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Abstract. This chapter presents an overview of fuzzy clustering techniques aiming
at human-centric information processing applications and introduces the accuracy-
interpretability tradeoff into the conceptualization of the clustering process. Nowadays
it is a matter of common agreement that the cornerstone notion of information granula-
tion is fundamental for a successful outcome of exploratory data analysis and modeling
in fields like science, engineering, economics, medicine and many others. There is no
doubt that fuzzy clustering is an excellent medium to obtain such information gran-
ules. For a matter of self-containment the chapter starts by presenting the fundamen-
tals of fuzzy clustering along with some variants and extensions. In the second part of
the chapter, the fuzzy clustering approach is highlighted as a valuable human-centric
interface: the roadmap from data to information granules is displayed along with a
discussion on some mechanisms to implement user relevance feedback. In the last part
of the chapter a semantic driven evolutionary fuzzy clustering algorithm is analyzed, as
a particular instance of a class of unsupervised clustering algorithms which embraces
constraints usually applied in supervised learning. The results show that these more
general constraints while tuning the equilibrium between accuracy and interpretability
concomitantly help to unveil the structural information of the data.

1 Introduction

From the strictly conceptual point of view the human-centric development
paradigm and the human-centric information processing pursuits share the fi-
nal goal of making the synthesized system highly adaptable to the needs of the
human user and capable of presenting a natural interface which fosters the user-
system interaction. In this sense fuzzy clustering techniques undoubtedly have
an important place in the human-centric armamentarium. The contribution of
fuzzy clustering techniques to the human-centric paradigm effort can be roughly
enumerated along three different application vectors. First of all, from the end-
user perspective, the intuitive nature of the fuzzy sets offers a privileged mean of
communication of the exploratory data analysis findings in a user-friendly way.
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Sections 3.1 and 3.2 present a detailed discussion of this aspect. The second facet,
perhaps more interesting from the system designer’s point of view but also very
important to the user interaction and feedback to the system, has to do with the
seamless integration of human knowledge as a support or guiding mechanism of
the clustering activity. In Sect. 3.3 we pinpoint some interesting trends in this re-
gard. Finally a third aspect, less obvious and more related to the behavior of the
system being developed, concerns the incorporation of human-defined semantic
interpretability constraints into the clustering process and taking advantage of
these as a mean to accomplish a transparent system with good accuracy. In Sect.
4 we present such constraints along with their generalizations to the clustering
framework and report some results which point to the merit of considering them
from inception.

The chapter is organized into three main parts. Section 2 presents an overview
of fuzzy clustering techniques emphasizing the competitive advantage over crisp
clustering, pointing problems, shortcomings and possible solutions. Section 3
discusses the development of information granules and mechanisms of user cus-
tomization. Whereas these two parts highlight the role of the fuzzy clustering
algorithmic framework as support to the human-centric paradigm Sect. 4 sustains
that designing the clustering algorithm in a human-centric way can be a valuable
asset. Following this perspective, simple human-centric semantic constructs that
are commonly used in supervised learning as a way to balance interpretability-
accuracy equilibrium are successfully transposed to unsupervised fuzzy cluster-
ing, resulting in clustering techniques which provide interesting results from the
end-user point of view.

2 Overview of Fuzzy Clustering

Generally speaking clustering is the process of searching for a finite and discrete
set of data structures (categories or clusters) within a finite, otherwise unlabeled,
usually multi-variate data set. In the literature it is common to find that the
goal of clustering is the partition of the data set into groups so that data in one
group are similar to each other and are as different as possible from data in other
groups, cf. [42,75]. Two complementary facets are enclosed in this unsupervised
learning task: the elicitation of a model of the overall structure of the data
and the pursuit for a manageable representation of a collection of objects into
homogeneous groups.

The notion of similarity between elements (patterns) of the data set is a
concept of paramount importance, with direct implications on the clustering
endeavor. Usually the similarity is defined at the expense of some appropriate
distance function. In cluster analysis common choices for distance functions in-
clude the Hamming (city block) distance inducing diamond shaped clusters, the
Euclidean distance inducing (hyper) spherical clusters and the Tchebyshev dis-
tance inducing (hyper) box shaped clusters. As a matter of fact these examples
are members of the Minkowski family of distances, or Lp norms, defined as:
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D(x,y) =

(
n∑

i=1

|xi − yi|p
)1/p

. (1)

Distance can be used to measure the similarity between two data points or
between a data point and a prototype of the cluster. The prototype is a mathe-
matical object, usually a point in the feature space (e.g. the center of the cluster)
or even a geometric subspace or function, acting as a representative of the cluster
while trying to capture the structure (distribution) of its associated data.

Traditionally the clustering algorithms are categorized in two main types: hi-
erarchical and objective function based partitional clustering. Every new cluster
determined by a hierarchical algorithm is based on the set of previously estab-
lished clusters. The distance between individual points has to be generalized
to the distance between subsets (linkage metric) in order to merge (or split)
clusters instead of individual points. The type of the used linkage metric sig-
nificantly affects hierarchical algorithms, since each cluster may contain many
data points and present different geometrical shapes, sizes and densities. The
distance is computed for every pair of points with one point in the first set and
another point in the second set. Due to the pairwise combinatorial nature of the
process the hierarchical approach tends to be computationally inefficient with
the growth of the number of data elements. This approach is very sensitive to
anomalous data points (noise and outliers) and is unable to handle overlapping
clusters. A reason for this is that bad decisions made at an early stage of the
algorithm will be propagated and amplified up to the end since the intermediate
clusters are not revisited for further improvement (the points can not move from
one cluster to another).

The second major category of clustering algorithms attempts to directly de-
compose the data set into a collection of disjoint clusters. This partition is
builded during an iterative optimization process repeated until its associated cost
function reaches a minimum (global or local). The cost function, also designed
performance index or objective function, is a mathematical criterion expressing
some desired features (emphasizing local or global structure of the data) of the
resulting partition.

Combining some heuristics with an adequate formulation of the objective func-
tion it is possible to design an optimization process which is able to determine at
least suboptimal partitions. One such formulation, for that matter the most used
in practice, is the sum-of-squared-error distances or minimum variance criterion
representing each of C clusters by their mean (the so-called centroid vi ∈ R

n,
i = 1, . . . , C of its points):

Q =
C∑

i=1

N∑
j=1

uijD
2
ji(xj ,vi) (2)

where X= {x1,x2, . . . ,xN} denotes a set of feature vectors (or patterns) in the
R

n space. Dji(xj ,vi) is a measure of the distance from xj to the ith cluster
prototype. The elements, uij ∈ {0, 1}, i = 1, . . . , C j = 1, . . . , N form a ma-
trix designated as the partition matrix which maps the patterns to a cluster. If
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uij = 1 the pattern j belongs to cluster i, otherwise if uij = 0 the pattern j is
not accounted as a member of cluster i. This formulation is appealing because
it still favors sets of well separated clusters with small intra-cluster distances
whereas replaces all the pair-wise distances computation by a single cluster rep-
resentative. Thus the computation of the objective function becomes linear in N
and it is now feasible the application of an iterative optimization process aiming
at gradual improvements of the builded clusters.

The c-Means algorithm (also referred in the literature as k-Means or hard c-
Means) [26,54] is the best known squared error-based example of such a process.
For a given initialization of the C centroids the heuristic approach consists of
two-step major iterations that follow from the first-order optimality conditions
of (2): first reassign all the points to their nearest cluster, thus updating the
partition matrix, and then recompute the centroids, vj (its coordinates are the
arithmetic mean, separately for each dimension, over all the points in the clus-
ter), of the newly assembled groups. This iterative procedure continues until a
stopping criterion is achieved (usually until no reassignments happen). In spite
of its simplicity and speed this algorithm has some major drawbacks. It is much
dependent on the initial centroids assignment (frequently in practice it is run
for a number of times with different random assignments and the best resulting
partition is taken), does not ensure that the result has a global minimum of
variance, is very sensitive to outliers and lacks scalability.

Another not so obvious disadvantage is related to the binary nature of the
elements of the partition matrix and consequently of the induced partitions.
This kind of partition matrix is based on classical set theory, requiring that an
object either does or does not belong to a cluster. The partitioning of the data
into a specified number of mutually exclusive subsets is usually referred as hard
clustering. In many situations this is not an adequate representation.

Consider for instance a borderline point located in the boundary between two
clusters or otherwise an outlier datum located at nearly the same distance from
the centers of two clusters. In these frequent situations the point is almost as
typical of one cluster as it is of the other, thus a more natural partition would
be one which allowed the objects to belong to several clusters simultaneously
(with different degrees of membership.) This is precisely the central concept
behind fuzzy clustering methods with foundations in the fuzzy sets theory [77].
A fuzzy set is characterized by a membership function that maps each point
of the universe X to a number in the interval [0, 1] (1 represents full degree of
inclusion and 0 non-membership at all).

We can say that the relaxation of the constraint imposed on the partition
matrix to uij ∈ [0, 1] is more realistic and able to provide a richer insight of
the data structure, especially when in presence of ambiguous data or clusters
without sharp boundaries. Indeed, the fuzzy logic approach to clustering differs
from the conventional set theory approach mainly because a generic datum may
belong to more than one cluster with a different degree of membership (usually a
value between 0, non-membership, and 1, full degree of inclusion). Hence the data
points near the core of a given cluster exhibit a higher degree of membership than
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those lying farther away (near its border). Within this framework it is possible
to capture the uncertainty, vagueness and flexibility inherent to the data set and
to the concepts being formed. In the remaining of this section we review some
different algorithmic approaches that allows the construction of fuzzy partitions,
i.e., algorithms which represent a cluster as a fuzzy set.

2.1 The Fuzzy C-Means Clustering Algorithm

Fuzzy clustering was introduced as early as 1969 by Ruspini [68]. Fuzzy C-Means
(FCM) is a simple and widely used clustering algorithm. The algorithm results
from an optimization problem that consists in the minimization, with respect to
V, the set of prototypes, and U, the fuzzy membership matrix, of the following
index (objective function) [6]:

QFCM =
C∑

i=1

N∑
j=1

um
ijD

2
ji(xj ,vi) (3)

where m > 1 is the so-called fuzziness parameter (m = 2 is a common choice)
that controls the influence of membership grades or in other words how much
clusters may overlap, cf. [44], and D stands for a norm distance in R

n, under
the following conditions on the partition matrix elements:

uij ∈ [0, 1] for all i = 1, . . . , C and j = 1, . . . , N (4)

C∑
i=1

uij = 1 for all j = 1, . . . , N (5)

N∑
j=1

uij > 0 for all i = 1, . . . , C (6)

Condition (5) induces a fuzzy partition in the strict sense and assures that
every datum has a similar global weight on the data set. Constraint (6) guaran-
tees that none of the C clusters is empty, thus implying a cluster partition with
no less than C clusters. Notice the similarity between (2) and (3). As a matter
of fact they are coincident apart from a fixed transformation (the introduction
of the fuzzifier, m) introduced as a mean to prevent that under condition (5)
the same minimum as the one obtained by the crisp standard formulation was
reproduced.

For this constrained nonlinear optimization problem there is no obvious an-
alytical solution. Therefore the most popular and effective method to minimize
the constrained objective function consists in resorting to a technique known as
alternating optimization. This means that one set of parameters is kept fixed
while the other is being optimized, and next they exchange roles. The proto-
type V and membership U update equations are obtained from the necessary
conditions of a minimum:
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∂QFCM

∂V
= 0 (assuming U to be constant); (7)

∂QFCM

∂U
= 0 (assuming V to be constant). (8)

Additionally the consideration of (5) in the original objective function (3)
by means of Lagrange multipliers converts the constrained problem into its
constrained-free version. Some straightforward computations lead to the update
formula of the partition matrix:

uij =
1∑C

k=1

(
Dji(xj,vi)
Djk(xj,vk)

) 2
(m−1)

. (9)

This formula does not depend on the chosen distance function, however the
determination of the prototypes is more complicated since many distance norms
do not lead to a closed-type expression. A common practical choice is to use the
Euclidean distance or L2 norm (for a generalization to Lp, p > 0, the interested
reader is referred to [38]) leading to the following prototype update equation:

vi =

∑N
j=1 um

ijxj∑N
j=1 um

ij

. (10)

The alternate optimization of U and V proceed iteratively until no signifi-
cant change of the objective function is registered. It has been proven that the
generated sequence of solutions, for fixed m > 1 always converge to local min-
ima or saddle points of (3) [9]. Informally, what the resulting algorithm will
do is to search for the clusters that minimize the sum of the intra-cluster dis-
tances. In general the performance of fuzzy algorithms, when compared with
the corresponding hard partitioning ones, is superior and they are less prone
to be trapped in local minima [6]. However, like its hard counterpart the FCM
algorithm shares the problem of high sensitivity to noise and outliers, something
that is common to the generality of the least-squares approaches and that can
drastically distort the optimal solution or facilitate the creation of additional
local minima. Next we discuss an alternative formulation, specifically designed
to tackle this problem.

2.2 The Possibilistic C-Means Clustering Algorithm

The influence of noise points can be reduced if the memberships associated with
them are small in all clusters. However, as can be seen from the probabilistic-
like constraint (5), the memberships generated by the FCM are relative numbers
expressing the concept of sharing of each pattern between clusters rather than
the concept of typicality of a given pattern to a given cluster. This means that
noise points and outliers will also have significantly high membership values. A
more general form of fuzzy partition, the possibilistic partition, can be obtained
by relaxing the constraint (5) in order to address this problem.
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In this case the assignment of low membership in each cluster to noise points
depends on giving up of the normalization condition (5), leading to possibilistic
instead of fuzzy partitions. To avoid the trivial solution (i.e. a matrix with null
elements) Krishnapuram and Keller [47] added to (3) a punishment term for low
memberships resulting in the augmented possibilistic c-means (PCM) objective
function:

QPCM =
C∑

i=1

N∑
j=1

um
ij D2

ji(xj ,vi) +
C∑

i=1

ηi

N∑
j=1

(1 − uij)m (11)

where the distance parameters ηi > 0 (i = 1, . . . , C) are specified by the user.
Notice that the second term expresses the desire to have strong assignments of
data to clusters. Due to the nature of the membership constraint, we call possi-
bilistic clustering algorithm (PCM) a fuzzy clustering algorithm which minimizes
(11) under the constraint (6). The partition matrix update equations, as before
for the FCM case, are obtained by setting the derivative of the objective function
equal to zero while holding the prototype parameters fixed:

uij =
1

1 +
(

D2
ji(xj ,vi)

ηi

) 1
(m−1)

. (12)

This update expression clearly emphasizes the typicality interpretation of the
membership function. Unlike the FCM formulation, the degree of membership
of one point to a cluster depends exclusively of its distance to the center of that
cluster. For the same cluster, closer points obtain higher membership than the
ones farther away from it. Moreover (12) shows that ηi determines the distance of
the “definite” assignment (uij > 0.5) of a point to a cluster (simply considering
m = 2 and substituting ηi by D2

ji(xj ,vi) results in uij = 0.5). So it is useful
to choose each ηi separately, according to the individual geometrical features of
each cluster. Unfortunately these are not always available so Krishnapuram and
Keller recommend several methods to determine ηi [47,48]. Using the fuzzy intra
cluster distance a sound probabilistic estimation of these weight factors can be
obtained:

ηi =

∑N
j=1 um

ij D2
ji(xj ,vi)∑N

j=1 um
ij

. (13)

The update formula for the prototypes is the same as the one used in the
FCM method since the second term in (11) simply vanishes when computing the
derivative of the objective function with respect to the prototype parameters. If
we take a closer look at (12) we see that the membership degree of a pattern
to a cluster depends only on the distance of the pattern to that cluster, but
not on its distance to other clusters. So it happens that in some situations
this algorithm can originate coincident clusters (converging to the same local
optimal point), thus disregarding clusters with lower density or less points, or
even presents stability problems due to sensitivity to initialization [48]. Thus to
overcome these drawbacks of the possibilistic approach it is common practice to
initialize PCM with a prior run of the probabilistic FCM.
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2.3 Other Approaches to Fuzzy Clustering

The literature on fuzzy clustering is remarkably rich, cf. [72], and in a broad
sense it reflects the attempts made to surpass the problems and limitations of
the FCM and PCM algorithms. In the two former sections we reviewed FCM and
PCM and their prototypes’s update equations assuming the Euclidean distance
as the standard metric. However when combined with a squared error-based
objective function this distance induces hyper-spherical clusters. To overcome
this geometrical constraint imposed by clustering algorithms based on a fixed
distance metric several algorithms using adaptive distance measures have been
proposed. Two of the most well known are the Gustafson-Kessel algorithm [32]
which replaces the Euclidean distance by the Mahalanobis distance (an interest-
ing generalization of the Euclidean distance) with a specific covariance matrix for
each cluster and the unsupervised Gath-Geva algorithm [30] where the distance
is based on the fuzzification of the maximum likelihood estimation method. Both
of these algorithms are well fitted to find ellipsoidal clusters with varying size
and orientation (there are also axis-parallel variants of these algorithms and to
some extent they can also be used to detect lines).

In the field of image processing and recognition the geometry of the fuzzy
clusters is a key aspect for image analysis tasks. Both FCM and PCM use point
prototypes. If we are interested in finding particular cluster shapes, algorithms
based on hyper-planar or functional prototypes, or prototypes defined by func-
tions, are a good choice. The distance is no longer defined between two patterns
(i.e. a datum and a prototype), instead it is measured between a pattern and a
more complex geometric construct. This class of algorithms includes the fuzzy
c-varieties [7] for the detection of linear manifolds (lines, planes or hyper-planes),
fuzzy c-elliptotypes [8] for objects located in the interior of ellipses, fuzzy shell
clustering for the recognition of object boundaries (e.g. fuzzy c-shells [16] in the
detection of circles, hyper-quadric shells [45], fuzzy c-rectangular shells [40]) and
fuzzy regression models [36]. The interested reader may follow a comprehensive
explanation of these branch of methods in [41].

In addition to PCM other methods have been proposed in order to improve
the robustness of the FCM algorithm to noisy data points and outliers while
maintaining the constraint (5) (thus circumventing the problem of cluster co-
incidence of the PCM approach). For instance the technique presented in [59]
and [14] consists in the introduction of an additional noise cluster aiming at
grouping the points with low probability of belonging to the remaining clusters.
This probability depends on the mean value of the squared distances between
patterns and the prototypes of the normal clusters. Latter on, this technique was
extended in order to accommodate different noise probabilities per cluster [15].

The great majority of the algorithms presented hitherto result from alternat-
ing the optimization of the membership functions and prototype locations in an
iterative process. Therefore the clustering model constrains (and is constrained
to) the particular shapes of the membership functions and the positions of the
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prototypes to those determined by the updating equations derived from the ob-
jective function. However, the user might be interested in the use of a certain
type of membership function with more adequate shapes to the problem in ques-
tion or in certain cluster prototypes satisfying some application-specific needs.
The alternating cluster estimation (ACE) framework [65] is able to provide,
when required, this extra flexibility. In applications such as extraction of fuzzy
rules from data, where each fuzzy set should have a clear semantic meaning (for
instance associated to linguistic labels like “high” temperature or “about 80” de-
grees), a convex fuzzy set with limited support may be more preferable than the
non-convex membership functions generated by FCM or PCM. Notwithstanding
that ACE embodies FCM and PCM as particular instances of the framework,
the requirement that the updating equations for the membership function and
the prototypes should result from the necessary conditions for local extrema is
now rejected and the user is free to choose the pair of updating equations which
is better fitted for the problem at hand. At first sight this generalization may
seem to be lacking mathematical soundness however it has proven its usefulness
in practical examples.

In many practical applications the data sets can be heavily contaminated by
noise points which promote the proliferation of local minima. In these cases,
the probability of the alternate optimization getting stuck at local optimal
values is far from being negligible. To obviate this problem, stochastic algo-
rithms have been used in cluster analysis, many of them inspired on biological
paradigms such as the natural evolution of species or swarm-based behavior.
Examples of such approaches to fuzzy clustering include the use of genetic algo-
rithms [18,19,35,43,51,73], evolutionary programming [69], evolutionary strate-
gies [76], ant colony optimization [66] and particle swarm optimization [67].
Notwithstanding that these attempts do not guarantee optimal solutions, de-
mand the definition of a set of problem-specific parameters (e.g. population size)
and are very computationally time-consuming they can undoubtedly contribute
to avoid local extrema and reduce the sensitivity to initialization.

2.4 Determination of the Number of Fuzzy Partitions

In the great generality of the partitional algorithms the number of clusters C
is the parameter having greater influence on the resulting partition. The chosen
clustering algorithm searches for C clusters, regardless of whether they are really
present in the data or not. So when there is no prior knowledge about the struc-
ture of the data a natural question arises: what is the right number of clusters
for a particular data set? This question is known in the literature as the cluster
validity problem and distinct validity measures have been proposed in order to
find an answer, cf. [27, 34, 42, 55, 58, 75]. However, in spite of a greater practi-
cal adhesion to some of them, due to the subjective and application-dependent
character of the problem there is no consensus on their capability to provide a
definitive answer to the foregoing question. For partitional fuzzy clustering it is
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advisable that the validity indices account both for the data set (e.g. their vari-
ance) and the resulting membership degrees. An example of such class of validity
indices, exhibiting good behavior when matched against a set of other indices
[60], is the Xie-Beni index [74], also known as the compactness and separation
index, computed as the ratio of the compactness of the fuzzy partition of a data
set to its separation:

XB =

∑C
i=1

∑N
j=1 um

ij D2
ji(xj ,vi)

N mini�=j D2
ij(vi,vj)

. (14)

The interested reader is referred to [33] for further examples and properties
of hard/fuzzy validation indices. The effectiveness of a particular choice of C
is verified a posteriori by cluster validity analysis, performed by running the
clustering algorithm for different values of C, several times with different ini-
tializations. However, since different validity measures may produce conflicting
results (even runs with different initializations may introduce some distortion
for the same measure) it is advisable that they should be used only as guidelines
to find a plausible range for the correct number of clusters.

The cluster validity problem was also tackled by unsupervised techniques with
no a priori assumption on the number of clusters. Many of these approaches
(e.g. [28,29,53]) take advantage of the fact that (3) is minimized when the num-
ber of clusters is equal to the cardinality of the data set (when prototypes and
data coincide) by adding to the cost function (3) a regularization term which is
minimized when all the patterns are assigned to one cluster. These algorithms
start with a large number of clusters which is progressively reduced until con-
vergence. Regretfully, in practice the problem of cluster validity is replaced by
the determination in advance of another user supplied parameter with major
influence in the clustering outcome and dictating which clusters are discarded.

An interesting blending between fuzzy partitional clustering techniques and
hierarchical algorithms was presented in [31]. The objective is to exploit the
advantages of hierarchical clustering while overcoming its disadvantages in deal-
ing with overlap between clusters. At every new recursive agglomerative step
the proposed algorithm adaptively determines the number of clusters in each
bifurcation by means of a weighted version of the unsupervised optimal fuzzy
clustering algorithm [30]. The final outcome of the clustering is the fuzzy parti-
tion with the best validity index value. Needless to say, the algorithm presents
sensitivity to the adopted validity index.

Unsupervised stochastic techniques have also been applied to cluster validity
analysis. In [56] a genetic fuzzy clustering algorithm is used for the classifica-
tion of satellite images into different land cover regions. The objective function
is replaced directly by a validity index (in this case the Xie-Beni index) and a
variable chromosome length (depending on the number of clusters represented
by each individual) allows the simultaneous evolution of solutions with a differ-
ent number of clusters. The outcome is the best (in the Xie-Beni sense) of the
evaluated fuzzy partitions.



Semantic Driven Fuzzy Clustering 129

3 The Role of Fuzzy Clustering in the Human-Centric
Paradigm

The concept of linguistic variable [79, 80] plays a pivotal role in the formation
of fuzzy information granules. Informally, a linguistic variable is a granulated
variable whose granular values are words or phrases represented by fuzzy sets
(altogether with their connectives, modifiers and negation). These linguistic char-
acterizations are, usually, less specific than the numeric ones, but in compensa-
tion are safer. Thus the linguistic variable can be viewed as a way to accomplish
(lossy) compression of information. Moreover the linguistic variable provides a
descriptive mean for complex or poorly understood systems and, more impor-
tant, offers a bridge between linguistics and computation, cf. [81]. As Zadeh [83]
pointed out, the fuzziness of granules, their attributes and their values is a cen-
tral characteristic of the ways in which human concepts are formed, organized
and manipulated. This observation supports what seems to be one of the most
human-centric approaches to discover structure in data: fuzzy clustering.

As previously referred, the contribution of fuzzy clustering techniques to the
human-centric paradigm effort can be described across three main lines: (i)
user-friendly communication of the results, (ii) seamless integration of human
knowledge and (iii) incorporation of human-defined semantic interpretability
constraints in order to accomplish a transparent system with good accuracy.
The purpose of this section is to present a detailed discussion on the two first
aspects. The incorporation of human-defined semantic constraints into the clus-
tering endeavor is addressed in Sect. 4.

3.1 Information Granulation

Information granules are simultaneously a mean and an objective. Due to the
limited capability of human mind and sensory organs to deal with complex in-
formation its decomposition into manageable chunks of information is essential.
The aggregation of similar or nearby objects into information granules (class
abstraction) as well as the encapsulation of functional commonalities are funda-
mental skills for a successful approach to the great majority of problems that we
face everyday. This granulation may be crisp or fuzzy.

Crisp granules are derived with the apparatus of the classical set theory and
are common components in various methods of information analysis, e.g. decision
trees, interval analysis or rough set theory. Fuzzy granules found their inspiration
in the human capability to reason in an uncertain and imprecise environment
and are supported by the theory of fuzzy information granulation (TFIG) [82],
a part of the fuzzy sets and fuzzy logic framework. Furthermore the fuzzy logic
approach relies on the notion of (fuzzy) set, opposite to the member of a classical
set, to represent uncertain and imprecise knowledge. This last facet is the point of
departure to the model identification with different levels of descriptive precision
and granularity, viz. (fuzzy) granulation, cf. [78,81]. In this setting, typically, an
information granule is a fuzzy set and the process of information granulation
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Fig. 1. Simple data set in R
2 and clustering results of the FCM algorithm. Dots re-

present data points and unfilled circles represent the clusters’ centers.

consists in describing a crisp or fuzzy object as a collection of fuzzy granules (or
eventually as relationships between them).

In Sect. 2 we reviewed the standard fuzzy c-means algorithm (FCM), its assets
and common alternatives to overcome its shortcomings. Next with the help of a
visually appealing example the path leading from raw data to information gran-
ules is briefly explained. To facilitate the visualization we consider a synthetic
data set defined in R

2 as depicted in Fig. 1.
It is composed of three visually separable clusters resulting from a normal dis-

tribution of twenty elements around 3 distinct points. Suppose that the clusters’
centers, marked as unfilled circles in Fig. 1, were found by an adequate fuzzy
clustering method (in this case FCM). The purpose here is to describe those
clusters invoking simple fuzzy granules. Let’s assume that the clustering algo-
rithm has produced the partition matrix where each data point is characterized
by a set of membership values, one per each cluster: the closer the point is to
the cluster’s center, the higher the membership value of that point. This relation
can be perceived in Fig. 2 where only the maximum value of membership for
each data point is shown (in the Z axis).

Each one of the resulting clusters may be conceived as a multidimensional
granule, however to be clearly understandable and subject to human communi-
cation it has to be expressed in terms of simpler qualitative attributes defined
for each feature.

To accomplish this, first the dimensionality of this fuzzy relation is reduced
by a simple operation of projection to the corresponding coordinate spaces. For
every 2-dimensional granule G defined on X1 × X2 there are two projections
GprojX1 and GprojX2 with the following membership functions (for discrete sets
sup is replaced by max):

GprojX1(a) = sup
y∈X2

G(a, y), a ∈ X1; (15)
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GprojX2(b) = sup
x∈X1

G(x, b), b ∈ X2. (16)

Computing the correspondent projections, each cluster induces a one-
dimensional discrete fuzzy set per feature. Figure 3 depicts the projection into
one of the coordinate spaces (notice that for ease of visualization the individ-
ual fuzzy sets are depicted as piecewise linear functions when, in fact, they are
composed of discrete elements).

To extend this fuzzy set to the whole one-dimensional domain an adequate
enveloping fuzzy set (convex completion) or a suitable parameterized fuzzy set
approximation is usually necessary. Obviously this approximation implies some

Fig. 2. Clustering results of the FCM algorithm depicting the maximum membership
value of each data point

Fig. 3. Dimensionality reduction by projection to the coordinate spaces. The figure
depicts the projection to X2.



132 P. Fazendeiro and J.V. de Oliveira

Fig. 4. Synthesis of interpretable Information Granules. A functional approximation
was performed followed by a semantic conversion conveying meaning to each one-
dimensional fuzzy set.

loss of information. In the given example each one-dimensional fuzzy set was
approximated by a Gaussian membership function distributed around the pro-
totype’s projection, see Fig. 4, and altogether they form a fuzzy partition across
each single domain. Finally a last step must be performed if one wishes to de-
scribe each multidimensional granule in an human-friendly way: if possible each
one-dimensional fuzzy set must be associated to a linguistic value with a clear
semantic meaning (in Fig. 4, S stands for Small, M for Medium and L stands
for Large).

The multidimensional granule is thus defined as a combination of one-
dimensional fuzzy sets encoding linguistic labels relevant for the problem at
hand. For each cluster the one-dimensional fuzzy sets where its prototype’s pro-
jection attains the maximum value are chosen as the clusters’ representatives.
Hence each multidimensional cluster may be expressed as cartesian products of
simpler granules. Referring back to Fig. 4 the overall data set may be entirely
described in this concise form:

S1 × S2 + M1 × M2 + L1 × L2 (17)

where + represents disjunction and X1 and X2 play the role of linguistic variables
assuming the values small (S), medium (M) and large (L), necessarily with
different concretization in each domain.

3.2 Elicitation of the Information Granules

Fuzzy clusters are information granules represented by fuzzy sets, or more gen-
erally by fuzzy relations in some multi-dimensional data space. However, as was
emphasized above, in order to take full advantage of their expressive power they
should be able to be described as propositions in a natural language.
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In opposition to our previous oversimplified example (Figs. 1, 2, 3 and 4)
there are many situations posing several difficulties to the adequate elicitation
of a semantic mapping between data space and feature space. Just to give an
example, consider a data set with 4 well separable clusters in R

2 and centers
in the vicinity of the vertices of a square with sides parallel to the coordinate
axes. In this case the correspondent projections into the one-dimensional spaces,
would result in two pairs of very close fuzzy sets per feature and consequently
almost undiscernible between them. The approaches to develop semantically
sound information granules as a result of the fuzzy clustering process range
from purely prescriptive methods to purely descriptive techniques, cf. [63]. In
the prescriptive characterization of the fuzzy sets the meaningful granules are
expressed intuitively by an observer in such a way that they capture the essence
of the problem. The descriptive design involves the detailed computation of the
membership functions based on the available numeric data.

The work presented in [12] is a good example of this latter approach com-
plemented with some semantic concerns. The overall technique can be summa-
rized in three steps. First, a cluster analysis is performed on the data set. The
clustering algorithm (e.g. FCM) induces C information granules and this num-
ber of clusters has a major effect on the information granularity. In the second
step the prototypes are projected into each dimension, being their projections
further clustered in order to obtain a pre-specified number of clusters, i.e., one-
dimensional granules. The final step consists in quantifying the resulting one-
dimensional prototypes as fuzzy sets in the feature space by means of Gaussian
membership functions with a desired level of overlap. The second step of this
double-clustering technique is not computationally demanding (the number of
prototypes is much lesser than the number of data elements) and promotes the
fusion of projections, which otherwise would result in undiscernible data sets,
into one single representative thus permitting the representation of granules via
highly comprehensible fuzzy propositions.

The prescriptive approach can be illustrated by the interesting technique of
context clustering [61] (see also [39]). In essence the algorithm results from an
extension to the FCM algorithm replacing the standard normalization constraint
(5) by a conditioning constraint dictated by the context under which the clus-
tering is being performed. The context is specified by the user and can assume
the form of an information granule (linguistic term) defined in a peculiar feature
or a logical combination between granules in the same feature space or even a
composite context resulting from the Cartesian product of fuzzy sets defined in
different feature spaces. Informally, we can say that the (fuzzy) linguistic con-
text acts as a data window focusing the clustering effort on particular subsets
of the data or regions of interest, thus enabling a deeper insight on the internal
structure of those information granules.

The technique reported in [63] tries to present a balanced tradeoff between
the prescriptive and descriptive approaches. The descriptive component is rep-
resented by the clustering algorithm (the experiments report to the standard
FCM) performed in the multi-dimensional data space. Given two different runs
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of the clustering algorithm, searching for a different number of clusters, the
resulting granules present necessarily a different granularity level. The distinct
granularity of the resulting information granules (the mixture of coarser and finer
granules) can be turned into an advantage. The prescriptive component task is
to conciliate different granular representations by means of specific operations of
generalization (information granules combined or -wise) and specialization (in-
formation granules refined and -wise) of the fuzzy relations. The logic operators
(s-norms and t-norms) are defined in advance then, if we intend to decrease the
granularity of the finer result, the algorithm finds the coarser granule and the
respective generalization (selected amongst the possible pairwise generalizations
of the finer granular set) with optimal similarity (based on the overall difference
between membership values of each datum in the original set and in the given
generalization). On the other hand, when we intend to increase the granular-
ity of the collection of information granules a similar process is performed, viz.,
the optimal replacing of a granule by the pair of granules forming its closest
specialization.

The representation of information granules via multidimensional hyper-boxes
with sides parallel to the coordinates greatly simplifies their transparent ex-
pression as decomposable relations of classical sets in the corresponding feature
spaces. In [3] the standard FCM was modified through a gradient-based tech-
nique in order to accommodate the Tchebyshev distance. This distance induces
a hyper-box shaped geometry of the clusters, however due to the interaction
between clusters there exists a deformation of the hyper-boxes which need to
be reconstructed in an approximate manner. When compared with FCM with
Euclidean distance, the algorithm equipped with Tchebyshev distance exhibited
less sensitivity to the size of the data groupings, being able to identify smaller
clusters. The algorithm produces a description of the data consisting of hyper-
boxes (whose sizes depend on a given threshold) which encompass the core of
the data and a residual portion of the data described by the standard FCM
membership expression. Another interesting approach to hyper-box granulation
combined with fuzzy clustering was presented in [2]. The proposed measure of
information density (the ratio between cardinality and specificity of a set) is
maximized in a recursive manner departing from the numeric data which is pro-
gressively mixed with the produced granular data. As a result of this granulation
process the data is compressed while the number of information granules in the
high data density areas is reduced. Next the information granules are clustered
using the FCM algorithm combined with a parametric method of representation
of the hyper-boxes. This results in a collection of cluster prototypes interpretable
in the original data space as hyper-boxes altogether with a fuzzy partition ma-
trix representing the membership of data into clusters. Due to the reduction
of the number of information granules in high density areas the FCM problem
of under-representing smaller groups of data is thus obviated. Moreover, the
hyper-box representation of the prototypes has direct transposition as fuzzy de-
composable relations in the feature space enabling a transparent interpretation
of the information granules.
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Independently of the followed approach (descriptive, prescriptive or both)
one should be aware that the elicitation of information granules in a human
comprehensible way is dependent of the characteristics of the application at
hand and on the judicious decisions of the data analyst.

3.3 Enhancements to Accommodate Human Knowledge

Notwithstanding that in a great number of applications there is no labeling in-
formation about the data at hand, or otherwise the labeling of the data set is a
fastidious task requiring a lot of expert time due to its high cardinality, or even
it is error prone and potentially ambiguous due to the nature of the problem
being tackled; there are situations where the clustering endeavor can and should
be guided, at least in a confined way, by the inclusion of additional information
about the data structure and the inherent characteristics of the problem. Au-
tomatic text classification of extensive corpora, categorization of Web sources,
recognition of handwritten text characters or image segmentation are just some
examples of applications where usually the data analyst is confronted with a
small subset of labeled data. Better than blindly attack the problem as an un-
supervised clustering pursuit the available information should be properly taken
into account.

In cases like the ones mentioned we can say that we are faced with a semi-
supervised clustering and as was emphasized in [5] the labeled data can be used
quite successfully not only to define the number of clusters but also by using the
cluster centers as a way to affect the cluster assignment for unlabeled data. A
very straightforward formulation that allows us to play with the balance between
our confidence in the reliability of the available labeled data and the automated
data exploration was presented in [64]. Simply stated the partially supervised
clustering algorithm lays on an additive objective function aiming at structure
finding, minimizing the fuzzy within cluster variance as in the standard FCM,
and accounting for the data already categorized by minimizing the misclassifi-
cation error:

Qsemi = QFCM + α

C∑
i=1

N∑
j=1

(ul∗
ij − ul

ij)
mD2

ji(xj ,vi) (18)

Here l alludes to the subset of classified patterns and ul∗
ij stands for the par-

tition matrix containing membership grades previously assigned to the selected
patterns, possibly by a domain expert. The optimization of ul

ij intends to make it
close to the information already available. The nonnegative regularization factor
α defines the balance between the supervised and unsupervised learning. Higher
the value of α, higher our beliefs in the labeling decisions already made and
consequently our willingness to overlook some level of structural optimization.
As previously mentioned, being an optimization scheme that relies on alternate
optimization, it can be trapped by local optima and is also very sensitive to
initialization. Latter on this problem was ameliorated for this specific case, by
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using evolutionary optimization techniques [50] obviously at the expense of a
great deal of computational cost.

When one does not have the knowledge about how many data classes are
there but is still able to provide some indications on the resemblance or proxim-
ity of some data points, this information can be captured for instance with the
help of another interesting approach presented in [52]. The underlying principle
of the proximity fuzzy C-means (P-FCM) is the guided collaboration between
data processing and knowledge processing through the consideration of proxim-
ity constraints. These are expressed as a symmetric and reflexive mapping of
pairs of patterns to the unit interval (its value is maximal when two patterns
are coincident). The relation between the fuzzy partition matrix produced by
the clustering algorithm and the proximity mapping is set up by the following
expression:

p̂[k1, k2] =
C∑

i=1

min(uik1 , uik2) (19)

This expression is used to build the deduced symmetric proximity matrix. The
algorithm consists of two main phases that are realized in interleaved manner.
The first phase has a data driven nature and consists in applying the standard
FCM to the patterns. The second concerns the accommodation of the proximity-
based hints and involves some gradient oriented learning. In order to guide the
gradient search procedure the objective function for the second phase penalizes
the differences between the available proximity levels and the corresponding
ones from the deduced proximity matrix. Since in fuzzy relational clustering, cf.
[37,46], the data is described by specifying pairwise similarities or dissimilarities
between objects, at first sight it seems that there is some resemblance between
this algorithm and relational clustering pursuits. However it is worthwhile to
note that in this case one is provided with object data describing the objects
through feature measurements and using this technique, or for that matter other
with similar inspiration, it is possible to conciliate strictly structural algorithmic
information with the available relational information (if there is any).

4 Deploying Semantic Constraints for Data Clustering

The need for semantically valid fuzzy systems (classifiers, models, controllers)
is a matter of common agreement nowadays. A set of semantic properties, nec-
essary to ensure an interpretable fuzzy system during system design, have been
outlined and analyzed [70, 62, 71]. Based on these properties, several different
constraints have been derived and applied to several real-world situations, in-
cluding [21,22,24,25]. For a more complete and recent survey of the literature on
these matters the reader is referred to [10,11]. The great majority of the reported
work on semantic concerns can be classified as belonging to the supervised learn-
ing or optimization schemes. Typically, the semantic conditions become part of
the learning rule of a neural network, or part of the fitness function of a clus-
tering algorithm, or becomes an optimization goal of its own in multi-objective
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optimization schemes. In this section we elaborate on a set of semantic con-
straints easily justifiable at the pure human-centric conceptual level, describing
them in a more sound formal framework and demonstrating that they generalize
a set of constraints commonly employed in partitional fuzzy clustering. Later the
evolutionary semantic driven (ESD) fuzzy clustering algorithm [23] is contextu-
alized as an illustrative example of employing such human-defined constraints
where those are used as the defining characteristic which enables the correct
identification of the number of clusters present in the data set.

4.1 Translation of Semantic Constraints to Clustering

The ultimate objective of clustering is the description of the inherent structure of
the data in a comprehensible way. Fuzzy clustering algorithms apport a valuable
surplus when aiming at such goal since the identification of regions of interest
of a data set can be transposed to propositions on meaningful linguistic labels,
thus facilitating the empirical semantic validation of the model.

This translation is highly dependent of the semantic soundness of the fuzzy
sets in the distinct feature spaces. In this respect the set of semantic properties
postulated in [71], in the context of fuzzy modeling, can be adopted as useful
guidelines. These properties emerged as a mean to clarify the meaning of a
linguistic term (a fuzzy set) when matched against other linguistic terms in the
same universe of discourse. The proposed set of properties includes: a moderate
number of membership functions, coverage, normality, natural zero positioning
and distinguishability.

Three of these properties seem to have an inherent interest for the clustering
endeavor:

1. A moderate number of membership functions since although this number
is clearly application dependent, if one intends to describe the structure of
the data in a human-friendly way there are strong reasons for imposing an
upper bound on the number of clusters (in the limit, when the number of
membership functions approaches the cardinality of the data, a fuzzy system
becomes a numeric system). This constraint makes sense not only in the
feature space, where the typical number of items efficiently handled at the
short-term memory (7±2) [57] can be adopted as the upper limit of linguistic
terms, but also in the data space since a high number of clusters result in
information granules with a high granularity level.

2. Coverage which states that membership functions should cover the entire
universe of discourse, so that every datum may have a linguistic representa-
tion.

3. Distinguishability since this property is clearly related with cluster separa-
tion (membership functions should be distinct enough from each other).

It is worth noting that these properties can be ensured using a variety of
constrains, hereafter referred as interpretability constraints.

Consider the sigma-count operator, Mp(Lx), defined as follows:

Mp(Lx) = p

√
up

1 + . . . + up
C (20)
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where Lx is a fuzzy set representing a real-valued pattern x from the data set,
ui (i = 1, . . . , C) is the membership degree of x in the i-th cluster, p being a
positive integer.

Therefore, in the clustering context coverage can be formalized in the following
way:

∀x∈XMp(Lx(x)) > 0 (21)

Alternatively, one can ensure coverage using the concept of optimal interfaces
[70]. Let X = [a, b] ∈ R

m. The ordered pair (Lx,Nx) is said a pair of optimal
interfaces iff

∀x∈XNx(Lx(x)) = x (22)

where Lx : X → [0, 1]n is the mapping provided by the input interface of the
variable x and Nx : [0, 1]n → X with Nx([0, . . . , 0]) = ∅ is the mapping provided
by the output interface associated with the variable x.

Analogously distinguishability can also be enunciated with the help of the
sigma-count measure:

∀x∈XMp(Lx(x)) ≤ 1 (23)

The rationale for this constraint is straightforward: if we have two clusters
“very close” to each other eventually there will be points in between the clusters’
centers with high membership in both clusters. If the clusters are far apart, then
there should not be such cases. Next we show that these constraints generalize
the common constraint (5).

Proposition 1. A partition matrix U represented by a class of membership de-
grees satisfying the constraint (23) and the optimal interface definition

∀j∈{1,...,N}N (L(xj)) = xj (24)

generalizes the constraint (5).

Proof. Observe that L(xj) � [u1j u2j . . . uCj]′. Consider by absurdity that
∃s∈{1,...,N}∀i∈{1,...,C} : uis = 0, or equivalently ∃s∈{1,...,N} : L(xs) = ∅. How-
ever, by definition, the output mapping N is undefined for the empty set, thus
N (L(xs)) �= xs, which contradicts (24).

Therefore ∀j∈{1,...,N}∃i∈{1,...,C} : uij > 0, implying that

C∑
i=1

uij > 0 for all j = 1, . . . , N. (25)

If U satisfies the distinguishability constraint then

∀j∈{1,...,N}Mp(uj) ≤ 1 (26)

where uj � [u1j u2j . . . uCj]′, or in an equivalent way:

Mp(uj) =

(
C∑

i=1

up
ij

)1/p

≤ 1, j = 1, . . . , N (27)
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Obviously for p = 1, M1(uj) =
∑C

i=1 uij ≤ 1, that together with (25), i.e.,
0 <

∑C
i=1 uij ≤ 1 generalizes the common constraint (5). 	


Notice that p = 1 determines the strongest constraint whereas p = ∞ describes
a loose constraint. Actually it is straightforward to verify that [70]

M1(uj) ≥ M2(uj) ≥ . . . M∞(uj) = H(uj) (28)

where H(uj) denotes the height of the fuzzy set uj , i.e., its maximum member-
ship degree.

With this formulation it is clear that:

1. ∀j∈{1,...,N} there is always some non-null membership degree in some cluster.
2. Given a cluster i, i ∈ {1, . . . , C}, there is no guarantee that it has elements,

so it may happen that
∑N

j=1 uij = 0.

In a first analysis, this can be obviated if a penalty term on the number of
clusters is included on the cost functional or if we allow that the optimization
process may also determine the number of clusters. In this work we followed the
second approach as described in the following sections.

4.2 Evolutive Semantic Driven Fuzzy Clustering

Evolutionary Algorithms (EAs) are adaptive robust methods widely applicable
to search, optimization and learning problems [13, 17]. EAs require a limited
amount of knowledge about the problem being solved. Relative evaluation of the
candidate solutions is enough and no derivatives of cost functions are required.
The evolution of the potential solutions over successive generations comprises
different phases. Generally speaking, the first phase involves the quantitative
evaluation of each individual in the population. This value determines the prob-
ability that an individual has to be selected and to carry its genetic material for
the next phase. In the second phase, the selected individuals (potential solutions)
are given the chance to mate and exchange genetic material with other individ-
uals by means of a crossover operator. The result of this reproduction phase
is a new offspring population, which replaces (or sometimes compete with) the
previous population. Some of these newly born individuals were possibly prone
to some mutations. This process continues until a stop criterion has been met.

Chromosome Representation

Evolutionary algorithms, being a general optimization strategy, can be adapted
to objective function based fuzzy clustering. Obviously, it is necessary to find an
adequate representation for the parameters to be optimized, viz. the prototypes
and the membership degrees of the partition matrix. However the simultaneous
optimization of the C prototypes and the C × N membership degrees seems, to
say the least, unpractical. Thus we restricted the complexity of the optimization
task by optimizing only the prototypes and computing the corresponding mem-
bership degrees using the updating expression of the PCM model (12) which,
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as was previously said, does not impose a strict fuzzy partition since the de-
gree of membership of each point depends exclusively of its distance towards the
prototype.

Fitness Assignment

In the presented evolutionary semantic driven fuzzy clustering algorithm the
quantitative assessment of each potential solution is based on the sum-of-squares
criterion (3) but introduces two extra terms in order to ensure the above men-
tioned properties of coverage and distinguishability:

Qcov =
∑

x ‖x − x∗‖2

Qdist =
∑

x[(Mp(uj) − 1)2step(Mp(uj) − 1)]
(29)

where step represents the unit step function (equals 1 if its argument is greater
than zero and equals 0 otherwise). The index, Qcov, based on the concept of
optimal interfaces [71], seeks an adequate coverage level. To compute x∗ =
Nx(Lx(x)) the internal representation Lx was specified in agreement with (12)
and the output interface Nx was given by the center of gravity defuzzification
method:

x∗
j =

∑C
i=1 uijvi∑C

i=1 uij

(30)

The index Qdist is intended to keep the clusters prototypes apart from each
other. This implies that the points with a sigma-count above the unity become
penalized.

A very interesting side effect of these indices, is that in a variable number
of clusters optimization environment Qdist attains its minimum for the single
cluster case, C = 1, whereas Qcov attains its minimum when the number of
clusters is equal to the number of patterns, C = N . To fully comprehend the
importance of this side effect, one should recall that in a variable number of
clusters optimization scheme, QFCM (3) also attains its minimum at C = N .
Therefore, when both three criteria are considered, a balance is obtained for
some C in between 1 and N . In the reported experiments we will demonstrate
that this tradeoff can be used in our advantage as a mean of determination of
the number of clusters.

The quantitative assessment of each individual in the population is given by
the following cost functional:

QESD = QFCM + Qcov + Qdist (31)

Thus the variable length chromosome, exhibiting a set of real coded cluster
prototypes which result in low intra-cluster distance, combined with an adequate
coverage level (and accurate positioning) altogether with clearly distinct clusters
obtains an higher fitness value than other lacking any of these three desired
features.
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Since EAs are designed for maximization problems, the current minimization
problem was converted into a maximization one using the following transforma-
tion:

fitness(x) =
1

1 + QESD(x)
(32)

We would like to stress that in the expression (31) a set of variable weights
could be considered in order to give different importance to each of the three
terms, however such study is beyond the scope of this work. In the reported
experiments we treated each objective in the same way: for each chromosome
its value was calculated, then the whole range of values across the entire pop-
ulation of chromosomes is translated to the unit interval and only after this
normalization the three objectives were summed up as in (31).

4.3 Numerical Examples

A collection of synthetic data sets presenting distinct challenges for the cluster-
ing process was used to demonstrate the viability of our approach. In order to
simplify the visualization in these examples the patterns are distributed in R

2.
Moreover we present the results obtained from two de facto benchmark data sets
from the clustering literature: the Ruspini data set [68] and the Iris Plants data
set [1]. The presented results refer to mean values of ten independent runs per
data set.

The parameters of the EA were kept constant in the presented experiments. A
stopping criterion of 1000 iterations was used. The population was composed of
200 chromosomes, each one representing a set of real-coded cluster prototypes,
as depicted in Fig. 5.

The maximum number of prototypes per chromosome was dependent on the
number of patterns and fixed on the common heuristic approximation for the
maximum number of clusters in a data set, viz.

√
N . Each cluster prototype had

Fig. 5. Graphical representation of the population
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Fig. 6. The BLX-α crossover operator. The big dots represent the parents, while the
small dots indicate possible children.

a bit field indicating whether or not it was active, allowing a variable number
of clusters representation. During crossover this bit field was exchanged between
parents – as we will see the crossover of the prototypes was more elaborated.

The selection operator applied in the experiments was stochastic sampling
with replacement also known as the roulette wheel selection method. This sam-
pling method selects parents according to a spin of a weighted roulette wheel.
The high-fit individuals will have more area assigned to them on the wheel and
hence, a higher probability of being selected to the mating pool where they are
combined with other individuals by means of a crossover operator.

The blend crossover operator, BLX-α, is specifically designed for real-valued
chromosomes [20] and was used to combine the genes encoding the prototypes.
The resulting offsprings are distributed across a hyper-box encompassing the two
parents. The parameter α extends the bounds of the hyper-box, hence to the
children is given the possibility to explore new search space inside of an extended
range given by their parents, see Fig. 6.

Each real-valued component, xi, of the new offspring is randomly chosen (with
an uniform distribution) from the interval [ximin − I.α, ximax + I.α], where
ximin = min(xA

i , xB
i ), ximax = max(xA

i , xB
i ) and I = ximax − ximin with A

and B denoting the two progenitors. In fact BLX-α is designed to promote di-
versity, greater with the increase of α, counteracting the decrease in variance that
results from the application of the selection operator hence preventing prema-
ture convergence of the population. In this work the BLX-α crossover operator
was applied with 0.9 probability and the parameter α was set to 0.5 – a common
choice in the literature.

The probability of the uniform mutation operator was set to 0.05. In order to
prevent that good solutions disappear from the population an elitist approach
was used. For each c ∈ {2, . . . ,

√
N} the best chromosome with c active proto-

types was preserved for the next generation. The remaining parameters of the
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Fig. 7. Data set with 5 clusters each one comprising 30 patterns. The unfilled circles
mark the prototypes.

algorithm were defined as follows: p = 1 in (29); m = 2 in (3), (12) and (13).
In the presented experiments we used the Euclidean distance as the measure of
dissimilarity.

Example 1

In this example the data set is composed of five visually separable clusters re-
sulting from a normal distribution of thirty elements around 5 distinct points
(Table 1 presents the details of the distribution).

Figure 7 presents the data set and the means of the cluster prototypes (unfilled
circles) for ten distinct runs.

It is interesting to refer that the algorithm was able to find the number of
focal elements used to generate the data set in every run. Also the positioning
of the centers of the clusters reveals a noticeable feature of the algorithm: the
distinguishability index is contributing to maintain the areas of influence of the
clusters apart from each other.

Table 1. Details of the normal distribution of the data set of Example 1 (5 clusters)

Cluster #Points Mean Standard Deviation

1 30 (0.3; 0.8) (0.05; 0.05)

2 30 (0.2; 0.2) (0.05; 0.05)

3 30 (0.5; 0.2) (0.05; 0.05)

4 30 (0.7; 0.3) (0.05; 0.05)

5 30 (0.9; 0.7) (0.05; 0.05)
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Fig. 8. Data set with 2 clusters each one comprising 40 patterns and an additional
cluster with 10 patterns. The unfilled circles mark the prototypes.

Example 2

The data set presented here is formed by three visually separable clusters. Two
of them are composed of forty patterns whereas the third one is composed of
only ten elements. Table 2 presents the details of the distribution.

Table 2. Details of the normal distribution of the data set of Example 2 (3 clusters)

Cluster #Points Mean Standard Deviation

1 40 (0.2; 0.7) (0.05; 0.05)

2 40 (0.7; 0.2) (0.05; 0.05)

3 10 (0.9; 0.9) (0.05; 0.05)

Figure 8 presents the data set and the means of the cluster prototypes for
the ten distinct runs. The algorithm was able to recognize the correct number
of clusters.

In the next experiment the cluster was further reduced to five points. Even
for this more demanding case, the algorithm was able to recognize the data
structure, see Fig. 9.

Next, the third “cluster” was further shrunk to only two points, see Fig. 10.
In this case the algorithm negotiated these as outliers.

In order to infer the robustness of the algorithm to noise, we kept the 2 main
clusters and injected 50 noise points uniformly distributed in the unit square,
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Fig. 9. Data set with 2 clusters each one comprising 40 patterns and an additional
cluster with 5 patterns. The unfilled circles mark the prototypes.

Fig. 10. Data set with 2 clusters each one comprising 40 patterns and two outliers.
The unfilled circles mark the prototypes.

Fig. 11. Once again the algorithm was able to correctly identify the two clusters
and find the optimal number of clusters.

Ruspini Data Set

The Ruspini data set [68] has become a benchmark to assessing the performance
of clustering algorithms. Figure 12 shows the Ruspini data set and clusters found
by the proposed algorithm.
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Fig. 11. Data set with 2 clusters each one comprising 40 patterns plus 50 noisy pat-
terns. The unfilled circles mark the prototypes.

Fig. 12. Ruspini data set. The unfilled circles mark the prototypes.

Although the data has a much different scale than the unit square considered
in the previous examples no additional adjustments were made to the algo-
rithm. However this does not mean that when faced with huge data sets with
large dimensionality these are not due. As a matter of fact for these cases a
scale invariant distance function should be used and the relative weight of the
distinguishability constraint should have to be analyzed. It is interesting to note
that the algorithm was able to find the optimal number of clusters.
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Iris Plants

The Iris Plants database is one of the best known databases in the pattern
recognition literature. The data set contains 3 classes referring to 3 types of
iris plant physically labeled as Setosa, Versicolour and Virginica. There are 50
instances per class, which are described by 4 attributes: sepal length, sepal width,
petal length and petal width. The first class is linearly separable from the others,
but the other two classes are known to overlap each other in their numeric
representations.

In this case the results of the algorithm were not conclusive. In exactly 50% of
the runs the suggested number of clusters was 3 whereas in the remaining ones it
produced only two clusters. This is a curious result since, although Iris database
contains three physical labeled classes, from a geometrical point of view it is
probably composed of only two distinct clusters. For the runs which identify 3
clusters the overall mean value of correct classifications was 92.75 ± 1.58. The
error rate results exclusively from patterns misclassified in the two overlapping
classes.

As a concluding remark it is worthwhile to stress that the translation of the
human-defined semantic constraints referring to coverage and distinguishability
of linguistic terms into the clustering framework is encouraging since in the
presented experiments the proposed evolutionary algorithm, with the inclusion
of the semantic constraints, was able to find the centers of the clusters and, more
important, to determine the correct number of clusters without appealing to the
computation of any kind of validity measures.

5 Conclusions

The fuzzy clustering framework provides a collection of tools well suited to
discover structural information among challenging data sets with overlapping
chunks of data and vaguely defined boundaries between clusters. Moreover, due
to the wealthy of tools available and seamless integration of linguistic mean-
ing it positions itself as an excellent mechanism to support the construction of
information granules. These features assume a level of paramount importance
not only for the data analyst, but also for the end-user who definitely needs a
user-friendly mean to interact with the system. This interaction subsumes two
facets: the human-like intuitive presentation of the clustering findings and con-
sequent validation of these, as well as the transmission of additional knowledge
that can be used to improve the clustering results. Along the first two parts of
this chapter it was made clear that the fuzzy clustering framework is perfectly
able to provide answers to each one of these aspects.

The leitmotif of the last part of the chapter was the discussion of the fuzzy
clustering from a diametrically different point of view: “Can the clustering pro-
cess be conceptualized in a more human-oriented way?” In this regard it was
shown that the adoption of a set of semantic constraints aiming at the en-
hancement of the human perception of the system can also be applied to fuzzy
clustering algorithms.
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