
A. Bargiela, W. Pedrycz (Eds.): Human-Centric Information Processing, SCI 182, pp. 265–287.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Autonomous Composition of Fuzzy Granules in

Ambient Intelligence Scenarios

Giovanni Acampora1, Vincenzo Loia1, and Athanasios V. Vasilakos2

1 Department of Mathematics and Computer Science, University of Salerno, Italy
2 Department of Computer and Telecommunications Engineering,
 University of Western Macedonia, Greece

Abstract. Pervasive and human-centric computing is beginning to be fact: with cell phones, lap-
tops and handhelds, human beings can work pretty much anywhere. Ambient Intelligence (AmI)
is a novel human-centric computer discipline based on three emergent technologies: Ubiquitous
Computing, Ubiquitous Communication and Intelligent User Interfaces. The integration of afore-
said technologies opens new scenarios for improving the interaction between humans and infor-
mation technology equipments realizing a human-centric computing environment. Within this
aim the deliverable of tasks or services should be achieved through the usage of an invisible
network of heterogeneous devices composing dynamic computational-ecosystems capable of sat-
isfying the users requirements. Fuzzy granules, intended as a clump of objects which are drawn
together by criteria like indistinguishability, similarity, proximity or functionality, can represent
a powerful and, simultaneously, simple paradigm to embed intelligence into a generic AmI eco-
system in order to support people in carrying out their everyday life activities, tasks and rituals in
easy and natural way. However, the strong dinamicity and the high complexity characterizing a
typical AmI scenario make difficult and expensive to design ad-hoc fuzzy granules. This paper
presents a framework exploiting methodologies coming from Semantic Web and Computational
Intelligence areas to compose fuzzy granules in autonomous way in order to maximize the users
comfort and achieve the hardware transparency and interoperability.

Keywords: Ambient Intelligence, Granular Computing, User-Centric Systems, Information Re-
trieval, Fuzzy Logic, Fuzzy Control, Autonomous Systems, Adaptive Systems, Semantic Web,
Home Automation, Network Computing, Evolutionary Methodologies, Markup Languages,
Ubiquitous Computing, Ubiquitous Networking, Advanced Intelligent User-Friendly Interfaces,
Multi-Agent Systems, Intelligent Agents, Cooperative Agents, Adaptive Fuzzy Systems.

1 Introduction

Futurists tend to agree that personal computing will be dramatically changed in the fu-
ture. One overriding objective will be to make the technology transparent to the user,
thus eliminating the frustration that many users face today. Human-Centric computing
systems are pervasive frameworks capable of creating a solution so that the human is
always connected, portable, and available. In this context, AmI systems represent one of
the most emergent technologies able to offer advanced user-oriented services. Indeed,
AmI systems will radically change how people interact with technology: the principle is
to integrate different computer science backgrounds with psychology and social sciences
in order to create a network of intelligent devices (sensors and actuators) able to en-
hance the quality of people’s life [23]. This is possible thanks to systems’ ability in

266 G. Acampora, V. Loia, and A.V. Vasilakos

anticipating needs and desires necessary to obtain safety, comfort and economy. AmI
systems realize such requirements using the following design philosophies:

• Context Awareness;
• Multi-modal Communication;
• User-Centered interaction.

According to a more formal definition of Context Awareness [17], we can say that
contextual information can be defined as an ordered multilevel set of declarative in-
formation concerning events occurring both within the sensing domain of a smart
space and within the communication and action domains of the smart space itself. In
particular, an event can be defined as the occurrence of some facts that can be per-
ceived by or communicated to the ambient intelligence environment. Different attrib-
utes can characterize an event: where (location), what (core), when (time), why (rea-
son). Multimodal communication can then be defined as the simultaneous exchange of
information over multiple channels at different levels of abstraction [15]. Human-to-
human communication is intrinsically multi-modal. Multimodal interactions in AmI
systems allow the artificial system to engage in a similar dialog with the user, with the
objective of exploiting the richness, robustness, and flexibility of face-to-face conver-
sation. Designing architecture to support user-centered interactions requires a high de-
gree of flexibility and adaptation. In a user-centered paradigm it is the system that tries
to meet the user’s personal interaction style and not vice-versa as often happens.

By analyzing the aforesaid AmI features, it can be asserted that homes, or more
generally buildings, are changing their nature from static structures of bricks to dy-
namic work and living environments that actively support and assist their inhabitants
[19]. These novel living environments are expected to behave in intelligent way. In
addition, to satisfying the needs of its inhabitants, a building has to be an active,
autonomous entity that pursues its own goals (energy consumption, security, etc.). To
fulfill this goal, a smart home must continually take decisions by specifying rules that
describe which actions to take.

Recently, different Computational Intelligence methodologies have been exploited
to define smart rules able to control AmI devices in autonomous way in order to op-
timize several living parameters [14][24].

Beyond purely computational issues, the design and implementation of intelligent
living environments are highly influenced from the hardware infrastructure exploited
to model the control network interconnecting the collection of sensors/actuators com-
posing the AmI system. Today, different communication protocols [25] [26] [10]
could be used to realize an intelligent environment and, consequently, several pro-
gramming acquaintances are necessary to deal with these protocols. This paper fo-
cuses on the integration of methodologies coming from different computer science ar-
eas as the Computational Intelligence and Semantic Web to embed intelligence into
the AmI devices and define an abstract developing environment capable of dealing
with different hardware protocols by means of granular computing and semantic web
technologies to attempt to solve both AmI issues.

Fuzzy Granular Computing is a theory dealing with the partitioning of a class of
objects into granules, with a granule being a clump of objects, which are drawn to-
gether by indistinguishability, similarity or functionality. In our case a fuzzy granule
is an intelligent entity capable of controlling a portion of a living environment by

 Autonomous Composition of Fuzzy Granules in Ambient Intelligence Scenarios 267

means of a clump of objects, where each object deals with a well-defined subset of
sensors/actuators. Some samples of granules composing an AmI environment are: the
temperature control granule, the lighting control granule, the blind control granule,
and so on. Granular computing in AmI allows collecting control entities with the
same functionalities in homogenous groups in order to maximize the cohesion level of
the AmI system components; the cohesion is one of the most important factors char-
acterizing the Software Engineering discipline. The maximization of system cohesion
allows designer to focus on well-defined part of system and the interface among them
guaranteeing a satisfactory engineering process. The fuzzy granules are suitable logi-
cal model to represent intelligence and achieve the cohesion property.

However, the strong dynamicity and the high complexity characterizing a typical
AmI scenario make difficult and expensive the design of ad-hoc fuzzy granules to
control AmI devices. Our work realizes an AmI framework capable of composing the
appropriate fuzzy granules in autonomous way and performing their services in hard-
ware-independent way.

2 A Framework for AmI Autonomous Fuzzy Granular
Computing

This section explains the architecture of the proposed AmI system through the presenta-
tion of the theoretical concepts and technologies used to design and realize the system.

2.1 AmI Autonomous Fuzzy Granular Computing Architecture

A ubiquitous computing fuzzy system exploits fuzzy computation in living environ-
ments in order to enable people to move around and interact with their environment
more naturally than they actually do. More precisely, a ubiquitous computing fuzzy
system is defined as a network of devices able to regulate their behavior in an auto-
matic way according to user needs and preferences. In order to achieve this goal dif-
ferent research topics have to be considered as computational intelligence, distributed
computing and sensor networks.

Computational intelligence approaches model the environmental context and rela-
tionships among the events occurring in AmI scenarios, whereas, distributed comput-
ing and sensor network technology are required to model the real physical AmI envi-
ronment and allow the communication among devices composing the framework. The
joint use of these techniques allows achieving a fully automated and optimized con-
trol of environment according to user’s preferences.

Starting from the integration among aforesaid topics, the proposed AmI scenario
can be viewed as a composition of intelligent entities, named granules, each one com-
posed of a collection of fuzzy controllers managing devices characterized from the
same functionality as, for instance:

• Lighting granule;
• HVAC granule;
• Blinds granule;
• Temperature granule;
• …

268 G. Acampora, V. Loia, and A.V. Vasilakos

where the lighting granule is the collection of control objects able to manage each
light actuator in the framework, and so on.

In other word each granule is a collection of fuzzy functions able to deal the same
kind of device. Figure 1 shows a typical AmI granular scenario.

Fig. 1. Ambient Intelligence Granular Scenario

However, the high dynamicity and complexity characterizing an AmI scenario make
very difficult and expensive to design ad-hoc fuzzy granules to control AmI devices.
The dynamicity and complexity of AmI environments arise from two factors: the
amount and type of devices populating the environment and the hardware heterogeneity.

Aim of this paper is to realize an AmI environment capable of composing the ap-
propriate fuzzy granules in autonomous way and performing their services in hard-
ware-independent way.

The proposed features are achieved by considering the system as a Distributed Ser-
vice Oriented Architecture, where each service corresponds to a control object of a
fuzzy granule.

In order to achieve the autonomous granules composition and the hardware inde-
pendence a double representation of granule objects is required: a Fuzzy Markup Lan-
guage (FML) representation allows to manage the hardware independency, whereas, a
Resource Description Framework (RDF) model is used as objects description for the
autonomous granules composition algorithm. Java, Web Services and JAXB tech-
nologies allow running the FML/RDF granule objects.

The overall view of our architecture is modeled in terms of four fundamental and
complementary sub-systems whose interactions allow designing, developing and put-
ting in work the AmI fuzzy granules. The four sub-systems are:

• Granular Design Environment;
• Granular Run Time Environment;
• Granular Service Retrieval Environment;
• AmI Environment.

 Autonomous Composition of Fuzzy Granules in Ambient Intelligence Scenarios 269

The Granular Design Environment subsystem is an FML-based framework modeling
and managing the fuzzy granule in a hardware-independent and human-oriented way.

The Granular Run Time Environment subsystem is a Java-based framework able to
compute the AmI granular objects through the integration of Web Services and JAXB
technologies.

Granular control activities are managed as services, modeled by FML and trans-
lated into RDF representation in order to be indexed by the Granular Service Re-
trieval Environment subsystem.

AmI Environment subsystem defines the set of fuzzy controlled devices composing
the sensor network.

The communication among the Run Time, Service Retrieval and the AmI envi-
ronment is accomplished by the Internet protocol suites (TCP/IP) and in particular the
HTTP application protocol. From the communication point of view, the ubiquitous
fuzzy computing framework may be considered as a Client/Server system where the
clients are located in the AmI environment and the servers are hosted in RunTime and
Service Retrieval environments.

Within this scenario, we distinguish three basic entities:

1. AmI Client. This entity is located in Fuzzy Control AmI environment; the AmI Cli-
ent demands the appropriate fuzzy objects to Retrieval Server in order to compose
AmI fuzzy granules;

2. Retrieval Server. It hosts the fuzzy objects and it performs the retrieval fuzzy algo-
rithm used by AmI Client to compose the control granules;

3. Run Time Server. It computes the remote granular fuzzy object.

Figure 2 shows a high-level view of system architecture with AmI Clients, Re-
trieval Server and Run Time Server. Before to introduce the framework components
in a detailed fashion, a survey about FML, the fuzzy objects description language,
will be given.

Fig. 2. AmI Granular Ubiquitous Fuzzy System

270 G. Acampora, V. Loia, and A.V. Vasilakos

3 Merging Fuzzy Logic and XML: The Fuzzy Markup Language

In section 1 the AmI context has been defined as an ordered multilevel set of declara-
tive information concerning events occurring both within the sensing domain of a
smart space and within the communication and action domains of the smart space it-
self. Each event consists of a set of features, nominally, when the event has been gen-
erated, what generated the event and in which context the event has been generated.
In order to model this information it is necessary to use theoretical concepts represent-
ing the different AmI context events in an optimal and natural way. Fuzzy Logic and,
in particular, the rules of a fuzzy controller can represent a direct translation of AmI
context definition. In fact, taking into account a generic fuzzy rule it is possible to de-
rive each event-related attribute of context definition (what, when, why, etc.) as
shown in figure 3. Moreover, the AmI environment can be viewed as a collection of
entities that are measurable in fuzzy way. For instance is very simple to model the en-
vironmental temperature notion by means of a fuzzy concept containing three fuzzy
sets labeled, respectively, LOW, MEDIUM and HIGH and each one mapped on an
opportune fuzzy support; the shape of these sets can be chosen in a static way or
through learning mechanism as, for instance, evolutionary methods. From this point
of view, fuzzy logic offers several benefits related to the modeling of complex sys-
tems and the straightforwardness of embedding fuzzy controllers in advanced evolu-
tionary approaches in a rapid way.

Furthermore, fuzzy control theory allows defining the relationships among AmI in-
formation in a linguistic way, i.e., by using the same idea of a human being which
wants to regulate the living environment in order to satisfy its need and requirements
[8]; from a scientific point of view, fuzzy controllers simplify the design and develop-
ment of automatic mechanisms to self-regulation of AmI entities, in fact, the linguistic
approach results, remarkably, more fast and direct than classic PID design methods.

FML is a markup-based general approach to modeling the fuzzy objects and the set
of relations within an AmI environment by using a human-oriented and a hardware-
independent syntax. Our approach uses the FML description to define object collec-
tions, each one able to control a well-defined kind of device; these collections
represent the AmI fuzzy granules.

Details of FML and how FML can be incorporated into the Design subsystem of
our AmI framework are found in the following subsection.

Fig. 3. AmI Fuzzy Control Rule

 Autonomous Composition of Fuzzy Granules in Ambient Intelligence Scenarios 271

3.1 Transparent Fuzzy Control for AmI Context Representation

This section is devoted to present FML, the main tool exploited to design fuzzy object
composing AmI granules.

From a technological point of view, fuzzy control deals with the controller imple-
mentation on a specific hardware by using a public or legacy programming language.
For this reason, independently from the complexity of the addressed application prob-
lem, the development time may be very expensive. In Ambient Intelligence (AmI) en-
vironments, where the ubiquitous computing represents one of the main features, the
possibility of dealing with a considerable number of heterogeneous controlled hard-
ware is high enough to constitute a real impediment to a flexible and efficient control
strategy. In order to solve this drawback, software layers, designed to control hardware
details, are extremely useful. FML (Fuzzy Markup Language) is a software technology
to create fuzzy oriented abstraction tools. FML is XML-based and its syntax is realized
by using a set of tags representing the different components of a fuzzy controller.

Since Zadeh’s coining of the term fuzzy logic [27] and Mamdani’s early demon-
stration of Fuzzy Logic Control (FLC) [12], the scientific community in the theoreti-
cal as well as the application fields of FLC has made enormous progress. A fuzzy
control allows the designer to specify the control in terms of sentences rather than
equations by replacing a conventional controller, say, a PID (proportional integral-
derivative) controller with linguistic IF-THEN rules [13]. As described in previous
sections, the main components of a fuzzy controller are:

• Fuzzy Knowledge Base;
• Fuzzy Rule Base;
• Inference Engine;
• Fuzzification sub-system;
• Defuzzification sub-system.

The Fuzzy Knowledge Base contains the knowledge used by human experts. The
Fuzzy Rule Base represents the set of relations among fuzzy variable defined in the
controller system. The Inference Engine is the fuzzy controller component able to ex-
tract new knowledge from a fuzzy knowledge base and a fuzzy rule base. Extensible
Markup Language (XML) [22] is a simple, very flexible text format derived from
SGML (ISO 8879). Originally designed to meet the challenges of large-scale elec-
tronic publishing, nowadays XML plays a fundamental role in the exchange of a wide
variety of data on the Web, allowing designers to create their own customized tags,
enabling the definition, transmission, validation, and interpretation of data between
applications, devices and organizations. If we use XML, we take control and respon-
sibility for our information, instead of abdicating such control to product vendors.
This is the motivation under FML proposal: to free control strategy from the device.
The technologies used in FML are:

• XML in order to create a new markup language for FLC;
• XML Schema in order to define the legal building blocks of an XML document.

Initially, FML relied on XML Document Type Definition (DTD) [3] because this ap-
proach is able to translate in a direct and simple way the context free grammar theo-
retical concepts into a usable markup language speeding up the language definition.

272 G. Acampora, V. Loia, and A.V. Vasilakos

More recently [2], FML has been defined by using XML Schema. The set of data
types composing a fuzzy controller model using the FML language is structured as an
n-ary tree called FOM (Fuzzy Objects Model). Reasoning in this way, it is possible to
state that each FML program can be associated to an instance of a FOM tree. A por-
tion of XML Schema generating the FML syntax is shown in listing 1.

Currently, we are using FML for modeling two well-known fuzzy controllers:
Mamdani and Takagi-Sugeno-Kang (TSK) [21]. In order to model the Controller node
of a fuzzy tree, the FML tag <FuzzyController> is created (this tag opens any FML
program). <FuzzyController> uses three tags: type, defuzzificationMethod and ip. The
type attribute allows to specify the kind of fuzzy controller, in our case Mamdani or
TSK; defuzzificationMethod attribute defines the defuzzification method used to trans-
late the fuzzy results coming from fuzzy inference engine application into real double
system control values; ip tag will be defined at the end of section. Considering the left
sub-tree, the knowledge base component is encountered. The fuzzy knowledge base is
defined by means of the tag <KnowledgeBase> that maintains the set of fuzzy con-
cepts used to model the fuzzy control system. In order to model each fuzzy concept be-
long in fuzzy knowledge base, it is necessary to use the following XML elements:

• <FuzzyVariable>;
• <FuzzyTerm>;
• a set of tags used to model the shapes defining the fuzzy variable;

<FuzzyVariable> defines the single fuzzy concept, for example Luminosity; <Fuz-
zyTerm> defines a linguistic term describing the fuzzy concept, for example low (lu-
minosity); the set of tags defining the shapes of fuzzy sets are related to fuzzy terms.
The attributes of <FuzzyVariable> tags are: name, scale, domainLeft, domainRight,
type, ip. The name attribute defines the name of fuzzy concept (i.e. time of the day);
scale defines how to measure the fuzzy concept (i.e. hour); domainLeft and domain-
Right model the universe of discourse of fuzzy concept in terms of real values (i.e.
[0000, 2400]); the role of variable (i.e. independent or dependent variable) is defined
by type attribute; ip locates the position of fuzzy knowledge base in the computer
network. <RuleBase> allows the building of the rule base associated with the fuzzy
controller. This tag uses the following attribute: ip. The other tags related to rule base
definition are:

• <Rule>;
• <Antecedent>;
• <Consequent>;
• <Clause>;
• <Variable>;
• <Term>;
• <TSKParams>;
• <TSKParam>.

The <Rule> tag defines a single fuzzy rule by using the <Antecedent> and <Conse-
quent> nested tags; both tags model the fuzzy propositions appearing, respectively, in
antecedent and consequent part of a single rule. Each antecedent fuzzy proposition is
modeled by means of <Clause> tag and its nested elements: <Variable> and <Term>.

 Autonomous Composition of Fuzzy Granules in Ambient Intelligence Scenarios 273

Analogously, each consequent fuzzy proposition is defined by means of <Variable>
and <Term>, in the case of Mamdani controller, or by means of <Variable>,
<TSKParams> and <TSKParam>, in the case of Takagi-Sugeno-Kang controller.

<?xml v e r s i o n=1.0 encoding =UTF 8>
<!edited with XMLSpy v2005
sp1U (http://www. xmlspy.com)
by Gianni Acampora (University of Salerno)
>
<xs:schema xmlns:xs=http://www.w3 .org/2001/XMLSchema

elementFormDefault=qualified
attributeFormDefault=unqualified >

<xs:element
name = FuzzyController
type = FuzzyControllerType>
<xs:annotation>

<xs:documentation>
FuzzyControllerMarkupProgram

</xs:documentation>
</xs:annotation>

</xs:element>
<xs:complexType name = FuzzyControllerType>

<xs:sequence>
<xs:element

name = KnowledgeBase
type = KnowledgeBaseType>
<xs:annotation>

<xs:documentation>
Fuzzy Concepts Collection

</xs:documentation>
</xs:annotation>

</xs : element>
<xs : element name = RuleBase type = RuleBaseType>

<xs:annotation>
<xs:documentation>

FuzzyRulesCollection
</xs:documentation>

</xs:annotation>
</xs:element>

</xs:sequence>
<xs:attribute name = ControllerType>

<xs:simpleType>
<xs:restriction base = xs:string >

<xs:pattern value = mamdani | tsk/>
</xs:restriction >

</xs:simpleType>
</xs:attribute>

. . .

Listing 1. Fuzzy Markup Language XML Schema

274 G. Acampora, V. Loia, and A.V. Vasilakos

Differently from other attributes used in FML language, the ip attribute is not directly re-
lated to the fuzzy logic controller theory. In fact, this attribute contains information de-
fined by means of the following regular expression (expressed in XML Schema syntax):

(1?[0−9]?[0−9]|2[0−4][0−9]|25[0−5]).)3(1?[0−9]?[0−9]|2[0−4][0−9]|25[0−5] :?._)

It is simple to see how this regular expression defines strings such as:

• 192.168.0.4;
• 192.168.0.4:8080;
• 192.168.0.4.8080/FMLWebService;
• etc.

Hence, ip attribute represents TCP/IP endpoint; for instance, in [4] the ip attribute of
<FuzzyController> tag is used to define the address of a TCP Berkeley Socket based
Server computing FML controllers generated in automatic way through a fuzzy induc-
tive algorithm, whereas, in [1] the ip attribute of <FuzzyVariable> and <Rule> tags
is used to distribute (in order to minimize the inference time) the different part of con-
troller on the network by means of a multi-agent system. In this paper the ip attribute
will be used to define the endpoint of web service computing the FML controller.

Listing 2 gives a sample of FML code.

<!DOCTYPE FUZZYCONTROL SYSTEM ”fml . dtd”>
<FUZZYCONTROL de f uz z i f yme thod = ”CENTROID” ip = ”localhost”

type = ”MAMDANI”>
<KNOWLEDGEBASE IP = ”localhost”>
<FUZZYVARIABLE

domainleft = “0” domainright = “1”
ip = ”localhost” name = ”Luminosity”
scale = ”Lux” type = ”INPUT”>
<FUZZYTERM name=”low”>

<PISHAPE
param1 = ”0.0”
param2 = ”0.45”>

</PISHAPE>
</FUZZYTERM>
<FUZZYTERM name=”MEDIUM”>

<PISHAPE
param1 = ”0.49999999999999994”
param2 = ”0.44999999999999996”>

</PISHAPE>
</FUZZYTERM>
<FUZZYTERM name=”HIGH”>

<PISHAPE
param1 = ”0.5501”
param2 = ”1”>

</PISHAPE>
</FUZZYTERM>

</FUZZYVARIABLE>
</KNOWLEDGEBASE>

Listing 2. FML sample program

 Autonomous Composition of Fuzzy Granules in Ambient Intelligence Scenarios 275

<RULEBASE
inferenceengine = ”MINMAXMINMAMDANI”
ip = ”localhost”>
<RULE connector = ”AND” ip = ”localhost” weight = ”1”>

<ANTECEDENT>
<CLAUSE not = ”FALSE”>

<VARIABLE> Luminosity </VARIABLE>
<TERM> low </TERM>

</CLAUSE>
<CLAUSE not = ”FALSE”>

<VARIABLE> hour </VARIABLE>
<TERM> morning </TERM>

</CLAUSE>
</ANTECEDENT>
<CONSEQUENT>

<CLAUSE not = ”FALSE”>
<VARIABLE>dimmer</VARIABLE>
<TERM>medium</TERM>

</CLAUSE>
</CONSEQUENT>

</RULE>
. . .
</RULEBASE>
</FUZZYCONTROL>

Listing 2. (continued)

4 Run Time Subsystem: Implementing the FML Fuzzy Objects

The FML codes represent only a human-oriented and hardware-independent represen-
tation of a fuzzy granule objects, i.e., the FML granules cannot be computed in a
direct way. In other words, an FML compiler is needed to translate the FML model
representing the fuzzy granules into an executable program. We explored different
approaches to implementing the FML compiler: XSLT Stylesheet Translator, JAVA
XML Parser (JAXP) or other XML-based translator technologies. The results led to
the current implementation based on the integration of JAXB (Java Architecture for
XML Binding) with TCP/IP suites protocol.

JAXB represents a direct way to compile and compute the FML services. In fact,
the JAXB allows translating the XML tree structure (in our case, the FOM) into a Java
class’s hierarchy in a direct and simple way via the xjc compiler. The TCP/IP stack al-
lows the design and the development of a remote FML controller; in particular, the
proposed system uses SOAP protocol together with web-services technologies in order
to remote the control task. Specifically, JAXB can generate Java classes from XML
schemas by means of a JAXB binding compiler. The JAXB binding compiler takes
XML schemas as input, and then generates a package of Java classes and interfaces,
which reflect the rules defined in the source schema. These generated classes and inter-
faces are in turn compiled and combined with a set of common JAXB utility packages

276 G. Acampora, V. Loia, and A.V. Vasilakos

Fig. 4. The JAXB/FML/Java binding

to provide a JAXB binding framework. The JAXB binding framework provides meth-
ods for unmarshalling XML instance documents into Java content trees, a hierarchy of
Java data objects that represent the source XML data, and for marshalling Java content
trees back into XML in-stance documents. The JAXB binding framework also pro-
vides methods for validating XML content as it is unmarshalled and marshalled. A
JAXB compiler uses the XML Schema related to FML to build the class hierarchy, and
a set of API to unmarshal the FML file into fuzzy objects hierarchy. The
JAXB/FML/Java binding is depicted in figure 4. The generated objects hierarchy
represents only a static view of FML file. This resource does not embody the fuzzy
methods/operators necessary to perform deduction activity over the fuzzy structures. In
order to complete the Java representation of FML fuzzy controllers, a fuzzy wrapper
class, named FMLController has been coded. In particular, the FMLController class
exhibits a set of methods able to apply the appropriate fuzzy operators to the informa-
tion derived from JAXB objects. Specifically, FMLController constructors allow the
creation of a new fuzzy controller by using the unmarshall method of JAXB-API inde-
pendently from the FML file location (file system or network). Moreover, the public
method named inference applies the opportune deduction engine to the fuzzy informa-
tion contained in JAXB objects. The signature of the inference method is: double in-
ference(double[] input). The inference method reads double values from the controlled
system, applies: the fuzzification operator and the inference engine in sequence, the de-
fuzzification operator and, finally, returns a double value to the system.

The interaction between the controlled system and the FMLController class is per-
formed by two abstract methods, double[] readInputs() and double writeOut-
put(double) whose implementation depends upon network protocol used to interface
the controlled system with AmI Client.

 Autonomous Composition of Fuzzy Granules in Ambient Intelligence Scenarios 277

4.1 Granular Fuzzy Remote Control

The granules composing an AmI environment represent only a logical entity capable
maximizing typical software engineering attributes, as the cohesion, but, however, the
granules objects are distributed on a computer network as FML program and com-
puted through Java/JAXB technologies. In other word the granules objects are dis-
tributed objects. In order to perform a remote execution of FML granular objects, it is
necessary to embed the granular runtime framework into a Web Services environ-
ment. According to the W3C, a Web Service [5] is a software system designed to
support interoperable machine-to-machine interaction over a computer network. It has
an interface that is described in a machine-readable format such as Web Services De-
scription Language (WSDL). Other systems interact with the Web service in a manner
prescribed by its interface using messages, which may be enclosed in a Simple Object
Access Protocol (SOAP) envelope. These messages are typically conveyed using
HTTP protocol and normally comprise XML in conjunction with other Web-related
standards. Software applications written in various programming languages and run-
ning on various platforms can use web services to exchange data over computer net-
works like the Internet in a manner similar to interprocess communication on a single
computer. This interoperability (for example, between Java and Python, or Microsoft
Windows and Linux applications) is due to the use of open standards. The intrinsic in-
teroperability offered by the web services communication paradigm covers in a direct
way the interoperability concepts required by the ubiquitous properties of an AmI sys-
tem. From this point of view the web services represent the communication core of
the proposed AmI system. In fact, it is this interoperability of the web services prop-
erty that is fundamental to achieving the ubiquitous computing and ubiquitous net-
working properties of AmI systems.

In order to compute our FML controller through Web Services technology it is
necessary to use a specific Web Services engine. Our framework uses the Axis engine
to deploy the inference service by means of a Deployment Descriptor (WSDD) for-
mat. Once deployed, the service is ready to accomplish its work when invoked by cli-
ents. Obviously, the clients have to know the address of web services procedure, i.e.,
the web services endpoint. The IP attribute of <FuzzyController> tag present in FML
captures the endpoint information.

5 Retrieval Subsystem: A Semantic View of Fuzzy Granules

This section represents the core of proposed system. It is devoted to present a meth-
odology able to retrieve fuzzy object from the computer networks in order to compose
fuzzy control granules. In details, the proposed algorithm is able to find the most suit-
able set of controllers for a prefixed AmI environment by exploiting a semantic repre-
sentation of FML controllers and the ip attributes of FML programs.

The ip attribute of the root tag of the FML program has been introduced as a key
element to store the web services endpoint address. We present an approach, based on
Semantic Web technology, suitable to retrieving the appropriate FML endpoint. The

278 G. Acampora, V. Loia, and A.V. Vasilakos

basic idea is to exploit information arising from the set of sensor/actuator devices
composing the AmI environment. The endpoint search engine is located on a Re-
trieval Server (see section 2) and it can be viewed in terms of three components:

• AmI Sensor Network Knowledge Client;
• Storing Algorithm;
• Retrieval Algorithm.

The AmI Sensor Network Knowledge Client is located on the AmI clients; the Storing
and Retrieval Algorithms are located on the Retrieval Server. The AmI Sensor Net-
work Knowledge Client collects information from the environment and synthesizes it
in order to trigger the appropriate FML controller request. The Storing and Retrieval
algorithms are designed, respectively, to catalogue FML information in a semantic way
and to manage this repository for fuzzy controller searching. The Retrieval algorithm
uses information generated by Storing algorithm together with information coming
from AmI clients in order to return the appropriate FML Web Services endpoint.

The repository description is based on RDF, a well-known technology coming
from Semantic Web.

In the next subsection we show the fundamental steps concerning three basic ac-
tivities: the collecting of AmI Sensor Network Information, repository building by us-
ing RDF and the FML endpoint search mechanism.

5.1 AmI Sensor Network Knowledge

The AmI clients have to model the controlled Sensor/Actuator Network in a formal
way to communicate the appropriate information to the Retrieval Server. A Sen-
sor/Actuator network is a huge network of distributed devices using sensors/actuators

Fig. 5. Sensor Network Tree

 Autonomous Composition of Fuzzy Granules in Ambient Intelligence Scenarios 279

to monitor/control conditions at different locations. It is possible to use a labeled tree
data structure to model this network containing the following information:

• Number of devices (level one);
• Device information (level two):

– Type (Sensor/Actuator);
– Monitored/Controlled entity (e.g. Temperature) and its scale (e.g. Celsius de-

gree);
– Set of allowable value (e.g. [10, 60])

Figure 5 shows an instance of Sensor Network tree. The information contained in the
labeled tree can be modeled in a machine-readable representation by using XML. This
type of information modeling is used by the Retrieval algorithm to identify the most
suitable FML Web Services endpoints to return to AmI Client.

5.2 Storing Algorithm

The Retrieval Servers have to perform a semantic storing of FML controllers hosted
on it by using the RDF technology.

RDF is a W3C recommendation [16] that was originally designed to standardize
the definition and use of metadata-descriptions of Web-based resources. However,
RDF is equally well suited for representing arbitrary data, be they metadata or not.
The basic building block in RDF is an subject-predicate-object triple, commonly writ-
ten as P(S,O). That is, a subject S has a predicate (or property) P with value O. An-
other way to think of this relationship is as a labeled edge between two nodes: [S] − P
− [O]. This notation is useful because RDF allows subjects and objects to be inter-
changed. Thus, any object from one triple can play the role of a subject in another tri-
ple, which amounts to chaining two labeled edges in a graphic representation. RDF
also allows a form of reification in which any RDF statement itself can be the subject
or object of a triple. This means graphs can be nested as well as chained. The RDF
Model and Syntax specification also proposes XML syntax for RDF data models. The
FML/RDF storing mechanism is performed through two different steps:

1. FML fuzzy services semantic translation;
2. FML Semantic storing into semantic repository.

The information contained in FML files represents only a tree-structured model,
tags oriented, of a fuzzy controller providing the main benefits of XML representa-
tion. However, the information modeled by an XML representation (FML, in our
case) are not semantically defined, i.e., XML doesn’t allows the definition of a set of
fuzzy-relations between the defined tags and attributes. For instance, by using the
FML syntax, the fuzzy variables defined into knowledge base sub tree are not the
same entities contained in fuzzy rules; in fact different tree nodes are used to model
the same concept.

Using the RDF technology solves this drawback. The RDF metadata model is
based upon the idea of making statements about resources in the form of a subject-
predicate-object expression, called a triple in RDF terminology. In our case, the re-
sources are the FML fuzzy components. In this section, the semantic representation of

280 G. Acampora, V. Loia, and A.V. Vasilakos

fuzzy controllers is introduced in terms of RDF. The semantic translation is accom-
plished by using XSLT where the domain is the set of fuzzy services modeled by
FML and the codomain is the set of semantic models of fuzzy services expressed by
RDF. The XSLT function computes a translation from the FML tree (the FOM) to the
RDF graph. The resulting graph differs from the input FML tree in the number of
edges composing the data structure. In fact, the RDF graph shows, differently from
the FML tree, a set of graph cycles representing the fuzzy relations among the fuzzy
components modeled in the FML representation. Both definitions are obtained from a
FML service description by using the XSLT translation. Once he semantic representa-
tion of FML service has been obtained it is necessary to store it in a semantic reposi-
tory in order to enable the users (people or external systems) to query information
about the web services controller endpoint. The proposed AmI framework uses Ses-
ame [6] server in order to manage the semantic repository and Sesame SAIL API to
enable the semantic queries from external systems, for example, the AmI clients. The
execution flow of the storing algorithm is shown in figure 6.

Fig. 6. FML to RDF: Storing Algorithm

Fig. 7. XML to RDQL: Semantic query creation

5.3 Retrieval Algorithm

The Retrieval Algorithm represents the computational kernel of the AmI Granular Re-
trieval component. Its main aim is to find the appropriate fuzzy service able to control
the environment by using the semantic information contained in the RDF description
located on the Retrieval Server and the XML information coming from the AmI cli-
ent. The appropriate fuzzy service is found by comparing, in a semantic way, the in-
formation contained in the XML description of the AmI environment with the triple
set of RDF fuzzy service description.

RDQL [20] represents a fast and direct way to retrieve semantic information from
RDF repositories. Its syntax is based on the classic SQL query language. Thus, the
steps of the retrieval algorithm are:

 Autonomous Composition of Fuzzy Granules in Ambient Intelligence Scenarios 281

1. to accept requests from AmI clients in XML format;
2. to convert the XML information into a string representing an RDQL query;
3. to compute the RDQL query obtained in a previous step;
4. to return the FML endpoint information to the AmI client.

The Retrieval Servers communicate with the AmI Client by using the TCP Sock-
ets. In particular, the Retrieval Servers listen to the client requests on a prefixed TCP
port, open a TCP socket communication with client, accept the XML information,
compute the XML data and return the appropriate endpoint value on socket.

Once it has received the XML AmI description from the AmI client, the Retrieval
server creates an XML file containing this information and uses it to compute the
RDQL query. The transformation from XML to RDQL is accomplished by using the
XSLT tool as shown in figure 7. In particular, the XML-RDQL XSLT translation
maps each XML entry into a RDQL query portion generated by using the template of
listing 3.

Starting from the XML code, representing the client knowledge, and the RDQL
template presented in listing 3, the XSLT translation generates the RDQL query
shown in listing 4. Row 1 represents the (eventual) return data of query computation,
the FML endpoint, whereas, the query portion between row 3 and row 10 identifies
the parameters of input variable.

SELECT ? endpoint
WHERE ?x <fml : hasEndPoint> ? endpoint

?x <fml : hasKnowledgeBase> ?y
?y <r df : li > ? z
? z <fml : hasName> NameOfVariable
? z <fml : hasScal e> ScaleOfVariable
? z <fml : type> TypeOfVariable
? z <fml : domainLeft> ? inf
? z <fml : domainRight> ? sup
AND ? inf<=LeftDomainOfVariable
? sup>=RightDomainOfVariable
USING fml = http://www.dmi .unisa.it/fml#

Listing 3. RDQL query template

SELECT ? endpoint
WHERE ?x <fml : hasEndPoint> ? endpoint

?x <fml : hasKnowledgeBase> ?y
?y <rdf : li > ? z
? z <fml : hasName> Temperature
? z <fml : hasScale> Celsius Degree
? z <fml : type> input
? z <fml : domainLeft> ? inf
? z <fml : domainRight> ? sup
AND ? inf <=10 ? sup>=60
USING fml = http://www.dmi.unisa .it/fml#�

Listing 4. RDQL/XSLT query sample

282 G. Acampora, V. Loia, and A.V. Vasilakos

This query portion is univocally defined for each XML request. The rest of the query
is obtained starting from the information contained in the XML request. In particular,
the row 3 is used to retrieve the Fuzzy Knowledge Base information from the RDF
fuzzy model in order to analyze its components (the fuzzy variables). The analysis of
each fuzzy variable is accomplished from row 4 to row 10. Particularly, rows from 5
to 9 are used to set the fuzzy variable name, scale, type and the universe of discourse
coming from the AmI environment into RDQL query.

Once it has realized the RDQL query, the retrieval algorithm uses the Sesame
SAIL API in order to deduct new information from the RDF repositories. In particu-
lar, this information is represented from the endpoint of the FML controller able to
control the data contained in the XML request. This endpoint, successively, is sent to
the AmI client where it will be used to interface the controlled AmI environment with
the automatic remote fuzzy controller.

6 Case Study and Experimental Results

As mentioned in the paper introduction, the proposed granular ubiquitous system can
be exploited in many applicative fields, but its potential is clearly highlighted by hu-
man-centric applications. For this reason a domotic application (as known as Home
Automation application) could be represent an interesting case study on which the
FML based ubiquitous findability system can be applied to check and validate the
suitability of proposed framework to real world applications.

Each domotic application needs of control network infrastructure capable of inter-
connecting the set of sensors/actuators among them and interfacing this network with
the typical TCP/IP data network. By means of this interface is possible to control the
set of domestic devices through a network of dedicated agents hosted on distributed
computing devices. Our application exploits the Lonworks technologies and, conse-
quently, the Lontalk control network protocol to manage the details about ambient in-
telligence internetworking.

In order to test the proposed ambient intelligence framework, it is fundamental to
simulate the upload of FML files on the servers introduced in previous sections. This
simulated controllers uploading will allows FML clients to retrieve the appropriate
controllers by means of semantic analysis based on RDF language. This case study
exploits a modified evolutionary approach to generate, randomly, a collection of FML
files that, successively, will be uploaded on aforesaid servers. At same time, the FML
client hosted in our test environment will query the servers to search the right control-
lers. Our aim is to quantify the time taken from the client to learn this FML collection.
At the end of this step, the success search probability will be computed.

6.1 Evolutionary FML Controllers Generation

In this section the algorithm exploited to generate a collection of FML code will be
highlighted. As previously mentioned, this algorithm uses theories coming from evo-
lutionary methodologies area, in particular, a modified model of genetic algorithm.
More in detail, our approach exploits the classical operators employed in the genetic
schema as the crossover and mutation by omitting the selection operator and fitness

 Autonomous Composition of Fuzzy Granules in Ambient Intelligence Scenarios 283

function concept because they are related to optimization context of genetic algo-
rithm, while, in our approach only the population evolution has to be dealt. In order to
start the FML genetic evolution is necessary a collection of ambient intelligence vari-
ables on which generate the FML controllers. Let Variables be this collection of vari-
ables. Each variable, as previously depicted, is characterized by name, universe of
discourse, type (input or output) and a collection of fuzzy terms. The pseudocode in
listing 5 shows how, starting from Variables set, the FML collection is generated:

k = number of algorithm iterations
i = 0
while (i < k) {

FMLCollection = 0
Choose , randomly , a number n (1 <= n <= #Variables)
Choose , randomly , a number n (1 <= m <= #Variables)
Extracts n input variables from Variables and put them in Input set .
Extracts m input variables from Variables and put them in Output set.
Code the Input variables in FML
Code the Output input variable s in FML
Choose , randomly , a number r
Generate r fuzzy rules by , randomly , choosing the fuzzy terms from Input and Out-
put set.
Add rules to Rules s t
Code the r u l e b a s e Rules in FML.
Add the gene rat ed FML program to FMLCollection
Choose , randomly , a number , g
j = 0
while j < g {

apply g times the genetic operator (crossover and mutation)
Add the generated FML program to FMLCollection

}
Upload the FMLCollection on Servers
}

Listing 5. Evolutionary FML Code Generation

The crossover operator is applied on a pair of rules by crossing the antecedent part of
first rule with consequent part of second rule, and vice versa. The mutation operator
changes the fuzzy term value of a rule clause (input or output) in a random way. This
algorithm generates at most k · (g+1) different FML controllers that, successively,
will be coded in RDF and upload on the servers. Reasoning in this way, the client will
find the appropriate controllers with probability, at most,

where ci is the number of fuzzy term related to ith
 fuzzy variable, n is the number of

clauses in rule antecedent part, m is the number of clauses of rule consequent part and
r is the total number of rules.

284 G. Acampora, V. Loia, and A.V. Vasilakos

Fig. 8. p = k·(g+1)/325 Probability Map

Our aim is to find the most suitable values of k and g in order to achieve the fol-
lowing tradeoff: the client finds the appropriate FML controller in the quickest way.
In order to evaluate these values is possible to analyze the following simplified
mathematical representation of the aforementioned probability:

where n=4, m=1, r=5 and c1 = c2 = . . . = c25 = 3. Figure 8 shows the diagram of
function p, where g varies on horizontal axis, p(g) varies on vertical axis and k repre-
sents the map parameter; the arrow individuates the increase direction of k. Starting
from this graphical analysis it is clear that the are necessary exponential values of the
parameter k to increase to probability p to 1.

In short, the proposed approach could be efficient if the number of server users grows
in exponential way regarding the number of queries carried out from client users.

7 Related Works and Final Consideration

In recent years, we have witnessed the rapidly growing role of Human-Centric sys-
tems as a novel computational paradigm implementing a pervasive framework by fo-
cusing on the human and on its interactions with electronic equipments.

Ambient Intelligence can be considered as a new means of distributing network of
intelligent devices that provides information, communication, and entertainment
around human beings. These systems adapt to the user in a context-aware fashion and
differ substantially from contemporary equipment in their appearance in people envi-
ronments, and in the way users interact with them. The recent developments not only

 Autonomous Composition of Fuzzy Granules in Ambient Intelligence Scenarios 285

define new market opportunities but also define new challenging tasks for designers,
requiring complex AmI systems design as well as strong flexibility and interoperabil-
ity. This complexity stimulates the developments of sophisticated information tech-
nologies skilled to model and realize integrated networks of smart devices where it is
possible to dynamically program devices’ behavior and making aspects of the pro-
grammability accessible to third-party vendors and users. This abstractness is needed
to free “control” service, traditionally closed and static inside the device towards more
dynamic environments where all devices and services seamlessly interoperate and co-
operate with each other.

Several implementations of automatic controllers for AmI environments have been
implemented, but only recently the interest of the scientific community in finding ap-
propriate solutions to control large-scale systems has produced an uninterrupted flow
of results, some of them involving Fuzzy Logic theories. In [9], a novel type-2 fuzzy
system adaptive architecture for agents embedded in ambient intelligent environments
(AIEs) is presented. Other approaches have been proposed for the development of
learning architectures to devices control in intelligent buildings. In [11] an evolution-
ary algorithm is analyzed as a candidate for the initial phases of the design of such ar-
chitectures: fuzzy controllers for the devices are offline induced from data sampled
from the environment. Other computational intelligence methodologies have been ap-
plied to AmI; for instance, in [18] a novel connectionist embedded agent architecture
that combines the use of unobtrusive and relatively simple sensors and employs a con-
structive algorithm with temporal capabilities which is able to recognize different
high level activities (such as sleeping, working at computer, eating) is depicted. Other
recent surveys on AmI researches can be found in [7] where an advanced fuzzy-based
telecare system is developed. The previous works witness the strategic role played by
Fuzzy Logic when applied in a general design methodology applied to complex sys-
tem. In our approach we follow this trend, renforcing a deeper view abong three ac-
tors: the power of fuzzy control (where the power is expressed in terms of user-
centered description of control activity), the abstract description level (arising from
FML), and the open computational framework that envisage a platform for ubiquitous
fuzzy control.

This paper reports our efforts to design and implement a collaborative network sys-
tem capable of deploying a set of ubiquitous fuzzy granules together with a autonomous
composition framework based on semantic web theories offering a method to, dynami-
cally, search and compute the most suitable set of control objects in order to satisfying
the user’s needs and preferences as required by AmI paradigm. In other words, the pro-
posed framework allows human beings to be considered as the core of a distributed en-
vironment capable of adapting itself in order to satisfy the main user’s requirements.

References

1. Acampora, G., Loia, V.: Fuzzy control interoperability for adaptive domotic framework.
In: Proceedings of IEEE International Conference on Industrial Informatics, pp. 184–189
(2004)

2. Acampora, G., Loia, V.: Enhancing the fml vision for the design of open ambient intelli-
gence environment. In: Proceedings of IEEE International Conference on Systems, Man
and Cybernetics, vol. 3, pp. 2578–2583 (2005a)

286 G. Acampora, V. Loia, and A.V. Vasilakos

3. Acampora, G., Loia, V.: Fuzzy control interoperability and scalability for adaptive domo-
tic framework. IEEE Transactions on Industrial Informatics 1(2), 97–111 (2005b)

4. Acampora, G., Loia, V.: Using fml and fuzzy technology in ambient intelligent environ-
ments. International Journal of Computational Intelligence Research 1, 171–182 (2005c)

5. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.:
Web services architecture. In: World-Wide-Web Consortium, W3C (2003)

6. Broekstra, J., Kampman, A., van Harmelen2, F.: Sesame: A generic architecture for stor-
ing and querying rdf and rdf schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002.
LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)

7. Clarke, N., Lee, B., Majeed, B., Martin, T.: Long term condition monitoring for tele-care
systems. In: Proceedings of IASTED International Conference on Artificial Intelligence
and Applications (2005)

8. Gaertner, N., Thirion, B.: A framework for fuzzy knowledge based control. Software:
Practice and Experience 30, 1–15 (2000)

9. Hagras, H., Doctor, F., Callaghan, V., Lopez, A.: An incremental adaptive life long learn-
ing approach for type-2 fuzzy embedded agents in ambient intelligent environments. IEEE
Transactions on Fuzzy Systems 15, 41–55 (2007)

10. Lonworks, http://www.echelon.org
11. Lopez, A., Sanchez, L., Doctor, F., Hagras, H., Callaghan, V.: An evolutionary algorithm

for the off-line data driven generation of fuzzy controllers for intelligent buildings. In:
Proceedings of IEEE International Conference on Systems, Man and Cybernetics. Pro-
ceedings of IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp.
42–47 (2004)

12. Mamdani, E.: Applications of fuzzy algorithms for simple dynamic plants applications of
fuzzy algorithms for simple dynamic plants applications of fuzzy algorithms for simple
dynamic plants. IEE 121, 1585–1588 (1974)

13. Mamdani, E., Assilian, S.: An experience in linguistic synthesis with a fuzzy logic control-
ler. an experience in linguistic synthesis with a fuzzy logic controller. International Journal
of Man-Machine Studies 7, 1–13 (1975)

14. Mozer, M.C.: The Neural Network House: An Environment that Adapts to its Inhabitants.
In: Coen, M. (ed.) Proceedings of the American Association for Artificial Intelligence
Spring Symposium on Intelligent Environments, pp. 110–114. AAAI Press, Menlo Park
(1998)

15. Nijholt, A., Heylen, D.: Multimodal communication in inhabited virtual environments. In-
ternational Journal of Speech Technology 5, 343–354 (2002)

16. Lassila, O., Swick, R.R.: Resource description framework (rdf) model and syntax specifi-
cation. W3C recommendation (1999)

17. Piva, S., Marchesotti, L., Bonamico, C., Regazzoni, C.: Context based message selection
strategies in a biologically inspired ambient intelligence system. In: Proceedings of Brain
Inspired Cognitive Systems (2004)

18. Rivera-Illingworth, F., Callaghan, V., Hagras, H.: A neural network agent based approach
to activity detection in ami environments. In: The IEE International Workshop on Intelli-
gent Environments, pp. 92–99 (2005)

19. Rutishauser, U., Joller, J., Douglas, R.: Control and learning of ambience by an intelligent
building. IEEE Trans. on Systems, Man and Cybernetics:A, Special Issue on Ambient In-
telligence (2004)

20. Seaborne, A.: Rdql - a query language for rdf. W3c member submission, Hewlett Packard
(2004)

 Autonomous Composition of Fuzzy Granules in Ambient Intelligence Scenarios 287

21. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling
and control. IEEE Transactions on Systems, Man, and Cybernetics 15, 116–132 (1985)

22. Bray, T., Paoli, J., Sperberg-McQueen, C.: W3c recommendation. extensible markup lan-
guage (xml) 1.0 iii edition. W3C recommendation (1998)

23. Vasilakos, A., Pedrycz, W. (eds.): Ambient Intelligence, Wireless Networking, Ubiquitous
Computing. Artech House Press, MA (2006)

24. Wagelaar, D.: Towards a Context-Driven Development Framework for Ambient Intelli-
gence. In: Proceedings of the 24th International Conference on Distributed Computing
Systems Workshops (ICDCSW 2004), pp. 304–309 (2004)

25. X10, http://www.x10.org
26. ZigBee, http://www.zigbee.org
27. Zadeh, L.: Fuzzy set. Information Control 8, 338–353 (1965)

	Autonomous Composition of Fuzzy Granules in Ambient Intelligence Scenarios
	Introduction
	A Framework for AmI Autonomous Fuzzy Granular Computing
	AmI Autonomous Fuzzy Granular Computing Architecture

	Merging Fuzzy Logic and XML: The Fuzzy Markup Language
	Transparent Fuzzy Control for AmI Context Representation

	Run Time Subsystem: Implementing the FML Fuzzy Objects
	Granular Fuzzy Remote Control

	Retrieval Subsystem: A Semantic View of Fuzzy Granules
	AmI Sensor Network Knowledge
	Storing Algorithm
	Retrieval Algorithm

	Case Study and Experimental Results
	Evolutionary FML Controllers Generation

	Related Works and Final Consideration
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

