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Abstract. Based on the theory of concept lattice and fuzzy concept lattice, a mathematical model 
of a concept granular computing system is established, and relationships of the system and 
concept lattices, various variable threshold concept lattices and fuzzy concept lattices are then 
investigated. For this system, concept granules, sufficiency information granules and necessity 
information granules which are used to express different relations between a set of objects and a 
set of attributes are proposed. Approaches to construct sufficiency and necessity information 
granules are also shown. Some iterative algorithms to form concept granules are proposed. It is 
proved that the concept granules obtained by the iterative algorithms are the sub-concept gran-
ules or sup-concept granules under some conditions for this system. Finally, we give rough ap-
proximations based on fuzzy concept lattice in formal concept analysis. 

1   Introduction 

A concept is the achievement of human recognizing the world. It announces the essence 
to distinguish one object from the others. Meanwhile, a concept is also a unit of human 
thinking and reasoning. New concepts are often produced by the original known ones. 
Thus, a concept is regarded as an information granule, and it plays an important role in 
our perception and recognition. In 1979, Zadeh first introduced the notion of fuzzy 
information granules [45]. From then on, many researchers paid much attention to the 
thought of information granules, and applied it to many fields such as rough set, fuzzy 
set and evidence reasoning [14,19]. The notion of granularity was proposed by Hobbs 
in 1985 [20], and granular computing was first provided by Zadeh from 1996 to 1997 
[46,47]. Since then, granular computing as a fundamental thought has stepped to soft 
computing, knowledge discovery and data mining, and has obtained some good results 
[26,32,41]. 

Formal concept analysis (FCA), proposed by Wille in 1982 [37], is a mathematical 
framework for discovery and design of concept hierarchies from a formal context. It is 
an embranchment of applied mathematics, which made it need mathematical thinking 
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for applying FCA to data analysis and knowledge processing [13]. All formal concepts 
of a formal context with their specification and generalization form a concept lattice 
[18]. And the concept lattice can be depicted by a Hassen diagram, where each node 
expresses a formal concept. The concept lattice is the core structure of data in FCA. In 
essence, a formal concept represents a relationship between the extension of a set of 
objects and the intension of a set of attributes, and the extension and the intension are 
uniquely determined each other. The more the formal concepts can be obtained, the 
stronger the ability is to recognize the world. Thus FCA is regarded as a power tool for 
learning problems [11,21,22,24,25]. 

Recently, there has been much advance in the study for FCA, especially in the study 
of the combination of FCA with the theory of rough set [12,23,28,30,35,38]. Zhang etc. 
proposed the theory and approach of attribute reduction of concept lattice with the 
formal context being regarded as a 0-1 information table, and introduced the judgment 
theorems of attribute reduction [48-50]. In their paper, they also introduced a decision 
formal context, and then acquired decision rules from it. Yao studied relations between 
FCA and the theory of rough set [42-44]. Burusco and Belohlavek investigated fuzzy 
concept lattices of L-fuzzy formal context [1-10]. Fan etc. discussed reasoning algo-
rithm of the fuzzy concept lattice based on a complete residuated lattice, studied the 
relationships among various variable threshold fuzzy concept lattices, and proposed 
fuzzy inference methods [17]. Ma etc. constructed relations between fuzzy concept 
lattices and granular computing [26]. Qiu gave the iterative algorithms of concept lat-
tices [29]. Shao etc. established the set approximation in FCA [31]. 

In this paper, a mathematical model of a concept granular computing system is in-
troduced based on the study of concept lattice and fuzzy concept lattice. Relationships 
among this system and concept lattice, fuzzy concept lattice and variable threshold 
concept lattice are investigated. Properties of the system are then studied. To describe 
the relations between a set of objects and a set of attributes, sufficiency information 
granules and necessity information granules are defined. Iterative algorithms of a 
concept granular computing system are proposed to obtain the information granules. 
And rough approximations of a set based on the concept lattice are studied. It may 
supply another way to study FCA. 

This paper is organized as follows. In section 2, we review basic notions and prop-
erties of concept lattice and fuzzy concept lattice. Then we propose a mathematical 
model called a concept granular computing system in Section 3. Relationships among 
this system and concept lattice, variable threshold concept lattice and fuzzy concept 
lattice are investigated. In Section 4, we study properties of this system. And suffi-
ciency information granules and necessity information granules are defined in 
Section 5. We propose some iterative algorithms to produce concept granules in Sec-
tion 6. Finally, set approximation in FCA is studied in Section 7. The paper is then 
concluded with a summary in Section 8. 

2   Preliminaries  

To facilitate our discussion, this section reviews some notions and results related to 
concept lattice and fuzzy concept lattice. The following definitions and theorems are 
the relevant facts about concept lattice and fuzzy concept lattice [2,18,19]. 
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In FCA, the data for analysis is described as a formal context, on which we can 
construct formal concepts. All formal concepts form a concept lattice which explains 
hierarchical relations of concepts. 

Definition 1. A triplet ),,( IAU  is called a formal context, where },,{ 1 nxxU L= is 

a nonempty and finite set called the universe of discourse, every element )( nixi ≤  is an 

object; },,{ 1 maaA L=  is a nonempty and finite set of attributes, every element 

)( mja j ≤  is an attribute; and AUI ×⊆  is a binary relation between U  and A .  

For a formal context ),,( IAU , Ux ∈ and Aa ∈ , we use Iax ∈),( , or xIa , 

denotes that the object x  has the attribute a . If we use 1 and 0 to express Iax ∈),(  

and Iax ∉),( , respectively, then the formal context can be described as a 0-1 in-

formation table. 
Let ),,( IAU  be a formal context, UX ⊆ and AB ⊆ , we define a pair of 

operators: 

                               * { : , , }X a a A x X xIa= ∈ ∀ ∈                                               (1) 

* { : , , }B x x U a B xIa= ∈ ∀ ∈                                              (2) 

where *X  denotes the set of attributes common to the objects in X , and *B  is the set 
of objects possessing all attributes in B . For simplicity, for any Ux ∈ and Aa ∈ , we 

use *x and *a  instead of *}{x  and *}{a  , respectively. For any Ux ∈  and Aa ∈ , 

if *x ≠ ∅ , *x A≠ , and *a ≠ ∅ , *a U≠ , we call the formal context ),,( IAU  is 

regular. In this paper, we suppose the formal contexts we discussed are regular. 

Definition 2. Let ),,( IAU  be a formal context, UX ⊆  and AB ⊆ . A pair 

( , )X B  is referred to as a formal concept, or a concept if *X B=  and *X B= . We 

call X the extension and B  the intension of the concept ( , )X B . 

Proposition 1. Let ),,( IAU  be a formal context. Then for any 1 2, ,X X X U⊆  

and 1 2,B B , B A⊆ , we can obtain that: 

(P1) * *
1 2 2 1X X X X⊆ ⇒ ⊆ , * *

1 2 2 1B B B B⊆ ⇒ ⊆ ; 

(P2) **X X⊆ , **B B⊆ ; 

(P3) * ***X X= , * ***B B= ; 

(P4) * *X B B X⊆ ⇔ ⊆ ; 

(P5) * * *
1 2 1 2( )X X X X=U I , * * *

1 2 1 2( )B B B B=U I ; 
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(P6) * * *
1 2 1 2( )X X X X⊇I U , * * *

1 2 1 2( )B B B B⊇I U ; 

(P7) ** *( , )X X and * **( , )B B  are always concepts. 

In Definition 2, concepts are constructed based on a classical formal context with the 
binary relation between objects and attributes being either 0 or 1. In the real world, 
however, the binary relation between objects and attributes are fuzzy and uncertain. 
Burusco etc. extended the classical model to a fuzzy formal context [8,40], on which 
fuzzy concepts are first established. 

Let L  be a complete lattice. We denote by UL  the set of all L-fuzzy sets defined on 

U . Then for any L-fuzzy sets ULXX ∈21

~
,

~
, for any Ux ∈ , )(

~~~
121 xXXX ⇔⊆  

)(
~

2 xX≤ . Then ( , )UL ⊆  forms a poset. Obviously, ([0,1] , )U ⊆  and ({0,1} , )U ⊆  are 

both posets. 
We denote by ( )P U  and ( )P A  the power set on the universe of discourse U  and 

the power set on the set of attributes A , respectively. 

Definition 3. A triplet ( , , )U A I%  is referred to as a L-fuzzy formal context, where U  

is a universe of discourse, A  is a nonempty and finite set of attributes, and I%  is a 

L-fuzzy relation between U  and A , i.e. AULI ×∈~
. 

( , , , , ,0,1)L= ∨ ∧ ⊗ →L  is referred to as a complete residuated lattice, if 

( , , ,0,1)L ∨ ∧  is a complete lattice with the least element 0 and the great element 1; 

( , ,1)L ⊗  is a commutative semigroup with unit element 1; and ( , )⊗ →  is a residuated 

pair of L , i.e. : L L L⊗ × → is monotone increasing , : L L L→ × →  is 
non-increasing for the first variable and non-decreasing for the second variable, and for 
any , , ,a b c L a b c a b c∈ ⊗ ≤ ⇔ ≤ → . 

Let ( , , )U A I%  be a L-fuzzy formal context, UX L∈%  and AB L∈% . We define two 

operators as follows:  

( ) ( ( ) ( , ))
x U

X a X x I x a+

∈
= ∧ →% % %                                           (3) 

( ) ( ( ) ( , ))
a A

B x B a I x a+

∈
= ∧ →% % %                                             (4) 

Then AX L+ ∈%  and UB L+ ∈% . 

Definition 4. Let ( , , )U A I%  be a L-fuzzy formal context. ( , )X B% %  is referred to as a 

fuzzy formal concept, or a fuzzy concept if X B+ =% %  and B X+ =% %  for any 
UX L∈% and AB L∈% . 

Proposition 2. Let ( , , )U A I%  be a L-fuzzy formal context, ( , , , ,0,1)L= ∨ ∧ ⊗L be a 

complete residuated lattice. Then for any 1 2, , UX X X L∈% % % and 1 2, , AB B B L∈% % % , we have 

the following properties: 
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(F1) 1 2 2 1X X X X+ +⊆ ⇒ ⊆% % % % , 1 2 2 1B B B B+ +⊆ ⇒ ⊆% % % % ; 

(F2) X X ++⊆% % , B B++⊆% % ; 

(F3) X X+ +++=% % , B B+ +++=% % ; 

(F4) X B B X+ +⊆ ⇔ ⊆% % % % ; 

(F5) 1 2 1 2( )X X X X+ + +=% % % %U I , 1 2 1 2( )B B B B+ + +=% % % %U I ; 

(F6) ( , )X X++ +% % and ( , )B B+ ++% %  are always fuzzy concepts. 

Proposition 3. Let ( , , )U A I%  be a L-fuzzy formal context. Note that 

( , , ) {( , ) : , }fL U A I X B X B B X+ += = =% % % % % % %  

For any 1 1( , )X B% % , 2 2( , ) ( , , )fX B L U A I∈% % % , we define a binary relation " "≤ as 

follows:  

1 1 2 2 1 2 1 2( , ) ( , )X B X B X X B B≤ ⇔ ⊆ ⇔ ⊇% % % % % % % %（ ）. 

Then " "≤ is a partial order on ( , , )fL U A I% , and ( ( , , ), )fL U A I ≤% is a complete 

lattice, called fuzzy concept lattice, in which the meet and join operators are given by: 

( , ) ( ,( ) ),

( , ) (( ) , ).

i i i i
i T i T i T

i i i i
i T i T i T

X B X B

X B X B

++

∈ ∈ ∈
++

∈ ∈ ∈

∧ = ∩ ∪

∨ = ∪ ∩

% % % %

% % % %
 

where T  is a finite index set. 
Obviously, a classical formal context is a special L-fuzzy formal context, i.e. for-

mula (1) and (2) are special situations of formula (3) and (4), respectively. 

3   Mathematical Model of Concept Granular Computing System 

For a formal context and a fuzzy formal context, by constructing operators between the 
set of objects and the set of attributes, we obtain concept lattice and fuzzy concept lat-
tice. In this section, we extend the formal context to a generalized setting, and then 
obtain a mathematical model for concept granular computing system. 

Let L  be a complete lattice. We denote by 0L and 1L  the zero element and the unit 

element of L , respectively. 

Definition 5. Let 1 2,L L  be two complete lattices. We call any element in 1L  an extent 

element and any elements in 2L  an intent element. The mapping 1 2:G L L→  is re-

ferred to as an extent-intent operator if it satisfies:  

(G1) 
1 2 1 2

(0 ) 1 , (1 ) 0L L L LG G= = ; 

(G2) 1 2 1 2 1 2 1( ) ( ) ( ), ,G a a G a G a a a L∨ = ∧ ∀ ∈ . 
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For any 1a L∈ , ( )G a  is called the intent element of a . The mapping 

2 1:H L L→  is referred to as an intent-extent operator if it satisfies:  

(H1) 
2 1 2 1

(0 ) 1 , (1 ) 0L L L LH H= = ; 

(H2) 1 2 1 2 1 2 2( ) ( ) ( ), ,H b b H b H b b b L∨ = ∧ ∀ ∈ . 

For any 2b L∈ , ( )H b  is called the extent element of b .  

Definition 6. Let G  and H  be the extent-intent and intent-extent operators on 1L  

and 2L , respectively. Furthermore, if for any 1a L∈  and 2b L∈ ,  

( ), ( )a H G a b G H b≤ ≤o o , 

the quadruplex 1 2( , , , )L L G H  is referred to as a concept granular computing system, 

where ( ), ( )H G a G H bo o  is described as ( ( ))H G a  and ( ( ))G H b  respectively. 

Theorem 1. Let ( , , )U A I  be a formal context. Then the operators ( , )∗ ∗  defined by 

formula (1) and (2) are extent-intent and intent-extent operators, respectively. 
And ( ( ), ( ), , )P U P A ∗ ∗  is a concept granular computing system. 

Proof. It immediately follows from Proposition 1. 

Theorem 2. Let ( , , )U A I%  be a L-fuzzy formal context. Then the operators defined by 

formula (3) and (4) are extent-intent and intent-extent operators, respectively. And 

( , , , )U AL L + +  is a concept granular computing system. 

Proof. It immediately follows from Proposition 2. 

Theorem 3. Let ( ( ), ( ), , )P U P A G H  be a concept granular computing system. Then 

there exists a binary relation I U A⊆ ×  such that ( , , )U A I  is a formal context, and 

(*,*) ( , )G H= . 

Proof. Note that 

{( , ) : ({ })}I x a x H a= ∈  

Then ( , , )U A I  is a formal context. For any B A⊆ , we have ( ) ({ })
a B

H B H a
∈

= I  

by (H2). Thus  

* { : , ({ })}B x U a B x H a= ∈ ∀ ∈ ∈  

                        { : ({ }) ( )} ( )
a B

x U x H a H B H B
∈

= ∈ ∈ = =I  

By (G2), for any 1 2X X⊆ , we have 

2 1 2 1 2
( ) ( ) ( ) ( )G X G X X G X G X= ∪ = ∩ . 
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Then 1 2X X⊆  implies 2 1( ) ( )G X G X⊆ . Thus, for ({ })x H a∈ , we have 

({ })G x ⊇ ( ({ })) { }G H a a⊇ . That is, ({ })a G x∈ . Analogously, we can prove 

that )()( 1221 BHBHBB ⊆⇒⊆ . By which and ({ })a G x∈  we  can get that 

({ })x H a∈ . Thus ({ })x H a∈ iff ({ })a G x∈ . Therefore,  

{( , ) : ({ })}I x a a G x= ∈ . 

For any X U⊆ , by property (G2) we have ( ) ({ })
x X

G X G x
∈

= I . Thus,  

* { : , ({ })}X a A x X a G x= ∈ ∀ ∈ ∈  

{ : ({ }) ( )} ( )
x X

a A a G x G X G X
∈

= ∈ ∈ = =I . 

We denote by [0,1]L =  a unit interval. Then ([0,1], , , , ,0,1)= ∨ ∧ ⊗ →L is a 

complete residuated lattice. We call the L-fuzzy formal context ( , , )U A I%  with 

[0,1]L =  a fuzzy formal context. Then for any ( )X P U∈ , ( )B P A∈  and 

0 1δ< ≤ , we define two operators as follows:  

           # { : ( ( ) ( , )) }
x X

X a A X x I x a
∈

= ∈ ∧ → ≥ δ%                                          (5) 

# { : ( ( ) ( , )) }
a B

B x U B a I x a
∈

= ∈ ∧ → ≥ δ%                                            (6) 

Theorem 4. A quadruplex ( ( ), ( ), #,#)P U P A  is a concept granular computing system.  

Proof. Obviously, ( ), ( )P U P A  are complete lattices. According to formula (5), the opera-

tor # : ( ) ( )P U P A→ satisfies # A∅ = and #U = ∅ . Since ( )i ix a x a∨ → = ∧ → , 

then for any 1 2, ( )X X P U∈ , it follows that  

1 2

#

1 2 1 2( ) { : (( ( ) ( )) ( , )) }
x X X

X X a A X x X x I x a δ
∈ ∪

∪ = ∈ ∧ ∨ → ≥%  

     
1 2

1 2{ : (( ( ) ( , )) ( ( ) ( , ))) }
x X X

a A X x I x a X x I x a δ
∈ ∪

= ∈ ∧ → ∧ → ≥% %    

     
1 2

1 2{ : ( ( ) ( , )) } { : ( ( ) ( , )) }
x X x X

a A X x I x a a A X x I x aδ δ
∈ ∈

= ∈ ∧ → ≥ ∩ ∈ ∧ → ≥% %  

     # #

1 2X X= ∩ . 

Thus, the operator # : ( ) ( )P U P A→  is an extent-intent operator. Similarly, we  

can  prove the operator # : ( ) ( )P A P U→  is an intent-extent operator. 

Meanwhile, for any ( )X P U∈ , since  

},)),(
~

)((:{

},)),(
~

)((:{
###

#

#
δ

δ
≥→∧∈=

≥→∧∈=

∈

∈

axIaXUxX

axIxXAaX

Xa

Xx  
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by formula (5) we have, for any x X∈ , if #a X∈ , we have 1 ( , )I x a→ ≥ δ% . Be-

cause #X is a crisp set, we have })),(
~

1(:{
#

## δ≥→∧∈=
∈

axIUxX
Xa

. Therefore, 

x X∈ implies δ≥→∧
∈

)),(
~

)(( #

#
axIaX

Xa
. That is, ##x X∈ . Thus, ##X X⊆ . 

Similarly, it can be proved that for any ( )B P A∈ , ##B B⊆ . Thus, ),(),(( APUP  

)#,#  is a concept granular computing system. 

Let ( , , )U A I%  be a fuzzy formal context. For any ( )X P U∈ , AB L∈% , and 

0 1δ< ≤ , a pair of operators are defined as follows:   

                                  )(),(
~

)( AaaxIaX
Xx

∈∧→=
∈

Δ δ                               (7) 

                    { : ( ( ) ( , )) }
a A

B x U B a I x a∇

∈
= ∈ ∧ → ≥ δ% % %                       (8) 

Theorem 5. A quadruplex ( ( ), , , )AP U L Δ ∇  is a concept granular computing system. 

Proof. It is similarly proved as Theorem 4. 

Let ( , , )U A I%  be a fuzzy formal context. For any UX L∈% , ( )B P A∈ , and 

0 1δ< ≤ , a pair of operators are defined as follows:   

                       { : ( ( ) ( , )) }
x U

X a A X x I x a∇

∈
= ∈ ∧ → ≥ δ% % %                                (9) 

                  )(),(
~

)( UxaxIxB
Ba

∈∧→=
∈

Δ δ                                             (10) 

Theorem 6. A quadruplex ( , ( ), , )UL P A ∇ Δ  is a concept granular computing system. 

Proof. It is similarly proved as Theorem 4. 

4   Properties of Concept Granular Computing System 

Definition 7. Let 1 2( , , , )L L G H  be a concept granular computing system. If for any 

1a L∈  and 2b L∈ , ( )G a b= and ( )H b a= , then the pair ( , )a b  is called a con-

cept. We call a  the extension and b  the intension of the concept ( , )a b .  

For any concepts 1 1 2 2( , ), ( , )a b a b , we define a binary relation “ ≤ ”as follows:  

1 1 2 2 1 2( , ) ( , )a b a b a a≤ ⇔ ≤ . 

Then “ ≤ ”is a partial order. 

Let 1 2( , , , )L L G H  be a concept granular computing system. By the operators G  

and H ,  a bridge between the extent set and the intent set is constructed, which de-
scribe the transformation process of objects and attributes for the recognition.   
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Theorem 7. Let 1 2( , , , )L L G H  be a concept granular computing system. Then the 

following conclusions hold: 

(1) 1 2 2 1( ) ( )a a G a G a≤ ⇒ ≤ , for any 1 2 1,a a L∈ ; 

(2) 1 2 2 1( ) ( )b b H b H b≤ ⇒ ≤ , for any 1 2 2,b b L∈ ; 

(3) 1 2 1 2( ) ( ) ( )G a G a G a a∨ ≤ ∧  for any 1 2 1,a a L∈ ; 

(4) 
1 2 1 2

( ) ( ) ( )H b H b H b b∨ ≤ ∧ , for any 
1 2 2
,b b L∈ ; 

(5) ( ) ( )G H G a G a=o o  for any 1a L∈ ; 

(6) ( ) ( )H G H b H b=o o  for any 2b L∈ . 

Proof. (1) Suppose 1 2 1,a a L∈ , and 1 2a a≤ . Since G is an extent-intent operator, we 

have  

2 1 2 1 2( ) ( ) ( ) ( )G a G a a G a G a= ∨ = ∧ . 

Thus, 2 1( ) ( )G a G a≤ .   

(2) It is similarly proved as (1). 

(3) Because 1 2 1a a a∧ ≤  and 1 2 2a a a∧ ≤ , by (1) we can get that  

1 1 2( ) ( )G a G a a≤ ∧  and 2 1 2( ) ( )G a G a a≤ ∧ . 

Then 1 2 1 2( ) ( ) ( )G a G a G a a∨ ≤ ∧ . 

(4) It is similarly proved as (3). 

(5) Since for any 1a L∈ , ( )a H G a≤ o , then by (1) we can get that )(aGHG oo  

)(aG≤ . Meanwhile, let ( )b G a= , we have ( )b G H b≤ o . Thus, HGaG o≤)(  

)(aGo  , which leads to ( ) ( )G a G H G a= o o . 

(6) It is similarly proved as (5). 

Theorem 8. Let 1 2( , , , )L L G H  be a concept granular computing system. Note that   

1 2( , , , ) {( , ) : ( ) , ( ) }L L G H a b G a b H b a= = =B  

Then 1 2( , , , )L L G HB  is a lattice with a great element and a least element, where 

the infimum and the supremum are defined as follows 

( , ) ( , ( ))i i i i
i T i T i T

a b a G H b
∈ ∈ ∈
∧ = ∧ ∨o , 

( , ) ( ( ), )i i i i
i T i T i T

a b H G a b
∈ ∈ ∈
∨ = ∨ ∧o , 

where 1 2( , ) ( , , , )i ia b L L G H∈B  ( ,i T T∈ is a finite index set). 

Proof. Since 1 2( , ) ( , , , )i ia b L L G H∈B , we have ( ) , ( )i i i iG a b H b a= = . Thus,   

( ) ( ( )) ( ( )) ( )i i i i
i T i T i T i T

G a G H b G H b G H b
∈ ∈ ∈ ∈
∧ = ∧ = ∨ = ∨o , 



76 W.-x. Zhang et al. 

 

( ) ( ) ( )i i i i
i T i T i T i T

H G H b H b H b a
∈ ∈ ∈ ∈
∨ = ∨ = ∧ = ∧o o . 

Then 1 2( , ) ( , , , )i i
i T

a b L L G H
∈
∧ ∈B . Similarly, we can prove that 

1 2( , ) ( , , , )i i
i T

a b L L G H
∈
∨ ∈B . 

Since 
1 2 2 1

(0 ) 1 , (1 ) 0L L L LG H= = , by the partial order ≤  we have 
1 2

(0 ,1 )L L  is the 

least element of 1 2( , , , )L L G HB . Similarly, 
1 2

(1 ,0 )L L  is the great element of 

1 2( , , , )L L G HB . 

In order to prove 1 2( , , , )L L G HB  is a lattice, we need to prove that 

( , )i i
i T

a b
∈
∧  is the great lower bound of ( , )( )i ia b i T∈  and ( , )i i

i T
a b

∈
∨  is the 

least upper bound of ( , )( )i ia b i T∈ . Since i i
i T

a a
∈
∧ ≤ , we have 

( , ) ( , ( )) ( , )i i i i i i
i T i T i T

a b a G H b a b
∈ ∈ ∈
∧ = ∧ ∨ ≤o . That is, ( , )i i

i T
a b

∈
∧  is the lower bound of 

( , )( )i ia b i T∈ .  Suppose 1 2( , ) ( , , , )a b L L G H∈B  and ( , ) ( , )i ia b a b≤  for any 

i T∈ . Then ( , ) ( , )i i
i T

a b a b
∈

≤ ∧ , and we can get that ( , )i i
i T

a b
∈
∧  is the great lower 

bound of ( , )( )i ia b i T∈ . Similarly, we can prove that ( , )i i
i T

a b
∈
∨  is the least upper 

bound of ( , )( )i ia b i T∈ . Therefore, 1 2( , , , )L L G HB  is a lattice with a great element 

and a least element.  
According to the relationships between the concept granular computing system and 

concept lattice, variable threshold concept lattice and fuzzy concept lattice, we can get 
the following results from Theorem 8.  

(1) Let ( , , )U A I  be a formal context. Then  

},),,{(),*,*)(),(( ** XBBXBXAPUPB ===  

is a complete lattice. 

(2) Let ( , , , , ,0,1)L= ∨ ∧ ⊗ →L  be a complete residuated lattice, and ( , , )U A I%  be 

a L-fuzzy formal context. Then  

)
~

,,(}
~~

,
~~

:)
~

,
~

{(),,,( IAULXBBXBXLLB f
AU ====++ ++  

is a lattice with the great and the least elements. 

(3) Let ( , , , , ,0,1)L= ∨ ∧ ⊗ →L  be a complete residuated lattice, and ( , , )U A I%  be 

a fuzzy formal context. Then  

},:),{()#,#),(),(( ## XBBXBXAPUPB ===  

is a lattice with the great and the least elements, and any element in it is called a 
crisp-crisp variable threshold concept, for simply, variable threshold concept. 
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(4) Let ( , , , , ,0,1)L= ∨ ∧ ⊗ →L  be a complete residuated lattice, and ( , , )U A I%  

be a fuzzy formal context. Then  

}
~

,
~

:)
~

,{(),,),(( XBBXBXLUPB A ===∇Δ ∇Δ  

is a lattice with the great and the least elements, and any element in it is called a 
crisp-fuzzy variable threshold concept, for simply, variable threshold concept. 

(5) Let ( , , , , ,0,1)L= ∨ ∧ ⊗ →L  be a complete residuated lattice, and ( , , )U A I%  

be a fuzzy formal context. Then  

}
~

,
~

:),
~

{(),),(,( XBBXBXAPLB U ===Δ∇ Δ∇  

is a lattice with the great and the least elements, and any element in it is called a 
fuzzy-crisp variable threshold concept, for simply, variable threshold concept. 

Example 1. Table 1 shows a fuzzy formal context with {1,2,3,4}U = being a set of 

objects and { , , , }A a b c d=  being a set of attributes.  

Table 1. The fuzzy formal context ( , , )U A I%   

U a B C d 

1 0.5 1.0 0.7 0.5 

2 0.6 0.7 1.0 0.5 

3 1.0 0.9 1.0 0.1 

4 1.0 0.9 0.9 0.1 

We take Luksiewicz implication operators [15,33,34]  

1, ,

1 , .L

a b
a b

a b a b

≤
→ =

− + >
⎧
⎨
⎩

 

Then the corresponding adjoin operator is: 

( 1) 0La b a b⊗ = + − ∨ . 

It is easy to prove that ([0,1], , , , , 0,1)L L= ∨ ∧ ⊗ →L  is a residuated complete lattice. 

For the fuzzy formal context )
~

,,( IAU  given in Table 1, take 1=δ . Then for 

any )(UPX ∈  and )(APB ∈ , by formula (1) and (2) we can get #X and #B . 

Thus, any crisp-crisp variable threshold concept ),( BX  satisfying BX =#  and 

XB =#  can be obtained. Table 2 shows all crisp-crisp variable threshold concepts.  

Analogously, for 1=δ , )(UPX ∈  and )(
~

AFB ∈ , we can get all crisp-fuzzy 

variable threshold concepts by formula (7) and (8). Table 3 shows all crisp-fuzzy 
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variable threshold concepts. And for 1=δ , )(
~

UFX ∈  and )(APB ∈ , by formula 

(9) and (10), we can obtain all fuzzy-crisp variable threshold concepts, see Table 4.  
Fig. 1 depicts the three kinds of corresponding variable threshold concept lattices. 

For simplicity, a set is denoted by listing its elements in sequence. For example, the set 
}4,3,2,1{  is denoted by 1234. 

Table 2. The crisp-crisp variable threshold concepts for 1δ =  

X B 

∅  {abcd} 

{3} {ac} 

{34} {a} 

{23} {c} 

Table 3. The crisp-fuzzy variable threshold concepts for 1δ =  

X a b c d 

∅  1.0 1.0 1.0 1.0 

{3} 1.0 0.9 1.0 0.1 

{34} 1.0 0.9 0.9 0.1 

{2} 0.6 0.7 1.0 0.5 

{23} 0.6 0.7 1.0 0.1 

{234} 0.6 0.7 0.9 0.1 

{1} 0.5 1.0 0.7 0.5 

{134} 0.5 0.9 0.7 0.1 

{12} 0.5 0.7 0.7 0.5 

{1234} 0.5 0.7 0.7 0.1 

Table 4. The fuzzy-crisp variable threshold concepts for 1δ =  

B 1 2 3 4 

∅  1.0 1.0 1.0 1.0 

{c} 0.7 1.0 1.0 0.9 

{b} 1.0 0.7 0.9 0.9 

{bc} 0.7 0.7 0.9 0.9 

{a} 0.5 0.6 1.0 1.0 

{ac} 0.5 0.6 1.0 0.9 

{abc} 0.5 0.6 0.9 0.9 

{abcd} 0.5 0.6 0.1 0.1 



 Concept Granular Computing Based on Lattice Theoretic Setting 79 

 

 

Fig. 1. The corresponding variable threshold concept lattices shown in Table 2-Table 4 

5   Sufficiency and Necessity Information Granules 

In order to reflect the granular idea of the concept granular computing system, we in-
troduce information granules.  

Definition 8. Let 1 2( , , , )L L G H  be a concept granular computing system. Note that  

1 {( , ) : ( ), ( )}a b b G a a H b= ≤ ≤G , 

2 {( , ) : ( ) , ( ) }a b G a b H b a= ≤ ≤G . 

If 1( , )a b ∈G , we call ( , )a b  a necessity information granule of the concept granular 

computing system, and call b the necessity attribute of a . Then 1G  is the set of all 

necessity information granules of the concept granular computing system. (See Fig. 2.). 

If 2( , )a b ∈G , we call ( , )a b  a sufficiency information granule of the concept 

granular computing system, and call b the sufficiency attribute of a . Then 2G  is the 

set of all sufficiency information granules of the concept granular computing system. 
(See Fig. 3). 

If 1 2( , )a b ∈ ∪G G , we call ( , )a b  an information granule of the concept granular 

computing system. Then 1 2∪G G  is the set of all information granules of the concept 

granular computing system.  

If 1 2( , )a b ∈ ∩G G , then the pair ( , )a b  satisfies ( ), ( )b G a a H b= = , we call 

( , )a b  a sufficiency and necessity information granule of the concept granular com-

puting system, and call b the sufficiency and necessity attribute of a .Then a suffi-
ciency and necessity information granule is actually a concept of a concept granular 
computing system defined in Definition 7. 
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Fig. 2. Necessity information granule ( , )a b  Fig. 3. Sufficiency information granule ( , )a b  

If 1 2( , )a b ∉ ∩G G , we call ( , )a b  a contradiction information granule.  

Theorem 9. Let 1G  be a necessity information granule set. For any 

1 1 2 2 1( , ), ( , )a b a b ∈ G , we define the infimum and the supremum operators on 1G as 

follows: 

1 1 2 2 1 2 1 2( , ) ( , ) ( , ( ))a b a b a a G H b b∧ = ∧ ∨o , 

1 1 2 2 1 2 1 2( , ) ( , ) ( ( ), )a b a b H G a a b b∨ = ∨ ∧o . 

Then 1G  is closed under the infimum and supremum operators.  

Proof. Suppose 1 1 2 2 1( , ), ( , )a b a b ∈G . Then  

1 1 2 2( ), ( )b G a b G a≤ ≤ , and 1 1 2 2( ), ( )a H b a H b≤ ≤ . 

Thus,  

1 2 1 2 1 2 1 2( ) ( ) ( ) ( )a a H b H b H b b H G H b b∧ ≤ ∧ = ∨ = ∨o o , 

1 2 1 2 1 2( ) ( ( ) ( )) ( )G H b b G H b H b G a a∨ = ∧ ≤ ∧o . 

Therefore, 1 1 2 2( , ) ( , )a b a b∧ is a necessity information granule. Similarly, we can 

prove that 1 1 2 2( , ) ( , )a b a b∨  is a necessity information granule. 

Theorem 10. Let 2G  be a sufficiency information granule set. For any 

1 1 2 2 2( , ), ( , )a b a b ∈ G , we define the infimum and the supremum operators on 2G as 

follows: 

1 1 2 2 1 2 1 2( , ) ( , ) ( , ( ))a b a b a a G H b b∧ = ∧ ∨o , 

1 1 2 2 1 2 1 2( , ) ( , ) ( ( ), )a b a b H G a a b b∨ = ∨ ∧o . 

Then 2G  is closed under the infimum and supremum operators.  
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Proof. Suppose 1 1 2 2 2( , ), ( , )a b a b ∈G . Then  

1 1 2 2( ) , ( )G a b G a b≤ ≤ , and 1 1 2 2( ) , ( )H b a H b a≤ ≤ . 

Thus,  

1 2 1 2 1 2 1 2( ) ( ) ( ) ( )H G H b b H b b H b H b a a∨ = ∨ = ∧ ≤ ∧o o , 

1 2 1 2 1 2( ) ( ( ) ( )) ( )G a a G H b H b G H b b∧ ≤ ∧ = ∨o . 

Therefore, 1 1 2 2( , ) ( , )a b a b∧ is a sufficiency information granule. Similarly, we can 

prove that 1 1 2 2( , ) ( , )a b a b∨  is a sufficiency information granule. 

Example 2. Given a formal context ( , , )U A I  as Table 5, where {1,2,3,4}U =  is the 

set of objects, and { , , , }A a b c d= is a set of attributes.  

Table 5. The formal context ( , , )U A I  

U  
a  b  

c  d  

1 1 0 1 1 

2 1 1 0 0 

3 0 0 1 0 

4 1 1 0 0 

From Table 5, we can get the partial necessity information granules (See Fig. 4) and 
the partial sufficiency information granules (See Fig. 5).  

 

Fig. 4. Partial necessity information granule 
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Fig. 5. Partial sufficiency information granules 

  

Fig. 6. ( ( ), ( ))H G a b G a∧o  Fig. 7. ( ( ), ( ))a H b G H b∧ o  

Now we introduce approaches to construct the sufficiency or necessity information 
granules.  

Theorem 11. Let ),,,( 21 HGLL  be a concept granular computing system, 1G  is the 

set of necessity information granules. Then for any 1La ∈ and 2Lb ∈ , we have  

1( ( ), ( ))H G a b G a∧ ∈o G  and 1( ( ), ( ))a H b G H b∧ ∈o G  

(See Fig. 6 and Fig. 7). 

Proof. Since 1 2( , , , )L L G H  is a concept granular computing system, by 

Theorem 7 and Definition 8 we have ( ) ( ) ( )G H G a G a G a b= ≥ ∧o o and 

)()()())(( aGHbHaGHaGbH oo ≥∨≥∧ . Thus, 1))(),(( GaGbaGH ∈∧o . 

Similarly, we can prove 1))(),(( GbHGbHa ∈∧ o . 

Theorem 12. Let 1 2( , , , )L L G H  be a concept granular computing system, 2G  is the 

set of sufficiency information granules. Then for any 1a L∈ and 2b L∈ , we have  
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2( ( ), ( ))H G a b G a∨ ∈o G  and 2( ( ), ( ))a H b G H b∨ ∈o G  

(See Fig. 8 and Fig. 9). 

Proof.  Because 1 2( , , , )L L G H  is a concept granular computing system, by Theorem 7 

and Definition 8 we have ( ) ( ) ( )G H G a G a G a b= ≤ ∨o o and =∨ ))(( baGH  

).()()( aGHbHaGH oo ≤∧  Thus, 2))(),(( GaGbaGH ∈∨o .Similarly, we can 

prove that 2))(),(( GbHGbHa ∈∨ o . 

  

Fig. 8. ( ( ), ( ))H G a b G a∨o  Fig. 9. ( ( ), ( ))a H b G H b∨ o  

Example 3. The formal context ( , , )U A I is the one given as Example 2.  

Then ),*,*)(),(( APUP is a concept granular computing system, and we can ob-

tain all formal concepts which form a concept lattice as Fig. 10. 

 

Fig. 10. Concept lattice of Example 2 

Take 0 {1,4}a =  and 0 { , }b a b= . Then 0 0( , )a b  is a contradiction granule. By 

Theorem 11, we can calculate that },{,}4,1({))(),(( **
000 baaGbaGH =∧o  

}){},4,2,1({)}4,1{ * a=I and ,},{}4,1({))(),(( *
000 babHGbHa ∩=∧ o  

}),{},4({)},{ ** baba = are two necessity information granules. Similarly, we can 
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construct the contradiction granule to a sufficiency information granule (124, )ab  by 

using Theorem 12. 
From Example 3 we know, for any set of objects and any set of attributes, we can 

construct necessity or sufficiency information granules by using Theorem 11-Theorem 
12, which support a way to construct a sufficiency and necessity information granules, 
i.e. concepts.  

6   Iterative Algorithms and Their Optimizations in Concept 
Granular Computing System  

In this section, we establish iterative algorithms to produce concepts from any extent 
element and intent element. 

Theorem 13. Let 1 2( , , , )L L G H  be a concept granular computing system, and 

1| |L < ∞ ( 1| |L  denotes the number of elements in 1L ). For any 1 1a L∈  and 1 2b L∈ , 

an iterative algorithm is given as follows: 

                          1 1( ), ( 2)

( )
n n n

n n

a a H b n

b G a
− −= ∨ ≥

=
⎧
⎨
⎩

                                                  (11) 

Then for the series of pairs 1{( , )}n n na b ≥ , there exists 0 1n ≥  such that  

(1) ),,,(),( 2100
HGLLBba nn ∈ ; 

(2) For any ),,,()','( 21 HGLLBba ∈ , if )(' 11 bHaa ∨≤ , then ),()','(
00 nn baba ≤ . 

Proof. (1) By the iterative algorithm given by formula (11) we know the sequence 

1{ }n na ≥  is monotone non-decreasing. Due to 1| |L < ∞ , there exists a natural number 

0 1n ≥  such that for any 0n n≥ , we have 
0n na a= . Again using formula (11) we have 

0 0 0 01
( )

n n n n
a a a H b+= = ∨  and 

0 0
( )n nb G a= . Then )(

00 nn bHa ≥ . By )(
00 nn aGb =  

we can get that 
0 0 0

( ) ( )n n nH b H G a a= ≥o . Thus 
0 0

( )n na H b= and
0 0

( )n nb G a= . 

Therefore, ),,,(),( 2100
HGLLBba nn ∈ . 

(2) Suppose ),,,()','( 21 HGLLBba ∈ , and )(' 11 bHaa ∨≤ . If ∉),( 11 ba  

),,,( 21 HGLLB , we have 211 )(' abHaa =∨≤ . Suppose )2(' ≥≤ naa n . 

Then ( ) ( ') 'n nb G a G a b= ≤ = . So ' ( ') ( )na H b H b= ≤ . Thus, ∨≤′ naa  

.)( 1+= nn abH  By the Inductive law we can obtain that for any 2n ≥ , ' na a≤ . If 

),,,(),( 2111 HGLLBba ∈ , then 1 1 1' ( )a a H b a≤ ∨ = . Therefore, if ∨≤′ 1aa  

),( 1bH we have ' na a≤  for any 1n ≥ . For the series of pairs 
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),,,(),( 21 HGLLBba nn ∈ , by (1) there exists a natural number 0 1n ≥ such that 

),,,(),( 2100
HGLLBba nn ∈ . Then by ' na a≤  for any 1n ≥  we have 

0 0
( ', ') ( , )n na b a b≤ . 

Theorem 14. Let 1 2( , , , )L L G H  be a concept granular computing system, and 

2| |L < ∞ . For any 1 1a L∈  and 1 2b L∈ , an iterative algorithm is given as follows: 

                                1 1( ), ( 2)

( )
n n n

n n

b b G a n

a H b
− −= ∨ ≥

=
⎧
⎨
⎩

                                     (12) 

Then for the series of pairs 1{( , )}n n na b ≥ , there exists 0 1n ≥  such that  

(1) ),,,(),( 2100
HGLLBba nn ∈ ; 

(2) For any ),,,()','( 21 HGLLBba ∈ , if 1 1' ( )b b G a≤ ∨ , then 
0 0

( , ) ( ', ')n na b a b≤ . 

Proof. (1) By the iterative algorithm given by formula (2.12) we know the sequence 

1{ }n nb ≥ is monotone non-decreasing. Since 2| |L < ∞ , there exists a natural number 

0 1n ≥  such that for any 0n n≥ , we have 
0n nb b= . Then 

0 0 0 01 ( )n n n nb b b G a+= = ∨  

and 
0 0

( )n na H b= . Thus, 
0 0

( )n nb G a≥ . By 
0 0

( )n na H b=  we can get 

that
0 0 0

( ) ( )n n nG a G H b b= ≥o .  

So, 
0 0

( )n nb G a= and 
0 0

( )n na H b= . Therefore, 
0 0 1 2( , ) ( , , , )n na b L L G H∈B . 

(2) Suppose ),,,()','( 21 HGLLBba ∈ , and 1 1' ( )b b G a≤ ∨ . If ∉),( 11 ba  

),,,,( 21 HGLLB  we have 1 1 2' ( )b b G a b≤ ∨ = . Suppose ' ( 2)nb b n≤ ≥ . Then 

( ) ( ') 'n na H b H b a= ≤ = . So ' ( ') ( )nb G a G a= ≤ . Thus, 1' ( )n n nb b G a b +≤ ∨ = . 

By the Inductive law we can obtain that for any 2n ≥ , ' nb b≤ . If ∈),( 11 ba  

),,,( 21 HGLLB , then 1 1 1' ( )b b G a b≤ ∨ = . Therefore, if 1 1' ( )b b G a≤ ∨ , we 

have ' nb b≤  for any 1n ≥ . For the series of pairs ),,,(),( 2100
HGLLBba nn ∈ , by 

(1) there exists a natural number 0 1n ≥ such that ),,,(),( 2100
HGLLBba nn ∈ . Then 

by ' nb b≤  for any 1n ≥  we have 
0 0

( , ) ( ', ')n na b a b≤ . 

In what follows, we show the iterative algorithms for a formal context and a fuzzy 
formal context. 

Theorem 15. Let ( , , )U A I  be a formal context. For any X U⊆ and B A⊆ , an it-

erative algorithm is given as follows: 
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*

1 1

*

, ( 2)n n n

n n

X X B n

B X
− −= ≥

=

⎧ ∪
⎨
⎩

 

Then for the series of pairs 1{( , )}n n nX B ≥ , there exists 0 1n ≥  such that  

(1) ),*,*)(),((),(
00

APUPBBX nn ∈ ; 

(2) For any ),*,*)(),(()','( APUPBBX ∈ , if *

1 1'X X B≤ ∪ , then 

0 0
( ', ') ( , )n nX B X B≤ . 

Proof. It is proved by Theorem 1 and Theorem 13. 

Theorem 16. Let ( , , )U A I  be a formal context. For any X U⊆ and B A⊆ , an it-

erative algorithm is given as follows: 

*

1 1

*

, ( 2)n n n

n n

B B X n

X B
− −= ≥

=

⎧ ∪
⎨
⎩

 

Then for the series of pairs 1{( , )}n n nX B ≥ , there exists 0 1n ≥  such that  

(1) ),*,*)(),((),(
00

APUPBBX nn ∈ ; 

(2) For any ),*,*)(),(()','( APUPBBX ∈ , if *

1 1'B B X≤ ∪ , then 

0 0
( , ) ( ', ')n nX B X B≤ . 

Proof. It is proved by Theorem 1 and Theorem 14. 

Theorem 17. Let ( , , )U A I%  be a L-fuzzy formal context. For any UX L⊆% and 
AB L⊆% ,  

(1) if an iterative algorithm is given as follows: 

1 1 , ( 2)n n n

n n

X X B n

B X

+
− −

+

= ≥

=

⎧ ∪
⎨
⎩

% % %

% %
 

Then for the series of pairs 1{( , )}n n nX B ≥
% % , there exists 0 1n ≥  such that )

~
,

~
(

00 nn BX  

).,,,( ++∈ AU LLB  And for any ),,,()'
~

,'
~

( ++∈ AU LLBBX , if 1 1'X X B +≤ ∪% % % , 

then 
0 0

( ', ') ( , )n nX B X B≤% % % % ; 

(2) if an iterative algorithm is given as follows: 

1 1 , ( 2)n n n

n n

B B X n

X B

+
− −
+

= ≥

=

⎧ ∪
⎨
⎩

% % %

% %
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Then for the series of pairs 1{( , )}n n nX B ≥
% % , there exists 0 1n ≥  such that 

),,,()
~

,
~

(
00

++∈ AU
nn LLBBX . And for any ),,,()'

~
,'

~
( ++∈ AU LLBBX , if 

1 1'B B X +≤ ∪% % % , then 
0 0

( , )n nX B ≤% % ( ', ')X B% % . 

Proof. It is proved by Theorem 2, Theorem 13 and Theorem 14. 

Example 4. Let ( , , )U A I be a formal context given in Example 2. Take 

0 {1,4}X = and 0 { , }B a b= . 0 0( , )X B  is not a formal context. By Theorem 15 and 

Theorem 16 we can get that (24, )ab  and (124, )a  are concepts.  

7   Rough Set Approximations in Formal Concept Analysis 

A structure ( , , , , ,0,1)L= ∨ ∧ ⊗ →L  is referred to as a complete involutive residuated 

lattice if L  is a complete residuated lattice and the operator :c L L→  satisfies 

1 2 2 1

c ca a a a≤ ⇒ ≤  and cca a=  for any 1 2, ,a a a L∈ , where c  represents the com-

plement operator of any element of L . 
A L-fuzzy formal context ( , , )U A I%  is called an involutive L-fuzzy formal context 

if ( , , , , ,0,1)L= ∨ ∧ ⊗ →L is a complete involutive residuated lattice. Then for 

any UX L∈%  and AB L∈% , we define the following operators[ 27,39]:  

( ) ( ( ) ( , ))
x U

X a X x I x a+

∈
= ∧ →% % %  

( ) ( ( ) ( , ))
a A

B x B a I x a+

∈
= ∧ →% % %  

( ) ( ( ) ( , ))c c

x U
X a X x I x a↑

∈
= ∨ ⊗% % %  

( ) ( ( ) ( , ))c c

a A
B x B a I x a↓

∈
= ∨ ⊗% % %  

( ) ( ( ) ( , ))
x U

X a X x I x a◊

∈
= ∨ ⊗% % %  

( ) ( ( , ) ( ))
x U

X a I x a X x
∈

= ∧ →% % %  

( ) ( ( ) ( , ))
a A

B x B a I x a◊

∈
= ∨ ⊗% % %  

( ) ( ( , ) ( ))
a A

B x I x a B a
∈

= ∧ →% % %  

Definition 10. Let ( , , )U A I%  be an involutive L-fuzzy formal context. For any 
UX L∈% , we define    

                                  ( )Apri X X ↑↓=% %  and ( )Apri X X ++=% %                               (13) 

( )Apri X%  and ( )Apri X%  are referred to as the lower and upper approximations of 

X% , respectively. And the operators : U UL L↑↓ →  and : U UL L++ → are referred to 
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as the i-model lower and upper approximation operators, respectively. The pair 

( ( ), ( ))Apri X Apri X% % is referred to as a generalized i-model rough fuzzy set. 

Theorem 18. Let ( , , )U A I%  be an involutive L-fuzzy formal context. Then for 

any , UX Y L∈% % , the i-model lower and upper approximation operators satisfy the fol-
lowing properties: 

(FL1) ( ) ( ( ))c cApri X Apri X=% % ; 

(FU1) ( ) ( ( ))c cApri X Apri X=% % ; 

(FL2) ( ) ( )Apri Apri∅ = ∅ = ∅ ; 

(FU2) ( ) ( )Apri U Apri U U= = ; 

(FL3) ( ) ( ) ( )Apri X Y Apri X Apri Y∩ ⊆ ∩% % % % ; 

(FU3) ( ) ( ) ( )Apri X Y Apri X Apri Y∪ ⊇ ∪% % % % ; 

(FL4) ( ) ( )X Y Apri X Apri Y⊆ ⇒ ⊆% % % % ; 

(FU4) ( ) ( )X Y Apri X Apri Y⊆ ⇒ ⊆% % % % ; 

(FL5) ( ) ( ) ( )Apri X Y Apri X Apri Y∪ ⊇ ∪% % % % ; 

(FU5) ( ) ( ) ( )Apri X Y Apri X Apri Y∩ ⊆ ∩% % % % ; 

(FL6) ( )Apri X X⊆% % ; 

(FU6) ( )X Apri X⊆% % ; 

(FL7) ( ( )) ( )Apri Apri X Apri X=% % ; 

(FU7) ( ( )) ( )Apri Apri X Apri X=% % . 

Proof. (FL1) and (FU1) show that the approximation operators Apri  and Apri  are 

dual to each other. Then we only need to prove (FLi) or (FUi), by the duality we can 
easily get (FUi) or (FLi) ( 1, , 7)i = L . 

For any UX L∈%  and x U∈ , 

( ( )) ( ) (( ) ( ))

( ( ( ) ( , )) ( , ))

( ( ( ) ( , )) ( , ))

( ( ( ) ( , )) ( , ))

( )

c c c c

cc c c c c

a A y U

c c

a A y U

a A y U

Apri X x X x

X y I y a I x a

X y I y a I x a

X y I y a I x a

X x

↑↓

∈ ∈

∈ ∈

∈ ∈

++

=

= ∨ ∨ ⊗ ⊗

= ∨ ∧ → ⊗

= ∧ ∧ → →

=

% %

% % %

% % %

% % %

%
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Thus, (FU1) holds.  (FL2) immediately follows by Definition 10. 

According to ( )X Y X Y+ + +∪ = ∩% % % % , X Y X+ + +∩ ⊆% % %   and X Y Y+ + +∩ ⊆% % % , we 

have 

( )X X Y++ + + +⊆ ∩% % % and ( )Y X Y++ + + +⊆ ∩% % % . 
Thus,  

( ) ( ) ( ) ( )Apri X Apri Y X Y X Y Apri X Y++ ++ + + +∪ = ∪ ⊆ ∩ = ∪% % % % % % % % , 

from which we can get (FU3). 

(FL4) follows immediately from 1 2 2 1X X X X↑ ↑⊆ ⇒ ⊆% % % %  and 

1 2 2B B B B↓ ↓⊆ ⇒ ⊆% % % % . 

Since ( )X Y X Y++ ++ + + +∩ = ∪% % % % , ( )X X Y+ +⊆ ∩% % %  and ( )Y X Y+ +⊆ ∩% % % , we 

have  

( )X X Y++ ++⊇ ∩% % %  and ( )Y X Y++ ++⊇ ∩% % % . 
Therefore,  

( ) ( ) ( ) ( )Apri X Apri Y X Y X Y Apri X Y++ ++ ++∩ = ∩ ⊇ ∩ = ∩% % % % % % % % . 

Thus, (FU5) holds.  

(FL6) follows directly by X X ↑↓⊆% %  and B B↓↑⊆% % .  

Since ( ( )) ( )Apri Apri X X ↑↓ ↑↓=% %  and X X↑↓↑ ↑=% % , we can get (FL7).  

Definition 11. Let ( , , )U A I%  be an involutive L-fuzzy formal context. For 

any UX L∈% , we define the lower and upper approximations of X%  as follows:  

                      ( )Aprii X X ◊= % %  and ( )Apri X X ◊= % %                                    (14) 

Then the operators : U UL L◊ →  and : U UL L◊ → are referred to as the ii-model 

lower and upper approximation operators, respectively. The pair ),
~

(( XAprii  

))
~

(XAprii  is referred to as a generalized ii-model rough fuzzy set. 

Theorem 19. Let ( , , )U A I%  be an involutive L-fuzzy formal context. Then for 

any , UX Y L∈% % , the ii-model lower and upper approximation operators satisfy the fol-
lowing properties: 

(FL’
1) ( ) ( ( ))c cAprii X Aprii X=% % ; 

(FU’
1) ( ) ( ( ))c cAprii X Aprii X=% % ; 

(FL’
2) ( ) ( )Aprii Aprii∅ = ∅ = ∅ ; 

(FU’
2) ( ) ( )Aprii U Aprii U U= = ; 
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(FL’
3) ( ) ( ) ( )Aprii X Y Aprii X Aprii Y∩ ⊆ ∩% % % % ; 

(FU’
3) ( ) ( ) ( )Aprii X Y Aprii X Aprii Y∪ ⊇ ∪% % % % ; 

(FL’
4) ( ) ( )X Y Aprii X Aprii Y⊆ ⇒ ⊆% % % % ; 

(FU’
4) ( ) ( )X Y Aprii X Aprii Y⊆ ⇒ ⊆% % % % ; 

(FL’
5) ( ) ( ) ( )Aprii X Y Aprii X Aprii Y∪ ⊇ ∪% % % % ; 

(FU’
5) ( ) ( ) ( )Aprii X Y Aprii X Aprii Y∩ ⊆ ∩% % % % ; 

(FL’
6) ( )Aprii X X⊆% % ; 

(FU’
6) ( )X Aprii X⊆% % ; 

(FL’
7) ( ( )) ( )Aprii Aprii X Aprii X=% % ; 

(FU’
7) ( ( )) ( )Aprii Aprii X Aprii X=% % . 

Proof. We still prove (FL’
i) or (FU’

i), by the duality we can easily get (FU’
i) or (FL’

i) 
( 1, , 7)i = L .  

For any UX L∈% , 

( )) (( ) ) ((( ) ) )

( ) ( ) ( )

( c c c c c c c c

c c c c c c

Aprii X X X

X X X X Aprii X

◊

◊

= =

= = = = =

  

    

% % %

% % % % %
 

Thus, (FU’
1) holds.  

For any x U∈ , 

( )( ) ( )

( ( , ) ( ))

( ( , ) ( ( ( ) ( , ))))

( ( , ) 0)

0.

a A

a A y U

a A

Aprii x x

I x a a

I x a y I y a

I x a

◊

◊

∈

∈ ∈

∈

∅ = ∅

= ∧ → ∅

= ∧ → ∨ ∅ ⊗

= ∧ →

=



%

% %

%

 

By X X X◊ ◊⊆ ⊆ % % %  we can get that ( )Aprii ∅ = ∅ . 

For any , UX Y L∈% % , according to 

( ) ( )X Y X Y◊ ◊∩ = ∩  % % % % , X Y X∩ ⊆  % % % and X Y Y∩ ⊆  % % % , 

we have 

( )X Y X◊ ◊∩ ⊆  % % % and ( )X Y Y◊ ◊∩ ⊆  % % % , 

from which we can get (FL’
3). 
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(FL’
4) follows immediately by 1 2 1 2 1 2,X X X X X X◊ ◊⊆ ⇒ ⊆ ⊆ % % % % % % . 

By ( )X X Y⊆ ∪ % % % , ( )Y X Y⊆ ∪ % % % , ( )X X Y◊ ◊⊆ ∪ % % %  and 

( )Y X Y◊ ◊⊆ ∪ % % %  we can get (FL’
5).  

(FL’
6) follows directly by X X X◊ ◊⊆ ⊆ % % % .  

Since ( ( )) ( )Aprii Aprii X X ◊ ◊=  % %  and X X◊ = % % , we can get (FL’
7).  

The approach of rough set approximation in concept analysis gives a way for 
studying concept lattice via rough set. 

8   Conclusions 

Since FCA was introduced by Wille in 1982, many researches studied it from various 
points and extended it to more complex situations such as a L-fuzzy formal context 
which is appropriated to the real world. In this paper, a concept granular computing 
system is established based on the study of concept lattice and L-fuzzy concept lattice. 
Relationships between this system and concept lattice, variable threshold concept lat-
tice and fuzzy concept lattice and properties of the system are discussed. In order to 
reflect different relations between a set of objects and a set of attributes, sufficiency 
information granules and necessity information granules are defined. Properties of 
them are then studied. Later, iterative algorithms for constructing concepts for any 
extent element or intent element are introduced, and the optimization of the iterative 
algorithms are investigated. Finally, set approximations in FCA are studied, which 
shows a way to study FCA by using the theory of rough set. 

Learning and application for concepts is the key question in the field of artificial 
intelligence. In order to process information via computers, a kind of mathematical 
model needs to be built. This paper is a try to build concept granular computing system 
by introducing an algebra structure. It has more benefits for further studies, such as 
concept generalization and specialization, sufficiency and necessity concept, more 
generalized concept and more special concept. And using this framework, a researcher 
can conclude some axiomic characterizations from various kinds of concept systems. 
Therefore, this model may supply an important tool for the further study of the forma-
tion and learning of concepts. 
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