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Abstract. A core tool for granular modeling is the use of linguistic rules, e.g. in fuzzy
control approaches. We provide the reader with basic mathematical tools to discuss
the behavior of system of such linguistic rules.

These mathematical tools range from fuzzy logic and fuzzy set theory, through the
consideration of fuzzy relation equations, up to discussions of interpolation strategies
and to the use of aggregation operators.

1 Introduction

In their everyday behavior humans quite often reason qualitatively. And they
do this rather successful, even in handling complex situations. For the knowl-
edge engineer it is an interesting and important challenge to adopt this type of
behavior in his modeling activities.

Fuzzy sets and fuzzy logic have been designed and developed just for this
purpose over the last decades. And they offer a rich variety of methods for this
purpose: methods, which have quite different mathematical tools as origin and
background.

In this chapter we concentrate on tools which are related to logic in the formal
mathematical sense of the word, and to a set theoretic – particularly a relation
theoretic – background.

The machinery of mathematical fuzzy logic, which is the topic of the Sections 2
and 3, offers a background to model and provides a tool to understand the
treatment of vague information.

The machinery of fuzzy relation equations, discussed in Sections 4 to 6, is
a core tool from the mathematical background for the understanding of fuzzy
control approaches, and a prototypical case for the use of information granules.

All of these tools derive a lot of flexibility from the use of t-norms, i.e. of
binary operations in the unit interval which are associative, commutative, and
isotonic, and which have 1 as their neutral element.

Some further reflections on the topic of fuzzy relation equations provide ad-
ditional mathematical tools to understand them: the interpolation method, as
well as the use of aggregation operators.
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2 Fuzzy Sets and Many-Valued Logic

2.1 Membership Degrees as Truth Degrees

A fuzzy set A is characterized by its generalized characteristic function μA : X →
[0, 1], called membership function of A and defined over some given universe of
discourse X, i.e. it is a fuzzy subset of X.

The essential idea behind this approach was to have the membership degree
μA(a) for each point a ∈ X as a gradation of its membership with respect to the
fuzzy set A. And this degree just is a degree to which the sentence “a is a member
of A” holds true. Hence it is natural to interpret the membership degrees of fuzzy
sets as truth degrees of the membership predicate in some (suitable system of)
many-valued logic S.

To do this in a reasonable way one has to accept some minimal conditions
concerning the formal language LS of this system.

Disregarding – for simplicity – fuzzy sets of type 2 and of every higher type
as well one has, from the set theoretic point of view, fuzzy sets as (generalized)
sets of first level over a given class of urelements, the universe of discourse for
these fuzzy sets. Therefore the intended language needs besides a (generalized,
i.e. graded) binary membership predicate ε e.g. two types of variables: (i) lower
case latin letters a, b, c, . . . , x, y, z for urelements, i.e. for points of the universe
of discourse X, and (ii) upper case latin letters A,B,C, . . . for fuzzy subsets of
X. And of course it has some set of connectives and some quantifiers – and thus
a suitable notion of well-formed formula.

Having in mind the standard fuzzy sets with membership degrees in the real
unit interval [0, 1] thus forces to assume that S is an infinitely many-valued logic.

It is not necessary to fix all the details of the language LS in advance. We
suppose, for simplicity of notation, that from the context it shall always be clear
which objects the individual symbols are to denote.1 Denoting the truth degree
of a well-formed formula H by [[H ]], to identify membership degrees with suitable
truth degrees then means to put

μA(x) = [[x εA ]]. (1)

This type of interpretation proves quite useful: it opens the doors to clarify far
reaching analogies between notions and results related to fuzzy sets and those
ones related to usual sets, cf. [14, 16].

2.2 Doing Fuzzy Set Theory Using MVL Language

Based on the main idea to look at the membership degrees of fuzzy sets as
truth degrees of a suitable membership predicate, it e.g. becomes quite natural
to describe fuzzy sets by a (generalized) class term notation, adapting the cor-
responding notation {x | H(x)} from traditional set theory and introducing a
corresponding notation for fuzzy sets by
1 Which, formally, means that we assume that a valuation always is determined by

the context and has not explicitly to be mentioned.
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A = {x ∈ X ‖H(x)} ⇔def μA(x) = [[H(x)]] for all x ∈ X, (2)

with now H a well-formed formula of the language LS. As usual, the shorter
notation {x ‖H(x)} is also used, and even preferred.

2.2.1 Fuzzy Set Algebra
With this notation the intersection and the cartesian product of fuzzy sets A,B
are, even in their t-norm based version, determined as

A ∩t B = {x ‖ x εA ∧t x εB},
A×t B = {(x, y) ‖ x εA ∧t y εB},

and the standard, i.e. min-based form of the compositional rule of inference2

(CRI for short) applied w.r.t. a fuzzy relation R and a fuzzy set A becomes

A ◦R = R′′A = {y ‖ ∃x(x εA ∧t (x, y) εR)} (3)

with t = min. This is the analogue of a formula well known from elementary
relation algebra which describes the full image of a set A under a relation R.

Of course, also other choices of the t-norm involved here are possible.
Also for the inclusion relation between fuzzy sets this approach works well.

The standard definition of inclusion amounts to

A ⊂ B ⇔ μA(x) ≤ μB(x) for all x ∈ X

which in the language of many-valued logic is the same as

A ⊂ B ⇔ |= ∀x(x εA→t x εB) (4)

w.r.t. any one R-implication connective based on a left continuous t-norm.
Obviously this version (4) of inclusion is easily generalized to a “fuzzified”,

i.e. (truly) many-valued inclusion relation defined as

A � B =def ∀x(x εA→t x εB). (5)

And this many-valued inclusion relation for fuzzy sets has still nice properties,
e.g. it is t-transitive, i.e. one has:

|= (A � B ∧t B � C →t A � C).

2.2.2 Fuzzy Relation Theory
This natural approach (3) toward the compositional rule of inference is almost
the same as the usual definition of the relational product R ◦ S of two fuzzy
relation, now – even related to some suitable t-norm – to be determined as
2 This compositional rule of inference is of central importance for the applications

of fuzzy sets to fuzzy control and to approximate reasoning, cf. Chapter 1 of the
Handbook volume “Fuzzy Sets in Approximate Reasoning and Information Systems”
edited by J. Bezdek, D. Dubois and H. Prade.
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R ◦t S = {(x, y) ‖ ∃z
(
(x, z) εR ∧t (z, y) ε S

)
}.

Relation properties become, in this context, again characterizations which for-
mally read as the corresponding properties of crisp sets. Consider, as an example,
transitivity of a fuzzy (binary) relation R in the universe of discourse X w.r.t.
some given t-norm. The usual condition for all x, y, z ∈ X

t(μR(x, y), μR(y, z)) ≤ μR(x, z)

in the language LS of the intended suitable [0, 1]-valued system for fuzzy set
theory becomes the condition

|= R(x, y) ∧t R(y, z) →t R(x, z)

for all x, y, z ∈ X or, even better, becomes

|= ∀xyz
(
R(x, y) ∧t R(y, z) →t R(x, z)

)
(6)

with the universal quantifier ∀ as in the �Lukasiewicz systems.
This point of view not only opens the way for a treatment of fuzzy rela-

tions quite analogous to the usual discussion of properties of crisp relations, it
also opens the way to consider graded versions of properties of fuzzy relations,
cf. [14]. In the case of transitivity, a graded or “fuzzified” predicate Trans with
the intended meaning “is transitive” may be defined as

Trans(R) =def ∀xyz
(
R(x, y) ∧t R(y, z) →t R(x, z)

)
. (7)

This point of view has recently been treated in more detail e.g. in [1].

3 T-Norm-Based Mathematical Fuzzy Logics

3.1 Basic Infinite Valued Logics

If one looks for infinite valued logics of the kind which is needed as the underlying
logic for a theory of fuzzy sets, one finds three main systems:

• the �Lukasiewicz logic L as explained in [31];
• the Gödel logic G from [11];
• the product logic Π studied in [23].

In their original presentations, these logics look rather different, regarding their
propositional parts. For the first order extensions, however, there is a unique
strategy: one adds a universal and an existential quantifier such that quantified
formulas get, respectively, as their truth degrees the infimum and the supremum
of all the particular cases in the range of the quantifiers.

As a reference for these and also other many-valued logics in general, the
reader may consult [16].
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3.1.1 Gödel Logic
The simplest one of these logics is the Gödel logic G which has a conjunction ∧
and a disjunction ∨ defined by the minimum and the maximum, respectively, of
the truth degrees of the constituents:

u ∧ v = min{u, v} , u ∨ v = max{u, v} . (8)

For simplicity we denote here and later on the connectives and the corresponding
truth degree functions by the same symbol.

The Gödel logic has also a negation ∼ and an implication →G defined by the
truth degree functions

∼ u =
{

1 , if u = 0;
0 , if u > 0. u→G v =

{
1 , if u ≤ v;
v , if u > v. (9)

3.1.2 �Lukasiewicz Logic
The �Lukasiewicz logic L was originally designed in [31] with only two primitive
connectives, an implication →L and a negation ¬ characterized by the truth
degree functions

¬u = 1 − u , u→L v = min{1, 1 − u+ v} . (10)

However, it is possible to define further connectives from these primitive ones.
With

ϕ & ψ =df ¬(ϕ→L ¬ψ) , ϕ � ψ =df ¬ϕ→L ψ (11)

one gets a (strong) conjunction and a (strong) disjunction with truth degree
functions

u & v = max{u+ v − 1, 0} , u � v = min{u+ v, 1} , (12)

usually called the �Lukasiewicz (arithmetical) conjunction and the �Lukasiewicz
(arithmetical) disjunction. It should be mentioned that these connectives are
linked together via a De Morgan law using the standard negation of this system:

¬(u & v) = ¬u � ¬v . (13)

With the additional definitions

ϕ ∧ ψ =df ϕ & (ϕ→L ψ) ϕ ∨ ψ =df (ϕ→L ψ) →L ψ (14)

one gets another (weak) conjunction ∧ with truth degree function min, and a
further (weak) disjunction ∨ with max as truth degree function, i.e. one has the
conjunction and the disjunction of the Gödel logic also available.

3.1.3 Product Logic
The product logic Π , in detail explained in [23], has a fundamental conjunction
� with the ordinary product of reals as its truth degree function, as well as an
implication →Π with truth degree function
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u→Π v =
{

1 , if u ≤ v;
u
v , if u < v. (15)

Additionally it has a truth degree constant 0 to denote the truth degree zero.
In this context, a negation and a further conjunction are defined as

∼ ϕ =df ϕ→Π 0 , ϕ ∧ ψ =df ϕ� (ϕ→Π ψ) . (16)

Routine calculations show that both connectives coincide with the corresponding
ones of the Gödel logic. And also the disjunction ∨ of the Gödel logic becomes
available, now via the definition

ϕ ∨ ψ =df ((ϕ→Π ψ) →Π ψ) ∧ ((ψ →Π ϕ) →Π ϕ) . (17)

3.2 Standard and Algebraic Semantics

These fundamental infinite valued logics have their standard semantics as ex-
plained: the real unit interval [0, 1] as truth degree set, and the connectives (and
quantifiers) as mentioned.

In the standard way, as known from classical logic, one then can introduce
for each formula ϕ the notion of its validity in a model, which in these logics
means that ϕ has the truth degree 1 w.r.t. this model. By a model we mean
either—in the propositional case—an evaluation of the propositional variables
by truth degrees, or—in the first-order case—a suitable interpretation of all the
non-logical constants together with an assignment of the variables.

Based upon this, one defines logical validity of a formula ϕ as validity of ϕ in
each model, and the entailment relation holds between a set Σ of formulas and
a formula ϕ iff each model of Σ is also a model of ϕ.

In the standard terminology of many-valued logic in general, this means that
all the three systems G, L, Π have the truth degree one as their only designated
truth degree.

Besides these standard semantics, all three of these basic infinite valued logics
have also algebraic semantics determined by suitable classes K of truth degree
structures. The situation is similar here to the case of classical logic: the logically
valid formulas in classical logic are also just all those formulas which are valid
in all Boolean algebras.

Of course, these structures should have the same signature as the language
L of the corresponding logic. This means that these structures provide for each
connective of the language L an operation of the same arity, and they have
to have—in the case that one discusses the corresponding first order logics—
suprema and infima for all those subsets which may appear as value sets of
formulas. Particularly, hence, they have to be (partially) ordered, or at least
pre-ordered.

For each formula ϕ of the language L of the corresponding logic, for each
such structure A, and for each evaluation e which maps the set of propositional
variables of L into the carrier of A, one has to define a value e(ϕ), and finally one
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has to define what it means that such a formula ϕ is valid in A. Then a formula
ϕ is logically valid w.r.t. this class K iff ϕ is valid in all structures from K.

The standard way to arrive at such classes of structures is to start from the
Lindenbaum algebra of the corresponding logic, i.e. its algebra of formulas mod-
ulo the congruence relation of logical equivalence. For this Lindenbaum algebra
one then has to determine a class of similar algebraic structures which—ideally—
forms a variety.

For the Gödel logic such a class of structures is, according to the complete-
ness proof of [8], the class of all Heyting algebras, i.e. of all relatively pseudo-
complemented lattices, which satisfy the prelinearity condition

(u � v) � (v � u) = 1 . (18)

Here � is the lattice join and � the relative pseudo-complement.
For the �Lukasiewicz logic the corresponding class of structures is the class of

all MV-algebras, first introduced again within a completeness proof in [3], and
extensively studied in [5].

And for the product logic the authors of [23] introduce a class of lattice ordered
semigroups which they call product algebras.

It is interesting to recognize that all these structures—pre-linear Heyting alge-
bras, MV-algebras, and product algebras—are abelian lattice ordered semigroups
with an additional “residuation” operation.

3.3 Logics with t-Norm Based Connectives

The fundamental infinite valued logics from Section 3.1 look quite different if
one has in mind the form in which they first were presented.

Fortunately, however, there is a common generalization which allows to
present all these three logics in a uniform way. In this uniform presentation
one of the conjunction connectives becomes a core role: ∧ in the system G, & in
the system L, and � in the system Π .

But this uniform generalization covers a much larger class of infinite valued
logics over [0, 1]: the core conjunction connective—which shall now in general
be denoted &—has only to have a truth degree function ⊗ which, as a binary
operation in the real unit interval, should be an associative, commutative, and
isotonic operation which has 1 as a neutral element, i.e. should satisfy for arbi-
trary x, y, z ∈ [0, 1]:

(T1) x⊗ (y ⊗ z) = (x⊗ y) ⊗ z,
(T2) x⊗ y = y ⊗ x,
(T3) if x ≤ y then x⊗ z ≤ y ⊗ z,
(T4) x⊗ 1 = x.

Such binary operations are known as t-norms and have been used in the context
of probabilistic metric spaces, cf. e.g. [29]. At the same time they are considered
as natural candidates for truth degree functions of conjunction connectives. And
from such a t-norm one is able to derive (essentially) all the other truth degree
functions for further connectives.
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The minimum operation u ∧ v from (8), the �Lukasiewicz arithmetic conjunc-
tion u& v from (12), and the ordinary product are the best known examples of
t-norms.

In algebraic terms, such a t-norm ⊗ makes the real unit interval into an ordered
monoid, i.e. into an abelian semigroup with unit element. And this ordered
monoid is even integral, i.e. its unit element is at the same time the universal
upper bound of the ordering. Additionally this monoid has because of

0 ⊗ x ≤ 0 ⊗ 1 = 0 (19)

the number 0 as an annihilator.
Starting from a t-norm ⊗ one finds a truth degree function � for an impli-

cation connective via the adjointness condition

x⊗ z ≤ y ⇐⇒ z ≤ (x � y) . (20)

However, to guarantee that this adjointness condition (20) determines the op-
eration � uniquely, one has to assume that the t-norm ⊗ is a left continuous
function in both arguments. Indeed, the adjointness condition (20) is equivalent
to the condition that ⊗ is left continuous in both arguments, cf. [16].

Instead of this adjointness condition (20) one could equivalently either give
the direct definition

x � y = sup{z |x⊗ z ≤ y} (21)

of the residuation operation �, or one could force the t-norm ⊗ to have the
sup-preservation property

sup
i→∞

(xi ⊗ y) = ( sup
i→∞

xi) ⊗ y (22)

for each y ∈ [0, 1] and each non-decreasing sequence (xi)i→∞ from the real unit
interval.

In this framework one additionally introduces a further unary operation − by

−x =df x � 0 , (23)

and considers this as the truth degree function of a negation connective. That
this works also in the formalized language of the corresponding system of logic
forces to introduce into this language a truth degree constant 0 to denote the
truth degree zero.

And finally one likes to have the weak conjunction and disjunction connec-
tives ∧,∨ available. These connectives should also be added to the vocabulary.
However, it suffices to add only the min-conjunction ∧, because then for each
left continuous t-norm ⊗ and its residuated implication � one has, completely
similar to the situation (17) in the product logic,

u ∨ v = ((u � v) � v) ∧ ((v � u) � u) . (24)

All these considerations lead in a natural way to algebraic structures which,
starting from the unit interval, consider a left continuous t-norm ⊗ together with
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its residuation operation �, with the minimum-operation ∧, and the maximum
operation ∨ as basic operations of such an algebraic structure, and with the
particular truth degrees 0, 1 as fixed objects (i.e. as nullary operations) of the
structure. Such an algebraic structure

〈[0, 1],∧,∨,⊗,�, 0, 1〉 (25)

shall be coined to be a t-norm algebra.

3.4 Continuous t-Norms

Among the large class of all t-norms the continuous ones are best understood.
A t-norm is continuous iff it is continuous as a real function of two variables,
or equivalently, iff it is continuous in each argument (with the other one as a
parameter), cf. [16, 29].

Furthermore, all continuous t-norms are ordinal sums of only three of them:
the �Lukasiewicz arithmetic t-norm u& v from (12), the ordinary product t-norm,
and the minimum operation u ∧ v. The definition of an ordinal sum of t-norms
is the following one.

Definition 1. Suppose that ([ai, bi])i∈I is a countable family of non-overlapping
proper subintervals of the unit interval [0, 1], let (ti)i∈I be a family of t-norms,
and let (ϕi)i∈I be a family of mappings such that each ϕi is an order isomorphism
from [ai, bi] onto [0, 1]. Then the (generalized) ordinal sum of the combined
family (([ai, bi], ti, ϕi))i∈I is the binary function T : [0, 1]2 → [0, 1] characterized
by

T (u, v) =

{
ϕk

−1(tk(ϕk(u), ϕk(v)), if u, v ∈ [ak, bk]
min{u, v} otherwise.

(26)

It is easy to see that an order isomorphic copy of the minimum t-norm is again
the minimum operation. Thus the whole construction of ordinal sums of t-norms
even allows to assume that the summands are formed from t-norms different from
the minimum t-norm. This detail, however, shall be inessential for the present
considerations.

But it should be mentioned that all the endpoints ai, bi of the interval family
([ai, bi])i∈I give idempotents of the resulting ordinal sum t-norm T :

T (ai, ai) = ai , T (bi, bi) = bi for all i ∈ I.

Conversely, if one knows all the idempotents of a given continuous t-norm t, i.e.
all u ∈ [0, 1] with t(u, u) = u, then one is able to give a representation of t as an
ordinal sum, as explained again in [29].

The general result, given e.g. in [16, 29], reads as follows.

Theorem 1. Each continuous t-norm t is the (generalized) ordinal sum of
(isomorphic) copies of the �Lukasiewicz t-norm, the product t-norm, and the min-
imum t-norm.
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As was mentioned in Section 3.1, the t-norm based logics which are determined
by these three t-norms are well known and adequately axiomatized.

Therefore one is interested to find adequate axiomatizations also for further
continuous t-norms. A global solution of this problem, i.e. a solution which did
not only cover some few particular cases, appeared as quite difficult. Therefore,
instead, one first has been interested to find all those formulas of the language
of t-norm based systems which are logically valid in each one of these logics.

There seems to be a natural way to get an algebraic semantics for these consid-
erations: the class of all t-norm algebras with a continuous t-norm should either
form such an algebraic semantics, or should be a constitutive part—preferably a
generating set—of a variety of algebraic structures which form such an algebraic
semantics.

However, there seems to be an inadequacy in the description of this algebraic
semantics: on the one hand the notion of t-norm algebra is a purely algebraic
notion, the notion of continuity of a t-norm on the other hand is an analytical
one. Fortunately, there is a possibility to give an algebraic characterization for
the continuity of t-norms. It needs a further notion.

Definition 2. A t-norm algebra 〈[0, 1],∧,∨,⊗,�, 0, 1〉 is divisible iff one has
for all a, b ∈ L:

a ∧ b = a⊗ (a � b) . (27)

And this notion gives the algebraic counterpart for the continuity, as shown e.g.
in [16, 29].

Proposition 1. A t-norm algebra 〈[0, 1],∧,∨,⊗,�, 0, 1〉 is divisible iff the t-
norm ⊗ is continuous.

3.5 The Logic of Continuous t-Norms

Instead of considering for each particular t-norm t the t-based logic, it seems
preferable and more interesting to consider the common logic of all t-norms of
some kind. This was first realized for the class of all continuous t-norms by
Hájek [22]. This logic should have as a natural standard semantics the class of
all t-norm algebras with a continuous t-norm.

However, to built up a logic with an algebraic semantics determined by a class
K of algebraic structures becomes quite natural in the cases that this class K is
a variety: i.e. a class which is equationally definable—or equivalently, in more
algebraic terms, which is closed under forming direct products, substructures,
and homomorphic images.

Unfortunately, the class of t-norm algebras (with a continuous t-norm or not)
is not a variety: it is not closed under direct products because each t-norm
algebra is linearly ordered, but the direct products of linearly ordered structures
are not linearly ordered, in general. Hence one may expect that it would be
helpful for the development of a logic of continuous t-norms to extend the class
of all divisible t-norm algebras in a moderate way to get a variety. And indeed
this idea works, and is in detail explained in [22].
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The core points are that one considers instead of the divisible t-norm alge-
bras, which are linearly ordered integral monoids as mentioned previously, now
lattice ordered integral monoids which are divisible, which have an additional
residuation operation connected with the semigroup operation via an adjoint-
ness condition like (20), and which satisfy a pre-linearity condition like (18).
These structures have been called BL-algebras; they are completely defined in
the following way.

Definition 3. A BL-algebra L = 〈L,∨,∧, ∗,→,0,1〉 is an algebraic structure
such that

(i) (L,∨,∧,0,1) is a bounded lattice, i.e. has 0 and 1 as the universal lower and
upper bounds w.r.t. the lattice ordering ≤,

(ii) (L, ∗,1) is an abelian monoid, i.e. a commutative semigroup with unit 1 such
that the multiplication ∗ is associative, commutative and satisfies 1 ∗x = x
for all x ∈ L,

(iii) the binary operations ∗ and → form an adjoint pair, i.e. satisfy for all
x, y, z ∈ L the adjointness condition

z ≤ (x→ y) ⇐⇒ x ∗ z ≤ y, (28)

(iv) and moreover, for all x, y ∈ L one has satisfied the pre-linearity condition

(x→ y) ∨ (y → x) = 1 (29)

as well as the divisibility condition

x ∗(x→ y) = x ∧ y . (30)

The axiomatization of Hájek [22] for the basic t-norm logic BL (in [16] denoted
BTL), i.e. for the class of all well-formed formulas which are valid in all BL-
algebras, is given in a language LT which has as basic vocabulary the connectives
→,& and the truth degree constant 0, taken in each BL-algebra 〈L,∩,∪, ∗,�,
0, 1〉 as the operations �, ∗ and the element 0. Then this t-norm based logic has
as axiom system AxBL the following schemata:

(AxBL1) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ)) ,
(AxBL2) ϕ&ψ → ϕ ,
(AxBL3) ϕ&ψ → ψ&ϕ ,
(AxBL4) (ϕ→ (ψ → χ)) → (ϕ&ψ → χ) ,
(AxBL5) (ϕ&ψ → χ) → (ϕ→ (ψ → χ)) ,
(AxBL6) ϕ& (ϕ→ ψ) → ψ& (ψ → ϕ) ,
(AxBL7) ((ϕ→ ψ) → χ) → (((ψ → ϕ) → χ) → χ) ,
(AxBL8) 0 → ϕ ,

and has as its (only) inference rule the rule of detachment, or: modus ponens
(w.r.t. the implication connective →).

The logical calculus which is constituted by this axiom system and its inference
rule, and which has the standard notion of derivation, shall be denoted by KBL

or just by BL. (Similarly in other cases.)
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Starting from the primitive connectives →,& and the truth degree constant
0, the language LT of BL is extended by definitions of additional connectives
∧,∨,¬:

ϕ ∧ ψ =df ϕ& (ϕ→ ψ) , (31)
ϕ ∨ ψ =df ((ϕ→ ψ) → ψ) ∧ ((ψ → ϕ) → ϕ) , (32)

¬ϕ =df ϕ→ 0 . (33)

These additional connectives ∧,∨ just have the lattice operations ∩,∪ as their
truth degree functions.

It is a routine matter, but a bit tedious, to check that this logical calculus KBL,
usually called the axiomatic system BL, is sound, i.e. derives only such formulas
which are valid in all BL-algebras. A proof is given in [22], together with a proof
of a corresponding completeness theorem.

Corollary 1. The Lindenbaum algebra of the axiomatic system BL is a BL-
algebra.

Theorem 2 (General Completeness). A formula ϕ of the language LT is
derivable within the axiomatic system BL iff ϕ is valid in all BL-algebras.

The proof method yields that each BL-algebra is (isomorphic to) a subdirect
product of linearly ordered BL-algebras, i.e. of BL-chains. Thus it allows a nice
modification of the previous result.

Corollary 2 (General Completeness; Version 2). A formula ϕ of LT is
derivable within the axiomatic system BL iff ϕ is valid in all BL-chains.

But even more is provable and leads back to the starting point of the whole
approach: the logical calculus KBL characterizes just those formulas which hold
true w.r.t. all divisible t-norm algebras. This was proved in [4].

Theorem 3 (Standard Completeness). The class of all formula which are
provable in the system BL coincides with the class of all formulas which are
logically valid in all t-norm algebras with a continuous t-norm.

And another generalization of Theorem 2 deserves to be mentioned. To state
it, let us call schematic extension of BL every extension which consists in an
addition of finitely many axiom schemata to the axiom schemata of BL. And let
us denote such an extension by BL(C). And call BL(C)-algebra each BL-algebra
A which makes A-valid all formulas of C.

Then one can prove, as done in [22], an even more general completeness result.

Theorem 4 (Extended General Completeness). For each finite set C of
axiom schemata and any formula ϕ of LT there are equivalent:

(i) ϕ is derivable within BL(C);
(ii) ϕ is valid in all BL(C)-algebras;
(iii) ϕ is valid in all BL(C)-chains.
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The extension of these considerations to the first-order case is also given in [22],
but shall not be discussed here.

But the algebraic machinery allows even deeper insights. After some par-
ticular results e.g. in [24, 25], the study of such subvarieties of the variety
of all BL-algebras which are generated by single t-norm algebras of the form
〈[0, 1],∧,∨,⊗,�, 0, 1〉 with a continuous t-norm ⊗ led to (finite) axiomatiza-
tions of those t-norm based logics which have a standard semantics determined
just by this continuous t-norm algebra. These results have been presented in [10].

3.6 The Logic of Left Continuous t-Norms

The guess of Esteva/Godo [9] has been that one should arrive at the logic of
left continuous t-norms if one starts from the logic of continuous t-norms and
deletes the continuity condition, i.e. the divisibility condition (27).

The algebraic approach needs only a small modification: in the Definition
3 of BL-algebras one has simply to delete the divisibility condition (30). The
resulting algebraic structures have been called MTL-algebras. They again form
a variety.

Following this idea, one has to modify the previous axiom system in a suitable
way. And one has to delete the definition (31) of the connective ∧, because
this definition (together with suitable axioms) essentially codes the divisibility
condition. The definition (32) of the connective ∨ remains unchanged.

As a result one now considers a new system MTL of mathematical fuzzy logic,
known as monoidal t-norm logic, characterized semantically by the class of all
MTL-algebras. It is connected with the axiom system

(AxMTL1) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ)) ,
(AxMTL2) ϕ&ψ → ϕ ,
(AxMTL3) ϕ&ψ → ψ&ϕ ,
(AxMTL4) (ϕ→ (ψ → χ)) → (ϕ&ψ → χ) ,
(AxMTL5) (ϕ&ψ → χ) → (ϕ→ (ψ → χ)) ,
(AxMTL6) ϕ ∧ ψ → ϕ ,
(AxMTL7) ϕ ∧ ψ → ψ ∧ ϕ ,
(AxMTL8) ϕ& (ϕ→ ψ) → ϕ ∧ ψ ,
(AxMTL9) 0 → ϕ ,
(AxMTL10) ((ϕ→ ψ) → χ) → (((ψ → ϕ) → χ) → χ) ,

together with the rule of detachment (w.r.t. the implication connective →) as
(the only) inference rule.

It is a routine matter, but again tedious, to check that this logical calcu-
lus KMTL is sound, i.e. derives only such formulas which are valid in all MTL-
algebras.

Corollary 3. The Lindenbaum algebra of the logical calculus KMTL is an MTL-
algebra.

Proofs of this result and also of the following completeness theorem are given
in [9].
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Theorem 5 (General Completeness). A formula ϕ of the language LT is
derivable within the logical calculus KMTL iff ϕ is valid in all MTL-algebras.

Again the proof method yields that each MTL-algebra is (isomorphic to) a sub-
direct product of linearly ordered MTL-algebras, i.e. of MTL-chains.

Corollary 4 (General Completeness; Version 2). A formula ϕ of LT is
derivable within the axiomatic system MTL iff ϕ is valid in all MTL-chains.

And again, similar as for the BL-case, even more is provable: the logical calculus
KMTL characterizes just these formulas which hold true w.r.t. all those t-norm
based logics which are determined by a left continuous t-norm. A proof is given
in [27].

Theorem 6 (Standard Completeness). The class of all formulas which are
provable in the logical calculus KMTL coincides with the class of all formulas
which are logically valid in all t-norm algebras with a left continuous t-norm.

This result again means, as the similar one for the logic of continuous t-norms,
that the variety of all MTL-algebras is the smallest variety which contains all
t-norm algebras with a left continuous t-norm.

Because of the fact that the BL-algebras are the divisible MTL-algebras, one
gets another adequate axiomatization of the basic t-norm logic BL if one extends
the axiom system KMTL with the additional axiom schema

ϕ ∧ ψ → ϕ&(ϕ→ ψ) . (34)

The simplest way to prove that this implication is sufficient is to show that the
inequality x ∗ (x � y) ≤ x ∩ y, which corresponds to the converse implication,
holds true in each MTL-algebra. Similar remarks apply to further extensions of
MTL we are going to mention.

Also for MTL an extended completeness theorem similar to Theorem 4 remains
true.

Theorem 7 (Extended General Completeness). For each finite set C of
axiom schemata and any formula ϕ of LT the following are equivalent:

(i) ϕ is derivable within the logical calculus KMTL + C;
(ii) ϕ is valid in all MTL(C)-algebras;
(iii) ϕ is valid in all MTL(C)-chains.

Again the extension to the first-order case is similar to the treatment in [22] for
BL and shall not be discussed here.

The core point is that the formal language has to use predicate symbols to
introduce atomic formulas, and that the logical apparatus has to be extended by
quantifiers: and these are usually a generalization ∀ and a particularization ∃. As
semantic interpretations of these quantifiers one uses in case of ∀ the infimum of
the set of truth degrees of all the instances, and in case of ∃ the corresponding
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supremum. The semantic models (M, L) for this first-order language are deter-
mined by a nonempty universe M , a truth degree lattice L, and for each n-ary
predicate symbol P some n-ary L-valued fuzzy relation in M .

This forces either to assume that the truth degree lattices L are complete
lattices, or weaker and more preferably that the model (M, L) has to be a safe
one, i.e. one for which all those subsets of L have suprema and infima which may
occur as truth degree sets of instances of quantified formulas of the language.

4 Linguistic Control and Fuzzy Relational Equations

4.1 The Standard Paradigm

The standard paradigm of rule based fuzzy control is that one supposes to have
given, in a granular way, an incomplete and fuzzy description of a control function
Φ from an input space X to an output space Y, realized by a finite family

D = (〈Ai, Bi〉)1≤i≤n (35)

of (fuzzy) input-output data pairs. These granular data are supposed to charac-
terize this function Φ sufficiently well.

In the usual approaches such a family of input-output data pairs is provided
by a finite list

if α is Ai, then β is Bi, i = 1, . . . , n , (36)

of linguistic control rules, also called fuzzy if-then rules, describing some control
procedure with input variable α and output variable β.

Mainly in engineering papers one often considers also the case of different
input variables α1, . . . , αm. In this case the linguistic control rules become the
form

if α1 is A1
i , and . . . and αm is Am

i , then β is Bi, i = 1, . . . , n . (37)

But from a mathematical point of view such rules are subsumed among the
former ones and cover only a restricted class of cases. To see this one simply has
to allow as the input universe for α the cartesian product X = X1 × · · · ×Xm of
the input universes Xi of αi, i = 1, . . . ,m. This yields for a given list A1, . . . , Am

of input sets for the variables α1, . . . , αm the particular fuzzy input set A =
A1 × · · · × Am for the combined variable α. The above mentioned restriction
comes from the fact that not all fuzzy subsets of X have this form of a fuzzy
cartesian product of fuzzy subsets of the universes Xi.

Let us assume for simplicity that all the input data Ai are normal, i.e. that
for each i there is a point xi

0 in the universe of discourse with Ai(xi
0) = 1.

Sometimes even weak normality would suffice, i.e. that the supremum over all
the membership degrees of the Ai equals one; but we do not indent to discuss
this in detail.

The main mathematical problem of fuzzy control, besides the engineering
problem to get a suitable list of linguistic control rules for the actual control
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problem, is therefore the interpolation problem to find a function Φ∗ : F(X) →
F(Y) which interpolates these data, i.e. which satisfies

Φ∗(Ai) = Bi for each i = 1, . . . , n , (38)

and which, in this way, gives a fuzzy representation for the control function Φ.
Actually the standard approach is to look for one single function, more pre-

cisely: for some uniformly defined function, which should interpolate all these
data, and which should be globally defined over the class F(X) of all fuzzy subsets
of X, or at least over a suitably chosen sufficiently large subclass of F(X).

Following Zadeh [36], this idea is formally realized by a fuzzy relationR, which
connects fuzzy input information A with fuzzy output information B = A ◦ R
via the compositional rule of inference (3). Therefore, applying this idea to the
linguistic control rules themselves, transforms these rules in a natural way into
a system of fuzzy relation equations

Ai ◦R = Bi, for i = 1, . . . , n . (39)

The problem, to determine a fuzzy relation R which realizes via (3) such a list
(36) of linguistic control rules, becomes the problem to determine a solution of
the corresponding system (39) of relation equations.

This problem proves to be a rather difficult one: it often happens that a given
system (39) of relation equations is unsolvable. This is already the case in the
more specific situation that the membership degrees belong to a Boolean algebra,
as discussed (as a problem for Boolean matrices) e.g. in [30].

Nice solvability criteria are still largely unknown. Thus the investigation of
the structure of the solution space for (39) was one of the problems discussed
rather early. One essentially has that this space is an upper semilattice under
the simple set union determined by the maximum of the membership degrees;
cf. e.g. [6].

And this semilattice has, if it is nonempty, a universal upper bound

R̂ =
n⋂

i=1

{(x, y) ‖Ai(x) → Bi(y)} (40)

as explained by the following result.

Theorem 8. The system (39) of relation equations is solvable iff the fuzzy rela-
tion R̂ is a solution of it. And in the case of solvability, R̂ is always the largest
solution of the system (39) of relation equations.

This result was first stated in [35] for the particular case of the min-based Gödel
implication → in (40), and generalized to the case of the residuated implica-
tions based upon arbitrary left continuous t-norms—and hence to the present
situation—by this author in [13]; cf. also his [14].

Besides the reference to the CRI in this type of approach toward fuzzy control,
the crucial point is to determine a fuzzy relation out of a list of linguistic control
rules.
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The fuzzy relation R̂ can be seen as a formalization of the idea that the list
(36) of control rules has to be read as:

if input is A1 then output is B1

and

. . .

and

if input is An then output is Bn .

Having in mind such a formalization of the list (36) of control rules, there is
immediately also another way how to read this list: substitute an or for the and
to combine the single rules.

It is this understanding of the list of linguistic control rules as a (rough)
description of a fuzzy function which characterizes the approach of Mam-
dani/Assilian [32]. Therefore they consider instead of R̂ the fuzzy relation

RMA =
n⋃

i=1

(Ai × Bi) ,

again combined with the compositional rule of inference.

4.2 Solutions and Pseudo-solutions of Fuzzy Relational Equations

Linguistic control rules serve as a tool for rough model building, and their trans-
lation into fuzzy relational equations does so too. So it may not really be nec-
essary to solve systems of fuzzy relational equations (39) in the standard sense,
but some kind of “approximation” of solutions may do as well.

There is, however, a a quite fundamental problem to understand this remark:
an approximation is always an approximation of something. So an approximate
solution of a system (39) should (normally) be an approximation of a true solu-
tion of this system. But what, if the system is not solvable at all?

A way out is offered by another type of approximation: by an approximation
of the “behavior” of the functional which is given by the left hand sides of the
equations from (39). In terms of the linguistic control rules which constituted
(39) this means that one looks for an approximate realization of their behavior.

This way of doing, originating from [32] and the fuzzy relationRMA introduced
there, can also be seen as to “fake” something similar to a solution – and to work
with it like a solution.

Such “faked” solutions shall be coined pseudo-solutions, following [21]. The
best known pseudo-solutions for a system (39) are R̂ and RMA.

From Theorem 8 it is clear that R̂ is a pseudo-solution of a system (39) just
in the case that the system (39) is not solvable. So one is immediately lead to
the

Problem: Under which conditions is the pseudo-solution RMA really a solution
of the corresponding system (39) of relation equations.



170 S. Gottwald

This problem is discussed in [28]. And one of the main results is the next
theorem.

Theorem 9. Let all the input sets Ai be normal. Then the fuzzy relation RMA

is a solution of the corresponding system of fuzzy relation equations iff for all
i, j = 1, . . . , n one has

|= ∃x(Ai(x) & Aj(x)) → Bi ≡∗ Bj . (41)

This MA-solvability criterion (41) is a kind of functionality of the list of linguistic
control rules, at least in the case of the presence of an involutive negation:
because in such a case one has

|= ∃x(Ai(x) & Aj(x)) ↔ Ai ∩t Aj �≡∗ ∅ ,

and thus condition (41) becomes

|= Ai ∩t Aj �≡∗ ∅ → Bi ≡∗ Bj . (42)

And this can be understood as a fuzzification of the idea “if Ai and Aj coincide
to some degree, than also Bi and Bj should coincide to a certain degree”.

Of course, this fuzzification is neither obvious nor completely natural, because
it translates “degree of coincidence” in two different ways.

This leads back to the well known result, explained e.g. in [14], that the system
of relation equations is solvable in the case that all the input fuzzy sets Ai are
pairwise t-disjoint:

Ai ∩t Aj = ∅ for all i �= j.

Here the reader should have in mind that this t-disjointness is, in general, weaker
than the standard min-disjointness: it does not force the disjointness of the
supports of the fuzzy sets Ai, Aj , and even allows a height hgt(Ai ∩ Aj) = 0.5
for the case that t is the �Lukasiewicz t-norm.

However, it may happen that the system of relation equations is solvable, i.e.
has R̂ as a solution, without having the fuzzy relation RMA as a solution.

An example is given in [21].
Therefore condition (41) is only a sufficient one for the solvability of the system

(39) of relation equations.
Hence one has as a new problem to give additional assumptions, besides the

solvability of the system (39) of relation equations, which are sufficient to guar-
antee that RMA is a solution of (39).

As in [14] and already in [12], we subdivide the problem whether a fuzzy
relation R is a solution of the system of relation equations into two cases: (i)
whether one has satisfied the subset property w.r.t. a system (39), i.e. whether
one has

Ai ◦R ⊂ Bi, for i = 1, . . . , n , (43)

and (ii) whether one has the superset property w.r.t. (39), i.e. whether one has
one has

Ai ◦R ⊃ Bi, for i = 1, . . . , n . (44)

The core result is the following theorem.
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Theorem 10. If the input set Ak is normal then Ak ◦ R̂ ⊂ Bk ⊂ Ak ◦RMA.

So we know that with normal input sets the fuzzy outputs Ai ◦ R̂ always are
fuzzy subsets of Ai ◦RMA.

Furthermore we immediately have the following global result.

Proposition 2. If all the input sets Ai of the system of relation equations are
normal and if one also has RMA ⊂ R̂, then the system of relation equations is
solvable, and RMA is a solution.

Hence the pseudo-solutions RMA and R̂ are upper and lower approximations for
the realizations of the linguistic control rules.

Now one may equally well look for new pseudo-solutions, e.g. by some iteration
of these pseudo-solutions in the way, that for the next iteration step in such an
iteration process the system of relation equations is changed such that its (new)
output sets become the real output of the former iteration step. This has been
done in [21].

To formulate the dependence of the pseudo-solutions RMA and R̂ from the
input and output data, we denote the “original” pseudo-solutions with the input-
output data (Ai, Bi) in another way and write

RMA[Bk] for RMA , R̂[Bk] for R̂ .

Theorem 11. One has always

Ai ◦ R̂[Bk] ⊂ Ai ◦RMA[Ak ◦ R̂[Bk]] ⊂ Ai ◦RMA[Bk] .

Thus the iterated relation RMA[Ak ◦ R̂] is a pseudo-solution which somehow
better approximates the intended behavior of the linguistic control rules as each
one of RMA and R̂. For details cf. again [21].

4.3 Invoking More Formal Logic

The languages of the first-order versions of any one of the standard fuzzy logics
discussed in Section 3 can be used to formalize the main ideas behind the use
of linguistic control rules in fuzzy control matters. This offers, besides the above
presented reference to fuzzy set and fuzzy relation matters, a second way for a
mathematical analysis of this rough modeling strategy.

We shall use here the logic BL∀, i.e. the first-order version of the logic BL of
continuous t-norms as the basic reference logic for this analysis. And we follow
in the presentation of the material closely the paper [33].

A formula of this logic, with n free variables, describes w.r.t. each BL∀-model
(M, L) some n-ary L-fuzzy relation in the universe M = |M|. This is the obvious
specification of the approach of Section 2 to describe fuzzy sets by formulas of a
suitable language.

A BL-theory T is just a crisp, i.e. classical set of formulas of the language of
BL∀. The notation T � A means that the formula A is provable in a theory T .
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In what follows, we will use the letters A,B, . . . formulas as well as for L-fuzzy
sets in some BL∀-model (M, L).

This yields that e.g. the result (3) of a – now t-norm based and not only min-
based – CRI-application to a fuzzy set A and a fuzzy relation R is described by
the formula

(∃x)(A(x) & R(x, y)) . (45)

Furthermore, if T is a BL-theory and T � (∃x)A(x) then this means that the
fuzzy set described by A is normal.

Let us additionally assume that T is a consistent BL∀-theory which formalizes
some additional assumptions which may be made for the considerations of a fuzzy
control problem, e.g. that the input fuzzy sets may be normal ones.

On this basis, the results in fuzzy relation equations can be succinctly and
transparently formulated in the syntax of BL∀. So let us start from a system
(36) of linguistic control rules with input fuzzy sets Ai over some m-dimensional
universe X = X1 × · · · × Xm.

With our notational convention this means that we have given formulas
Ai(x1, . . . , xm) with free variables x1, . . . , xm which describe these input sets
of the single control rules. For simplicity, let us write −→x = (x1, . . . , xm) for this
list of (free) variables.

The problem which corresponds to the solvability problem of a system (39)
of relation equations now is to find a formula R(−→x , y) with m+ 1 free variables
such that

T � (∃x1) · · · (∃xn)(Ai(−→x ) & R(−→x , y)) ↔ Bi(y) (46)

holds for every i = 1, . . . , n. If such a formulaR exists then we say that the system
of fuzzy relation equations (46) is solvable in T and R(−→x , y) is its solution.

Lemma 1. The following is BL∀-provable:

T � (∃x1) · · · (∃xm)

⎛

⎝Ai(−→x ) &
n∧

j=1

(Aj(−→x ) → Bj(y))

⎞

⎠ → Bi(y).

The following theorem presents in a purely syntactical way the well known fun-
damental result on the solution of the fuzzy relation equations.

Theorem 12. The system of fuzzy relation equations (46) is solvable in T iff

T � (∃x1) · · · (∃xm)

⎛

⎝Ai(−→x ) &
n∧

j=1

(Aj(−→x ) → Bj(y))

⎞

⎠ ↔ Bi(y) (47)

holds for all i = 1, . . . , n.

Corollary 5. If (46) holds for some R(−→x , y) then

T � R(−→x , y) →
n∧

j=1

(Aj(−→x ) → Bj(y)) .

This means, in the present terminology, that the solution (47) is maximal.
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To simplify the formulas to come let us assume for the rest of this subsection
that m = 1. This corresponds completely to the former subsumption of the case
(37) of a system of linguistic control rules with m input variables under the case
(36) with only one input variable.

We will work with the following two special kinds of formulas. The first one
has the form of a conjunction of implications from Theorem 12

RImp(x, y) =def

m∧

j=1

(Aj(x) → Bj(y))) . (48)

The second one, the so called Mamdani-Assilian formula, shall be

RMA(x, y) =
m∨

i=1

(Ai(x) & Bi(y)) . (49)

Lemma 2. Let T � (∃x)Ai for all i = 1, . . . , n. Then

T � Bi(y) → (∃x)(Ai(x) &
m∨

j=1

(Aj(x) & Bj(y))). (50)

Joining Lemmas 1 and 2, we get get following theorem, which says that our con-
junction (48) of implications gives the lower and the Mamdani-Assilian formula
(49) the upper bound for the solutions of the system (46).

Theorem 13. Let T � (∃x)Ai for i = 1, . . . , n. Then the following is provable:

T � (∃x)(Ai(x) & RImpl(x, y)) → Bi(y) ,

T � Bi(y) → (∃x)(Ai(x) & RMA)

for each i = 1, . . . , n.

The following theorem has a semantical counterpart proved with some more
restrictive assumptions by Perfilieva/Tonis [34].

Theorem 14. Let A(x) be an arbitrary formula. The following is provable for
each i = 1, . . . , n:

T � (A(x) ↔ Ai(x)) & (Bi(y) → (∃x)(Ai(x) & RImpl(x, y))) →
((∃x)(A(x) & RImpl(x, y)) ↔ Bi(y)) . (51)

This theorem suggests that the formula

ξ(y) =def (Bi(y) → (∃x)(Ai(x) & RImpl(x, y)))

can be the basis of a solvability sign similar to a more general solvability index
discussed by this author e.g. in [14, 15] and defined as ξ(y) =def

∧n
i=1 ξi(y).
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Then from Theorem 14 it follows:

Corollary 6

T � ξ(y) → ((∃x)(Ai(x) & RImpl(x, y)) ↔ Bi(y))

for each i = 1, . . . , n.

It follows from this corollary that in a model of T , the solvability sign can be
interpreted as a degree, in which the system (46) is solvable in T .

Theorem 15. The system (46) is solvable in T iff

T � (∀y)ξ(y).

Theorem 16. If the system (46) is solvable in T then

T � (∀x)(Ai(x) ↔ Aj(x)) → (∀y)(Bi(y) ↔ Bj(y)) (52)

for all i, j = 1, . . . , n.

Klawonn [28] gave a necessary and sufficient condition that the Mamdani-
Assilian fuzzy relation is a solution of a system of fuzzy relation equations.
The formalized version of this result can again be BL∀-proved.

Theorem 17. If T � (∃x)Ai(x), i = 1, . . . ,m. Then RMA(x, y) is a solution of
(46) iff

T � (∃x)(Ai(x) & Aj(x)) → (∀y)(Bi(y) ↔ Bj(y)), i = 1, . . . , n. (53)

The following theorem is a corollary of the previous results.

Corollary 7. (i) If there is an index k such that

T �� (∃y)Bk(y) → (∃x)Ak(x) , (54)

then the system (46) is not solvable.
(ii) Assume

T �� (∃x)(∃y)
n∨

j=1

(Ai(x) & Bi(y)) → (∃x)(∃y)R(x, y) .

Then R(x, y) is not a solution of (46).

5 Approximation and Interpolation

The standard mathematical understanding of approximation is that by an ap-
proximation process some mathematical object A, e.g. some function, is ap-
proximated, i.e. determined within some (usually previously unspecified) error
bounds.
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Additionally one assumes that the approximating object B for A is of some
predetermined, usually “simpler” kind, e.g. a polynomial function.

So one may approximate some transcendental function, e.g. the trajectory of
some non-linear process, by a piecewise linear function, or by a polynomial func-
tion of some bounded degree. Similarly one approximates e.g. in the Runge-Kutta
methods the solution of a differential equation by a piecewise linear function, or
one uses splines to approximate a difficult surface in 3-space by planar pieces.

The standard mathematical understanding of interpolation is that a function
f is only partially given by its values at some points of the domain of the function,
the interpolation nodes.

The problem then is to determine “the” values of f for all the other points of
the domain (usually) between the interpolation nodes – sometimes also outside
these interpolation nodes (extrapolation).

And this is usually done in such a way that one considers groups of neighboring
interpolation nodes which uniquely determine an interpolating function of some
predetermined type within their convex hull (or something like): a function which
has the interpolation nodes of the actual group as argument-value pairs – and
which in this sense locally approximates the function f .

In the standard fuzzy control approach the input-output data pairs of the
linguistic control rules just provide interpolation nodes.

However, what is lacking – at least up to now – that is the idea of a local
approximation of the intended crisp control function by some fuzzy function.
Instead, in the standard contexts one always asks for something like a global
interpolation, i.e. one is interested to interpolate all nodes by only one interpo-
lation function.

To get a local approximation of the intended crisp control function Φ, one
needs some notion of “nearness” or of “neighboring” for fuzzy data granules.
Such a notion is lacking in general.

For the particular case of a linearly ordered input universe X, and the addi-
tional assumption that the fuzzy input data are unimodal, one gets in a natural
way from this crisp background a notion of neighboring interpolation nodes:
fuzzy nodes are neighboring if their kernel points are.

In general, however, it seems most appropriate to suppose that one may be
able to infer from the control problem a—perhaps itself fuzzy—partitioning of
the whole input space (or similarly of the output space). Then one will be in
a position to split in a natural way the data set (35), or correspondingly the
list (36) of control rules, into different groups—and to consider the localized
interpolation problems separately for these groups.

This offers obviously better chances for finding interpolating functions, par-
ticularly for getting solvable systems of fuzzy relation equations. However, one
has to be aware that one should additionally take care that the different local
interpolation functions fit together somehow smoothly—again an open problem
that needs a separate discussion. It is a problem that is more complicated for
fuzzy interpolation than for the crisp counterpart because the fuzzy interpolating
functions may realize the fuzzy interpolation nodes only approximately.



176 S. Gottwald

However, one may start from ideas like these to speculate about fuzzy versions
of the standard spline interpolation methodology.

In the context of fuzzy control the control function Φ, which has to be deter-
mined, is described only roughly, i.e. given only by its behavior in some (fuzzy)
points of the state space.

The standard way to roughly describe the control function is to give a list
(36) of linguistic control rules connecting fuzzy subsets Ai of the input space X

with fuzzy subsets Bi of the output space Y indicating that one likes to have

Φ∗(Ai) = Bi , i = 1, . . . , n (55)

for a suitable “fuzzified” version Φ∗ : F(X) → F(Y) of the control function
Φ : X → Y.

The additional approximation idea of the CRI is to approximate Φ∗ by a fuzzy
function Ψ∗ : F(X) → F(Y) determined for all A ∈ F(X) by

Ψ∗(A) = A ◦R (56)

which refers to some suitable fuzzy relation R ∈ F(X × Y), and understands ◦
as sup-t-composition.

Formally thus the equations (55) become transformed into some well known
system (39) of relation equations

Ai ◦R = Bi, i = 1, . . . , n

to be solved for the unknown fuzzy relation R.
This approximation idea fits well with the fact that one often is satisfied with

pseudo-solutions of (39), and particularly with the MA-pseudo-solution RMA,
or the S-pseudo-solution R̂. Both of them determine approximations Ψ∗ to the
(fuzzified) control function Φ∗.

What remains open in this discussion up to now are quality considerations
for such approximations via pseudo-solutions of systems (39) of fuzzy relational
equations. This is a topic which has been discussed only scarcely. Qualitative
approaches referring to the ideas of upper and lower approximations w.r.t. fuzzy
inclusion, as considered here in Subsection 4.2, have been considered in [17] and
extensively reported in [20]. The interested reader may consult these sources.
More quantitative approaches, based e.g. upon the consideration of metrics or
pseudo-metrics in spaces of fuzzy sets, are missing up to now – as far as this
author is aware of.

6 Aggregation Operations and Fuzzy Control Strategies

There is the well known distinction between FATI and FITA strategies to eval-
uate systems of linguistic control rules w.r.t. arbitrary fuzzy inputs from F(X).

The core idea of a FITA strategy is that it is a strategy which First Infers
(by reference to the single rules) and Then Aggregates starting from the actual
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input information A. Contrary to that, a FATI strategy is a strategy which First
Aggregates (the information in all the rules into one fuzzy relation) and Then
Infers starting from the actual input information A.

Both these strategies use the set theoretic union as their aggregation operator.
Furthermore, both of them refer to the CRI as their core tool of inference.

In general, however, the interpolation operators may depend more generally
upon some inference operator(s) as well as upon some aggregation operator.

By an inference operator we mean here simply a mapping from the fuzzy
subsets of the input space to the fuzzy subsets of the output space.3

And an aggregation operator A, as explained e.g. in [2, 7], is a family (fn)n∈N

of (“aggregation”) operations, each fn an n-ary one, over some partially or-
dered set M, with ordering �, with a bottom element 0 and a top element 1,
such that each operation fn is non-decreasing, maps the bottom to the bottom:
fn(0, . . . ,0) = 0, and the top to the top: fn(1, . . . ,1) = 1.

Such an aggregation operator A = (fn)n∈N is a commutative one iff each
operation fn is commutative. And A is an associative aggregation operator iff

fn(a1, . . . , an) = f r(fk1(a1, . . . , ak1), . . . , fkr(am+1, . . . , an))

for n =
∑r

i=1 ki and m =
∑r−1

i=1 ki.
Our aggregation operators further on are supposed to be commutative as well

as associative ones.4

As in [18], we now consider interpolation operators Φ of FITA-type and in-
terpolation operators Ψ of FATI-type which have the abstract forms

ΨD(A) = A(θ〈A1,B1〉(A), . . . , θ〈An,Bn〉(A)) , (57)

ΞD(A) = Â(θ〈A1,B1〉, . . . , θ〈An,Bn〉)(A) . (58)

Here we assume that each one of the “local” inference operators θi is determined
by the single input-output pair 〈Ai, Bi〉. This restriction is sufficient for the
present purpose.

In this Section we survey the main notions and results. The interested reader
gets more details from [19] and also from [20].

6.1 Stability Conditions

If ΘD is a fuzzy inference operator of one of the types (57), (58), then the
interpolation property one likes to have realized is that one has

ΘD(Ai) = Bi (59)

for all the data pairs 〈Ai, Bi〉. In the particular case that the operator ΘD is
given by (3), this is just the problem to solve the system (59) of fuzzy relation
equations.
3 This terminology has its historical roots in the fuzzy control community. There is no

relationship at all with the logical notion of inference intended and supposed here;
but–of course–also not ruled out.

4 It seems that this is a rather restrictive choice from a theoretical point of view.
However, in all the usual cases these restrictions are satisfied.
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Definition 4. In the present generalized context let us call the property (59) the
D-stability of the fuzzy inference operator ΘD.

To find D-stability conditions on this abstract level seems to be rather difficult
in general. However, the restriction to fuzzy inference operators of FITA-type
makes things easier.

It is necessary to have a closer look at the aggregation operator A = (fn)n∈N

involved in (57) which operates on F(Y), of course with the inclusion relation
for fuzzy sets as partial ordering.

Definition 5. Having B,C ∈ F(Y) we say that C is A-negligible w.r.t. B iff
f2(B,C) = f1(B) holds true.

The core idea here is that in any aggregation by A the presence of the fuzzy set
B among the aggregated fuzzy sets makes any presence of C superfluous.

Hence one e.g. has that C is
⋃

-negligible w.r.t. B iff C ⊂ B; and C is⋂
-negligible w.r.t. B iff C ⊃ B.

Proposition 3. Consider a fuzzy inference operator ΨD of FITA-type (57). It
is sufficient for the D-stability of ΨD, i.e. to have

ΨD(Ak) = Bk for all k = 1, . . . , n

that one always has
θ〈Ak,Bk〉(Ak) = Bk

and additionally that for each i �= k the fuzzy set

θ〈Ak,Bk〉(Ai) is A-negligible w.r.t. θ〈Ak,Bk〉(Ak) .

This result has two quite interesting specializations which themselves generalize
well known results about fuzzy relation equations.

Corollary 8. It is sufficient for the D-stability of a fuzzy inference operator ΨD
of FITA-type that one has

ΨD(Ai) = Bi for all 1 ≤ i ≤ n

and that always θ〈Ai,Bi〉(Aj) is A-negligible w.r.t. θ〈Ai,Bi〉(Ai).

To state the second one of these results, call an aggregation operator A =
(fn)n∈N additive iff always b � f2(b, c), and call it idempotent iff always b =
f2(b, b).

Corollary 9. It is sufficient for the D-stability of a fuzzy inference operator
ΨD of FITA-type, which is based upon an additive and idempotent aggregation
operator, that one has

ΨD(Ai) = Bi for all 1 ≤ i ≤ n

and that always θ〈Ai,Bi〉(Aj) is the bottom element in the domain of the aggre-
gation operator A.
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Obviously this is a direct generalization of the fact that systems of fuzzy relation
equations are solvable if their input data form a pairwise disjoint family (w.r.t.
the corresponding t-norm based intersection ∩∩∩ and cartesian product ×××) because
in this case one has usually:

θ〈Ai,Bi〉(Aj) = Aj ◦ (Ai ×××Bi) = {y ‖ ∃x(x εAj & (x, y) εAi ×××Bi)}
= {y ‖ ∃x(x εAj ∩∩∩Ai & y εBi)} .

To extend these considerations from inference operators (57) of the FITA type
to those ones of the FATI type (58) let us consider the following notion.

Definition 6. Suppose that Â is an aggregation operator for inference opera-
tors, and that A is an aggregation operator for fuzzy sets. Then (Â,A) is an
application distributive pair of aggregation operators iff

Â(θ1, . . . , θn)(X) = A(θ1(X), . . . , θn(X)) (60)

holds true for arbitrary inference operators θ1, . . . , θn and fuzzy sets X.

Using this notion it is easy to see that one has on the left hand side of (60) a
FATI type inference operator, and on the right hand side an associated FITA
type inference operator. So one is able to give a reduction of the FATI case to
the FITA case, assuming that such application distributive pairs of aggregation
operators exist.

Proposition 4. Suppose that (Â,A) is an application distributive pair of aggre-
gation operators. Then a fuzzy inference operator ΞD of FATI-type is D-stable
iff its associated fuzzy inference operator ΨD of FITA-type is D-stable.

The general approach of this Section can also be applied to the problem of D-
stability for a modified operator Θ∗

D which is determined by the kind of iteration
of ΘD which previously led to Theorem 11. To do this, let us consider the ΘD-
modified data set D∗ given as

D∗ = (〈Ai, ΘD(Ai)〉)1≤i≤n , (61)

and define from it the modified fuzzy inference operator Θ∗
D as

Θ∗
D = ΘD∗ . (62)

For these modifications, the problem of stability reappears. Of course, the new
situation here is only a particular case of the former. And it becomes a simpler
one in the sense that the stability criteria now refer only to the input data Ai of
the data set D = (〈Ai, Bi〉)1≤i≤n.

Proposition 5. It is sufficient for the D∗-stability of a fuzzy inference operator
Ψ∗
D of FITA-type that one has

Ψ∗
D(Ai) = ΨD∗(Ai) = ΨD(Ai) for all 1 ≤ i ≤ n (63)

and that always θ〈Ai,ΨD(Ai)〉(Aj) is A-negligible w.r.t. θ〈Ai,ΨD(Ai)〉(Ai).
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Let us look separately at the conditions (63) and at the negligibility conditions.

Corollary 10. The conditions (63) are always satisfied if the inference operator
Ψ∗
D is determined by the standard output-modified system of relation equations
Ai ◦R[Ak ◦R] = Bi in the notation of [21].

Corollary 11. In the case that the aggregation operator is the set theoretic
union, i.e. A =

⋃
, the conditions (63) together with the inclusion relationships

θ〈Ai,ΨD(Ai)〉(Aj) ⊂ θ〈Ai,ΨD(Ai)〉(Ai)

are sufficient for the D∗-stability of a fuzzy inference operator Ψ∗
D.

Again one is able to transfer this result to FATI-type fuzzy inference operators.

Corollary 12. Suppose that (Â,A) is an application distributive pair of aggre-
gation operators. Then a fuzzy inference operator Φ∗

D of FATI-type is D∗-stable
iff its associated fuzzy inference operator Ψ∗

D of FITA-type is D∗-stable.

6.2 Application Distributivity

Based upon the notion of application distributive pair of aggregation operators
the property of D-stability can be transferred back and forth between two infer-
ence operators of FATI-type and of FITA-type if they are based upon a pair of
application distributive aggregation operators.

What has not been discussed previously was the existence and the uniqueness
of such pairs. Here are some results concerning these problems.

The uniqueness problem has a simple solution.

Proposition 6. If (Â,A) is an application distributive pair of aggregation op-
erators then Â is uniquely determined by A, and conversely also A is uniquely
determined by Â.

And for the existence problem we have a nice reduction to the two-argument
case.

Theorem 18. Suppose that A is a commutative and associative aggregation op-
erator. For the case that there exists an aggregation operator Â such that (Â,A)
form an application distributive pair of aggregation operators it is necessary and
sufficient that there exists some operation G for fuzzy inference operators satis-
fying

A(θ1(X), θ2(X)) = G(θ1, θ2)(X) (64)

for all fuzzy inference operators θ1, θ2 and all fuzzy sets X.

However, there is an important restriction concerning the existence of such pairs
of application distributive aggregation operators, at least for an interesting par-
ticular case.
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Definition 7. An aggregation operator A = (fn)n∈N for fuzzy subsets of a com-
mon universe of discourse X is pointwise defined iff for each n ∈ N there exists
a function gn : [0, 1]n → [0, 1] such that for all A1, . . . , An ∈ F and all x ∈ X
there hold

fn(A1, . . . , An)(x) = gn(A1(x), . . . , An(x)) . (65)

And an aggregation operator Â for inference operators is pointwise defined iff
it can be reduced to a pointwise defined aggregation operator for fuzzy relations.

The restrictive result, proved in [26], now reads as follows.

Proposition 7. Among the commutative, associative, and pointwise defined ag-
gregation operators is (

⋃
,
⋃

) the only application distributive pair.

6.3 Invoking a Defuzzification Strategy

In a lot of practical applications of the fuzzy control strategies which form the
starting point for the previous general considerations, the fuzzy model—e.g.
determined by a list (36) of linguistic IF-THEN-rules—is realized in the context
of a further defuzzification strategy, which is nothing but a mapping F : F(Y) →
Y for fuzzy subsets of the output space Y.

Having this in mind, it seems to be reasonable to consider the following mod-
ification of the D-stability condition, which is a formalization of the idea to have
“stability modulo defuzzification”.

Definition 8. A fuzzy inference operator ΘD is (F,D)-stable w.r.t. a defuzzifi-
cation strategy F : F(Y) → Y iff one has

F (ΘD(Ai)) = F (Bi) (66)

for all the data pairs 〈Ai, Bi〉 from D.

For the fuzzy modeling process which is manifested in the data set D this con-
dition (66) is supposed to fit well with the control behavior one is interested to
implement. If for some application this condition (66) seems to be unreasonable,
this indicates that either the data set D or the chosen defuzzification strategy
F are unsuitable.

As a first, and rather restricted stability result for this modified situation, the
following Proposition shall be mentioned.

Proposition 8. Suppose that ΘD is a fuzzy inference operator of FITA-type
(57), that the aggregation is union A =

⋃
as e.g. in the fuzzy inference operator

for the Mamdani–Assilian case, and that the defuzzification strategy F is the
“mean of max” method. Then it is sufficient for the (F,D)-stability of ΘD to
have satisfied

hgt(
n⋃

j=1,j 
=k

θk(Aj)) < hgt(θk(Ak)) (67)

for all k = 1, . . . , n.
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The proof follows from the corresponding definitions by straightforward routine
calculations, and hgt means the “height” of a fuzzy set, i.e. the supremum of its
membership degrees.

Further investigations into this topic are necessary.

7 Conclusion

Abstract mathematical tools like mathematical fuzzy logics, like fuzzy set theory
and fuzzy relational equations, but also like interpolation strategies, and like
operator equations which use the more recent topic of aggregation operators
shed interesting light on the formal properties of granular modeling approaches
which use the technique of linguistic variables and linguistic rules.

This point of view has been exemplified using considerations upon the fuzzy
control related topic of the realizability behavior of systems of linguistic rules,
mostly with the background idea to refer to the compositional rule of inference
in implementing these rules.

Our reference to the mathematical fuzzy logic BL, with its algebraic semantics
determined by the class of all prelinear, divisible, and integral residuated lattices,
also opens the way for further generalizations of our considerations toward more
general membership degree structures for fuzzy sets: like the type-2 or interval
type-2 cases. And the reader should also have in mind that there is a close
relationship between rough sets and L-fuzzy sets over a suitable 3-element lattice.

Additionally it is easy to recognize that the discussions of the interpolating
behavior in Section 5 as well as the operator oriented considerations of Section 6
are essentially independent of the particular choice of the membership degree
structure. Hence they too may be generalized to other membership degree setting
discussed in this book.
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