakage Power × Delay. (2)

Recall that we have assumed the different processor bins in our target CMP
(Figure 1) have different frequencies and subthreshold leakage power. Given a
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fixed number of cycles, the delay of program execution is inversely proportional to
the operating core frequency. The total energy consumption consists of dynamic
energy and leakage energy. Dynamic energy is proportional to CV 2

dd, where C is
the total capacitance and Vdd is the supply voltage. We assume that the total ca-
pacitance is not significantly affected by the systematic process variations. Unlike
prior dynamic voltage/frequency scaling approaches where Vdd is varied, in our
targeted architecture, Vdd is fixed and the variation in transistor delay is caused
only by process variations. In this case, the total dynamic energy is the same when
executing the same program on different cores. Leakage power is proportional to
IleakVdd. Here, Ileak is the leakage current, which mainly consists of subthreshold
and gate leakage. As a result, when mapping a single thread to the CMP, the min-
imum EDP may be obtained by different cores depending on the ratio between
dynamic energy and leakage energy. This is because the total EDP can be cal-
culated as (dynamic energy + leakage power × Delay) × Delay. When the dy-
namic energy is much larger than the leakage energy, the fastest (but most leaky)
core is preferred. Otherwise, the slowest (but least leaky) core should be chosen.
Therefore, the assignment of threads to cores may need to be varied from thread
to thread or even across the different execution phases of a given thread.

To motivate the application mapping that is aware of process variation, we
implemented two sets of experiments which quantify how much benefit can be
obtained if the thread-to-core assignment is aware of the underlying core-to-
core variations (i.e., if the process variations are exposed to the thread mapper).
Our experimental setup is explained in detail later in Section 3.3. Figure 2 shows
the normalized EDP values for different single-threaded benchmarks, 10 from the
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NAS NPB Benchmark Suite 3.2 [4] and 11 from the SPEC 2006 CPU Benchmark
Suite. Within each group of bars, the first bar represents the EDP value when
the slowest but least leaky core (Bin 1) is used, and the last bar represent result
when the fastest but most leaky core (Bin 4) is used. For each application,
all the EDP values are normalized with respect to the result of the first bar.
As we can see, for some of the benchmarks, the slowest core gives the most
EDP saving (e.g., IS, mcf, libquantum); for some of them, the fastest core is
favored (e.g., FT, LU, UA); and, for the rest, the choice may not make much
difference. Clearly, when these applications are running on the targeted CMP,
a thread-to-core mapping method that is aware of the process variations and
each application’s preference can bring benefit. Similarly, Figure 3 shows the
normalized EDP values for different multi-threaded benchmarks (10 from the
NAS NPB Benchmark Suite and 10 from the SPEC OMP 2001 Benchmark
Suite), each running with four threads and thus using all four cores in a bin.
All the EDP values are normalized with respect to the result shown in the first
bar of each group. We see that, for most applications, the slowest cores give the
most EDP saving; for the rest, the choice of cores may not make much difference.
These results show that in a CMP affected by process variations, thread-to-core
mapping can be important from an EDP perspective.

3.2 ILP Based Thread Mapping Scheme

We formulate the problem of the thread-to-core mapping using integer linear
programming (ILP) and solve it with Xpress-MP [1], a commercial ILP solver.
We assume that all threads of one application are executed at cores with the
same frequency and only one thread is mapped to each core. The input of the
ILP solver is the profiled information which consists of the execution time and
the energy consumption values of applications. Such an ILP based thread map-
ping scheme can be implemented as a utility in the operating system (OS) that
controls the CMP resources.

We first illustrate this approach by studying how to map the threads to cores
when the number of threads is given, i.e., we make no change to the number
of threads for any application execution. As we assume only one thread runs
on one processor core, the number of cores assigned to each application is also
fixed in this case. Supposing that there are n applications to be assigned to the
four processors bins, we define a n × 4 matrix s with s(i, j) indicating (when
the solution is found) whether the ith application has been assigned to the
processor bin j. Note that our goal is to determine the value of s(i, j) (once the
ILP formulation is solved), which can be 0 or 1. As we also assume that all
the threads of a given application are assigned to the same processor bin, we
have the following two constraints:

∀i, ∀j, s(i, j) ∈ {1, 0}, (3) ∀i,
4∑
j=1

s(i, j) = 1. (4)

We use matrix D to store the execution time and matrix E to store the energy
consumption for different bindings. More specifically, D(i, j) and E(i, j) give the
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Table 1. Notations used in our ILP formulation and their meanings

Notation Meaning
p(i) number of threads for application i
n number of application to run simultaneously
ci number of cores running at frequency fi

D(i, j) execution time of application i when running on cores at frequency fj

E(i, j) energy consumption of application i when running on cores at frequency fj

s(i, j) whether application i is running on cores at frequency fj

Boundi performance bound for application i

performance delay and total energy consumption, respectively, when the threads
of the ith application are assigned to run in bin j of our CMP. As mentioned
above, these values are collected through profiling. When complete profile data
is not available, we can also use partial profiling and apply curve fitting methods
to estimate the unknown values.

Once we have the matrices D and E set up, an optimization objective can be
easily defined. For example, if the objective is to minimize the summation of the
EDP values of all the applications, we can program the ILP solver to minimize
the following objective function:

n∑
i=1

4∑
j=1

D(i, j) × E(i, j) × s(i, j). (5)

Recall that D(i, j) and E(i, j) are constants and obtained from profiling. In the
above discussion, we assumed that the number of threads for each application is
given. This number can be obtained separately by choosing the optimal number
of threads with respect to the optimization objective. If desired, we can also
integrate this search dimension into our ILP formulation of the problem (i.e.,
our formulation can be modified to give the ideal number of cores as well). If
we use p(i) to represent the number of threads (i.e., the number of processor
cores under our assumption) used to execute the ith application, the following
inequalities need to be added to our resource constraints:

n∑
i=1

p(i) ≤ 16, (6) ∀j,

n∑
i=1

p(i) × s(i, j) ≤ 4. (7)

While the first constraint limits the total number of cores in the CMP, the
second one indicates that there are four cores in each processor bin. In this case,
the matrices D and E need to be extended to capture the execution time and
energy consumption for an application at different thread counts. A summary of
the notations used in our ILP formulation is given in Table 1. Note also that it
is not difficult to extend our ILP formulation to larger CMPs with more bins.

3.3 Experimental Setup

We simulate the CMP architecture given earlier in Figure 1 using the Simics
toolset [5]. Simics is a multiprocessor simulator that can be used to perform full
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Table 2. Our major simulation parameters and their default values

Parameter Value
Number of Cores 16

Maximum Frequency in Bin 1 (f1) 2GHz
Maximum Frequency in Bin 2 (f2) 2.1GHz
Maximum Frequency in Bin 3 (f3) 2.2GHz
Maximum Frequency in Bin 4 (f4) 2.3GHz

L1 Data Cache 64K, 2-way, 2 banks
L1 Instruction Cache 64K, 2-way, 2 banks

Unified L2 Cache 4MB, 16-way, 2 banks
Process Technology 45nm

system simulation. The operating system running on each core in the simulator is
Solaris 9. Table 2 gives the major simulation parameters and their default values.
Each processor core has its own private instruction and data L1 caches, and all
cores share a unified on-chip L2 cache. We implemented the MESI protocol to
provide cache coherency. To calculate energy consumption, we use Wattch-like
[12] models for the processor cores; cache energy consumptions are calculated
using CACTI 5.0 [32].

In our experiments, we use the NAS Parallel Benchmark Suite 3.2 [4] and the
SPEC Benchmark Suites. The NAS Suite provides several implementations, in-
cluding serial, MPI and OpenMP. These codes represent computations that are
used in a large variety of modeling and simulation applications based on finite
element, finite difference and spectral methods. We use the serial implementa-
tion for the single-threaded applications. For the multi-threaded applications,
we use the OpenMP based implementations [20]. To make simulation time af-
fordable, we use the class W inputs and run all benchmarks to completion. For
the SPEC benchmarks, we use SPEC CPU 2006 for single-threaded applica-
tions and SPEC OMP 2001 for multi-threaded applications. Simulating a SPEC
benchmark to completion with reference data sets requires too much time in our
simulator. Therefore, for the single-threaded benchmarks, we simulate 1 billion
instructions after the warm-up of 5 billion instructions; for the multi-threaded
benchmarks, we simulate several major iterations after warm-up to make sure
the same amount of workload is simulated on different parallel executions.

3.4 Experimental Evaluation

We consider four groups of multi-threaded applications and distribute the 16
cores in our CMP across these applications. Each group has four applications
and each application has four threads. If the mapping method has no knowledge
about application characteristics or core-to-core variations, each application can
be assigned to any arbitrary bin. Figure 4 shows the EDP results under different
assignments. Points on the x-axis show the different workload mixes. Values in
each group are normalized to the fourth bar. The results obtained using the ILP
based scheme explained earlier correspond to the first bar in each group. The
second, third, and the fourth bars represent, respectively, the best, average and
worse cases in terms of EDP of all the possible assignment. We can see that the
EDP savings achieved by our ILP based approach are essentially the same as
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those of the best case. We also observe that the performance and EDP overhead
incurred by the ILP solver is negligible. Our experiments with partial profile
data also successfully identified the trends through a linear curve fitting method
and generated the optimal results. In fact, as long as we have the profile data for
each application in two different bins, the optimal results can be obtained based
on fitted results for executions in other bins. This is because, for the benchmarks
we tested and shown in Figure 3, the EDP change is monotonic when scheduled
on cores with decreasing frequencies.

4 Changing Bin Frequencies

In practice, cores with different maximum frequencies are usually uniformly
clocked at the lowest frequency within a CMP. This implies setting all the cores in
our targeted CMP to the frequency of bin 1 (the one with the lowest frequency).
An alternative would be to allow different bins to have different frequencies and
to downgrade bins that can run at higher frequencies to a lower frequency if
doing so is beneficial; still, all cores in the same bin run at the same frequency.
We assume the maximum frequency for bin i is fi. In this case, cores in bin 1
can only run at frequency f1; cores in bin 2 can run at f2 or f1 (where f2 is 5%
faster than f1), etc.

Figure 5 shows the performance, energy, and EDP results for the swim bench-
mark in SPEC OMP 2001 when using a different number of cores. To keep the
search space reasonably small, we assume that all the cores assigned to the same
application operate at the same frequency and no more than one thread runs on
one processor core. As a result, when an application uses four threads, possible
frequency values can be f1, f2, f3, or f4. However, when 16 threads are used,
the frequency can only be f1 after downgrading all the cores in different bins to
the lowest frequency. Informally, this means we can use a large number of slower
cores, or a small number of faster cores. From Figure 5(a), we see that the per-
formance generally improves as the number of threads used increases, though
it may saturate beyond a certain point. As expected, the performance is also
better when faster cores are used. When considering the energy consumption,
we see from Figure 5(b) that the energy consumption slightly increases when
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Fig. 5. Performance, energy, and EDP results (from left to right) for the swim bench-
mark when using different number of cores, assuming reconfigurable processor bins
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Fig. 6. EDP results for the FT , MG and wupwise benchmarks (from left to right)
when using different number of cores, assuming reconfigurable processor bins

the number of threads increases. This is because there are more components
consuming leakage power when more threads and more cores are used.1 When
the number of threads is fixed, using faster but leakier cores consumes more
energy. The reason is that the frequency variation is far less than the leakage
power variation in our targeted CMP. We also observe that the difference when
changing the number of threads is not as significant as that with changing core
frequencies. As a result, a clear trend can be observed in the EDP results in
Figure 5(c). With some exceptions, the EDP values generally increase as the
operating frequency increases and decrease as the number of threads increases.

4.1 ILP Based Thread Mapping Scheme

We can see clear trends from the results for the swim benchmark in Figure 5 and
several other benchmarks shown in Figure 6. An important question to answer
now is how to build such graphs for different applications at runtime. Note that

1 We assume that when a core is idle it is shut off (Vdd is disconnected) and thus not
consuming leakage power.
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we can first obtain some of the results based on the profiled data such as the
statistics from the previous executions. After that, we can apply curve fitting
methods to predict the unknown results for different settings. Once we have such
a mechanism in place, different optimization problems can be solved using an
ILP solver, similar to the approach discussed in Section 3. For example, besides
simply minimizing the energy-delay product, we can try to minimize the energy
consumption under certain performance bound by using the same set of variables
as before and adding the following constraint:

∀i,

4∑
j=1

D(i, j) × s(i, j) ≤ Boundi. (8)

Here, Boundi is the execution latency bound for the ith application. Thus, the
performance requirement is satisfied when the application uses cores from the
chosen processor bin. Assuming that we want to minimize energy consumption,
we can express our objective function (to minimize) as follows:

n∑
i=1

4∑
j=1

E(i, j) × s(i, j). (9)

Compared to the ILP formulation in Section 3, the number of cores running
at each frequency is no longer fixed at 4. We assume the number of cores at
frequency fi is ci. Thus, if the core frequencies (and voltages) are not changed,
we have c1 = c2 = c3 = c4 = 4. In the case where we can change the frequency
of each processor bin as explained above, the possible values for ci are different
but they all should be multiple of fours. For example, c1 can be 4, 8, 12 or 16
because different processor bins can be downgraded to frequency f1; but c4 can
only be 4 or 0 because only bin 4 can run at frequency f4. In summary, the
following constraints should be satisfied for ci:

4∑
i=1

ci = 16, (10) ∀j,
n∑
i=1

p(i) × s(i, j) ≤ cj , (11)

c1 ∈ {4, 8, 12, 16}, (12) c2 ∈ {0, 4, 8, 12}, (13)
c3 ∈ {0, 4, 8}, (14) c4 ∈ {0, 4}. (15)

The first two of these constraints limit the total number of cores and the
number of cores at each frequency. The rest just specify the possible number of
cores that can be used at each frequency level.

The thread-to-core mapping method needs to dynamically decide the mapping
of processor cores to different applications at runtime. When a new application
is delivered to our targeted CMP for execution, there are two choices for core
allocation. The first choice is to use only the available cores without affecting
(disturbing) any other applications, i.e., it is non-preemptive. The second choice
is to obtain an optimized global allocation by re-assigning cores to each appli-
cation, which we call preemptive mapping. Note that preemptive mapping can
also require a change in the frequencies of all cores of a given bin.
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We now discuss an example to illustrate the difference between the non-
preemptive mapping and preemptive mapping. As illustrated in Figure 1(b),
we assume the four processor bins are currently running at frequencies f4, f2,
f2 and f1 (i.e., c4 = 4, c3 = 0, c2 = 8, and c4 = 4). We further assume that the
number of unoccupied cores in the four bins are 1, 0, 2 and 1, starting from bin
1. In other words, the new application to be executed can choose resource from
one core running at frequency f4, two cores running at frequency f2, and one
core running at frequency f1. Let us first consider the non-preemptive mapping
scheme. If the application is single-threaded, we can choose a core at one of the
three frequencies. If the application uses two-threads, we can only choose the
two cores running at frequency f2 (recall that we assume no more than one
thread is allowed to run on each core and the threads of one application must
run on same type of cores). In contrast, if preemptive mapping is allowed, we can
reclaim some processor cores from other running applications and assign them
to the new application. Both non-preemptive and preemptive mappings are han-
dled using ILP. The non-preemptive mapping is much easier to implement and
less costly than the preemptive mapping, but it often settles on a globally sub-
optimal solution. Also, the mapping action may be delayed in the preemptive
mapping, since the processor cores may not be reclaimable at arbitrary point
of the program executions. In this work, we do not discuss the mechanism to
reclaim cores and only apply our preemptive mapping scheme on application
entry and exit points to investigate its potential benefits.

4.2 Experimental Evaluation

We first studied the behavior of the non-preemptive thread mapping by compar-
ing our ILP based approach with three alternate schemes. The first alternative
is to use the processor bin with the most unoccupied cores and break possible
ties through random selection (this option is referred as MOST). The other two
alternatives are to use the cores with the lowest or highest frequency (which are
called SLOWEST and FASTEST). Figure 1(b) shows a possible scenario of the
available cores (i.e., the cores that are not marked as “busy”) when an applica-
tion is about to be mapped. There are many such scenarios, so we investigated
all the possible scenarios and compared the four different mapping methods
(our ILP based mapping, MOST, SLOWEST, and FASTEST). The results are
plotted in Figures 7 and 8 for the FT , MG, swim and wupwise benchmarks.

Figure 7 represents the probability that a thread mapping scheme generates
the best EDP results out of all the possible scenarios (each of which is similar to
the one shown in Figure 1(b)). We see that our ILP based thread mapping scheme
can always make the best decision and is therefore better than the other mapping
schemes tested. Figure 8 illustrates the average and maximum (across all the
scenarios) of the normalized EDP values under the different thread mapping
schemes for each benchmark. In our tested benchmarks, the mapping methods
FASTEST and SLOWEST generate much worse results than the ILP based
approach. The results are reasonably good on average when using the processor
bin with the most unoccupied cores (referred to as MOST in the figures), though



Adapting Application Mapping to Systematic Within-Die Process Variations 243

0

0.2

0.4

0.6

0.8

1

ILP BASED SLOWEST FASTEST MOST

P
ro

b
a

b
ili

ty

FT MG swim wupwise

Fig. 7. Probability to generate
the best EDP results under the
different thread mapping schemes

0

4

8

12

16

FT MG swim wupwise

N
o
rm

a
liz

e
d
 E

D
P

ILP BASED SLOWEST FASTEST MOST

(b) maximum(a) average

0.5

1

1.5

2

2.5

FT MG swim wupwise

N
o
rm

a
liz

e
d
 E

D
P

Fig. 8. Average and maximum in the normal-
ized EDP results under the different thread
mapping schemes. For each benchmark, all the
bars are normalized with respect to the first bar.

its results can be as much as 36% worse than the ILP based scheme in some cases.
The main reason for this is that the parallel applications usually scale very well
when the number of cores is relatively small and using all the available cores
reduces the EDP as well.

We now consider a group of four applications running on our target CMP
architecture and explore the benefits of the preemptive thread mapping scheme
over the non-preemptive scheme. We assume that three applications were oc-
cupying all the cores in the optimal way and one has finished execution before
the fourth application is delivered to the CMP. With non-preemptive mapping,
the fourth application can only use the cores left idle by the third application.
By comparison, in preemptive mapping, all the cores can be reassigned and fre-
quencies can be re-tuned at the bin granularity. In this process, different thread
migration approaches [28,34] can be used to move threads from one core to an-
other and the machine state may need to be saved using checkpointing [11,30].
The actual migration and checkpoint strategies that can be employed are or-
thogonal to the main focus of this paper. Therefore, we do not discuss them
further here.

Figure 9 shows the percentage EDP savings when using preemptive thread
mapping instead of non-preemptive mapping. The four benchmarks used in this
experiment are FT , MG, swim, and wupwise. There are 12 scenarios to consider
because each application can be the new-comer or the finishing one. For example,
one scenario would be that FT and MG are running, and swim has finished just
before wupwise arrives. We see from Figure 9 that, on average, the preemptive
mapping scheme can bring 37.1% extra EDP savings. Note also that, in four
cases, the preemptive mapping scheme generates the same result as the non-
preemptive one, and thus, no bar is plotted for these cases.

So far, we have assumed the complete performance and energy profile statis-
tics are available when making the thread-to-core mappings. We now vary the
amount of profile information available to us before mapping threads to cores,
and apply a linear curve fitting method based on the partial profile data to help
making the decisions. Figure 10 shows the EDP results normalized with respect
to the results achieved using our non-preemptive thread mapping scheme, when
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we randomly choose the initial data points in the search space and then apply
a linear curve fitting method. The x-axis indicates the total number of initial
data points used. Each group of bars gives the minimum, average and maximum
EDP results that can be obtained based on 1000 different sets of initial data
points. We can see from this plot that the results are still promising with partial
profiling data and improve as more profiling data becomes available. Note that
the results in the best case are all within 1% of the optimal. Their absolute
values also decrease as the number of initial data points increases. Overall, these
results indicate that our approach works very well even with partial profile data.

5 Related Work

Most of the previous efforts try to eliminate or mitigate the impact of sys-
tematic intra-die process variations [10,18,33]. In contrast, this paper studies
how to adapt application execution to such variations in order to optimize the
performance, energy consumption, or the tradeoff between them. Donald and
Martonosi [15] proposed an analytical method to meet the power-performance re-
quirements under process variations. Their approach estimates tolerable process
variations and adaptively decides the processor cores to be turned off. The ma-
jor difference between their work and ours is that we focus on thread-to-core
mapping and target a CMP with specific systematic process variations.

Humenay et al. [18] focused on the same source of variations as our study (i.e.,
non-uniformity in the lithographic exposure field) and focused on the core-to-
core variations due to spatially correlated intra-die process variations. They in-
vestigated the tradeoffs between static performance asymmetry due to frequency
variation and dynamic performance asymmetry due to thermal throttling. They
concluded that both hardware and software techniques are necessary to address
the problems caused by core-to-core variations. Roberts et al. [29] investigated
a scheduling scheme that is aware of the transistor wear-out and presented the-
oretical results for a set of streaming applications. Teodorescu and Torrellas [31]
also focused on within-die process variation and proposed a variation-aware algo-
rithm for both thread scheduling and dynamic voltage/frequency scaling. Their
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work only considered single-threaded applications, whereas we specifically focus
on parallel applications and consider changing the number of threads during the
course of execution.

One of the obvious results of core-to-core variations is performance asymme-
try. Balakrishnan et al. [6] studied the impact of performance asymmetry in
a multicore architecture. They focused on the predictability and scalability of
performance when commercial workloads are executed on a multicore system
where individual cores have different performance characteristics. Their results
suggest that the application needs to be aware of performance asymmetry and
some degree of performance asymmetry is beneficial.

Employing cores with different characteristics is not new in designing CMP
architectures. Heterogeneous CMPs have been studied in the literature. Kumar
et al. [25] demonstrated that, as compared to a conventional homogeneous CMP,
significant performance improvement can be obtained by matching the different
jobs of a diverse workload with the different cores designed with various com-
plexities. In another work [24], Kumar et al. also showed how to customize each
core to a different subset of application characteristics. Becchi and Crowley [8]
proposed dynamic thread assignment and exploited thread migration between
cores of a heterogeneous multiprocessor. The heterogeneous cores are usually
designed to be different in order to satisfy the various requirements of specific
applications. In contrast, the core asymmetry in our study is caused by process
variations. Also, most of the previous work focused on performance, with only
a few addressing power issues, whereas we choose EDP to optimize the tradeoff
between performance and power/energy consumption.

While the parameters in conventional hardware design are usually fixed, soft-
ware can behave very differently and have various demands. To accommodate
such software diversity, several recent studies propose reconfigurable chip multi-
processor architectures. Ipek et al. [19] presented a complete hardware solution
which supports multiple simple cores to dynamically fuse into larger and more
powerful processors. Kim et al. [23] evaluated a different architectural approach,
called composable lightweight processors, which achieve full composability based
on a non-standard ISA and also allow aggregating simple cores together. The
major difference between our work and these efforts is that we focus on adapting
the thread mapping to process variations and only study reconfiguration of the
core frequencies and voltages.

6 Conclusions

In this paper, we study how to adapt application execution to spatially-correlated
systematic process variations, where different cores of a CMP can have differ-
ent performance and power characteristics. We first explore the thread mapping
schemes to optimize performance, energy consumption and energy-delay prod-
uct. We then study the benefits by reconfiguring a subset of the cores to their low-
est frequency based on specific application behaviors, instead of clocking all the
cores at the globally lowest frequency. We propose integer linear programming
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based mapping schemes in both studies and the experimental results show that
the thread mapping method that are aware of the core-to-core variation can suc-
cessfully optimize performance, energy consumption, and energy-delay product
globally. We also observe that significant reduction in energy-delay product can
be obtained using different reconfigurations of the core frequencies.
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Abstract. Shrinking process technologies and growing chip sizes have profound
effects on process variation. This leads to Chip Multiprocessors (CMPs) where not
all cores operate at maximum frequency. Instead of simply disabling the slower
cores or using guard banding (running all at the frequency of the slowest logic
block), we investigate keeping them active, and examine performance and power
efficiency of using frequency-heterogeneous CMPs on multithreaded workloads.
With uniform workload partitioning, one might intuitively expect slower cores to
degrade performance. However, with non-uniform workload partitioning, we find
that using both low and high frequency cores improves performance and reduces
energy consumption over just running faster cores. Thread scheduling and work-
load partitioning naturally play significant roles in these improvements. We find
that using under-performing cores improves performance by 16% on average and
saves CPU energy by up to 16% across the NAS and SPEC-OMP benchmarks on
a quad-core AMD platform. Workload balancing via dynamic partitioning yields
results within 5% of the overall ideal value. Finally, we show feasible methods to
determine at run time whether using a heterogeneous configuration is beneficial.
We validate our work through evaluation on a real CMP.

1 Introduction

With single core chips, CPU manufacturers detect under-performing processors at pro-
duction time and often sell them as less-powerful, value-priced CPUs. In the chip multi-
processor (CMP) domain, one current trend is to disable under-performing cores. As the
number of on-chip cores grows to 16 or more, process variation makes it more difficult
to achieve uniform, high-frequency operation. Bowman and Meindl [6] find that process
variation on chip can lead to frequency reductions approximately equivalent to one step
“backwards” in process technology. Heterogeneous frequencies can be designed to ac-
commodate a specific power envelope, with high frequency cores for serial program
portions, and low frequency cores for parallel portions. We examine benefits of running
under-performing cores at lower frequencies, instead of disabling them.

Intuitively, with uniform workload partitioning, one might expect low-frequency
cores to reduce the performance of high-frequency cores. Additionally, one might ex-
pect computing efficiency to be better when solely running faster cores. In contrast,
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c© Springer-Verlag Berlin Heidelberg 2009



Accomodating Diversity in CMPs with Heterogeneous Frequencies 249

we find that scheduling workloads non-uniformly can improve both performance and
energy consumption. Even if yields could achieve uniformly high frequencies for all
cores on a CMP, we still make a case for heterogeneous processing, even if only for the
embedded market (where power is a first order design concern). Our chief concern here
is performance, but the energy improvements of using heterogeneous cores wisely are
not insignificant. This latter observation will grow in importance with increased num-
bers of cores and limited on-chip power budgets. Our findings may already be known
to industrial practitioners, but we have yet to see such results made public.

We measure execution time to quantify improvement in delay on high-performance,
multithreaded scientific codes. We allocate differing workloads by executing more iter-
ations of parallelized loops on faster cores. We answer four sets of questions:

1. What are the potential speedups from utilizing significantly slower processors?
2. What are the impacts and overheads of dynamic scheduling techniques? How de-

pendent are performance gains on the scheduling technique? How equally are in-
structions divided between cores?

3. What are the power/performance tradeoffs of heterogeneous versus homogeneous
chips? Are fewer threads more efficient than adding extra threads on slower cores?
Can energy be saved by using heterogeneous cores?

4. How do we dynamically determine if using slower cores improves performance?

We execute multithreaded benchmarks from NAS and SPEC OMP on real hardware,
measuring execution time and total power consumption. Our results show that using
diverse cores can deliver significant speedups and reduce total energy consumption for
most applications. The added overhead of slower cores is offset by the energy costs of
shared resources such as caches, buses, and main memory. This will be important in
future CMP systems, since process variations limit the feasibility of uniform cores for
larger-scale CMPs.

2 Background

Here we discuss static and dynamic scheduling for loop-oriented, multithreaded codes.

2.1 Static Scheduling

OpenMP parallelizes loop bodies of Fortran or C programs marked by PARALLEL
pragmas. Code in parallel regions contains independent iterations that can be computed
by separate threads. Each processor is usually assigned one thread, although multiple
threads may be given to cores supporting simultaneous multi-threading [15] or multi-
programming. By default, the OpenMP scheduler assumes loop iterations require equal
amounts of computation, and thus it statically assigns an equal number of iterations
to each thread. We refer to these as chunks (Eq. (1)) (akin to blocks of iterations for
scheduling parallel loops on symmetric multiprocessors [SMPs]). If some loops run
longer than others during a workload chunk, a load imbalance occurs, and one or more
threads finishing before others. Since ends of parallel sections contain implicit barriers,
faster threads wait at barriers, idling until the slowest thread finishes.

staticworkload chunk =
total iterations

number of threads
(1)
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#pragma omp parallel for
BEGIN PARALLEL FOR

A[i]=B[i]*B[i];
END PARALLEL FOR

Fig. 1. Example Parallelized For Loop

The first chunk is assigned to the first thread, the second chunk to the next, and so forth,
until all chunks have been assigned. Each thread can amortize costs of fetching data
into cache via multiple accesses to those data used in subsequent loop operations and
iterations. The overhead cost of partitioning the workload only occurs once.

Figure 1 illustrates a simple example. The code reads array B, computes a result,
and writes that to array A. When a value at index i is fetched, other elements in the
same cache line are also fetched. If the arrays are dense for a block-cyclic partitioning
of iterations, memory costs of fetching elements i+1, i+2, . . ., can be amortized over
multiple iterations. Alternatively, for cyclic partitioning, in which iterations are assigned
round-robin to threads, false sharing occurs if threads work on adjacent indices. This
is the same problem as loop scheduling for SMPs, but in a different context (we’re
advocating block-cyclic over cyclic assignments of iterations to cores).

2.2 Dynamic Scheduling

For static scheduling, chunk sizes and number of chunks are pre-chosen based on num-
ber of threads. For dynamic scheduling, the user can specify chunk size and the number
of chunks can exceed the number of threads. Chunks are assigned round-robin to avail-
able threads. New chunks are allocated when previous chunks complete. This tries to
overcome the main drawback of static scheduling — the potential for load imbalance
— by using smaller chunk size that are dynamically assigned to cores.

Guided scheduling is a variation of dynamic scheduling, where chunk sizes are not
fixed, and the user can specify a lower-bound for sizes. Chunk sizes can be larger but
never smaller than the specified lower-bound. The run-time library starts by allocating
larger chunk sizes, and keeps decreasing sizes until it reaches the lower limit specified
by the user (or a chunk size of one iteration if no lower-bound is given).

The dynamic approach minimizes false sharing and amortizes memory costs for ac-
cessing data touched multiple times within and across iterations. This approach assumes
many small loop iterations and chunk sizes sufficiently large to make scheduling over-
head negligible, but remains sufficiently flexible to balance work between overloaded
and idle cores. We examine this strategy for loop-oriented benchmarks, noting what
problems arise and identifying counter measures. We engineer our implementation for
loops with different computation overheads and underlying thread hardware operating
at different speeds. Latency to memory remains unchanged, but computation overhead
per loop increases for slower cores. All changes are compiler-agnostic with respect to
the underlying hardware, such that the workload can be appropriately allocated at run
time, rather than at compile time.

Programmers typically parallelize the outer-most loop with nested loops. When pro-
grams contain many nested loops, load-balancing for just the outer-most loop may be
insufficient. For example, applu and lu both contain many nested loops. Parallelizing
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the outer-most loop may not be a sufficiently small granularity for balancing work-
loads between heterogeneous cores. When migrating to heterogeneous systems, hand
optimizations (outside the scope of this paper) can help balance the system.

3 Related Work

Practitioners compensate for variations by correcting them or by finding ways (in hard-
ware or software) to tolerate them. Process variations cause CPUs to reach different
maximum frequencies for given operating voltages, and even though CMPs are more
tolerant of variations [5], the problem remains important. Variations can be corrected in
multiple ways [20,18,19], but most common is increasing operating voltage for under-
performing cores, which increases power consumption. Humenay et al. [11] find accom-
modating variation via voltage increases can consume 166% more power than regular
cores and requires separate voltage islands per core. Donald et al. [7] study techniques
to turn cores on and off, adding scheduling complexity. Unlike our study, other work
examines cores running at one frequency but using differing amounts of power.

Variation accommodation falls under two domains: effectively utilizing heteroge-
neous systems, and reducing power consumption through DVFS (Dynamic Voltage
and Frequency Scaling) within CMPs or computing clusters without degrading perfor-
mance. Under the first, researchers use multithreaded programs for CMPs of different
processors on chip. Liu et al. [16] achieve scalable speedups with different processors
working in unison by extending OpenMP and hand optimizing codes.

Wong et al. [21] analyze load balancing of a heterogeneous symmetric multi-
processor (SMP) server and a cluster of SGI and Intel machines. These run parallel
applications on different architectures simultaneously. They examine static scheduling
via OpenMP threads and dynamic scheduling using iteration profiling. They find that
a mixture of techniques improves performance but increases profiling and complexity.
Balakrishnan et al. examine multithreaded program performance on a prototype SMP
running processors at different frequencies [4]. They find that exposing asymmetry to
the OS and programmer enables performance improvements. This SMP scalability and
predictability study assumes separate chips, and thus the study does not address power
implications and memory effects of CMP systems. This system has no shared caches,
thus chip-to-chip latencies affect thread scaling and processor communication assump-
tions. Unfortunately, individual processor workloads are not revealed, making it hard
to discern sources of performance bottlenecks. Both studies fail to explore power effi-
ciency of such systems, which we specifically target.

Kadayif et al. [14] leverage heterogeneity between threads to reduce power consump-
tion. They perform DVFS on cores independently, slowing faster threads with minimal
performance degradation. Isci et al. [12] find improvements in computing efficiency to
be worth the added overhead of per-core voltage islands, but the study uses a multi-
programmed workload of single threaded benchmarks in unison on a CMP. In contrast,
Herbert et al. [10] use multi-threaded benchmarks and find that per-core DVFS is not
worth the complexity of the independent voltage islands compared to chip wide DVFS.
The preferred approach appears to depend on the desired workloads. Since ours con-
sist of multi-threaded benchmarks, we target the infrastructure without per core voltage
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islands. Across clusters of processors, Ge et al. [9] make it clear that DVFS is worth
the implementation cost, as they achieve power reductions without significant perfor-
mance loss. The common thread among these studies has been the use of DVFS to
achieve energy savings while the processor is memory bound [13] to avoid significant
performance degradations.

We believe ours to be the first work using real hardware to examine performance and
energy for frequency heterogeneous CMPs on multithreaded, shared memory codes.

4 Experimental Setup

We compile with -openmp and -static and Intel C and Fortran compilers. For
NAS v3.2 [3], we use class B large inputs outlined in Table 1. These fit in main mem-
ory, but are large enough to provide significant work per thread. We omit IS: it fails
to run for larger input sets. For the SPEC OMP benchmarks [17], we use training in-
puts, since they provide reasonable workloads and complete in reasonable time. Native
execution times varies from about one-ten minutes, depending on benchmark. We use
Linux 2.6.24.2 and the perfmon2 library [8] to gather performance counter data.

Table 2 describes our testbed: an AMD Phenom 4-core CMP [1], with 2GB of mem-
ory, and a 200GB HDD that can independently clock each core at either 2.2 GHz or
1.1 GHz. Our machine lacks separate voltage planes: all cores use the same voltage.
Given only two frequencies, we cannot test smaller frequency degradations or provide
comprehensive statistical analyses of other frequency domains. We conservatively de-
fine a “bad core” as one that only runs at 1.1 GHz. Process variations might not always
create such large discrepancies between cores, but this will identify points where the
slower core clearly causes bottlenecks. Small frequency changes make it harder to tell
whether faster cores are being bottlenecked due to the slower core, or whether they are
constrained due to scaling factors such as parallelization overheads, thread spawning,
and memory constraints. For example, a 16 core CMP with two cores operating at 20%
less frequency might limit other cores, but this might not be apparent if cores are con-
strained by other factors such as off-chip memory or program scaling. Our baselines
case is two cores clocked at maximum frequency, and our test cases are two fast cores
and one slow core (at half frequency), and two fast cores and two slow cores.

We use a Watts Up Pro power meter to measure total wall-outlet power consumption.
The meter’s measurements are updated once per second. To isolate the processor power
consumption, we measure power of the idle system clocked at the lowest frequency.

Table 1. NAS Benchmark Class B Inputs

APPLICATION INPUT PARAMETERS

bt 102x102x102, 200 iterations
cg 75000, 75 iterations
ep 2147483648 Numbers
ft 512x 256x 256, 20 iterations
lu 102x102x102, 250 iterations
mg 256x 256x 256, 20 iterations
sp 2102x102x102, 400 iterations
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Table 2. CMP Machine Configuration Parameters

Frequency 2.2 GHz (max), 1.1 GHz (min)
Process Technology 65nm SOI
Processor AMD Phenom 9500 CMP
Number of Cores 4
L1 (Instruction) Size 64 KB 2-Way Set Associative
L1 (Data) Size 64KB 2-Way Set Associative
L2 Cache Size (Private) 512 KB/core 8-Way Set Associative
L3 Cache Size (Shared) 2 MB 32-Way Set Associative
Memory Controller Integrated On-Chip
Memory Width 64-bits /channel
Memory Channels 2
Main Memory 2 GB PC2 5300(DDR2-667)

The processor consumes very little dynamic power in a low power state. We run our
benchmarks from a networked file-server to minimize hard drive activity. We disable the
OS’s automatic dynamic voltage and frequency scaling, and the CMP runs on a single
voltage domain for all processors. When determining power consumption of the CMP,
we subtract idle power values. Idle power includes system power (motherboard, hard
drive), memory and CPU at idle, with cores clocked to their lowest frequency. We find
dynamic power consumption scales linearly with increasing threads for computation
intensive benchmarks (ep). This confirms idle cores’ power are not being masked by
the active cores. All data logging is on a secondary machine.

For the heterogeneous test case, we modify benchmarks to schedule threads at run-
time. Our baseline uses pristine code without any modifications as that is most op-
timized for homogeneous processors with little scheduling overhead. Originally, the
dynamic and guided scheduling constructs were for cases in which loop iterations took
different amounts of time. Here, we use those scheduling constructs for load balancing
between slower and faster threads.

5 Evaluation

We examine the performance, power, energy, and run-time scheduling characteristics
for homogeneous workloads and compare with their heterogeneous counterparts at
higher thread counts.

5.1 Performance

To gauge overhead of dynamic and guided versus static scheduling, we run NAS and
SPEC OpenMP applications on three homogeneous cores and threads. Ideally, there
should be no performance difference from dynamic load-balancing workload chunks
among cores. Figure 2 shows delay increases from switching to dynamic or guided
scheduling, with results normalized to our static baseline scheduler. Guided,5 represents
using guided scheduling with a minimum chunk size of five. Dynamic,5-200 represents
running all benchmarks using dynamic scheduling with fixed chunk sizes of 5, 10, 50,
100, 150 and 200 loop iterations, reporting the best performance from this range.
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(a) NAS (b) SPEC-OMP

Fig. 2. Scheduling Performance Normalized to Default Static Scheduling (Lower is Better)

With NAS and SPEC benchmarks, changing dynamic chunk sizes significantly af-
fects performance depending on the benchmark. There is almost no change in perfor-
mance with the guided scheduler, except for lu, which exhibits an 18% increase in delay
from dynamic scheduling versus static. This reduces benefits of dynamically allocating
work for the third thread of this benchmark. Overall, we find guided to perform better
than dynamic scheduling with chunk sizes, since the guided scheduler uses larger chunk
sizes when possible. Guided only reduces the chunk size when backlogs occur. Even
using a variety of chunk sizes for different programs, the dynamic scheduler performs
worse for several benchmarks for which guided with just one lower bound value works
well: bt, ft, sp and apsi. Small chunk sizes work well for codes that have large nested
loops, while loops without nests benefit most from larger chunk sizes, as there is less
memory contention between threads.

To gain insight into these performance differences, we examine how instructions
are distributed across processors using the guided scheduling policy. Ideally, each core
should equally receive a third of the total instructions. Figure 3 graphs instruction distri-
bution across the homogeneous processors, where CPU 0, CPU 1, CPU 2 are the three
cores on the CMP. All the SPEC-OMP benchmarks show excellent scaling, with about
a third of the total instructions for each core, and only a 1% variation. The NAS bench-
marks show more variation for two benchmarks. With bt, CPU 0 performs 5% more
work than CPU 1 and 2% more work than CPU 3. Lu shows even higher variation,
with CPU 0, CPU 1 and CPU 2 executing 39%, 19% and 42% of the total instruc-
tions respectively. This load imbalance leads to the performance degradation graphed
in Figure 2(a), since static scheduling does not suffer from this phenomenon.

With perfectly scaling benchmarks that are computation bound (rather than memory
bound), increasing from two to three threads should lead to a performance increase
of 50%. However, since the third thread is only half as fast as the other two threads,
only a 25% performance increase is expected. Since programs rarely scale perfectly
and are not always computationally bound, this 25% improvement in performance is an
expected upper limit of our results. Even the 25% upper bound may not be reached if
the benchmarks are not partitioned equally at run-time between the cores.
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(a) NAS (b) SPEC-OMP

Fig. 3. Distribution of Instructions Across Homogenous cores

We examine the distribution of instructions across heterogeneous cores. Figure 4
graphs instructions across heterogeneous cores, where CPU 0 and CPU 1 operate at
max frequency and CPU 2 runs at half the max frequency (1.1 GHz). Ideally, the fast
cores should execute 40% of total instructions each, and the third core should process
20% due to the different operating frequencies between processors. Unfortunately, this
perfect distribution only occurs for ep. On average, the slower core actually processes
25% of total instructions. This is 5% more total chip-wide instructions than the ideal
case, and 25% more for that one core. This imbalance reduces the efficiency of the
heterogeneous configuration. The load imbalance is worst with swim and applu where
CPU 2 executes 30% and 32% of the total instructions respectively. This does not de-
grade performance for swim significantly since it is already memory bound at the higher
thread count. Swim has the largest memory footprint of all the SPEC benchmarks and
traditionally does not scale well with threads going from two to four threads [2]. Lu
displays a different form of imbalance between the two homogeneous cores. For most
benchmarks the homogeneous cores distribute the remaining workload equally, but with
lu CPU 1 executes 47%, and CPU 0 and CPU 2 execute 26% and 27% respectively.

Speedups of running benchmarks on the heterogeneous three core system are graphed
in Figure 5(a) for NAS and Figure 5(b) for SPEC OMP. Results illustrate four differ-
ent cases normalized to the two processor high frequency architecture baseline. 2f1s-S
is the heterogeneous CMP (composed of two fast cores and one slow core) with static
scheduling for thread workloads. 2f1s-G is the guided scheduling of thread workloads
on a heterogeneous three core CMP, and 2f2s-G is the guided scheduling of thread work-
loads on a heterogeneous four core CMP (composed of two fast cores and two slow
cores). 3f is the three thread homogeneous case where all processors run at the max-
imum frequency. Results are normalized to their two thread counterparts. 3f and 2f2s
perform similarly, with 3f doing better for benchmarks with workload imbalances (ap-
plu, lu) and 2f2s doing better for benchmarks whose cache footprint decreases with
increasing threads (cg). 2f1s-G performance is between 2f1s-S and 3f. For memory
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(a) NAS (b) SPEC-OMP

Fig. 4. Distribution of Instructions Across Heterogenous cores

(a) NAS (b) SPEC-OMP

Fig. 5. Performance Normalized to Two-Thread CMP (Higher is Better)

constrained benchmarks, 2f1s-G performs competitively with 3f. For computation lim-
ited codes, 2f1s-S performs poorly, since the slower core bottlenecks the faster ones, re-
sulting in an effective raw clock speed of 3.3GHz compared to the baseline’s 4.4 GHz
(25% slower). Performance degradation varies with benchmark, depending on thread
barriers and synchronization points. 2f1s-S is not included in further results, since its
results are obvious and offer little insight into desirable power and performance. The
NAS benchmarks with the 2f1s setup benefit significantly from the increase in threads.
Although the extra processor runs at half the frequency of the other cores, effective
workload balancing ensures it does not throttle performance at synchronization points.
The 2f2s configuration also is able to perform as well as the 3f configuration, effectively
compensating for the one less fast core with two slow ones.

The exception to our positive performance gains is lu. Its performance degrades on
heterogenous CMP configurations, by 19% (for 2f1s-G) and 17% (for 2f2s). There are
several reasons for this degradation. Faster cores have to wait for the slower core at
barrier points, leading to the faster cores being idle. Another is the synchronization
overhead of dynamic chunks sizing, which can slow the system significantly. Figure 2
confirms our previous observations of reduced performance from dynamic scheduling
overhead. Figure 4 confirms the workload imbalance between cores.
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2f1s-G’s cg benchmark shows the most gains of the NAS benchmarks, with a 38%
super-linear gain in performance. Cg’s performance gains are due to decreasing cache
misses with increasing threads. From the SPEC suite, 2f1s’s equake shows the most
gains, also with a slight super-linear improvement in performance of 28%. Swim only
exhibits a 5% speedup with 2f1s-G, and even 3f only improves performance by 12%,
which indicates the processors are often idle waiting for memory. Running with more
threads results in increased off-chip memory pressure, which is why swim fails to im-
prove in performance. We next examine average per-benchmark power to confirm this.

5.2 Power and Energy

Activating a third processor at the same voltage but lower frequency yields less energy
savings than lowering voltage in tandem with frequency. This is due to the quadratic
coefficient voltage plays in the power equation( 1

2CV 2f ). There should be a 25% net
increase in CPU power consumption for computation intensive benchmarks. Actual
energy consumption varies since dynamic power consumption for various processes
(L3 cache accesses, memory controller, main memory functions, off-chip accesses, and
cache coherence) are amortized across all cores.

Figure 6 graphs the power consumption of the three processor 2f1s and 3f, and four
processor 2f2s cases, normalized to the two processor scenario. 2f1s’s power consump-
tion is about half way between the power consumption of the 2f2s and baseline con-
figuration for most benchmarks. The 3f configuration generally has the highest power
consumption. A workload imbalance reduces throughput, but does not significantly re-
duce power consumption of the cores for the 2f2s and 2f1s configurations. Although
lu shows performance degradation for 2f1s and 2f2s, power consumption increases by
12% and 27% respectively. Ep power consumption with the 2f1s configuration is 30%
higher than the two thread case, slightly higher than the theoretical increase of 25%
for computation bound applications. The higher consumption can be attributed to in-
creased power consumption of shared structures, which operate at a rate independent of
the slow core, such as cache coherence. applu exhibits a slight increase in performance
(3%) and decrease in power power consumption (7%) with the 2f1s configuration. The
slower thread for 2f1s slows down the others, such that increasing number of threads
does not improve performance, and reduces power consumption of the faster running
processors. This is proven from the instruction mix and performance graphs seen ear-
lier. applu exhibits a 20% improvement in performance with no increase in power with
the 2f2s configuration. This would not be noteworthy if we were reducing frequency
and voltage when increasing threads. However, here we increase the number of threads
without reducing the frequency or voltage from cases using threads. This indicates that
for the two-thread configuration, the threads are performing inefficiently. For lu, 2f1s
and 2f2s are also inefficient configurations, where power increases by 12% and 27%,
while performance actually degrades. This is because processors are still spinning on
locks, executing useless instructions while stalled at barrier points. Overall, 2f1s and
2f2s use 12% and 26% more power respectively on average, during execution. This is
lower than our theoretical maximum, but accurately matches the trends in performance
improvement seen above. The exception to this being lu.
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(a) NAS (b) SPEC-OMP

Fig. 6. Power Consumption Normalized to Two Thread CMP (Lower is Better)

Using more threads requires more power, since voltage or frequency do not decrease.
However, if the benchmarks achieve a significant performance improvement, total energy
is decreased due to power being consumed for less time. This is because shared struc-
tures are active for less time, and whose dynamic power consumption is amortized over
greater threads. We compare total energy consumption of the 2f1s, 2f2s, and 3f configura-
tions with the two-core homogeneous CMP. Figure 7(a) graphs energy consumption for
NAS, while Figure 7(b) shows energy consumption for SPEC. Results are normalized to
the baseline homogeneous case. To attain these energy savings, we assume the system
can enter a low power state (be turned off) or start on the next job, when idle after com-
pleting the previous job. With the NAS benchmarks, energy reduction varies, depending
on performance improvements and increased power consumption. Ep requires slightly
more energy with more threads, since the improvements in performanceclosely correlate
with increases in power consumption. Cg, ft and sp show highest energy reductions with
the heterogeneous configurations. For these benchmarks, improvements from increasing
threads, and improvements from reduced cache misses leads to greater efficiency. This
is especially true for cg, which is why it has the highest energy reductions with more
threads. Lu shows significant increases in energy consumption, due to the decrease in
performance, and increase in power consumption from using heterogenous configura-
tions. For lu, the homogenous configuration does not improve over the baseline, since
improvements in performance are offset by similar increases in power consumption.

All SPEC benchmarks except swim show energy reductions for all configurations.
Recall that swim is memory constrained and suffers from many memory stalls, thus
running extra threads without decreasing voltages or frequencies fails to improve en-
ergy efficiency. The worst degradation is less than 6%, however: while processors are
stalled waiting for memory, their power consumption is low. 3f is the most inefficient
for swim, another indication that high frequencies do not help. From 7(b), its clear the
heterogenous configurations are just as or more energy-efficient than the homogenous
configurations. The exception being applu, where workload imbalances hampers en-
ergy reductions, and efficient operation. When instructions are stalled due to memory
latency, processors attempt to issue other instructions by reordering instructions to ex-
ecute. This leads to extra work that might not be done at lower frequencies, where
memory from the processor’s perspective has a lower latency. This is one of the reasons
memory bound benchmarks have higher energy savings with the 2f1s configuration
compared to the 3f configuration.
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(a) NAS (b) SPEC-OMP

Fig. 7. CMP Energy Reduction Normalized to Two Thread Configuration (Higher is Better)

(a) NAS (b) SPEC-OMP

Fig. 8. 2f2s vs. 2f Cache Behavior (Lower is Better)

We examine cache activity from switching a homogenous two-thread configuration
to a heterogenous four-thread configuration. Figure 8 shows memory behavior for the
four thread 2f2s case normalized to the two thread 2f case. Individual L2 cache miss
rates, total off-chip misses and L3 cache fills from L2 evictions are graphed. Reduc-
tions in L2 cache misses improve performance and reduce energy consumption. Since
off-chip misses do not increase with increasing threads, the off-chip power is amortized
over more cores, so efficiency (defined as performance per watt) increases. The reduc-
tions in L3 fills from L2 evictions reduces L3 cache accesses, reducing energy con-
sumption. Benchmarks exhibit reductions in L2 miss rates and L3 fills from reduced L2
misses, with increasing threads. Ep has significant increases in off-chip misses (900%)
with increasing threads. However, actual values are very small, with a negligible ef-
fect on performance. While these reductions improve performance and energy, their
effect on energy reduction will vary, depending on the ratio of microarchitecture ac-
tivity to cache accesses. We do not graph L2 cache coherence snoops, which should
increase with increasing threads due to our broadcast based cache coherence. However,
L2 snoops only require checking the cache tags, requiring significantly less energy than
a cache miss that entails line fills and off-chip accesses.

A user might be inclined to clock down one of the cores on a CMP and inherit this
“heterogeneous” configuration, such as with 2f1s, trading off performance for power
and energy reductions. Alternatively, one can tradeoff die area for energy reductions
with the 2f2s configuration.
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5.3 Metrics for Run-Time Scheduling

We previously found increasing threads does not always improve performance, and even
when it does, it might not be energy efficient. It would be useful to determine the optimal
number of threads in real-time without offline profiling for frequency-heterogeneous
CMPs. To achieve this, we need to be able to determine thread progress, and applica-
tion power consumption. We examine using performance counters to determine use-
ful thread progress, and whether increasing thread counts improves performance. We
use power meters to determine real-time power consumption of the application for a
given configuration. We specifically examine total instructions, and total floating-point
(FP) instructions retired (inclusive of MMX instructions) per processor to guage thread
progress. We examine whether using either of these performance counters is sufficient
to determine thread progress. The drawback of the total instructions retired metric, is
that stalled threads spinning on locks can lead to increased instruction counts with-
out increasing work throughput. Unfortunately, OpenMP does not support dynamically
changing the number of threads via signals sent outside the program, which prevents
us from implementing a real-time scheduler that detects whether increasing the thread
count reduces performance. Our results are thus based on static thread counts, but noth-
ing precludes this work from being done in real-time, should the underlying shared-
memory framework support it.

Figure 9(a) graphs floating-point instructions per core per second for applu, swim,
lu, and ep for the 2f1s configuration, normalized to the two thread homogeneous CMP
scenario. We choose these benchmarks since they suffer the worst degradation from
increasing thread counts, except for ep, which we use as a point of comparison. For
the third core, we normalize retired FP instructions to one of the homogeneous cores
(which of the two cores we choose does not matter, since both retire approximately
the same number of FP instructions) from the two-thread runs. The total column rep-
resents total FP throughput normalized to the homogeneous two-thread case. Ideally,
for computation bound cases there should be no change in cores 0 and 1 when thread
counts increase, and 50% throughput for core 2. This is the case for ep, which is why
it has a 25% increase in total FP instructions retired. Other benchmarks show large
degradations for cores 0 and 1 when thread counts increase, resulting in fewer total
FP instructions retired than for the two thread case. Optimal thread counts can thus be
chosen dynamically (without profiling). Interestingly, core 2 shows throughput higher
than 50% for many benchmarks, indicating they are bound by memory and not by fre-
quency. We do not use total instructions committed to gauge throughput, since all of
the benchmarks we evaluate are FP, and processors spinning on locks may increase in-
teger throughput without improving performance. This phenomenon is illustrated for lu
in Figure 9(b), which graphs the total instructions per core per second. Results are nor-
malized to the two-thread homogeneous CMP scenario. While other benchmarks follow
the trends from Figure 9(a), lu shows how using the total instruction metric could lead to
erroneous thread choices since it exhibits higher instruction throughput at higher thread
counts. Processor stalls are not a good metric to detect stalls for applications limited by
memory or barriers such as lu, since cores are not stalled when spinning on locks. These
results can be used for sampling the entire search space at run-time until the optimal
configuration is found.
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(a) Floating-Point (FP) (b) Integer (INT)

Fig. 9. CMP Retired Instructions Scaling from Two to Three Threads

6 Conclusions

We achieve performance and energy improvements by leveraging cores that operate at
different frequencies on real hardware. By balancing workload chunks between faster
and slower cores, we reduce bottlenecks caused by slow cores. We find dynamic schedul-
ing methods can add noticeable overheads and affect performance. The guided schedul-
ing method with a single lower bound for chunk size works well for most benchmarks,
while dynamic scheduling with fixed chunk sizes does not. Workload balancing is im-
perfect, with a variation of 5% above ideal on average. With three heterogeneous cores,
this yields a 25% load imbalance on the slowest core.

We observe speedups of up to 38% and reduce total CPU energy consumption by
up to 16%. While increasing numbers of threads increases power consumption, reduc-
tions in execution time yield overall reductions in energy consumption. We find running
memory-limited benchmarks in heterogeneous configurations to be competitive with
homogeneous configurations at identical thread counts, at greater energy reductions.

We describe a feasible method to detect at run time whether increasing thread counts
will improve performance. We would like to extend our work to determine whether us-
ing extra cores is more energy efficient. We will expand our study to include scheduling
frequency heterogeneous CMPs with separate voltage domains per processor. As the
number of on-chip cores grows, significant inter-core heterogeneity will be inherent.
Managing this will be crucial in determining the future processor landscape.
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Abstract. The growing trend in current complex embedded systems
is the use of multiprocessor system-on-chip (MPSoC). An MPSoC con-
sists of multiple heterogeneous processing elements, a memory hierarchy,
and input/output components which are linked together by an on-chip
interconnect structure. Using such an architecture provides the flexibil-
ity to meet the performance requirements of multimedia applications
while respecting the constraints on memory, cost, size, time and power.
Such embedded systems employ software-managed memories known as
scratch-pad memories (SPM). Scratchpad memories, unlike caches, are
software-controlled and hence the execution time of applications on such
systems can be accurately predicted and controlled. Scheduling the tasks
of an application on the processors as well as partitioning the available
SPM budget among those processors are two critical issues in reducing
the overall computation time as well as the communication overhead.
Traditionally, the step of task scheduling is applied separately from the
memory partitioning step. Such a decoupled approach may miss bet-
ter quality schedules. In this paper, we present an effective heuristic
that integrates task allocation and SPM partitioning to further reduce
the execution time of embedded applications. Results on several real
life benchmarks show the significant improvement of our proposed tech-
nique compared to decoupled techniques as well as to an integer-linear
programming approach.

1 Introduction

Thanks to recent advances in architecture, VLSI and electronic design, the cur-
rent trend in modern complex embedded system design is to deploy a mul-
tiprocessor system-on-chip (MPSoC). Generally speaking, an MPSoC consists
of multiple heterogeneous processing elements (PEs), memory hierarchies, and
I/O components interconnected by complex communication architectures. Such
architectures provide the flexibility of simple design, high performance, and op-
timized energy consumption. An MPSoC provides an attractive solution to the
problems brought forth by increasing complexity and size of embedded systems
applications. Execution time predictability is a critical issue for real-time em-
bedded applications; this makes the use of data caches not suitable as a cache
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is hardware-controlled and hence it is hard to model the exact behavior and
to predict the execution time of programs. To alleviate such problems, many
modern MPSoC systems use software-controlled memories known as scratch-pad
memories (SPM).

An SPM is fully software-controlled and hence the execution time of an appli-
cation on such memories can be predicted with accuracy. Unfortunately, scratch
pad memories are expensive and hence they are usually of limited size and as a
result not all the application data variables can be stored in the on-chip scratch-
pads. Many multi-processor system-on-chip models use a memory hierarchy with
slow off-chip memory (DRAM) and fast on-chip scratchpad memories. Such a
hierarchy means that proper allocation of variables to the on-chip memory is an
essential part in reducing the off-chip accesses. The computation time of a pro-
gram on a processor depends on how much SPM is allocated to that processor
as accessing an element from the off-chip memory is usually in the order of 100
times slower than accessing elements stored locally in the on-chip memory.

An embedded application can usually be divided into multiple tasks, and
different tasks can be scheduled on different processors. The computation time
for each task depends on the amount of SPM allocated to the processor executing
this task. The problem of task scheduling and memory allocation on MPSoCs is
an NP-complete problem [12]. Traditionally, these two steps are done separately
where tasks are usually scheduled and the SPM budget is then partitioned among
the processors. Such a decoupled technique may not result in better schedules
in terms of minimizing the computation time of the whole application. The
appropriate configuration of a processor’s scratch pad memory depends on the
tasks scheduled on that processor. Therefore, the integration of those two steps
is critical to improve the performance. In this paper, we present a heuristic
that performs task scheduling and SPM memory partitioning in an integrated
fashion where the private on-chip memory budget allocated to a processor is
decided dynamically as tasks are mapped to this processor.

The remainder of this paper is organized as follows. Section 2 presents the
problem definition, motivation and the heuristic for integrated task scheduling
and memory partitioning. Section 3 presents an example to further clarify our
technique. Section 4 presents experimental results. Section 5 presents related
work in this area. Finally, Section 6 presents our conclusions.

2 Task Scheduling and Memory Partitioning

2.1 Architecture Overview and Problem Definition

Dividing an application into a set of tasks where one or more independent tasks
can be executed in parallel on the available processors is extremely useful for
MPSoCs. Parallelism leads to potential for speeding up the execution time; this
is a major issue in embedded processors. A typical MPSoC is shown in Figure 1
which consists of multiple processors, an SPM budget divided among the proces-
sors, and a global off-chip memory that can be accessed by all the processors.



A Framework for Task Scheduling and Memory Partitioning for MPSoC 265

 

P1 P2 P3 P5 

    SPM1 SPM2      SPM3 SPM5

Off-chip memory 

P4 

        SPM4 

Fig. 1. An architectural model example with 5 processors, SPM budget, off-chip mem-
ory and interconnection buses

Our problem formulation is based on a task dependence graph (TDG). A
TDG is a directed acyclic graph with weighted edges where each vertex repre-
sents a task in the embedded application. An edge between two tasks, say Ti
and Tj in the TDG, represents some kind of a scheduling order that needs to be
enforced due to the fact that Tj needs data to be transferred from Ti after Ti is
already executed. A certain processor cannot start executing task Tj unless all
the necessary data communication is performed. The weight of an edge is the
communication cost. Each task can be mapped to any of the available processors.
Since the processors in our architectural model can be heterogeneous, the exe-
cution time of each task depends on the processor this task is mapped to as well
as the SPM memory allocated to that processor. Generally speaking, a larger
SPM results in less computation time since off-chip access is more expensive in
terms of the clock cycles compared to fast on-chip SPM. A large portion of the
execution cycles of a task goes to accessing the data variables. Accessing a data
variable from an SPM is usually in the order of 100 times faster than accessing
it from the off-chip memory. Since the available SPM memory is usually limited
due to the multiprocessors design constraints, a good utilization of SPM can be
critical in narrowing the gap with the processor’s speed.

The problem can now be stated as follows: Given an embedded application
consisting of t tasks, an MPSoC architectural model and an SPM budget: (i)
find a schedule of those tasks on the available processors, (ii) partition the SPM
memory among the processors, and (iii) assign data variables of a certain task
T scheduled on processor P to the private SPM budget assigned to P . The ob-
jective is to minimize the execution time in cycles of the embedded application
on the MPSoC architectural model.

2.2 Motivation

Most works so far have treated task scheduling and memory partitioning as two
decoupled steps that are performed independently. Given a set of tasks and an
MPSoC model with a certain amount of available scratch pad memory budget,
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tasks are usually scheduled on the processors and then memory is partitioned
among used processors. In this aspect, those two steps are performed indepen-
dently. However, the configuration of a processor’s scratch pad memory is highly
dependent on the tasks scheduled on this processor. Thus, task scheduling and
memory partitioning are inter-dependent on each other and they should be in-
tegrated in one step in order to get high quality schedules.

The computation time of a task depends on the processor it is mapped to as
well as on the SPM memory available for that task. Therefore, task scheduling
should take into consideration the varying computation time of a task based
on the processor and on the SPM budget. Considering static computation time,
meaning that the computation time is fixed from the scheduler point of view,
may limit the quality of the schedule.

Consider the example in Figure 2(a) of a task graph with 6 tasks, T1, T2,
T3, T4, T5, and T6 . Task T4 depends on tasks T1, T2 and T3, and task T6
depends on tasks T4 and T5 . Anytime there is an edge between two tasks Ti
and Tj means that a communication cost should be accounted for provided that
those two tasks are allocated to two different processors. Although our technique
takes such costs into account, we omit them in Figure 2 for simplicity. Define the
Minij, Avgij , and Maxij as the computation time for task Ti on processor Pj
assuming all of the available SPM budget is assigned to Pj , 1/n of the available
SPM budget is assigned to Pj where n is the number of processors, and no SPM
respectively. Those values will be used later on by our heuristic. In this example,
we assume two homogeneous processors. The (Min, Avg, Max) values are shown
in Figure 2(a). Figure 2(b) shows the schedule assuming no available scratch pad
memories. First tasks T1 and T2 will be mapped to the two available processor
P1 and P2. At this time only task T3 is ready to be scheduled. The scheduling
algorithm will map T3 to P2 as it is free before P1 since the computation time
of T2 is less than that of T1 . In a similar fashion, the scheduling algorithm will
assign tasks T4 and T6 to processor P1 whereas task T5 will be mapped to
processor P2. The cost of such a schedule is equals to 29.

Figure 2(c) shows the results following the common practice of partitioning
the available SPM memory equally between the two processors. With such a
criterion, the available SPM budget will be equally divided between processors
P1 and P2 regardless of what tasks are mapped to what processors. Equally
partitioned SPM reduces the computation time of the whole application to 25.

To further reduce this application’s computation time, the available SPM can
be divided between the two processors in any ratio. From the task schedule, we
can see that task T 4 can start only after P2 is done executing task T 3. The issue
now is to try to reduce the dead time between tasks T 1 and T 4 imposed by the
computation time for tasks T 2 and T 3. To minimize this dead time, techniques
usually allocate more SPM budget to processor P2 to reduce the computation
time of tasks T 2 and T 3. Notice that if all the SPM memory is allocated to
processor P2 then the computation time for T 1 will jump to 15 and as the re-
sults the minimum start time of T 4 will increase from 14 to 15. To avoid this
increase, some SPM memory should be allocated to P1 to keep the execution
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Fig. 2. (a) TDG. Schedule based on: (b) no SPM. (c) equal partitioned SPM. (d) non
equal partitioned SPM. (e) our integrated approach.

time as balanced to the end time of T 3 as possible. Intuitively speaking, the ap-
proximated minimum end time of T 3 will be 12 and thus the total computation
time for our example application will be close to 23. With the same memory
partitioning, the computation time can be reduced to 22 assuming that tasks T 4
and T 6 are scheduled on P2 and task T 5 is mapped to P1; Figure 2(d).

However, 22 is not the optimal time for scheduling the example task graph on
two processors. Our heuristic, presented later, can reduce the computation time
to 19 as it integrates task scheduling and memory allocation into one step. The
problem with the previous schedule is that it allocated T3 to the same processor
P2 that is scheduled to execute T2. This choice is the reason for the dead time
in the schedule as T2 cannot benefit much from more SPM memory which is
clear from the Min, Avg, and Max values. A good heuristic should take those
values into consideration where a better choice for T3 is to be scheduled on P1
with all available SPM memory is allocated to this processor and the results is
a schedule with minimal end time of 19; see Figure 2(e). A benchmark example
is presented in Section 3.

2.3 Our Heuristic

A good heuristic for task scheduling and memory partitioning should take into
consideration the dynamic (varying) execution time of a task throughout the
process of building the schedule. This dynamic execution time is the result of
the dynamic SPM budget assignment to processors throughout the course of the
heuristic. Using profiling of the tasks in the embedded application, Min, Avg, and
Max values (defined earlier) are calculated for each task on each of the available
heterogeneous processors. We define elasticity of a task as the extent to which
this task can benefit from a larger SPM. Although it can be defined in different
ways, we define elasticity dynamically as the extent to which the computation
cost of a task on Pi may decrease as the SPM budget of Pi is increased from
the current budget to size where size is the maximum amount of SPM budget
available in our model. Equation 1 defines elasticity of task Ti where Cur is the
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computation time of the task under the current memory budget. The elasticity
of a task Ti is basically a measure of the room for computation time reduction
of Ti with more SPM budget.

elasticity(Ti) =
Curi − Mini

Curi
(1)

A bigger value of elasticity means that the computation time of Ti is more
amenable for reduction with the increase in the SPM allocated to that task.
Note that elasticity(Ti) is a dynamic value since the current computation time
of Ti, Curi, may change as the SPM budget distribution changes.

Our heuristic in Figure 3 starts with profiling the application to extract im-
portant information. Using the profiling data, the embedded application will
be divided into tasks with a necessary data communication between two tasks
impose a certain kind of dependency. Based on the extracted tasks and commu-
nication between them, the task dependence graph is created. In this graph, each
task is represented by a vertex and each communication cost by a weighted di-
rected edge. For each available task Ti and processor Pj , we calculate the number
of variables, the size of the variables, Minij, Avgij , and Maxij values. All those
values are computed through profiling. Then the ASAP values for all tasks are
calculated based on the Avg values that is assuming the SPM budget is equally
divided among the available processors. Tasks will be sorted in increasing order
of the ASAP values in a list L1. For each task, following the ASAP sort, we eval-
uate the best processor to assign this task to so that the overall computation
time is minimally increased.

The minimum start time of a task Ti on processor Pj , Start time(Ti, Pj),
is equal to the maximum of the end time of processor Pj , End time(Pj) and
the maximum end time of all its parent tasks, MaxTj∈Parent(Ti)(Tj), plus the
maximum communication time of all the parent tasks scheduled on Pk with
k �= j (see Equation 5). Two dependent tasks mapped to the same processor
will have zero communication cost. In general, task Ti will be scheduled on the
processor Pj corresponding to the minimum additional overhead time in the
schedule. However, Ti may be scheduled on a processor Pl of higher overhead
time provided that the predicted end computation time (PEC(Pl)) (defined by
us in Equation 2) of this processor is at least δ % less than that of Pj . We
choose δ of 10 in our experimental evaluations. This PEC(Pl) value is a guide
to the scheduler of how much this over head time may decrease with the SPM
memory transfers in future steps if Ti is mapped to Pl. PEC is basically an
estimate of how much the end time of processor Pl will be if more SPM budget
is assigned to it. The PEC of a processor is closely related to the elasticity of
the tasks scheduled on that processor. The PEC value provides the dynamic
essence of our heuristic as at each step the heuristic looks beyond the current
SPM budgets distribution in its task mapping decision to an estimate of future
distribution in future steps. In the case of equal additional end time, if task
Ti is assigned to two different processor then we avoid assigning it to a proces-
sor with no scheduled tasks. In this case, we schedule Ti on the processor with the
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higher elasticity under the current SPM budget. The elasticity of a processor is
the average value of the elasticity of the tasks scheduled on this processor.

PEC(Pi) = End time(Pi) −
∑
Tj∈Pi

(
Cur(Tj) − Cur(Tj)

1 + elasticity(Tj)

)
(2)

After scheduling any task, we try to balance the schedule in a way to decrease the
total computation time. We do so by dynamically changing the SPM budget for
each processor to reach a better balance. We start by trying to reduce the com-
putation time of tasks on processor Pi with maximum end time so far. We do so
by transferring an α % of the memory budget, Memj, corresponding to proces-
sor Pj with the minimum (End time*elasticity) and such that End time(Pj)
< End time(Pi) and assigning it to processor Pi. Doing so will probably de-
crease the end time of processor Pi and in the same time increase the end time
of processor Pj . Considering processor Pj to be of low total elasticity will give
more room to reduce its SPM budget with a minimal increase in its End time.
We do memory transfer α% at a time as long as End time(Pj) < End time(Pi).

T ime(Ti, Memj) = T ime(Ti, 0) − Gain(Ti, Memj) (3)

Gain(Ti, Memj) =
∑

vi∈Ti,vi∈Memj

((β1 − β2) ∗ freqi). (4)

Start time (Ti, Pj)=Max
(
Max

(
End timeTk∈Parent(Ti) (Tk)

)
, End time (Pj)

)
+ Max

(
Comm timeTk∈Parent(Ti) (Tk)

)
(5)

End time(Ti) = Start time(Ti, Pj) + T ime(Ti, Memj) (6)
End time(Pj) = Max(End timeTk∈Pj (Tk)) (7)

After any SPM memory budget redistribution among different processors, the
Recompute() subroutine will be invoked to recompute the start time, computa-
tion time, and end time of tasks Ti referred to respectively as Start time(Ti),
End time(Ti), and T ime(Ti). First a Gain value, Gain(Ti, Memj), is computed
for Ti with the newly budget SPM memory assigned to the processor Ti is
mapped to. This Gain value in Equation 4, represents the execution cycles re-
duced due to allocating variables of Ti to Memj following the increasing order
byte/freq of the data variables where bytei is the size of the variable vi and freqi
is the number of times vi is accessed. In Equation 4, β1 is the cost of accessing
a variable from the off-chip memory and β2 is the cost of the SPM access. This
is a simple data allocation technique that we adopted in our heuristic. The new
computation time of Ti, T ime(Ti, Memj) is the time taken to execute Ti assum-
ing no SPM memory, T ime(Ti, 0), minus Gain(Ti, Memj). We assume on-chip
memory access costs only one clock cycle. The end time of a task Ti scheduled on
processor Pj is then calculated as in Equation 6. The end time of each processor
is thus the end time of the last task assigned to this processor (Equation 7).

After all the tasks are scheduled, we call the Balance() procedure to try to
further reduce the schedule cost through reducing the end time of the processor
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with the largest end time through memory transfer. At this point we tune the
Balance() procedure so that it allows the last memory transfer between Pi and
Pj that will result in End time(Pj) > End time(Pi). We run this procedure t
times where t is the number of tasks in the TDG. Notice that if a processor
ends up with no scheduled tasks, then the SPM budget for such processor will
be distributed among other processors using the Balance() procedure to reduce
the schedule time the most.

2.4 Pipeline Scheduling

An embedded application is usually executed many times for a stream of input
data on a MPSoC. Such multiple executions make the embedded application
amenable to pipelined implementation. Pipeline scheduling benefits from allow-
ing tasks from different embedded application instances to be scheduled at each
stage of the pipeline. Such a schedule does not necessarily decrease the compu-
tation time of one instance of embedded application but rather it decreases the
time between the start of two consecutive iterations of the task graph. The objec-
tive is to decrease the pipeline stage time interval as after filling up the pipeline,
an instance execution of the application is performed each pipeline stage. The
maximum number of stages is equal to the number of processors in the MPSoC
system.

Our technique finds all the paths from the dummy start node to the dummy
end node where the dummy start node is a node with an outgoing edge to all the
nodes in the TDG with zero ingoing edges and the dummy end node is a node
with an ingoing edge from all the nodes in the TDG with zero outgoing edges.
Then it tries to remove some edges in the TDG to reduce the time on the critical
paths. We find the critical paths based on the PEC values defined earlier. The
removal of an edge means that the nodes at the subgraph corresponding to the
head of the edge, SGh, and that corresponding to the tail, SGt, belongs to two
separate stages in the pipeline. Any time an edge from Ti to Tj is removed,
all the edges that connect SGh and SGt will be removed. The TDG can be
at most divided into s unconnected graphs where s is the number of stages
in the pipeline. Our task scheduling/memory partitioning heuristic will then
be performed on the resultant TDG. An example of our pipeline technique is
presented in Section 3.

3 Example

In this section, we present a task graph example to illustrate our heuristic as
well as to show the effectiveness of integrating task scheduling and memory par-
titioning for embedded programs on a MPSoC. This task graph example is based
on the lame benchmark from MiBench that consist of four tasks with their cor-
responding execution times in Mega cycles are shown in Figure 4(a) assuming
no SPM. In this example, we assume a multiprocessor architecture of two homo-
geneous processors, 4 KB scratchpad memory, and unlimited off-chip memory.
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Task scheduling and memory partitioning

1. Divide the application into tasks Ti.
2. Perform dependence analysis between tasks.
3. Construct the TDG based on dependence analysis and communication costs.
4. Divide the SPM memory equally between the processors.
5. For each task Ti and processor Pj , extract the following:
6. (i) Minimum computation time on Pj , Minij .
7. (ii) Maximum computation time on Pj , Maxij .
8. (iii) Average computation time on Pj , Avgij .
9. Find ASAP for all the tasks based on Avg values.
10. L1 = List of tasks in increasing order of ASAP.
11. While (L1 not empty) do:
12. Get the first task Tf from L1.
13. For each processor Pi:
14. Calculate the elasticity and PEC of Pi if Tf is mapped to Pi.
15. Find the minimum start time of Tf on Pi.
16. Find END time(Pi) if Tf is mapped Pi.
17. if (END time(Pi) < min || PEC(Pi) < (1 - δ%)PEC(Pj))

(Comment: Pj = processor corresponding to the current min value)
18. min = END time(Pi)
19. else if (END time(Pi) = min)
20. min = END time of processor with the higher elasticity.
21. End For
22. Assign Tf to Pj corresponding to min.
23. Delete Tf from L1.
24. Call Balance().
25. End While
26. For i = 1 to t do:
27. Call Balance().

Balance()

1. Pi = processor with maximum end time, End time(Pi).
2. Pj = processor with minimum End time(Pj)*elasticity.
3. while(End time(Pj) < End time(Pi)) do:
4. Memi = Memi + α Memj .
5. Memj = Memj - α Memj .
6. Recompute().
7. if (End time(Pj) ≤ End time(Pi)).
8. Perform the memory update.

Recompute()

1. Following the ASAP sort of scheduled tasks Ti and the new SPM budget distribution:
2. Recompute time(Ti,Memj).
3. Recompute Gain(Ti,Memj).
4. Recompute Start time(Ti, Pj) where Ti is mapped to Pj of SPM = Memj .
5. Update the Start time of all the tasks on Pj successor to Ti.
6. Recompute End time(Ti, Pj).

Fig. 3. Our Task scheduling and memory partitioning heuristic
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Fig. 4. (a) Original TDG. (b) TDG with pipelining. A solution using: (c) decoupled
heuristics. (d) our heuristic.

Figure 4(a) shows the lame task graph with 4 tasks with data communica-
tions between tasks are represented by edges. We assume equal communication
cost. Since task T1 has the longest execution time with no SPM, usually current
schedulers will map it into a separate processor. This is the solution that decou-
pled task schedule/memory partitioning heuristics will produce as they don’t
take into consideration the considerable reduction in computation time of T1
with a bigger SPM memory. The solution is presented in Figure 4(c) with a to-
tal pipeline stage interval of 8.5. Task T2 is of small elasticity which implies that
adding more SPM memory to P1 will not help much in reducing the execution
time. Pipeline stage S2 is represented by the tasks shown with dark fill. Tasks
Ti, T ′i , and T ”i represents three instances of the same task from different runs of
the application. In this solution 12.1 KB SPM memory is allocated to processor
P1 and the rest to P2.

Since we have two processors in our MPSoC model, at most two pipeline
stages are allowed. Our heuristic in Section 2 will find that there are two paths
from the dummy source task to the dummy end task, p134 and p234. Since there
are only two processors, the parallel tasks T1 and T2 will be mapped to different
stages in the pipeline. The important question now is whether to assign T3 and
T4 to the same stage of T1 or T2. Based on the high elasticity value of T1 com-
pared to T2 and based on the PEC values of p134 and p234, our heuristic will
map T3 and T4 to the same stage as T1, namely S2, since PEC of p234 > PEC
of p134. The PEC of a path, say p234, is calculated as PEC(Pn) in Equation 2
assuming tasks T2, T3, and T4 are mapped to processor Pn. After dividing tasks
into different stages, our integrated task scheduling memory partitioning algo-
rithm will be applied to the TDG in Figure 4(b).

Figure 4(d) shows our pipeline schedule with a pipeline stage of 7.19M cy-
cles. This solution starts by assigning T2 to P1 and T ′1 to P2. After applying the
Balance() procedure, 2.8 KB of SPM memory will be assigned to P2 to balance
the schedule as much as possible. The scheduler will then assign T ′3 to P2 since
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its end time is lower on this processor as its elasticity is high. The Balance()
subroutine will update the memory budget for each processor by moving 1 KB
from P1 SPM budget to P2 to balance the schedule. T ′4 will also be assigned
to P2 as its end time will be smaller on this processor at this step due to the
high SPM memory budget allocated to P2. After all the tasks are scheduled,
the Balance() procedure will further reduce the cost by transferring the 0.2 KB
SPM budget assigned to P1 to P2.

4 Experimental Results

We implemented five approaches to solve the task scheduling and memory alloca-
tion problem on MPSoC systems namely, (i) decoupled task scheduling and mem-
ory partitioning assuming equally partitioned SPM among all available processors
TSMP EQUAL; (ii) decoupled task scheduling and memory partitioning with
SPM partitioned among different processors with any ratio, TSMP ANY ; (iii)
our integrated task scheduling and memory partitioning heuristic described in
Section 2, TSMP INTEG; (iv) our heuristic with pipelining TSMP PIPE;
and (v) the optimal solution with pipelining based on the ILP formulation in
[21], ILP PIPE using the CPLEX ILP solver [1]. We used several real life
programs from the Mediabench and MiBench.

We used Simplescalar architectural simulation to profile the used benchmarks
[3]. Simplescalar can simulate the execution of an application on a complex
multiprocessor system on-chip architectures with different memory hierarchies.
The MPSoC architecture used is similar to the one in Figure 1. The profiling
is intended to (i) divide each application into computation blocks referred to as
tasks, (ii) find the computation times for each task on each available processor
in processor cycles, (iii) find the number of variables, (iv) the number of times
each variable is used, freq, and (v) the size in bytes for each variable in the cur-
rent application. The profiler information is based on a system with only off-chip
memory. Using the profile information and dependence analysis, a task graph is
constructed with a vertex for each task and an edge to represent the commu-
nication cost between two tasks. The communication cost depends on the size
of data to be communicated between the two tasks and it is calculated through
profiling. We assume a 100 cycle latency for off-chip memory access compared
to 1 cycle latency for the SPM on-chip memory.

First we tested our techniques on the enhance, lame, osdemo, and cjpeg
benchmarks. We tested those benchmarks assuming a multiprocessor system on
chip of two processors and a scratch pad memory with size that varies between
4KB and 4 MB. We tested each of our benchmarks under three SPM budgets
chosen based on the size of the benchmark. The choice of SPM sizes for each
benchmark is essential as too little SPM or too much SPM for a certain embed-
ded application may not reflect the effectiveness of our heuristic. The off-chip
memory size is assumed to be unlimited that is it can hold all the data variables
needed by the embedded application. We used an α of 10 meaning that 10% of
SPM memory is being transferred between two tasks at a time in the Balance()
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Fig. 5. Results for Pgp benchmark
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Fig. 6. Results for Rasta benchmark
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Fig. 7. Results for Pegwit benchmark
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Fig. 8. Results for Epic benchmark

procedure. A smaller α may further improve the results with additional run time
overhead.

The improvement greatly depends on the structure of the embedded applica-
tion. TSMP ANY improved over TSMP EQ from little improvement close to
0% to dramatic improvement of 47%. Such improvements show that static mem-
ory allocation that is partitioning the SPM budget equally among the processors
limits the effectiveness of SPM memories as it does not consider the character-
istics of the tasks assigned to a processor in its memory partition decision.

Our integrated approach for task scheduling and SPM memory partitioning,
TSMP INTEG, further improved the results over the decoupled approach,
TSMP ANY . TSMP INTEG improved over TSMP ANY from little im-
provement close to 0% in some cases to dramatic improvement of 22%. This
improvement is due to the guidance that our integrated approach uses to par-
tition the memory based on the fact that the SPM configuration of a certain
processor depends on the tasks mapped to that processor.

Our technique with pipelining, TSMP PIPE is then tested. As expected,
our embedded applications greatly benefit from pipelining as the execution time
is decreased by 27% in some cases. The results emphasis the fact that such em-
bedded applications can benefit significantly from pipelining. The pipeline cost
is the computation time needed for one pipeline stage.
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To show the effectiveness of our task scheduling/memory partitioning heuris-
tic, TSMP INTEG, we compared it to an optimal integer linear formulation
(ILP) based on the ILP formulation of this problem in [21], ILP PIPE. The
ILP solver is stopped after 35 minutes in some cases due to the long execu-
tion time taken by the ILP to produce optimal results. Following the same as-
sumptions concerning the MPSoC system model and SPM memory budget, our
TSMP INTEG heuristic is in the range of 0% to 13% off the optimal solution
in a negligible amount of time. This shows the effectiveness of our heuristic where
in most of the cases our solution was close to the ILP one.

The ILP formulation is not scalable its running time is exponential in the num-
ber of variables in the application. For large scalar-based embedded application,
the number of variables is usually large and thus the ILP will take very long time
that makes the use of ILP infeasible for such applications. On the other side,
our heuristic is of polynomial run time and thus it scales well with big applica-
tions. We tested our heuristic on the following four large embedded applications
mainly, pgp, rasta, pegwit, and epic. Figures 5–8 show the results achieved by
our heuristic when considering a system with 4 processors and an SPM budget
ranging from 512K to 4M. The results in Figures 5–8 are the normalized exe-
cution cycles with respect to TSMP EQ. TSMP ANY , TSMP INTEG, and
TSMP PIPE improved over TSMP EQ up to 12%, 33%, and 40% respec-
tively. Keep in mind that a more aggressive data allocation techniques in SPM
will further improve our results.

5 Related Work

Many research groups have studied the problem of task scheduling for applica-
tions on multiple processors with the objective is to minimize the execution time.
Benini et al. [6] solved the scheduling problem using constraint programming and
the memory partitioning problem using integer linear programming. The authors
argued why those two choices fit the two problems the best. Kwok and Ahmed
[12] presented a comparison among algorithms for scheduling task graphs onto a
set of homogeneous processors on a diverse set of benchmarks to provide a fair
evaluation of each heuristic based on a set of assumptions. De Micheli et al. [14]
studied the mapping and scheduling problem onto a set of processing elements
as a hardware/software codesign. Neimann and Marwedel [15] used integer pro-
gramming to solve the hardware/software codesign partitioning problem. A tool
for hardware-software partitioning and pipelined scheduling based on a branch
and bound algorithm was presented in [7]. Their objective was to minimize the
initiation time, the number of pipeline stages, and memory requirement. Cho
et al. [8] proposed an accurate scheduling model of hardware/software commu-
nication architecture to improve timing accuracy.

Panda et al. [17,18] presented a comprehensive allocation technique for scratch-
pad memories on uniprocessor to maximally utilize the available SPM memories to
decrease the programs execution time. Optimal ILP formulations for memory al-
location for scratch-pad memories were presented in [4,9]. An ILP formulation for
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the SPM allocation problem to reduce the code size was presented in [19]. Steinke
et al. [20] formulated the same problem with the objective to minimize the en-
ergy consumption. Angiolini et al. [2] optimally solved the problem of mapping
memory locations to SPM locations using dynamic programming.

Many authors have studied the memory allocation problem in MPSoCs. The
main focus of their research work is data parallelism in the context of homo-
geneous multiprocessor systems. Meftali et al. [13] formulated an ILP model of
the memory allocation problem to obtain an optimal distributed shared mem-
ory architecture to minimize the global cost to access shared data as well as
the memory cost. Kandemir et al. [11] presented a compiler-based strategy for
optimizing energy and memory access latency of array dominated applications
in a MPSoC. In [16], the authors proposed an ILP formulation for the mem-
ory partitioning problem on MPSoC. Suhendra et al. [21] studied the problem
of integrating task scheduling and memory partitioning among a heterogeneous
multiprocessor system on chip with scratch pad memory. This is the only paper,
to the best of our knowledge, which addressed this problem in an integrated ap-
proach for MPSoC. They formulated this problem as an integer linear problem
(ILP) with the inclusion of pipelining. Other works [5,10] have studied issues
related to task scheduling and memory partitioning.

6 Conclusions

In this paper, we presented an effective heuristic that integrates task schedul-
ing and memory partitioning on multiprocessor systems-on-chip with scratchpad
memory. Compared to the widely-used decoupled approach, our integrated ap-
proach further improved the results since the appropriate partitioning of SPM
spaces among different processors depends on the tasks scheduled on each of
those processors and vice-versa. Results on several benchmarks from Mediabench
and MiBench show the effectiveness of our approach compared to the decoupled
approaches.
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Abstract. In this paper, we present a parallel implementation of a 1024
point Fast Fourier Transform (FFT) operating at subthreshold voltage,
which is below the voltage that turns the transistors on and off. Even
though the transistors are not actually switching as usual in this region,
they are able to complete the computation by modulating the leakage
current that passes through them, resulting in a 20-100x decrease in
power consumption. Our hybrid FFT design partitions a sequential but-
terfly FFT architecture into two regions, namely memory banks and
processing elements, such that the former runs at superthreshold and
the latter in the subthreshold voltage region. For a given throughput,
the number of parallel processing units and their supply voltage is de-
termined such that the overall power consumption of the design is min-
imized. For a 1024 point FFT operation, our parallel design is able to
deliver the same throughput as a serial design, while consuming 65% less
power. We study the effectiveness of this method for a variable through-
put application such as a sensor node switching between a low through-
put and high throughput mode, e.g. when sensing an interesting event.
We compare our method with other methods used for throughput scal-
ing such as voltage scaling and clock scaling and find that our scaling
method will last up to three times longer on battery power.

1 Introduction

As Charles Van Loan wrote in his book “The Fast Fourier Transform (FFT) is
one of the truly great computational developments of this century. It has changed
the face of science and engineering so much that it is not an exaggeration to say
that life as we know it would be very difficult without the FFT” [13]. The FFT
has had a widespread application in traditional fields such as communication
and manufacturing. The advent of wireless sensor networks has created even
more applications for the transform. Sensor nodes are employed to monitor the
environment and report interesting data or significant events[1]. The FFT can be
used to analyze the raw data in order to identify such events. This is especially
important for situations where large amounts of data are collected, but there is
only an occasional need to report back data. Since the sensor nodes run on either
a battery or a limited amount of scavenged energy, and communication costs are

A. Seznec et al. (Eds.): HiPEAC 2009, LNCS 5409, pp. 278–292, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Hybrid Super/Subthreshold Design 279

still the dominant factor in power consumption, it is usually advantageous to
process the data locally and transmit only a message if an interesting event
is detected. In an example scenario, a node with an acoustic sensor, which is
employed in a field to detect passing vehicles, collects sound samples periodically.
It then analyzes the collected data using an FFT to determine if its frequency
content includes components representing frequencies found in a moving vehicle
such as a humming engine frequency. If so, it records a significant event and
transmits the data to a central station or other nodes depending on how the
sensor network is implemented.

It is also highly desirable to be able to scale the throughput of an FFT op-
eration for a sensor node[8]. Increasing the amount of transformed data yields
more resolution in the frequency domain. However, high quality FFTs are com-
putationally intensive and consume high levels of power, which is impractical for
wireless sensor nodes. It is therefore suggested that during idle periods, a low
throughput FFT is used that consumes less power. When a significant event is
suspected, the throughput of the FFT is ramped up so that the data can be
analyzed more diligently.

In this paper, we present a low-power parallel implementation of the FFT
with scalable throughput. Our novel FFT design partitions a traditional but-
terfly FFT architecture into two regions, namely memory banks and processing
elements, so that the operating voltage of the former region is above the thresh-
old voltage while that of the latter region is below the threshold voltage, which
is the voltage that turns the transistors on and off. Above this threshold, tran-
sistors operate similar to a switch that let the current flow to either charge or
discharge the load. Below the threshold voltage the transistors are not actually
switching as usual; instead they are able to complete the computation by mod-
ulating the leakage current that passes through them, resulting in a 20-100x
decrease in power consumption.

Our proposed design is able to deliver the same throughput as a traditional
design while consuming 65% less power. Furthermore, we study the effectiveness
of this method in a variable throughput application. We compare our method
with other methods used for scaling the throughput, namely voltage scaling
and clock scaling. Our results indicate that in an example scenario, if all these
designs are running on 2 alkaline AA batteries and spend 15% of their time in
high quality mode and the rest in the low quality mode, our design can last up
to 111 days while the other two last only 59 and 40 days respectively. The cost
of the decrease in power is a 5x increase in area.

The rest of this paper is organized as follows: Section 2 describes the back-
ground related to this paper, which includes two subsections: one on the funda-
mentals of FFT operation and the other on the basics of subthreshold operation.
In Section 3, we present our novel parallel FFT architecture based on the tradi-
tional butterfly design. Section 4 describes our employed methodology to carry
out the experiments while Section 5 presents the results of these experiments.
Section 6 presents related work. Finally, in Section 7 we present the conclusions
and future directions of this study.
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2 Background

2.1 Fast Fourier Transform

The Fast Fourier Transform (FFT), formulated by Cooley and Tukey[6], is an
efficient method for calculating the frequency content of a signal. The number
of samples in the signal, N , determines the frequency resolution and quality of
the Fast Fourier Transform. An increase in the number of data points yields
more frequency resolution, but takes more computation as the complexity of
this transform is equal to O(N ∗ log2(N)). Equation 1 presents the formulas that
define the FFT.

Xk =

N
2 −1∑
m=0

x2mW (2m)k +

N
2 −1∑
m=0

x2m+1W
(2m+1)k (1)

Wn = e−
2πi
N n (2)

Equation 1 breaks up an N point FFT into the sum of two N
2 point FFTs.

These N
2 point FFTs can then be broken up again and again leading to a fast

recursive implementation of a DFT. The W coefficients are constants equal to
nth roots of unity in the complex plane, traditionally called twiddle factors.
Figure 1a shows the signal flow graph of an 8-point FFT. There are 3 levels in
an 8-point FFT, corresponding to the log2(N) term in the complexity. There is a
repetitive pattern in the FFT signal flow graph that looks like a butterfly. Each
butterfly contains a complex addition, subtraction, and multiplication. It can be
seen from the figure that there are 4 butterfly computations in each level, which
is half of 8 data points and corresponds to the N term in the complexity. Overall
there are (N ∗ log2(N))/2 butterfly operations in this FFT implementation1. It
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Fig. 1. (A): Signal Flow Graph of 8 pt. FFT (B): Butterfly processor

1 There are other ways to implement FFT. However, the Cooley-Tukey algorithm
discussed in this paper is by far the most common implementation of FFT due to
its efficiency.
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is highly impractical to implement this signal flow graph in hardware for a 1024-
point FFT due to its large area, so hardware must be reused to perform these
calculations. One possibility is to use a single butterfly element and compute
all the (N ∗ log2(N))/2 butterfly operations serially. Intermediate values can be
stored and recalled in a memory bank.

2.2 Subthreshold Voltage Operation

Figure 2(a) shows a CMOS transistor identifying its source and gate. When the
source voltage is above a certain threshold, the transistor effectively functions
like a switch responding to the changes that come from gate voltage. Lowering
the voltage source or voltage scaling has been a prevalent method for improving
the energy efficiency of microprocessors [5,2]. This is due to the fact that reduc-
ing the voltage drops the energy consumption of a microprocessor quadratically,
while decreasing its performance linearly. The lower limit for voltage-scaling has
typically been restricted to half the nominal voltage - the voltage that hardware
is designed to typically operate at. Until recently, this limit has only been im-
posed upon by a few sensitive circuits with analog-like operation such as sense
amplifiers. However, it has been known for some time that standard CMOS gates
operate seamlessly from full-voltage source to well below the threshold voltage
- the voltage that turns the transistor on - at times reaching as low as 100mV
[10,14]. Recently, a number of prototype designs have demonstrated that with
careful design and replacement of these analog-like devices with standard switch-
ing counterparts, it is possible to extend the traditional voltage-scaling limit to
below the threshold voltage, i.e., subthreshold-voltage2 region [19,18,11].

Subthreshold Superthreshold    NominalMin. Operating    

Threshold   Supply Voltage Changes

Transistor 
Operation

Modulating 
Leakage  Current

Switching
On / Off

Performance 
Degradation Exponential Linear

Power 
Reduction

Polynomial Polynomial

Energy 
Reduction Has minimum Always 

decreasing

When Reducing 

Supply Voltage

Gate

�

�

���

(a) (b)

Fig. 2. Overview of sub/superthreshold operation

Figure 2(b) provides an overview of subthreshold and superthreshold operation
differences. First, the transistors are not switching as normal in the subthresh-
old region; instead they modulate the use the changes in the leakage current that
2 In this document, we may use super/subthreshold words in place of super/

subthreshold-voltage for brevity.
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passes through to charge or discharge their load and eventually perform compu-
tation. This, in turn, results in exponential degradation of performance in the
subthreshold region as opposed to linear degradation when voltage is reduced in
superthreshold3. Moreover, because the system operates at much lower voltages, it
becomes more susceptible to some manufacturing and operational problems such
as process variation and soft errors. These issues as well as accurate modeling of
subthreshold leakage are currently under investigation by several research groups
in the VLSI and digital electronics area who have shown promising results
[17,12,9,19]. The focus of this paper is not providing a solution to some of these
known problems for subthreshold operation. Instead, we present an example of the
new opportunities this technology provides to designers by showcasing an archi-
tecture for FFT with scalable throughput and ultra low power consumption.

3 Implementation

The 1024 point FFT architecture used in this paper is based on [16] and is
implemented in a 90nm technology. It consists of three major modules: RAM,
processing element, and ROM. The processing element (PE) performs the FFT
calculations and contains at least one butterfly processor shown in Figure 1. The
butterfly processor implements a complex addition, subtraction, and multiplica-
tion. The multiplication is implemented using a booth multiplier and the addi-
tion is implemented using efficient carry select adders. The architecture processes
32 bit complex numbers, where 16 bits represent the real portion and 16 bits
represent the complex portion, all in the Q15 fixed point format.

The ROM module stores the constant twiddle coefficients while the RAM
module is responsible for storing inputs, outputs and intermediate values. The
PE takes in three inputs: the first two inputs are either the input signals, or the
intermediate values that are result of a previous butterfly operation. The third
operand is a constant Wn coefficient, taken from the ROM. The Wn coefficients
are arranged around the unit circle in the complex plane, but the FFT only
uses coefficients with positive imaginary parts. There is also symmetry of the
coefficients on the left half and right half of the unit circle, so overall 256 32-bit
coefficients are needed in the ROM for a 1024 point transform. The architecture
implements the FFT using decimation in frequency, which means initially, the
RAM holds the 1024 32-bit input values, and they get replaced with intermediate
and eventually output values as the FFT progresses.

3.1 Parallelization and Throughput Scalability

It is well-known that the parallelism present in applications such as FFT can be
utilized to improve the energy efficiency of the system without sacrificing perfor-
mance [4]. In our design, we exploit the unique characteristics of subthreshold
3 In order to obtain power and frequency trends for the butterfly processor in the sub-

threshold region, a post layout simulation was performed using extracted parasitics
and a Fast-SPICE program.
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Fig. 4. Parallelization of the PEs: Butterfly processors are added to the processing
element and their supply voltage is reduced so the throughput remains the same. To
the controller, this only appears as a delay from the input to the output.

operation in this context. Traditional parallel designs focus on increasing the
throughput of a system. Our design exploits parallelism in a different way, by
adding parallel units and slowing them down to match the original throughput.
To slow down the parallel units, the supply voltage is reduced which greatly
reduces the power consumption. We will show that the optimal supply voltage
for the parallel FFT architecture is in the subthreshold region.

Our goal is to design an FFT architecture to operate with minimum energy
given a desired level of performance. In order to achieve this, the number of
butterfly processors (BPs) within the processing element (PE) is increased and
the supply voltage to the processors is decreased such that the throughput re-
mains constant, as shown in Figure 4. Even though a processing element may
contain a number of butterfly processors, it must still only have three inputs and
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two outputs. The processing element, therefore, needs a data distribution bus
that distributes the serial data from the RAM to each butterfly processor, and a
collection bus that forms the processed data back into a serial stream. The PE
uses a demultiplexer and a multiplexer to accomplish the data distribution and
collection respectively. Data is distributed in a staggered fashion to the BPs,
and is collected on the other end in a staggered fashion. The supply voltage of
the BPs is scaled such that the existing data in a BP is processed before new
data is sent to it. The PE, therefore, exhibits the same throughput no matter
how many BPs it contains. The only difference is that there is increased latency
from the input of the a piece of data to the collection on the other side, which
grows linearly with respect to the number of BPs.

The parallelization lends itself well to a scalable throughput design. At max-
imum throughput, all of the BPs in the PE are activated and are processing
data. To reduce the throughput, only some of the BPs are active and the rest
are powered off. Ideally, the operating voltage of these remaining BP’s should
be adjusted to achieve maximum energy efficiency. However, as we will show in
section 5, the benefits of this ideal method does not justify the extra burden of
adding voltage scaling capability to the circuitry. Instead, we simply power off a
certain number of BP’s while leaving the rest to run at the same speed. We call
this method active unit scaling.

With more than one BP running in parallel, one can envision a design where
the RAM bank is split into multiple banks, each running at a lower speed than
the original RAM and feeding the slow-running BP units. As an example, the
1024-word RAM bank can be split into two separate 512-word banks. Both of
these RAM modules, i.e. the single bank or dual bank, are capable of supplying
data at the same rate, but each 512-word RAM banks is now required to run at
half the speed of the original one. Because of the relaxed speed requirement, the
supply voltage of the two 512-word banks can be reduced, resulting in reduction
of the RAM power. The paid penalty is the area taken up by the additional
controller logic in the second bank. We study the practicality of this method
and present our findings in the results section.

4 Methodology

Table 1 shows the tool chain used for synthesis and simulation of our design. In
the rest of this section, we present the detailed methodology for the two major
experiments done to study our proposed design.

4.1 Minimum Energy Architecture Experiment

The purpose of this experiment is to compute the optimum number of parallel
butterfly processors as well as their operating voltage in order to achieve mini-
mum energy consumption for a given throughput. Since the throughput is kept
constant, the energy consumption is directly related to the power and we use
these two terms interchangeably. To carry out this experiment, we use the trends



Hybrid Super/Subthreshold Design 285

Table 1. Tool Chain

HDL Language Verilog
HDL Simulator Synopsys VCS
Technology UMC Standard Performance 90nm
Standard Cell Library Faraday UMC 90nm Generic Core 1.0V, RVT
RAM/ROM memory compiler Faraday 90nm Memmaker
Voltage Scaling Characterization Synopsys HSPICE, NanoSim
Power Simulation Synopsys Primetime PX

presented in Section 2.2, which give the power consumption and the frequency
(or throughput) of a BP for a given supply voltage. The inverse of this is used to
determine the supply voltage - and then, power consumption - of a BP running
at a given throughput. The throughput of the processing element with a single
butterfly processor at nominal voltage is referred to as TPNominal, and is the
target throughput for the minimum energy architecture. It is possible to increase
the number of BPs in the PE and maintain TPNominal by reducing the supply
voltage of the BPs. Herein, n will refer to the number of parallel BPs in the
PE. In order to achieve TPNominal in a processing element, the throughput of
each individual butterfly processor must be TPNominal

n . Using the characteriza-
tion curves, the supply voltage that yields a BP throughput of TPNominal

n will be
determined and the power consumption at that speed will be noted. The total
power consumption of the PE is the power consumption of a BP at TPNominal

n
throughput times n. The power consumption of the bus needed to distribute
and collect data from n BPs will also be determined and added to the BPs’
power consumption. The minimum energy architecture will be defined as the
FFT architecture with n BPs that consumes the least amount of power, while
maintaining a throughput of TPNominal.

4.2 Throughput Scaling Experiment

As stated in the introduction, there is a desire to dynamically scale the through-
put of the FFT architecture. During idle times, less data points can be used in
the FFT, and the throughput of the FFT processor can be reduced. Figure 5
shows an example scenario in a wireless sensor network. From t0 to t1, the hard-
ware is performing a 256 point FFT. The throughput of the hardware is one
quarter of the throughput at max speed. At t1, an event is detected and the
hardware shifts to a 1024 point FFT. At this point, the hardware is running at
its maximum throughput. From t2 to t3, the hardware goes back to a 256 point
FFT. The duty cycle of the FFT hardware will be defined by Equation 3, or the
time the hardware is spent at max throughput divided by total time.

DutyCycle =
t2 − t1
t3 − t0

(3)

There are three different methods that can be used to reduce the throughput of
the FFT hardware and save power. The first method is clock scaling, where the
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clock speed to the PE is reduced. The supply voltage remains at nominal 1V.
This will be done to the n = 1 FFT architecture (one BP per PE). The second
method is dynamic voltage scaling, where the clock and supply voltage to the
PE is reduced. This will also be done to the n = 1 FFT architecture. The third
method will be the active unit scaling mentioned in Section 3.1. The minimum
energy architecture will be used for this method. The ROM and RAM are kept
running at nominal voltage for this experiment. The three methods of voltage
scaling will be tested over various throughputs and the power consumption will
be determined. It will also be determined, for a given duty cycle defined by Eq.
3, how long each of the throughput scaling methods can last on two alkaline AA
batteries (at 1500mAH each) while executing the sensing scenario in Figure 5.

5 Results

5.1 Synthesis Results

Table 2 shows the results of the memory compiler and the synthesized verilog
code at nominal voltage (1V) and maximum speed.

Table 2. Synthesis Results of FFT Architecture

Butterfly critical path 4.43ns
Butterfly throughput 222MHz
Butterfly power consumption 19.6mW @ 222MHz
Butterfly area 0.0498mm2

RAM access time 0.89ns
RAM power 6.22mW @ 444MHz
RAM area 0.126mm2

ROM access time 0.74ns
ROM power 1.13mW @ 111MHz
ROM area 0.024mm2
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5.2 Minimum Energy Architecture Experiment Results

Figure 6b shows the power consumption (not including bus overhead) of the
processing element(PE) for a given number of butterfly processors (BP) inside
the PE. The throughput is kept constant at 222MHz while decreasing the supply
voltage. The power decreases dramatically at first, but as the supply voltage
reaches the subthreshold region, there are diminishing returns for adding more
elements. As the number of BPs increase, the power consumption of the bus
increases due to the increased load capacitance and increased number of flip
flops required for distribution and collection of data. Figure 7a shows the data
distribution and collection overhead for a given number of butterfly processors.
The power consumption of the PE decreases with additional BPs while the power
consumption of the bus increases with additional BPs, so there is a point where
the PE reaches its maximum power efficiency for the targeted throughput. Since
the throughput is kept constant, all the power savings translate to energy savings.
Figure 7b shows the total power consumption of the entire FFT architecture.
This includes the RAM, ROM, and controller power. According to the figure,
the minimum energy is achieved at n = 32.
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Fig. 6. (A): Supply voltage for a given number of BPs. (B): Power consumption of the
PE for a given number of BPs, not including bus overhead for a constant throughput
of 222MHz.

5.3 Throughput Scaling Experiment Results

Figure 8a shows the results of the throughput scaling in terms of power consump-
tion. The clock scaling and the supply voltage scaling methods are identical at
100% duty cycle operating at nominal voltage of 1V and running at maximum
speed of 222 MHz. However, at lower duty cycles, the supply voltage scaling does
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better than clock scaling as it reduces the power quadratically. Meanwhile, our
proposed active unit scaling method outperforms both traditional methods in
all cases. Figure 8b shows the results of the experiment mentioned in 4.2, where
the throughput is varied between a 256 point FFT and a 1024 point FFT at
various duty cycles. Figure 8b presents the number of days our design, as well
as two other traditional designs, can survive while running off two heavy duty
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Table 3. The comparison between ideal throughput scaling and our active unit scaling
to achieve 28Mhz throughput

Active BPs Supply (V) Processing Power (mW)

Ideal Throughput Scaling 8 0.264 V 1.153mW
Active Unit Scaling 4 0.3V 1.168mW

Alkaline AA batteries. The proposed active unit scaling architecture lasts longer
than the other two architectures for all possible duty cycle scenarios. As shown
in the Figure, at around 30% duty cycle, our proposed architecture using active
unit scaling can last up to 3 months while the other two methods can barely
survive beyond a month.

As mentioned in Section 3.1, the ideal method of throughput scaling is to
adjust both the supply voltage and the number of active BPs. In other words,
to achieve maximum energy efficiency while scaling the throughput, one has to
identify the optimum number of BPs and their operating voltage for the desired
throughput as shown in Section 5.2 for 222MHz 1024 point FFT. Instead, we
propose a simple method to simply turn off a pre-calculated number of BP’s
to achieve the same result. Table 3 shows the proposed active unit scaling vs.
the ideal method of throughput scaling at 28MHz, or one eighth of the maxi-
mum throughput. It is shown that the proposed method of throughput scaling
only consumes 1.3% more power than the ideal method. In addition, the ideal
throughput scaling method involves more control logic and fine tune control
of the supply voltage. The proposed scaling method, on the other hand, only
requires that BPs be shut down without changing the supply voltage.

5.4 Comparisons

Table 4 compares the non parallelized FFT architectures with two parallelized
FFT architectures. While n = 32 constitutes the minimum energy architecture,
the n = 16 design provides a sweet spot with a slight increase in power and half
of the area overhead. The total power includes processing, RAM, ROM, and
the bus.

Table 4. Comparison of different number of BPs

n = 1 n = 16 n = 32

Total Power @ 222MHz 26.11mW 9.00mW 8.54mW
Total Area 0.200mm2 0.947mm2 1.74mm2

PE Supply Voltage 1.0V 0.344V 0.30V
Days on 2 AA bat. @ Max Duty Cyc. 14 42 44
Days on 2 AA bat. @ 15% Duty Cyc. 40(CS), 59(DVS) 111 118
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5.5 Splitting the RAM Bank

Figure 9(a) shows how the frequency of a 512-word 32-bit RAM bank scales
with the supply voltage, which results in significant power savings. However, in
practice, it is known that regular 6T SRAM cells are not able to function below
0.7V in 90nm technology [20]4. Therefore, even though splitting the RAM bank
ideally calls for lowering the voltage, we cannot go beyond 0.7V. The table in
Figure 9 shows the result of our analysis. It can be seen that given the restriction
on lowering the supply voltage, splitting the RAM into two banks provides the
most power efficient design by reducing the memory power consumption by more
than half while incurring little area overhead.
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6 Related Work

[19] presented a 180mv FFT architecture that runs in the subthreshold region.
The entire architecture runs at subthreshold voltage and the resulting through-
put is very low due to a 164 Hz clock cycle at 180mV and 10kHz at 350mV. Our
design, on the other hand, only runs the processing elements at subthreshold
voltage, and parallelizes the processing to achieve a throughput typical of nom-
inal voltage FFT processors. In addition, the architecture in [19] would have to
use dynamic voltage scaling to achieve a higher throughput, and it was shown
that our active unit scaling architecture outperforms dynamic voltage scaling.
[15] presents a general purpose processor for the purposes of wireless sensor
networks that runs in the subthreshold region. The processor is only capable
of executing simple commands and a program to execute an FFT operation
would be very slow due to the low clock frequency and the lack of FFT specific
hardware. [7] presented a design methodology for parallel cores running at near
threshold voltage. The cores were general purpose processors with caches, and
they executed parallel software routines. Our work is different in that we present
minimum energy hardware for a specific application.
4 Currently, there are designs of SRAM cells that are functional near or below thresh-

old voltage. However, they require additional transistors resulting in some additional
power consumption [3].
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7 Conclusion

In this paper, we presented a novel FFT architecture based on the traditional
butterfly-based FFT architecture, and greatly reduced its power consumption
by exploiting parallelism. Additional butterfly processors were added, and their
supply voltage was reduced while keeping the overall throughput constant. We
showed that the optimum operating voltage of butterfly processors is well below
the threshold voltage at around 0.3V. The transistors still operate at this volt-
age, not by turning on and off, but by modulating the leakage current passing
through them. The RAM module of the design, however, was kept to operate
in superthreshold at 0.7V maximizing power efficiency while keeping the SRAM
cells functional, resulting in a hybrid super/subthreshold design. By exploiting
the parallelism in the processing element of the architecture, we were able to
achieve 68% reduction in total power consumption of the FFT architecture. A
10% reduction is obtained by splitting the SRAM bank into two banks and
scaling their voltage from nominal 1V to 0.7V. This total reduction of 78% is
obtained at the expense of increasing the area of the design by about 5 times.
Even though the area increase may seem significant, the reduced cost of silicon
and the increased need for ultra low power applications such as wireless sensor
networks promotes such design directions.

In addition, we proposed an efficient method to enable scaling the through-
put of our design by turning off some of the active subthreshold parallel units
without changing their supply voltage. We compared our method to traditional
methods of clock scaling and dynamic voltage scaling by simulating the designs
running on two AA batteries. Over the entire range of possible duty cycles of
high throughput to low throughput, the active unit scaling outlasted the other
two methods by a wide margin. At 15% duty cycle, the active unit scaled design
lasted 111 days, compared to 59 and 40 days for dynamic voltage scaling and
clock scaling respectively. Future work would include taking advantage of the
university program of UMC foundry by fabricating a complete ASIC design of
our proposed FFT architecture. This will provide us with the realistic restrictions
imposed on our design, which will help us to make refinements and enhancement
to it. Moreover, we intend to develop a general model for estimating how various
architectures will benefit from the minimum energy architecture and active unit
scaling methods detailed in this paper.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks 38(4), 393–422 (2002)

2. Burd, T.D., Brodersen, R.W.: Energy efficient cmos microprocessor design. In:
HICSS 1995: Proceedings of the 28th Hawaii International Conference on System
Sciences (HICSS 1995), Washington, DC, USA, p. 288. IEEE Computer Society,
Los Alamitos (1995)

3. Calhoun, B.H., Chandrakasan, A.: A 256kb sub-threshold SRAM in 65nm CMOS.
In: IEEE International Solid-State Circuits Conference, 2006, ISSCC 2006. Digest
of Technical Papers, pp. 2592–2601 (February 2006)



292 M.B. Henry and L. Nazhandali

4. Chandrakasan, A.P., Brodersen, R.W.: Low Power Digital CMOS Design. Kluwer
Academic Publishers, Norwell (1995)

5. Chandrakasan, A.P., Sheng, S., Brodersen, R.W.: Low-power CMOS digital design.
IEEE Journal of Solid-State Circuits 27(4), 473–484 (1992)

6. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation 19(90), 297–301 (1965)

7. Dreslinski, R.G., Zhai, B., Mudge, T., Blaauw, D., Sylvester, D.: An energy effi-
cient parallel architecture using near threshold operation. In: 16th International
Conference on Parallel Architecture and Compilation Techniques, PACT 2007, pp.
175–188 (2007)

8. Heinzelman, W.R., Sinha, A., Wang, A., Chandrakasan, A.P.: Energy-scalable al-
gorithms and protocols for wireless microsensornetworks. In: IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP 2000. Proceed-
ings, Istanbul, Turkey, vol. 6, pp. 3722–3725 (2000)

9. Jayakumar, N., Khatri, S.P.: A variation tolerant subthreshold design approach.
In: DAC 2005: Proceedings of the 42nd annual conference on Design automation,
pp. 716–719. ACM Press, New York (2005)

10. Kao, J., Narendra, S., Chandrakasan, A.: Subthreshold leakage modeling and re-
duction techniques. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS,
vol. 2517. Springer, Heidelberg (2002)

11. Kim, C.H.I., Soeleman, H., Roy, K.: Ultra-low-power DLMS adaptive filter for hear-
ing aid applications. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 11(6), 1058–1067 (2003)

12. Kim, T.-H., Eom, H., Keane, J., Kim, C.: Utilizing reverse short channel effect
for optimal subthreshold circuit design. In: ISLPED 2006: Proceedings of the 2006
international symposium on Low power electronics and design, pp. 127–130. ACM
Press, New York (2006)

13. Loan, C.V.: Computational frameworks for the fast Fourier transform. Society for
Industrial and Applied Mathematics, Philadelphia (1992)

14. Meindl, J.D., Davis, J.A.: The fundamental limit on binary switching energy for
terascale integration (TSI). In: IEEE JSSCC, vol. 35 (February 2002)

15. Nazhandali, L., Zhai, B., Olson, J., Reeves, A., Minuth, M., Helfand, R., Pant,
S., Austin, T., Blaauw, D.: Energy optimization of subthreshold-voltage sensor
network processors. SIGARCH Comput. Archit. News 33(2), 197–207 (2005)

16. Pirsch, P.: Architectures for Digital Signal Processing. Wiley, West Sussex (1998)
17. Raychowdhury, A., Paul, B., Bhunia, S., Roy, K.: Computing with subthreshold

leakage: device/circuit/architecture co-design for ultralow-power subthreshold op-
eration. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 13(
11), 1213–1224 (2005)

18. Sze, V., Blazquez, R., Bhardwaj, M., Chandrakasan, A.: An energy efficient sub-
threshold baseband processor architecture for pulsed ultra-wideband communica-
tions. In: IEEE International Conference on Acoustics, Speech and Signal Process-
ing, ICASSP 2006. Proceedings, Toulouse, vol. 3 (2006)

19. Wang, A., Chandrakasan, A.: A 180-mv subthreshold FFT processor using a mini-
mum energy design methodology. IEEE Journal of Solid-State Circuits 40(1), 310–
319 (2005)

20. Yamaoka, M., Maeda, N., Shinozaki, Y., Shimazaki, Y., Nii, K., Shimada, S.,
Yanagisawa, K., Kawahara, T.: Low-power embedded SRAM modules with ex-
panded margins for writing. In: Solid-State Circuits Conference, 2005. Digest of
Technical Papers. ISSCC. 2005 IEEE International, pp. 480–611 (2005)



A. Seznec et al. (Eds.): HiPEAC 2009, LNCS 5409, pp. 293–307, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Predictive Thermal Management for Chip 
Multiprocessors Using Co-designed Virtual Machines 

Omer Khan and Sandip Kundu 

Department of Electrical and Computer Engineering 
University of Massachusetts, Amherst, MA USA 

{okhan,kundu}@ecs.umass.edu 

Abstract. The sustained push for performance, transistor count, and instruction 
level parallelism has reached a point where chip level power density issues are 
at the forefront of design constraints. Many high performance computing 
platforms are integrating several homogeneous or heterogeneous processing 
cores on the same die to fit small form factors. Due to design limitations of 
using expensive cooling solutions, complex chip multiprocessors require an 
architectural solution to mitigate thermal problems. Many of the proposed 
systems deploy DVFS to address thermal emergencies, either within an 
operating system or hardware. These techniques have certain limitations in 
terms of response lag, scalability, cost or being reactive. In this paper, we 
present an alternative thermal management system to address these limitations, 
based on co-designed virtual machines concept. The proposed scheme delivers 
localized and preemptive response to thermal events, adapts well to multi-core 
and multi-threading environment, while delivering maximum performance 
under thermal stress. 

Keywords: Dynamic Thermal Management (DTM), Dynamic Voltage and 
Frequency Scaling (DVFS), Virtual Thermal Manager (VTM). 

1   Introduction 

Power density problems in today’s microprocessors have become a first-order 
constraint at run-time. Hotspots can lead to circuit malfunction or complete system 
breakdown. As power density has been increasing with the technology trends, 
downscaling of supply voltage and innovations in packaging and cooling techniques 
to dissipate heat have lagged significantly due to design and cost constraints. These 
problems are further exacerbated for small and restricted form factors. 

Ideally, a thermal management solution is expected to push the design to its 
thermal limits, while delivering optimal system performance and throughput. As 
temperature is well correlated to the application behavior, it is desirable to have 
insight into process or thread information to guide thermal management in addition to 
physical triggers like distributed thermal sensors. Avoiding global trigger and 
response is another key requirement to ensuring scalable thermal solution for future 
many-core era. In order to tune for best performance at target temperature, thermal 
solutions need to deliver predictive response to thermal events, while keeping the 
response time and cost overheads low. 
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There is an agreed hardware, software framework for power and thermal 
management through the ACPI framework [1]. When temperature measurements are 
detected and fed back to the operating system, temporal and spatial thermal aware 
techniques are engaged to eliminate thermal emergencies. While this has been shown 
to be effective in many situations, ACPI framework is far from perfect. Following are 
some of the shortcomings of the ACPI framework: 

Current Management techniques are reactive with large response times: On-die 
droop and thermal sensors are in wide use today. These sensors have inaccuracy 
problems, which coupled with long system latencies have a detrimental effect on 
sense-and-react systems. For example, a computer system takes 100s of micro-
seconds to adjust clock frequency and power supply voltage [2]. Additionally, a large 
manufacturer had a product recall for server parts in 2006 due to sensor inaccuracy 
[3]. As a result, sufficient guard bands must be put in place to prevent errors from 
creeping in during the response lag. For future technology trend projections by ITRS, 
as the power density rises, temperature rises will be faster, voltage and frequency 
response times that are gated by decoupling capacitor size and PLL lock times will 
remain similar, and therefore, a greater guard band has to be used [4]. 

Many-core Problems: In a sea-of-core design, power and thermal management is even 
more problematic. In POWER6 design, there are 24 temperature sensors [5]. If any of 
these sensors trigger, the response is global. The problem becomes more challenging 
when there are 100 or 1000 sensors. In that scenario, it is possible that some sensors 
trigger with alarming frequency. This will cause a processor to operate mostly at low 
performance mode. To slow down only one core, it must have its own clock distribution 
network. A sea-of-cores with each core having its own PLL and a private clock 
distribution network is a non-trivial design challenge from floor-planning and physical 
design point of view. These are some of the critical challenges for DFS in the future. 

If one core is slowed down, the voltage (DVS) for this core cannot be reduced unless 
it is in a separate power island. If every core has a separate power island, there will be 
separate connections between external Voltage Regulator Module (VRM) and the chip, 
leading to congestion at the board level. Consequently, each core will have its own 
external decoupling capacitor leading to greater power supply noise inside each core. 
These issues raise the cost of implementing DVS, while the effectiveness of DVS gets 
reduced. The effectiveness of DVS gets further eroded in 45nm technology, where the 
power supply voltage is proposed to be 0.9V. For the SRAM bits to work properly, a 
minimum of 0.7V is needed, reducing the range of supply voltages [4]. 

In order to address these issues, we propose to unify the thermal monitoring and 
response management under a common system level framework. Some of the 
objectives of our proposed framework are: 

Scalable thermal management: Insulating thermal management from the Operating 
System (OS) enables a scalable system level solution. In general, it is not a good idea 
to involve the OS for thermal management because that requires OS changes as the 
processor design evolves.  

Distributed temperature monitoring: As the chips become larger and feature multiple 
cores, a targeted response to temperature events become necessary. A global response 
penalizes all threads across all cores. This is not desired. 
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Action based on rate of change of temperature: A major benefit of the gradient 
approach is that thermal emergencies can be intercepted before they occur. This 
allows a smaller safety margin, also known as temperature guard band. Further, 
sensors have inaccuracies due to process variation. Multipoint measurements are 
generally more accurate than single reading. This can potentially alleviate sensor 
inaccuracy issues. 

Low response latency: Coupling predictive actions with low latency fine-grain 
responses can allow a system to operate closer to its temperature limit. 

Application Adaptation: A tight correlation exists between temperature and 
application behavior. Adapting to each thread’s thermal demands can optimize system 
performance, while keeping the cores thermally saturated. 

The proposed solution is based on virtualizing the thermal management system and 
satisfies all of the objectives stated above. 

The rest of the paper is organized as follows: In section 2, we discuss the previous 
work and provide motivation for our proposed framework. In section 3, we describe 
our proposed thermal management architecture. Section 4 discusses experimental 
methodology and Section 5 results and analysis. We conclude in section 6. 

2   Related Work 

Our approach tackles thermal management in a unified hardware/software framework. 
One of the first hardware, software co-design approach of dynamically managing 
temperature control was presented in the DEETM framework by Huang et al. [6]. 
Borkar identified that thermal packaging costs will increase sharply and estimated that 
exceeding 35-40W, thermal packaging increases the total cost per chip by $1/W [7]. 
Dynamic thermal management (DTM) techniques have been proposed to alleviate the 
thermal packaging costs by enabling the design for temperature less than the peak and 
use reactive DTM to tackle the rare case when temperature limits are approached [8]. 
The response mechanism initiated by DTM is typically accompanied by degradation 
in the performance of the chip and persists until normal system operation is resumed. 
DTM is the philosophy behind Intel, AMD and Transmeta microprocessor’s thermal 
design with support for varying levels of operation and fine-grained frequency and 
voltage scaling [9]. Skadron et al. [10] proposed the use of control theory algorithms 
for DTM, using fetch gating and migrating computation as their action mechanism. 
Brooks et al. [8] proposed several localized reactive mechanisms – I-cache throttling, 
decode throttling and speculation control. They also identify dynamic as well as static 
triggers for these mechanisms. Dynamic triggers may be based on sensors, activity 
counters or dynamic profiling, whereas, static trigger may be based on compiler 
optimizations that estimate high-power code segments and insert instructions 
specifically for DTM trigger. 

Rohu and Smith [11] present a software technique that allows the operating system 
to control CPU activity on a per-application basis. Temperature is regularly sampled 
and when it a reaches dangerous level, the application (or “hot” process) responsible 
is slowed down. This technique is shown to be superior to throttling as it does not 
affect slow processes. Srinivasan and Adve [12] proposed a predictive DTM 
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algorithm targeted at multimedia applications. They intended to show that predictive 
combination of architecture adaptation and DVS performs the best across a broad 
range of applications and thermal limits. Shayesteh et al. [13], Powell et al. [14], and 
Michaud et al. [15] investigate thread/activity migration via the Operating System as a 
means of controlling the thermal profile of the chip. They explore the use of swapping 
applications between multiple cores when a given core exceeds a thermal threshold. 

2.1   Proposed Framework 

We present the idea of a thermal monitoring and response management scheme under 
a common system level virtual framework. The core requirements of this manager are 
to sense the impact of temperature on various compute structures in a hardware 
platform, and subsequently respond by reconfiguring the platform such that the 
system operates at maximum performance without exceeding its thermal boundary. 
Pure hardware implementation of thermal manager is expensive and lacks flexibility 
in a typical system. On the other hand, pure software based approach needs 
instrumentation capabilities to tackle the requirements of managing the low level 
communication with the hardware platform. Additionally, operating system based 
implementation lacks flexibility due to strict interface abstractions to the hardware 
platform. These constraints drive us towards proposing a scheme which is minimally 
invasive to system hardware and software abstraction layers. 

3   Thermal Management via Co-designed Virtual Machines 

Our proposed scheme has both hardware and software components, as shown in 
Figure 1. The hardware component consists of thermal sensors that are strategically 
distributed throughout the chip. Additionally, the platform provides reconfiguration 
capabilities for localized throttling of resources such as queues, buffers and tables, as 
well as the ability to reduce the width of the major components of the processing 
elements such as, fetch, issue and retirement units. Finally, the hardware platform 
provides support for virtualization features like expanded isolation, and mechanisms 
for quick thread migration capabilities.  

Hardware

Software

OS/Applications with Abstractions

VTM

Thin (Virtual) Layer of Software 
With Knowledge of Hardware

 

Fig. 1. Virtual Thermal Manager’s System View 
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The software component of our solution is the thermal management software that 
runs natively as a guest privileged process on the hardware platform.  We assume a 
thin Virtual Machine Monitor (VMM) running underneath the OS, which is primarily 
used to enter and exit, as well as pass specific thread information to the Virtual 
Thermal Manager (VTM) [16]. VTM software resides in the physical memory that is 
concealed from all conventional software including the OS. VTM software maintains 
temperature history tables for live threads in the system. Based on the temperature 
history, thread specific behavior, and the distributed thermal sensors, the VTM 
predicts the thermal mapping for the next epoch of computation. When VTM predicts 
a potential for thermal hotspots, it takes an intelligent and preemptive measure by 
reconfiguring the hardware platform. VTM considers the performance and thermal 
tradeoffs, and provides adjustments for sustained performance levels at target 
temperature. VTM software is akin to hypervisor that is commercially available [17]. 

3.1   VTM Architecture Framework 

A detailed system’s view of the VTM architecture is shown in Figure 2. The operating 
system passes information about the current and the next thread to the VTM via 
VMM, based on its scheduling decisions. This is conceivable with the efficient 
hardware and software support for virtualization. The VMM also maintains a VTM 
timer that is setup on every VTM exit. This timer is adjusted by the VTM to adapt its 
sampling to the thermal requirements. The hardware is assumed to have thermal 
sensors distributed across the platform. These sensors are assumed to register their 
readings periodically with a thermal controller. The thermal controller can interrupt to 
invoke the VTM in case of thermal emergency. 

Applications

VMM

Operating System

Hardware Platform

Virtual Thermal Manager
(VTM)

VTM Entry

VTM Exit
VTM 
Timer

Process 
Management

Thermal 
Controller

Thermal 
Sensor

 
Fig. 2. VTM Interfaces and Interactions within the System 

 

When VTM is active, it has the highest privileged access to the hardware platform. 
Once VTM software completes its work to determine and setup the thermal 
management actions, it exits via the VMM and passes control back to the OS. As a 
result, our approach delivers a hardware-software co-designed solution that assists the 
hardware to dynamically adjust to tackle the thermal concerns. 
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3.2   VTM Software Details 

The main data structures maintained by the VTM software are Thread-to-Core 
Mapping Table (TCMT) and Temperature History Table (THT). TCMT maintains the 
thread-to-core mapping of live software threads in the system. The purpose of this 
table is to keep track of thread mapping, use this information to assist with thread 
migration and also inform the OS of such actions. TCMT ensures a programmable 
pre-defined time period between thread migrations, which is fixed at 10ms for this 
study. 

THT has an entry for each live thread running in the system. For each thread entry, 
the THT has an entry for each distributed sensor in the hardware platform. At the 
lowest level, each THT sensor entry maintains data for the last two temperatures,  
a 2-bit saturating counter (THC) that tracks the temperature history for each live 
thread, running average temperature on a per thread basis, and the last DTM action 
determined by the VTM. Finally, VTM maintains memory mapped temperature 
registers, which are sampled and updated regularly by the thermal sensors. The high 
level software flow for the VTM is presented in Figure 3. 
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Fig. 3. VTM Software Flow 

On each VTM invocation, and for each distributed sensor, the VTM reads the 
TCMT, THT, and memory mapped temperature registers for the current and next 
thread. In case of a multi-core, the temperature delta between thermal sensors on 
equivalent structures per logical core is evaluated for a possible thread migration. If 
two cores show thermal imbalance greater than a pre-defined threshold, thread 
migration is initiated followed by an update of TCMT with the new thread-to-core 
mappings. Subsequently VTM exits and gives control back to the OS. 
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In case when thread migration is evaluated to be infeasible, the VTM software 
takes a fine-grain approach to thermal management. First, the current thermal 
mapping of each sensor is evaluated to predict future temperature based on the current 
sensor reading, the last two temperature readings, as well as THC status and average 
thread temperature. This future thermal mapping is fed into a lookup based DTM 
action selection process, which also takes into account the previous DTM action 
before setting the next DTM action. When the future DTM action is determined for 
each sensor, a union of these actions is used to setup the knobs for reconfiguring the 
hardware platform. The next DTM action also appropriately sets the next VTM 
invocation delay followed by an update to the THT table and VTM exits. 

The 2-bit saturating temperature history counter (THC) is updated based on 
comparison between the last two temperature readings. The primary purpose of THC 
is to capture the long term temperature behavior of each live thread and use it along-
with the last few readings and average temperature to predict the future temperature. 
The counter’s update flow is shown in Figure 4. Each process is initialized at neutral 
for each sensor’s THC.  

Neutral +

- ++

inc

dec inc

inc

inc

dec

decdec

inc:  Temperature increased
dec: Temperature decreased

 

Fig. 4. THT’s Temperature History Counter (THC) 

We use a linear approximation model to project the temperature for the next thread. 
For each sensor, the projected temperature can be calculated by: 

ProjectedTemp Sensor# = CurrentTemp Sensor# + A (1) 

The CurrentTemp Sensor# is the current temperature status of a particular sensor and 
A is the projected increase or decrease in temperature for that sensor when the next 
thread will run on the platform. The calculation for A is presented below. 

VTM reads the THT for the process to be run next. The THT provides the last two 
temperature readings for each sensor and information on the status of the associated 
history Counter (THC). THC state is used to select A based on equation (2). 

A = Delta(Last Two Temps) * Constant(based on THC & Last Two Temps) 

where, Constant values are approximated using profiled thermal data. 

(2) 

3.3   DTM Action Selection 

Once the projected temperature is calculated, it is used to determine the DTM action 
for each unit mapped to the sensor. This DTM action is calculated based on the 
increase or decrease of temperature, average temperature, and the last DTM action for 
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the thread to be run next. The selection of DTM actions is dependent on the thermal 
status of each sensor as well as future application demands. Our analysis of workloads 
indicates that a targeted, but gradual increase or decrease in DTM action severity 
levels yields best results in terms of thermal management. Coarse grain adjustments 
of DTM actions may result in an underperforming system. In our proposed system we 
rank DTM actions in their severity level as shown in Figure 5. 
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Fig. 5. DTM Actions in increasing thermal severity 

Lower ID indicates a lower severity level. As the primary focus of our proposed 
scheme is to present a thermal management framework, the DTM actions considered 
here are limited, but enough for the demands of our workloads. We ran sensitivity 
analysis for our SPEC2000 benchmarks to determine the impact of these setting on 
various micro-architecture blocks. This profiled data is stored in a programmable 
read-only table and made accessible to the VTM. Our approach to DTM actions is to 
initially narrow the processor pipeline to approach a single-issue machine and then 
use issue throttling to further penalize the processor. Issue throttling of x/y indicates 
that the processor will operate at full capacity for x cycles and after every x cycles, 
stall for y-x cycles. Thread migration schemes for a dual-core are considered and the 
two possible TCMT settings are allocated Severity IDs of 10 and 11. 

4   Experimental Methodology 

In this section we discuss our simulation environment. We use our modified version 
of SESC cycle-level MIPS simulator for developing the VTM architecture framework 
[18]. For modeling dynamic power, SESC implements a version of Wattch [19] and 
Cacti [20] power estimation tools. We have extended SESC to dynamically invoke 
HotSpot temperature modeling tool [21]. We have also extended SESC to support 
DVFS. SESC supports chip multiprocessors within SMP paradigm and provides 
process scheduling for multi-threaded and multi-programmed workloads. We have 
extended SESC with context scheduler routines to manage and spawn multiple 
threads dynamically. This allows us to model the VTM architecture within SESC. 
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We use a single and a dual-core processor as our example system platform. Each 
core is assumed to be an aggressive pipeline with redundancy and speculation 
support. A temperature sensor is placed at each major micro-architecture block, 
allowing us to model distributed sensor architecture. System parameters used are 
shown in Figure 6. We assume a low cost cooling package for this study, with 
maximum tolerable temperature of 85°C. 
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Fig. 6. System Parameters 

We assume 65nm technology with chip wide Vdd of 1.1V, and frequency of 2.0 
GHz. For comparison with VTM, we use chip level DVFS as the DTM response with 
Vdd of 0.9V and frequency at 800 MHz. Under DVFS, we assume sensor inaccuracy 
of ±3°C [2], a response latency of 100us, and an upper/lower temperature threshold of 
82°C & 81.5°C respectively. Comparatively, we assume that our approach will result 
in better sensor accuracy, as multipoint temperature readings used to project future 
temperature statistically provides more accurate readings [10]. VTM is sampled every 
1 to 50ms in our setup, with an estimated entry to exit delay penalty of 2000 clock 
cycles for each invocation. For each thread migration an additional 20us penalty is 
assumed for flushing core pipeline and transferring architecture state. We choose 
0.5°C temperature threshold to initiate a thread migration, which yields best results in 
terms of temperature variations. VTM temperature threshold is set to 83°C. 

For analysis, we choose SPEC2000 benchmarks. The choice of benchmarks is 
primarily based on thermal behavior of the workload with MCF being cold, GCC, 
PARSER, AMMP being moderate and EQUAKE, ART, BZIP2 being hot. We also 
run a multi-threaded grouping of these benchmarks on the single and dual-core 
platforms. Each thread is fast forwarded 2 billion instructions, followed by HotSpot 
initialization. This ensures that the cores as well as HotSpot and VTM history tables 
get sufficient warm up. 

For each benchmark, three simulations are conducted. First simulation is without 
any DTM support and we categorize it as no-DTM. Second simulation is with DVFS 
as the DTM response and the trigger is based on the worst case sensor reading. Third 
simulation is with the VTM framework. Each simulation is run for 1 billion 
instructions and the performance of each simulation is evaluated based on Millions of 
Instruction per Second (MIPS). For dual-core, each simulation is run until the average 
instruction count seen by the two cores reaches 1 billion. 
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5   Results and Analysis 

In our simulation runs, the integer register file is the hottest unit, followed by the 
integer window and the load queue. The data is shown for the worst-case unit in each 
core. The x-axis shows the relative performance in terms of throughput. Initially, the 
application runs in full performance mode. But as the thermal sensors observe rising 
temperatures, VTM adapts to workload demands to prevent exceeding thermal limits. 

5.1   Analysis of Single Core 

Figure 7 and Figure 8 show the three simulation runs for a selective number of 
benchmarks on a single-core. VTM is adjusting DTM actions for the best possible 
performance, while keeping the core within its thermal envelope. The history of 
thread activity and the temperature rate of change cooperatively provide insight for 
VTM to adjust in a smart and predictive manner rather than abruptly, as seen in 
DVFS simulations. Figure 7 shows a multi-threaded workload with two threads 
running in a time-multiplexed fashion on a single-core. The thermal behavior of the 
platform changes when such cooperative scheduling scenarios are considered. The 
VTM software adapts to each thread’s thermal behavior, subsequently predicting and 
managing the future trend on a per thread granularity.  

 

 

Fig. 7. ART-MCF comparisons for IntReg in single-core 

 

Fig. 8. BZIP2 and GCC comparisons for IntReg in single-core 

GCC plot in Figure 8 identifies the scenario when sudden temperature spikes can 
cause instant and short lived thermal alarms. Although VTM is designed with variable 
invocation to gracefully handle such situations in software, it may be unavoidable in 
all cases. Our solution, which adds an extra hardware interrupt to invoke VTM when 
some upper temperature threshold is detected, gracefully handles thermal spikes. 
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5.2   Analysis of Dual Core 

Figure 9 and Figure 10 show the three simulation runs for a selective number of 
benchmarks on a dual-core. VTM manages both threads cooperatively to push 
performance and thermal behavior of each core in the platform. Figure 9 shows two 
hot threads running simultaneously on both cores in the system. Even with a 60% 
degraded performance of DVFS, the core 1 exceeds the temperature threshold under a 
global DVFS scheme. Such scenarios can result in uncontrolled temperature spikes 
causing major damage to the system. On the other hand, VTM uses thread migration 
to primarily push the cores to their thermal limits and then use fine-grain predictive 
hardware reconfiguration to adjust DTM actions. In this scenario, when both threads 
are hot, fine-grain DTM actions are used to control the temperature of the dual-core. 

 

 

Fig. 9. ART-BZIP2 comparisons for IntReg in dual-core 

 

Fig. 10. EQUAKE-GCC (L) & MCF-ART (R) IntReg in dual-core 

Figure 10 shows a couple of workloads with a mix of hot and moderate/cold 
threads. If chip level DVFS is employed in such scenarios, one of the threads 
underperforms due to the thermal imbalance, thus resulting in an unnecessary 
performance loss. Although core (or component) level DVFS is possible, the cost and 
scalability effect of such a scheme makes it unfeasible in future technology nodes. As 
an alternative, VTM provides an architectural solution to manage such workload 
scenarios. When a hot and cold thread is used to run on the cores, thread migration is 
shown to provide best performance, while keeping the chip thermally saturated. 
Figure 11 shows that VTM uses thread migration coupled with fine-grain DTM 
actions to effectively and consistently manage temperature behavior on the two cores. 
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Fig. 11. ART-MCF DTM Actions over time 

5.3   Analysis of Localized Responses and Thread Adaptation 

Figure 12 and Figure 13 show the temperature behavior of the IntReg sensor along 
with the corresponding DTM actions initiated by the VTM. A detailed analysis of 
DTM actions shows that VTM gradually adapts to the workload behavior, 
continuously evaluating system performance tradeoff with the thermal limitations. 
Figure 13 shows that VTM effectively handles each thread independently, so for 
ART, activity is high and thus DTM adjustments are more fine-grain to, whereas, for 
MCF, activity is low and thus DTM actions are adjusted accordingly. As EQUAKE-
GCC workload mixes a hot and a moderate thread, the DTM actions are severe for 
EQUAKE and moderate for GCC. 

 

 

Fig. 12. EQUAKE (left) and BZIP2 (right) IntReg DTM actions 

 

Fig. 13. EUQAKE-GCC (left) and ART-MCF (right) IntReg DTM actions 
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5.4   Analysis of VTM Performance 

Figure 14 summarizes the performance impact of our VTM approach for thermal 
management compared to DVFS. Our data shows that VTM consistently delivers 
better performance than the DVFS counterpart. VTM over DVFS shows a minimum 
of 6% and maximum of 35% improvement. The average improvement over all 
benchmarks considered is 8% for single-core and over 32% for dual-core processors. 
DVFS implementation considered in this study may be considered sub-optimal due to 
the limited voltage/frequency levels. We consider this fair, as DVS is not predicted to 
scale for future technology nodes. Additionally, our analysis indicates that global 
DVFS is more of a problem in terms of performance loss compared to the number of 
available stepping. We consider core level DVFS as an unfeasible solution due to its 
design implementation costs and scalability limitations for many core era. 
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Fig. 14. Performance of Thermal Management Schemes 
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Fig. 15. Analysis of Thermal Management Overheads 

Figure 15 breaks down the execution time into several overheads. The workload 
overhead is the necessary component consumed by executing the workload. All other 
overheads are related to thermal management. DTM action overhead is the time taken 
by DTM actions to degrade performance, but adjust the thermal behavior to match 
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target temperature. The DVFS overhead is the 100us overhead of every DVFS 
invocation, whereas, VTM overhead is the time taken by VTM to compute next DTM 
action. The data clearly indicates that VTM and DVFS overheads are a negligible 
percentage of the total execution time. Specifically, VTM overhead plays minimal 
role in performance degradation of the processor. This makes the case for using 
virtual machine as an effective mechanism for thermal management. 

5.5   VTM for Reduction of Leakage Power 

The proposed use of VTM to keep all cores in the CMP thermally saturated can be used 
to reduce the leakage power. Our data shows that some cores when running at elevated 
temperature with severe hot spots will result in higher leakage, while cooler cores will 
result in lower leakage. When VTM is deployed, all cores are thermally controlled to 
stay close to the pre-determined temperature levels. As the peak temperatures are 
reduced the relatively cooler cores become warmer. Because the leakage power is a 
nonlinear (exponential) function of temperature, the leakage savings incurred by 
lowering the maximum target temperature outweighs the increase in leakage incurred by 
increasing the temperature of the cooler cores. Such leakage reductions are conceivable 
within our proposed framework, while rest of the VTM management remains the same. 
We intend to study such enhancements in our future work. 

6   Conclusions 

We have presented a novel thermal management scheme based on using virtual 
machine to manage DTM action selection and scheduling. The main reason for using 
virtual machine is its lower overhead cost and flexibility to enable changing thermal 
demands of many core designs and applications. We studied VTM as a standalone 
software scheme with hardware assistance.  

The proposed thermal management scheme adapts to each thread individually to 
match the computation demands with the hardware thermal profile. The response time 
is quick because the proposed scheme is not reliant on PLL lock time and decoupling 
capacitor charge/discharge time. VTM provides a scalable path to many-core era 
where DVFS will be limited by physical design and technology constraints. The 
proposed technique delivers the best performance at target temperature in a 
distributed thermal sensing environment. 
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Abstract. Exposing more instruction-level parallelism in out-of-order supersca-
lar processors requires increasing the number of dynamic in-flight instructions.
However, large instruction windows increase power consumption and latency in
the issue logic. We propose a design called Hybrid Dataflow Graph Execution
(HeDGE) for conventional Instruction Set Architectures (ISAs). HeDGE explic-
itly maintains dependences between instructions in the issue window by modi-
fying the issue, register renaming, and wakeup logic. The HeDGE wakeup logic
notifies only consumer instructions when data values arrive. Explicit consumer
encoding naturally leads to the use of Random Access Memory (RAM) instead
of Content Addressable Memory (CAM) needed for broadcast. HeDGE is distin-
guished from prior approaches in part because it dynamically inserts forwarding
instructions. Although these additional instructions degrade performance by an
average of 3 to 17% for SPEC C and Fortran benchmarks and 1.5% to 8% for
DaCapo Java benchmarks, they enable energy efficient execution in large instruc-
tion windows. The HeDGE RAM-based instruction window consumes on aver-
age 98% less energy than a conventional CAM as modeled in CACTI for 70nm
technology. In conventional designs, this structure contributes 7 to 20% to total
energy consumption. HeDGE allows us to achieve power and energy gains by
using RAMs in the issue logic while maintaining a conventional instruction set.

1 Introduction

To attain high performance, superscalar processors seek to exploit Instruction Level
Parallelism (ILP) with large instruction windows and dynamic scheduling algorithms.
The instruction issue logic is thus a key component in their design.

Current instruction window designs use a monolithic Content Addressable Memory
(CAM) because it implements broadcast efficiently for instruction wakeup. Unfortu-
nately, CAM structures scale poorly with respect to latency and power. Increasing the
size of CAMs to expose more ILP forces a tradeoff between ILP and the clock period;
larger CAMs consume disproportionately more power, which forces a tradeoff between
power and performance. This paper seeks scalable instruction issue logic to attain en-
ergy efficiency together with high performance.

Our solution replaces broadcasts in the issue logic with direct communication. Cur-
rent issue logic performs broadcast when producer instructions complete, notifying de-
pendent instructions waiting in the issue window. Prior work shows that there are few

A. Seznec et al. (Eds.): HiPEAC 2009, LNCS 5409, pp. 308–323, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



HeDGE: Hybrid Dataflow Graph Execution in the Issue Logic 309

such consumers within the window [6]. We find that 94 to 96% of instructions produce a
result for two or fewer consumers in windows ranging from 64 to 512 instructions. This
observation motivates a design that uses dataflow encoding of dependent instructions in
the window, i.e., direct instruction communication between producers and consumers,
instead of a broadcast based on physical register names. Our design dynamically iden-
tifies and encodes consuming instructions during the register rename stage. When an
instruction produces its result, the wakeup logic identifies consumers and marks them
ready. Eliminating the need for a broadcast leads to an instruction window implemen-
tation that uses a Random Access Memory (RAM) instead of a CAM. RAMs offer two
significant advantages over CAMs: they consume significantly less energy per access
and have a faster access time.

We call our design Hybrid Dataflow Graph Execution (HeDGE) because it takes
an intermediate point between conventional superscalars and dataflow ISAs, such as
WaveScalar [24] and TRIPS [18]. HeDGE requires no changes to a conventional ISA. It
dynamically converts dependences specified with register names in the ISA as follows.
When a consumer enters the window, HeDGE register renaming adds the consumer to
a wakeup list for the producer. This logic generates a dataflow encoding, but only for
instructions in the issue window. HeDGE implements the wakeup list by adding target
fields to the reservation stations. When the number of consumers exceeds the number
of target fields, HeDGE introduces forwarding instructions. Dynamically inserting for-
warding instructions differentiates HeDGE from prior approaches to direct instruction
communication in conventional designs, which stall the pipeline [26], or continue to
use some associative logic for the instruction window [13,21], or sacrifice more ILP to
track consumers [19].

The contribution of this paper is the demonstration and design of a power efficient
instruction window that supports many in-flight instructions by using a more scalable
hardware structure. We measure HeDGE in a cycle-accurate simulator on SPEC CPU
and DaCapo Java benchmarks. Given two to four target fields in the HeDGE reserva-
tion stations and a range of issue window sizes of 64 to 512, HeDGE requires 2 to 30%
additional forwarding instructions on average. Although these instructions degrade per-
formance by an average of 3 to 17%, they enable energy efficient execution in large
instruction windows. Using CACTI to model RAM and CAM structures in 70nm tech-
nology, we find that the energy per access consumed by a HeDGE RAM is 98% less
than a CAM. In a conventional design, prior work shows that the CAM-based instruction
window contributes 7 to 20% to total energy consumption [4,10,11], and the contribu-
tion increases as a function of the window size. Assuming a conservative 10% contribu-
tion, we show that HeDGE configurations reduce total processor energy by an average
of 6%. RAMs also offer faster access times, but we do not explore this benefit here.
These results demonstrate the potential of HeDGE designs to improve power efficiency.

2 Related Work

This section describes related work in issue logic design that uses explicit dependence
tracking, that reduces issue load, and that uses dataflow ISAs. We also provide a brief
taxonomy of dependence encoding. We refer the reader to Abella et al. for a compre-
hensive survey of issue logic design [1].
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Dependence tracking. The most closely related work seeks to use direct instruction
communication to reduce the complexity of the issue logic in dynamically scheduled su-
perscalar processors [13,19,21]. These approaches explicitly track register dependences
between instructions and completely or partially avoid associative lookup during in-
struction wake up. Similar to HeDGE, these approaches rely on the observation that
only a few dependent instructions are typically in the issue window at a time and there-
fore propagate result tags only to those instructions in the window. However, none of
these approaches considered or modeled energy-delay benefits.

Similar to HeDGE, Önder and Gupta use a fixed fanout degree [19]. However, when
the number of targets exceeds the fanout degree, they encode the chain of forwarding
instructions together with the consuming operands. When an instruction executes, the
hardware forwards its result to consumers and its input operands to other instructions
needing the same value. Each value is forwarded on a separate cycle, whereas HeDGE
inserts MOV instructions, and delivers all the target fields of MOV and other instructions
at once by using additional logic.

Sato et al. use a RAM-based instruction window with a register file called the Dataflow
Management Table (DMT) to keep track of dependences [21]. This scheme eliminates
associative wakeup; however, they must checkpoint the DMT on every branch prediction,
as the DMT might contain incorrect dependences after a branch misprediction. HeDGE
instead uses the misprediction handling mechanism that already exists in a superscalar
processor.

Huang et al. modify the instruction window to maintain dependence information be-
tween a producer with a single consumer within the window, and then wake up just the
consumer, avoiding a broadcast [13]. If more than one consumer enters the window, the
wakeup logic reverts to a conventional broadcast scheme. This hybrid design combines
direct instruction wakeup and broadcast, but comes with additional complexity. HeDGE
uses MOV instructions when there are multiple dependent consumers within the window.
This design adds instruction overhead compared to Huang et al., but enables the use of
RAM hardware and simplifies the instruction window design.

Reducing issue logic latency. To reduce the issue logic latency, a number of approaches
perform some form of dependence-based pre-scheduling to reduce the number of in-
structions considered for issue every clock cycle [16,17,20]. Palacharla et al. performed
an analysis of circuit delay of various structures in a superscalar processor, and showed
that the wakeup and select logic is a key element of the processor’s critical path [20].
They proposed the first dependence-based instruction window design where the issue
queue is implemented as a set of FIFOs with only the head of the FIFOs considered for
issue. Michaud and Seznec pre-schedule instructions based on dataflow order, group-
ing instructions based on the clock cycle at which they will issue, thereby reducing the
number of instructions considered for selection [17]. Lebeck et al. identify instructions
dependent on long-latency operations such as cache misses and move them to a larger
buffer [16]. They move these instructions back to the issue queue when the long latency
operation completes. The number of instructions in the issue queue is smaller, and thus
the issue queue is faster. These approaches are orthogonal to HeDGE and can coexist
with our approach.
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A taxonomy of dependence encoding. The taxonomy in Table 1 classifies Von Neu-
mann and dataflow architectures according to the way they specify dependences between
instructions in the ISA and between instructions in the issue window. Conventional out-
of-order superscalar processors like the Alpha 21264 [15] use a Reduced Instruction Set
Computer (RISC) instruction stream that encodes dependences between instructions us-
ing register names. The initial stages of the pipeline use register renaming to eliminate
write-after-read and write-after-write dependences. Read-after-write dependences be-
tween instructions within the window are specified using physical register names.

WaveScalar, TRIPS, and other dataflow machines directly encode dependences in
the ISA to exploit the inherent efficiencies of dataflow execution [7,18,24]. In a data-
flow ISA, the compiler must explicitly specify dependences between instructions using
target instruction identifiers. The execution model maps instructions to execution units
on a distributed substrate, preserving the dependence information encoded in the ISA.
In WaveScalar and TRIPS, both the ISA and microarchitecture use instruction identi-
fiers to specify dependences. HeDGE exploits some of the same efficiencies, but in the
context of a conventional ISA.

Table 1. Taxonomy of dependence encoding

Instruction Window Encoding

Register names Instruction names

ISA encoding
Register names

Alpha 21264 [15], Huang et al. [13],
Pentium Sato et al. [21], HeDGE

Instruction names
None Dataflow machines [7],

WaveScalar [24], TRIPS [18]

3 Background

This section describes a conventional superscalar pipeline, with the register renaming
and instruction wakeup, to provide context and motivation for our approach.

Figure 1 depicts the pipeline stages for dynamic instruction scheduling in an out-
of-order superscalar processor. The frontend of the processor (not shown) fetches, de-
codes, and transfers instructions to the rename stage, which keeps track of instructions
by reserving reorder buffer entries, reservation stations, and physical registers. The is-
sue stage holds instructions in reservation stations, waiting for their input operands to
become available. The select logic chooses candidates for execution, from ready in-
structions whose input operands are all available, based on availability of execution
units and other policy considerations such as age of the instruction and criticality of the
instruction [8]. Instructions selected for execution, read values from the register file and
execute on appropriate functional units.

Register renaming. The register renaming stage updates a Register Alias Table (RAT)
that maps architectural register names to physical register names. The rename stage
eliminates all write-after-write and write-after-read register dependences by mapping
the write target to a unique unused physical register location. The rename logic uses this
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Fig. 2. Conventional superscalar pipeline register renaming example

physical register name to satisfy any subsequent reads from the original architectural
register. Instructions speculatively issue and write to physical register storage, with the
value becoming part of the architectural state only after the instruction commits. The
wakeup logic uses physical register tags to check availability of operands that were not
ready during register renaming.

Register renaming example. Figure 2 walks through a simple code sequence, showing
the contents of the RAT and reservation station entries at each clock cycle assuming
a 1-wide pipeline. Each diagram shows the RAT indexed from R1 through R4, and
reservation stations indexed by physical register names P21 through P25. The shaded
entries indicate those written in the current clock cycle. Figure 2(b) shows the state
after renaming the Load and Mul instructions. Physical register P21 maps to R2, the
destination architectural register of the Load. Similarly, R3 maps to P22. S3, the Add
instruction enters the rename stage next. The rename logic allocates a new physical
register P23 to the output register R1. The source physical register tags respectively
contain P21 and P22, and maintain the read-after-write dependences from the Load and
Mul instructions as shown in Figure 2(c). Similarly in Figure 2(d), the Addi enters the
rename stage, and its output register R4 is mapped to P24. Its source tag P21 encodes
the dependence on S1.

Instruction wakeup. The wakeup logic is a significant source of complexity for out-of-
order superscalar processors. The issue stage uses the source physical register tags set
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the window for instruction window sizes ranging from 64 to 512

by the rename stage to wake up dependent instructions waiting in reservation stations.
Just before an instruction finishes executing, it broadcasts its destination physical reg-
ister tag to a common result tag bus. Waiting instructions snoop this bus and notify the
select logic when all their operands are available. The select logic chooses candidate
instructions for execution based on some heuristic. The wakeup and select logic of the
instruction window is a key component in the critical path for an out-of-order super-
scalar processor [20]. The tag comparisons performed every cycle are a main source of
complexity [20] and power dissipation in the instruction window [4,9].

4 Hybrid Dataflow Graph Execution (HeDGE)

To show the potential of direct instruction communication in the instruction window,
Figure 3 shows the dynamic distribution of this communication. We measured perfor-
mance on 17 of 21 C and Fortran SPEC CPU 2000 benchmarks [22] and 7 of 11 Java
programs from the DaCapo benchmark suite (version dacapo-2006-10) [3] on which
our baseline simulator currently works. We simulated the SPEC programs using the
SimpleScalar 3.0 tool suite [5] for the Alpha ISA to simulate a 4-wide dynamically
scheduled superscalar processor with varying window sizes, and the DaCapo programs
running on JikesRVM using Dynamic SimpleScalar [14] for the PowerPC ISA. Due to
space constraints, we present geometric means and representative results. A companion
technical report presents all benchmark results [23]. The figure breaks down dynamic
instructions based on the number of dependent instructions within the window. These
results show that 94 to 96% of instructions produce a result for two or fewer consumers
in windows ranging from 64 to 512 instructions, promising an efficient alternative.

4.1 Design

We leverage this observation with an instruction window design which explicitly keeps
track of dependent instructions by adding target fields to the reservation stations. In a
HeDGE window, producer instructions explicitly encode dependent consumer instruc-
tions, like in a dataflow machine. The HeDGE design only requires changes to the
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rename and issue stages in an out-of-order pipeline. These stages are highlighted in
Figure 1. We first summarize the key components in our design and then describe each
component in detail.

When a consumer enters the instruction window, HeDGE first translates the archi-
tectural registers to physical register names, and then uses the physical name to dy-
namically identify any producers already in the window. It then adds the consumers to
the producers’ list of targets, stored in reservation stations. If the target fields are ex-
hausted, HeDGE inserts MOV instructions. The MOV instructions and their target fields
fan out values to multiple consumers when necessary. This process explicitly encodes
read-after-write register dependences between instructions. This additional complexity
in the rename stage results in simpler wakeup logic. The HeDGE wakeup logic looks
up dependent instructions in the target fields of the reservation stations and sends the
result tag only to these consumers.

Rename stage. Like in a conventional pipeline, HeDGE’s rename stage maps archi-
tectural registers to physical register names for every instruction. In addition, it looks
up an instruction’s physical register operands in the RAT. If there is no entry for an
operand, the rename stage marks the input operand as ready. Otherwise, an entry in the
RAT provides the identifier for the producer. HeDGE adds this consumer to the pro-
ducer’s list of dependent instructions. This step dynamically encodes read-after-write
dependences. Each reservation station has a small, fixed number of target fields, and
there may be more consumer instructions within the window than target fields. Instead
of stalling the pipeline [26], HeDGE introduces MOV instructions into the pipeline to
track multiple consumers. We describe and use a simple algorithm that inserts a linear
chain of MOV instructions. Although we do not evaluate it here, the renaming logic could
create a tree of MOV instructions to fanout values in parallel.

Register renaming example. This section illustrates how HeDGE renames registers
and introduces MOV instructions into the pipeline with the example from the previous
section. Figure 4 is similar to Figure 2 but shows reservation stations with target in-
struction fields instead of those for source registers.

Figure 4(b) shows the state after renaming S1 and S2. Renaming assigns physical
register P21 to R2, the destination architectural register of the Load. Similarly, it assigns
R3 to P22. Next, the Add instruction enters the rename stage. The rename stage allocates
a new physical register P23 to output register R1. For each input operand, it looks up
the producer instruction identifier in the RAT. The rename stage then adds the current
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instruction identifier to the target field of each producer. Figure 4(c) shows these updates
by shading the new RAT and reservation station entries.

When S4, the Addi instruction, enters the rename stage, its producer, S1, has only
one target field left. To accommodate more potential future consumers of S1, the rename
stage inserts a MOV instruction and puts the MOV instructions identifier in the producer’s
target field. To make the MOV instruction the new producer of R2, it changes the RAT en-
try for R2 to P24. Figure 4(d) shows this intermediate step. This process is semantically
equivalent to adding Mov R2 <- R2 at this point in the program. The MOV introduces
a bubble in the pipeline. In the next cycle, the rename logic inserts S4’s instruction
identifier in the MOV’s target field and inserts S4 in the reservation station, as shown in
Figure 4(e).

Instruction wakeup. We now describe the instruction wakeup logic. The key differ-
ence between a conventional out-of-order processor and HeDGE lies in how producer
instructions communicate availability of an operand to the wakeup logic. In HeDGE,
the wakeup logic does not snoop the result bus for matching physical register tags.
Instead, it directly notifies consumer instructions as producers complete. The wakeup
logic indexes the reservation station table by the target fields of the producer instruc-
tion, notifying each consumer that an input operand is available. The select and execute
logic in HeDGE is the same as a conventional processor; it chooses which of the ready
instructions to schedule for execution and executes them on functional units.

4.2 Speculation with HeDGE

HeDGE supports existing misspeculation recovery mechanisms in a straightforward
manner. Just like in conventional processors, branch instructions trigger a RAT check-
point. When the hardware detects a branch misprediction, it squashes instructions along
the misspredicted path. If a producer is on the misspredicted path, all its consumers must
also be on the misspredicted path, and the hardware squashes all of them. If only the
consumer in a dependent chain needs to be squashed, its producers’ target fields become
invalid. To address this problem, HeDGE stores instruction numbers (inums) together
with consumer identifiers in the target fields, and only wakes up consumer instructions
when inums match.

4.3 Design Tradoffs

This section discusses in more detail the implications of fixing the number of target
fields and the consequent insertion of MOV instructions.

The number of target fields determines the number of MOV instructions HeDGE will
insert; fewer target fields require more MOV instructions, but fewer ports and a simpler
wakeup logic. Because the issue logic cannot predict in advance whether it will need
a MOV instruction or not, each reservation station entry must have at least two target
fields, one for a consumer and one for a MOV instruction to propagate the value. A
design that does not dynamically insert MOV instructions or has a single target field must
stall the pipeline when an instruction runs out of targets. HeDGE avoids such pipeline
stalls, by reserving the last target field for MOV instructions. In the case where there is
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exactly one additional consumer, the MOV is unnecessary. However, our conservative
policy simplifies the logic for introducing MOV instructions and handling them in the
other stages of the pipeline.

The semantics of a dynamically introduced MOV instruction are the same as a MOV in-
struction of the form “MOV Ra, Ra” where Ra is the architectural register name. A MOV
instruction behaves just like any other MOV instruction within the pipeline, occupying
reservation station slots and reducing the effective size of the window. They also reduce
the effective issue and commit width of the processor. Finally, whenever a MOV instruc-
tion forwards a data value, it introduces a bubble in the pipeline. Section 5.2 quantifies
these effects.

A HeDGE design must choose a sweet spot between increasing complexity to sup-
port more targets and consequently inserting fewer MOV instructions, or inserting more
MOVs to reduce complexity.

5 Evaluation

This section describes our cycle-accurate and power-modeling simulation methodolo-
gies and results. To demonstrate the tradeoffs in the HeDGE design, we measure the
number of forwarding instructions HeDGE introduces and their effect on total perfor-
mance for a range of HeDGE configurations. We then model the power and energy char-
acteristics of the circuits in a conventional CAM instruction window and in a HeDGE
RAM instruction window structures using CACTI 4.2 [25]. We use prior research that
specifies 7 to 20% of total energy consumption of a superscalar processor is due to the
dynamic scheduling structures [4,10,11]. Over this range of values, we compare total
power and energy-delay of HeDGE to a conventional design. We show that even with
a conservative 10% contribution of the issue logic to total processor power, HeDGE
configurations reduce total energy by an average of 6% for SPEC programs and 10%
for DaCapo programs.

5.1 Methodology

We extend sim-outorder, a cycle-accurate simulator from the SimpleScalar 3.0 tool
suite [5] for the Alpha ISA to implement HeDGE, for executing C and Fortran pro-
grams. We use Dynamic Simplescalar [14] for the PowerPC ISA for simulating Java
programs running on JikesRVM [2]. The cycle-level simulator models an aggressive
4-way out-of-order superscalar microarchitecture. The simulator is execution-driven
and accounts for instructions along the wrong path of a misspeculation. The mem-
ory hierarchy has two levels of caches with split L1 instruction and data caches and
a unified L2 cache. HeDGE modifies the register renaming and wakeup logic to track a
parent instruction’s targets. We explore configurations with two, three, and four target
fields in the reservation stations. Table 2 contains the simulation parameters, latencies,
and branch predictor information.

We evaluate HeDGE on all the programs that successfully execute on our baseline
simulators. We execute 17 of the 21 C and Fortran SPEC CPU2000 benchmarks [22].
We compiled all the SPEC benchmarks with Compaq’s GEM compiler with full opti-
mization for an Alpha 21264 machine. We used SimPoint 3.0 [12] to identify regions
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Table 2. Processor parameters

Parameter Value

Pipeline width 4

Instruction window/ 64/32, 128/64, 256/128, 512/256
LSQ sizes

Branch Predictor GSHARE with an 8-bit global history, and an 8K BTB

Branch Target Buffer 512 entries, 4-way associativity

Functional units four integer ALUs, one integer MULT/DIV,
two load/stores, four FP adders, one FP MULT/DIV

Latencies 1-cycle integer operations, 3-cycle multiply
2-cycle FP add, 4-cycle multiply
20-cycle integer divide (non-pipelined)
12-cycle FP divide (non-pipelined)

Split L1 I/D caches 64 KB, 2-way set associative, 64 byte lines, 1 cycle hit latency

Unified L2 cache 1 MB, 64 4-way set associative, 64 byte lines, 10 cycle hit latency

DRAM 100-cycle latency, bandwidth of 8 bytes per CPU cycle

HeDGE target fields 2, 3, and 4

of execution that characterize program behavior for a particular input set and simulated
these regions. We evaluate seven Java programs from the DaCapo benchmark suite
(version dacapo-2006-10) [3]. These programs executed 1 billion instructions after
forwarding the initialization portion of the execution. In the following discussion, we
present results for a subset of programs by including the geometric mean, high and
low extremes, and representative samples in each of SPEC INT, SPEC FP, and DaCapo
benchmark suites. We refer the reader to a technical report [23] for complete results.

5.2 Performance of HeDGE

This section quantifies the additional MOV instructions that HeDGE inserts, their effect
on performance, and the contributions due to MOV instructions occupying window slots
and pipeline bandwidth.

HeDGE introduces MOV instructions into the dynamic instruction stream to maintain
register dependences when a parent instruction runs out of target entries. These MOV
instructions behave like regular instructions, and occupy instruction window space and
issue and commit bandwidth in the pipeline. Figure 5 plots the percentage of MOV in-
structions that HeDGE adds to communicate dependences for window sizes of 64 to
512 with two, three, four target fields in the reservation stations. We include MOVs along
misspeculated paths as well, and compute them as a percentage of the total number of
committed instructions.

As expected, the number of MOVs added decreases as the number of target fields in-
creases. On average, two targets increase executed instructions by 20 to 30%, whereas
four targets only increase executed instructions by 2 to 4% (the white portion in the
final set of bars). In addition, increasing the instruction window size from 64 to 512
increases the number of MOVs. These MOV instructions cause a corresponding drop in
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consuming pipeline bandwidth.

performance as shown in Figure 6. These plots compare the performance in simulated
cycle counts of HeDGE over the baseline configuration. Cycle counts are a more appro-
priate comparison point than Instructions Per Cycle (IPC) in this work because HeDGE
adds additional instructions. For a HeDGE implementation with only two targets, execu-
tion time increases by 17%. This number falls to 6.5% for a HeDGE implementation with
three targets, and to less than 3.4% for four targets. The increase in execution time for
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the DaCapo programs is even smaller, ranging from 8% with two targets, to 1.5% with
four target fields. Although these results suggest using four targets rather than two in
the reservation stations, four targets require four ports and parallel logic to wakeup four
instructions at once. This increased complexity thus favors a lower numbers of targets,
but performance favors more targets.

We now further quantify three effects of MOV instructions: (1) They occupy instruc-
tion window entries and reducing the effective size of the instruction window. (2) They
utilize issue and commit bandwidth, which reduces the effective width of the pipeline.
(3) They occupy execution units, conceptually introducing bubbles in the pipeline. To
measure the first effect, we assign MOVs to their own window, thereby using the entire
instruction window for other instructions. To measure the second effect, we model sep-
arate, special issue logic that only executes MOV instructions. Figure 7 plots increases
in execution time over a baseline configuration with a moderately aggressive instruc-
tion window size of 128, for the SPEC and DaCapo benchmarks. The three columns
in the figures show HeDGE, HeDGE when MOV instructions do not occupy instruction
window slots, and HeDGE when MOV instructions do not consume pipeline width.

These results show that for both SPEC and DaCapo programs, MOV instructions oc-
cupying pipeline bandwidth is the main reason for HeDGE performance degradations;
i.e., the third bar in which MOVs do not occupy execution is on average much lower
than the other two. A few counterintuitive performance degradations occur when MOV
instructions do not occupy instruction window slots, e.g., the second bar is higher than
HeDGE for 168.wupwise (and 171.swim and 172.mgrid, not shown in the graphs).
When MOV instructions reside in their own buffers, the effective window size for reg-
ular instructions increases and there are now more instructions in the window. As a
result, HeDGE must add more MOV instructions to the pipeline, which utilize pipeline
bandwidth and cause a drop in performance.

To execute a fanout instruction, the processor does not need Arithmetic Logic Units
(ALUs) or commit width. Since the only purpose of MOV instructions is to wake up
dependent instructions, the issue logic could include an additional bypass path that im-
plements the MOV instructions, waking up dependent consumers.

5.3 Energy Characteristics

We used CACTI 4.2 to model the power and energy characteristics of a conventional
CAM-based instruction window and a RAM-based HeDGE design. We use CAM en-
tries with 64 decoded instruction bits and four ports—to support broadcasting up to
four physical register tags every cycle. The HeDGE RAMs window adds two to four
target fields to every instruction. For a 4-issue processor, the RAM requires four read
ports, but eight write ports. Since each instruction has at most two operands, HeDGE
needs two write ports to install the target fields in each operand producer for each issued
instruction. Given two to four target fields, HeDGE uses eight to sixteen one-bit write
ports to set the ready bits of consumer instructions. The number of ports is equal to the
number of target fields in the reservation station times the issue width which indicates
the maximum number of instructions HeDGE can wakeup in a single cycle.

Table 3 shows the energy consumed per access and leakage power, for 100, 70, and
45 nm technology nodes. CACTI does not currently provide leakage power for 45nm
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technology. Although, the HeDGE RAM structure occupies more area than the CAM
because it has more ports, the HeDGE RAM consumes 94 to 98% less energy per access
than the CAM design. These results show that the CAM leaks 72 to 87% more power
than the HeDGE RAM. For the HeDGE RAM, leakage power increases as a function
of target fields because each field requires additional transistors.

Table 3. Energy per access (nJ)

IW Size
Energy per access (nJ) Leakage power (mW)

Baseline
HeDGE

Baseline
HeDGE

2 3 4 2 3 4
100 nm technology

64 0.336 0.016 0.014 0.020 14.619 1.965 2.578 2.472
128 0.524 0.019 0.020 0.029 21.703 4.142 4.489 4.530
256 0.932 0.026 0.027 0.030 42.582 7.796 8.501 10.824
512 1.748 0.036 0.038 0.041 84.340 15.823 17.237 21.890

70 nm technology
64 0.149 0.007 0.007 0.009 60.959 9.339 10.184 11.630
128 0.227 0.008 0.009 0.013 82.736 19.313 21.010 21.727
256 0.403 0.011 0.012 0.017 162.874 37.107 40.540 43.352
512 0.756 0.017 0.018 0.021 323.149 71.437 78.303 89.341

45 nm technology
64 0.058 0.002 0.003 0.004
128 0.091 0.003 0.003 0.005 Leakage power numbers
256 0.161 0.004 0.004 0.005 not available
512 0.303 0.006 0.006 0.007

We now compare the overall power and energy-delay product of HeDGE against
the baseline design. We use energy consumption data obtained from CACTI for the
individual structures. We do not include leakage power when computing total energy-
delay because how to estimate its contribution to total power is still an open research
problem. We rely on prior results for the relative contribution of the instruction window
to overall processor power [4,10,11].

Let eBaseline and eHeDGE respectively be the energy consumed each clock cycle
by the baseline design and HeDGE. Let eBaseline,scheduler and eHeDGE,scheduler re-
spectively be the energy consumed each clock cycle for each structure. Let f be the
contribution of dynamic scheduling towards the overall power consumption in the base-
line design. Following Amdahl’s law, we obtain eBaseline = eBaseline,scheduler/f
and eHeDGE = eHeDGE,scheduler + (1 − f)eBaseline. The total energy (E) con-
sumed while executing a program, by the baseline and HeDGE designs, are related by
EBaseline/EHeDGE = (eBaseline.CyclesBaseline)/(eHeDGE .CyclesHeDGE). This
ratio is independent of clock frequency, and assumes that the baseline and HeDGE
clocks run at the same frequency. We do not take into account that HeDGE structures
have a faster access time and hence could be clocked faster.

For 70nm technology, a conservative 10% contribution of the issue logic to total
power, and a 512-entry instruction window, Figure 8 plots the relative energy-delay for
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Fig. 8. Energy ratio of HeDGE to the baseline with a 512 instruction window
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Fig. 10. Energy-delay ratio as a function of
the issue logic’s total contribution to power

HeDGE designs with two, three, and four target fields compared to the baseline su-
perscalar processor design for all benchmarks. Figures 9 and 10 show the energy and
energy-delay as a function of the contribution of the issue logic to total power for ranges
from 5 to 20%. Each figure plots the geometric mean of all the benchmarks for 512-
entry instruction windows with two, three, and four target fields for 70nm technology.
These graphs show that even if a CAM-based processors consumes only 5% of total
energy, a four-entry HeDGE RAM improves total energy and energy-delay. If current
CAM-based designs are consuming 20% of total power, HeDGE offers significant ad-
vantages even with only two target fields.

6 Conclusion

Prior work has shown that the central CAM structure in the issue logic scales poorly with
respect to power and latency, and that the issue logic is an integral component of the crit-
ical path in superscalar processors. We present HeDGE, a new, more scalable design for
the instruction issue logic. HeDGE dynamically transforms instruction dependences im-
plicitly encoded in the register names from a conventional ISA into explicit dependences
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by adding target fields to the reservation stations and MOV instructions to the instruction
stream. HeDGE modifies only the issue, register renaming, and wakeup logic. The main
advantage of this design is that it naturally leads to the use of a RAM as the central
structure in the issue logic instead of a CAM. We show that even without quantifying
the cycle advantages RAMs offer, HeDGE offers substantial power improvements for
the issue logic. Furthermore, these results translate to improvements in total processor
power, energy, and energy-delay.
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Abstract. Traditional predicated execution uses two techniques: top
predication – in which only the head of the dependence chain is predi-
cated, and bottom predication – in which only the tail of the dependence
chain is predicated. Top predication prevents speculative execution, thus
delivering minimum performance at minimum energy cost, while bottom
predication allows full speculation of the dependence chain, resulting in
maximum performance at maximum energy cost. In this paper, we pro-
pose a novel power-aware ILP extraction technique, denoted the ‘elastic-
block’, that combines these two extremes, exposing superior energy vs.
performance trade-offs. Each instruction in the elastic-block is explicitly
guarded by two predicates: the speculative, and the final. Instruction’s fi-
nal predicate is generated using traditional if-conversion technique, while
the speculative predicate has its default value statically assigned by the
compiler, enabling it to make power-performance trade-offs in the code.
Several energy saving code optimizations are proposed for the elastic-
block structure.

Keywords:Tiled dataflowarchitectures, predication, power-performance
trade-offs.

1 Introduction

The formidable increases in raw transistor density projected for the next 10-15
years pose tremendous scalability challenges to future processor designs, as to how
effectively use such devices. Tiled architectures, such as TRIPS, WaveScalar and
RAW [1][2][3] exhibit very promising characteristics in that respect –namely, their
decentralized organization eliminates several key scalability bottlenecks found in
conventional superscalar processors, and reduces overall circuit complexity, effec-
tive wire delays and verification effort [4][5]. These favorable characteristics make
tiled architectures highly relevant to the future of high performance computing.
Large machines, exploiting the huge numbers of raw transistors, possible to in-
tegrate in future silicon technologies, can be built in a scalable way, by simply
instantiating many such basic tiles on a processor’s chip, and then hierarchically
organizing them in a suitable way, see e.g. [1][2][3][6]. Aggressive instruction-level
parallelism (ILP) extraction is key to the performance of tiled architectures, in-
cluding WaveScalar, TRIPS, and RAW. Yet, performance/speed alone is not

A. Seznec et al. (Eds.): HiPEAC 2009, LNCS 5409, pp. 324–338, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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sufficient to quantify the effectiveness of such machines – achieving high energy
efficiency is equally critical, so as to aggressively reduce the machine’s energy con-
sumption and power dissipation for a given performance point. In this paper, we
propose a new power-aware ILP extraction technique, denoted the ‘elastic-block’,
and show that it exposes superior energy vs. performance trade-offs for tiled archi-
tectures. We implemented the elastic-block on the WaveScalar ISA and comput-
ing model [2], so as to experimentally demonstrate its effectiveness on a concrete
representative of the state-of-the-art in tiled dataflow architectures. Namely, we
show that, by using the elastic-block structure, one can deliver almost the same
performance of state-of-the-art aggressive ILP extraction techniques, while reduc-
ing the average number of instructions executed by 5.95%, and up to 9.95% for
some benchmarks, and the average number of messages exchanged between in-
structions by 6.4%, and up to 23% for some benchmarks – which directly trans-
lates in enhanced energy efficiency.

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

D$

SB

Net
work

D$

D$

D$

DomainPod

Cluster

PE

Fig. 1. WaveScalar Microarchitecture

In the next section we will give an overview of our target machine, WaveScalar.
Section 3 will introduce elastic-block and its characteristics. Section 4 will explain
implementation of elastic-block on WaveScalar. Our evaluation methodology and
results are shown in section 5. Section 6 discusses related work in this area.
Finally, in Section 7, we disscuss future work and conclude the paper.

2 Overview of Target Tiled Dataflow Machine:
WaveScalar

WaveScalar is a dataflow architecture. As in other dataflow architectures, a pro-
gram is represented as a dataflow graph and instruction dependencies are ex-
plicit [7][8]. There is no program counter, instructions are fetched and placed on
the grid as they are required. There is no register file, the result produced by an
instruction is directly communicated to all the consumers. In this architecture,
instructions are grouped in blocks called waves. Waves can be defined as acyclic
dataflow graphs for which each instruction executes at most once every time the
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wave is executed, and to which control can enter at a single point. On exit and
re-entry to this acyclic dataflow graph, the wave-number is increased.

Each dynamic instruction is identified by a tag which is the aggregate of its
wave-number and location on the grid. When an instruction has received all its
input operands for a particular matching wave-number, it fires, provided there
is room to store the result in the output queue, and an ALU is available. The
output is temporary stored in the output queue before it is communicated to
the consumers. Figure 1 shows the basic WaveScalar Microarchitecture. The
substrate consists of replicated clusters connected through a dynamically routed
packet network. Each cluster consists of four domains, communicating through
a fixed-route network switch which has a 4 cycle latency. Additionally, each
cluster has a 32KB 4-way set associative L1 data cache, and a store buffer.
Each domain is composed of eight processing elements (PEs), grouped into pairs
of two. Each pair is called a pod. Pods communicate through a fixed 1 cycle
latency pipeline network. Within PE instructions communicate through a bypass
network. Figure 2 shows the 5-stage in-order PE pipeline. Each PE has a small
instruction cache capable of holding 64 static instructions. Each PE has a 16
entry input queue and an 8 entry output queue.

matching
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Fig. 2. Processing Element (PE) pipeline stages

2.1 Pipeline Stages of a PE

1. INPUT: Accepts input operand messages arriving from other PEs and
from itself, and places the operands in the pipeline registers for the next
stage.

2. MATCH: Operands are moved from the pipeline registers to the matching
table at an index computed by XOR hash of the wave-number, thread-id,
and destination instruction number of each operand. MATCH also deter-
mines which instructions have all their operands with the matching wave-
number, thread-id and are ready to fire. It then issues all ready instructions
to the DISPATCH stage by placing their matching table index in the ready
queue.
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Fig. 3. Illustrating elastic-blocks. (a) Original control flow graph annotated with the
dynamic frequency of execution of basic-blocks B2 and B3. B3 is depicted with a
longer box relative to B2 in order to represent the fact that it contains much longer
dependence chains. (b) Structure of resulting elastic-block code, with distinct default
values assigned to the speculative predicate of instructions within B3, depending on
their depth in the corresponding dependence chains.

3. DISPATCH: Removes the matching table indices from the ready queue,
reads the corresponding operands from the matching table and forwards
them to EXECUTE stage for execution.

4. EXECUTE: Instruction executes sending its results to the output queue.
5. OUTPUT: Removes the entries from the output queue sending them to

the consumer instructions.

For better understanding of WaveScalar microarchitecture, we refer the read-
ers to [9].

3 Power Aware ILP Extraction with Elastic-Blocks

In this section, we introduce the elastic-block and discuss its operation and
power-aware features, in contrast to previous techniques.

3.1 The Elastic-Block Structure: Definition, Power-Aware ILP
Extraction, and Energy Saving Code Optimizations

Guarding instructions with speculative and final predicates. The key
innovation introduced in the elastic-block structure is the ability to explicitly
guard instructions with two predicates – the speculative, and the final predicate.
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The instruction’s final predicate is generated using traditional if-conversion tech-
nique [10][11]. Specifically, all control dependencies within the code region tar-
geted for elastic-block formation are converted into data dependencies, similarly
to what is done, e.g., in hyperblock [12], conditional branches are replaced with
comparison instructions which set the final predicate of all instructions that are
control dependent on such branches. Even if generated using well known tech-
niques, the final predicate is a very unique operand type in our target dataflow
ISA, in that an instruction may actually execute even if the value of its final
predicate is still unknown. Speculative predicates, in turn, always have a de-
fault value statically assigned by the compiler – as it will be seen, different such
assignments can implement distinct power-performance trade-offs in the code.
Speculative predicates explicitly enable control speculation – that is, when the
speculative predicate of an instruction is set to TRUE, if all ‘regular’ operands
of that instruction become available, while the value of its final predicate is still
unknown, the instruction becomes ready for execution.

We noted that within an elastic-block, the compiler can selectively and indi-
vidually define which instructions should be speculatively executed, and which
should not. Indeed, while the value of the final predicate of all instructions within
a basic-block must necessarily be identical, this need not be the case for their
corresponding speculative predicates – the fact that each instruction keeps its
own copy of the speculative predicate in our target tiled dataflow architecture al-
lows such a discrimination to be made in a very natural/simple way. Of course,
the value of the speculative predicate, as the name suggests, is only relevant
while the instruction’s final predicate is not available – namely, if an instruction
receives its final predicate while still waiting for other (regular) operands, the
value of the final predicate alone determines if the instruction will be executed
or squashed prior to execution.

In turn, if the speculative predicate of an instruction is set to FALSE, then
control speculation is explicitly disabled, that is, the instruction will not be
ready for execution until it actually receives its final predicate value. If such
final predicate happens to be FALSE, the instruction is locally squashed prior
to execution. Otherwise, it, of course, executes. Note that, the semantics of our
final predicate is, thus, somewhat different form that of the standard predication
model adopted, for example in [13], due to performance reasons, instructions
always execute, and their predicates are only used to decide if their results
should be committed or not. Reflecting that fact, traditional hyperblock selection
approaches, such as [12], do not favour the inclusion of large basic-blocks in a
hyperblock, since such blocks utilize many machine resources and may actually
end up negatively impacting performance, as opposed to enhancing it. As will
be seen below, the elastic-block’s increased flexibility enables such aggressive
performance-enhancing ILP extraction techniques to be enhanced with energy
awareness and efficiency considerations.

Note finally that, whenever control speculation is explicitly enabled in the
elastic-block, φ functions may need to be inserted in the corresponding code,
so as to potentially reconcile multiple (speculative) definitions/updates of the
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same variable, i.e., make sure that only the ‘right’ value is actually sent to
the corresponding consumers. As discussed in more detail in Section 4, such
φ functions are implemented by move instructions, each guarded by the same
final predicate used on the actual basic-block where the value, being sent, was
generated.1

Simple illustrative example of power-aware ILP extraction using the
elastic-block. Consider the weighted control graph shown in Figure 3(a). In
this simple example, a conditional branch instruction in basic-block B1 defines
two control paths, one through basic-block B2 and another through basic-block
B3. Although the control path through B3 is taken much less frequently than
that through B2 (on average 1 out of 5 times, as indicated in the figure), B3 also
contains much longer data dependence chains. So, even if executed infrequently,
B3 takes much longer than B2 to complete, so much so that it does actually
impact overall performance. Assume also, that control speculation would sub-
stantially improve performance for this code segment, i.e., performance can be
enhanced by starting to execute B2 and/or B3’s instructions, prior to knowing
which control path will be taken. Figure 3(b) illustrates how such performance
can be delivered, in an energy efficient way, using the elastic-block structure.

Note first that, as alluded to before, all control dependencies in the elastic-
block region have been converted into data dependencies using standard if-
conversion – as indicated in Figure 3(b), final predicates (denoted as p1 f and
p2 f) guard the instructions originally in basic-blocks B2 and B3 respectively,
and their corresponding predicate-define instructions have been ‘inserted in B1’.
Note further that, in the simple example of Figure 3, B1 and B4 represent sim-
ple straight line code that always executes, and thus, the compiler can directly
assign the default value TRUE to the speculative predicate of the corresponding
instructions, thereby, eliminating the need for final predicate.

The key idea in energy-aware ILP extraction is to enable the selective specula-
tion of only those instructions that may actually payoff in terms of performance
enhancement, thus avoiding wasteful energy spending. In the case of the illus-
trative code segment shown in Figure 3, for example, the compiler has detected
that a performance gain can be achieved by speculating all of the instructions in
the most commonly executed block, i.e., B2, and thus it did set the default value
of their corresponding speculative predicates (denoted p1 s in Figure 3(b)) to
TRUE. Accordingly, the instructions in B2 will become ready for execution as
soon as they receive all of their ‘regular’ operands, but their final predicate. In
addition, the compiler has detected that speculatively executing a select subset
of the instructions in B3, namely, those located ‘early’ in B3’s long dependence
chains, would also give a relevant performance gain. Accordingly, it did set the
speculative predicates of that select subset of B3’s instructions to TRUE, and
assigned FALSE to the remaining (see p2 s values in Figure 3(b)). As alluded
to before, since each instruction keeps its own copy of the speculative predicate,
such a discrimination can be made in a very simple way. Note finally that, as
1 Naturally, the speculative predicate of such move instruction is always FALSE, see

Figure 3(b).
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Fig. 4. Illustrating elastic-block code optimizations. (a) Non-optimized version. (b)
Optimized version with elimination of final predicate messages. The edges in figure
(b) represent only final predicate messages, for clarity. As it can be seen, the final
predicate is no longer sent to the instructions originally in B2 – this is represented by
placing the symbol bottom (⊥) in the corresponding field. In fact, the final predicate is
now only sent to the first non-speculative instruction in the dependency chains of B3.
Specifically, instructions that have data dependencies to these need not receive their
final predicate as well, and in fact can be again made speculative, since they cannot
execute unless their non-speculative predecessors send them their operands. So, we use
transitivity effects to eliminate again final predicate messages.

indicated above, although the final predicates guarding B2 and B3’s instructions
are necessarily mutually exclusive (i.e., p2 f != p1 f), the speculative predicates
guarding these blocks need not be, and in fact frequently will not be – this is
why we have adopted naming conventions explicitly distinguishing among such
predicates.

Energy Saving Code Optimizations. When an instruction is speculatively
executed, yet its final predicate turns out to be FALSE, there is nothing to be
done in the local context of the instruction – as alluded to above, the φ functions
in the elastic-block code will make sure that only correct values are actually sent
to the appropriate consumers. In fact, if the compiler can determine that the final
predicate of an instruction will never arrive prior to its speculative execution, or
will rarely do so, the message containing the final predicate should not even be
sent to that particular instruction, thus reducing energy consumption as well as
message traffic – this is one of the key energy saving optimizations that can be
performed in elastic-block code, symbolically illustrated in block B2 and in the
upper third of block B3, by placing the bottom or ‘absence’ symbol (⊥) in the
corresponding final predicate fields, see Figure 4(b).

A second type of energy saving optimization can be done by directly relying
on the very nature of the dataflow model and exploiting the transitivity of data
dependencies inside a basic-block – this second type of optimization is symbol-
ically illustrated in the bottom third of block B3 of Figure 4(b). Specifically,
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Fig. 5. Example of if-then-else predication/speculation. (a) source code, (b) non-
predicated WaveScalar assembly code segment, (c) assembly code segment after pred-
ication along with default setting for speculative predicate. General format for the
predicated WaveScalar assembly instruction is ‘opcode destination(s), source(s), final
predicate, speculative predicate’. Note that since basic-block B0 is a straight line code,
its speculative predicate is set to T, eliminating the need for final predicate. In B1 and
B2, depending on power-performance trade-off, amount of speculation can be adjusted
from any where between full speculation to no speculation by setting the default value
for speculative predicate appropriately.

any non-speculative instruction that consumes data from at least one other non-
speculative instructions that is guarded by the same final predicate, can be
immediately converted into a speculative instruction, since it cannot possibly
execute unless the producer of that operand has already executed – so, by tak-
ing advantage of such transitivity within a basic-block, no final predicate needs
to be explicitly sent to these ‘dependent instructions’, as indicated by placing
the bottom symbol (⊥) in the corresponding field in Figure 4(b).

Implementation details on the WaveScalar architectures will be given in Sec-
tion 4, and the impact of the above optimizations will be experimentally quan-
tified for representative benchmarks, in Section 5.

4 Implementation on WaveScalar

This section will explain our implementation of elastic-block, and related opti-
mizations, on a concrete representative of the state-of-the-art in tiled dataflow
architectures, WaveScalar.

4.1 ISA Extensions

Figure 5(a) and 5(b) shows a simple if-then-else construct and its correspond-
ing non-predicated WaveScalar assembly code. Figrue 5(c) shows our modified
predicated WaveScalar assembly code. Changes are explained as below:



332 M.U. Farooq, L. John, and M.F. Jacome

Adding speculative and final predicates: In the modified code, the exe-
cution of each instruction is guarded by two additional 1-bit operands – final
predicate and the speculative predicate. Final predicate receives its value from
predicate-define instruction (I6 in Figure 5(c)), which is also part of our ISA
extension. Unlike final predicate, the value of speculative predicate is set by the
compiler (either T or F) through program analysis, thus enabling the compiler
to make power-performance trade-off in the code. Note that, basic-block B0 con-
tains straight line code, its speculative predicate is set to T, eliminating the need
for final predicate. Basic-blocks B1 and B2 have p0 and p1 respectively as their
final predicate.

Addition of phi (φ) instruction: In Figure 5(c), instructions from basic-blocks
B1 and B2 can execute speculatively (if speculative predicate is set to T). This
requires addition of φ instructions (I13, I14 in Figure 5(c)) in the merge block
B3. φ instruction takes two input values and a final predicate and, depending
on the final predicate value, produce one of the inputs on its output. For correct
execution, φ instruction can’t execute speculatively and should wait for final
predicate to arrive.

Removing rho (ρ) instruction: Figure 5(b) shows non-predicated, non-
speculative WaveScalar assembly code. Instructions are executed only from the
‘taken’ path. Instructions from ‘not-taken’ path are prevented from execution by
blocking their input operands using rho (ρ) instruction. The rho (ρ) instruction
(I7 in Figure 5(b)), is a conditional split instruction. The ρ instruction takes an
input value and a boolean output selector. It directs the input to one of two
possible outputs depending on the selector value, effectively steering data values
to the instructions in either basic-block B1 or B2. Speculative execution, how-
ever, allows execution from both basic-blocks i.e. B1 and B2. This is achieved by
removing the ρ instruction and directly connecting its input operand with the
input operands of its destination instructions.

4.2 Microarchitecture Support for Predicated and Speculative
Execution

This section will explain microarchitecture modifications to the PE pipeline
stages in order to support predication, and speculation.

Processing Element Modifications. Changes were made in the first two
stages, namely INPUT and MATCH, of the PE pipeline described in Section 2.

1. Modified INPUT stage: Accepts input operands arriving from other PEs
and from itself with the following additional logic: If the arriving operand is a
‘final predicate’ operand with a FALSE value, the corresponding instruction is
squashed by invalidating its entry in the matching table. However, this can lead
to two special situations. Firstly, late arriving operands of an already squashed
instruction will get a permanent entry in the matching table. Secondly, con-
sumers of an squashed instruction keep waiting for the operand to arrive. To
address the first situation each instruction has its ‘current valid wave-number’
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Table 1. Evaluating readiness of an instruction

Data operand Final predicate Spec. predicate Action Taken
? ? * wait for data to arrive
? TRUE * wait for data to arrive
? FALSE * squash the instruction

data available ? FALSE wait for final predicate to arrive
data available ? TRUE execute instruction speculatively
data available TRUE FALSE execute instructions normally
data available FALSE FALSE squash the instruction

? = has not arrived, * = don’t care

stored in the instruction cache. When an instruction is dispatched to the ready
queue or squashed (if its final predicate is FALSE), its wave-number is stored as
the ‘current valid wave-number’. If the wave-number of an arriving operand is
less or equal to ‘current valid wave-number’, it is not entered in the matching ta-
ble. Second situation actually can never arise. If all the consumers of an squashed
instruction and the squashed instruction itself are in the same basic-block, say
B, they all will receive the same final predicate and eventually will be squashed.
If however, consumers of an squashed instruction are in the merge block, they
will receive their operands from the basic-block whose final predicate evaluates
to TRUE i.e. sibling of B.

2. Modified MATCH stage: With non-speculative execution, an instruction
only becomes ready to execute when all its operands have arrived. However,
speculative execution requires modifying the logic that determines the readiness
of an instruction. Table 1 lists all possible cases and the corresponding action
taken.

4.3 Power-Performance Trade-Off Using Compiler Analysis

Traditionally the focus of compiler optimization has been on improving perfor-
mance (see for example [14] and the references therein). However, performance
alone is not sufficient to measure the effectiveness of machines. Other metrics
such as energy efficiency and power dissipation are equally important. Unfortu-
nately, there has been little effort to analyze the role of compiler in achieving
high energy efficiency.

Elastic-block enables the compiler to make power-performance trade-offs in
the code. Compared to ‘hyperblock’ [12], ‘elastic-block’ is capable of achieving
more power-performance trade-off points. During hyperblock formation a basic-
block is either fully included or fully excluded. With elastic-block, the com-
piler can selectively and individually define which instructions in the basic-block
should be speculatively executed, and which should not. During the elastic-block
formation, compiler profiles the execution frequeucy of individual basic-blocks,
and partitions the instructions into ‘levels’ based on their dependence depth.
Instructions that receive their operands from outside the elastic-block are at
level-1. Instructions dependent on level-1 instructions are at level-2 and so on.
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Table 2. Power-Performance Trade-off Points obtained using Elastic Block

Amount of Speculation Cycles Taken Instructions Executed

No speculation 9*60 + 11*40 = 980 6*100 + 2*60 + 4*40 + 3*100 = 1180

Only B1 7*60 + 11*40 = 860 6*100 + 2*100 + 4*40 + 3*100 = 1260

B1 + B2 7*60 + 7*40 = 700 6*100 + 2*100 + 4*100 + 3*100 = 1500

B1+ {I9} in B2 7*60 + 10*40 = 820 6*100 + 2*100 + 100 + 3*40 + 3*100 = 1320

B1 + {I9, I10} in B2 7*60 + 9*40 = 780 6*100 + 2*100 + 2*100 + 2*40 + 3*100 = 1380

B1 + {I9, I10, I11} in B2 7*60 + 8*40 = 740 6*100 + 2*100 + 3*100 + 40 + 3*100 = 1440

Note: Hyper blocks can only achieve first three points

Based on the execution frequency of the basic-block and the dependence level
of the instruction, compiler decides whether to set the speculative predicate of
that instruciton to TRUE or FALSE for a given power-performace point. Con-
sider the same example shown in Figure 5(a) and its corresponding assembly
in Figure 5(c). Assume that this code executes 100 times with basic-block B1
executing 60 times and basic-block B2 executing 40 times. Basic block B0 con-
tains straight line code, its speculative predicate is set to TRUE, eliminating the
need for final predicate. B1 and B2 are guarded by final predicate p0 and p1
respectively. Speculative predicate for instructions in B1 and B2 can be assigned
either TRUE or FALSE. For this example, each instruciton is assumed to be sin-
gle cycle. Instruction’s execution cycle (both when executed speculatively and
non-speculatively) is also shown in Figure 5(c). Table 2 shows various operating
points that are achieved by selective speculation of instructions in a elastic-block
structure. First row in Table 2 shows a low performance but most power efficient
operating point where no instruction is speculatively executed. Third row shows
the best performance but least power efficient point where both basic-blocks B1
and B2 are fully speculated. Rest of the rows shows several operating points
between these two extremes.

5 Performance Analysis

5.1 Experimental Methodology

Elastic-block technique and related optimizations are implemented in WaveScalar
compiler/binary-translator, and necessary microarchitectural support is provided
in the WaveScalar simulator. Speculative execution is supported on all instructions
but stores, phi and predicate-define instructions. Benchmarks from SPEC 2000,
MediaBench, EEMBC benchmark suites are used for the evaluation. Our exper-
imental setup was designed to evaluate the effectiveness and flexibility of elastic-
blocks at exploiting the power-performance trade-off. Several configurations, each
with varying depth of speculation, are computed by the compiler, by choosing dif-
ferent values for speculative predicate. For each configuration, the benchmarks are
run till completion. IPC is notameaningfulmetric in our case, sincehigher IPCdoes
not necessarily mean higher performance because of ‘unnecessary instructions’ ex-
ecuted due to predication/speculation. So, we will measure: (1) number of cycles
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Fig. 6. Power-Performance trade-off points between top predication (t pred) and bot-
tom predication (b pred)

required to execute the application, which roughly relates to performance; and (2)
corresponding total number of executed instructions; and (3) number of operand
and predicate messages exchanged during that execution, which along with the in-
structions executed corresponds to the power consumed during execution.

5.2 Results

Adding predication and speculation improved WaveScalar average performance
by 16.9% (for bottom predication), compared to no speculation (top predication),
see Figure 6. However, this increase in performance comes at an steep cost of
17.51% extra instructions executed, and 14.35% additional messages sent, which
is unwarrented for high performance, low power computing. Figure 6 and 7
shows that almost similar performance gain, 15.96%, can be achieved with an
average 11.56% increase in instructions and 7.95% increase in operand messages,
a reduction of 5.95% and 6.4% respectively. Another high performance point
with 13.93% performance gain, can be achieved with an average 7.74% increase
in instructions and 3.1% increase in operand messages, a reduction of 9.77%
and 11.25% respectively. Operand messages, shown in Figure 7, scales with the
number of instructions executed. Using the optimization explained earlier in
Figure 4(b), predicate messages are independent of the number of instructions
executed, see Figure 7.
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Fig. 7. Illustrating operand and predicate messages for the corresponding power-
performance trade-off points shown in Figure 6

6 Related Work

DataFlow Predication for EDGE Architectures
Smith et al. has proposed dataflow predication for EDGE architectures [15].
Smith et al. uses top or bottom predication, in which either the first or the last
instruction of a dependence chain is predicated. Top predication delivers low
performance and low energy computation, as instructions are not executed spec-
ulatively, while bottom predication results in high performance and high energy
computation as all the instructions in the dependence chain, except the bottom
instruction, are fired speculatively. The focus of this work is to combine these two
extremes, allowing the compiler to decide the optimal depth of speculation, for a
given power-performance point. Second, in EDGE architecture, each instruction
has a two-bit predicate field that specifies whether that instruction is predicated
on a TRUE predicate, a FALSE predicate, or unpredicated. However, in our
proposed work the speculative predicate is another operand, initially set by the
compiler, but later can be modified through messages, thus allowing run-time
adaptation, which is a subject of future work.

Predication for Superscalar Architectures
Mahlke et al. proposed a compiler structure, hyperblock, that groups together
most frequently executed basic-blocks from different control paths, allowing ef-
fective scheduling for these basic-blocks [12]. In case of an hard-to-predict branch
(say 60/40), basic-blocks from ‘both’ control-flow paths are included in the
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hyperblock , and all instructions in these basic-blocks are executed all the time.
In our proposed ‘elastic-block’ structure, basic-blocks from ‘both’ control-flow
paths will be included, but speculative execution of instructions in these basic-
blocks will be proportional to their execution frequency. Kim et al. combined
the use of conditional branches, for easy-to-predict branches, with predicated
execution, for hard-to-predict branches [16]. Their motivation for not converting
every conditional branch into predicated code is twofold: First, the processor
needs to fetch useless instruction, thus wasting the fetch bandwidth. Second,
compared to branch prediction in which instructions are executed before the
branch is resolved, predicated instructions add extra delay, as they have to wait
for the predicate value to be ready. In our proposed work, we transformed all
branches to predicated code, as we don’t have the aforementioned overheads:
First, instructions are stored on the execution grid, once they are fetched from
the memory, and second, predicated instructions can execute speculatively before
the predicate value is ready (by setting p s = TRUE).

7 Conclusion and Future Work

A novel power-aware ILP extraction technique, that combines predication with
speculation, is introduced for tiled dataflow architectures. Each instruction in
this flexible structure, denoted the elastic-block, is guarded explicitly by two
predicate operands: the final predicate, and the speculative predicate. By assign-
ing the default value of speculative predicate to TRUE, compiler can selectively
and individually enable the speculation of only those instructions that may actu-
ally payoff in terms of performance improvement, thus avoiding wasteful energy
spending. This is in contrast to the existing techniques for predicated execution,
namely top predication and bottom predication, in which either the head or the
tail of the dependence chain is predicated. Results showed that by merging top
and bottom predication, and allowing the compiler to determine the depth of
speculation, performance close to traditional predication can be delivered while
improving the energy efficiency. The key advantage of elastic-block structure will
be its inherent potential for run-time adaptivity, and is a subject of future work.
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Abstract. Technological advances and increasingly complex and dy-
namic application behavior argue for revisiting mechanisms that adapt
logical cache block size to application characteristics. This approach to
bridging the processor/memory performance gap has been studied be-
fore, but mostly via trace-driven simulation, looking only at L1 caches.
Given changes in hardware/software technology, we revisit the general
approach: we propose a transparent, phase-adaptive, low-complexity
mechanism for L2 superloading and evaluate it on a full-system simula-
tor for 23 SPEC CPU2000 codes. Targeting L2 benefits instruction and
data fetches. We investigate cache blocks of 32-512B, confirming that no
fixed size performs well for all applications: differences range from 5-49%
between best and worst fixed block sizes. Our scheme obtains perfor-
mance similar to the per application best static block size. In a few
cases, we minimally decrease performance compared to the best static
size, but best size varies per application, and rarely matches real hard-
ware. We generally improve performance over best static choices by up
to 10%. Phase adaptability particularly benefits multiprogrammed work-
loads with conflicting locality characteristics, yielding performance gains
of 5-20%. Our approach also outperforms next-line and delta prefetching.

1 Introduction

A program’s memory performance is determined both by working set sizes and
by temporal and spatial locality within working sets. Improving temporal lo-
cality requires converting long-distance data reuse to short-distance cache reuse
by regrouping computations sharing data. Such optimizations are usually imple-
mented in software by compiler optimizations, such as loop interchange, blocking
[27], fusion, and more complex regrouping [11,15,17,18], or programmer inter-
vention. Spatial locality optimizations like cache-conscious data placement [1]
or structure placement [3,5] improve memory performance via software changes,
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but these require profiling and have not yet become common in compiler tool-
chains. Such approaches attempt to find good data placements for entire ex-
ecutions, without adapting to phase changes. A related alternative is copying
data [13,22,26] at strategic execution points.

Spatial locality optimizations are usually performed in hardware, where
straightforward approaches may have high payoff (evidenced by the ubiquity
of dynamic caching). Obviously, larger cache blocks exploit spatial locality, but
tradeoffs exist between block size, bus utilization, and memory hierarchy effi-
ciency. If most block data are not used, larger blocks (as in superblocks [9] or
superloading [25]) may actually decrease application performance by increasing
cache conflicts and bus, memory controller, and DRAM occupancy.

We evaluate an efficient mechanism to balance costs and benefits of accessing
data at larger granularities. Since a single fetch granularity is suboptimal for
all applications [8,24], or even for different phases of a given application’s exe-
cution, our mechanism must adapt dynamically. Our approach minimizes addi-
tional cache complexity, has no impact on processor cycle time, allows multiple
logical block sizes, permits non-unit (in terms of base cache block size) increases
and decreases, and adapts naturally to application phase behavior without ap-
plication software involvement. Most previous cache block superloading studies
are trace-based, use smaller applications, do not model an OS, and focus only
on level-1 caches (see Sect. 2). With the rapid pace of technological innovation,
“good science” dictates that we reevaluate conclusions from older research. As
McKinley and Temam demonstrate [14], common beliefs often fail to hold in
practice, and thus reevaluating older results within newer systems has merit.

2 Related Work

Adapting prefetch distance or block size has been studied in several contexts.
Dahlgren et al. [4] show that adaptive sequential prefetch distances in hard-
ware improves performance in SMPs, and Gornish and Veidenbaum [7] augment
the hardware approach with compiler assists. Space limitations prevent thor-
ough treatment of the rich related work via software, hardware, or hybrid ap-
proaches. We thus focus on transparent hardware implementations requiring no
ISA changes. For such studies, machine parameters, memory bandwidths, laten-
cies, cache block sizes, simulation methods, and benchmark selection significantly
influence results.

The MIPS 3000 cache has configurable line1 sizes, but only on hardware re-
set [10]. Early designs accommodating variable line sizes include Seznec’s De-
coupled Sector Cache [21]. Temam and Jegou [23] fetch adjacent blocks into a
separate buffer to exploit spatial locality and avoid cache pollution, and González
et al. [6] study dynamically allocating data across caches with different line sizes,
one optimizing temporal locality and the other spatial locality.

1 We use “line” and “block” interchangeably, according to how other authors describe
their work.



Revisiting Cache Block Superloading 341

Kumar and Wilkerson [12] study structured spatial prediction/prefetching for
L1 data caches; their online scheme predicts line patterns to be loaded to reduce
pollution from superblocks. Chen et al. [2] adapt Spatial Pattern Prediction
to larger locality regions via prediction tables exploiting instruction addresses
combined with offsets within cache blocks. They target L1s, allowing subblock
utilization to save 41% leakage energy, on average, improving performance up
to 2× while maintaining performance within 1% on 12 SPEC CPU2000. They
arbitrarily track simulation statistics 10 billion instructions into each execution;
and data represent only 500 million instructions; furthermore, they do not model
OS activity. Our findings contradict theirs: in many cases we attribute this to
our studying whole program behaviors. Direct comparisons are difficult, given
differences in simulation methods and memory hierarchy levels targeted.

Van Vleet et al. [25] use trace-driven simulation of nine SPEC CPU95 bench-
marks to study effects of online superloading decisions for an L1 cache. They
track usage among adjacent lines to decide whether to perform a superload. A
separate Line Size Detector state machine later determines what the best size
would have been for a given load. Their goal is to study superloading potential,
and thus they avoid aliasing by using unlimited space. They compare dynamic
performance to optimal sequences of loads/superloads determined offline, finding
their hardware mechanisms perform competitively.

Veidenbaum et al. [24] use trace- and execution-driven L1 simulation that
abstracts away memory hierarchy timing details to study adaptive cache line sizes
for SPEC CPU92 and SPEC CPU95. They confirm findings of Inoue et al. [8]
for SPEC CPU95, showing no single best line size exists. They then propose
hardware that dynamically decrements virtual cache line size if fetched data are
unused, and increment sizes if adjacent lines are cached. Replacement decisions
are per line. Two bits per word track usage and signal presence/absence of
adjacent lines, and they add memory per base cache line to track current virtual
size. Our goals are similar, and our technique has lower overhead.

3 Design

In contrast to most previous superloading schemes, we optimize block size in
the L2 cache. Generally, lower-level caches are relatively large, and thus exploit
spatial locality more than upper-level caches, providing more potential benefit
from variable-size logical blocks. Furthermore, changing the cache block size
dynamically at L2 is likely less invasive and less complex due to higher cache
access latency and often lower controller clock rate. Maintaining inclusion within
the hierarchy is simplified if upper-level cache blocks are equal size or smaller
than those at lower levels, as an upper level miss requires fetching at most one
block from below. If L1 block sizes are adjustable, L2 blocks must be at least the
maximum L1 logical block size, or else an L1 block size could exceed that of an
L2 block for some configurations, thereby producing multiple misses in the L2 for
a single L1 miss. Given the higher complexity and lower potential performance
impact, we do not apply our mechanisms to L1 caches in this study.
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Fig. 1. Observation Cache Hardware

Adjusting on-chip cache block sizes introduces a feedback loop: a sensing unit
observes spatial locality of executing code, and a controller tracks changes in
locality characteristics, adjusting logical block size accordingly. On a miss, the
cache controller fetches one or more physical blocks to load the logical block. Next
we discuss the design rationale of these components, as well as their interaction.

3.1 Measuring Spatial Locality

To understand the locality sensor operation it is important to note that the
conventional notion of spatial locality has both spatial and temporal aspects.
First, caches can only exploit accesses to physically proximal data if that prox-
imity matches the addressing scheme, i.e., if the data fall within a block. Second,
references must occur before block eviction. The locality sensor presented here
exploits these phenomena by monitoring performance of several small observa-
tion caches (OCs), each modeling a different block size. Each OC effectively
tracks the number of accesses to an L2 block of a given size before that block
is evicted. By comparing this metric for all allowed logical block sizes, the sens-
ing unit determines optimal logical block size for the sequence of observed ac-
cesses. Given the inverse proportionality of hits and misses, OCs need only record
misses.

Each OC maintains a miss counter along with state (tags, not data) of a few
“recent” cache lines. OCs are accessed concurrently with the L2 cache, and are off
the critical path. On each L2 access, the tag portion of the request is compared
to the state held by each OC. On a miss, we evict an OC block and reuse it for
the current request, incrementing the miss counter. The system maintains one
OC per possible block size, and since each must cover the same capacity to make
locality values comparable, OCs with smaller blocks have proportionally more
entries. Figure 1 shows the organization of the observation caches. Since all OCs
receive the same number of requests and represent identical capacities, the cache
with fewest misses represents the L2 block size best exploiting program locality.
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Locality values do not account for costs of larger logical cache blocks: they only
express benefits in terms of cache hits over a given period.

3.2 Selecting Logical Block Size

Choosing the current optimal block size is left to system software: the clock
interrupt handler periodically compares the miss counters of all OCs, resets the
counters, and if appropriate, informs the cache controller of a new logical block
size. This design increases flexibility and avoids fixing critical policy decisions
in hardware. It eases performance debugging by making an application’s spatial
locality behavior visible to system software. Most importantly, it allows the OS to
treat chosen block sizes as process state saved and restored on context switches,
minimizing interference among processes in multiprogrammed environments.

A cache block twice the size can potentially exploit spatial locality twice as
well, but it increases memory and bus occupancy/contention. For a fixed-size
cache, larger blocks reduce the total number of blocks resident, which may in-
crease conflict misses. Since the precise relationship between these factors is dif-
ficult to describe analytically, this work uses experimentally determined weights
to account for the approximate cost of each potential block size. For the SPEC
CPU2000 benchmarks, optimal weights are 1.0, 1.2, 1.8, 2.9, and 5.1 for blocks
of 32B, 64B, etc., up through 512B. Note that weights used are identical for all
benchmarks. Performance may improve for individual codes by further tuning
weights, but this defeats our goal of providing a transparent mechanism. An-
alytic models for weight selection are part of ongoing work, and choosing the
block size in software allows the weights to be adjustable.

After multiplying miss counts by the respective weights, the interrupt han-
dler determines the minimum result and selects the corresponding block size.
The chosen size is written to a control register that dictates how many physical
blocks to fetch on a miss. In the system we study, the clock interrupt handler
is invoked every 10 (simulated) milliseconds to determine the best block size for
the application’s next execution interval. Other context switch intervals would
be interesting to investigate, but are beyond the scope of this work. On a context
switch, the OS saves the current logical cache block size in the process control
block just like other register values, and restores the next process’s block size.
Performance gains from adjusting block sizes dynamically must offset this small
increase in context switch cost. Making logical block size part of the process
context reduces interference between applications in multiprogrammed environ-
ments and avoids tuning intervals after context switches. Other implementations
(see Sect. 5.3) could rely entirely on hardware, but we find the benefits of a hy-
brid hardware/software scheme to outweigh the small costs.

3.3 Dynamic Cache Line Size Adjustment

Our system adjusts L2 block sizes by grouping physical blocks into larger, logical
cache blocks. On a miss, the controller fetches multiple physical blocks to effec-
tively increase logical block size. When fetching the physical blocks, the cache
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controller issues a sequence of requests to the memory controller via the system
bus. The alternative, allowing different-sized bus requests, increases complexity
of the bus protocol and memory controller while complicating coherence (since
caches might need to snoop multiple physical blocks for any request, and may
not be able to supply all data on a dirty hit if not all physical subblocks of a
logical block are present).

Our experiments show parts of logical blocks are often already resident, and
need not be fetched. Always fetching entire logical blocks may negatively affect
bus utilization and memory performance. On the other hand, fetching logical
blocks as a sequence of smaller physical blocks increases memory controller re-
quests. Greater system bus utilization is offset by not having to fetch parts of
logical blocks already in cache. Transmitting logical blocks as multiple requests
has no impact on effective DRAM bandwidth, as long as DRAM page size and
bank interleaving factors are no smaller than the largest logical block size. In
this case, the memory controller can fully exploit the high bandwidth available
from an open row.

Our design thus enjoys several advantages:

1. it minimizes impact of adjustable block sizes on cache design by minimizing
required tag logic changes;

2. it allows multiple cache block sizes to coexist in cache (e.g., when applications
share the cache, or during program phase transitions);

3. it avoids complications from partially resident logical blocks, and leaves bus
and cache coherence protocols unchanged;

4. it allows the memory controller to exploit higher bandwidth of open DRAM
rows (since requests for logical blocks are issued in rapid succession), as long
as the bank interleaving factor is at least the maximum logical block size;

5. it benefits both instruction and data memory utilization, since it targets
shared L2 caches;

6. it allows changing from any block size to any other, as opposed to enforcing
fixed-size changes; and

7. it requires no profiling or user-level software or compiler intervention.

4 Evaluation

To evaluate the proposed design, we implement the observation caches (OCs),
variable cache block size, and OS modules in the ML-RSIM system simula-
tor [20], which models a dynamically scheduled processor with two cache levels,
a SDRAM memory controller, and a number of I/O devices, such as a real-
time clock and SCSI disk. The simulator executes SPARC binaries and runs a
Unix-like NetBSD-based OS supporting Solaris-compatible system calls, process
management, multiprogramming, and virtual memory [19]. Snooping and coher-
ence are handled normally, since only logical, not physical, fetch sizes change.

We modify the simulator to implement the locality OCs and enhance the L2
cache controller to prefetch a programmable number of physical cache blocks on
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Table 1. Baseline System Configuration

Parameter Value
Processor 3.2 GHz dynamically scheduled, 6-wide fetch/decode/graduate, 80-entry ROB
L1 Instruction Cache 32 kB, 2-way set-associative, 32-Byte blocks, 2-cycle latency
L1 Data Cache 32 kB, 2-way set-associative, write-back, 32-Byte blocks, 2-cycle latency, dual-ported
L2 Cache 8 MB, 2-way set-associative, write-back, 32 to 512-Byte blocks, 24 cycle latency
System Bus 533 MHz, 8-Byte multiplexed address/data
Main Memory 266 MHz DDR-SDRAM, 4 physical banks interleaved at 512-Byte blocks
Operating System NetBSD-based

a miss. This effectively changes the hardware prefetch distance, but does not
change the cache. We modify the clock interrupt handler to read locality values,
select the optimal block size, and write it to a control register that the context
switch handler saves and restores. In our experiments, the OC for a 512-Byte
block contains 32 entries, with each smaller cache containing proportionally more
entries to capture the same logical working set. Hardware overhead for the OCs
is only 3.31 kB of state. We investigate smaller OCs, finding sizes presented here
to work best for this memory hierarchy. Compared to a 16-entry OC, a 32-entry
version increases IPC, on average, by a negligible 2%, but by up to 22% for
some floating point codes. A 16-entry OC may thus be a good design choice
for platforms targeting integer codes. The OCs employ LRU replacement. We
investigated other policies and find that LRU performs best. Since OCs need
not support single-cycle access times, implementing LRU is feasible for these
moderate-size, associative structures.

Our baseline represents modern or near-future workstation and server class
systems, modeling an aggressive dynamically scheduled microprocessor with a
conventional two-level cache hierarchy and DDR-SDRAM memory subsystem.
Table 1 lists system parameters. We compare against both a simple next-line
prefetcher and Nesbit and Smith’s delta prefetcher [16]. Our scheme effectively
behaves as an adaptable-distance, next-line prefetcher.

We present results for SPEC CPU2000 benchmarks run to completion with
both training and reference inputs. Training datasets do not represent reference
datasets, but shorter execution times make it feasible to observe all phases of
program execution for a larger number of applications. Even short benchmarks
show significant sensitivity to cache block size, confirming that they represent
valid tools for initial evaluation of our scheme. Running to completion, despite
long simulation times, allows us to evaluate the benefits of dynamic adjustment
compared to fixed static sizes. We warm up the simulated file cache by reading
all input files once; this avoids long-latency I/O operations during benchmark
runs. Table 2 lists applications, datasets/configurations, and baseline execution
times (in simulated seconds) within our model.

We exclude three applications from our training set runs: vpr and perlbmk
require dynamic linking, which our simulation system does not support, and
fma3d’s excessive execution time makes it impractical to simulate to completion,
even with the training dataset. We include all three input sets of 252.eon, since
they yield different execution times. We evaluate 11 SPEC 2000 applications
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Table 2. Benchmarks and Inputs

Benchmarks Training Inputs

Execution
Times
(sec)

In
te

ge
r

164.gzip input.combined 13.973
176.gcc cp-decl.s 1.765
181.mcf inp.in 6.160
186.crafty crafty.in 11.165
197.parser train 2.783
252.eon kajiya 3.907
252.eon cook 0.757
252.eon rushmeier 1.083
254.gap train.in -q -m 128M 2.942
255.vortex bendian.raw 4.523
256.bzip2 input.compressed 8 12.963
300.twolf train 3.902

F
lo

at
in

g
P
oi

nt

168.wupwise wupwise.in 17.154
171.swim swim.in 5.948
172.mgrid mgrid.in 4.290
173.applu applu.in 4.611

177.mesa
-frames 500 -meshfile
mesa.in 14.253

178.galgel galgel.in 5.689

179.art

-scanfile c756hel.in
-trainfile1 a10.img
-stride 2 -startx 134
-starty 220 -endx 184
-endy 240 -objects 3 1.080

183.equake inp.in 8.465
187.facerec train.in 10.223
188.ammp ammp.in 16.434
189.lucas lucas2.in 18.935
200.sixtrack inp.in 2.260
301.apsi apsi.in 2.817

Reference Inputs

In
te

ge
r

164.gzip input.source 23.197
181.mcf inp.in 71.642
186.crafty crafty.in 76.127
197.parser ref 111.37
254.gap ref.in -l ./ -q -m 192M 72.867
255.vortex bendian1.raw 32.298
256.bzip2 input.source 58 25.088

F
lo

at
in

g
P
oi

nt 178.galgel galgel.in 50.692

179.art

-scanfile c756hel.in
-trainfile1 a10.img
-trainfile2 hc.img
-stride 2 -startx 110
-starty 200 -endx 160
-endy 240 -objects 10 11.249

183.equake inp.in 65.898
188.ammp ammp.in 62.778

(a)

(b)

(c)

Fig. 2. IPC of Best Static Block Size, Dy-
namic Block Size, and Hardware Prefetch-
ing relative to Worst Static Block Size for
(a) Integer with Training Inputs, (b) Float-
ing Point with Training Inputs, and (c) Ref-
erence Inputs

with reference inputs; others are omitted due to extremely long simulation times.
These 11 applications have the shortest execution times and include seven integer
and four floating point workloads. As shown in Sect. 5, floating point workloads
tend to benefit more from our scheme, and thus its success on the reference
inputs is understated.

Reading locality values, applying weights, and selecting a new block size in-
cur a slight increase in clock interrupt-handler overhead. The additional code
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increases interrupt handler cost on average by 150 cycles or 46.8 nanoseconds.
Although this is minor, it must be offset by the performance gains from adjust-
ing logical block size at runtime. All simulations in this study include a fully
functional OS that accounts for the higher overhead.

5 Results

The simulation results confirm that the findings of Inoue et al. [8] and Veiden-
baum et al. [24] in their L1 cache studies also apply to L2 caches: no single,
statically selected block size is best for all applications. Overall, the best stat-
ically selected block size is 128 bytes and the worst is 32 bytes. This is based
on the average relative slowdowns and speedups compared to best and worst
statically selected block sizes for each application. Figure 2 shows performance
improvement of the best static block size for each benchmark relative to the worst
static block size, as well as the relative performance of our dynamic scheme, the
best fixed block size (128 bytes), and the two hardware prefetching mechanisms
(discussed in Sect. 5.2).

(a) (b)

(c)

Fig. 3. IPC Improvement of Fixed Block Size and Dynamically Selected Block Size
relative to worst case Static Size for (a) Integer with Training inputs, (b) Floating
Point with Training Inputs, and (c) Reference Inputs

Figure 3 compares performance for the five statically selected block sizes vs.
our dynamic scheme, all relative to the worst static block size for each bench-
mark. A single, fixed size is often inadequate, and common choices for particular
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Table 3. Performance Details

Benchmark

Static Block
Choices

Static Block
Times (sec) Next

Line
(sec)

Delta
(sec)

Dynamic
Time
(sec)

Percent
Difference

best worst best worst
best vs.
worst

nextL vs.
worst

delta vs.
worst

dyn vs.
worst

164.gzip 128 32 13.973 14.661 14.357 14.144 14.199 4.69 2.07 3.53 3.15
176.gcc 128 512 1.765 1.773 1.768 1.767 1.768 0.45 0.28 0.34 0.28
181.mcf 64 512 6.16 7.186 6.373 6.443 6.422 14.28 11.31 10.34 10.63
186.crafty 64 256 11.165 11.17 11.164 11.167 11.166 0.04 0.05 0.03 0.04
197.parser 128 32 2.783 2.827 2.804 2.787 2.789 1.56 0.81 1.41 1.34
252.eon 32 64 0.757 0.760 0.762 0.757 0.759 0.39 -0.26 0.39 0.13
252.eon 32 64 3.907 3.909 3.912 3.907 3.909 0.05 -0.08 0.05 0.00
252.eon 64 128 1.083 1.089 1.085 1.087 1.089 0.55 0.37 0.18 0.00
254.gap 128 32 2.942 3.671 3.263 3.115 2.965 19.86 11.11 15.15 19.23
255.vortex 64 512 4.523 4.755 4.522 4.518 4.524 4.88 4.90 4.98 4.86
256.bzip2 128 32 12.963 13.047 12.999 12.959 12.965 0.64 0.37 0.67 0.63
300.twolf 64 32 3.902 3.903 3.897 3.897 3.902 0.03 0.15 0.15 0.03
168.wupwise 64 32 17.154 17.574 16.787 16.208 15.567 2.39 4.48 7.77 11.42
171.swim 128 32 5.948 9.533 8.103 9.456 6.114 37.61 15.00 0.81 35.86
172.mgrid 512 32 4.29 6.117 5.128 4.346 3.93 29.87 16.17 28.95 35.75
173.applu 128 32 4.611 5.343 4.972 4.971 4.542 13.70 6.94 6.96 14.99
177.mesa 512 256 14.253 14.588 13.865 13.841 14.325 2.30 4.96 5.12 1.80
178.galgel 64 512 5.689 5.753 8.619 4.169 5.693 1.11 -49.82 27.53 1.04
179.art 64 32 1.08 1.081 1.081 1.081 1.081 0.09 0.00 0.00 0.00
183.equake 512 64 8.465 12.603 8.753 9.253 8.778 32.83 30.55 26.58 30.35
187.facerec 64 128 10.223 13.493 10.406 9.711 10.307 24.23 22.88 28.03 23.61
188.ammp 64 512 16.434 22.212 18.716 18.388 16.616 26.01 15.74 17.22 25.19
189.lucas 64 32 18.935 18.988 18.935 18.928 18.935 0.28 0.28 0.32 0.28
200.sixtrack 64 512 2.26 2.324 2.251 2.248 2.241 2.75 3.14 3.27 3.57
301.apsi 64 32 2.817 3.023 2.924 2.863 2.836 6.81 3.27 5.29 6.19

Reference Inputs
164.gzip 64 512 23.197 23.509 23.653 23.431 23.364 1.33 -0.61 0.33 0.62
181.mcf 64 512 71.642 101.303 68.522 75.257 68.661 29.28 32.36 25.71 32.22
186.crafty 64 128 76.127 76.146 76.131 76.135 76.132 0.02 0.02 0.01 0.02
197.parser 32 512 111.37 112.986 112.315 111.319 111.736 1.43 0.59 1.48 1.11
254.gap 128 32 72.867 83.544 84.617 83.916 73.682 12.78 -1.28 -0.45 11.80
255.vortex 64 512 32.298 41.402 32.475 32.368 32.487 21.99 21.56 21.82 21.53
256.bzip2 64 512 25.088 25.395 25.287 25.202 25.144 1.21 0.43 0.76 0.99
178.galgel 64 32 50.692 56.084 98.373 50.914 50.053 9.61 -75.40 9.22 10.75
179.art 32 256 11.249 11.25 11.249 11.249 11.249 0.01 0.01 0.01 0.01
183.equake 256 32 65.898 93.53 79.958 93.211 67.822 29.54 14.51 0.34 27.49
188.ammp 128 512 62.778 125.592 64.577 64.091 63.944 50.01 48.58 48.97 49.09

kinds of systems, e.g., embedded platforms or servers, may induce performance
losses from “intuitively” selected sizes. Integer codes are less sensitive to block
size changes: six of 10 show ≤ 1% difference with training inputs, and three of
seven show ≤ 1% difference with reference inputs. Nonetheless, gzip, mcf, gap,
and vortex show notable performance improvements (3.15%, 10.65%, 19.23%,
and 4.86%, respectively, with training inputs, and 47.54%, 13.38%, and 27.44%
for mcf, gap, and vortex with reference inputs). Differences between best and
worst statically chosen sizes are much greater for many floating point appli-
cations: eight show significant speedups with training inputs (wupwise, swim,
mgrid, applu, equake, facerec, ammp, and apsi, by 11.42%, 35.88%, 35.79%,
15.05%, 30.35%, 21.32%, 25.19%, and 6.25%, respectively) and three of the four
show significant speedups with reference inputs (10.75%, 27.49%, and 49.09%
for galgel, equake, and ammp, respectively). Table 3 shows detailed results for
all applications.
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Fig. 4. Spatial Locality for galgel

Table 4. Delta HW Prefetcher
Parameters

Parameter Value
Index Table entries 512
Index Table replacement FIFO
History Table entries 512
Prefetch Width 4
Prefetch Depth 4

(a) (b)

Fig. 5. Best Static vs. Dynamic Blocksize for (a) Training and (b) Reference Inputs

5.1 Phase Adjustment

To illustrate the presence and magnitude of locality phases, Fig. 4 shows the time
line of preferred cache block sizes and corresponding spatial locality for galgel.
Such locality changes cause some applications to perform better using dynamic
selection over their optimal static block size. Other applications perform better
with a fixed block size due to very short phases (as in gcc), in which case the
dynamic mechanism is always “one step behind” due to its adjustment latency,
or lack of phase behavior (as in twolf).

Figure 5 compares the performance of the best statically chosen block size
per application vs. our dynamic scheme. In six training cases and two reference
sets our scheme outperforms the best static block size, ranging from negligi-
ble amounts to almost 10%. In other cases, the dynamic scheme performance
lags slightly behind the best static block size, usually by a negligible amount,
and always by less than 5%. Advantages of dynamic selection are that it re-
quires no software intervention, needs no profile-directed feedback, and enjoys
low hardware complexity. Most importantly, since no fixed block size is opti-
mal for all applications, a dynamic scheme can detect appropriate block sizes at
runtime.

For floating point applications, workloads with small differences between best
and worst static block sizes tend to have small performance differences. The
exception is apsi, for which the difference in best and worst block size is a single
increment, but for which the percentage difference in performance is 6.81%.
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Obviously, this application will benefit from adaptable block sizes, even though
the desired size changes little. Applications whose best and worst block sizes
differ by at least two powers of two tend to exhibit larger performance differences.

The rightmost columns in Table 3 show percentage performance improvement
of the different schemes relative to the worst statically selected block size. We
highlight cells where these values round to 5% or more. The rightmost column
shows the improvement for dynamically selected block sizes, and the column
fourth from the left shows improvement for the best-performing statically se-
lected blocks over worst-performing statically selected blocks. These data argue
for adaptable architectures: although not all applications require different block
sizes, performance ramifications are significant for those that do. Interestingly,
these data contradict that of Chen et al. [2] in their study of L1 block sizes:
we find that 179.art, 254.gap, and 172.mgrid benefit from larger blocks, as do
171.swim, 173.applu, 183.equake, and 301.apsi. Differences in results are likely
due to our targeting different levels of memory and to differences in simulation
methodology (we model whole applications with the OS, whereas they perform
arbitrary partial execution of 500 million instructions).

5.2 Prefetching

In an attempt to hide increasing memory latencies, hardware prefetching mech-
anisms have received extensive study. Hardware prefetchers read blocks a pro-
gram is likely to access before demand misses occur. Block predictions tend to be
based on the program’s recent memory access history. We compare our dynamic
block size scheme against two hardware prefetching schemes: a simple next line
prefetcher and a delta predictor that uses the global history buffer of Nesbit and
Smith [16]. The latter predictor yields some of the best performance gains to
date for SPEC2000. Table 4 gives parameters for this predictor (see Nesbit and
Smith [16] for parameter descriptions).

On the whole, both the next line and delta prefetchers perform worse than
both our dynamic block scheme and the best static block size. Figure 2 shows
performance improvement of the prefetching mechanisms relative the worst static
block size. OC-guided dynamic block sizes achieve 5.6% and 2.3% higher IPC,
on average, than next-line and delta prefetching, respectively. For the floating
point workloads, dynamically sized blocks achieve up to 49.1%—and on average
10.3%—higher IPC than next-line prefetching, and up to 35.3%—and on average
3.3%—higher IPC than delta prefetching. For integer benchmarks, prefetching
performs as well as our dynamic and the best static block methods: integer
applications are less sensitive to block size, as evidenced by the small differences
in performance of the best and worst static block sizes in Fig. 2. The exception
is gap, for which our dynamic approach attains 9.1% and 4.8% higher IPC with
training inputs and 12.9% and 12.2% higher IPC with reference inputs than the
next-line and delta prefetchers, respectively.

Even more important than raw IPC improvement is the performance stability
provided by our dynamic scheme. Hardware prefetching schemes tend to be
inconsistent in their ability to improve an arbitrary application. Sometimes they
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Workload Programs
Total

Runtime (s)

(a) Training Inputs
Batch 1 172.mgrid, 255.vortex, 173.applu 14.25
Batch 2 181.mcf, 183.equake 24.46
Batch 3 164.gzip, 177.mesa 28.08
Batch 4 172.mgrid, 254.gap 7.65

(b) Reference Inputs
Batch 5 183.equake, 188.ammp 237.32

Fig. 6. Multiprogramming Workloads Fig. 7. Multiprogramming Perfor-
mance Relative to Best Static Block

provide drastic improvements, even outperforming our dynamic approach or the
best static cases, but other times they perform very poorly—sometimes even
worse than the worst static case. Our dynamic scheme, on the other hand, never
lags behind the best static case by more than 5%. This consistency is highly
desirable for systems designed to run a wide variety of applications.

5.3 Multiprogramming

An advantage of our dynamic block size adjustment scheme is the ability to save
and restore the preferred block size on a context switch. Treating the logical
block size as part of the process context avoids the overhead of retraining the
locality caches after a context switch. This subsection compares performances of
five multiprogrammed workloads for static and dynamic block sizes.

As in standard Unix OSs, the kernel running on the simulated system main-
tains time quanta per process, performing a context switch every 100 milliseconds
if there is another process in the ready queue. Each workload consists of two or
three SPEC CPU2000 applications of similar execution time (see Table 6). Ap-
plications in each workload prefer different block sizes, stressing the dynamic
adjustment scheme.

Figure 7 shows the performance improvement for these workloads for the two
hardware prefetching mechanisms, and two variations of the dynamic scheme
relative to the performance of the best static block size. In four of five work-
loads, dynamic block size adjustment outperforms the best static block size,
since the dynamic scheme adjusts to spatial locality variations both within and
across applications. The dynamic scheme outperforms the two prefetching meth-
ods for the same four workloads. The right-most bars in each set, labeled “Dy-
namic/NC”, correspond to experiments in which the OS does not save/restore
logical block sizes on context switches. In this case, the dynamic scheme re-
quires an additional 10 ms to select the appropriate logical block size. Given a
100 ms time slice, the system operates for approximately 10% of time with a
potentially suboptimal logical block size. Advantages are lower context-switch
overhead and avoiding modification of often highly optimized context switches.
On the other hand, saving/restoring optimal block sizes only requires adding
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one field to process control blocks and adding one load/store to the save/restore
context switch code.

Saving and restoring logical block size performs better by 0.5-1.1%. If we had
not modeled a full system, with kernel, we might dismiss such results. Nonethe-
less, given our methodology, we believe our findings warrant further investiga-
tion. The ability to resume execution with previously selected logical block sizes
compensates for slight increases in context switch cost. Quantifying software en-
gineering costs of arguably small changes to two pieces of the kernel is difficult,
and performance gains may or may not be justified depending on circumstances.

Most important, dynamic block sizes can significantly improve performance
over a single static block size. The dynamic scheme outperforms even the best
statically selected block size by 3-20% for four of the five multiprogrammed work-
loads, confirming that the approach represents a viable alternative to software-
directed techniques.

6 Conclusions

This paper presents a hardware-centric technique to adjust logical L2 cache block
sizes at application runtime. A set of observation caches (OCs) measure spatial
locality relative to each other and make the values available to the clock inter-
rupt handler, which selects the best logical block size for the next period. In
addition to providing greater flexibility in terms of adjustment policy, this com-
bined hardware/software approach exposes spatial locality behavior to software
for performance debugging and profiling, and lets the OS treat the logical block
size as part of the process state on a context switch. A hardware adaptation
of the policy decision is straightforward for cases where OS modifications are
undesirable or infeasible.

Detailed system simulation results using SPEC CPU2000 confirm that our
technique approaches performance of the optimal statically selected block size
for most benchmarks, and outperforms it in many cases. The approach is up to
32% and 49% better than the worst block size choice for integer and floating
point applications, respectively. We never degrade performance over the worst
statically selected block size, and never by more than 5% over the best statically
selected block size. Note that these comparisons are to the worst and best cases,
not to what one would see in real systems with fixed block sizes. Fixed block sizes
rarely match the best block size for the applications we study. Speedups are less
dramatic than other spatial locality prediction schemes for some applications,
but our approach’s simplicity and performance stability recommend it. We de-
liver robust performance without compiler or application intervention, and the
approach is thus transparent to user-level software. Our scheme performs es-
pecially well on multiprogrammed workloads, since it can select the best block
size for each individual benchmark. This allows it to significantly outperform
the best statically selected block size for an application “class” that is typical in
many computing environments.
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Abstract. This paper proposes and studies a hardware-based adaptive controlled
migration strategy for managing distributed L2 caches in chip multiprocessors.
Building on an area-efficient shared cache design, the proposed scheme dynam-
ically migrates cache blocks to cache banks that best minimize the average L2
access latency. Cache blocks are continuously monitored and the locations of
the optimal corresponding cache banks are predicted to effectively alleviate the
impact of non-uniform cache access latency. By adopting migration alone with-
out replication, the exclusiveness of cache blocks is maintained, thus further
optimizing the cache miss rate. Simulation results using a full system simula-
tor demonstrate that the proposed controlled migration scheme outperforms the
shared caching strategy and compares favorably with previously proposed repli-
cation schemes.

1 Introduction

Advances in process technology have enabled integrating billions of transistors within
a single chip. These advances combined with an incessant need to improve computer
performance paved the road to the emergence of chip multiprocessors (CMPs). Chips
capable of small-to-medium scale multiprocessing are commercially available [15, 21]
and platforms having more cores are forthcoming [13].

As the realm of CMP is continuously expanding, it must provide high and scalable
performance. The constantly widening processor-memory speed gap will substantially
increase the capacity pressure on the on-chip memory hierarchy. The lowest-level on-
chip cache not only needs to utilize its limited capacity effectively, but also has to mit-
igate the increased latencies due to wire delays [8]. Accordingly, a key challenge to
obtaining high performance from CMP architectures is to manage the last level cache
so that the access latency is reduced effectively and the capacity utilized efficiently.

CMP caches are typically partitioned into multiple banks for reasons of growing
wire resistivity, power consumption, thermal cooling, and reliability considerations.
Non-Uniform Cache Architecture (NUCA) has been employed to organize the resul-
tant multiple cache banks [4, 10, 14, 24, 25]. One common practice for NUCA is
the shared scheme where cache banks are all aggregated to form a logically shared
cache [4, 15, 21, 24, 25]. Each memory block is mapped to a unique cache set in
a unique cache bank offering thereby high cache capacity utilization. Unfortunately,
shared caches have a latency problem. A cache block may reside at a bank far away
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from the requester core. It is a challenge to maintain the advantage (cache capacity) of
the shared cache CMP design and preclude the disadvantage (access latency).

Block replication and migration have been suggested as techniques for shared CMP
caches to tackle the latency problem by frequently copying or moving accessed blocks
to cache banks closer to the requesting processors [3, 6, 7, 8, 15, 16, 17, 21, 25]. Repli-
cation in general results in reduced cache hit latencies but may degrade cache hit rate.
In fact, blind replication can be detrimental since the capacity occupied by replicas
could increase significantly resulting in performance degradation [3]. Migration, on
the other hand, maintains the exclusiveness of cache blocks on chip and preserves the
high utilization of the caching capacity. Furthermore, it maintains the simplicity of the
underlying cache coherence protocol. However, migration has been shown to be less ef-
fective for CMP caches than for uniprocessors [4, 16]. The issue in the CMP domain is
that migration in multiple directions can cause migration conflicts, with shared blocks
ping-ponging between processors [14]. Besides, locating migratory blocks in bank sets
may turn out to be very expensive to an extent that it offsets the benefits offered by the
migration technique.

We demonstrate through an example the difficulty behind block migration and the
inefficiency it may cause with shared L2 cache design in the CMP context. Figure 1(a)
illustrates a 16-core tiled CMP. We assume a shared scheme where L2 cache slices
are logically shared among all tiles. Upon an L2 miss, a line is fetched from the main
memory and placed in a home tile determined by a subset of bits of the line’s physical
address. The figure shows a case where a block, B, has been originally requested by tile
3 and mapped to tile 6. Later tiles 0 and 8 request the same cache block B. Tile 3 incurs
6 network hops, computed as twice the Manhattan distance between the requester and
the target tiles (dimension-ordered routing [20]), to reach the home tile and satisfy its
request. Tiles 0 and 8 incur 8 hops each to satisfy their requests.

Figure 1(b) illustrates a naı̈ve first touch migration policy that directly migrates B to
the original requester. Employing that, tile 3 will save the 6 network hops when touching
B for the second time, assuming that it checks its local L2 tags before accessing the
home tile. Block B, however, has been pulled away from the other two sharers incurring
additional 6 hops for each one to locate the block on its new host tile. Consequently,
even though one tile made a gain, in total there is a loss of 6 network hops. Besides, the
on-chip network traffic increases due to the three-way cache-to-cache communications

Fig. 1. (a) The Original Shared CMP Scheme. (b) A Simple Migration Example.
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to satisfy sharers’ requests. Specifically, when tile 0 (or 8) requests B, it has to check
with tile 6 first, which is B’s home tile, before its request is redirected to tile 3.

Though the above example shows a naı̈ve migration policy, it highlights the intuition
that applying migration in a non-controlled fashion to NUCA designs can lead to per-
formance degradation. The problem, in fact, is that the best host of a cache block is not
known ahead of time. Thus migration or replication interferes to rectify the situation. It
would be highly beneficial if there is a mechanism that can dynamically and adaptively
locate the best host on chip for each cache block, and move consecutively the block to
that host without incurring undesirable implications.

This paper grants a fresh thought to the data migration technique as a way to man-
age shared CMP caches and studies its effectiveness in tiled CMPs. We propose a
novel hardware-based adaptive controlled migration (ACM) mechanism that relies on
prediction to collect information about which tiles have accessed a block and then, as-
suming that each of these tiles will access the block again, dynamically migrates the
block to a tile that minimizes the overall number of network hops needed. Simulation
results demonstrate the effectiveness, scalability, and stability of the proposed scheme
using a variety of workloads that exhibit no-sharing, little sharing, or sharing of cache
blocks.

The contributions of the ACM mechanism are as follows:

– It demonstrates that migration, if done in an adaptive controlled fashion, yields an
average L2 access latency that is on average 20.4% better than the nominal non-
uniform shared L2 cache scheme, and 20.8% better than a conventional replication
strategy for the simulated benchmarks.

– The proposed mechanism demonstrates the effectiveness of migration in the CMP
domain and opens new research opportunities and directions for computer archi-
tects.

– The proposed mechanism avoids replication of cache blocks and reduces the overall
L2 cache access latency without degrading the cache miss rate.

The rest of the paper is organized as follows. Section 2 delves more onto the idea
of ACM and explains it in detail. Section 3 presents the ACM microarchitecture and
hardware cost. Section 4 discusses our evaluation methodology and presents a quanti-
tative assessment of our proposed mechanism. Other related works are recapitulated in
Section 5, and Section 6 concludes.

2 Adaptive Controlled Migration

2.1 Baseline Architecture

This study assumes a tiled CMP model similar to the one depicted in Figure 1 and
appeared many times in literature [9, 24, 25]. Tiled CMPs scale well to larger proces-
sor counts and can easily support families of products with varying numbers of tiles,
including the option of connecting multiple separately tested and speed-binned dies
within a single package [24]. The CMP model is organized as a 2D array of replicated
tiles each with a core, a private L1 cache, an L2 bank, a directory for L1 coherence
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maintenance, and a switch that connects the tile to the on-chip network. The L2 banks
form a logically shared L2 cache. For the L1 level coherence enforcement, a distributed
directory-protocol is modeled. The directory is distributed among all the tiles by map-
ping each memory block to a home tile [16, 18, 25]. On an L2 miss, a block is fetched
from the main memory and mapped to its home tile determined by a subset of bits of
the physical address called the home select (HS) bits. Consecutively the fetched block
is copied to the L1 cache of the requester core. If any other core requests the same cache
block at a later time, the home tile is accessed and the cache block is copied to its L1
cache. Cores that maintain copies of a certain cache block in their L1 caches are all
denoted as sharers of this block.

A cache block may map to a tile that is close to or far away from the requester
core. Therefore, the model introduces a NUCA design where accesses to any L2 bank
varies depending on the network congestion and number of network hops between the
requester and the target tiles. We assume a mesh network topology with dimension-
ordered (XY) routing [20] where packets are first routed in the X and then the Y direc-
tion. Therefore, the number of network hops can be computed as twice the Manhattan
distance between the requester and the target tiles.

2.2 Predicting Optimal Host Location

Keeping a block in its home tile is often sub-optimal. Ideally, we want to place a cache
block in the tile that best optimizes the overall latencies. However, the best host tile for
a block is not known until runtime because many cores may compete for that block.
Consequently, a dynamic adaptive mechanism that monitors the runtime accessibility
of a block and makes a decision about the best location for the block is needed.

We propose a simple location algorithm that attempts to locate the optimal host of a
cache block at runtime and designates it as its new host tile. It computes the total latency
cost for a given cache block on each of the potential hosts and chooses the minimum.
In order to achieve this, the algorithm keeps some runtime information, particularly, a
pattern for the accessibility of the cache block. The pattern is essentially a bit vector to
indicate whether the block has been accessed by a specific core or not. It can be built
at run time with different migration frequency levels. The migration frequency level is
the number of times a block is accessed before attempting to migrate it. Whenever a
core accesses a block, its corresponding bit is set in the associated bit vector and a use
counter associated with the block is incremented. This continuously shapes up an acces-
sibility pattern for the given block and provides the aspired runtime information. When
the use counter reaches the specified migration frequency level, the location algorithm
interferes and selects a new host for the block that minimizes the total L2 access latency
for all the sharers identified by the accessibility pattern. The pattern and the use counter
are both cleared when the block is migrated so as to initiate a new pattern construction.
This is a simple prediction scheme that depends on the past to predict the future. A core
that accessed a block in the past is likely to access it again in the future. Because our
algorithm makes its decision based on this pattern, we call the located host a predicted
optimal host.

To exemplify how the ACM mechanism works, Figure 2 portrays 4 different cases
for potential hosts that a cache block may migrate to. S stands for a sharer and H for
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Fig. 2. An Example of How ACM Works (S = Sharer, H = Host)

the current host. A sharer is a tile that accessed the block in the past. A host is a tile that
is currently hosting the cache block. The designated block has two sharers, tiles 0 and
6. The block can be potentially hosted by any of the 16 tiles, but in Figure 2 we depict
only four cases where the tiles 3, 15, 2, and 0 host the block. Total latencies of 14, 22,
10, and 8 network hops are incurred by the sharers to locate the data block in these
four designated hosts respectively. Among these, host 0 gives the minimum aggregate
latency and is selected by the ACM mechanism to be the predicted optimal host.

2.3 Locating Migratory Blocks and Cache the Cache-Tags Policy

After locating the new predicted optimal host for a cache block, migration is performed.
However, a question that follows is: how can a sharer later locate a cache block that is no
more at its original home tile but migrated to a different tile? Zhang and Asanović [24]
proposed an extra array of tags per tile to keep track of the locations of migratory
blocks. Specifically, when a block, B, is migrated for the first time out of its home tile,
an entry for B, serving as a short fingerprint, is allocated in this extra tag array at the
home tile to point to the new location of B. Later if a sharer S reaches the home tile of
B and fails to find a matching tag in the regular L2 tag array but hits in the extra tag
array, the current host of B, pointed out by the matched fingerprint, satisfies the request.
Specifically, data is forwarded to S from the current host of B using three-way cache
to cache communication. If S fails to find a matching tag in both the regular and the
extra tag arrays, an L2 miss is reported and data is fetched from the main memory. If
S hits in the regular L2 tag array, then the L2 CMP shared protocol is simply followed.
Figure 3(a) illustrates how a sharer can locate a cache block, B, that has already been
migrated. This migration policy saves latency only for the tile to where B has been
migrated. For other sharers, it fails to exploit distance locality. That is, the request may
incur significant latency to reach the home tile even though the data is located in close
proximity. Furthermore, it causes extra on-chip network traffic.

ACM uses a similar data structure found in [24] but with a simple, yet essential
extension. We name this extended data structure the Migration Table (MT table). The
idea is to cache the cache-tags in the MT table. Specifically, the MT table of a tile T
can now hold two types of tags: (1) a tag for each block B whose home tile is T and had
been migrated to another tile, and (2) tags to keep track of the locations of the migratory
blocks that have been recently accessed by T but whose home tile is not T. We refer to
the first type as local MT tags and to the second as remote MT tags.
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Fig. 3. Locating a Migratory Block B (a) Without Cache the Cache-Tags Policy. (b) With Cache
the Cache-Tags Policy.

Whenever a sharer issues a request to a block, its local MT table is checked first
for a matching tag. On a miss, the home tile is reached. If the block at the home tile
has already been migrated, it is located in its new host and its tag is further cached in
the requester’s MT table, so as to reduce latency for subsequent accesses. If the block
on the home tile was not migrated yet, the usual L2 shared protocol is followed. If the
requester core hits in its local MT table, the corresponding block is directly retrieved
from the location that the local tag designates; that is, the tile currently hosting the
block. This is done without any need to visit the home tile. Accordingly, the three-way
cache to cache communication problem exposed by the proposal in [24] is solved by
the cache the cache-tags policy upon hits in the MT table. Figure 3 (b) shows how the
cache the cache-tags idea solves the 3-way communication problem. The sharer finds
a matching tag in its local MT table and quickly locates the data block on its host.
Consequently, the profit gained by the migration technique is maintained, and the on-
chip network traffic is improved.

The remote and local MT tags need to be kept consistent. That is, each time the
block migrates, the corresponding remote and local MT tags in the MT tables need to
be updated to indicate the block’s new located host. We accomplish this by embedding a
directory state in each of the MT tags. This directory state acts as a bit mask to indicate
which tile has cached a remote MT tag for the associated cache block. It is simply a bit
vector with a single bit corresponding to each core. Whenever a core caches a tag, its
corresponding bit is set in the bit vector augmented with the local MT tag at the home
tile. Effectively, each MT tag, or MT entry hereafter, is composed of four components:
(1) The tag of the migratory cache block, (2) a bit vector that acts as a directory to
maintain consistency of multiple copies of MT entries cached in different MT tables,
(3) a bit to specify whether the entry is remote or local, and (4) an ID that points to
the tile that is currently hosting the cache block. Hence, whenever a cache block mi-
grates, its corresponding MT entry at the home tile is accessed and the ID is updated to
point to the new host location. Furthermore, the cached remote MT entries, identified
by the augmented bit vector, are all updated to indicate the new block’s host. Note that
the home tile that is to be reached to update the local MT entry is known via checking
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the HS bits of the given physical address of the L2 request that triggered the migration
of the L2 block. Accordingly, we need not store any backward pointer to locate the
home tile.

As each associative set of blocks in the MT table contains a combination of local and
remote MT tags, it is wise to never evict a local MT tag in favor of a remote one. This
is because the local MT tag may have many active sharers. It may further have multiple
associated remote MT tags stored at sharers’ MT tables. Consequently, replacing it calls
for eviction of the data block itself and all its associated remote tags. To avoid potential
performance degradation, the MT table replacement policy replaces the following two
classes of tags in descending order: (1) an invalid tag, (2) the least recently used remote
MT tag. For now, we assume that the size and the associativity of the MT table are
identical to those of the regular L2 tag array. In Section 4 we study the sensitivity of the
ACM mechanism to different MT table sizes.

2.4 Replacement Policy Upon Migration: Swapping the LRU Block with the
Migratory One

After the location algorithm designates a new host for a block B and the migration is
to be performed, a decision must be made about which block to replace in the new
host T located for B. If there is no invalid block in the target set at T, a naı̈ve approach
would replace the LRU block, say, D. However, because cache accesses might not be
well distributed over the cache sets, there could be a capacity pressure at T, and D could
be requested again. Hence, we try not to discard block D but to swap it with B so as
to maintain the copy on chip. B and D could be migratory or non-migratory blocks.
Migratory blocks are those that already migrated out of their home tiles while non-
migratory ones are those that have not migrated yet. If B is non-migratory, a local MT
entry should be allocated at its home MT table. If no entry is found to be replaced at
the MT table, as planned by the MT replacement policy, migration is not performed. If
B could be migrated and D is a migratory block, then they are simply swapped and D’s
associated MT entries are all updated to expose the change of the host location. If D is
non-migratory, its local MT table is checked for a valid entry to replace. If a valid entry
is found, a local MT entry is allocated and B and D are swapped. If no valid entry is
found then D is simply discarded and B migrates to the new located host. Of course, if B
also is a migratory block then when migrated, all its associated MT entries are updated
to denote its new host.

Such a swapping policy is, in fact, very effective and robust that it makes our scheme
applicable even to workloads that don’t share cache blocks. We illustrate this effective-
ness and robustness via an example. Figure 4 depicts a case for a single thread that
exhibits no sharing at all and runs on tile 3 (the microarchitecture of the portrayed tiles
is discussed in Section 3). We assume that the thread’s working set is too large to fit
entirely in the L2 cache bank of tile 3. To reduce L2 access latency, and with migration
frequency level of 1, our location algorithm will choose to migrate all requested blocks
to the L2 bank of tile 3 after accessing each for the second time. Figure 4(a) depicts the
placement of block B after it has been requested by tile 3 and mapped to the home tile
5 (HS of B = 0101). Figure 4(b) demonstrates the migration of B to the L2 bank of tile
3 after tile 3 accessed B for the second time. Note that a local MT tag, b, is allocated in
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Fig. 4. An Automatic Data Attraction Case offered by ACM

the MT table at the home tile 5 and a remote one allocated at tile 3, as planned by the
cache the cache-tags policy.

The case shows the capability of the ACM mechanism to automatically attract data
to local tiles, thus allowing cores to access blocks very fast for subsequent requests.
However, ACM is robust enough that it doesn’t allow such automatic data attraction to
continue freely and blindly, potentially causing increase in L2 miss rate. The swapping
with the LRU policy suggests that when no invalid block at the target set of the located
host T is found (capacity pressure), an attracted block B is swapped with the LRU
block at T, thus avoiding increase in L2 miss rate. Figure 4(c) assumes that when B
has been migrated to tile 3 it produces capacity pressure. The LRU block, C, at tile
3 is accordingly swapped with B as planned by the swapping with LRU policy, thus
maintaining C on chip and accordingly avoiding any increase in the L2 miss rate. Note
that a local MT tag c is allocated in the MT table at tile 3 as planned by the cache the
cache-tags policy.

The case in fact demonstrates some resemblance to the victim replication strat-
egy [25]. Victim replication also automatically attracts data to local tiles upon L1
evictions in order for subsequent accesses to save latency. However, it doesn’t provide
control on the capacity usage and can greatly reduce the available caching space. Sec-
tion 4 presents a comparison between ACM and the victim replication scheme.

Finally, different cache blocks may experience entirely different degrees of sharing
over time and demonstrate diverse access patterns. The ACM algorithm collects those
non-uniform access patterns and based on them, finds a suitable location for data blocks
that best minimize the L2 access latency. Thus ACM inherently doesn’t prefer any spe-
cific on-chip tile over the other. However, if at any course of execution, a cache bank
receives a capacity pressure more than other banks (similar to the above case), ACM
robustly relaxes the pressure via the swapping with the LRU policy.

2.5 Discussion: Cache Blocks in Transit

The ACM mechanism can easily preclude any potential for false misses which occur
when an L2 request falsely fails to hit a cache block because it is in transit from one
bank to another. When migration is to be performed, a copy B’ of the cache block B is
kept at the current bank so as if an L2 request arrives while B is in transit, the request
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is immediately satisfied without incurring any delay. When B reaches the new host, an
acknowledgment message is sent back to the old host to discard B’. The old host keeps
track of any tile that accesses B’, and when receiving the acknowledgment message,
sends an update message to the new host to indicate the new sharers that requested B
while it was in transit. The directory state entry of B is consecutively updated.

3 Microarchitecture and Hardware Cost

The ACM mechanism is a completely hardware-oriented scheme. Figure 5 depicts its
microarchitecture design within a CMP tile. The added structures are shaded. The ACM
engine incorporates the hardware implementation of the ACM algorithm. It further up-
dates the use counters and pattern vectors augmented to cache blocks at the time they
are accessed. Note that only one adder per tile is needed to increment the use counters.
If the number of accesses reaches the specified migration frequency level maintained
by the ACM engine, the pattern vector of the block is read and the optimal host is com-
puted. The ACM engine logic is simple as required by the ACM mechanism. The area
and power budget are expected to be modest.

The performance improvement of the ACM mechanism comes at small storage over-
head to the on-chip cache hierarchy. We assume 41 bit physical address and 64 byte
cache block size. Nine bits of the physical address are used by the nominal shared
scheme to index the L2 cache bank within a tile beside six bits for the offset. Four more
bits are used for the HS to select the home tile. The tag width is accordingly 22 bits.
Each MT table stores tags using a format similar to the tags in the corresponding L2
cache bank. However, for each entry in the MT table, additional 16 bits are required
for the directory vector, 1 bit to specify whether the tag is remote or local, and 4 bits
to indicate the ID of the tile currently hosting the block. Additionally, augmented to
each cache block, are 4 bits to store the use counter (assuming that the maximum al-
lowed migration frequency is 16) and 16 bits for the pattern vector. The table in Figure 6
breaks down ACM’s storage requirement for our cache configuration. The MT table has
been reduced to quarter its size with a tradeoff of giving up some of the performance
gain produced by the ACM mechanism as demonstrated in Section 4. Moreover, the
peripheral circuitry and interconnects are not taken into consideration when measuring
the percentage increase of the on-chip cache capacity thus the result shown in the table
in Figure 6 is in reality much smaller.

Fig. 5. Michroarchitecture
for the ACM mechanism
(Figure not to scale)

COMPONENT BITS PER ENTRY K ENTRIES K BYTES PER TILE

TAG 22 2 5.5
Directory Vector 16 2 4

Remote/Local 1 2 0.2
ID 4 2 1

Pattern Vector 16 8 16
Use Counter 4 8 4

Total KBytes 30.7
% Increase of On-Chip Cache Capacity 4.8%

Fig. 6. ACM Storage Overhead
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4 Quantitative Evaluation

In this section, we evaluate the ACM mechanism and alternative cache designs. We
compare ACM with the non-uniform shared cache scheme (S), as a baseline, and the
victim replication (VR) proposal [25] that we consider a traditional design on this di-
rection. The rationale behind such a comparison is to demonstrate that migration, if
done in an adaptive-controlled fashion, generates favorable results compared to repli-
cation. Replication has been considered useful for tackling the NUCA problem [3, 8].
Migration, on the other hand, hasn’t been proved to be highly effective in the context
of CMPs [4, 24]. By showing that ACM outperforms the nominal shared cache scheme
and one of the conventional replication designs, we thereby demonstrate that migration
is in fact an effective technique for managing L2 caches in CMPs. Though there has
been more recent work than VR on replication [3, 6, 8], our objective is not to compare
against all these, but rather to expose the potential of migration and to elide the fallacy
regarding such a technique in the CMP domain.

4.1 Experimental Methodology

Our evaluation employs a detailed full system simulator built on Simics 3.0.29 [2]. We
simulate a 16-way tiled CMP architecture organized as a 4×4 2D mesh grid and runs
under the Solaris 10 OS. Programs are compiled for an UltraSPARC-III Cu processor.
Each core runs at 1.4 GHz, uses in-order issue, and has a 16KB I/D L1 cache and a
512KB L2 cache with the LRU replacement policy. The aggregate L2 cache is con-
sequently 8MB for the 16-tiled CMP model. Each L1 cache is 4-way set associative
with 1-cycle access time and 64 byte line. Each L2 cache is 16-way set associative
with 6-cycle access time and 64 byte line. A 5-cycle latency per hop, based on a recent
processor from Intel [22], is incurred when a datum traverses through the mesh net-
work including both, a 3-cycle switch [9, 24, 25] and a 2-cycle link latencies. The 4-GB
off-chip main memory latency is set to 300 cycles.

ACM, S, and VR are studied using a mixture of single-threaded, multithreaded, and
multiprogramming workloads. For multithreaded workloads, we use the commercial
benchmark SPECjbb, and four other shared memory benchmarks from the SPLASH2

Table 1. Benchmark programs

NAME INPUT

SPECjbb Java HotSpot (TM) server VM v 1.5, 4 warehouses
lu 1024×1024 matrix (16 threads)

ocean 514×514 grid (16 threads)
radix 2M integers (16 threads)

barnes 16K particles (16 threads)

parser reference
art reference

equake reference
mcf reference

ammp reference
vortex reference

MIX1 reference for all (vortex, ammp, mcf, and equake)
MIX2 reference for all (art, equake, parser, mcf)
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suite [23] (Ocean, Barnes, LU, Radix). For single-threaded workloads we use six pro-
grams from SPEC2K [1], three integers (vortex, parser, mcf) and three floating-points
(art, equake, ammp) with the reference data sets. These benchmarks were chosen be-
cause they demonstrate different access patterns and different working set sizes [1, 10].
Two multiprogramming workloads, MIX1 (vortex, ammp, mcf, equake) and MIX2 (art,
equake, parser, mcf), are constructed from the selected 6 SPEC2K programs. Initializa-
tion phases of applications are skipped using magic breakpoints from Simics. For the
single-threaded and multiprogramming workloads, a detailed simulation is run for each
benchmark until at least one core completes 1 billion instructions. Table 1 summarizes
all the simulated benchmarks. Last but not least, we fix the migration frequency level to
10 throughout the simulation.

4.2 Simulation Results

In this subsection we report our simulation results and analyze the effectiveness of ACM
over S and VR schemes. The aim is to study the efficiency of the ACM mechanism in
the presence of no-sharing, little sharing, and sharing of cache blocks. These cases
are essentially offered by the single-threaded, multiprogramming, and multithreading
workloads, respectively. The main target of the ACM mechanism is to tackle the non-
uniformity in access latency that the shared scheme exposes (NUCA problem). Ac-
cordingly, the primary evaluation metric that we adopt is the average L2 access latency
(AAL) experienced by an access to the L2 cache from any core on the tiled CMP. Upon
an L1 miss, an access to L2 can be defined in terms of the congestion delay, the number
of network hops traversed to satisfy the request, and the L2 bank access time. Three
scenarios may occur thereupon. First, the request may hit in its local L2 bank, and we
assume that this incurs only 6 cycles. Second, It may miss locally but hit remotely, thus
incurring an access latency that varies depending on the network congestion and the
number of network hops. Third, it may miss on chip and consequently reach the main
memory to satisfy the request. Thus AAL combines both, the access to L2 (locally or
remotely) and the L2 miss rate and penalty. Clearly, an improvement in the AAL metric
translates to an improvement in the overall system performance. The average memory
access cycles spent in L1, L2, and main memory serving 1K instructions is furthermore
shown to give an overall performance picture. The L2 miss rate is also demonstrated
to assure the claim that it is maintained by the ACM mechanism and because of its
importance to the VR strategy. We also report the message-hops per 1k instructions.

Comparing Schemes, Single-threaded and Multiprogramming Workloads: Multi-
programming workloads tend to have very little sharing among the different threads
[6, 24]. Single-threaded benchmarks represent the no-sharing case. VR is very appeal-
ing in this situation because it can automatically attract data blocks to the only tile
running the thread, thus supposedly reducing access latency by decreasing inter-tile ac-
cesses from replica hits. However, this may make the tile running the thread experience
some high capacity demand. This may result in poor utilization of the on-chip cache
capacity. If the scheme fails to offset the increased miss rate then this could lead to per-
formance degradation. This intuition is confirmed by the results shown in Figure 7. The
L2 miss rates of all the single-threaded benchmarks shown for VR are all much larger
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Fig. 7. Single-threaded and Multiprogramming Results (S = Shared, VR = Victim Replication)

Fig. 8. Multithreaded Results (S = Shared, VR = Victim Replication)

than that for S. However, across all the workloads VR successfully offsets the miss rate
from fast replica hits. Contrary to that, VR fails to offset the increase in L2 miss rate for
the multiprogramming workloads. Clearly, the SPEC2k applications have small work-
ing sets that more or less fit in L1 and L2 caches as they expose negligible L2 miss rates
as is shown in the figure for the S scheme. The L2 miss rate for the 6 single-threaded
benchmarks is on average 0.04%. As the memory footprint of the benchmark decreases,
the space made available to replicas increases and accordingly more performance im-
provement can be achieved. For the multiprogramming workloads, 4 benchmarks are
now sharing the L2 cache space. Hence, the memory footprint of the workload has
been increased. The L2 miss rate for MIX1 and MIX2 is now 0.3% on average, or 8.7x
more than that of the single-threaded workloads. VR failed to offset this increase and
produced 41.8% and 46.0% AAL degradation over S and ACM schemes respectively.

Contrary to that, ACM still offers this automatic data attraction functionality sug-
gested by the VR scheme but in a very controlled fashion that it can efficiently cus-
tomize allocation of on-chip capacity via the swapping with LRU policy as is discussed
in Section 2. Consequently, it successfully generated AALs that are on average 20.5%
and 3.7% better than S and VR respectively for the single-threaded workloads, and
2.8% and 31.3% better than S and VR respectively for the multiprogramming ones. VR
performs better than ACM only for the benchmarks vortex, parser, and mcf. It has been
observed that 81%, 50%, and 57% of the cache blocks of the vortex, parser, and mcf
benchmarks respectively are accessed for less than 10 times (the specified migration
frequency level). As a result, for all these cache blocks, the ACM mechanism didn’t
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Fig. 9. Average Memory Access Cycles Per 1K Instructions Results (S = Shared, VR = Victim
Replication)

even attempt to migrate them to better hosts so as to minimize the L2 access latency.
This is because we fixed the migration frequency level throughout simulations. Migra-
tion to any cache block is triggered upon being accessed for the number of times that
the migration frequency level specifies. For that reason, ACM is not exhibiting its full
ability to exploit the optimum performance though it still on average greatly surpasses
both of the schemes, S and VR. With an adaptive tunable migration frequency level, the
ACM mechanism would hit its optimum and consequently provide larger performance
improvements. This is to be explored in future research work.

As clearly shown in Figure 7, ACM maintains the L2 miss rates of S for all the
simulated single-threaded and multiprogramming benchmarks. Moreover, it optimizes
some of them because of the swapping with the LRU policy and generates on average
2x and 1.5x reductions in L2 miss rates over S for the single-threaded and the mul-
tiprogramming benchmarks respectively. Finally, Figure 9 shows the average memory
access cycles per 1K instructions experienced by all the simulated benchmarks. VR per-
forms on average 15.1% better than S and 38.4% worse than S for the single-threaded
and the multiprogramming benchmarks respectively. ACM, on the other hand, performs
on average 18.6% and 2.6% better than S, and 3.4% and 29.4% better than VR for the
single-threaded and the multiprogramming benchmarks respectively.

Comparing Schemes, Multithreaded Workloads: The multithreading workloads ex-
pose different degrees of sharing among threads and accordingly allow us to study the
efficiency of the ACM mechanism with such a case. Figure 8 depicts AALs and the
L2 miss rates of the multithreading workloads compared to S and VR. ACM exhibits
AALs that are on average 27.0% and 37.1% better than S and VR respectively. VR re-
veals 26.7% worse AAL than S for all the simulated benchmarks. This is due to the fact
that VR has a static replication policy that depends on the blocks’ sharing behaviors. An
increase in the degree of sharing suggests that the capacity occupied by replicas could
increase significantly leading to a decrease in the effective L2 cache size. As such, if
replicas displace too much of the L2 cache capacity, the L2 miss rate could increase
considerably, degrading thereby the average L2 access latency. This was clearly illumi-
nated by the behaviors of the Ocean, Barnes, and Radix benchmarks where reduction in
latencies via replica hits failed to offset the excessive latencies deduced by the increased
miss rate. Barnes for instance utilizes a tree data structure that exhibits a sharing degree
of 71% [4] and accordingly incurs a significant increase in capacity pressure when VR
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Fig. 10. On-Chip Network Traffic Comparison (a) Single-threaded Workloads (b) Multithreaded
Workloads

is used. Note that such an inferred VR behavior is more elucidated in this work than
in the original evaluation [25] as the L2 cache has been downsized to half. VR was
successful in offsetting the impact of increased offchip accesses for the LU and JBB
workloads.

On the other hand, ACM, a pure migration technique, maintains the exclusiveness of
cache blocks on chip and consequently preserves the L2 miss rates of S for the three
benchmarks Barnes, Lu, and Radix. Only Ocean and JBB reveal a small increase in the
L2 miss rate for ACM over S. This is because when some block, B1, is to be migrated
to a new host, H, no valid entry for the LRU block, B2, that is to be swapped with B1,
is found in the MT table of H, and accordingly discarded as planned by the swapping
with the LRU policy. That discarded block, B2, can be requested again by some other
threads. VR only performs better than ACM for the JBB benchmark. The reason is the
fixed migration frequency level that we assume throughout the simulation process. We
ran JBB with doubling and tripling the migration frequency and respectively obtained
3.7% and 6.7% more AAL improvements over the base run with a migration frequency
of 10. Lastly, Figure 9 shows the average memory access cycles per 1K instructions. For
the multithreading benchmarks, VR performs on average 19.6% worse than S. ACM, in
contrary, performs on average 20.7% and 29.7% better than S and VR respectively.

On-Chip Network Traffic: A supplementary advantage of the ACM mechanism is
the reduced on-chip network traffic that it offers. Figure 10 depicts the number of
message-hops per 1k instructions that the three schemes, S, VR, and ACM exhibit
for the single-threaded, multiprogramming, and multithreaded workloads. The ACM
scheme offers 25.3%, 3.0%, and 41.6% on-chip network traffic reduction over S for
the single-threaded, multiprogramming, and multithreaded workloads respectively. The
VR scheme, on the other hand, offers 35.6%, 33.6%, and 75.7% on-chip network traf-
fic reduction over S for the three workloads respectively. Consequently, VR offers more
on-chip network reduction over S than what ACM does because it decreases more inter-
tile accesses from replica hits. Though the ACM mechanism bears some resemblance
to the VR strategy for the single-threaded workloads as discussed in Section 2, but with
a fixed migration frequency level of 10, a tile waits for 10 accesses to the block to at-
tract it to its local L2 bank. Therefore, it incurs more inter-tile accesses compared to
VR that tries to attract the block to its local L2 bank immediately after being evicted
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Fig. 11. Results for CMP Systems with 16 and 32 Processors (a) Average L2 Access Latencies
(b) L2 Miss Rate

from L1. If VR fails to replicate cache blocks while ACM succeeded to attract blocks
to its local L2 bank, ACM will surpass VR. The Art benchmark is the only case that
exhibits such a situation. Finally, we studied the increase in network congestion for
ACM over S without employing the cache the cache-tags policy. We found on average
an increase of 17.6%, 4.1%, and 1% over S for the single-threaded, multiprogramming,
and multithreaded workloads respectively. Clearly, this demonstrates the decisiveness
and usefulness of such a policy when applying block migration in CMPs.

ACM Adaptability to Futuristic CMP Models: As the number of tiles on a CMP plat-
form increases, the NUCA problem exacerbates. In order for any cache management
scheme to be useful in tackling the NUCA problem, it should demonstrate adaptability
to upcoming futuristic CMP models. ACM is very expedient in this direction as it al-
ways selects a host for a cache block that minimizes the total L2 access latency for all
the sharers of that block independent of the underlying CMP size. Thus more exposure
to the NUCA problem translates effectively to a larger benefit from the ACM scheme.
We show such a pro of ACM via extending our CMP model to 32 tiles and running
simulations for three selected benchmarks. Each tile still maintains, as with the 16-tiled
CMP model, a 16KB I/D L1 cache and a 512KB L2 cache bank. The three benchmarks
that have been chosen to conduct the study are, Ocean, ammp, and MIX1, from the
multithreaded, single-threaded, and multiprogramming workloads respectively. These
benchmarks revealed the highest L2 miss rates among the others in their sets; hence,
selected.

Figure 11 depicts the AALs and the L2 miss rates of the selected benchmarks. For 16
tiles, ACM shows AAL improvements of 13.1%, 20.0%, and 1.7% for Ocean, ammp,
and MIX1 over S respectively. However, for 32 tiles, ACM shows AAL improvements
of 56.5%, 59.6%, and 53.8% over S respectively. As a result, ACM exhibits on average
11.6% and 56.6% AAL improvements over S for the 16-tiles and 32-tiles models re-
spectively. The 32-tiles CMP model produced latency results that are 4.8x times better
than those generated by the 16-tiles one for the simulated benchmarks.

Sensitivity and Stability Studies: So far we have assumed for simplicity that the size
and associativity of the MT tables are identical to that of the L2 caches. There is noth-
ing, in fact, that prevents this data structure from being of a smaller size or associativity.
To study the sensitivity of the ACM mechanism to this component, we ran simulations
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for the three benchmarks, Ocean, ammp, and MIX1 with MT table sizes reduced to half
(50%) and quarter (25%) the size of the base cache, and with a 16-way set associativity.
With half and quarter configurations, we got AAL increases of 5.9% and 11.3% respec-
tively over the base one, but still improvements of 7.6% and 2.9% respectively over S.
The highest contribution for the AAL increases was from the ammp benchmark. The
ammp benchmark shows alone 19.9% AAL increase, averaged for both the half and
quarter configurations, over the base, though still 6.1% better than S. It was observed
that 60.7% of the cache blocks in ammp are accessed at least 10 times (the specified
migration frequency level) before getting evicted from L2, consequently triggering mi-
grations. To decrease the pressure on the MT table, we ran simulations with migration
frequency of 20 rather than 10. Compared to the 19.9% AAL increase, we obtained only
12.3% increase, averaged for both the half and quarter configurations, over the base one
and consequently 10.1% on average better than S.

Finally, and to demonstrate the stability of the ACM scheme to different cache sizes,
we simulated the LU benchmark on our 16-tiled CMP model with the L2 cache being
reduced to half its size for the three different schemes: S, VR, and ACM. VR failed
to demonstrate stability and showed AAL degradation of 37.8% over S, while ACM
maintained AAL improvement of 39.7% over S. This is because the ACM mechanism
maintains the exclusiveness of cache blocks on chip, while VR demands more capacity
to store replicas. Clearly, this reveals the effectiveness of the migration technique in the
CMP domain, and particularly that of the proposed ACM mechanism.

5 Related Work

Migrating data to improve memory access latency has been extensively studied in the
context of distributed shared-memory multiprocessors [5, 11, 12, 19]. Kim et al. [16]
proposed D-NUCA as a mechanism that allows important data to migrate towards the
processor within the same level of cache in the context of uniprocessor. Beckmann
and Wood [4] examined block migration in CMPs and suggested CMP-DNUCA sim-
ilar to the original D-NUCA proposal. They employ a gradual migration policy and
move blocks along 6 bankcluster chain (the cache banks are physically separated into
16 different bankclusters). However, high degree of cache block sharing complicates
the policy and blocks tend to congregate at the center of the cache away from all the
processors.

A recent study [17], undertaken independently, proposed an efficient migration
scheme to address the NUCA problem via modeling it in the L2 space as a two-
dimensional post office placement problem. The scheme determines a suitable location
for each data block at any given time during execution. Though the proposed design
bears resemblance to ACM in that it dynamically finds a proper L2 location for each
cache line after tracking its cache pattern, it doesn’t discuss the mechanism with which
migrating cache blocks is efficiently done.

Zhang and Asanović [24] proposed data migration in the context of tiled CMP. They
allow replication and employ a migration strategy similar to the first touch policy pre-
sented in Section 1, but with certain conditions to move cache blocks to the requester
tiles. Lastly, many proposals in the literature advocate data replication to manage the
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non-uniformity in latency exposed by the nominal shared L2 cache design [3, 8, 25]. A
recent study [3] demonstrated that blind replication is dangerous because the capacity
occupied by replicas could increase significantly. The study proposed a hardware-based
mechanism that dynamically monitors workload behavior to control replication.

6 Conclusions and Future Work

Managing L2 caches in chip multiprocessors is essential to fuel its performance growth.
This paper studied a strategy to manage non-uniform shared caches in CMP by dy-
namically migrating cache blocks to optimal locations that provide the minimal L2
access latency. The proposed mechanism optimizes the L2 miss rate via maintaining
the uniqueness of cache blocks on chip. Besides, Cache the Cache-tags policy has been
proposed to effectively simplify the process of locating migratory blocks. Simulation
results demonstrated the robustness, scalability, and stability of ACM. Unlike previ-
ously studied migration strategies in CMP literature, the proposed mechanism revealed
and confirmed the usefulness of data migration in chip multiprocessors.

The strategy that we proposed to locate optimal hosts for cache blocks is simple and
assumes that if a block has been accessed by a certain core in the past, then it is likely to
be accessed by the same core in the future. Chishti et al. [8] observed that many blocks
brought to the cache are not reused in some workloads. Thus, the proposed hardware
host predictor can be easily improved by introducing more weights for the cores that
accessed a cache block often.

Finally, we fixed throughout our simulation process the migration frequency level
to 10. As is shown, this doesn’t exhibit the full capability of the ACM mechanism. An
adaptive tunable migration frequency level would allow the ACM mechanism to hit its
optimum. Having established the effectiveness of the main idea of ACM, improving per-
formance through an adaptive algorithm to dynamically tune the migration frequency
level is the obvious next step.
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Abstract. Effective management of data is critical to the performance of emerg-
ing multi-core architectures. Our analysis of applications from SpecOMP reveal
that a small fraction of shared addresses correspond to a large portion of accesses.
Utilizing this observation, we propose a technique that augments a router in a on-
chip network with a small data store to reduce the memory access latency of the
shared data. In the proposed technique, shared data from read response packets
that pass through the router are cached in its data store to reduce number of hops
required to service future read requests. Our limit study reveals that such caching
has the potential to reduce memory access latency on an average by 27%. Fur-
ther, two practical caching strategies are shown to reduce memory access latency
by 14% and 17% respectively with a data store of just four entries at 2.5% area
overhead.

1 Introduction

Effective management of shared data is critical to the performance of emerging multi-
core architectures. Consequently, the use of shared L2 cache architectures has emerged
as a popular trend to facilitate data sharing. Maintaining cache coherence is a critical
need in such shared structures and is commonly enforced using either snoop-based or
directory based protocols. In the broadcast-based snoop protocol, a requesting node
broadcasts a snoop request to all nodes to find whether they currently cache the data
or not. In contrast, the directory-based protocol is more scalable with number of cores
as they eliminate the broadcast with directed messages according to the directory infor-
mation. The directory-based protocol manages which node caches data in a directory
corresponding to the home node at the requested address. Whenever, a data is requested
by a processor, the shared directory entry is used to identify the state of requested data
as well as the current location of the shared data. Consequently, the data request in-
volves three steps: (1) Communication from the requesting node to the home node of
the directory entry; (2) In case, a shared copy exists, a message is sent from the home
node to the location of remote node caching the data. In case, no copy exists, the next
level cache or memory is accessed and data is returned to requesting node skipping step
3; (3) a communication packet forwarding the data from the remote node with shared
data to the requesting node. However, this protocol of the shared directory suffers from
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the latency overhead of having to send the data request in the order of the requesting
node, the home node and the caching node.

Due to the communication-centric nature of such shared data accesses, the underly-
ing communication fabric and protocols play an important role in determining the data
access latency. There have been several efforts at reducing the overheads of directory-
based protocols and on the design of low-latency communication fabrics. In this work,
we focus on the design of an efficient packet-based on chip communication fabric to re-
duce the number of hops required in servicing a data request. Particularly, we focus on
caching data along the routers of the multi-hop communication fabric to facilitate faster
response to data accesses. Most closely related to our effort is the effort to migrate the
entire data cache on to the network layer by Mirzahi et al. [14]. In order to circumvent
the resource challenges of migrating large amount of data into the network router in an
on-chip network, Eisley et al. [6]. proposed caching only the coherence protocol infor-
mation rather than the actual data. Our work identifies that caching a small fraction of
shared data within the router in addition to caching protocol information can provide
significant performance gains.

The key contributions of this paper are

– Analyzing the memory access patterns of a set of applications from SpecOMP [1]
suite and identifying that a small number of shared addresses dominate the accesses
to memory systems and reducing access latencies to these shared locations has a
significant impact on overall memory latency.

– Exploration of three different in-network data caching strategies to reduce overall
latency that indicates that memory access latency can be reduced by upto 38% and
on average by 27% across the applications.

– Design of the router micro-architecture to support in-network data caching to
demonstrate the feasibility of incorporating them in on-chip networks.

The rest of this paper is organized as follows. The next section analyzes the memory
access behavior of the SpecOMP [1] benchmark suite and provides an overview of In-
network cache coherence. Section 3 describes the modifications to the protocol and
the microarchitectural changes in the router architecture required to enable and imple-
ment In-network caching. Section 4 explores our proposed In-network caching policies.
Section 5 details the experimental setup for this work. Section 6 provides quantitative
evaluation of the in-network caching schemes along with the area overhead of the de-
sign. Section 7 discusses the related work. We conclude this work in Section 8.

2 Motivation and Background

Access to shared data is one of the critical factors that impact the performance of paral-
lel algorithms. To understand this better we profile the SpecOMP benchmark for statis-
tics on the number of addresses and the number of accesses to them. We classify these
statistics as private and shared. We define a private address as one which is accessed
by only one processor and is thus private to a single processor. A shared address is
one which is accessed by at least two processors. Figure 1 shows the distribution of
private and shared addresses for the profiled applications. The results indicate that the
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Fig. 1. Ratio of the number of private to shared
addresses

Fig. 2. Ratio of the accesses to private and
shared addresses

number of distinct shared addresses accessed is a small fraction of all addresses ac-
cessed. In addition to this observation, we noticed that the number of accesses to the
shared addresses accounted for a large fraction (71% on average) of all memory ac-
cesses (See Figure 2). These two observations indicate that reducing the access latency
to a small fraction of shared address locations may have a significant impact of over-
all latency. This motivates our effort to cache the shared data in a small data store of
on-chip routers.

2.1 In Network Cache Coherence

Our technique is built on top of the in-network cache coherence [6] work that is reduces
the hop count for data accesses by caching coherence information within the routers.
Hence, we provide a brief overview of this protocol (readers are referred to [6] for
details.) The key to the in-network cache coherence work is a virtual tree of links that
connects all sharers of the data with the home node. The location of the home node
is determined statically based on the address of the data as in the case of traditional
directory-based protocols [1].

The node that caches the shared data first serves as the root of the virtual tree and
links are maintained at each router in the path between the home node and the sharing
nodes. These virtual trees enable new read requests to identify the location of the shared
data from the coherence information on the routers instead of having to first traverse to
the home node.

Read Operation
When a node (R1) issues a read request, the packet is transmitted towards the home node
(H) as shown in Figure 3(a). There two possible scenarios in handling this request. In
the first case, the data is not cached in any other node and no outgoing virtual link exists
from the home node. In this case, H loads the data from the secondary cache or memory
and responds to the requester with data. When the response packet traverses from the
home node towards the requester (R1), the virtual links in each intermediate router are
set to point towards the requesting node. Figure 3(b) illustrates the virtual tree formed
as a result of such an occurrence.
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Fig. 3. Read operations for the basic In Network Cache coherence (MSI) protocol. (a) A read
request sent to the home node (b) A read reply message forms the virtual tree rooted at the
requester (c) A second read request is rerouted towards the root after hitting the tree en route to
the home node (d) The second requester obtains the data and becomes part of the virtual tree.

In the second case, the requested data is already cached by another node. In
Figure 3(c) when R2 is requesting data for an address, R1 has the latest copy of the
data and there is tree with the values. (A request from R2 in Figure 3(c)). There are two
sub-cases based on whether the path between the requester and the home node (H) in-
tersects with an already formed virtual tree. In the first sub-case, when the request does
not intersect with a virtual tree, the request reaches the home node. This is followed by
a traversal through the virtual links towards the root node. At each hop along the virtual
tree, the local node checks for a cached copy of the shared data. If the line is present in
any of the intermediate nodes on the path, the request is satisfied and a response packet
to the requester is formed. If not, the response packet originates from the root node. The
response packet modifies the virtual tree on its way to the requester. Figure 3(d) depicts
the augmented virtual tree. The second sub-case is similar to the first sub-case, except
that the request is routed towards the root of the virtual tree when the request intersects
with the virtual tree link at the node I. Consequently, it reduces the traversal all the way
to the home node.

Write Operation
When a node requests for the write operation, a packet is transmitted towards the home
node(H) for the address . In case it intersects a tree for the same address in some router
along the way, that tree needs to be torn down before the current request is granted. In
Figure 4(a) the write request from R2 intersects a tree on its way to the H. Then, the
current node issues teardown messages for that address and sends it in all directions of
the tree. Once the teardown message reaches a leaf in the directed tree, it invalidates the
line for the entry in it’s tree cache. Further, it sends an acknowledgement up the tree,
as shown in Figure 4(b). As a result of the mechanism, all the acknowledgements head
towards H as shown in Figure 4(c). Once H becomes the leaf of the tree (every path out
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Fig. 4. Write operations for the basic In-network Cache coherence (MSI) protocol Write opera-
tions for the In Network Cache coherence (MSI) protocol. (a) A read request sent to the home
node intersects an existing virtual tree causing teardown message propagation (b) Acknowledge
messages from the leaf node (c) Acknowledge message causing teardown and the write request
message in flight (d) The new virtual tree with the requester as the root.

of it is invalidated) it then grants the request for R2. This results in forming a tree to R2
as shown in 4(d).

3 In-Network Data Caching

This section describes the necessary augmentations to the in-network cache coherence
protocol to support the proposed data caching technique (Figure 5). We also show the
micro-architectural modifications required to support the new functionalities along with
a brief description of the implementation.

3.1 Protocol Modifications

Reads: Changes occur in the behavior of both the read reply message and the read re-
quest message. The data from a read reply message passing through an intermediate
node towards the requester, can potentially be cached in the router’s data store depend-
ing on several factors, including availability of free lines and the caching policy. Any
read request message will intersect the virtual tree for the cache line either at the home
node or at an intermediate node. In the basic version of the protocol, along the path of a
tree, each node is checked to see if it has a local copy of the data. In our scheme, along
with a check at the node, a simultaneous check is made in the data store of the router.
If no copy exists, the read request message is routed towards the root as usual. Once a
copy of the data is found either in the intermediate node’s cache or the data store of its
router, a read reply message is generated. A hit in the data store can reduce the number
of hops needed to put the reply in the network and the hops the reply needs to take to
its destination.
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Fig. 5. Read operations for the proposed In Network Caching (MSI) protocol. (a) A read request
sent to the home node (b) A read reply message forms the virtual tree rooted at the requester; The
cache line is stored at an intermediate router (c) A second read request intersects the virtual tree
at node with cache line in the router data store (d) The second requester obtains the data from
the data store and becomes part of the virtual tree.

Writes: When a write request intersects the virtual tree of the cache line for which the
write has been requested, it causes teardown messages to propagate towards the leaf
nodes in the tree. At each intermediate node, in addition to the basic actions described
in Section 2.1, any copy of the cache line in the data store of the router is marked as
invalid. The write latency to the caches is not directly changed by our protocol. Any
change in the write latency will be from the new traffic in the network which can arise
from the altered read-response traffic.

Teardown: As soon as a teardown message is seen in the router, a check is made to
see if the teardown address is a match in the router’s cache. In case there is a hit, the
address is invalidated immediately. The rest of the protocol remains the same as in the
In-Network Cache Coherence approach.

3.2 Router Microarchitecture

The proposed router architecture (shown in Figure 6(a) ) has ports to access its four
neighbors and it’s local processing element (PE). The proposed router pipeline that
supports the modified protocol is shown in the Figure 6(c). It consists of the Route
Compute (RC) stage, a Virtual Channel Allocation (VA) stage, a Switch Allocation
(SA) stage, a Switch Traversal and a Link Traversal stage. When a packet enters the
pipeline, the RC unit uses X-Y routing to route the packet.

The traditional router pipeline was enhanced with a Tree Cache (TC) stage to enable
In Network Cache Coherence [6]. The Tree Cache stage maintains the virtual links that
form the tree. These virtual links are used to redirect requests for data and hence help
reduce the hops taken by the request packet before it reaches a copy of the data.

This work adds another unit called the Router Local Cache (RLC) to the pipeline
to be used for data storing. The structure of the RLC is as shown in Figure 6 (b). The
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Fig. 6. Proposed router Microarchitecture. (a) The router consists of P input ports consisting of
V virtual channels and P output ports connected to a crossbar. Packets pass through the router
pipeline between the virtual channels and the switch. (b) The proposed Router Local Cache stage
that manages the data in the Data Store in the router (c) The router pipeline. The Router Local
Cache stage occurs in parallel with the packet routing and TC stage.

main components of the RLC are Data Store, Invalidation lines to the VC and the Evict
Buffer. This unit implements policies to store cache lines observed at the router into the
data store during a read reply message. It also implements policies that define when the
data in the data store is to be invalidated when it observes a write request or a teardown
message. Finally, it also recognizes packets containing read requests for cache lines
stored in it and responds appropriately.

Data Store. The Data Store is the main component of the RLC. It is a set of entries
where each entry contains a cache line address and a copy of the latest value for that
address along with a valid bit as shown in Figure 6(b). It is a five-ported structure
handling upto five packets in a single cycle. The address of the cache line contained
in each packet that passes through the RLC is checked for a match with the addresses
contained in the Data Store. The Data Store consists of two main structures, the Hit
Lines and the Dedicated VC which are described below.

Hit Lines: Every read reply packet contains a cache line that can be stored in the data
store. However, to maintain coherence, the address of the line should either be previ-
ously present in the TC or be inserted in the current cycle in the TC before data is
cached in the data store. In some scenarios, such as a conflict in the TC which requires
special handling, the read reply packet waits in the VC until the one of the TC lines (and
hence and entire tree) is invalidated. The data of such packets are not stored as they are
not a part of the TC. The communication of whether the address of a packet is hit in
the TC is accomplished by using ‘hit lines’. Hit lines are wires, one for each port of the
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RLC, that are used to check for the presence in the TC of the packet entering through
the corresponding port.

Dedicated VC: A hit for a read request packet in the data store creates a response
packet for the data from the Data Store’s entry for that address. If the original packet
that experienced the hit is from the PE, then the reply is immediately ejected to the PE.
Any contention for the PE port is handled in a manner similar to the Early ejection [10].
For packets from the remaining ports, a VC is dedicated in the input buffers for the
PE as shown in Figure 6(b). Dedicating a VC ensures that the new packet that is sent
out does not have to search for a free VC every time when there is a hit in the Router
Cache. This does not adversely effect the packets from the PE as the injection rates
for applications are quite low. However, there are two limitations to this method. The
number of packets that can be sent out as a response every cycle are now limited by
the number of dedicated VCs (one in our case). Note that, out of the four directional
physical channel packets entering a router, there can be potentially four hits in the Data
Store. Since there is only one VC into which responses go, three of the hits are not
responded to from this data store. Notice that, while not responding from the Data Store
for all hits that occur decreases the performance benefits that can be acquired from our
technique, it does not cause an error in the request procedure. The request packets that
are not responded from the data store, are forwarded as usual along the tree towards the
root. They can be responded either by the RLC unit of a different router or ultimately
from the root as in the base protocol. The second limitation to this method has to do with
the dedicated VC being occupied at the time of a hit in the Data Store. In that case, the
current RLC can’t service the request packet. This again effects the performance gains
achievable from our work. In our simulations, we found the occurrence of these cases to
low enough not to affect the actual performance gains. Our experimental setup models
these two limitations. A hit in the data store for addresses contained in teardown and
write request packets results in the data stored in the Data Store entry for that address
being invalidated. This is accomplished by resetting the valid bit of the entry.

Invalidation Lines. When a packet enters the router, it is placed in a VC. From the
next cycle, this packet arbitrates for the virtual channels of the next router. If this packet
is a read request that is responded to from the Data Store, it needs to be restricted
from further propagation. This is achieved by invalidating the VC. This invalidation is
accomplished using the invalidation lines shown in Figure 6(b). There is one invalidate
line for each VC of the router, which can set or reset the valid bit of each of these VCs.

Evict Buffer. The condition that needs to be met to maintain cache coherence is as
follows “If a line is valid in the RLC, it should be valid in the TC as well.” The evict
buffer ensures that this condition is held. If at a given instance, the Data Store contains
an entry for an cache line that is present in the TC, any state changes (invalidations)
for the lines in the TC need to be reflected in the entries of the Data Store as well.
A change in state for a line for a TC can occur in two ways 1) through an external
packet or, 2) through internal protocol transitions. In the case of teardown and write
request messages, a conservative approach is adopted and the cache line in the Data
Store is immediately invalidated. This is accomplished through the appropriate ‘valid
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Fig. 7. Area overheads for various sizes of the
datastore unit compared to baseline (Figure 6)

Fig. 8. Area overheads for various sizes of the
datastore unit without the TreeCache unit

bit’ entry. Internal state changes include evictions of the TC line due to conflicts. A line
that is evicted from the TC due to a conflict must be evicted in the next cycle from the
data store to maintain coherence. In addition to this, to maintain coherency, we modify
eviction policy. This is handled in conjunction with a modified replacement (eviction
policy) which ensures that when a line is being evicted from the TC, another packet
does not have a hit to the same line. However, in the corner case, all the ways of a
TC cache can be a hit to the incoming packets. In such cases, the packet requesting
the eviction, backs off for a cycle before trying to evict line again. To invalidate the
evicted addresses in the following cycle, all the addresses which are evicted in the TC
in the current cycle are collected into an Evict Buffer as shown in Figure 6(b). These
addresses are invalidated from the RLC in the following cycle. This way we ensure that
the correctness condition stated above is satisfied.

Finally, the set of packets that are to be processed in the data store in a given cycle
include the potential five new packets and a potential 5 new evictions (all packets from
the preceding cycle evict). The Data Store is a five-ported structure and can thus handle
only five packets in a given cycle. Not handling any of the packets might lead to a co-
herence violation in the Data Store. We handle this situation of more packets to process
than available ports by simply invalidating the entire Data Store. Our experiments re-
vealed that the occurrence of these events is quite rare due to the low injection rates of
applications and thus doesn’t affect the performance of our system.

3.3 Implementation

The RLC stage was designed in HDL and was synthesized at the 90nm technology.
From this, we saw that the TC stage was still the frequency determining stage for all
sizes of data store considered in this work. Thus, our work doesn’t reduce the frequency
of the baseline router. The increase in area of the router in shown in Figures 7,8. Figure 7
shows the increase in area for different sizes of data store compared to the baseline
router. In this instance, the area overhead is less that 2% for our largest sized data store.
The TreeCache(TC) stage replaces the directories in the cache subsystem. Thus, we also
compare the impact on area for a baseline router without the TC stage. Figure 8 shows
the percentage increase in area compared to the baseline router without a TC. Here the
area overheads are higher and vary from 2.5% to 29%.
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Fig. 9. Zones in a mesh: The implementation of Zonal Caching using zonal bits. Zonal bits in-
dicate whether a cache line is currently cached within a particular zone. The zone bits of the
message show that is it cached in Zones 1 and 2 and not cached in Zones 3 and 4. Hence, it may
be cached at the highlighted node.

4 In Network Caching Policies

In this section, we detail the caching policies explored in this work. When a node is
replying to a read request, it forms a ‘read reply’ message and sends it to the network.
A read reply message always follows the tree back to the request node. In case it arrives
at a node without a tree, the node is added to the tree structure before forwarding the
packet. When a new read reply packet enters the router, a decision needs to be made on
saving the data from the packet in the Data Store. We experiment with three methods of
making this decision namely Ideal Caching, Independent Caching and Zonal caching.

4.1 Ideal Caching

This scheme demonstrates the best case performance that can be obtained from storing
data in the routers. We model ideal caching by simulating an infinite sized data store.
Thus, the decision made in every router is to store data from all the ‘read reply’ packets.
Though impractical to be actually implemented, this experiment gives us the upper
limit on the amount of savings possible through in-network caching. This also helps
us understand the effectiveness of the more practical schemes that follow. In the ideal
caching, every node in the tree cache for a shared data has the data as well. Thus, for a
read request packet, intersecting a tree for the requested address is equivalent to finding
the data.

4.2 Independent Caching

In our next caching policy, we look at an easy to implement caching scheme. In this
scheme, the router has a fixed size for the local store. In independent caching, every
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router decides what it wants to keep in the additional storage independently. Thus, the
decision is made by each router without any global knowledge. Each router looks at
the data passing through it and decides whether to cache it or not. This policy is imple-
mented in the following way. The router tries to cache all the data that passes through
it. If the router’s data store is already full, we replace the least recently used line. How-
ever, we do not evict a line unless it’s last access has been before a threshold num-
ber of cycles (50 cycles)to the current cycle. This is done to prevent evicts from the
router’s data store frequently. The biggest drawback with this scheme is that it under-
utilizes the local store capacity. For instance, if a data packet passes in a particular
direction, then it has the potential of being cached in every router on the path. However,
given the fact that the number of shared addresses is few, this caching scheme is still
effective.

4.3 Zonal Caching

The drawback of the independent caching scheme is that it might cache multiple copies
of the same data in the network. The best way to use the available capacity of the
router’s cache is to ensure that there is just a single copy of this data in the network.
However, trying to reduce the number of copies also conflicts with the goal of reducing
the number of hops to service the request.

Zonal caching aims to compromise between these two conflicting goals. This scheme
aims to increase the effective data store capacity over the Independent caching scheme
while not restricting the number of copies to one. Multiple copies are allowed in the
network as long as they are distant from each other. To realize such a scheme, some
global state information is required on where the copies of the data are present in the
data stores of the network. Carrying explicit information on the location of the data in
the router cache space gives the most information to make such decisions. However, it
is not scalable.

As a more scalable approach, we divide the mesh of routers into a grid and aim to
place one copy in each of the zone in the grid (Figure 9). A four bit vector is added to
the header of a packet to capture this information. Each bit corresponds to the presence
of a packet in a zone. If (say) the bit for zone 1 is turned on, that means that one
of the routers in the zone 1 has a copy of the data in it’s local store. In our router,
when a read reply packet is cached in the data store , the packet header is modified
to turn on the current zone bit in the RLC stage. In the Figure 9, when a read reply
packet enters the highlighted node in zone 4, it caries the information that it has been
cached in zone 1 and zone 2 but not in zone 3 and zone 4. Since, the node seeing this
packet is in zone 4, it decides it can cache this data and tries to cache it. Note that this
logic could be implemented with a single bit but the scheme here illustrates the point
better. In order for a router not to cache the data from it’s own node we propose an
optimization. Packets injected from the current node are not candidates for being added
into the router’s data store. The replacement scheme is as described in the independent
caching. The zonal caching can lead to increase in contention for the cache space along
the edges of the router as compared to an interior router. This scenario is not an issue in
our experimental setup as all the routers except the corner routers are along the edge of
a zone.
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Table 1. Simulation setup

System simulation setup
Number of cores 16

L1 I-Cache per core
capacity 16KB
assoc 1 way
access cycle 1 cycle

L1 D-Cache per core
capacity 16KB
assoc 2 way
access cycle 1 cycle

Unified L2 per core
capacity 256KB
assoc 8 way
access cycle 6 cycles

5 Experimental Setup

We use Simics [13], a full system simulator to model a 16-core CMP architecture.
The system is modeled as an in-order core for the SPARC ISA running the Solaris 9
operating system. The cache configuration for the simulated system is shown in Table 1.

The SpecOMP [1] benchmark suite was run on this system and traces collected from
their runs for addresses accessed. Each benchmark was marked with an initialization
phase until it enters the main program. Caches were warmed up for 500 million instruc-
tions (executed per processor) at this stage. Traces were collected for the next 1 billion
instructions (per processor). Our network on chip simulator modeled a 4 X 4 mesh with
a 5 stage pipeline for the router. The simulator modeled the ‘In-network cache coherence
protocol’ and the in network caching proposed in this work. The traces obtained for each
benchmark were fed into the network simulator and the average latencies were observed.
For all our results, the base case is a system with ‘In Network Cache coherence’.

6 Experimental Results

The In-Network caching protocol proposed in this work is beneficial to the read la-
tencies of accessing the memory. The write latencies are not directly modified by the
protocol changes. However, the change in the traffic in the system changes them. We
usually saw a very minor improvements for all of our experiments. The number we re-
port in this work is the overall memory access latency for both reads and writes to the
caches. Figure 10 shows the percentage improvement of memory access latency for the
applications in the ideal caching scenario. The maximum performance improvement is
shown by apsi (38%) and the least is shown by art (17%). On average the benefit shown
by the benchmarks is 27%. It can be observed that there is a clear relation between the
benefits shown by each benchmark and the number of accesses to shared lines. For ex-
ample, apsi has the largest ratio of accesses to shared lines to accesses to private lines.
Therefore, it benefits the most from the caching of shared lines. At the other end of the
spectrum, the benchmarks art and wupwise have the two smallest values for the ratio
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Fig. 11. Latency improvement using indepen-
dent caching

of accesses to shared lines to accesses to private lines. Correspondingly, they also show
the two lowest improvements when Ideal caching is employed.

Figure 11 shows the percentage improvement for each benchmark for four different
local store sizes when Independent caching is employed over the base case when no In
network caching is employed. The trend that can be observed is similar to that of the
Ideal caching case. The benchmark apsi shows the most improvement in general and
the most improvement when the number of entries is increased. The benchmark wup-
wise and art show the least improvement in general and the least relative improvement
when the local store size is increased. The reasons for this are the same as the Ideal
caching case. A more interesting comparison can be made when the improvements of
the benchmarks mgrid and swim are studied. Both benchmarks access shared data more
than 90% of the time. However, swim shows a disproportionately large performance im-
provement compared to mgrid. The reason behind this is that the percentage of shared
data in swim is very small compared to mgrid. Therefore, an increase in the size of the
local store allows swim to cache a greater portion of its shared working set compared to
mgrid. Therefore, swim has a larger improvement compared to mgrid.

Figure 12 shows the benefits of Zonal caching and Independent caching for a local
store of 4 entries. Clearly Zonal caching is more beneficial for all benchmarks com-
pared to Independent caching. The average improvement of the zonal caching over the
independent caching is 17%. The largest benefits over Independent Caching are shown
by apsi and the lowest by wupwise and art for the reasons elaborated earlier. From
the results shown in this figure, it is clear that Zonal caching should be the preferred
approach to caching shared data.

To contrast the zonal and the independent schemes further, Figure 13 presents the
percentage improvement of Zonal caching with a 4-entry local store normalized to the
percentage improvement obtained by Independent caching with a 16-entry local store.
We see that on average, Zonal caching with a 4-entry local store provides 97% of the
performance improvements of Independent caching with 16-entry local store. There-
fore, we can conclude that using Zonal caching with a 4-entry local store is as good
as using Independent caching with a 16-entry local which in turn means that Zonal
caching effectively provides a four-fold increase in local store capacity compared to
Independent caching.
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Fig. 12. Latency improvement using Zonal and
Independent caching with a 4-entry data store

Fig. 13. Latency improvement offered by
Zonal caching using a 4-entry local store nor-
malized to the performance of a 16-entry data
store using the independent scheme

7 Related Work

Power and performance consideration have motivated the use to chip multiproces-
sors [16]. As buses are not scalable, packet switched networks were proposed for on
chip communication [5]. The basic router design is a five stage pipeline design is ex-
plained in [17]. This was further improved in several works including [15,2]. Recent re-
search in the field of on-chip networks is surveyed in [4,7]. Kim et al. [9] aim to reduce
the number of hops for packets in the network by using high radix networks. Kumar et
al. [11] reduce the number of hops by skipping some routers along the way. Our work
takes an alternate approach by bringing the required data closer to the requestor.

Liu et al. [12] also identify that the amount of shared data is low and the access
to them frequent. As the number of concurrent accesses to a data block by the same
processor is low, it is important that the data be placed where it is close to the proces-
sors that access it. They implement a fast center cell cache that resides in the center of
the processor array. However, their work requires that the center cell be placed between
all the processors in a 4-core CMP and is thus not scalable. In contrast, this work con-
siders a distributed cache placed in the routers of the networks and the experiments are
provided for a tiled 16-core system and is scalable to networks beyond this size.

Eisley et al. [6] propose (see section 2.1) to embed cache coherence information into
the routers in the NoC itself. This allows data requests to be routed to the processor
whose cache contains the data. Our work builds upon [6] by adding a small data store
the routers that stores data being transported. These enhanced routers will be able to
service requests for data that they hold which reduces the read latency times. Other
works that optimize the network for the cache coherence protocol include [3,18].

Mizrahi et al. [14] implemented a cache coherence in network and also migrated data
in the network. Their network is a multi stage interconnection network implemented as
a tree. Our work focuses on a direct mesh of routers. None of the detailed pipeline pro-
posals are presented in their work. Their evaluation scheme assumes a fixed number of
writable variables and no particular benchmark unlike our work. Iyer et al. [8]. suggest a
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similar technique of putting the caches in network switches. However, their implemen-
tation is for multiprocessor systems connected by generic network and not a solution
for network-on-chip architecture. Since adding cache to a network switch doesn’t effect
the overall frequency of a system, their works lacks the implementation detail presented
in our work.

8 Conclusion

This paper presented a novel approach to improving the effective performance of an
NoC. Based on the premise that the amount of shared data in parallel applications is
small and that the proportion of accesses to them are large, this work proposed to store
shared data in the network fabric. The proposed approach involved adding a data store
to the routers of the NoC. The paper presented a coherence protocol and a router mi-
croarchitecture to support the proposed scheme. Three caching policies were examined
and the results show a significant decrease in the netowrk latency of the benchmark
applications.
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Abstract. Low-Density Parity-Check (LDPC) codes are among the best
error correcting codes known and have been recently adopted by data
transmission standards, such as the second generation for Satellite Digi-
tal Video Broadcasting (DVB-S2) and WiMAX. LDPC codes are based
on sparse parity-check matrices and use message-passing algorithms, also
known as belief propagation, which demands very intensive computation.
For that reason, VLSI dedicated architectures have been proposed in the
past few years, to achieve real-time processing. This paper proposes a
new flexible and programmable approach for LDPC decoding on a het-
erogeneous multicore Cell Broadband Engine (Cell/B.E.) architecture.
Very compact data structures were developed to represent the bipar-
tite graph for both regular and irregular LDPC codes. They are used to
map the irregular behavior of the Sum-Product Algorithm (SPA) used
in LDPC decoding into a computing model that expresses parallelism
and locality of data by decoupling computation and memory accesses.
This model can be used in general for exploiting capabilities of modern
multicore architectures. For the Cell/B.E., in particular, stream-based
programs were developed for simultaneous multicodeword LDPC decod-
ing by using SIMD features and a low-latency DMA-based data com-
munication mechanism between processors. Experimental results show
significant throughputs that compare well with state-of-the-art VLSI-
based solutions.

1 Introduction

Low-Density Parity-Check (LDPC) codes are powerful error correcting codes
(ECC) proposed by Robert Gallager in 1962 [1] which allow to work very close
to the Shannon limit. Rediscovered by Mackay and Neal in 1996 [2], they have
inspired the scientific community to develop efficient LDPC coding solutions [3],
[4], [5], [6], [7] for data communication systems. They have recently been adopted
by the DVB-S2 standard, WiMAX (802.16e), Wifi (802.11n), 10Gbit Ethernet
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(802.3an), and other new emerging standards for communication and storage
applications. LDPC codes are linear (N, K) block codes [8] defined by sparse
binary parity check H matrices of dimension (N − K) × N . They are usually
represented by bipartite graphs formed by Bit Nodes (BNs) and Check Nodes
(CNs), and linked by bidirectional edges, also called Tanner graphs [9]. LDPC
decoders, and in particular the Sum-Product Algorithm (SPA), require very
intensive floating-point computation. For this reason, dedicated VLSI hardware
solutions based on fixed-point arithmetic in the logarithmic domain [10] have
been proposed over the last few years. Nevertheless, a software-based, flexible,
scalable and low-cost solution to this computationally intensive problem would
be highly desirable.

In line with this perspective, manycore architectures have recently been pro-
posed for implementing LDPC decoders under a multithreaded approach based
on Graphics Processing Units (GPUs) [11], where multiple sub-partitions of
the Tanner graph are distributed into different threads on the GPU grid to be
processed on different processors, using a high number of threads as a technique
to hide latency. These implementations have been performed using either a ded-
icated GPU programming interface such as the recent Computer Unified Device
Architecture (CUDA) from NVIDIA [12], or the generic Caravela programming
interface tool [13].

Pushed by the games industry, the STI Cell Broadband Engine (Cell/B.E.)
architecture [14] is a joint venture involving Sony, Toshiba and IBM, charac-
terized by a heterogeneous multicore architecture. It is composed by one main
64-bit PowerPC Processor Element (PPE) that communicates with eight Syn-
ergistic Processor Elements (SPEs) each having 256 KByte of local memory for
data and source code, and a vectorized 128-bit wide SIMD oriented architecture.
Data transfers between PPE and SPE are performed efficiently by using Direct
Memory Accesses (DMA).

This work proposes a novel approach to the SPA algorithm oriented for LDPC
decoding [15] on the Cell multicore architecture [16], supported on a new compact
data structure that suits data-parallelism and efficiently represents the Tanner
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Fig. 1. An H matrix example with dimensions 4 × 8
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graph. We propose to run the LDPC decoder on this heterogeneous architecture
by putting the main PPE in charge of the overall control, while offloading the
intensive computation of a considerable number of codewords across the several
SPEs [17]. Local memory on each SPE is exploited, while at the same time data
communication overhead is minimized. The Cell/B.E. architecture is also able to
perform floating-point arithmetic operations, which may improve accuracy and
produce lower Bit Error Rates (BER), namely regarding to VLSI fixed-point
LDPC decoders [10]. The compact data representation and the new algorithm
based on a specific type of stream-based computing model, that exploits the
use of SIMD instructions [18] on the Cell/B.E., are the main contributions of
this paper.

This paper is organized as follows. The next section addresses the properties
of the SPA algorithm used in LDPC decoding. Section 3 describes the parallel
approach used in this work. Section 4 presents the architecture details and the
SPA flooding schedule algorithm specifically developed for SIMD computing on
the Cell processor. Section 5 reports experimental results obtained for LDPC
decoding on the Cell/B.E. architecture. The last section concludes the paper.
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Fig. 2. Tanner graph representation of the H matrix in figure 1. The example shows
messages being exchanged between CNm and BNn. A similar representation applies
for Check Nodes message updating.
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2 SPA for LDPC Decoding

LDPCs are linear (N, K) block codes defined by sparse binary parity check H
matrices of dimension (N − K) × N . They are usually represented by bipartite
graphs, also called Tanner graphs [9], formed by Bit Nodes (BNs) and Check
Nodes (CNs) linked by bidirectional edges. The SPA is a very efficient algo-
rithm [8] used for LDPC decoding. It is based on the belief propagation between
nodes connected as indicated by the Tanner graph edges (see an example in
figure 2). As proposed by Gallager, the Sum-Product Algorithm (SPA) operates
on probabilities [1] [2] [8].

Given a (N, K) LDPC code, we assume BPSK modulation which maps a
codeword c = (c1, c2, · · · , cn), into the sequence x = (x1, x2, · · · , xn), according
to xi = (−1)ci . Then, x is transmitted through an additive white Gaussian
noise (AWGN) channel given rise to the received sequence y = (y1, y2, · · · , yn),
with yi = xi + ni, where ni is a random variable with zero mean and variance
σ2 = N0/2.

SPA is depicted in Algorithm 1 [8]. It is mainly described by two horizontal
and vertical intensive processing blocks, respectively defined by equations (1),
(2) and (3), (4). The first one calculates the message update from each CNm to
BNn, considering accesses to H on a row basis. It indicates the probability of
BNn being 0 or 1. Figure 2 exemplifies, for a particular 4 × 8 H matrix, BN0
being updated by CN0, BN4 updated by CN1 and BN6 by CN2. Similarly,
the second major block computes messages sent from BNn to CNm, assuming
accesses on a column basis. The iterative procedure is stopped if the decoded
word ĉ verifies all parity check equations of the code ĉ HT = 0, or a maximum
number of iterations is reached, in which case no codeword is detected.

The irregular memory access patterns in LDPC decoding represent a challenge
to the efficiency of the proposed solution and are depicted in figure 3. The access
to different nodes in the Tanner graph is defined by the H matrix and should
favor randomization in order to allow good coding gains. For that reason, the
data structures developed and represented in figure 6 try to minimize that effect,
by grouping data computed in the same step. A global irregular access pattern
is translated into several partial regular access patterns.

3 Parallelization Approach

The parallelization approach proposed for the LDPC decoder is explained in the
context of the Cell/B.E. architecture. The LDPC decoder processes on an itera-
tive basis. The PPE reads information yn from the input channel and produces
the probabilities pn as indicated in Algorithm 1. After receiving the correspond-
ing pn values, each SPE performs two steps: (i) computes kernel 1 and kernel 2
alternately using SIMD instructions; (ii) sends the final results back to the PPE
which replaces new data to be sent to the SPE. Data is communicated between
the PPE and the SPEs by efficient Direct Memory Accesses (DMA).

The parallel LDPC decoder explores data-parallelism by applying the same
algorithm to 4 codewords on each SPE (see figure 5). Data are represented



Parallel LDPC Decoding on the Cell/B.E. Processor 393

Algorithm 1. SPA

1: q(0)mn(0) = 1 − pn ; q(0)mn(1) = pn;

pn = 1

1+e
2yn
σ2

; Eb
N0

= N
2Kσ2 {Initialization}

2: while (ĉHT �= 0 ∧ i < I) {c-decod. word;I-Max no. iterations.}
do

3: {For each node pair (BNn, CNm), corresponding to Hmn = 1 in the parity check
matrix H of the code do:}

4: {Compute the message sent from CNm to BNn, that indicates the probability
of BNn being 0 or 1:}

(Kernel 1)
r
(i)
mn (0) = 1

2 + 1
2

�
n′∈N(m)\n

�
1 − 2q(i−1)

n′m (1)
�

(1)

r
(i)
mn (1) = 1 − r

(i)
mn (0) (2)

{where N(m)\n represents BN’s connected to CNm excluding BNn.}

5: {Compute message from BNn to CNm, which indicates the probability of BNn

being 0 or 1:}
(Kernel 2)
q
(i)
nm (0) = knm (1 − pn)

�
m′∈M(n)\m

r
(i)
m′n (0) (3)

q
(i)
nm (1) = knmpn

�
m′∈M(n)\m

r
(i)
m′n (1) (4)

{where knm are chosen to ensure q(i)nm (0) + q
(i)
nm (1) = 1, and M(n)\m is the set

of CN’s connected to BNn excluding CNm.}

6: {Compute the a posteriori pseudo-probabilities:}
Q

(i)
n (0) = kn (1 − pn)

�
m∈M(n)

r
(i)
mn (0)

Q
(i)
n (1) = knpn

�
m∈M(n)

r
(i)
mn (1)

{where kn are chosen to guarantee Q(i)
n (0) +Q

(i)
n (1) = 1.}

7: {Perform hard decoding} ∀n,

ĉ
(i)
n =

�
1 ⇐ Q

(i)
n (1) > 0.5

0 ⇐ Q
(i)
n (1) < 0.5

8: end while

as 32-bit precision floating-point numbers. The proposed LDPC decoder suits
scalability and for that reason it can be easily adopted by future manycore
generations of the architecture with a higher number of SPEs, namely the next
Cell generation, which is expected to have more SPEs available for intensive
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processing. In that case, it will be able to decode more codewords simultaneously,
increasing the efficiency and throughput of the decoder. The PPE controls the
main tasks, offloading the intensive processing to the SPEs, where the processing
is then distributed over several threads. Data is loaded from the main memory
into the local storage (LS) memory on the SPEs via DMA units. The data
structures that define the Tanner graph and the SPA are also loaded into the
LS on the SPEs where the processing is performed, and at the end the processed
data is returned to the PPE, which concludes the processing of the current
codewords and starts the new ones. Each SPE runs independently of the other
SPEs.

A complete iteration inside the SPE is processed in two phases: (i) kernel 1
computes data according to equations (1) and (2) defined in Algorithm 1, where
the processing is performed in a row-major order. The data structure designed
to represent rmn in order to perform this task is depicted in figure 6 a). It can
be seen in this figure that data related to BNs common to a CN equation is
stored in contiguous memory positions to optimize processing; and (ii) kernel 2
processes data on a column-major order, defined by equations (3) and (4) in
Algorithm 1. The qnm data structure used in this case is depicted in figure 6 b).
The SPE accesses data in a row or column-major order, depending on the kernel
that is being processed at the time.
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Fig. 3. Illustration of irregular memory accesses for the example in figure 2
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Kernel 1 performs the horizontal processing according to the Tanner graph,
and the r

(i)
mn data defined in section 2 is updated for iteration i. The data is

initially transferred to the LS of the SPE by performing a DMA transaction, and
its access organization maximizes data reuse, because a CN updating BNs reads
common information from several BNs that share data among them. Figure 6 b)
shows the data structures that hold the qnm values to be read and also the
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corresponding indexes of the rmn elements in figure 6 a) that they are going to
update. As depicted in figure 6, BNs and CNs associated with the same rmn or
qnm equation are represented in contiguous blocks of memory.

In kernel 2 data is processed in a column-major order, which is defined by
vertical processing. According to the Tanner graph, each BN updates all the
CNs connected to it and holds the addresses necessary to complete the update
of all q

(i)
nm data for iteration i. Once again maximum data reusing is achieved,

but this time among data belonging to the same column of the H matrix, as
depicted in figures 2 and 6 b).

The computation is performed in the SPE for a predefined number of itera-
tions. One of the purposes of this work is to evaluate the performance, namely
the throughput, over different computing models. Pursuing this goal, we decided
to develop a solution where the number of iterations is fixed to allow a fair com-
parison between different approaches, where the processing workload is known a
priori and the same for all environments. This is why, at the end of an iteration,
we don’t check if the decoder produces a valid codeword, which would cause the
decoding processing to stop. Nevertheless, this operation represents a negligible
overhead. When all the BNs and CNs are updated after the final iteration, the
SPE activates a DMA transaction and sends data back to the main memory, sig-
nalizing the PPE to conclude the processing. As the DMA finishes transferring
the data, synchronization points are introduced to allow data buffers reuse.
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Fig. 6. Segment of the SIMD vectorized data structures in memory to represent: a)
rmn messages associated to BNn and BNn′ nodes; and b) qnm messages associated
to CNm and CNm′ nodes
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4 SPA LDPC Decoding on the Cell/B.E. Architecture

The parallel approach proposed in the previous section is applied to the LDPC
decoder on the Cell/B.E. processor. The recursive updating mechanism applied
to BNs and CNs is performed in a sequence of pairs {BN, CN} and tested for a
number of iterations ranging from 10 to 100, using single precision floating-point
arithmetic. Synchronization between the PPE and the SPEs is performed using
mailboxes.

This approach tries to explore data-parallelism and data locality while per-
forming the partitioning and mapping of the algorithm and data structures over
the multiple cores, and at the same time minimizes delays caused by latency and
synchronization.

4.1 PPE

The part of the algorithm that executes on the PPE side is presented in
Algorithm 2. We force the PPE to communicate with only one SPE, which
is called the MASTER SPE, and performs the control over the remaining SPEs.
This is more efficient than putting the PPE controlling all the SPEs.

The PPE receives the yn information from the channel and calculates proba-
bilities pn, after which it sends a NEW WORD message to the MASTER SPE.
Then, it waits for the download of all pn probabilities to the SPEs and for the
processing to be completed in each one of them.

Finally, when all the iterations are completed, the MASTER SPE sends an
END DECODE message to the PPE to conclude the current decoding process
and get ready to start processing a new word.

Algorithm 2. PPE side of the algorithm
1: for th ctr = 1 to NSPEs: do
2: Create th ctr thread
3: end for
4: repeat
5: Receives yn from the channel and calculates pn probabilities
6: Send msg NEW WORD to MASTER SPE

Ensure: Wait until mail is received (SPE[i].mailboxcount > 0) from MASTER SPE
7: msg = SPE[i].mailbox (received msg END DECODE from MASTER SPE)
8: until true

4.2 SPE

The SPEs are used for the intensive processing task of updating all BNs and CNs
by executing kernel 1 and kernel 2 (in Algorithm 1), in each decoding iteration.
Each thread running on the SPEs accesses the main memory by using DMA and
computes data according to the Tanner graph, as defined in the H matrix (see
the example in figure 2). The MASTER SPE side of the procedure is described in
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Algorithm 3. MASTER SPE side of the algorithm
1: repeat

Ensure: Read mailbox (waiting a NEW WORD mail from PPE)
2: Broadcast msg NEW WORD to all other SPEs
3: Get pn probabilities
4: for i = 1 to N Iter: do
5: Compute rmn

6: Compute qnm

7: end for
8: Put final Qn values on the PPE

Ensure: Read mailbox (waiting an END DECODE mail from all other SPEs)
9: Send msg END DECODE to PPE

10: until true

Algorithm 3. The Get operation is adopted to represent a communication PPE →
SPE, while the Put operation is used for communication in the opposite direction.

We initialize the process and start an infinite loop, waiting for communica-
tions to arrive from the PPE (in the case of the MASTER SPE), or from the
MASTER SPE (for all other SPEs). In the MASTER SPE, the only kind of mes-
sage expected from the PPE is a NEW WORD message. When a NEW WORD
message is received, the MASTER SPE broadcasts a NEW WORD message to
all other SPEs and loads pn probabilities associated to itself. After receiving
these messages, each one of the other SPEs also gets its own pn values.

The processing terminates when the number of iterations is reached and an
END DECODE mail is sent by all SPEs to the MASTER SPE, which immedi-
ately notifies the PPE with an END DECODE message.

Algorithm 4. SLAVE SPE side of the algorithm
1: repeat

Ensure: Read mailbox (waiting a NEW WORD mail from MASTER SPE)
2: Get pn probabilities
3: for i = 1 to N Iter: do
4: Compute rmn

5: Compute qnm

6: end for
7: Put final Qn values on the PPE
8: Send msg END DECODE to MASTER SPE
9: until true

The intensive part of the computation in LDPC decoding on the Cell/B.E.
architecture takes advantage of the processing power and SIMD instruction
set available on the SPEs, which means that several codewords are decoded
simultaneously.
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5 Experimental Results

To evaluate the performance of the proposed LDPC decoder, the Cell/B.E. was
programmed using: (i) the PPE alone which is denoted by serial mode in figure 7;
and (ii) the complete set of PPE + six SPE processors denoted by parallel mode
in the same figure. The Cell/B.E. is included in a PlayStation 3 (PS3) platform,
which restricts the number of available SPEs to 6, from a total of 8.

Table 1. Experimental setup

Serial mode Parallel mode

Platform PPE STI Cell/B.E.
Language C C

OS Linux (Fedora) kernel 2.6.16
PPE SPE

Clock frequency 3.2GHz 3.2GHz 3.2GHz
Memory 256MB 256MB 256KB

The serial mode uses a dual thread approach and exploits SIMD instructions.
It should be noted that by performing the comparison based on the time per
bit decoded, the serial solution that uses only the PPE is slower than the exe-
cution on a single SPE, because the PPE accesses the slow main memory, while
the SPE accesses the fast LS. On the parallel approach the experimental results
were also obtained using SIMD instructions, which are responsible for the inten-
sive decoding part of the algorithm, where 4 floating-point elements are packed
and operated in a single instruction, making it possible to decode 4 codewords
in parallel on each SPE. All the processing times were measured for decoders
performing a number of iterations ranging from 10 to 100.

The experimental setup for the two modes performing LDPC decoding is de-
picted in table 1. The PPE runs at 3.2GHz and has 256MByte of RAM memory,
and each of the 6 SPEs runs at 3.2GHz and has 256 KByte of local memory.

All matrices under test were run on both models and are presented in table 2.
Matrices A, B and C are regular with rate = 1/2 and present small to medium
workloads. Table 2 shows the dimensions of the matrices under test and the
corresponding sizes that their equivalent data structures (depicted in figure 6)

Table 2. Parity check matrices under test

Matrix Size Edges Edges/row Data structures memory
occupancy on the LS of a SPE

A 128 × 256 768 6 35840 Bytes
B 252 × 504 1512 6 70560 Bytes
C 512 × 1024 3072 6 143360 Bytes
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occupy inside the memory of a SPE. The maximum regular code allowed is
limited by the LS size, according to:

N × Edges/row × 18 + 32 × N + Program Size ≤ 256KByte. (5)

Figure 7 presents the decoding times for matrices A to C. They relate to the
execution time needed for the Cell/B.E. to decode a codeword on the parallel
mode and compare it against the processing time required to decode the same
codeword on the serial mode. The decoding time for matrix C shows that on
the parallel mode the Cell/B.E. takes approximately 14.7μs to decode a 1024
bits codeword in 10 iterations, against 244.7μs on the serial mode. Considering
that the Cell/B.E. performs concurrent processing on the six SPEs, each using
SIMD to process several codewords simultaneously, we conclude that it achieves
a throughput of 69.5 Mbps. Comparing this throughput with that obtained on
the serial mode, the speedup achieved for matrix C running on the Cell/B.E. is
16. Experimental evaluations show that the same algorithm applied only to one
SPE (also using SIMD) has a global processing time less than 1% faster than
the full version that uses six SPEs. In fact, due to the existence of low-latency
DMA hardware and fast mailbox procedures, the impact of data transfers in
this model is so low, that the overhead in communications introduced by using
a higher number of SPEs, as expected in the next generations of the Cell/B.E.
architecture, would be marginal.

5.1 Discussion

Memory access constraints represent a serious challenge in multicore architec-
tures. The parallel approach proposed in this paper for LDPC decoding, based
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Fig. 7. LDPC decoding times on the Cell/B.E. in serial and parallel modes
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in intensive irregular accesses to memory, tries to minimize that effect. In order
to analyze the obtained throughputs, we propose the following mathematical
model, which assumes a hypothetical upper bound throughput Tma, as if the
algorithm only performed memory accesses (and no arithmetic operations) on
the local SPE:

Tma =
4 × n × P × Wm

6 × Edges × Niter
, (6)

where n denotes the codeword length, P the number of SPEs, Niter is the number
of iterations performed, Edges the number of Tanner graph edges of the code
and Wm represents the SPE memory bandwidth ( Wm � 3.01 Gword/s1 was
experimentally obtained). Denoting α as the ratio between the global through-
puts T (depicted in table 3) and Tma, as T = α × Tma, it was found that α < 1
and approximately constant (equal to 0.17 with negligible variation) for all code
lengths and rates. This mathematical model shows that the global throughputs
in table 3 are mainly limited by the SPE processing time rather than bottlenecks
in memory accesses, which is a very important aspect when using an architecture
based in multicore processing such as the present one. The Tma model fits the
experimental results with adequate precision.

Table 3. Throughputs obtained in the parallel mode (Mbps)

Matrix 10 iter. 25 iter. 50 iter. 100 iter.

A 68.5 28.0 14.2 7.1
B 69.1 28.3 14.2 7.2
C 69.5 28.4 14.3 7.2

The results reported in table 3 for the SPA algorithm in the proposed
Cell/B.E. architecture are better than those reported in [7], that implements
LDPC decoding with an algorithm computationally less intensive (Min-Sum)
than the SPA on a hardware platform with similar characteristics. At the same
time, our results are only slightly lower than those reported in VLSI dedicated
solutions [19], and also for the less complex Min-Sum algorithm.

6 Conclusion

This paper proposes a novel parallel approach for LDPC decoding on multi-
core architectures. Compact and vectorized data structures to represent the ex-
changed messages between connected nodes (BNn, CNm) on the Tanner graph
of an LDPC decoder are presented. These data structures allow a significant re-
duction of both the memory space and the processing time necessary for LDPC
decoding. The SPA was adapted for stream computing suiting LDPC decoding
on the Cell/B.E. architecture (CBEA). Significant speedups superior to 15 and

1 Giga 128-bit words per second.
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throughputs near 70 Mbps are reported. The solution proposed in this paper is
scalable to future generations of the Cell/B.E. architecture, that are expected to
have more SPEs, being able to produce even better performances, with a mini-
mal increase of overhead in data communications between processors. It provides
a low-cost and flexible software-based multicore alternative with performances
that compare well to the expensive, non-scalable and hardware-dedicated VLSI
LDPC decoder solutions.
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Abstract. In previous work the 3D-Wave parallelization strategy was
proposed to increase the parallel scalability of H.264 video decoding.
This strategy is based on the observation that inter-frame dependencies
have a limited spatial range. The previous results, however, investigate
application scalability on an idealized multiprocessor. This work presents
an implementation of the 3D-Wave strategy on a multicore architecture
composed of NXP TriMedia TM3270 embedded processors. The results
show that the parallel H.264 implementation scales very well, achieving a
speedup of more than 54 on a 64-core processor. Potential drawbacks of
the 3D-Wave strategy are that the memory requirements increase since
there can be many frames in flight, and that the latencies of some frames
might increase. To address these drawbacks, policies to reduce the num-
ber of frames in flight and the frame latency are also presented. The
results show that our policies combat memory and latency issues with a
negligible effect on the performance scalability.

1 Introduction

The demand for computational power increases continuously as the consumer
market forecasts new applications such as Ultra High Definition (UHD) video [1],
3D TV [2], and real-time High Definition (HD) video encoding. In the past this
demand was mainly satisfied by increasing the clock frequency and by exploiting
more instruction-level parallelism (ILP). Due to the inability to increase the clock
frequency much further because of thermal constraints and because it is difficult
to exploit more ILP, multicore architectures have appeared on the market.

This new paradigm relies on the existence of sufficient thread-level parallelism
(TLP) to exploit the large number of cores. Techniques to extract TLP from
applications will be crucial to the success of multicores. This work investigates
the exploitation of the TLP available in an H.264 video decoder on an embedded
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multicore processor. H.264 was chosen due to its high computational demands,
wide utilization, and development maturity and the lack of “mature” future
applications. although a 64-core processor is not required to decode a Full High
Definition (FHD) video in real-time. Real-time encoding remains a problem and
decoding is part of encoding. Furthermore, emerging applications such as 3DTV
are likely to be based on current video coding methods [2].

In previous work [3] we have proposed the 3D-Wave parallelization strategy for
H.264 video decoding. It has been shown that the 3D-Wave strategy potentially
scales to a much larger number of cores than previous strategies. However, the
results presented there are analytical, analyzing how many macroblocks (MBs)
could be processed in parallel assuming infinite resources, no communication
delay, infinite bandwidth, and a constant MB decoding time. In other words,
our previous work is a limit study.

Compared to [3], we make the following contributions:

– We present an implementation of the 3D-Wave strategy on an embedded
multicore consisting of up to 64 TM3270 processors. Implementing the 3D-
Wave turned out to be quite challenging. It required to dynamically identify
inter-frame MB dependencies and handle their thread synchronization, in
addition to intra-frame dependencies and synchronization. This led to the
development of a subscription mechanism where MBs subscribe themselves
to a so-called Kick-off List (KoL) associated with the MBs they depend on.
Only if these MBs have been processed, processing of the dependent MBs
can be resumed.

– A potential drawback of the 3D-Wave strategy is that the latency may be-
come unbounded because many frames will be decoded simultaneously. A
policy is presented that gives priority to the oldest frame so that newer
frames are only decoded when there are idle cores.

– Another potential drawback of the 3D-Wave strategy is that the memory
requirements might increase because of large number of frames in flight. To
overcome this drawback we present a frame scheduling policy to control the
number of frames in flight.

Parallel implementations of H.264 decoding and encoding have been described
in several papers. Rodriguez et al. [4] implemented an H.264 encoder using Group
of Pictures (GOP)- (and slice-) level parallelism on a cluster of workstations using
MPI. Although real-time operation can be achieved with such an approach, the
latency is very high.

Chen et al. [5] presented a parallel implementation that decodes several B
frames in parallel. However, even though uncommon, the H.264 standard allows
to use B frames as reference frames, in which case they cannot be decoded in
parallel. Moreover, usually there are no more than 2 or 3 B frames between
P frames. This limits the scalability to a few threads. The 3D-Wave strategy
dynamically detects dependencies and automatically exploits the parallelism if
B frames are not used as reference frames.

MB-level parallelism has been exploited in previous work. Van der Tol et al. [6]
presented the exploitation of intra-frame MB-level parallelism and suggested to
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combine it with frame-level parallelism. If frame-level parallelism can be exploited
is determined statically by the length of the motion vectors, while in our approach
it is determined dynamically.

Chen et al. [5] also presented MB-level parallelism combined with frame-level
parallelism to parallelize H.264 encoding. In their work, however, the exploitation
of frame-level parallelism is limited to two consecutive frames and independent
MBs are identified statically. This requires that the encoder limits the motion
vector length. The scalability of the implementation is analyzed on a quad-core
processor with Hyper-Threading Technology. In our work independent MBs are
identified dynamically and we present results for up to 64 cores.

This paper is organized as follows. Section 2 provides an overview of MB
parallelization technique for H.264 video decoding and the 3D-Wave technique.
Section 3 presents the simulation environment and the experimental methodol-
ogy to evaluate the 3D-Wave implementation. In Section 4 the implementation
of the 3D-Wave on the embedded many-core is detailed and it introduces a frame
scheduling policy to limit the number of frames in flight and describes a prior-
ity policy to reduce latency. The results of the 3D-Wave, the frame scheduling
and frame priority policies are presented in Section 5. Conclusions are drawn in
Section 6.

2 Thread-Level Parallelism in H.264 Video Decoding

Currently, one of the best video coding standard, in terms of compression and
quality is H.264 [7]. The coding efficiency gains of advanced video codecs such
as H.264 come at the price of increased computational requirements. The de-
mands for computing power increases also with the shift towards high definition
resolutions. As a result, current high performance uniprocessor architectures are
not capable of providing the required performance for real-time processing [8,9].
Therefore, it is necessary to exploit parallelism. The H.264 codec can be paral-
lelized either by a task-level or data-level decomposition.

In a task-level decomposition the functional partitions of the algorithm are
assigned to different processors. Scalability is a problem because it is limited to
the number of tasks, which typically is small. In a data-level decomposition the
work (data) is divided into smaller parts and each part is assigned to a different
processor. Each processor runs the same program but on different (multiple)
data elements (SPMD). In H.264 data decomposition can be applied to different
levels of the data structure. Due to space limitations only MB-level parallelism
is described in this work. A discussion of the other levels can be found in [3].

In H.264, the motion vector prediction, intra prediction, and the deblocking
filter kernels use data from neighboring MBs defining a set of dependencies shown
as arrows in Figure 1. Processing MBs in a diagonal wavefront manner satisfies
all the dependencies and allows to exploit parallelism between MBs. We refer to
this parallelization technique as 2D-Wave, to distinguish it from the 3D-Wave
proposed in [3] and for which implementation results are presented in this work.
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Fig. 1. 2D-Wave approach for exploiting MB parallelism. The arrows indicate depen-
dencies.

Figure 1 illustrates the 2D-Wave for a 5×5 MBs image (80×80 pixels). At
time slot T7 three independent MBs can be processed: MB (4,1), MB (2,2) and
MB (0,3). The number of independent MBs varies over time. At the start of
decoding a frame it increases with one MB every two time slots, then stabilizes
at its maximum, and finally decreases at the same rate it increased. For a low
resolution like QCIF there are at most 6 independent MBs during 4 time slots.
For Full High Definition (1920x1088) there are at most 60 independent MBs
during 9 time slots.

MB-level parallelism has several advantages over other H.264 parallelization
schemes. First, this scheme can have a good scalability. As shown before the
number of independent MBs increases with the resolution of the image. Second,
it is possible to achieve a good load balancing if dynamic scheduling is used.

However, MB-level parallelism has some disadvantages. The first one is that
the entropy decoding cannot be parallelized using data decomposition, due to
the fact that the lowest level of data that can be parsed from the bitstream are
slices. Only after entropy decoding has been performed the parallel processing
of MBs can start. This disadvantage can be overcome by using special purpose
instructions or hardware accelerators for entropy decoding. The second disad-
vantage is that the number of independent MBs is low at the start and at the end
of decoding a frame. Therefore, it is not possible to sustain a certain processing
rate during the decoding of a frame.

None of the approaches described scales to future many-core architectures con-
taining 100 cores or more, unless extremely high resolution frames are used. We
have proposed [3] a parallelization strategy that combines MB-level with frame-
level parallelism and which reveals the large amount of parallelism required to ef-
fectively use future many-core CMPs. The key points are described below.

In the decoding process the dependency between frames is in the Motion
Compensation (MC) module only. When the reference area has been decoded,
it can be used by the referencing frame. Thus it is not necessary to wait until
a frame is completely decoded before decoding the next frame. The decoding
process of the next frame can be started after the reference areas of the reference
frames are decoded. Figure 2 illustrates this way of parallel decoding of frames,
called 3D-Wave strategy.
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Fig. 2. 3D-Wave strategy: frames can be decoded in parallel because inter frame de-
pendencies have limited spatial range

In our previous study the H.264 decoder was modified to analyze the available
parallelism for real movies. The sequences of the HD-VideoBench [10] were used
as inputs for the experiment. For each MB its dependencies were analyzed. Then
for each timeslot we analyzed the number of MBs that can be processed in
parallel during that time slot. The experiments did not consider any practical
or implementation issues, but explored the limits to the parallelism available in
the application.

The results show that the amount of MB-level parallelism exhibited by the
3D-Wave ranges from 1202 to 1944 MBs for SD resolution (720×576), from 2807
to 4579 MBs for HD resolution (1280 × 720), and from 4851 to 9169 MBs for
FHD resolution (1920×1088). To sustain this amount of parallelism, the number
of frames in flight ranges from 93 to 304 depending on the input sequence and
the resolution.

The theoretically available parallelism exhibited by the 3D-Wave technique
is huge. However, there are many factors in a real system, such as the memory
hierarchy and bandwidth, that could limit its scalability. In the next sections the
approach to implement the 3D-Wave and exploit this parallelism on an embedded
multicore system is presented.

3 Experimental Methodology

In this section the tools and methodology to implement and evaluate the 3D-
Wave technique are detailed. Also components of the many-core system simulator
used to evaluate the technique are presented. An NXP proprietary simulator
based on SystemC is used to run the application and collect performance data.
Computations on the cores are modeled cycle-accurate. The memory system
is modeled using average data transfer times with channel and bank contention
detection that modifies the latency to transfer the data. The simulator is capable
of simulating systems with 1 to 64 TM3270 cores with shared memory and its
cache coherence protocols. The simulator does not simulate the operating system.

The TM3270 [11] is a VLIW-based media-processor based on the Trimedia
architecture. It addresses the requirements of multi-standard video processing
at standard resolution and the associated audio processing requirements for the
consumer market. The architecture supports VLIW instructions with five issue
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slots. Each one is guarded. The pipeline depth varies from 7 to 12 stages. Address
and data words are 32 bits wide. It features a unified register file with 128 32-
bit registers. The SIMD capabilities are 2 x 16-bit and 4 x 8-bit. The 64Kbyte
data-cache has 64-byte lines and is 4-way set-associative with LRU replacement
and write allocate. The instruction cache is not modeled. The TM3270 processor
can run at up to 350 MHz, but in this work the clock frequency is set to 300
MHz. To produce code for the TM3270 the state-of-the-art highly optimizing
NXP TriMedia C/C++ compiler version 5.1 is used.

The modeled system features a shared memory using MESI cache-coherence
protocol. Each core has its own L1 data cache and can copy data from other L1
caches through 4 channels. The cores share a distributed L2 cache with 8 banks
and an average access time of 40 cycles. The average access time takes into
account L2 hits, misses, and interconnect delays. L2 bank contention is modeled
so two cores cannot access the same bank simultaneously.

The multi-core programming model follows the task pool model. A Task Pool
(TP) library implements submissions and requests of tasks to/from the task
pool, synchronization mechanisms, and the task pool itself. In this model there
is one main core and the other cores of the system act as slaves. Each slave runs
a thread by requesting a task from the TP, executing it, and requesting another
task. This allows low task execution overhead of less than 2% of the average MB
decoding time for task request.

The experiments focus on the baseline profile of the H.264 standard. The
baseline profile only supports I and P frames and every frame can be used as a
reference frame. This feature prevents the exploitation of frame-level paralleliza-
tion techniques such as the one described in [5]. However, this profile highlights
the advantages of the 3D-Wave. In this profile, the scalability gains come purely
from the application of the 3D-Wave technique. Encoding was done with the
X264 encoder [12] using the following options: no B-frames, maximally 16 refer-
ence frames, weighted prediction, hexagonal motion estimation algorithm with
maximum search range 24, and one slice per frame. The experiments use all
four videos from the HD-VideoBench [10], Blue Sky, Rush Hour, Pedestrian,
and Riverbed, in the three available resolutions, SD, HD and FHD.

The 3D-Wave technique focuses on the thread-level parallelism available in
the MB processing kernels of the decoder. The Entropy decoder is known to be
difficult to parallelize. To avoid the influence of the entropy decoder, its output
has been buffered and its decoding time is not taken into account. Although
not the main target, the 3D-Wave also eases the entropy decoding challenge.
Since entropy decoding dependencies do not cross slice/frame borders, multiple
entropy decoders can be used.

4 Implementation

In our previous work we used the FFmpeg decoder, but since we are using the
Trimedia simulator for this implementation, we use the NXP H.264 decoder.
The 2D-Wave parallelization strategy has already been implemented in this
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decoder [13], making it a perfect starting point for the implementation of the
3D-Wave. The NXP H.264 decoder is highly optimized, including both machine-
dependent optimizations (e.g. SIMD operations) and machine-independent op-
timizations (e.g. code restructuring).

The 3D-Wave implementation serves as a proof of concept thus the imple-
mentation of all features of H.264 is not necessary. Intra prediction inputs are
deblock filtered samples instead of unfiltered samples as specified in the stan-
dard. However, this does not add visual artifacts to the decoded frames or change
the MB dependencies.

This section details the 2D-Wave implementation used as the starting point,
the 3D-Wave implementation, and the frame scheduling and priority policies.

4.1 2D-Wave Decoder

The MB processing tasks are divided in four kernels: vector prediction (VP),
picture prediction (PP), deblocking info (DI), and deblocking filter (DF). VP
calculates the motion vectors (MVs) based on the predicted motion vectors of
the neighbor MBs and the differential motion vector present in the bitstream. PP
performs the reconstruction of the MB based on neighboring pixel information
(Intra Prediction) or on reference frame areas (Motion Compensation). Inverse
quantization and inverse transform are also part of this kernel. DI calculates the
strength of the DF based on MB data, such as the MBs type and MVs. DF
smoothes block edges to reduce blocking artifacts.

The 2D-Wave is implemented per kernel. By this we mean that first VP is
performed for all MBs in a frame, then PP for all MBs, etc. Each kernel is
parallelized as follows. Figure 1 shows that each MB depends on at most four
MBs. These dependencies are covered by the dependencies from the left MB to
the current MB and from the upper right MB to the current MB, i.e., if these
dependencies are satisfied then all dependencies are satisfied. Therefore, each MB
is associated with a reference count between 0 and 2 representing the number of
MBs on which it depends. When a MB is finished, the reference counts of the
MBs that depend on it are decreased. When one of these counts reaches zero, a
thread that will process the associated MB is submitted to the TP.

When a core loads a MB in its cache, it also fetches neighboring MBs. There-
fore, locality can be improved if the same core also processes the right MB. To
increase locality and reduce task submission and acquisition overhead, the 2D-
Wave implementation features an optimization called tail submit. After the MB
is processed, the reference counts of the MB candidates are checked. If both MB
candidates are ready to execute, the core processes the right MB and submits the
other one to the task pool. If only one MB is ready, the core starts its process-
ing without submitting or acquiring tasks to/from the TP. In case there is no
neighboring MB ready to be processed, the task finishes and the core request
another one from the TP. Figure 3 depicts pseudo-code for MB decoding after
the tail submit optimization has been performed.
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void deblock_mb(int x, int y){
again:

// ... the actual work

ready1 = x>=1 && y!=h-1 && atomic_dec(&deblock_ready[x-1][y+1])==0;
ready2 = x!=w-1 && atomic_dec(&deblock_ready[x+1][y])==0;

if (ready1 && ready2){
tp_submit(deblock_mb, x-1, y+1); // submit left-down block
x++;
goto again; // goto right block

}
else if (ready1){

x--; y++;
goto again; // goto left-down block

}
else if (ready2){

x++;
goto again; // goto right block

}
}

Fig. 3. Tail submit

4.2 3D-Wave Implementation

In this section the 3D-Wave implementation is described. First we note that
the original structure of the decoder is not suitable for the 3D-Wave strategy,
because inter-frame dependencies are satisfied only after the DF is applied. To
implement the 3D-Wave, it is necessary to develop a version in which the kernels
are applied on a MB basis rather than on a slice/frame basis. In other words,
we have a function decode_mb that applies each kernel to a MB.

In the 3D-Wave implementation multiple frames are decoded concurrently
which requires modifications to the Reference Frame Buffer (RFB). The RFB
stores the decoded frames that are going to be used as reference. As it can service
only one frame in flight, the 3D-Wave would require multiple RFBs. Instead, in
this proof of concept implementation, the RFB was modified such that a single
instance can service all frames in flight. In the new RFB all the decoded frames
are stored. The mapping of the reference frame index to RFB index was changed
accordingly.

Figure 4 depicts pseudo-code for the decode_mb function. It relies on the
ability to test if the reference MBs (RMBs) of the current MB have already been
decoded or not. The RMB is defined as the MB in the bottom right corner of the
reference area, including the extra samples for fractional motion compensation.
To be able to test this, first the RMBs have to be calculated. If an RMB has
not been processed yet, a method is needed to resume the execution of this MB
after the RMB is ready.
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void decode_mb(int x, int y, int skip, int RMB_start){
IF !skip {

Vector_Prediction(x,y);
RMB_List = RMB_Calculation(x,y);

}
FOR RMB_start TO RMB_List.last{

IF !RMB.Ready {
RMB.Subscribe(x, y);
return;

}
}
Picture_Prediction(x,y);
Deblocking_Info(x,y);
Deblocking_Filter(x,y);
Ready[x][y] = true;
FOR KoL.start TO KoL.last tp_submit(MB);
//TAIL_SUBMIT

}

Fig. 4. Pseudo-code for 3D-Wave

The RMBs can only be calculated after motion vector prediction, which also
defines the reference frames. Each MB can be partitioned in up to four 8x8 pixel
areas and each one of them can be partitioned in up to four 4x4 pixel blocks
The 4x4 blocks in an 8x8 partition share the reference frame. With the MVs and
reference frames information, it is possible to calculate the RMB of each MB
partition. This is done by adding the MV, the size of the partition, the position
of the current MB, and the additional area for fractional motion compensation
and by dividing the result by 16, the size of the MB. The RMB results of each
partition is added to a list associated with the MB data structure, called the
RMB-list. To reduce the number of RMBs to be tested, the reference frame of
each RMB is checked. If two RMBs are in the same reference frame, only the
one with the larger 2D-Wave decoding order (see Figure 1) is added to the list.

The first time decode_mb is called for a specific MB it is called with the
parameter skip set to false and RMB_start set to 0. If the decoding of this MB
is resumed, it is called with the parameter skip set to true. Also RMB_start
carries the position of the MB in the RMB-list to be tested next.

Once the RMB-list of the current MB is computed, it is verified if each RMB
in the list has already been decoded or not. Each frame is associated with a
MB ready matrix, similar to the deblock_ready matrix in Figure 3. The corre-
sponding MB position in the ready matrix associated with the reference frame
is atomically checked. If all RMBs are decoded, the decoding of this MB can
continue.

To handle the cases where a RMB is not ready, a RMB subscription technique
has been developed. The technique was motivated by the specifics of the TP
library, such as low thread creation overhead and no sleep/wake up capabilities.
Each MB data structure has a second list called the Kick-off List (KoL) which
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contains the parameters of the MBs subscribed to this RMB. When an RMB
test fails, the current MB subscribes itself to the KoL of the RMB and finishes
its execution. Each MB, after finishing its processing, indicates that it is ready
in the ready matrix and verifies its KoL. A new task is submitted to the TP for
each MB in the KoL.

The subscription process is repeated until all RMBs are ready. Finally, the
intra-frame MBs that depend on this MB are submitted to the TP using tail
submit, identical to Figure 3.

4.3 Frame Scheduling Policies

To achieve the highest speedup, all frames of the sequence are scheduled to run
as soon as their dependencies are met. However, this can lead to a large number
of frames in flight and large memory requirements, since every frame must be
kept in memory. Mostly it is not necessary to decode a frame as soon as possible
to keep all cores busy. A frame scheduling technique was developed to keep the
working set to its minimum.

Frame scheduling uses the RMB subscription mechanism to define the moment
when the processing of the next frame should be started. The first MB of the
next frame can be subscribed to start after a specific MB of the current frame.
With this simple mechanism it is possible to control the number of frames in
flight. Adjusting the number of frames in flight is done by selecting an earlier or
later MB with which the first MB of the next frame will be subscribed.

4.4 Task Priorities

In video decoding, latency is an important characteristic of the system. The
frame scheduling policy described in the previous section reduces the frame la-
tency. However, as a new frame is scheduled to be decoded, the available cores
are distributed equally among the frames in flight. A priority mechanism was
added to the TP library in order to reduce the frame decoding latency.

The TP library was modified to support two levels of priority. An extra task
buffer was implemented to store high priority tasks. When the TP receives a task
request, it first checks if there is a task in the high priority buffer. If so this task is
selected, otherwise a task in the low priority buffer is selected. With this simple
mechanism it is possible to give priority to the tasks belonging to the frame
“next in line”. Before submitting a new task the process checks if its frame is
the frame “next in line”. If so the task is submitted with high priority. Otherwise
the submission to the TP is made using the low priority. This mechanism does
not lead to starvation because if there is not sufficient parallelism in the frame
“next in line” the low priority tasks are selected.

5 Experimental Results

In this section the experimental results are presented. The results include the
scalability results of the 3D-Wave, the impact on the memory and bandwidth
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requirements, and the results of the frame scheduling and priority policies.
The experiments were carried out according to the methodology described in
Section 3. To evaluate the 3D-Wave technique, one second (25 frames) of each
sequence was decoded using the enhanced NXP decoder. Due to long simulation
times and the large number of simulations, more frames could not be simulated.
The four sequences of the HD-VideoBench using three resolutions were evalu-
ated. Due to space limitations only the results for the Rush Hour sequence are
presented which are close to the average. The results for the other sequences
vary less than 5%.

5.1 Scalability

The scalability results are for 1 to 64 cores. More cores could not be simulated
due to limitations of the simulator. Table 1 depicts the scalability results, i.e.,
the speedup of the parallel implementation running on p processors over the par-
allel implementation running on a single core, of the 2D-Wave (columns labeled
2D-W) and 3D-Wave (columns labeled 3D-W) implementations. In addition, it
shows the speedup of the 3D-Wave running on p cores over the 2D-Wave on p
cores (columns labeled 3D vs 2D). On a single core, 2D-Wave can decode 39 SD,
18 HD, and 8 FHD frames per second, respectively.

Table 1. 2D-Wave and 3D-Wave speedups for the 25-frame Rush Hour sequences

Cores SD HD FHD
2D-W 3D-W 3D vs 2D 2D-W 3D-W 3D vs 2D 2D-W 3D-W 3D vs 2D

1 1.00 1.00 0.92 1.00 1.00 0.92 1.00 1.00 0.92
2 1.77 2.00 1.05 1.77 2.00 1.04 1.78 2.00 1.04
4 3.22 4.00 1.14 3.27 3.99 1.13 3.31 4.00 1.11
8 5.56 7.80 1.29 5.78 7.83 1.25 5.96 7.88 1.22
16 8.19 14.63 1.65 9.31 14.75 1.46 9.92 15.21 1.41
32 8.42 27.78 3.04 11.78 28.44 2.22 14.40 28.94 1.85
64 8.32 49.32 5.47 11.53 53.16 4.25 15.35 54.78 3.28

On a single core the 3D-Wave implementation takes 8% more time than the
2D-Wave implementation due to administrative overhead. The 3D-Wave imple-
mentation scales almost perfectly up to 8 cores, while the 2D-Wave implemen-
tation incurs a 11% efficiency drop even for 2 cores due to the following reason.
The tail submit optimization assigns MBs to cores per line. At the end of a
frame, when a core finishes its line and there is no other line to be decoded, in
the 2D-Wave it remains idle until all cores have finished their line. If the last line
happens to be slow the other cores wait for a long time and the core utilization is
low. In the 3D-Wave, cores that finish their line, while there is no new line to be
decoded, will be assigned a line of the next frame. Therefore, the core utilization
as well as the scalability efficiency of the 3D-Wave is higher.
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For SD sequences the 2D-Wave technique saturates at a speedup of just over
8 for 16 cores and beyond. This happens because of the limited amount of MB
parallelism inside the frame and the dominant ramp up and ramp down of the
availability of parallel MBs. The 3D-Wave technique for the same resolution
continuously scales up to 64 cores with a parallelization efficiency just below
80%. For the FHD sequence, the saturation of the 2D-Wave occurs at 32 cores
while the 3D-Wave continuously scales up to 64 cores with a parallelization
efficiency of 85%.

The scalability results of the 3D-Wave implementation in Table 1 just slightly
increase for higher resolutions. The 2D-Wave implementation on the other hand,
achieves higher speedups for higher resolutions since the MB-level parallelism
inside a frame increases. However, it would take an extremely large resolution
for the 2D-Wave to leverage 64 cores, and the 3D-Wave implementation would
still be more efficient.

The drop in scalability efficiency of the 3D-Wave for larger number of cores
has two reasons. First, for large number of cores cache trashing occurs, as will
be shown in the next section, which results in a large number of memory stalls.
Second, at the start and at the end of a sequence, not all cores can be used
because little parallelism is available. The more cores are used the more cycles
are wasted during these two periods. In a real sequence with many frames it
would be negligible.

5.2 Bandwidth Requirements

The impact of the 3D-Wave technique on memory and communication band-
width has also been analyzed. First the data traffic between the L1 and L2 data
caches is measured. Figure 5(a) depicts the traffic for the three resolutions. The
graph shows that the 3D-Wave increases the data traffic by approximately 104%,
82%, and 68% when going from 1 to 64 cores, for SD, HD, and FHD, respec-
tively. This increase in traffic is the result of cache thrashing. Data locality de-
creases as the number of cores increases, because the task scheduler does not take
into account data locality when assigning a task to a core (except with the tail
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submit strategy). However, because 3D-Wave exploits inter-frame data locality,
it results in an average 18% less traffic than 2D-Wave.

With the data traffic results it is possible to calculate the L2 to L1 bandwidth
requirements. The bandwidth is calculated by dividing the total traffic by the
time to decode the sequence in seconds. Figure 5(b) depicts the bandwidth results
for different numbers of cores.

The total amount of intra chip bandwidth required for 64 cores is 2.1 GB/s
for all resolutions of Rush Hour sequence. The bandwidth is independent of the
resolution because the number of MBs decoded per time unit per core is the
same. This represents a workload more than 16 times higher than required for
real time decoding, but it indicates what can be necessary for future applications
such as 3D TV.

5.3 Frame Scheduling

Figure 6(a) presents the results of the frame scheduling technique applied to
the FHD Rush Hour sequence using a 16-core system. This figure presents the
number of MBs processed per ms. It also shows to which frame these MBs
belong. In this particular case the subscribe MB chosen is the last MB on the
line that is at 1/3rd of the frame. For this configuration there are 3 frames in
flight while there is a small performance loss of about 5%. This performance
loss can be explained by the short sequence used. In these short sequences the
time of ramp up and ramp down has a non-negligible impact on the overall
performance.

In the current state of development, the selection of the subscribe MB must
be done statically by the programmer. A methodology to dynamically fire new
frames based on core utilization needs to be developed.

(a) Number of MBs processed per ms us-
ing frame scheduling and frames to which
these MBs belong.

(b) Number of MBs processed per ms us-
ing frame scheduling and the priority pol-
icy.

Fig. 6. Results for frame scheduling and priority policy for FHD Rush Hour in a 16-
core processor. Different colors represent different frames.
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5.4 Priority Policy

The priority mechanism, presented in Section 4.4, strongly reduces the latency
of the frame to be decoded. In the original 3D-Wave implementation the latency
of the first frame is 58.5 ms, using the FHD Rush Hour sequence with 16 cores.
Using the frame scheduling policy the latency drops to 15.1 ms. This latency
is further reduced to 9.2 ms when the priority policy is applied together with
frame scheduling. This is almost the same as the latency of the 2D-Wave, which
decodes frames one-by-one. Figure 6(b) depicts the number of MBs processed
per ms when this feature is used.

6 Conclusions

In this work an implementation of the 3D-Wave parallelization technique on
an embedded CMP has been presented and evaluated. The implementation re-
quires to identify intra-frame MB dependencies dynamically, which led to the
development of a mechanism where MBs subscribe themselves to the MBs in the
reference areas they depend upon. We have also presented policies for reducing
the number of frames in flight and the frame latency.

The results show that the 3D-Wave implementation can leverage a multicore
system with up to 64 cores. While the 2D-Wave has a speedup about 8 for 16
cores or more, for SD resolution, the 3D-Wave has a speedup of almost 45 on
64 cores. These results were achieved for sequences with no frame-, slice- or
GOP-level parallelism.

Future work includes the development of an automatic frame scheduling tech-
nique, the implementation of the 3D-Wave on general purpose processors, and
the implementation of the 3D-Wave in the encoder. A 3D-Wave implementa-
tion of the encoder can be applied for high definition, low latency encoding on
multi-processors.
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