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Abstract. This chapter gives a concise overview of the foundations of a perceptual near set
approach to the discovery of affinities between perceptual objects and perceptual granules that
provide a basis for perceptual systems useful in science and engineering. A perceptual object
is something perceptible to the senses or knowable by the mind. Perceptual objects that have
the same appearance are considered to be perceptually near each other, i.e., perceived objects
that have perceived affinities or, at least, similar descriptions. A perceptual granule is a set of
perceptual objects originating from observations of the objects in the physical world. Near set
theory provides a basis for observation, comparison and classification of perceptual granules. By
considering nearness relations in the context of a perceptual system, it is possible to gauge affini-
ties (nearness) perceptual objects. Two kinds of indiscernibility relations and a tolerance relation
make it possible to define various nearness relations. Examples of near images as perceptual sys-
tems are presented. The main contribution of this chapter is the introduction of a formal basis for
discovering affinities between perceptual information granules.

Keywords: Affinities, near sets, perceptual granule, tolerance relations.

1 Introduction

The basis for perceptual systems hearkens back to the original notion of a determinis-
tic information system introduced by Zdzisław Pawlak [20]. A perceptual system is a
real-valued, total, deterministic information system. A perceptual object is something
perceptible to the senses or knowable by the mind. Examples of perceptual objects in-
clude observable organism behaviour, growth rates, soil erosion, events containing the
outcomes of experiments such as energizing a network, testing digital camera functions,
microscope images, MRI scans, and the results of searches for relevant web pages.
Granulation can be viewed as a human way of achieving data compression and it plays
a key role in implementing the divide-and-conquer strategy in human problem-solving.
A comprehensive study of granular computing can be found in [1]. A perceptual granule
is a set of perceptual objects originating from observations of the objects in the physi-
cal world. Formally, a perceptual granule is a finite, non-empty set containing sample
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perceptual objects with common descriptions and a set probe functions representing
perceptual object features.

Another means of discovering perceptual granules was suggested by Charles Darwin,
who called attention to affinities that one can observe between different members of
the same species. The proposed approach to discovering affinities between perceptual
granules is analogous to what Charles Darwin did during the voyage of the H.M.S.
Beagle during the 1830s, starting in 1831 and ending in 1836. That is, Darwin kept
adding to his collection of specimens and eventually, in some cases, found affinities
between a set of specimens of interest and his expanding set of specimens found during
the voyage of the Beagle [3].

Near set theory provides a basis for observation, comparison and measuring affinities
of perceptual granules. Near sets have a human-centric character. Sensed physical char-
acteristics of perceptual objects are identified with object features. It is our mind that
identifies relationships between object feature values to form perceptions of sensed ob-
jects [7]. Human perceptions can be quantified through the use of near sets by providing
a framework for comparing objects based on object descriptions. Objects that have the
same appearance (i.e., objects with matching descriptions) are considered perceptually
near each other. Sets are considered near each other when they have “things” (per-
ceived objects) in common. Specifically, near sets facilitate measurement of similarities
between perceptual objects based on feature values (obtained by probe functions) that
describe the objects. This approach is similar to the way humans perceive objects (see,
e.g., [4]) and as such facilitates pattern classification systems.

Near sets originally grew out of a study of images [5, 28, 30, 33] either by consid-
ering single images containing near sub images or segmented images containing per-
ceptually near pixel windows. Two kinds of indiscernibility relations and a tolerance
relation make it possible to define various nearness relations. A weak tolerance relation
is also defined in this chapter. This tolerance relation is very important in discovering
near sets, since it defines tolerance classes relative to a threshold ε , rather than require
strict equality of probe function values in the case of the indiscernibility relations. The
underlying assumption made here is that human perception relies on a limited view of
perceived objects to discover affinities between samples. For this reason, the discov-
ery of near objects begins with the perception of one or more matching characteristics,
not a complete set of matching characteristics. Finding a multitude of matches between
perceptual objects is not considered in arriving at the discovery threshold in detecting
affinities between objects, i.e., in discovering near sets. This approach is in keeping with
the original view of tolerance spaces as models for human vision [37].

The Pal entropy measure defined in [12] provides a useful basis for probe functions
used in the search for perceptual granules that are, in some sense, near each other.
Other forms of entropy introduced by Sankar Pal et al. can be found in [9, 13, 14, 15,
16, 17, 18]. It has been shown that perceptual near sets are a generalization of rough
sets introduced by Zdzisław Pawlak during the early 1980s. That is, every rough set is
a near set but not every near set is a rough set. In addition, it can be shown that fuzzy
sets with non-empty cores are near sets. The connections between these three forms of
sets are briefly discussed in this chapter. By way of an illustration, affinities between
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microscope images (as elements in perceptual systems) of various leaves of trees are
briefly explored.

This chapter is organized as follows. Section 2 presents the basis for perceptual sys-
tems. Indiscernibility relations and a tolerance relation are introduced in Section 3.
Three basic nearness relations are presented and illustrated in Section 3 accompanied
by an illustration of near images in Section 4.2. Examples of rough near sets and fuzzy
near sets are presented in Sections 5 and 6, respectively.

2 Perceptual Systems: An Overview

This section briefly presents the basis for perceptual systems that hearkens back to
the original notion of a deterministic information system introduced by Zdzisław
Pawlak [20] and elaborated in [10, 11].

2.1 Perceptual Object Descriptions

Perceptual objects are known by their descriptions. An object description is defined by
means of a tuple of function values φ(x) associated with an object x ∈ X (see Table 1).
The important thing to notice is the choice of functions φi ∈B used to describe an object
of interest. Assume that B ⊆ F (see Table 1) is a given set of functions representing
features of sample objects X ⊆ O and F is finite. Let φi ∈ B, where φi : O −→ R.
In combination, the functions representing object features provide a basis for an object
description φ : O−→R

l , a vector containing measurements (returned values) associated
with each functional value φi (x) for x ∈ X , where |φ |= l, i.e. the description length is l.

Object Description: φ(x) = (φ1(x),φ2(x), . . . ,φi(x), . . . ,φl(x)).

The intuition underlying a description φ(x) is a recording of measurements from sen-
sors, where each sensor is modeled by a function φi. Notice that all sensor values belong
to the set of reals. That is, the perception of an object (i.e., in effect, our knowledge about
an object) depends on information gathered by our senses. The proposed approach to
perception is feature-based and is similar to the one discussed in the introduction in [2].

Table 1. Description Symbols

Symbol Interpretation

R Set of real numbers,
O Set of perceptual objects,
X X ⊆ O, set of sample objects,
x x ∈ O, sample object,
F A set of functions representing object features,
B B ⊆ F,
φ φ : O → R

l , object description,
l l is a description length,
i i ≤ l,

φi φi ∈ B, where φi : O −→ R, probe function,
φ(x) φ(x) = (φ1(x), . . . ,φi(x), . . . ,φL(x)), description,
〈X ,F〉 φ(x1), . . . ,φ(x|X |), i.e., perceptual information system.
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In this view, our senses are likened to probe functions, i.e., mappings of sensations to
values assimilated by the mind.

Let X ,Y ⊆ O denote sets of perceptual objects. Sets X ,Y ⊆ O are considered near
each other if the sets contain perceptual objects with at least partial matching descrip-
tions. A perceptual object x∈O is something presented to the senses or knowable by the
mind [8]. In keeping with the approach to pattern recognition suggested by Pavel [19],
the features of an object such as contour, colour, shape, texture, bilateral symmetry are
represented by probe functions. A probe function can be thought of as a model for a
sensor. A probe makes it possible to determine if two objects are associated with the
same pattern without necessarily specifying which pattern (classification). A detailed
explanation about probe functions vs. attributes in the classification of objects is given
in [26].

2.2 Perceptual Systems: Specialized Deterministic Systems

For representing results of a perception, the notion of a perceptual system is briefly
introduced in this section. In general, an information system is a triple S = 〈Ob,At,
{Val f} f∈At〉 where Ob is a set of objects, At is a set of functions representing ei-
ther object features or object attributes, and each Val f is a value domain of a func-
tion f ∈ At, where f : Ob −→ P(Val f ), (P(Val f ) is a power set of Val f ) (see,
e.g., citePawlak1983). If f (x) �= /0 for all x ∈ Ob and f ∈ At, then S is total. If
card( f (x)) = 1 for every x ∈ Ob and f ∈ At, then S is deterministic. Otherwise S is
non-deterministic. In the case, when f (x) = {v}, {v} is identified with v. An informa-
tion system S is real valued iff Val f = R for every f ∈ At. Very often a more concise
notation is used: 〈Ob,At〉, especially when value domains are understood, as in the case
of real valued information systems. Since we focus on sensed objects we consider each
f ∈ At to be a probe functions. Two examples of perceptual systems are given in Table 2
(see 3.1 for a discussion of the examples).

Table 2. Sample perceptual information systems

Sys. 1 Sys. 2
X φ1 φ2 φ3 φ4 Y φ1 φ2 φ3 φ4

x1 0 1 0.1 0.75 y1 0 2 0.2 0.01
x2 0 1 0.1 0.75 y2 1 1 0.25 0.01
x3 1 2 0.05 0.1 y3 1 1 0.25 0.01
x4 1 3 0.054 0.1 y4 1 3 0.5 0.55
x5 0 1 0.03 0.75 y5 1 4 0.6 0.75
x6 0 2 0.02 0.75 y6 1 4 0.6 0.75
x7 1 2 0.01 0.9 y7 0 2 0.4 0.2
x8 1 3 0.01 0.1 y8 0 3 0.5 0.6
x9 0 1 0.5 0.1 y9 0 3 0.5 0.6
x10 1 1 0.5 0.25 y10 1 2 0.7 0.4

y11 1 4 0.6 0.8
y12 1 4 0.7 0.9
y13 1 1 0.25 0.01
y14 1 4 0.6 0.75
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Definition 1. Perceptual System
A perceptual system 〈O,F〉 is a real valued total deterministic information system where
O is a non-empty set of perceptual objects, while F a countable set of probe functions.

The notion of a perceptual system admits a wide variety of different interpretations
that result from the selection of sample perceptual objects contained in a particular
sample space O. Perceptual objects are known by their descriptions. For simplicity, we
consider only small sets of probe functions in this chapter. The question of countable
(denumerable) sets of probe functions is not within scope of this paper.

2.3 Sample Perceptual System

By way of an illustration, let 〈P,φ〉 denote a perceptual system where P is a set of
microscope images and φ is a probe function representing luminance contrast1, respec-
tively. A sample Shubert choke cherry leaf and Native Pin choke cherry leaf are shown
in Figures 1.2 and 1.3. The National Optical DC3-163 microscope in Fig. 1.1 was used
to produce the magnified leaf-section images shown in Figures 1.4 and 1.5 with a lens
that magnifies the size of an object by a factor of 40. Intuitively, if we compare colour,
luminance contrast or sub image shapes, the microscope leaf images are similar. By

1.1: DC3-163 Scope 1.2: Shubert CC leaf 1.3: Pin CC leaf

1.4: Shubert CC slide 1.5: Pin CC slide

Fig. 1. Sample Percepts

1 In digital images, luminance contrast can be controlled by converting irradiance (amount of
light per unit area) into a grey value g using a function g(E) = Eγ , where E denotes irradiance
level and luminance varies non-linearly with γ typically having a value of 0.4 [6].
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considering nearness relations in the context of a perceptual system, it is possible to
classify sets of perceptual objects. A formal basis for the discovery of near sets is the
focus of the remaining sections of this chapter.

3 Relations, Partitions and Classes

The basic idea in the near set approach to object recognition is to compare object de-
scriptions. Sample perceptual objects x,y ∈ O,x �= y are near each other if, and only if x
and y have similar descriptions. Similarly, sets X ,Y are perceptually near each other in
the case where there is at least one pair of objects x ∈ X ,y ∈Y that have similar descrip-
tions. In this section, two kinds of indiscernibility relations and a tolerance relation are
briefly introduced. These relations make it possible to define various nearness relations
and make it possible to provide a formal foundation for near sets.

3.1 Indiscernibility and Tolerance Relations

Recall that each φ defines the description of an object (see Table 1). To establish a near-
ness relation, we first consider the traditional indiscernibility relation. Let B ⊆F denote
a set of functions representing perceptual object features. The indiscernibility relation
∼B introduced by Zdzisław Pawlak [20] is distinguished from weak indiscernibility ��
introduced introduced by Ewa Orłowska [10]. In keeping with the original indiscerni-
bility relation symbol ∼F [20], the symbol �� is used to denote weak indiscernibility
instead of the notation wind [10].

Definition 2. Indiscernibility Relation
Let 〈O,F〉 be a perceptual system. For every B ⊆ F the indiscernibility relation ∼B is
defined as follows:

∼B= {(x,y) ∈ O×O | ∀φi ∈ B � φi(x) = φi(y)} .

If B = {φ} for some φ ∈ F, instead of ∼{φ} we write ∼φ .

Example 1. Sample Partitions
Let 〈O1,F1〉 denote perceptual system Sys. 1 with O1={x1, ... ,x9}, F1={φ1,φ2,φ3,φ4},
where the values of probe functions from F1 are given in the lefthand side of table 2.
Similarly, let 〈O2,F2〉 denote perceptual system Sys. 2 with O2 = {y1, ... ,x14},
F2 = {φ1,φ2,φ3,φ4}, where the values of the probe functions from F1 are given in the
righthand side of table 2. The perceptual systems 〈O1,F1〉, 〈O2,F2〉 have partitions (1)
and (2-1.3) of the space of percepts defined by relations ∼F1 and ∼F2 .

O1/∼F1
= {{x1,x2},{x3},{x4},{x5},{x6},{x7},{a8},{x9},{x10}}, (1)

O2/∼F2
= {{y1},{y2,y3,y13},{y4},{y5,y6},{y7},{y8,y9},{y10}, (2)

{y11},{y12},{y14}}. (3)
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If we consider only probe function φ3 relative to O1, then we obtain, e.g., several
equivalence classes such as (4), each containing a pair of objects.

x1/∼φ3
= {x1,x2}, (4)

x7/∼φ3
= {x7,x8}, (5)

x9/∼φ3
= {x9,x10}. (6)

Again, for example, if we probe O2 with φ3, we obtain, e.g., a number of multi-object
classes such as the one in (7).

y2/∼φ3
= {y2,y3,y13}, (7)

y4/∼φ3
= {y4,y8,y9}, (8)

y5/∼φ3
= {y5,y6,y11,y14}, (9)

y10/∼φ3
= {y10,y12}. (10)

Definition 3. Weak Indiscernibility Relation
Let 〈O,F〉 be a perceptual system. For every B ⊆ F the weak indiscernibility relation
�B is defined as follows:

�B= {(x,y) ∈ O×O | ∃φi ∈ B � φi(x) = φi(y)} .

If B = {φ} for some φ ∈ F, instead of �{φ} we write �φ .

Example 2. Weak Indiscernibility Partitions
Let 〈O1,F1〉 denote perceptual system Sys. 1 with O1={x1, ... ,x9}, F1={φ1,φ2,φ3,φ4},
where the values of probe functions from F1 are given in the lefthand side of table 2.
Similarly, let 〈O2,F〉 denote perceptual system Sys. 2 with O2 = {y1, ... ,y14}, F =
{φ1,φ2,φ3,φ4}, where the values of the probe functions from F are given in the right-
hand side of table 2. Let X ⊂O1,X = {x1,x9,x10} and Y ⊂O2,Y = {y1,y8,y10,y11,y12}.
Consider partitions X/�φ3

and Y /�φ3
given in (11) and (12), respectively.

X/�φ3
= {{x1} ,{x9,x10}} , (11)

Y /�φ3
= {{y1} ,{y8} ,{y10} ,{y11} ,{y12}} , (12)

Remark 1. Notice that the class {x1} ∈ X/�φ3
contains only a single object, since there

is no other object in x ∈ X such that φ3(x1) = φ3(x). Similarly, each of the classes in
Y /�φ3

contains only a single object.

Definition 4. Weak Tolerance Relation
Let 〈O,F〉 be a perceptual system and let ε ∈ ℜ (reals). For every B ⊆ F the weak
tolerance relation ∼

B,ε is defined as follows:

∼
B,ε = {(x,y) ∈ O×O | ∃φi ∈ B � |φi(x)−φi(y)| ≤ ε} .
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That is, in general, the relation ∼
B,ε is reflexive and symmetric but not transitive. This

relation is very important in discovering near sets, since it defines tolerance classes
relative to a threshold ε , rather than require strict equality of probe function values in
the case of the indiscernibility relations ∼B and �B (see, e.g., [30]).

Remark 2. Special Case
Notice that Def. 4 represents a special case. That is, in general, the sets X and Y repre-
sent sample sets of observations from distinct perceptual systems. In effect, it is possible
to state a Proposition to this effect.

Definition 5. Weak Tolerance Relation Between Sets of Perceptual Objects
Let P1 = 〈O1,F〉 denote perceptual system P1. Similarly, let P2 = 〈O2,F〉 denote a
second, distinct perceptual system. Also, let ε ∈ ℜ. P1 has a weak tolerance relation to
P2 if, and only if O1∼

F,ε O2.

Definition 6. Weak Tolerance Relation on Perceptual Systems
Let Sys1 = 〈O1,F〉 denote perceptual system Sys1. Similarly, let Sys2 = 〈O2,F〉 denote
a second, distinct perceptual system with the same set of features F. Let B ⊆ F and
choose ε . Then

Sys1∼
B,ε Sys1 ⇐⇒ O1∼B,ε O2.

Example 3. Weak Tolerance
Let 〈O1,F〉 denote perceptual system Sys. 1 with O1 = {x1, ... ,x9}, F = {φ1,φ2,φ3,φ4},
where the values of probe functions from F are given in the lefthand side of table 2.
Similarly, let 〈O2,F〉 denote perceptual system Sys. 2 with O2 = {y1, ... ,y14}, F =
{φ1,φ2,φ3,φ4}, where the values of the probe functions from F are given in the
righthand side of table 2. Let ε = 0.1 for both perceptual systems. For example,
let φ3 ∈ F1. The perceptual system 〈O1,{φ3}〉 has tolerance classes (13), (14), (15)
defined by relation �φ3,0.1

.

x1/�φ3,0.1
= {x1,x2,x5,x6,x7,x8}, (13)

x3/�φ3,0.1
= {x3,x4}, (14)

x9/�φ3,0.1
= {x9,x10}. (15)

For example, in x3/�φ3,0.1
, we have

|φ3(x3)−φ3(x4)| = |0.05−0.054| ≤ 0.1

Similarly, the perceptual system 〈O2,{φ3}〉 has tolerance classes defined by relation
�φ3,0.1

: (16), (17), (18), (19) .

y1/�φ3,0.1
= {y1,y2,y3,y13}, (16)

y4/�φ3,0.1
= {y4,y5,y6,y8,y9,y11,y14}, (17)

y7/�φ3,0.1
= {y7,y4,y8,y9}, (18)

y10/�φ3,0.1
= {y5,y6,y10,y11,y12,y14}, (19)
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For example, in y7/�φ3,0.1
, we have

|φ3(y7)−φ3(y4)| = |0.4−0.5| ≤ 0.1,

|φ3(y7)−φ3(y8)| = |0.4−0.5| ≤ 0.1,

|φ3(y7)−φ3(y9)| = |0.4−0.5| ≤ 0.1,

|φ3(y8)−φ3(y9)| = |0.5−0.5| ≤ 0.1

4 Nearness Relations

Three basic nearness relations are briefly presented and illustrated in this section.

Definition 7. Nearness Relation [34]
Let 〈O,F〉 be a perceptual system and let X ,Y ⊆ O. The set X is perceptually near to the
set Y (X ��F Y ), if and only if there are x ∈ X and y ∈ Y such that x ∼F y (see Table 3).

Table 3. Relation Symbols

Symbol Interpretation

B see Table 1,
ε ε ∈ [0,1],

∼B {(x,y) | f (x) = f (y) ∀ f ∈ B}, indiscernibility relation [20],
�B weak indiscernibility relation [10],
∼

B,ε weak tolerance relation,
x/∼B

x/∼B
= {y ∈ X | y ∼B x}, elementary set (class),

O/∼B
O/∼B

= {x/∼B
| x ∈ O}, quotient set,

�� nearness relation symbol,
�� weak nearness relation symbol,
�� weak tolerance nearness relation symbol.

Example 4. Consider the perceptual systems 〈O1,F〉, 〈O2,F〉 given in Table 2. From
Example 2, we obtain

B = {φ3}, where φ3 ∈ F,

Xnew = x9/∼φ3
, from Example 2,

= {x9,x10},
Ynew = y8/∼φ3

= {y4,y8,y9},
Xnew ��φ3 Ynew, since

φ3(x9) = φ3(y8) = 0.5

Definition 8. Weak Nearness Relation [34]
Let 〈O,F〉 be a perceptual system and let X ,Y ⊆ O. The set X is weakly near to the set
Y within the perceptual system 〈O,F〉 (X ��F Y ) iff there are x ∈ X and y ∈ Y and there
is B ⊆ F such that x �B y. If a perceptual system is understood, then we say shortly
that a set X is weakly near to set Y (see Table 3).
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Example 5. Consider the perceptual systems 〈O1,F〉, 〈O2,F〉 given in Table 2.

B = {φ3}, where φ3 ∈ F,

X = {x1,x2,x7,x8,x9,x10},
Y = {y4,y5,y6,y8,y9,y11},
X ��φ3

Y, since we can find x ∈ X ,y ∈Y where x �φ3 y, e.g.,

φ3(x9) = φ3(y8) = 0.5.

Definition 9. Weak Tolerance Nearness Relation [30]
Let 〈O,F〉 be a perceptual system and let X ,Y ⊆ O,ε ∈ [0,1]. The set X is perceptually
near to the set Y within the perceptual system 〈O,F〉 (X ��

F
Y ) iff there exists x ∈ X ,

y ∈ Y and there is a φ ∈ F,ε ℜ such that x�B,εy (see Table 3). If a perceptual system
is understood, then we say shortly that a set X is perceptually near to a set Y in a weak
tolerance sense of nearness.

Example 6. Sample Weak Tolerance Nearness
Let 〈O1,F〉 denote perceptual system Sys. 1 with O1 = {x1, ... ,x9}, F = {φ1,φ2,φ3,φ4},
where the values of probe functions from F are given in the lefthand side of table
2. Similarly, let 〈O2,F〉 denote perceptual system Sys. 2 with O2 = {y1, ... ,y14},
F = {φ1,φ2,φ3,φ4}, where the values of the probe functions from F are given in the
righthand side of table 2. Now choose ε and arbitrary samples X1 and Y1 so that they
are also weak tolerance near sets.

ε = 0.1,

B = {φ3}, where φ3 ∈ F,

X1 ∈ O1,Y1 ∈ O2,

X1 = {x1,x2,x7,x8,x9,x10},
Y1 = {y4,y5,y6,y8,y9,y11},
X1 ��φ3

Y1, since we can find x ∈ X ,y ∈ Y where x�φ3,ε y, e.g.,

|φ3(x9)−φ3(y8)| = |0.5−0.5|= 0 ≤ 0.1; again, e.g.,

|φ3(x10)−φ3(y11)| = |0.1−0.2|= 0.1

Remark 3. In Example 6, we know that X ��
F

Y , since there exists an x ∈ X ,y ∈ Y
(namely, x9,y8) such that

|φ3(x)−φ3(y)| ≤ ε

We can generalize the result from Example 6 in Prop 1 by extending the idea in Prop. 6.

Proposition 1. Let Sys1 = 〈O1,F〉 denote perceptual system Sys1. Similarly, let Sys2 =
〈O2,F〉 denote a second, distinct perceptual system. Then

Sys1 ��
F

Sys1 ⇐⇒ O1 ��
F

O2.
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4.1 Tolerance Perceptual Near Sets

Object recognition problems, especially in images [5], and the problem of the near-
ness of objects have motivated the introduction of near sets (see, e.g., [28]). Since we
are mainly interested in real-valued probe functions in comparing swarm behaviours,
perceptual near sets are briefly considered in this section based on the weak tolerance
nearness relation [30] ��

F
in Def. 9. Other forms of near sets are introduced in [27, 34].

Definition 10. Tolerance Perceptual Near Sets
Let 〈O,F〉 be a perceptual system and let X ⊆ O. A set X is a tolerance perceptual near
set iff there is Y ⊆ O such that X ��

F
Y. The family of near sets of a perceptual system

〈O,F〉 is denoted by NearF(O).

In effect, tolerance perceptual near sets are those sets that are defined by the nearness
relation ��

F
.

Example 7. Sample Tolerance Perceptual Near Sets
Let 〈O1,F〉 denote perceptual system Sys. 1 with O1 = {x1, ... ,x9}, F = {φ1,φ2,φ3,φ4},
where the values of probe functions from F are given in the lefthand side of table
2. Similarly, let 〈O2,F〉 denote perceptual system Sys. 2 with O2 = {y1, ... ,y14},
F = {φ1,φ2,φ3,φ4}, where the values of the probe functions from F are given in the
righthand side of table 2. Now choose samples X and Y that are also weak tolerance
near sets. Sets X ,Y in Example 6 are near sets, since X ��φ3

Y . Again, for example,
consider the following near sets extracted from Table 2.

ε = 0.3,

B = {φ3},
X1 ∈ O1,Y1 ∈ O2,

X1 = {x1,x2,x5,x6,x7,x8,x9,x10},
Y1 = {y4,y5,y6,y8,y9,y10,y11,y12},
X1 ��φ3

Y1, since we can find x ∈ X1,y ∈ Y1, where

x�φ3,0.3
y, e.g.,x9�φ3,0.3

y10, since |φ3(x9)−φ3(y10)| = |0.5−0.7|= 0.2 ≤ 0.3

The basic idea here is to look for sets of objects containing at least one pair of objects
that satisfy the weak tolerance relation. Consider, for example, sets X2 ∈ O2,Y1 ∈ O2

extracted from Table 2 in (23) and (24).

ε = 0.3 (20)

B = {φ4}, (21)

X2 ∈ O2,Y1 ∈ O2, (22)

X2 = {x1,x2,x5,x6,x7,x8,x9}, (23)

Y2 = {y5,y6,y8,y9,y10,y11,y12,y14}, (24)

X2 ��φ3
Y2, since we can find x ∈ X2,y ∈ Y2, where (25)
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x�φ4,0.3
y, e.g.,

x1�φ4,0.3
y8, since |φ4(x1)−φ4(y8)| = |0.75−0.6|= 0.15 ≤ 0.3; again, e.g.,

x7�φ4,0.3
y11, since |φ4(x7)−φ4(y11)| = |0.9−0.8|= 0.1 ≤ 0.3

4.2 Sample Near Images

By way of an illustration of near images, let 〈Im,H〉 denote a perceptual system where
Im is a set of segmented microscope images and H is a probe function representing
image entropy2, respectively. A sample Shubert choke cherry leaf and Native Pin choke
cherry leaf are shown in Figures 1.2 and 1.3. For small segments of two sample choke
cherry leaves, the National Optical DC3-163 microscope in Fig. 1.1 was used to pro-
duce the magnified images in Figures 2, 3 and 4. For this example, it was found that
γ = 0.4239 worked best to show the contrast between areas of the leaf fragment at
the 10× level of magnification in Fig. 2.1 and Fig. 2.3. Higher values of γ were used
higher levels of magnification (γ = 0.874 for 20× magnification and γ = 0.819 for 40×
magnification).

2.1: Shubert 10× 2.2: Shubert 10×,ε = 0.01

2.3: Pin 10× 2.4: Pin 10×,ε = 0.01

Fig. 2. Sample Segmented 10× Images

Let im1, im2 denote the Shubert choke cherry leaf image in Fig. 2.1 and Native pin
choke cherry leaf in Fig. 2.3, respectively, each shown at magnification 10. The seg-
mentation of these images obtained by separating image areas3 representing tolerance
classes are shown in Fig. 2.2 and Fig. 2.4. Let ε = 0.01 in the definition of the weak

2 Entropy defined in the context of images is explained in [12].
3 Christopher Henry wrote the matlab program used to obtain the image segmentations shown

in this section.
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3.1: Shubert 20× 3.2: Shubert 20×,ε = 0.01

3.3: Pin 20× 3.4: Pin 20×,ε = 0.01

Fig. 3. Sample Segmented 20× Images

tolerance relation (see Def. 4). Let X denote a greyscale image, x ∈ X a sequence of
grey levels in X . In addition, let p(xi) denotes the probability of the ith sequence of grey
levels). For greyscale image X , Pal [12] entropy H(1) is defined by

H(X) =
|X |
∑
i=0

p(xi)e1−p(xi).

Intuitively, H(X) represents the expected value of the gain in information resulting from
the occurrence of different sequences of grey levels in an image. Let x,y denote a pair of
n×n pixel windows in an image, i.e., each pixel window contains n×n pixels (picture
elements). Then all pairs of pixel windows having Pal entropy within ε = 0.01 belong
to the same tolerance class. In other words,

|H(x)−H(y)| ≤ ε.

The tolerance classes represented in a segmented image are each assigned a different
color. For example, the Shubert choke cherry 10× microscopic image in Fig. 2.1 is
dominated by one tolerance class (visualized with tiny rectangles with the colour orange
in Fig. 2.2). It can be observed that a small number of pixels windows in have the same
colour. Notice that the windows in a single tolerance class are scattered throughout the
image in Fig. 2.2.

A Native Pin choke cherry 10× microscopic image is shown in Fig. 2.3. The en-
tropic pixel window values represented by the tiny rectangular regions in Fig. 2.4 are
compared with the information gain (entropic image value) for each of the pixel win-
dows shown in Fig. 2.4. For this pair of sample segmented images, roughly 20% of
the pixel windows in the 10× Pin cherry segmentation have a colour (i.e., informa-
tion gain) that is similar to the colouring of the pixel windows in Fig. 2.2. That is, the
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4.1: Shubert 40× 4.2: Shubert 40×,ε = 0.01

4.3: Pin 40× 4.4: Pin 40×,ε = 0.01

Fig. 4. Sample Segmented 40× Images

degree-of-nearness of this pair of images is approximately 20 percent. From Def. 4, we
can conclude that im1 and im2 are near images relative to the entropic image function
H and for ε = 0.01, i.e.,

im1 ��{H} im2.

Similar results were obtained for 20× and 40× magnification levels for the segmenta-
tions shown in Fig. 3 and Fig. 4.

5 Rough Near Sets

The germ of the idea for near sets first appeared within a poem by Zdzisław Pawlak and
this author in a poem entitled Near To written in 2002 and later published in English
and Polish [21, 31]. In later years, the foundations for near sets grew out of a rough
set approach to classifying images [5, 28, 29, 32]. It is fairly easy to show that every
rough set is also a near set. This section briefly presents some fundamental notions in
rough set theory resulting from the seminal work by Zdisław Pawlak during the early
1980s [20] and elaborated in [22, 23, 24]. An overview of the mathematical foundations
of rough sets is given by Lech Polkowski in [35].

Let 〈O,F〉 denote a perceptual system containing a set of perceptual objects O and a
set of functions F representing features of the objects in O. Further, let O∼B

denote the
set of all classes in the partition of O defined by∼B for B ⊆ F. Recall that x/∼B

denotes
an equivalence class relative x ∈ O. For X ⊆ O,B ⊆ F, a sample perceptual granule X
can be approximated with a B-lower B∗X and B-upper approximation B∗X defined by

B∗X =
⋃

x:[x]B⊆X

[x]B,
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B∗X =
⋃

x:[x]B∩X �= /0

[x]B.

Whenever B∗X is a proper subset of B∗X , i.e., B∗X −B∗X �= /0, the sample X has
been classified imperfectly and X is considered a rough set. Notice, from Def. 7,

B∗X ��B X , and

B∗X ��B X ,

since the classes in an approximation of X contain objects with descriptions that match
the description of at least one object in X . Hence, the pairs B∗X ,X and B∗X ,X are
examples of near sets. In general,

Proposition 2. (Peters [27]) The pairs (B∗X ,X) and (B∗X ,X) are near sets.

Proposition 3. (Peters [27]) Any equivalence class x/∼B
,
∣∣x/∼B

∣∣ > 2 is a near set.

6 Fuzzy Near Sets

Fuzzy sets A1 and A2 shown in Fig. 5 are also near sets inasmuch as each fuzzy set has
a non-empty core. Let X be a problem domain for a fuzzy set A. By definition [25], the
core of a fuzzy set Aμ is a function defined relative to complete and full membership in
the set Aμ prescribed by the membership function μ [36]. Specifically,

core(Aμ) = {x ∈ X | μ(x) = 1} .

The core of Aμ is an example of a probe function that defines the class

x/�core(Aμ )
=

{
y ∈ X | y ∈ core(Aμ)

}
.

It can also be argued that 〈X ,core(Aμ)〉 is a perceptual system. In the case where a
pair of fuzzy sets has non-empty cores, then the fuzzy sets satisfy the condition for the

Fig. 5. Sample Fuzzy Near Sets
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weak nearness relation, i.e., we can find x ∈ X ,y ∈ Y for
(
X ,A1μ1

)
,
(
Y,A2μ2

)
relative

to A1μ1 ,A2μ2 , for membership functions μ1,μ2, where

x ∈ x/�core(A1μ1 )
,

y ∈ y/�core(A2μ2 )
,

μ1(x) = μ2(y) = 1.

Proposition 4. Fuzzy sets with non-empty cores are near sets.

7 Conclusion

The main contribution of this chapter is the introduction of a formal basis for discover-
ing affinities between perceptual granules. This is made possible by the introduction of
various forms of indiscernibility relations that define partitions and tolerance relations
that define coverings of perceptual granules and lead to a number of useful nearness
relations. A weak tolerance nearness relation is also defined in this chapter. This toler-
ance relation is has proven to be quite useful in discovering affinities between percep-
tual granules. The degree of affinity between microscope images as a perceptual system
is measured with a form of entropic image function, has been briefly presented in an
informal way in this chapter. Future work includes the introduction of various probe
functions and nearness useful in image analysis.
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