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Abstract. Analysis of gene interaction networks is crucial for understanding fundamental cellu-
lar processes involving growth, development, hormone secretion and cellular communication. 
A gene interaction network comprises of proteins and genes binding to each other, and acting as 
a complex input-output system for controlling cellular functions. A small set of genes take part 
in a cellular process of interest, while a single gene may be involved in more than one cellular 
process at the same time. Soft computing is a consortium of methodologies that works synergis-
tically and provides flexible information processing capability for handling real life ambiguous 
situations. The tools include fuzzy sets, evolutionary computing, neurocomputing, and their hy-
bridizations. We discuss some existing literature pertaining to the use of soft computing and 
other classical methodologies in the reverse engineering of gene interaction networks. As a case 
study we describe here a soft computing based strategy for biclustering and the use of rank cor-
relation, for extracting rank correlated gene interaction sub-networks from microarray data. Ex-
perimental results on time series gene expression data from Yeast were biologically validated 
based on standard databases and information from literature. 

Keywords: Soft Computing, bioinformatics, multi-objective evolutionary biclustering, tran-
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1   Introduction 

With the current development in microarray technology (gene chips), today research-
ers in Bioinformatics have, at their disposal, expression data of thousand of genes of 
different organisms under various experimental conditions. This had led to complete-
genome expression profiling of several organisms. The latest Affymetrix gene chips 
contain 750,000 unique 25-mer oligonucleotide features constituting more than 
28,000 mouse gene-level probe sets. This DNA microarray technology forms an in-
dispensable tool for exploring transcriptional regulatory networks from the system 
level and is useful when one dwells into the cellular environment to investigate vari-
ous complex interactions [1]. Biological networks connect genes, gene products (in 
the form of protein complexes) or their groups to one another. A network of co-
regulated genes may form gene clusters that can encode proteins, which interact 
amongst themselves and take part in common biological processes. Clustering of gene 
expression profiles have been employed to identify co-expressed groups of genes [2] 
as well as to extract gene interaction/gene regulatory networks [3].  

Sharing of the regulatory mechanism amongst genes, in an organism, is predomi-
nantly responsible for their co-expression. Genes with similar expression profiles are 
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very likely to be regulators of one another or be regulated by some other common 
parent gene [4]. Often, it is noted that during few conditions a small set of genes are 
co-regulated and co-expressed, their behavior being almost independent for rest of the 
conditions. The genes share local rather than global similar patterns in their gene ex-
pression profiles. Generally, group of genes are identified in the form of biclusters us-
ing continuous columns biclustering because biological processes start and terminate 
over a continuous interval of time [5, 6]. The aim of biclustering is to bring out such 
local structure inherent in the gene expression data matrix. It refers to the clustering of 
both rows (genes) and columns (conditions) of a data matrix (gene expression matrix), 
simultaneously, during knowledge discovery about local patterns from microarray 
data [7]. 

The genome, comprising the set of all genes in an organism along with their ex-
pressions values, is considered to be a switching network, with its vertices denoting 
the proteins or molecules and the directed edges representing their various interac-
tions and inter-dependence. Such networks relate genes, gene products or their groups 
(like protein complexes or protein families) to each other. A directed edge (or arc) 
connects one node (or vertex) to another. Consider the graph depicted in Fig. 1. 
Mathematically a network can be expressed as a graph },{ EVG = , where V  

represents the set of N  vertices },...,,{ 21 NVVV  while E  represents the set of 

edges that connect two elements in V . 

 

Fig. 1. A sample gene interaction network with nine nodes and ten edges 

In this chapter we provide an overview on the extraction of gene interaction networks 
followed by a study involving a rank correlation-based multi-objective evolutionary 
technique for the extraction of simple gene interaction sub-networks from microarray 
data. Use of soft computing, with biclustering, is described in this connection. Pre-
processing, involving the discretization of the rank correlation matrix (using quantile 
partitioning) and subsequent elimination of weak correlation links, is employed to re-
tain strongly rank correlated (positive or negative) gene interaction pairs. Experimen-
tal results on Yeast data are validated in terms of a gene ontology (GO) study. The rest 
of the chapter is organized as follows. Section 2 introduces the basics of biological 
networks and gene interaction networks. Section 3 describes some classical reverse 
engineering approaches for generating gene interaction networks using time series 
gene expression data. In Section 4, the existing literature pertaining to the use of soft 
computing in the extraction of gene interaction networks is compiled. As a case study, 
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the use of multi-objective evolutionary biclustering and rank correlation for the ex-
traction of Gene interaction sub-network is described in Section 5. The effectiveness 
of the discussed methodology is also demonstrated therein, using time-series gene ex-
pression data from Yeast. The article is concluded in Section 6. 

2   Biological Networks 

Biological pathways can be conveniently represented as networks and broadly classi-
fied as metabolic pathways, signal transduction pathways and gene interaction net-
works. The repository of information about various biological pathway data is avail-
able in some databases like BioCyc1 [8], EcoCyc [9], What Is There (WIT) system2, 
RegulonDB [10], etc. GO [11] and the KEGG Orthology [12] promote the use of con-
trolled vocabulary to facilitate computational analysis. These databases can be inte-
grated with various computational methods to get an insight into complex biological 
functions. They can help in (i) reconstructing biochemical pathways from the com-
plete genome sequence, and (ii) predicting gene interaction networks. The proper  
understanding of gene interaction networks is essential for the understanding of fun-
damental cellular processes involving growth and decay, development, secretion of 
hormones, cellular communication, etc. During transcription of gene expression spe-
cific groups of genes may be made active by certain signals, which on activation, may 
regulate similar biological processes. The genes may also be regulators of each 
other’s transcription. 

The metabolic pathways facilitate mass generation, energy production, information 
transfer and cell-fate specification, in a cell or micro-organism; they are seamlessly 
integrated through a complex network of cellular constituents and reactions. Such a 
metabolic network consists of nodes, i.e., substrates (genes or proteins), which are in-
terconnected through links, i.e., metabolic reactions in which enzymes provide the 
catalytic scaffolds [13]. 

Signal transduction is the process by which a cell converts one kind of signal or 
stimulus into another by a series of steps, causing functional changes inside the cell. 
The signal may pass from one cell to another (Hormone-Receptor concept), from ex-
tracellular environment to inside the cell (through plasma membrane) or from one 
compartment inside the cell to another compartment (i.e., from cytoplasm to nucleus). 
A signal transduction pathway can be considered as a biological network of bio-
molecules connected by various kinds of interactions (protein-protein interactions, 
protein-ion interactions, etc.) among them. 

Analyzing various types of messenger RNAs (mRNAs) produced by a cell and 
quantifying them, one can determine the gene or set of genes that get transcribed un-
der particular experimental conditions. A cell dynamically responds to both environ-
mental stimuli and its own changing requirements in a highly complicated and tightly 
regulated process. This process helps one to monitor the required increase or decrease 
of the expression levels of particular genes. The control and regulation of gene ex-
pression could be caused by various external factors, occurring at different stages of 

                                                           
1 http://www.biocyc.org/ 
2 http://wit.integratedgenomics.com/ 
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the cellular information flow from DNA, RNA to protein, like in mRNA splicing, 
translational control and/or post-translational control. Nevertheless, the one involving 
the initiation of transcription has been most widely studied in literature [14, 15, 16]. 

A gene regulatory network (GRN) determines which subset of genes is expressed, 
up to what level, and in response to what conditions of the cellular environment. 
While the metabolic networks form the basis for the net accumulation of bio-
molecules in living organisms, the regulatory networks modulate their action – 
thereby leading to physiological and morphological changes. However, one should 
note that any apparent similarity of expression profiles between two genes may not 
always mean that they may regulate each other but may signify (i) indirect co-
regulation by other genes, (ii) direct regulation of one gene by the other, or (iii) a 
mere coincidence involving no causal relationship. An integration of additional bio-
logically relevant knowledge may, therefore, provide constraints on suitable identifi-
cation of groups of co-regulated genes. 

3   Reverse Engineering of Genetic Interaction Networks 

Reconstruction of interactions in gene regulatory networks, from gene expression data, 
is termed reverse engineering. Some of the techniques, typically used for the purpose, 
include the generalized Bayesian networks [17, 18], Boolean networks [19, 20, 21, 22], 
linear and non-linear ordinary differential equations (ODEs) [14, 23, 24]. Boolean 
networks are binary models with genes taking on values one (or zero) to represent ac-
tive (or inactive) states [22]. However these ignore the effect of genes at intermediate 
levels, and result in information loss during discretization. Bayesian networks are 
graph models that estimate complicated multivariate joint probability distributions 
through local probabilities [17]. Reverse engineering with Bayesian learning [18] en-
abled the generation of gene regulatory interactions from simulated gene expression 
data. Dynamic Bayesian networks (DBNs) were subsequently used for inferring the re-
lationship amongst genes from time-series gene expression data [25, 26]. 

Gene regulatory relationships were extracted for cell cycle-regulated genes in 
yeast, with the activation or inhibition between gene pairs being represented as events 
[27]. Matching of corresponding events was followed by a sequence alignment of the 
event strings. Regulatory relationships have also been deduced from the correlation of 
co-expressions, between a DNA-binding transcription regulator and its target gene, by 
using a probabilistic expression model [28]. However, correlation matching alone is 
deemed unsuitable to effectively distinguish between regulators and target genes. It is 
also difficult to discern whether the correlated target is directly or indirectly regulated. 
Hence additional information like protein-DNA binding has been integrated into tran-
scriptional regulatory networks [29] for validating direct regulator-target interaction. 

Co-regulated genes are often functionally, i.e., physically, spatially and/or geneti-
cally associated. In real life, however, the genes may be co-regulated only across a 
subset of all observed experimental conditions. In other words, a small number of 
genes participate in a cellular process of interest while a gene may be simultaneously 
active in more than one cellular process. It is here, where biclustering (or cocluster-
ing) becomes more appropriate than standard clustering, for the purpose of modeling 
regulatory pathways. Here we perform simultaneous clustering of both rows (genes) 
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and columns (conditions) of the gene expression matrix, for knowledge discovery in 
maximal subgroups of local patterns [30, 31]. An algorithm cMonkey has been devel-
oped [32], to detect putatively co-regulated gene groupings by integrating biclustering 
of gene expressions and various functional associations with the de novo detection of 
sequence motifs. 

4   Role of Soft Computing 

In addition to the combinatorial approach, soft computing is gradually opening up 
several possibilities by generating low-cost (computational cost both in terms of space 
and time complexity), low-precision (approximate), good solutions. Soft computing is 
a consortium of methodologies that works synergistically and provides flexible in-
formation processing capability for handling real life ambiguous situations [33]. The 
tools include fuzzy sets, evolutionary computing, neurocomputing, and their hybridi-
zations. Typically, they require little a priori knowledge about the underlying system, 
and the model can be derived directly from the data. Since the work deals with huge 
amounts of incomplete or ambiguous data, (i) the uncertainty handling capacity of 
fuzzy sets, (ii) the learning ability of artificial neural networks (ANNs) to discover 
hidden regularities within the data, and (iii) the searching potential of evolutionary 
strategies (like genetic algorithms) to explore the large pattern space, are typically 
utilized [34]. 

The human mind expresses higher level of perceptions using vague, non-crisp con-
cepts. So for developing really intelligent methods for approximate reasoning about 
similar concepts accessible for intelligent systems, languages need to be developed. 
One way out while searching for solutions to these tasks is the use of Granular Com-
puting. Granular computing [35] (GC) is useful in finding meaningful patterns in data 
by expressing and processing chunks of information (granules). The solutions involv-
ing GC become feasible because they specify non-Boolean or non-crisp specifications 
to a satisfactory degree and can be, more often than not, efficiently constructed than 
those involving detailed, purely numeric solutions. GC may thus be informally de-
fined as a general computing theory for effectively using granules in the form of 
classes, clusters, subsets or groups, etc. and intervals for developing efficient compu-
tational models for complex applications involving huge amount of data, information 
and knowledge [36].  

A problem that we conceive of is generally cast into frameworks, which facilitate 
the observations about clusters of objects with some commonality and eventually lead 
to the effective formulation of the problem and its solution with considerable acuity 
[35]. Such frameworks are ideal for problems involving pattern recognition, feature  
selection and reduction, knowledge discovery and bioinformatics. Identification of 
relevant features of objects contained in information granules help us to formulate hy-
potheses about the significance of the objects, construct new granules and refine the in-
formation, use GC to measure the distance among complex granules, etc. GC brings 
together the existing formalisms of set theory, fuzzy sets, and rough sets under a com-
mon platform by clearly visualizing some fundamental similarities and synergies. 

The modeling of imprecise and qualitative knowledge, as well as the transmission 
and handling of uncertainty at various stages are possible through the use of fuzzy 
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sets. Fuzzy logic is capable of supporting, to a reasonable extent, human type reason-
ing in natural form. Fuzzy Adaptive Resonance Theory (FART) associated matrix 
method has been developed [37] to cluster gene expression profiles of Saccharomyces 
cerevisiae (yeast) responding under oxidative stresses, followed by the extraction of 
genetic networks from them. The inferred genetic interactions are quantitatively 
evaluated, and validated in terms of the KEGG metabolic map, BRITE3 protein inter-
action map and related literature. The number of clusters is controlled by the vigilance 
parameter of FART. Fuzzy rules of an activator-repressor model of gene interactions 
were used [38] to transform expression values into qualitative descriptors. A new 
multiscale fuzzy c-means clustering method was designed to model gene interactions 
between regulatory pathways, across different conditions and at different levels of  
detail [39]. 

The adaptivity of artificial neural networks (ANNs) to learn from data-rich envi-
ronments and their robustness to noise make them good candidates for modeling ge-
netic interactions from gene expressions. Some such connectionist models employed 
for extracting genetic regulatory effects include perceptrons [40, 41], self-organizing 
maps [42, 43], and recurrent neural networks (RNNs) [44, 45]. The RNN was used to 
model the dynamics of gene expression in the lambda phage4 regulatory system [44].  

Use of genetic algorithm (GAs) for reconstructing genetic networks has been re-
ported in literature [46, 47]. The mutation and crossover operators help to intelligently 
guide the GA in the complex search space. Typically the GA searches for the most 
likely genetic networks that best fit the data, considering the set of genes to be in-
cluded in the network along with the strength of their interactions. Gene interaction 
networks were inferred from microarray data [48], using GAs for interactive reverse 
engineering. However the combinatorial complexity is expected to be unmanageable 
in real-world problems, involving a large number of genes [49]. 

Hybrid techniques like neuro-fuzzy computing have found applications in the 
realm of genetic networks as well. ANNs and fuzzy logic have been employed to 
form a framework for inferring gene interaction networks. Knowledge-based neural 
networks, which incorporated prior knowledge about gene interactions, were used by 
Kasabov [50] for the reverse engineering of genetic networks. A hybrid methodology 
for this purpose has been developed [51] by combining ANN, fuzzy sets and multi-
objective GAs.  

5   Extraction of Gene Interaction Network: A Multi-objective 
Evolutionary Approach 

Biological networks involving gene pairs, which demonstrate transcription factor 
(TF)-target relationship, is an important research problem. A gene interaction network 
is a complex structure comprising various gene products activating or repressing other 
gene products. A gene that regulates other genes is termed the transcription factor, 

                                                           
3 KEGG BRITE Database is a collection of hierarchical classifications representing knowledge 

on various aspects of biological systems. http://www.genome.jp/kegg/brite.html 
4 Enterobacteria phage λ (lambda phage) is a temperate bacteriophage that infects the bacteria 

Escherichia coli. 
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while the gene being regulated is called its target. The presence of a TF, can alterna-
tively switch “ON” some genes in the network while others remain “OFF”, orchestrat-
ing many genes simultaneously. The proper understanding of gene interaction networks 
is essential for the understanding of fundamental cellular processes involving growth 
and decay, development, secretion of hormones, etc. During transcription of gene ex-
pression specific groups of genes may be made active by certain signals, which on acti-
vation may regulate similar biological processes. The genes may also be regulators of 
each other’s transcription. Target genes sharing common TFs demonstrate similar gene 
expression patterns along time [14, 52]. Analysis of similar expression profiles brings 
out several complex relationships between co-regulated gene pairs, including co-
expression, time shifted, and inverted relationships [53].  

We describe a methodology for modeling the relationship between a transcription 
factor and its target’s expression level variation over time in the framework of the 
generated biclusters. The extraction of the relationship between the gene pair is bio-
logically more meaningful and computationally less expensive as a bicluster is a sub-
set of highly correlated genes and conditions. Rank correlation provides a similarity 
measure, which retains the relevant information necessary for computing pairwise 
correlation between gene pairs. The relationship is presented in terms of rules, where 
a TF is connected to its regulated target gene. These rules are subsequently mapped to 
generate parts of the entire regulatory network. It may be noted that intra-pathway 
gene interactions, responsible for a particular biological function and possibly within 
a bicluster, are generally stronger than any inter-pathway interactions. 

The goal in genetic networks is to identify possible direct excitatory and/or inhibi-
tory connections between genes, gene products and proteins, when the time-steps are 
close enough. Otherwise, indirect connections, through a third gene, needs to be es-
tablished. Sometimes additional biological knowledge, such as gene ontology5 and 
transcription factors, is included.  

Most real-world search and optimization problems typically involve multiple ob-
jectives. A solution that is better with respect to one objective requires a compromise 
in other objectives. In problems with more than one conflicting objective there exists 
no single optimum solution. Rather, there exists a set of solutions, which are all opti-
mal involving trade-offs between conflicting objectives. Unlike single-objective op-
timization problems, the multi-objective evolutionary algorithms (MOEA) tries to  
optimize two or more conflicting characteristics represented by fitness functions. 
Modeling this situation with single-objective GA would amount to heuristic determi-
nation of a number of parameters involved in expressing such a scalar-combination-
type fitness function. MOEA, on the other hand, generates a set of Pareto-optimal  
solutions, which simultaneously optimize the conflicting requirements of the multiple 
fitness functions. Among the different multi-objective algorithms, it is observed that 
non-dominated sorting genetic algorithm (NSGA-II) possesses all the features re-
quired for a good MOEA. It has been shown that this can converge to the global 
Pareto front, while simultaneously maintaining the diversity of population. More de-
tails on the characteristics of NSGA-II, like non-domination, crowding distance and 
crowding selection operator can be found in [54].  

                                                           
5 A shared, controlled vocabulary that is being developed to cover all organisms, in terms of 

molecular function, biological process and cellular component. http://www.geneontology.org 
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Biclustering refers to the simultaneous clustering and redundant feature reduction 
involving both attributes and samples. This results in the extraction of biologically 
more meaningful, less sparse partitions from high-dimensional data, and exhibit simi-
lar characteristics. The partitions are known as biclusters. Biclustering has been ap-
plied to gene expressions from cancerous tissues [31], mainly for identifying co-
regulated genes, gene functional annotation, and sample classification. A bicluster can 
be defined as a pair ( )c,g , where { }m,...,1g ⊆  represents a subset of genes and 

{ }n,...,1c ⊆  represents a subset of conditions (or time points). The optimization task 

[30] involves finding the maximum-sized bicluster not exceeding a certain homogene-
ity constraint mentioned below. The size (or volume) f(g, c) of a bicluster is defined 
as the number of cells in the gene expression matrix E  (with values ije  ) that are 

covered by it. The homogeneity ( )c,gG  is expressed as a mean squared residue score. 

More details on the biclustering scheme can be obtained in [54]. 
The Multi-objective GA (NSGA II), in association with the local search procedure 

discussed in [54], was used for the generation of the set of biclusters. The algorithm 
followed is discussed in details in [54]. The maximal set of genes and conditions rep-
resenting size were generated keeping the “homogeneity” criteria of the biclusters  
intact. Since these two characteristics of biclusters are conflicting to each other, multi-
objective optimization was employed to model them. To optimize this conflicting 

pair, the fitness function 1f  (corresponding to size) is always maximized while func-

tion 2f  (reflecting ratio of means square residual error and the threshold) is maxi-

mized as long as the residue is below the threshold, δ .  
Like GC biclustering also contains some condensed information pertaining to cor-

relation/co-regulation among subset(s) of genes. So, this helps in the extraction of 
gene interaction sub-networks, which appear to be more understandable to the human 
end-user. 

5.1   Correlation between Gene Pairs 

In this section we demonstrate the efficacy of a rank correlation-based approach for 
the extraction of gene interaction networks. A small number of genes participate in a 
cellular process of interest, being expressed over few conditions. Co-regulated genes 
are often found to have similar patterns in their gene expression profiles locally, 
rather than globally. The genes share similar sub-profiles, over a few time points, in-
stead of the complete gene expression profiles. Thus, considering the global correla-
tion amongst genes, i.e., computation of correlation amongst genes employing the 
complete gene expression data matrix, would not reveal proper relationship between 
two of them. The Spearman rank correlation provides such a local similarity measure 
between the two time-series curves, since it is shape-based. The expression profile e  
of a gene may be represented over a series of n  time points. Since the genes in a bi-
cluster are co-expressed, the concept of correlation has been used to quantify their 
similarity. Instead of the commonly used similarity measures like the Euclidean  
distance or the Pearson correlation the Spearman rank correlation ( RC ) have been 
employed due to its robustness towards outliers and measurement errors [55, 56]. 
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Moreover, RC  does not assume a Gaussian distribution of points. ( )21,eeRC  be-

tween gene expression profile pair 1e  and 2e  provides a shape-based similarity 

measure between the two time-series curves, sampled at ie1  and ie2  over n  time in-

tervals. This is expressed as 

( ) ( ) ( ) ( )[ ] ,erer
1nn

6
1e,eRC

2

i
i22ei11e221 ∑ −

−
−=  (1) 

where ( )ie er 11  is the rank of ie1 . Here an extended version of the RC has been used 

which takes into account the resolving of ties, i.e., je1  = ie1  for ji ≠ . The RC  

satisfies ( ) 1,1 21 ≤≤− eeRC  for all 1e , 2e . 

The first preprocessing step is to filter correlation coefficients, which contribute 
minimally towards regulation. This is because often an exhaustive search of the pos-
sible interactions between genes is intractable. Next those coefficients are selected 
whose absolute values are above a detection threshold, suggesting greater correlation 
amongst the gene pairs. In this way we focus on a few highly connected genes that 
possibly link the remaining sparsely connected genes. The correlation range 

[ ]minmax , RCRC  is divided into three partitions each, using quantiles [57] so that the 

influence of noise is lessened. Only strong and positive (negative) interactions are se-
lected. Thereafter, a network connecting the various genes is generated. 

5.2   The Algorithm 

The main steps of the procedure are outlined as follows: 

I)    Extraction of biclusters by multi-objective genetic algorithm. 
II)    Determination of pairwise rank correlation between gene pairs. 
III)  Discretization of the correlation matrix for eliminating the weaker interactions. 
IV)  Network generation from connectivity matrix (Section 5.3.1) 
V)     Biological validation (as discussed in Section 5.3.2). 

5.3   Experimental Results 

Data from the budding yeast S.cerevisiae is employed for extracting the gene interac-
tion sub-networks.  

5.3.1   Network Extraction 
Yeast cell-cycle CDC28 data [58] is a collection of 6178 genes (attributes) for 17 
conditions (time points), taken at 10-minute time intervals covering nearly two cycles. 
The synchronization of the yeast cell cultures was done using the so-called CDC28 ar-
rest. The experiments were performed using Affymetrix oligonucleotide array. The 
missing values present in the data set were imputed according to the methodology  
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provided in [59]6. At first pairwise rank correlation coefficients between gene pairs 
are computed by eqn. 1 to generate the network architecture from the extracted bi-
clusters. Quantile partitioning is employed next, to choose the strong positive as well 

as negative correlation links. In this way, the top 
3

1
 of the positive and negative links 

is chosen to be connected in a network. A sample network consisting of three bi-
clusters of sizes 7, 10, and 14, respectively, are shown in Fig. 2. A transcription factor 
is connected to its target gene by an arrow when such a TF-Target pair is found to ex-
ist within any of the biclusters. Gene pairs connected by solid lines depict positive 
correlation, while those connected by dashed lines are negatively correlated. TFs ex-
ternal to the network, but having targets within the network, are connected to their 
corresponding targets by dotted arrows. As an example, the TF YHR084W (encircled 
with solid lines) is a member of the network of 10 genes and has targets in all the 
three networks. An external TF YJL056C (encircled with dotted lines) has targets in 
networks of 7 and 10 genes. The biclusters were biologically validated from gene on-
tology study, based on the statistically significant GO annotation database7. 

5.3.2   Biological Validation 
During the prediction of regulatory networks [60] the genes YHR084W and 
YLR351C were reported to form a TF-Target pair. We also obtained the summary of 
the TF-Target pair YHR084W-YLR351C (Fig. 2) in terms of Molecular Function, 
Biological Process and Cellular Component from the Saccharomyces Genome Data-
base (SGD)8. From our calculations we have also confirmed that an interaction exists 
between the target and its TF. It is reported in the database that the biological process 
involving protein YLR351C is not fully understood as yet and YHR084W has tran-
scription factor activity. It becomes more difficult when one attempts to extract some 
biologically meaningful information involving these two entities. From such scanty 
information our method has been able to identify that there exists a link between a TF 
and its target. From their cellular components we model, as an efficacy of the biclus-
tering, the transcription of YLR351C by YHR084W occurring inside the nucleus, and 
then the regular translation mechanism follows. In likewise manner for the TF-Target 
pair of YPL075W and YJR045C (Fig. 2) reported in [59], we obtained their summary 
from SGD and found YPL075W to be transcriptional activator of genes involved in 
glycolysis while YJR045C has ATPase, enzyme regulator and protein transporter ac-
tivity. Again we were able to predict that YPL075W is involved in the transcription of 
YJR045C and would go into the glycolysis process. 

One can arrive at similar kind of conclusions, for the rest TF-Target pairs, with a 
certain definite degree of confidence. As relevant literature in this area are really very 
sparse a large number negative results is only expected. Our algorithm has not yet de-
tected any false positive or false negative TF-Target pairs, which is consistent with 
the information available either in the literature or in the databases. 
                                                           
6 LSimpute: accurate estimation of missing values in microarray data with least squares methods. 
7 http://db.yeastgenome.org/cgi-bin/GO/goTermFinder 
8 A scientific database of the molecular biology and genetics of the yeast Saccharomyces cere-

visiae - http://db.yeastgenome.org/ 
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6   Conclusions and Discussion 

In this chapter we have described the extraction of gene interaction networks. This 
was followed by a soft-computing approach to reverse engineering. Multi-objective 
evolutionary biclustering selected the co-regulated partitions. Subsequently, rank cor-
related gene pairs were extracted as a part of the gene interaction subnetworks.  

Biologically relevant small biclusters were obtained, using time-series gene ex-
pression data from Yeast. These were validated using the statistically significant GO 
annotation database. The pairwise rank correlation coefficients among gene pairs 
were computed by eqn. 1 followed by the quantile partitioning to select the strong 
positive as well as negative correlation links. The strongly correlated genes were then 
chosen to be connected in a network. The TF-Target gene pairs in the network, shown 
in Fig. 2, were found to exhibit strong correlations. We tried to model the interaction 
among them from information available in the literature/databases viz., SGD. We 
have also analyzed the expression profiles of the regulator and the regulated genes, 
which revealed several complex (time shifted, inverted, and simultaneous, etc.) rela-
tionships between them. The sparse nature of gene regulatory networks was reflected 
well on choosing Spearman rank correlation as the similarity measure. 
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