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Abstract. Human-Centric Information Processing requires tight communication processes be-
tween users and computers. These two actors, however, traditionally use different paradigms 
for representing and manipulating information. Users are more inclined in managing perceptual 
information, usually expressed in natural language, whilst computers are formidable number-
crunching systems, capable of manipulating information expressed in precise form. Fuzzy in-
formation granules could be used as a common interface for communicating information and 
knowledge, because of their ability of representing perceptual information in a computer man-
ageable form. Nonetheless, this connection could be established only if information granules 
are interpretable, i.e. they are semantically co-intensive with human knowledge. Interpretable 
information granulation opens several methodological issues, regarding the representation and 
manipulation of information granules, the interpretability constraints and the granulation proc-
esses. By taking into account all such issues, effective Information Processing systems could be 
designed with a strong Human-Centric imprint. 

1   Introduction 

Human-Centered Computing (HCC) is a new field embracing all the methodologies 
that apply to applications in which people directly interact with computer technolo-
gies. Thus, HCC refers to a modern way of tackling computing issues by taking into 
account user needs and constraints [1, Ch. 1]. 

We stress the importance of communication between users and machines, the for-
mer acting as producers/consumers of information and the latter being involved in the 
concrete task of information processing. Besides, we observe the different paradigms 
for interpreting and manipulating information by users and computers. Users are in-
deed more inclined in managing perceptual information, usually expressed in natural 
language, whilst computers are formidable number-crunching systems, capable of 
manipulating information expressed in precise form. 

The “semantic gap” between users and machines is apparent. Quite often, this gap 
is filled by users, which support the effort of translating perceptual information into 
computer-understandable forms and interpreting computer results. This approach re-
quires technically skilled users and prevents computers to be easily used by other 
people who may take full advantage from more “humanized” machines (e.g. physi-
cians, managers, decision makers, etc.) [2]. 

From the last decade, however, a paradigm shift – the so-called Human Centric 
Computing – is in act [3]. The great enhancement of computing technologies, as well 
as the birth and consolidation of new computing models (e.g. Granular Computing) 
are encouraging the development of novel techniques and methods that enable 
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computers to fill the semantic gap. In Information Processing, this paradigm shift has 
a great impact: users could provide input information in a perceptual form (e.g. in 
natural language) and could read and understand the subsequent results even without 
specific technical skills. In a nutshell, Human Centric Information Processing (HCIP) 
accounts users1 as initiators of information processing as well as final recipients of the 
subsequent results. Through HCIP, machine intelligence increases dramatically and 
enables a more pervasive diffusion of computing.  

The semantic gap between users and machines is due to the different nature of in-
formation that is represented and manipulated by these two actors. Two important fea-
tures distinguish perceptual information from precise information, as pointed out by 
Zadeh: granularity and fuzziness (or graduality) [4-6]. 

Granularity refers to the property of information to refer to a clump of objects in-
stead of a single one. Objects in a granular information (or information granule) are 
related by some proximity relation (in a wide sense). Representation and manipulation 
of information granules fall within Granular Computing, a key computing paradigm 
for HCIP [7,8].  

Information granularity is required for economizing the representation of complex 
situations and phenomena, where precision is not necessary. Thus, granular informa-
tion is used in mental processing of perceptual information. Furthermore, information 
granularity enables the use of natural language to describe facts. Most natural lan-
guage sentences indeed represent granular information (e.g. “there is warm tempera-
ture in the room” does not specify any precise degree). This form of information 
could be sufficient for users to make decisions (e.g. turn-on the air conditioner), since 
in most cases users are unable to get more precise information (e.g. the exact tempera-
ture distribution of the room) nor they are interested. 

Fuzziness is strictly related to information granules. According to this property, the 
membership of an object to an information granule is gradual rather than dichotomic. 
Fuzziness reflects the fact that natural phenomena are continue rather than discrete, 
and they are perceived by people with continuity. It is hence natural to assume that 
mental percepts reflect the graduality of the perceived phenomena. As a consequence, 
the semantics of natural language terms, which are used to symbolically describe per-
ceptual information, embodies the fuzziness property. 

Fuzzy information granules define information with granularity and fuzziness 
properties. They capture the key features of perceptual information and are naturally 
represented in natural language. Hence they constitute the basic underpinning for 
HCIP. 

Fuzzy information granules should be also represented in computers and some 
mathematical machinery should be available in order to process this type of information. 
Fuzzy Set Theory (FST) provides such a machinery. Fuzzy Information Granules are 
represented as fuzzy sets, and fuzzy set operators are used to elaborate information. 

Through FST, information processing can take form. Users can input perceptual in-
formation in natural language or in similar forms to a computer program. Such per-
ceptual information is converted into fuzzy sets (a process called “m-precisiation” 
[9,10], where ‘m’ stands for ‘machine’). Fuzzy sets are processed according to pro-
gram objectives, and results are usually represented as fuzzy sets. Finally, resulting 

                                                           
1 Thorough this Chapter users are intended as human users.  
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fuzzy sets are converted into linguistic forms, according to a “m-imprecisiation” 
mechanism. Users are unaware that computers use numeric/symbolic operations, and 
computers are unaware that what they are elaborating are actually representations of 
perceptual information. Fuzzy information granules constitute a communication inter-
face between two very different worlds (Fig. 1). 

 

Fig. 1. Information flow in HCIP 

We should note that without HCIP the same flow of information processing takes 
place, but with some remarkable differences: precisiation and imprecisiation are car-
ried out by users (they are denoted with “h-precisiation” and “h-imprecisiation” in the 
Zadeh’s notation, where ‘h’ stands for ‘human’) and information processing is carried 
out according to classical numerical/symbolic techniques. 

Human-Centered information processing is not immune to problems directly deriv-
ing from the objects of processing, i.e. fuzzy information granules. More precisely, 
the processes of m-precisiation and m-imprecisiation are delicate tasks. The transfor-
mation of natural language terms into fuzzy sets and vice versa should be indeed 
 “semantically nondestructive”, i.e. the intrinsic semantics of a linguistic term and the 
explicit semantics of the corresponding fuzzy set should be highly overlapping2. This 
relation between semantics is called “co-intension” and tightly constrains the precisia-
tion processes [11]. 

Despite their symmetry in scope, m-precisiation and m-imprecisiation are asym-
metrical in the processes carried out. Usually, the process of m-precisiation is not as 
difficult as the process of m-imprecisiation. For m-precisiation, a number of reference 
fuzzy sets are usually available, and linguistic terms are converted into fuzzy sets with 

                                                           
2 We cannot guarantee identity in principle because the semantics of a linguistic term is subjective 

and represented within the synapses of the brain in a imperscrutable way. 
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a direct matching. Such reference fuzzy sets are manually defined or automatically 
designed through information granulation techniques.  

On the other hand, m-imprecisiation is more delicate. The reason is immediate: 
linguistic terms are usually limited, whilst the class of fuzzy sets is much wider. If the 
information processing task does not take into account co-intension in its computa-
tion, the resulting fuzzy sets cannot be easily associated to any linguistic term. In this 
case m-imprecisiation requires further elaboration so as to extract a convenient natural 
language description of the results with eventual information loss.   

Fuzzy information granules that can be associated to linguistic terms are called 
interpretable. Interpretability of fuzzy information granules requires a deep under-
standing of the semantical constraints involved in the user-computer interaction. Is-
sues regarding the role of interpretability, its definition, evaluation and preservation 
need to be addressed. The rest of this Chapter is devoted in eliciting some of those in-
terpretability issues which may come up when designing a HCIP system. The next 
sections give a formal definition of fuzzy information granule as well as an attempt to 
define interpretability in a very general sense. Then, a number of methodological 
issues are discussed regarding modeling with interpretable information granules. In-
terpretability constraints are then discussed and finally an outline of interpretable in-
formation granulation strategies is reported. The chapter ends with some concluding 
remarks highlighting open issues and future trends on this topic.   

2   Fuzzy Information Granules 

An information granule is a “clump of objects which are drawn together by indistin-
guishability, similarity, proximity or functionality” [9]. An information granule arises 
from a process of “granulation”, which refers to the mental act of dividing a whole 
into semantically significant parts. 

The definition of information granule is open to several formalizations, e.g. inter-
vals, rough sets, fuzzy sets, etc. [7]. In particular, a fuzzy information granule is de-
fined through fuzzy sets on the domain of considered objects. Fuzzy Set Theory is 
hence the mathematical underpinning of the Theory of Fuzzy Information Granulation 
(TFIG). The difference in the two theories is primarily epistemic: FST is a pure 
mathematical theory, TFIG has more semantic concerns since the relation that keeps 
together objects in the same granule is fundamental for the definition of an informa-
tion granule. 

For complex domains (i.e. domains of objects characterized by several attributes), 
fuzzy information granules can be employed to represent pieces of knowledge. By as-
signing a name to each attribute, a fuzzy information granule can express a soft rela-
tionship between two or more attributes. A collection of fuzzy information granules 
can be used as a knowledge base to make inferences about the possible values of an 
attribute when the values of other attributes are given. 

More formally, suppose that the object domain is YXU ×=  (sub-domains X and 
Y could be multi-dimensional as well, but here we are not interested in the nature of 
such sets). A fuzzy information granule is completely represented by a fuzzy set on U, 
i.e. a fuzzy relation between objects in X and Y. We denote with Γ such a fuzzy set; 
we write [ ]1,0: →Γ U  or, equivalently, [ ]1,0: →×Γ YX . A knowledge base (also 
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called “granular world” [7]) formed by fuzzy information granules nΓΓΓ ,,, 21 K   is 

defined by accumulation of the pieces of knowledge defined by each single fuzzy in-
formation granule. This is a direct consequence of the definition of granulation, in-
tended as a division of the whole (the domain U) into parts (the granules iΓ ). 

The knowledge base (KB) is hence defined by the union of all the constituting 
fuzzy information granules, i.e.: 

U
n

i i1
B

=
Γ=Κ          (1) 

To make inference, an information granule is interpreted as a possibility distribution 
over two variables x and y. When x is assigned a value (i.e. xx = ), inference is car-
ried out by computing the possibility distribution of variable y for each information 

granule, namely y
iπ , such that: 

( ) ( )yxy i
y
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A very common case is when each granule iΓ  is defined as the Cartesian Product of 

two fuzzy sets, namely [ ]1,0: →XAi  and [ ]1,0: →YBi  and ( ) ( ) ( )yBxAyx iii *, =Γ  

being ‘*’ a t-norm. In this case ( ) ( ) ( ) ( )yBxAyxy iii
y

i *, =Γ=π . When the possibility 

distributions of all fuzzy information granules have been computed, the final possibil-

ity distribution for the entire KB is defined as ( ) ( )yy y
i

n
i
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A KB made of fuzzy information granules is also called fuzzy graph [9]. Such 
structure is commonly used for approximating partially known functions, and is usu-
ally expressed in terms of a set of fuzzy rules, i.e. formal structures expressed as: 

IF x is L[A] THEN y is L[B] 

being L[A] and L[B] formal labels for fuzzy sets A and B respectively, and with the 
convention that “THEN” does not mean implication (as in logical rules) but it is a 
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If x is about -1 then y is about 1 
If x is about -½ then y is about ¼  
If x is about zero then y is about 0 
If x is about ½ then y is about ¼  
If x is about 1 then y is about 1 
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Fig. 2. A granular parabola defined by five information granules: (a) graphical representation; 
(b) fuzzy rule representation 
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conjunction (it should be read “and then”). In fig. 2 a fuzzy graph representing a 
granular parabola is depicted.  

Different interpretations of fuzzy rules are actually possible [12]. However, the in-
terpretation of fuzzy rules as pieces of a fuzzy graph seems the most natural in the 
context of TFIG because it adheres to the definition of granulation and because the in-
ference process is a direct application of the Compositional Rule of Inference.  

We should note that the operator ‘*’ used for combining fuzzy sets into an infor-
mation granule is usually a t-norm (the functional representation of the conjunction) 
and the aggregation of information granules into a knowledge base is achieved 
through a t-conorm (the functional representation of the disjunction). This choice is 
conformant with the definition of information granule and the process of granulation 
as a division of a whole into parts. Here the domain U is divided into information 
granules ( iΓ ), hence the t-conorm acts as an aggregation operator that merges sepa-

rate pieces of information.  
On the other hand, the t-norm used for defining each BAi *=Γ  is conformant with 

the definition of information granule, intended as a clump of objects kept together by 
a tying relationship. Indeed, according to the definition, an object (x,y) is in the gran-
ule iΓ  if x is A AND y is B. If the t-norm is replaced by a t-conorm, the granule iΓ  

could be split into two granules i,1Γ  and i,2Γ  where an object (x,y) belongs to i,1Γ  if x 

is A (and y is any), or (x,y) belongs to i,2Γ  if y is B (and x is any). The need of a t-

norm is a consequence of the use of a t-conorm for merging fuzzy information gran-
ules, which in turn is a consequence of the definition of the process of granulation as a 
division of a whole into parts. 

With this in mind we should exclude logical rules (prolog like) as representing in-
formation granules, because these rules represent implication in the material form x is 
NOT A OR y is B. Actually information granules grasp the core of a rule, i.e. when 
both the antecedent and the consequent are valid. The availability of more information 
granules enables correct inference when the antecedent in an information granule is 
not verified. To validate inference, it is assumed that all the antecedents of rules cover 
the domain of input x. 

Since each information granule grasps only the core of a rule, it is closer to the way 
human beings reason in terms of rules. It is well-known that material implication is 
sometimes counterintuitive, because of the validity of material implication when the 
antecedent is not verified (see, e.g. [13]). On the other hand, information granules rep-
resent pieces of knowledge that are more co-intensive with knowledge of users. In 
this sense, information granules seem a good form of knowledge representation for 
HCIP. 

3   Interpretability of Fuzzy Information Granules 

Information granules are the basic blocks for communicating information and knowl-
edge from users to machines and vice versa. When communication starts from users 
and is directed to machines, information granules are built by a precisiation proce-
dure, which is aimed at finding the most co-intensive representation of the perceptual 
information that is wished to be communicated to the machine. Several approaches 
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have been proposed in literature, especially for fuzzy information granules. Here the 
key issue is the elicitation of the membership function of the fuzzy set representing 
the input (see, e.g. [14, Ch. 3]). 

Different is the case when machines should communicate information granules. 
Such granules could result from deductive inference process, or could emerge from a 
process of inductive learning, e.g. after data clustering processes. In both cases the 
main problem is to give a representation of the information granule that could be eas-
ily understood by the recipient of the communication, i.e. it is co-intensive with some 
known concepts hold by the user.  

When the information granule is a result of inference, usually defuzzification is 
applied, in order to reduce the granule to a single element of the domain (prototype). 
There is no doubt that this method is the most direct but the most wasteful. Informa-
tion about the specificity (precision) of the information granule is lost, and usually no 
information is provided about the significance of the chosen prototype [15].  

When information granules arise after a clustering process, the quest for interpret-
ability becomes more stringent. Many clustering schemes exist in literature, which are 
able to find data clusters of several shapes. However, in the context of information 
granulation, the accuracy of the clustering process is only one of two facets: interpret-
ability should be taken into account as well.  

Interpretability is crucial in HCIP, especially when knowledge has to be extracted 
from data and represented in a comprehensible form. Interpretability is necessary to 
easily and reliably verify the acquired knowledge and to relate it to user's domain 
knowledge, to facilitate debugging and improving the granulation technique; to vali-
date granules, for their maintenance, and for their evolution in view of changes in the 
external world [16-18]. This is especially important when the domain knowledge and 
the discovered knowledge must be merged together (e.g. in knowledge intensive sys-
tems) [19]. Finally, and maybe most importantly, interpretability is needed for con-
vincing users that the model is reliable, especially when they are not concerned with 
the techniques underlying the granulation process. Users of a decision support system 
should be confident on how it arrives to its decisions. This is particularly important in 
domains such as medical diagnosis [20]. 

3.1   A Definition for Interpretability 

Most interpretability-oriented modeling techniques adopt an interpretation of the “Oc-
cam’s Razor” principle. The spirit of this approach is to guarantee interpretability by sim-
plifying the description of the involved information granules. Several works on clustering 
go in this direction [21]. Whilst necessary, the accordance to the Occam’s Razor principle 
misses the point of interpretability, i.e. co-intensivity with user knowledge, which is un-
questionably a richer and more complex requirement than simplicity. 

In order to get a deeper insight on interpretability, a suitable definition should be 
given to this quality. A suitable characterization for interpretability is given by the so-
called “Comprehensibility3 Postulate”, proposed by Michalski, a scholar in the Ma-
chine Learning community [22]. The Comprehensibility Postulate states that: 

                                                           
3 Throughout the chapter the terms “interpretability”, “comprehensibility” and “understandability” 

are considered as synonyms.  
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The results of computer induction should be symbolic descriptions of given 
entities, semantically and structurally similar to those a human expert might 
produce observing the same entities. Components of these descriptions should 
be comprehensible as single “chunks” of information, directly interpretable in 
natural language, and should relate quantitative and qualitative concepts in an 
integrated fashion. 

The key point of the Comprehensibility Postulate is the human-centrality of the re-
sults of a computer induction process. According to the postulate the results of com-
puter induction (e.g. information granulation) should be described symbolically. 
Symbols are necessary to communicate information and knowledge. Pure numerical 
methods, including neural networks, are hence not suited for meeting understandabil-
ity unless an interpretability oriented post-processing of acquired knowledge is per-
formed, such as in [16,23]. 

Symbolic descriptions are necessary but might not be sufficient. They should be 
structurally and semantically similar to those a human expert might produce observ-
ing the same entities. This means that highly complex mathematical relationships, 
though described symbolically, may not be interpretable because they may not be 
compatible with human cognition. In the same way, knowledge logically represented 
by a huge number of rules (or predicates, clauses, etc.) do not meet the understand-
ability feature, since humans have a limited ability to store information in short-term 
memory [24]. This passage suggests simplicity as a necessary, albeit not sufficient, 
condition for interpretability. 

According to the postulate, symbols (or structures of symbols) should represent 
chunks of information. Here we recognize information granules as the semantic coun-
terparts of symbols used for communication. In order to be understandable, symbols 
should be directly interpretable in natural language. This does not necessarily mean 
that symbols should be chosen from a natural language vocabulary, but has more pro-
found implications. In particular, the Comprehensibility Postulate requires the inter-
pretation of symbols to be in natural language. This is a requirement on the semantics 
of the symbols, i.e. on the information granules they denote. Therefore, in order to be 
understandable, information granules should be conformed with concepts a user can 
conceive. 

We further observe that natural language terms convey implicit semantics (which 
also depends on the context in which terms are used), that are shared among all hu-
man beings speaking that language. As a consequence, a symbol coming from natural 
language can be used to denote an information granule only if the implicit semantics 
of the symbol highly matches with the semantics characterized by the information 
granule. 

Finally, as the Comprehensibility Postulate requires, the description of computer 
induction results should relate both qualitative and quantitative concepts in an inte-
grated fashion. We recognize in this requirement the role of TFIG as the most suitable 
candidate for representing information [4]. Fuzzy information granules can indeed 
represent both quantitative information (e.g. through fuzzy numbers, fuzzy intervals, 
fuzzy vectors, etc.) and qualitative information (usually represented as adjectives such 
as “low”, “medium”, “high”, “etc”). Both types of information have a homogeneous 
representation and could be elaborated in an integrated fashion. 
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3.2   Interpretability and Natural Language 

We should emphasize that the requirement of natural language descriptions becomes 
more apparent as the complexity of the knowledge to be communicated increases. 
This is in coherence with the well known Zadeh’s incompatibility principle [25]. 
When the knowledge to be communicated is simple, natural language is not strictly 
necessary. For example, linear regression results or interval-based rules are easy to 
understand even though they are usually represented in a mathematical form. Actu-
ally, even these forms of representation are in coherence with the Comprehensibility 
Postulate. 

For example a linear equation coming from regression is actually a prototype of a 
granule including all possible data distributions that can be approximated by the line, 
i.e. it represents a chunk of information. Furthermore, the simple structure of the lin-
ear equation can be directly described in natural language. For example, the following 
linear model: 

y = 4.323432122x + 1.98726325 

can be described as: 

y is proportional to x with factor about 4. For x=0 the value of y is about 2 

As another example, consider an interval-based rule, such as: 

IF x ∈  [2.372138, 4.675121] THEN y ∈  [0.061115, 1.512143] 

Again, when trying to understand this rule, a user may not focus on its finest details. 
Rather, she would stop on a more abstract descriptive level that depends from the con-
text. For example, the user would understand that: 

Whenever the value of x is about between 2.3 and 4.7, the value of y becomes smaller 
than about 1.5 

Even though natural language description is not necessary to communicate this 
forms of knowledge, high level concepts are actually formed in the user mind when 
trying to understand the results of computer induction processes. In all cases, what the 
user builds in her mind could be described in natural language. As the complexity of 
the model increases, any precise representation becomes less and less comprehensi-
ble. For high levels of complexity, natural language seems to be the only mean to 
communicate knowledge and to make it understandable by users. 

3.3   Interpretability and Information Visualization 

We note that often users understand problems if the information is properly visualized 
in some form. Indeed, visualization has been recognized as a viable mean to enable 
users to interpret large amounts of data and to gain deeper insight into the working of 
complex systems. Visualization has been extensively investigated to pursuit under-
standing of complex patterns or models. Recently, more attention has been devoted to 
develop approaches to visualize fuzzy data and fuzzy models. [26]. Some of these ap-
proaches have the primary objective of helping users in understanding how a model 
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works to generate its behavior. Other visualization techniques are mainly aimed at 
graphically representing knowledge so that users could easily interpret them.  

All such techniques may offer an invaluable help to users in understanding induc-
tion results, even if they may not involve the Comprehensibility Postulate as the final 
representation is not symbolic. We observe, however, that visualization techniques 
may not fulfill the understandability requirement of information granules. Indeed, 
they are very useful for understanding how a behavior is generated, but the user may 
not understand why such behavior is correct, in the sense of providing significant out-
comes. Furthermore, the main reasons that justify the interpretability features may not 
be fulfilled by visualization tools. In this situation, visualization techniques are com-
plementary to the Comprehensibility Postulate, rather than alternative. 

4   Interpretability Issues 

Interpretability of information granules is a complex requirement that needs a com-
prehensive analysis of all facets of the environment on which granules are developed 
and used. This analysis results in a number of issues to be addressed for fulfilling the 
interpretability requirement. 

4.1   The Objective of Granular Model 

A first issue to be addressed for interpretability is the objective of the granular model, 
which may have a twofold nature: descriptive and prescriptive.  

When the scope of the model is to describe a phenomenon, a data structure, etc., a 
number of interpretability constraints should be adopted in order to meaningfully tag 
the information granules with linguistic labels (symbols). In many cases, however, the 
granules are also used to make inference for predictions concerning new data. Briefly 
speaking, information granules results become part of a prescriptive model in a deci-
sion support system. 

In all situations where understandability is required, attention should be paid also 
on how predictions are inferred from information granules. Specifically, the inference 
process should be cognitively plausible, so as to convince users on the reliability of 
the derived decisions. This is a delicate step often left unaddressed.  

As an example, let us consider a Mamdani Fuzzy Inference System (FIS) [27]. 
Mamdani rules are defined through fuzzy information granules, by separating input 
variables from output variables. Even though the rules embodied in these FIS are built 
by responding to all the interpretability requirements, the inference carried out by the 
system may not convince the users about the reliability of the derived decision. Usu-
ally, the output of a Mamdami FIS is attained by applying a defuzzification procedure 
to the inferred fuzzy set such as Center-of-Gravity (CoG). However, CoG may not 
have any plausible explanation in some domains (e.g. medical diagnosis). This type of 
defuzzification would not be convincing for the user (e.g. physicians) about the reli-
ability of the inferred output. On the other hand, more plausible forms of defuzzifica-
tion would provide for more plausible inferences [28]. 
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4.2   Representation Structure 

To achieve interpretability, the structure of knowledge plays a fundamental role. 
Roughly speaking, two classes of structures can be distinguished: single and multiple 
representation structures [29]. Single representation structures are based on a “flat” 
representation of the knowledge base, usually in a rule-based form. A different ap-
proach provides for a multiple representation of knowledge, where one representation 
(not necessary interpretable) is used to generate an accurate prescriptive model, while 
the other is used to describe knowledge in an interpretable form [30,31] Such dual 
representation has evidence in brain organization in which different areas are devoted 
to perception, action performing and natural language communication. 

Information granules may offer valuable help in defining both single and multiple 
representation structures. Single representation structures are naturally derived by de-
fining a rule for each information granule (as in fuzzy graphs), or by tying two infor-
mation granules with an implicative connector. However, multiple representations are 
also possible by defining two or more levels of granulation of the same data. In this 
case, the top levels can be used for descriptive pursuits, while more accurate predic-
tions could be taken through bottom level information granules, where interpretability 
is less stringent and hence information granules could take shapes more conformant to 
the underlying data structures. Techniques for context-based information granulation 
achieve multiple representation structures [33 Ch. 4, 34]. 

4.3   User Characterization 

Interpretability concerns the characterization of the user accessing the knowledge 
base of a model. This characterization drives the choice of the most appropriate repre-
sentation of information granules and, hence, the constraints required for granting 
their interpretability.  

Users are mainly characterized by their needs. Some users might be interested in 
understanding the information granules derived from data in order to use them for 
their purposes. Other types of users could be more interested in the validity of infor-
mation granules, especially in terms of predictive accuracy. For the second type of us-
ers, interpretability requirement is not as stringent as for users of the first type. 

The verification of interpretability of information granules tightly constrains their 
shape. As a consequence, a strong bias is introduced in interpretable information 
granules, resulting in a weaker predictive accuracy w.r.t. information granules without 
interpretability requirements. The interpretability/accuracy tradeoff should be taken 
into account when designing a new system. The choice strongly depends on the need 
of the final users.  

If users require understandability of information granules, then some guidelines 
should be followed. The domain expertise of the user helps in the choice of the most 
appropriate representation of information granules. For example, highly qualitative 
forms of representations might be useful for users who are primarily interested in un-
derstanding granulation results. On the other hand, more precise forms of representa-
tion would be more useful for users who make decisions on the basis of granulation 
results. Furthermore, the user vocabulary is helpful in the choice of the linguistic 
terms to be used for representing information granules. Finally, the required level of 



106 C. Mencar 

 

precision is important to choose the granularity level of information granules, as well 
as to decide for single or multiple levels of representation. 

5   Interpretability Constraints 

An important question concerns how to verify if an information granule is interpret-
able. The question is ill-posed because the definition of interpretability is blurry, sub-
jective and context-dependent. However, a general approach can be set, which is 
mainly based on constraints. 

Several interpretability constraints have been proposed in literature: a recent survey 
can be found in [35]. Some of them have a precise mathematical characterization, 
while others have a more fuzzy definition. This is expectable, since imprecise defini-
tions of interpretability constraints may be more co-intensive with our perception of 
interpretability. 

The choice of interpretability constraints mainly depends on user characterization, 
granulation objectives, etc. As already noted, any constraint imposed on information 
granules introduces new bias on their ability of representing data relationships. As a 
consequence, the choice of interpretability constraints should be as careful as possible. 

Interpretability constraints can be organized in a hierarchy reflecting the level to 
which they are applied. A convenient hierarchy for fuzzy information granules is the 
following: 

1. Constraints on one-dimensional fuzzy sets; 
2. Constraints on frames of cognition4; 
3. Constraints on information granules; 

In the following, a brief discussion on such constraints is reported. For a deeper ar-
gumentation, the reader is referred to [35]. 

5.1   Constraints on One-Dimensional Fuzzy Sets 

In defining fuzzy information granules, we highlight their constitution as Cartesian 
products of one-dimensional fuzzy sets. This assumption helps to decompose 
information granules as conjunction of simpler properties, all characterized by one-
dimensional fuzzy sets. Such fuzzy sets should be co-intensive with elementary con-
cepts, usually represented in the form “v is A” being “v” the name of an attribute and 
“A” the name of a quality, whose semantics is defined by a fuzzy set. 

In order to be co-intensive with elementary concepts, one-dimensional fuzzy sets 
should verify a number of constraints. The choice of such constraints is mostly driven 
by common-sense, as well as to avoid some paradoxical situations that can occur 
when they are violated.  

5.1.1   Normality 
All one-dimensional fuzzy sets should be normal, i.e. there exist atleast one element 
of the domain with full membership. Normality is required to avoid paradoxes such as 
                                                           
4 A frame of cognition is intended as the set of all one-dimensional fuzzy sets defined for the 

same attribute. 



 Interpretability of Fuzzy Information Granules 107 

 

inclusion in the empty set, as proved in [36]. However, this constraint is required for 
co-intensiveness since it is expected that qualities are always fully met by some ele-
ments of the domain. For unlimited domains, asymptotic normality is also acceptable 
(e.g. the concept “X is distant” could be represented in this way). 

5.1.2   Convexity 
A one-dimensional fuzzy set is convex if it is defined on an ordered domain (e.g. the 
real line). Convexity implies that any midpoint between two extremes has member-
ship degree greater or equal to the minimum membership of the two extremes. Con-
vex fuzzy sets are very common (e.g. triangular, trapezoidal, Gaussian, etc.) and they 
are widely used because they express the semantics of similarity-based qualities, i.e. 
all qualities for which sentences like “x is more A than y” make sense. Non-convex 
fuzzy sets can be used too, as proposed in [37], but usually they represent compound 
qualities, which should be denoted by complex linguistic labels (e.g. “mealtime”, 
meaning “breakfast or lunch or dinner”). 

Strict convexity requires that the membership of any midpoint between two extreme 
points is strictly greater than the minimum membership of the two extremes. Gaussian 
fuzzy sets are strictly convex, while trapezoidal and triangular fuzzy sets are convex, but 
not strictly convex. Strictly convex fuzzy sets are suited for modeling concepts charac-
terized by a magnitude. As an example, the concept “hot” is characterized by the per-
ceived temperature. The degree to which a temperature is “hot” monotonically increases 
as the temperature increases. While a Gaussian fuzzy set effectively models such a rela-
tionship, a trapezoidal fuzzy set fixes a threshold after which any temperature is consid-
ered “hot” with the same degree. While justifiable for efficiency pursuits, the trapezoi-
dal fuzzy sets may not as co-intensive as Gaussian fuzzy sets with the mental concept of 
“hot”, whose degree of evidence presumably varies with continuity.  

5.1.3   Continuity 
A fuzzy set defined on the real line should be continuous, so as to avoid abrupt 
changes of membership for very close elements. Continuity is especially required 
when fuzzy sets model perceptual information derived by observing macroscopic 
physical phenomena. Crisp set are examples of non-continuous fuzzy sets, leading to 
well known boundary paradoxes that make them unsuitable for modeling perceptual 
information and knowledge.  

5.2   Constraints on Frames of Cognition 

In any modeling context the number of fuzzy sets considered for each attribute is quite 
limited. The collection of all used fuzzy sets for a given attribute is named Frame of 
Cognition (FOC), as proposed in [36]. Linguistic Variables (defined in [38]) include a 
FOC if the number of generable linguistic values is finite. When a FOC is considered, a 
number of constraints should be verified in order to guarantee interpretability. 

5.2.1   Proper Ordering 
Linguistic terms used in natural language are related each other by two main relations: 
order and inclusion. As an example, the ordering of linguistic terms “small”, “medium” 
and “high” is quite intuitive. Also, in some contexts we understand that the semantics of 
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“very L” is included in the semantics of the linguistic term L. As remarked in [39], in-
terpretable fuzzy sets within a FOC should reflect such basic relationships. 

Inclusion of fuzzy sets is straightforward: A is included in B iff the membership 
degree of any element to A is less than to B. Fuzzy sets defined on an ordered domain 
could be also partially ordered in the following way: given two fuzzy sets A and B, 
we say A<=B iff there exists a midpoint t such that each point less than t has member-
ship to A greater than to B, and each point greater than t has membership to B greater 
than to A. Thus A better represents elements of the Universe of Discourse that are 
smaller than the elements represented by B. In this sense, the ordering of fuzzy sets 
reflects the semantics formalized by their membership functions. If this constraint is 
violated, undesired situations may occur, which hamper interpretability. As an exam-
ple, given a FOC with two fuzzy sets “cold” and “hot”, we expect that for high tem-
peratures the membership to hot is greater than the membership to cold, and vice 
versa for lower temperatures. This constraint calls for a proper choice of fuzzy sets in 
a FOC (see fig. 3 as illustration of an incorrect choice of fuzzy sets). 
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Fig. 3. Example of two Gaussian fuzzy sets violating proper ordering 

5.2.2   Justifiable Number of Elements 
In designing interpretable FOC, the number of fuzzy sets should be kept as small as 
possible, so that users could easily give appropriate meanings to the linguistic terms. 
By limiting the number of fuzzy sets in a FOC, a user is able to remember the pro-
posed partition of the attribute domain. This greatly enhances interpretability. 

The number of fuzzy sets is usually limited to 7±2, according to some psychologi-
cal experiments reported in [24] showing the limited capacity of our short term mem-
ory in storing information. This limit has been debated (see [67] for a comprehensive 
discussion), and even smaller limits have been found in more recent experiments on 
immediate memory. Yet, a definitive answer on the capacity of primary memory has 
not been given, but psychological experiments (and common sense) suggest to keep 
the number of elements to remember very small. 

The criterion of justifiable number of element spans all objects in a granular model. 
It is applicable to fuzzy sets in a FOC, as well as to the fuzzy sets compounding an in-
formation granule and to the number of information granules within a model. This 
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extension is possible because our short-term memory is able to store simple structures 
(such as the names of fuzzy sets) as well complex structures (such as granule descrip-
tions), provided that they are in small number. 

We note that this criterion provides for a sound explanation of all simplification 
routines that are usually applied after clustering processes to enhance interpretability 
(see, e.g. [40] for a recent approach). However, we note also that this constraint se-
verely limits the  degrees of freedom (i.e. the free parameters) of a model. As a result, 
an interpretable model is highly biased and the resulting accuracy could be worse than 
an interpretability-free model. For this reason, interpretability is a feature that should 
be included with care in the design process. 

5.2.3   Distinguishability 
Roughly speaking, distinguishable fuzzy sets are well disjoint so they represent dis-
tinct concepts and can be assigned to semantically different linguistic labels. Well 
distinguishable fuzzy sets are deemed important since they obviate the subjective 
establishment of membership-function/linguistic term association, as claimed in 
[41], and reduce potential inconsistencies and redundancies in fuzzy models, as 
shown in [42]. Most importantly for the interpretability side, distinguishable fuzzy 
sets ease the linguistic interpretation of the model since fuzzy sets represent well 
separated concepts.  

Distinguishability is a relation between fuzzy sets that can be formalized in several 
ways. Usually, a similarity measure between fuzzy sets is used, but the possibility 
measure can be also used under certain conditions, as showed in [43]. Possibility 
measure usually depends on the parameters of the membership functions, hence its 
calculation might be more efficient than similarity.  

5.2.4   Coverage 
The coverage constraint requires that every element of the domain belongs to at least 
one fuzzy set. Since membership is a matter of degree, the coverage constraint could 
be weak (membership greater than zero) or strong (membership greater than a thresh-
old). In the latter case, the term α-coverage is used, being α a threshold in ]0,1[. 

Coverage is related to completeness, a property of deductive systems that has been 
used in the context of Artificial Intelligence to indicate that the knowledge representa-
tion scheme can represent every entity within the intended domain [44]. In [45] cov-
erage (there called “cover full range”) is justified by the fact that in human reasoning 
there will never be a gap of description within the range of the variable. On the con-
trary, as shown in [46] incompleteness may be a consequence of model adaption from 
data and can be considered a symptom of overfitting. 

For the pursuits of interpretability, 0.5-coverage is desirable. This threshold corre-
sponds to the optimal α-cut when fuzzy sets are converted into crisp sets, as proved in 
[36]. This means that if 0.5-coverage is not guaranteed, then for some elements of the 
domain the FOC represent only negative qualities (e.g. x is not hot and not cold, see 
fig. 4). Usually, natural language has positive terms to describe such elements (e.g x 
is warm). As a consequence the inclusion of fuzzy sets in the FOC – so that 0.5-
coverage is guaranteed – enhances the interpretability of the granular model.  
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Fig. 4. Coverage and interpretability. Without fuzzy set labeled “warm”, values around 0.5 of 
the variable domain do not have a linguistic description but they can only be described as “not 
cold and not hot”.  

5.2.5   Representation of Special Elements 
For the pursuits of interpretability, it is often required that special elements of the uni-
verse of discourse are prototypes of some fuzzy sets in the FOC. In this way, such 
special elements are fully covered by some fuzzy sets which, in turn, represent special 
concepts.  

Examples of special elements are extreme points of the universe of discourse. 
Leftmost and rightmost elements should be prototypes of some fuzzy sets that could 
be labeled in order to express their limit position in the FOC (e.g. “low”, “high”, 
“left”, “right”, etc.). The definition of such fuzzy sets is important to avoid paradoxi-
cal situations such as those depicted in fig. 5a. If the three fuzzy sets represent con-
cepts “small”, “medium”, “high” then the leftmost element minU is less “small” than 
minU+e. Such an undesired situation will not occur if leftmost/rightmost fuzzy sets 
are defined in the FOC (fig. 5b). Leftmost and rightmost fuzzy sets are necessary 
when they represent qualitative concepts; if the FOC is made of fuzzy sets expressing 
fuzzy quantities, then they are not necessary. 

Other special elements could be considered as prototypes of some fuzzy sets. The 
choice of such elements is problem driven. As an example, in [44] it is suggested that 
for control applications the null value, if it belongs to the universe of discourse, 
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Fig. 5. (a) A FOC violating representativity of extreme values. (b) a FOC with leftmost/rightmost 
fuzzy sets. 
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should be prototype of a fuzzy set, expressing the concepts “nearly zero”. This sugges-
tion could be extended to other values deemed important in an applicative context. For 
example, 0 and 100 could be prototypes of fuzzy sets labeled “icing point” and “boiling 
point” in the domain of water temperatures (expressed in Celsius degrees), or 37°C 
could be considered as prototype in a FOC expressing human body temperatures. 

5.3   Interpretability Constraints on Information Granules 

A fuzzy information granule is defined as a Cartesian product of fuzzy sets, each 
coming from a different FOC. The relational nature of information granules make 
them the basic building blocks for expressing knowledge. To make such knowledge 
comprehensible, a number of interpretability constraints should be verified.  

5.3.1   Justifiable Number of Elements 
The constraint of justifiable number of elements (JNE in brief) is applied at all levels 
of granulation: the FOC, each single information granules and the collection of infor-
mation granules in a model. 

When considering a single information granule, the JNE constraint imposes that 
the number of fuzzy sets defining the granule should be kept small, e.g. less than 
about seven. In this way, it is easier for the user to build a mental concept associated 
to the granule. Very complex granules are difficult to understand and, even if the 
compounding fuzzy sets verify all suggested interpretability constraints, users may 
not be able to grasp the relationship among variables that is represented by the gran-
ule. Techniques such as variable selection, locally to the granule or globally to the en-
tire knowledge base, are useful to improve interpretability. 

When considering the overall knowledge base, the JNE constraint suggests that the 
number of information granules should be kept within a small limit. According to 
psychological experiments, indeed, our short term memory is able to store simple as 
well as complex structures, provided that they are in a small number. Again, this 
poses severe limits on the flexibility of the resulting model, which may negatively in-
fluence its accuracy.  

5.3.2   Completeness 
This constraint imposes that each element of the universe of discourse is covered by 
at least one information granule, i.e. it belongs to an information granule with a mem-
bership degree greater than zero (weak completeness) or greater than a specified 
threshold (strong completeness).  

Weak completeness is easy to achieve if fuzzy sets with infinite support are used 
(such as Gaussian fuzzy sets). On the other hand, strong completeness may pose some 
problems, especially when the specified threshold is high (e.g. 0.5 as usually required) 
and the dimensionality of the universe of discourse is high. In this case, indeed, a 
great number of information granules may be required, which may hamper the con-
straint of justifiable number of elements. To overcome this problem a form of “closed 
world assumption” is usually adopted. It is assumed that all elements that can occur 
are represented by at least one information granule with membership degree greater 
than a threshold. According to this assumption, the universe of discourse is actually a 
subset of the Cartesian product of all attribute domains, and it is assumed that this 
subset is covered by the information granules.  
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A drawback of the closed world assumption emerges when an element not belong-
ing to the subset occurs. In this case the model may infer weak results (i.e. highly 
subnormal fuzzy sets). To overcome this problem, in [47] a “default” information 
granule is used, whose membership function is defined as the complement of the un-
ion of all used information granules. In this way, any element not represented by any 
information granule is covered by this default granule, to which a special action could 
be attached.  

5.3.3   Correctness 
The correctness constraint applies to the inference process carried out by the granular 
model. Informally speaking, correctness imposes that the inference process provides 
logically consistent outputs. As an example, in rule-based models, correctness re-
quires that Modus Ponens is respected, i.e. if a rule of the type “IF x is A THEN y is 
B” belongs to the rule base, and the input A is provided, it is expected that the model 
output is B. 

On the basis of this definition, several efforts have been made to verify the correct-
ness of rule-based models, such as in [48]. For granular models, we should keep in 
mind that the knowledge base is made by the union of information granules, and each 
information granule is defined by the conjunction of elementary concepts. As a con-
sequence, if a granule representing “x is A and y is B” belongs to the model, and the 
input A is provided, then the model is expected to derive B possibly united with other 
fuzzy sets. 

As an example, consider a model with two information granules, labeled as “tem-
perature is very cold and position is north pole”, and “temperature is very cold and 
position is south pole”. If the fact “temperature is very cold” is provided, we should 
expect the inference “position is north pole OR south pole”. In this sense, rule incon-
sistencies are not possible in granular models (see also [49] for a formal treatment of 
the topic). 

6   Interpretable Fuzzy Information Granulation 

Information granulation is the process of discovering granules from data by extracting 
hidden relationships among observed samples. The nature of such relationships de-
pends on the granulation algorithm and defines the semantics of the resulting informa-
tion granules. 

According to Zadeh [4], granulation is a cognitive task devoted to the partition of a 
whole into (significant) parts. Conversely, the process of aggregating parts into a 
whole is referred as organization. By virtue of such a definition, we may interpret 
granulation as the discovery of relationships of data within parts, so that the latter are 
semantically significant. On the other hand, organization involves the discovery of re-
lationships between parts.  

Interpretable information granulation adds interpretability constraints to the granu-
lation process. The choice of which constraints to include is a matter of design. In the 
following, a number of commonly adopted strategies for interpretable information 
granulation is outlined. For a deeper review of interpretable granulation techniques (in 
the context of fuzzy modeling) the reader is referred to [50]. 
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6.1   Partitioning 

A widely adopted strategy for interpretable information granulation concerns the par-
tition of the data domain into fuzzy granules that verify a number of interpretability 
constraints. 

Partitioning can be fixed or dynamic. In fixed partitioning, a number of interpret-
able fuzzy sets is defined for each attribute (a FOC), and information granules are ob-
tained by combining fuzzy sets of different attributes. To avoid combinatorial explo-
sion of information granules, only those including an adequate number of available 
samples is retained, while all the others are discarded. 

Fixed partitioning provides for very interpretable fuzzy information granules but 
suffers of many drawbacks. The main shortcoming derives from the definition of 
fuzzy sets, which does not take into account the structure of data. As a consequence 
fixed partitioning may not represent the most adequate granulation of data. Further-
more, the choice of the number of fuzzy sets for each attribute determines the granu-
larity level of each information granule. Without any information of data distribution, 
an arbitrary choice of the level of granularity may seriously hamper the quality of the 
granulation process. Despite these drawbacks, however, manual partitioning is still 
widely used because of its simplicity [63].  

To avoid the shortcomings of fixed partitioning, dynamic partitioning techniques 
have been proposed. The fundamental strategy of dynamic partitioning is to refine an 
initial partition so as to better represent data relationships, without violating interpret-
ability constraints. Refinement usually applies merge and split operators for fuzzy sets 
[51, 64], or modification of fuzzy set parameters [52], or both [53]. In [65] fuzzy sets 
in a FOC are defined by a frequentist approach so that more specific fuzzy sets are de-
fined to cover attribute values with higher frequency. 

Alternative to these partition strategies, some works use fuzzy tree-based partition-
ing to granulate data [54]. Roughly speaking, for generating a tree-based partition an 
attribute is selected and split in two fuzzy sets. For each of the two parts the split al-
gorithm is applied on the remaining attributes. This approach leads to a compact rep-
resentation of information granules (especially because attribute selection is usually 
performed), but the resulting granules may not share fuzzy sets. This implies a num-
ber of similar fuzzy sets to be defined for the same attribute, which may hamper in-
terpretability (fig. 6). 

 
Fig. 6. Example of tree-based partition 
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6.2   Clustering 

Clustering techniques are widely used for data granulation. This is due to the ability 
of clustering techniques to discover hidden relationships from data. Several fuzzy 
clustering techniques have been proposed in literature (see [55] for a review), how-
ever few of them address interpretability. 

The main difficulty for assuring interpretability of fuzzy granules resulting from 
clustering processes generally stands in the difficulty of representing fuzzy clusters in 
natural language. A common approach to assure natural language representation is to 
express fuzzy clusters as Cartesian product of fuzzy sets. This however implies that 
the shape of fuzzy clusters is tightly constrained. Furthermore, the presence of several 
clusters may lead to a high number of very overlapped fuzzy sets for each attributes. 
This situation does not lead to an interpretable granulation of data. 

To improve interpretability of cluster-based information granules, often simplifica-
tion procedures are proposed, which merge similar fuzzy sets of the same FOC into 
single fuzzy sets [56]. This approach yields compact granular models, but often other 
interpretability constraints (e.g. coverage, representativity, etc.) are not fulfilled. They 
are hence most suited for quantitative information granulation, where granules repre-
sent imprecise quantities for each attribute. 

When qualitative information granulation is required, i.e. when granules represent 
qualities on each attributes, a greater number of interpretability constraints should be 
verified. In this case, other strategies are advisable. In [57] an approach for interpret-
able granulation is proposed, which is based on a double clustering process. The first 
clustering stage operates on the entire dataset in order to discover hidden relationships 
among data. The result of this stage is a collection of prototypes that synthetically de-
scribe the dataset. In the second stage, multidimensional prototypes are projected onto 
each single attribute and further clustered to achieve the desired granulation level. 
One-dimensional projections are used to define FOCs that verify a number of inter-
pretability constraints so that the resulting fuzzy sets can be labeled with qualitative 
linguistic terms. Such fuzzy sets are combined (one for each attribute) in order to de-
fine fuzzy information granules that represent data in a natural language form. Vari-
ants of the Double Clustering schema are also able to automatically determine the 
granularity level [58,59]. 

7   Concluding Remarks 

The main objective of interpretability in fuzzy information granulation is co-
intensiveness with human perceptual knowledge. Fuzzy information granules are ba-
sic building blocks for representing semantical knowledge in a computer-manageable 
form. Without interpretability, fuzzy information granules are still able to represent 
imprecise knowledge, similarly to the knowledge learned by a neural network or some 
other black box model, but its comprehensibility by users is limited, especially when 
they do not possess skills in fuzzy and granular technologies.   

In this sense, interpretability is a fundamental feature for using fuzzy information 
granules in Human-Centric Information Processing. But interpretability is not a 
mathematical property, it is rather an epistemic feature that spans several facets of 
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model design. Interpretability constraints are the formal counterparts of the interpret-
ability property, provided that several other issues have been addressed, such as user 
characterization, representation structure and, last but not least, the objective of the 
model to be designed.  

Current literature offers a great number of interpretability constraints, some of 
which have been revised in this chapter. Many of these constraints have been pro-
posed as formalizations of properties driven by common sense. This opens the door to 
further research aimed at finding relationships (e.g. the “representation of special 
elements”, which is a generalization of two or more constraints found in literature), at 
devising different formalizations of the same constraint (such as the “distinguishabil-
ity” constraint or the “proper ordering”) or at discarding some proposed constraint 
(such as the 1-complementarity of membership degrees, which has a technical ration-
ale but cannot be justified in terms of interpretability). Even more importantly, groups 
of interpretability constraints help in identifying different notions of interpretability, 
such as interpretability of granules expressing quantities rather than qualities. These 
and other findings are important aids for knowledge engineering with fuzzy informa-
tion granules. 

Interpretability usually clashes with predictive accuracy. The more interpretability 
constraints are used, the more rigid is the granular model, and the less flexible to 
adaption it is. Interpretability vs. accuracy tradeoff has been addressed for long time, 
and several approaches have been proposed to balance these two features e.g. by regu-
larized learning or multi-objective optimization (see, e.g. [54, 60]). Furthermore, the 
adoption of interpretability constraints should be carefully pondered in certain appli-
cations where accuracy has a prominent importance, such as in fuzzy control [61]. 

Current and future research on interpretability spans both methodological and theo-
retical issues. Among these, the representation of the semantics of  natural language 
terms is of particular interest. Mendel [62] proposes type-2 fuzzy sets for such a rep-
resentation. This is a promising research direction, which may result particularly fruit-
ful in the area of granular knowledge communication (see also [66] for a discussion 
on this topic). On a more general level, we believe that deep insights on the semantics 
of membership degrees (which could denote similarity, preference, possibility of 
other, see [68]), as well as their operations, will shed new light on interpretability of 
information granules and, in turn, on Human-Centered Information Processing.  
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