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Abstract. In this chapter three applications of interval type-2 fuzzy logic are considered. First, 
we consider the use of interval type-2 fuzzy systems in conjunction with modular neural net-
works for image recognition. A type-2 fuzzy system is used for feature extraction in the training 
data, and another type-2 fuzzy system is used to find the optimal parameters for the integration 
method of the modular neural network. Type-2 Fuzzy Logic is shown to be a tool to help im-
prove the results of a neural system by facilitating the representation of the human perception. 
The second application involves edge detection in digital images, which is a problem that has 
been solved by means of the application of different techniques from digital signal processing, 
and also the combination of some of these techniques with type-1 fuzzy systems have been 
proposed. In this chapter a new interval type-2 fuzzy method is implemented for the detection 
of edges and the results of three different techniques for the same goal are compared. The third 
application, concerns the problem of stability, which is one of the more important aspects in the 
traditional knowledge of Automatic Control. Interval type-2 fuzzy logic is an emerging and 
promising area for achieving intelligent control (in this case, Fuzzy Control). In this chapter we 
use the Fuzzy Lyapunov Synthesis, as proposed by Margaliot, to build a Lyapunov stable type-
1 fuzzy logic control system, and then we make an extension from a type-1 to a type-2 fuzzy 
controller, ensuring the stability on the control system and proving the robustness of the corre-
sponding fuzzy controller. 

1   Interval Type-2 Fuzzy Logic for Image Recognition 

At the moment, many methods for image recognition are available. But most of them 
include a phase of feature extraction or another type of preprocessing closely related 
to the type of image to recognize (Melin and Castillo, 2005) (Chuang et al., 2000). 
The method proposed in this paper can be applied to any type of images, because the 
preprocessing phase does not need specific data about the type of image (Melin et al., 
2007) (Mendoza and Melin, 2007). 

Even if the method was not designed only for face recognition, we have made the 
tests with the ORL face database (AT&T Laboratories Cambridge) composed of 400 
images of size 112x92. There are 40 persons, with 10 images of each person. The im-
ages are taken at different times, lighting and facial expressions. The faces are in up-
right position of frontal view, with slight left-right rotation. Figure 1 shows the 10 
samples of one person in ORL database. To explain the proposed steps of the method, 
we need to separate it them in two phases: the training phase in figure 3 and the rec-
ognition phase in figure 4. 
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Fig. 1. Set of 10 samples of a person in ORL 

 

Fig. 2. Steps in Training Phase 

 

Fig. 3. Steps in Recognition Phase 

2   Type-2 Fuzzy Inference System as an Edge Detector 

In previous work we presented an efficient Fuzzy Inference System for edges detec-
tion, in order to use the output image like input data for modular neural networks 
(Mendoza and Melin, 2006). In the proposed technique, it is necessary to apply Sobel 
operators to the original images, then use a Fuzzy Inference System Type-2 to gener-
ate the vector of edges that would serve like input data in a neural network. Type-2 
Fuzzy Logic enables us to handle uncertainties in decision making and recognition in 
a more convenient way and for this reason was proposed (Castillo et al., 2007). 

For the Type-2 Fuzzy Inference System, 3 inputs are required, 2 of them are the 
gradients with respect to x-axis and y-axis, calculated with (1), to which we will call 
DH and DV respectively. 
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The Sobel edges detector uses a pair of 3x3 convolution masks, one estimating the 
gradient in the x-direction (columns) and the other estimating the gradient in the y-
direction (rows). 
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Where Sobely y Sobelx are the Sobel Operators throughout x-axis and y-axis. 
If we define I as the source image,  gx and gy are two images which at each point 

contain the horizontal and vertical derivative approximations, the latter are computed 
as (2) and (3). 
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Where gx and gy are the gradients along axis-x and axis-y, and * represents the con-
volution operator. 

The other input is a filter that calculates when applying a mask by convolution to the 
original image. The low-pass filter hMF (4) allow us to detect image pixels belonging to 
regions of the input were the mean gray level is lower. These regions are proportionally 
more affected by noise, supposed it is uniformly distributed over the whole image.  

The goal here is to design a system which makes it easier to include edges in low 
contrast regions, but which does not favor false edges by effect of noise. 
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Then the inputs for FIS type 2 are:  DH=gx, DV=gy, M= hMF*I, where * is the convo-
lution operator, and de output is a column vector contains the values of the image 
edges, and we can represent that in graphics shown in figure 4. The Edge Image is 
smaller than the original because the result of convolution operation is a central ma-
trix where the convolution has a value. Then in our example, each image with dimen-
sion 112x92 is reduced to 108x88. 

The inference rules and membership function parameters allow to calculate a gray 
value between -4.5 and 1.5 for each pixel, where the most negative values corre-
sponds to the dark tone in the edges of the image. Then if we see the rules, only when 
the increment value of the inputs DH and DV are low the output is HIGH or clear (the 
background), in the rest of rules the output is LOW or dark (the edges). The complete 
set of fuzzy rules is given as follows (Castro et al., 2006): 
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1. If (DH is LOW) and (DV is LOW) then (EDGES is HIGH) (1)      
2. If (DH is MEDIUM) and (DV is MEDIUM) then (EDGES is LOW) (1) 
3. If (DH is HIGH) and (DV is HIGH) then (EDGES is LOW) (1)     
4. If (M is LOW) and (DV is MEDIUM) then (EDGES is LOW) (1)     
5. If (M is LOW) and (DH is MEDIUM) then (EDGES is LOW) (1) 
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-200 0 200 400 600
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Fig. 4. Membership Function for the Type-2 FIS Edge Detector 

The edge detector allows us to ignore the background color. We can see in this da-
tabase of faces, different tones present for the same or another person. Then we elimi-
nate a possible influence of a bad classification by the neural network, without losing 
detail in the image. Another advantage of edge detector is that the values can be nor-
malized to a homogenous value range, independently the light, contrast or background 
tone in each image.  At the examples in figure 5, all the edges in the images have a 
 

  

    

Fig. 5. Examples of edge detection with the Type-2 FIS method 
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minimum value of -3.8 and a maximum value of 0.84. In particular for neural network 
training, we find these values to make the training faster: the mean of the values is 
near 0 and the standard deviation is near 1 for all the images. 

3   The Modular Structure 

The design of the Modular Neural Network consists of 3 monolithic feedforward neu-
ral networks (Sharkey, 1999), each one trained with a supervised method with the first 
7 samples of the 40 images. Then the edges vector column is accumulated until the 
number of samples to form the input matrix for the neural networks as it is in the 
scheme of figure 7. Once the complete matrix of images is divided in 3 parts, each 
module is training with a correspondent part, with some rows of overlap. 

The target to the supervised training method consist of one identity matrix for 
each sample, building one matrix with dimensions 40x(40*number_of_samples). 

Each Monolithic Neural Network has the same structure and is trained under the 
same conditions, like we can see in the next code segment: 

layer1=200; layer2=200; layer3=number_of_subjects; 
net=newff(minmax(p),[layer1,layer2,layer3],{'tansig','tansig','logsig'},'traingdx'); 
net.trainParam.goal=1e-5; 
net.trainParam.epochs=1000; 

The average number of epochs to meet the goal in each module is of 240, and the re-
quired time of 160 seconds. 

4   Simulation Results 

A program was developed in Matlab that simulates each module with the 400 images of 
the ORL database, building a matrix with the results of the simulation of each module. 
These matrices are stored in the file “mod.mat” to be analyzed later for the combination 
of results. We can observe that in the columns corresponding to the training data, the 
position with a value near one is the image selected correctly.  However in the columns 
that correspond to the test data this doesn’t always happens, reason why it is very impor-
tant to have a good combination method to recognize more images. 

According to exhaustive tests made in the simulation matrices, we know that rec-
ognition of the images that were used for the training of the neural networks is of the 
100%. Therefore the interest is focused on the recognition of the samples that do not 
belong to the training set, is to say samples 8,9 and 10. The parameters for the Sugeno 
Fuzzy Integral that will be inferred will be the Fuzzy Densities, a value between 0 and 
1 for each module, which determines the rate for each module. The parameter lambda, 
according to the theory of fuzzy measures depends on the values of the fuzzy densi-
ties, and is calculated by searching for the roots of a polynomial. After the simulation 
of an image in the Neural Network, the simulation value is the only known parameter 
to make a decision, then to determine the fuzzy density for each module is the unique 
available information.  For this reason we analyze the values in many simulations 
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Fig. 6. Process of recognition using the type-2 fuzzy modular approach 

matrix and decide that each input to the FIS Type-2 corresponds to the maximum 
value of each column corresponding to the simulation of each module of each one of 
the 400 images. The process to recognize each one of the images is shown in figure 6. 

Then each output corresponds to one fuzzy density, to be applied for each module 
to perform the fusion of results later with the Fuzzy Sugeno Integral. The inference 
rules found fuzzy densities near 1 when de maximum value in the simulation is be-
tween 0.5 and 1, and near 0 when the maximum value in the simulation is near 0. The 
fuzzy rules are shown below and membership functions in Figure 7. 

 
1. If (max1 is LOW) then (d1 is LOW) (1)     
2. If (max2 is LOW) then (d2 is LOW) (1)     
3. If (max3 is LOW) then (d3 is LOW) (1)     
4. If (max1 is MEDIUM) then (d1 is HIGH) (1) 
5. If (max2 is MEDIUM) then (d2 is HIGH) (1) 
6. If (max3 is MEDIUM) then (d3 is HIGH) (1) 
7. If (max1 is HIGH) then (d1 is HIGH) (1)   
8. If (max2 is HIGH) then (d2 is HIGH) (1)   
9. If (max3 is HIGH) then (d3 is HIGH) (1) 
 

Although the rules are very simple, allows to model the fuzziness to rate de modules 
when the simulation result don’t reach the maximum value 1. 

However some of the images don’t reach the sufficient value in the simulation of 
the three modules, in these cases, do not exists enough information to select an image 
at the modules combination, and the image is wrongly selected. 

In order to measure of objective form the final results, we developed a method of 
random permutation, which rearranges the samples of each person before the training. 
Once a permutation is made, the modular neural networks are trained and combined 
four times to obtain the sufficient information to validate the results. The average rec-
ognition rate is of 96.5%.  
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Fig. 7. Membership functions for the FIS to find fuzzy densities 

We show in Table 1 the summary of simulation results for each of the modules 
and the average and maximum results of the modular network (after fusion or combi-
nation of the results). 
 

Table 1. Summary of the Simulation Results with the Hybrid Approach 
 

Image Recognition (%) Permu-
tation Train 1 Train 2 Train 3 Train 4 Average Maximum 

1 92.75 95 92.2 93.25 93.3 95 
2 96.5 95.25 94.25 95.5 95.375 96.5 
3 91.5 92 93.75 95.25 93.125 95.25 
4 94.5 94.5 93.25 94 94.0625 94.5 
5 93.75 93.5 94 96 94.3125 96 
     94.035 96.5 

5   Interval Type-2 Fuzzy Logic for Digital Image Edge Detection 

In the area of digital signal processing, methods have been proven to solve the prob-
lem of image recognition. Some of them include techniques like binarization, bidi-
mensional filtrate, detection of edges and compression using banks of filters and trees, 
among others. 

Specifically in methods for the detection of edges we can find comparative studies 
of methods like: Canny, Narwa, Iverson, Bergholm y Rothwell. Others methods can 
be grouped into two categories: Gradient and Laplacian. 

The gradient methods like Roberts, Prewitt and Sobel detect edges, looking for 
maximum and minimum in first derived from the image. The Laplacian methods like 
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Marrs-Hildreth do it finding the zeros of second derived from the image (Mendoza 
and Melin, 2005). 

This work is the beginning of an effort for the design of new pre-processing images 
techniques, using Fuzzy Inference Systems (FIS), which allows feature extraction and 
construction of input vectors for neural networks with aims of image recognition. 

Artificial neural networks are one of the most used techniques in the automatic 
recognition of patterns, here are some reasons: 

• Theoretically any function can be determined. 
• Except the input patterns, it is not necessary to provide additional information. 
• They are possible to be applied to any type of patterns and to any data type.  

The idea to apply artificial neural networks for images recognition, tries to obtain re-
sults without providing another data that the original images, of this form the process 
is more similar to the form in which the biological brain learns to recognize patterns, 
only knowing experiences of past. 

Models with modular neural networks have been designed, that allow recognizing 
images divided in four or six parts. This is necessary due to the great amount of input 
data, since an image without processing is of 100x100 pixels, needs a vector 10000 
elements, where each one corresponds to pixel with variations of gray tones between 
0 and 255 (Mendoza and Melin, 2005). 

This chapter shows an efficient Fuzzy Inference System for edges detection, in or-
der to use the output image like input data for modular neural networks. In the pro-
posed technique, it is necessary to apply Sobel operators to the original images, and 
then use a Fuzzy System to generate the vector of edges that would serve as input data 
to a neural network. 

6   Edge Detection by Gradient Magnitude 

Although the idea presented in this chapter, is to verify the efficiency of a FIS for 
edges detection in digital images, from the approaches given by Sobel operator, is 
necessary to display first results using only the gradient magnitude. 

The first image of subject number one of the ORL database will be used as an example 
(Figure 8). The gray tone of each pixel of this image is a value of between 0 and 255. 
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Fig. 8. Original Image 1.pgm 



 Interval Type-2 Fuzzy Logic Applications 211 

In figure 9 the image generated by gx is shown, and Figure 10 presents the image 
generated by gy. 
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Fig. 9. Image given by gx Fig. 10. Image given by gy 

An example of maximum and minimum values of the matrix given by gx, gy and g 
from the image 1.pgm is shown in Table 2. 

Table 2. Maximum and Minimum values from 1.pgm, gx, gy and g 

Tone 1.pgm gx gy g 

Minimum 11 -725 -778 0 
Maximum 234 738 494 792 

After applying equation (4), g is obtained as it is in Figure 11. 

 

Fig. 11. Edges image given by g 

7   Edge Detection Using Type-1 Fuzzy Logic 

A Mamdani FIS was implemented using Type-1 Fuzzy Logic, with four inputs, one 
output and 7 rules, using the Matlab Fuzzy Logic Toolbox, which is shown in Figure 12. 
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Fig. 12. FIS in Matlab Fuzzy Logic Tool Box 

For the Type-1Fuzzy Inference System, 4 inputs are required, 2 of them are the 
gradients with respect to x-axis and y-axis, calculated with equation (2) and equation 
(3), to which we will call DH and DV respectively. 

The other two inputs are filters: A high-pass filter, given by the mask of the equation 
(5), and a low-pass filter given by the mask of equation (6). The high-pass filter hHP de-
tects the contrast of the image to guarantee the border detection in relative low contrast 
regions. The low-pass filter hMF allow to detects image pixels belonging to regions of 
the input were the mean gray level is lower. These regions are proportionally more af-
fected by noise, supposed it is uniformly distributed over the whole image.  

The goal here is to design a system which makes it easier to include edges in low 
contrast regions, but which does not favor false edges by effect of noise (Miosso and 
Bauchspiess, 2001). 

 

(5) 

 

(6) 

Then the inputs for type-1 FIS are:  

DH=gx, DV=gy  HP= hHP*I M= hMF*I 

where * is the convolution operator. 
For all the fuzzy variables, the membership functions are of Gaussian type. Ac-

cording to the executed tests, the values in DH and DV, go from -800 to 800, then the 
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ranks in x-axis adjusted as it is in figures 13, 14 and 15, in which the membership 
functions are: 

LOW: gaussmf(43,0),  
MEDIUM: gaussmf(43,127), 
HIGH: gaussmf(43,255). 
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Fig. 13. Input variable DH 
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Fig. 14. Input variable DV 
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Fig. 15. Input variable HP 
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Fig. 16. Input variable M 

In the case of variable M, the tests threw values in the rank from 0 to 255, and thus 
the rank in x-axis adjusted, as it is shown in figure 16. 

In figure 17 the output variable EDGES is shown, that also adjusted the ranks between 
0 and 255, since it is the range of values required to display the edges of an image. 
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Fig. 17. Output variable EDGES 

The seven fuzzy rules that allow to evaluate the input variables, so that the exit im-
age displays the edges of the image in color near white (HIGH tone), whereas the 
background was in tones near black (tone LOW). 

 
1. If (DH is LOW) and (DV is LOW) then (EDGES is LOW)   
2. If (DH is MEDIUM) and (DV is MEDIUM) then (EDGES is HIGH)  
3. If (DH is HIGH) and (DV is HIGH) then (EDGES is HIGH)   
4. If (DH is MEDIUM) and (HP is LOW) then (EDGES is HIGH) 
5. If (DV is MEDIUM) and (HP is LOW) then (EDGES is HIGH) 
6. If (M is LOW) and (DV is MEDIUM) then (EDGES is LOW)    
7. If (M is LOW) and (DH is MEDIUM) then (EDGES is LOW)    

 
The result obtained for image of figure 8 is remarkably better than the one than it 

was obtained with the method of gradient magnitude, as it is in Figure 18. 
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Fig. 18. EDGES Image by FIS Type 1 

Reviewing the values of each pixel, we see that all fall in the rank from 0 to 255, 
which is not obtained with the method of gradient magnitude. 
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Fig. 19. Type-2 fuzzy variables 
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8   Edge Detection Using Type-2 Fuzzy Logic 

For the Type-2 FIS, the same method was followed as in Type-1 FIS, indeed to be 
able to make a comparison of both results. The tests with the type-2 FIS, were exe-
cuted using the computer program imagen_bordes_fis2.m, which creates a Type-2 In-
ference System (Mamdani, 1993) by intervals (Mendel, 2001). 

The mentioned program creates the type-2 fuzzy variables as it is seen in figure 19. 
The wide of the FOU chosen for each membership function was the one that had 
better results after several experiments. The program imagen_bordes_fuzzy2.m was 
implemented to load the original image, and to apply the filters before mentioned. Be-
cause the great amount of data that the fuzzy rules must evaluate, the image was di-
vided in four parts, and the FIS was applied to each one separately. The result of each 
evaluation gives a vector with tones of gray by each part of the image, in the end is 
the complete image with the edges (figure 20). 

 

Fig. 20. EDGES Image by the Type-2 FIS  

9   Comparison of Results 

The first results of several tests conducted in different images can be appreciated in 
table 3. 

At first, the results with the Type-1 FIS and Type-2 FIS are seen to be very similar. 
However thinking about that to show the images with a dark background it could con-
fuse the contrast of tones, tests were done inverting the consequent of the rules, so 
that the edges take the dark tone and the bottom the clear tone, the rules changed to 
the following form: 

1. If (DH is LOW) and (DV is LOW) then (EDGES is HIGH) 
2. If (DH is MEDIUM) and (DV is MEDIUM) then (EDGES is LOW) 
3. If (DH is HIGH) and (DV is HIGH) then (EDGES is LOW)    
4. If (DH is MEDIUM) and (HP is LOW) then (EDGES is LOW)  
5. If (DV is MEDIUM) and (HP is LOW) then (EDGES is LOW)  
6. If (M is LOW) and (DV is MEDIUM) then (EDGES is HIGH)   
7. If (M is LOW) and (DH is MEDIUM) then (EDGES is HIGH)   

Fuzzy Systems were tested both (Type-1 and Type-2), with the new fuzzy rules 
and same images, obtaining the results that are in Table 4. 
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Table 3. Results of Edge Detection by FIS1 and FIS2 (Dark Background) 

Original Image EDGES  
(FIS 1) 

EDGES  
(FIS 2) 

 

  

  

  

  

In this second test can be appreciated a great difference between the results ob-
tained with the FIS 1 and FIS 2, noticing at first a greater contrast in the images ob-
tained with the FIS 1 and giving to the impression of a smaller range of tones of gray 
in the type-2 FIS. 

In order to obtain an objective comparison of the images, histograms were elabo-
rated respectively corresponding to the resulting matrices of edges of the FIS 1 and 
FIS 2, which are in table 5. 

The histograms show in the y-axis the range of tones of gray corresponding to each 
image and in x-axis the frequency in which he appears pixel with each tone. 
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Table 4. Results of Edge Detection by FIS1 and FIS2 (Clear Background) 

EDGES  
(FIS 1) 

EDGES  
(FIS 2) 

  

  

  

  

Table 5. Histograms of the Resulting Images of Edge Detection by the Gradient Magnitude, 
FIS1 and FIS 2 methods 

IMAGE: 1.PGM                                                           

METHOD: GRADIENT MAGNITUDE 
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Table 5. (continued) 
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Table 6. Type-2 FIS Edges Images including Pixels with Tones between 150 and 255 

BORDERS IMAGE DIMENSION 
(pixels) 

PIXELS INCLUDED 
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108x88 
 

(9504) 

4661 
 

49 % 
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144x110 
 

(15840) 

7077 
 

44.6 % 

As we can observe, unlike detector FIS1, with FIS2 the edges of an image could be 
obtained from very complete form, only taking the tones around 150 and 255. 

As a last experiment, in this occasion to the resulting images of the Type-2 FIS the 
every pixel out of the range between 50 and 255 was eliminated.  
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Table 6 shows the amount of elements that was possible to eliminate in some of the 
images, we see that the Type-2 Edges Detector FIS allows to using less than half of 
the original pixels without losing the detail of the images. This feature could be a 
great advantage if these images are used like input data in neural networks for detec-
tion of images instead the original images. 

10   Systematic Design of a Stable Type-2 Fuzzy Logic Controller 

Stability has been one of the central issues concerning fuzzy control since Mamdani’s 
pioneer work (Mamdani and Assilian, 1975). Most of the critical comments to fuzzy 
control are due to the lack of a general method for its stability analysis. 

But as Zadeh often points out, fuzzy control has been accepted by the fact that it is 
task-oriented control, while conventional control is characterized as setpoint-oriented 
control, and hence do not need a mathematical analysis of stability. Also, as Sugeno 
has mentioned, in general, in most industrial applications, the stability of control is 
not fully guaranteed and the reliability of a control hardware system is considered to 
be more important than the stability (Sugeno, 1999). 

The success of fuzzy control, however, does not imply that we do not need a stabil-
ity theory for it. Perhaps the main drawback of the lack of stability analysis would be 
that we cannot take a model-based approach to fuzzy control design. In conventional 
control theory, a feedback controller can be primarily designed so that a close-loop 
system becomes stable. This approach of course restricts us to setpoint-oriented con-
trol, but stability theory will certainly give us a wider view on the future development 
of fuzzy control. 

Therefore, many researchers have worked to improve the performance of the 
FLC’s and ensure their stability. Li and Gatland in 1995 proposed a more systematic 
design method for PD and PI-type FLC’s. Choi, Kwak and Kim (Choi et al., 2000) 
present a single-input FLC ensuring stability. Ying in 1994 presented a practical de-
sign method for nonlinear fuzzy controllers, and many other researchers have results 
on the matter of the stability of FLC’s, in (Castillo et al., 2005) and (Cázarez et al., 
2005) presents an extension of the Margaliot work (Margaliot and G. Langholz, 2000) 
to built stable type-2 fuzzy logic controllers in Lyapunov sense. 

This work is based on Margaliot´s work (Margaliot and Langholtz, 2000), we use 
the Fuzzy Lyapunov Synthesis to build an Stable Type-2 Fuzzy Logic Controller for a 
1 Degree of Freedom (DOF) manipulator robot, first without gravity effect to prove 
stability, and then with gravity effect to prove the robustness of the controller. The 
same criteria can be used for any number of DOF manipulator robots, linear or 
nonlinear, and any kind of plants. 

11   Fuzzy Logic Controllers 

11.1   Type-1 Fuzzy Logic Control 

Type-1 FLCs are both intuitive and numerical systems that map crisp inputs to a crisp 
output. Every FLC is associated with a set of rules with meaningful linguistic inter-
pretations, such as 
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:lR  If 1x  is 
lF1  and 2x  is 

lF2 and … and nx  is l
nF  Then w  is lG   

which can be obtained either from numerical data, or experts familiar with the prob-
lem at hand. Based on this kind of statement, actions are combined with rules in an 
antecedent/consequent format, and then aggregated according to approximate reason-

ing theory, to produce a nonlinear mapping from input space nUxxUUU ...21=
 
to 

the output space W , where nkUF k
l

k ,...,2,1, =⊂ , are the antecedent type-1 

membership functions, and WGl ⊂  is the consequent type-1 membership function. 

The input linguistic variables are denoted by nkuk ,...,2,1, = , and the output lin-

guistic variable is denoted by w . 
A Fuzzy Logic System (FLS), as the kernel of a FLC, consist of four basic ele-

ments (Fig. 21): the type-1 fuzzyfier, the fuzzy rule-base, the inference engine, and 

the type-1 defuzzyfier. The fuzzy rule-base is a collection of rules in the form of 
lR , 

which are combined in the inference engine, to produce a fuzzy output. The type-1 
fuzzyfier maps the crisp input into type-1 fuzzy sets, which are subsequently used as 
inputs to the inference engine, whereas the type-1 defuzzyfier maps the type-1 fuzzy 
sets produced by the inference engine into crisp numbers. 

 

Fig. 21. Structure of type-1 fuzzy logic system 

Fuzzy sets can be interpreted as membership functions Xu  that associate with each 

element x  of the universe of discourse, U , a number )(xuX in the interval [0,1]: 

]1,0[: →UuX  (7) 

For more detail of Type-1 FLS see (Chen and Pham, 2001). 
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11.2   Type-2 Fuzzy Logic Control 

As with the type-1 fuzzy set, the concept of type-2 fuzzy set was introduced by Zadeh 
as an extension of the concept of an ordinary fuzzy set (Zadeh, 1975). 

A FLS described using at least one type-2 fuzzy set is called a type-2 FLS. Type-1 
FLSs are unable to directly handle rule uncertainties, because they use type-1 fuzzy 
sets that are certain. On the other hand, type-2 FLSs, are very useful in circumstances 
where it is difficult to determine an exact, and measurement uncertainties (Mendel, 
2000). 

It is known that type-2 fuzzy set let us to model and to minimize the effects of un-
certainties in rule-based FLS. Unfortunately, type-2 fuzzy sets are more difficult to 
use and understand that type-1 fuzzy sets; hence, their use is not widespread yet. 

Similar to a type-1 FLS, a type-2 FLS includes type-2 fuzzyfier, rule-base, infer-
ence engine and substitutes the defuzzifier by the output processor. The output proc-
essor includes a type-reducer and a type-2 defuzzyfier; it generates a type-1 fuzzy set 
output (from the type reducer) or a crisp number (from the defuzzyfier). A type-2 FLS 
is again characterized by IF-THEN rules, but its antecedent and consequent sets are 
now of type-2. Type-2 FLSs, can be used when the circumstances are too uncertain to 
determine exact membership grades. A model of a type-2 FLS is shown in Figure 22. 

 

Fig. 22. Structure of type-2 fuzzy logic system 

In the case of the implementation of type-2 FLCs, we have the same characteristics 
as in type-1 FLC, but we now use type-2 fuzzy sets as membership functions for the 
inputs and for the outputs. Fig. 23 shows the structure of a control loop with a FLC. 

 

Fig. 23. Fuzzy control loop 
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12   Systematic and Design of Stable Fuzzy Controllers 

For our description we consider the problem of designing a stabilizing controller for a 

1DOF manipulator robot system depicted in Fig. 24. The state-variables are θ=1x - 

the robot arm angle, and θ&=2x  - its angular velocity. The system’s actual dynami-

cal equation, which we will assume that are unknown, is as shown in equation (8) 
(Paul and Yang, 1999): 

( ) ( ) τ=++ )(, qgqqqCqqM &&&&  (8) 

 

Fig. 24. 1DOF Manipulator robot 

To apply the fuzzy Lyapunov synthesis method, we assume that the exact equa-
tions are unknown and that we have only the following partial knowledge about the 
plant (see Figure 24): 

1. The system may have really two degrees of freedom θ  and θ& , referred to as 

1x and 2x , respectively. Hence, 21 xx =& . 

2. 2x&  is proportional to u , that is, when u increases (decreases) 2x& increases (de-

creases). 

To facilitate our control design we are going to suppose no gravity effect in our 
model, see (equation 9). 

τ=qml &&2  (9) 

Our objective is to design the rule-base of a fuzzy controller that will carry the robot 

arm to a desired position dx θ=1 . We choose (10) as our Lyapunov function candi-

date. Clearly, V is positive-definite. 

)(
2

1
),( 2

2
2
121 xxxxV +=  (10) 

Differentiating V , we have equation (11),  

22212211 xxxxxxxxV &&&& +=+=  (11) 
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Hence, we require: 

02221 <+ xxxx &  (12) 

We can now derive sufficient conditions so that condition (12) holds: If 1x and 

2x have opposite signs, then 021 <xx and (12) will hold if 02 =x& ; if 1x and 2x are 

both positive, then (12) will hold if 12 xx −<& ; and if 1x and 2x are both negative, 

then (12) will hold if 12 xx −>& . 

We can translate these conditions into the following fuzzy rules: 

• If 1x is positive and 2x is positive then 2x& must be negative big 

• If 1x is negative and 2x is negative then 2x& must be positive big 

• If 1x is positive and 2x is negative then 2x& must be zero 

• If 1x is negative and 2x is positive then 2x& must be zero. 

However, using our knowledge that 2x& is proportional tou , we can replace each 

2x& with u  to obtain the fuzzy rule-base for the stabilizing controller: 

• If 1x is positive and 2x is positive Then u must be negative big 

• If 1x is negative and 2x is negative Then u must be positive big 

• If 1x is positive and 2x is negative Then u must be zero 

• If 1x is negative and 2x is positive Then u must be zero. 

It is interesting to note that the fuzzy partitions for 1x , 2x , and u follow elegantly 

from expression (11). Because  )( 212 xxxV && += , and since we require that V& be 

negative, it is natural to examine the signs of 1x and 2x ; hence, the obvious fuzzy par-

tition is positive, negative. The partition for 2x& , namely negative big, zero, positive 

big is obtained similarly when we plug the linguistic values positive, negative for 1x  

and 2x  in (11). To ensure that 12 xx −<&  )( 12 xx −>&  is satisfied even though we do 

not know 1x ’s exact magnitude, only that it is positive (negative), we must set 2x&  to 

negative big (positive big). Obviously, it is also possible to start with a given, pre-

defined, partition for the variables and then plug each value in the expression for V& to 
find the rules. Nevertheless, regardless of what comes first, we see that fuzzy 
Lyapunov synthesis transforms classical Lyapunov synthesis from the world of exact 
mathematical quantities to the world of computing with words (Zadeh, 1996). 

To complete the controllers design, we must model the linguistic terms in the rule-
base using fuzzy membership functions and determine an inference method. Following 
(Wang, 1997), we characterize the linguistic terms positive, negative, negative big, 
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zero and positive big by the type-1 membership functions shown in Fig. 25 for a 
Type-1 Fuzzy Logic Controller, and by the type-2 membership functions shown in 
Figure 26 for a Type-2 Fuzzy Logic Controller. Note that the type-2 membership 
functions are extended type-1 membership functions. 

 

Fig. 25. Set of type-1 membership functions: a) positive, b)negative, c) negative big, d) zero and 
e) positive big 

 

Fig. 26. Set of type-2 membership functions: a)negative, b) positive, c) positive big, d) zero and 
e) negative big 
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To this end, we had systematically developed a FLC rule-base that follows the 
Lyapunov Stability criterion. In Section 13 we present some experimental results us-
ing our fuzzy rule-base to build a Type-2 Fuzzy Logic Controller. 

13   Experimental Results 

In Section 12 we had systematically developed a stable FLC rule-base, and now we 
are going to show some experimental results using our stable rule-base to build a 
Type-2 FLC. The plant description used in the experiments is the same shown in 
Section 12. 

Our experiments were done with Type-1 Fuzzy Sets and Interval Type-2 Fuzzy 
Sets. In the Type-2 Fuzzy Sets the membership grade of every domain point is a crisp 
set whose domain is some interval contained in [0,1] (Mendel, 2000). On Fig. 26 we 
show some Interval Type-2 Fuzzy Sets, and for each fuzzy set, the grey area is known 
as the Footprint of Uncertainty (FOU) (Mendel, 2000), and this is bounded by an up-
per and a lower membership function as shown in Fig. 27. 
 

 

Fig. 27. Interval Type-2 Fuzzy Set 

In our experiments we increase and decrease the value of ε  to the left and to the 

right side having a Lε  and a Rε  values respectively to determine how much the 
FOU can be extended or perturbed without losing stability in the FLC. 

We did make simulations with initial conditions of θ  having values in the whole 

circumference [0, 2π ], and the desired angle dθ  having values in the same range. 
The initial conditions considered in the experiments shown in this paper are an angle 

rad0=θ  and radd 1.0=θ . 

In Fig. 28 we show a simulation of the plant made with a Type-1 FLC, as can be 
seen, the plant has been regulated in around 8 seconds, and in Fig. 29 we show the 
graph of equation (11) which is always negative defined and consequently the system 
is stable.  
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Fig. 28. Response for the Type-1 FLC 
 

 

Fig. 29. V& for the Type-1 FLC 

 

Fig. 30. Response for the Type-2 FLC ( )1,0[→ε ) 
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Fig. 31. V&  for the Type-2 FLC ( ]1,0[→ε ) 

 

Fig. 32. Response for the Type-1 FLC 

 

Fig. 33. V& for the Type-1 FLC 
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Figure 30 shows the simulation results of the plant made with the Type-2 FLC in-
creasing and decreasing ε in the range of [0,1], and as can be seen the plant has been 
regulated in around  10 seconds, and the graph of equation (11), which is depicted in 
Fig. 31 is always negative defined and consequently the system is stable. As we can 
seen, the time response is increasing when the value of ε is increasing.  

With the variation of ε in the definition of the FOU, the control surface changes 
proportional to the change of ε , for this reason, the value of u for 1≥ε  is practi-
cally zero, and the plant does not have physical response. To test the robustness of the 
built Fuzzy Controller, now we are going to use the same controller designed in Sec-
tion 12, but at this time, we are going to use it to control equation (8) considering the 
gravity effect as shown in equation (13). 

τ=+ qgmlqml cos2 &&  (13) 

In Figure 32 we can see a simulation of the plant obtained with a Type-1 FLC, and as 
can be seen, the plant has been regulated in approximately 8 seconds and Figure 33 
shows the graph of equation (11) which is always negative defined and consequently 
the system is stable.  

Figure 34 shows the simulation results of the plant obtained with the Type-2 FLC 
with increasing and decreasing  ε  values in the range of [0,1], and the graph of (11) 
depicted at Fig. 35 is always negative defined and consequently the system is stable. 
As we can seen, if we use an adaptive gain like in (Castillo et al., 2005) all the cases 
ofε can be regulated around 8 seconds.  

 
Fig. 34. Response for the Type-2 FLC ( )1,0[→ε ) 
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Fig. 35. V&  for the Type-2 FLC ( ]1,0[→ε ) 

14   Conclusions 

In this chapter three applications of interval type-2 fuzzy logic have been described. 
First, the use of interval type-2 fuzzy logic is used to improve performance on a modu-
lar neural network for face recognition. Second, interval type-2 fuzzy logic is used to 
improve edge detection in image processing. Finally, a method for designing stable in-
terval type-2 fuzzy logic controllers is proposed. In all cases, the results of type-2 fuzzy 
logic are shown to be superior with respect to the type-1 corresponding ones. 
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