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Abstract. In ubiquitous computing, users are expected to continuously interact with
computing devices, to suggest strategies and hypotheses, to pass over new facts from
domain knowledge, to explain untypical cases in dialogs with the devices, etc. These
devices therefore need to, at least in an approximate sense, understand the compound,
vague concepts used by humans. We discuss current results and research directions
on the approximation of compound vague concepts, which are based on rough-granular
computing. In particular, we use hierarchical methods for the approximation of domain
ontologies of vague concepts. We also discuss an extension of the proposed approach for
approximate reasoning about interactive computations performed on complex granules
by systems of agents in dynamically changing environments.

1 Selected Basic Issues on Granular Computing

In this section, we discuss some basic issue of Granular Computing (GC). We
consider granules as constructive definitions of sets used in assembling objects
satisfying a given specification at least to satisfactory degree. Granules are usu-
ally defined by granule systems [51, 52] in which some elementary granules are
distinguished, together with operations making it possible to define new granules
from these elementary granules, or from already defined granules. Among special
types of operations on granules, one can distinguish the fusion and decomposition
operations. For more readings on GC, the reader is referred to [2, 35, 38, 39, 42].

1.1 Synthesis of Complex Objects Satisfying Vague Specifications

One of the central issues related to granules is the definition of inclusion relations
and closeness relations (measures). The concept of rough inclusion from rough
mereology [45] can be used as a starting point in searching for constructive
measures of inclusion or closeness of granules. Note that these measures should
be defined for granules with different complexity structures.

In real-life applications, we often deal with problems where not only is the in-
formation about objects partial, but also the specification of problems is written
in natural language. Hence, such specifications involve vague or/and imperfect
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concepts. Problems we are trying to solve can be characterized as searching for
complex objects satisfying a given specification to a satisfactory degree [45].
These complex objects should be synthesized from more elementary ones us-
ing available operations. Moreover, usually only partial information about these
objects and concepts used in the specifications are available.

In the following section, we discuss searching for relevant granules as a kind
of optimization problem in GC.

1.2 Optimization in Discovery of Compound Granules

This section is based on the approach discussed in [20, 30].
The problem considered in this section is the evaluation of perception as a

means of optimizing various tasks. The solution to this problem hearkens back
to early research on rough set theory and approximation. For example, in 1982,
Ewa Or�lowska observed that approximation spaces serve as a formal counterpart
of perception.

In this chapter, the evaluation of perception is at the level of approximation
spaces. The quality of an approximation space relative to a given approximated
set of objects is a function of the description length of an approximation of the
set of objects and the approximation quality of this set. In granular computing
(GC), the focus is on discovering granules satisfying selected criteria. These
criteria take inspiration from the minimal description length (MDL) principle
proposed by Jorma Rissanen in 1983. In this section, the role of approximation
spaces in modeling compound granules satisfying such criteria is discussed.

First, we recall the definition of an approximation space from [50]. Approxi-
mation spaces can be treated as granules used for concept approximation. They
are examples of special parameterized relational structures. Tuning parameters
make it possible to search for relevant approximation spaces relative to given
concepts.

Definition 1. A parameterized approximation space is a system
AS#,$ = (U, I#, ν$), where
• U is a non-empty set of objects,
• I# : U → P (U) is an uncertainty function, where P (U) denotes the power

set of U ,
• ν$ : P (U) × P (U) → [0, 1] is a rough inclusion function,

and #, $ denote vectors of parameters (the indexes #, $ will be omitted if it does
not lead to misunderstanding).

The uncertainty function defines for every object x, a set of objects described
similarly to x. The set I(x) is called the neighborhood of x (see, e.g., [36, 50]).

The rough inclusion function ν$ : P (U)×P (U) → [0, 1] defines the degree of
inclusion of X in Y , where X, Y ⊆ U .

In the simplest case it can be defined by (see, e.g., [50, 36]):

νSRI (X, Y ) =

{
card(X∩Y )

card(X) , if X �= ∅,
1, if X = ∅.
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The lower and the upper approximations of subsets of U are defined as follows.

Definition 2. For any approximation space AS#,$ = (U, I#, ν$) and any subset
X ⊆ U , the lower and upper approximations are defined by

LOW
(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) = 1} ,

UPP
(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) > 0}, respectively.

The lower approximation of a set X with respect to the approximation space
AS#,$ is the set of all objects that can be classified with certainty as objects of
X with respect to AS#,$. The upper approximation of a set X with respect to
the approximation space AS#,$ is the set of all objects which can be possibly
classified as objects of X with respect to AS#,$.

Several known approaches to concept approximation can be covered using this
approach to approximation spaces (see, e.g., references in [50]). For more details
on approximation spaces, the reader is referred to, e.g., [10, 37, 53, 41, 44].

A key task in granular computing is the information granulation process that
leads to the formation of information aggregates (with inherent patterns) from a
set of available objects. A methodological and algorithmic issue is the formation
of transparent (understandable) information granules inasmuch as they should
provide a clear and understandable description of patterns present in sample
objects [2, 39]. Such a fundamental property can be formalized by a set of con-
straints that must be satisfied during the information granulation process. Use-
fulness of these constraints is measured by the quality of an approximation space:

Quality1 : Set AS × P (U) → [0, 1],

where U is a non-empty set of objects and Set AS is a set of possible approxi-
mation spaces with the universe U.

Example 1. If UPP (AS, X)) �= ∅ for AS ∈ Set AS and X ⊆ U then

Quality1(AS, X) = νSRI(UPP (AS, X), LOW (AS, X)) =
card(LOW (AS, X))
card(UPP (AS, X))

.

The value 1 − Quality1(AS, X) expresses the degree of completeness of our
knowledge about X , given the approximation space AS.

Example 2. In applications, we usually use another quality measure analogous to
the minimal length principle [47, 56] where also the description length of approx-
imation is included. Let us denote by description(AS, X) the description length
of approximation of X in AS. The description length may be measured, e.g., by
the sum of description lengths of algorithms testing membership for neighbor-
hoods used in construction of the lower approximation, the upper approximation,
and the boundary region of the set X . Then the quality Quality2(AS, X) can
be defined by

Quality2(AS, X) = g(Quality1(AS, X), description(AS, X)),

where g is a relevant function used for fusion of values Quality1(AS, X) and
description(AS, X). This function g, for instance, may involve weights assigned
by experts to both criteria.
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Fig. 1. Granulation of parameterized approximation spaces

One can consider different optimization problems relative to a given class Set AS
of approximation spaces. For example, for a given X ⊆ U and a threshold t ∈
[0, 1], one can search for an approximation space AS satisfying the constraint
Quality2(AS, X) ≥ t.

Another example involves searching for an approximation space satisfying ad-
ditionally the constraint Cost(AS) < c where Cost(AS) denotes the cost of an
approximation space AS (e.g., measured by the number of attributes used to de-
fine neighborhoods in AS) and c is a given threshold. In the following example,
we consider also costs of searching for relevant approximation spaces in a given
family defined by a parameterized approximation space (see Figure 1). Any pa-
rameterized approximation space AS#,$ = (U, I#, ν$) is a family of approxima-
tion spaces. The cost of searching in such a family for a relevant approximation
space for a given concept X approximation can be treated as a factor of the
quality measure of approximation of X in AS#,$ = (U, I#, ν$). Hence, such a
quality measure of approximation of X in AS#,$ can be defined by

Quality3(AS#,$, X) = h(Quality2(AS, X), Cost Search(AS#,$, X)),

where AS is the result of searching in AS#,$, Cost Search(AS#,$, X) is the
cost of searching in AS#,$ for AS, and h is a fusion function, e.g., assuming
that the values of Quality2(AS, X) and Cost Search(AS#,$, X) are normalized
to interval [0, 1] h could be defined by a linear combination of Quality2(AS, X)
and Cost Search(AS#,$, X) of the form

λQuality2(AS, X) + (1 − λ)Cost Search(AS#,$, X),

where 0 ≤ λ ≤ 1 is a weight measuring an importance of quality and cost in
their fusion.
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We assume that the fusion functions g, h in the definitions of quality are
monotonic relative to each argument.

Let AS ∈ Set AS be an approximation space relevant for approximation
of X ⊆ U , i.e., AS is the optimal (or semi-optimal) relative to Quality2.
By Granulation(AS#,$) we denote a new parameterized approximation space
obtained by granulation of AS#,$. For example, Granulation(AS#,$) can be
obtained by reducing the number of attributes or inclusion degrees (i.e., pos-
sible values of the inclusion function). Let AS′ be an approximation space
in Granulation(AS#,$) obtained as the result of searching for optimal (semi-
optimal) approximation space in Granulation(AS#,$) for approximation of X .

We assume that three conditions are satisfied:

• after granulation of AS#,$ to Granulation(AS#,$) the following property
holds: the cost

Cost Search(Granulation(AS#,$), X),

is much lower than the cost Cost Search(AS#,$, X);
• The description(AS′, X) is much shorter than the description(AS, X), i.e.,

the description length of X in the approximation space AS′ is much shorter
than the description length of X in the approximation space AS;

• Quality1(AS, X) and Quality1(AS′, X) are sufficiently close.

The last two conditions should guarantee that the values Quality2(AS, X)
and Quality2(AS′, X) are comparable and this condition together with the first
condition about the cost of searching should assure that

Quality3(Granulation(AS#,$, X)) is much better than Quality3(AS#,$, X).

Taking into account that parameterized approximation spaces are examples of
parameterized granules, one can generalize the above example of parameterized
approximation space granulation to the case of granulation of parameterized
granules.

In the process of searching for (sub-)optimal approximation spaces, different
strategies may be used. Let us consider an example of such strategies [55]. In
the example, DT = (U, A, d) denotes a decision system (a given sample of data),
where U is a set of objects, A is a set of attributes and d is a decision. We assume
that for any object x, only partial information, equal to the A-signature of x (ob-
ject signature, for short), is available, i.e., InfA(x) = {(a, a(x)) : a ∈ A} and
analogously for any concept, only partial information about this concept by a
sample of objects is provided, e.g., in the form of decision table. One can use ob-
ject signatures as new objects in a new relational structure R. In this relational
structure R some relations between object signatures are also modelled, e.g., de-
fined by the similarities of these object signatures. Discovery of relevant relations
on object signatures is an important step in searching for relevant approxima-
tion spaces. In this way, a class of relational structures representing perception
of objects and their parts is constructed. In the next step, we select a language
L of formulas expressing properties over the defined relational structures and
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we search for relevant formulas in L. The semantics of formulas (e.g., with one
free variable) from L are subsets of object signatures. Observe that each object
signature defines a neighborhood of objects from a given sample (e.g., decision
table DT ) and another set on the whole universe of objects being an extension
of U . Thus, each formula from L defines a family of sets of objects over the sam-
ple and also another family of sets over the universe of all objects. One can use
such families can to define new neighborhoods of a new approximation space,
e.g., by taking their unions. In the searching process for relevant neighborhoods,
we use information encoded in the given sample. More relevant neighborhoods
make it possible to define relevant approximation spaces (from the point of view
of the optimization criterion). It is worth to mention that often this searching
process is even more sophisticated. For example, one can discover several rela-
tional structures (e.g., corresponding to different attributes) and formulas over
such structures defining different families of neighborhoods from the original
approximation space. Next such families of neighborhoods can be merged into
neighborhoods in a new approximation space. This kind of modeling is typical
for hierarchical modeling [8], e.g., when we search for a relevant approximation
space for objects composed from parts for which some relevant approximation
spaces have been already found.

2 Granular Computing and Human Perception: Learning
in Dialog with Human Experts

The hierarchical learning approach takes advantage of additional domain knowl-
edge provided by human experts. In order to best employ this knowledge, it
relies on the observation that human thinking and perception in general, and
their reasoning while performing classification tasks in particular, can:

• inherently comprise different levels of abstraction,
• display a natural ability to switch focus from one level to another,
• operate on several levels simultaneously.

Such processes are natural subjects for the Granular Computing paradigm,
which encompasses theories, methods, techniques and tools for such fields as
problem solving, information processing, human perception evaluation, analysis
of complex systems and many others. It is built around the concept of informa-
tion granules, which can be understood as collections of values that are drawn
together by indistinguishability, equivalence, similarity, or proximity [63]. Gran-
ular Computing follows the human ability to perceive things in different levels
of abstraction (granularity), to concentrate on a particular level of interest while
preserving the ability to instantly switch to another level in case of need. This
allows to obtain different levels of knowledge and, which is important, a better
understanding of the inherent structure of this knowledge.

The concept of information granules is closely related to the imprecise nature
of human reasoning and perception. Granular Computing therefore provides ex-
cellent tools and methodologies for problems involving flexible operations on
imprecise or approximated concepts expressed in natural language.
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One of the possible approaches in developing methods for compound concept
approximations can be based on the layered (hierarchical) learning [11, 57]. In-
ducing concept approximation should be developed hierarchically starting from
concepts that can be directly approximated using sensor measurements toward
compound target concepts related to perception. This general idea can be re-
alized using additional domain knowledge represented in natural language. For
example, one can use some rules of behavior on the roads, expressed in natu-
ral language, to assess from recordings (made, e.g., by camera and other sen-
sors) of actual traffic situations, if a particular situation is safe or not (see, e.g.,
[8, 9, 14, 31]). The hierarchical learning has been also used for identification of
risk patterns in medical data and extended for therapy planning (see, e.g. [6, 7]).
Another application of hierarchical learning for sunspot classification is reported
in [33]. To deal with such problems one should develop methods for concept
approximations together with methods aiming at approximation of reasoning
schemes (over such concepts) expressed in natural language. The foundations
of such an approach, creating a core of perception logic, are based on rough
set theory [14, 36, 37] and its extension rough mereology [35, 45, 51]. The (ap-
proximate) Boolean reasoning methods can be scaled to the case of compound
concept approximation.

Let us observe that hierarchical modeling employs some general mechanisms
emphasized in [22] dealing with a kind of “interplay” between syntax and se-
mantics. The key observation is that the syntax on one level is used to define
semantical structures (or their clusters) on the next level of hierarchy. One can
interpret them in the framework of the Bairwise classifications [4] as operations
on such classifications or as a kind of sums of information systems [54]. They
allow us gradually to model structures of granules representing “wider” context
of perceived objects. In this way, it is possible to construct more compound gran-
ules interpreted, e.g., as patterns representing properties of, e.g., time windows
of states, sequences of such time windows, sets of such sequences, etc.

2.1 Hierarchical Modeling and Dealing with Ill-Posed Problems:
Toward Generalization of the Minimal Length Principle to the
Case of Concept Ontology

As pointed out in [61], machine learning problems can be considered as inverse
problems, and in a broad view,

A(f) = d,

where A can be understood as a model for a phenomena, f ∈ F represents a
function of some of the model’s causal factors, chosen from a class F of can-
didate functions, and d denotes some actual observation data pertaining to the
phenomena, are generally ill-posed, which means the solution f might not exist,
might not be unique, and most importantly, might not be stable. Namely, with
a small deviation δ in the output data dδ, we have

Rδ(f) = ‖A(f) − dδ‖, (1)
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not tending to zero even if δ tends to zero, where ‖ · ‖ is any divergence metrics
appropriate for f , meaning arbitrarily small deviations in data may cause large
deviations in solutions.

One can also give another interpretation of the equation (1). The operator A
can be interpreted as a (vague) specification (constraints) of the problem and the
goal is to find a solution f satisfying the specification to a satisfactory degree.
This satisfactory degree is expressed in (1) by means of the norm. Note that, very
often, while dealing with real-life problems we have only a vague specification A
rather than a crisp operator A. Moreover, due to the uncertainty in specification
of A and f the quality measures often can only be estimated from available
data. In consequence, one can hardly expect that the relevant measures would
be expressed in well known spaces with norms as in (1). In such cases one should
look for some other avenues to express, e.g., the phrase a solution should satisfy
a given specification to satisfactory degree [30].

For dealing with ill posed problems the regularization theory was proposed.
The idea of regularization is due to Tikhonov (1963, see [60]). Instead of the
equation (1) the following one is considered:

Rδ,γ(f) = ‖A(f) − dδ‖ + γW (f), (2)

where W (f) is a functional measuring the “simplicity” of the solution f and γ is
a parameter (adjustable in the learning process).

Now, in the equation (2) we have a sum of two arguments. The first one ex-
presses the quality of the solution f and the second one expresses, in a sense, the
description length of the solution, using the terminology related to the minimal
length principle. For a given parameter γ we are searching for f by minimizing
the value of Rδ,γ(f). By choosing different values of γ we may alter our priority
given to the first or the second summand of the sum in (2).

Fundamental pattern recognitions problems such as class probability density
function estimation from a wide set of potential densities, or parametric estima-
tion of optimal feature subsets, are ill-posed.

On the other hand, if the model A can be decomposed into a combination
of simpler sub-models Ai, e.g. those involving search spaces with lower Vapnik-
Chervonenkis (VC) dimensions, or those for which respective stable sub-solutions
fi can be found inexpensively, chances are that we’ll be able to assemble a
solution f from sub-solutions fi, which will be better than a solution computed
in an all-out attempt for the original problem. However, the challenge in this
approach is that there is no known automatic method for the computation of
effective decompositions of A.

In the hierarchical learning approach, we assume that the decomposition
scheme will be provided by an external human expert in an interactive pro-
cess. Knowledge acquired from human expert will serve as guidance to break the
original model A into simpler, more manageable sub-models Ai, organized in a
lattice-like hierarchy. They would correspond to subsequent levels of abstractions
in the hierarchy of perception and reasoning of the human expert.

The mentioned above decomposition should lead to submodels Ai together
with pertaining functionals Wi as well as parameters γi. The global optimization
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criteria become more compound in the decomposition case and should be ob-
tained by fusion of those for submodels. For example, one could assume the
following optimization criterion:

R∗
δ,γ(f) =

∑
i

‖Ai(fi) − dδi‖ + γiWi(fi), (3)

where the sum is taken over all decomposition submodels and f is the solution
corresponding to the root level of decomposition (i.e., to the model A)1. However,
the linear fusion in (3) may be too simplistic for real-life problems, where it is
important to learn from data approximations of optimization criteria [25, 30].

2.2 Narrowing the Potential Search Space

As stated in [61], the problem of estimating f from a large set F of possible
candidate solutions is ill-posed. One way to alleviate this problem is to employ
the so-called Structural Risk Minimization (SRM) technique. The technique, in
short, is based on a theorem on the risk’s bounds, which essentially states that

R(α) ≤ Remp(α) + CI(α),

which means the risk functional R(α), expressing how far we are from the desired
solution for a parameter α from a general parameter set S, is bounded by the
sum of the empirical risk Remp(α) and a confidence interval CI(α) containing
the Vapnik-Chervonenkiss dimension of the function space S.

This dependency is shown on Fig. 2.
Instead of optimizing α over an arbitrary set of possible parameters S, we

use the bounds to find a set S∗ for which the risk’s bound is minimal, and then
perform the search for the solution α∗ within S∗. For more details, see [61].

The hierarchical learning approach, by reducing the complexity of the original
learning problem by decomposing it into simpler ones, tries to optimize the
corresponding search spaces on subsequent levels of the learning hierarchy, and
is analogous in function to the SRM technique. One can consider decomposition
as one of possible strategies in SRM aimed at searching for (sub)optimal spaces.
The resulting space corresponds to the family of searching spaces obtained on
different levels of decomposition. For any submodel on the i + 1-th level the
searching space for solutions is discovered on the basis of some search spaces
from the i-th level. The search for (sub)optimal decomposition is conducted
by minimization of the description length of solutions from spaces on different
decomposition levels while preserving the satisfactory quality of solutions. The
searching spaces for approximation of concepts from any level i+1 on the basis of
concepts from the level i of decomposition are computationally feasible because
any two successive levels of decomposition should be, in a sense, semantically
close [30]. This means that the searching spaces brought about on particular

1 Searching for any fi (not corresponding to the leaf decomposition level) is performed
over the space constructed on the basis of some already discovered spaces linked to
some submodels from the predecessor decomposition level relative to fi.
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Fig. 2. Actual risk bounds across search spaces.(Vapnik, The Nature of Statistical
Learning Theory, Springer-Verlag, 1999)

Fig. 3. SRM vs Hierarchical Learning

decomposition levels are smaller than those obtained without decomposition.
Moreover SRM can be used on each particular decomposition level to optimize
the searching space for approximation of concepts on this level. For details, see
Fig. 3.
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Another advantage of the hierarchical learning model lies in the construction
of the descriptive language in which classifiers on subsequent levels are built. The
choice of language directly influences the potential search space and is therefore
crucial for classifier building. With a proper reasoning scheme in place, we can
construct the descriptive language on a higher level from those already estab-
lished on lower levels, which proves effective in reducing the learning time and
boosting the overall learning performance. The choice of language can be inter-
preted as a step in searching for sub(optimal) spaces in SRM.

2.3 Ontology Matching

The knowledge on training samples that comes from an expert obviously reflects
his perception about the samples. The language used to describe this knowledge
is a component of the expert’s ontology which is an integral part of his percep-
tion. In a broad view, an ontology consists of a vocabulary, a set of concepts
organized in some kind of structures, and a set of binding relations amongst
those concepts [15]. We assume that the expert’s ontology when reasoning about
complex structured samples will have the form of a multi-layered hierarchy, or a
lattice, of concepts. A concept on a higher level will be synthesized from its chil-
dren concepts and their binding relations. The reasoning thus proceeds from the
most primitive notions at the lowest levels and work bottom-up towards more
complex concepts at higher levels.

Hierarchical learning, together with the transfer of knowledge expressed in
natural languages from external experts to low-level computer operators, consti-
tutes an excellent illustration of Granular Computing in action.

2.4 External Knowledge Transfer

The knowledge elicitation process assumes that samples, for which the learn-
ing system deems it needs additional explanations, are submitted to the expert,
which returns not only their correct class identity, but also an explanation on
why, and perhaps more importantly, how he arrived at his decision. This expla-
nation is passed in the form of a rule:

[CLASS(u) = k] ≡ �(EFeature1(u), ..., EFeaturen(u)),

where EFeaturei represents the expert’s perception of some characteristics of
the sample u, while synthesis operator � represents his perception of some re-
lations between these characteristics. In a broader view, � constitutes of a re-
lational structure that encompasses the hierarchy of experts’ concepts expressed
by EFeaturei.

The ontology matching aims to translate the components of the expert’s on-
tology, such as EFeaturei and binding relations embedded in the � structure,
expressed in the foreign language Lf , into the patterns (or classifiers) expressed
in a language familiar to the learning system, e.g:
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• [FaceType(Ed) = Square] ≡(Ed.Face().Width - Ed.Face().Height) ≤ 2cm,
• [Eclipse(p) = True] ≡ (s=p.Sun())∧(m=p.Moon())∧(s∩m.Area≥ s.Area·0.6).

Here the abstract concepts such as “Ed has a square face” or “The Sun is in
eclipse” get translated into classification rules built from computable measure-
ments and observation features.

As the human perception is inherently prone to variation and deviation, the
concepts and relations in a human expert’s ontology are approximate by design.
To use the terms of granular computing, they are information granules that
encapsulate the autonomous yet interdependent aspects of human perception.

The matching process, while seeking to accommodate various degrees of vari-
ation and tolerance in approximating those concepts and relations, will follow
the same hierarchical structure of the expert’s reasoning. This allows parent
concepts to be approximated using the approximations of children concepts,
essentially building a layered approximate reasoning scheme. Its hierarchical
structure provides a natural realization of the concept of granularity, where
nodes represent clusters of samples/classifiers that are similar within a de-
gree of resemblance/functionality, while layers form different levels of abstrac-
tion/perspectives on selected aspects of the sample domain.

On the other hand, with such an established multi-layered reasoning archi-
tecture, we can take advantages of the results obtained within the Granular
Computing paradigm, which provides frameworks and tools for the fusion and
analysis of compound information granules from previously established ones, in
a straightforward manner. The intermediate concepts used by external experts
to explain their perception are vague and ambiguous, which makes them natural
subjects to granular calculi.

The translation must

• allow for a flexible matching of a variations of similar domestic patterns to
a foreign concept, i.e. the translation result should not be a single patterns,
but rather a collection or cluster of patterns.

• find approximations for the foreign concepts and relations, while preserving
their hierarchical structure. In other words, inherent structure of the provided
knowledge should be intact.

• ensure robustness, which means independence from noisy input data and
incidental underperformance of approximation on lower levels, and stability,
which guarantees that any input pattern matching concepts on a lower level
to a satisfactory degree will result in a satisfactory target pattern on the next
level.

We assume an architecture that allows a learning system to consult a human
expert for advices on how to analyze a particular sample or a set of samples.
Typically this is done in an iterative process, with the system subsequently
incorporating knowledge elicited on samples that could not be properly classified
in previous attempts [32]. (See Fig. 4 below).
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Fig. 4. Expert’s knowledge elicitation

2.4.1 Approximation of Concepts
A foreign concept C is approximated by a domestic pattern (or a set of patterns)
p in term of a rough inclusion measure Match(p, C) ∈ [0, 1]. Such measures take
root in the theory of rough mereology [45], and are designed to deal with the no-
tion of inclusion to a degree. An example of concept inclusion measures would be:

Match(p, C) =
|{u ∈ T : Found(p, u) ∧ Fit(C, u)}|

|{u ∈ T : Fit(C, u)}| ,

where T is a common set of samples used by both the system and the expert to
communicate with each other on the nature of expert’s concepts, Found(p, u)
means a pattern p is present in u and Fit(C, u) means u is regarded by the
expert as fit to his concept C.

Our principal goal is, for each expert’s explanation, find sets of patterns Pat,
Pat1,...,Patn and a relation �d so as to satisfy the following quality requirement:

if (∀i : Match(Pati, EFeaturei) ≥ pi) ∧ (Pat = �d(Pat1, ..., Patn))
then Quality(Pat) > α,

where p, pi : i ∈ {1, .., n} and α are certain cutoff thresholds, while the Quality
measure, intended to verify if the target pattern Pat fits into the expert’s concept
of sample class k, can be any, or combination, of popular quality criteria such as
support, coverage, or confidence [46], where

SupportCLASS=k(Pat) = |{u ∈ U : Found(Pat, u) ∧ CLASS(u) = k}|,

ConfidenceCLASS=k(Pat) =
Support(Pat)

|{u ∈ U : Found(Pat, u)}| ,

CoverageCLASS=k(Pat) =
Support(Pat)

|{u ∈ U : CLASS(u) = k}| ,
and U is the training set.
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In other words, we seek to translate the expert’s knowledge into the domes-
tic language so that to generalize the expert’s reasoning to the largest possible
number of training samples. More refined versions of the inclusion measures
would involve additional coefficients attached to e.g. Found and Fit test func-
tion. Adjustment of these coefficients based on feedback from actual data may
help optimize the approximation quality.

For example, let’s consider a handwritten digit recognition task:
When explaining his perception of a particular digit image sample, the expert

may employ concepts such as Circle, Vertical Strokes or West Open Belly. The ex-
pert will explain what he means when he says, e.g. Circle, by providing a decision
table (U, d) with reference samples, whered is the expert decision to which degree he
considers that Circle appears in samples u∈U . The samples in U may be provided
by the expert, or may be picked up by him among samples explicitly submitted by
the system, e.g. those that had been misclassified in previous attempts.

The use of rough inclusion measures allows for a very flexible approximation
of foreign concept. A stroke at 85 degree to the horizontal in a sample image can
still be regarded as a vertical stroke, though obviously not a ‘pure’ one. Instead
of just answering in a Y es/No fashion, the expert may express his degrees of
belief using such natural language terms as Strong, Fair, or Weak (See Fig. 5).

Fig. 5. Tolerant matching by expert

The expert’s feedback will come in the form of a decision table (See Table 1).

Table 1. Perceived features

Circle

u1 Strong
u2 Weak
... ...
un Fair

Table 2. Translated features

DPat Circle

u1 252 Strong
u2 4 Weak
... ... ...
un 90 Fair
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The translation process attempts to find domestic feature(s)/pattern(s) that
approximate these degrees of belief (e.g. such as presented in Table 2). Domestic
patterns satisfying the defined quality requirement can be quickly found, taking
into account that sample tables submitted to experts are usually not very large.
Since this is essentially a rather simple learning task that involves feature se-
lection, many strategies can be employed. In [34], genetic algorithms equipped
with some greedy heuristics are reported successful for a similar problem. Neural
networks also prove suitable for effective implementation.

It can be observed that the intermediate concepts like Circle or Vertical
Strokes, provided by a human expert, along with satisfiability assessments like
Strong, Fair, or Weak form information granules within the perception of the
expert. The granules correspond to different levels of abstraction, or focus, of
his reasoning about a particular class of samples. The translation process trans-
forms these information granules into classifiers capable of matching particular
parts of actual samples with intermediate expert’s concepts, which essentially
incorporates the human perception, by way of using information granules, into
the learning process.

2.4.2 Approximation of Relations
The approximation of higher level relations between concepts has been formal-
ized within the framework of perception structures, recently developed in [49].
A perception structure S, in a simpler form, is defined as:

S = (U, M, F, |=, p),

where U is a set of samples, F is a family of formulas expressed in domestic
language that describe certain features of the samples and M is a family of
relational structures in which these formulas can be evaluated, while p : U →
M ×F is a perception function such that ∀u∈U : p1(u)|=p2(u) (p1 and p2 are the
first and second component projections of p) which means that p2(u) is satisfied
(is true) in the relational structure p1(u). This may express that some relations
among features within samples are observed.

For a given sample u, we define a set

M(u) = {R∈M : R |= p2(u)},
which contains all possible relational structures for which formulas, or in other
words, features observed in u yield.

2.4.3 Approximate Clusters
Given a perception structure S, an approximate cluster of a given sample u is
defined as:

[u]S =
⋃

R∈M(u)

p−1
1 (R).

This cluster contains samples from U that have similar structures to u, with
regard to the perception p, i.e. those with similar relational structures that also
hold true the features observed in u (See Fig. 6).
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Fig. 6. Approximate cluster

For example, if we construct a perception structure that contains a formula
describing a part of a digit is above another part, then within this perception, the
approximate cluster of a digit ’6’, which has a slant stroke over a circle, would
comprise of all digits that have similar structure, i.e. containing a slant stroke
over a circle.

Perception structures, following natural constructs in the expert’s foreign lan-
guage, should involve tolerant matching. Let’s suppose that we allow a soft per-
ception on samples of U by introducing a similarity relation τ between them.
This relation, for example might assume that two samples resemble each other
to a degree. This naturally leads to clusters of similar relational structures in
M . With samples now perceived as similar to each other in a degree, we shall
allow for a similarity relation in M . Two relational structures might be consid-
ered approximately the same if they allow for similar formulas to yield similar
results in majority of cases when these formulas are applicable. The family M
thus becomes granulated by τ and is denoted by Mτ .

The same follows for the family F of features, or formulas that, for instance,
do not always have the same value, but are equivalent in most cases, or in all
or majority of a cluster of similar relational structures. Formulas’ evaluation
might be extended to comprise degrees of truth values, rather than plain binary
constants. The family F hence becomes granulated with regards to τ and is
denoted by Fτ .

The perception structure S hence becomes, for a given similarity measure τ in
U : S = (U, Mτ , Fτ , |=, p) which permits a much more flexible space and a variety
of methods for concept approximation.

In the above mentioned example, a similarity induced perception might con-
sider as the approximate cluster of a digit ’5’ the set of every samples that will
have a stroke over a closed curve (not just slant strokes and circles as before).
Moreover, the new perception also allows for a greater variation of configurations
considered to fit into the concept of above.
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The definition of an approximate cluster becomes:

[u]S =
⋃

R∈Mτ (u)

p−1
1 (R).

The task of approximating an expert’s concept involving relations between
components is now equivalent to finding a perception function that satisfies some
quality criteria. Let’s suppose that the expert provide us a set C of samples he
considers fit to his concept. We have to find a perception function p such that:

Confidence :
|[u]S ∩ C|
|[u]S| > c,

and/or

Support :
|[u]S ∩ C|

|U | > s,

where u is some sample from C, and 0 < c, s < 1.
Having approximated the expert’s features EFeaturei, we can try to translate

his relation � into our �d by asking the expert to go through U and provide
us with the additional attributes of how strongly he considers the presence of
EFeaturei and to what degree he believes the relation � holds. Again, lets
consider the handwritten recognition case.(See Table 3).

Table 3. Perceived relations

V Stroke WBelly Above

u1 Strong Strong Strong
u2 Fair Weak Weak
... ... ... ...
un Fair Fair Weak

Table 4. Translated relations

#V S #NES Sy < By Above

u1 0.8 0.9 (Strong,1.0) (Strong, 0.9)
u2 0.9 1.0 (Weak, 0.1) (Weak, 0.1)
... ... ... ... ...
un 0.9 0.6 (Fair, 0.3) (Weak, 0.2)

We then replace the attributes corresponding to EFeaturei with the rough
inclusion measures of the domestic feature sets that approximate those concepts
(computed in the previous step). In the next stage, we try to add other features,
possibly induced from original domestic primitives, in order to approximate the
decision d. Such a feature may be expressed by Sy < By, which tells whether
the median center of the stroke is placed closer to the upper edge of the image
than the median center of the belly. (See Table 4).

The expert’s perception A ‘6’ is something that has a ‘vertical stroke’ ‘above’
a ’belly open to the west’ is eventually approximated by a classifier in the form
of a rule:

if S(#BL SL > 23) AND B(#NESW > 12%) AND Sy < By then CL=‘6’,

where S and B are designations of pixel collections, #BL SL and #NESW are
numbers of pixels with particular topological feature codes, and Sy < By reasons
about centers of gravity of the two collections.
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Approximate reasoning schemes embody the concept of information granular-
ity by introducing a hierarchical structure of abstraction levels for the external
knowledge that come in the form of a human expert’s perception. The granular-
ity helps to reduce the cost of the knowledge transfer process, taking advantage
of the expert’s hints. At the same time, the hierarchical structure ensures to
preserve approximation quality criteria that would be hard to obtain in a flat,
single-level learning process.

From yet another perspective, the reasoning schemes that encompass a human
expert’s intermediate concepts like Vertical Stroke, Above and their satisfability
assessments such as Strong or Fair represents the way humans reason about
samples through different levels of abstraction. The connections between inter-
mediate concepts and transitions from lower to upper levels allow to shift the
perception focus from smaller parts of objects to more abstract, global features.
These reasoning schemes also provide off-the-shelf recipes as to how to assem-
ble more compound information granules from simpler, already established ones.
Translated into domestic languages, they become powerful classifiers that help
expand the human perception structures to actual samples.

2.5 Outliers

Conceptually, outliers/exceptions are kind of atypical samples that stand out
from the rest of their group or behave very differently from the norm [1]. While
there is still no universally accepted formal definition of being an outlier, sev-
eral descriptions seem to reflect the essential spirit. According to Hawkin: An
outlier is an observation which deviates so much from other observations as to
arouse suspicions that it was generated by a different mechanism, while Barnett
and Lewis define an outlier as an observation (or subset of observations) which
appears to be inconsistent with the remainder of that set of data. [3]. These sam-
ples previously would usually be treated as bias or noisy input data and were
frequently discarded or suppressed in subsequent analyses. However, the rapid
development of Data Mining, which aims to extract from data as much knowl-
edge as possible, has made outlier identification and analysis one of its principal
branches. Dealing with outliers is crucial to many important fields in real life such
as fraud detection in electronic commerce, intrusion detection, network manage-
ment, or even space exploration. At the same time, there is an increasing effort
in the Machine Learning community to develop better methods for outlier detec-
tion/analysis, as outliers often carry useful subtle hints on the characteristics of
the sample domain and, if properly analyzed, may provide valuable guidance in
discovering the causalities underlying the behavior of a learning system. As such,
they may prove valuable as an additional source of search control knowledge and
as a mean for the construction of better classifiers.

Most popular measures to detect outliers [19] are based on either probabilis-
tic density analysis [12] or distance evaluation [28]. Knorr made an attempt to
elicit intensional knowledge from outliers through the analysis of the dynamicity
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of outliers’ set against changes in attribute subsets [27]. However, no thorough
model or scheme for the discovery of intensional knowledge from identified out-
liers has been established. In particular, there is almost no known attempt to
develop methods for outlier analysis amongst structured objects, i.e. objects that
display strong inner dependencies between theirs own features or components.
Perhaps the reason for this is the fact that while many elaborated computa-
tion models for the detection of outliers have been proposed , their effective
use in eliciting additional domain knowledge, as well as the elicitation of inten-
sional knowledge within outliers, is believed difficult without support of a human
expert.

In this paper, we approach the detection and analysis of outliers in data
from a Machine Learning perspective. We propose a framework based on the
Granular Computing paradigm, using tools and methods originated from Rough
Set and Rough Mereology theories. The process of outlier detection is refined by
the evaluation of classifiers constructed employing intensional knowledge elicited
from suspicious samples. The internal structures of the sample domain will be
dealt with using hierarchical approximate reasoning schemes and layered learn-
ing. We show the role of an external domain knowledge source by human experts
in outlier analysis, and present methods for the successful assimilation of such
knowledge. Introduced methods and schemes are illustrated with an example
handwritten digit recognition system.

Most existing outlier identification methods employ either probabilistic den-
sity analysis, or distance measures evaluation [19]. Probabilistic approach typ-
ically run a series of statistical discordancy tests on a sample to determine
whether it can be qualified as an outlier. Sometimes this procedure is enhanced
by a dynamic learning process. Their main weakness is the assumption of an
underlying distribution of samples, which is not always available in many real
life applications. Difficulties with their scalability in numbers of samples and
dimensions are also a setback of primary concern.

Another approach to outlier detection relies on certain distance measures es-
tablished between samples. Known methods are data clustering and neighbor
analysis. While this approach can be applied to data without any assumed a
priori distribution, they usually entails significant computation costs.

Let Ck be a cluster of samples for class k during the training phase and dk

be the distance function established for that class. For a given cut-off coefficient
α ∈ (0, 1], a sample u∗ of class k is considered “difficult”, “hard” or “outlier” if,
e.g:

dk(u∗, Ck) ≥ α · max{(v, CK) : v ∈ TR ∧ CLASS(v) = k},
which means u∗ is far from the “norm” in term of its distance to the cluster
center, or

|{v : v ∈ Ck ∧ dk(u∗, v) ≤ dk(v, Ck)}| ≤ α · |Ck|,
which means u∗ is amongst the most outreaching samples of the cluster.

Another popular definition of outlier is:

|{v : v ∈ Ck ∧ dk(u∗, v) ≥ D}| ≤ α · |Ck|,
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which means at least a fraction α of objects in Ck lies in a greater distance than
D from u∗.

It can be observed that both approaches pay little attention to the problem of
eliciting intensional knowledge from outliers, meaning no elaborated information
that may help explain the reasons why a sample is considered outlier. This kind
of knowledge is important for the validity evaluation of identified outliers, and
certainly is useful in improving the overall understanding of the data.

Knorr and Ng made an attempt to address this issue by introducing the no-
tion strength of outliers, derived from an analysis of dynamicity of outlier sets
against changes in the features’ subsets [26, 27]. Such analyzes belong to the very
well established application domain of Rough Sets, and indeed a formalization
of a similar approach within the framework of Rough Sets has been proposed
by [23].

Our approach to outlier detection and analysis will assume a somewhat dif-
ferent perspective. It focuses on two main issues:

1. Elicitation of intensional knowledge from outliers by approximating the
perception of external human experts.

2. Evaluation of suspicious samples by verification the performance of classi-
fiers constructed using knowledge elicited from these samples.

Having established a mechanism for eliciting expert’s knowledge as described
in previous sections, we can develop outlier detection tests that might be com-
pletely independent from the existing similarity measures within the learning
system as outlined in the Fig. 7 below:

Fig. 7. Outlier analysis scheme
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For a given training sample u∗,

Step 1. We ask the expert for his explanation on u∗. Step 2. The expert
provides a foreign knowledge structure �(u∗). Step 3. We approximate �(u∗)
under restrictive matching degrees to ensure only the immediate neighborhood
of u∗ is investigated. Let’s say the result of such an approximation is a pattern
(or set of patterns) p∗u. Step 4. It is now sufficient to check Coverage(p∗u). If
this coverage is high, it signifies that u∗ may bear significant information that is
also found in many other samples. The sample u∗ therefore cannot be regarded
as an outlier despite the fact that there may not be many other samples in its
vicinity in terms of existing domestic distance measures of the learning system.

This test shows that distance-based outlier analysis and expert’s elicited
knowledge are complementary to each other.

In our architecture, outliers may be detected as samples that defied previous
classification efforts, or samples that pass the above described outlier test, but
may also be selected by the expert himself. This helps the classification system to
focus on difficult samples in order to gradually improve the overall performance,
in a way similar to that of popular boosting or leveraging algorithms. The main
difference is that boosting algorithms employ a priori formulas/strategies to ad-
just weights to positive and negative samples, whereas our approach relies on the
domain knowledge elicited from the external expert. In this way, we can benefit
from the best of both sources of knowledge.

Fig. 8. Boosting vs Hierarchical Learning

2.6 Reinforcement Learning and Planning

The next two examples illustrate approximation of compound concepts in rein-
forcement learning and planning.

In reinforcement learning [13, 24, 29, 40, 43, 53, 58], the main task is to learn
the approximation of the function Q(s, a), where s, a denotes a global state of
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the system and an action performed by an agent ag and, respectively and the
real value of Q(s, a) describes the reward for executing the action a in the state
s. To approximate the function Q(s, a), probabilistic models are used. However,
for compound real-life problems it may be hard to build such models for such a
compound concept as Q(s, a) [60]. We propose another approach to the approxi-
mation of Q(s, a) based on ontology approximation. The approach is based on the
assumption that in a dialog with experts additional knowledge can be acquired,
making it possible to create a ranking of values Q(s, a) for different actions a in
a given state s. The explanation given by expert about possible values of Q(s, a)
may involve concepts from a special ontology. Using this ontology one can follow
hierarchical learning methods to learn the approximations of its concepts. Such
concepts can have a temporal character as well. This means the ranking of ac-
tions may depend not only on the current action and state but also on actions
performed in the past, as well as on the changes caused by these actions.

In [6, 7] a computer tool based on rough sets for supporting automated plan-
ning of the medical treatment (see, e.g., [18, 59]) is discussed. In this approach, a
given patient is treated as an investigated complex dynamical system, whilst dis-
eases of this patient (RDS, PDA, sepsis, Ureaplasma and respiratory failure) are
treated as compound objects changing and interacting over time. As a measure
of planning success (or failure) in the experiments, we use a special hierarchical
classifier that can predict the similarity between two plans as a number between
0.0 and 1.0. This classifier has been constructed on the basis of the special on-
tology specified by human experts and data sets. It is important to mention that
in addition to the ontology, experts also provided the exemplary data (values of
attributes) for the purpose of concepts approximation. The methods of construc-
tion such classifiers are based on approximate reasoning schemes (AR schemes,
for short) and were described, e.g., in [5, 8, 9, 31]. We applied this method for
approximation of similarity between plans generated in automated planning and
plans proposed by human experts during the realistic clinical treatment.

2.7 Interaction with the Web

Let us discuss shortly problems which can be solved by human in dialog with the
Web. Examples of such problems are considered in Service Oriented Computing
or Service Oriented Architecture (see, e.g., [16]). Assuming that this dialog is
performed in a simplified fragment of natural language [62, 64] one should de-
velop tools for approximation concepts used in dialog to make them available to
the Web for approximate reasoning in searching for the solutions of problems.
One can expect that in a near future the Web can automatically help the users
to synthesize required services if it will be possible to understood to satisfactory
degree the specification received in dialog with users.

3 Selected Advanced Issues on GC

In this section, we discuss some advanced issues on GC. They are related to granules
represented by agents or teams of agents interacting in changing environments.
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We start from a general discussion on the Wisdom technology (wistech) system
outlined recently in [21, 22].

Wisdom commonly means rightly judging based on available knowledge and
interactions. This common notion can be refined. By wisdom, we understand an
adaptive ability to make judgments correctly (in particular, correct decisions) to
a satisfactory degree, having in mind real-life constraints. The intuitive nature of
wisdom understood in this way can be metaphorically expressed by the so-called
wisdom equation as shown in (4).

wisdom = adaptive judgment + knowledge + interaction. (4)

Wisdom can be treated as a certain type of knowledge. In particular, this type
of knowledge is important at the highest level of hierarchy of meta-reasoning in
intelligent agents.

Wistech is a collection of techniques aimed at the further advancement of tech-
nologies to acquire, represent, store, process, discover, communicate, and learn
wisdom in designing and implementing intelligent systems. These techniques in-
clude approximate reasoning by agents or teams of agents about vague concepts
concerning real-life, dynamically changing, usually distributed systems in which
these agents are operating. Such systems consist of other autonomous agents op-
erating in highly unpredictable environments and interacting with each others.
Wistech can be treated as the successor of database technology, information man-
agement, and knowledge engineering technologies. Wistech is the combination
of the technologies represented in equation (4) and offers an intuitive starting
point for a variety of approaches to designing and implementing computational
models for wistech in intelligent systems.

• Knowledge technology in wistech is based on techniques for reasoning about
knowledge, information, and data, techniques that enable to employ the cur-
rent knowledge in problem solving. This includes, e.g., extracting relevant
fragments of knowledge from knowledge networks for making decisions or
reasoning by analogy.

• Judgment technology in wistech is covering the representation of agent percep-
tion and adaptive judgment strategies based on results of perception of real
life scenes in environments and their representations in the agent mind. The
role of judgment is crucial, e.g., in adaptive planning relative to the Maslow
Hierarchy of agents’ needs or goals. Judgment also includes techniques used
for perception, learning, analysis of perceived facts, and adaptive refinement
of approximations of vague complex concepts (from different levels of concept
hierarchies in real-life problem solving) applied in modeling interactions in
dynamically changing environments (in which cooperating, communicating,
and competing agents exist) under uncertain and insufficient knowledge or
resources.

• Interaction technology includes techniques for performing and monitoring ac-
tions by agents and environments. Techniques for planning and controlling
actions are derived from a combination of judgment technology and interac-
tion technology.
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The wistech system is strongly related to the idea of Gottfried Wilhelm Leib-
niz, one of the greatest mathematicians. He has discussed, in a sense, calculi of
thoughts. In particular, he has written

If controversies were to arise, there would be no

more need of disputation between two philosophers

than between two accountants. For it would suffice to

take their pencils in their hands, and say to each other:

‘Let us calculate’.

– Gottfried Wilhelm Leibniz,

Dissertio de Arte Combinatoria (Leipzig, 1666).

... Languages are the best mirror of the human mind,

and that a precise analysis of the signification of words

would tell us more than anything else about the operations

of the understanding.

– Gottfried Wilhelm Leibniz,

New Essays on Human Understanding (1705)

Translated and edited by

Peter Remnant and Jonathan Bennett

Cambridge: Cambridge UP, 1982

Only much later, it was possible to recognize that new tools are necessary
for developing such calculi, e.g., due to the necessity of reasoning under uncer-
tainty about objects and (vague) concepts. Fuzzy set theory (Lotfi A. Zadeh,
1965) and rough set theory (Zdzis�law Pawlak, 1982) represent two complemen-
tary approaches to vagueness. Fuzzy set theory addresses gradualness of knowl-
edge, expressed by the fuzzy membership, whereas rough set theory addresses
granularity of knowledge, expressed by the indiscernibility relation. Granular
computing (Zadeh, 1973, 1998) may be now regarded as a unified framework for
theories, methodologies and techniques for modeling of calculi of thoughts based
on objects called granules.

There are many ways to build foundations for wistech computational
models. One of them is based on the rough-granular computing (RGC) [52].
Rough-granular computing (RGC) is an approach for constructive definition of
computations over objects called granules, aiming at searching for solutions of
problems which are specified using vague concepts. Granules are obtained in
a process called granulation. Granulation can be viewed as a human way of
achieving data compression and it plays a key role in implementing the divide-
and-conquer strategy in human problem-solving [64]. The proposed approach
combines rough set methods with other soft computing methods, and methods
based on granular computing (GC). RGC is used for developing one of the possi-
ble wistech foundations based on approximate reasoning about vague concepts.

Let us discuss some issues important to wistech, pertaining to compound
granules which can perceive, and interact with, their environments.
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3.1 Compound Granules in Perception and Interaction

Perception and interaction are closely related issues. Let us assume that an
agent ag is perceiving the environment state e. The results of perceiving (e.g.,
by sensors) of different parts of e are stored in a a generalized information system
IS (see Sect. 1.2). For each such a part s a partial information Inf(s) is stored
in IS together with information on relationships between parts. Form IS the
structural model Me of e is derived by hierarchical modeling. Granule Me can
be represented by a relational structure or a cluster of such structures). Next,
the structural model Me is matched against knowledge base network of the agent
ag. The result of matching is a family Fe of concepts together with information
about degrees to which these concepts are satisfied. Now, the judgment engine of
ag is used to predict the current goals and to select of the relevant action (plan
or communication) for required for interaction with the environment. Agent ag
is attempting to make necessary changes or to move in the environment to reach
the target goal. Note the environment changes are reflected by changes in the
internal state representation of ag. Moreover, information Inf(s′), M ′

s or Fs′

about the next state e′ of the environment is predicted, where s′ denotes a part
of e′ perceived by ag. This information is further compared with the perceived
information about the next state e′, e.g., for reconstructing the current plan.
The judgment engine of ag is also used for predicting changes of the internal
state of ag caused by the actual environment state and by the actual internal
state [30].

In [30] the above discussed judgment process was disussed in the framework
of approximate reasoning about changes of the environment state and the agent
state. In particular, this calls for approximation of complex functions character-
izing these changes.

3.2 Coalition Formation and Interactive Computations

Coalitions of granules play an important role in interactive computations and
reasoning about such computations. One can consider coalitions as operations on
collections of granules representing agents to granules representing a meta-agent,
i.e., a team of agents. Any such operation should provide for the construction of
(i) the perception mechanism of coalition from the perception mechanisms of its
members; (ii) the coalition judgment engine using the judgment engines of the
coalition members; (iii) the coalition knowledge base network from knowledge
base networks of the coalition members; (iv) the interaction mechanism of the
coalition from the interaction mechanisms of the coalition members. For exam-
ple, in a given situation, each member of coalition can have several choices for
actions but the finally selected action by each member is based on cooperation of
coalition members, i.e., they are choosing actions on the basis of, e.g., protocol
of cooperation. Moreover, the environment is perceiving coalition as a whole,
e.g., any action performed by coalition can be treated as the results of a vec-
tor (a1, . . . , an) of actions of its members. These actions are selected on the basis
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of the accepted protocol. Note also perceived features of coalition refer to the
coalition as the whole rather than its parts.

There are several challenging issues related to coalitions such as learning
strategies for (hierarchical) coalition formation, constructing language of actions,
plans, communication for coalition on the basis of languages of its members.
Among these issues hierarchical coalitions play a special role in approximate
reasoning about interactive computations, making it possible to perform approx-
imate reasoning about the interaction of the whole system with the environment.

3.3 Granule Representation and Adaptation of Knowledge Base
Networks

In the matching process of structural models with knowledge base networks,
an important role play strategies of granule representations and geometry of
granules [17].

Observe that during the perception, matching, and judgment processes the
current knowledge base network may be updated. For example, some new pat-
terns, concepts, production rules, rules, or approximate reasoning schemes are
discovered and stored. Some other patterns may be removed from the knowledge
base networks [48, 65].

3.4 Scalability Issues and Language Evolution

One can formulate several important questions related to languages used for
communication by agents. Here are some examples. How the names for concepts
are created? Why they are created? When we should go beyond ontologies of
concepts? How the communication languages of agents are evolving when agents
are dealing with the scalability issues, i.e., when the agents are trying to move
from solving small size problems to large size problems?

4 Conclusions

We discussed the role of GC in approximation of complex concepts and in interac-
tive computations, e.g., performed by agents interacting with environments and
among themselves. We emphasized the role of dialogs of human experts with dif-
ferent granular systems in improving their performance. Finally, we formulated
several challenges for approximate reasoning in granular systems interacting with
the environments, in particular with other agents or human experts.
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