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Abstract. To classify biomedical data is to find a mapping from patterns to a set of classes 
(e.g., disease states). Patterns are represented by features (e.g., metabolite concentrations) and 
class labels are assigned using a reference test (e.g., an expert’s analysis of “normality”). This 
process often suffers from three significant challenges: voluminous features; pattern paucity; 
and reference test imprecision. Three computational intelligence based techniques, which ex-
ploit the notion of information granulation, are presented to address these challenges. Fuzzy 
quantile encoding replaces a feature with its membership values in a fuzzy set collection de-
scribing the feature’s interquantile range. Class label adjustment compensates for reference test 
imprecision by adjusting design set class labels using a fuzzified similarity measure based on 
robust measures of class location and dispersion. Stochastic feature selection is a strategy where 
instances of classifiers are presented with feature regions sampled from an ad hoc cumulative 
distribution function. These techniques as well as their application to several classification 
problems in the biomedical domain will be discussed. 
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1   Introduction 

Human centric computing has as its main objective the development of computing 
systems that intuitively adjust to the needs of the user in a seamlessly integrated fash-
ion [27]. This paradigm is relevant to a number of information processing fields in-
cluding pervasive and ubiquitous computing, ambient intelligence, sensor networks, 
semantic webs, e-health, e-commerce, wearable hardware, and, specific to our case, 
biomedical informatics. A typical requirement for human centric computing is a “se-
mantic” layer between fine, detailed numerical data and coarser, generalized abstrac-
tions. The semantic layer must perform a translation or transformation from data to 
abstractions in an efficient and effective manner as the data may need to be abstracted 
in different ways depending on the needs and objectives of a possibly diverse group 
of users. In the case of biomedical informatics, for instance, it is necessary to provide 
effective explanatory analysis while simultaneously finding succinct interpretable 
(biomedically meaningful) representations. Of course, the challenge is determining 
the underlying semantic translation that provides the optimal mapping from volumi-
nous data to human manageable, qualitative interpretations. One successful approach 
to deal with this issue is granular computing. 
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Granular computing [26] is an information processing paradigm that deals with 
complex information entities in a coherent and comprehensive fashion. Central to this 
theoretical perspective is the concept of information granules – conceptual entities 
possessing elements of similarity, functional adjacency, or spatial (or temporal) prox-
imity. Information granules are used to describe or interpret phenomena and carry out 
processing at the level that is most suitable for the designer of the system and most 
germane to its potential user. In this sense, one may regard granular computing as an 
important paradigm for the development of human-centric confirmatory (or explora-
tory) biomedical data analysis. As a rich theoretical perspective, granular computing 
subsumes and augments the well established disciplines of interval analysis, fuzzy 
sets, rough sets, and probability theory [24,25,50,51]. 

Granular computing research focuses on the construction of a coherent conceptual 
and methodological framework (and related algorithmic issues): granule quantifica-
tion and discretization; communication mechanisms between environments of differ-
ent information granularity levels; translation formalisms between granules grounded 
in different conceptual environments (e.g., possibility–probability transformations or 
fuzzy/crisp set approximations); granule construction (e.g., via clustering); and analy-
sis/synthesis of granular systems (e.g., granular classifiers). 

There are three types of granulation that are germane to biomedical information 
processing: discretization; conceptual; and clustering. Discretization involves granula-
tion at the level of feature values. This may be achieved by mapping (binning) a range 
of values for a biological feature (for example, the concentration of a metabolite) to an 
ordinal value or through rank ordering of feature values. As it is not feasible to exam-
ine the effects of all different discretization combinations for a particular biomedical 
data analysis problem [18], care must be exercised in designing a heuristic to find near-
optimal (or at least adequate) discretizations. Concept granulation involves the notion 
that different sets of features may give rise to interactions leading to different, possibly, 
conflicting, higher level conceptual formulations. Clustering involves feature aggrega-
tion or transformation to reduce the dimensionality of the original biomedical feature 
space. Many techniques, with varied relative advantages and disadvantages, fall under 
this category of granulation: multidimensional scaling, agglomerative techniques, prin-
cipal component analysis, fuzzy clustering, projection pursuit, independent component 
analysis, factor analysis, and so on [7,26,49]. For biomedical data analysis, it is impor-
tant that granulation techniques do not mask or diminish the information content pre-
sent in the original (biomedically relevant) feature space. 

1.1   Biomedicine and Vagueness 

Imprecision, incompleteness, and uncertainty are intrinsic to the practice of medicine. 
While this art of making decisions with inadequate information is often impervious to 
precise modes of analytical reasoning, it is regularly amenable to approximate ones 
[15], and, as a result, the field has become a fertile and active domain with which to 
exercise granular computing based modes of reasoning. Further, medical decision-
making is paradigmatic of general decision support systems in which principles, pro-
cedures, data, and knowledge are approximate; hence, successful methods applied to 
the medical domain may often be generalized across many application domains. 
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The medical diagnostic process involves an inference of a disease from a set of 
symptoms based on a body of medical knowledge about nosology1 and symptomatol-
ogy2. Unfortunately, vagueness is a hallmark of this process. A disease may manifest 
itself differently from one patient to the next as well as temporally for the same 
patient. Medical diagnosis is confounded by multiple diseases present in a particular 
patient or a specific symptom present in multiple disease states. A patient’s historical 
information may be incomplete, physical examinations may inadvertently ignore 
symptoms, laboratory test results may be imprecise, and the distinction between the 
states of normality and abnormality is not necessarily crisp. Important diagnostic in-
formation acquired from medical instrumentation such as magnetic resonance, infra-
red, or mass spectrometers is often complex and voluminous and their interpretation 
may vary from one expert to the next. Medical knowledge is often couched in neces-
sarily imprecise linguistic terminology. The proliferation of new medical knowledge, 
introduces uncertainty and inconsistencies during its assimilation into the current or-
thodoxy. For instance, the inclusion of new diagnostic procedures after they have 
been successfully assessed against the corresponding external reference test (this cur-
rently accepted diagnostic procedure is often referred to as the “gold standard”), 
which itself may be imprecise. 

1.2   Granular Computing and Computational Intelligence Strategy 

Classifying biomedical data involves finding a mapping (relationship) from patterns 
(e.g., data relating to some type of tissue or biofluid) to a set of classes (e.g., disease 
states). Patterns are represented by features (e.g., concentrations of biological com-
pounds) and class labels are assigned using a reference test (e.g., a medical expert’s 
analysis of tissue being “normal” or “abnormal”). This process often suffers from 
three significant challenges: the number of features in a pattern is high; the number of 
patterns is low; and the reference test may be unreliable. The first two challenges, 
known collectively as the “curse of dimensionality”, cause an inability to find robust, 
general solutions. This is often addressed by reducing, in some fashion, the number of 
features; however, a direct correspondence back to the original features is necessary 
for medical experts to make informed judgments about the mapping’s predictive 
power. While external reference tests may be well-established benchmarks, they are 
seldom perfectly accurate and sometimes improperly applied. Nevertheless, any strat-
egy that compensates for this reference test imprecision must ensure that the mapping 
is correctly validated against the benchmark. In this chapter we present three tech-
niques based upon computational intelligence and the paradigm of granular comput-
ing to deal with the biomedical data analysis challenges described above. 

Fuzzy quantile encoding is a classification preprocessing method that replaces a 
specific feature value for a pattern with its membership values in a collection of fuzzy 
sets describing the interquantile range of all values for that feature within the dataset. 
This method “normalizes” features to the unit interval, diminishes the impact of fea-
ture “outliers”, and improves the overall accuracy and computational performance of 
adaptive classifiers such as supervised feed-forward neural networks. 

                                                           
1 The branch of medical science dealing with the classification of diseases. 
2 The study of symptoms of disease and signs of pathogens for the purpose of diagnosis. 
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Gold standard class label adjustment is a set of mitigation strategies that compen-
sates for possible reference test imprecision by adjusting the design set class labels us-
ing a fuzzified similarity measure based on robust measures of location and dispersion 
of class medoids (robust centroids). These mitigation strategies fall into three catego-
ries: reassignment involves changing the class label of a design subset pattern, if it is 
found to be more “similar” to patterns from another class; surrogation involves using 
a new space of class labels for the design set (for instance, cluster analysis may indi-
cate that patterns in a particular class are distributed in such a way that they are better 
represented by two surrogate class labels); and gradation involves the fuzzy set notion 
of a pattern belonging to all classes to varying degrees (that is, moving from a crisp, 
Boolean class assignment to a fuzzy one). 

Stochastic feature selection is a parallelized classification strategy where many in-
stances of heterogeneous classifiers are presented with (possibly quadratically trans-
formed) feature regions of varying cardinality. Regions are stochastically sampled 
from an ad hoc cumulative distribution function that is iteratively updated based on a 
frequency histogram of features used by prior classifiers whose performance (accu-
racy) exceeds a pre-defined threshold. Fuzzy integration is used to aggregate the best 
classification outcomes. 

The schema presented in Figure 1 indicates the three main classification phases: 
pre-processing, fuzzy quantile encoding and gold standard class label adjustment;  
 

Classification Phase 

Feature Space Pre-processing Phase 

Feature Encoding 

Class Label Adjust-

Design Patterns 

Validation Patterns

Classifier 1 

Classifier 2 

Classifier 3 

Classifier p

...

Post-processing Phase 

Aggregated Mapping 

Classification Outcome
 

Fig. 1. Schema indicating the pre-/post-processing and classification phases 
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classification, stochastic feature selection coupled with a set of p heterogeneous clas-
sifiers; and, post-processing, mapping aggregation (prediction fusion). The figure also 
clearly indicates that only design patterns (those patterns randomly assigned to the 
design subset) are used in these phases to construct the aggregated classification map-
ping. In order to attenuate bias, classification performance (accuracy) is assessed 
using this mapping with only the validation patterns. 

Each of these classification techniques and strategies will be discussed in the sec-
tions that follow. A description of the architecture of the biomedical data analysis 
software, which implements several key aspects of this methodology, will be pro-
vided. Finally, the successful application of this methodology to several classification 
problems in the biomedical domain will be discussed. 

2   Biomedical Data Classification 

The latest biomedical spectroscopic modalities produce information rich but complex 
and voluminous data [23]. For instance, magnetic resonance (MR) spectroscopy, 
which exploits the interaction between an external homogenous magnetic field and a 
nucleus that possesses spin, is a reliable and versatile spectroscopic modality [10]. 
Coupled with robust multivariate discrimination methods, it is especially useful in the 
classification and interpretation of high-dimensional biomedical spectra of biofluids 
and tissues [42]. However, the sample to feature ratio of these data is typically low; 
the feature space dimensionality is O(103–104) while the sample size is O(10–100). 
This “curse of dimensionality” is a serious challenge for the classification of biomedi-
cal spectra: the excess degrees of freedom tend to cause overfitting, which affects the 
reliability of the chosen classifier. 

Advances in pattern recognition, computational intelligence, and granular comput-
ing, contribute ever more sophisticated models upon which to build ever more sophis-
ticated classifiers. Herein lies a major problem: if these models are highly non-linear, 
they may be unstable, if they are iterative, they may not converge, if they are prob-
abilistic, they may be based on underlying statistical assumptions that are often not 
true in real-world scenarios. Preprocessing may address these concerns: data may be 
transformed such that a non-linear model may be replaced by a linear one, the dimen-
sionality of the data may be reduced so that an iterative method may converge or may 
be substituted for an analytic one, or the data may be “normalized”, in some sense, 
such that the underlying statistical assumptions of a probabilistic model are realized. 
Years of investigations in biomedical data analysis have led to this author’s conjec-
ture that the 80/20 rule holds in the development of classification systems: 20% of a 
researcher’s effort should be spent on selecting and tuning a classifier; 80% should be 
spent on a thorough analysis of the data to simplify them, via pre-processing, prior to 
presentation to the classifier of choice. 

Here, we formally introduce some notation used throughout this chapter. Let 
X={(xk,ωk), k=1..N} be a set of N patterns, xk∈ℜn, with respective class labels, ωk∈Ω, 
Ω={1..c} that are randomly assigned to either a design subset, XD, comprising ND pat-
terns, or a validation subset, XV, comprising NV patterns (ND+NV=N). Classification 
involves finding a mapping (function approximation), f:XD→Ω, and then validating 
its effectiveness using XV, f:XV→Ω (if the predicted class label does not match the as-
signed class label then it is considered to be a misclassification). 
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Many classification architectures exist (granular classifiers, supervised artificial 
neural networks, multivariate statistical methods, evolutionary computation, hybrid 
strategies, and so on), with various advantages and disadvantages [7]. However, as 
mentioned above significant effort must be expended in the analysis of appropriate 
pre-processing strategies. For instance, feature selection is a typical preprocessing 
strategy for attenuating the effects of the curse of dimensionality by reducing the size 
of the input (feature) space. Feature selection involves finding a mapping, ƒ:X→X′, 
where X′⊆ℜm (m<<n) is the reduced feature space. Subsequently, classification in-
volves finding a mapping from the reduced feature space to the space of class labels, 
g: X′→Ω. The intent of this strategy is to select those features possessing significant 
discriminatory power. 

One aspect of biomedical data classification that is often glossed over is the reli-
able validation of the accuracy results generated by a classification schema. It is es-
sential that datasets be divided (randomly) into design and validation sets. Design pat-
terns may be used in the construction of a classification system but once this phase is 
complete, performance results must be based on the validation patterns. Given this 
necessary condition, how is the performance of a classification system to be measured 
given a c×c confusion matrix of desired versus actual class labels using the validation 
patterns? The conventional performance measure is the ratio of correctly classified 
patterns to the total number of patterns, PO 

1 ( 1, , )o V iii
i cP N n− == ∑ K                                               (1) 

where nij is the number of class i validation patterns predicted to belong to class j. An 
alternate performance measure is the average class-wise accuracy, PA 

( )1 ( , 1, , )A ii iji j
i j cP c n n− == ∑ ∑ K                                 (2) 

But neither Po nor PA take into account any agreement due to chance [8], PL 

( )2 ( , 1, , )L ij jii j j
i j cP N n n− == ∑ ∑ ∑ K                         (3) 

A more conservative performance measure is the κ score [9], a chance-corrected 
measure of agreement between the desired and actual class assignments 

( ) ( )1o L LP P Pκ = − −                                                 (4) 

If the agreement is due strictly to chance, κ=0. If it is greater than chance κ>0; κ=1 
indicates complete agreement. If the agreement is less than chance then κ<0 (floor 
depends upon the marginal distributions). A useful benchmark for agreement strength 
(confidence) is: poor (κ=0), slight (0.0<κ≤0.2), fair (0.2<κ≤0.4), moderate 
(0.4<κ≤0.6), substantial (0.6<κ≤0.8), and almost perfect (0.8<κ<1.0) [17]. Table 1 
shows the necessity of careful analysis of accuracy. It lists two confusion matrices 
with the same number of patterns per class and the same overall accuracy, PO=0.66. 
Using PA it is clearer that the accuracy is in fact worse in Table 1(ii), PA=0.33 than 
Table 1(i) PA=0.62. However, via κ, it is clear that the apparent accuracy in the second  
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Table 1. Two three-class confusion matrices with the same pattern distributions 

(i)C1 C2 C3 (ii)C1 C2 C3 N=300 

C1 15 10 5  3 24 3 N1=30 

C2 37 163 40  24 192 24 N2=240 

C3 2 8 20  3 24 3 N3=30 

Accuracy PO=0.66 PA=0.62 κ=0.29  PO=0.66 PA=0.33 κ=0.00  

 
confusion matrix is due strictly to chance, κ=0.00 versus κ=0.29. This is further evi-
denced by examining PL (0.52 versus 0.66). 

Here, we briefly present three classifiers (two neural networks and one statistical 
method) that have been used for biomedical data analysis described in the applica-
tions section. Neural networks [1] are self-adaptive, machine learning systems com-
posed of layers of processing elements, which are sets of inputs and weights com-
bined to generate outputs used by an adjacent layer. Supervised networks [38] require 
the desired class labels for each pattern so that they may be compared to the predicted 
label. Based on these comparisons, a learning strategy, used to make incremental 
changes to the weights, minimizes an error criterion. 

The multi-layer perceptron (MLP) [39] is a supervised feed-forward network, which 
has consistently demonstrated its effectiveness as a reliable nonlinear classification 
technique [3]. The transfer function γ (often the logistic function, γ(x)=(1+e–x)–1) is 
sigmoidal and the output of processing element j is xj=γ(∑iwjixi). In general, an MLP 
may be considered a non-linear regression system that performs a gradient descent 
search through the weight space, searching for minima. 

The probabilistic neural network (PNN) [43] uses patterns to construct probability 
density functions (pdf) to estimate the likelihood of a given pattern belonging to a 
class. When the class pdfs are known, a PNN correspond to a Bayesian classifier. 
Since true class pdfs are rarely known, they are usually approximated via a sampling 
histogram and Parzen estimators [22]. This involves the construction of unit area 
Gaussians centred at the values of the features for every design pattern. These Gaus-
sians are summed and scaled to produce a composite curve. As the number of design 
patterns increase, the composite curve asymptotically approaches the true pdf. [How-
ever, it is not possible to determine the number of patterns required to estimate the pdf 
to a specified accuracy.] 

Linear discriminant analysis (LDA) is a classification approach that determines 
linear decision boundaries between c classes while taking into account inter- and in-
tra-class variances [40]. If the error distributions for each class are the same, LDA 
constructs the optimal linear decision boundary between the classes. In real-world 
situations, this optimality is seldom achieved since different classes typically give rise 
to different distributions. LDA is a useful linear classifier; however, when appropriate 
data preprocessing is applied, in particular, dimensionality reduction techniques such 
as stochastic feature selection. LDA allocates a pattern, x, to class i for which the 
probability distribution, pi(x), is greatest. That is, x is allocated to class i, if 
qipi(x)>qjpj(x) (∀j≠i), where q are the prior (or proportional) probabilities. The dis-
criminant function is Li(x)=logqi+mi

TW–1(x–½mi) where mi is the mean for class i and 
W is the covariance matrix. 
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3   Stochastic Feature Selection 

Stochastic feature selection (SFS) is a feature selection/reduction pre-processing 
method that is tightly coupled to the classification phase. SFS may be used with any 
homogeneous or heterogeneous set of classifiers (e.g., LDA, MLP, PNN, or support 
vector machines [47]). Essentially, SFS iteratively presents, in a highly parallelized 
fashion, many feature regions (contiguous subsets of pattern features) to the set of 
classifiers retaining the best set of classifier/region pairs. Figure 2 lists several of the 
key parameters used in SFS, which we will reference in the following detailed de-
scription of SFS. 

After selecting the minimum and maximum number of feature regions and the 
minimum and maximum size (cardinality) for a feature region (cf. fields shown in 
Figure 2, “Min number of regions”, “Max number of regions”, “Min region length”, 
“Max region length”, respectively), the general procedure is: (i) randomly select a 
number of feature regions and, for each region, select a random size (satisfying the 
above constraints); (ii) prune the features not selected in (i) from the training and 
monitoring sets; (iii) use the training set and classifier to produce classification coef-
ficients; (iv) test these candidate coefficients with the monitoring set; (v) repeat steps 
(i)–(iv) until either the accuracy threshold (“Fitness threshold”) or maximum number 
of iterations (“Max number of iterations”) is exceeded; (vi) finally, use the best coef-
ficients found and assess their performance using the validation set. Note that the 
training and monitoring sets are composed of patterns exclusively from the design set. 
The validation patterns are only used in step (vi). 

SFS retains a list of the best classification results (“Number of results to re-
turn/keep”) based on the selected fitness function (“Order by”). The fitness function  
 

 

Fig. 2. Several parameters used for stochastic feature selection 
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may be PO, PA, or κ, which may be applied (“Based on”) exclusively to the training 
set or in conjunction with the monitoring set and internal cross-validation is also used 
(“N-Fold Validation”). Feature regions are normally disjoint but this can be relaxed 
(“Allow region overlap”). Moreover, transformations may be performed on regions 
(“Transform”) such as computing their average feature value, their variance, or other 
statistical moments. 

3.1   Feature Frequency Histogram 

The stochastic nature of this method is normally controlled by the feature frequency 
histogram (see Figure 3). During an SFS run, the performance of each classification 
task is assessed using the selected fitness function. If the fitness exceeds the histo-
gram fitness threshold (cf. Figure 2, “Histogram threshold”), which is set to some 
value less than the fitness threshold stopping criterion, the frequency histogram is in-
cremented at those feature indices corresponding to the regions used by the particular 
classification task. This histogram is then used to generate a cumulative distribution 
function (cdf). Now, when feature regions are selected for a new classification task, 
features are randomly selected using the current cdf. So, rather than each feature hav-
ing an equal likelihood of being selected for a new classification task, those features 
that were used in previous “successful” tasks have a greater likelihood of being cho-
sen. A temperature term, t∈[0,1], provides additional control over this process. If t=0, 
the cdf is used as described but, as t→1, the randomness becomes more uniform 
(when t=1 a strict uniform distribution is used). A useful interactive option is to pause 
SFS, select those regions that have been shown to be most discriminatory, and con-
tinue SFS so that subsequent regions will be selected only from these highly discrimi-
natory features. 

 

Fig. 3. A typical SFS feature frequency histogram 

3.2   Quadratic Combination of Features 

A useful SFS pre-processing option is to augment the original features with a quad-
ratic combination of feature regions. The intention here is that if the original feature 
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space possesses non-linear decision boundaries between classes, the new (quadratic) 
parameter space may possess more “linearized” decision boundaries. For instance, say 
we have a set of three-feature two-class points (patterns), x={x1,x2,x3}∈[0,1]3) 
bounded by the unit hypercube where one class of points, ω1, are those within the unit 
hypersphere (x1

2+x2
2+x3

2<1) and the other class, ω2, are those points outside 
(x1

2+x2
2+x3

2≥1). These patterns are obviously separated by a circular (non-linear) de-
cision boundary. A linear classification system using, for instance, linear discriminant 
analysis, would perform poorly (PO≈0.50) with such a dataset as no linear decision 
boundary (plane) can accurately delineate the two classes of points (patterns). How-
ever, if we create a new three-coordinate feature space by simply squaring the original 
features, the decision boundary (in this new space) would be a plane and a linear clas-
sifier will now perfectly separate the two classes of patterns. 

SFS has three categories of quadratic combinations with which to augment the 
original features (cf. the respective fields shown in Figure 2): (i) using the original 
feature region (“Category 0 Probability”); (ii) squaring the values for the selected fea-
ture region (“Category 1 Probability”); or (iii) using all pair-wise cross-products of 
features from two regions (“Category 2 Probability”). Given the potential combinato-
rial explosion with the third category, an upper limit for the region size may also be 
specified (“Category 2 Max Region Length”). The probabilities of selecting one of 
these quadratic combination categories must sum to 1.0. 

3.3   Parallelized Classification 

SFS takes full advantage of parallel computations using the Scopira Agent Library 
[6], a sophisticated message-passing library similar in functionality to MPI [41]. 
Given a high-performance computing cluster (e.g., a Linux Beowulf cluster) envi-
ronment, classification tasks are distributed to slave nodes for computation. A master 
node coordinates the distribution of tasks, updates the feature frequency histogram, 
and records intermediate classification performance results. To minimize inter-
process communication and maximize continuous computational loads on the proces-
sors, SFS efficiently “bundles” sets of classification tasks. Furthermore, while SFS 
exploits parallelism, it still remains a strictly deterministic system. That is, experi-
mental results are perfectly reproducible regardless of computational load, which is 
extremely important in the analysis, and interpretation of complex biomedical data. 

4   Fuzzy Quantile Encoding 

Zadeh’s seminal work on fuzzy set theory [51] may be applied to a classification pre-
processing technique that encodes the feature space prior to presentation to a classi-
fier. For instance, a feature may be intervalized across a collection of fuzzy sets 
thereby producing a list of degrees of membership for each of the fuzzy sets. In other 
words, given s fuzzy sets, F1, F2, …, Fs, and fi is the membership function for fuzzy 
set i, then the list of values for a single feature value x is {f1(x), f2(x), …, fs(x)}. Figure 
4 illustrates this intervalization approach using the membership functions for two 
fuzzy sets for feature i that overlap at 0.5 (see below). 
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Fuzzy quantile encoding (FQE) uses a feature’s quantile values as the consecutive 
intersections of triangular (or trapezoidal) fuzzy sets [36]. To derive the formula (a 
full derivation and complete discussion may be found in [30]), the following terms 
need to be defined. Let b, 0≤b≤1, be the boundary value at the intersection of the 
fuzzy sets. For simplicity, b may be held constant for each intersection. Let w be the 
width of the top of the trapezoid of the fuzzy sets. [If w=0, the fi’s are triangular fuzzy 
sets.] Let li and ri be the left and right boundary, respectively, of the fuzzy set Fi such 
that fi(li)=fi(ri)=b. Finally, let x be the original non-encoded input value. Then, 
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        (5) 

where ∨ and ∧ are the max and min operators, respectively (other norm/co-norm 
pairs, of course, are permissible). The latter two cases define a delta function when 
li=ri. These delta functions satisfy the criteria for a fuzzy set: it is monotonic and it 
maps onto the unit interval. Delta functions may arise when pattern feature values are 
significantly skewed (non-normal). It is important to note that, since fi(ri)=fi+1(li+1)=b, 
ri=li+1 (∀i=1..s–1). It should also be noted that the corresponding membership func-
tions are symmetric about the boundaries li and ri. When b≥0.5 and w=0 there exists a 
strict 1–1 correspondence between the encoding and the original feature value. When 
b<0.5 (or w>0), a 1–many correspondence exists. 

Quantiles are used to determine reasonable values for the fuzzy set boundaries li 
and ri. The Qth quantile of N feature values is a value such that Q% of the area under 
the relative frequency distribution for the feature values lies to the left of the Qth quan-
tile and (100–Q)% of the area under the distribution lies to its right. 

xi
l1

0.0

f1 f1b

r2l2=r1

1.0

0.5

 

Fig. 4. FQE membership functions using two fuzzy sets for feature i 

4.1   Interquartile Range 

Normally, the selected quantiles for FQE are the feature’s quartiles (see Figure 5 il-
lustration): the lower quartile (25th quantile), QL; the median (50th quantile), m; and 
the upper quartile (75th quantile), QU. By using the interquartile range for the feature j,  
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QL m QU

f1 f2 f3 f4
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Fig. 5. FQE membership functions using a feature’s interquartile range 

uniform coverage is effected through the use of four overlapping fuzzy sets, Fj
1, F

j
2, 

Fj
3, F

j
4. To ensure a 1–1 mapping between the original feature values and the FQE 

values, w=0 and b=0. [However, the constraint on w can be relaxed (see sub-section 
below).] Specifically, the membership functions for feature j are 
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where αj and βj are the feature’s respective minimum and maximum values. A dimen-
sion-preserving variant to this fuzzy encoding approach [29] is to use a single mem-
bership function, fj(x), which corresponds to a piece-wise linear fuzzy set (w=0), to 
capture the information represented by the feature’s interquartile range 
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        (7) 

4.2   Dispersion Adjustment 

An effective extension to fuzzy quantile encoding involves adjusting the fuzzy sets in 
order to take into account a feature’s overall dispersion of values [28]. A robust tech-
nique to implement dispersion-adjusted FQE is to use a feature’s median of absolute 
deviations, τ 

(| ( ) |)
( )

m x m x
xτ

σ
−=                                                           (8) 

where m is the feature’s median and σ=0.6745 to ensure that, as the error distribution 
becomes more normal, τ converges to the standard deviation. While only 40% efficient 
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for normal data [13], τ is robust to outliers and long-tailed distributions. In other words, 
as the features becomes more contaminated (less normal), the relative efficiency of τ 
becomes greater than the standard deviation. 

In order to take into account a feature’s overall dispersion, the constraint on w 
needs to be relaxed; for a given pattern feature, let w=τ. Using (8), (5) can easily be 
modified to now permit the use of trapezoidal fuzzy sets. As the dispersion increases 
(τ becomes larger), the width of the trapezoid increases and, as a result, more original 
feature values will be encoded to 1. As the dispersion decreases, the trapezoid ap-
proaches a triangular fuzzy set, so fewer values will be encoded to 1. 

4.3   FQE Properties 

FQE may be easily integrated into any classification system. The input layer (feature 
space) will have s×n coordinates where n is the dimensionality of the original feature 
space and s is the number of fuzzy sets used for encoding (s=4 for interquartile encod-
ing). FQE exhibits several useful properties. 

First, the feature space is “normalized”: that is, for any given pattern feature, x, its 
corresponding membership functions map feature values onto the unit interval, 
fi(x)∈[0,1] (∀i=1..s). This is particularly useful during the classification process since 
scaled biomedical data stabilize the effects of extreme variance disparities across 
pattern features [38]. Without scaled data, features with large variances will have a 
tendency to predominate, during the training phase, over those features with small 
variances even though the latter features may be highly discriminatory. 

Another beneficial property is that, during the construction of the discriminating 
class decision boundaries, feature values that may be considered as outliers impact 
less severely upon classifiers that employ any type of iterative adjustments to its error 
function (e.g., artificial neural networks such as MLP). This does not mean that pat-
terns with features that are outliers are removed during the design or validation phases 
of the classification process, however. FQE values will approach zero as values move 
outside a feature’s interquartile range. In the case of MLP, where its hidden layer 
processing elements are summing products of weights and input values this is impor-
tant since, if the FQE values of an outlier are all zero or near zero, those values will 
contribute very little to the learning process (local error adjustments) regardless of the 
processing elements weights. This is an extremely useful property if the original fea-
ture value is indeed an outlier (nevertheless, if it is not an outlier it still does contrib-
ute to a degree). Conversely, values that are within the feature’s interquartile range 
will contribute strongly to the iterative learning process. 

Another purpose behind FQE intervalization, as with any type of intervalization, is 
to reduce the effects of noise in the data as well as to transform the problem in such a 
way that a non-linear regression model such as MLP can provide better (more accu-
rate) solutions. 

Moreover, a FQE based classifier projects the original n-dimensional pattern fea-
ture space onto a new 4n-dimensional parameter space of membership values. This 
projection often has the positive effect of “linearizing”, to some degree, the discrimi-
nation problem (that is, moving from non-linear to linear class decision boundaries).  
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Further, since many FQE values are zero (or near zero), artificial neural network 
processing elements that use these encoded values as input terms will produce output 
values that are also at or near zero regardless of the corresponding processing element 
weights. Subsequently, these processing elements tend to contribute little to the over-
all classification error (and, derivatively, to the overall learning) of the FQE-based ar-
tificial neural network so resultant errors propagated back through the neural network 
are not caused (to any great extent) by these values. These simplifications, caused by 
the projection, often significantly reduce the training phase convergence time for su-
pervised artificial neural networks [29]. 

5   Fuzzy Class Label Adjustment 

Gold standard fuzzy class label adjustment (GSA) compensates for the possible im-
precision of a well-established but tarnished gold standard (external reference test) by 
adjusting, if necessary, the class labels of the design set patterns. The procedure be-
gins with finding the centroids of each class using their respective design set patterns. 
Distances are computed between each design pattern and each class centroid. A fuzzy 
set theoretic membership function uses these distances to adjust the class labels; in 
general, the further a pattern is from a class centroid, the lower its membership value 
for that class. However, the class label for a pattern will only be adjusted if it is suffi-
ciently distant from the centroid of its original class and sufficiently near another 
class’ centroid. Note that any adjustments made to the gold standard occur only for 
patterns in the design set; for verification purposes, the class labels for the validation 
set patterns are never altered. Hence, the efficacy of this method is always measured 
against the original gold standard (regardless of its possible imprecision). 

Distances and dispersions are measured using robust multivariate statistics since 
they are much more resistant to effects caused by extreme feature values than para-
metric statistics. More specifically, a statistical estimate is robust if it is insensitive to 
slight deviations from its requisite model assumptions (often normal assumptions) 
about the underlying feature distribution [13]. This is crucial when dealing with out-
liers, patterns that do not follow the distribution of the majority of the data. 

Although it is a univariate estimator, τ(x) (see (8)) may be extended to the multi-
variate case by computing a vector, τl=[τl

1..τl
n], which is a feature-wise measure of 

dispersion for the class l patterns. First, let Xl={(xk,l), k=1..Nl}⊂X be the set of all pat-
terns belonging to class l (Nl is the number of class l patterns and xk=[xk1..xkn]). Also, 
let zl

j=[xij] (i=1..Nl) be the respective values of feature j for the class l patterns. Now, 
τl

j=m|zl
j–m(zl

j)|/0.6745. The distance between each pattern and each of the class cen-
troids may now be determined. The weighted distance, dl, of xk from the class l cen-
troid (more correctly its medoid) may be defined as 

( )
( )

l
kj jl

k lj
j

x m z
d

τ
−

=∑x                                                 (9) 

This distance measure is incorporated into the original gold standard using mem-
bership functions; the class l membership function for a pattern, xk, is defined as 
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where p>1 and q>0 describe the shape and amount of fuzziness for the membership 
function (0≤fl(xk)≤1). Figure 6(i) plots (10) for different values of p with a constant q. 
Note that f is sigmoidal and that as p increases, f approaches a step function. The 
point, at which the membership function is 0.5, occurs when the distance equals q. 
Figure 6(ii) plots f for different values of q with a constant p. As q increases, member-
ship values will remain high even at great distances. 
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Fig. 6. Plot of f versus distance (d) between a pattern and a class medoid with (i) varying p 
(q=2) and (ii) varying q (p=2) 

Finally, we use contrast intensification, yl, on the class l membership function to 
increase membership values above 0.5 and reduce those values that are below this 
point [51]. Using GSA, we may now recode the class label for xk from the scalar ωk to 
the vector [yi] (i=1..c). 
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If xk was originally assigned to, say class l, by the gold standard, it may be the case 
that it was, in fact, closest to some other class medoid, say class o. In this case, 
yo(xk)>yl(xk) and, hence, the original gold standard assignment will no longer pre-
dominate. If this is undesirable (or unacceptable) for the particular problem domain, 
the situation may be rectified by constraining the membership functions expressed by 
(11) so that fl(xk)=fo(xk)+ε where ε is a small positive constant. Now, a pattern will 
never be reassigned to a class different from the one to which it was originally as-
signed. However, if a pattern is sufficiently near another class medoid then the corre-
sponding class membership value for that pattern will not be zero. In general, the fur-
ther xk is from a class medoid, the lower its membership value for that class. While 
the original class label assigned by the gold standard is crisp (xk belongs to one and 
only one class with degree 1), the (soft) class label assigned by GSA (using (11)) is 
fuzzy (x belongs to all classes to varying degrees). 
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6   Classifier Aggregation 

The fuzzy measure [44] is a set function used to express the grade of fuzziness. Say, X 
is a non-empty universe of discourse and B, is a σ-field of X [14]. Given the sets, A1 and 
A2, B is a family of subsets of X if: (i) ∅∈B; (ii) X∈B; (iii) if A1∈B then ¬A1∈B; and, 
(iv) B is closed under set union (i.e., if A1∈B and A2∈B then A1∪A2∈B)]. The set func-
tion, g:B→[0,1], is a fuzzy measure over X if three axioms hold: (i) g(∅)=0 and g(X)=1 
(boundary conditions ensure that regardless of the degree of evidence an element must 
not belong to the null set and it must belong to the universe of discourse); (ii) if A1,A2∈B 
and A1⊂A2 then g(A1)≤g(A2) (evidence of an element’s membership in a set must always 
be at least as great as that in any of the set’s subsets); and, (iii) if A1∈B and A1 is mono-
tone increasing then lim g(A1)=g(lim A1) (consistency constraint). A fuzzy measure 
commonly found in the literature is the Sugeno fuzzy measure [45], gλ, which satisfies 
the additional constraint that g(A1∪A2)=g(A1)+g(A2)+λg(A1)g(A2), where λ>–1 and 
A1∩A2=∅. 

The fuzzy integral [11] is a nonlinear aggregation scheme for combining multiple 
sources of information to arrive at a “confidence value” for a decision (hypothesis). 
Let us define a mapping h:X→[0,1] where a finite ordered X={x1…xn} is of interest. 
Typical examples are the Sugeno, Su(x), Choquet, Ch(x), and Shilkret, Sh(x), integrals 
[5,19,20]. The fuzzy integrals of h over X with respect to gλ are defined as: 
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where Xi={x1, x2,…,xi} and h(x0)=0. While several possible interpretations exist for 
the conceptual meaning of a fuzzy integral [46,48], in this discussion it is considered 
to mean the maximum degree of belief (for a prediction or classification outcome) ob-
tained by the fusion (aggregation) of several sources of objective evidence. 

Integrating the results from multiple classifiers involves using their respective con-
fusion matrices to compute the fuzzy densities for each of the classifiers in order to 
determine the fuzzy measures used in (12). To this end, the technique described in [4] 
is followed primarily and is briefly described here. Let Rk=(nkij) be the c×c confusion 
matrix for classifier, k, where nkii is the number of class i patterns that were correctly 
classified by k and nkij (i≠j) is the number of class i patterns that were incorrectly as-
signed to class j by k. The preliminary fuzzy density of class i with respect to classi-
fier k, 0<g*

ki<1, is 

*

1

kii
ki c

kijj

n
g

n
=

=
∑

                                                     (13) 

These densities must be adjusted to take into account the frequencies of correct and 
incorrect classifications within and across the set of classifiers. This leads to the fol-
lowing expressions 
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where ε is a small positive constant. The corrected fuzzy density, gki, may now be 
computed as 

( ) ( )1 2* w w

ki ki kir kis kir kisg g δ δ γ γ= × × × × × ×L L  (15) 

where w1 and w2, (w1+w2=1) are weighting factors and r and s are the indices of those 
pattern classes for which classifier k produced the highest classification accuracy. The 
first adjustment, δ∈(0,1], reflects the pattern misclassifications within the confusion 
matrix for k. As the pattern misclassifications increase, δ→0 (the third condition in 
(14) represents the degenerate case when more patterns of a particular class are mis-
classified than correctly classified). The second adjustment, γ∈(0,1], reflects the 
pattern misclassifications across all classifiers with respect to k. As the pattern mis-
classifications increase, γ→0 (the third condition in (14) is the degenerate case when 
no patterns of a particular class are correctly classified). 

Finally, the Sugeno, Choquet, and Shilkret integrals can exploit several variants of 
h including: hc(x), contrast intensification as defined by (11), and hp(x)=xp (p>0), 
where x∈[0,1] is the classifier’s predicted class label assignment. When 0<x<1, h(x) 
will act to dilate membership values, while concentration will occur when x>1. In or-
der to constrain the number of parameters, the standard fuzzy set based definitions for 
concentration (p=2) and dilation (p=0.5) are normally used. In total, four variants are 
typical candidates for the integrals: hc(x), h0.5(x), h2(x), and h1(x) (identity). Finally, 
using equations (12)–(15), the actual class label output from the set of pattern classifi-
ers is the one with the highest integrated value. 

7   Experiments, Analysis and Results 

In this concluding section, we present a series of experiments, which employed the clas-
sification approaches described above, relating to the interpretation, analysis, and classi-
fication of several biomedical datasets. A summary of the results, listed in Table 2, may 
be found at the end of this section. 

7.1   FQE 

In [34], MR spectra were obtained (360 MHz) for 25 thyroid biopsies: 16 papillary 
carcinomas and 9 normal. Two spectral regions were analyzed: the main lipid CH2 
and CH3 peaks, 0.64–2.59 ppm; and the choline-like species, 2.59–3.41 ppm. Analy-
sis was based on 170 features for the choline region and 400 features for the lipid 
region. As a benchmark, the inputs to an MLP classifier were the 10 principal compo-
nents of the dataset that accounted for 97% of the cumulative variance [37]. FQE was 
used with 680 (choline) and 1600 (lipid) membership values. 
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FQE significantly outperformed the benchmark: PO=0.92 versus PO=0.64 (cho-
line); PO=0.88 versus PO=0.80 (lipid). Of particular interest is the significant reduc-
tion in convergence rate for the FQE MLP, O(103) versus O(106) for the benchmark. 

In [30], data were analyzed pertaining to tonsillectomy/adenoidectomy patients with 
predispositions to excessive bleeding. These blood abnormalities include hemophilia, a 
hereditary hemorrhagic diathesis due to coagulation cofactor FVIII deficiency; von 
Willebrand’s disease, a diathesis associated with von Willebrand protein antigen factor 
deficiencies or in the activity measured as the restocetin cofactor; and thrombopathy, a 
platelet function defect measured as the occurrence of at least two abnormal platelet 
aggregation [21]. Data were collected from the patient database associated with a he-
matology expert system containing information relating to coagulation laboratory test 
results and patients responses to a bleeding tendency questionnaire. 

Two major experiments were conducted. In the first, 96 patient records (patterns) 
were assigned to one of three disease states (class labels): 42 hemophilia (H), 30 
platelet function defect (P), and 24 von Willebrand’s disease (V). LDA, MLP, and 
FQE (with MLP) classifiers were used in the analysis: respectively, κ=0.55 (moderate 
agreement), κ=0.71 (substantial agreement), and κ=0.79 (substantial agreement). 
MLP and FQE also had consistently better classification results across all three dis-
ease states with particularly strong improvements with H and V. While FQE outper-
formed MLP with respect to correctly classifying P (80% versus 70%), it under per-
formed with respect to V (83% versus 88%). However, FQE was clearly superior in 
classifying H; 93% versus 81%. FQE, on average, converged 4.2 times faster during 
the training phase than MLP. 

In the second set of experiments, a different gold standard was used (derived from 
the expert system) to assign 191 patient records to either a normal (N) or abnormal 
(A) class. The records were randomly assigned to a design set (60 N and 60 A) or a 
validation set (42 N and 29 A). The respective κ scores for LDA, MLP, and FQE were 
0.16 (slight agreement), 0.39 (fair agreement), and 0.46 (moderate agreement). 

In [32], dispersion-adjusted FQE (DFQ) MLP classifiers were used in the analysis 
and classification of three biomedical datasets found in the Machine Learning Reposi-
tory (http://mlearn.ics.uci.edu/MLSummary.html) at the University of California, 
Irvine. The patterns in these three datasets belong to one of two possible classes: “tar-
get”, where the pattern belongs to an abnormal or disease state; and, “control”, where 
the pattern belongs to a normal or control state. 

In the first case, the heart data [16] is a description of diagnoses relating to N=267 
cardiac single proton emission computed tomography images [10]. The n=44 features 
relate to frequency information across 22 different regions of interest and alternate be-
tween images taken while the patient was at rest or during a controlled stress condition 
(target=55, control=22). The overall classification accuracy using the original features 
was PO=0.80 while the FQE accuracy was PO=0.92 and the DFQ accuracy was 
PO=0.95 (a respective 15% and 19% increase in performance). DFQ decreased the 
false positive error rate from 10% to 7% with an overall increase in accuracy of 3%. 

In the second case, each of the N=155 patterns (target=32, control=123) within the 
hepatitis dataset [2] is composed of 19 features: 6 nominal features (age, bilirubin, al-
kaline phosphate, SGOT, albumin, and protime) and 13 binary features (sex, steroids, 
antivirals, fatigue, malaise, anorexia, large liver, firm liver, palpable spleen, spiders,  
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ascites, varices, and histology). The overall accuracy using the original features was 
PO=0.88 while the FQE accuracy was PO=0.91 and the DFQ accuracy was PO=0.94 (a 
respective 3% and 7% increase in classifier performance). With FQE, this improve-
ment was gained exclusively by a reduction in the false negative error rate (from 37% 
to 22%). In the DFQ case, a greater reduction in the false negative error rate (19%) was 
achieved with an overall increase in accuracy of 3% compared to the FQE encoding. 

In the third case, the lung cancer data [12], which comprises 56 nominal features 
taking on integer values (0–3), represents three different types of pathological lung 
cancers. Due to the paucity of patterns (N=32) in this dataset, and in the interest of 
simplifying the comparative analysis with the other two biomedical datasets, the two 
classes with the fewest patterns are merged into one pathological (target) case (con-
trol=13, target=19). The overall classification accuracy using the original features was 
PO=0.63 while the FQE accuracy was PO=0.78 and the DFQ accuracy was PO=0.84 (a 
respective 23% and 33% increase in classifier performance). DFQ achieved an 8% 
improvement in classification performance compared to FQE. 

7.2   GSA 

In [31], GSA was used in the analysis of a biomedical dataset composed of 206 1H 
MR spectra (360 MHz, 37°) consisting of 95 meningiomas (M), 74 astrocytomas (A), 
and 37 control samples of non-tumorous brain tissue from patients with epilepsy (E). 
The biomedical spectra (n=550 in the region of 0.3–4.0 ppm) were randomly assigned 
to either a design (ND=80, with 29 M, 31 A, and 20 E) or a validation set (NV=126). 
Applying GSA to the gold standard (provided by a pathologist) improved the overall 
diagnostic (classification) performance of an MLP classifier by 13%: κ=0.80 versus 
κ=0.71 using the original design class labels. 

Although none of the spectra (patterns) in the validation set was reclassified, two 
validation spectra were flagged as outliers (two M spectra were flagged as A), and 
these spectra were indeed misclassified as A. Classification errors were also more 
conservative. Using the original class labels, 5 E’s (control) were classified as tumors 
(M or A) and 4 tumors as control. However, in the case of GSA, only 1 E was mis-
classified as a tumor while only 3 tumors were misclassified as control. 

7.3   SFS 

In [33], SFS was used in the analysis and classification of N=444 1H MR spectra (360 
MHz at 37°C) of isolates of five different species of Candida yeast (n=1500): 104 al-
bicans (A), 93 parapsilosis (P), 81 krusei (K), 75 tropicalis (T), and 91 glabrata (G). 
The design set comprised 50 randomly selected patterns from each class. The feature 
region cardinality range was 7–1231. 

The mean accuracy (for the 10,000 MLP processes) was PO=0.83 for the validation 
set. The best accuracy score was PO=0.95 for an MLP using only 16 of the 1500 fea-
tures (~1%). Interestingly, the top four accuracy scores were achieved by MLPs that 
used less than 20 features. 

In [29], SFS was used in the classification of two biomedical datasets. In the first 
case, 186 infrared spectra of synovial joint fluid were assigned to one of three disease  
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states: 72 rheumatoid arthritis (R), 72 osteo-arthritis (O), and 42 control samples (C). 
The spectra (n=2801) cover the wavelength range 1000–3700 cm-1. The pattern de-
sign set contained 28 randomly selected spectra from each class. The feature region 
cardinality range was 7–192 and the mean κ score was 0.79 for the 20,000 MLP and 
PNN classification processes. The best validation κ score was 0.86±0.02 (almost per-
fect agreement) using the MLP classifier with only 20 of the 2801 original features 
(<1%). The best validation κ score for PNN was 0.84±0.02 (almost perfect agree-
ment) using 25 of the original features (<1%). Using the original 2801 spectral fea-
tures (i.e., no stochastic feature selection), the PNN benchmark produced a validation 
set κ score of only 0.51 (moderate agreement), while the MLP benchmark κ score was 
only 0.29 (fair agreement). 

In the second case, this is likely due to over-fitting of the design (training) data as 
is evidenced by the high κ score of 0.88. Due to the inversion of the large covariance 
matrix, LDA produced spurious results. Next, the original infrared spectra were aver-
aged down to 100 features. All three benchmarks performed well (substantial 
agreement): PNN, κ=0.69; MLP, κ=0.74; LDA, κ=0.69. While slightly worse than the 
average of all 10000 PNN (and MLP) runs using SFS, they were appreciably worse 
than the best runs. In the second case, 227 MR spectra of a biological fluid discretized 
(n=512) were assigned to one of three classes: 108 normal (N), 54 of borderline char-
acter (B), and 65 abnormal (A). The design set contained 36 randomly selected sam-
ples from each class. 

The feature region cardinality range was 4–212. For the 10000 MLP classification 
processes, the mean κ score was 0.42 for the validation set. For the 10000 PNN 
classification processes, the mean κ score was 0.48 for the validation set. The best 
validation κ score was 0.54±0.02 (moderate agreement) using MLP and 83 of the 512 
original features (16%). The best validation κ score for PNN was 0.48±0.02 (moder-
ate agreement) using 79 of the original features (15%). Using the original 512 spectral 
features (again no feature selection), all benchmarks performed poorly (only fair 
agreement): PNN, κ=0.38; MLP, κ=0.25; LDA, κ=0.24. As with the infrared spectra, 
the MLP likely over-fitted the design data (κ=0.88). Finally, the original dataset was 
averaged down to 128 features. All benchmarks had moderate levels of agreement: 
PNN, κ=0.47; MLP, κ=0.46; LDA, κ=0.43. 

7.4   Classifier Aggregation 

In [35], fuzzy aggregation was used in conjunction with SFS in the analysis and clas-
sification of N=191 MR spectra (n=3380) of a biofluid that were assigned to one of 
two classes by a medical expert: 116 normal and 75 abnormal. The design set com-
prised 58 randomly selected patterns from each class. Three transformed dataset 
variants were generated: first derivative; rank ordered; and first derivative with rank 
ordering. The best validation set result was PO=0.79 using the fuzzy aggregation ap-
proach with rank ordered transformed features, which is an 8% improvement over the 
corresponding best individual (PNN) classifier. Further, the aggregated approach out-
performed the corresponding best individual classifiers across all variants: respec-
tively (PO), 0.76/0.74, 0.74/0.62, 0.79/0.73, 0.75/0.73. 
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Table 2. Summary of biomedical data classification results 

Description N n P Method Benchmark

FQE: MRS Thyroid I  25  170 PO 0.92 0.64 

FQE: MRS Thyroid II  25  400 PO 0.88 0.80 

FQE: Hematology I  96  11 κ 0.79 0.71 

FQE: Hematology II  191  9 κ 0.46 0.39 

DFQ: Heart  267  44 PO 0.95 0.92 

DFQ: Hepatitis  155  19 PO 0.94 0.91 

DFQ: Lung Cancer  32  56 PO 0.84 0.78 

GSA: MRS Brain  206  550 κ 0.80 0.71 

SFS: MRS Candida  444 1500 PO 0.95 0.83 

SFS: Synovial Fluid  186 2801 κ 0.86 0.74 

SFS: MRS Biofluid  227  512 κ 0.54 0.47 

Fusion: MRS Biofluid  191 3380 PO 0.79 0.73 

Each entry lists the biomedical classification method examined (as described in this 
section), the dataset used in the evaluation, the number of patterns (N), the number of 
features (n), the performance measure (P), the method’s overall accuracy, and the accu-
racy for the best benchmark. 

8   Conclusion 

The analysis, interpretation, and classification of biomedical data are replete with pat-
tern recognition challenges stemming from the curse of dimensionality and tarnished 
gold standards. This chapter presents a computational intelligence based methodol-
ogy, which remediates these challenges, exploiting strategies and methods inspired by 
the granular computing paradigm. Stochastic feature selection, gold standard class 
label adjustment, classifier aggregation, and fuzzy quantile encoding may be used 
singly or in concert within a classification system. As pre- and post-processing 
approaches, they may easily be incorporated into investigators’ classifiers of choice. 

Acknowledgments. We thank Conrad Wiebe and Aleksander Demko for implement-
ing the stochastic feature selection algorithm and associated libraries. The following 
researchers are gratefully acknowledged for making their respective datasets publicly 
available for use by their peers: K.J. Cios and L.A. Kurgan for the SPECTF heart 
data; G. Gong and B. Cestnik for the hepatitis data; S. Aeberhard for the lung cancer 
data; and, U. Himmelreich for the yeast data. This work was supported in part by the 
Natural Sciences and Engineering Research Council of Canada (NSERC). 

References 

1. Bishop, C.M.: Neural networks and their applications. Rev. Sci. Instrum. 65, 1803–1832 (1994) 
2. Cestnik, B., Kononenko, I., Bratko, I.: ASSISTANT 86: A knowledge elicitation tool for 

sophisticated users. In: Bratko, I., Lavrac, N. (eds.) Progress in Machine Learning. Sigma 
Press, Wilmslow (1987) 



310 N.J. Pizzi 

3. Cheng, B., Titterington, D.M.: Neural networks: a review from a statistical perspective. 
Stat. Sci. 9, 2–54 (1994) 

4. Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms: With Applications to Image Processing and 
Pattern Recognition. World Scientific, New Jersey (1996) 

5. Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953) 
6. Demko, A.B., Pizzi, N.J., Somorjai, R.L.: Scopira – A system for the analysis of biomedi-

cal data. In: Proc. IEEE Can. Conf. Electr. Comput. Eng., Winnipeg, Canada, May 12–15, 
2002, pp. 1093–1098 (2002) 

7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley Interscience, New York 
(2000) 

8. Everitt, B.S.: Moments of the statistics kappa and weighted kappa. Br. J. Math. Stat. Psy-
chol. 21, 97–103 (1968) 

9. Fleiss, J.L.: Measuring agreement between judges on the presence or absence of a trait. 
Biom. 31, 651–659 (1975) 

10. Friebolin, H.: Basic One- and Two-Dimensional NMR Spectroscopy. Wiley & Sons, New 
York (1998) 

11. Grabish, M., Murofushi, T., Sugeno, M.: Fuzzy measure of fuzzy events defined by fuzzy 
integrals. Fuzzy Sets Syst. 50, 293–313 (1992) 

12. Hong, Z.Q., Yang, J.Y.: Optimal discriminant plane for a small number of samples and de-
sign method of classifier on the plane. Pattern Recognit. 24, 317–324 (1991) 

13. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964) 
14. Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty, and Information. Prentice-Hall, Engle-

wood Cliffs (1988) 
15. Kuncheva, L.I., Steimann, F.: Fuzzy diagnosis. Artif. Intell. Med. 16, 121–128 (1999) 
16. Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M., Goodenday, L.S.: Knowledge discov-

ery approach to automated cardiac SPECT diagnosis. Artif. Intell. Med. 23, 149–169 (2001) 
17. Landis, J.R., Koch, G.G.: The measurements of observer agreement for categorical data. 

Biom. 33, 159–174 (1997) 
18. Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: An enabling technique. Data 

Min. Knowl. Discovery 6, 393–423 (2002) 
19. Mesiar, R., Mesiarová, A.: Fuzzy Integrals—What Are They? Int. J. Intell. Syst. 23, 199–

212 (2008) 
20. Murofushi, T., Sugeno, M.: An interpretation of fuzzy measure and the Choquet integral as 

an integral with respect to a fuzzy measure. Fuzzy Sets Syst. 29, 201–227 (1989) 
21. Nosek-Cenkowska, B., Cheang, M.S., Pizzi, N.J., Israels, E.D., Gerrard, J.M.: Bleed-

ing/bruising symptomatology in children with and without bleeding disorders. Thromb. 
Haemost. 65, 237–241 (1991) 

22. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 
1065–1076 (1962) 

23. Pavia, D.L., Lampman, G.M., Kriz, G.S.: Introduction to Spectroscopy. Harcourt Brace 
College, Fort Worth (1996) 

24. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177, 3–27 (2007) 
25. Pedrycz, W.: Granular Computing: The Emerging Paradigm. J. Uncertain Syst. 1, 38–61 

(2007) 
26. Pedrycz, W.: Granular Computing: An Emerging Paradigm. Springer, Heidelberg (2001) 
27. Pedrycz, W., Gomide, F.: Fuzzy Systems Engineering: Toward Human-Centric Comput-

ing. Wiley & Sons, New York (2007) 
28. Pizzi, N.J.: Biomedical data analysis using dispersion-adjusted fuzzy quantile encoding. 

In: Proc. Annu Meet North Am. Fuzzy Inf. Process Soc., New York, USA, #50010 (6 
pages), May 19–22 (2008) 

29. Pizzi, N.J.: Classification of biomedical spectra using stochastic feature selection. Neural 
Netw. World 15, 257–268 (2005) 



 Information Processing in Biomedical Applications 311 

30. Pizzi, N.J.: Bleeding predisposition assessments in tonsillectomy/adenoidectomy patients 
using fuzzy interquartile encoded neural networks. Artif. Intell. Med. 21, 65–90 (2001) 

31. Pizzi, N.J.: Fuzzy preprocessing of gold standards as applied to biomedical spectra classi-
fication. Artif. Intell. Med. 16, 171–182 (1999) 

32. Pizzi, N.J., Pedrycz, W.: An analysis of potentially imprecise class labels using a fuzzy 
similarity measure. In: Proc. World Congr. Comput. Intell., Hong Kong, June 1–6, pp. 
667–672 (2008) 

33. Pizzi, N.J., Pedrycz, W.: Classification of magnetic resonance spectra using parallel ran-
domized feature selection. In: Proc. Int. Jt. Conf. Neural Netw., Budapest, Hungary, July 
25–29, 2004, pp. 2455–2460 (2004) 

34. Pizzi, N., Somorjai, R.L.: Fuzzy encoding as a preprocessing method for artificial neural 
networks. In: Proc. World Congr. Neural Netw., San Diego, USA, June 5-9, 1994, pp. 
643–648 (1994) 

35. Pizzi, N.J., Wiebe, C., Pedrycz, W.: Biomedical spectral classification using stochastic 
feature selection and fuzzy aggregation. In: Proc. Ann. Meet North Am. Fuzzy Inf. Process 
Soc., San Diego, USA, June 24–27, 2007, pp. 360–365 (2007) 

36. Pizzi, N.J., Alexiuk, M.D., Pedrycz, W.: Classification of biomedical spectra using fuzzy 
interquartile encoding and stochastic feature selection. In: Proc. IEEE Symp. Ser. Comput. 
Intell. Data Min., Honolulu, USA, June 1–6, pp. 668–673 (2007) 

37. Pizzi, N., Choo, L.-P., Mansfield, J., Jackson, M., Halliday, W.C., Mantsch, H.H., Somor-
jai, R.L.: Neural network classification of infrared spectra of control and Alzheimer’s dis-
eased tissue. Artif. Intell. Med. 7, 67–79 (1995) 

38. Ripley, B.D.: Neural networks and related methods for classification. J. Royal Stat. Soc. 
[B] 56, 409–456 (1994) 

39. Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing, vol. 1. MIT Press, 
Cambridge (1986) 

40. Seber, G.: Multivariate Observations. Wiley & Sons, New York (1984) 
41. Snir, M., Gropp, W.: MPI: The Complete Reference. MIT Press, Cambridge (1998) 
42. Somorjai, R.L., Dolenko, B., Nikulin, A.K., Pizzi, N., Scarth, G., Zhilkin, P., Halliday, W., 

Fewer, D., Hill, N., Ross, I., West, M., Smith, I.C.P., Donnelly, S.M., Kuesel, A.C., Bri-
ere, K.M.: Classification of 1H MR spectra of human brain neoplasms: The influence of 
preprocessing and computerized consensus diagnosis on classification accuracy. J. Magn. 
Reson. Imaging 6, 437–444 (1996) 

43. Specht, D.F.: Probabilistic neural networks. Neural Netw. 3, 109–118 (1990) 
44. Sugeno, A.: Fuzzy measures and fuzzy integrals: A survey. In: Gupta, M.M., Saridis, 

G.N., Gaines, B.R. (eds.) Fuzzy Automata and Decision Processes, pp. 90–102. North 
Holland, Amsterdam (1977) 

45. Sugeno, A.: Theory of fuzzy integral and its applications. PhD Thesis, Tokyo Institute of 
Technology (1972) 

46. Tahani, H., Keller, J.M.: Information fusion in computer vision using the fuzzy integral. 
IEEE Trans. Syst. Man Cybern. 20, 733–741 (1990) 

47. Vapnik, V.: Statistical Learning Theory. Wiley & Sons, New York (1998) 
48. Weiss, S.M., Kulikowski, C.A.: Computer Systems that Learn: Classification and Predic-

tion Methods from Statistics, Neural Nets, Machine Learning and Expert Systems. Morgan 
Kaufmann, San Mateo (1991) 

49. Witten, I.H., Eibe, F.: Data Mining: Practical Machine Learning Tools and Techniques. 
Morgan Kaufmann, San Mateo (2005) 

50. Zadeh, L.A.: Fuzzy logic = Computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 
(1996) 

51. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision 
processes. IEEE Trans. Syst. Man Cybern. 3, 28–44 (1973) 


	Information Processing in Biomedical Applications
	Introduction
	Biomedicine and Vagueness
	Granular Computing and Computational Intelligence Strategy

	Biomedical Data Classification
	Stochastic Feature Selection
	Feature Frequency Histogram
	Quadratic Combination of Features
	Parallelized Classification

	Fuzzy Quantile Encoding
	Interquartile Range
	Dispersion Adjustment
	FQE Properties

	Fuzzy Class Label Adjustment
	Classifier Aggregation
	Experiments, Analysis and Results
	FQE
	GSA
	SFS
	Classifier Aggregation

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


