


Andrzej Bargiela and Witold Pedrycz (Eds.)

Human-Centric Information Processing Through Granular Modelling



Studies in Computational Intelligence,Volume 182

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our homepage:
springer.com

Vol. 159. Dimitri Plemenos and Georgios Miaoulis (Eds.)
Artificial Intelligence Techniques for Computer Graphics, 2009
ISBN 978-3-540-85127-1

Vol. 160. P. Rajasekaran and Vasantha Kalyani David
Pattern Recognition using Neural and Functional Networks,
2009
ISBN 978-3-540-85129-5

Vol. 161. Francisco Baptista Pereira and Jorge Tavares (Eds.)
Bio-inspired Algorithms for the Vehicle Routing Problem, 2009
ISBN 978-3-540-85151-6

Vol. 162. Costin Badica, Giuseppe Mangioni,
Vincenza Carchiolo and Dumitru Dan Burdescu (Eds.)
Intelligent Distributed Computing, Systems and Applications,
2008
ISBN 978-3-540-85256-8

Vol. 163. Pawel Delimata, Mikhail Ju. Moshkov,
Andrzej Skowron and Zbigniew Suraj
Inhibitory Rules in Data Analysis, 2009
ISBN 978-3-540-85637-5

Vol. 164. Nadia Nedjah, Luiza de Macedo Mourelle,
Janusz Kacprzyk, Felipe M.G. França
and Alberto Ferreira de Souza (Eds.)
Intelligent Text Categorization and Clustering, 2009
ISBN 978-3-540-85643-6

Vol. 165. Djamel A. Zighed, Shusaku Tsumoto,
Zbigniew W. Ras and Hakim Hacid (Eds.)
Mining Complex Data, 2009
ISBN 978-3-540-88066-0

Vol. 166. Constantinos Koutsojannis and Spiros Sirmakessis
(Eds.)
Tools and Applications with Artificial Intelligence, 2009
ISBN 978-3-540-88068-4

Vol. 167. Ngoc Thanh Nguyen and Lakhmi C. Jain (Eds.)
Intelligent Agents in the Evolution of Web and Applications, 2009
ISBN 978-3-540-88070-7

Vol. 168.Andreas Tolk and Lakhmi C. Jain (Eds.)
Complex Systems in Knowledge-based Environments: Theory,
Models and Applications, 2009
ISBN 978-3-540-88074-5

Vol. 169. Nadia Nedjah, Luiza de Macedo Mourelle and
Janusz Kacprzyk (Eds.)
Innovative Applications in Data Mining, 2009
ISBN 978-3-540-88044-8

Vol. 170. Lakhmi C. Jain and Ngoc Thanh Nguyen (Eds.)
Knowledge Processing and Decision Making in Agent-Based
Systems, 2009
ISBN 978-3-540-88048-6

Vol. 171. Chi-Keong Goh,Yew-Soon Ong and Kay Chen Tan
(Eds.)
Multi-Objective Memetic Algorithms, 2009
ISBN 978-3-540-88050-9

Vol. 172. I-Hsien Ting and Hui-Ju Wu (Eds.)
Web Mining Applications in E-Commerce and E-Services, 2009
ISBN 978-3-540-88080-6

Vol. 173. Tobias Grosche
Computational Intelligence in Integrated Airline Scheduling,
2009
ISBN 978-3-540-89886-3

Vol. 174.Ajith Abraham, Rafael Falcón and Rafael Bello (Eds.)
Rough Set Theory: A True Landmark in Data Analysis, 2009
ISBN 978-3-540-89886-3

Vol. 175. Godfrey C. Onwubolu and Donald Davendra (Eds.)
Differential Evolution: A Handbook for Global
Permutation-Based Combinatorial Optimization, 2009
ISBN 978-3-540-92150-9

Vol. 176. Beniamino Murgante, Giuseppe Borruso and
Alessandra Lapucci (Eds.)
Geocomputation and Urban Planning, 2009
ISBN 978-3-540-89929-7

Vol. 177. Dikai Liu, Lingfeng Wang and Kay Chen Tan (Eds.)
Design and Control of Intelligent Robotic Systems, 2009
ISBN 978-3-540-89932-7

Vol. 178. Swagatam Das,Ajith Abraham and Amit Konar
Metaheuristic Clustering, 2009
ISBN 978-3-540-92172-1

Vol. 179. Mircea Gh. Negoita and Sorin Hintea
Bio-Inspired Technologies for the Hardware of Adaptive Systems,
2009
ISBN 978-3-540-76994-1

Vol. 180.Wojciech Mitkowski and Janusz Kacprzyk (Eds.)
Modelling Dynamics in Processes and Systems, 2009
ISBN 978-3-540-92202-5

Vol. 181. Georgios Miaoulis and Dimitri Plemenos (Eds.)
Intelligent Scene Modelling Information Systems, 2009
ISBN 978-3-540-92901-7

Vol. 182.Andrzej Bargiela and Witold Pedrycz (Eds.)
Human-Centric Information Processing Through Granular
Modelling, 2009
ISBN 978-3-540-92915-4



Andrzej Bargiela
Witold Pedrycz
(Eds.)

Human-Centric Information
Processing Through Granular
Modelling

123



Andrzej Bargiela
School of Computer Science
The University of Nottingham
Malaysia Campus, Jalan Broga
43500 Semenyih
Selangor Darul Ehsan
Malaysia
E-mail: andrzej.bargiela@nottingham.edu.my

Witold Pedrycz
Department of Electrical & Computer Engineering
University of Alberta
Edmonton AB T6R 2G7
Canada
and
System Research Institute
Polish Academy of Sciences
Warsaw, Poland
E-mail: pedrycz@ee.ualberta.ca

ISBN 978-3-540-92915-4 e-ISBN 978-3-540-92916-1

DOI 10.1007/978-3-540-92916-1

Studies in Computational Intelligence ISSN 1860949X

Library of Congress Control Number: 2008942137

c© 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks.Duplication of this publication or parts thereof is permitted only under the provisions of
the German Copyright Law of September 9, 1965, in its current version, and permission for use
must always be obtained from Springer.Violations are liable to prosecution under the German
Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed in acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



 

Preface 

 
 
 
 
 
 
 
 
Information granules and their processing permeate a way in which we perceive the 
world, carryout processing at the conceptual (abstract) level, and communicate our 
findings to the surrounding environment. The importance of information granulation 
becomes even more apparent when we are faced with a rapidly growing flood of data, 
become challenged to make decisions in complex data settings and are required to 
appreciate the context from which the data is derived. Human centricity of systems 
that claim to be “intelligent” and the granular computing come hand in hand. It is not 
surprising at all to witness that the paradigm of Granular Computing has started to 
gain visibility and continues along this path by gathering interest from the circles of 
academics and practitioners. It is quite remarkable that the spectrum of application 
and research areas that have adopted information granulation as a successful strategy 
for dealing with information complexity covers such diverse fields as bioinformatics, 
image understanding, environmental monitoring, urban sustainability, to mention few 
most visible in the literature. 

Undoubtedly, there are two important aspects of Granular Computing that are 
worth stressing. First, there are several formalisms in which information granules are 
articulated so be intervals (sets), fuzzy sets, rough sets, soft sets, approximate sets, 
near sets and alike. They are complementary and each of them offers some interesting 
views at the complexity of the world and cyberspace. All of them are the key players 
of Granular Computing by enriching the conceptual, methodological and algorithmic 
landscape of the area. While there are some signs of vital synergy (manifesting 
through e.g., hybrid constructs such as rough fuzzy sets, fuzzy rough sets and alike), 
one has to admit that there is a long way to go before we reach a point of a fully co-
herent and unified theory of information granules, information granulation and proc-
essing of such constructs. In this sense, the period of growth we are witnessing today 
is the most exciting stage of the development of the new computing paradigm.  Sec-
ond, the granularity of information leads us immediately to a hierarchy of concepts, 
models and associated computing machinery. A suitable selection of the level of 
granularity is crucial to the effective realization of all cognitive and computing facul-
ties. The computational framework for processing information granules is likely to 
evolve alongside the algorithmic developments of information granulation and granu-
lar modeling. Novel, ubiquitous or biologically inspired computational machinery is 
actively researched in the form of simulated environments and is likely to lead to 
physical hardware implementations upon successful demonstration of granular infor-
mation processing potential. 



  Preface VI 

This volume is fully reflective of the diversity of Granular Computing both in 
terms of the underlying methodology as well as algorithms and applications. There is 
a well-delineated group of contributions (Nguen and Skowron; Yao; Peters and Ra-
manna; Zhang et al. ) which embarks on the fundamentals of Granular Computing by 
casting them in a new and illuminating perspective. The issues of constructing infor-
mation granules have always been one of the focal points of Granular Computing. 
The contributions authored by Mencar, Fazendeiro and Valente de Oliveira emphasize 
the aspect of interpretability of information granules no matter in which way they 
were formed. Fuzzy sets and their generalizations such as Type-2 fuzzy sets have 
occupied a visible position in Granular Computing. Interestingly, there are a number 
of contributions (Gottwald; John and Coupland; Castillo and Melin) which elaborate 
on the concepts and algorithmic machinery of fuzzy sets. The applied end of the 
Granular Computing is fully reflected in the volume through a series of papers ( Apol-
loni, Bassis, and Zippo; Acampora, Loia, and Vasilakos; Pizzi; Das and Mitra; 
Burczynski and Orantek; Sawase, Nobuhara and Bede) – those contributions are a 
convincing testimony to the diversity of applications of Granular Computing. The 
contribution from Greensmith and Aickelin is a representative of the growing research 
trend into bio-inspired computing environments for granular information processing.  

Our sincere gratitude goes to the authors who enthusiastically responded to our 
project and offered their expertise and shared their recent research findings with the 
research community. The reviewers, who provided objective and sometimes critical 
but always constructive comments, played an important role is shaping up the book– 
we are definitely grateful for all the input we received from them during the realiza-
tion of this project.  

We definitely enjoyed working on this volume by seeing how new ideas come into 
existence. It is our hope that the readers will find this volume both intellectually 
stimulating in their research and practical pursuits.  

We would like to express our gratitude to the Engineering and Physical Sciences 
Research Council (EPSRC) for their generous support provided to realize the project 
and their long-term support of research excellence. 

 

 
November 2008 Andrzej Bargiela 

Witold Pedrycz 
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Rough-Granular Computing in Human-Centric

Information Processing

Tuan Trung Nguyen and Andrzej Skowron

Polish-Japanese Institute of Information Technology, Koszykowa 86,
02-008 Warsaw, Poland
nttrung@pjwstk.edu.pl

Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland
skowron@mimuw.edu.pl

Abstract. In ubiquitous computing, users are expected to continuously interact with
computing devices, to suggest strategies and hypotheses, to pass over new facts from
domain knowledge, to explain untypical cases in dialogs with the devices, etc. These
devices therefore need to, at least in an approximate sense, understand the compound,
vague concepts used by humans. We discuss current results and research directions
on the approximation of compound vague concepts, which are based on rough-granular
computing. In particular, we use hierarchical methods for the approximation of domain
ontologies of vague concepts. We also discuss an extension of the proposed approach for
approximate reasoning about interactive computations performed on complex granules
by systems of agents in dynamically changing environments.

1 Selected Basic Issues on Granular Computing

In this section, we discuss some basic issue of Granular Computing (GC). We
consider granules as constructive definitions of sets used in assembling objects
satisfying a given specification at least to satisfactory degree. Granules are usu-
ally defined by granule systems [51, 52] in which some elementary granules are
distinguished, together with operations making it possible to define new granules
from these elementary granules, or from already defined granules. Among special
types of operations on granules, one can distinguish the fusion and decomposition
operations. For more readings on GC, the reader is referred to [2, 35, 38, 39, 42].

1.1 Synthesis of Complex Objects Satisfying Vague Specifications

One of the central issues related to granules is the definition of inclusion relations
and closeness relations (measures). The concept of rough inclusion from rough
mereology [45] can be used as a starting point in searching for constructive
measures of inclusion or closeness of granules. Note that these measures should
be defined for granules with different complexity structures.

In real-life applications, we often deal with problems where not only is the in-
formation about objects partial, but also the specification of problems is written
in natural language. Hence, such specifications involve vague or/and imperfect

A. Bargiela, W. Pedrycz (Eds.): Human-Centric Information Processing, SCI 182, pp. 1–30.
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2 T.T. Nguyen and A. Skowron

concepts. Problems we are trying to solve can be characterized as searching for
complex objects satisfying a given specification to a satisfactory degree [45].
These complex objects should be synthesized from more elementary ones us-
ing available operations. Moreover, usually only partial information about these
objects and concepts used in the specifications are available.

In the following section, we discuss searching for relevant granules as a kind
of optimization problem in GC.

1.2 Optimization in Discovery of Compound Granules

This section is based on the approach discussed in [20, 30].
The problem considered in this section is the evaluation of perception as a

means of optimizing various tasks. The solution to this problem hearkens back
to early research on rough set theory and approximation. For example, in 1982,
Ewa Or�lowska observed that approximation spaces serve as a formal counterpart
of perception.

In this chapter, the evaluation of perception is at the level of approximation
spaces. The quality of an approximation space relative to a given approximated
set of objects is a function of the description length of an approximation of the
set of objects and the approximation quality of this set. In granular computing
(GC), the focus is on discovering granules satisfying selected criteria. These
criteria take inspiration from the minimal description length (MDL) principle
proposed by Jorma Rissanen in 1983. In this section, the role of approximation
spaces in modeling compound granules satisfying such criteria is discussed.

First, we recall the definition of an approximation space from [50]. Approxi-
mation spaces can be treated as granules used for concept approximation. They
are examples of special parameterized relational structures. Tuning parameters
make it possible to search for relevant approximation spaces relative to given
concepts.

Definition 1. A parameterized approximation space is a system
AS#,$ = (U, I#, ν$), where
• U is a non-empty set of objects,
• I# : U → P (U) is an uncertainty function, where P (U) denotes the power

set of U ,
• ν$ : P (U) × P (U) → [0, 1] is a rough inclusion function,

and #, $ denote vectors of parameters (the indexes #, $ will be omitted if it does
not lead to misunderstanding).

The uncertainty function defines for every object x, a set of objects described
similarly to x. The set I(x) is called the neighborhood of x (see, e.g., [36, 50]).

The rough inclusion function ν$ : P (U)×P (U) → [0, 1] defines the degree of
inclusion of X in Y , where X,Y ⊆ U .

In the simplest case it can be defined by (see, e.g., [50, 36]):

νSRI (X,Y ) =

{
card(X∩Y )

card(X) , if X �= ∅,
1, if X = ∅.
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The lower and the upper approximations of subsets of U are defined as follows.

Definition 2. For any approximation space AS#,$ = (U, I#, ν$) and any subset
X ⊆ U , the lower and upper approximations are defined by
LOW

(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) = 1} ,

UPP
(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) > 0}, respectively.

The lower approximation of a set X with respect to the approximation space
AS#,$ is the set of all objects that can be classified with certainty as objects of
X with respect to AS#,$. The upper approximation of a set X with respect to
the approximation space AS#,$ is the set of all objects which can be possibly
classified as objects of X with respect to AS#,$.

Several known approaches to concept approximation can be covered using this
approach to approximation spaces (see, e.g., references in [50]). For more details
on approximation spaces, the reader is referred to, e.g., [10, 37, 53, 41, 44].

A key task in granular computing is the information granulation process that
leads to the formation of information aggregates (with inherent patterns) from a
set of available objects. A methodological and algorithmic issue is the formation
of transparent (understandable) information granules inasmuch as they should
provide a clear and understandable description of patterns present in sample
objects [2, 39]. Such a fundamental property can be formalized by a set of con-
straints that must be satisfied during the information granulation process. Use-
fulness of these constraints is measured by the quality of an approximation space:

Quality1 : Set AS × P (U) → [0, 1],

where U is a non-empty set of objects and Set AS is a set of possible approxi-
mation spaces with the universe U.

Example 1. If UPP (AS,X)) �= ∅ for AS ∈ Set AS and X ⊆ U then

Quality1(AS,X) = νSRI(UPP (AS,X), LOW (AS,X)) =
card(LOW (AS,X))
card(UPP (AS,X))

.

The value 1 − Quality1(AS,X) expresses the degree of completeness of our
knowledge about X , given the approximation space AS.

Example 2. In applications, we usually use another quality measure analogous to
the minimal length principle [47, 56] where also the description length of approx-
imation is included. Let us denote by description(AS,X) the description length
of approximation of X in AS. The description length may be measured, e.g., by
the sum of description lengths of algorithms testing membership for neighbor-
hoods used in construction of the lower approximation, the upper approximation,
and the boundary region of the set X . Then the quality Quality2(AS,X) can
be defined by

Quality2(AS,X) = g(Quality1(AS,X), description(AS,X)),

where g is a relevant function used for fusion of values Quality1(AS,X) and
description(AS,X). This function g, for instance, may involve weights assigned
by experts to both criteria.
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Set_AS 

Granulation X

Set_ASg

Fig. 1. Granulation of parameterized approximation spaces

One can consider different optimization problems relative to a given class Set AS
of approximation spaces. For example, for a given X ⊆ U and a threshold t ∈
[0, 1], one can search for an approximation space AS satisfying the constraint
Quality2(AS,X) ≥ t.

Another example involves searching for an approximation space satisfying ad-
ditionally the constraint Cost(AS) < c where Cost(AS) denotes the cost of an
approximation space AS (e.g., measured by the number of attributes used to de-
fine neighborhoods in AS) and c is a given threshold. In the following example,
we consider also costs of searching for relevant approximation spaces in a given
family defined by a parameterized approximation space (see Figure 1). Any pa-
rameterized approximation space AS#,$ = (U, I#, ν$) is a family of approxima-
tion spaces. The cost of searching in such a family for a relevant approximation
space for a given concept X approximation can be treated as a factor of the
quality measure of approximation of X in AS#,$ = (U, I#, ν$). Hence, such a
quality measure of approximation of X in AS#,$ can be defined by

Quality3(AS#,$, X) = h(Quality2(AS,X), Cost Search(AS#,$, X)),

where AS is the result of searching in AS#,$, Cost Search(AS#,$, X) is the
cost of searching in AS#,$ for AS, and h is a fusion function, e.g., assuming
that the values of Quality2(AS,X) and Cost Search(AS#,$, X) are normalized
to interval [0, 1] h could be defined by a linear combination of Quality2(AS,X)
and Cost Search(AS#,$, X) of the form

λQuality2(AS,X) + (1 − λ)Cost Search(AS#,$, X),

where 0 ≤ λ ≤ 1 is a weight measuring an importance of quality and cost in
their fusion.
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We assume that the fusion functions g, h in the definitions of quality are
monotonic relative to each argument.

Let AS ∈ Set AS be an approximation space relevant for approximation
of X ⊆ U , i.e., AS is the optimal (or semi-optimal) relative to Quality2.
By Granulation(AS#,$) we denote a new parameterized approximation space
obtained by granulation of AS#,$. For example, Granulation(AS#,$) can be
obtained by reducing the number of attributes or inclusion degrees (i.e., pos-
sible values of the inclusion function). Let AS′ be an approximation space
in Granulation(AS#,$) obtained as the result of searching for optimal (semi-
optimal) approximation space in Granulation(AS#,$) for approximation of X .

We assume that three conditions are satisfied:

• after granulation of AS#,$ to Granulation(AS#,$) the following property
holds: the cost

Cost Search(Granulation(AS#,$), X),

is much lower than the cost Cost Search(AS#,$, X);
• The description(AS′, X) is much shorter than the description(AS,X), i.e.,

the description length of X in the approximation space AS′ is much shorter
than the description length of X in the approximation space AS;

• Quality1(AS,X) and Quality1(AS′, X) are sufficiently close.

The last two conditions should guarantee that the values Quality2(AS,X)
and Quality2(AS′, X) are comparable and this condition together with the first
condition about the cost of searching should assure that

Quality3(Granulation(AS#,$, X)) is much better than Quality3(AS#,$, X).

Taking into account that parameterized approximation spaces are examples of
parameterized granules, one can generalize the above example of parameterized
approximation space granulation to the case of granulation of parameterized
granules.

In the process of searching for (sub-)optimal approximation spaces, different
strategies may be used. Let us consider an example of such strategies [55]. In
the example, DT = (U,A, d) denotes a decision system (a given sample of data),
where U is a set of objects, A is a set of attributes and d is a decision. We assume
that for any object x, only partial information, equal to the A-signature of x (ob-
ject signature, for short), is available, i.e., InfA(x) = {(a, a(x)) : a ∈ A} and
analogously for any concept, only partial information about this concept by a
sample of objects is provided, e.g., in the form of decision table. One can use ob-
ject signatures as new objects in a new relational structure R. In this relational
structure R some relations between object signatures are also modelled, e.g., de-
fined by the similarities of these object signatures. Discovery of relevant relations
on object signatures is an important step in searching for relevant approxima-
tion spaces. In this way, a class of relational structures representing perception
of objects and their parts is constructed. In the next step, we select a language
L of formulas expressing properties over the defined relational structures and
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we search for relevant formulas in L. The semantics of formulas (e.g., with one
free variable) from L are subsets of object signatures. Observe that each object
signature defines a neighborhood of objects from a given sample (e.g., decision
table DT ) and another set on the whole universe of objects being an extension
of U . Thus, each formula from L defines a family of sets of objects over the sam-
ple and also another family of sets over the universe of all objects. One can use
such families can to define new neighborhoods of a new approximation space,
e.g., by taking their unions. In the searching process for relevant neighborhoods,
we use information encoded in the given sample. More relevant neighborhoods
make it possible to define relevant approximation spaces (from the point of view
of the optimization criterion). It is worth to mention that often this searching
process is even more sophisticated. For example, one can discover several rela-
tional structures (e.g., corresponding to different attributes) and formulas over
such structures defining different families of neighborhoods from the original
approximation space. Next such families of neighborhoods can be merged into
neighborhoods in a new approximation space. This kind of modeling is typical
for hierarchical modeling [8], e.g., when we search for a relevant approximation
space for objects composed from parts for which some relevant approximation
spaces have been already found.

2 Granular Computing and Human Perception: Learning
in Dialog with Human Experts

The hierarchical learning approach takes advantage of additional domain knowl-
edge provided by human experts. In order to best employ this knowledge, it
relies on the observation that human thinking and perception in general, and
their reasoning while performing classification tasks in particular, can:

• inherently comprise different levels of abstraction,
• display a natural ability to switch focus from one level to another,
• operate on several levels simultaneously.

Such processes are natural subjects for the Granular Computing paradigm,
which encompasses theories, methods, techniques and tools for such fields as
problem solving, information processing, human perception evaluation, analysis
of complex systems and many others. It is built around the concept of informa-
tion granules, which can be understood as collections of values that are drawn
together by indistinguishability, equivalence, similarity, or proximity [63]. Gran-
ular Computing follows the human ability to perceive things in different levels
of abstraction (granularity), to concentrate on a particular level of interest while
preserving the ability to instantly switch to another level in case of need. This
allows to obtain different levels of knowledge and, which is important, a better
understanding of the inherent structure of this knowledge.

The concept of information granules is closely related to the imprecise nature
of human reasoning and perception. Granular Computing therefore provides ex-
cellent tools and methodologies for problems involving flexible operations on
imprecise or approximated concepts expressed in natural language.
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One of the possible approaches in developing methods for compound concept
approximations can be based on the layered (hierarchical) learning [11, 57]. In-
ducing concept approximation should be developed hierarchically starting from
concepts that can be directly approximated using sensor measurements toward
compound target concepts related to perception. This general idea can be re-
alized using additional domain knowledge represented in natural language. For
example, one can use some rules of behavior on the roads, expressed in natu-
ral language, to assess from recordings (made, e.g., by camera and other sen-
sors) of actual traffic situations, if a particular situation is safe or not (see, e.g.,
[8, 9, 14, 31]). The hierarchical learning has been also used for identification of
risk patterns in medical data and extended for therapy planning (see, e.g. [6, 7]).
Another application of hierarchical learning for sunspot classification is reported
in [33]. To deal with such problems one should develop methods for concept
approximations together with methods aiming at approximation of reasoning
schemes (over such concepts) expressed in natural language. The foundations
of such an approach, creating a core of perception logic, are based on rough
set theory [14, 36, 37] and its extension rough mereology [35, 45, 51]. The (ap-
proximate) Boolean reasoning methods can be scaled to the case of compound
concept approximation.

Let us observe that hierarchical modeling employs some general mechanisms
emphasized in [22] dealing with a kind of “interplay” between syntax and se-
mantics. The key observation is that the syntax on one level is used to define
semantical structures (or their clusters) on the next level of hierarchy. One can
interpret them in the framework of the Bairwise classifications [4] as operations
on such classifications or as a kind of sums of information systems [54]. They
allow us gradually to model structures of granules representing “wider” context
of perceived objects. In this way, it is possible to construct more compound gran-
ules interpreted, e.g., as patterns representing properties of, e.g., time windows
of states, sequences of such time windows, sets of such sequences, etc.

2.1 Hierarchical Modeling and Dealing with Ill-Posed Problems:
Toward Generalization of the Minimal Length Principle to the
Case of Concept Ontology

As pointed out in [61], machine learning problems can be considered as inverse
problems, and in a broad view,

A(f) = d,

where A can be understood as a model for a phenomena, f ∈ F represents a
function of some of the model’s causal factors, chosen from a class F of can-
didate functions, and d denotes some actual observation data pertaining to the
phenomena, are generally ill-posed, which means the solution f might not exist,
might not be unique, and most importantly, might not be stable. Namely, with
a small deviation δ in the output data dδ, we have

Rδ(f) = ‖A(f) − dδ‖, (1)
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not tending to zero even if δ tends to zero, where ‖ · ‖ is any divergence metrics
appropriate for f , meaning arbitrarily small deviations in data may cause large
deviations in solutions.

One can also give another interpretation of the equation (1). The operator A
can be interpreted as a (vague) specification (constraints) of the problem and the
goal is to find a solution f satisfying the specification to a satisfactory degree.
This satisfactory degree is expressed in (1) by means of the norm. Note that, very
often, while dealing with real-life problems we have only a vague specification A
rather than a crisp operator A. Moreover, due to the uncertainty in specification
of A and f the quality measures often can only be estimated from available
data. In consequence, one can hardly expect that the relevant measures would
be expressed in well known spaces with norms as in (1). In such cases one should
look for some other avenues to express, e.g., the phrase a solution should satisfy
a given specification to satisfactory degree [30].

For dealing with ill posed problems the regularization theory was proposed.
The idea of regularization is due to Tikhonov (1963, see [60]). Instead of the
equation (1) the following one is considered:

Rδ,γ(f) = ‖A(f) − dδ‖ + γW (f), (2)

where W (f) is a functional measuring the “simplicity” of the solution f and γ is
a parameter (adjustable in the learning process).

Now, in the equation (2) we have a sum of two arguments. The first one ex-
presses the quality of the solution f and the second one expresses, in a sense, the
description length of the solution, using the terminology related to the minimal
length principle. For a given parameter γ we are searching for f by minimizing
the value of Rδ,γ(f). By choosing different values of γ we may alter our priority
given to the first or the second summand of the sum in (2).

Fundamental pattern recognitions problems such as class probability density
function estimation from a wide set of potential densities, or parametric estima-
tion of optimal feature subsets, are ill-posed.

On the other hand, if the model A can be decomposed into a combination
of simpler sub-models Ai, e.g. those involving search spaces with lower Vapnik-
Chervonenkis (VC) dimensions, or those for which respective stable sub-solutions
fi can be found inexpensively, chances are that we’ll be able to assemble a
solution f from sub-solutions fi, which will be better than a solution computed
in an all-out attempt for the original problem. However, the challenge in this
approach is that there is no known automatic method for the computation of
effective decompositions of A.

In the hierarchical learning approach, we assume that the decomposition
scheme will be provided by an external human expert in an interactive pro-
cess. Knowledge acquired from human expert will serve as guidance to break the
original model A into simpler, more manageable sub-models Ai, organized in a
lattice-like hierarchy. They would correspond to subsequent levels of abstractions
in the hierarchy of perception and reasoning of the human expert.

The mentioned above decomposition should lead to submodels Ai together
with pertaining functionals Wi as well as parameters γi. The global optimization
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criteria become more compound in the decomposition case and should be ob-
tained by fusion of those for submodels. For example, one could assume the
following optimization criterion:

R∗
δ,γ(f) =

∑
i

‖Ai(fi) − dδi‖ + γiWi(fi), (3)

where the sum is taken over all decomposition submodels and f is the solution
corresponding to the root level of decomposition (i.e., to the model A)1. However,
the linear fusion in (3) may be too simplistic for real-life problems, where it is
important to learn from data approximations of optimization criteria [25, 30].

2.2 Narrowing the Potential Search Space

As stated in [61], the problem of estimating f from a large set F of possible
candidate solutions is ill-posed. One way to alleviate this problem is to employ
the so-called Structural Risk Minimization (SRM) technique. The technique, in
short, is based on a theorem on the risk’s bounds, which essentially states that

R(α) ≤ Remp(α) + CI(α),

which means the risk functional R(α), expressing how far we are from the desired
solution for a parameter α from a general parameter set S, is bounded by the
sum of the empirical risk Remp(α) and a confidence interval CI(α) containing
the Vapnik-Chervonenkiss dimension of the function space S.

This dependency is shown on Fig. 2.
Instead of optimizing α over an arbitrary set of possible parameters S, we

use the bounds to find a set S∗ for which the risk’s bound is minimal, and then
perform the search for the solution α∗ within S∗. For more details, see [61].

The hierarchical learning approach, by reducing the complexity of the original
learning problem by decomposing it into simpler ones, tries to optimize the
corresponding search spaces on subsequent levels of the learning hierarchy, and
is analogous in function to the SRM technique. One can consider decomposition
as one of possible strategies in SRM aimed at searching for (sub)optimal spaces.
The resulting space corresponds to the family of searching spaces obtained on
different levels of decomposition. For any submodel on the i + 1-th level the
searching space for solutions is discovered on the basis of some search spaces
from the i-th level. The search for (sub)optimal decomposition is conducted
by minimization of the description length of solutions from spaces on different
decomposition levels while preserving the satisfactory quality of solutions. The
searching spaces for approximation of concepts from any level i+1 on the basis of
concepts from the level i of decomposition are computationally feasible because
any two successive levels of decomposition should be, in a sense, semantically
close [30]. This means that the searching spaces brought about on particular

1 Searching for any fi (not corresponding to the leaf decomposition level) is performed
over the space constructed on the basis of some already discovered spaces linked to
some submodels from the predecessor decomposition level relative to fi.
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Fig. 2. Actual risk bounds across search spaces.(Vapnik, The Nature of Statistical
Learning Theory, Springer-Verlag, 1999)

Fig. 3. SRM vs Hierarchical Learning

decomposition levels are smaller than those obtained without decomposition.
Moreover SRM can be used on each particular decomposition level to optimize
the searching space for approximation of concepts on this level. For details, see
Fig. 3.
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Another advantage of the hierarchical learning model lies in the construction
of the descriptive language in which classifiers on subsequent levels are built. The
choice of language directly influences the potential search space and is therefore
crucial for classifier building. With a proper reasoning scheme in place, we can
construct the descriptive language on a higher level from those already estab-
lished on lower levels, which proves effective in reducing the learning time and
boosting the overall learning performance. The choice of language can be inter-
preted as a step in searching for sub(optimal) spaces in SRM.

2.3 Ontology Matching

The knowledge on training samples that comes from an expert obviously reflects
his perception about the samples. The language used to describe this knowledge
is a component of the expert’s ontology which is an integral part of his percep-
tion. In a broad view, an ontology consists of a vocabulary, a set of concepts
organized in some kind of structures, and a set of binding relations amongst
those concepts [15]. We assume that the expert’s ontology when reasoning about
complex structured samples will have the form of a multi-layered hierarchy, or a
lattice, of concepts. A concept on a higher level will be synthesized from its chil-
dren concepts and their binding relations. The reasoning thus proceeds from the
most primitive notions at the lowest levels and work bottom-up towards more
complex concepts at higher levels.

Hierarchical learning, together with the transfer of knowledge expressed in
natural languages from external experts to low-level computer operators, consti-
tutes an excellent illustration of Granular Computing in action.

2.4 External Knowledge Transfer

The knowledge elicitation process assumes that samples, for which the learn-
ing system deems it needs additional explanations, are submitted to the expert,
which returns not only their correct class identity, but also an explanation on
why, and perhaps more importantly, how he arrived at his decision. This expla-
nation is passed in the form of a rule:

[CLASS(u) = k] ≡ �(EFeature1(u), ..., EFeaturen(u)),

where EFeaturei represents the expert’s perception of some characteristics of
the sample u, while synthesis operator � represents his perception of some re-
lations between these characteristics. In a broader view, � constitutes of a re-
lational structure that encompasses the hierarchy of experts’ concepts expressed
by EFeaturei.

The ontology matching aims to translate the components of the expert’s on-
tology, such as EFeaturei and binding relations embedded in the � structure,
expressed in the foreign language Lf , into the patterns (or classifiers) expressed
in a language familiar to the learning system, e.g:
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• [FaceType(Ed) = Square] ≡(Ed.Face().Width - Ed.Face().Height) ≤ 2cm,
• [Eclipse(p) = True] ≡ (s=p.Sun())∧(m=p.Moon())∧(s∩m.Area≥ s.Area·0.6).

Here the abstract concepts such as “Ed has a square face” or “The Sun is in
eclipse” get translated into classification rules built from computable measure-
ments and observation features.

As the human perception is inherently prone to variation and deviation, the
concepts and relations in a human expert’s ontology are approximate by design.
To use the terms of granular computing, they are information granules that
encapsulate the autonomous yet interdependent aspects of human perception.

The matching process, while seeking to accommodate various degrees of vari-
ation and tolerance in approximating those concepts and relations, will follow
the same hierarchical structure of the expert’s reasoning. This allows parent
concepts to be approximated using the approximations of children concepts,
essentially building a layered approximate reasoning scheme. Its hierarchical
structure provides a natural realization of the concept of granularity, where
nodes represent clusters of samples/classifiers that are similar within a de-
gree of resemblance/functionality, while layers form different levels of abstrac-
tion/perspectives on selected aspects of the sample domain.

On the other hand, with such an established multi-layered reasoning archi-
tecture, we can take advantages of the results obtained within the Granular
Computing paradigm, which provides frameworks and tools for the fusion and
analysis of compound information granules from previously established ones, in
a straightforward manner. The intermediate concepts used by external experts
to explain their perception are vague and ambiguous, which makes them natural
subjects to granular calculi.

The translation must

• allow for a flexible matching of a variations of similar domestic patterns to
a foreign concept, i.e. the translation result should not be a single patterns,
but rather a collection or cluster of patterns.

• find approximations for the foreign concepts and relations, while preserving
their hierarchical structure. In other words, inherent structure of the provided
knowledge should be intact.

• ensure robustness, which means independence from noisy input data and
incidental underperformance of approximation on lower levels, and stability,
which guarantees that any input pattern matching concepts on a lower level
to a satisfactory degree will result in a satisfactory target pattern on the next
level.

We assume an architecture that allows a learning system to consult a human
expert for advices on how to analyze a particular sample or a set of samples.
Typically this is done in an iterative process, with the system subsequently
incorporating knowledge elicited on samples that could not be properly classified
in previous attempts [32]. (See Fig. 4 below).
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Fig. 4. Expert’s knowledge elicitation

2.4.1 Approximation of Concepts
A foreign concept C is approximated by a domestic pattern (or a set of patterns)
p in term of a rough inclusion measure Match(p, C) ∈ [0, 1]. Such measures take
root in the theory of rough mereology [45], and are designed to deal with the no-
tion of inclusion to a degree. An example of concept inclusion measures would be:

Match(p, C) =
|{u ∈ T : Found(p, u) ∧ Fit(C, u)}|

|{u ∈ T : Fit(C, u)}| ,

where T is a common set of samples used by both the system and the expert to
communicate with each other on the nature of expert’s concepts, Found(p, u)
means a pattern p is present in u and Fit(C, u) means u is regarded by the
expert as fit to his concept C.

Our principal goal is, for each expert’s explanation, find sets of patterns Pat,
Pat1,...,Patn and a relation �d so as to satisfy the following quality requirement:

if (∀i : Match(Pati, EFeaturei) ≥ pi) ∧ (Pat = �d(Pat1, ..., Patn))
then Quality(Pat) > α,

where p, pi : i ∈ {1, .., n} and α are certain cutoff thresholds, while the Quality
measure, intended to verify if the target pattern Pat fits into the expert’s concept
of sample class k, can be any, or combination, of popular quality criteria such as
support, coverage, or confidence [46], where

SupportCLASS=k(Pat) = |{u ∈ U : Found(Pat, u) ∧ CLASS(u) = k}|,

ConfidenceCLASS=k(Pat) =
Support(Pat)

|{u ∈ U : Found(Pat, u)}| ,

CoverageCLASS=k(Pat) =
Support(Pat)

|{u ∈ U : CLASS(u) = k}| ,
and U is the training set.
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In other words, we seek to translate the expert’s knowledge into the domes-
tic language so that to generalize the expert’s reasoning to the largest possible
number of training samples. More refined versions of the inclusion measures
would involve additional coefficients attached to e.g. Found and Fit test func-
tion. Adjustment of these coefficients based on feedback from actual data may
help optimize the approximation quality.

For example, let’s consider a handwritten digit recognition task:
When explaining his perception of a particular digit image sample, the expert

may employ concepts such as Circle, Vertical Strokes or West Open Belly. The ex-
pert will explain what he means when he says, e.g. Circle, by providing a decision
table (U, d) with reference samples, whered is the expert decision to which degree he
considers thatCircle appears in samples u∈U . The samples in U may be provided
by the expert, or may be picked up by him among samples explicitly submitted by
the system, e.g. those that had been misclassified in previous attempts.

The use of rough inclusion measures allows for a very flexible approximation
of foreign concept. A stroke at 85 degree to the horizontal in a sample image can
still be regarded as a vertical stroke, though obviously not a ‘pure’ one. Instead
of just answering in a Y es/No fashion, the expert may express his degrees of
belief using such natural language terms as Strong, Fair, or Weak (See Fig. 5).

Fig. 5. Tolerant matching by expert

The expert’s feedback will come in the form of a decision table (See Table 1).

Table 1. Perceived features

Circle

u1 Strong
u2 Weak
... ...
un Fair

Table 2. Translated features

DPat Circle

u1 252 Strong
u2 4 Weak
... ... ...
un 90 Fair
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The translation process attempts to find domestic feature(s)/pattern(s) that
approximate these degrees of belief (e.g. such as presented in Table 2). Domestic
patterns satisfying the defined quality requirement can be quickly found, taking
into account that sample tables submitted to experts are usually not very large.
Since this is essentially a rather simple learning task that involves feature se-
lection, many strategies can be employed. In [34], genetic algorithms equipped
with some greedy heuristics are reported successful for a similar problem. Neural
networks also prove suitable for effective implementation.

It can be observed that the intermediate concepts like Circle or Vertical
Strokes, provided by a human expert, along with satisfiability assessments like
Strong, Fair, or Weak form information granules within the perception of the
expert. The granules correspond to different levels of abstraction, or focus, of
his reasoning about a particular class of samples. The translation process trans-
forms these information granules into classifiers capable of matching particular
parts of actual samples with intermediate expert’s concepts, which essentially
incorporates the human perception, by way of using information granules, into
the learning process.

2.4.2 Approximation of Relations
The approximation of higher level relations between concepts has been formal-
ized within the framework of perception structures, recently developed in [49].
A perception structure S, in a simpler form, is defined as:

S = (U,M,F, |=, p),
where U is a set of samples, F is a family of formulas expressed in domestic
language that describe certain features of the samples and M is a family of
relational structures in which these formulas can be evaluated, while p : U →
M×F is a perception function such that ∀u∈U : p1(u)|=p2(u) (p1 and p2 are the
first and second component projections of p) which means that p2(u) is satisfied
(is true) in the relational structure p1(u). This may express that some relations
among features within samples are observed.

For a given sample u, we define a set

M(u) = {R∈M : R |= p2(u)},
which contains all possible relational structures for which formulas, or in other
words, features observed in u yield.

2.4.3 Approximate Clusters
Given a perception structure S, an approximate cluster of a given sample u is
defined as:

[u]S =
⋃

R∈M(u)

p−1
1 (R).

This cluster contains samples from U that have similar structures to u, with
regard to the perception p, i.e. those with similar relational structures that also
hold true the features observed in u (See Fig. 6).
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Fig. 6. Approximate cluster

For example, if we construct a perception structure that contains a formula
describing a part of a digit is above another part, then within this perception, the
approximate cluster of a digit ’6’, which has a slant stroke over a circle, would
comprise of all digits that have similar structure, i.e. containing a slant stroke
over a circle.

Perception structures, following natural constructs in the expert’s foreign lan-
guage, should involve tolerant matching. Let’s suppose that we allow a soft per-
ception on samples of U by introducing a similarity relation τ between them.
This relation, for example might assume that two samples resemble each other
to a degree. This naturally leads to clusters of similar relational structures in
M . With samples now perceived as similar to each other in a degree, we shall
allow for a similarity relation in M . Two relational structures might be consid-
ered approximately the same if they allow for similar formulas to yield similar
results in majority of cases when these formulas are applicable. The family M
thus becomes granulated by τ and is denoted by Mτ .

The same follows for the family F of features, or formulas that, for instance,
do not always have the same value, but are equivalent in most cases, or in all
or majority of a cluster of similar relational structures. Formulas’ evaluation
might be extended to comprise degrees of truth values, rather than plain binary
constants. The family F hence becomes granulated with regards to τ and is
denoted by Fτ .

The perception structure S hence becomes, for a given similarity measure τ in
U : S = (U,Mτ , Fτ , |=, p) which permits a much more flexible space and a variety
of methods for concept approximation.

In the above mentioned example, a similarity induced perception might con-
sider as the approximate cluster of a digit ’5’ the set of every samples that will
have a stroke over a closed curve (not just slant strokes and circles as before).
Moreover, the new perception also allows for a greater variation of configurations
considered to fit into the concept of above.
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The definition of an approximate cluster becomes:

[u]S =
⋃

R∈Mτ (u)

p−1
1 (R).

The task of approximating an expert’s concept involving relations between
components is now equivalent to finding a perception function that satisfies some
quality criteria. Let’s suppose that the expert provide us a set C of samples he
considers fit to his concept. We have to find a perception function p such that:

Confidence :
|[u]S ∩ C|
|[u]S| > c,

and/or

Support :
|[u]S ∩ C|

|U | > s,

where u is some sample from C, and 0 < c, s < 1.
Having approximated the expert’s features EFeaturei, we can try to translate

his relation � into our �d by asking the expert to go through U and provide
us with the additional attributes of how strongly he considers the presence of
EFeaturei and to what degree he believes the relation � holds. Again, lets
consider the handwritten recognition case.(See Table 3).

Table 3. Perceived relations

V Stroke WBelly Above

u1 Strong Strong Strong
u2 Fair Weak Weak
... ... ... ...
un Fair Fair Weak

Table 4. Translated relations

#V S #NES Sy < By Above

u1 0.8 0.9 (Strong,1.0) (Strong, 0.9)
u2 0.9 1.0 (Weak, 0.1) (Weak, 0.1)
... ... ... ... ...
un 0.9 0.6 (Fair, 0.3) (Weak, 0.2)

We then replace the attributes corresponding to EFeaturei with the rough
inclusion measures of the domestic feature sets that approximate those concepts
(computed in the previous step). In the next stage, we try to add other features,
possibly induced from original domestic primitives, in order to approximate the
decision d. Such a feature may be expressed by Sy < By, which tells whether
the median center of the stroke is placed closer to the upper edge of the image
than the median center of the belly. (See Table 4).

The expert’s perception A ‘6’ is something that has a ‘vertical stroke’ ‘above’
a ’belly open to the west’ is eventually approximated by a classifier in the form
of a rule:

if S(#BL SL > 23) AND B(#NESW > 12%) AND Sy < By then CL=‘6’,

where S and B are designations of pixel collections, #BL SL and #NESW are
numbers of pixels with particular topological feature codes, and Sy < By reasons
about centers of gravity of the two collections.
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Approximate reasoning schemes embody the concept of information granular-
ity by introducing a hierarchical structure of abstraction levels for the external
knowledge that come in the form of a human expert’s perception. The granular-
ity helps to reduce the cost of the knowledge transfer process, taking advantage
of the expert’s hints. At the same time, the hierarchical structure ensures to
preserve approximation quality criteria that would be hard to obtain in a flat,
single-level learning process.

From yet another perspective, the reasoning schemes that encompass a human
expert’s intermediate concepts like Vertical Stroke, Above and their satisfability
assessments such as Strong or Fair represents the way humans reason about
samples through different levels of abstraction. The connections between inter-
mediate concepts and transitions from lower to upper levels allow to shift the
perception focus from smaller parts of objects to more abstract, global features.
These reasoning schemes also provide off-the-shelf recipes as to how to assem-
ble more compound information granules from simpler, already established ones.
Translated into domestic languages, they become powerful classifiers that help
expand the human perception structures to actual samples.

2.5 Outliers

Conceptually, outliers/exceptions are kind of atypical samples that stand out
from the rest of their group or behave very differently from the norm [1]. While
there is still no universally accepted formal definition of being an outlier, sev-
eral descriptions seem to reflect the essential spirit. According to Hawkin: An
outlier is an observation which deviates so much from other observations as to
arouse suspicions that it was generated by a different mechanism, while Barnett
and Lewis define an outlier as an observation (or subset of observations) which
appears to be inconsistent with the remainder of that set of data. [3]. These sam-
ples previously would usually be treated as bias or noisy input data and were
frequently discarded or suppressed in subsequent analyses. However, the rapid
development of Data Mining, which aims to extract from data as much knowl-
edge as possible, has made outlier identification and analysis one of its principal
branches. Dealing with outliers is crucial to many important fields in real life such
as fraud detection in electronic commerce, intrusion detection, network manage-
ment, or even space exploration. At the same time, there is an increasing effort
in the Machine Learning community to develop better methods for outlier detec-
tion/analysis, as outliers often carry useful subtle hints on the characteristics of
the sample domain and, if properly analyzed, may provide valuable guidance in
discovering the causalities underlying the behavior of a learning system. As such,
they may prove valuable as an additional source of search control knowledge and
as a mean for the construction of better classifiers.

Most popular measures to detect outliers [19] are based on either probabilis-
tic density analysis [12] or distance evaluation [28]. Knorr made an attempt to
elicit intensional knowledge from outliers through the analysis of the dynamicity
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of outliers’ set against changes in attribute subsets [27]. However, no thorough
model or scheme for the discovery of intensional knowledge from identified out-
liers has been established. In particular, there is almost no known attempt to
develop methods for outlier analysis amongst structured objects, i.e. objects that
display strong inner dependencies between theirs own features or components.
Perhaps the reason for this is the fact that while many elaborated computa-
tion models for the detection of outliers have been proposed , their effective
use in eliciting additional domain knowledge, as well as the elicitation of inten-
sional knowledge within outliers, is believed difficult without support of a human
expert.

In this paper, we approach the detection and analysis of outliers in data
from a Machine Learning perspective. We propose a framework based on the
Granular Computing paradigm, using tools and methods originated from Rough
Set and Rough Mereology theories. The process of outlier detection is refined by
the evaluation of classifiers constructed employing intensional knowledge elicited
from suspicious samples. The internal structures of the sample domain will be
dealt with using hierarchical approximate reasoning schemes and layered learn-
ing. We show the role of an external domain knowledge source by human experts
in outlier analysis, and present methods for the successful assimilation of such
knowledge. Introduced methods and schemes are illustrated with an example
handwritten digit recognition system.

Most existing outlier identification methods employ either probabilistic den-
sity analysis, or distance measures evaluation [19]. Probabilistic approach typ-
ically run a series of statistical discordancy tests on a sample to determine
whether it can be qualified as an outlier. Sometimes this procedure is enhanced
by a dynamic learning process. Their main weakness is the assumption of an
underlying distribution of samples, which is not always available in many real
life applications. Difficulties with their scalability in numbers of samples and
dimensions are also a setback of primary concern.

Another approach to outlier detection relies on certain distance measures es-
tablished between samples. Known methods are data clustering and neighbor
analysis. While this approach can be applied to data without any assumed a
priori distribution, they usually entails significant computation costs.

Let Ck be a cluster of samples for class k during the training phase and dk

be the distance function established for that class. For a given cut-off coefficient
α ∈ (0, 1], a sample u∗ of class k is considered “difficult”, “hard” or “outlier” if,
e.g:

dk(u∗, Ck) ≥ α · max{(v, CK) : v ∈ TR ∧CLASS(v) = k},
which means u∗ is far from the “norm” in term of its distance to the cluster
center, or

|{v : v ∈ Ck ∧ dk(u∗, v) ≤ dk(v, Ck)}| ≤ α · |Ck|,
which means u∗ is amongst the most outreaching samples of the cluster.

Another popular definition of outlier is:

|{v : v ∈ Ck ∧ dk(u∗, v) ≥ D}| ≤ α · |Ck|,
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which means at least a fraction α of objects in Ck lies in a greater distance than
D from u∗.

It can be observed that both approaches pay little attention to the problem of
eliciting intensional knowledge from outliers, meaning no elaborated information
that may help explain the reasons why a sample is considered outlier. This kind
of knowledge is important for the validity evaluation of identified outliers, and
certainly is useful in improving the overall understanding of the data.

Knorr and Ng made an attempt to address this issue by introducing the no-
tion strength of outliers, derived from an analysis of dynamicity of outlier sets
against changes in the features’ subsets [26, 27]. Such analyzes belong to the very
well established application domain of Rough Sets, and indeed a formalization
of a similar approach within the framework of Rough Sets has been proposed
by [23].

Our approach to outlier detection and analysis will assume a somewhat dif-
ferent perspective. It focuses on two main issues:

1. Elicitation of intensional knowledge from outliers by approximating the
perception of external human experts.

2. Evaluation of suspicious samples by verification the performance of classi-
fiers constructed using knowledge elicited from these samples.

Having established a mechanism for eliciting expert’s knowledge as described
in previous sections, we can develop outlier detection tests that might be com-
pletely independent from the existing similarity measures within the learning
system as outlined in the Fig. 7 below:

Fig. 7. Outlier analysis scheme
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For a given training sample u∗,

Step 1. We ask the expert for his explanation on u∗. Step 2. The expert
provides a foreign knowledge structure �(u∗). Step 3. We approximate �(u∗)
under restrictive matching degrees to ensure only the immediate neighborhood
of u∗ is investigated. Let’s say the result of such an approximation is a pattern
(or set of patterns) p∗u. Step 4. It is now sufficient to check Coverage(p∗u). If
this coverage is high, it signifies that u∗ may bear significant information that is
also found in many other samples. The sample u∗ therefore cannot be regarded
as an outlier despite the fact that there may not be many other samples in its
vicinity in terms of existing domestic distance measures of the learning system.

This test shows that distance-based outlier analysis and expert’s elicited
knowledge are complementary to each other.

In our architecture, outliers may be detected as samples that defied previous
classification efforts, or samples that pass the above described outlier test, but
may also be selected by the expert himself. This helps the classification system to
focus on difficult samples in order to gradually improve the overall performance,
in a way similar to that of popular boosting or leveraging algorithms. The main
difference is that boosting algorithms employ a priori formulas/strategies to ad-
just weights to positive and negative samples, whereas our approach relies on the
domain knowledge elicited from the external expert. In this way, we can benefit
from the best of both sources of knowledge.

Fig. 8. Boosting vs Hierarchical Learning

2.6 Reinforcement Learning and Planning

The next two examples illustrate approximation of compound concepts in rein-
forcement learning and planning.

In reinforcement learning [13, 24, 29, 40, 43, 53, 58], the main task is to learn
the approximation of the function Q(s, a), where s, a denotes a global state of



22 T.T. Nguyen and A. Skowron

the system and an action performed by an agent ag and, respectively and the
real value of Q(s, a) describes the reward for executing the action a in the state
s. To approximate the function Q(s, a), probabilistic models are used. However,
for compound real-life problems it may be hard to build such models for such a
compound concept as Q(s, a) [60]. We propose another approach to the approxi-
mation ofQ(s, a) based on ontology approximation. The approach is based on the
assumption that in a dialog with experts additional knowledge can be acquired,
making it possible to create a ranking of values Q(s, a) for different actions a in
a given state s. The explanation given by expert about possible values of Q(s, a)
may involve concepts from a special ontology. Using this ontology one can follow
hierarchical learning methods to learn the approximations of its concepts. Such
concepts can have a temporal character as well. This means the ranking of ac-
tions may depend not only on the current action and state but also on actions
performed in the past, as well as on the changes caused by these actions.

In [6, 7] a computer tool based on rough sets for supporting automated plan-
ning of the medical treatment (see, e.g., [18, 59]) is discussed. In this approach, a
given patient is treated as an investigated complex dynamical system, whilst dis-
eases of this patient (RDS, PDA, sepsis, Ureaplasma and respiratory failure) are
treated as compound objects changing and interacting over time. As a measure
of planning success (or failure) in the experiments, we use a special hierarchical
classifier that can predict the similarity between two plans as a number between
0.0 and 1.0. This classifier has been constructed on the basis of the special on-
tology specified by human experts and data sets. It is important to mention that
in addition to the ontology, experts also provided the exemplary data (values of
attributes) for the purpose of concepts approximation. The methods of construc-
tion such classifiers are based on approximate reasoning schemes (AR schemes,
for short) and were described, e.g., in [5, 8, 9, 31]. We applied this method for
approximation of similarity between plans generated in automated planning and
plans proposed by human experts during the realistic clinical treatment.

2.7 Interaction with the Web

Let us discuss shortly problems which can be solved by human in dialog with the
Web. Examples of such problems are considered in Service Oriented Computing
or Service Oriented Architecture (see, e.g., [16]). Assuming that this dialog is
performed in a simplified fragment of natural language [62, 64] one should de-
velop tools for approximation concepts used in dialog to make them available to
the Web for approximate reasoning in searching for the solutions of problems.
One can expect that in a near future the Web can automatically help the users
to synthesize required services if it will be possible to understood to satisfactory
degree the specification received in dialog with users.

3 Selected Advanced Issues on GC

In this section, we discuss some advanced issues on GC. They are related to granules
represented by agents or teams of agents interacting in changing environments.
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We start from a general discussion on the Wisdom technology (wistech) system
outlined recently in [21, 22].

Wisdom commonly means rightly judging based on available knowledge and
interactions. This common notion can be refined. By wisdom, we understand an
adaptive ability to make judgments correctly (in particular, correct decisions) to
a satisfactory degree, having in mind real-life constraints. The intuitive nature of
wisdom understood in this way can be metaphorically expressed by the so-called
wisdom equation as shown in (4).

wisdom = adaptive judgment + knowledge + interaction. (4)

Wisdom can be treated as a certain type of knowledge. In particular, this type
of knowledge is important at the highest level of hierarchy of meta-reasoning in
intelligent agents.

Wistech is a collection of techniques aimed at the further advancement of tech-
nologies to acquire, represent, store, process, discover, communicate, and learn
wisdom in designing and implementing intelligent systems. These techniques in-
clude approximate reasoning by agents or teams of agents about vague concepts
concerning real-life, dynamically changing, usually distributed systems in which
these agents are operating. Such systems consist of other autonomous agents op-
erating in highly unpredictable environments and interacting with each others.
Wistech can be treated as the successor of database technology, information man-
agement, and knowledge engineering technologies. Wistech is the combination
of the technologies represented in equation (4) and offers an intuitive starting
point for a variety of approaches to designing and implementing computational
models for wistech in intelligent systems.

• Knowledge technology in wistech is based on techniques for reasoning about
knowledge, information, and data, techniques that enable to employ the cur-
rent knowledge in problem solving. This includes, e.g., extracting relevant
fragments of knowledge from knowledge networks for making decisions or
reasoning by analogy.

• Judgment technology in wistech is covering the representation of agent percep-
tion and adaptive judgment strategies based on results of perception of real
life scenes in environments and their representations in the agent mind. The
role of judgment is crucial, e.g., in adaptive planning relative to the Maslow
Hierarchy of agents’ needs or goals. Judgment also includes techniques used
for perception, learning, analysis of perceived facts, and adaptive refinement
of approximations of vague complex concepts (from different levels of concept
hierarchies in real-life problem solving) applied in modeling interactions in
dynamically changing environments (in which cooperating, communicating,
and competing agents exist) under uncertain and insufficient knowledge or
resources.

• Interaction technology includes techniques for performing and monitoring ac-
tions by agents and environments. Techniques for planning and controlling
actions are derived from a combination of judgment technology and interac-
tion technology.
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The wistech system is strongly related to the idea of Gottfried Wilhelm Leib-
niz, one of the greatest mathematicians. He has discussed, in a sense, calculi of
thoughts. In particular, he has written

If controversies were to arise, there would be no

more need of disputation between two philosophers

than between two accountants. For it would suffice to

take their pencils in their hands, and say to each other:

‘Let us calculate’.

– Gottfried Wilhelm Leibniz,

Dissertio de Arte Combinatoria (Leipzig, 1666).

... Languages are the best mirror of the human mind,

and that a precise analysis of the signification of words

would tell us more than anything else about the operations

of the understanding.

– Gottfried Wilhelm Leibniz,

New Essays on Human Understanding (1705)

Translated and edited by

Peter Remnant and Jonathan Bennett

Cambridge: Cambridge UP, 1982

Only much later, it was possible to recognize that new tools are necessary
for developing such calculi, e.g., due to the necessity of reasoning under uncer-
tainty about objects and (vague) concepts. Fuzzy set theory (Lotfi A. Zadeh,
1965) and rough set theory (Zdzis�law Pawlak, 1982) represent two complemen-
tary approaches to vagueness. Fuzzy set theory addresses gradualness of knowl-
edge, expressed by the fuzzy membership, whereas rough set theory addresses
granularity of knowledge, expressed by the indiscernibility relation. Granular
computing (Zadeh, 1973, 1998) may be now regarded as a unified framework for
theories, methodologies and techniques for modeling of calculi of thoughts based
on objects called granules.

There are many ways to build foundations for wistech computational
models. One of them is based on the rough-granular computing (RGC) [52].
Rough-granular computing (RGC) is an approach for constructive definition of
computations over objects called granules, aiming at searching for solutions of
problems which are specified using vague concepts. Granules are obtained in
a process called granulation. Granulation can be viewed as a human way of
achieving data compression and it plays a key role in implementing the divide-
and-conquer strategy in human problem-solving [64]. The proposed approach
combines rough set methods with other soft computing methods, and methods
based on granular computing (GC). RGC is used for developing one of the possi-
ble wistech foundations based on approximate reasoning about vague concepts.

Let us discuss some issues important to wistech, pertaining to compound
granules which can perceive, and interact with, their environments.
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3.1 Compound Granules in Perception and Interaction

Perception and interaction are closely related issues. Let us assume that an
agent ag is perceiving the environment state e. The results of perceiving (e.g.,
by sensors) of different parts of e are stored in a a generalized information system
IS (see Sect. 1.2). For each such a part s a partial information Inf(s) is stored
in IS together with information on relationships between parts. Form IS the
structural model Me of e is derived by hierarchical modeling. Granule Me can
be represented by a relational structure or a cluster of such structures). Next,
the structural model Me is matched against knowledge base network of the agent
ag. The result of matching is a family Fe of concepts together with information
about degrees to which these concepts are satisfied. Now, the judgment engine of
ag is used to predict the current goals and to select of the relevant action (plan
or communication) for required for interaction with the environment. Agent ag
is attempting to make necessary changes or to move in the environment to reach
the target goal. Note the environment changes are reflected by changes in the
internal state representation of ag. Moreover, information Inf(s′), M ′

s or Fs′

about the next state e′ of the environment is predicted, where s′ denotes a part
of e′ perceived by ag. This information is further compared with the perceived
information about the next state e′, e.g., for reconstructing the current plan.
The judgment engine of ag is also used for predicting changes of the internal
state of ag caused by the actual environment state and by the actual internal
state [30].

In [30] the above discussed judgment process was disussed in the framework
of approximate reasoning about changes of the environment state and the agent
state. In particular, this calls for approximation of complex functions character-
izing these changes.

3.2 Coalition Formation and Interactive Computations

Coalitions of granules play an important role in interactive computations and
reasoning about such computations. One can consider coalitions as operations on
collections of granules representing agents to granules representing a meta-agent,
i.e., a team of agents. Any such operation should provide for the construction of
(i) the perception mechanism of coalition from the perception mechanisms of its
members; (ii) the coalition judgment engine using the judgment engines of the
coalition members; (iii) the coalition knowledge base network from knowledge
base networks of the coalition members; (iv) the interaction mechanism of the
coalition from the interaction mechanisms of the coalition members. For exam-
ple, in a given situation, each member of coalition can have several choices for
actions but the finally selected action by each member is based on cooperation of
coalition members, i.e., they are choosing actions on the basis of, e.g., protocol
of cooperation. Moreover, the environment is perceiving coalition as a whole,
e.g., any action performed by coalition can be treated as the results of a vec-
tor (a1, . . . , an) of actions of its members. These actions are selected on the basis
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of the accepted protocol. Note also perceived features of coalition refer to the
coalition as the whole rather than its parts.

There are several challenging issues related to coalitions such as learning
strategies for (hierarchical) coalition formation, constructing language of actions,
plans, communication for coalition on the basis of languages of its members.
Among these issues hierarchical coalitions play a special role in approximate
reasoning about interactive computations, making it possible to perform approx-
imate reasoning about the interaction of the whole system with the environment.

3.3 Granule Representation and Adaptation of Knowledge Base
Networks

In the matching process of structural models with knowledge base networks,
an important role play strategies of granule representations and geometry of
granules [17].

Observe that during the perception, matching, and judgment processes the
current knowledge base network may be updated. For example, some new pat-
terns, concepts, production rules, rules, or approximate reasoning schemes are
discovered and stored. Some other patterns may be removed from the knowledge
base networks [48, 65].

3.4 Scalability Issues and Language Evolution

One can formulate several important questions related to languages used for
communication by agents. Here are some examples. How the names for concepts
are created? Why they are created? When we should go beyond ontologies of
concepts? How the communication languages of agents are evolving when agents
are dealing with the scalability issues, i.e., when the agents are trying to move
from solving small size problems to large size problems?

4 Conclusions

We discussed the role of GC in approximation of complex concepts and in interac-
tive computations, e.g., performed by agents interacting with environments and
among themselves. We emphasized the role of dialogs of human experts with dif-
ferent granular systems in improving their performance. Finally, we formulated
several challenges for approximate reasoning in granular systems interacting with
the environments, in particular with other agents or human experts.
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Abstract. In their book, Granular Computing: An Introduction, Bargiela and Pedrycz present a 
view that granular computing is an emerging conceptual and computing paradigm of informa-
tion processing. A central notion is an information-processing pyramid with multiple levels.  
Different levels involve different types of processing. The lowest level concerns numeric 
processing, the intermediate level concerns larger information granules, and the highest level 
concerns symbol-based processing. This chapter examines the notion of integrative levels of 
granularity as a basis of granular computing. The notion of levels had been studied extensively 
in different branches of sciences and different fields of computer sciences. By extracting a set 
of common features and principles of integrative levels of granularity, the triarchic theory of 
granular computing is developed. 
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ing, structured thinking, structured problem solving, structured information processing, multi-
level, multiview, granular structures. 

1   Introduction 

Granular computing is a multi-disciplinary and cross-disciplinary study (see, for ex-
amle, Bargiela and Pedrycz [3, 5], Inuiguchi et al. [20], Keet [21,22], Nguyen et al. [34], 
Lin et al. [27], Pawlak [38], Pedrycz et al. [39], Yao, JT [53], Yao [54], Zadeh [63], 
Zhang and Zhang [64]), concerning problem solving and information processing with 
multiple levels of granularity [55-59]. Granular computing may be viewed as human-
inspired paradigms of computing and information processing, as well as their applica-
tions in the design and implementation of intelligent information systems [5, 61]. 

In their book, Granular Computing: An Introduction, Bargiela and Pedrycz [3] 
promote granular computing as an emerging conceptual and computing paradigm of 
information processing. The working principles of granular computing are explained 
based on an information-processing pyramid with multiple levels. Different levels in-
volve different types of processing. The lowest level concerns numeric processing, the 
intermediate level concerns larger information granules, and the highest level con-
cerns symbol-based processing. From this conceptual framework, we can identify two 
important notions, namely, granules and granular structures.  Granules are elements 
and units that build up levels and granular structures are levels partially ordered based 
on their granularity. The formal representation of a granular structure as a multilevel 
hierarchical structure is based on further results from systems science, artificial intel-
ligence and computer programming [57-59].  



32 Y. Yao 

 

This chapter covers two aspects of granular computing.  In Sections 2 to 4, we 
show that the notion of levels plays a fundamental role in many branches of sciences.   
A survey on many different interpretations and uses suggests that the concept of inte-
grative levels of granularity may serve as a basis of granular computing.  In Section 5, 
we briefly discuss the triarchic theory of granular computing that is centered around 
granular structures. 

2   Integrative Levels 

In this section, we argue that levels and associated multilevel hierarchical structures 
are common words of languages used in a wide spectrum of disciplines.  A few im-
portant features of levels are examined. 

2.1   Universality of Levels 

The notions of levels and associated multilevel hierarchical structures are perhaps 
some of the most fundamental concepts and tools that we use to describe, represent, 
analyze and understand ourselves, reality and our relations to reality [1, 8, 11, 35, 41, 
46, 57, 62]. As pointed out by Conger [8], the interpretations of differences of level 
range from the literal meanings to the various metaphorical meanings. The term “lev-
els” seems to be a universal concept that has been widely used in philosophy and vir-
tually all branches of natural and social sciences.  

A (metaphysical) level, as defined by Conger [8], is “a class of structures or proc-
esses which are distinguishable from others as being either higher or lower.”  The 
terms “higher” and “lower” may denote various spatial, valuational, logical and de-
velopmental differences.  Independent of any particular interpretation, such a higher-
lower relation enables us to order levels, and hence to produce a multilevel hierarchi-
cal structure called a hierarchy.  

In June 2008, we performed Google searches using a dozen phrases involving 
“levels.” Table 1 summarizes the results about the number of hits of different phrases.  
Several observations can be made from a closer examination of various usages of lev-
els and hierarchical structures. 

Firstly, the notion of “levels” seems to be universally applicable to many different 
disciplines. The numbers of hits of various phrases containing “levels” range from 
several thousands to a few millions. Levels and hierarchical structures are used in  
virtually every branch of science and our daily life.  Secondly, there seems to be a 
common understanding of levels, although slightly different interpretations exist in 
different fields. Levels may have either an objective or a subjective interpretation. 
The former reflects the intrinsic nature of reality; the latter reflects our cognitive un-
derstanding of reality.  Levels are used to describe, organize and interpret things for 
the purposes of simplicity and clarity.  Levels are sometimes used to denote a particu-
lar position on a scale, as reflected by levels of skill and levels of intelligence. 
Thirdly, levels are associated with the dual properties of separation and integration, 
and hence the term “integrative levels” and “integrated levels” are widely used. Lev-
els generally imply a separation of things, with each level focusing on a particular as-
pect. Levels can be ordered partially to form a hierarchical or nested structure. That is,  
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Table 1. Google search results of various uses of levels 

Phrase Hits 
“levels of ability” 1,300,000 
“levels of abstraction” 1,030,00 
“levels of analysis” 684,000 
“levels of business” 163,000 
“levels of complexity” 2,130,000 
“levels of comprehension” 142,000 
“levels of cognition” 35,100 
“levels of consciousness” 216,000 
“levels of control” 222,000 
“levels of description” 86,100 
“levels of detail” 333,000 
“levels of discovery” 2,710,000 
“levels of evidence” 113,000 
“levels of experience” 309,000 
“levels of function” 983,000 
“levels of government” 2,800,000 
“levels of granularity” 143,000 
“levels of intelligence” 106,000 
“levels of interpretation” 565,000 
“levels of intuition” 14,500 
“levels of knowledge” 207,000 
“levels of measurement” 1,600,000 
“levels of observation” 27,300 
“levels of organization” 468,000 
“levels of perception” 39,600 
“levels of processing” 226,000 
“levels of reality” 171,000 
“levels of reasoning” 425,000 
“levels of representation” 932,000 
“levels of skill” 361,000 
“levels of strategy” 1,220,000 
“levels of thinking” 168,000 
“levels of thought” 32,000 
“levels of understanding” 245,000 

 
many levels can be integrated to form a whole. A level can be further divided into 
sub-levels and many levels can be combined into one level, depending on our point of 
observation. One needs to study a level in the context of other levels. Fourthly, in the-
ory there may be an arbitrary large number of many levels. However, most common 
uses of levels normally are within ten. Table 2 shows the numbers of hits on searching 
the numbers of levels commonly used. It can be seen that the most used numbers of 
levels are between two to four, with a peak at three. As the number of levels in-
creases, the number of hits decreases. In other words, our understanding of reality is 
typically at a few levels, instead of a large number of levels. 

The numbers of hits in Tables 1 and 2 should be read qualitatively. For example, 
the “2” in the phrase “2 levels of” may not actually mean that two levels are in fact 
used. Nevertheless, the observations from the tables are valid at a qualitative level. In  
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Table 2. Google search results of the numbers of levels 

Phrase Hits Phrase Hits 
“two levels of” 3,510,000 “2 levels of” 636,000 
“three levels of” 4,130,000 “3 levels of” 1,330,000 
“four levels of” 1,460,000 “4 levels of” 477,000 
“five levels of” 754,000 “5 levels of” 557,000 
“six levels of” 284,000 “6 levels of” 191,000 
“seven levels of” 195,000 “7 levels of” 141,000 
“eight levels of” 122,000 “8 levels of” 146,000 
“nine levels of” 40,300 “9 levels of” 79,900 
“ten levels of” 60,500 “10 levels of” 99,400 

 
particular, the trends obtained from the tables may be correct. For example, the phrase 
“levels of abstraction” is used more frequently than “the level of description.”  People 
prefer a simple two- or three-level structure to other, more complex structures with 
many more levels. The results of Tables 1 and 2 perhaps deserve further attention and 
analysis, as they may enhance our understanding of granular computing where the no-
tion of levels is of fundamental importance.  In the next two subsections, we will ex-
amine in detail two aspects of the notion of levels. 

A final note is that the term layers has also been widely used in place of levels. In 
fact, some authors use them interchangeably [41]. Like multilevel approaches, multi-
layer methodologies have been extensively studied. For example, a Google search of 
“multilevel” produces about 4.6 million hits; a search of “multilayer” produces about 
4.4 million hits (searches done in November, 2008). In some sense, the term layers sug-
gests a kind of total, linear ordering, namely, one layer on top of another.  For levels, we 
only require a partial ordering. Studies on layers further demonstrate the universality of 
levels, as both of them roughly represent the same thing. The study of granular comput-
ing can also draw results from studies of layer-based approaches and multilayer meth-
odologies.  In some situations, the term layers may be intuitively more appealing. 

2.2   Objective and Subjective Views of Levels 

Levels and hierarchical structures are used to represent both reality and our perception 
and conceptualization of reality. Pattee [37] suggests that hierarchical systems may be 
characterized by the requirement of levels of description and the requirement of levels 
of structure. The requirement of levels of structure captures the inherent nature of a 
complex system, and the requirement of levels of description captures our understand-
ing of the complex system. Poli [41] makes a similar distinction between the levels of 
reality and the levels of description. “The levels of reality have a strictly ontological 
valence, while those of description have a strictly epistemological one” [41]. A critical 
question put forward by Young [62], based on several other studies, is that of “whether 
hierarchies really exist or are simply a fiction of organizational convenience.” These 
studies suggest two extreme views for the interpretation of levels and a hierarchy, deal-
ing with both the objective nature and the subjective nature of a hierarchy [22, 57]. 
Verdier [50] summarizes the two extremes as “the proponents of a hierarchy that is to 
be discovered” and “the proponents of an elaboration of a hierarchy by researchers.”  
In other words, the objective view is based on a position that the structural levels of 
matter are determined by the entirely objective laws of nature. Examples of this view 
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include the levels of organization, the levels of control, and many more. The subjec-
tive view focuses on the human subjective multilevel understanding of reality. A hier-
archy is formulated and built by the levels of description of our choice, which is based 
on our understanding through laws of the nature and the results of our observations. 
Examples of this view include the levels of description, the levels of representation, 
the levels of analysis, and many others. 

At the same time, it may be not so easy to separate reality and our perception and 
understanding of reality, as described by the two views.  It may be argued that we 
adopt the corresponding levels of description to reflect reality.  In other words, our 
descriptions, in the form of hierarchical structures, merely mirror reality.  For exam-
ple, Hawkins [18] proposes that the human brain can be interpreted as a hierarchical 
structure that stores a model of the hierarchical structure of the real world.  The real 
world’s nested structure is mirrored by the nested structure of our cortex.  Many of 
the phrases in Table 1 in fact reflect both the objective and subjective nature of levels. 

The objective view on the existence of multilevel hierarchical structures may be 
explained in an evolutionary framework of complex systems proposed by Simon [47].  
It is suggested that a hierarchy emerges almost inevitably through evolutionary proc-
esses for reasons of efficiency and stability.   Systems can be quickly evolved to hier-
archical structures and such structures are stable. 

The subjective view on our imposition of hierarchical structures on reality may be 
explained based on the Miller’s [29] finding about the limits of human information 
processing capacity. Our short-term memory holds around seven units of information. 
In order to cope with a large amount of information, the chunking principle is applied 
so that individual pieces of information are chunked together to form one larger unit. 
One may successively obtain a sequence of chunks so that the number of units in each 
level is within the capacity of the short-term memory. This process of chunking leads 
naturally to a hierarchical structure. Our hierarchical thinking is determined by our 
limited capacity to process information. It is not surprising that hierarchical structures 
are used universally. For example, hierarchical structures are used in our study of lan-
guages and knowledge, as well as in our reading and writing [15, 31, 60]). It have also 
been argued by many authors that human beings consistently search for order and 
human inclination to assert order may lead to the conception of hierarchy [36, 62]. 

Both the objective and the subjective natures of levels are well discussed in sys-
tems science, where hierarchy is a central concept [1, 46, 49]. On the one hand, it is 
assumed that “[t]he Universe is a hierarchy of systems; that is, simple systems are 
synthesized into more complex systems from subatomic particles to civilizations” 
[49].  The concept of hierarchy is a universal principle existing in natural, conceptual 
and man-made systems. Real world complex systems tend to organize hierarchically.  
On the other hand, it is also recognized that the word system “does not refer to exist-
ing things in the real world but rather to a way of organizing our thought about the 
real world” [49]. The study of systems is based the integration of the two views. 

2.3   Separation and Integration of Levels 

Studies on levels normally consider two related issues, namely, separation and inte-
gration. According to Novikoff [35], “The concept of integrative levels recognizes as 
equally essential for the purpose of scientific analysis both the isolation of parts of a 
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whole and their integration into the structure of the whole.” The two aspects are in-
terwoven together in a hierarchy.    

The separation of levels relies on two fundamental notions: loose coupling of parts 
in nearly-decomposable systems [47] and approximate knowledge [6]. On the one 
hand, it is important to realize that reality is a web in which everything is connected to 
everything else [6], and nature does not provide a picture where each level is clearly 
separated from the others. On the other hand, it is equally important to note that some 
things are more connected than others. We can explore the property of loose coupling 
in so-called nearly-decomposable systems to form various levels. Since such a separa-
tion of levels usually ignores subtle and small differences between individuals and 
their weak connections to others, the resulting multilevel hierarchical structures are 
approximations of reality. The knowledge obtained is in turn approximate. Neverthe-
less, such approximate knowledge is accurate and good enough for many practical 
purposes. The separation of levels thus gains in simplicity and clarity at the expense 
of accuracy. 

Integration of levels is based on their interdependency and granularity. A level 
does not exist without its higher and/or lower levels. An ordering of levels is usually 
defined by the granularity of these levels. That is, different levels in general represent 
levels of differing complexity. Although a higher level depends on its lower levels, it 
has its unique properties that cannot be induced from lower levels. With integrative 
levels, we can easily shift our attention between different levels. By focusing on a 
particular level, we may study a specific aspect of reality. 

Levels and hierarchies are the results of both separation and integration. Without 
separation, it is impossible to have levels; without integration, hierarchies do not ex-
ist. Levels are separated so that we can concentrate on a particular level at a specific 
point of time; levels are integrated so that we can observe the inter-working of all lev-
els in a hierarchy. In a hierarchy, we can study the interaction of levels. A hierarchy 
allows both analytical thinking through separation and synthetical thinking through 
integration. Separation and integration may therefore be viewed as two sides of the 
same coin. 

The separation and integration of levels offer two methods for constructing and in-
terpreting a hierarchy: the top-down methods and the bottom-up methods. The bot-
tom-up methods may be explained based an evolutionary framework of systems, from 
lower levels to higher levels.  In the context of biology, Novikoff [35] suggests that 
new a level of complexity emerges from lower levels through organization and inte-
gration of units. The wholes on a lower level become parts on a higher level. Conger 
[8] discusses three issues in the development of later levels from earlier levels, 
namely, “(1) integration, or creative synthesis, (2) combining relations, or mutuality 
of relations, and (3) emergence of new qualities.” The top-down approaches offer a 
good choice for representation, description, and understanding.   Hierarchical thinking 
appears to be natural to many of us. When a system or phenomenon is explained from 
a skeleton to details, or from using general terms to using specific terms, it is much 
easier for us to understand. An understanding on one level makes an understanding on 
another level feasible. 

A good example involving both bottom-up and top-down approaches is the writing 
process given by Flower and Hayes [12, 13]. In the phase of idea generation, one may 
build the thesis of an article through a bottom-up approach, where scattered points, 
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facts, and ideas are progressively synthesized into a whole. In writing up the article, a 
top-down approach is used, where the thesis is broken into parts and these parts are 
further broken into sub-parts, based on a scheme represented by an ideas tree. An arti-
cle is a product with multiple levels of detail, consisting of the title, the headings of 
the sections and subsections, paragraphs and individual sentences [60]. Similarly, the 
reading process of such constructed articles also involves a multiple level understand-
ing [15]. The integrative understanding may be explained by hermeneutic circle, 
namely, “our understanding of the parts hinges on our understanding of a larger 
whole, which, again, can only be understood on the basis of the parts” [44]. 

3   A Short Survey on Studies of Levels  

In this section, we briefly review studies of levels.  It is not our intent to provide a 
complete survey, but a set of examples that are pertinent to our understanding and 
formulation of granular computing.  In fact, from Table 1 we can easily see that a 
complete survey on all uses of levels is almost an impossible task.    

3.1   Hierarchies in Systems Theory 

In his book, General Systems Theory, Ideas and Applications, Skyttner [49] reviews 
more than a dozen systems theories and points out that all of them share a set of 
common properties. All of them (except one) are formulated based on hierarchies of 
both complexity and size. In addition, such hierarchical structures exist at all levels 
and on all scales. The theory of hierarchy is central to the general systems theory and 
some authors refer the former as a dialect of the latter [2]. 

Detailed descriptions of various levels in each of the systems theories are given in 
the Skyttner’s book [49]. The properties or laws of levels have been studied and stated 
by many authors [2, 11, 35, 41, 42, 51, 52]. The following list gives a few of them: 

1. Levels are populated by entities whose properties and interaction determines the 
level in question.  Levels are formed based on laws of nature on the one hand 
and based on our cognitive understanding of reality on the other hand.  

2. Levels represent both a separation of wholes into parts and an integration of 
parts into wholes. Each level is relatively autonomous and complete. It is possi-
ble to study each level within itself, as well as in the context of other levels. All 
levels are also integrated; a disturbance introduced at any one level reverberates 
at all other levels. 

3. Levels are both continuous and discrete. New levels can always emerges from 
older levels in a continuous evolution and there may not exist a clear line that 
separates one level from another. At the same time, it is possible to identify 
various individual levels as the focal points of discussion.  

4. Levels are ordered partially based on their corresponding complexity. At any 
given level, its mechanism lies at the level below and its purpose at the level 
above.  A higher level normally has a smaller population of instances. 

5. Each level depends on, and organizes, the level or levels below it. Each level 
has its emergent properties that cannot be deduced from lower levels. A level 
governs and controls its lower levels. 
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6. The knowledge of the lower level is necessary for a full understanding of the 
higher level; and yet it is impossible to predict the behavior of the high level 
based on such knowledge.  

This is not a complete list and more properties may found in the given references.  
These properties are most relevant to our discussion on granular computing. 

3.2   Levels in Cognitive Science and Psychology 

The concept of levels has been considered in cognitive science and psychology in 
many different forms. We focus mainly on the human acquisition, processing and 
utilization of knowledge at multiple levels. 

In characterizing human knowledge, one needs to consider two topics, namely, 
context and hierarchy [40, 48]. Knowledge is contextual and hierarchical. A context 
in which concepts are formed provides meaningful interpretation of the concepts.   
Knowledge is organized in a tower or a partial ordering.  The base-level, or first-level, 
concepts are the most fundamental concepts, and higher-level concepts depend on 
lower-level concepts. Level thinking is of fundamental importance in the understand-
ing, representation, organization and synthesis of data, information, and knowledge.  
Such a structured organization of knowledge seems to be one way to get around the 
limited capacity of human information processing, which was shown by Miller [29] 
and discussed earlier. 

Levels of processing theory, proposed by Craik and Lockhart [10], presents a 
model of human memory and information processing in memory. The theory is for-
mulated on the basis that human “perception involves the rapid analysis of stimuli at a 
number of levels or stages.” While the earlier stages, i.e., shallow levels, process 
physical or sensory features, the later stages, i.e., deep levels, are more concerned 
with pattern recognition and meaning extraction. This model of a hierarchy of proc-
essing stages reflects multiple levels of the depth of processing, where a greater depth 
implies a greater degree of semantic or cognitive analysis. A more plausible alterna-
tive to such a sequential progression, from shallow to deep, is a combination of both 
stimulus-driven bottom-up processing and conceptually driven top-down processing 
[9]. The latter processing pattern seems to be consistent with the properties of levels 
discussed earlier. 

Hierarchically structured knowledge has also been extensively explored in learning 
and student instruction. In teaching problem solving in physics, Reif and Heller [45] 
state, “effective problem solving in a realistic domain depends crucially on the con-
tent and structure of the knowledge about the particular domain.” Knowledge about 
physics in fact specifies concepts and relations between them at various levels of ab-
straction.  Furthermore, the knowledge is organized hierarchically, with explicit 
guidelines specifying when and how this knowledge is to be applied. Effective in-
struction needs to make effective use of such hierarchically structured knowledge.  
Posner [43] suggests that, according to the cognitive science approach, to learn a new 
field is to build appropriate cognitive structures and to learn to perform computations 
that will transform what is known into what is not yet known. 

Levels of organization, levels of representation, levels of processing and levels 
of understanding are some of the important notions relevant to the study of human 
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learning, information processing, and problem solving. The notion of levels helps us 
to explain and articulate many human activities and behaviors.  

3.3   Levels in Computer Science 

The notion of levels is widely used in computer science to describe and study various 
computer systems and concepts. With the introduction of levels, many concepts in 
computer science become easier to explain and understand. A few examples are dis-
cussed in this section. 

In his work on vision, Marr [28] argues that a full understanding of an information 
processing system involves explanations at various levels. He proposes a three-level 
framework with each level addresses a particular of issues, which is quoted here: 

1. Computational theory: What is the goal of the computation, why is it appropri-
ate, and what is the logic of the strategy by which it can be carried out? 

2. Representation and algorithm: How can this computational theory be imple-
mented? In particular, what is the representation for the input and output, and 
what is the algorithm for the transformation? 

3. Hardware implementation: How can the representation and algorithm be real-
ized physically? 

It can be said that each level addresses a different type of question, from abstract to 
concrete. The three levels are both dependent and independent. 

Two basic notions, representation and process, are used to explain the three-level 
framework. The representation deals with the explicit forms of entities or types of in-
formation, the process deals with the operations on entities. The most abstract level 
deals with what the process does and why. One builds a theory that explains internal 
working principles of the process, and defines the operations by specifying constraints 
that must be satisfied by the process. The second level deals with the realization of the 
process in an abstract way. One needs to choose a representation for the input and for 
the expected output of the process, and to specify an algorithm for the transformation 
from input to output. The choices of representation and algorithm are closely tied to-
gether. There usually exist many alternative representations. For a given representa-
tion, there are also many possible algorithms. A representation and an algorithm should 
be chosen so that advantages of the representation are fully exploited by the algorithm 
and, at the same time, the disadvantages of the representation are avoided. The third 
level deals with the physical realization of the process. The devices that physically re-
alize a process may not be unique. The advances in technologies imply that a same 
process may be implemented again with the invention of new physical devices. 

Investigations at the computational theory level are independent of representations, 
and investigations at the representation and algorithm level is independent of physical 
devices. The levels are ordered and interpreted as levels of abstraction. The represen-
tation and algorithm level can also be named as logical implementation level, and the 
hardware implementation level as the physical implementation level. 

In developing a theory of the nature of knowledge and representation, Newell 
[32, 33] introduces the concept of knowledge level. He views the nature of knowledge 
as the medium of a system level that lies above the symbol or program level. This is 
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summarized by the so-called Knowledge Level Hypothesis [32]: “There exists a dis-
tinct computer systems level, lying immediately above the symbol level, which is 
characterized by knowledge as the medium and the principle of rationality as the law 
of behavior.” A framework of computer system levels thus consists of the device 
level, the circuit level, the logic level (with its two sublevels, combinatorial and se-
quential circuits, and the register-transfer level), the program or symbolic level, the 
knowledge level, and the configuration level (which is supported by the preceding 
three levels). 

The systems levels as defined above are precise and operational. A level consists of 
a medium, components, laws of composition, and laws of behavior. Each level proc-
esses its medium based on the primitive processing provided by components, laws for 
assembling the components to form systems, and laws for determining the system be-
havior. There are additional characteristics of system levels. A given level may be 
implemented in many variant ways. Each level can be defined autonomously without 
reference to other levels, and each level can be reduced to, or realized by, the level be-
low. Specification of a system at a particular level determines the system behavior at 
that level.  The behavior of the total system is a combined result of local effects of all 
components. It is interesting to note some of these properties have also been exten-
sively studied in systems science. 

In the context of algorithm design, Foster [14] critically reviews and systematically 
compares various definitions and interpretations of the notion of levels. Three basic 
issues, namely, definition of levels, number of levels, and relationship between levels, 
are clarified. Three important points made by Foster are summarized as follows.  
First, levels are considered simply as descriptions or points of views and often for the 
purpose of explanation. Second, the number of levels is not fixed, but depends on the 
context and the purpose of description or explanation. Third, levels can be graphically 
represented as a vertical stack of planes. This multi-layered theory of levels captures 
two senses of abstraction. One is the abstraction in terms of concreteness and is repre-
sented by planes along the dimension from top to bottom.  The other is the abstraction 
in terms of the amount of detail and can be modeled along another dimension from 
less detail to more detail on the same plane. The two senses of abstraction can be in-
terpreted in terms of multiple hierarchies. The main hierarchy consists of levels, and 
each level is a hierarchy consisting of different levels of detail. For example, in the 
Marr’s three-level hierarchy, the logical implementation level may be a hierarchy 
consisting of logical implementations in various details. The abstraction in terms of 
detail is very useful in the implementation of information processing systems. 

An excellent example of the effective use of levels is structured programming, 
characterized by top-down design and stepwise refinement. There is a huge body of 
literature on this topic. The following steps, taken from Ledgard et al. [25], are per-
haps sufficient to illustrate the basic ideas: 

1. Design in levels: A level consists of a set of modules. At higher levels, only a 
brief description of a module is provided. The details of the module are to be re-
fined, divided into smaller modules, and developed in lower levels. 

2. Initial language independence: The high-level representations at initial levels 
focus on expressions that are relevant to the problem solution, without explicit 
reference to machine and language dependent features. 
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3. Postponement of details to lower levels: The initial levels concern critical broad 
issues and the structure of the problem solution. The details such as the choice 
of specific algorithms and data structures are postponed to lower, implementa-
tion levels. 

4. Formalization of each level: Before proceeding to a lower level, one needs to 
obtain a formal and precise description of the current level. This will ensure a 
full understanding of the structure of the current sketched solution. 

5. Verification of each level: The sketched solution at each level must be verified, 
so that errors pertinent to the current level will be detected. 

6. Successive refinements: Top-down programming is a successive refinement 
process.  Starting from the top level, each level is redefined, formalized, and 
verified until one obtains a full program. 

It is an easy task to apply the same principles elsewhere. For example, it has been 
suggested that the top-down approach is effective for developing, communicating and 
writing mathematical proofs [16, 23, 26]. The same principles can be applied in the 
preparation, organization, and writing of scientific articles [13, 60]. 

The operational feature of the notion of levels in computer science perhaps needs 
more emphasis. While the notion of levels is used in some disciplines as a tool for ex-
planation, it is fully implemented in computer science in systems design, program-
ming and many more. These actual implementations may provide necessary hints for 
implementing levels in related disciplines. 

4   Implications of Integrative Levels to Granular Computing 

The recent rise of granular computing may be compared with the rise of systems the-
ory a few decades earlier, in terms of their philosophies, goals, scopes, and methodol-
ogy [61]. The general systems theory attempts to discover and investigate structures 
and underlying principles common to most of natural and artificial systems [6, 17, 24, 
49, 51]).  The general systems theory is viewed as a science of sciences [49, 51] in an 
attempt to arrive at unity through diversity [17]. Similarly, research of granular com-
puting attempts to discover and investigate structures and underlying principles com-
mon to most types of human problem solving [61]. As such, granular computing may 
be viewed as human-inspired computing and problem solving. 

An important feature of human intelligence is that humans have many “Ways to 
Think” and can also create new “Ways to Think”, as suggested by Minsky [30]. An-
other feature is that humans form multiple representations of the world. This, in an-
other way, motivates the study of granular computing. Granular computing can be 
viewed as a particular class of such “Ways to Think” that focuses on multiple levels 
of granularity. Furthermore, the notion of integrative levels may well serve the pur-
pose of multiple representations. 

Given this interpretation of granular computing, we can examine several important 
implications of the notion of integrative levels. 

It is evident that the concept of integrative levels is very essential to human prob-
lem solving and has been used effectively time and again in many different disci-
plines. There seems to be a common set of interpretations, heuristics, principles and 
strategies of problem solving that are based on integrative levels. Unfortunately, these 
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principles are scattered over many places in isolation without being synthesized into 
an integrated whole. They are normally explained with reference to discipline-specific 
knowledge and thus are buried deeply in minute details. Typically, the same princi-
ples are discussed in different languages and notations. In many occasions, we use 
these principles either implicitly or subconsciously because a formal documentation 
does not exist. This has led to the reinvention of the same principles time and again in 
the same or different fields.   

The systems theory, to some extent, has resolved some of these problems. By in-
troducing granular computing as a new field of study, we focus on a particular aspect.  
The notion of granularity is introduced to interpret the concept of integrative levels, 
and thus we have the notion of integrative levels of granularity. Each level is popu-
lated with granules of similar size or of similar nature. The levels of granularity may 
be interpreted as the levels of organization, levels of control, levels of complexity, 
levels of understanding, levels of description, levels of representation, levels of inter-
pretation, levels of abstraction, levels of details, levels of processing and so on. The 
universality of levels implies that integrative levels of granularity may be used as a 
basis for granular computing.   

The subjective view of levels suggests a hierarchy may only reflect our perception 
of reality and hence is only an approximation of reality. To remedy the shortcomings 
of such an approximation, it is necessary to consider many hierarchies in order to ob-
tain multiple views of the same world [7, 30, 58]. With integrative levels of granular-
ity, we consider granular structures that represent both multiple levels and multiple 
views. A single hierarchy gives one multilevel view of reality; many hierarchies give 
a mulitview description of reality [58]. Granular computing explores both of them. 

The separation and integration of levels, together with the associated bottom-up and 
top-down methods, are related to the methodology of granular computing. The proper-
ties and laws of levels are useful in constructing various levels when applying granular 
computing principles in different domains. The implementation of levels in computer 
science offers more concrete ideas for applying ideas of granular computing.  

5   The Triarchic Theory of Granular Computing 

Once we accepted the notion of integrative levels of granularity as a basic concept of 
granular computing, we in fact emphasize a research direction that is dominated by 
structuredness. The study of granular computing depends crucially on granular struc-
tures that represent reality through multilevel and multiview. 

The triarchic theory is a unified view that stresses the study of granular computing 
as a new field in its wholeness, rather than scattered pieces. Based on multiple level 
hierarchical structures, the triarachic theory integrates philosophical, methodological, 
and computational issues of granular computing as structured thinking, structured 
problem solving and structured information processing, respectively. A brief descrip-
tion of the theory is given in this section and more details can be found in [57-59, 61]. 

The core of the triarchic theory can be pictorially described by the granular com-
puting triangle. The three vertices of the triangle represent the philosophical, meth-
odological and computational perspectives. 
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Philosophy: Granular computing as structured thinking. The philosophy of granu-
lar computing offers a worldview characterized by different sized, interacting and hier-
archically organized granules [19, 38, 63, 64].  This view of the world in terms of 
structures, as represented by multiple integrative levels, leads to a way of structured 
thinking, which is applicable to many branches of natural and social sciences. Broadly 
speaking, granular computing draws results from two complementary philosophical 
views about the complexity of real-world problems, namely, the traditional reductionist 
thinking and the more recent systems thinking. It combines analytical thinking for de-
composing a whole into parts and synthetic thinking for integrating parts into a whole.  

 
Methodology: Granular computing as a general method of structured problem 
solving. Granular computing promotes systematic approaches, effective principles, 
and practical heuristics and strategies that have been used effectively by humans for 
solving real-world problems. A central issue is the exploration of granular structures. 
This involves three basic tasks: constructing granular structures, working within a 
particular level of the structure, and switching between levels. We can formulate a set 
of principles to highlight the methodology of granular computing. For example, the 
principle of multilevel granularity emphasizes the effective use of a hierarchical struc-
ture. According to this principle, we must consider multiple representations at differ-
ent levels of granularity. The principle of multiview stresses the consideration of di-
versity in modeling. We need to look at the same problem from many angles and 
perspectives.  Once granular structures are obtained, we can apply other principles to 
work based on such structures. For example, the principle of focused efforts calls for 
attention on the focal point at a particular stage of problem solving; the principle of 
granularity conversion links the different stages in this process. The principle of view 
switching allows us to change views and to compare different views. These principles 
of granular computing have, in fact, been used extensively in different disciplines un-
der different names and notations.  Many principles of structured programming can be 
readily adopted for granular computing.  

 
Computation: Granular computing as a new paradigm of structured information 
processing. Granular computing focuses on information processing methods based on 
the granular structures [4, 5]. The term computing needs to be understood in its broad 
meaning to include information processing in the abstract, in the brain and in ma-
chines. While information processing in the abstract deals with theories of computing 
without direct reference to their implementations, information processing in the brain 
and in machines represents the biological (natural) and the physical (artificial) imple-
mentations, respectively. Two related basic issues of computation are representations 
and processes (operations). Representation covers the formal and precise description 
of granules and granular structures. Processes may be broadly divided into the two 
classes: granulation and computation with granules. Granulation processes involve the 
construction of the building blocks and structures, namely, granules, levels, and hier-
archies. Computation processes explore the granular structures. This involves two-
way communication up and down in a hierarchy, as well as switching between levels. 

 
The three perspectives of granular computing are connected and mutually support each 

other. A reviewer of this chapter points out the importance of studying the interactions of 
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the three perspectives. The reviewer states, “In particular, a general picture illustrating 
interactions within the triangle would be helpful. … Speaking more about possible 
scenarios of interactions may turn out to be even more valuable than speaking about 
particular ‘nodes’ of the triangle.” In some sense, the three perspectives can be inter-
preted as three levels of study, with the philosophical foundations supporting the 
methodological foundations, which in turn supports the computational implementa-
tions [57, 58]. It immediately follows that the arguments of separation and integration 
of levels can be directly applied to the separation and integration of three perspectives 
on granular computing. 

With the separation of three perspectives, we emphasize the importance of phi-
losophical and methodological studies that have played a relatively minor role so far.  
Granular computing offers a new way of thinking that may lead to a new set of prob-
lem-solving methods, or more precisely, a recasting of many existing methods in a 
new setting. Unfortunately, granular ways of thinking are not fully appreciated yet, 
due to some computational issues. Doubts on the potential of granular computing are 
commonly expressed at the computational level, as there still does exist a set of well-
accepted algorithms or computational methods for granular computing. In [61], we 
argue that a lack of recent progresses in artificial intelligence may perhaps be ex-
plained by a viewpoint that paid little attention to human intelligence and how the 
brain works. A new school of thought is emerging that emphasizes the study of hu-
man brains and natural intelligence. If we view granular computing as human-inspired 
computing, we must study how humans solve problems by exploiting multiple levels 
of granularity. Consequently, we need to pay attention to the philosophical and meth-
odological foundations of granular computing.   

There is a top-down guiding role played by the three levels of granular computing. 
The philosophy of granular computing will guide us in searching for the right meth-
odology; the methodology in turn can be applied in the design and implementation of 
granular-computing-based information systems. The separation of the three perspec-
tives enables to us to ask the right questions and choose the right languages for granu-
lar computing at three levels. The philosophy of granular computing can be described 
in general terms. Its applications lead to two related classes of methodology, one for 
human problem solving and the other for machine problem solving. The former is 
more general than the latter; the latter is a specialization of the former. While meth-
odology for humans may be qualitative and schematic, the methodology for machines 
must be precise and formal. At the next level, the methodology of granular computing 
is applied to concrete implementations. There is also a reverse bottom-up way of sup-
port. A study of granular-computing-based systems may offer new methodology, 
which in turn may help us in redefining our philosophical standing.   

The three-level interpretation of granular computing is convenient, but of limited 
value. In general, the three perspectives are on the same footing and mutually support 
each other. That is, one node of the triangle supports, and is supported by, the other 
two; one cannot exist without the other two. This requires an integrated view that 
granular computing has three indispensable components. Any study that focuses only 
on some aspects may fail to realize the full potential of granular computing.  
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The triarchic theory puts granular computing research on a firm basis. In addition, 
the granular computing triangle recommends a research direction towards an interdis-
ciplinary wholeness approach. That is, researchers in different disciplines may inves-
tigate different perspectives of granular computing and at the same time integrate 
their individual results.   

6   Conclusion 

The chapter examines a central notion of granular computing, namely, integrative lev-
els of granularity. Two main features of integrative levels are discussed: the objective 
and subjective views of levels, and the separation and integration of levels. A survey 
on integrative levels and their basic properties, in several disciplines, suggests that in-
tegrative levels of granularity may serve as a basis for the study of granular computing. 
The triarchic theory of granular computing is briefly reviewed based on this notion. 

Future progresses on the study of granular computing cannot be achieved based 
merely on investigations of concrete models or methods, namely, the computational 
perspective. Successful applications of granular computing may justify its existence; 
but they alone are far from enough. One needs to look at its foundations and roots [4].  
In this regards, a conceptual framework, such as the triarchic theory, may be helpful.  
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Abstract. This chapter gives a concise overview of the foundations of a perceptual near set
approach to the discovery of affinities between perceptual objects and perceptual granules that
provide a basis for perceptual systems useful in science and engineering. A perceptual object
is something perceptible to the senses or knowable by the mind. Perceptual objects that have
the same appearance are considered to be perceptually near each other, i.e., perceived objects
that have perceived affinities or, at least, similar descriptions. A perceptual granule is a set of
perceptual objects originating from observations of the objects in the physical world. Near set
theory provides a basis for observation, comparison and classification of perceptual granules. By
considering nearness relations in the context of a perceptual system, it is possible to gauge affini-
ties (nearness) perceptual objects. Two kinds of indiscernibility relations and a tolerance relation
make it possible to define various nearness relations. Examples of near images as perceptual sys-
tems are presented. The main contribution of this chapter is the introduction of a formal basis for
discovering affinities between perceptual information granules.

Keywords: Affinities, near sets, perceptual granule, tolerance relations.

1 Introduction

The basis for perceptual systems hearkens back to the original notion of a determinis-
tic information system introduced by Zdzisław Pawlak [20]. A perceptual system is a
real-valued, total, deterministic information system. A perceptual object is something
perceptible to the senses or knowable by the mind. Examples of perceptual objects in-
clude observable organism behaviour, growth rates, soil erosion, events containing the
outcomes of experiments such as energizing a network, testing digital camera functions,
microscope images, MRI scans, and the results of searches for relevant web pages.
Granulation can be viewed as a human way of achieving data compression and it plays
a key role in implementing the divide-and-conquer strategy in human problem-solving.
A comprehensive study of granular computing can be found in [1]. A perceptual granule
is a set of perceptual objects originating from observations of the objects in the physi-
cal world. Formally, a perceptual granule is a finite, non-empty set containing sample
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perceptual objects with common descriptions and a set probe functions representing
perceptual object features.

Another means of discovering perceptual granules was suggested by Charles Darwin,
who called attention to affinities that one can observe between different members of
the same species. The proposed approach to discovering affinities between perceptual
granules is analogous to what Charles Darwin did during the voyage of the H.M.S.
Beagle during the 1830s, starting in 1831 and ending in 1836. That is, Darwin kept
adding to his collection of specimens and eventually, in some cases, found affinities
between a set of specimens of interest and his expanding set of specimens found during
the voyage of the Beagle [3].

Near set theory provides a basis for observation, comparison and measuring affinities
of perceptual granules. Near sets have a human-centric character. Sensed physical char-
acteristics of perceptual objects are identified with object features. It is our mind that
identifies relationships between object feature values to form perceptions of sensed ob-
jects [7]. Human perceptions can be quantified through the use of near sets by providing
a framework for comparing objects based on object descriptions. Objects that have the
same appearance (i.e., objects with matching descriptions) are considered perceptually
near each other. Sets are considered near each other when they have “things” (per-
ceived objects) in common. Specifically, near sets facilitate measurement of similarities
between perceptual objects based on feature values (obtained by probe functions) that
describe the objects. This approach is similar to the way humans perceive objects (see,
e.g., [4]) and as such facilitates pattern classification systems.

Near sets originally grew out of a study of images [5, 28, 30, 33] either by consid-
ering single images containing near sub images or segmented images containing per-
ceptually near pixel windows. Two kinds of indiscernibility relations and a tolerance
relation make it possible to define various nearness relations. A weak tolerance relation
is also defined in this chapter. This tolerance relation is very important in discovering
near sets, since it defines tolerance classes relative to a threshold ε , rather than require
strict equality of probe function values in the case of the indiscernibility relations. The
underlying assumption made here is that human perception relies on a limited view of
perceived objects to discover affinities between samples. For this reason, the discov-
ery of near objects begins with the perception of one or more matching characteristics,
not a complete set of matching characteristics. Finding a multitude of matches between
perceptual objects is not considered in arriving at the discovery threshold in detecting
affinities between objects, i.e., in discovering near sets. This approach is in keeping with
the original view of tolerance spaces as models for human vision [37].

The Pal entropy measure defined in [12] provides a useful basis for probe functions
used in the search for perceptual granules that are, in some sense, near each other.
Other forms of entropy introduced by Sankar Pal et al. can be found in [9, 13, 14, 15,
16, 17, 18]. It has been shown that perceptual near sets are a generalization of rough
sets introduced by Zdzisław Pawlak during the early 1980s. That is, every rough set is
a near set but not every near set is a rough set. In addition, it can be shown that fuzzy
sets with non-empty cores are near sets. The connections between these three forms of
sets are briefly discussed in this chapter. By way of an illustration, affinities between
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microscope images (as elements in perceptual systems) of various leaves of trees are
briefly explored.

This chapter is organized as follows. Section 2 presents the basis for perceptual sys-
tems. Indiscernibility relations and a tolerance relation are introduced in Section 3.
Three basic nearness relations are presented and illustrated in Section 3 accompanied
by an illustration of near images in Section 4.2. Examples of rough near sets and fuzzy
near sets are presented in Sections 5 and 6, respectively.

2 Perceptual Systems: An Overview

This section briefly presents the basis for perceptual systems that hearkens back to
the original notion of a deterministic information system introduced by Zdzisław
Pawlak [20] and elaborated in [10, 11].

2.1 Perceptual Object Descriptions

Perceptual objects are known by their descriptions. An object description is defined by
means of a tuple of function values φ(x) associated with an object x ∈ X (see Table 1).
The important thing to notice is the choice of functions φi ∈B used to describe an object
of interest. Assume that B ⊆ F (see Table 1) is a given set of functions representing
features of sample objects X ⊆ O and F is finite. Let φi ∈ B, where φi : O −→ R.
In combination, the functions representing object features provide a basis for an object
description φ : O−→R

l , a vector containing measurements (returned values) associated
with each functional value φi (x) for x ∈ X , where |φ |= l, i.e. the description length is l.

Object Description: φ(x) = (φ1(x),φ2(x), . . . ,φi(x), . . . ,φl(x)).

The intuition underlying a description φ(x) is a recording of measurements from sen-
sors, where each sensor is modeled by a function φi. Notice that all sensor values belong
to the set of reals. That is, the perception of an object (i.e., in effect, our knowledge about
an object) depends on information gathered by our senses. The proposed approach to
perception is feature-based and is similar to the one discussed in the introduction in [2].

Table 1. Description Symbols

Symbol Interpretation

R Set of real numbers,
O Set of perceptual objects,
X X ⊆ O, set of sample objects,
x x ∈ O, sample object,
F A set of functions representing object features,
B B ⊆ F,
φ φ : O → R

l , object description,
l l is a description length,
i i ≤ l,

φi φi ∈ B, where φi : O −→ R, probe function,
φ(x) φ(x) = (φ1(x), . . . ,φi(x), . . . ,φL(x)), description,
〈X ,F〉 φ(x1), . . . ,φ(x|X |), i.e., perceptual information system.
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In this view, our senses are likened to probe functions, i.e., mappings of sensations to
values assimilated by the mind.

Let X ,Y ⊆ O denote sets of perceptual objects. Sets X ,Y ⊆ O are considered near
each other if the sets contain perceptual objects with at least partial matching descrip-
tions. A perceptual object x∈O is something presented to the senses or knowable by the
mind [8]. In keeping with the approach to pattern recognition suggested by Pavel [19],
the features of an object such as contour, colour, shape, texture, bilateral symmetry are
represented by probe functions. A probe function can be thought of as a model for a
sensor. A probe makes it possible to determine if two objects are associated with the
same pattern without necessarily specifying which pattern (classification). A detailed
explanation about probe functions vs. attributes in the classification of objects is given
in [26].

2.2 Perceptual Systems: Specialized Deterministic Systems

For representing results of a perception, the notion of a perceptual system is briefly
introduced in this section. In general, an information system is a triple S = 〈Ob,At,
{Val f} f∈At〉 where Ob is a set of objects, At is a set of functions representing ei-
ther object features or object attributes, and each Val f is a value domain of a func-
tion f ∈ At, where f : Ob −→ P(Val f ), (P(Val f ) is a power set of Val f ) (see,
e.g., citePawlak1983). If f (x) �= /0 for all x ∈ Ob and f ∈ At, then S is total. If
card( f (x)) = 1 for every x ∈ Ob and f ∈ At, then S is deterministic. Otherwise S is
non-deterministic. In the case, when f (x) = {v}, {v} is identified with v. An informa-
tion system S is real valued iff Val f = R for every f ∈ At. Very often a more concise
notation is used: 〈Ob,At〉, especially when value domains are understood, as in the case
of real valued information systems. Since we focus on sensed objects we consider each
f ∈ At to be a probe functions. Two examples of perceptual systems are given in Table 2
(see 3.1 for a discussion of the examples).

Table 2. Sample perceptual information systems

Sys. 1 Sys. 2
X φ1 φ2 φ3 φ4 Y φ1 φ2 φ3 φ4

x1 0 1 0.1 0.75 y1 0 2 0.2 0.01
x2 0 1 0.1 0.75 y2 1 1 0.25 0.01
x3 1 2 0.05 0.1 y3 1 1 0.25 0.01
x4 1 3 0.054 0.1 y4 1 3 0.5 0.55
x5 0 1 0.03 0.75 y5 1 4 0.6 0.75
x6 0 2 0.02 0.75 y6 1 4 0.6 0.75
x7 1 2 0.01 0.9 y7 0 2 0.4 0.2
x8 1 3 0.01 0.1 y8 0 3 0.5 0.6
x9 0 1 0.5 0.1 y9 0 3 0.5 0.6
x10 1 1 0.5 0.25 y10 1 2 0.7 0.4

y11 1 4 0.6 0.8
y12 1 4 0.7 0.9
y13 1 1 0.25 0.01
y14 1 4 0.6 0.75
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Definition 1. Perceptual System
A perceptual system 〈O,F〉 is a real valued total deterministic information system where
O is a non-empty set of perceptual objects, while F a countable set of probe functions.

The notion of a perceptual system admits a wide variety of different interpretations
that result from the selection of sample perceptual objects contained in a particular
sample space O. Perceptual objects are known by their descriptions. For simplicity, we
consider only small sets of probe functions in this chapter. The question of countable
(denumerable) sets of probe functions is not within scope of this paper.

2.3 Sample Perceptual System

By way of an illustration, let 〈P,φ〉 denote a perceptual system where P is a set of
microscope images and φ is a probe function representing luminance contrast1, respec-
tively. A sample Shubert choke cherry leaf and Native Pin choke cherry leaf are shown
in Figures 1.2 and 1.3. The National Optical DC3-163 microscope in Fig. 1.1 was used
to produce the magnified leaf-section images shown in Figures 1.4 and 1.5 with a lens
that magnifies the size of an object by a factor of 40. Intuitively, if we compare colour,
luminance contrast or sub image shapes, the microscope leaf images are similar. By

1.1: DC3-163 Scope 1.2: Shubert CC leaf 1.3: Pin CC leaf

1.4: Shubert CC slide 1.5: Pin CC slide

Fig. 1. Sample Percepts

1 In digital images, luminance contrast can be controlled by converting irradiance (amount of
light per unit area) into a grey value g using a function g(E) = Eγ , where E denotes irradiance
level and luminance varies non-linearly with γ typically having a value of 0.4 [6].
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considering nearness relations in the context of a perceptual system, it is possible to
classify sets of perceptual objects. A formal basis for the discovery of near sets is the
focus of the remaining sections of this chapter.

3 Relations, Partitions and Classes

The basic idea in the near set approach to object recognition is to compare object de-
scriptions. Sample perceptual objects x,y ∈ O,x �= y are near each other if, and only if x
and y have similar descriptions. Similarly, sets X ,Y are perceptually near each other in
the case where there is at least one pair of objects x ∈ X ,y ∈Y that have similar descrip-
tions. In this section, two kinds of indiscernibility relations and a tolerance relation are
briefly introduced. These relations make it possible to define various nearness relations
and make it possible to provide a formal foundation for near sets.

3.1 Indiscernibility and Tolerance Relations

Recall that each φ defines the description of an object (see Table 1). To establish a near-
ness relation, we first consider the traditional indiscernibility relation. Let B ⊆F denote
a set of functions representing perceptual object features. The indiscernibility relation
∼B introduced by Zdzisław Pawlak [20] is distinguished from weak indiscernibility ��
introduced introduced by Ewa Orłowska [10]. In keeping with the original indiscerni-
bility relation symbol ∼F [20], the symbol �� is used to denote weak indiscernibility
instead of the notation wind [10].

Definition 2. Indiscernibility Relation
Let 〈O,F〉 be a perceptual system. For every B ⊆ F the indiscernibility relation ∼B is
defined as follows:

∼B= {(x,y) ∈ O×O | ∀φi ∈ B � φi(x) = φi(y)} .

If B = {φ} for some φ ∈ F, instead of ∼{φ} we write ∼φ .

Example 1. Sample Partitions
Let 〈O1,F1〉 denote perceptual system Sys. 1 with O1={x1, ... ,x9}, F1={φ1,φ2,φ3,φ4},
where the values of probe functions from F1 are given in the lefthand side of table 2.
Similarly, let 〈O2,F2〉 denote perceptual system Sys. 2 with O2 = {y1, ... ,x14},
F2 = {φ1,φ2,φ3,φ4}, where the values of the probe functions from F1 are given in the
righthand side of table 2. The perceptual systems 〈O1,F1〉, 〈O2,F2〉 have partitions (1)
and (2-1.3) of the space of percepts defined by relations ∼F1 and ∼F2 .

O1/∼F1
= {{x1,x2},{x3},{x4},{x5},{x6},{x7},{a8},{x9},{x10}}, (1)

O2/∼F2
= {{y1},{y2,y3,y13},{y4},{y5,y6},{y7},{y8,y9},{y10}, (2)

{y11},{y12},{y14}}. (3)
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If we consider only probe function φ3 relative to O1, then we obtain, e.g., several
equivalence classes such as (4), each containing a pair of objects.

x1/∼φ3
= {x1,x2}, (4)

x7/∼φ3
= {x7,x8}, (5)

x9/∼φ3
= {x9,x10}. (6)

Again, for example, if we probe O2 with φ3, we obtain, e.g., a number of multi-object
classes such as the one in (7).

y2/∼φ3
= {y2,y3,y13}, (7)

y4/∼φ3
= {y4,y8,y9}, (8)

y5/∼φ3
= {y5,y6,y11,y14}, (9)

y10/∼φ3
= {y10,y12}. (10)

Definition 3. Weak Indiscernibility Relation
Let 〈O,F〉 be a perceptual system. For every B ⊆ F the weak indiscernibility relation
�B is defined as follows:

�B= {(x,y) ∈ O×O | ∃φi ∈ B � φi(x) = φi(y)} .

If B = {φ} for some φ ∈ F, instead of �{φ} we write �φ .

Example 2. Weak Indiscernibility Partitions
Let 〈O1,F1〉 denote perceptual system Sys. 1 with O1={x1, ... ,x9}, F1={φ1,φ2,φ3,φ4},
where the values of probe functions from F1 are given in the lefthand side of table 2.
Similarly, let 〈O2,F〉 denote perceptual system Sys. 2 with O2 = {y1, ... ,y14}, F =
{φ1,φ2,φ3,φ4}, where the values of the probe functions from F are given in the right-
hand side of table 2. Let X ⊂O1,X = {x1,x9,x10} and Y ⊂O2,Y = {y1,y8,y10,y11,y12}.
Consider partitions X/�φ3

and Y /�φ3
given in (11) and (12), respectively.

X/�φ3
= {{x1} ,{x9,x10}} , (11)

Y /�φ3
= {{y1} ,{y8} ,{y10} ,{y11} ,{y12}} , (12)

Remark 1. Notice that the class {x1} ∈ X/�φ3
contains only a single object, since there

is no other object in x ∈ X such that φ3(x1) = φ3(x). Similarly, each of the classes in
Y /�φ3

contains only a single object.

Definition 4. Weak Tolerance Relation
Let 〈O,F〉 be a perceptual system and let ε ∈ ℜ (reals). For every B ⊆ F the weak
tolerance relation ∼

B,ε is defined as follows:

∼
B,ε = {(x,y) ∈ O×O | ∃φi ∈ B � |φi(x)−φi(y)| ≤ ε} .
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That is, in general, the relation ∼
B,ε is reflexive and symmetric but not transitive. This

relation is very important in discovering near sets, since it defines tolerance classes
relative to a threshold ε , rather than require strict equality of probe function values in
the case of the indiscernibility relations ∼B and �B (see, e.g., [30]).

Remark 2. Special Case
Notice that Def. 4 represents a special case. That is, in general, the sets X and Y repre-
sent sample sets of observations from distinct perceptual systems. In effect, it is possible
to state a Proposition to this effect.

Definition 5. Weak Tolerance Relation Between Sets of Perceptual Objects
Let P1 = 〈O1,F〉 denote perceptual system P1. Similarly, let P2 = 〈O2,F〉 denote a
second, distinct perceptual system. Also, let ε ∈ ℜ. P1 has a weak tolerance relation to
P2 if, and only if O1∼

F,ε O2.

Definition 6. Weak Tolerance Relation on Perceptual Systems
Let Sys1 = 〈O1,F〉 denote perceptual system Sys1. Similarly, let Sys2 = 〈O2,F〉 denote
a second, distinct perceptual system with the same set of features F. Let B ⊆ F and
choose ε . Then

Sys1∼
B,ε Sys1 ⇐⇒ O1∼B,ε O2.

Example 3. Weak Tolerance
Let 〈O1,F〉 denote perceptual system Sys. 1 with O1 = {x1, ... ,x9}, F = {φ1,φ2,φ3,φ4},
where the values of probe functions from F are given in the lefthand side of table 2.
Similarly, let 〈O2,F〉 denote perceptual system Sys. 2 with O2 = {y1, ... ,y14}, F =
{φ1,φ2,φ3,φ4}, where the values of the probe functions from F are given in the
righthand side of table 2. Let ε = 0.1 for both perceptual systems. For example,
let φ3 ∈ F1. The perceptual system 〈O1,{φ3}〉 has tolerance classes (13), (14), (15)
defined by relation �φ3,0.1

.

x1/�φ3,0.1
= {x1,x2,x5,x6,x7,x8}, (13)

x3/�φ3,0.1
= {x3,x4}, (14)

x9/�φ3,0.1
= {x9,x10}. (15)

For example, in x3/�φ3,0.1
, we have

|φ3(x3)−φ3(x4)| = |0.05−0.054| ≤ 0.1

Similarly, the perceptual system 〈O2,{φ3}〉 has tolerance classes defined by relation
�φ3,0.1

: (16), (17), (18), (19) .

y1/�φ3,0.1
= {y1,y2,y3,y13}, (16)

y4/�φ3,0.1
= {y4,y5,y6,y8,y9,y11,y14}, (17)

y7/�φ3,0.1
= {y7,y4,y8,y9}, (18)

y10/�φ3,0.1
= {y5,y6,y10,y11,y12,y14}, (19)
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For example, in y7/�φ3,0.1
, we have

|φ3(y7)−φ3(y4)| = |0.4−0.5| ≤ 0.1,

|φ3(y7)−φ3(y8)| = |0.4−0.5| ≤ 0.1,

|φ3(y7)−φ3(y9)| = |0.4−0.5| ≤ 0.1,

|φ3(y8)−φ3(y9)| = |0.5−0.5| ≤ 0.1

4 Nearness Relations

Three basic nearness relations are briefly presented and illustrated in this section.

Definition 7. Nearness Relation [34]
Let 〈O,F〉 be a perceptual system and let X ,Y ⊆ O. The set X is perceptually near to the
set Y (X ��F Y ), if and only if there are x ∈ X and y ∈ Y such that x ∼F y (see Table 3).

Table 3. Relation Symbols

Symbol Interpretation

B see Table 1,
ε ε ∈ [0,1],

∼B {(x,y) | f (x) = f (y) ∀ f ∈ B}, indiscernibility relation [20],
�B weak indiscernibility relation [10],
∼

B,ε weak tolerance relation,
x/∼B

x/∼B
= {y ∈ X | y ∼B x}, elementary set (class),

O/∼B
O/∼B

= {x/∼B
| x ∈ O}, quotient set,

�� nearness relation symbol,
�� weak nearness relation symbol,
�� weak tolerance nearness relation symbol.

Example 4. Consider the perceptual systems 〈O1,F〉, 〈O2,F〉 given in Table 2. From
Example 2, we obtain

B = {φ3}, where φ3 ∈ F,

Xnew = x9/∼φ3
, from Example 2,

= {x9,x10},
Ynew = y8/∼φ3

= {y4,y8,y9},
Xnew ��φ3 Ynew, since

φ3(x9) = φ3(y8) = 0.5

Definition 8. Weak Nearness Relation [34]
Let 〈O,F〉 be a perceptual system and let X ,Y ⊆ O. The set X is weakly near to the set
Y within the perceptual system 〈O,F〉 (X ��F Y ) iff there are x ∈ X and y ∈ Y and there
is B ⊆ F such that x �B y. If a perceptual system is understood, then we say shortly
that a set X is weakly near to set Y (see Table 3).
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Example 5. Consider the perceptual systems 〈O1,F〉, 〈O2,F〉 given in Table 2.

B = {φ3}, where φ3 ∈ F,

X = {x1,x2,x7,x8,x9,x10},
Y = {y4,y5,y6,y8,y9,y11},
X ��φ3

Y, since we can find x ∈ X ,y ∈Y where x �φ3 y, e.g.,

φ3(x9) = φ3(y8) = 0.5.

Definition 9. Weak Tolerance Nearness Relation [30]
Let 〈O,F〉 be a perceptual system and let X ,Y ⊆ O,ε ∈ [0,1]. The set X is perceptually
near to the set Y within the perceptual system 〈O,F〉 (X ��

F
Y ) iff there exists x ∈ X ,

y ∈ Y and there is a φ ∈ F,ε ℜ such that x�B,εy (see Table 3). If a perceptual system
is understood, then we say shortly that a set X is perceptually near to a set Y in a weak
tolerance sense of nearness.

Example 6. Sample Weak Tolerance Nearness
Let 〈O1,F〉 denote perceptual system Sys. 1 with O1 = {x1, ... ,x9}, F = {φ1,φ2,φ3,φ4},
where the values of probe functions from F are given in the lefthand side of table
2. Similarly, let 〈O2,F〉 denote perceptual system Sys. 2 with O2 = {y1, ... ,y14},
F = {φ1,φ2,φ3,φ4}, where the values of the probe functions from F are given in the
righthand side of table 2. Now choose ε and arbitrary samples X1 and Y1 so that they
are also weak tolerance near sets.

ε = 0.1,

B = {φ3}, where φ3 ∈ F,

X1 ∈ O1,Y1 ∈ O2,

X1 = {x1,x2,x7,x8,x9,x10},
Y1 = {y4,y5,y6,y8,y9,y11},
X1 ��φ3

Y1, since we can find x ∈ X ,y ∈ Y where x�φ3,ε y, e.g.,

|φ3(x9)−φ3(y8)| = |0.5−0.5|= 0 ≤ 0.1; again, e.g.,

|φ3(x10)−φ3(y11)| = |0.1−0.2|= 0.1

Remark 3. In Example 6, we know that X ��
F

Y , since there exists an x ∈ X ,y ∈ Y
(namely, x9,y8) such that

|φ3(x)−φ3(y)| ≤ ε

We can generalize the result from Example 6 in Prop 1 by extending the idea in Prop. 6.

Proposition 1. Let Sys1 = 〈O1,F〉 denote perceptual system Sys1. Similarly, let Sys2 =
〈O2,F〉 denote a second, distinct perceptual system. Then

Sys1 ��
F

Sys1 ⇐⇒ O1 ��
F

O2.
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4.1 Tolerance Perceptual Near Sets

Object recognition problems, especially in images [5], and the problem of the near-
ness of objects have motivated the introduction of near sets (see, e.g., [28]). Since we
are mainly interested in real-valued probe functions in comparing swarm behaviours,
perceptual near sets are briefly considered in this section based on the weak tolerance
nearness relation [30] ��

F
in Def. 9. Other forms of near sets are introduced in [27, 34].

Definition 10. Tolerance Perceptual Near Sets
Let 〈O,F〉 be a perceptual system and let X ⊆ O. A set X is a tolerance perceptual near
set iff there is Y ⊆ O such that X ��

F
Y. The family of near sets of a perceptual system

〈O,F〉 is denoted by NearF(O).

In effect, tolerance perceptual near sets are those sets that are defined by the nearness
relation ��

F
.

Example 7. Sample Tolerance Perceptual Near Sets
Let 〈O1,F〉 denote perceptual system Sys. 1 with O1 = {x1, ... ,x9}, F = {φ1,φ2,φ3,φ4},
where the values of probe functions from F are given in the lefthand side of table
2. Similarly, let 〈O2,F〉 denote perceptual system Sys. 2 with O2 = {y1, ... ,y14},
F = {φ1,φ2,φ3,φ4}, where the values of the probe functions from F are given in the
righthand side of table 2. Now choose samples X and Y that are also weak tolerance
near sets. Sets X ,Y in Example 6 are near sets, since X ��φ3

Y . Again, for example,
consider the following near sets extracted from Table 2.

ε = 0.3,

B = {φ3},
X1 ∈ O1,Y1 ∈ O2,

X1 = {x1,x2,x5,x6,x7,x8,x9,x10},
Y1 = {y4,y5,y6,y8,y9,y10,y11,y12},
X1 ��φ3

Y1, since we can find x ∈ X1,y ∈ Y1, where

x�φ3,0.3
y, e.g.,x9�φ3,0.3

y10, since |φ3(x9)−φ3(y10)| = |0.5−0.7|= 0.2 ≤ 0.3

The basic idea here is to look for sets of objects containing at least one pair of objects
that satisfy the weak tolerance relation. Consider, for example, sets X2 ∈ O2,Y1 ∈ O2

extracted from Table 2 in (23) and (24).

ε = 0.3 (20)

B = {φ4}, (21)

X2 ∈ O2,Y1 ∈ O2, (22)

X2 = {x1,x2,x5,x6,x7,x8,x9}, (23)

Y2 = {y5,y6,y8,y9,y10,y11,y12,y14}, (24)

X2 ��φ3
Y2, since we can find x ∈ X2,y ∈ Y2, where (25)
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x�φ4,0.3
y, e.g.,

x1�φ4,0.3
y8, since |φ4(x1)−φ4(y8)| = |0.75−0.6|= 0.15 ≤ 0.3; again, e.g.,

x7�φ4,0.3
y11, since |φ4(x7)−φ4(y11)| = |0.9−0.8|= 0.1 ≤ 0.3

4.2 Sample Near Images

By way of an illustration of near images, let 〈Im,H〉 denote a perceptual system where
Im is a set of segmented microscope images and H is a probe function representing
image entropy2, respectively. A sample Shubert choke cherry leaf and Native Pin choke
cherry leaf are shown in Figures 1.2 and 1.3. For small segments of two sample choke
cherry leaves, the National Optical DC3-163 microscope in Fig. 1.1 was used to pro-
duce the magnified images in Figures 2, 3 and 4. For this example, it was found that
γ = 0.4239 worked best to show the contrast between areas of the leaf fragment at
the 10× level of magnification in Fig. 2.1 and Fig. 2.3. Higher values of γ were used
higher levels of magnification (γ = 0.874 for 20× magnification and γ = 0.819 for 40×
magnification).

2.1: Shubert 10× 2.2: Shubert 10×,ε = 0.01

2.3: Pin 10× 2.4: Pin 10×,ε = 0.01

Fig. 2. Sample Segmented 10× Images

Let im1, im2 denote the Shubert choke cherry leaf image in Fig. 2.1 and Native pin
choke cherry leaf in Fig. 2.3, respectively, each shown at magnification 10. The seg-
mentation of these images obtained by separating image areas3 representing tolerance
classes are shown in Fig. 2.2 and Fig. 2.4. Let ε = 0.01 in the definition of the weak

2 Entropy defined in the context of images is explained in [12].
3 Christopher Henry wrote the matlab program used to obtain the image segmentations shown

in this section.
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3.1: Shubert 20× 3.2: Shubert 20×,ε = 0.01

3.3: Pin 20× 3.4: Pin 20×,ε = 0.01

Fig. 3. Sample Segmented 20× Images

tolerance relation (see Def. 4). Let X denote a greyscale image, x ∈ X a sequence of
grey levels in X . In addition, let p(xi) denotes the probability of the ith sequence of grey
levels). For greyscale image X , Pal [12] entropy H(1) is defined by

H(X) =
|X |
∑
i=0

p(xi)e1−p(xi).

Intuitively, H(X) represents the expected value of the gain in information resulting from
the occurrence of different sequences of grey levels in an image. Let x,y denote a pair of
n×n pixel windows in an image, i.e., each pixel window contains n×n pixels (picture
elements). Then all pairs of pixel windows having Pal entropy within ε = 0.01 belong
to the same tolerance class. In other words,

|H(x)−H(y)| ≤ ε.

The tolerance classes represented in a segmented image are each assigned a different
color. For example, the Shubert choke cherry 10× microscopic image in Fig. 2.1 is
dominated by one tolerance class (visualized with tiny rectangles with the colour orange
in Fig. 2.2). It can be observed that a small number of pixels windows in have the same
colour. Notice that the windows in a single tolerance class are scattered throughout the
image in Fig. 2.2.

A Native Pin choke cherry 10× microscopic image is shown in Fig. 2.3. The en-
tropic pixel window values represented by the tiny rectangular regions in Fig. 2.4 are
compared with the information gain (entropic image value) for each of the pixel win-
dows shown in Fig. 2.4. For this pair of sample segmented images, roughly 20% of
the pixel windows in the 10× Pin cherry segmentation have a colour (i.e., informa-
tion gain) that is similar to the colouring of the pixel windows in Fig. 2.2. That is, the
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4.1: Shubert 40× 4.2: Shubert 40×,ε = 0.01

4.3: Pin 40× 4.4: Pin 40×,ε = 0.01

Fig. 4. Sample Segmented 40× Images

degree-of-nearness of this pair of images is approximately 20 percent. From Def. 4, we
can conclude that im1 and im2 are near images relative to the entropic image function
H and for ε = 0.01, i.e.,

im1 ��{H} im2.

Similar results were obtained for 20× and 40× magnification levels for the segmenta-
tions shown in Fig. 3 and Fig. 4.

5 Rough Near Sets

The germ of the idea for near sets first appeared within a poem by Zdzisław Pawlak and
this author in a poem entitled Near To written in 2002 and later published in English
and Polish [21, 31]. In later years, the foundations for near sets grew out of a rough
set approach to classifying images [5, 28, 29, 32]. It is fairly easy to show that every
rough set is also a near set. This section briefly presents some fundamental notions in
rough set theory resulting from the seminal work by Zdisław Pawlak during the early
1980s [20] and elaborated in [22, 23, 24]. An overview of the mathematical foundations
of rough sets is given by Lech Polkowski in [35].

Let 〈O,F〉 denote a perceptual system containing a set of perceptual objects O and a
set of functions F representing features of the objects in O. Further, let O∼B

denote the
set of all classes in the partition of O defined by∼B for B ⊆ F. Recall that x/∼B

denotes
an equivalence class relative x ∈ O. For X ⊆ O,B ⊆ F, a sample perceptual granule X
can be approximated with a B-lower B∗X and B-upper approximation B∗X defined by

B∗X =
⋃

x:[x]B⊆X

[x]B,
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B∗X =
⋃

x:[x]B∩X �= /0

[x]B.

Whenever B∗X is a proper subset of B∗X , i.e., B∗X −B∗X �= /0, the sample X has
been classified imperfectly and X is considered a rough set. Notice, from Def. 7,

B∗X ��B X , and

B∗X ��B X ,

since the classes in an approximation of X contain objects with descriptions that match
the description of at least one object in X . Hence, the pairs B∗X ,X and B∗X ,X are
examples of near sets. In general,

Proposition 2. (Peters [27]) The pairs (B∗X ,X) and (B∗X ,X) are near sets.

Proposition 3. (Peters [27]) Any equivalence class x/∼B
,
∣∣x/∼B

∣∣> 2 is a near set.

6 Fuzzy Near Sets

Fuzzy sets A1 and A2 shown in Fig. 5 are also near sets inasmuch as each fuzzy set has
a non-empty core. Let X be a problem domain for a fuzzy set A. By definition [25], the
core of a fuzzy set Aμ is a function defined relative to complete and full membership in
the set Aμ prescribed by the membership function μ [36]. Specifically,

core(Aμ) = {x ∈ X | μ(x) = 1} .
The core of Aμ is an example of a probe function that defines the class

x/�core(Aμ )
=

{
y ∈ X | y ∈ core(Aμ)

}
.

It can also be argued that 〈X ,core(Aμ)〉 is a perceptual system. In the case where a
pair of fuzzy sets has non-empty cores, then the fuzzy sets satisfy the condition for the

Fig. 5. Sample Fuzzy Near Sets
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weak nearness relation, i.e., we can find x ∈ X ,y ∈ Y for
(
X ,A1μ1

)
,
(
Y,A2μ2

)
relative

to A1μ1 ,A2μ2 , for membership functions μ1,μ2, where

x ∈ x/�core(A1μ1 )
,

y ∈ y/�core(A2μ2 )
,

μ1(x) = μ2(y) = 1.

Proposition 4. Fuzzy sets with non-empty cores are near sets.

7 Conclusion

The main contribution of this chapter is the introduction of a formal basis for discover-
ing affinities between perceptual granules. This is made possible by the introduction of
various forms of indiscernibility relations that define partitions and tolerance relations
that define coverings of perceptual granules and lead to a number of useful nearness
relations. A weak tolerance nearness relation is also defined in this chapter. This toler-
ance relation is has proven to be quite useful in discovering affinities between percep-
tual granules. The degree of affinity between microscope images as a perceptual system
is measured with a form of entropic image function, has been briefly presented in an
informal way in this chapter. Future work includes the introduction of various probe
functions and nearness useful in image analysis.
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Abstract. Based on the theory of concept lattice and fuzzy concept lattice, a mathematical model 
of a concept granular computing system is established, and relationships of the system and 
concept lattices, various variable threshold concept lattices and fuzzy concept lattices are then 
investigated. For this system, concept granules, sufficiency information granules and necessity 
information granules which are used to express different relations between a set of objects and a 
set of attributes are proposed. Approaches to construct sufficiency and necessity information 
granules are also shown. Some iterative algorithms to form concept granules are proposed. It is 
proved that the concept granules obtained by the iterative algorithms are the sub-concept gran-
ules or sup-concept granules under some conditions for this system. Finally, we give rough ap-
proximations based on fuzzy concept lattice in formal concept analysis. 

1   Introduction 

A concept is the achievement of human recognizing the world. It announces the essence 
to distinguish one object from the others. Meanwhile, a concept is also a unit of human 
thinking and reasoning. New concepts are often produced by the original known ones. 
Thus, a concept is regarded as an information granule, and it plays an important role in 
our perception and recognition. In 1979, Zadeh first introduced the notion of fuzzy 
information granules [45]. From then on, many researchers paid much attention to the 
thought of information granules, and applied it to many fields such as rough set, fuzzy 
set and evidence reasoning [14,19]. The notion of granularity was proposed by Hobbs 
in 1985 [20], and granular computing was first provided by Zadeh from 1996 to 1997 
[46,47]. Since then, granular computing as a fundamental thought has stepped to soft 
computing, knowledge discovery and data mining, and has obtained some good results 
[26,32,41]. 

Formal concept analysis (FCA), proposed by Wille in 1982 [37], is a mathematical 
framework for discovery and design of concept hierarchies from a formal context. It is 
an embranchment of applied mathematics, which made it need mathematical thinking 
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for applying FCA to data analysis and knowledge processing [13]. All formal concepts 
of a formal context with their specification and generalization form a concept lattice 
[18]. And the concept lattice can be depicted by a Hassen diagram, where each node 
expresses a formal concept. The concept lattice is the core structure of data in FCA. In 
essence, a formal concept represents a relationship between the extension of a set of 
objects and the intension of a set of attributes, and the extension and the intension are 
uniquely determined each other. The more the formal concepts can be obtained, the 
stronger the ability is to recognize the world. Thus FCA is regarded as a power tool for 
learning problems [11,21,22,24,25]. 

Recently, there has been much advance in the study for FCA, especially in the study 
of the combination of FCA with the theory of rough set [12,23,28,30,35,38]. Zhang etc. 
proposed the theory and approach of attribute reduction of concept lattice with the 
formal context being regarded as a 0-1 information table, and introduced the judgment 
theorems of attribute reduction [48-50]. In their paper, they also introduced a decision 
formal context, and then acquired decision rules from it. Yao studied relations between 
FCA and the theory of rough set [42-44]. Burusco and Belohlavek investigated fuzzy 
concept lattices of L-fuzzy formal context [1-10]. Fan etc. discussed reasoning algo-
rithm of the fuzzy concept lattice based on a complete residuated lattice, studied the 
relationships among various variable threshold fuzzy concept lattices, and proposed 
fuzzy inference methods [17]. Ma etc. constructed relations between fuzzy concept 
lattices and granular computing [26]. Qiu gave the iterative algorithms of concept lat-
tices [29]. Shao etc. established the set approximation in FCA [31]. 

In this paper, a mathematical model of a concept granular computing system is in-
troduced based on the study of concept lattice and fuzzy concept lattice. Relationships 
among this system and concept lattice, fuzzy concept lattice and variable threshold 
concept lattice are investigated. Properties of the system are then studied. To describe 
the relations between a set of objects and a set of attributes, sufficiency information 
granules and necessity information granules are defined. Iterative algorithms of a 
concept granular computing system are proposed to obtain the information granules. 
And rough approximations of a set based on the concept lattice are studied. It may 
supply another way to study FCA. 

This paper is organized as follows. In section 2, we review basic notions and prop-
erties of concept lattice and fuzzy concept lattice. Then we propose a mathematical 
model called a concept granular computing system in Section 3. Relationships among 
this system and concept lattice, variable threshold concept lattice and fuzzy concept 
lattice are investigated. In Section 4, we study properties of this system. And suffi-
ciency information granules and necessity information granules are defined in 
Section 5. We propose some iterative algorithms to produce concept granules in Sec-
tion 6. Finally, set approximation in FCA is studied in Section 7. The paper is then 
concluded with a summary in Section 8. 

2   Preliminaries  

To facilitate our discussion, this section reviews some notions and results related to 
concept lattice and fuzzy concept lattice. The following definitions and theorems are 
the relevant facts about concept lattice and fuzzy concept lattice [2,18,19]. 
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In FCA, the data for analysis is described as a formal context, on which we can 
construct formal concepts. All formal concepts form a concept lattice which explains 
hierarchical relations of concepts. 

Definition 1. A triplet ),,( IAU  is called a formal context, where },,{ 1 nxxU L= is 

a nonempty and finite set called the universe of discourse, every element )( nixi ≤  is an 

object; },,{ 1 maaA L=  is a nonempty and finite set of attributes, every element 

)( mja j ≤  is an attribute; and AUI ×⊆  is a binary relation between U  and A .  

For a formal context ),,( IAU , Ux ∈ and Aa ∈ , we use Iax ∈),( , or xIa , 

denotes that the object x  has the attribute a . If we use 1 and 0 to express Iax ∈),(  

and Iax ∉),( , respectively, then the formal context can be described as a 0-1 in-

formation table. 
Let ),,( IAU  be a formal context, UX ⊆ and AB ⊆ , we define a pair of 

operators: 

                               * { : , , }X a a A x X xIa= ∈ ∀ ∈                                               (1) 

* { : , , }B x x U a B xIa= ∈ ∀ ∈                                              (2) 

where *X  denotes the set of attributes common to the objects in X , and *B  is the set 
of objects possessing all attributes in B . For simplicity, for any Ux ∈ and Aa ∈ , we 

use *x and *a  instead of *}{x  and *}{a  , respectively. For any Ux ∈  and Aa ∈ , 

if *x ≠ ∅ , *x A≠ , and *a ≠ ∅ , *a U≠ , we call the formal context ),,( IAU  is 

regular. In this paper, we suppose the formal contexts we discussed are regular. 

Definition 2. Let ),,( IAU  be a formal context, UX ⊆  and AB ⊆ . A pair 

( , )X B  is referred to as a formal concept, or a concept if *X B=  and *X B= . We 

call X the extension and B  the intension of the concept ( , )X B . 

Proposition 1. Let ),,( IAU  be a formal context. Then for any 1 2, ,X X X U⊆  

and 1 2,B B , B A⊆ , we can obtain that: 

(P1) * *
1 2 2 1X X X X⊆ ⇒ ⊆ , * *

1 2 2 1B B B B⊆ ⇒ ⊆ ; 

(P2) **X X⊆ , **B B⊆ ; 

(P3) * ***X X= , * ***B B= ; 

(P4) * *X B B X⊆ ⇔ ⊆ ; 

(P5) * * *
1 2 1 2( )X X X X=U I , * * *

1 2 1 2( )B B B B=U I ; 
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(P6) * * *
1 2 1 2( )X X X X⊇I U , * * *

1 2 1 2( )B B B B⊇I U ; 

(P7) ** *( , )X X and * **( , )B B  are always concepts. 

In Definition 2, concepts are constructed based on a classical formal context with the 
binary relation between objects and attributes being either 0 or 1. In the real world, 
however, the binary relation between objects and attributes are fuzzy and uncertain. 
Burusco etc. extended the classical model to a fuzzy formal context [8,40], on which 
fuzzy concepts are first established. 

Let L  be a complete lattice. We denote by UL  the set of all L-fuzzy sets defined on 

U . Then for any L-fuzzy sets ULXX ∈21

~
,

~
, for any Ux ∈ , )(

~~~
121 xXXX ⇔⊆  

)(
~

2 xX≤ . Then ( , )UL ⊆  forms a poset. Obviously, ([0,1] , )U ⊆  and ({0,1} , )U ⊆  are 

both posets. 
We denote by ( )P U  and ( )P A  the power set on the universe of discourse U  and 

the power set on the set of attributes A , respectively. 

Definition 3. A triplet ( , , )U A I%  is referred to as a L-fuzzy formal context, where U  

is a universe of discourse, A  is a nonempty and finite set of attributes, and I%  is a 

L-fuzzy relation between U  and A , i.e. AULI ×∈~
. 

( , , , , ,0,1)L= ∨ ∧ ⊗ →L  is referred to as a complete residuated lattice, if 

( , , ,0,1)L ∨ ∧  is a complete lattice with the least element 0 and the great element 1; 

( , ,1)L ⊗  is a commutative semigroup with unit element 1; and ( , )⊗ →  is a residuated 

pair of L , i.e. : L L L⊗ × → is monotone increasing , : L L L→ × →  is 
non-increasing for the first variable and non-decreasing for the second variable, and for 
any , , ,a b c L a b c a b c∈ ⊗ ≤ ⇔ ≤ → . 

Let ( , , )U A I%  be a L-fuzzy formal context, UX L∈%  and AB L∈% . We define two 

operators as follows:  

( ) ( ( ) ( , ))
x U

X a X x I x a+

∈
= ∧ →% % %                                           (3) 

( ) ( ( ) ( , ))
a A

B x B a I x a+

∈
= ∧ →% % %                                             (4) 

Then AX L+ ∈%  and UB L+ ∈% . 

Definition 4. Let ( , , )U A I%  be a L-fuzzy formal context. ( , )X B% %  is referred to as a 

fuzzy formal concept, or a fuzzy concept if X B+ =% %  and B X+ =% %  for any 
UX L∈% and AB L∈% . 

Proposition 2. Let ( , , )U A I%  be a L-fuzzy formal context, ( , , , ,0,1)L= ∨ ∧ ⊗L be a 

complete residuated lattice. Then for any 1 2, , UX X X L∈% % % and 1 2, , AB B B L∈% % % , we have 

the following properties: 
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(F1) 1 2 2 1X X X X+ +⊆ ⇒ ⊆% % % % , 1 2 2 1B B B B+ +⊆ ⇒ ⊆% % % % ; 

(F2) X X ++⊆% % , B B++⊆% % ; 

(F3) X X+ +++=% % , B B+ +++=% % ; 

(F4) X B B X+ +⊆ ⇔ ⊆% % % % ; 

(F5) 1 2 1 2( )X X X X+ + +=% % % %U I , 1 2 1 2( )B B B B+ + +=% % % %U I ; 

(F6) ( , )X X++ +% % and ( , )B B+ ++% %  are always fuzzy concepts. 

Proposition 3. Let ( , , )U A I%  be a L-fuzzy formal context. Note that 

( , , ) {( , ) : , }fL U A I X B X B B X+ += = =% % % % % % %  

For any 1 1( , )X B% % , 2 2( , ) ( , , )fX B L U A I∈% % % , we define a binary relation " "≤ as 

follows:  

1 1 2 2 1 2 1 2( , ) ( , )X B X B X X B B≤ ⇔ ⊆ ⇔ ⊇% % % % % % % %（ ）. 

Then " "≤ is a partial order on ( , , )fL U A I% , and ( ( , , ), )fL U A I ≤% is a complete 

lattice, called fuzzy concept lattice, in which the meet and join operators are given by: 

( , ) ( ,( ) ),

( , ) (( ) , ).

i i i i
i T i T i T

i i i i
i T i T i T

X B X B

X B X B

++

∈ ∈ ∈
++

∈ ∈ ∈

∧ = ∩ ∪

∨ = ∪ ∩

% % % %

% % % %
 

where T  is a finite index set. 
Obviously, a classical formal context is a special L-fuzzy formal context, i.e. for-

mula (1) and (2) are special situations of formula (3) and (4), respectively. 

3   Mathematical Model of Concept Granular Computing System 

For a formal context and a fuzzy formal context, by constructing operators between the 
set of objects and the set of attributes, we obtain concept lattice and fuzzy concept lat-
tice. In this section, we extend the formal context to a generalized setting, and then 
obtain a mathematical model for concept granular computing system. 

Let L  be a complete lattice. We denote by 0L and 1L  the zero element and the unit 

element of L , respectively. 

Definition 5. Let 1 2,L L  be two complete lattices. We call any element in 1L  an extent 

element and any elements in 2L  an intent element. The mapping 1 2:G L L→  is re-

ferred to as an extent-intent operator if it satisfies:  

(G1) 
1 2 1 2

(0 ) 1 , (1 ) 0L L L LG G= = ; 

(G2) 1 2 1 2 1 2 1( ) ( ) ( ), ,G a a G a G a a a L∨ = ∧ ∀ ∈ . 
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For any 1a L∈ , ( )G a  is called the intent element of a . The mapping 

2 1:H L L→  is referred to as an intent-extent operator if it satisfies:  

(H1) 
2 1 2 1

(0 ) 1 , (1 ) 0L L L LH H= = ; 

(H2) 1 2 1 2 1 2 2( ) ( ) ( ), ,H b b H b H b b b L∨ = ∧ ∀ ∈ . 

For any 2b L∈ , ( )H b  is called the extent element of b .  

Definition 6. Let G  and H  be the extent-intent and intent-extent operators on 1L  

and 2L , respectively. Furthermore, if for any 1a L∈  and 2b L∈ ,  

( ), ( )a H G a b G H b≤ ≤o o , 

the quadruplex 1 2( , , , )L L G H  is referred to as a concept granular computing system, 

where ( ), ( )H G a G H bo o  is described as ( ( ))H G a  and ( ( ))G H b  respectively. 

Theorem 1. Let ( , , )U A I  be a formal context. Then the operators ( , )∗ ∗  defined by 

formula (1) and (2) are extent-intent and intent-extent operators, respectively. 
And ( ( ), ( ), , )P U P A ∗ ∗  is a concept granular computing system. 

Proof. It immediately follows from Proposition 1. 

Theorem 2. Let ( , , )U A I%  be a L-fuzzy formal context. Then the operators defined by 

formula (3) and (4) are extent-intent and intent-extent operators, respectively. And 

( , , , )U AL L + +  is a concept granular computing system. 

Proof. It immediately follows from Proposition 2. 

Theorem 3. Let ( ( ), ( ), , )P U P A G H  be a concept granular computing system. Then 

there exists a binary relation I U A⊆ ×  such that ( , , )U A I  is a formal context, and 

(*,*) ( , )G H= . 

Proof. Note that 

{( , ) : ({ })}I x a x H a= ∈  

Then ( , , )U A I  is a formal context. For any B A⊆ , we have ( ) ({ })
a B

H B H a
∈

= I  

by (H2). Thus  

* { : , ({ })}B x U a B x H a= ∈ ∀ ∈ ∈  

                        { : ({ }) ( )} ( )
a B

x U x H a H B H B
∈

= ∈ ∈ = =I  

By (G2), for any 1 2X X⊆ , we have 

2 1 2 1 2
( ) ( ) ( ) ( )G X G X X G X G X= ∪ = ∩ . 
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Then 1 2X X⊆  implies 2 1( ) ( )G X G X⊆ . Thus, for ({ })x H a∈ , we have 

({ })G x ⊇ ( ({ })) { }G H a a⊇ . That is, ({ })a G x∈ . Analogously, we can prove 

that )()( 1221 BHBHBB ⊆⇒⊆ . By which and ({ })a G x∈  we  can get that 

({ })x H a∈ . Thus ({ })x H a∈ iff ({ })a G x∈ . Therefore,  

{( , ) : ({ })}I x a a G x= ∈ . 

For any X U⊆ , by property (G2) we have ( ) ({ })
x X

G X G x
∈

= I . Thus,  

* { : , ({ })}X a A x X a G x= ∈ ∀ ∈ ∈  

{ : ({ }) ( )} ( )
x X

a A a G x G X G X
∈

= ∈ ∈ = =I . 

We denote by [0,1]L =  a unit interval. Then ([0,1], , , , ,0,1)= ∨ ∧ ⊗ →L is a 

complete residuated lattice. We call the L-fuzzy formal context ( , , )U A I%  with 

[0,1]L =  a fuzzy formal context. Then for any ( )X P U∈ , ( )B P A∈  and 

0 1δ< ≤ , we define two operators as follows:  

           # { : ( ( ) ( , )) }
x X

X a A X x I x a
∈

= ∈ ∧ → ≥ δ%                                          (5) 

# { : ( ( ) ( , )) }
a B

B x U B a I x a
∈

= ∈ ∧ → ≥ δ%                                            (6) 

Theorem 4. A quadruplex ( ( ), ( ), #,#)P U P A  is a concept granular computing system.  

Proof. Obviously, ( ), ( )P U P A  are complete lattices. According to formula (5), the opera-

tor # : ( ) ( )P U P A→ satisfies # A∅ = and #U = ∅ . Since ( )i ix a x a∨ → = ∧ → , 

then for any 1 2, ( )X X P U∈ , it follows that  

1 2

#

1 2 1 2( ) { : (( ( ) ( )) ( , )) }
x X X

X X a A X x X x I x a δ
∈ ∪

∪ = ∈ ∧ ∨ → ≥%  

     
1 2

1 2{ : (( ( ) ( , )) ( ( ) ( , ))) }
x X X

a A X x I x a X x I x a δ
∈ ∪

= ∈ ∧ → ∧ → ≥% %    

     
1 2

1 2{ : ( ( ) ( , )) } { : ( ( ) ( , )) }
x X x X

a A X x I x a a A X x I x aδ δ
∈ ∈

= ∈ ∧ → ≥ ∩ ∈ ∧ → ≥% %  

     # #

1 2X X= ∩ . 

Thus, the operator # : ( ) ( )P U P A→  is an extent-intent operator. Similarly, we  

can  prove the operator # : ( ) ( )P A P U→  is an intent-extent operator. 

Meanwhile, for any ( )X P U∈ , since  

},)),(
~

)((:{

},)),(
~

)((:{
###

#

#
δ

δ
≥→∧∈=

≥→∧∈=

∈

∈

axIaXUxX

axIxXAaX

Xa

Xx  
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by formula (5) we have, for any x X∈ , if #a X∈ , we have 1 ( , )I x a→ ≥ δ% . Be-

cause #X is a crisp set, we have })),(
~

1(:{
#

## δ≥→∧∈=
∈

axIUxX
Xa

. Therefore, 

x X∈ implies δ≥→∧
∈

)),(
~

)(( #

#
axIaX

Xa
. That is, ##x X∈ . Thus, ##X X⊆ . 

Similarly, it can be proved that for any ( )B P A∈ , ##B B⊆ . Thus, ),(),(( APUP  

)#,#  is a concept granular computing system. 

Let ( , , )U A I%  be a fuzzy formal context. For any ( )X P U∈ , AB L∈% , and 

0 1δ< ≤ , a pair of operators are defined as follows:   

                                  )(),(
~

)( AaaxIaX
Xx

∈∧→=
∈

Δ δ                               (7) 

                    { : ( ( ) ( , )) }
a A

B x U B a I x a∇

∈
= ∈ ∧ → ≥ δ% % %                       (8) 

Theorem 5. A quadruplex ( ( ), , , )AP U L Δ ∇  is a concept granular computing system. 

Proof. It is similarly proved as Theorem 4. 

Let ( , , )U A I%  be a fuzzy formal context. For any UX L∈% , ( )B P A∈ , and 

0 1δ< ≤ , a pair of operators are defined as follows:   

                       { : ( ( ) ( , )) }
x U

X a A X x I x a∇

∈
= ∈ ∧ → ≥ δ% % %                                (9) 

                  )(),(
~

)( UxaxIxB
Ba

∈∧→=
∈

Δ δ                                             (10) 

Theorem 6. A quadruplex ( , ( ), , )UL P A ∇ Δ  is a concept granular computing system. 

Proof. It is similarly proved as Theorem 4. 

4   Properties of Concept Granular Computing System 

Definition 7. Let 1 2( , , , )L L G H  be a concept granular computing system. If for any 

1a L∈  and 2b L∈ , ( )G a b= and ( )H b a= , then the pair ( , )a b  is called a con-

cept. We call a  the extension and b  the intension of the concept ( , )a b .  

For any concepts 1 1 2 2( , ), ( , )a b a b , we define a binary relation “ ≤ ”as follows:  

1 1 2 2 1 2( , ) ( , )a b a b a a≤ ⇔ ≤ . 

Then “ ≤ ”is a partial order. 

Let 1 2( , , , )L L G H  be a concept granular computing system. By the operators G  

and H ,  a bridge between the extent set and the intent set is constructed, which de-
scribe the transformation process of objects and attributes for the recognition.   
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Theorem 7. Let 1 2( , , , )L L G H  be a concept granular computing system. Then the 

following conclusions hold: 

(1) 1 2 2 1( ) ( )a a G a G a≤ ⇒ ≤ , for any 1 2 1,a a L∈ ; 

(2) 1 2 2 1( ) ( )b b H b H b≤ ⇒ ≤ , for any 1 2 2,b b L∈ ; 

(3) 1 2 1 2( ) ( ) ( )G a G a G a a∨ ≤ ∧  for any 1 2 1,a a L∈ ; 

(4) 
1 2 1 2

( ) ( ) ( )H b H b H b b∨ ≤ ∧ , for any 
1 2 2
,b b L∈ ; 

(5) ( ) ( )G H G a G a=o o  for any 1a L∈ ; 

(6) ( ) ( )H G H b H b=o o  for any 2b L∈ . 

Proof. (1) Suppose 1 2 1,a a L∈ , and 1 2a a≤ . Since G is an extent-intent operator, we 

have  

2 1 2 1 2( ) ( ) ( ) ( )G a G a a G a G a= ∨ = ∧ . 

Thus, 2 1( ) ( )G a G a≤ .   

(2) It is similarly proved as (1). 

(3) Because 1 2 1a a a∧ ≤  and 1 2 2a a a∧ ≤ , by (1) we can get that  

1 1 2( ) ( )G a G a a≤ ∧  and 2 1 2( ) ( )G a G a a≤ ∧ . 

Then 1 2 1 2( ) ( ) ( )G a G a G a a∨ ≤ ∧ . 

(4) It is similarly proved as (3). 

(5) Since for any 1a L∈ , ( )a H G a≤ o , then by (1) we can get that )(aGHG oo  

)(aG≤ . Meanwhile, let ( )b G a= , we have ( )b G H b≤ o . Thus, HGaG o≤)(  

)(aGo  , which leads to ( ) ( )G a G H G a= o o . 

(6) It is similarly proved as (5). 

Theorem 8. Let 1 2( , , , )L L G H  be a concept granular computing system. Note that   

1 2( , , , ) {( , ) : ( ) , ( ) }L L G H a b G a b H b a= = =B  

Then 1 2( , , , )L L G HB  is a lattice with a great element and a least element, where 

the infimum and the supremum are defined as follows 

( , ) ( , ( ))i i i i
i T i T i T

a b a G H b
∈ ∈ ∈
∧ = ∧ ∨o , 

( , ) ( ( ), )i i i i
i T i T i T

a b H G a b
∈ ∈ ∈
∨ = ∨ ∧o , 

where 1 2( , ) ( , , , )i ia b L L G H∈B  ( ,i T T∈ is a finite index set). 

Proof. Since 1 2( , ) ( , , , )i ia b L L G H∈B , we have ( ) , ( )i i i iG a b H b a= = . Thus,   

( ) ( ( )) ( ( )) ( )i i i i
i T i T i T i T

G a G H b G H b G H b
∈ ∈ ∈ ∈
∧ = ∧ = ∨ = ∨o , 
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( ) ( ) ( )i i i i
i T i T i T i T

H G H b H b H b a
∈ ∈ ∈ ∈
∨ = ∨ = ∧ = ∧o o . 

Then 1 2( , ) ( , , , )i i
i T

a b L L G H
∈
∧ ∈B . Similarly, we can prove that 

1 2( , ) ( , , , )i i
i T

a b L L G H
∈
∨ ∈B . 

Since 
1 2 2 1

(0 ) 1 , (1 ) 0L L L LG H= = , by the partial order ≤  we have 
1 2

(0 ,1 )L L  is the 

least element of 1 2( , , , )L L G HB . Similarly, 
1 2

(1 ,0 )L L  is the great element of 

1 2( , , , )L L G HB . 

In order to prove 1 2( , , , )L L G HB  is a lattice, we need to prove that 

( , )i i
i T

a b
∈
∧  is the great lower bound of ( , )( )i ia b i T∈  and ( , )i i

i T
a b

∈
∨  is the 

least upper bound of ( , )( )i ia b i T∈ . Since i i
i T

a a
∈
∧ ≤ , we have 

( , ) ( , ( )) ( , )i i i i i i
i T i T i T

a b a G H b a b
∈ ∈ ∈
∧ = ∧ ∨ ≤o . That is, ( , )i i

i T
a b

∈
∧  is the lower bound of 

( , )( )i ia b i T∈ .  Suppose 1 2( , ) ( , , , )a b L L G H∈B  and ( , ) ( , )i ia b a b≤  for any 

i T∈ . Then ( , ) ( , )i i
i T

a b a b
∈

≤ ∧ , and we can get that ( , )i i
i T

a b
∈
∧  is the great lower 

bound of ( , )( )i ia b i T∈ . Similarly, we can prove that ( , )i i
i T

a b
∈
∨  is the least upper 

bound of ( , )( )i ia b i T∈ . Therefore, 1 2( , , , )L L G HB  is a lattice with a great element 

and a least element.  
According to the relationships between the concept granular computing system and 

concept lattice, variable threshold concept lattice and fuzzy concept lattice, we can get 
the following results from Theorem 8.  

(1) Let ( , , )U A I  be a formal context. Then  

},),,{(),*,*)(),(( ** XBBXBXAPUPB ===  

is a complete lattice. 

(2) Let ( , , , , ,0,1)L= ∨ ∧ ⊗ →L  be a complete residuated lattice, and ( , , )U A I%  be 

a L-fuzzy formal context. Then  

)
~

,,(}
~~

,
~~

:)
~

,
~

{(),,,( IAULXBBXBXLLB f
AU ====++ ++  

is a lattice with the great and the least elements. 

(3) Let ( , , , , ,0,1)L= ∨ ∧ ⊗ →L  be a complete residuated lattice, and ( , , )U A I%  be 

a fuzzy formal context. Then  

},:),{()#,#),(),(( ## XBBXBXAPUPB ===  

is a lattice with the great and the least elements, and any element in it is called a 
crisp-crisp variable threshold concept, for simply, variable threshold concept. 
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(4) Let ( , , , , ,0,1)L= ∨ ∧ ⊗ →L  be a complete residuated lattice, and ( , , )U A I%  

be a fuzzy formal context. Then  

}
~

,
~

:)
~

,{(),,),(( XBBXBXLUPB A ===∇Δ ∇Δ  

is a lattice with the great and the least elements, and any element in it is called a 
crisp-fuzzy variable threshold concept, for simply, variable threshold concept. 

(5) Let ( , , , , ,0,1)L= ∨ ∧ ⊗ →L  be a complete residuated lattice, and ( , , )U A I%  

be a fuzzy formal context. Then  

}
~

,
~

:),
~

{(),),(,( XBBXBXAPLB U ===Δ∇ Δ∇  

is a lattice with the great and the least elements, and any element in it is called a 
fuzzy-crisp variable threshold concept, for simply, variable threshold concept. 

Example 1. Table 1 shows a fuzzy formal context with {1,2,3,4}U = being a set of 

objects and { , , , }A a b c d=  being a set of attributes.  

Table 1. The fuzzy formal context ( , , )U A I%   

U a B C d 

1 0.5 1.0 0.7 0.5 

2 0.6 0.7 1.0 0.5 

3 1.0 0.9 1.0 0.1 

4 1.0 0.9 0.9 0.1 

We take Luksiewicz implication operators [15,33,34]  

1, ,

1 , .L

a b
a b

a b a b

≤
→ =

− + >
⎧
⎨
⎩

 

Then the corresponding adjoin operator is: 

( 1) 0La b a b⊗ = + − ∨ . 

It is easy to prove that ([0,1], , , , , 0,1)L L= ∨ ∧ ⊗ →L  is a residuated complete lattice. 

For the fuzzy formal context )
~

,,( IAU  given in Table 1, take 1=δ . Then for 

any )(UPX ∈  and )(APB ∈ , by formula (1) and (2) we can get #X and #B . 

Thus, any crisp-crisp variable threshold concept ),( BX  satisfying BX =#  and 

XB =#  can be obtained. Table 2 shows all crisp-crisp variable threshold concepts.  

Analogously, for 1=δ , )(UPX ∈  and )(
~

AFB ∈ , we can get all crisp-fuzzy 

variable threshold concepts by formula (7) and (8). Table 3 shows all crisp-fuzzy 
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variable threshold concepts. And for 1=δ , )(
~

UFX ∈  and )(APB ∈ , by formula 

(9) and (10), we can obtain all fuzzy-crisp variable threshold concepts, see Table 4.  
Fig. 1 depicts the three kinds of corresponding variable threshold concept lattices. 

For simplicity, a set is denoted by listing its elements in sequence. For example, the set 
}4,3,2,1{  is denoted by 1234. 

Table 2. The crisp-crisp variable threshold concepts for 1δ =  

X B 

∅  {abcd} 

{3} {ac} 

{34} {a} 

{23} {c} 

Table 3. The crisp-fuzzy variable threshold concepts for 1δ =  

X a b c d 

∅  1.0 1.0 1.0 1.0 

{3} 1.0 0.9 1.0 0.1 

{34} 1.0 0.9 0.9 0.1 

{2} 0.6 0.7 1.0 0.5 

{23} 0.6 0.7 1.0 0.1 

{234} 0.6 0.7 0.9 0.1 

{1} 0.5 1.0 0.7 0.5 

{134} 0.5 0.9 0.7 0.1 

{12} 0.5 0.7 0.7 0.5 

{1234} 0.5 0.7 0.7 0.1 

Table 4. The fuzzy-crisp variable threshold concepts for 1δ =  

B 1 2 3 4 

∅  1.0 1.0 1.0 1.0 

{c} 0.7 1.0 1.0 0.9 

{b} 1.0 0.7 0.9 0.9 

{bc} 0.7 0.7 0.9 0.9 

{a} 0.5 0.6 1.0 1.0 

{ac} 0.5 0.6 1.0 0.9 

{abc} 0.5 0.6 0.9 0.9 

{abcd} 0.5 0.6 0.1 0.1 
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Fig. 1. The corresponding variable threshold concept lattices shown in Table 2-Table 4 

5   Sufficiency and Necessity Information Granules 

In order to reflect the granular idea of the concept granular computing system, we in-
troduce information granules.  

Definition 8. Let 1 2( , , , )L L G H  be a concept granular computing system. Note that  

1 {( , ) : ( ), ( )}a b b G a a H b= ≤ ≤G , 

2 {( , ) : ( ) , ( ) }a b G a b H b a= ≤ ≤G . 

If 1( , )a b ∈G , we call ( , )a b  a necessity information granule of the concept granular 

computing system, and call b the necessity attribute of a . Then 1G  is the set of all 

necessity information granules of the concept granular computing system. (See Fig. 2.). 

If 2( , )a b ∈G , we call ( , )a b  a sufficiency information granule of the concept 

granular computing system, and call b the sufficiency attribute of a . Then 2G  is the 

set of all sufficiency information granules of the concept granular computing system. 
(See Fig. 3). 

If 1 2( , )a b ∈ ∪G G , we call ( , )a b  an information granule of the concept granular 

computing system. Then 1 2∪G G  is the set of all information granules of the concept 

granular computing system.  

If 1 2( , )a b ∈ ∩G G , then the pair ( , )a b  satisfies ( ), ( )b G a a H b= = , we call 

( , )a b  a sufficiency and necessity information granule of the concept granular com-

puting system, and call b the sufficiency and necessity attribute of a .Then a suffi-
ciency and necessity information granule is actually a concept of a concept granular 
computing system defined in Definition 7. 
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Fig. 2. Necessity information granule ( , )a b  Fig. 3. Sufficiency information granule ( , )a b  

If 1 2( , )a b ∉ ∩G G , we call ( , )a b  a contradiction information granule.  

Theorem 9. Let 1G  be a necessity information granule set. For any 

1 1 2 2 1( , ), ( , )a b a b ∈ G , we define the infimum and the supremum operators on 1G as 

follows: 

1 1 2 2 1 2 1 2( , ) ( , ) ( , ( ))a b a b a a G H b b∧ = ∧ ∨o , 

1 1 2 2 1 2 1 2( , ) ( , ) ( ( ), )a b a b H G a a b b∨ = ∨ ∧o . 

Then 1G  is closed under the infimum and supremum operators.  

Proof. Suppose 1 1 2 2 1( , ), ( , )a b a b ∈G . Then  

1 1 2 2( ), ( )b G a b G a≤ ≤ , and 1 1 2 2( ), ( )a H b a H b≤ ≤ . 

Thus,  

1 2 1 2 1 2 1 2( ) ( ) ( ) ( )a a H b H b H b b H G H b b∧ ≤ ∧ = ∨ = ∨o o , 

1 2 1 2 1 2( ) ( ( ) ( )) ( )G H b b G H b H b G a a∨ = ∧ ≤ ∧o . 

Therefore, 1 1 2 2( , ) ( , )a b a b∧ is a necessity information granule. Similarly, we can 

prove that 1 1 2 2( , ) ( , )a b a b∨  is a necessity information granule. 

Theorem 10. Let 2G  be a sufficiency information granule set. For any 

1 1 2 2 2( , ), ( , )a b a b ∈ G , we define the infimum and the supremum operators on 2G as 

follows: 

1 1 2 2 1 2 1 2( , ) ( , ) ( , ( ))a b a b a a G H b b∧ = ∧ ∨o , 

1 1 2 2 1 2 1 2( , ) ( , ) ( ( ), )a b a b H G a a b b∨ = ∨ ∧o . 

Then 2G  is closed under the infimum and supremum operators.  
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Proof. Suppose 1 1 2 2 2( , ), ( , )a b a b ∈G . Then  

1 1 2 2( ) , ( )G a b G a b≤ ≤ , and 1 1 2 2( ) , ( )H b a H b a≤ ≤ . 

Thus,  

1 2 1 2 1 2 1 2( ) ( ) ( ) ( )H G H b b H b b H b H b a a∨ = ∨ = ∧ ≤ ∧o o , 

1 2 1 2 1 2( ) ( ( ) ( )) ( )G a a G H b H b G H b b∧ ≤ ∧ = ∨o . 

Therefore, 1 1 2 2( , ) ( , )a b a b∧ is a sufficiency information granule. Similarly, we can 

prove that 1 1 2 2( , ) ( , )a b a b∨  is a sufficiency information granule. 

Example 2. Given a formal context ( , , )U A I  as Table 5, where {1,2,3,4}U =  is the 

set of objects, and { , , , }A a b c d= is a set of attributes.  

Table 5. The formal context ( , , )U A I  

U  
a  b  

c  d  

1 1 0 1 1 

2 1 1 0 0 

3 0 0 1 0 

4 1 1 0 0 

From Table 5, we can get the partial necessity information granules (See Fig. 4) and 
the partial sufficiency information granules (See Fig. 5).  

 

Fig. 4. Partial necessity information granule 
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Fig. 5. Partial sufficiency information granules 

  

Fig. 6. ( ( ), ( ))H G a b G a∧o  Fig. 7. ( ( ), ( ))a H b G H b∧ o  

Now we introduce approaches to construct the sufficiency or necessity information 
granules.  

Theorem 11. Let ),,,( 21 HGLL  be a concept granular computing system, 1G  is the 

set of necessity information granules. Then for any 1La ∈ and 2Lb ∈ , we have  

1( ( ), ( ))H G a b G a∧ ∈o G  and 1( ( ), ( ))a H b G H b∧ ∈o G  

(See Fig. 6 and Fig. 7). 

Proof. Since 1 2( , , , )L L G H  is a concept granular computing system, by 

Theorem 7 and Definition 8 we have ( ) ( ) ( )G H G a G a G a b= ≥ ∧o o and 

)()()())(( aGHbHaGHaGbH oo ≥∨≥∧ . Thus, 1))(),(( GaGbaGH ∈∧o . 

Similarly, we can prove 1))(),(( GbHGbHa ∈∧ o . 

Theorem 12. Let 1 2( , , , )L L G H  be a concept granular computing system, 2G  is the 

set of sufficiency information granules. Then for any 1a L∈ and 2b L∈ , we have  



 Concept Granular Computing Based on Lattice Theoretic Setting 83 

 

2( ( ), ( ))H G a b G a∨ ∈o G  and 2( ( ), ( ))a H b G H b∨ ∈o G  

(See Fig. 8 and Fig. 9). 

Proof.  Because 1 2( , , , )L L G H  is a concept granular computing system, by Theorem 7 

and Definition 8 we have ( ) ( ) ( )G H G a G a G a b= ≤ ∨o o and =∨ ))(( baGH  

).()()( aGHbHaGH oo ≤∧  Thus, 2))(),(( GaGbaGH ∈∨o .Similarly, we can 

prove that 2))(),(( GbHGbHa ∈∨ o . 

  

Fig. 8. ( ( ), ( ))H G a b G a∨o  Fig. 9. ( ( ), ( ))a H b G H b∨ o  

Example 3. The formal context ( , , )U A I is the one given as Example 2.  

Then ),*,*)(),(( APUP is a concept granular computing system, and we can ob-

tain all formal concepts which form a concept lattice as Fig. 10. 

 

Fig. 10. Concept lattice of Example 2 

Take 0 {1,4}a =  and 0 { , }b a b= . Then 0 0( , )a b  is a contradiction granule. By 

Theorem 11, we can calculate that },{,}4,1({))(),(( **
000 baaGbaGH =∧o  

}){},4,2,1({)}4,1{ * a=I and ,},{}4,1({))(),(( *
000 babHGbHa ∩=∧ o  

}),{},4({)},{ ** baba = are two necessity information granules. Similarly, we can 
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construct the contradiction granule to a sufficiency information granule (124, )ab  by 

using Theorem 12. 
From Example 3 we know, for any set of objects and any set of attributes, we can 

construct necessity or sufficiency information granules by using Theorem 11-Theorem 
12, which support a way to construct a sufficiency and necessity information granules, 
i.e. concepts.  

6   Iterative Algorithms and Their Optimizations in Concept 
Granular Computing System  

In this section, we establish iterative algorithms to produce concepts from any extent 
element and intent element. 

Theorem 13. Let 1 2( , , , )L L G H  be a concept granular computing system, and 

1| |L < ∞ ( 1| |L  denotes the number of elements in 1L ). For any 1 1a L∈  and 1 2b L∈ , 

an iterative algorithm is given as follows: 

                          1 1( ), ( 2)

( )
n n n

n n

a a H b n

b G a
− −= ∨ ≥

=
⎧
⎨
⎩

                                                  (11) 

Then for the series of pairs 1{( , )}n n na b ≥ , there exists 0 1n ≥  such that  

(1) ),,,(),( 2100
HGLLBba nn ∈ ; 

(2) For any ),,,()','( 21 HGLLBba ∈ , if )(' 11 bHaa ∨≤ , then ),()','(
00 nn baba ≤ . 

Proof. (1) By the iterative algorithm given by formula (11) we know the sequence 

1{ }n na ≥  is monotone non-decreasing. Due to 1| |L < ∞ , there exists a natural number 

0 1n ≥  such that for any 0n n≥ , we have 
0n na a= . Again using formula (11) we have 

0 0 0 01
( )

n n n n
a a a H b+= = ∨  and 

0 0
( )n nb G a= . Then )(

00 nn bHa ≥ . By )(
00 nn aGb =  

we can get that 
0 0 0

( ) ( )n n nH b H G a a= ≥o . Thus 
0 0

( )n na H b= and
0 0

( )n nb G a= . 

Therefore, ),,,(),( 2100
HGLLBba nn ∈ . 

(2) Suppose ),,,()','( 21 HGLLBba ∈ , and )(' 11 bHaa ∨≤ . If ∉),( 11 ba  

),,,( 21 HGLLB , we have 211 )(' abHaa =∨≤ . Suppose )2(' ≥≤ naa n . 

Then ( ) ( ') 'n nb G a G a b= ≤ = . So ' ( ') ( )na H b H b= ≤ . Thus, ∨≤′ naa  

.)( 1+= nn abH  By the Inductive law we can obtain that for any 2n ≥ , ' na a≤ . If 

),,,(),( 2111 HGLLBba ∈ , then 1 1 1' ( )a a H b a≤ ∨ = . Therefore, if ∨≤′ 1aa  

),( 1bH we have ' na a≤  for any 1n ≥ . For the series of pairs 
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),,,(),( 21 HGLLBba nn ∈ , by (1) there exists a natural number 0 1n ≥ such that 

),,,(),( 2100
HGLLBba nn ∈ . Then by ' na a≤  for any 1n ≥  we have 

0 0
( ', ') ( , )n na b a b≤ . 

Theorem 14. Let 1 2( , , , )L L G H  be a concept granular computing system, and 

2| |L < ∞ . For any 1 1a L∈  and 1 2b L∈ , an iterative algorithm is given as follows: 

                                1 1( ), ( 2)

( )
n n n

n n

b b G a n

a H b
− −= ∨ ≥

=
⎧
⎨
⎩

                                     (12) 

Then for the series of pairs 1{( , )}n n na b ≥ , there exists 0 1n ≥  such that  

(1) ),,,(),( 2100
HGLLBba nn ∈ ; 

(2) For any ),,,()','( 21 HGLLBba ∈ , if 1 1' ( )b b G a≤ ∨ , then 
0 0

( , ) ( ', ')n na b a b≤ . 

Proof. (1) By the iterative algorithm given by formula (2.12) we know the sequence 

1{ }n nb ≥ is monotone non-decreasing. Since 2| |L < ∞ , there exists a natural number 

0 1n ≥  such that for any 0n n≥ , we have 
0n nb b= . Then 

0 0 0 01 ( )n n n nb b b G a+= = ∨  

and 
0 0

( )n na H b= . Thus, 
0 0

( )n nb G a≥ . By 
0 0

( )n na H b=  we can get 

that
0 0 0

( ) ( )n n nG a G H b b= ≥o .  

So, 
0 0

( )n nb G a= and 
0 0

( )n na H b= . Therefore, 
0 0 1 2( , ) ( , , , )n na b L L G H∈B . 

(2) Suppose ),,,()','( 21 HGLLBba ∈ , and 1 1' ( )b b G a≤ ∨ . If ∉),( 11 ba  

),,,,( 21 HGLLB  we have 1 1 2' ( )b b G a b≤ ∨ = . Suppose ' ( 2)nb b n≤ ≥ . Then 

( ) ( ') 'n na H b H b a= ≤ = . So ' ( ') ( )nb G a G a= ≤ . Thus, 1' ( )n n nb b G a b +≤ ∨ = . 

By the Inductive law we can obtain that for any 2n ≥ , ' nb b≤ . If ∈),( 11 ba  

),,,( 21 HGLLB , then 1 1 1' ( )b b G a b≤ ∨ = . Therefore, if 1 1' ( )b b G a≤ ∨ , we 

have ' nb b≤  for any 1n ≥ . For the series of pairs ),,,(),( 2100
HGLLBba nn ∈ , by 

(1) there exists a natural number 0 1n ≥ such that ),,,(),( 2100
HGLLBba nn ∈ . Then 

by ' nb b≤  for any 1n ≥  we have 
0 0

( , ) ( ', ')n na b a b≤ . 

In what follows, we show the iterative algorithms for a formal context and a fuzzy 
formal context. 

Theorem 15. Let ( , , )U A I  be a formal context. For any X U⊆ and B A⊆ , an it-

erative algorithm is given as follows: 
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*

1 1

*

, ( 2)n n n

n n

X X B n

B X
− −= ≥

=

⎧ ∪
⎨
⎩

 

Then for the series of pairs 1{( , )}n n nX B ≥ , there exists 0 1n ≥  such that  

(1) ),*,*)(),((),(
00

APUPBBX nn ∈ ; 

(2) For any ),*,*)(),(()','( APUPBBX ∈ , if *

1 1'X X B≤ ∪ , then 

0 0
( ', ') ( , )n nX B X B≤ . 

Proof. It is proved by Theorem 1 and Theorem 13. 

Theorem 16. Let ( , , )U A I  be a formal context. For any X U⊆ and B A⊆ , an it-

erative algorithm is given as follows: 

*

1 1

*

, ( 2)n n n

n n

B B X n

X B
− −= ≥

=

⎧ ∪
⎨
⎩

 

Then for the series of pairs 1{( , )}n n nX B ≥ , there exists 0 1n ≥  such that  

(1) ),*,*)(),((),(
00

APUPBBX nn ∈ ; 

(2) For any ),*,*)(),(()','( APUPBBX ∈ , if *

1 1'B B X≤ ∪ , then 

0 0
( , ) ( ', ')n nX B X B≤ . 

Proof. It is proved by Theorem 1 and Theorem 14. 

Theorem 17. Let ( , , )U A I%  be a L-fuzzy formal context. For any UX L⊆% and 
AB L⊆% ,  

(1) if an iterative algorithm is given as follows: 

1 1 , ( 2)n n n

n n

X X B n

B X

+
− −

+

= ≥

=

⎧ ∪
⎨
⎩

% % %

% %
 

Then for the series of pairs 1{( , )}n n nX B ≥
% % , there exists 0 1n ≥  such that )

~
,

~
(

00 nn BX  

).,,,( ++∈ AU LLB  And for any ),,,()'
~

,'
~

( ++∈ AU LLBBX , if 1 1'X X B +≤ ∪% % % , 

then 
0 0

( ', ') ( , )n nX B X B≤% % % % ; 

(2) if an iterative algorithm is given as follows: 

1 1 , ( 2)n n n

n n

B B X n

X B

+
− −
+

= ≥

=

⎧ ∪
⎨
⎩

% % %

% %
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Then for the series of pairs 1{( , )}n n nX B ≥
% % , there exists 0 1n ≥  such that 

),,,()
~

,
~

(
00

++∈ AU
nn LLBBX . And for any ),,,()'

~
,'

~
( ++∈ AU LLBBX , if 

1 1'B B X +≤ ∪% % % , then 
0 0

( , )n nX B ≤% % ( ', ')X B% % . 

Proof. It is proved by Theorem 2, Theorem 13 and Theorem 14. 

Example 4. Let ( , , )U A I be a formal context given in Example 2. Take 

0 {1,4}X = and 0 { , }B a b= . 0 0( , )X B  is not a formal context. By Theorem 15 and 

Theorem 16 we can get that (24, )ab  and (124, )a  are concepts.  

7   Rough Set Approximations in Formal Concept Analysis 

A structure ( , , , , ,0,1)L= ∨ ∧ ⊗ →L  is referred to as a complete involutive residuated 

lattice if L  is a complete residuated lattice and the operator :c L L→  satisfies 

1 2 2 1

c ca a a a≤ ⇒ ≤  and cca a=  for any 1 2, ,a a a L∈ , where c  represents the com-

plement operator of any element of L . 
A L-fuzzy formal context ( , , )U A I%  is called an involutive L-fuzzy formal context 

if ( , , , , ,0,1)L= ∨ ∧ ⊗ →L is a complete involutive residuated lattice. Then for 

any UX L∈%  and AB L∈% , we define the following operators[ 27,39]:  

( ) ( ( ) ( , ))
x U

X a X x I x a+

∈
= ∧ →% % %  

( ) ( ( ) ( , ))
a A

B x B a I x a+

∈
= ∧ →% % %  

( ) ( ( ) ( , ))c c

x U
X a X x I x a↑

∈
= ∨ ⊗% % %  

( ) ( ( ) ( , ))c c

a A
B x B a I x a↓

∈
= ∨ ⊗% % %  

( ) ( ( ) ( , ))
x U

X a X x I x a◊

∈
= ∨ ⊗% % %  

( ) ( ( , ) ( ))
x U

X a I x a X x
∈

= ∧ →% % %  

( ) ( ( ) ( , ))
a A

B x B a I x a◊

∈
= ∨ ⊗% % %  

( ) ( ( , ) ( ))
a A

B x I x a B a
∈

= ∧ →% % %  

Definition 10. Let ( , , )U A I%  be an involutive L-fuzzy formal context. For any 
UX L∈% , we define    

                                  ( )Apri X X ↑↓=% %  and ( )Apri X X ++=% %                               (13) 

( )Apri X%  and ( )Apri X%  are referred to as the lower and upper approximations of 

X% , respectively. And the operators : U UL L↑↓ →  and : U UL L++ → are referred to 
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as the i-model lower and upper approximation operators, respectively. The pair 

( ( ), ( ))Apri X Apri X% % is referred to as a generalized i-model rough fuzzy set. 

Theorem 18. Let ( , , )U A I%  be an involutive L-fuzzy formal context. Then for 

any , UX Y L∈% % , the i-model lower and upper approximation operators satisfy the fol-
lowing properties: 

(FL1) ( ) ( ( ))c cApri X Apri X=% % ; 

(FU1) ( ) ( ( ))c cApri X Apri X=% % ; 

(FL2) ( ) ( )Apri Apri∅ = ∅ = ∅ ; 

(FU2) ( ) ( )Apri U Apri U U= = ; 

(FL3) ( ) ( ) ( )Apri X Y Apri X Apri Y∩ ⊆ ∩% % % % ; 

(FU3) ( ) ( ) ( )Apri X Y Apri X Apri Y∪ ⊇ ∪% % % % ; 

(FL4) ( ) ( )X Y Apri X Apri Y⊆ ⇒ ⊆% % % % ; 

(FU4) ( ) ( )X Y Apri X Apri Y⊆ ⇒ ⊆% % % % ; 

(FL5) ( ) ( ) ( )Apri X Y Apri X Apri Y∪ ⊇ ∪% % % % ; 

(FU5) ( ) ( ) ( )Apri X Y Apri X Apri Y∩ ⊆ ∩% % % % ; 

(FL6) ( )Apri X X⊆% % ; 

(FU6) ( )X Apri X⊆% % ; 

(FL7) ( ( )) ( )Apri Apri X Apri X=% % ; 

(FU7) ( ( )) ( )Apri Apri X Apri X=% % . 

Proof. (FL1) and (FU1) show that the approximation operators Apri  and Apri  are 

dual to each other. Then we only need to prove (FLi) or (FUi), by the duality we can 
easily get (FUi) or (FLi) ( 1, , 7)i = L . 

For any UX L∈%  and x U∈ , 

( ( )) ( ) (( ) ( ))

( ( ( ) ( , )) ( , ))

( ( ( ) ( , )) ( , ))

( ( ( ) ( , )) ( , ))

( )

c c c c

cc c c c c

a A y U

c c

a A y U

a A y U

Apri X x X x

X y I y a I x a

X y I y a I x a

X y I y a I x a

X x

↑↓

∈ ∈

∈ ∈

∈ ∈

++

=

= ∨ ∨ ⊗ ⊗

= ∨ ∧ → ⊗

= ∧ ∧ → →

=

% %

% % %

% % %

% % %

%
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Thus, (FU1) holds.  (FL2) immediately follows by Definition 10. 

According to ( )X Y X Y+ + +∪ = ∩% % % % , X Y X+ + +∩ ⊆% % %   and X Y Y+ + +∩ ⊆% % % , we 

have 

( )X X Y++ + + +⊆ ∩% % % and ( )Y X Y++ + + +⊆ ∩% % % . 
Thus,  

( ) ( ) ( ) ( )Apri X Apri Y X Y X Y Apri X Y++ ++ + + +∪ = ∪ ⊆ ∩ = ∪% % % % % % % % , 

from which we can get (FU3). 

(FL4) follows immediately from 1 2 2 1X X X X↑ ↑⊆ ⇒ ⊆% % % %  and 

1 2 2B B B B↓ ↓⊆ ⇒ ⊆% % % % . 

Since ( )X Y X Y++ ++ + + +∩ = ∪% % % % , ( )X X Y+ +⊆ ∩% % %  and ( )Y X Y+ +⊆ ∩% % % , we 

have  

( )X X Y++ ++⊇ ∩% % %  and ( )Y X Y++ ++⊇ ∩% % % . 
Therefore,  

( ) ( ) ( ) ( )Apri X Apri Y X Y X Y Apri X Y++ ++ ++∩ = ∩ ⊇ ∩ = ∩% % % % % % % % . 

Thus, (FU5) holds.  

(FL6) follows directly by X X ↑↓⊆% %  and B B↓↑⊆% % .  

Since ( ( )) ( )Apri Apri X X ↑↓ ↑↓=% %  and X X↑↓↑ ↑=% % , we can get (FL7).  

Definition 11. Let ( , , )U A I%  be an involutive L-fuzzy formal context. For 

any UX L∈% , we define the lower and upper approximations of X%  as follows:  

                      ( )Aprii X X ◊= % %  and ( )Apri X X ◊= % %                                    (14) 

Then the operators : U UL L◊ →  and : U UL L◊ → are referred to as the ii-model 

lower and upper approximation operators, respectively. The pair ),
~

(( XAprii  

))
~

(XAprii  is referred to as a generalized ii-model rough fuzzy set. 

Theorem 19. Let ( , , )U A I%  be an involutive L-fuzzy formal context. Then for 

any , UX Y L∈% % , the ii-model lower and upper approximation operators satisfy the fol-
lowing properties: 

(FL’
1) ( ) ( ( ))c cAprii X Aprii X=% % ; 

(FU’
1) ( ) ( ( ))c cAprii X Aprii X=% % ; 

(FL’
2) ( ) ( )Aprii Aprii∅ = ∅ = ∅ ; 

(FU’
2) ( ) ( )Aprii U Aprii U U= = ; 
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(FL’
3) ( ) ( ) ( )Aprii X Y Aprii X Aprii Y∩ ⊆ ∩% % % % ; 

(FU’
3) ( ) ( ) ( )Aprii X Y Aprii X Aprii Y∪ ⊇ ∪% % % % ; 

(FL’
4) ( ) ( )X Y Aprii X Aprii Y⊆ ⇒ ⊆% % % % ; 

(FU’
4) ( ) ( )X Y Aprii X Aprii Y⊆ ⇒ ⊆% % % % ; 

(FL’
5) ( ) ( ) ( )Aprii X Y Aprii X Aprii Y∪ ⊇ ∪% % % % ; 

(FU’
5) ( ) ( ) ( )Aprii X Y Aprii X Aprii Y∩ ⊆ ∩% % % % ; 

(FL’
6) ( )Aprii X X⊆% % ; 

(FU’
6) ( )X Aprii X⊆% % ; 

(FL’
7) ( ( )) ( )Aprii Aprii X Aprii X=% % ; 

(FU’
7) ( ( )) ( )Aprii Aprii X Aprii X=% % . 

Proof. We still prove (FL’
i) or (FU’

i), by the duality we can easily get (FU’
i) or (FL’

i) 
( 1, , 7)i = L .  

For any UX L∈% , 

( )) (( ) ) ((( ) ) )

( ) ( ) ( )

( c c c c c c c c

c c c c c c

Aprii X X X

X X X X Aprii X

◊

◊

= =

= = = = =

  

    

% % %

% % % % %
 

Thus, (FU’
1) holds.  

For any x U∈ , 

( )( ) ( )

( ( , ) ( ))

( ( , ) ( ( ( ) ( , ))))

( ( , ) 0)

0.

a A

a A y U

a A

Aprii x x

I x a a

I x a y I y a

I x a

◊

◊

∈

∈ ∈

∈

∅ = ∅

= ∧ → ∅

= ∧ → ∨ ∅ ⊗

= ∧ →

=



%

% %

%

 

By X X X◊ ◊⊆ ⊆ % % %  we can get that ( )Aprii ∅ = ∅ . 

For any , UX Y L∈% % , according to 

( ) ( )X Y X Y◊ ◊∩ = ∩  % % % % , X Y X∩ ⊆  % % % and X Y Y∩ ⊆  % % % , 

we have 

( )X Y X◊ ◊∩ ⊆  % % % and ( )X Y Y◊ ◊∩ ⊆  % % % , 

from which we can get (FL’
3). 
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(FL’
4) follows immediately by 1 2 1 2 1 2,X X X X X X◊ ◊⊆ ⇒ ⊆ ⊆ % % % % % % . 

By ( )X X Y⊆ ∪ % % % , ( )Y X Y⊆ ∪ % % % , ( )X X Y◊ ◊⊆ ∪ % % %  and 

( )Y X Y◊ ◊⊆ ∪ % % %  we can get (FL’
5).  

(FL’
6) follows directly by X X X◊ ◊⊆ ⊆ % % % .  

Since ( ( )) ( )Aprii Aprii X X ◊ ◊=  % %  and X X◊ = % % , we can get (FL’
7).  

The approach of rough set approximation in concept analysis gives a way for 
studying concept lattice via rough set. 

8   Conclusions 

Since FCA was introduced by Wille in 1982, many researches studied it from various 
points and extended it to more complex situations such as a L-fuzzy formal context 
which is appropriated to the real world. In this paper, a concept granular computing 
system is established based on the study of concept lattice and L-fuzzy concept lattice. 
Relationships between this system and concept lattice, variable threshold concept lat-
tice and fuzzy concept lattice and properties of the system are discussed. In order to 
reflect different relations between a set of objects and a set of attributes, sufficiency 
information granules and necessity information granules are defined. Properties of 
them are then studied. Later, iterative algorithms for constructing concepts for any 
extent element or intent element are introduced, and the optimization of the iterative 
algorithms are investigated. Finally, set approximations in FCA are studied, which 
shows a way to study FCA by using the theory of rough set. 

Learning and application for concepts is the key question in the field of artificial 
intelligence. In order to process information via computers, a kind of mathematical 
model needs to be built. This paper is a try to build concept granular computing system 
by introducing an algebra structure. It has more benefits for further studies, such as 
concept generalization and specialization, sufficiency and necessity concept, more 
generalized concept and more special concept. And using this framework, a researcher 
can conclude some axiomic characterizations from various kinds of concept systems. 
Therefore, this model may supply an important tool for the further study of the forma-
tion and learning of concepts. 
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Interpretability of Fuzzy Information Granules 
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Abstract. Human-Centric Information Processing requires tight communication processes be-
tween users and computers. These two actors, however, traditionally use different paradigms 
for representing and manipulating information. Users are more inclined in managing perceptual 
information, usually expressed in natural language, whilst computers are formidable number-
crunching systems, capable of manipulating information expressed in precise form. Fuzzy in-
formation granules could be used as a common interface for communicating information and 
knowledge, because of their ability of representing perceptual information in a computer man-
ageable form. Nonetheless, this connection could be established only if information granules 
are interpretable, i.e. they are semantically co-intensive with human knowledge. Interpretable 
information granulation opens several methodological issues, regarding the representation and 
manipulation of information granules, the interpretability constraints and the granulation proc-
esses. By taking into account all such issues, effective Information Processing systems could be 
designed with a strong Human-Centric imprint. 

1   Introduction 

Human-Centered Computing (HCC) is a new field embracing all the methodologies 
that apply to applications in which people directly interact with computer technolo-
gies. Thus, HCC refers to a modern way of tackling computing issues by taking into 
account user needs and constraints [1, Ch. 1]. 

We stress the importance of communication between users and machines, the for-
mer acting as producers/consumers of information and the latter being involved in the 
concrete task of information processing. Besides, we observe the different paradigms 
for interpreting and manipulating information by users and computers. Users are in-
deed more inclined in managing perceptual information, usually expressed in natural 
language, whilst computers are formidable number-crunching systems, capable of 
manipulating information expressed in precise form. 

The “semantic gap” between users and machines is apparent. Quite often, this gap 
is filled by users, which support the effort of translating perceptual information into 
computer-understandable forms and interpreting computer results. This approach re-
quires technically skilled users and prevents computers to be easily used by other 
people who may take full advantage from more “humanized” machines (e.g. physi-
cians, managers, decision makers, etc.) [2]. 

From the last decade, however, a paradigm shift – the so-called Human Centric 
Computing – is in act [3]. The great enhancement of computing technologies, as well 
as the birth and consolidation of new computing models (e.g. Granular Computing) 
are encouraging the development of novel techniques and methods that enable 
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computers to fill the semantic gap. In Information Processing, this paradigm shift has 
a great impact: users could provide input information in a perceptual form (e.g. in 
natural language) and could read and understand the subsequent results even without 
specific technical skills. In a nutshell, Human Centric Information Processing (HCIP) 
accounts users1 as initiators of information processing as well as final recipients of the 
subsequent results. Through HCIP, machine intelligence increases dramatically and 
enables a more pervasive diffusion of computing.  

The semantic gap between users and machines is due to the different nature of in-
formation that is represented and manipulated by these two actors. Two important fea-
tures distinguish perceptual information from precise information, as pointed out by 
Zadeh: granularity and fuzziness (or graduality) [4-6]. 

Granularity refers to the property of information to refer to a clump of objects in-
stead of a single one. Objects in a granular information (or information granule) are 
related by some proximity relation (in a wide sense). Representation and manipulation 
of information granules fall within Granular Computing, a key computing paradigm 
for HCIP [7,8].  

Information granularity is required for economizing the representation of complex 
situations and phenomena, where precision is not necessary. Thus, granular informa-
tion is used in mental processing of perceptual information. Furthermore, information 
granularity enables the use of natural language to describe facts. Most natural lan-
guage sentences indeed represent granular information (e.g. “there is warm tempera-
ture in the room” does not specify any precise degree). This form of information 
could be sufficient for users to make decisions (e.g. turn-on the air conditioner), since 
in most cases users are unable to get more precise information (e.g. the exact tempera-
ture distribution of the room) nor they are interested. 

Fuzziness is strictly related to information granules. According to this property, the 
membership of an object to an information granule is gradual rather than dichotomic. 
Fuzziness reflects the fact that natural phenomena are continue rather than discrete, 
and they are perceived by people with continuity. It is hence natural to assume that 
mental percepts reflect the graduality of the perceived phenomena. As a consequence, 
the semantics of natural language terms, which are used to symbolically describe per-
ceptual information, embodies the fuzziness property. 

Fuzzy information granules define information with granularity and fuzziness 
properties. They capture the key features of perceptual information and are naturally 
represented in natural language. Hence they constitute the basic underpinning for 
HCIP. 

Fuzzy information granules should be also represented in computers and some 
mathematical machinery should be available in order to process this type of information. 
Fuzzy Set Theory (FST) provides such a machinery. Fuzzy Information Granules are 
represented as fuzzy sets, and fuzzy set operators are used to elaborate information. 

Through FST, information processing can take form. Users can input perceptual in-
formation in natural language or in similar forms to a computer program. Such per-
ceptual information is converted into fuzzy sets (a process called “m-precisiation” 
[9,10], where ‘m’ stands for ‘machine’). Fuzzy sets are processed according to pro-
gram objectives, and results are usually represented as fuzzy sets. Finally, resulting 

                                                           
1 Thorough this Chapter users are intended as human users.  
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fuzzy sets are converted into linguistic forms, according to a “m-imprecisiation” 
mechanism. Users are unaware that computers use numeric/symbolic operations, and 
computers are unaware that what they are elaborating are actually representations of 
perceptual information. Fuzzy information granules constitute a communication inter-
face between two very different worlds (Fig. 1). 

 

Fig. 1. Information flow in HCIP 

We should note that without HCIP the same flow of information processing takes 
place, but with some remarkable differences: precisiation and imprecisiation are car-
ried out by users (they are denoted with “h-precisiation” and “h-imprecisiation” in the 
Zadeh’s notation, where ‘h’ stands for ‘human’) and information processing is carried 
out according to classical numerical/symbolic techniques. 

Human-Centered information processing is not immune to problems directly deriv-
ing from the objects of processing, i.e. fuzzy information granules. More precisely, 
the processes of m-precisiation and m-imprecisiation are delicate tasks. The transfor-
mation of natural language terms into fuzzy sets and vice versa should be indeed 
 “semantically nondestructive”, i.e. the intrinsic semantics of a linguistic term and the 
explicit semantics of the corresponding fuzzy set should be highly overlapping2. This 
relation between semantics is called “co-intension” and tightly constrains the precisia-
tion processes [11]. 

Despite their symmetry in scope, m-precisiation and m-imprecisiation are asym-
metrical in the processes carried out. Usually, the process of m-precisiation is not as 
difficult as the process of m-imprecisiation. For m-precisiation, a number of reference 
fuzzy sets are usually available, and linguistic terms are converted into fuzzy sets with 

                                                           
2 We cannot guarantee identity in principle because the semantics of a linguistic term is subjective 

and represented within the synapses of the brain in a imperscrutable way. 
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a direct matching. Such reference fuzzy sets are manually defined or automatically 
designed through information granulation techniques.  

On the other hand, m-imprecisiation is more delicate. The reason is immediate: 
linguistic terms are usually limited, whilst the class of fuzzy sets is much wider. If the 
information processing task does not take into account co-intension in its computa-
tion, the resulting fuzzy sets cannot be easily associated to any linguistic term. In this 
case m-imprecisiation requires further elaboration so as to extract a convenient natural 
language description of the results with eventual information loss.   

Fuzzy information granules that can be associated to linguistic terms are called 
interpretable. Interpretability of fuzzy information granules requires a deep under-
standing of the semantical constraints involved in the user-computer interaction. Is-
sues regarding the role of interpretability, its definition, evaluation and preservation 
need to be addressed. The rest of this Chapter is devoted in eliciting some of those in-
terpretability issues which may come up when designing a HCIP system. The next 
sections give a formal definition of fuzzy information granule as well as an attempt to 
define interpretability in a very general sense. Then, a number of methodological 
issues are discussed regarding modeling with interpretable information granules. In-
terpretability constraints are then discussed and finally an outline of interpretable in-
formation granulation strategies is reported. The chapter ends with some concluding 
remarks highlighting open issues and future trends on this topic.   

2   Fuzzy Information Granules 

An information granule is a “clump of objects which are drawn together by indistin-
guishability, similarity, proximity or functionality” [9]. An information granule arises 
from a process of “granulation”, which refers to the mental act of dividing a whole 
into semantically significant parts. 

The definition of information granule is open to several formalizations, e.g. inter-
vals, rough sets, fuzzy sets, etc. [7]. In particular, a fuzzy information granule is de-
fined through fuzzy sets on the domain of considered objects. Fuzzy Set Theory is 
hence the mathematical underpinning of the Theory of Fuzzy Information Granulation 
(TFIG). The difference in the two theories is primarily epistemic: FST is a pure 
mathematical theory, TFIG has more semantic concerns since the relation that keeps 
together objects in the same granule is fundamental for the definition of an informa-
tion granule. 

For complex domains (i.e. domains of objects characterized by several attributes), 
fuzzy information granules can be employed to represent pieces of knowledge. By as-
signing a name to each attribute, a fuzzy information granule can express a soft rela-
tionship between two or more attributes. A collection of fuzzy information granules 
can be used as a knowledge base to make inferences about the possible values of an 
attribute when the values of other attributes are given. 

More formally, suppose that the object domain is YXU ×=  (sub-domains X and 
Y could be multi-dimensional as well, but here we are not interested in the nature of 
such sets). A fuzzy information granule is completely represented by a fuzzy set on U, 
i.e. a fuzzy relation between objects in X and Y. We denote with Γ such a fuzzy set; 
we write [ ]1,0: →Γ U  or, equivalently, [ ]1,0: →×Γ YX . A knowledge base (also 
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called “granular world” [7]) formed by fuzzy information granules nΓΓΓ ,,, 21 K   is 

defined by accumulation of the pieces of knowledge defined by each single fuzzy in-
formation granule. This is a direct consequence of the definition of granulation, in-
tended as a division of the whole (the domain U) into parts (the granules iΓ ). 

The knowledge base (KB) is hence defined by the union of all the constituting 
fuzzy information granules, i.e.: 

U
n

i i1
B

=
Γ=Κ          (1) 

To make inference, an information granule is interpreted as a possibility distribution 
over two variables x and y. When x is assigned a value (i.e. xx = ), inference is car-
ried out by computing the possibility distribution of variable y for each information 

granule, namely y
iπ , such that: 

( ) ( )yxy i
y

i ,Γ=π          (2) 

A very common case is when each granule iΓ  is defined as the Cartesian Product of 

two fuzzy sets, namely [ ]1,0: →XAi  and [ ]1,0: →YBi  and ( ) ( ) ( )yBxAyx iii *, =Γ  

being ‘*’ a t-norm. In this case ( ) ( ) ( ) ( )yBxAyxy iii
y

i *, =Γ=π . When the possibility 

distributions of all fuzzy information granules have been computed, the final possibil-

ity distribution for the entire KB is defined as ( ) ( )yy y
i

n
i
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A KB made of fuzzy information granules is also called fuzzy graph [9]. Such 
structure is commonly used for approximating partially known functions, and is usu-
ally expressed in terms of a set of fuzzy rules, i.e. formal structures expressed as: 

IF x is L[A] THEN y is L[B] 

being L[A] and L[B] formal labels for fuzzy sets A and B respectively, and with the 
convention that “THEN” does not mean implication (as in logical rules) but it is a 
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If x is about -1 then y is about 1 
If x is about -½ then y is about ¼  
If x is about zero then y is about 0 
If x is about ½ then y is about ¼  
If x is about 1 then y is about 1 
 

(a) (b) 

Fig. 2. A granular parabola defined by five information granules: (a) graphical representation; 
(b) fuzzy rule representation 
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conjunction (it should be read “and then”). In fig. 2 a fuzzy graph representing a 
granular parabola is depicted.  

Different interpretations of fuzzy rules are actually possible [12]. However, the in-
terpretation of fuzzy rules as pieces of a fuzzy graph seems the most natural in the 
context of TFIG because it adheres to the definition of granulation and because the in-
ference process is a direct application of the Compositional Rule of Inference.  

We should note that the operator ‘*’ used for combining fuzzy sets into an infor-
mation granule is usually a t-norm (the functional representation of the conjunction) 
and the aggregation of information granules into a knowledge base is achieved 
through a t-conorm (the functional representation of the disjunction). This choice is 
conformant with the definition of information granule and the process of granulation 
as a division of a whole into parts. Here the domain U is divided into information 
granules ( iΓ ), hence the t-conorm acts as an aggregation operator that merges sepa-

rate pieces of information.  
On the other hand, the t-norm used for defining each BAi *=Γ  is conformant with 

the definition of information granule, intended as a clump of objects kept together by 
a tying relationship. Indeed, according to the definition, an object (x,y) is in the gran-
ule iΓ  if x is A AND y is B. If the t-norm is replaced by a t-conorm, the granule iΓ  

could be split into two granules i,1Γ  and i,2Γ  where an object (x,y) belongs to i,1Γ  if x 

is A (and y is any), or (x,y) belongs to i,2Γ  if y is B (and x is any). The need of a t-

norm is a consequence of the use of a t-conorm for merging fuzzy information gran-
ules, which in turn is a consequence of the definition of the process of granulation as a 
division of a whole into parts. 

With this in mind we should exclude logical rules (prolog like) as representing in-
formation granules, because these rules represent implication in the material form x is 
NOT A OR y is B. Actually information granules grasp the core of a rule, i.e. when 
both the antecedent and the consequent are valid. The availability of more information 
granules enables correct inference when the antecedent in an information granule is 
not verified. To validate inference, it is assumed that all the antecedents of rules cover 
the domain of input x. 

Since each information granule grasps only the core of a rule, it is closer to the way 
human beings reason in terms of rules. It is well-known that material implication is 
sometimes counterintuitive, because of the validity of material implication when the 
antecedent is not verified (see, e.g. [13]). On the other hand, information granules rep-
resent pieces of knowledge that are more co-intensive with knowledge of users. In 
this sense, information granules seem a good form of knowledge representation for 
HCIP. 

3   Interpretability of Fuzzy Information Granules 

Information granules are the basic blocks for communicating information and knowl-
edge from users to machines and vice versa. When communication starts from users 
and is directed to machines, information granules are built by a precisiation proce-
dure, which is aimed at finding the most co-intensive representation of the perceptual 
information that is wished to be communicated to the machine. Several approaches 
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have been proposed in literature, especially for fuzzy information granules. Here the 
key issue is the elicitation of the membership function of the fuzzy set representing 
the input (see, e.g. [14, Ch. 3]). 

Different is the case when machines should communicate information granules. 
Such granules could result from deductive inference process, or could emerge from a 
process of inductive learning, e.g. after data clustering processes. In both cases the 
main problem is to give a representation of the information granule that could be eas-
ily understood by the recipient of the communication, i.e. it is co-intensive with some 
known concepts hold by the user.  

When the information granule is a result of inference, usually defuzzification is 
applied, in order to reduce the granule to a single element of the domain (prototype). 
There is no doubt that this method is the most direct but the most wasteful. Informa-
tion about the specificity (precision) of the information granule is lost, and usually no 
information is provided about the significance of the chosen prototype [15].  

When information granules arise after a clustering process, the quest for interpret-
ability becomes more stringent. Many clustering schemes exist in literature, which are 
able to find data clusters of several shapes. However, in the context of information 
granulation, the accuracy of the clustering process is only one of two facets: interpret-
ability should be taken into account as well.  

Interpretability is crucial in HCIP, especially when knowledge has to be extracted 
from data and represented in a comprehensible form. Interpretability is necessary to 
easily and reliably verify the acquired knowledge and to relate it to user's domain 
knowledge, to facilitate debugging and improving the granulation technique; to vali-
date granules, for their maintenance, and for their evolution in view of changes in the 
external world [16-18]. This is especially important when the domain knowledge and 
the discovered knowledge must be merged together (e.g. in knowledge intensive sys-
tems) [19]. Finally, and maybe most importantly, interpretability is needed for con-
vincing users that the model is reliable, especially when they are not concerned with 
the techniques underlying the granulation process. Users of a decision support system 
should be confident on how it arrives to its decisions. This is particularly important in 
domains such as medical diagnosis [20]. 

3.1   A Definition for Interpretability 

Most interpretability-oriented modeling techniques adopt an interpretation of the “Oc-
cam’s Razor” principle. The spirit of this approach is to guarantee interpretability by sim-
plifying the description of the involved information granules. Several works on clustering 
go in this direction [21]. Whilst necessary, the accordance to the Occam’s Razor principle 
misses the point of interpretability, i.e. co-intensivity with user knowledge, which is un-
questionably a richer and more complex requirement than simplicity. 

In order to get a deeper insight on interpretability, a suitable definition should be 
given to this quality. A suitable characterization for interpretability is given by the so-
called “Comprehensibility3 Postulate”, proposed by Michalski, a scholar in the Ma-
chine Learning community [22]. The Comprehensibility Postulate states that: 

                                                           
3 Throughout the chapter the terms “interpretability”, “comprehensibility” and “understandability” 

are considered as synonyms.  
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The results of computer induction should be symbolic descriptions of given 
entities, semantically and structurally similar to those a human expert might 
produce observing the same entities. Components of these descriptions should 
be comprehensible as single “chunks” of information, directly interpretable in 
natural language, and should relate quantitative and qualitative concepts in an 
integrated fashion. 

The key point of the Comprehensibility Postulate is the human-centrality of the re-
sults of a computer induction process. According to the postulate the results of com-
puter induction (e.g. information granulation) should be described symbolically. 
Symbols are necessary to communicate information and knowledge. Pure numerical 
methods, including neural networks, are hence not suited for meeting understandabil-
ity unless an interpretability oriented post-processing of acquired knowledge is per-
formed, such as in [16,23]. 

Symbolic descriptions are necessary but might not be sufficient. They should be 
structurally and semantically similar to those a human expert might produce observ-
ing the same entities. This means that highly complex mathematical relationships, 
though described symbolically, may not be interpretable because they may not be 
compatible with human cognition. In the same way, knowledge logically represented 
by a huge number of rules (or predicates, clauses, etc.) do not meet the understand-
ability feature, since humans have a limited ability to store information in short-term 
memory [24]. This passage suggests simplicity as a necessary, albeit not sufficient, 
condition for interpretability. 

According to the postulate, symbols (or structures of symbols) should represent 
chunks of information. Here we recognize information granules as the semantic coun-
terparts of symbols used for communication. In order to be understandable, symbols 
should be directly interpretable in natural language. This does not necessarily mean 
that symbols should be chosen from a natural language vocabulary, but has more pro-
found implications. In particular, the Comprehensibility Postulate requires the inter-
pretation of symbols to be in natural language. This is a requirement on the semantics 
of the symbols, i.e. on the information granules they denote. Therefore, in order to be 
understandable, information granules should be conformed with concepts a user can 
conceive. 

We further observe that natural language terms convey implicit semantics (which 
also depends on the context in which terms are used), that are shared among all hu-
man beings speaking that language. As a consequence, a symbol coming from natural 
language can be used to denote an information granule only if the implicit semantics 
of the symbol highly matches with the semantics characterized by the information 
granule. 

Finally, as the Comprehensibility Postulate requires, the description of computer 
induction results should relate both qualitative and quantitative concepts in an inte-
grated fashion. We recognize in this requirement the role of TFIG as the most suitable 
candidate for representing information [4]. Fuzzy information granules can indeed 
represent both quantitative information (e.g. through fuzzy numbers, fuzzy intervals, 
fuzzy vectors, etc.) and qualitative information (usually represented as adjectives such 
as “low”, “medium”, “high”, “etc”). Both types of information have a homogeneous 
representation and could be elaborated in an integrated fashion. 
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3.2   Interpretability and Natural Language 

We should emphasize that the requirement of natural language descriptions becomes 
more apparent as the complexity of the knowledge to be communicated increases. 
This is in coherence with the well known Zadeh’s incompatibility principle [25]. 
When the knowledge to be communicated is simple, natural language is not strictly 
necessary. For example, linear regression results or interval-based rules are easy to 
understand even though they are usually represented in a mathematical form. Actu-
ally, even these forms of representation are in coherence with the Comprehensibility 
Postulate. 

For example a linear equation coming from regression is actually a prototype of a 
granule including all possible data distributions that can be approximated by the line, 
i.e. it represents a chunk of information. Furthermore, the simple structure of the lin-
ear equation can be directly described in natural language. For example, the following 
linear model: 

y = 4.323432122x + 1.98726325 

can be described as: 

y is proportional to x with factor about 4. For x=0 the value of y is about 2 

As another example, consider an interval-based rule, such as: 

IF x ∈  [2.372138, 4.675121] THEN y ∈  [0.061115, 1.512143] 

Again, when trying to understand this rule, a user may not focus on its finest details. 
Rather, she would stop on a more abstract descriptive level that depends from the con-
text. For example, the user would understand that: 

Whenever the value of x is about between 2.3 and 4.7, the value of y becomes smaller 
than about 1.5 

Even though natural language description is not necessary to communicate this 
forms of knowledge, high level concepts are actually formed in the user mind when 
trying to understand the results of computer induction processes. In all cases, what the 
user builds in her mind could be described in natural language. As the complexity of 
the model increases, any precise representation becomes less and less comprehensi-
ble. For high levels of complexity, natural language seems to be the only mean to 
communicate knowledge and to make it understandable by users. 

3.3   Interpretability and Information Visualization 

We note that often users understand problems if the information is properly visualized 
in some form. Indeed, visualization has been recognized as a viable mean to enable 
users to interpret large amounts of data and to gain deeper insight into the working of 
complex systems. Visualization has been extensively investigated to pursuit under-
standing of complex patterns or models. Recently, more attention has been devoted to 
develop approaches to visualize fuzzy data and fuzzy models. [26]. Some of these ap-
proaches have the primary objective of helping users in understanding how a model 
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works to generate its behavior. Other visualization techniques are mainly aimed at 
graphically representing knowledge so that users could easily interpret them.  

All such techniques may offer an invaluable help to users in understanding induc-
tion results, even if they may not involve the Comprehensibility Postulate as the final 
representation is not symbolic. We observe, however, that visualization techniques 
may not fulfill the understandability requirement of information granules. Indeed, 
they are very useful for understanding how a behavior is generated, but the user may 
not understand why such behavior is correct, in the sense of providing significant out-
comes. Furthermore, the main reasons that justify the interpretability features may not 
be fulfilled by visualization tools. In this situation, visualization techniques are com-
plementary to the Comprehensibility Postulate, rather than alternative. 

4   Interpretability Issues 

Interpretability of information granules is a complex requirement that needs a com-
prehensive analysis of all facets of the environment on which granules are developed 
and used. This analysis results in a number of issues to be addressed for fulfilling the 
interpretability requirement. 

4.1   The Objective of Granular Model 

A first issue to be addressed for interpretability is the objective of the granular model, 
which may have a twofold nature: descriptive and prescriptive.  

When the scope of the model is to describe a phenomenon, a data structure, etc., a 
number of interpretability constraints should be adopted in order to meaningfully tag 
the information granules with linguistic labels (symbols). In many cases, however, the 
granules are also used to make inference for predictions concerning new data. Briefly 
speaking, information granules results become part of a prescriptive model in a deci-
sion support system. 

In all situations where understandability is required, attention should be paid also 
on how predictions are inferred from information granules. Specifically, the inference 
process should be cognitively plausible, so as to convince users on the reliability of 
the derived decisions. This is a delicate step often left unaddressed.  

As an example, let us consider a Mamdani Fuzzy Inference System (FIS) [27]. 
Mamdani rules are defined through fuzzy information granules, by separating input 
variables from output variables. Even though the rules embodied in these FIS are built 
by responding to all the interpretability requirements, the inference carried out by the 
system may not convince the users about the reliability of the derived decision. Usu-
ally, the output of a Mamdami FIS is attained by applying a defuzzification procedure 
to the inferred fuzzy set such as Center-of-Gravity (CoG). However, CoG may not 
have any plausible explanation in some domains (e.g. medical diagnosis). This type of 
defuzzification would not be convincing for the user (e.g. physicians) about the reli-
ability of the inferred output. On the other hand, more plausible forms of defuzzifica-
tion would provide for more plausible inferences [28]. 
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4.2   Representation Structure 

To achieve interpretability, the structure of knowledge plays a fundamental role. 
Roughly speaking, two classes of structures can be distinguished: single and multiple 
representation structures [29]. Single representation structures are based on a “flat” 
representation of the knowledge base, usually in a rule-based form. A different ap-
proach provides for a multiple representation of knowledge, where one representation 
(not necessary interpretable) is used to generate an accurate prescriptive model, while 
the other is used to describe knowledge in an interpretable form [30,31] Such dual 
representation has evidence in brain organization in which different areas are devoted 
to perception, action performing and natural language communication. 

Information granules may offer valuable help in defining both single and multiple 
representation structures. Single representation structures are naturally derived by de-
fining a rule for each information granule (as in fuzzy graphs), or by tying two infor-
mation granules with an implicative connector. However, multiple representations are 
also possible by defining two or more levels of granulation of the same data. In this 
case, the top levels can be used for descriptive pursuits, while more accurate predic-
tions could be taken through bottom level information granules, where interpretability 
is less stringent and hence information granules could take shapes more conformant to 
the underlying data structures. Techniques for context-based information granulation 
achieve multiple representation structures [33 Ch. 4, 34]. 

4.3   User Characterization 

Interpretability concerns the characterization of the user accessing the knowledge 
base of a model. This characterization drives the choice of the most appropriate repre-
sentation of information granules and, hence, the constraints required for granting 
their interpretability.  

Users are mainly characterized by their needs. Some users might be interested in 
understanding the information granules derived from data in order to use them for 
their purposes. Other types of users could be more interested in the validity of infor-
mation granules, especially in terms of predictive accuracy. For the second type of us-
ers, interpretability requirement is not as stringent as for users of the first type. 

The verification of interpretability of information granules tightly constrains their 
shape. As a consequence, a strong bias is introduced in interpretable information 
granules, resulting in a weaker predictive accuracy w.r.t. information granules without 
interpretability requirements. The interpretability/accuracy tradeoff should be taken 
into account when designing a new system. The choice strongly depends on the need 
of the final users.  

If users require understandability of information granules, then some guidelines 
should be followed. The domain expertise of the user helps in the choice of the most 
appropriate representation of information granules. For example, highly qualitative 
forms of representations might be useful for users who are primarily interested in un-
derstanding granulation results. On the other hand, more precise forms of representa-
tion would be more useful for users who make decisions on the basis of granulation 
results. Furthermore, the user vocabulary is helpful in the choice of the linguistic 
terms to be used for representing information granules. Finally, the required level of 
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precision is important to choose the granularity level of information granules, as well 
as to decide for single or multiple levels of representation. 

5   Interpretability Constraints 

An important question concerns how to verify if an information granule is interpret-
able. The question is ill-posed because the definition of interpretability is blurry, sub-
jective and context-dependent. However, a general approach can be set, which is 
mainly based on constraints. 

Several interpretability constraints have been proposed in literature: a recent survey 
can be found in [35]. Some of them have a precise mathematical characterization, 
while others have a more fuzzy definition. This is expectable, since imprecise defini-
tions of interpretability constraints may be more co-intensive with our perception of 
interpretability. 

The choice of interpretability constraints mainly depends on user characterization, 
granulation objectives, etc. As already noted, any constraint imposed on information 
granules introduces new bias on their ability of representing data relationships. As a 
consequence, the choice of interpretability constraints should be as careful as possible. 

Interpretability constraints can be organized in a hierarchy reflecting the level to 
which they are applied. A convenient hierarchy for fuzzy information granules is the 
following: 

1. Constraints on one-dimensional fuzzy sets; 
2. Constraints on frames of cognition4; 
3. Constraints on information granules; 

In the following, a brief discussion on such constraints is reported. For a deeper ar-
gumentation, the reader is referred to [35]. 

5.1   Constraints on One-Dimensional Fuzzy Sets 

In defining fuzzy information granules, we highlight their constitution as Cartesian 
products of one-dimensional fuzzy sets. This assumption helps to decompose 
information granules as conjunction of simpler properties, all characterized by one-
dimensional fuzzy sets. Such fuzzy sets should be co-intensive with elementary con-
cepts, usually represented in the form “v is A” being “v” the name of an attribute and 
“A” the name of a quality, whose semantics is defined by a fuzzy set. 

In order to be co-intensive with elementary concepts, one-dimensional fuzzy sets 
should verify a number of constraints. The choice of such constraints is mostly driven 
by common-sense, as well as to avoid some paradoxical situations that can occur 
when they are violated.  

5.1.1   Normality 
All one-dimensional fuzzy sets should be normal, i.e. there exist atleast one element 
of the domain with full membership. Normality is required to avoid paradoxes such as 
                                                           
4 A frame of cognition is intended as the set of all one-dimensional fuzzy sets defined for the 

same attribute. 
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inclusion in the empty set, as proved in [36]. However, this constraint is required for 
co-intensiveness since it is expected that qualities are always fully met by some ele-
ments of the domain. For unlimited domains, asymptotic normality is also acceptable 
(e.g. the concept “X is distant” could be represented in this way). 

5.1.2   Convexity 
A one-dimensional fuzzy set is convex if it is defined on an ordered domain (e.g. the 
real line). Convexity implies that any midpoint between two extremes has member-
ship degree greater or equal to the minimum membership of the two extremes. Con-
vex fuzzy sets are very common (e.g. triangular, trapezoidal, Gaussian, etc.) and they 
are widely used because they express the semantics of similarity-based qualities, i.e. 
all qualities for which sentences like “x is more A than y” make sense. Non-convex 
fuzzy sets can be used too, as proposed in [37], but usually they represent compound 
qualities, which should be denoted by complex linguistic labels (e.g. “mealtime”, 
meaning “breakfast or lunch or dinner”). 

Strict convexity requires that the membership of any midpoint between two extreme 
points is strictly greater than the minimum membership of the two extremes. Gaussian 
fuzzy sets are strictly convex, while trapezoidal and triangular fuzzy sets are convex, but 
not strictly convex. Strictly convex fuzzy sets are suited for modeling concepts charac-
terized by a magnitude. As an example, the concept “hot” is characterized by the per-
ceived temperature. The degree to which a temperature is “hot” monotonically increases 
as the temperature increases. While a Gaussian fuzzy set effectively models such a rela-
tionship, a trapezoidal fuzzy set fixes a threshold after which any temperature is consid-
ered “hot” with the same degree. While justifiable for efficiency pursuits, the trapezoi-
dal fuzzy sets may not as co-intensive as Gaussian fuzzy sets with the mental concept of 
“hot”, whose degree of evidence presumably varies with continuity.  

5.1.3   Continuity 
A fuzzy set defined on the real line should be continuous, so as to avoid abrupt 
changes of membership for very close elements. Continuity is especially required 
when fuzzy sets model perceptual information derived by observing macroscopic 
physical phenomena. Crisp set are examples of non-continuous fuzzy sets, leading to 
well known boundary paradoxes that make them unsuitable for modeling perceptual 
information and knowledge.  

5.2   Constraints on Frames of Cognition 

In any modeling context the number of fuzzy sets considered for each attribute is quite 
limited. The collection of all used fuzzy sets for a given attribute is named Frame of 
Cognition (FOC), as proposed in [36]. Linguistic Variables (defined in [38]) include a 
FOC if the number of generable linguistic values is finite. When a FOC is considered, a 
number of constraints should be verified in order to guarantee interpretability. 

5.2.1   Proper Ordering 
Linguistic terms used in natural language are related each other by two main relations: 
order and inclusion. As an example, the ordering of linguistic terms “small”, “medium” 
and “high” is quite intuitive. Also, in some contexts we understand that the semantics of 
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“very L” is included in the semantics of the linguistic term L. As remarked in [39], in-
terpretable fuzzy sets within a FOC should reflect such basic relationships. 

Inclusion of fuzzy sets is straightforward: A is included in B iff the membership 
degree of any element to A is less than to B. Fuzzy sets defined on an ordered domain 
could be also partially ordered in the following way: given two fuzzy sets A and B, 
we say A<=B iff there exists a midpoint t such that each point less than t has member-
ship to A greater than to B, and each point greater than t has membership to B greater 
than to A. Thus A better represents elements of the Universe of Discourse that are 
smaller than the elements represented by B. In this sense, the ordering of fuzzy sets 
reflects the semantics formalized by their membership functions. If this constraint is 
violated, undesired situations may occur, which hamper interpretability. As an exam-
ple, given a FOC with two fuzzy sets “cold” and “hot”, we expect that for high tem-
peratures the membership to hot is greater than the membership to cold, and vice 
versa for lower temperatures. This constraint calls for a proper choice of fuzzy sets in 
a FOC (see fig. 3 as illustration of an incorrect choice of fuzzy sets). 
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Fig. 3. Example of two Gaussian fuzzy sets violating proper ordering 

5.2.2   Justifiable Number of Elements 
In designing interpretable FOC, the number of fuzzy sets should be kept as small as 
possible, so that users could easily give appropriate meanings to the linguistic terms. 
By limiting the number of fuzzy sets in a FOC, a user is able to remember the pro-
posed partition of the attribute domain. This greatly enhances interpretability. 

The number of fuzzy sets is usually limited to 7±2, according to some psychologi-
cal experiments reported in [24] showing the limited capacity of our short term mem-
ory in storing information. This limit has been debated (see [67] for a comprehensive 
discussion), and even smaller limits have been found in more recent experiments on 
immediate memory. Yet, a definitive answer on the capacity of primary memory has 
not been given, but psychological experiments (and common sense) suggest to keep 
the number of elements to remember very small. 

The criterion of justifiable number of element spans all objects in a granular model. 
It is applicable to fuzzy sets in a FOC, as well as to the fuzzy sets compounding an in-
formation granule and to the number of information granules within a model. This 
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extension is possible because our short-term memory is able to store simple structures 
(such as the names of fuzzy sets) as well complex structures (such as granule descrip-
tions), provided that they are in small number. 

We note that this criterion provides for a sound explanation of all simplification 
routines that are usually applied after clustering processes to enhance interpretability 
(see, e.g. [40] for a recent approach). However, we note also that this constraint se-
verely limits the  degrees of freedom (i.e. the free parameters) of a model. As a result, 
an interpretable model is highly biased and the resulting accuracy could be worse than 
an interpretability-free model. For this reason, interpretability is a feature that should 
be included with care in the design process. 

5.2.3   Distinguishability 
Roughly speaking, distinguishable fuzzy sets are well disjoint so they represent dis-
tinct concepts and can be assigned to semantically different linguistic labels. Well 
distinguishable fuzzy sets are deemed important since they obviate the subjective 
establishment of membership-function/linguistic term association, as claimed in 
[41], and reduce potential inconsistencies and redundancies in fuzzy models, as 
shown in [42]. Most importantly for the interpretability side, distinguishable fuzzy 
sets ease the linguistic interpretation of the model since fuzzy sets represent well 
separated concepts.  

Distinguishability is a relation between fuzzy sets that can be formalized in several 
ways. Usually, a similarity measure between fuzzy sets is used, but the possibility 
measure can be also used under certain conditions, as showed in [43]. Possibility 
measure usually depends on the parameters of the membership functions, hence its 
calculation might be more efficient than similarity.  

5.2.4   Coverage 
The coverage constraint requires that every element of the domain belongs to at least 
one fuzzy set. Since membership is a matter of degree, the coverage constraint could 
be weak (membership greater than zero) or strong (membership greater than a thresh-
old). In the latter case, the term α-coverage is used, being α a threshold in ]0,1[. 

Coverage is related to completeness, a property of deductive systems that has been 
used in the context of Artificial Intelligence to indicate that the knowledge representa-
tion scheme can represent every entity within the intended domain [44]. In [45] cov-
erage (there called “cover full range”) is justified by the fact that in human reasoning 
there will never be a gap of description within the range of the variable. On the con-
trary, as shown in [46] incompleteness may be a consequence of model adaption from 
data and can be considered a symptom of overfitting. 

For the pursuits of interpretability, 0.5-coverage is desirable. This threshold corre-
sponds to the optimal α-cut when fuzzy sets are converted into crisp sets, as proved in 
[36]. This means that if 0.5-coverage is not guaranteed, then for some elements of the 
domain the FOC represent only negative qualities (e.g. x is not hot and not cold, see 
fig. 4). Usually, natural language has positive terms to describe such elements (e.g x 
is warm). As a consequence the inclusion of fuzzy sets in the FOC – so that 0.5-
coverage is guaranteed – enhances the interpretability of the granular model.  
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Fig. 4. Coverage and interpretability. Without fuzzy set labeled “warm”, values around 0.5 of 
the variable domain do not have a linguistic description but they can only be described as “not 
cold and not hot”.  

5.2.5   Representation of Special Elements 
For the pursuits of interpretability, it is often required that special elements of the uni-
verse of discourse are prototypes of some fuzzy sets in the FOC. In this way, such 
special elements are fully covered by some fuzzy sets which, in turn, represent special 
concepts.  

Examples of special elements are extreme points of the universe of discourse. 
Leftmost and rightmost elements should be prototypes of some fuzzy sets that could 
be labeled in order to express their limit position in the FOC (e.g. “low”, “high”, 
“left”, “right”, etc.). The definition of such fuzzy sets is important to avoid paradoxi-
cal situations such as those depicted in fig. 5a. If the three fuzzy sets represent con-
cepts “small”, “medium”, “high” then the leftmost element minU is less “small” than 
minU+e. Such an undesired situation will not occur if leftmost/rightmost fuzzy sets 
are defined in the FOC (fig. 5b). Leftmost and rightmost fuzzy sets are necessary 
when they represent qualitative concepts; if the FOC is made of fuzzy sets expressing 
fuzzy quantities, then they are not necessary. 

Other special elements could be considered as prototypes of some fuzzy sets. The 
choice of such elements is problem driven. As an example, in [44] it is suggested that 
for control applications the null value, if it belongs to the universe of discourse, 
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Fig. 5. (a) A FOC violating representativity of extreme values. (b) a FOC with leftmost/rightmost 
fuzzy sets. 
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should be prototype of a fuzzy set, expressing the concepts “nearly zero”. This sugges-
tion could be extended to other values deemed important in an applicative context. For 
example, 0 and 100 could be prototypes of fuzzy sets labeled “icing point” and “boiling 
point” in the domain of water temperatures (expressed in Celsius degrees), or 37°C 
could be considered as prototype in a FOC expressing human body temperatures. 

5.3   Interpretability Constraints on Information Granules 

A fuzzy information granule is defined as a Cartesian product of fuzzy sets, each 
coming from a different FOC. The relational nature of information granules make 
them the basic building blocks for expressing knowledge. To make such knowledge 
comprehensible, a number of interpretability constraints should be verified.  

5.3.1   Justifiable Number of Elements 
The constraint of justifiable number of elements (JNE in brief) is applied at all levels 
of granulation: the FOC, each single information granules and the collection of infor-
mation granules in a model. 

When considering a single information granule, the JNE constraint imposes that 
the number of fuzzy sets defining the granule should be kept small, e.g. less than 
about seven. In this way, it is easier for the user to build a mental concept associated 
to the granule. Very complex granules are difficult to understand and, even if the 
compounding fuzzy sets verify all suggested interpretability constraints, users may 
not be able to grasp the relationship among variables that is represented by the gran-
ule. Techniques such as variable selection, locally to the granule or globally to the en-
tire knowledge base, are useful to improve interpretability. 

When considering the overall knowledge base, the JNE constraint suggests that the 
number of information granules should be kept within a small limit. According to 
psychological experiments, indeed, our short term memory is able to store simple as 
well as complex structures, provided that they are in a small number. Again, this 
poses severe limits on the flexibility of the resulting model, which may negatively in-
fluence its accuracy.  

5.3.2   Completeness 
This constraint imposes that each element of the universe of discourse is covered by 
at least one information granule, i.e. it belongs to an information granule with a mem-
bership degree greater than zero (weak completeness) or greater than a specified 
threshold (strong completeness).  

Weak completeness is easy to achieve if fuzzy sets with infinite support are used 
(such as Gaussian fuzzy sets). On the other hand, strong completeness may pose some 
problems, especially when the specified threshold is high (e.g. 0.5 as usually required) 
and the dimensionality of the universe of discourse is high. In this case, indeed, a 
great number of information granules may be required, which may hamper the con-
straint of justifiable number of elements. To overcome this problem a form of “closed 
world assumption” is usually adopted. It is assumed that all elements that can occur 
are represented by at least one information granule with membership degree greater 
than a threshold. According to this assumption, the universe of discourse is actually a 
subset of the Cartesian product of all attribute domains, and it is assumed that this 
subset is covered by the information granules.  
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A drawback of the closed world assumption emerges when an element not belong-
ing to the subset occurs. In this case the model may infer weak results (i.e. highly 
subnormal fuzzy sets). To overcome this problem, in [47] a “default” information 
granule is used, whose membership function is defined as the complement of the un-
ion of all used information granules. In this way, any element not represented by any 
information granule is covered by this default granule, to which a special action could 
be attached.  

5.3.3   Correctness 
The correctness constraint applies to the inference process carried out by the granular 
model. Informally speaking, correctness imposes that the inference process provides 
logically consistent outputs. As an example, in rule-based models, correctness re-
quires that Modus Ponens is respected, i.e. if a rule of the type “IF x is A THEN y is 
B” belongs to the rule base, and the input A is provided, it is expected that the model 
output is B. 

On the basis of this definition, several efforts have been made to verify the correct-
ness of rule-based models, such as in [48]. For granular models, we should keep in 
mind that the knowledge base is made by the union of information granules, and each 
information granule is defined by the conjunction of elementary concepts. As a con-
sequence, if a granule representing “x is A and y is B” belongs to the model, and the 
input A is provided, then the model is expected to derive B possibly united with other 
fuzzy sets. 

As an example, consider a model with two information granules, labeled as “tem-
perature is very cold and position is north pole”, and “temperature is very cold and 
position is south pole”. If the fact “temperature is very cold” is provided, we should 
expect the inference “position is north pole OR south pole”. In this sense, rule incon-
sistencies are not possible in granular models (see also [49] for a formal treatment of 
the topic). 

6   Interpretable Fuzzy Information Granulation 

Information granulation is the process of discovering granules from data by extracting 
hidden relationships among observed samples. The nature of such relationships de-
pends on the granulation algorithm and defines the semantics of the resulting informa-
tion granules. 

According to Zadeh [4], granulation is a cognitive task devoted to the partition of a 
whole into (significant) parts. Conversely, the process of aggregating parts into a 
whole is referred as organization. By virtue of such a definition, we may interpret 
granulation as the discovery of relationships of data within parts, so that the latter are 
semantically significant. On the other hand, organization involves the discovery of re-
lationships between parts.  

Interpretable information granulation adds interpretability constraints to the granu-
lation process. The choice of which constraints to include is a matter of design. In the 
following, a number of commonly adopted strategies for interpretable information 
granulation is outlined. For a deeper review of interpretable granulation techniques (in 
the context of fuzzy modeling) the reader is referred to [50]. 
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6.1   Partitioning 

A widely adopted strategy for interpretable information granulation concerns the par-
tition of the data domain into fuzzy granules that verify a number of interpretability 
constraints. 

Partitioning can be fixed or dynamic. In fixed partitioning, a number of interpret-
able fuzzy sets is defined for each attribute (a FOC), and information granules are ob-
tained by combining fuzzy sets of different attributes. To avoid combinatorial explo-
sion of information granules, only those including an adequate number of available 
samples is retained, while all the others are discarded. 

Fixed partitioning provides for very interpretable fuzzy information granules but 
suffers of many drawbacks. The main shortcoming derives from the definition of 
fuzzy sets, which does not take into account the structure of data. As a consequence 
fixed partitioning may not represent the most adequate granulation of data. Further-
more, the choice of the number of fuzzy sets for each attribute determines the granu-
larity level of each information granule. Without any information of data distribution, 
an arbitrary choice of the level of granularity may seriously hamper the quality of the 
granulation process. Despite these drawbacks, however, manual partitioning is still 
widely used because of its simplicity [63].  

To avoid the shortcomings of fixed partitioning, dynamic partitioning techniques 
have been proposed. The fundamental strategy of dynamic partitioning is to refine an 
initial partition so as to better represent data relationships, without violating interpret-
ability constraints. Refinement usually applies merge and split operators for fuzzy sets 
[51, 64], or modification of fuzzy set parameters [52], or both [53]. In [65] fuzzy sets 
in a FOC are defined by a frequentist approach so that more specific fuzzy sets are de-
fined to cover attribute values with higher frequency. 

Alternative to these partition strategies, some works use fuzzy tree-based partition-
ing to granulate data [54]. Roughly speaking, for generating a tree-based partition an 
attribute is selected and split in two fuzzy sets. For each of the two parts the split al-
gorithm is applied on the remaining attributes. This approach leads to a compact rep-
resentation of information granules (especially because attribute selection is usually 
performed), but the resulting granules may not share fuzzy sets. This implies a num-
ber of similar fuzzy sets to be defined for the same attribute, which may hamper in-
terpretability (fig. 6). 

 
Fig. 6. Example of tree-based partition 
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6.2   Clustering 

Clustering techniques are widely used for data granulation. This is due to the ability 
of clustering techniques to discover hidden relationships from data. Several fuzzy 
clustering techniques have been proposed in literature (see [55] for a review), how-
ever few of them address interpretability. 

The main difficulty for assuring interpretability of fuzzy granules resulting from 
clustering processes generally stands in the difficulty of representing fuzzy clusters in 
natural language. A common approach to assure natural language representation is to 
express fuzzy clusters as Cartesian product of fuzzy sets. This however implies that 
the shape of fuzzy clusters is tightly constrained. Furthermore, the presence of several 
clusters may lead to a high number of very overlapped fuzzy sets for each attributes. 
This situation does not lead to an interpretable granulation of data. 

To improve interpretability of cluster-based information granules, often simplifica-
tion procedures are proposed, which merge similar fuzzy sets of the same FOC into 
single fuzzy sets [56]. This approach yields compact granular models, but often other 
interpretability constraints (e.g. coverage, representativity, etc.) are not fulfilled. They 
are hence most suited for quantitative information granulation, where granules repre-
sent imprecise quantities for each attribute. 

When qualitative information granulation is required, i.e. when granules represent 
qualities on each attributes, a greater number of interpretability constraints should be 
verified. In this case, other strategies are advisable. In [57] an approach for interpret-
able granulation is proposed, which is based on a double clustering process. The first 
clustering stage operates on the entire dataset in order to discover hidden relationships 
among data. The result of this stage is a collection of prototypes that synthetically de-
scribe the dataset. In the second stage, multidimensional prototypes are projected onto 
each single attribute and further clustered to achieve the desired granulation level. 
One-dimensional projections are used to define FOCs that verify a number of inter-
pretability constraints so that the resulting fuzzy sets can be labeled with qualitative 
linguistic terms. Such fuzzy sets are combined (one for each attribute) in order to de-
fine fuzzy information granules that represent data in a natural language form. Vari-
ants of the Double Clustering schema are also able to automatically determine the 
granularity level [58,59]. 

7   Concluding Remarks 

The main objective of interpretability in fuzzy information granulation is co-
intensiveness with human perceptual knowledge. Fuzzy information granules are ba-
sic building blocks for representing semantical knowledge in a computer-manageable 
form. Without interpretability, fuzzy information granules are still able to represent 
imprecise knowledge, similarly to the knowledge learned by a neural network or some 
other black box model, but its comprehensibility by users is limited, especially when 
they do not possess skills in fuzzy and granular technologies.   

In this sense, interpretability is a fundamental feature for using fuzzy information 
granules in Human-Centric Information Processing. But interpretability is not a 
mathematical property, it is rather an epistemic feature that spans several facets of 
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model design. Interpretability constraints are the formal counterparts of the interpret-
ability property, provided that several other issues have been addressed, such as user 
characterization, representation structure and, last but not least, the objective of the 
model to be designed.  

Current literature offers a great number of interpretability constraints, some of 
which have been revised in this chapter. Many of these constraints have been pro-
posed as formalizations of properties driven by common sense. This opens the door to 
further research aimed at finding relationships (e.g. the “representation of special 
elements”, which is a generalization of two or more constraints found in literature), at 
devising different formalizations of the same constraint (such as the “distinguishabil-
ity” constraint or the “proper ordering”) or at discarding some proposed constraint 
(such as the 1-complementarity of membership degrees, which has a technical ration-
ale but cannot be justified in terms of interpretability). Even more importantly, groups 
of interpretability constraints help in identifying different notions of interpretability, 
such as interpretability of granules expressing quantities rather than qualities. These 
and other findings are important aids for knowledge engineering with fuzzy informa-
tion granules. 

Interpretability usually clashes with predictive accuracy. The more interpretability 
constraints are used, the more rigid is the granular model, and the less flexible to 
adaption it is. Interpretability vs. accuracy tradeoff has been addressed for long time, 
and several approaches have been proposed to balance these two features e.g. by regu-
larized learning or multi-objective optimization (see, e.g. [54, 60]). Furthermore, the 
adoption of interpretability constraints should be carefully pondered in certain appli-
cations where accuracy has a prominent importance, such as in fuzzy control [61]. 

Current and future research on interpretability spans both methodological and theo-
retical issues. Among these, the representation of the semantics of  natural language 
terms is of particular interest. Mendel [62] proposes type-2 fuzzy sets for such a rep-
resentation. This is a promising research direction, which may result particularly fruit-
ful in the area of granular knowledge communication (see also [66] for a discussion 
on this topic). On a more general level, we believe that deep insights on the semantics 
of membership degrees (which could denote similarity, preference, possibility of 
other, see [68]), as well as their operations, will shed new light on interpretability of 
information granules and, in turn, on Human-Centered Information Processing.  
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Abstract. This chapter presents an overview of fuzzy clustering techniques aiming
at human-centric information processing applications and introduces the accuracy-
interpretability tradeoff into the conceptualization of the clustering process. Nowadays
it is a matter of common agreement that the cornerstone notion of information granula-
tion is fundamental for a successful outcome of exploratory data analysis and modeling
in fields like science, engineering, economics, medicine and many others. There is no
doubt that fuzzy clustering is an excellent medium to obtain such information gran-
ules. For a matter of self-containment the chapter starts by presenting the fundamen-
tals of fuzzy clustering along with some variants and extensions. In the second part of
the chapter, the fuzzy clustering approach is highlighted as a valuable human-centric
interface: the roadmap from data to information granules is displayed along with a
discussion on some mechanisms to implement user relevance feedback. In the last part
of the chapter a semantic driven evolutionary fuzzy clustering algorithm is analyzed, as
a particular instance of a class of unsupervised clustering algorithms which embraces
constraints usually applied in supervised learning. The results show that these more
general constraints while tuning the equilibrium between accuracy and interpretability
concomitantly help to unveil the structural information of the data.

1 Introduction

From the strictly conceptual point of view the human-centric development
paradigm and the human-centric information processing pursuits share the fi-
nal goal of making the synthesized system highly adaptable to the needs of the
human user and capable of presenting a natural interface which fosters the user-
system interaction. In this sense fuzzy clustering techniques undoubtedly have
an important place in the human-centric armamentarium. The contribution of
fuzzy clustering techniques to the human-centric paradigm effort can be roughly
enumerated along three different application vectors. First of all, from the end-
user perspective, the intuitive nature of the fuzzy sets offers a privileged mean of
communication of the exploratory data analysis findings in a user-friendly way.
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Sections 3.1 and 3.2 present a detailed discussion of this aspect. The second facet,
perhaps more interesting from the system designer’s point of view but also very
important to the user interaction and feedback to the system, has to do with the
seamless integration of human knowledge as a support or guiding mechanism of
the clustering activity. In Sect. 3.3 we pinpoint some interesting trends in this re-
gard. Finally a third aspect, less obvious and more related to the behavior of the
system being developed, concerns the incorporation of human-defined semantic
interpretability constraints into the clustering process and taking advantage of
these as a mean to accomplish a transparent system with good accuracy. In Sect.
4 we present such constraints along with their generalizations to the clustering
framework and report some results which point to the merit of considering them
from inception.

The chapter is organized into three main parts. Section 2 presents an overview
of fuzzy clustering techniques emphasizing the competitive advantage over crisp
clustering, pointing problems, shortcomings and possible solutions. Section 3
discusses the development of information granules and mechanisms of user cus-
tomization. Whereas these two parts highlight the role of the fuzzy clustering
algorithmic framework as support to the human-centric paradigm Sect. 4 sustains
that designing the clustering algorithm in a human-centric way can be a valuable
asset. Following this perspective, simple human-centric semantic constructs that
are commonly used in supervised learning as a way to balance interpretability-
accuracy equilibrium are successfully transposed to unsupervised fuzzy cluster-
ing, resulting in clustering techniques which provide interesting results from the
end-user point of view.

2 Overview of Fuzzy Clustering

Generally speaking clustering is the process of searching for a finite and discrete
set of data structures (categories or clusters) within a finite, otherwise unlabeled,
usually multi-variate data set. In the literature it is common to find that the
goal of clustering is the partition of the data set into groups so that data in one
group are similar to each other and are as different as possible from data in other
groups, cf. [42,75]. Two complementary facets are enclosed in this unsupervised
learning task: the elicitation of a model of the overall structure of the data
and the pursuit for a manageable representation of a collection of objects into
homogeneous groups.

The notion of similarity between elements (patterns) of the data set is a
concept of paramount importance, with direct implications on the clustering
endeavor. Usually the similarity is defined at the expense of some appropriate
distance function. In cluster analysis common choices for distance functions in-
clude the Hamming (city block) distance inducing diamond shaped clusters, the
Euclidean distance inducing (hyper) spherical clusters and the Tchebyshev dis-
tance inducing (hyper) box shaped clusters. As a matter of fact these examples
are members of the Minkowski family of distances, or Lp norms, defined as:
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D(x,y) =

(
n∑

i=1

|xi − yi|p
)1/p

. (1)

Distance can be used to measure the similarity between two data points or
between a data point and a prototype of the cluster. The prototype is a mathe-
matical object, usually a point in the feature space (e.g. the center of the cluster)
or even a geometric subspace or function, acting as a representative of the cluster
while trying to capture the structure (distribution) of its associated data.

Traditionally the clustering algorithms are categorized in two main types: hi-
erarchical and objective function based partitional clustering. Every new cluster
determined by a hierarchical algorithm is based on the set of previously estab-
lished clusters. The distance between individual points has to be generalized
to the distance between subsets (linkage metric) in order to merge (or split)
clusters instead of individual points. The type of the used linkage metric sig-
nificantly affects hierarchical algorithms, since each cluster may contain many
data points and present different geometrical shapes, sizes and densities. The
distance is computed for every pair of points with one point in the first set and
another point in the second set. Due to the pairwise combinatorial nature of the
process the hierarchical approach tends to be computationally inefficient with
the growth of the number of data elements. This approach is very sensitive to
anomalous data points (noise and outliers) and is unable to handle overlapping
clusters. A reason for this is that bad decisions made at an early stage of the
algorithm will be propagated and amplified up to the end since the intermediate
clusters are not revisited for further improvement (the points can not move from
one cluster to another).

The second major category of clustering algorithms attempts to directly de-
compose the data set into a collection of disjoint clusters. This partition is
builded during an iterative optimization process repeated until its associated cost
function reaches a minimum (global or local). The cost function, also designed
performance index or objective function, is a mathematical criterion expressing
some desired features (emphasizing local or global structure of the data) of the
resulting partition.

Combining some heuristics with an adequate formulation of the objective func-
tion it is possible to design an optimization process which is able to determine at
least suboptimal partitions. One such formulation, for that matter the most used
in practice, is the sum-of-squared-error distances or minimum variance criterion
representing each of C clusters by their mean (the so-called centroid vi ∈ R

n,
i = 1, . . . , C of its points):

Q =
C∑

i=1

N∑
j=1

uijD
2
ji(xj ,vi) (2)

where X= {x1,x2, . . . ,xN} denotes a set of feature vectors (or patterns) in the
R

n space. Dji(xj ,vi) is a measure of the distance from xj to the ith cluster
prototype. The elements, uij ∈ {0, 1}, i = 1, . . . , C j = 1, . . . , N form a ma-
trix designated as the partition matrix which maps the patterns to a cluster. If
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uij = 1 the pattern j belongs to cluster i, otherwise if uij = 0 the pattern j is
not accounted as a member of cluster i. This formulation is appealing because
it still favors sets of well separated clusters with small intra-cluster distances
whereas replaces all the pair-wise distances computation by a single cluster rep-
resentative. Thus the computation of the objective function becomes linear in N
and it is now feasible the application of an iterative optimization process aiming
at gradual improvements of the builded clusters.

The c-Means algorithm (also referred in the literature as k-Means or hard c-
Means) [26,54] is the best known squared error-based example of such a process.
For a given initialization of the C centroids the heuristic approach consists of
two-step major iterations that follow from the first-order optimality conditions
of (2): first reassign all the points to their nearest cluster, thus updating the
partition matrix, and then recompute the centroids, vj (its coordinates are the
arithmetic mean, separately for each dimension, over all the points in the clus-
ter), of the newly assembled groups. This iterative procedure continues until a
stopping criterion is achieved (usually until no reassignments happen). In spite
of its simplicity and speed this algorithm has some major drawbacks. It is much
dependent on the initial centroids assignment (frequently in practice it is run
for a number of times with different random assignments and the best resulting
partition is taken), does not ensure that the result has a global minimum of
variance, is very sensitive to outliers and lacks scalability.

Another not so obvious disadvantage is related to the binary nature of the
elements of the partition matrix and consequently of the induced partitions.
This kind of partition matrix is based on classical set theory, requiring that an
object either does or does not belong to a cluster. The partitioning of the data
into a specified number of mutually exclusive subsets is usually referred as hard
clustering. In many situations this is not an adequate representation.

Consider for instance a borderline point located in the boundary between two
clusters or otherwise an outlier datum located at nearly the same distance from
the centers of two clusters. In these frequent situations the point is almost as
typical of one cluster as it is of the other, thus a more natural partition would
be one which allowed the objects to belong to several clusters simultaneously
(with different degrees of membership.) This is precisely the central concept
behind fuzzy clustering methods with foundations in the fuzzy sets theory [77].
A fuzzy set is characterized by a membership function that maps each point
of the universe X to a number in the interval [0, 1] (1 represents full degree of
inclusion and 0 non-membership at all).

We can say that the relaxation of the constraint imposed on the partition
matrix to uij ∈ [0, 1] is more realistic and able to provide a richer insight of
the data structure, especially when in presence of ambiguous data or clusters
without sharp boundaries. Indeed, the fuzzy logic approach to clustering differs
from the conventional set theory approach mainly because a generic datum may
belong to more than one cluster with a different degree of membership (usually a
value between 0, non-membership, and 1, full degree of inclusion). Hence the data
points near the core of a given cluster exhibit a higher degree of membership than
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those lying farther away (near its border). Within this framework it is possible
to capture the uncertainty, vagueness and flexibility inherent to the data set and
to the concepts being formed. In the remaining of this section we review some
different algorithmic approaches that allows the construction of fuzzy partitions,
i.e., algorithms which represent a cluster as a fuzzy set.

2.1 The Fuzzy C-Means Clustering Algorithm

Fuzzy clustering was introduced as early as 1969 by Ruspini [68]. Fuzzy C-Means
(FCM) is a simple and widely used clustering algorithm. The algorithm results
from an optimization problem that consists in the minimization, with respect to
V, the set of prototypes, and U, the fuzzy membership matrix, of the following
index (objective function) [6]:

QFCM =
C∑

i=1

N∑
j=1

um
ijD

2
ji(xj ,vi) (3)

where m > 1 is the so-called fuzziness parameter (m = 2 is a common choice)
that controls the influence of membership grades or in other words how much
clusters may overlap, cf. [44], and D stands for a norm distance in R

n, under
the following conditions on the partition matrix elements:

uij ∈ [0, 1] for all i = 1, . . . , C and j = 1, . . . , N (4)

C∑
i=1

uij = 1 for all j = 1, . . . , N (5)

N∑
j=1

uij > 0 for all i = 1, . . . , C (6)

Condition (5) induces a fuzzy partition in the strict sense and assures that
every datum has a similar global weight on the data set. Constraint (6) guaran-
tees that none of the C clusters is empty, thus implying a cluster partition with
no less than C clusters. Notice the similarity between (2) and (3). As a matter
of fact they are coincident apart from a fixed transformation (the introduction
of the fuzzifier, m) introduced as a mean to prevent that under condition (5)
the same minimum as the one obtained by the crisp standard formulation was
reproduced.

For this constrained nonlinear optimization problem there is no obvious an-
alytical solution. Therefore the most popular and effective method to minimize
the constrained objective function consists in resorting to a technique known as
alternating optimization. This means that one set of parameters is kept fixed
while the other is being optimized, and next they exchange roles. The proto-
type V and membership U update equations are obtained from the necessary
conditions of a minimum:
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∂QFCM

∂V
= 0 (assuming U to be constant); (7)

∂QFCM

∂U
= 0 (assuming V to be constant). (8)

Additionally the consideration of (5) in the original objective function (3)
by means of Lagrange multipliers converts the constrained problem into its
constrained-free version. Some straightforward computations lead to the update
formula of the partition matrix:

uij =
1∑C

k=1

(
Dji(xj,vi)
Djk(xj,vk)

) 2
(m−1)

. (9)

This formula does not depend on the chosen distance function, however the
determination of the prototypes is more complicated since many distance norms
do not lead to a closed-type expression. A common practical choice is to use the
Euclidean distance or L2 norm (for a generalization to Lp, p > 0, the interested
reader is referred to [38]) leading to the following prototype update equation:

vi =

∑N
j=1 u

m
ijxj∑N

j=1 u
m
ij

. (10)

The alternate optimization of U and V proceed iteratively until no signifi-
cant change of the objective function is registered. It has been proven that the
generated sequence of solutions, for fixed m > 1 always converge to local min-
ima or saddle points of (3) [9]. Informally, what the resulting algorithm will
do is to search for the clusters that minimize the sum of the intra-cluster dis-
tances. In general the performance of fuzzy algorithms, when compared with
the corresponding hard partitioning ones, is superior and they are less prone
to be trapped in local minima [6]. However, like its hard counterpart the FCM
algorithm shares the problem of high sensitivity to noise and outliers, something
that is common to the generality of the least-squares approaches and that can
drastically distort the optimal solution or facilitate the creation of additional
local minima. Next we discuss an alternative formulation, specifically designed
to tackle this problem.

2.2 The Possibilistic C-Means Clustering Algorithm

The influence of noise points can be reduced if the memberships associated with
them are small in all clusters. However, as can be seen from the probabilistic-
like constraint (5), the memberships generated by the FCM are relative numbers
expressing the concept of sharing of each pattern between clusters rather than
the concept of typicality of a given pattern to a given cluster. This means that
noise points and outliers will also have significantly high membership values. A
more general form of fuzzy partition, the possibilistic partition, can be obtained
by relaxing the constraint (5) in order to address this problem.
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In this case the assignment of low membership in each cluster to noise points
depends on giving up of the normalization condition (5), leading to possibilistic
instead of fuzzy partitions. To avoid the trivial solution (i.e. a matrix with null
elements) Krishnapuram and Keller [47] added to (3) a punishment term for low
memberships resulting in the augmented possibilistic c-means (PCM) objective
function:

QPCM =
C∑

i=1

N∑
j=1

um
ijD

2
ji(xj ,vi) +

C∑
i=1

ηi

N∑
j=1

(1 − uij)m (11)

where the distance parameters ηi > 0 (i = 1, . . . , C) are specified by the user.
Notice that the second term expresses the desire to have strong assignments of
data to clusters. Due to the nature of the membership constraint, we call possi-
bilistic clustering algorithm (PCM) a fuzzy clustering algorithm which minimizes
(11) under the constraint (6). The partition matrix update equations, as before
for the FCM case, are obtained by setting the derivative of the objective function
equal to zero while holding the prototype parameters fixed:

uij =
1

1 +
(

D2
ji(xj ,vi)

ηi

) 1
(m−1)

. (12)

This update expression clearly emphasizes the typicality interpretation of the
membership function. Unlike the FCM formulation, the degree of membership
of one point to a cluster depends exclusively of its distance to the center of that
cluster. For the same cluster, closer points obtain higher membership than the
ones farther away from it. Moreover (12) shows that ηi determines the distance of
the “definite” assignment (uij > 0.5) of a point to a cluster (simply considering
m = 2 and substituting ηi by D2

ji(xj ,vi) results in uij = 0.5). So it is useful
to choose each ηi separately, according to the individual geometrical features of
each cluster. Unfortunately these are not always available so Krishnapuram and
Keller recommend several methods to determine ηi [47,48]. Using the fuzzy intra
cluster distance a sound probabilistic estimation of these weight factors can be
obtained:

ηi =

∑N
j=1 u

m
ijD

2
ji(xj ,vi)∑N

j=1 u
m
ij

. (13)

The update formula for the prototypes is the same as the one used in the
FCM method since the second term in (11) simply vanishes when computing the
derivative of the objective function with respect to the prototype parameters. If
we take a closer look at (12) we see that the membership degree of a pattern
to a cluster depends only on the distance of the pattern to that cluster, but
not on its distance to other clusters. So it happens that in some situations
this algorithm can originate coincident clusters (converging to the same local
optimal point), thus disregarding clusters with lower density or less points, or
even presents stability problems due to sensitivity to initialization [48]. Thus to
overcome these drawbacks of the possibilistic approach it is common practice to
initialize PCM with a prior run of the probabilistic FCM.
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2.3 Other Approaches to Fuzzy Clustering

The literature on fuzzy clustering is remarkably rich, cf. [72], and in a broad
sense it reflects the attempts made to surpass the problems and limitations of
the FCM and PCM algorithms. In the two former sections we reviewed FCM and
PCM and their prototypes’s update equations assuming the Euclidean distance
as the standard metric. However when combined with a squared error-based
objective function this distance induces hyper-spherical clusters. To overcome
this geometrical constraint imposed by clustering algorithms based on a fixed
distance metric several algorithms using adaptive distance measures have been
proposed. Two of the most well known are the Gustafson-Kessel algorithm [32]
which replaces the Euclidean distance by the Mahalanobis distance (an interest-
ing generalization of the Euclidean distance) with a specific covariance matrix for
each cluster and the unsupervised Gath-Geva algorithm [30] where the distance
is based on the fuzzification of the maximum likelihood estimation method. Both
of these algorithms are well fitted to find ellipsoidal clusters with varying size
and orientation (there are also axis-parallel variants of these algorithms and to
some extent they can also be used to detect lines).

In the field of image processing and recognition the geometry of the fuzzy
clusters is a key aspect for image analysis tasks. Both FCM and PCM use point
prototypes. If we are interested in finding particular cluster shapes, algorithms
based on hyper-planar or functional prototypes, or prototypes defined by func-
tions, are a good choice. The distance is no longer defined between two patterns
(i.e. a datum and a prototype), instead it is measured between a pattern and a
more complex geometric construct. This class of algorithms includes the fuzzy
c-varieties [7] for the detection of linear manifolds (lines, planes or hyper-planes),
fuzzy c-elliptotypes [8] for objects located in the interior of ellipses, fuzzy shell
clustering for the recognition of object boundaries (e.g. fuzzy c-shells [16] in the
detection of circles, hyper-quadric shells [45], fuzzy c-rectangular shells [40]) and
fuzzy regression models [36]. The interested reader may follow a comprehensive
explanation of these branch of methods in [41].

In addition to PCM other methods have been proposed in order to improve
the robustness of the FCM algorithm to noisy data points and outliers while
maintaining the constraint (5) (thus circumventing the problem of cluster co-
incidence of the PCM approach). For instance the technique presented in [59]
and [14] consists in the introduction of an additional noise cluster aiming at
grouping the points with low probability of belonging to the remaining clusters.
This probability depends on the mean value of the squared distances between
patterns and the prototypes of the normal clusters. Latter on, this technique was
extended in order to accommodate different noise probabilities per cluster [15].

The great majority of the algorithms presented hitherto result from alternat-
ing the optimization of the membership functions and prototype locations in an
iterative process. Therefore the clustering model constrains (and is constrained
to) the particular shapes of the membership functions and the positions of the
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prototypes to those determined by the updating equations derived from the ob-
jective function. However, the user might be interested in the use of a certain
type of membership function with more adequate shapes to the problem in ques-
tion or in certain cluster prototypes satisfying some application-specific needs.
The alternating cluster estimation (ACE) framework [65] is able to provide,
when required, this extra flexibility. In applications such as extraction of fuzzy
rules from data, where each fuzzy set should have a clear semantic meaning (for
instance associated to linguistic labels like “high” temperature or “about 80” de-
grees), a convex fuzzy set with limited support may be more preferable than the
non-convex membership functions generated by FCM or PCM. Notwithstanding
that ACE embodies FCM and PCM as particular instances of the framework,
the requirement that the updating equations for the membership function and
the prototypes should result from the necessary conditions for local extrema is
now rejected and the user is free to choose the pair of updating equations which
is better fitted for the problem at hand. At first sight this generalization may
seem to be lacking mathematical soundness however it has proven its usefulness
in practical examples.

In many practical applications the data sets can be heavily contaminated by
noise points which promote the proliferation of local minima. In these cases,
the probability of the alternate optimization getting stuck at local optimal
values is far from being negligible. To obviate this problem, stochastic algo-
rithms have been used in cluster analysis, many of them inspired on biological
paradigms such as the natural evolution of species or swarm-based behavior.
Examples of such approaches to fuzzy clustering include the use of genetic algo-
rithms [18,19,35,43,51,73], evolutionary programming [69], evolutionary strate-
gies [76], ant colony optimization [66] and particle swarm optimization [67].
Notwithstanding that these attempts do not guarantee optimal solutions, de-
mand the definition of a set of problem-specific parameters (e.g. population size)
and are very computationally time-consuming they can undoubtedly contribute
to avoid local extrema and reduce the sensitivity to initialization.

2.4 Determination of the Number of Fuzzy Partitions

In the great generality of the partitional algorithms the number of clusters C
is the parameter having greater influence on the resulting partition. The chosen
clustering algorithm searches for C clusters, regardless of whether they are really
present in the data or not. So when there is no prior knowledge about the struc-
ture of the data a natural question arises: what is the right number of clusters
for a particular data set? This question is known in the literature as the cluster
validity problem and distinct validity measures have been proposed in order to
find an answer, cf. [27, 34, 42, 55, 58, 75]. However, in spite of a greater practi-
cal adhesion to some of them, due to the subjective and application-dependent
character of the problem there is no consensus on their capability to provide a
definitive answer to the foregoing question. For partitional fuzzy clustering it is
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advisable that the validity indices account both for the data set (e.g. their vari-
ance) and the resulting membership degrees. An example of such class of validity
indices, exhibiting good behavior when matched against a set of other indices
[60], is the Xie-Beni index [74], also known as the compactness and separation
index, computed as the ratio of the compactness of the fuzzy partition of a data
set to its separation:

XB =

∑C
i=1

∑N
j=1 u

m
ijD

2
ji(xj ,vi)

N mini�=j D2
ij(vi,vj)

. (14)

The interested reader is referred to [33] for further examples and properties
of hard/fuzzy validation indices. The effectiveness of a particular choice of C
is verified a posteriori by cluster validity analysis, performed by running the
clustering algorithm for different values of C, several times with different ini-
tializations. However, since different validity measures may produce conflicting
results (even runs with different initializations may introduce some distortion
for the same measure) it is advisable that they should be used only as guidelines
to find a plausible range for the correct number of clusters.

The cluster validity problem was also tackled by unsupervised techniques with
no a priori assumption on the number of clusters. Many of these approaches
(e.g. [28,29,53]) take advantage of the fact that (3) is minimized when the num-
ber of clusters is equal to the cardinality of the data set (when prototypes and
data coincide) by adding to the cost function (3) a regularization term which is
minimized when all the patterns are assigned to one cluster. These algorithms
start with a large number of clusters which is progressively reduced until con-
vergence. Regretfully, in practice the problem of cluster validity is replaced by
the determination in advance of another user supplied parameter with major
influence in the clustering outcome and dictating which clusters are discarded.

An interesting blending between fuzzy partitional clustering techniques and
hierarchical algorithms was presented in [31]. The objective is to exploit the
advantages of hierarchical clustering while overcoming its disadvantages in deal-
ing with overlap between clusters. At every new recursive agglomerative step
the proposed algorithm adaptively determines the number of clusters in each
bifurcation by means of a weighted version of the unsupervised optimal fuzzy
clustering algorithm [30]. The final outcome of the clustering is the fuzzy parti-
tion with the best validity index value. Needless to say, the algorithm presents
sensitivity to the adopted validity index.

Unsupervised stochastic techniques have also been applied to cluster validity
analysis. In [56] a genetic fuzzy clustering algorithm is used for the classifica-
tion of satellite images into different land cover regions. The objective function
is replaced directly by a validity index (in this case the Xie-Beni index) and a
variable chromosome length (depending on the number of clusters represented
by each individual) allows the simultaneous evolution of solutions with a differ-
ent number of clusters. The outcome is the best (in the Xie-Beni sense) of the
evaluated fuzzy partitions.
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3 The Role of Fuzzy Clustering in the Human-Centric
Paradigm

The concept of linguistic variable [79, 80] plays a pivotal role in the formation
of fuzzy information granules. Informally, a linguistic variable is a granulated
variable whose granular values are words or phrases represented by fuzzy sets
(altogether with their connectives, modifiers and negation). These linguistic char-
acterizations are, usually, less specific than the numeric ones, but in compensa-
tion are safer. Thus the linguistic variable can be viewed as a way to accomplish
(lossy) compression of information. Moreover the linguistic variable provides a
descriptive mean for complex or poorly understood systems and, more impor-
tant, offers a bridge between linguistics and computation, cf. [81]. As Zadeh [83]
pointed out, the fuzziness of granules, their attributes and their values is a cen-
tral characteristic of the ways in which human concepts are formed, organized
and manipulated. This observation supports what seems to be one of the most
human-centric approaches to discover structure in data: fuzzy clustering.

As previously referred, the contribution of fuzzy clustering techniques to the
human-centric paradigm effort can be described across three main lines: (i)
user-friendly communication of the results, (ii) seamless integration of human
knowledge and (iii) incorporation of human-defined semantic interpretability
constraints in order to accomplish a transparent system with good accuracy.
The purpose of this section is to present a detailed discussion on the two first
aspects. The incorporation of human-defined semantic constraints into the clus-
tering endeavor is addressed in Sect. 4.

3.1 Information Granulation

Information granules are simultaneously a mean and an objective. Due to the
limited capability of human mind and sensory organs to deal with complex in-
formation its decomposition into manageable chunks of information is essential.
The aggregation of similar or nearby objects into information granules (class
abstraction) as well as the encapsulation of functional commonalities are funda-
mental skills for a successful approach to the great majority of problems that we
face everyday. This granulation may be crisp or fuzzy.

Crisp granules are derived with the apparatus of the classical set theory and
are common components in various methods of information analysis, e.g. decision
trees, interval analysis or rough set theory. Fuzzy granules found their inspiration
in the human capability to reason in an uncertain and imprecise environment
and are supported by the theory of fuzzy information granulation (TFIG) [82],
a part of the fuzzy sets and fuzzy logic framework. Furthermore the fuzzy logic
approach relies on the notion of (fuzzy) set, opposite to the member of a classical
set, to represent uncertain and imprecise knowledge. This last facet is the point of
departure to the model identification with different levels of descriptive precision
and granularity, viz. (fuzzy) granulation, cf. [78,81]. In this setting, typically, an
information granule is a fuzzy set and the process of information granulation
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Fig. 1. Simple data set in R
2 and clustering results of the FCM algorithm. Dots re-

present data points and unfilled circles represent the clusters’ centers.

consists in describing a crisp or fuzzy object as a collection of fuzzy granules (or
eventually as relationships between them).

In Sect. 2 we reviewed the standard fuzzy c-means algorithm (FCM), its assets
and common alternatives to overcome its shortcomings. Next with the help of a
visually appealing example the path leading from raw data to information gran-
ules is briefly explained. To facilitate the visualization we consider a synthetic
data set defined in R

2 as depicted in Fig. 1.
It is composed of three visually separable clusters resulting from a normal dis-

tribution of twenty elements around 3 distinct points. Suppose that the clusters’
centers, marked as unfilled circles in Fig. 1, were found by an adequate fuzzy
clustering method (in this case FCM). The purpose here is to describe those
clusters invoking simple fuzzy granules. Let’s assume that the clustering algo-
rithm has produced the partition matrix where each data point is characterized
by a set of membership values, one per each cluster: the closer the point is to
the cluster’s center, the higher the membership value of that point. This relation
can be perceived in Fig. 2 where only the maximum value of membership for
each data point is shown (in the Z axis).

Each one of the resulting clusters may be conceived as a multidimensional
granule, however to be clearly understandable and subject to human communi-
cation it has to be expressed in terms of simpler qualitative attributes defined
for each feature.

To accomplish this, first the dimensionality of this fuzzy relation is reduced
by a simple operation of projection to the corresponding coordinate spaces. For
every 2-dimensional granule G defined on X1 × X2 there are two projections
GprojX1 and GprojX2 with the following membership functions (for discrete sets
sup is replaced by max):

GprojX1(a) = sup
y∈X2

G(a, y), a ∈ X1; (15)
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GprojX2(b) = sup
x∈X1

G(x, b), b ∈ X2. (16)

Computing the correspondent projections, each cluster induces a one-
dimensional discrete fuzzy set per feature. Figure 3 depicts the projection into
one of the coordinate spaces (notice that for ease of visualization the individ-
ual fuzzy sets are depicted as piecewise linear functions when, in fact, they are
composed of discrete elements).

To extend this fuzzy set to the whole one-dimensional domain an adequate
enveloping fuzzy set (convex completion) or a suitable parameterized fuzzy set
approximation is usually necessary. Obviously this approximation implies some

Fig. 2. Clustering results of the FCM algorithm depicting the maximum membership
value of each data point

Fig. 3. Dimensionality reduction by projection to the coordinate spaces. The figure
depicts the projection to X2.
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Fig. 4. Synthesis of interpretable Information Granules. A functional approximation
was performed followed by a semantic conversion conveying meaning to each one-
dimensional fuzzy set.

loss of information. In the given example each one-dimensional fuzzy set was
approximated by a Gaussian membership function distributed around the pro-
totype’s projection, see Fig. 4, and altogether they form a fuzzy partition across
each single domain. Finally a last step must be performed if one wishes to de-
scribe each multidimensional granule in an human-friendly way: if possible each
one-dimensional fuzzy set must be associated to a linguistic value with a clear
semantic meaning (in Fig. 4, S stands for Small, M for Medium and L stands
for Large).

The multidimensional granule is thus defined as a combination of one-
dimensional fuzzy sets encoding linguistic labels relevant for the problem at
hand. For each cluster the one-dimensional fuzzy sets where its prototype’s pro-
jection attains the maximum value are chosen as the clusters’ representatives.
Hence each multidimensional cluster may be expressed as cartesian products of
simpler granules. Referring back to Fig. 4 the overall data set may be entirely
described in this concise form:

S1 × S2 +M1 ×M2 + L1 × L2 (17)

where + represents disjunction andX1 andX2 play the role of linguistic variables
assuming the values small (S), medium (M) and large (L), necessarily with
different concretization in each domain.

3.2 Elicitation of the Information Granules

Fuzzy clusters are information granules represented by fuzzy sets, or more gen-
erally by fuzzy relations in some multi-dimensional data space. However, as was
emphasized above, in order to take full advantage of their expressive power they
should be able to be described as propositions in a natural language.
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In opposition to our previous oversimplified example (Figs. 1, 2, 3 and 4)
there are many situations posing several difficulties to the adequate elicitation
of a semantic mapping between data space and feature space. Just to give an
example, consider a data set with 4 well separable clusters in R

2 and centers
in the vicinity of the vertices of a square with sides parallel to the coordinate
axes. In this case the correspondent projections into the one-dimensional spaces,
would result in two pairs of very close fuzzy sets per feature and consequently
almost undiscernible between them. The approaches to develop semantically
sound information granules as a result of the fuzzy clustering process range
from purely prescriptive methods to purely descriptive techniques, cf. [63]. In
the prescriptive characterization of the fuzzy sets the meaningful granules are
expressed intuitively by an observer in such a way that they capture the essence
of the problem. The descriptive design involves the detailed computation of the
membership functions based on the available numeric data.

The work presented in [12] is a good example of this latter approach com-
plemented with some semantic concerns. The overall technique can be summa-
rized in three steps. First, a cluster analysis is performed on the data set. The
clustering algorithm (e.g. FCM) induces C information granules and this num-
ber of clusters has a major effect on the information granularity. In the second
step the prototypes are projected into each dimension, being their projections
further clustered in order to obtain a pre-specified number of clusters, i.e., one-
dimensional granules. The final step consists in quantifying the resulting one-
dimensional prototypes as fuzzy sets in the feature space by means of Gaussian
membership functions with a desired level of overlap. The second step of this
double-clustering technique is not computationally demanding (the number of
prototypes is much lesser than the number of data elements) and promotes the
fusion of projections, which otherwise would result in undiscernible data sets,
into one single representative thus permitting the representation of granules via
highly comprehensible fuzzy propositions.

The prescriptive approach can be illustrated by the interesting technique of
context clustering [61] (see also [39]). In essence the algorithm results from an
extension to the FCM algorithm replacing the standard normalization constraint
(5) by a conditioning constraint dictated by the context under which the clus-
tering is being performed. The context is specified by the user and can assume
the form of an information granule (linguistic term) defined in a peculiar feature
or a logical combination between granules in the same feature space or even a
composite context resulting from the Cartesian product of fuzzy sets defined in
different feature spaces. Informally, we can say that the (fuzzy) linguistic con-
text acts as a data window focusing the clustering effort on particular subsets
of the data or regions of interest, thus enabling a deeper insight on the internal
structure of those information granules.

The technique reported in [63] tries to present a balanced tradeoff between
the prescriptive and descriptive approaches. The descriptive component is rep-
resented by the clustering algorithm (the experiments report to the standard
FCM) performed in the multi-dimensional data space. Given two different runs
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of the clustering algorithm, searching for a different number of clusters, the
resulting granules present necessarily a different granularity level. The distinct
granularity of the resulting information granules (the mixture of coarser and finer
granules) can be turned into an advantage. The prescriptive component task is
to conciliate different granular representations by means of specific operations of
generalization (information granules combined or -wise) and specialization (in-
formation granules refined and -wise) of the fuzzy relations. The logic operators
(s-norms and t-norms) are defined in advance then, if we intend to decrease the
granularity of the finer result, the algorithm finds the coarser granule and the
respective generalization (selected amongst the possible pairwise generalizations
of the finer granular set) with optimal similarity (based on the overall difference
between membership values of each datum in the original set and in the given
generalization). On the other hand, when we intend to increase the granular-
ity of the collection of information granules a similar process is performed, viz.,
the optimal replacing of a granule by the pair of granules forming its closest
specialization.

The representation of information granules via multidimensional hyper-boxes
with sides parallel to the coordinates greatly simplifies their transparent ex-
pression as decomposable relations of classical sets in the corresponding feature
spaces. In [3] the standard FCM was modified through a gradient-based tech-
nique in order to accommodate the Tchebyshev distance. This distance induces
a hyper-box shaped geometry of the clusters, however due to the interaction
between clusters there exists a deformation of the hyper-boxes which need to
be reconstructed in an approximate manner. When compared with FCM with
Euclidean distance, the algorithm equipped with Tchebyshev distance exhibited
less sensitivity to the size of the data groupings, being able to identify smaller
clusters. The algorithm produces a description of the data consisting of hyper-
boxes (whose sizes depend on a given threshold) which encompass the core of
the data and a residual portion of the data described by the standard FCM
membership expression. Another interesting approach to hyper-box granulation
combined with fuzzy clustering was presented in [2]. The proposed measure of
information density (the ratio between cardinality and specificity of a set) is
maximized in a recursive manner departing from the numeric data which is pro-
gressively mixed with the produced granular data. As a result of this granulation
process the data is compressed while the number of information granules in the
high data density areas is reduced. Next the information granules are clustered
using the FCM algorithm combined with a parametric method of representation
of the hyper-boxes. This results in a collection of cluster prototypes interpretable
in the original data space as hyper-boxes altogether with a fuzzy partition ma-
trix representing the membership of data into clusters. Due to the reduction
of the number of information granules in high density areas the FCM problem
of under-representing smaller groups of data is thus obviated. Moreover, the
hyper-box representation of the prototypes has direct transposition as fuzzy de-
composable relations in the feature space enabling a transparent interpretation
of the information granules.
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Independently of the followed approach (descriptive, prescriptive or both)
one should be aware that the elicitation of information granules in a human
comprehensible way is dependent of the characteristics of the application at
hand and on the judicious decisions of the data analyst.

3.3 Enhancements to Accommodate Human Knowledge

Notwithstanding that in a great number of applications there is no labeling in-
formation about the data at hand, or otherwise the labeling of the data set is a
fastidious task requiring a lot of expert time due to its high cardinality, or even
it is error prone and potentially ambiguous due to the nature of the problem
being tackled; there are situations where the clustering endeavor can and should
be guided, at least in a confined way, by the inclusion of additional information
about the data structure and the inherent characteristics of the problem. Au-
tomatic text classification of extensive corpora, categorization of Web sources,
recognition of handwritten text characters or image segmentation are just some
examples of applications where usually the data analyst is confronted with a
small subset of labeled data. Better than blindly attack the problem as an un-
supervised clustering pursuit the available information should be properly taken
into account.

In cases like the ones mentioned we can say that we are faced with a semi-
supervised clustering and as was emphasized in [5] the labeled data can be used
quite successfully not only to define the number of clusters but also by using the
cluster centers as a way to affect the cluster assignment for unlabeled data. A
very straightforward formulation that allows us to play with the balance between
our confidence in the reliability of the available labeled data and the automated
data exploration was presented in [64]. Simply stated the partially supervised
clustering algorithm lays on an additive objective function aiming at structure
finding, minimizing the fuzzy within cluster variance as in the standard FCM,
and accounting for the data already categorized by minimizing the misclassifi-
cation error:

Qsemi = QFCM + α

C∑
i=1

N∑
j=1

(ul∗
ij − ul

ij)mD2
ji(xj ,vi) (18)

Here l alludes to the subset of classified patterns and ul∗
ij stands for the par-

tition matrix containing membership grades previously assigned to the selected
patterns, possibly by a domain expert. The optimization of ul

ij intends to make it
close to the information already available. The nonnegative regularization factor
α defines the balance between the supervised and unsupervised learning. Higher
the value of α, higher our beliefs in the labeling decisions already made and
consequently our willingness to overlook some level of structural optimization.
As previously mentioned, being an optimization scheme that relies on alternate
optimization, it can be trapped by local optima and is also very sensitive to
initialization. Latter on this problem was ameliorated for this specific case, by
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using evolutionary optimization techniques [50] obviously at the expense of a
great deal of computational cost.

When one does not have the knowledge about how many data classes are
there but is still able to provide some indications on the resemblance or proxim-
ity of some data points, this information can be captured for instance with the
help of another interesting approach presented in [52]. The underlying principle
of the proximity fuzzy C-means (P-FCM) is the guided collaboration between
data processing and knowledge processing through the consideration of proxim-
ity constraints. These are expressed as a symmetric and reflexive mapping of
pairs of patterns to the unit interval (its value is maximal when two patterns
are coincident). The relation between the fuzzy partition matrix produced by
the clustering algorithm and the proximity mapping is set up by the following
expression:

p̂[k1, k2] =
C∑

i=1

min(uik1 , uik2) (19)

This expression is used to build the deduced symmetric proximity matrix. The
algorithm consists of two main phases that are realized in interleaved manner.
The first phase has a data driven nature and consists in applying the standard
FCM to the patterns. The second concerns the accommodation of the proximity-
based hints and involves some gradient oriented learning. In order to guide the
gradient search procedure the objective function for the second phase penalizes
the differences between the available proximity levels and the corresponding
ones from the deduced proximity matrix. Since in fuzzy relational clustering, cf.
[37,46], the data is described by specifying pairwise similarities or dissimilarities
between objects, at first sight it seems that there is some resemblance between
this algorithm and relational clustering pursuits. However it is worthwhile to
note that in this case one is provided with object data describing the objects
through feature measurements and using this technique, or for that matter other
with similar inspiration, it is possible to conciliate strictly structural algorithmic
information with the available relational information (if there is any).

4 Deploying Semantic Constraints for Data Clustering

The need for semantically valid fuzzy systems (classifiers, models, controllers)
is a matter of common agreement nowadays. A set of semantic properties, nec-
essary to ensure an interpretable fuzzy system during system design, have been
outlined and analyzed [70, 62, 71]. Based on these properties, several different
constraints have been derived and applied to several real-world situations, in-
cluding [21,22,24,25]. For a more complete and recent survey of the literature on
these matters the reader is referred to [10,11]. The great majority of the reported
work on semantic concerns can be classified as belonging to the supervised learn-
ing or optimization schemes. Typically, the semantic conditions become part of
the learning rule of a neural network, or part of the fitness function of a clus-
tering algorithm, or becomes an optimization goal of its own in multi-objective
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optimization schemes. In this section we elaborate on a set of semantic con-
straints easily justifiable at the pure human-centric conceptual level, describing
them in a more sound formal framework and demonstrating that they generalize
a set of constraints commonly employed in partitional fuzzy clustering. Later the
evolutionary semantic driven (ESD) fuzzy clustering algorithm [23] is contextu-
alized as an illustrative example of employing such human-defined constraints
where those are used as the defining characteristic which enables the correct
identification of the number of clusters present in the data set.

4.1 Translation of Semantic Constraints to Clustering

The ultimate objective of clustering is the description of the inherent structure of
the data in a comprehensible way. Fuzzy clustering algorithms apport a valuable
surplus when aiming at such goal since the identification of regions of interest
of a data set can be transposed to propositions on meaningful linguistic labels,
thus facilitating the empirical semantic validation of the model.

This translation is highly dependent of the semantic soundness of the fuzzy
sets in the distinct feature spaces. In this respect the set of semantic properties
postulated in [71], in the context of fuzzy modeling, can be adopted as useful
guidelines. These properties emerged as a mean to clarify the meaning of a
linguistic term (a fuzzy set) when matched against other linguistic terms in the
same universe of discourse. The proposed set of properties includes: a moderate
number of membership functions, coverage, normality, natural zero positioning
and distinguishability.

Three of these properties seem to have an inherent interest for the clustering
endeavor:

1. A moderate number of membership functions since although this number
is clearly application dependent, if one intends to describe the structure of
the data in a human-friendly way there are strong reasons for imposing an
upper bound on the number of clusters (in the limit, when the number of
membership functions approaches the cardinality of the data, a fuzzy system
becomes a numeric system). This constraint makes sense not only in the
feature space, where the typical number of items efficiently handled at the
short-term memory (7±2) [57] can be adopted as the upper limit of linguistic
terms, but also in the data space since a high number of clusters result in
information granules with a high granularity level.

2. Coverage which states that membership functions should cover the entire
universe of discourse, so that every datum may have a linguistic representa-
tion.

3. Distinguishability since this property is clearly related with cluster separa-
tion (membership functions should be distinct enough from each other).

It is worth noting that these properties can be ensured using a variety of
constrains, hereafter referred as interpretability constraints.

Consider the sigma-count operator, Mp(Lx), defined as follows:

Mp(Lx) = p

√
up

1 + . . .+ up
C (20)
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where Lx is a fuzzy set representing a real-valued pattern x from the data set,
ui (i = 1, . . . , C) is the membership degree of x in the i-th cluster, p being a
positive integer.

Therefore, in the clustering context coverage can be formalized in the following
way:

∀x∈XMp(Lx(x)) > 0 (21)

Alternatively, one can ensure coverage using the concept of optimal interfaces
[70]. Let X = [a, b] ∈ R

m. The ordered pair (Lx,Nx) is said a pair of optimal
interfaces iff

∀x∈XNx(Lx(x)) = x (22)

where Lx : X → [0, 1]n is the mapping provided by the input interface of the
variable x and Nx : [0, 1]n → X with Nx([0, . . . , 0]) = ∅ is the mapping provided
by the output interface associated with the variable x.

Analogously distinguishability can also be enunciated with the help of the
sigma-count measure:

∀x∈XMp(Lx(x)) ≤ 1 (23)

The rationale for this constraint is straightforward: if we have two clusters
“very close” to each other eventually there will be points in between the clusters’
centers with high membership in both clusters. If the clusters are far apart, then
there should not be such cases. Next we show that these constraints generalize
the common constraint (5).

Proposition 1. A partition matrix U represented by a class of membership de-
grees satisfying the constraint (23) and the optimal interface definition

∀j∈{1,...,N}N (L(xj)) = xj (24)

generalizes the constraint (5).

Proof. Observe that L(xj) � [u1j u2j . . . uCj]′. Consider by absurdity that
∃s∈{1,...,N}∀i∈{1,...,C} : uis = 0, or equivalently ∃s∈{1,...,N} : L(xs) = ∅. How-
ever, by definition, the output mapping N is undefined for the empty set, thus
N (L(xs)) �= xs, which contradicts (24).

Therefore ∀j∈{1,...,N}∃i∈{1,...,C} : uij > 0, implying that

C∑
i=1

uij > 0 for all j = 1, . . . , N. (25)

If U satisfies the distinguishability constraint then

∀j∈{1,...,N}Mp(uj) ≤ 1 (26)

where uj � [u1j u2j . . . uCj]′, or in an equivalent way:

Mp(uj) =

(
C∑

i=1

up
ij

)1/p

≤ 1, j = 1, . . . , N (27)



Semantic Driven Fuzzy Clustering 139

Obviously for p = 1, M1(uj) =
∑C

i=1 uij ≤ 1, that together with (25), i.e.,
0 <

∑C
i=1 uij ≤ 1 generalizes the common constraint (5). 	


Notice that p = 1 determines the strongest constraint whereas p = ∞ describes
a loose constraint. Actually it is straightforward to verify that [70]

M1(uj) ≥M2(uj) ≥ . . .M∞(uj) = H(uj) (28)

where H(uj) denotes the height of the fuzzy set uj , i.e., its maximum member-
ship degree.

With this formulation it is clear that:

1. ∀j∈{1,...,N} there is always some non-null membership degree in some cluster.
2. Given a cluster i, i ∈ {1, . . . , C}, there is no guarantee that it has elements,

so it may happen that
∑N

j=1 uij = 0.

In a first analysis, this can be obviated if a penalty term on the number of
clusters is included on the cost functional or if we allow that the optimization
process may also determine the number of clusters. In this work we followed the
second approach as described in the following sections.

4.2 Evolutive Semantic Driven Fuzzy Clustering

Evolutionary Algorithms (EAs) are adaptive robust methods widely applicable
to search, optimization and learning problems [13, 17]. EAs require a limited
amount of knowledge about the problem being solved. Relative evaluation of the
candidate solutions is enough and no derivatives of cost functions are required.
The evolution of the potential solutions over successive generations comprises
different phases. Generally speaking, the first phase involves the quantitative
evaluation of each individual in the population. This value determines the prob-
ability that an individual has to be selected and to carry its genetic material for
the next phase. In the second phase, the selected individuals (potential solutions)
are given the chance to mate and exchange genetic material with other individ-
uals by means of a crossover operator. The result of this reproduction phase
is a new offspring population, which replaces (or sometimes compete with) the
previous population. Some of these newly born individuals were possibly prone
to some mutations. This process continues until a stop criterion has been met.

Chromosome Representation

Evolutionary algorithms, being a general optimization strategy, can be adapted
to objective function based fuzzy clustering. Obviously, it is necessary to find an
adequate representation for the parameters to be optimized, viz. the prototypes
and the membership degrees of the partition matrix. However the simultaneous
optimization of the C prototypes and the C ×N membership degrees seems, to
say the least, unpractical. Thus we restricted the complexity of the optimization
task by optimizing only the prototypes and computing the corresponding mem-
bership degrees using the updating expression of the PCM model (12) which,
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as was previously said, does not impose a strict fuzzy partition since the de-
gree of membership of each point depends exclusively of its distance towards the
prototype.

Fitness Assignment

In the presented evolutionary semantic driven fuzzy clustering algorithm the
quantitative assessment of each potential solution is based on the sum-of-squares
criterion (3) but introduces two extra terms in order to ensure the above men-
tioned properties of coverage and distinguishability:

Qcov =
∑

x ‖x− x∗‖2

Qdist =
∑

x[(Mp(uj) − 1)2step(Mp(uj) − 1)]
(29)

where step represents the unit step function (equals 1 if its argument is greater
than zero and equals 0 otherwise). The index, Qcov, based on the concept of
optimal interfaces [71], seeks an adequate coverage level. To compute x∗ =
Nx(Lx(x)) the internal representation Lx was specified in agreement with (12)
and the output interface Nx was given by the center of gravity defuzzification
method:

x∗j =
∑C

i=1 uijvi∑C
i=1 uij

(30)

The index Qdist is intended to keep the clusters prototypes apart from each
other. This implies that the points with a sigma-count above the unity become
penalized.

A very interesting side effect of these indices, is that in a variable number
of clusters optimization environment Qdist attains its minimum for the single
cluster case, C = 1, whereas Qcov attains its minimum when the number of
clusters is equal to the number of patterns, C = N . To fully comprehend the
importance of this side effect, one should recall that in a variable number of
clusters optimization scheme, QFCM (3) also attains its minimum at C = N .
Therefore, when both three criteria are considered, a balance is obtained for
some C in between 1 and N . In the reported experiments we will demonstrate
that this tradeoff can be used in our advantage as a mean of determination of
the number of clusters.

The quantitative assessment of each individual in the population is given by
the following cost functional:

QESD = QFCM +Qcov +Qdist (31)

Thus the variable length chromosome, exhibiting a set of real coded cluster
prototypes which result in low intra-cluster distance, combined with an adequate
coverage level (and accurate positioning) altogether with clearly distinct clusters
obtains an higher fitness value than other lacking any of these three desired
features.
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Since EAs are designed for maximization problems, the current minimization
problem was converted into a maximization one using the following transforma-
tion:

fitness(x) =
1

1 +QESD(x)
(32)

We would like to stress that in the expression (31) a set of variable weights
could be considered in order to give different importance to each of the three
terms, however such study is beyond the scope of this work. In the reported
experiments we treated each objective in the same way: for each chromosome
its value was calculated, then the whole range of values across the entire pop-
ulation of chromosomes is translated to the unit interval and only after this
normalization the three objectives were summed up as in (31).

4.3 Numerical Examples

A collection of synthetic data sets presenting distinct challenges for the cluster-
ing process was used to demonstrate the viability of our approach. In order to
simplify the visualization in these examples the patterns are distributed in R

2.
Moreover we present the results obtained from two de facto benchmark data sets
from the clustering literature: the Ruspini data set [68] and the Iris Plants data
set [1]. The presented results refer to mean values of ten independent runs per
data set.

The parameters of the EA were kept constant in the presented experiments. A
stopping criterion of 1000 iterations was used. The population was composed of
200 chromosomes, each one representing a set of real-coded cluster prototypes,
as depicted in Fig. 5.

The maximum number of prototypes per chromosome was dependent on the
number of patterns and fixed on the common heuristic approximation for the
maximum number of clusters in a data set, viz.

√
N . Each cluster prototype had

Fig. 5. Graphical representation of the population
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Fig. 6. The BLX-α crossover operator. The big dots represent the parents, while the
small dots indicate possible children.

a bit field indicating whether or not it was active, allowing a variable number
of clusters representation. During crossover this bit field was exchanged between
parents – as we will see the crossover of the prototypes was more elaborated.

The selection operator applied in the experiments was stochastic sampling
with replacement also known as the roulette wheel selection method. This sam-
pling method selects parents according to a spin of a weighted roulette wheel.
The high-fit individuals will have more area assigned to them on the wheel and
hence, a higher probability of being selected to the mating pool where they are
combined with other individuals by means of a crossover operator.

The blend crossover operator, BLX-α, is specifically designed for real-valued
chromosomes [20] and was used to combine the genes encoding the prototypes.
The resulting offsprings are distributed across a hyper-box encompassing the two
parents. The parameter α extends the bounds of the hyper-box, hence to the
children is given the possibility to explore new search space inside of an extended
range given by their parents, see Fig. 6.

Each real-valued component, xi, of the new offspring is randomly chosen (with
an uniform distribution) from the interval [ximin − I.α, ximax + I.α], where
ximin = min(xA

i , x
B
i ), ximax = max(xA

i , x
B
i ) and I = ximax − ximin with A

and B denoting the two progenitors. In fact BLX-α is designed to promote di-
versity, greater with the increase of α, counteracting the decrease in variance that
results from the application of the selection operator hence preventing prema-
ture convergence of the population. In this work the BLX-α crossover operator
was applied with 0.9 probability and the parameter α was set to 0.5 – a common
choice in the literature.

The probability of the uniform mutation operator was set to 0.05. In order to
prevent that good solutions disappear from the population an elitist approach
was used. For each c ∈ {2, . . . ,

√
N} the best chromosome with c active proto-

types was preserved for the next generation. The remaining parameters of the



Semantic Driven Fuzzy Clustering 143

Fig. 7. Data set with 5 clusters each one comprising 30 patterns. The unfilled circles
mark the prototypes.

algorithm were defined as follows: p = 1 in (29); m = 2 in (3), (12) and (13).
In the presented experiments we used the Euclidean distance as the measure of
dissimilarity.

Example 1

In this example the data set is composed of five visually separable clusters re-
sulting from a normal distribution of thirty elements around 5 distinct points
(Table 1 presents the details of the distribution).

Figure 7 presents the data set and the means of the cluster prototypes (unfilled
circles) for ten distinct runs.

It is interesting to refer that the algorithm was able to find the number of
focal elements used to generate the data set in every run. Also the positioning
of the centers of the clusters reveals a noticeable feature of the algorithm: the
distinguishability index is contributing to maintain the areas of influence of the
clusters apart from each other.

Table 1. Details of the normal distribution of the data set of Example 1 (5 clusters)

Cluster #Points Mean Standard Deviation

1 30 (0.3; 0.8) (0.05; 0.05)

2 30 (0.2; 0.2) (0.05; 0.05)

3 30 (0.5; 0.2) (0.05; 0.05)

4 30 (0.7; 0.3) (0.05; 0.05)

5 30 (0.9; 0.7) (0.05; 0.05)
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Fig. 8. Data set with 2 clusters each one comprising 40 patterns and an additional
cluster with 10 patterns. The unfilled circles mark the prototypes.

Example 2

The data set presented here is formed by three visually separable clusters. Two
of them are composed of forty patterns whereas the third one is composed of
only ten elements. Table 2 presents the details of the distribution.

Table 2. Details of the normal distribution of the data set of Example 2 (3 clusters)

Cluster #Points Mean Standard Deviation

1 40 (0.2; 0.7) (0.05; 0.05)

2 40 (0.7; 0.2) (0.05; 0.05)

3 10 (0.9; 0.9) (0.05; 0.05)

Figure 8 presents the data set and the means of the cluster prototypes for
the ten distinct runs. The algorithm was able to recognize the correct number
of clusters.

In the next experiment the cluster was further reduced to five points. Even
for this more demanding case, the algorithm was able to recognize the data
structure, see Fig. 9.

Next, the third “cluster” was further shrunk to only two points, see Fig. 10.
In this case the algorithm negotiated these as outliers.

In order to infer the robustness of the algorithm to noise, we kept the 2 main
clusters and injected 50 noise points uniformly distributed in the unit square,
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Fig. 9. Data set with 2 clusters each one comprising 40 patterns and an additional
cluster with 5 patterns. The unfilled circles mark the prototypes.

Fig. 10. Data set with 2 clusters each one comprising 40 patterns and two outliers.
The unfilled circles mark the prototypes.

Fig. 11. Once again the algorithm was able to correctly identify the two clusters
and find the optimal number of clusters.

Ruspini Data Set

The Ruspini data set [68] has become a benchmark to assessing the performance
of clustering algorithms. Figure 12 shows the Ruspini data set and clusters found
by the proposed algorithm.
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Fig. 11. Data set with 2 clusters each one comprising 40 patterns plus 50 noisy pat-
terns. The unfilled circles mark the prototypes.

Fig. 12. Ruspini data set. The unfilled circles mark the prototypes.

Although the data has a much different scale than the unit square considered
in the previous examples no additional adjustments were made to the algo-
rithm. However this does not mean that when faced with huge data sets with
large dimensionality these are not due. As a matter of fact for these cases a
scale invariant distance function should be used and the relative weight of the
distinguishability constraint should have to be analyzed. It is interesting to note
that the algorithm was able to find the optimal number of clusters.
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Iris Plants

The Iris Plants database is one of the best known databases in the pattern
recognition literature. The data set contains 3 classes referring to 3 types of
iris plant physically labeled as Setosa, Versicolour and Virginica. There are 50
instances per class, which are described by 4 attributes: sepal length, sepal width,
petal length and petal width. The first class is linearly separable from the others,
but the other two classes are known to overlap each other in their numeric
representations.

In this case the results of the algorithm were not conclusive. In exactly 50% of
the runs the suggested number of clusters was 3 whereas in the remaining ones it
produced only two clusters. This is a curious result since, although Iris database
contains three physical labeled classes, from a geometrical point of view it is
probably composed of only two distinct clusters. For the runs which identify 3
clusters the overall mean value of correct classifications was 92.75 ± 1.58. The
error rate results exclusively from patterns misclassified in the two overlapping
classes.

As a concluding remark it is worthwhile to stress that the translation of the
human-defined semantic constraints referring to coverage and distinguishability
of linguistic terms into the clustering framework is encouraging since in the
presented experiments the proposed evolutionary algorithm, with the inclusion
of the semantic constraints, was able to find the centers of the clusters and, more
important, to determine the correct number of clusters without appealing to the
computation of any kind of validity measures.

5 Conclusions

The fuzzy clustering framework provides a collection of tools well suited to
discover structural information among challenging data sets with overlapping
chunks of data and vaguely defined boundaries between clusters. Moreover, due
to the wealthy of tools available and seamless integration of linguistic mean-
ing it positions itself as an excellent mechanism to support the construction of
information granules. These features assume a level of paramount importance
not only for the data analyst, but also for the end-user who definitely needs a
user-friendly mean to interact with the system. This interaction subsumes two
facets: the human-like intuitive presentation of the clustering findings and con-
sequent validation of these, as well as the transmission of additional knowledge
that can be used to improve the clustering results. Along the first two parts of
this chapter it was made clear that the fuzzy clustering framework is perfectly
able to provide answers to each one of these aspects.

The leitmotif of the last part of the chapter was the discussion of the fuzzy
clustering from a diametrically different point of view: “Can the clustering pro-
cess be conceptualized in a more human-oriented way?” In this regard it was
shown that the adoption of a set of semantic constraints aiming at the en-
hancement of the human perception of the system can also be applied to fuzzy
clustering algorithms.
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Abstract. A core tool for granular modeling is the use of linguistic rules, e.g. in fuzzy
control approaches. We provide the reader with basic mathematical tools to discuss
the behavior of system of such linguistic rules.

These mathematical tools range from fuzzy logic and fuzzy set theory, through the
consideration of fuzzy relation equations, up to discussions of interpolation strategies
and to the use of aggregation operators.

1 Introduction

In their everyday behavior humans quite often reason qualitatively. And they
do this rather successful, even in handling complex situations. For the knowl-
edge engineer it is an interesting and important challenge to adopt this type of
behavior in his modeling activities.

Fuzzy sets and fuzzy logic have been designed and developed just for this
purpose over the last decades. And they offer a rich variety of methods for this
purpose: methods, which have quite different mathematical tools as origin and
background.

In this chapter we concentrate on tools which are related to logic in the formal
mathematical sense of the word, and to a set theoretic – particularly a relation
theoretic – background.

The machinery of mathematical fuzzy logic, which is the topic of the Sections 2
and 3, offers a background to model and provides a tool to understand the
treatment of vague information.

The machinery of fuzzy relation equations, discussed in Sections 4 to 6, is
a core tool from the mathematical background for the understanding of fuzzy
control approaches, and a prototypical case for the use of information granules.

All of these tools derive a lot of flexibility from the use of t-norms, i.e. of
binary operations in the unit interval which are associative, commutative, and
isotonic, and which have 1 as their neutral element.

Some further reflections on the topic of fuzzy relation equations provide ad-
ditional mathematical tools to understand them: the interpolation method, as
well as the use of aggregation operators.
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2 Fuzzy Sets and Many-Valued Logic

2.1 Membership Degrees as Truth Degrees

A fuzzy set A is characterized by its generalized characteristic function μA : X →
[0, 1], called membership function of A and defined over some given universe of
discourse X, i.e. it is a fuzzy subset of X.

The essential idea behind this approach was to have the membership degree
μA(a) for each point a ∈ X as a gradation of its membership with respect to the
fuzzy set A. And this degree just is a degree to which the sentence “a is a member
of A” holds true. Hence it is natural to interpret the membership degrees of fuzzy
sets as truth degrees of the membership predicate in some (suitable system of)
many-valued logic S.

To do this in a reasonable way one has to accept some minimal conditions
concerning the formal language LS of this system.

Disregarding – for simplicity – fuzzy sets of type 2 and of every higher type
as well one has, from the set theoretic point of view, fuzzy sets as (generalized)
sets of first level over a given class of urelements, the universe of discourse for
these fuzzy sets. Therefore the intended language needs besides a (generalized,
i.e. graded) binary membership predicate ε e.g. two types of variables: (i) lower
case latin letters a, b, c, . . . , x, y, z for urelements, i.e. for points of the universe
of discourse X, and (ii) upper case latin letters A,B,C, . . . for fuzzy subsets of
X. And of course it has some set of connectives and some quantifiers – and thus
a suitable notion of well-formed formula.

Having in mind the standard fuzzy sets with membership degrees in the real
unit interval [0, 1] thus forces to assume that S is an infinitely many-valued logic.

It is not necessary to fix all the details of the language LS in advance. We
suppose, for simplicity of notation, that from the context it shall always be clear
which objects the individual symbols are to denote.1 Denoting the truth degree
of a well-formed formula H by [[H ]], to identify membership degrees with suitable
truth degrees then means to put

μA(x) = [[x εA ]]. (1)

This type of interpretation proves quite useful: it opens the doors to clarify far
reaching analogies between notions and results related to fuzzy sets and those
ones related to usual sets, cf. [14, 16].

2.2 Doing Fuzzy Set Theory Using MVL Language

Based on the main idea to look at the membership degrees of fuzzy sets as
truth degrees of a suitable membership predicate, it e.g. becomes quite natural
to describe fuzzy sets by a (generalized) class term notation, adapting the cor-
responding notation {x | H(x)} from traditional set theory and introducing a
corresponding notation for fuzzy sets by
1 Which, formally, means that we assume that a valuation always is determined by

the context and has not explicitly to be mentioned.
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A = {x ∈ X ‖H(x)} ⇔def μA(x) = [[H(x)]] for all x ∈ X, (2)

with now H a well-formed formula of the language LS. As usual, the shorter
notation {x ‖H(x)} is also used, and even preferred.

2.2.1 Fuzzy Set Algebra
With this notation the intersection and the cartesian product of fuzzy sets A,B
are, even in their t-norm based version, determined as

A ∩t B = {x ‖ x εA ∧t x εB},
A×t B = {(x, y) ‖ x εA ∧t y εB},

and the standard, i.e. min-based form of the compositional rule of inference2

(CRI for short) applied w.r.t. a fuzzy relation R and a fuzzy set A becomes

A ◦R = R′′A = {y ‖ ∃x(x εA ∧t (x, y) εR)} (3)

with t = min. This is the analogue of a formula well known from elementary
relation algebra which describes the full image of a set A under a relation R.

Of course, also other choices of the t-norm involved here are possible.
Also for the inclusion relation between fuzzy sets this approach works well.

The standard definition of inclusion amounts to

A ⊂ B ⇔ μA(x) ≤ μB(x) for all x ∈ X

which in the language of many-valued logic is the same as

A ⊂ B ⇔ |= ∀x(x εA→t x εB) (4)

w.r.t. any one R-implication connective based on a left continuous t-norm.
Obviously this version (4) of inclusion is easily generalized to a “fuzzified”,

i.e. (truly) many-valued inclusion relation defined as

A � B =def ∀x(x εA→t x εB). (5)

And this many-valued inclusion relation for fuzzy sets has still nice properties,
e.g. it is t-transitive, i.e. one has:

|= (A � B ∧t B � C →t A � C).

2.2.2 Fuzzy Relation Theory
This natural approach (3) toward the compositional rule of inference is almost
the same as the usual definition of the relational product R ◦ S of two fuzzy
relation, now – even related to some suitable t-norm – to be determined as
2 This compositional rule of inference is of central importance for the applications

of fuzzy sets to fuzzy control and to approximate reasoning, cf. Chapter 1 of the
Handbook volume “Fuzzy Sets in Approximate Reasoning and Information Systems”
edited by J. Bezdek, D. Dubois and H. Prade.
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R ◦t S = {(x, y) ‖ ∃z((x, z) εR ∧t (z, y) ε S
)}.

Relation properties become, in this context, again characterizations which for-
mally read as the corresponding properties of crisp sets. Consider, as an example,
transitivity of a fuzzy (binary) relation R in the universe of discourse X w.r.t.
some given t-norm. The usual condition for all x, y, z ∈ X

t(μR(x, y), μR(y, z)) ≤ μR(x, z)

in the language LS of the intended suitable [0, 1]-valued system for fuzzy set
theory becomes the condition

|= R(x, y) ∧t R(y, z) →t R(x, z)

for all x, y, z ∈ X or, even better, becomes

|= ∀xyz(R(x, y) ∧t R(y, z) →t R(x, z)
)

(6)

with the universal quantifier ∀ as in the �Lukasiewicz systems.
This point of view not only opens the way for a treatment of fuzzy rela-

tions quite analogous to the usual discussion of properties of crisp relations, it
also opens the way to consider graded versions of properties of fuzzy relations,
cf. [14]. In the case of transitivity, a graded or “fuzzified” predicate Trans with
the intended meaning “is transitive” may be defined as

Trans(R) =def ∀xyz
(
R(x, y) ∧t R(y, z) →t R(x, z)

)
. (7)

This point of view has recently been treated in more detail e.g. in [1].

3 T-Norm-Based Mathematical Fuzzy Logics

3.1 Basic Infinite Valued Logics

If one looks for infinite valued logics of the kind which is needed as the underlying
logic for a theory of fuzzy sets, one finds three main systems:

• the �Lukasiewicz logic L as explained in [31];
• the Gödel logic G from [11];
• the product logic Π studied in [23].

In their original presentations, these logics look rather different, regarding their
propositional parts. For the first order extensions, however, there is a unique
strategy: one adds a universal and an existential quantifier such that quantified
formulas get, respectively, as their truth degrees the infimum and the supremum
of all the particular cases in the range of the quantifiers.

As a reference for these and also other many-valued logics in general, the
reader may consult [16].
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3.1.1 Gödel Logic
The simplest one of these logics is the Gödel logic G which has a conjunction ∧
and a disjunction ∨ defined by the minimum and the maximum, respectively, of
the truth degrees of the constituents:

u ∧ v = min{u, v} , u ∨ v = max{u, v} . (8)

For simplicity we denote here and later on the connectives and the corresponding
truth degree functions by the same symbol.

The Gödel logic has also a negation ∼ and an implication →G defined by the
truth degree functions

∼ u =
{

1 , if u = 0;
0 , if u > 0. u→G v =

{
1 , if u ≤ v;
v , if u > v. (9)

3.1.2 �Lukasiewicz Logic
The �Lukasiewicz logic L was originally designed in [31] with only two primitive
connectives, an implication →L and a negation ¬ characterized by the truth
degree functions

¬u = 1 − u , u→L v = min{1, 1 − u+ v} . (10)

However, it is possible to define further connectives from these primitive ones.
With

ϕ & ψ =df ¬(ϕ→L ¬ψ) , ϕ � ψ =df ¬ϕ→L ψ (11)

one gets a (strong) conjunction and a (strong) disjunction with truth degree
functions

u & v = max{u+ v − 1, 0} , u � v = min{u+ v, 1} , (12)

usually called the �Lukasiewicz (arithmetical) conjunction and the �Lukasiewicz
(arithmetical) disjunction. It should be mentioned that these connectives are
linked together via a De Morgan law using the standard negation of this system:

¬(u & v) = ¬u � ¬v . (13)

With the additional definitions

ϕ ∧ ψ =df ϕ & (ϕ→L ψ) ϕ ∨ ψ =df (ϕ→L ψ) →L ψ (14)

one gets another (weak) conjunction ∧ with truth degree function min, and a
further (weak) disjunction ∨ with max as truth degree function, i.e. one has the
conjunction and the disjunction of the Gödel logic also available.

3.1.3 Product Logic
The product logic Π , in detail explained in [23], has a fundamental conjunction
� with the ordinary product of reals as its truth degree function, as well as an
implication →Π with truth degree function
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u→Π v =
{

1 , if u ≤ v;
u
v , if u < v. (15)

Additionally it has a truth degree constant 0 to denote the truth degree zero.
In this context, a negation and a further conjunction are defined as

∼ ϕ =df ϕ→Π 0 , ϕ ∧ ψ =df ϕ� (ϕ→Π ψ) . (16)

Routine calculations show that both connectives coincide with the corresponding
ones of the Gödel logic. And also the disjunction ∨ of the Gödel logic becomes
available, now via the definition

ϕ ∨ ψ =df ((ϕ→Π ψ) →Π ψ) ∧ ((ψ →Π ϕ) →Π ϕ) . (17)

3.2 Standard and Algebraic Semantics

These fundamental infinite valued logics have their standard semantics as ex-
plained: the real unit interval [0, 1] as truth degree set, and the connectives (and
quantifiers) as mentioned.

In the standard way, as known from classical logic, one then can introduce
for each formula ϕ the notion of its validity in a model, which in these logics
means that ϕ has the truth degree 1 w.r.t. this model. By a model we mean
either—in the propositional case—an evaluation of the propositional variables
by truth degrees, or—in the first-order case—a suitable interpretation of all the
non-logical constants together with an assignment of the variables.

Based upon this, one defines logical validity of a formula ϕ as validity of ϕ in
each model, and the entailment relation holds between a set Σ of formulas and
a formula ϕ iff each model of Σ is also a model of ϕ.

In the standard terminology of many-valued logic in general, this means that
all the three systems G, L, Π have the truth degree one as their only designated
truth degree.

Besides these standard semantics, all three of these basic infinite valued logics
have also algebraic semantics determined by suitable classes K of truth degree
structures. The situation is similar here to the case of classical logic: the logically
valid formulas in classical logic are also just all those formulas which are valid
in all Boolean algebras.

Of course, these structures should have the same signature as the language
L of the corresponding logic. This means that these structures provide for each
connective of the language L an operation of the same arity, and they have
to have—in the case that one discusses the corresponding first order logics—
suprema and infima for all those subsets which may appear as value sets of
formulas. Particularly, hence, they have to be (partially) ordered, or at least
pre-ordered.

For each formula ϕ of the language L of the corresponding logic, for each
such structure A, and for each evaluation e which maps the set of propositional
variables of L into the carrier of A, one has to define a value e(ϕ), and finally one
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has to define what it means that such a formula ϕ is valid in A. Then a formula
ϕ is logically valid w.r.t. this class K iff ϕ is valid in all structures from K.

The standard way to arrive at such classes of structures is to start from the
Lindenbaum algebra of the corresponding logic, i.e. its algebra of formulas mod-
ulo the congruence relation of logical equivalence. For this Lindenbaum algebra
one then has to determine a class of similar algebraic structures which—ideally—
forms a variety.

For the Gödel logic such a class of structures is, according to the complete-
ness proof of [8], the class of all Heyting algebras, i.e. of all relatively pseudo-
complemented lattices, which satisfy the prelinearity condition

(u � v) � (v � u) = 1 . (18)

Here � is the lattice join and � the relative pseudo-complement.
For the �Lukasiewicz logic the corresponding class of structures is the class of

all MV-algebras, first introduced again within a completeness proof in [3], and
extensively studied in [5].

And for the product logic the authors of [23] introduce a class of lattice ordered
semigroups which they call product algebras.

It is interesting to recognize that all these structures—pre-linear Heyting alge-
bras, MV-algebras, and product algebras—are abelian lattice ordered semigroups
with an additional “residuation” operation.

3.3 Logics with t-Norm Based Connectives

The fundamental infinite valued logics from Section 3.1 look quite different if
one has in mind the form in which they first were presented.

Fortunately, however, there is a common generalization which allows to
present all these three logics in a uniform way. In this uniform presentation
one of the conjunction connectives becomes a core role: ∧ in the system G, & in
the system L, and � in the system Π .

But this uniform generalization covers a much larger class of infinite valued
logics over [0, 1]: the core conjunction connective—which shall now in general
be denoted &—has only to have a truth degree function ⊗ which, as a binary
operation in the real unit interval, should be an associative, commutative, and
isotonic operation which has 1 as a neutral element, i.e. should satisfy for arbi-
trary x, y, z ∈ [0, 1]:

(T1) x⊗ (y ⊗ z) = (x⊗ y) ⊗ z,
(T2) x⊗ y = y ⊗ x,
(T3) if x ≤ y then x⊗ z ≤ y ⊗ z,
(T4) x⊗ 1 = x.

Such binary operations are known as t-norms and have been used in the context
of probabilistic metric spaces, cf. e.g. [29]. At the same time they are considered
as natural candidates for truth degree functions of conjunction connectives. And
from such a t-norm one is able to derive (essentially) all the other truth degree
functions for further connectives.
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The minimum operation u ∧ v from (8), the �Lukasiewicz arithmetic conjunc-
tion u& v from (12), and the ordinary product are the best known examples of
t-norms.

In algebraic terms, such a t-norm ⊗ makes the real unit interval into an ordered
monoid, i.e. into an abelian semigroup with unit element. And this ordered
monoid is even integral, i.e. its unit element is at the same time the universal
upper bound of the ordering. Additionally this monoid has because of

0 ⊗ x ≤ 0 ⊗ 1 = 0 (19)

the number 0 as an annihilator.
Starting from a t-norm ⊗ one finds a truth degree function � for an impli-

cation connective via the adjointness condition

x⊗ z ≤ y ⇐⇒ z ≤ (x � y) . (20)

However, to guarantee that this adjointness condition (20) determines the op-
eration � uniquely, one has to assume that the t-norm ⊗ is a left continuous
function in both arguments. Indeed, the adjointness condition (20) is equivalent
to the condition that ⊗ is left continuous in both arguments, cf. [16].

Instead of this adjointness condition (20) one could equivalently either give
the direct definition

x � y = sup{z |x⊗ z ≤ y} (21)

of the residuation operation �, or one could force the t-norm ⊗ to have the
sup-preservation property

sup
i→∞

(xi ⊗ y) = ( sup
i→∞

xi) ⊗ y (22)

for each y ∈ [0, 1] and each non-decreasing sequence (xi)i→∞ from the real unit
interval.

In this framework one additionally introduces a further unary operation − by

−x =df x � 0 , (23)

and considers this as the truth degree function of a negation connective. That
this works also in the formalized language of the corresponding system of logic
forces to introduce into this language a truth degree constant 0 to denote the
truth degree zero.

And finally one likes to have the weak conjunction and disjunction connec-
tives ∧,∨ available. These connectives should also be added to the vocabulary.
However, it suffices to add only the min-conjunction ∧, because then for each
left continuous t-norm ⊗ and its residuated implication � one has, completely
similar to the situation (17) in the product logic,

u ∨ v = ((u � v) � v) ∧ ((v � u) � u) . (24)

All these considerations lead in a natural way to algebraic structures which,
starting from the unit interval, consider a left continuous t-norm ⊗ together with
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its residuation operation �, with the minimum-operation ∧, and the maximum
operation ∨ as basic operations of such an algebraic structure, and with the
particular truth degrees 0, 1 as fixed objects (i.e. as nullary operations) of the
structure. Such an algebraic structure

〈[0, 1],∧,∨,⊗,�, 0, 1〉 (25)

shall be coined to be a t-norm algebra.

3.4 Continuous t-Norms

Among the large class of all t-norms the continuous ones are best understood.
A t-norm is continuous iff it is continuous as a real function of two variables,
or equivalently, iff it is continuous in each argument (with the other one as a
parameter), cf. [16, 29].

Furthermore, all continuous t-norms are ordinal sums of only three of them:
the �Lukasiewicz arithmetic t-norm u& v from (12), the ordinary product t-norm,
and the minimum operation u ∧ v. The definition of an ordinal sum of t-norms
is the following one.

Definition 1. Suppose that ([ai, bi])i∈I is a countable family of non-overlapping
proper subintervals of the unit interval [0, 1], let (ti)i∈I be a family of t-norms,
and let (ϕi)i∈I be a family of mappings such that each ϕi is an order isomorphism
from [ai, bi] onto [0, 1]. Then the (generalized) ordinal sum of the combined
family (([ai, bi], ti, ϕi))i∈I is the binary function T : [0, 1]2 → [0, 1] characterized
by

T (u, v) =

{
ϕk

−1(tk(ϕk(u), ϕk(v)), if u, v ∈ [ak, bk]
min{u, v} otherwise.

(26)

It is easy to see that an order isomorphic copy of the minimum t-norm is again
the minimum operation. Thus the whole construction of ordinal sums of t-norms
even allows to assume that the summands are formed from t-norms different from
the minimum t-norm. This detail, however, shall be inessential for the present
considerations.

But it should be mentioned that all the endpoints ai, bi of the interval family
([ai, bi])i∈I give idempotents of the resulting ordinal sum t-norm T :

T (ai, ai) = ai , T (bi, bi) = bi for all i ∈ I.

Conversely, if one knows all the idempotents of a given continuous t-norm t, i.e.
all u ∈ [0, 1] with t(u, u) = u, then one is able to give a representation of t as an
ordinal sum, as explained again in [29].

The general result, given e.g. in [16, 29], reads as follows.

Theorem 1. Each continuous t-norm t is the (generalized) ordinal sum of
(isomorphic) copies of the �Lukasiewicz t-norm, the product t-norm, and the min-
imum t-norm.
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As was mentioned in Section 3.1, the t-norm based logics which are determined
by these three t-norms are well known and adequately axiomatized.

Therefore one is interested to find adequate axiomatizations also for further
continuous t-norms. A global solution of this problem, i.e. a solution which did
not only cover some few particular cases, appeared as quite difficult. Therefore,
instead, one first has been interested to find all those formulas of the language
of t-norm based systems which are logically valid in each one of these logics.

There seems to be a natural way to get an algebraic semantics for these consid-
erations: the class of all t-norm algebras with a continuous t-norm should either
form such an algebraic semantics, or should be a constitutive part—preferably a
generating set—of a variety of algebraic structures which form such an algebraic
semantics.

However, there seems to be an inadequacy in the description of this algebraic
semantics: on the one hand the notion of t-norm algebra is a purely algebraic
notion, the notion of continuity of a t-norm on the other hand is an analytical
one. Fortunately, there is a possibility to give an algebraic characterization for
the continuity of t-norms. It needs a further notion.

Definition 2. A t-norm algebra 〈[0, 1],∧,∨,⊗,�, 0, 1〉 is divisible iff one has
for all a, b ∈ L:

a ∧ b = a⊗ (a � b) . (27)

And this notion gives the algebraic counterpart for the continuity, as shown e.g.
in [16, 29].

Proposition 1. A t-norm algebra 〈[0, 1],∧,∨,⊗,�, 0, 1〉 is divisible iff the t-
norm ⊗ is continuous.

3.5 The Logic of Continuous t-Norms

Instead of considering for each particular t-norm t the t-based logic, it seems
preferable and more interesting to consider the common logic of all t-norms of
some kind. This was first realized for the class of all continuous t-norms by
Hájek [22]. This logic should have as a natural standard semantics the class of
all t-norm algebras with a continuous t-norm.

However, to built up a logic with an algebraic semantics determined by a class
K of algebraic structures becomes quite natural in the cases that this class K is
a variety: i.e. a class which is equationally definable—or equivalently, in more
algebraic terms, which is closed under forming direct products, substructures,
and homomorphic images.

Unfortunately, the class of t-norm algebras (with a continuous t-norm or not)
is not a variety: it is not closed under direct products because each t-norm
algebra is linearly ordered, but the direct products of linearly ordered structures
are not linearly ordered, in general. Hence one may expect that it would be
helpful for the development of a logic of continuous t-norms to extend the class
of all divisible t-norm algebras in a moderate way to get a variety. And indeed
this idea works, and is in detail explained in [22].
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The core points are that one considers instead of the divisible t-norm alge-
bras, which are linearly ordered integral monoids as mentioned previously, now
lattice ordered integral monoids which are divisible, which have an additional
residuation operation connected with the semigroup operation via an adjoint-
ness condition like (20), and which satisfy a pre-linearity condition like (18).
These structures have been called BL-algebras; they are completely defined in
the following way.

Definition 3. A BL-algebra L = 〈L,∨,∧, ∗,→,0,1〉 is an algebraic structure
such that

(i) (L,∨,∧,0,1) is a bounded lattice, i.e. has 0 and 1 as the universal lower and
upper bounds w.r.t. the lattice ordering ≤,

(ii) (L, ∗,1) is an abelian monoid, i.e. a commutative semigroup with unit 1 such
that the multiplication ∗ is associative, commutative and satisfies 1 ∗x = x
for all x ∈ L,

(iii) the binary operations ∗ and → form an adjoint pair, i.e. satisfy for all
x, y, z ∈ L the adjointness condition

z ≤ (x→ y) ⇐⇒ x ∗ z ≤ y, (28)

(iv) and moreover, for all x, y ∈ L one has satisfied the pre-linearity condition

(x→ y) ∨ (y → x) = 1 (29)

as well as the divisibility condition

x ∗(x→ y) = x ∧ y . (30)

The axiomatization of Hájek [22] for the basic t-norm logic BL (in [16] denoted
BTL), i.e. for the class of all well-formed formulas which are valid in all BL-
algebras, is given in a language LT which has as basic vocabulary the connectives
→,& and the truth degree constant 0, taken in each BL-algebra 〈L,∩,∪, ∗,�,
0, 1〉 as the operations �, ∗ and the element 0. Then this t-norm based logic has
as axiom system AxBL the following schemata:

(AxBL1) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ)) ,
(AxBL2) ϕ&ψ → ϕ ,
(AxBL3) ϕ&ψ → ψ&ϕ ,
(AxBL4) (ϕ→ (ψ → χ)) → (ϕ&ψ → χ) ,
(AxBL5) (ϕ&ψ → χ) → (ϕ→ (ψ → χ)) ,
(AxBL6) ϕ& (ϕ→ ψ) → ψ& (ψ → ϕ) ,
(AxBL7) ((ϕ→ ψ) → χ) → (((ψ → ϕ) → χ) → χ) ,
(AxBL8) 0 → ϕ ,

and has as its (only) inference rule the rule of detachment, or: modus ponens
(w.r.t. the implication connective →).

The logical calculus which is constituted by this axiom system and its inference
rule, and which has the standard notion of derivation, shall be denoted by KBL

or just by BL. (Similarly in other cases.)
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Starting from the primitive connectives →,& and the truth degree constant
0, the language LT of BL is extended by definitions of additional connectives
∧,∨,¬:

ϕ ∧ ψ =df ϕ& (ϕ→ ψ) , (31)
ϕ ∨ ψ =df ((ϕ→ ψ) → ψ) ∧ ((ψ → ϕ) → ϕ) , (32)

¬ϕ =df ϕ→ 0 . (33)

These additional connectives ∧,∨ just have the lattice operations ∩,∪ as their
truth degree functions.

It is a routine matter, but a bit tedious, to check that this logical calculus KBL,
usually called the axiomatic system BL, is sound, i.e. derives only such formulas
which are valid in all BL-algebras. A proof is given in [22], together with a proof
of a corresponding completeness theorem.

Corollary 1. The Lindenbaum algebra of the axiomatic system BL is a BL-
algebra.

Theorem 2 (General Completeness). A formula ϕ of the language LT is
derivable within the axiomatic system BL iff ϕ is valid in all BL-algebras.

The proof method yields that each BL-algebra is (isomorphic to) a subdirect
product of linearly ordered BL-algebras, i.e. of BL-chains. Thus it allows a nice
modification of the previous result.

Corollary 2 (General Completeness; Version 2). A formula ϕ of LT is
derivable within the axiomatic system BL iff ϕ is valid in all BL-chains.

But even more is provable and leads back to the starting point of the whole
approach: the logical calculus KBL characterizes just those formulas which hold
true w.r.t. all divisible t-norm algebras. This was proved in [4].

Theorem 3 (Standard Completeness). The class of all formula which are
provable in the system BL coincides with the class of all formulas which are
logically valid in all t-norm algebras with a continuous t-norm.

And another generalization of Theorem 2 deserves to be mentioned. To state
it, let us call schematic extension of BL every extension which consists in an
addition of finitely many axiom schemata to the axiom schemata of BL. And let
us denote such an extension by BL(C). And call BL(C)-algebra each BL-algebra
A which makes A-valid all formulas of C.

Then one can prove, as done in [22], an even more general completeness result.

Theorem 4 (Extended General Completeness). For each finite set C of
axiom schemata and any formula ϕ of LT there are equivalent:

(i) ϕ is derivable within BL(C);
(ii) ϕ is valid in all BL(C)-algebras;
(iii) ϕ is valid in all BL(C)-chains.
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The extension of these considerations to the first-order case is also given in [22],
but shall not be discussed here.

But the algebraic machinery allows even deeper insights. After some par-
ticular results e.g. in [24, 25], the study of such subvarieties of the variety
of all BL-algebras which are generated by single t-norm algebras of the form
〈[0, 1],∧,∨,⊗,�, 0, 1〉 with a continuous t-norm ⊗ led to (finite) axiomatiza-
tions of those t-norm based logics which have a standard semantics determined
just by this continuous t-norm algebra. These results have been presented in [10].

3.6 The Logic of Left Continuous t-Norms

The guess of Esteva/Godo [9] has been that one should arrive at the logic of
left continuous t-norms if one starts from the logic of continuous t-norms and
deletes the continuity condition, i.e. the divisibility condition (27).

The algebraic approach needs only a small modification: in the Definition
3 of BL-algebras one has simply to delete the divisibility condition (30). The
resulting algebraic structures have been called MTL-algebras. They again form
a variety.

Following this idea, one has to modify the previous axiom system in a suitable
way. And one has to delete the definition (31) of the connective ∧, because
this definition (together with suitable axioms) essentially codes the divisibility
condition. The definition (32) of the connective ∨ remains unchanged.

As a result one now considers a new system MTL of mathematical fuzzy logic,
known as monoidal t-norm logic, characterized semantically by the class of all
MTL-algebras. It is connected with the axiom system

(AxMTL1) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ)) ,
(AxMTL2) ϕ&ψ → ϕ ,
(AxMTL3) ϕ&ψ → ψ&ϕ ,
(AxMTL4) (ϕ→ (ψ → χ)) → (ϕ&ψ → χ) ,
(AxMTL5) (ϕ&ψ → χ) → (ϕ→ (ψ → χ)) ,
(AxMTL6) ϕ ∧ ψ → ϕ ,
(AxMTL7) ϕ ∧ ψ → ψ ∧ ϕ ,
(AxMTL8) ϕ& (ϕ→ ψ) → ϕ ∧ ψ ,
(AxMTL9) 0 → ϕ ,
(AxMTL10) ((ϕ→ ψ) → χ) → (((ψ → ϕ) → χ) → χ) ,

together with the rule of detachment (w.r.t. the implication connective →) as
(the only) inference rule.

It is a routine matter, but again tedious, to check that this logical calcu-
lus KMTL is sound, i.e. derives only such formulas which are valid in all MTL-
algebras.

Corollary 3. The Lindenbaum algebra of the logical calculus KMTL is an MTL-
algebra.

Proofs of this result and also of the following completeness theorem are given
in [9].
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Theorem 5 (General Completeness). A formula ϕ of the language LT is
derivable within the logical calculus KMTL iff ϕ is valid in all MTL-algebras.

Again the proof method yields that each MTL-algebra is (isomorphic to) a sub-
direct product of linearly ordered MTL-algebras, i.e. of MTL-chains.

Corollary 4 (General Completeness; Version 2). A formula ϕ of LT is
derivable within the axiomatic system MTL iff ϕ is valid in all MTL-chains.

And again, similar as for the BL-case, even more is provable: the logical calculus
KMTL characterizes just these formulas which hold true w.r.t. all those t-norm
based logics which are determined by a left continuous t-norm. A proof is given
in [27].

Theorem 6 (Standard Completeness). The class of all formulas which are
provable in the logical calculus KMTL coincides with the class of all formulas
which are logically valid in all t-norm algebras with a left continuous t-norm.

This result again means, as the similar one for the logic of continuous t-norms,
that the variety of all MTL-algebras is the smallest variety which contains all
t-norm algebras with a left continuous t-norm.

Because of the fact that the BL-algebras are the divisible MTL-algebras, one
gets another adequate axiomatization of the basic t-norm logic BL if one extends
the axiom system KMTL with the additional axiom schema

ϕ ∧ ψ → ϕ&(ϕ→ ψ) . (34)

The simplest way to prove that this implication is sufficient is to show that the
inequality x ∗ (x � y) ≤ x ∩ y, which corresponds to the converse implication,
holds true in each MTL-algebra. Similar remarks apply to further extensions of
MTL we are going to mention.

Also for MTL an extended completeness theorem similar to Theorem 4 remains
true.

Theorem 7 (Extended General Completeness). For each finite set C of
axiom schemata and any formula ϕ of LT the following are equivalent:

(i) ϕ is derivable within the logical calculus KMTL + C;
(ii) ϕ is valid in all MTL(C)-algebras;
(iii) ϕ is valid in all MTL(C)-chains.

Again the extension to the first-order case is similar to the treatment in [22] for
BL and shall not be discussed here.

The core point is that the formal language has to use predicate symbols to
introduce atomic formulas, and that the logical apparatus has to be extended by
quantifiers: and these are usually a generalization ∀ and a particularization ∃. As
semantic interpretations of these quantifiers one uses in case of ∀ the infimum of
the set of truth degrees of all the instances, and in case of ∃ the corresponding
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supremum. The semantic models (M, L) for this first-order language are deter-
mined by a nonempty universe M , a truth degree lattice L, and for each n-ary
predicate symbol P some n-ary L-valued fuzzy relation in M .

This forces either to assume that the truth degree lattices L are complete
lattices, or weaker and more preferably that the model (M, L) has to be a safe
one, i.e. one for which all those subsets of L have suprema and infima which may
occur as truth degree sets of instances of quantified formulas of the language.

4 Linguistic Control and Fuzzy Relational Equations

4.1 The Standard Paradigm

The standard paradigm of rule based fuzzy control is that one supposes to have
given, in a granular way, an incomplete and fuzzy description of a control function
Φ from an input space X to an output space Y, realized by a finite family

D = (〈Ai, Bi〉)1≤i≤n (35)

of (fuzzy) input-output data pairs. These granular data are supposed to charac-
terize this function Φ sufficiently well.

In the usual approaches such a family of input-output data pairs is provided
by a finite list

if α is Ai, then β is Bi, i = 1, . . . , n , (36)

of linguistic control rules, also called fuzzy if-then rules, describing some control
procedure with input variable α and output variable β.

Mainly in engineering papers one often considers also the case of different
input variables α1, . . . , αm. In this case the linguistic control rules become the
form

if α1 is A1
i , and . . . and αm is Am

i , then β is Bi, i = 1, . . . , n . (37)

But from a mathematical point of view such rules are subsumed among the
former ones and cover only a restricted class of cases. To see this one simply has
to allow as the input universe for α the cartesian product X = X1 × · · · ×Xm of
the input universes Xi of αi, i = 1, . . . ,m. This yields for a given list A1, . . . , Am

of input sets for the variables α1, . . . , αm the particular fuzzy input set A =
A1 × · · · × Am for the combined variable α. The above mentioned restriction
comes from the fact that not all fuzzy subsets of X have this form of a fuzzy
cartesian product of fuzzy subsets of the universes Xi.

Let us assume for simplicity that all the input data Ai are normal, i.e. that
for each i there is a point xi

0 in the universe of discourse with Ai(xi
0) = 1.

Sometimes even weak normality would suffice, i.e. that the supremum over all
the membership degrees of the Ai equals one; but we do not indent to discuss
this in detail.

The main mathematical problem of fuzzy control, besides the engineering
problem to get a suitable list of linguistic control rules for the actual control
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problem, is therefore the interpolation problem to find a function Φ∗ : F(X) →
F(Y) which interpolates these data, i.e. which satisfies

Φ∗(Ai) = Bi for each i = 1, . . . , n , (38)

and which, in this way, gives a fuzzy representation for the control function Φ.
Actually the standard approach is to look for one single function, more pre-

cisely: for some uniformly defined function, which should interpolate all these
data, and which should be globally defined over the class F(X) of all fuzzy subsets
of X, or at least over a suitably chosen sufficiently large subclass of F(X).

Following Zadeh [36], this idea is formally realized by a fuzzy relationR, which
connects fuzzy input information A with fuzzy output information B = A ◦ R
via the compositional rule of inference (3). Therefore, applying this idea to the
linguistic control rules themselves, transforms these rules in a natural way into
a system of fuzzy relation equations

Ai ◦R = Bi, for i = 1, . . . , n . (39)

The problem, to determine a fuzzy relation R which realizes via (3) such a list
(36) of linguistic control rules, becomes the problem to determine a solution of
the corresponding system (39) of relation equations.

This problem proves to be a rather difficult one: it often happens that a given
system (39) of relation equations is unsolvable. This is already the case in the
more specific situation that the membership degrees belong to a Boolean algebra,
as discussed (as a problem for Boolean matrices) e.g. in [30].

Nice solvability criteria are still largely unknown. Thus the investigation of
the structure of the solution space for (39) was one of the problems discussed
rather early. One essentially has that this space is an upper semilattice under
the simple set union determined by the maximum of the membership degrees;
cf. e.g. [6].

And this semilattice has, if it is nonempty, a universal upper bound

R̂ =
n⋂

i=1

{(x, y) ‖Ai(x) → Bi(y)} (40)

as explained by the following result.

Theorem 8. The system (39) of relation equations is solvable iff the fuzzy rela-
tion R̂ is a solution of it. And in the case of solvability, R̂ is always the largest
solution of the system (39) of relation equations.

This result was first stated in [35] for the particular case of the min-based Gödel
implication → in (40), and generalized to the case of the residuated implica-
tions based upon arbitrary left continuous t-norms—and hence to the present
situation—by this author in [13]; cf. also his [14].

Besides the reference to the CRI in this type of approach toward fuzzy control,
the crucial point is to determine a fuzzy relation out of a list of linguistic control
rules.
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The fuzzy relation R̂ can be seen as a formalization of the idea that the list
(36) of control rules has to be read as:

if input is A1 then output is B1

and

. . .

and

if input is An then output is Bn .

Having in mind such a formalization of the list (36) of control rules, there is
immediately also another way how to read this list: substitute an or for the and
to combine the single rules.

It is this understanding of the list of linguistic control rules as a (rough)
description of a fuzzy function which characterizes the approach of Mam-
dani/Assilian [32]. Therefore they consider instead of R̂ the fuzzy relation

RMA =
n⋃

i=1

(Ai × Bi) ,

again combined with the compositional rule of inference.

4.2 Solutions and Pseudo-solutions of Fuzzy Relational Equations

Linguistic control rules serve as a tool for rough model building, and their trans-
lation into fuzzy relational equations does so too. So it may not really be nec-
essary to solve systems of fuzzy relational equations (39) in the standard sense,
but some kind of “approximation” of solutions may do as well.

There is, however, a a quite fundamental problem to understand this remark:
an approximation is always an approximation of something. So an approximate
solution of a system (39) should (normally) be an approximation of a true solu-
tion of this system. But what, if the system is not solvable at all?

A way out is offered by another type of approximation: by an approximation
of the “behavior” of the functional which is given by the left hand sides of the
equations from (39). In terms of the linguistic control rules which constituted
(39) this means that one looks for an approximate realization of their behavior.

This way of doing, originating from [32] and the fuzzy relationRMA introduced
there, can also be seen as to “fake” something similar to a solution – and to work
with it like a solution.

Such “faked” solutions shall be coined pseudo-solutions, following [21]. The
best known pseudo-solutions for a system (39) are R̂ and RMA.

From Theorem 8 it is clear that R̂ is a pseudo-solution of a system (39) just
in the case that the system (39) is not solvable. So one is immediately lead to
the

Problem: Under which conditions is the pseudo-solution RMA really a solution
of the corresponding system (39) of relation equations.
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This problem is discussed in [28]. And one of the main results is the next
theorem.

Theorem 9. Let all the input sets Ai be normal. Then the fuzzy relation RMA

is a solution of the corresponding system of fuzzy relation equations iff for all
i, j = 1, . . . , n one has

|= ∃x(Ai(x) & Aj(x)) → Bi ≡∗ Bj . (41)

This MA-solvability criterion (41) is a kind of functionality of the list of linguistic
control rules, at least in the case of the presence of an involutive negation:
because in such a case one has

|= ∃x(Ai(x) & Aj(x)) ↔ Ai ∩t Aj �≡∗ ∅ ,
and thus condition (41) becomes

|= Ai ∩t Aj �≡∗ ∅ → Bi ≡∗ Bj . (42)

And this can be understood as a fuzzification of the idea “if Ai and Aj coincide
to some degree, than also Bi and Bj should coincide to a certain degree”.

Of course, this fuzzification is neither obvious nor completely natural, because
it translates “degree of coincidence” in two different ways.

This leads back to the well known result, explained e.g. in [14], that the system
of relation equations is solvable in the case that all the input fuzzy sets Ai are
pairwise t-disjoint:

Ai ∩t Aj = ∅ for all i �= j.

Here the reader should have in mind that this t-disjointness is, in general, weaker
than the standard min-disjointness: it does not force the disjointness of the
supports of the fuzzy sets Ai, Aj , and even allows a height hgt(Ai ∩ Aj) = 0.5
for the case that t is the �Lukasiewicz t-norm.

However, it may happen that the system of relation equations is solvable, i.e.
has R̂ as a solution, without having the fuzzy relation RMA as a solution.

An example is given in [21].
Therefore condition (41) is only a sufficient one for the solvability of the system

(39) of relation equations.
Hence one has as a new problem to give additional assumptions, besides the

solvability of the system (39) of relation equations, which are sufficient to guar-
antee that RMA is a solution of (39).

As in [14] and already in [12], we subdivide the problem whether a fuzzy
relation R is a solution of the system of relation equations into two cases: (i)
whether one has satisfied the subset property w.r.t. a system (39), i.e. whether
one has

Ai ◦R ⊂ Bi, for i = 1, . . . , n , (43)

and (ii) whether one has the superset property w.r.t. (39), i.e. whether one has
one has

Ai ◦R ⊃ Bi, for i = 1, . . . , n . (44)

The core result is the following theorem.
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Theorem 10. If the input set Ak is normal then Ak ◦ R̂ ⊂ Bk ⊂ Ak ◦RMA.

So we know that with normal input sets the fuzzy outputs Ai ◦ R̂ always are
fuzzy subsets of Ai ◦RMA.

Furthermore we immediately have the following global result.

Proposition 2. If all the input sets Ai of the system of relation equations are
normal and if one also has RMA ⊂ R̂, then the system of relation equations is
solvable, and RMA is a solution.

Hence the pseudo-solutions RMA and R̂ are upper and lower approximations for
the realizations of the linguistic control rules.

Now one may equally well look for new pseudo-solutions, e.g. by some iteration
of these pseudo-solutions in the way, that for the next iteration step in such an
iteration process the system of relation equations is changed such that its (new)
output sets become the real output of the former iteration step. This has been
done in [21].

To formulate the dependence of the pseudo-solutions RMA and R̂ from the
input and output data, we denote the “original” pseudo-solutions with the input-
output data (Ai, Bi) in another way and write

RMA[Bk] for RMA , R̂[Bk] for R̂ .

Theorem 11. One has always

Ai ◦ R̂[Bk] ⊂ Ai ◦RMA[Ak ◦ R̂[Bk]] ⊂ Ai ◦RMA[Bk] .

Thus the iterated relation RMA[Ak ◦ R̂] is a pseudo-solution which somehow
better approximates the intended behavior of the linguistic control rules as each
one of RMA and R̂. For details cf. again [21].

4.3 Invoking More Formal Logic

The languages of the first-order versions of any one of the standard fuzzy logics
discussed in Section 3 can be used to formalize the main ideas behind the use
of linguistic control rules in fuzzy control matters. This offers, besides the above
presented reference to fuzzy set and fuzzy relation matters, a second way for a
mathematical analysis of this rough modeling strategy.

We shall use here the logic BL∀, i.e. the first-order version of the logic BL of
continuous t-norms as the basic reference logic for this analysis. And we follow
in the presentation of the material closely the paper [33].

A formula of this logic, with n free variables, describes w.r.t. each BL∀-model
(M, L) some n-ary L-fuzzy relation in the universe M = |M|. This is the obvious
specification of the approach of Section 2 to describe fuzzy sets by formulas of a
suitable language.

A BL-theory T is just a crisp, i.e. classical set of formulas of the language of
BL∀. The notation T � A means that the formula A is provable in a theory T .



172 S. Gottwald

In what follows, we will use the letters A,B, . . . formulas as well as for L-fuzzy
sets in some BL∀-model (M, L).

This yields that e.g. the result (3) of a – now t-norm based and not only min-
based – CRI-application to a fuzzy set A and a fuzzy relation R is described by
the formula

(∃x)(A(x) & R(x, y)) . (45)

Furthermore, if T is a BL-theory and T � (∃x)A(x) then this means that the
fuzzy set described by A is normal.

Let us additionally assume that T is a consistent BL∀-theory which formalizes
some additional assumptions which may be made for the considerations of a fuzzy
control problem, e.g. that the input fuzzy sets may be normal ones.

On this basis, the results in fuzzy relation equations can be succinctly and
transparently formulated in the syntax of BL∀. So let us start from a system
(36) of linguistic control rules with input fuzzy sets Ai over some m-dimensional
universe X = X1 × · · · × Xm.

With our notational convention this means that we have given formulas
Ai(x1, . . . , xm) with free variables x1, . . . , xm which describe these input sets
of the single control rules. For simplicity, let us write −→x = (x1, . . . , xm) for this
list of (free) variables.

The problem which corresponds to the solvability problem of a system (39)
of relation equations now is to find a formula R(−→x , y) with m+ 1 free variables
such that

T � (∃x1) · · · (∃xn)(Ai(−→x ) & R(−→x , y)) ↔ Bi(y) (46)

holds for every i = 1, . . . , n. If such a formulaR exists then we say that the system
of fuzzy relation equations (46) is solvable in T and R(−→x , y) is its solution.

Lemma 1. The following is BL∀-provable:

T � (∃x1) · · · (∃xm)

⎛
⎝Ai(−→x ) &

n∧
j=1

(Aj(−→x ) → Bj(y))

⎞
⎠→ Bi(y).

The following theorem presents in a purely syntactical way the well known fun-
damental result on the solution of the fuzzy relation equations.

Theorem 12. The system of fuzzy relation equations (46) is solvable in T iff

T � (∃x1) · · · (∃xm)

⎛
⎝Ai(−→x ) &

n∧
j=1

(Aj(−→x ) → Bj(y))

⎞
⎠↔ Bi(y) (47)

holds for all i = 1, . . . , n.

Corollary 5. If (46) holds for some R(−→x , y) then

T � R(−→x , y) →
n∧

j=1

(Aj(−→x ) → Bj(y)) .

This means, in the present terminology, that the solution (47) is maximal.
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To simplify the formulas to come let us assume for the rest of this subsection
that m = 1. This corresponds completely to the former subsumption of the case
(37) of a system of linguistic control rules with m input variables under the case
(36) with only one input variable.

We will work with the following two special kinds of formulas. The first one
has the form of a conjunction of implications from Theorem 12

RImp(x, y) =def

m∧
j=1

(Aj(x) → Bj(y))) . (48)

The second one, the so called Mamdani-Assilian formula, shall be

RMA(x, y) =
m∨

i=1

(Ai(x) & Bi(y)) . (49)

Lemma 2. Let T � (∃x)Ai for all i = 1, . . . , n. Then

T � Bi(y) → (∃x)(Ai(x) &
m∨

j=1

(Aj(x) & Bj(y))). (50)

Joining Lemmas 1 and 2, we get get following theorem, which says that our con-
junction (48) of implications gives the lower and the Mamdani-Assilian formula
(49) the upper bound for the solutions of the system (46).

Theorem 13. Let T � (∃x)Ai for i = 1, . . . , n. Then the following is provable:

T � (∃x)(Ai(x) & RImpl(x, y)) → Bi(y) ,

T � Bi(y) → (∃x)(Ai(x) & RMA)

for each i = 1, . . . , n.

The following theorem has a semantical counterpart proved with some more
restrictive assumptions by Perfilieva/Tonis [34].

Theorem 14. Let A(x) be an arbitrary formula. The following is provable for
each i = 1, . . . , n:

T � (A(x) ↔ Ai(x)) & (Bi(y) → (∃x)(Ai(x) & RImpl(x, y))) →
((∃x)(A(x) & RImpl(x, y)) ↔ Bi(y)) . (51)

This theorem suggests that the formula

ξ(y) =def (Bi(y) → (∃x)(Ai(x) & RImpl(x, y)))

can be the basis of a solvability sign similar to a more general solvability index
discussed by this author e.g. in [14, 15] and defined as ξ(y) =def

∧n
i=1 ξi(y).



174 S. Gottwald

Then from Theorem 14 it follows:

Corollary 6

T � ξ(y) → ((∃x)(Ai(x) & RImpl(x, y)) ↔ Bi(y))

for each i = 1, . . . , n.

It follows from this corollary that in a model of T , the solvability sign can be
interpreted as a degree, in which the system (46) is solvable in T .

Theorem 15. The system (46) is solvable in T iff

T � (∀y)ξ(y).

Theorem 16. If the system (46) is solvable in T then

T � (∀x)(Ai(x) ↔ Aj(x)) → (∀y)(Bi(y) ↔ Bj(y)) (52)

for all i, j = 1, . . . , n.

Klawonn [28] gave a necessary and sufficient condition that the Mamdani-
Assilian fuzzy relation is a solution of a system of fuzzy relation equations.
The formalized version of this result can again be BL∀-proved.

Theorem 17. If T � (∃x)Ai(x), i = 1, . . . ,m. Then RMA(x, y) is a solution of
(46) iff

T � (∃x)(Ai(x) & Aj(x)) → (∀y)(Bi(y) ↔ Bj(y)), i = 1, . . . , n. (53)

The following theorem is a corollary of the previous results.

Corollary 7. (i) If there is an index k such that

T �� (∃y)Bk(y) → (∃x)Ak(x) , (54)

then the system (46) is not solvable.
(ii) Assume

T �� (∃x)(∃y)
n∨

j=1

(Ai(x) & Bi(y)) → (∃x)(∃y)R(x, y) .

Then R(x, y) is not a solution of (46).

5 Approximation and Interpolation

The standard mathematical understanding of approximation is that by an ap-
proximation process some mathematical object A, e.g. some function, is ap-
proximated, i.e. determined within some (usually previously unspecified) error
bounds.
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Additionally one assumes that the approximating object B for A is of some
predetermined, usually “simpler” kind, e.g. a polynomial function.

So one may approximate some transcendental function, e.g. the trajectory of
some non-linear process, by a piecewise linear function, or by a polynomial func-
tion of some bounded degree. Similarly one approximates e.g. in the Runge-Kutta
methods the solution of a differential equation by a piecewise linear function, or
one uses splines to approximate a difficult surface in 3-space by planar pieces.

The standard mathematical understanding of interpolation is that a function
f is only partially given by its values at some points of the domain of the function,
the interpolation nodes.

The problem then is to determine “the” values of f for all the other points of
the domain (usually) between the interpolation nodes – sometimes also outside
these interpolation nodes (extrapolation).

And this is usually done in such a way that one considers groups of neighboring
interpolation nodes which uniquely determine an interpolating function of some
predetermined type within their convex hull (or something like): a function which
has the interpolation nodes of the actual group as argument-value pairs – and
which in this sense locally approximates the function f .

In the standard fuzzy control approach the input-output data pairs of the
linguistic control rules just provide interpolation nodes.

However, what is lacking – at least up to now – that is the idea of a local
approximation of the intended crisp control function by some fuzzy function.
Instead, in the standard contexts one always asks for something like a global
interpolation, i.e. one is interested to interpolate all nodes by only one interpo-
lation function.

To get a local approximation of the intended crisp control function Φ, one
needs some notion of “nearness” or of “neighboring” for fuzzy data granules.
Such a notion is lacking in general.

For the particular case of a linearly ordered input universe X, and the addi-
tional assumption that the fuzzy input data are unimodal, one gets in a natural
way from this crisp background a notion of neighboring interpolation nodes:
fuzzy nodes are neighboring if their kernel points are.

In general, however, it seems most appropriate to suppose that one may be
able to infer from the control problem a—perhaps itself fuzzy—partitioning of
the whole input space (or similarly of the output space). Then one will be in
a position to split in a natural way the data set (35), or correspondingly the
list (36) of control rules, into different groups—and to consider the localized
interpolation problems separately for these groups.

This offers obviously better chances for finding interpolating functions, par-
ticularly for getting solvable systems of fuzzy relation equations. However, one
has to be aware that one should additionally take care that the different local
interpolation functions fit together somehow smoothly—again an open problem
that needs a separate discussion. It is a problem that is more complicated for
fuzzy interpolation than for the crisp counterpart because the fuzzy interpolating
functions may realize the fuzzy interpolation nodes only approximately.
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However, one may start from ideas like these to speculate about fuzzy versions
of the standard spline interpolation methodology.

In the context of fuzzy control the control function Φ, which has to be deter-
mined, is described only roughly, i.e. given only by its behavior in some (fuzzy)
points of the state space.

The standard way to roughly describe the control function is to give a list
(36) of linguistic control rules connecting fuzzy subsets Ai of the input space X

with fuzzy subsets Bi of the output space Y indicating that one likes to have

Φ∗(Ai) = Bi , i = 1, . . . , n (55)

for a suitable “fuzzified” version Φ∗ : F(X) → F(Y) of the control function
Φ : X → Y.

The additional approximation idea of the CRI is to approximate Φ∗ by a fuzzy
function Ψ∗ : F(X) → F(Y) determined for all A ∈ F(X) by

Ψ∗(A) = A ◦R (56)

which refers to some suitable fuzzy relation R ∈ F(X × Y), and understands ◦
as sup-t-composition.

Formally thus the equations (55) become transformed into some well known
system (39) of relation equations

Ai ◦R = Bi, i = 1, . . . , n

to be solved for the unknown fuzzy relation R.
This approximation idea fits well with the fact that one often is satisfied with

pseudo-solutions of (39), and particularly with the MA-pseudo-solution RMA,
or the S-pseudo-solution R̂. Both of them determine approximations Ψ∗ to the
(fuzzified) control function Φ∗.

What remains open in this discussion up to now are quality considerations
for such approximations via pseudo-solutions of systems (39) of fuzzy relational
equations. This is a topic which has been discussed only scarcely. Qualitative
approaches referring to the ideas of upper and lower approximations w.r.t. fuzzy
inclusion, as considered here in Subsection 4.2, have been considered in [17] and
extensively reported in [20]. The interested reader may consult these sources.
More quantitative approaches, based e.g. upon the consideration of metrics or
pseudo-metrics in spaces of fuzzy sets, are missing up to now – as far as this
author is aware of.

6 Aggregation Operations and Fuzzy Control Strategies

There is the well known distinction between FATI and FITA strategies to eval-
uate systems of linguistic control rules w.r.t. arbitrary fuzzy inputs from F(X).

The core idea of a FITA strategy is that it is a strategy which First Infers
(by reference to the single rules) and Then Aggregates starting from the actual
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input information A. Contrary to that, a FATI strategy is a strategy which First
Aggregates (the information in all the rules into one fuzzy relation) and Then
Infers starting from the actual input information A.

Both these strategies use the set theoretic union as their aggregation operator.
Furthermore, both of them refer to the CRI as their core tool of inference.

In general, however, the interpolation operators may depend more generally
upon some inference operator(s) as well as upon some aggregation operator.

By an inference operator we mean here simply a mapping from the fuzzy
subsets of the input space to the fuzzy subsets of the output space.3

And an aggregation operator A, as explained e.g. in [2, 7], is a family (fn)n∈N

of (“aggregation”) operations, each fn an n-ary one, over some partially or-
dered set M, with ordering �, with a bottom element 0 and a top element 1,
such that each operation fn is non-decreasing, maps the bottom to the bottom:
fn(0, . . . ,0) = 0, and the top to the top: fn(1, . . . ,1) = 1.

Such an aggregation operator A = (fn)n∈N is a commutative one iff each
operation fn is commutative. And A is an associative aggregation operator iff

fn(a1, . . . , an) = f r(fk1(a1, . . . , ak1), . . . , fkr(am+1, . . . , an))

for n =
∑r

i=1 ki and m =
∑r−1

i=1 ki.
Our aggregation operators further on are supposed to be commutative as well

as associative ones.4

As in [18], we now consider interpolation operators Φ of FITA-type and in-
terpolation operators Ψ of FATI-type which have the abstract forms

ΨD(A) = A(θ〈A1,B1〉(A), . . . , θ〈An,Bn〉(A)) , (57)

ΞD(A) = Â(θ〈A1,B1〉, . . . , θ〈An,Bn〉)(A) . (58)

Here we assume that each one of the “local” inference operators θi is determined
by the single input-output pair 〈Ai, Bi〉. This restriction is sufficient for the
present purpose.

In this Section we survey the main notions and results. The interested reader
gets more details from [19] and also from [20].

6.1 Stability Conditions

If ΘD is a fuzzy inference operator of one of the types (57), (58), then the
interpolation property one likes to have realized is that one has

ΘD(Ai) = Bi (59)

for all the data pairs 〈Ai, Bi〉. In the particular case that the operator ΘD is
given by (3), this is just the problem to solve the system (59) of fuzzy relation
equations.
3 This terminology has its historical roots in the fuzzy control community. There is no

relationship at all with the logical notion of inference intended and supposed here;
but–of course–also not ruled out.

4 It seems that this is a rather restrictive choice from a theoretical point of view.
However, in all the usual cases these restrictions are satisfied.
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Definition 4. In the present generalized context let us call the property (59) the
D-stability of the fuzzy inference operator ΘD.

To find D-stability conditions on this abstract level seems to be rather difficult
in general. However, the restriction to fuzzy inference operators of FITA-type
makes things easier.

It is necessary to have a closer look at the aggregation operator A = (fn)n∈N

involved in (57) which operates on F(Y), of course with the inclusion relation
for fuzzy sets as partial ordering.

Definition 5. Having B,C ∈ F(Y) we say that C is A-negligible w.r.t. B iff
f2(B,C) = f1(B) holds true.

The core idea here is that in any aggregation by A the presence of the fuzzy set
B among the aggregated fuzzy sets makes any presence of C superfluous.

Hence one e.g. has that C is
⋃

-negligible w.r.t. B iff C ⊂ B; and C is⋂
-negligible w.r.t. B iff C ⊃ B.

Proposition 3. Consider a fuzzy inference operator ΨD of FITA-type (57). It
is sufficient for the D-stability of ΨD, i.e. to have

ΨD(Ak) = Bk for all k = 1, . . . , n

that one always has
θ〈Ak,Bk〉(Ak) = Bk

and additionally that for each i �= k the fuzzy set

θ〈Ak,Bk〉(Ai) is A-negligible w.r.t. θ〈Ak,Bk〉(Ak) .

This result has two quite interesting specializations which themselves generalize
well known results about fuzzy relation equations.

Corollary 8. It is sufficient for the D-stability of a fuzzy inference operator ΨD
of FITA-type that one has

ΨD(Ai) = Bi for all 1 ≤ i ≤ n

and that always θ〈Ai,Bi〉(Aj) is A-negligible w.r.t. θ〈Ai,Bi〉(Ai).

To state the second one of these results, call an aggregation operator A =
(fn)n∈N additive iff always b � f2(b, c), and call it idempotent iff always b =
f2(b, b).

Corollary 9. It is sufficient for the D-stability of a fuzzy inference operator
ΨD of FITA-type, which is based upon an additive and idempotent aggregation
operator, that one has

ΨD(Ai) = Bi for all 1 ≤ i ≤ n

and that always θ〈Ai,Bi〉(Aj) is the bottom element in the domain of the aggre-
gation operator A.
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Obviously this is a direct generalization of the fact that systems of fuzzy relation
equations are solvable if their input data form a pairwise disjoint family (w.r.t.
the corresponding t-norm based intersection ∩∩∩ and cartesian product ×××) because
in this case one has usually:

θ〈Ai,Bi〉(Aj) = Aj ◦ (Ai ×××Bi) = {y ‖ ∃x(x εAj & (x, y) εAi ×××Bi)}
= {y ‖ ∃x(x εAj ∩∩∩Ai & y εBi)} .

To extend these considerations from inference operators (57) of the FITA type
to those ones of the FATI type (58) let us consider the following notion.

Definition 6. Suppose that Â is an aggregation operator for inference opera-
tors, and that A is an aggregation operator for fuzzy sets. Then (Â,A) is an
application distributive pair of aggregation operators iff

Â(θ1, . . . , θn)(X) = A(θ1(X), . . . , θn(X)) (60)

holds true for arbitrary inference operators θ1, . . . , θn and fuzzy sets X.

Using this notion it is easy to see that one has on the left hand side of (60) a
FATI type inference operator, and on the right hand side an associated FITA
type inference operator. So one is able to give a reduction of the FATI case to
the FITA case, assuming that such application distributive pairs of aggregation
operators exist.

Proposition 4. Suppose that (Â,A) is an application distributive pair of aggre-
gation operators. Then a fuzzy inference operator ΞD of FATI-type is D-stable
iff its associated fuzzy inference operator ΨD of FITA-type is D-stable.

The general approach of this Section can also be applied to the problem of D-
stability for a modified operator Θ∗

D which is determined by the kind of iteration
of ΘD which previously led to Theorem 11. To do this, let us consider the ΘD-
modified data set D∗ given as

D∗ = (〈Ai, ΘD(Ai)〉)1≤i≤n , (61)

and define from it the modified fuzzy inference operator Θ∗
D as

Θ∗
D = ΘD∗ . (62)

For these modifications, the problem of stability reappears. Of course, the new
situation here is only a particular case of the former. And it becomes a simpler
one in the sense that the stability criteria now refer only to the input data Ai of
the data set D = (〈Ai, Bi〉)1≤i≤n.

Proposition 5. It is sufficient for the D∗-stability of a fuzzy inference operator
Ψ∗
D of FITA-type that one has

Ψ∗
D(Ai) = ΨD∗(Ai) = ΨD(Ai) for all 1 ≤ i ≤ n (63)

and that always θ〈Ai,ΨD(Ai)〉(Aj) is A-negligible w.r.t. θ〈Ai,ΨD(Ai)〉(Ai).
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Let us look separately at the conditions (63) and at the negligibility conditions.

Corollary 10. The conditions (63) are always satisfied if the inference operator
Ψ∗
D is determined by the standard output-modified system of relation equations
Ai ◦R[Ak ◦R] = Bi in the notation of [21].

Corollary 11. In the case that the aggregation operator is the set theoretic
union, i.e. A =

⋃
, the conditions (63) together with the inclusion relationships

θ〈Ai,ΨD(Ai)〉(Aj) ⊂ θ〈Ai,ΨD(Ai)〉(Ai)

are sufficient for the D∗-stability of a fuzzy inference operator Ψ∗
D.

Again one is able to transfer this result to FATI-type fuzzy inference operators.

Corollary 12. Suppose that (Â,A) is an application distributive pair of aggre-
gation operators. Then a fuzzy inference operator Φ∗

D of FATI-type is D∗-stable
iff its associated fuzzy inference operator Ψ∗

D of FITA-type is D∗-stable.

6.2 Application Distributivity

Based upon the notion of application distributive pair of aggregation operators
the property of D-stability can be transferred back and forth between two infer-
ence operators of FATI-type and of FITA-type if they are based upon a pair of
application distributive aggregation operators.

What has not been discussed previously was the existence and the uniqueness
of such pairs. Here are some results concerning these problems.

The uniqueness problem has a simple solution.

Proposition 6. If (Â,A) is an application distributive pair of aggregation op-
erators then Â is uniquely determined by A, and conversely also A is uniquely
determined by Â.

And for the existence problem we have a nice reduction to the two-argument
case.

Theorem 18. Suppose that A is a commutative and associative aggregation op-
erator. For the case that there exists an aggregation operator Â such that (Â,A)
form an application distributive pair of aggregation operators it is necessary and
sufficient that there exists some operation G for fuzzy inference operators satis-
fying

A(θ1(X), θ2(X)) = G(θ1, θ2)(X) (64)

for all fuzzy inference operators θ1, θ2 and all fuzzy sets X.

However, there is an important restriction concerning the existence of such pairs
of application distributive aggregation operators, at least for an interesting par-
ticular case.
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Definition 7. An aggregation operator A = (fn)n∈N for fuzzy subsets of a com-
mon universe of discourse X is pointwise defined iff for each n ∈ N there exists
a function gn : [0, 1]n → [0, 1] such that for all A1, . . . , An ∈ F and all x ∈ X
there hold

fn(A1, . . . , An)(x) = gn(A1(x), . . . , An(x)) . (65)

And an aggregation operator Â for inference operators is pointwise defined iff
it can be reduced to a pointwise defined aggregation operator for fuzzy relations.

The restrictive result, proved in [26], now reads as follows.

Proposition 7. Among the commutative, associative, and pointwise defined ag-
gregation operators is (

⋃
,
⋃

) the only application distributive pair.

6.3 Invoking a Defuzzification Strategy

In a lot of practical applications of the fuzzy control strategies which form the
starting point for the previous general considerations, the fuzzy model—e.g.
determined by a list (36) of linguistic IF-THEN-rules—is realized in the context
of a further defuzzification strategy, which is nothing but a mapping F : F(Y) →
Y for fuzzy subsets of the output space Y.

Having this in mind, it seems to be reasonable to consider the following mod-
ification of the D-stability condition, which is a formalization of the idea to have
“stability modulo defuzzification”.

Definition 8. A fuzzy inference operator ΘD is (F,D)-stable w.r.t. a defuzzifi-
cation strategy F : F(Y) → Y iff one has

F (ΘD(Ai)) = F (Bi) (66)

for all the data pairs 〈Ai, Bi〉 from D.

For the fuzzy modeling process which is manifested in the data set D this con-
dition (66) is supposed to fit well with the control behavior one is interested to
implement. If for some application this condition (66) seems to be unreasonable,
this indicates that either the data set D or the chosen defuzzification strategy
F are unsuitable.

As a first, and rather restricted stability result for this modified situation, the
following Proposition shall be mentioned.

Proposition 8. Suppose that ΘD is a fuzzy inference operator of FITA-type
(57), that the aggregation is union A =

⋃
as e.g. in the fuzzy inference operator

for the Mamdani–Assilian case, and that the defuzzification strategy F is the
“mean of max” method. Then it is sufficient for the (F,D)-stability of ΘD to
have satisfied

hgt(
n⋃

j=1,j 
=k

θk(Aj)) < hgt(θk(Ak)) (67)

for all k = 1, . . . , n.
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The proof follows from the corresponding definitions by straightforward routine
calculations, and hgt means the “height” of a fuzzy set, i.e. the supremum of its
membership degrees.

Further investigations into this topic are necessary.

7 Conclusion

Abstract mathematical tools like mathematical fuzzy logics, like fuzzy set theory
and fuzzy relational equations, but also like interpolation strategies, and like
operator equations which use the more recent topic of aggregation operators
shed interesting light on the formal properties of granular modeling approaches
which use the technique of linguistic variables and linguistic rules.

This point of view has been exemplified using considerations upon the fuzzy
control related topic of the realizability behavior of systems of linguistic rules,
mostly with the background idea to refer to the compositional rule of inference
in implementing these rules.

Our reference to the mathematical fuzzy logic BL, with its algebraic semantics
determined by the class of all prelinear, divisible, and integral residuated lattices,
also opens the way for further generalizations of our considerations toward more
general membership degree structures for fuzzy sets: like the type-2 or interval
type-2 cases. And the reader should also have in mind that there is a close
relationship between rough sets and L-fuzzy sets over a suitable 3-element lattice.

Additionally it is easy to recognize that the discussions of the interpolating
behavior in Section 5 as well as the operator oriented considerations of Section 6
are essentially independent of the particular choice of the membership degree
structure. Hence they too may be generalized to other membership degree setting
discussed in this book.
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1. Běhounek, L., Bodenhofer, U., Cintula, P.: Relations in fuzzy class theory: initial
steps. Fuzzy Sets and Systems 159, 1729–1772 (2008)

2. Calvo, T., Mayor, G., Mesiar, R. (eds.): Aggregation Operators: New Trends and
Applications. Physica-Verlag, Heidelberg (2002)

3. Chang, C.C.: Algebraic analysis of many valued logics. Transactions American
Mathematical Society 88, 476–490 (1958)

4. Cignoli, R., Esteva, F., Godo, L., Torrens, A.: Basic fuzzy logic is the logic of
continuous t-norms and their residua. Soft Computing 4, 106–112 (2000)

5. Cignoli, R.L.O., D’Ottaviano, I.M.L., Mundici, D.: Algebraic foundations of many-
valued reasoning. Trends in Logic–Studia Logica Library, vol. 7. Kluwer Academic
Publishers, Dordrecht (2000)

6. Nola, A.D., Sessa, S., Pedrycz, W., Sanchez, E.: Fuzzy relation equations and
their applications to knowledge engineering. Theory and Decision Library. Series
D: System Theory, Knowledge Engineering and Problem Solving, vol. 3. Kluwer
Academic Publishers Group, Dordrecht (1989)



Many-Valued Logic Tools for Granular Modeling 183

7. Dubois, D., Prade, H.: On the use of aggregation operations in information fusion
processes. Fuzzy Sets and Systems 142, 143–161 (2004)

8. Dummett, M.: A propositional calculus with denumerable matrix. Journal Sym-
bolic Logic 24, 97–106 (1959)

9. Esteva, F., Godo, L.: Monoidal t-norm based logic: toward a logic for left-
continuous t-norms. Fuzzy Sets and Systems 124, 271–288 (2001)

10. Esteva, F., Godo, L., Montagna, F.: Equational characterization of the subvarieties
of BL generated by t-norm algebras. Studia Logica 76, 161–200 (2004)
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Abstract. Most real world applications contain high levels of uncertainty and imprecision.
Sources of the imprecision include sensor noise; variation in actuator performance; linguistic
variation between people; temporal modification of expert opinion; and disagreement between
experts. Type-2 fuzzy logic is now accepted as a mature technology for coping with this wide va-
riety of sources of uncertainty. This Chapter provides an overview of type-2 fuzzy logic systems
providing the reader with an insight into how the various algorithms provide different approaches
to modelling uncertainty. We place in context these issues by discussing a number of real world
applications that have successfully deployed type-2 fuzzy logic.

1 Introduction

Recently there has been significant growth in interest in type-2 fuzzy logic. Type-2
fuzzy logic is an extension of type-1 (regular) fuzzy logic where the membership grade
in a fuzzy set is itself measured as a fuzzy number.

Fuzzy sets (Zadeh [57]) have, over the past forty years, laid the basis for a successful
method of modelling uncertainty, vagueness and imprecision in a way that no other
technique has been able. The use of fuzzy sets in real computer systems is extensive,
particularly in consumer products and control applications.

Zadeh [62] presents a powerful argument for the use of fuzzy logic for manipulat-
ing perceptions. As has been discussed, his argument is that perceptions (for example,
perceptions of size, safety, health and comfort) cannot be modelled by traditional math-
ematical techniques and that fuzzy logic is more suitable. The discussion about percep-
tion modelling is both new and exciting. We argue that type-2 fuzzy sets, since they
have non-crisp fuzzy membership functions (that is they are not exact), can model these
perceptions more effectively than type-1 fuzzy sets where the membership grades are
crisp in nature.

So, we take the position that although fuzzy logic has many successful applications
there are a number of problems with the ‘traditional’ fuzzy logic approach that require
a different set of fuzzy tools and techniques for modelling high levels of uncertainty.
In particular the argument presented here is that fuzzy logic, as it is commonly used,
is essentially precise in nature and that for many applications it is unable to model
knowledge from an expert adequately. We argued that the modelling of imprecision can
be enhanced by the use of type-2 fuzzy sets - providing a higher level of imprecision.

A. Bargiela, W. Pedrycz (Eds.): Human-Centric Information Processing, SCI 182, pp. 185–201.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



186 R. John and S. Coupland

Fig. 1. Relationships between imprecision, data and fuzzy technique

Indeed, the tenet of this work is that the success of fuzzy logic can be built on by
type-2 fuzzy sets and taken into the next generation of (type-2) fuzzy systems. The use
of type-2 fuzzy sets allows for a better representation of uncertainty and imprecision
in particular applications and domains. This argument is presented with the use of a
mobile robot control application.

The more imprecise or vague the data is, then type-2 fuzzy sets offer a significant
improvement on type-1 fuzzy sets. Figure 1 shows the view taken in this work of the
relationships between levels of imprecision, data and technique. As the level of impre-
cision increases then type-2 fuzzy logic provides a powerful paradigm for potentially
tackling the problem. Problems that contain crisp, precise data do not, in reality, ex-
ist. However some problems can be tackled effectively using mathematical techniques
where the assumption is that the data is precise. Other problems (for example, in con-
trol) use imprecise terminology that can often be effectively modelled using type-1
fuzzy sets. Perceptions, it is argued here, are at a higher level of imprecision and type-2
fuzzy sets can effectively model this imprecision.

Section 2 provides an overview of type-2 fuzzy sets and type-2 fuzzy logic. The next
Section in this chapter, Section 3, presents the history of the field of type-2 fuzzy logic
including the recent emergence of generalised type-2 fuzzy system as a viable technol-
ogy. Section 4 presents the application of type-1, type-2 interval and generalised type-2
fuzzy logic to a mobile robot control application. This example application demon-
strates the potential of generalised type-2 fuzzy logic to give an improved performance
over type-2 interval fuzzy logic. Section 5 draws conclusions from this work. We also
note that some of this material is contained in John and Coupland [15].

2 Type-2 Fuzzy Sets and Type-2 Fuzzy Logic

Type-2 fuzzy sets (originally introduced by Zadeh [59]) have membership grades that
are fuzzy. That is, instead of being in [0,1] the membership grades are themselves
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(type-1) fuzzy sets. Karnik and Mendel [25][page 2] provide this definition of a type-2
fuzzy set:

A type-2 fuzzy set is characterised by a fuzzy membership function, i.e. the member-
ship value (or membership grade) for each element of this set is a fuzzy set in [0,1],
unlike a type-1 fuzzy set where the membership grade is a crisp number in [0,1].

The characterisation in this definition of type-2 fuzzy sets uses the notion that type-1
fuzzy sets can be thought of as a first order approximation to uncertainty and, therefore,
type-2 fuzzy sets provide a second order approximation. They play an important role in
modelling uncertainties that exist in fuzzy logic systems[21] and are becoming increas-
ingly important in the goal of ‘Computing with Words’[61] and the ‘Computational
Theory of Perceptions’[62].

We now define various terms that relate to type-2 fuzzy sets and state the Represen-
tation Theorem (for a detailed discussion and proof of the Representation Theorem the
reader is referred to [40]). The first definition we give is a formal definition of a type-2
fuzzy set.

Definition 1. A type-2 fuzzy set, Ã, is characterised by a type-2 membership function
µÃ(x,u), where x ∈ X and u ∈ Jx ⊆ [0,1]

Ã = {((x,u),µÃ(x,u)) | ∀x ∈ X,∀u ∈ Jx ⊆ [0,1]} (1)

For any given x the µÃ(x,u), ∀u ∈ Jx, is a type-1 membership function as discussed in
the introduction. It is this ‘extra fuzziness’ that is the attraction of type-2 fuzzy sets[21].

It can be seen from this definition that a type-2 membership function is three dimen-
sional. To illustrate this Figure 2 provides an example of type-2 fuzzy set.

We have a three dimensional figure with the axes being x, u and µÃ(x,u). The ‘spikes’
are in [0,1] and represent µÃ(x,u) for a given (x,u). For a given x we have a vertical
slice that we call a secondary membership function.

µ(x)1

0

1

X

µ(x,u)
1

2

3

Fig. 2. A Type-2 Fuzzy Set



188 R. John and S. Coupland

1

0
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µÃ(x,u)

µÃ(x)

Fig. 3. A Secondary Membership Function

Definition 2. At each value x (say x′) then µÃ(x′,u) is a secondary membership function
of µÃ(x,u). We also know this as a vertical slice.

An example secondary membership function of the type-2 fuzzy set in Figure 2 is given
in Figure 3. In this case the secondary membership function is for x′ = 2 with µÃ(2) =
0.5/0.5 + 1.0/0.6 + 0.5/0.7. Note, then, that the type-2 fuzzy set Ã is the union of all
the secondary membership functions. The Representation Theorem lays the basis for
the proof of the extended sup-star composition and this, in turn, relies on the notion of
an embedded type-2 fuzzy set [40].

Definition 3. For discrete universes of discourse X and U, an embedded type-2 fuzzy set
Ãe has N elements, where Ãe contains exactly one element from Jx1 ,Jx2 , . . . ,JxN , namely
u1,u2, . . . ,uN, each with its associated secondary grade fxi(ui) (i = 1, . . . ,N), i.e.

Ãe =
N

∑
i=1

[fxi(ui)/ui]/xi ui ∈ Jxi ⊆ U = [0,1] (2)

Figure 4 gives an example of an embedded type-2 fuzzy set. As can be seen we now
have what we might call a ‘wavy slice’ where we have one element (only) from each
vertical slice contained in the embedded type-2 fuzzy set.

2.1 The Representation Theorem

The definitions so far in this chapter provide enough detail to understand the Represen-
tation Theorem[40] needed for this new proof of the extended sup-star composition. We
give the Theorem without proof.

Theorem. Let Ãj
e denote the jth type-2 embedded fuzzy set for type-2 fuzzy set Ã.

Ãj
e ≡ {(uj

i, fxi(u
j
i)), i = 1, . . . ,N} (3)
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µ(x)1
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µ(x,u)
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Fig. 4. An Embedded Type-2 Fuzzy Set

where
uj

i ∈ {uik,k = 1, . . . ,Mi} (4)

Ã can be represented as the union of all its type-2 embedded fuzzy sets. That is:

Ã =
n

∑
j=1

Ãj
e (5)

where

n ≡
N

∏
i=1

Mi (6)

We are able to show, then, that a type-2 fuzzy set Ã is the union of all its type-2 em-
bedded fuzzy sets. This Theorem has allowed for the derivation of union, intersection
and complement of type-2 fuzzy sets without use of the extension principle [40]. The
union and intersection of embedded type-2 fuzzy sets are as follows. Suppose we have
two embedded type-2 fuzzy sets Ãj

e and B̃i
e. The secondary grades at xl are denoted as

fxl(u
j
l) and gxl(w

j
l) respectively then

Ãj
e ∪ B̃i

e ≡ [Fx1(u
j
1,w

i
1)/uj

1 ∨wi
1]/x1 + . . .+[FxN (uj

N ,wi
N)/uj

N ∨wi
N ]/xN (7)

where, for each l = 1, . . . ,N,

Fxl(u
j
l,w

i
l) = h[fxl(u

j
l),gxl(w

i
l)]

and h is a t-tnorm. This also known as the join (
). So that

µ
Ãj

e

µB̃i

e
≡ [Fx1(u

j
1,w

i
1)/uj

1 ∨wi
1]/x1 + . . .+[FxN (uj

N ,wi
N)/uj

N ∨wi
N ]/xN (8)
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The intersection is given by

Ãj
e ∩ B̃i

e ≡ [Fx1(u
j
1,w

i
1)/uj

1 ∧wi
1]/x1 + . . .+[FxN (uj

N ,wi
N)/uj

N ∧wi
N ]/xN (9)

This also known as the meet (). So that

µ
Ãj

e
µB̃i

e
≡ [Fx1(u

j
1,w

i
1)/uj

1 ∧wi
1]/x1 + . . .+[FxN (uj

N ,wi
N)/uj

N ∧wi
N ]/xN (10)

3 The Historical Development of Type-2 Fuzzy Logic

Type-2 fuzzy logic is a growing research topic. In this section we discuss the main
themes in type-2 fuzzy logic and highlight some applications.

3.1 Type-2 Fuzzy Sets Appear

Type-2 fuzzy sets were first defined and discussed in a trilogy of papers by Zadeh
[1975a, 1975b, 1975c]. These papers concentrated on the notion of a fuzzy set where
the memberships grades of a fuzzy set are measured with linguistic terms such as low,
medium and high. Logical connectives for such sets were also given, although the terms
join and meet were not used. Zadeh only explored the use of the minimum and maxi-
mum operators t-norm and t-conorm when investigating the logical operations. Mizu-
moto and Tanaka [1976,1981] and Dubois and Prade [1980] both studied the logical
connectives of what became known as secondary membership functions. Mizumoto
and Tanaka were the first to use the terms join and meet for these logical connectives.
Both Dubois and Prade and Mizumoto and Tanaka studied the join and meet under a
variety of t-norm and t-conorm operators.

3.2 Type-2 Interval Fuzzy Sets Are Promoted

Turksen [1993,1993a,1995], Schwartz [48] and Klir and Folger [29] promoted the use
of type-2 fuzzy sets, at that time called interval valued or IV fuzzy sets. Schwartz be-
lieves that type-2 interval fuzzy sets should be employed when the linguistic uncertainty
of a term cannot be sufficiently modelled by the type-1 methods. Klir and Folger advo-
cate the use of IV fuzzy sets when the membership functions of type-1 fuzzy sets could
not be agreed upon. These arguments were explored in greater detail by Mendel [36].
Turksen put forward a collection of logical connectives for type-2 interval fuzzy sets
noting that the expressive power of type-2 fuzzy reasoning lies in the ability to retain
the uncertainty throughout the inferencing process.

3.3 Type-reduction Is Defined

Karnik and Mendel [1998,1998b,2001] defined type-reduction, the technique used for
defuzzifing type-2 fuzzy sets, by applying the extension principle to a variety of type-1
defuzzifiers. The notion of an output processing stage of a type-2 fuzzy system was
developed in these papers.
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3.4 Type-2 Fuzzy Logic Systems Are Fully Defined

Karnik and Mendel [25, 28] gave a complete description of the fuzzy inferencing pro-
cess. This allowed work on the application of type-2 fuzzy logic to proceed. Around
this time John [1998a,1998b,1999,1999a] published a series of review papers on type-
2 fuzzy systems. Early applications of the technology also began to appear (see for
example John [19, 23] and Karnik and Mendel [27]).

3.5 The First Textbook on the Subject of Type-2 Fuzzy Logic Appears

Following the consolidation of the definitions and existing literature by John and Karnik
and Mendel, the field was opened up to a wider potential audience with the publication
of the first type-2 textbook. Uncertain Rule-Based Fuzzy Logic System: Introduction
and New Directions was written by Mendel [2001a] and published in 2001. This text-
book references a great deal of the work on type-2 fuzzy logic that had been published
to date, bringing together many of Mendel’s earlier publications.

3.6 The Representation Theorem Is Defined

Mendel and John [40] gave the representation theorem of type-2 fuzzy sets. By repre-
senting a type-2 fuzzy set as a collection of simpler type-2 embedded sets it is possible
to define operations of type-2 fuzzy sets without the use of the extension principle.
The motivation behind this work was that by eliminating the need to learn about the
extension principle, the field would be more accessible to type-1 fuzzy practitioners.
However, the representation theorem has its own learning curve, and is not significantly
simpler to understand than the extension principle. One of the outcomes of the represen-
tation theorem has been the definition of arithmetic operators for type-2 fuzzy numbers
by Coupland and John [1].

3.7 Issues of Computational Complexity Begin to Be Explored

The complexity of join and meet operations and type-reduction of a type-2 fuzzy set
limit the applicability of type-2 methods. Although type-2 interval sets are simpler,
type-reduction is still a problem, due to inherent complexity and redundancies. The
iterative method (Karnik and Mendel [28]) and the Wu-Mendel [55, 56] approximation
were developed to make the type-reduction of type-2 interval fuzzy sets more efficient.
This has led to the majority of the publications in the field of type-2 only discussing
type-2 interval methods. Indeed, many authors refer to type-2 interval fuzzy set as type-
2 fuzzy sets and add the qualifying term ‘generalised’ when discussing actual type-2
fuzzy sets. The computational problems of join and meet were effectively resolved by
Karnik and Mendel [28]. This work is also discussed by the author, along with some
aspects of the geometric approach in Coupland et al. [2, 3]. Greenfield et al. [12] give
an efficient method for approximating the type-reduced set of a type-2 fuzzy set using
a stochastic approach.
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3.8 Computing with Words Appears

Zadeh [61, 62] made the claim that fuzzy logic, approximately at least, equates to com-
puting with words (CWW). In CWW numbers are replaced with words not only when
reasoning, but also when solving calculations. Zadeh‘s examples use fuzzy granules to
model words. A fuzzy granule is actually the Footprint Of Uncertainty of a type-2 in-
terval fuzzy set. Both Mendel [37, 39] and Turksen [52] point out that CWW requires
type-2 fuzzy sets, both opting to use the simpler type-2 interval representations. Mendel
[36] re-emphasised this point by demonstrating that human models of words as obtained
through a survey require at least interval representations.

3.9 Control Applications

With the iterative method and the Wu-Mendel approximation allowing fast execution of
type-2 fuzzy systems, control applications began to emerge. Melin and Castillo [34, 35]
used type-2 interval systems in the context of plant control. Hagras [13] demonstrated
that a type-2 interval fuzzy logic controller could outperform a type-1 fuzzy controller
under large uncertainties. Wu and Tan [54] applied type-2 interval systems to the con-
trol of a complex multi-variable liquid level process. Figueroa et al. [10] used a type-2
interval control for non-autonomous robots in the context of a robot football game. The
authors’ have performed a comprehensive study of both general and type-2 interval
fuzzy controllers for an autonomous mobile robot. Some aspects of these studies are
presented in Section 4 of this work and in Coupland [3]. Doctor et al. [8] used a type-2
interval system to model and adapt to the behaviour of people in an intelligent dormitory
room. Additional work on type-2 fuzzy logic hardware has also contributed great to the
field. Lynch et al. [31, 32] have implemented an industrial type-2 interval control sys-
tem for large marine diesel engines which has very good performance, both in control
response and cycle times. Melgarejo et al. [33] have also developed a limited hardware
implementation of a type-2 interval controller which has a lesser focus on industrial
application. Coupland et al. [6] have implemented generalised type-2 fuzzy logic, com-
plete with Integrated Development Environment with a focus on dissemination of the
technology.

3.10 Medical Applications

Medical applications are one of the few areas where a generalised type-2 fuzzy logic
has been used in preference to type-2 interval fuzzy logic. This is largely because such
systems do not require fast execution times but do contain large uncertainties. John et al.
[18, 23] used a type-2 fuzzy system for the pre-processing of tibia radiographic images.
Garibaldi et al. [11, 46] have done extensive work on assessing the health of a new
born baby using knowledge of acid-base balance in the blood from the umbilical cord.
Innocent and John [14] proposed the use of fuzzy cognitive maps to aid the differen-
tial diagnosis of confusable diseases and suggest that type-2 cognitive maps may yield
improved results. Di Lascio et al. [7] also used type-2 fuzzy sets to model differential
diagnosis of diseases, modelling the compatibility of the symptom to a disease as a lin-
guistic term. John et al. [2001,2001a] used type-2 fuzzy sets to model the perception of
clinical opinions of nursing staff as linguistic terms.
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3.11 Signal Processing

Signal processing, like control, has to date only used type-2 interval methods. Liang and
Mendel [30] implemented a fuzzy adaptive filter for the equalization of non-linear time-
varying channels. Mitchell [42] defined a similarity measure for use with type-2 fuzzy
sets which was used in a radiographic image classifier. Karnik and Mendel [27] used a
type-2 interval system to predict the next value in a chaotic time series. Musikasuwan et
al. [45] investigated how the learning capabilities of type-1 and type-2 interval systems
differ according to the number of learning parameters used. Both systems were designed
to to predict a Mackey-Glass time series.

3.12 Generalised Type-2 Fuzzy Logic Emerges as a Viable Technology

Two very recent major advances in generalised type-2 fuzzy logic have had a signifi-
cant impact on the usability of generalised type-2 fuzzy systems. Coupland‘s geometric
model [4, 5] of type-2 fuzzy sets and systems have eliminated the historical problem
of the computing the centroid of a type-2 fuzzy set. The work presented in the follow-
ing Section of this chapter is only possible because of the reduction in computation
provided by the geometric model. The simultaneous definition of alpha-planes (or z-
slices) of type-2 fuzzy sets by Mendel and Liu [41], and Wagner and Hagras [53] give
an approximation of the geometric method which is highly efficient and highly parallel.
Definitions and investigations of these techniques are currently being undertaken by a
number of researchers in the field.

3.13 Summary

This Section has given the major developments that have taken place in the field of
type-2 fuzzy logic and places them in a historical context. Type-2 literature has become
predominately concerned with type-2 interval methods. The likely reason for this is the
elimination of the computational problems for type-2 interval methods. The authors’
view is that generalised type-2 fuzzy logic has a great deal to offer as will be demon-
strated in the following section.

4 Type-2 Fuzzy Logic Controllers

This section presents a comparison of three fuzzy logic controller which are given the
task of navigating around a curved obstacle. Each of the three controllers is based on a
different fuzzy technology:

• Controller 1 uses type-1 fuzzy logic;
• Controller 2 uses type-2 interval fuzzy logic, and
• Controller 3 uses hybrid type-2 fuzzy logic.

The type-1 controller was designed first and provides a basis for controllers 2 and 3.
The hybrid type-2 controller makes use of geometric fuzzy logic in order to achieve the
execution speeds requires by the robot control system.
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4.1 Task Selection

There are currently no reported systems (except Coupland et al. [2006] which reports
some aspects of this experiment) where generalised type-2 fuzzy logic has been applied
to a control application. This Section describes the first such application which has been
made possible with the introduction of geometric type-2 fuzzy logic. As discussed in
earlier, type-2 fuzzy logic systems should be able to cope with the uncertainties inher-
ent in control applications. To best evaluate geometric type-2 fuzzy logic in a control
application a difficult mobile robot navigation problem was designed. Type-2 interval
fuzzy logic has already been applied to such an application by Hagras [13]. The Hagras
study demonstrated improved performance in navigation tasks when using type-2 inter-
val rules rather than type-1 under environmental uncertainties. One of the limitations
of the Hagras study was that the robot only performed eight runs and therefore, it is
difficult to state the significance, if any, of this performance improvement. However,
the Hagras study demonstrated that mobile robot navigation is a useful application area
for exploring the potential of type-2 fuzzy logic in control applications.

The task of mobile robot navigation represents a significant challenge for a type-2
FLC. The control system has to operate in real time on limited hardware resources.
The environment which the robot has to operate in is challenging. The sensors on the
robot are operating in the real world and are prone to noise and error. For example
the accuracy of a sonar sensor is likely to be reduced the further away an object is.
Background noise in the environment may also effect the sonar reading. The level of
traction between the wheels and the floor depends on the type of flooring, type pressures
and the speed at which the wheels are moving. The task to be completed by the FLC
presented in this chapter is to navigate a mobile robot around the curved edge of a wall
like obstacle maintaining a distance of 0.5 metres between the centre of the robot and
the obstacle at all times. A diagram of the robot, the obstacle and the ideal path that
the robot should follow around the obstacle is given in Figure 5. The initial position
of the robot puts the obstacle at a right angle to the left wheel of the robot. The initial
distance between the obstacle and the centre of the robot is set at 0.5 metres. The robot
is facing the correct direction to begin navigation of the obstacle. This start position
places the robot just below the start point of the ideal path that should be taken by
the robot around the obstacle. Once the centre of the robot crosses the dotted start line

Fig. 5. Mobile Robot and Obstacle
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Fig. 6. The Pioneer 2 Mobile Robot

tracking begins. Once the centre of the robot crosses the dotted finish line tracking
stops. All runs started from the same initial position. The task of the FLC is essentially
to minimise the deviation from the ideal path between the start and finish lines.

The controllers were deployed on the commercially available pioneer 2 robot (de-
picted in Fig 6) built by ActivMedia. The robot has an on board personal computer
which the software based FLCs were implemented on. This PC links to a microcon-
troller which is directly connected to the sensors and actuators. An array of eight sonar
sensors each with a range of 3 metres provides sensory capability. Two independently
driven wheels give mobility to the robot. The FLCs had four inputs, d1, θ1, d2 and θ2:

• The angle θ1 is the angle to the closest object detected by all eight sensors. θ1 is
given as a value between −110o and 110o;

• the angle θ2 is the angle to the closest object detected by the middle four sensors.
θ2 takes a value between −40o and 40o;

• the distance d1 is the distance to the nearest object detected by all eight sensors, and
• the distance d2 is the distance to the nearest object detected by the middle sensors.

The only output from the system is the change in direction (δh) of the heading of robot.
Since only the direction of the robot is being altered the speed of the robot is kept
constant at 0.1ms−1. The robot travels at this speed when moving in a straight line.
However, when turning a component of this speed is taken up as rotational velocity.
The robot is always moving forwards and can never go backwards.

The Aria software library provided with the robot requires that control commands
are executed within a tenth to a quarter of a second window. This is the definition
of real time for this robot, command execution within a quarter of a second or the
robot operations will shutdown. This is quite a low requirement by control standards.
It is however a significant challenge to perform type-2 fuzzy inferencing on limited
hardware within a quarter of a second.

4.2 Controller Design

At the heart of FLS is the rule base. We started with a type-1 fuzzy rule base and blurred
the membership functions. In this work the control rules were based on the experience
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of a robot operator. Experience of how to drive the robot around the obstacle was gained
by the author. A joystick was connected to the robot over a wireless network. This
joystick was then used to manoeuvre the robot around the obstacle. This process was
repeated until the author was competent at driving the robot around the obstacle. The
rules were based on this experience of driving the robot around the obstacle manually
with a joystick.

The FLC also used an idea from control theory, the change in error over time, the
derivative δe. This added an element of proportionality to the controller (Reznik [47]).
To obtain the value of δe the gradient of a best fit line placed through the last four
error measurements e, where e = 500− d1 was taken. Taking δe is useful as it gives
a measure of whether the robot is moving toward the ideal path or away from it. This
is particularly useful with this configuration of pioneer robots as they do not have any
sonar sensors at the rear to detect whether the robot is moving toward or away from an
object.

4.3 Results

The path each robot FLC took around the obstacle was tracked fifty times. These tracked
paths are depicted in Figures 7, 8 to 9. The error for each point in this tracked path
relative to an ideal path was calculated. The RMSE for each tracked run around the
obstacle was then calculated. The mean, median, standard deviation and coefficient of
variance over the fifty runs was then calculated for each robot FLC. These results are
given in table 1.

Table 1. The Mean, Median, Standard Deviation and Coefficient of Variance of Error for the Six
Robot FLC Over Fifty Runs. All numbers quoted to 4 d.p.

Controller Mean Error Median Error St Dev of Error Co Var of Error
1 13.5852 13.4185 1.0995 0.0809
2 12.5394 11.9779 2.0543 0.1638
3 9.8171 9.7783 1.0185 0.1038

An initial visual comparison would suggest that the controller 3 performed most
consistently. Controller 2 had a wide but consistent spread. Controller 1 had spread of
paths somewhere between the two with a few paths quite far outside the main spread.
It is difficult judge the error of the controllers visually, although the Controller 3 path
appear more tightly packed than the other two.

The results from the experiment did not display either normality or equality of vari-
ance. Therefore the non-parametric Kruskal-Wallis test was used to assess whether or
not there are any differences between the controllers’ performance. The test gave a H
statistic value of 97.01 and a p value of < 0.0005, suggesting strong evidence of dif-
ferences between the controllers. The Kruskal-Wallis test works by ranking the data
by median value. Table 2 gives the median values and the average ranking the three
controllers. The median positions and mean rankings do point to the type-2 controller
having the best performance, followed by the interval type-2 controller and then the
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Fig. 7. Paths Taken By Controller 1

Fig. 8. Paths Taken By Controller 2

Fig. 9. Paths Taken By Controller 3

Table 2. The Median and Average Rank of the Three Controllers from the Kruskal-Wallis Test
Procedure

Controller 1 2 3
Median 13.392 11.961 9.802
Average Rank 113.3 84.2 29.0
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type-1 controller. This performance ranking is identical to the ordering of the ¯RMSE of
the FLC. Looking at consistency of performance both the test for equal variances and
the values of σRMSE suggest that the type-1 and type-2 FLC were equally consistent.
The interval type-2 FLC had a less consistent performance.

It is important to compare the outcomes that are suggested by the statistical com-
parison with those give by a visual comparison of the paths. The statistics suggest that
FLC performance is ranked type-2, then interval type-2 and then type-1. The path de-
pictions support this conclusion. The statistics suggest that the type-1 and type-2 FLC
were equal in the consistency of performance. This is not immediately clear from the
visual comparison. Take into account that the type-1 FLC gave the worst performance.
A view can be taken that the type-1 FLC made more errors, however these errors were
made consistently. The type-2 interval FLC gave a middling performance, but on oc-
casionally made significant errors. This relates well to the visual paths. To summarise
these points:

• The type-2 FLC performed consistently well.
• The interval type-2 FLC performed quite well, but was a little inconsistent.
• The type-1 FLC performed relatively badly, but was consistent in this level of error.

These findings are supported by a visual inspection of taken and by a statistical analysis
of those paths.

5 Conclusion

This Chapter has presented an introduction to type-2 fuzzy sets, an overview of the
history of type-2 fuzzy logic with emphasis on applications and a detailed description
of a real application in control. There is much work still to be done on type-2 fuzzy
logic and we believe the applications and theoretical results will continue to grow.
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Abstract. In this chapter three applications of interval type-2 fuzzy logic are considered. First, 
we consider the use of interval type-2 fuzzy systems in conjunction with modular neural net-
works for image recognition. A type-2 fuzzy system is used for feature extraction in the training 
data, and another type-2 fuzzy system is used to find the optimal parameters for the integration 
method of the modular neural network. Type-2 Fuzzy Logic is shown to be a tool to help im-
prove the results of a neural system by facilitating the representation of the human perception. 
The second application involves edge detection in digital images, which is a problem that has 
been solved by means of the application of different techniques from digital signal processing, 
and also the combination of some of these techniques with type-1 fuzzy systems have been 
proposed. In this chapter a new interval type-2 fuzzy method is implemented for the detection 
of edges and the results of three different techniques for the same goal are compared. The third 
application, concerns the problem of stability, which is one of the more important aspects in the 
traditional knowledge of Automatic Control. Interval type-2 fuzzy logic is an emerging and 
promising area for achieving intelligent control (in this case, Fuzzy Control). In this chapter we 
use the Fuzzy Lyapunov Synthesis, as proposed by Margaliot, to build a Lyapunov stable type-
1 fuzzy logic control system, and then we make an extension from a type-1 to a type-2 fuzzy 
controller, ensuring the stability on the control system and proving the robustness of the corre-
sponding fuzzy controller. 

1   Interval Type-2 Fuzzy Logic for Image Recognition 

At the moment, many methods for image recognition are available. But most of them 
include a phase of feature extraction or another type of preprocessing closely related 
to the type of image to recognize (Melin and Castillo, 2005) (Chuang et al., 2000). 
The method proposed in this paper can be applied to any type of images, because the 
preprocessing phase does not need specific data about the type of image (Melin et al., 
2007) (Mendoza and Melin, 2007). 

Even if the method was not designed only for face recognition, we have made the 
tests with the ORL face database (AT&T Laboratories Cambridge) composed of 400 
images of size 112x92. There are 40 persons, with 10 images of each person. The im-
ages are taken at different times, lighting and facial expressions. The faces are in up-
right position of frontal view, with slight left-right rotation. Figure 1 shows the 10 
samples of one person in ORL database. To explain the proposed steps of the method, 
we need to separate it them in two phases: the training phase in figure 3 and the rec-
ognition phase in figure 4. 
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Fig. 1. Set of 10 samples of a person in ORL 

 

Fig. 2. Steps in Training Phase 

 

Fig. 3. Steps in Recognition Phase 

2   Type-2 Fuzzy Inference System as an Edge Detector 

In previous work we presented an efficient Fuzzy Inference System for edges detec-
tion, in order to use the output image like input data for modular neural networks 
(Mendoza and Melin, 2006). In the proposed technique, it is necessary to apply Sobel 
operators to the original images, then use a Fuzzy Inference System Type-2 to gener-
ate the vector of edges that would serve like input data in a neural network. Type-2 
Fuzzy Logic enables us to handle uncertainties in decision making and recognition in 
a more convenient way and for this reason was proposed (Castillo et al., 2007). 

For the Type-2 Fuzzy Inference System, 3 inputs are required, 2 of them are the 
gradients with respect to x-axis and y-axis, calculated with (1), to which we will call 
DH and DV respectively. 
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The Sobel edges detector uses a pair of 3x3 convolution masks, one estimating the 
gradient in the x-direction (columns) and the other estimating the gradient in the y-
direction (rows). 
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Where Sobely y Sobelx are the Sobel Operators throughout x-axis and y-axis. 
If we define I as the source image,  gx and gy are two images which at each point 

contain the horizontal and vertical derivative approximations, the latter are computed 
as (2) and (3). 
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Where gx and gy are the gradients along axis-x and axis-y, and * represents the con-
volution operator. 

The other input is a filter that calculates when applying a mask by convolution to the 
original image. The low-pass filter hMF (4) allow us to detect image pixels belonging to 
regions of the input were the mean gray level is lower. These regions are proportionally 
more affected by noise, supposed it is uniformly distributed over the whole image.  

The goal here is to design a system which makes it easier to include edges in low 
contrast regions, but which does not favor false edges by effect of noise. 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11111

11111

11111

11111

11111

*
25

1
hMF  (4) 

Then the inputs for FIS type 2 are:  DH=gx, DV=gy, M= hMF*I, where * is the convo-
lution operator, and de output is a column vector contains the values of the image 
edges, and we can represent that in graphics shown in figure 4. The Edge Image is 
smaller than the original because the result of convolution operation is a central ma-
trix where the convolution has a value. Then in our example, each image with dimen-
sion 112x92 is reduced to 108x88. 

The inference rules and membership function parameters allow to calculate a gray 
value between -4.5 and 1.5 for each pixel, where the most negative values corre-
sponds to the dark tone in the edges of the image. Then if we see the rules, only when 
the increment value of the inputs DH and DV are low the output is HIGH or clear (the 
background), in the rest of rules the output is LOW or dark (the edges). The complete 
set of fuzzy rules is given as follows (Castro et al., 2006): 
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1. If (DH is LOW) and (DV is LOW) then (EDGES is HIGH) (1)      
2. If (DH is MEDIUM) and (DV is MEDIUM) then (EDGES is LOW) (1) 
3. If (DH is HIGH) and (DV is HIGH) then (EDGES is LOW) (1)     
4. If (M is LOW) and (DV is MEDIUM) then (EDGES is LOW) (1)     
5. If (M is LOW) and (DH is MEDIUM) then (EDGES is LOW) (1) 

-200 0 200 400
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1
LOW MEDIUM HIGH

M

-200 0 200 400 600
0

0.5

1
LOW MEDIUMHIGH

DH
-200 0 200 400 600
0
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1
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DV

-6 -4 -2 0 2
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1
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EDGES  

Fig. 4. Membership Function for the Type-2 FIS Edge Detector 

The edge detector allows us to ignore the background color. We can see in this da-
tabase of faces, different tones present for the same or another person. Then we elimi-
nate a possible influence of a bad classification by the neural network, without losing 
detail in the image. Another advantage of edge detector is that the values can be nor-
malized to a homogenous value range, independently the light, contrast or background 
tone in each image.  At the examples in figure 5, all the edges in the images have a 
 

  

    

Fig. 5. Examples of edge detection with the Type-2 FIS method 
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minimum value of -3.8 and a maximum value of 0.84. In particular for neural network 
training, we find these values to make the training faster: the mean of the values is 
near 0 and the standard deviation is near 1 for all the images. 

3   The Modular Structure 

The design of the Modular Neural Network consists of 3 monolithic feedforward neu-
ral networks (Sharkey, 1999), each one trained with a supervised method with the first 
7 samples of the 40 images. Then the edges vector column is accumulated until the 
number of samples to form the input matrix for the neural networks as it is in the 
scheme of figure 7. Once the complete matrix of images is divided in 3 parts, each 
module is training with a correspondent part, with some rows of overlap. 

The target to the supervised training method consist of one identity matrix for 
each sample, building one matrix with dimensions 40x(40*number_of_samples). 

Each Monolithic Neural Network has the same structure and is trained under the 
same conditions, like we can see in the next code segment: 

layer1=200; layer2=200; layer3=number_of_subjects; 
net=newff(minmax(p),[layer1,layer2,layer3],{'tansig','tansig','logsig'},'traingdx'); 
net.trainParam.goal=1e-5; 
net.trainParam.epochs=1000; 

The average number of epochs to meet the goal in each module is of 240, and the re-
quired time of 160 seconds. 

4   Simulation Results 

A program was developed in Matlab that simulates each module with the 400 images of 
the ORL database, building a matrix with the results of the simulation of each module. 
These matrices are stored in the file “mod.mat” to be analyzed later for the combination 
of results. We can observe that in the columns corresponding to the training data, the 
position with a value near one is the image selected correctly.  However in the columns 
that correspond to the test data this doesn’t always happens, reason why it is very impor-
tant to have a good combination method to recognize more images. 

According to exhaustive tests made in the simulation matrices, we know that rec-
ognition of the images that were used for the training of the neural networks is of the 
100%. Therefore the interest is focused on the recognition of the samples that do not 
belong to the training set, is to say samples 8,9 and 10. The parameters for the Sugeno 
Fuzzy Integral that will be inferred will be the Fuzzy Densities, a value between 0 and 
1 for each module, which determines the rate for each module. The parameter lambda, 
according to the theory of fuzzy measures depends on the values of the fuzzy densi-
ties, and is calculated by searching for the roots of a polynomial. After the simulation 
of an image in the Neural Network, the simulation value is the only known parameter 
to make a decision, then to determine the fuzzy density for each module is the unique 
available information.  For this reason we analyze the values in many simulations 
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Fig. 6. Process of recognition using the type-2 fuzzy modular approach 

matrix and decide that each input to the FIS Type-2 corresponds to the maximum 
value of each column corresponding to the simulation of each module of each one of 
the 400 images. The process to recognize each one of the images is shown in figure 6. 

Then each output corresponds to one fuzzy density, to be applied for each module 
to perform the fusion of results later with the Fuzzy Sugeno Integral. The inference 
rules found fuzzy densities near 1 when de maximum value in the simulation is be-
tween 0.5 and 1, and near 0 when the maximum value in the simulation is near 0. The 
fuzzy rules are shown below and membership functions in Figure 7. 

 
1. If (max1 is LOW) then (d1 is LOW) (1)     
2. If (max2 is LOW) then (d2 is LOW) (1)     
3. If (max3 is LOW) then (d3 is LOW) (1)     
4. If (max1 is MEDIUM) then (d1 is HIGH) (1) 
5. If (max2 is MEDIUM) then (d2 is HIGH) (1) 
6. If (max3 is MEDIUM) then (d3 is HIGH) (1) 
7. If (max1 is HIGH) then (d1 is HIGH) (1)   
8. If (max2 is HIGH) then (d2 is HIGH) (1)   
9. If (max3 is HIGH) then (d3 is HIGH) (1) 
 

Although the rules are very simple, allows to model the fuzziness to rate de modules 
when the simulation result don’t reach the maximum value 1. 

However some of the images don’t reach the sufficient value in the simulation of 
the three modules, in these cases, do not exists enough information to select an image 
at the modules combination, and the image is wrongly selected. 

In order to measure of objective form the final results, we developed a method of 
random permutation, which rearranges the samples of each person before the training. 
Once a permutation is made, the modular neural networks are trained and combined 
four times to obtain the sufficient information to validate the results. The average rec-
ognition rate is of 96.5%.  



 Interval Type-2 Fuzzy Logic Applications 209 

-0.5 0 0.5 1 1.5
0

0.5

1 LOW MEDIUM HIGH

max1

-0.5 0 0.5 1 1.5
0

0.5

1 LOW MEDIUM HIGH

max2

-0.5 0 0.5 1 1.5
0

0.5

1 LOW MEDIUM HIGH

max3

-0.5 0 0.5 1 1.5
0

0.5

1 LOW MEDIUM HIGH

d1

-0.5 0 0.5 1 1.5
0

0.5

1 LOW MEDIUM HIGH

d2

-0.5 0 0.5 1 1.5
0

0.5

1 LOW MEDIUM HIGH

d3  

Fig. 7. Membership functions for the FIS to find fuzzy densities 

We show in Table 1 the summary of simulation results for each of the modules 
and the average and maximum results of the modular network (after fusion or combi-
nation of the results). 
 

Table 1. Summary of the Simulation Results with the Hybrid Approach 
 

Image Recognition (%) Permu-
tation Train 1 Train 2 Train 3 Train 4 Average Maximum 

1 92.75 95 92.2 93.25 93.3 95 
2 96.5 95.25 94.25 95.5 95.375 96.5 
3 91.5 92 93.75 95.25 93.125 95.25 
4 94.5 94.5 93.25 94 94.0625 94.5 
5 93.75 93.5 94 96 94.3125 96 
     94.035 96.5 

5   Interval Type-2 Fuzzy Logic for Digital Image Edge Detection 

In the area of digital signal processing, methods have been proven to solve the prob-
lem of image recognition. Some of them include techniques like binarization, bidi-
mensional filtrate, detection of edges and compression using banks of filters and trees, 
among others. 

Specifically in methods for the detection of edges we can find comparative studies 
of methods like: Canny, Narwa, Iverson, Bergholm y Rothwell. Others methods can 
be grouped into two categories: Gradient and Laplacian. 

The gradient methods like Roberts, Prewitt and Sobel detect edges, looking for 
maximum and minimum in first derived from the image. The Laplacian methods like 
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Marrs-Hildreth do it finding the zeros of second derived from the image (Mendoza 
and Melin, 2005). 

This work is the beginning of an effort for the design of new pre-processing images 
techniques, using Fuzzy Inference Systems (FIS), which allows feature extraction and 
construction of input vectors for neural networks with aims of image recognition. 

Artificial neural networks are one of the most used techniques in the automatic 
recognition of patterns, here are some reasons: 

• Theoretically any function can be determined. 
• Except the input patterns, it is not necessary to provide additional information. 
• They are possible to be applied to any type of patterns and to any data type.  

The idea to apply artificial neural networks for images recognition, tries to obtain re-
sults without providing another data that the original images, of this form the process 
is more similar to the form in which the biological brain learns to recognize patterns, 
only knowing experiences of past. 

Models with modular neural networks have been designed, that allow recognizing 
images divided in four or six parts. This is necessary due to the great amount of input 
data, since an image without processing is of 100x100 pixels, needs a vector 10000 
elements, where each one corresponds to pixel with variations of gray tones between 
0 and 255 (Mendoza and Melin, 2005). 

This chapter shows an efficient Fuzzy Inference System for edges detection, in or-
der to use the output image like input data for modular neural networks. In the pro-
posed technique, it is necessary to apply Sobel operators to the original images, and 
then use a Fuzzy System to generate the vector of edges that would serve as input data 
to a neural network. 

6   Edge Detection by Gradient Magnitude 

Although the idea presented in this chapter, is to verify the efficiency of a FIS for 
edges detection in digital images, from the approaches given by Sobel operator, is 
necessary to display first results using only the gradient magnitude. 

The first image of subject number one of the ORL database will be used as an example 
(Figure 8). The gray tone of each pixel of this image is a value of between 0 and 255. 
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Fig. 8. Original Image 1.pgm 



 Interval Type-2 Fuzzy Logic Applications 211 

In figure 9 the image generated by gx is shown, and Figure 10 presents the image 
generated by gy. 
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Fig. 9. Image given by gx Fig. 10. Image given by gy 

An example of maximum and minimum values of the matrix given by gx, gy and g 
from the image 1.pgm is shown in Table 2. 

Table 2. Maximum and Minimum values from 1.pgm, gx, gy and g 

Tone 1.pgm gx gy g 

Minimum 11 -725 -778 0 
Maximum 234 738 494 792 

After applying equation (4), g is obtained as it is in Figure 11. 

 

Fig. 11. Edges image given by g 

7   Edge Detection Using Type-1 Fuzzy Logic 

A Mamdani FIS was implemented using Type-1 Fuzzy Logic, with four inputs, one 
output and 7 rules, using the Matlab Fuzzy Logic Toolbox, which is shown in Figure 12. 
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Fig. 12. FIS in Matlab Fuzzy Logic Tool Box 

For the Type-1Fuzzy Inference System, 4 inputs are required, 2 of them are the 
gradients with respect to x-axis and y-axis, calculated with equation (2) and equation 
(3), to which we will call DH and DV respectively. 

The other two inputs are filters: A high-pass filter, given by the mask of the equation 
(5), and a low-pass filter given by the mask of equation (6). The high-pass filter hHP de-
tects the contrast of the image to guarantee the border detection in relative low contrast 
regions. The low-pass filter hMF allow to detects image pixels belonging to regions of 
the input were the mean gray level is lower. These regions are proportionally more af-
fected by noise, supposed it is uniformly distributed over the whole image.  

The goal here is to design a system which makes it easier to include edges in low 
contrast regions, but which does not favor false edges by effect of noise (Miosso and 
Bauchspiess, 2001). 

 

(5) 

 

(6) 

Then the inputs for type-1 FIS are:  

DH=gx, DV=gy  HP= hHP*I M= hMF*I 

where * is the convolution operator. 
For all the fuzzy variables, the membership functions are of Gaussian type. Ac-

cording to the executed tests, the values in DH and DV, go from -800 to 800, then the 
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ranks in x-axis adjusted as it is in figures 13, 14 and 15, in which the membership 
functions are: 

LOW: gaussmf(43,0),  
MEDIUM: gaussmf(43,127), 
HIGH: gaussmf(43,255). 
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Fig. 13. Input variable DH 
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Fig. 14. Input variable DV 
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Fig. 15. Input variable HP 
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Fig. 16. Input variable M 

In the case of variable M, the tests threw values in the rank from 0 to 255, and thus 
the rank in x-axis adjusted, as it is shown in figure 16. 

In figure 17 the output variable EDGES is shown, that also adjusted the ranks between 
0 and 255, since it is the range of values required to display the edges of an image. 
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Fig. 17. Output variable EDGES 

The seven fuzzy rules that allow to evaluate the input variables, so that the exit im-
age displays the edges of the image in color near white (HIGH tone), whereas the 
background was in tones near black (tone LOW). 

 
1. If (DH is LOW) and (DV is LOW) then (EDGES is LOW)   
2. If (DH is MEDIUM) and (DV is MEDIUM) then (EDGES is HIGH)  
3. If (DH is HIGH) and (DV is HIGH) then (EDGES is HIGH)   
4. If (DH is MEDIUM) and (HP is LOW) then (EDGES is HIGH) 
5. If (DV is MEDIUM) and (HP is LOW) then (EDGES is HIGH) 
6. If (M is LOW) and (DV is MEDIUM) then (EDGES is LOW)    
7. If (M is LOW) and (DH is MEDIUM) then (EDGES is LOW)    

 
The result obtained for image of figure 8 is remarkably better than the one than it 

was obtained with the method of gradient magnitude, as it is in Figure 18. 
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Fig. 18. EDGES Image by FIS Type 1 

Reviewing the values of each pixel, we see that all fall in the rank from 0 to 255, 
which is not obtained with the method of gradient magnitude. 
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Fig. 19. Type-2 fuzzy variables 
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8   Edge Detection Using Type-2 Fuzzy Logic 

For the Type-2 FIS, the same method was followed as in Type-1 FIS, indeed to be 
able to make a comparison of both results. The tests with the type-2 FIS, were exe-
cuted using the computer program imagen_bordes_fis2.m, which creates a Type-2 In-
ference System (Mamdani, 1993) by intervals (Mendel, 2001). 

The mentioned program creates the type-2 fuzzy variables as it is seen in figure 19. 
The wide of the FOU chosen for each membership function was the one that had 
better results after several experiments. The program imagen_bordes_fuzzy2.m was 
implemented to load the original image, and to apply the filters before mentioned. Be-
cause the great amount of data that the fuzzy rules must evaluate, the image was di-
vided in four parts, and the FIS was applied to each one separately. The result of each 
evaluation gives a vector with tones of gray by each part of the image, in the end is 
the complete image with the edges (figure 20). 

 

Fig. 20. EDGES Image by the Type-2 FIS  

9   Comparison of Results 

The first results of several tests conducted in different images can be appreciated in 
table 3. 

At first, the results with the Type-1 FIS and Type-2 FIS are seen to be very similar. 
However thinking about that to show the images with a dark background it could con-
fuse the contrast of tones, tests were done inverting the consequent of the rules, so 
that the edges take the dark tone and the bottom the clear tone, the rules changed to 
the following form: 

1. If (DH is LOW) and (DV is LOW) then (EDGES is HIGH) 
2. If (DH is MEDIUM) and (DV is MEDIUM) then (EDGES is LOW) 
3. If (DH is HIGH) and (DV is HIGH) then (EDGES is LOW)    
4. If (DH is MEDIUM) and (HP is LOW) then (EDGES is LOW)  
5. If (DV is MEDIUM) and (HP is LOW) then (EDGES is LOW)  
6. If (M is LOW) and (DV is MEDIUM) then (EDGES is HIGH)   
7. If (M is LOW) and (DH is MEDIUM) then (EDGES is HIGH)   

Fuzzy Systems were tested both (Type-1 and Type-2), with the new fuzzy rules 
and same images, obtaining the results that are in Table 4. 
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Table 3. Results of Edge Detection by FIS1 and FIS2 (Dark Background) 

Original Image EDGES  
(FIS 1) 

EDGES  
(FIS 2) 

 

  

  

  

  

In this second test can be appreciated a great difference between the results ob-
tained with the FIS 1 and FIS 2, noticing at first a greater contrast in the images ob-
tained with the FIS 1 and giving to the impression of a smaller range of tones of gray 
in the type-2 FIS. 

In order to obtain an objective comparison of the images, histograms were elabo-
rated respectively corresponding to the resulting matrices of edges of the FIS 1 and 
FIS 2, which are in table 5. 

The histograms show in the y-axis the range of tones of gray corresponding to each 
image and in x-axis the frequency in which he appears pixel with each tone. 
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Table 4. Results of Edge Detection by FIS1 and FIS2 (Clear Background) 

EDGES  
(FIS 1) 

EDGES  
(FIS 2) 

  

  

  

  

Table 5. Histograms of the Resulting Images of Edge Detection by the Gradient Magnitude, 
FIS1 and FIS 2 methods 

IMAGE: 1.PGM                                                           

METHOD: GRADIENT MAGNITUDE 
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METHOD: FIS 1 (CLEAR BACKGROUND) 

 



 Interval Type-2 Fuzzy Logic Applications 219 

Table 5. (continued) 
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Table 6. Type-2 FIS Edges Images including Pixels with Tones between 150 and 255 

BORDERS IMAGE DIMENSION 
(pixels) 

PIXELS INCLUDED 
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108x88 
 

(9504) 

4661 
 

49 % 
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144x110 
 

(15840) 

7077 
 

44.6 % 

As we can observe, unlike detector FIS1, with FIS2 the edges of an image could be 
obtained from very complete form, only taking the tones around 150 and 255. 

As a last experiment, in this occasion to the resulting images of the Type-2 FIS the 
every pixel out of the range between 50 and 255 was eliminated.  
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Table 6 shows the amount of elements that was possible to eliminate in some of the 
images, we see that the Type-2 Edges Detector FIS allows to using less than half of 
the original pixels without losing the detail of the images. This feature could be a 
great advantage if these images are used like input data in neural networks for detec-
tion of images instead the original images. 

10   Systematic Design of a Stable Type-2 Fuzzy Logic Controller 

Stability has been one of the central issues concerning fuzzy control since Mamdani’s 
pioneer work (Mamdani and Assilian, 1975). Most of the critical comments to fuzzy 
control are due to the lack of a general method for its stability analysis. 

But as Zadeh often points out, fuzzy control has been accepted by the fact that it is 
task-oriented control, while conventional control is characterized as setpoint-oriented 
control, and hence do not need a mathematical analysis of stability. Also, as Sugeno 
has mentioned, in general, in most industrial applications, the stability of control is 
not fully guaranteed and the reliability of a control hardware system is considered to 
be more important than the stability (Sugeno, 1999). 

The success of fuzzy control, however, does not imply that we do not need a stabil-
ity theory for it. Perhaps the main drawback of the lack of stability analysis would be 
that we cannot take a model-based approach to fuzzy control design. In conventional 
control theory, a feedback controller can be primarily designed so that a close-loop 
system becomes stable. This approach of course restricts us to setpoint-oriented con-
trol, but stability theory will certainly give us a wider view on the future development 
of fuzzy control. 

Therefore, many researchers have worked to improve the performance of the 
FLC’s and ensure their stability. Li and Gatland in 1995 proposed a more systematic 
design method for PD and PI-type FLC’s. Choi, Kwak and Kim (Choi et al., 2000) 
present a single-input FLC ensuring stability. Ying in 1994 presented a practical de-
sign method for nonlinear fuzzy controllers, and many other researchers have results 
on the matter of the stability of FLC’s, in (Castillo et al., 2005) and (Cázarez et al., 
2005) presents an extension of the Margaliot work (Margaliot and G. Langholz, 2000) 
to built stable type-2 fuzzy logic controllers in Lyapunov sense. 

This work is based on Margaliot´s work (Margaliot and Langholtz, 2000), we use 
the Fuzzy Lyapunov Synthesis to build an Stable Type-2 Fuzzy Logic Controller for a 
1 Degree of Freedom (DOF) manipulator robot, first without gravity effect to prove 
stability, and then with gravity effect to prove the robustness of the controller. The 
same criteria can be used for any number of DOF manipulator robots, linear or 
nonlinear, and any kind of plants. 

11   Fuzzy Logic Controllers 

11.1   Type-1 Fuzzy Logic Control 

Type-1 FLCs are both intuitive and numerical systems that map crisp inputs to a crisp 
output. Every FLC is associated with a set of rules with meaningful linguistic inter-
pretations, such as 
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:lR  If 1x  is 
lF1  and 2x  is 

lF2 and … and nx  is l
nF  Then w  is lG   

which can be obtained either from numerical data, or experts familiar with the prob-
lem at hand. Based on this kind of statement, actions are combined with rules in an 
antecedent/consequent format, and then aggregated according to approximate reason-

ing theory, to produce a nonlinear mapping from input space nUxxUUU ...21=
 
to 

the output space W , where nkUF k
l

k ,...,2,1, =⊂ , are the antecedent type-1 

membership functions, and WGl ⊂  is the consequent type-1 membership function. 

The input linguistic variables are denoted by nkuk ,...,2,1, = , and the output lin-

guistic variable is denoted by w . 
A Fuzzy Logic System (FLS), as the kernel of a FLC, consist of four basic ele-

ments (Fig. 21): the type-1 fuzzyfier, the fuzzy rule-base, the inference engine, and 

the type-1 defuzzyfier. The fuzzy rule-base is a collection of rules in the form of 
lR , 

which are combined in the inference engine, to produce a fuzzy output. The type-1 
fuzzyfier maps the crisp input into type-1 fuzzy sets, which are subsequently used as 
inputs to the inference engine, whereas the type-1 defuzzyfier maps the type-1 fuzzy 
sets produced by the inference engine into crisp numbers. 

 

Fig. 21. Structure of type-1 fuzzy logic system 

Fuzzy sets can be interpreted as membership functions Xu  that associate with each 

element x  of the universe of discourse, U , a number )(xuX in the interval [0,1]: 

]1,0[: →UuX  (7) 

For more detail of Type-1 FLS see (Chen and Pham, 2001). 
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11.2   Type-2 Fuzzy Logic Control 

As with the type-1 fuzzy set, the concept of type-2 fuzzy set was introduced by Zadeh 
as an extension of the concept of an ordinary fuzzy set (Zadeh, 1975). 

A FLS described using at least one type-2 fuzzy set is called a type-2 FLS. Type-1 
FLSs are unable to directly handle rule uncertainties, because they use type-1 fuzzy 
sets that are certain. On the other hand, type-2 FLSs, are very useful in circumstances 
where it is difficult to determine an exact, and measurement uncertainties (Mendel, 
2000). 

It is known that type-2 fuzzy set let us to model and to minimize the effects of un-
certainties in rule-based FLS. Unfortunately, type-2 fuzzy sets are more difficult to 
use and understand that type-1 fuzzy sets; hence, their use is not widespread yet. 

Similar to a type-1 FLS, a type-2 FLS includes type-2 fuzzyfier, rule-base, infer-
ence engine and substitutes the defuzzifier by the output processor. The output proc-
essor includes a type-reducer and a type-2 defuzzyfier; it generates a type-1 fuzzy set 
output (from the type reducer) or a crisp number (from the defuzzyfier). A type-2 FLS 
is again characterized by IF-THEN rules, but its antecedent and consequent sets are 
now of type-2. Type-2 FLSs, can be used when the circumstances are too uncertain to 
determine exact membership grades. A model of a type-2 FLS is shown in Figure 22. 

 

Fig. 22. Structure of type-2 fuzzy logic system 

In the case of the implementation of type-2 FLCs, we have the same characteristics 
as in type-1 FLC, but we now use type-2 fuzzy sets as membership functions for the 
inputs and for the outputs. Fig. 23 shows the structure of a control loop with a FLC. 

 

Fig. 23. Fuzzy control loop 
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12   Systematic and Design of Stable Fuzzy Controllers 

For our description we consider the problem of designing a stabilizing controller for a 

1DOF manipulator robot system depicted in Fig. 24. The state-variables are θ=1x - 

the robot arm angle, and θ&=2x  - its angular velocity. The system’s actual dynami-

cal equation, which we will assume that are unknown, is as shown in equation (8) 
(Paul and Yang, 1999): 

( ) ( ) τ=++ )(, qgqqqCqqM &&&&  (8) 

 

Fig. 24. 1DOF Manipulator robot 

To apply the fuzzy Lyapunov synthesis method, we assume that the exact equa-
tions are unknown and that we have only the following partial knowledge about the 
plant (see Figure 24): 

1. The system may have really two degrees of freedom θ  and θ& , referred to as 

1x and 2x , respectively. Hence, 21 xx =& . 

2. 2x&  is proportional to u , that is, when u increases (decreases) 2x& increases (de-

creases). 

To facilitate our control design we are going to suppose no gravity effect in our 
model, see (equation 9). 

τ=qml &&2  (9) 

Our objective is to design the rule-base of a fuzzy controller that will carry the robot 

arm to a desired position dx θ=1 . We choose (10) as our Lyapunov function candi-

date. Clearly, V is positive-definite. 

)(
2

1
),( 2

2
2
121 xxxxV +=  (10) 

Differentiating V , we have equation (11),  

22212211 xxxxxxxxV &&&& +=+=  (11) 
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Hence, we require: 

02221 <+ xxxx &  (12) 

We can now derive sufficient conditions so that condition (12) holds: If 1x and 

2x have opposite signs, then 021 <xx and (12) will hold if 02 =x& ; if 1x and 2x are 

both positive, then (12) will hold if 12 xx −<& ; and if 1x and 2x are both negative, 

then (12) will hold if 12 xx −>& . 

We can translate these conditions into the following fuzzy rules: 

• If 1x is positive and 2x is positive then 2x& must be negative big 

• If 1x is negative and 2x is negative then 2x& must be positive big 

• If 1x is positive and 2x is negative then 2x& must be zero 

• If 1x is negative and 2x is positive then 2x& must be zero. 

However, using our knowledge that 2x& is proportional tou , we can replace each 

2x& with u  to obtain the fuzzy rule-base for the stabilizing controller: 

• If 1x is positive and 2x is positive Then u must be negative big 

• If 1x is negative and 2x is negative Then u must be positive big 

• If 1x is positive and 2x is negative Then u must be zero 

• If 1x is negative and 2x is positive Then u must be zero. 

It is interesting to note that the fuzzy partitions for 1x , 2x , and u follow elegantly 

from expression (11). Because  )( 212 xxxV && += , and since we require that V& be 

negative, it is natural to examine the signs of 1x and 2x ; hence, the obvious fuzzy par-

tition is positive, negative. The partition for 2x& , namely negative big, zero, positive 

big is obtained similarly when we plug the linguistic values positive, negative for 1x  

and 2x  in (11). To ensure that 12 xx −<&  )( 12 xx −>&  is satisfied even though we do 

not know 1x ’s exact magnitude, only that it is positive (negative), we must set 2x&  to 

negative big (positive big). Obviously, it is also possible to start with a given, pre-

defined, partition for the variables and then plug each value in the expression for V& to 
find the rules. Nevertheless, regardless of what comes first, we see that fuzzy 
Lyapunov synthesis transforms classical Lyapunov synthesis from the world of exact 
mathematical quantities to the world of computing with words (Zadeh, 1996). 

To complete the controllers design, we must model the linguistic terms in the rule-
base using fuzzy membership functions and determine an inference method. Following 
(Wang, 1997), we characterize the linguistic terms positive, negative, negative big, 
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zero and positive big by the type-1 membership functions shown in Fig. 25 for a 
Type-1 Fuzzy Logic Controller, and by the type-2 membership functions shown in 
Figure 26 for a Type-2 Fuzzy Logic Controller. Note that the type-2 membership 
functions are extended type-1 membership functions. 

 

Fig. 25. Set of type-1 membership functions: a) positive, b)negative, c) negative big, d) zero and 
e) positive big 

 

Fig. 26. Set of type-2 membership functions: a)negative, b) positive, c) positive big, d) zero and 
e) negative big 
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To this end, we had systematically developed a FLC rule-base that follows the 
Lyapunov Stability criterion. In Section 13 we present some experimental results us-
ing our fuzzy rule-base to build a Type-2 Fuzzy Logic Controller. 

13   Experimental Results 

In Section 12 we had systematically developed a stable FLC rule-base, and now we 
are going to show some experimental results using our stable rule-base to build a 
Type-2 FLC. The plant description used in the experiments is the same shown in 
Section 12. 

Our experiments were done with Type-1 Fuzzy Sets and Interval Type-2 Fuzzy 
Sets. In the Type-2 Fuzzy Sets the membership grade of every domain point is a crisp 
set whose domain is some interval contained in [0,1] (Mendel, 2000). On Fig. 26 we 
show some Interval Type-2 Fuzzy Sets, and for each fuzzy set, the grey area is known 
as the Footprint of Uncertainty (FOU) (Mendel, 2000), and this is bounded by an up-
per and a lower membership function as shown in Fig. 27. 
 

 

Fig. 27. Interval Type-2 Fuzzy Set 

In our experiments we increase and decrease the value of ε  to the left and to the 

right side having a Lε  and a Rε  values respectively to determine how much the 
FOU can be extended or perturbed without losing stability in the FLC. 

We did make simulations with initial conditions of θ  having values in the whole 

circumference [0, 2π ], and the desired angle dθ  having values in the same range. 
The initial conditions considered in the experiments shown in this paper are an angle 

rad0=θ  and radd 1.0=θ . 

In Fig. 28 we show a simulation of the plant made with a Type-1 FLC, as can be 
seen, the plant has been regulated in around 8 seconds, and in Fig. 29 we show the 
graph of equation (11) which is always negative defined and consequently the system 
is stable.  
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Fig. 28. Response for the Type-1 FLC 
 

 

Fig. 29. V& for the Type-1 FLC 

 

Fig. 30. Response for the Type-2 FLC ( )1,0[→ε ) 
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Fig. 31. V&  for the Type-2 FLC ( ]1,0[→ε ) 

 

Fig. 32. Response for the Type-1 FLC 

 

Fig. 33. V& for the Type-1 FLC 
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Figure 30 shows the simulation results of the plant made with the Type-2 FLC in-
creasing and decreasing ε in the range of [0,1], and as can be seen the plant has been 
regulated in around  10 seconds, and the graph of equation (11), which is depicted in 
Fig. 31 is always negative defined and consequently the system is stable. As we can 
seen, the time response is increasing when the value of ε is increasing.  

With the variation of ε in the definition of the FOU, the control surface changes 
proportional to the change of ε , for this reason, the value of u for 1≥ε  is practi-
cally zero, and the plant does not have physical response. To test the robustness of the 
built Fuzzy Controller, now we are going to use the same controller designed in Sec-
tion 12, but at this time, we are going to use it to control equation (8) considering the 
gravity effect as shown in equation (13). 

τ=+ qgmlqml cos2 &&  (13) 

In Figure 32 we can see a simulation of the plant obtained with a Type-1 FLC, and as 
can be seen, the plant has been regulated in approximately 8 seconds and Figure 33 
shows the graph of equation (11) which is always negative defined and consequently 
the system is stable.  

Figure 34 shows the simulation results of the plant obtained with the Type-2 FLC 
with increasing and decreasing  ε  values in the range of [0,1], and the graph of (11) 
depicted at Fig. 35 is always negative defined and consequently the system is stable. 
As we can seen, if we use an adaptive gain like in (Castillo et al., 2005) all the cases 
ofε can be regulated around 8 seconds.  

 
Fig. 34. Response for the Type-2 FLC ( )1,0[→ε ) 
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Fig. 35. V&  for the Type-2 FLC ( ]1,0[→ε ) 

14   Conclusions 

In this chapter three applications of interval type-2 fuzzy logic have been described. 
First, the use of interval type-2 fuzzy logic is used to improve performance on a modu-
lar neural network for face recognition. Second, interval type-2 fuzzy logic is used to 
improve edge detection in image processing. Finally, a method for designing stable in-
terval type-2 fuzzy logic controllers is proposed. In all cases, the results of type-2 fuzzy 
logic are shown to be superior with respect to the type-1 corresponding ones. 
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Abstract. Consider a web society comprised by a huge number of agents communicating with 
one another. Each agent enjoys a wide facility in receiving and sending data and a very small 
capacity for processing them. Hence data constitute a heap of microgranules of information. 
Each individual processes data by him- or herself with the sole goal of increasing personal util-
ity. In this sense s/he adapts his/her parameters in a monotone way so as to fit granules. The 
sole social interaction with others all around aims at maintaining a healthy homeostasis. This 
goal is achieved through an aging mechanism that is set at the basis of a human-centric policy 
for producing a dynamic formation of clusters of healthy agents within a population. As a re-
sult, agents are specialized in a user-dependent task common to all individuals of a same clus-
ter, and possibly belonging to more than one cluster. We may interpret the process as a dynamic 
assignment of agent membership degrees to the various clusters: each cluster is ranked with an 
overall quality index; each agent partitions an overall membership on the single clusters. 

1   Introduction 

Human-centric policy seeks a new brand of the Information Communication Technol-
ogy (ICT) society that calls for a further step in the direction of an alliance between the 
axiomatic world of mathematics and the pragmatic world of humans [1]. On the path 
toward a concrete use of mathematical tools in an everyday operational context, the use 
of computers marked an enormous advancement in searching for results whose fea-
tures and existence may be foreseen by the theory but whose actual achievement 
emerges from long iterations of symbolic or numerical routines. Thus, abandoning a 
utopian world where each phenomenon is ruled by universal laws deduced from a few 
founding axioms, scientists moved to another ideal world where everything that is 
needed may be computed automatically by picking universal routines from a well fur-
nished library [2]. The typical goal concerning a routine from this library is to show 
that it works for any input without any user intervention (weaning [3]) apart from a 
correct feed of the input. Modern researchers claim that this goal makes sense in rela-
tively limited ranges of input [4]. But very few renounce the idea that the routine 
works all by itself, simply pushing a computer button, and in a feasible amount of time 
[5]. While up until the 1980s, theoretical computer scientists considered speaking of 
heuristics a nice shortage, today user-dependent solutions are viewed in the same nega-
tive manner. Nevertheless, since the 1990s some methodologists have launched hu-
man-centric features for principled automatic activities such as business optimization 
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[6,7], computer aided diagnosis [8,9], privacy and network security [10,11], web and  
e-learning [12-14], programming language interfaces [15], industrial automation [16], 
and so on. In some sense we may consider human-centric computations as an evolution 
of the expert systems [17] almost definitely dismissed at the end of the past century. Of 
that paradigm, the new computations share the focus on the information that humans 
already possess and may reverse on the solution of the problem at hand. Indeed we 
commonly speak of human-centric information processing, like in the title of this book. 
The novelty of the new paradigm may be summed up in the two keywords it is usually 
accompanied by: granular information and social computing. 

1.1   Tailoring Computations to Humans 

Social computing [18] has the emergence of a functionality [19] as the final result of 
the computation. You have a certain number of processing elements (PEs), each de-
voted to its own task and implicitly coordinated through a dense communication grid, 
the output composition of which results in a functionality suitable to the coordinator. 
From a computer science perspective, this is the answer to the general failure of the 
parallel computation paradigms tossed on supercomputers in the 1980s. Since the cost 
of synchronizing the thousands of CPU proved unbearable – with the consequence of 
having in the best case a throughput of a few units on a general-purpose machine 
[20,21] – we opted for a distributed computation paradigm [22]. This relieves the coor-
dination overheads, since each processor runs on the input broadcast to it by the other 
processors as soon as they produce it. At the same time, this necessarily reduces the 
processors computational power, since you cannot expect sophisticated computation on 
unplanned inputs. We speak indeed of elementary processors. From a social viewpoint 
functionality, emergence represents a modern take on Taylorism that affects the geno-
typical rather than phenotypical aspect of human activity. The most common example 
is the worldwide web. You have a communication grid that, jointly with other massive 
communication tools such as TV and mobile phones, feeds the user with an avalanche 
of messages. There are so many of these that the user may process them with very 
simple means, very often coming to some threshold operation replying “yes” after a 
saturation level has been reached [23]. This asserts an intriguing saddle point between 
macro and microcosm, as an analogous information processing is assumed to be at the 
basis of our body’s intelligent cells (e.g. neurons and T-cells). However, such a con-
nection is based on a different kind of fitness concept as the Hamiltonian of this mas-
sive process refers not to a single element of the evolving population but to the whole 
population, in a close analogy with the idea of custom tailoring.  

Information features are equally particular. A PE may process only small bits of in-
formation. Hence, even in the case where the global settlement of the computation 
would be fed with a complete and perfectly clean set of data (a situation so ideal as to 
be generally unfeasible), the single PE will only handle granules of information. They 
are partial data that it tries to connect to the surroundings through a limited repertoire 
of instruments like membership functions, probability models or deduction rules it has 
available [24]. Seen from a bottom-up perspective (data on bottom, concepts on top), 
granularity stands for a smearing of numerical data into blobs around them. This calls 
for specific methods, such as clustering, merging, fuzzy processing and so on, to 
process these entities [24,25]. The feature is not bounded to a given scale. We may 
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state similarity or fuzzy relations in general between observations of a phenomenon, 
yet also on models describing the phenomenon, for instance in terms of behavior dis-
tribution [26] or collaborative fuzzy clustering [1,27], etc. The cooperation request, 
and social computing as its implementation, comes from the definition of information 
granularity. We may relieve noise and elicit similarities and decision rules exactly be-
cause we confront results coming from the individual granules. For short, with tradi-
tional statistics we have a central, possibly sophisticated, processing of the data – for 
instance to compute their mean or variance [28]. With granular computing we have a 
possibly disingenuous general-purpose resume of the computations done on the single 
granules [14]. 

Along with a small local database, the repertoire of agent instruments represents 
the core of the person in the role of PE. Actually s/he could run more complex com-
putations on terabyte-sized databases and he really does so in many situations. But 
when the goal of the computation is highly complex, the best s/he does is organize an 
army of clones reflecting his/her actually limited conceptual tools w.r.t. the problem 
and runs them as explained before expecting the mentioned emergence of a solution, 
for instance according to the general paradigm of learning by ensemble [29]. Such is 
the situation at the level of individual person. But this scheme may reflect the organi-
zation of real communities of living organisms, ranging from single cells to internet 
virtual community members. In these cases we face (not organize) ensembles of PEs 
and wonder about their elementary computations, the control rules making them a 
community in place of random particles, and the global functionality they implement. 
In this chapter we discuss these items with the aim of showing that even more ele-
mentary computations than those generally acknowledged to the PEs are sufficient for 
obtaining basilar function emergence like homeostasis [30]. It should allow both a 
more realistic and suitable analysis of biological phenomena and a possible inauspi-
cious forecasting on social phenomena as well [31]. The key ingredient collating the 
individual’s computations is an age factor singularly affecting PEs under a stabilizing 
effect of surrounding PEs [32]. Age, as an asymmetry in the time axis, denotes a 
memory in the processor behavior that in turn is at the basis of some intentionality of 
their computations [33]. This looks to us as the main distinguishing features between 
ensembles of inanimate particles like a gas powered by Brownian motion [34] and our 
processors, which therefore play henceforth the role of (real or artificial) agents [35]. 
With these subjects we abandon the framework of memoryless Markov processes [36] 
and move to more complex random processes that we study, for the moment at a 
purely descriptive level, within the paradigm of π-calculus [37]. In turn, it is not sur-
prising that this computational paradigm is mostly diffused today as a tool for analyz-
ing complex dynamical systems, again as a distributed (agent-based) procedure to 
compute system evolutions ruled by extended forms of ordinary differential equations 
[38]. With this and similar paradigms, such as biological computers [39], we aim at 
filling the gap between systems hardware and software. In principle we may synthe-
size in an agent both the elementary computation and the elementary hardware, 
maybe a body cell, implementing it. 

1.2   A Specific Agent-Centric Processing System 

As for the essentials of our discourse, we claim that the set point tracking hypothe-
sized to be at the basis of many agents' activity is too complex, whereas a monotone 
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behavior of computations paired with an aging mechanism is more realistic and effi-
cient as well. Moreover, in place of the optimization of a possible hard static function, 
like with other social computing paradigms such as ant colonies [40] or swarm com-
puting [41], our goal is just the sum of the benefits produced by the agents over the 
span of time in a hostile environment. This turns into the goal of maintaining agents 
alive and healthy for a long time – the mentioned homeostasis. Hence we will study 
the evolution of the population health as a function of the rule with which the single 
agents balance health and productivity needs. The mentioned aging factor acts as a 
stabilizer of an intrinsically nonlinear unstable process [42]. As for age, it has a 
monotone behavior contrasted by two phenomena: a drastic one causing the death of 
the individual and a more continuative one carried out by the rest of the population in 
terms of an equalizing effect that stops the age growth when it notably exceeds the 
mean age of the population. The former primes an open loop with its own rules whose 
effects are countered by the birth of new individuals. The latter is a closed loop where 
the feedback on the single individual comes from the social laws of the entire com-
munity. With the addition of a topological structure between agents we prime a clus-
tering process that evolves through a spatial wandering of the cluster contours within 
the agents' topological space. As a result, we have a set of clusters which the single 
agent belongs to with a membership degree represented by the aging factor γ (see next 
section). Along the cluster trajectories we will identify stable clusters whose quality is 
given by the time integral of the sum of activity of the agents significantly belonging 
to the cluster. The operational meaning of these clusters and their exploitation will 
depend on the particular context we are in, as will be discussed with the help of a 
couple of examples.  

We organize the chapter as follows. In the next section we describe the agents’ life in 
mathematical terms. Then in Section 3 we show analogies with microorganisms or cell 
systems such as immune systems and neural networks, drawing hints from their evolu-
tion. In Section 4 we identify the simulation tool in terms of π-calculus in order to favor 
the communication aspects. Using this tool, we reproduce a template of social phenom-
ena in Section 5. To draw conclusions, in the final section we will discuss the opera-
tional value of these simulations and possible scenarios where they may be framed.  

2   Life of a New Taylored Worker 

Life is a struggle and our worker g fights it everyday in his workplace. It is neither a 
sophisticated nor an extremely explicit battle. He is urged both by his boss and by a 
general political message to spend his efforts to produce. Here we assume production 
to be a non highly demanding elaboration of either material or immaterial items pro-
vided by surrounding workers ruled by some monotony with the global input re-
ceived, call it a, and a thresholding with its own parameter γ so that if a ≥ γ then g 
produces in turn an item with great probability. Work is tiring – as well known – and 
consumes g's energies. Thus g tends to reduce his productivity, say increase γ at each 
production, in order to safeguard the years he has left. Scaling γ between 0 and 1, we 
may say that γ is the normalized age of g, called strength elsewhere from an opera-
tional perspective. Hence, not far from what has been hypothesized for many micro-
organisms (e.g. neurons and bacteria), the main rules of g, indexed by i within a popu-
lation of n workers, are the following:  
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where si denotes the production index of gi (si = 1 if gi produces an item, 0 otherwise) 
and γi increases its value by δ each time gi produces. 

Life, as usual, is more complex. On the one hand gi lives into a community of 
workers. Thus, he can refrain from producing, but not too much in comparison with 
his mates. It means that he will increase γi only if his threshold is comparable (not too 
higher) than the mean threshold of the surrounding community. This denotes a 
neighboring notion and complicates (2) as follows 

γτγδγγ <+= iiii s if          (3) 

where γ  is the average of the surrounding workers' γs and τ is a suitable constant. 

Moreover, worklife is short. Apart from bodily injuries, a worker may retire for a lot 
of reasons, including competing work offers or simply job abandonment. This is well 
known to the manager, who promotes knowledge transfer to new entries with a given 
probability ρ. Thus, within the same surroundings, gi sparks action w.r.t. a new 
worker gj is ruled by: 

)()1)((P tgL j ρα==       (4) 

where L(g')=1 means the hiring of worker g', 0 his latency. ρ is an awaking constant 
and α(t) a time modulation. 

2.1   A Simplified Mathematical Model 

A first way of synthesizing the dynamics of the population is analytical in terms of a 
predator-pray PID system [43-45]. To this aim we introduce some simplifications. 

Namely, we assume that g hires another worker g' each time he produces an item 
(fires) and this happens with probability 1 – γ (as a shortcut of (1)). Hence with prob-
ability γ he takes a rest. Conversely, a worker may cease his activity through death. 
We assume the dying probability to be greater when the worker fires, say equal to μS, 
than in the second case, say μE. To close the loop we may think the death as a conflict 
with noxious environment agents – say stress, better offers, and alike – so that if he 
does not die he possibly, with probability μR, destroys one of these noxious agents. 
Thus, starting with N workers and R·L noxious agents (i.e. a population of L environ-
ment agents that prove noxious at a rate R), the game at population level evolves 
through the following equations. 

⎪
⎩

⎪
⎨

⎧

−

−−

−−−

=
=
=

))(1(

))()1)(()((
1

))()())(1))((1)(((

)('

)('

)('

t

tRttN
L

tRttRttN

t

tR

tN

RE

ES

γα
μμγ

μγμγ

γ

     (5) 

with α a suitable constant to gain γ(t) a smooth profile, and disregarding some ap-
proximation problems connected for instance with the expectations of product of vari-
ables brute force computed as the product of the single variable expectations. 
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Playing this simplified system we realize that: 
 

a. for fixed concentration of noxious agents and strength (R' = 0, γ' = 0) we 
come to a simple predator-prey process admitting equilibrium for N(t) when 
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− ). Obviously N(t) moves to an exponential increase as soon 

as γ < γ*  (or R < R*), or decrease when γ > γ*  (or R > R*); 
b. for decreasing concentration of noxious agents and fixed strength (R' ≤ 0, γ' 

= 0) we have equilibrium only for trivial conditions (R = 0, γ = 1). Otherwise 
we have either: i) an exponential decrease of N(t) (in case γ is too high to 
contrast the decimation operated by noxious agents); ii) an exponential in-
crease; or iii) an initial decrease followed by an exponential increase. The 
latter tracks an initial prevailing of noxious agents contrasting the reproduc-
tive ability of the workers, followed by a behavior's inversion due to an un-
avoidable decrease of the noxious agents density, on one side, and a benefi-
cial increment of N'(t) that essentially preserves survived workers and their 
offsprings. See Figure 1 (a-c); 

c. γB smoothly variable from a certain value to 1 in (5) has the benefit of greatly 
slackening and smoothing the dynamics of the population, thus avoiding the 
explosion of N(t) – an undesirable condition both on the part of the workers 
and on the part of their boss – on the contrary, giving the population slow 
decreasing trends (see Figure 1(d-f)) in a wider range of the free parameters 
than in the case of γ fixed. This happens both for parameters denoting the 
environmental conditions (R) and for those characterizing the worker resis-
tance to noxious agents. 

 

Fig. 1. Course of N(t), R(t) and γB(t) according to (5) in two dynamic's conditions. (a-c) γB(t) is 
fixed to 0.36; (d-f) γB(t) varying with α set to 4·10-7. L = 1010, μE = 0.2, μS = 1 and μR = 1. 
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Following the histories of the single workers, starting from a random distribution 
of their strengths, we will attain an even more stable behavior of the population as a 
consequence of an indirect feedback. Actually our population is constituted by indi-
viduals working in an open loop, i.e. in the absence of a set point and feed-back for 
attaining it. On the contrary the adaptation of the individual's attitude is monotone in 
the direction of increasing γ – in this sense we speak of an aging phenomenon – hence 
without any control action reducing its value. Nevertheless strategy (3) states a closed 
loop inducing metastable equilibria, before the occurrence of a disruptive event that 
either precipitates the population size to 0, or explodes it. We may read it as a quorum 
sensing mechanism well known in natural fields [46], as a suitable fragmentation of 
the push-pull phenomenon highlighted in Figure 1(a). 

2.2   A Decision Theory Perspective 

From a logical standpoint, we have an additional rationale to asses this paradigm of 
social computing coming from game theory. 

Consider the following game against nature [47]. Bob and Alice (B and A for short) 
are playing the game described below, based on a three-state monotone competition. 
 

Game 1. The game consists in a series of contrasts between B and A on random in-
stances s drawn from a set S (huge, but finite and discrete) with the following properties: 

• on each s B may i) win, ii) lose, or iii) tie with respect to A; 
• each player owns an integer parameter, let us call them strength γB and γA re-

spectively, which can assume a finite number of values. According to the or-
der relation defeat < tie < victory, for a fixed value of γA the increment of B's 
strength does not diminish his contest results. Both for minimum γA and what-
ever γB, and for maximum γB and whatever γA B always either wins or ties 

• the two players have different roles: 

o A maintains her strength at a fixed point; 
o B increases his strength by one unit whenever he loses; 

• B's goal is to find (learn) the minimal strength that will let him lose in the fu-
ture with a probability below a small threshold. His strategy is to achieve 
this with a good confidence level. That means he will keep playing the game 
until he achieves this confidence.  

 

We solved this game elsewhere [48-50] using two run-time statistics: the number k of 
defeats Bob suffered along the game history and the number k

~  of defeats he should 
have to bear if he would have played the same contests with the current strength he 
has.  

The main theorem is the following: 
 

Theorem 1. [48] With reference to Game 1 and related statistics k, k
~

 (realizations of 
the random variables K, K

~ ), denoting by 

• UK the random variable measuring the probability of defeat of a contests' 
history having k, k

~  as statistics of the past contests and continuing with an 
unlimited sequence of random drawn instances s, 
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• m the number of played steps of our game, 
• με the Binomial variable of parameters m and ε, and υε the Binomial variable 

of parameters k and ε, 
 

we have, 

)(P)
~

(P εμε ≤≥≥ kUk        (6) 

)1
~

(P)(P +≥≥≤ kU k ευε        (7) 

The great value of this theorem stands in the fact that its claim extends to any game 
where a monotone effort-effect mechanism characterizes the players, even in the im-
possibility of giving it a quantitative description. A template is represented by the 
following: 
 

Game 2. Consider the atomic partition of the unitary mass of probability as in the 
first row of Figure 2, where the balls, in number of ℓ, own probability 1/ℓ each. Start-
ing the game, the first ρ(0) balls are white while the remaining ones are gray, and a 
cursor separates the two sets of balls. At each run t we draw a ball uniformly and re-
place it after having marked it: if the ball is white we do nothing more, if it is gray we 
move the cursor Δρ(t) balls right, changing color to the shifted balls (i.e. the new 
balls to the left of the cursor become white). Δρ(t) is not fixed a priori and can change 
from iteration to iteration. 

 

Fig. 2. An instance of Game 2 having ℓ = 10 and ρ(0) = 2. The vertical axis reports the iteration 
number, each labeled with the corresponding Δρ(t). Marked balls are denoted by a cross, while 
bold crosses denote the balls drawn at each iteration. The cursor position is understood before 
the ball extraction and eventual updating of it.  

In this respect, k represents the number of cursor shifts, k
~  the number of gray marked 

balls, and losing probability Uk the number of balls on the right of the cursor. A nice 
way of visualizing (6) and (7) is the seal diagram in Figure 3 showing on the  
z-axis the extremes of 0.90 confidence interval for Uk (namely the 0.05 and 0.95 quan-
tiles of this variable) as a function of k (x-axis) and k

~  (y-axis). The graph shows that 
we may estimate the losing probability to have low values with a good accuracy when  
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Fig. 3. 0.90 confidence intervals for losing probability uk. Course of the lower and upper 
bounds (z-axis) with statistics of k (x-axis) and k

~  (y-axis). 

k is sensibly greater than k
~ , hence we may decide stopping increasing γB when this 

condition occurs. 
A way of enhancing kk

~−  difference is the following. We play two games simul-
taneously: an effective game, where Bob uses the current strength to compute k

~ , and 
a dummy game, featuring a strength increment equal to zero, which lets him accumu-
late k. These statistics are the same as in a virtual game where a virtual strength main-
tains its value to a ground value γB = 0, jumping to Bob's current strength γB exactly 
when we compute the confidence interval. This game still complies with Game 2 
definition and exploits the theoretical results obtained so far. Moreover it numerically 
denotes that the proposed strategy pushes the great part of the trajectories toward the 
(k = max, 0

~ =k ) corner. In essence we obtain a better appreciation of the confidence 
intervals for the same learning process thanks to a better exploitation of the informa-
tion available on them. 

We may identify the worker lever regulating the saving/enrolling attitude with the 
strength γB of Bob, as the worker manages strength's increase with an analogous 
monotone rule. Approximating γB with γ , B gets with rule (3) the same benefits of 

the above virtual game. This is the sole hint we obtain from the mathematics of the 
monotone game. It is not a completely disregardable contribution, however, giving a 
rationale to natural processes that are so much elementary and universal as much are 
still obscure. 

3   The Healthy Homeostasis Problem 

Homeostasis is a crucial problem in any living society. It concerns the ability to main-
tain the system alive and stable in spite of external solicitation, and in compliance 
with the functionalities the system is requested to carry out. At macro level it con-
cerns ecological systems, such as environment in relation with human activities, or 
ethological systems, in relation with the equilibria that various animal species may 
reach in a territory. Going down the scale of phenomena, we discover analogous goals 
with ever smaller particles, microorganisms or simple cells inside our body. We may 
get a good look at the problem focusing on brain neurons. The firing mechanism of 



242 B. Apolloni, S. Bassis, and A.G. Zippo 

 

the neurons may be resumed in many cases without great oversimplification by the 
heaviside function characterizing the activation of a binary threshold neuron. Namely: 

 
a neuron fires if it is sufficiently stimulated by the surrounding neurons. 
 

Rather, in an artificial neural network, it is the timing that is generally oversimplified. 
In the latter framework we prefer working with a step function rather than a spike 
function, generally disregarding firing dynamics features such as latency time, etc. 
The main features coincide however. In both cases wires/synapses transmit a 
weighted signal from one neuron to another, and the latter fires when the weighted 
sum of the incoming signals trespasses a given threshold. Hiding complications com-
ing from the temporal window over which summation is done (e.g. possible smooth-
ing of the signal with time and so on) is a very simple mechanism, as primitive as the 
buildup of stress that makes our patience explode. We may actually prove that such a 
neural network may compute any computable function [51], where the output of the 
computation depends on the value and sign (positive/negative) of the weights affect-
ing the incoming signals (connection weights) and other parameters of the networks 
such as its layout, thresholds, etc. 

Things work differently for the plasticity of the neuron parameters. The Hebbian 
rule, which is the most accredited learning rule in the biologists' community [52], is 
never employed for artificial intelligence purposes, even in the case of unsupervised 
learning, because of its instability. The typical pattern is that the network tends to 
strengthen its ability to reproduce some patterns (those already learned) at the expense 
of the remaining ones, which it totally ignores. Thus the additional terms to the con-
nection weight (+Δ if the states of the neurons at its extremes coincide, –Δ elsewhere) 
is molded through multiplicative coefficients and regularization terms aimed at avoid-
ing weight divergence. These improvements have however the great drawback of los-
ing the asynchrony of the neuron's lives. They require either a space coordination 
such as in the backpropation family of algorithms [22] or a time coordination such as 
in Boltzmann machines [53]. 

To maintain the independence of the lives of each neuron, biologists prefer to in-
troduce an additional weight molding mechanism aimed at rescaling the connection 
weights around a set-point [32]. Namely, the classical view of network plasticity ruled 
on correlation-based mechanisms (such as the above Hebbian rules) is coupled with 
homeostatic mechanisms that promote network stability through a set-point of net-
work activity that is dynamically maintained. What the main features of this activity 
are is unclear at present. Rather, biologists highlight different quantities that may be 
modulated in order to maintain this set-point. For instance, synaptic scaling, obtained 
by scaling the strength of all of a neuron's inputs up or down, determines how fast the 
neuron fires for given input signals [54]. Differently, intrinsic plasticity, obtained by 
moving the input/output curve of a neuron left or right, allows a neuron to fire less or 
more for given input stimuli [55]. From a true information perspective we assume this 
functionality too hard to be committed to a single neuron, hence out of the connec-
tionist paradigm. Rather, we prefer to consider homeostasis as the effect of cyclic 
evolutions followed by the single neuron endowed with very simple monotonic func-
tionalities and embedded in a milieu capable of volume transmission [56]. 
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With this aim, hiding the synaptic plasticity for the moment, the thresholds of the 
single neurons play the role of the strength parameter γ discussed in Section 2. Again, 
it represents an age parameter moving from small toward high values. The former de-
note youngness of the neuron – an age when it is very sensible to external stimuli. 
This means it fires often under their solicitation, with a side effect of propagating its 
sensitivity to surrounding neurons (i.e. awakening these neurons). As its age increases 
the neuron becomes proof against these stimuli, hence less and less prone to fire and 
to propagate as well, till becoming actually dead w.r.t. the current flow of signals. The 
aging mechanism determines a long-term homeostasis of the system. We assume that 
the single neuron increases its threshold by discrete quantities as a reaction to the dif-
ference between its age and the mean age of the other live neurons in the layer, i.e. to 
the difference between its firing rate w.r.t. the mean firing rate. 

We may deal with a similar process in an immunitary system. In spite of current 
evolutionary models where the behavior of bacterial cells is considered at the popula-
tion level, disregarding the possibility of signals mediating communication between 
the individual bacterial cells and the rest of the population [57,58], biological evi-
dence for communication phenomena and primitive “decision-making” behavior ex-
ists. At the same time, the view of bacterial cells as living beings devoid of individu-
ality is also strongly debated. Asymmetric features are present even in organisms 
undergoing asexual binary reproduction, such as bacteria [59]: biologists no longer 
consider heretical the concept of bacterial aging at the individual cell level, as well as 
phenotype heterogeneity and metabolic asymmetry within a bacterial clone, even in 
the presence of identical genotypes [60,61]. Individually aging bacteria have been ob-
served in some experiments [59]. This moves (a part of) the population fitness into 
specific goal functions of the single bacteria. 

In particular, consider the evolution of a population of bacteria in the presence of 
penicillin molecules provided in the culture medium. The distinguishing feature of 
this scenario is represented by the fact that bacteria may differ in their resistance to 
antibiotic as a consequence of their differential ability to produce and secrete an en-
zyme which destroys the antibiotic. The differentiating process between individuals is 
connected to an irreversible mechanism that we associate with their aging. Like with 
usual predator-prey models discussed before, the composition of linear behaviors of 
single individuals may be exactly synthesized through a whole linear function at the 
population level. Thus, we expect this aging to be connected to a nonlinear behavior 
and focus on stepwise modifications of a state variable of the individual as a primary 
source of an attitude that we denote as “intelligence”. Discarding approaches that are 
too much demanding to this intelligence – such as cellular automata [62] or Multi 
Agent Systems [63] – we look for bacteria computations that are even more elemen-
tary than McCulloch and Pitts neuron's [64] in that: 
 

(1) we identify the status of the individual with its output; 
(2) we give a trend to the output, thus synthesizing in a single operation the two 

levels of operations, computing and learning, describing the neuron life, 
where learning consists of system parameters' modifications; 

(3) we allow a one directional trend to the output, thus reducing the intelligence 
of the cell to the very primordial relation: if solicited, the cell reacts ever in 
the same way, but this reaction depends on the mentioned thresholding op-
eration. 
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Coming back to neural networks, the analogous of the reproduction capability of 
cells is represented by the mentioned awakening ability of surrounding cells. In this 
case the topology of the awakening connections may induce an interesting phenom-
ena. For instance, the neurons of a same layer may be awakened by the current one, 
where each layer cooperates in transmitting signals from a previous layer to a subse-
quent one. Awakening a neuron means reducing its threshold from a high value, 
which puts it in a quiescent status, to a low value, allowing it to react to the external 
stimuli. Thanks to this additional functionality, at a higher level the neurons' aging 
seems to correspond to the overlapping of thought cycles: a set of low threshold neu-
rons primes the cycle by reacting to the external stimuli and pushing surrounding neu-
rons to do the same. We may figure a pre-climax phase where this mechanism is self-
excitatory, followed by a post-climax phase where neurons tend to be quiescent and 
do not awake other ones. Hence the thought cycle ends, with some feeble fallout. The 
related groups of neurons remain quiescent until they are awakened by neurons from 
other zones of the brain involving them in another thought cycle. 

In this chapter homeostasis combines with the health state of the agents, so that we 
follow the evolution of the system through sequences of clusters of agents that are at 
work, hence producing items with a good rate, in spite of all environment solicitations 
discouraging their activity. As a further step in this direction, we also consider agents 
drawn by many interests (i.e. made up of many components). In this case the healthy 
homeostatic process has a further degree of freedom, since at each time stroke we 
check also the relative activity intensity between the various interests, possibly label-
ing the agent with its prevailing interest. This requires a strength sharing mechanism 
between the agent components that we will discuss in the last section. 

4   Modeling and Simulating Our Individuals' Society 

To follow the dynamics of the above processes we set up a high-level functional lan-
guage within the paradigm of π-calculus [37]. 

The two objectives we had in mind were: 
 

• to involve very elementary computational tasks to be born in principle by the 
basic structural and functional units of any organism, each put at most in a 
bipolar relation with another entity, and 

• to implement true parallel algorithms capable of efficiently running on mas-
sive parallel computers, where ensemble functionalities are vehiculated by 
gathering functions that could be implemented by chemico-physical reac-
tions in nature as well. 

4.1   The π-Calculus Framework 

Both neuronal population and bacterial colony models described in Section 3 fall into 
the class of concurrent and communicating system. In 1992 Milner [65] published a 
formal language, the π-calculus, to describe a general purpose massively concurrent 
system with intensively communicating facilities, proving that it is a universal lan-
guage. Its very essential core is described in Table 1. 
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Table 1. Minimal syntax of π-calculus 

P ::  c(m).P Input prefixing 
 | c〈n〉.P Output prefixing 
 | P1|P2 Concurrency 
 | (υx)P Restriction 
 | !P Replication 
 | 0 Nil process 

 
Basically, the system is constituted by a series of pairs of reading and writing units 

located on the extremes of oriented communication channels within a network. A 
process determines the sequence with which the units execute their operations to pass 
data along the network. A data item of name m read in input from a channel c may be 
modified through local computations before being written with the name n in output 
to the channel. Since the specific timing of each read operation c(m) or write opera-
tion c〈n〉 depends on the inner dynamics of the hosting computer, any process may be 
completely specified through the constructs in Table 1, possibly gathering sets of the 
above operations. Namely, the most elementary ones are the communication con-
structs in the form of input prefixing c(m).P and output prefixing c〈n〉.P. We may read 
the former as the concatenation of a process P waiting for a message from the com-
munication channel named c before running. The latter synthesizes with P all that is 
computed by the unit after having both produced n (as concerns internal computa-
tional timing) and written it in output to the channel c (as concerns external synchro-
nization timing). In particular, if n is the Nil output (denoted by 0 in Table 1) there is 
no P continuation since the whole execution is complete and the process is stopped. 
On the one hand, the iterative implementation of the above constructs gives rise to the 
general sequencing construct P1.P2 of two processes P1 and P2. On the other, the con-
nection layout may allow the two processes to be executed simultaneously, a condi-
tion that is denoted by the concurrency (or parallel) operator P1|P2. In particular, the 
replicator operator !P denotes a process P|P|P|… executing simultaneously an infi-
nite set of P copies. Finally, as for unitary constructs, the restriction operator (υx)P 
bounds the value of x in the process P (it may be seen as a process allocating a new 
constant x within P), while the Nil process induces the execution to stop as ex-
plained above. The key operational points of the π-calculus paradigm are: 
 

(1) the whole process evolves each time a communication on a channel is ready 
(this means that both a sending and a receiving process are available to re-
spectively writing and reading at the two ends of the channel); 

(2) as no distinction is made between variables, data and channels (they are all 
considered as names), channels themselves can be sent in messages through 
(other) channels, allowing the topology of process interconnections to 
change. This renders π-calculus an elegant language for describing concur-
rent computations whose configuration may change during the execution of 
the computation itself. 
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Fig. 4. Sequential (a) and parallel multicasting (b) subtended to local communications. (a) Only 
after sending name x on channel c1 to the first receiving process (first unit on the right) and sub-
sequently name υ on channel c3 to the third unit, the sending process (circle to the left in both 
figures) can transmit name x on channel c2 to the second unit; (b) the three units on the right re-
ceive simultaneously the names posted by the sending process. 

Due to its power and versatility, π-calculus has become the favorite framework for 
describing processes in very different fields, from business to biology, and lots of dif-
ferent paradigms and tools based on it have been developed. According to the 
π-calculus paradigm, we have an ensemble of binary computations consisting of reac-
tions between two elementary computing elements individually attached at the ex-
tremes of a communication channel. Namely on the right of each channel we have an 
agent (e.g. neuron, bacterium, worker, etc), while at the other extreme we have a 
transmitting unit (neuron, penicillin, noxious agent, etc.) which may send or not a sig-
nal to it. In principle, each element from the list of the former agents is waiting to get 
in touch with an element of the sending unit list, and vice versa. The connection oc-
curs through a set of channels managed by a connection dispenser (in a certain sense, 
the static version of the Brownian motion). It associates to each neuron not yet filled 
(in wait status) an element randomly selected from the units on the other list that are 
available for the specific neuron (hence in wait status as well). 

A crucial factor in this dynamic is represented by the reaction time once the con-
nections are stated, i.e. the time to elaborate an item and eventually producing a con-
tent, in the workers' acception. On the one hand, the communication is locally syn-
chronous allowing either a sequential or a parallel multicasting (see Figure 4). On the 
other, we do not want to synchronize the process. Rather, each reaction has its own 
time. Although we could set reaction times individually, we prefer to connect them di-
rectly to the real time employed by the computer, in order to both speed up the entire 
process and rely on a principled random elapsing time. 

A further feature of our process is that each agent may split in two, so giving rise to 
an awakened offspring, with probability as in (4), which plays the same communica-
tion protocol. The branching has in principle an exponential increase that is moder-
ated, when it occurs, by the death of some of the offspring. 

To cope with these peculiarities of the agent life we extended the syntax in Table  1 
introducing more syntactical objects as summarized in Table 2, representing a variant 
of stochastic π-calculus [66]. 
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Table 2. Syntax of our stochastic π-calculus 

P ::  c(m).P Input prefixing 
 |  c〈n〉.P Output prefixing 
 | P1|P2 Concurrency 
 | (υx)P Restriction 
 | !P Replication 
 | 0 Nil process 

Σ ::  π.P + Σ Action 
 | p→ π.P + Σ p-action 
π ::  c〈n〉 Output 

 | c(m) Input 

 

Fig. 5. According to the probability distribution associated to the channels, the sender selects 
which one will be used for the transmission of the signal. The receiver waits on all the channels 
until one becomes available. For instance, if the sender randomly chooses channel c2 then name 
υ will be passed to the receiver which in turn bounds it to the name m. Subsequently the compu-
tation proceeds in parallel with processes P2 and 

2P′ . 

In particular we explicitly divide the operations carried out by the processes in 
three categories. We put the most elementary operations π represented by the output 
c〈n〉 and the input c(m) in the actions category. The other constructs in Table 1 are 
gathered in the P, Q constructs category. At an intermediate level we specify the Σ 
category expressly managing the unpredictability in the choice of multiple actions. 
Namely, we denote through the summation π1.P1 + π2.P2 +…+ πn.Pn the condition 
where more channels are allowed through which to pipe signals and one of such πi ac-
tions followed by the related Pi construct will surely occur, but we do not know which 
one. The actual continuation of the execution depends on the channel availability and 
possibly on a specific distribution probability. In other words, the construct π.P + Σ 
executes the action π at the end of the channel available at first, followed by its P suf-
fix. Vice versa, the construct p→ π.P + Σ preliminarily tosses the channel according 
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to a probability distribution (see Figure 5), then waits until this channel is available 
and executes the related π action when it happens. 

With this formalism, the two biological systems considered in Section 3 may be 
quickly modeled as follows. 

4.2   The π-Calculus Bacterial Model 

We implement the evolution of the bacteria-penicillin molecules population through 
the update of 3 quantities: n, m and γB, as follows: 

1. set of living bacteria. Starting from an initial set of n(0) bacteria, the set 
either increases or reduces depending on the fate of the single individual; 

2. set of penicillin molecules (p-molecules) within a liquid medium, accom-
panied by a set of non-penicillin molecules (np-molecules). Starting from 
a set of m(0) p-molecules within a set of L molecules, hence a set of 

)0()0( mLm −=  np-molecules, a p-molecule may shift into an np-

molecule if successfully attacked by the penicillinase; the inverse shift 
will never happen. 

3. strength γB of the single bacterium. B decides incrementing γB of a quan-
tity δ if the actual value of γB is greater than the average 

Bγ  over all the 

colony by a factor less than a threshold τ, according to (3). 
 
The evolution of these quantities is linked to the fate of the single agents that, ac-

cording to (1-4), specializes as a consequence of two independent random events, 
related to the inner state of the bacterium and to the environment conditions, respec-
tively. Namely, B either splits (S(B) = 1) or emits penicillinase. At the same time B 
either meets a p-molecule (M(B) = 1) or an np-molecule. In addition, if M(B) = 1 then 
the bacterium may die (D(B) = 1) with a probability that depends on whether it is 
splitting in two (hence is weaker against the attack) or not. As a conclusion B either 
dies or splits, or remains as it is. Namely, 

BBSP γ−== 1)1)((                        (8) 

ρ== )1)(( BMP            (9) 
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where ρ = m(t)/L is the penicillin density in the solution, and μS and μE are mortality 
coefficients. 

In own turn, the penicillin density ρ decreases of a quantity 1/L with a probability 
μR each time an individual that is emitting penicillinase and is attached by penicillin 
does not die. Namely: at each time step a bacterium is invested by a penicillin mole-
cule with probability ρ. Then we have a two-level tree: at the first level a bacterium 
either emits penicillinase (with probability γB) or duplicates (with probability 1 – γB). 
In the first option it either dies with probability μE or destroys a penicillin molecule 
with probability (1 – μE) μR. 
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Fig. 6. Stochastic π-calculus program describing the interaction between bacteria and penicillin 
molecules 

The language components to implement this dynamics on a π-calculus are: a Bat 
channel describes one bacterium in the medium, and the corresponding rate identifies 
with the bacterium's strength. Idem for the Pen channel, related to penicillin molecules. 
A penicillin attack to a bacterium is featured through the Attack and NoAttack chan-
nels. A successful attack gives rise to a PenLive channel which in turn maintains 
unchanged the number of penicillin molecules in the medium. Analogously, an unsuc-
cessful attack is modelled through a PenDie channel and a subsequent replacement of 
the original Pen channel with a NonPen one. Figure 6 describes the prototypical behav-
iour of three different components of the system: bacteria, penicillin and non-penicillin 
molecules using the syntax of the stochastic π-calculus introduced in Table 2 with two 
further notations: i) we substitute the plus in the summation operator with curly brack-
ets, for the sake of simplicity, and ii) the input/output actions may be preceded by 
names denoting their probabilities. 

Initially a bacterium, with a probability equal to its strength γB = γ emits penicilli-
nase, otherwise duplicates. In both situations it waits uniformly on a channel Attack() 
or NoAttack() until a p-molecule or an np-molecule decides either to attack or not the 
bacterium. Differently from penicillin, which always attacks a bacterium, non-
penicillin plays a passive role to guarantee a continuous evolution of the system also 
when a low density of p-molecules remains in the culture. In case no attack is deliv-
ered, the two communicating processes end the current iteration and recall an individ-
ual of the same kind (for instance a bacterium activates the channel Bat〈γ〉) which will 
begin a new life-cycle. Otherwise, if penicillin attacks the bacterium, the fate of the 
latter will depend on a mortality coefficient whose value changes according to the ac-
tion previously performed by the bacterium. So, if the latter had reproduced, it dies 
with a probability μS (and consequently it does not recall itself), while in both cases  
it activates the channel PenLive〈〉 to inform the attacking penicillin to activate a  
new copy of itself. If the bacterium had emitted penicillinase, then its death probabil-
ity lower to a value μE: what happens is similar to the previous situation, with the  
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Fig. 7. Course of main quantities of a quasi stable match between bacteria and penicillin mole-
cules with the biological clock 

exception that the p-molecule may be destroyed (with a probability equal to μR, the 
mortality coefficient for penicillin molecules) if the bacterium survives to the penicil-
lin attack. If this happens, the penicillin will be informed about its own death through 
a message on the PenDie() channel. We need some further technicalities to make the 
process correctly evolving that the interested reader may find in the original paper 
[67]. Here we report show three pictures describing: 
 

a. an homeostatic condition (see Figure 7) denoted by a substantially stable 
number of bacteria as a fallout of a gentle decreasing of the penicillin mole-
cule density and a gentle increasing of the mean strength. Actually, we 
cannot exclude the implosion of bacterial population after a certain time. 
However given the employed parameters, we may assume the simulated pe-
riod to correspond to 2–3 days of an actual biological system. 

b. a non stable condition leading to the explosion of the bacterial population 
(see Figure 8) due to a gently increase of mean strength that does not pre-
vents a tangible bacterial reproduction at each time stroke. This denotes a 
non suitable balancing between the penicillin efficacy and the value of the 
single strength increment. Note that a sharp increase of strengths causes, on 
the contrary, the bacterial implosion. In this case indeed, we obtain only bac-
teria capable of defending hard themselves, but, since they are not able to re-
place deaths, they are destined to the extinction. 

c. the joint evolution of two bacterial populations, i.e. different  genotypical 
versions of the same bacterium. Base histories are the same for each popula-
tion, but they interfere in a complex way. Essentially, we have an initial 
overwhelming of the strongest population but a long term revenge of the 
weakest one. In these experiments we distinguish the two populations by an  
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Fig. 8. A population going to explode. Same notation as in Figure 7. 

initial strength distribution, biased toward lower values with the latter, and a less 
aggressive strength updating policy (i.e. smaller δ) again with the latter. All other 
parameters are the same. We have a first phase where the stronger population 
dominates the latter getting higher values to their strength and leaving the repro-
duction act mainly on the weakest population. After a first almost stable plateau 
(see first picture in Figure 9), the first population individuals die, although they 
had reached greatest strengths (red line in the last picture), thus giving com-
pletely camp to the other population. At genotypical level we may imagine that 
strongest individuals are renewed by the long term mutation process along the 
generations, giving rise to a sequence of variants' alternations like the ones de-
scribed in Figure 9. We cannot refrain from noting how a similar behaviour could 
fit other operational fields, as usual for π-calculus applications. For instance, in 
macroeconomy, the two populations could represent different socio-economical 
classes both fighting against an hostile environment [68]. 

A good perspective on these processes comes from the strength histograms. 
Figure 10(a) reports the two typical features of strength distributions for the single 
population depicted in Figure 7. Namely: i) a quantization of the strengths, so that 
only some ranges of values are allowed, and ii) the Gaussian spread of the quan-
tized values around different centers, with the global effect of observing a mixture 
of normal distributions. In own turn this mixture gives rise to a bimodal overall 
distribution, with one narrow peak close to the maximum and a shallow one cen-
tered slightly under the central value of the current strength range. In case of me-
tastable equilibria, the fate of the bacterial population depends on the position of 
the latter center, that causes explosion when biased toward zero, implosion other-
wise. Coming to the double population scenario of Figure 9, in spite of the initial  
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Fig. 9. A merge of two bacterial variants. Red lines refer to the strongest population, blue lines 
to the weakest one. Black line in the strength diagram refers to the mean value between the 
populations. 

 
(a) 

 

     
       (b)     (c) 

Fig. 10. Histograms of the bacterial strengths in metastable conditions: (a) for a single popula-
tion; (b) at the starting of the joint evolution of two populations; and (c) at the stable prevailing 
of one of them 
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distributions (see Figure 10(b)), in Figure 10(c) we recover the same features on 
the weakest population, while, just before dying, the second population is concen-
trated around very high values that prove unable, however, to avoid extinction. 

4.3   The π-Calculus Neuronal Model 

An analogous calculus may be implemented for instance on a multilayer neural net-
work where the signal flows from the uppermost to the lowermost layer. In relation to 
their mutual positions we identify any pair of consecutive layers as the upward layer 
feeding the downward one through a set of connections. In this way each layer is both 
an upward one with respect to a pair and a downward one w.r.t. another pair, with the 
obvious exception of the extreme layers. With the local awakening facility introduced 
in Section 3, we may be interested in following the two patterns: i) the number m of 
spikes produced by the downward layer neurons (for short d-neuron) in a temporal 
window, and ii) the local distribution of neurons producing the spikes. In analogy 
with bacterial population we describe the evolution through the following points: 
 

(1) set of d-neurons. They refer to any downward layer. In addition to the con-
nections with the upward layer, these neurons are connected to the others 
in the same layer through an incomplete matrix. As a first approximation 
we fix connections randomly, by assuming each neuron connected with the 
others of the layer with a given probability ρ, the latter being a function of 
the distance of the neurons on the grid. We distinguish live neurons from 
dead ones, where the latter may be either physiologically or functionally 
dead. In any case, a neuron never producing a spike in a given temporal 
window is considered dead. A functionally dead neuron becomes live if 
primed by a spiking neuron along an existing connection; 

(2) set of u-neurons. They refer expressly to any uppermost layer. Each neu-
ron possibly sends a unitary signal to the downward neurons depending 
on the evolution of the whole brain state, provided that a connection exists 
between the unit and the receiver neuron. As a preliminary approxima-
tion, the topological map describing the inter-connections between cou-
ples of neurons in two different layers is fixed a priori and depends on the 
distance of the paired neurons. A signal is sent from an upward neuron to 
a receiver neuron with a probability b. In case the former belongs to the 
top layer of the network, b is a constant to keep the model as simple as 
possible. Otherwise b is related to the firing probability of the connected 
upper neuron. Analogously, the connection weight has a random value w 
in a given interval centered around 0;  

(3) fate of the single d-neuron. It depends on its basic functionality of com-
puting the heaviside function of its potential v. Namely, at each instant a 
d-neuron B tries to communicate with an upward neuron, say j, receiving 
a non null signal Xj(B)=1with the above probability b. The transmitted 
signal wjXj is null with probability 1 − b, otherwise coincides with the 
weight wj of the link. If v + w trespasses the threshold γB, then the neuron 
fires (S (B)=1) and sets its potential to the resting value v0. Otherwise  
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v=v+w, or a smoothed form of this sum to take into account the decay of 
the signal over time, for instance: 

v = v + w –β(v –v0)                   (11) 

with β playing the role of decay rate. If the neuron fires, then there is a 
probability ραt that it awakes another d-neuron B′ connected to it accord-
ing to the connection matrix as in Point 1, getting L(B ')=1, where L 
plays here the role of living indicator. The first term ρ takes into account 
the connectivity of the neurons, while α < 1 is a dumping term having the 
effect of reducing the awaking probability of a neuron B′ that has already 
been risen t times. Alternatively, L(B ')=0 in the case of either physio-
logical or functional death. Namely, hiding the indices the boiling up 
probabilities are  

P(X(B)=1)=b                (12) 

P(S (B)=1)=FW(v–γB)               (13) 

P(L(B)=0)= ρα t                     (14) 

where FW is a heavyside function; 
(4) strength γB of the single neuron. According to (3), whenever B fires, it de-

cides to increment γB by a quantity δ provided that the actual value of γB is 
no greater by a fixed τ than the average 

Bγ  over all the live d-neurons it is 

connected to. The name of the neuron is B to evoke Bob in the previous 
game; funny to say, each production of B is to be considered like a Bob 
defeat requiring the strength increase; 

(5) the localization of the live neurons. It is determined by the connection ma-
trix. Within a given neighborhood we may still maintain the connection 
uniformly random from upward to downward layers. An analogous ran-
domness on the intra-layer connection between d-neurons will produce 
radial attraction basins around the neurons that initially start a thought. In-
stead, more complex figures may emerge from different settings of the 
connections. The connection matrix, along with the position of the prim-
ing neurons, will generate a spatial process of thought with possible over-
lapping and alternating phenomena inside the layer. 
 

The functionalities considered may be specified through the three metaconstructs: 
Uneu, Dneu and Dead described in Figure 11. There, we give the layout of the con-
structs according to the additional notation: 1) computations from input to output of a 
channel are described inside the angle brackets of the output action; 2) since no itera-
tive construct is permitted in π-calculus, recursiveness is implemented on a channel 
by duplicating it, i.e. by putting it as both terminal of a metaconstruct and first chan-
nel of another – possibly the same – metaconstruct which starts with the parameters 
piped by this channel (see discussion on how to code a new bacterial life-cycle in 
π-calculus after Figure 6). 
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• Uneu. This construct figures the uppermost neurons. Each neuron is as-
sociated through the restriction operator υ with both a name b denoting 
the probability of sending a signal according to (12), and an implicit 
name w, whose value depends on the underlying network topology, giv-
ing the strength of the transmitted signal. As replication operator  !π.P 
defines multiple copies of π.P, a certain (possibly infinite) number of 
processes are waiting on the Unit channels for receiving a triggering 
signal carrying the name b. Only when such a communication takes 
place, the unit sends a signal w through a synapse (described by the Syn 
channel) with probability b. Otherwise, i.e. with probability 1–b, it posts 
a fictitious signal on a dummy synapse represented by the NoSyn chan-
nel. Unit channels end the construct as well allowing the process to cy-
cle, as explained before. 

 

Fig. 11. Stochastic π-calculus model for neuronal interactions 

• Dneu. This construct describes the behavior of the d-neurons. In order to 
implement (13) and (14), we need to fix through the restriction operator: 
1) w from the connection matrix, 2) the initial values of the threshold γ 
and potential v randomly, 3) the number of emitted spikes s to 0, and 4) 
the latency parameter h to the value hmax. Then we cycle the current val-
ues of γ, v, s and h through the channels Neur at the beginning of the 
metaconstruct and the ends of some branches. According to the probabili-
ties (12-14), the process evolves along five branchings depending on: 1) 
the neuron is alive or not; in the first case, 2) it may receive a signal from 
neurons in the same layer (Reset) or from the upward layer; 3) in the sec-
ond case, it may receive or not receive a signal; in the first case, 4) it may 
fire or not, and 5) if it fires it may awake dead neurons in the province of 
the first branching. In order to complete the dynamics the neurons are 
endowed with constants (ρ,α,β,η), respectively representing the coeffi-
cient and dumping term in (14), a smoothing factor in (11), and the 
awakening probability. According to η the neuron awakening occurs in a 
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twofold form: with a probability η a functionally dead neuron (waiting on 
an Awake channel) is awakened by sending a signal on the same channel, 
while with probability 1–η the threshold value of an active unit is low-
ered by sending a signal on a Reset channel. The latency parameter h is 
updated so as to account on each neuron for the number of potential up-
dates before firing. Namely, it is set to an hmax value at each firing and 
diminished by 1 at each non firing update. A neuron is considered func-
tionally dead if its latency parameter is equal to 0; in this case al(h) 
equals 0 otherwise 1. 

• Dead. This is the construct of inactive d-neurons. They wait for an 
Awake channel to receive a suitable threshold allowing it to be reactive 
to the u-neuron signals. Both Awake and Reset channels fix the new 
thresholds to random values in a given interval. 

 

Figure 12 reports the four-layer architecture aimed at simulating a portion of the 
thalamocortical circuit of a rat brain (in particular relay cells thalamus layer, interneu-
rons thalamus layer, neocortical layer V and neocortical layer IV respectively) [69]. 
The final target of the research project is to reproduce some local coherence phenom-
ena occurring in these slices as a consequence of a state of chronic pain in a rat. Neu-
ral signals are registered in an experimental setup through a set of probes inserted in 
the rat scalp [70]. At the moment we just exhibit in Figure 13 some temporal patterns 
emerging in the artificial layers as a consequence of the neighboring relations stated 
between neurons as mentioned earlier. The rows are joint frames taken from a simula-
tion strip at appropriate times. Namely the former one refers to an initial time when 
neurons are highly decorrelated; the latter highlights a tangible structure conditioning 
the firing of group of neurons. Thus the health notion here is comprehensive of both 
the number of firing neurons and their structured aggregation. As a technical detail,  
 

 

Fig. 12. A four-layer architecture simulating a portion of thalamocortical circuit. Each layer is 
made up of 125 neurons. 
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Fig. 13. Joint frames from thalamocortical simulation. First row refers to an early stage; second 
row to a late evolution where some structural patterns become evident. Gray levels refer to 
spike frequency of the underlying neuron. Contour lines identify the spiking frequency levels. 

we mention that we used the Izhikevich model [71] for ruling the neuron firing. For a 
more deep discussion on the matter we refer the reader to [72]. 

5   A Dynamic Fuzzy Clustering 

Consider a population of agents that are mobile like bacteria and are able to awake 
surrounding people like neurons. For instance we may focus on an opportunistic 
network [73] supported by a group of communities insisting on a population of indi-
viduals, parts of which share the interests characterizing the single communities. The 
opportunistic network paradigm benefits from an extended mouth suggestion facility. 
Each person may communicate with any other within a certain range – say the one de-
termined by an ancillary radio device – either in flooding mode (pure broadcasting) 
[74] or in a selective mode (only to those sharing a community interest) [75]. In turn 
each individual may allow reception of other messages in the given range either indis-
tinctly or selectively as before. We may assume γ to be a disaffection parameter push-
ing the agent not to participate in a chat, as he already knows almost everything about 
the community and the topic. With this special kind of work (chatting – not so infre-
quent today) enrolling is directly connected to production: forwarding a message you 
may awake a person who decides to join the community. In this case we have a dy-
namic formation of a cluster of live networks denoting a community. Actually we 
consider a simultaneous activation of more communities. This occurs via a replication 
of agents, one for each interest, with special connections between the replicas in order 
to normalize their γs, see Figure 14.  

Namely, denoting with Ai an integrated agent as the union of more specific ones 
{Ai1,…,Aik} – let us call them components, in addition to (12-14) that we use in an in-
distinguishable way for both neurons and agents, we have a normalization operation  
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Fig. 14. Blow up of a virtual multicommunity. Colors label the communities. Each agent is 
composed of four components, each with a different color and a different membership to the re-
lated community. 

 

Fig. 15. Stochastic π-calculus model for multi-component agents interactions 

that is activated at each γ change. Namely, assuming that the j-th component Aij in-
creased his strength, we update all components as follows: 

δγγγ += ijij
                    (15) 

krkr
kirir ≠=
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K

δγγγ                    (16) 

Thus the p-calculus model for this instance is a bit more complex than for neuron 
populations, as shown in Figure 15. Here you can see a SNeu unit, whose purpose is 
only to provide a minimal background activity to the main processes, together with a 
DNeu unit, representing the behavior of the single component Aij. The general scheme 
is similar to the one described in Figure 11 although with some noticeable differences. 
First of all the neuron life-cycle is completely synthesized by the function f(v ,w), 
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with v the neuron potential and w the signal received on a synapse. Neuronal models 
such as Izhikevich [71] – the one currently used in our simulations – Integrate and 
Fire [76], or even more biologically plausible models [77], can be used.  

After a neuron firing, i) a new signal is propagated to the neighboring units through 
the channel Syn, ii) the threshold γ is increased by a quantity δγ whenever it is not 
greater than the average strength γ  multiplied by a constant c, and iii) in the latter 

case the new threshold value is propagated to the neighboring neurons through the 
channel Update, which in turn will be used to update the value of the overall mean 
strength γ  through a suitable function g computing, for instance, a mobile average. 

Continuous time evolution is ensured, as usual, through fictitious message sending 
over the NoSyn channel. 

This model is at a very early stage. Here we just forced two typical phenomena we 
may expect in a group of virtual communities: i) the pervasivity of a trivial thought, 
say a political slogan or a TV series, and ii) the isolation of an out-of-box thought. 

Row (I) in Figure 16 shows three frames of a log concerning the process underlying 
the former phenomenon. We start with a well variegated situation where integrated 
agents are homogeneously involved in four interest groups (associated with the colors 
red, green, yellow and blue in the picture). We may perceive it from the color distribu-
tion, since each pixel, i.e. each integrated agent Ai is labeled by the group within which 
he produces a greater number of outputs (the number of firings in the neuron terminol-
ogy) per time unit. Vice versa, at the end of the process almost all agents are producing 
with greater frequency within a same interest group. We induced this phenomenon just 
by pushing each agent to awake a surrounding component involved in this interest 
group each time he awakens a component of another interest group. 

 

Fig. 16. Community clusters within a population. A pixel color highlights the community com-
ponent whose spiking rate is prevailing. Contour lines denote the frequency levels. Columns 
denote different evolution times. Row (I) shows the temporal prevailing of a community. Row 
(II) shows the self-reference behavior of a community. 
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Row (II) in Figure 16 uses the same tools to describe the second phenomenon. In 
this case we note a sort of trench around a specific interest group that remains isolated 
and strictly localized. We induce this second effect by inhibiting the awakening of 
components of this group. Each time one component of this group should be awak-
ened, another component of the same integrate agent is awakened in his place. 

6   Conclusions 

A keen feature of human-centric information processing emerging from the above 
discussion concerns whether it is pro or con the individual person. In recent years, 
great attention has been devoted to stating a synergy between the communication fea-
tures of Calculus of Communicating System (CCS) languages, such as π-calculus, and 
the semantic power of the agent paradigm. The goal is to have an ensemble of agents 
who interact with one another through communication channels and who are singu-
larly capable of changing their profile in reaction to these communications. Examples 
of this paradigm may be found in business process design and verification [78,79], 
web service delivery [80,81], biological cooperation [82], and so on. However, it may 
seem to be a too ambitious goal, probably destined to the same kind of failure, in the 
general instances, as parallel computation in the 1980s. Even though the overall or-
ganization of the computation is less structured in the present target, we cannot expect 
a complex coordination between the complex computational tasks of the agents with-
out an even more complex communication protocol, where these two complexities 
have a reciprocal excitatory effect.  

On the contrary, we opted for a low profiling of the agents, considering them just 
like PEs. This seems to be the same strategy that many market companies and politi-
cal administrations pursue: give agents a few facilities and the feeling of caring about 
their interests through an immediate usage of the facilities. Meanwhile take any op-
portunity from the combined output of properly biased agent activities. A common 
feature of the processes we have dealt with in this chapter is, however, the hardness of 
their control. Each time we try to have homeostasis represents a new time. We spend 
hours finding the right parameters, whereas we suspect Nature took millions of years. 
In a way this is the revenge of complexity and social security: we simplified to the 
maximum extent the computing duties of the single agents, so we have some diffi-
culty considering them intelligent. Then on the one hand we are ensured that such an 
army of stupid soldiers may win any kind of war. On the other, finetuning their rules 
proves to be a very complex task requiring long simulation sessions. This leaves room 
for another structural optimization problem in search of the breakeven point between 
complexity of the agent tasks and complexity of the rules assembling them.  

All this serves the purpose of the “con individual person” option. On the other 
hand, the fact that a control law is difficult to fix from abroad does not prevent the PE 
ensemble from self-organizing itself [83]. This looks for an emergence of true human-
centric functionalities that start to appear in various communities focused on local in-
terests, political elections included. In these instances the breakeven problem between 
complexity of the single agents and their organization may play the role of the lever-
age γ we considered in this chapter. 
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Abstract. Pervasive and human-centric computing is beginning to be fact: with cell phones, lap-
tops and handhelds, human beings can work pretty much anywhere. Ambient Intelligence (AmI) 
is a novel human-centric computer discipline based on three emergent technologies: Ubiquitous 
Computing, Ubiquitous Communication and Intelligent User Interfaces. The integration of afore-
said technologies opens new scenarios for improving the interaction between humans and infor-
mation technology equipments realizing a human-centric computing environment. Within this 
aim the deliverable of tasks or services should be achieved through the usage of an invisible 
network of heterogeneous devices composing dynamic computational-ecosystems capable of sat-
isfying the users requirements. Fuzzy granules, intended as a clump of objects which are drawn 
together by criteria like indistinguishability, similarity, proximity or functionality, can represent 
a powerful and, simultaneously, simple paradigm to embed intelligence into a generic AmI eco-
system in order to support people in carrying out their everyday life activities, tasks and rituals in 
easy and natural way. However, the strong dinamicity and the high complexity characterizing a 
typical AmI scenario make difficult and expensive to design ad-hoc fuzzy granules. This paper 
presents a framework exploiting methodologies coming from Semantic Web and Computational 
Intelligence areas to compose fuzzy granules in autonomous way in order to maximize the users 
comfort and achieve the hardware transparency and interoperability. 
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1   Introduction 

Futurists tend to agree that personal computing will be dramatically changed in the fu-
ture. One overriding objective will be to make the technology transparent to the user, 
thus eliminating the frustration that many users face today. Human-Centric computing 
systems are pervasive frameworks capable of creating a solution so that the human is 
always connected, portable, and available. In this context, AmI systems represent one of 
the most emergent technologies able to offer advanced user-oriented services. Indeed, 
AmI systems will radically change how people interact with technology: the principle is 
to integrate different computer science backgrounds with psychology and social sciences 
in order to create a network of intelligent devices (sensors and actuators) able to en-
hance the quality of people’s life [23]. This is possible thanks to systems’ ability in  
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anticipating needs and desires necessary to obtain safety, comfort and economy. AmI 
systems realize such requirements using the following design philosophies:  

• Context Awareness; 
• Multi-modal Communication; 
• User-Centered interaction. 

According to a more formal definition of Context Awareness [17], we can say that 
contextual information can be defined as an ordered multilevel set of declarative in-
formation concerning events occurring both within the sensing domain of a smart 
space and within the communication and action domains of the smart space itself. In 
particular, an event can be defined as the occurrence of some facts that can be per-
ceived by or communicated to the ambient intelligence environment. Different attrib-
utes can characterize an event: where (location), what (core), when (time), why (rea-
son). Multimodal communication can then be defined as the simultaneous exchange of 
information over multiple channels at different levels of abstraction [15]. Human-to-
human communication is intrinsically multi-modal. Multimodal interactions in AmI 
systems allow the artificial system to engage in a similar dialog with the user, with the 
objective of exploiting the richness, robustness, and flexibility of face-to-face conver-
sation. Designing architecture to support user-centered interactions requires a high de-
gree of flexibility and adaptation. In a user-centered paradigm it is the system that tries 
to meet the user’s personal interaction style and not vice-versa as often happens.  

By analyzing the aforesaid AmI features, it can be asserted that homes, or more 
generally buildings, are changing their nature from static structures of bricks to dy-
namic work and living environments that actively support and assist their inhabitants 
[19]. These novel living environments are expected to behave in intelligent way. In 
addition, to satisfying the needs of its inhabitants, a building has to be an active, 
autonomous entity that pursues its own goals (energy consumption, security, etc.). To 
fulfill this goal, a smart home must continually take decisions by specifying rules that 
describe which actions to take.  

Recently, different Computational Intelligence methodologies have been exploited 
to define smart rules able to control AmI devices in autonomous way in order to op-
timize several living parameters [14][24]. 

Beyond purely computational issues, the design and implementation of intelligent 
living environments are highly influenced from the hardware infrastructure exploited 
to model the control network interconnecting the collection of sensors/actuators com-
posing the AmI system. Today, different communication protocols [25] [26] [10] 
could be used to realize an intelligent environment and, consequently, several pro-
gramming acquaintances are necessary to deal with these protocols. This paper fo-
cuses on the integration of methodologies coming from different computer science ar-
eas as the Computational Intelligence and Semantic Web to embed intelligence into 
the AmI devices and define an abstract developing environment capable of dealing 
with different hardware protocols by means of granular computing and semantic web 
technologies to attempt to solve both AmI issues.  

Fuzzy Granular Computing is a theory dealing with the partitioning of a class of 
objects into granules, with a granule being a clump of objects, which are drawn to-
gether by indistinguishability, similarity or functionality. In our case a fuzzy granule 
is an intelligent entity capable of controlling a portion of a living environment by 
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means of a clump of objects, where each object deals with a well-defined subset of 
sensors/actuators. Some samples of granules composing an AmI environment are: the 
temperature control granule, the lighting control granule, the blind control granule, 
and so on. Granular computing in AmI allows collecting control entities with the 
same functionalities in homogenous groups in order to maximize the cohesion level of 
the AmI system components; the cohesion is one of the most important factors char-
acterizing the Software Engineering discipline. The maximization of system cohesion 
allows designer to focus on well-defined part of system and the interface among them 
guaranteeing a satisfactory engineering process. The fuzzy granules are suitable logi-
cal model to represent intelligence and achieve the cohesion property.  

However, the strong dynamicity and the high complexity characterizing a typical 
AmI scenario make difficult and expensive the design of ad-hoc fuzzy granules to 
control AmI devices. Our work realizes an AmI framework capable of composing the 
appropriate fuzzy granules in autonomous way and performing their services in hard-
ware-independent way. 

2   A Framework for AmI Autonomous Fuzzy Granular 
Computing 

This section explains the architecture of the proposed AmI system through the presenta-
tion of the theoretical concepts and technologies used to design and realize the system. 

2.1   AmI Autonomous Fuzzy Granular Computing Architecture 

A ubiquitous computing fuzzy system exploits fuzzy computation in living environ-
ments in order to enable people to move around and interact with their environment 
more naturally than they actually do. More precisely, a ubiquitous computing fuzzy 
system is defined as a network of devices able to regulate their behavior in an auto-
matic way according to user needs and preferences. In order to achieve this goal dif-
ferent research topics have to be considered as computational intelligence, distributed 
computing and sensor networks.  

Computational intelligence approaches model the environmental context and rela-
tionships among the events occurring in AmI scenarios, whereas, distributed comput-
ing and sensor network technology are required to model the real physical AmI envi-
ronment and allow the communication among devices composing the framework. The 
joint use of these techniques allows achieving a fully automated and optimized con-
trol of environment according to user’s preferences.  

Starting from the integration among aforesaid topics, the proposed AmI scenario 
can be viewed as a composition of intelligent entities, named granules, each one com-
posed of a collection of fuzzy controllers managing devices characterized from the 
same functionality as, for instance: 

• Lighting granule; 
• HVAC granule; 
• Blinds granule; 
• Temperature granule; 
• … 
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where the lighting granule is the collection of control objects able to manage each 
light actuator in the framework, and so on.  

In other word each granule is a collection of fuzzy functions able to deal the same 
kind of device. Figure 1 shows a typical AmI granular scenario. 

 

 

Fig. 1. Ambient Intelligence Granular Scenario 

However, the high dynamicity and complexity characterizing an AmI scenario make 
very difficult and expensive to design ad-hoc fuzzy granules to control AmI devices. 
The dynamicity and complexity of AmI environments arise from two factors: the 
amount and type of devices populating the environment and the hardware heterogeneity. 

Aim of this paper is to realize an AmI environment capable of composing the ap-
propriate fuzzy granules in autonomous way and performing their services in hard-
ware-independent way.  

The proposed features are achieved by considering the system as a Distributed Ser-
vice Oriented Architecture, where each service corresponds to a control object of a 
fuzzy granule. 

In order to achieve the autonomous granules composition and the hardware inde-
pendence a double representation of granule objects is required: a Fuzzy Markup Lan-
guage (FML) representation allows to manage the hardware independency, whereas, a 
Resource Description Framework (RDF) model is used as objects description for the 
autonomous granules composition algorithm. Java, Web Services and JAXB tech-
nologies allow running the FML/RDF granule objects.    

The overall view of our architecture is modeled in terms of four fundamental and 
complementary sub-systems whose interactions allow designing, developing and put-
ting in work the AmI fuzzy granules. The four sub-systems are:  

• Granular Design Environment;  
• Granular Run Time Environment;  
• Granular Service Retrieval Environment;  
• AmI Environment.  
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The Granular Design Environment subsystem is an FML-based framework modeling 
and managing the fuzzy granule in a hardware-independent and human-oriented way.  

The Granular Run Time Environment subsystem is a Java-based framework able to 
compute the AmI granular objects through the integration of Web Services and JAXB 
technologies.  

Granular control activities are managed as services, modeled by FML and trans-
lated into RDF representation in order to be indexed by the Granular Service Re-
trieval Environment subsystem.  

AmI Environment subsystem defines the set of fuzzy controlled devices composing 
the sensor network.  

The communication among the Run Time, Service Retrieval and the AmI envi-
ronment is accomplished by the Internet protocol suites (TCP/IP) and in particular the 
HTTP application protocol. From the communication point of view, the ubiquitous 
fuzzy computing framework may be considered as a Client/Server system where the 
clients are located in the AmI environment and the servers are hosted in RunTime and 
Service Retrieval environments.  

Within this scenario, we distinguish three basic entities: 

1. AmI Client. This entity is located in Fuzzy Control AmI environment; the AmI Cli-
ent demands the appropriate fuzzy objects to Retrieval Server in order to compose 
AmI fuzzy granules;  

2. Retrieval Server. It hosts the fuzzy objects and it performs the retrieval fuzzy algo-
rithm used by AmI Client to compose the control granules;  

3. Run Time Server. It computes the remote granular fuzzy object.  

Figure 2 shows a high-level view of system architecture with AmI Clients, Re-
trieval Server and Run Time Server. Before to introduce the framework components 
in a detailed fashion, a survey about FML, the fuzzy objects description language, 
will be given. 

 

Fig. 2. AmI Granular Ubiquitous Fuzzy System 
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3   Merging Fuzzy Logic and XML: The Fuzzy Markup Language 

In section 1 the AmI context has been defined as an ordered multilevel set of declara-
tive information concerning events occurring both within the sensing domain of a 
smart space and within the communication and action domains of the smart space it-
self. Each event consists of a set of features, nominally, when the event has been gen-
erated, what generated the event and in which context the event has been generated. 
In order to model this information it is necessary to use theoretical concepts represent-
ing the different AmI context events in an optimal and natural way. Fuzzy Logic and, 
in particular, the rules of a fuzzy controller can represent a direct translation of AmI 
context definition. In fact, taking into account a generic fuzzy rule it is possible to de-
rive each event-related attribute of context definition (what, when, why, etc.) as 
shown in figure 3. Moreover, the AmI environment can be viewed as a collection of 
entities that are measurable in fuzzy way. For instance is very simple to model the en-
vironmental temperature notion by means of a fuzzy concept containing three fuzzy 
sets labeled, respectively, LOW, MEDIUM and HIGH and each one mapped on an 
opportune fuzzy support; the shape of these sets can be chosen in a static way or 
through learning mechanism as, for instance, evolutionary methods. From this point 
of view, fuzzy logic offers several benefits related to the modeling of complex sys-
tems and the straightforwardness of embedding fuzzy controllers in advanced evolu-
tionary approaches in a rapid way. 

Furthermore, fuzzy control theory allows defining the relationships among AmI in-
formation in a linguistic way, i.e., by using the same idea of a human being which 
wants to regulate the living environment in order to satisfy its need and requirements 
[8]; from a scientific point of view, fuzzy controllers simplify the design and develop-
ment of automatic mechanisms to self-regulation of AmI entities, in fact, the linguistic 
approach results, remarkably, more fast and direct than classic PID design methods. 

FML is a markup-based general approach to modeling the fuzzy objects and the set 
of relations within an AmI environment by using a human-oriented and a hardware-
independent syntax. Our approach uses the FML description to define object collec-
tions, each one able to control a well-defined kind of device; these collections 
represent the AmI fuzzy granules. 

Details of FML and how FML can be incorporated into the Design subsystem of 
our AmI framework are found in the following subsection.  

 

Fig. 3. AmI Fuzzy Control Rule 
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3.1   Transparent Fuzzy Control for AmI Context Representation  

This section is devoted to present FML, the main tool exploited to design fuzzy object 
composing AmI granules. 

From a technological point of view, fuzzy control deals with the controller imple-
mentation on a specific hardware by using a public or legacy programming language. 
For this reason, independently from the complexity of the addressed application prob-
lem, the development time may be very expensive. In Ambient Intelligence (AmI) en-
vironments, where the ubiquitous computing represents one of the main features, the 
possibility of dealing with a considerable number of heterogeneous controlled hard-
ware is high enough to constitute a real impediment to a flexible and efficient control 
strategy. In order to solve this drawback, software layers, designed to control hardware 
details, are extremely useful. FML (Fuzzy Markup Language) is a software technology 
to create fuzzy oriented abstraction tools. FML is XML-based and its syntax is realized 
by using a set of tags representing the different components of a fuzzy controller. 

Since Zadeh’s coining of the term fuzzy logic [27] and Mamdani’s early demon-
stration of Fuzzy Logic Control (FLC) [12], the scientific community in the theoreti-
cal as well as the application fields of FLC has made enormous progress. A fuzzy 
control allows the designer to specify the control in terms of sentences rather than 
equations by replacing a conventional controller, say, a PID (proportional integral-
derivative) controller with linguistic IF-THEN rules [13]. As described in previous 
sections, the main components of a fuzzy controller are: 

• Fuzzy Knowledge Base; 
• Fuzzy Rule Base; 
• Inference Engine; 
• Fuzzification sub-system; 
• Defuzzification sub-system. 

The Fuzzy Knowledge Base contains the knowledge used by human experts. The 
Fuzzy Rule Base represents the set of relations among fuzzy variable defined in the 
controller system. The Inference Engine is the fuzzy controller component able to ex-
tract new knowledge from a fuzzy knowledge base and a fuzzy rule base. Extensible 
Markup Language (XML) [22] is a simple, very flexible text format derived from 
SGML (ISO 8879). Originally designed to meet the challenges of large-scale elec-
tronic publishing, nowadays XML plays a fundamental role in the exchange of a wide 
variety of data on the Web, allowing designers to create their own customized tags, 
enabling the definition, transmission, validation, and interpretation of data between 
applications, devices and organizations. If we use XML, we take control and respon-
sibility for our information, instead of abdicating such control to product vendors. 
This is the motivation under FML proposal: to free control strategy from the device. 
The technologies used in FML are: 

• XML in order to create a new markup language for FLC; 
• XML Schema in order to define the legal building blocks of an XML document. 

Initially, FML relied on XML Document Type Definition (DTD) [3] because this ap-
proach is able to translate in a direct and simple way the context free grammar theo-
retical concepts into a usable markup language speeding up the language definition. 
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More recently [2], FML has been defined by using XML Schema. The set of data 
types composing a fuzzy controller model using the FML language is structured as an 
n-ary tree called FOM (Fuzzy Objects Model). Reasoning in this way, it is possible to 
state that each FML program can be associated to an instance of a FOM tree. A por-
tion of XML Schema generating the FML syntax is shown in listing 1.  

Currently, we are using FML for modeling two well-known fuzzy controllers: 
Mamdani and Takagi-Sugeno-Kang (TSK) [21]. In order to model the Controller node 
of a fuzzy tree, the FML tag <FuzzyController> is created (this tag opens any FML 
program). <FuzzyController> uses three tags: type, defuzzificationMethod and ip.  The 
type attribute allows to specify the kind of fuzzy controller, in our case Mamdani or 
TSK; defuzzificationMethod attribute defines the defuzzification method used to trans-
late the fuzzy results coming from fuzzy inference engine application into real double 
system control values; ip tag will be defined at the end of section. Considering the left 
sub-tree, the knowledge base component is encountered. The fuzzy knowledge base is 
defined by means of the tag <KnowledgeBase> that maintains the set of fuzzy con-
cepts used to model the fuzzy control system. In order to model each fuzzy concept be-
long in fuzzy knowledge base, it is necessary to use the following XML elements: 

• <FuzzyVariable>; 
• <FuzzyTerm>; 
• a set of tags used to model the shapes defining the fuzzy variable; 

<FuzzyVariable> defines the single fuzzy concept, for example Luminosity; <Fuz-
zyTerm> defines a linguistic term describing the fuzzy concept, for example low (lu-
minosity); the set of tags defining the shapes of fuzzy sets are related to fuzzy terms. 
The attributes of <FuzzyVariable> tags are: name, scale, domainLeft, domainRight, 
type, ip. The name attribute defines the name of fuzzy concept (i.e. time of the day); 
scale defines how to measure the fuzzy concept (i.e. hour); domainLeft and domain-
Right model the universe of discourse of fuzzy concept in terms of real values (i.e. 
[0000, 2400]); the role of variable (i.e. independent or dependent variable) is defined 
by type attribute; ip locates the position of fuzzy knowledge base in the computer 
network. <RuleBase> allows the building of the rule base associated with the fuzzy 
controller. This tag uses the following attribute: ip. The other tags related to rule base 
definition are: 

• <Rule>; 
• <Antecedent>; 
• <Consequent>; 
• <Clause>; 
• <Variable>; 
• <Term>; 
• <TSKParams>; 
• <TSKParam>. 

The <Rule> tag defines a single fuzzy rule by using the <Antecedent> and <Conse-
quent> nested tags; both tags model the fuzzy propositions appearing, respectively, in 
antecedent and consequent part of a single rule. Each antecedent fuzzy proposition is 
modeled by means of <Clause> tag and its nested elements: <Variable> and <Term>. 
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Analogously, each consequent fuzzy proposition is defined by means of <Variable> 
and <Term>, in the case of Mamdani controller, or by means of <Variable>, 
<TSKParams> and <TSKParam>, in the case of Takagi-Sugeno-Kang controller. 

 
<?xml v e r s i o n=1.0 encoding =UTF 8> 
<!edited with XMLSpy v2005 
sp1U (http://www. xmlspy.com) 
by Gianni Acampora (University of  Salerno) 
> 
<xs:schema xmlns:xs=http://www.w3 .org/2001/XMLSchema 

elementFormDefault=qualified 
attributeFormDefault=unqualified > 

<xs:element 
name = FuzzyController 
type = FuzzyControllerType> 
<xs:annotation> 

<xs:documentation> 
FuzzyControllerMarkupProgram 

</xs:documentation> 
</xs:annotation> 

</xs:element> 
<xs:complexType name = FuzzyControllerType> 

<xs:sequence> 
<xs:element 

name = KnowledgeBase 
type = KnowledgeBaseType> 
<xs:annotation> 

<xs:documentation> 
Fuzzy Concepts Collection 

</xs:documentation> 
</xs:annotation> 

</xs : element> 
<xs : element name = RuleBase type = RuleBaseType> 

<xs:annotation> 
<xs:documentation> 

FuzzyRulesCollection 
</xs:documentation> 

</xs:annotation> 
</xs:element> 

</xs:sequence> 
<xs:attribute name = ControllerType> 

<xs:simpleType> 
<xs:restriction base = xs:string > 

<xs:pattern value = mamdani | tsk/> 
</xs:restriction > 

</xs:simpleType> 
</xs:attribute> 

. . . 

Listing 1. Fuzzy Markup Language XML Schema 
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Differently from other attributes used in FML language, the ip attribute is not directly re-
lated to the fuzzy logic controller theory. In fact, this attribute contains information de-
fined by means of the following regular expression (expressed in XML Schema syntax): 

(1?[0−9]?[0−9]|2[0−4][0−9]|25[0−5]).)3(1?[0−9]?[0−9]|2[0−4][0−9]|25[0−5] :?._) 

It is simple to see how this regular expression defines strings such as: 

• 192.168.0.4; 
• 192.168.0.4:8080; 
• 192.168.0.4.8080/FMLWebService; 
• etc. 

Hence, ip attribute represents TCP/IP endpoint; for instance, in [4] the ip attribute of 
<FuzzyController> tag is used to define the address of a TCP Berkeley Socket based 
Server computing FML controllers generated in automatic way through a fuzzy induc-
tive algorithm, whereas, in [1] the ip attribute of <FuzzyVariable> and <Rule> tags 
is used to distribute (in order to minimize the inference time) the different part of con-
troller on the network by means of a multi-agent system. In this paper the ip attribute 
will be used to define the endpoint of web service computing the FML controller. 

Listing 2 gives a sample of FML code. 
 

<!DOCTYPE FUZZYCONTROL SYSTEM ”fml . dtd”> 
<FUZZYCONTROL de f uz z i f yme thod = ”CENTROID” ip = ”localhost”  

type = ”MAMDANI”> 
<KNOWLEDGEBASE IP = ”localhost”> 
<FUZZYVARIABLE 

domainleft = “0” domainright = “1” 
ip = ”localhost” name = ”Luminosity” 
scale = ”Lux” type = ”INPUT”> 
<FUZZYTERM name=”low”> 

<PISHAPE 
param1 = ”0.0” 
param2 = ”0.45”> 

</PISHAPE> 
</FUZZYTERM> 
<FUZZYTERM name=”MEDIUM”> 

<PISHAPE 
param1 = ”0.49999999999999994” 
param2 = ”0.44999999999999996”> 

</PISHAPE> 
</FUZZYTERM> 
<FUZZYTERM name=”HIGH”> 

<PISHAPE 
param1 = ”0.5501” 
param2 = ”1”> 

</PISHAPE> 
</FUZZYTERM> 

</FUZZYVARIABLE> 
</KNOWLEDGEBASE> 

Listing 2. FML sample program 
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<RULEBASE 
inferenceengine = ”MINMAXMINMAMDANI” 
ip = ”localhost”> 
<RULE connector = ”AND” ip = ”localhost” weight = ”1”> 

<ANTECEDENT> 
<CLAUSE not = ”FALSE”> 

<VARIABLE> Luminosity </VARIABLE> 
<TERM> low </TERM> 

</CLAUSE> 
<CLAUSE not = ”FALSE”> 

<VARIABLE> hour </VARIABLE> 
<TERM> morning </TERM> 

</CLAUSE> 
</ANTECEDENT> 
<CONSEQUENT> 

<CLAUSE not = ”FALSE”> 
<VARIABLE>dimmer</VARIABLE> 
<TERM>medium</TERM> 

</CLAUSE> 
</CONSEQUENT> 

</RULE> 
. . . 
</RULEBASE> 
</FUZZYCONTROL> 

Listing 2. (continued) 

4   Run Time Subsystem: Implementing the FML Fuzzy Objects 

The FML codes represent only a human-oriented and hardware-independent represen-
tation of a fuzzy granule objects, i.e., the FML granules cannot be computed in a 
direct way. In other words, an FML compiler is needed to translate the FML model 
representing the fuzzy granules into an executable program. We explored different 
approaches to implementing the FML compiler: XSLT Stylesheet Translator, JAVA 
XML Parser (JAXP) or other XML-based translator technologies. The results led to 
the current implementation based on the integration of JAXB (Java Architecture for 
XML Binding) with TCP/IP suites protocol.  

JAXB represents a direct way to compile and compute the FML services. In fact, 
the JAXB allows translating the XML tree structure (in our case, the FOM) into a Java 
class’s hierarchy in a direct and simple way via the xjc compiler. The TCP/IP stack al-
lows the design and the development of a remote FML controller; in particular, the 
proposed system uses SOAP protocol together with web-services technologies in order 
to remote the control task. Specifically, JAXB can generate Java classes from XML 
schemas by means of a JAXB binding compiler. The JAXB binding compiler takes 
XML schemas as input, and then generates a package of Java classes and interfaces, 
which reflect the rules defined in the source schema. These generated classes and inter-
faces are in turn compiled and combined with a set of common JAXB utility packages  
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Fig. 4. The JAXB/FML/Java binding 

 
to provide a JAXB binding framework. The JAXB binding framework provides meth-
ods for unmarshalling XML instance documents into Java content trees, a hierarchy of 
Java data objects that represent the source XML data, and for marshalling Java content 
trees back into XML in-stance documents. The JAXB binding framework also pro-
vides methods for validating XML content as it is unmarshalled and marshalled. A 
JAXB compiler uses the XML Schema related to FML to build the class hierarchy, and 
a set of API to unmarshal the FML file into fuzzy objects hierarchy. The 
JAXB/FML/Java binding is depicted in figure 4. The generated objects hierarchy 
represents only a static view of FML file. This resource does not embody the fuzzy 
methods/operators necessary to perform deduction activity over the fuzzy structures. In 
order to complete the Java representation of FML fuzzy controllers, a fuzzy wrapper 
class, named FMLController has been coded. In particular, the FMLController class 
exhibits a set of methods able to apply the appropriate fuzzy operators to the informa-
tion derived from JAXB objects. Specifically, FMLController constructors allow the 
creation of a new fuzzy controller by using the unmarshall method of JAXB-API inde-
pendently from the FML file location (file system or network). Moreover, the public 
method named inference applies the opportune deduction engine to the fuzzy informa-
tion contained in JAXB objects. The signature of the inference method is: double in-
ference(double[] input). The inference method reads double values from the controlled 
system, applies: the fuzzification operator and the inference engine in sequence, the de-
fuzzification operator and, finally, returns a double value to the system.  

The interaction between the controlled system and the FMLController class is per-
formed by two abstract methods, double[] readInputs() and double writeOut-
put(double) whose implementation depends upon network protocol used to interface 
the controlled system with AmI Client.  
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4.1   Granular Fuzzy Remote Control 

The granules composing an AmI environment represent only a logical entity capable 
maximizing typical software engineering attributes, as the cohesion, but, however, the 
granules objects are distributed on a computer network as FML program and com-
puted through Java/JAXB technologies. In other word the granules objects are dis-
tributed objects. In order to perform a remote execution of FML granular objects, it is 
necessary to embed the granular runtime framework into a Web Services environ-
ment. According to the W3C, a Web Service [5] is a software system designed to 
support interoperable machine-to-machine interaction over a computer network. It has 
an interface that is described in a machine-readable format such as Web Services De-
scription Language (WSDL). Other systems interact with the Web service in a manner 
prescribed by its interface using messages, which may be enclosed in a Simple Object 
Access Protocol (SOAP) envelope. These messages are typically conveyed using 
HTTP protocol and normally comprise XML in conjunction with other Web-related 
standards. Software applications written in various programming languages and run-
ning on various platforms can use web services to exchange data over computer net-
works like the Internet in a manner similar to interprocess communication on a single 
computer. This interoperability (for example, between Java and Python, or Microsoft 
Windows and Linux applications) is due to the use of open standards. The intrinsic in-
teroperability offered by the web services communication paradigm covers in a direct 
way the interoperability concepts required by the ubiquitous properties of an AmI sys-
tem. From this point of view the web services represent the communication core of 
the proposed AmI system. In fact, it is this interoperability of the web services prop-
erty that is fundamental to achieving the ubiquitous computing and ubiquitous net-
working properties of AmI systems. 

In order to compute our FML controller through Web Services technology it is 
necessary to use a specific Web Services engine. Our framework uses the Axis engine 
to deploy the inference service by means of a Deployment Descriptor (WSDD) for-
mat. Once deployed, the service is ready to accomplish its work when invoked by cli-
ents. Obviously, the clients have to know the address of web services procedure, i.e., 
the web services endpoint. The IP attribute of <FuzzyController> tag present in FML 
captures the endpoint information. 

5   Retrieval Subsystem: A Semantic View of Fuzzy Granules  

This section represents the core of proposed system. It is devoted to present a meth-
odology able to retrieve fuzzy object from the computer networks in order to compose 
fuzzy control granules. In details, the proposed algorithm is able to find the most suit-
able set of controllers for a prefixed AmI environment by exploiting a semantic repre-
sentation of FML controllers and the ip attributes of FML programs. 

The ip attribute of the root tag of the FML program has been introduced as a key 
element to store the web services endpoint address. We present an approach, based on 
Semantic Web technology, suitable to retrieving the appropriate FML endpoint. The  
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basic idea is to exploit information arising from the set of sensor/actuator devices 
composing the AmI environment. The endpoint search engine is located on a Re-
trieval Server (see section 2) and it can be viewed in terms of three components: 

• AmI Sensor Network Knowledge Client; 
• Storing Algorithm; 
• Retrieval Algorithm. 

The AmI Sensor Network Knowledge Client is located on the AmI clients; the Storing 
and Retrieval Algorithms are located on the Retrieval Server. The AmI Sensor Net-
work Knowledge Client collects information from the environment and synthesizes it 
in order to trigger the appropriate FML controller request. The Storing and Retrieval 
algorithms are designed, respectively, to catalogue FML information in a semantic way 
and to manage this repository for fuzzy controller searching. The Retrieval algorithm 
uses information generated by Storing algorithm together with information coming 
from AmI clients in order to return the appropriate FML Web Services endpoint. 

The repository description is based on RDF, a well-known technology coming 
from Semantic Web. 

In the next subsection we show the fundamental steps concerning three basic ac-
tivities: the collecting of AmI Sensor Network Information, repository building by us-
ing RDF and the FML endpoint search mechanism. 

5.1   AmI Sensor Network Knowledge 

The AmI clients have to model the controlled Sensor/Actuator Network in a formal 
way to communicate the appropriate information to the Retrieval Server. A Sen-
sor/Actuator network is a huge network of distributed devices using sensors/actuators  
 

 

Fig. 5. Sensor Network Tree 
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to monitor/control conditions at different locations. It is possible to use a labeled tree 
data structure to model this network containing the following information: 

• Number of devices (level one); 
• Device information (level two): 

– Type (Sensor/Actuator); 
– Monitored/Controlled entity (e.g. Temperature) and its scale (e.g. Celsius de-

gree); 
– Set of allowable value (e.g. [10, 60]) 

Figure 5 shows an instance of Sensor Network tree. The information contained in the 
labeled tree can be modeled in a machine-readable representation by using XML. This 
type of information modeling is used by the Retrieval algorithm to identify the most 
suitable FML Web Services endpoints to return to AmI Client. 

5.2   Storing Algorithm 

The Retrieval Servers have to perform a semantic storing of FML controllers hosted 
on it by using the RDF technology. 

RDF is a W3C recommendation [16] that was originally designed to standardize 
the definition and use of metadata-descriptions of Web-based resources. However, 
RDF is equally well suited for representing arbitrary data, be they metadata or not. 
The basic building block in RDF is an subject-predicate-object triple, commonly writ-
ten as P(S,O). That is, a subject S has a predicate (or property) P with value O. An-
other way to think of this relationship is as a labeled edge between two nodes: [S] − P 
− [O]. This notation is useful because RDF allows subjects and objects to be inter-
changed. Thus, any object from one triple can play the role of a subject in another tri-
ple, which amounts to chaining two labeled edges in a graphic representation. RDF 
also allows a form of reification in which any RDF statement itself can be the subject 
or object of a triple. This means graphs can be nested as well as chained. The RDF 
Model and Syntax specification also proposes XML syntax for RDF data models. The 
FML/RDF storing mechanism is performed through two different steps: 

1. FML fuzzy services semantic translation; 
2. FML Semantic storing into semantic repository. 

The information contained in FML files represents only a tree-structured model, 
tags oriented, of a fuzzy controller providing the main benefits of XML representa-
tion. However, the information modeled by an XML representation (FML, in our 
case) are not semantically defined, i.e., XML doesn’t allows the definition of a set of 
fuzzy-relations between the defined tags and attributes. For instance, by using the 
FML syntax, the fuzzy variables defined into knowledge base sub tree are not the 
same entities contained in fuzzy rules; in fact different tree nodes are used to model 
the same concept. 

Using the RDF technology solves this drawback. The RDF metadata model is 
based upon the idea of making statements about resources in the form of a subject-
predicate-object expression, called a triple in RDF terminology. In our case, the re-
sources are the FML fuzzy components. In this section, the semantic representation of  
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fuzzy controllers is introduced in terms of RDF. The semantic translation is accom-
plished by using XSLT where the domain is the set of fuzzy services modeled by 
FML and the codomain is the set of semantic models of fuzzy services expressed by 
RDF. The XSLT function computes a translation from the FML tree (the FOM) to the 
RDF graph. The resulting graph differs from the input FML tree in the number of 
edges composing the data structure. In fact, the RDF graph shows, differently from 
the FML tree, a set of graph cycles representing the fuzzy relations among the fuzzy 
components modeled in the FML representation. Both definitions are obtained from a 
FML service description by using the XSLT translation. Once he semantic representa-
tion of FML service has been obtained it is necessary to store it in a semantic reposi-
tory in order to enable the users (people or external systems) to query information 
about the web services controller endpoint. The proposed AmI framework uses Ses-
ame [6] server in order to manage the semantic repository and Sesame SAIL API to 
enable the semantic queries from external systems, for example, the AmI clients. The 
execution flow of the storing algorithm is shown in figure 6. 

 

Fig. 6. FML to RDF: Storing Algorithm 

 

Fig. 7. XML to RDQL: Semantic query creation 

5.3   Retrieval Algorithm 

The Retrieval Algorithm represents the computational kernel of the AmI Granular Re-
trieval component. Its main aim is to find the appropriate fuzzy service able to control 
the environment by using the semantic information contained in the RDF description 
located on the Retrieval Server and the XML information coming from the AmI cli-
ent. The appropriate fuzzy service is found by comparing, in a semantic way, the in-
formation contained in the XML description of the AmI environment with the triple 
set of RDF fuzzy service description.  

RDQL [20] represents a fast and direct way to retrieve semantic information from 
RDF repositories. Its syntax is based on the classic SQL query language. Thus, the 
steps of the retrieval algorithm are: 
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1. to accept requests from AmI clients in XML format; 
2. to convert the XML information into a string representing an RDQL query; 
3. to compute the RDQL query obtained in a previous step; 
4. to return the FML endpoint information to the AmI client. 

The Retrieval Servers communicate with the AmI Client by using the TCP Sock-
ets. In particular, the Retrieval Servers listen to the client requests on a prefixed TCP 
port, open a TCP socket communication with client, accept the XML information, 
compute the XML data and return the appropriate endpoint value on socket. 

Once it has received the XML AmI description from the AmI client, the Retrieval 
server creates an XML file containing this information and uses it to compute the 
RDQL query. The transformation from XML to RDQL is accomplished by using the 
XSLT tool as shown in figure 7. In particular, the XML-RDQL XSLT translation 
maps each XML entry into a RDQL query portion generated by using the template of 
listing 3.  

Starting from the XML code, representing the client knowledge, and the RDQL 
template presented in listing 3, the XSLT translation generates the RDQL query 
shown in listing 4. Row 1 represents the (eventual) return data of query computation, 
the FML endpoint, whereas, the query portion between row 3 and row 10 identifies 
the parameters of input variable. 

 
SELECT ? endpoint 
WHERE ?x <fml : hasEndPoint> ? endpoint 

?x <fml : hasKnowledgeBase> ?y 
?y <r df : li > ? z 
? z <fml : hasName> NameOfVariable 
? z <fml : hasScal e> ScaleOfVariable 
? z <fml : type> TypeOfVariable 
? z <fml : domainLeft> ? inf 
? z <fml : domainRight> ? sup 
AND ? inf<=LeftDomainOfVariable 
? sup>=RightDomainOfVariable 
USING fml = http://www.dmi .unisa.it/fml# 

Listing 3. RDQL query template 

SELECT ? endpoint 
WHERE ?x <fml : hasEndPoint> ? endpoint 

?x <fml : hasKnowledgeBase> ?y 
?y <rdf : li > ? z 
? z <fml : hasName> Temperature 
? z <fml : hasScale> Celsius Degree 
? z <fml : type> input 
? z <fml : domainLeft> ? inf 
? z <fml : domainRight> ? sup 
AND ? inf <=10 ? sup>=60 
USING fml = http://www.dmi.unisa .it/fml#�

Listing 4. RDQL/XSLT query sample 
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This query portion is univocally defined for each XML request. The rest of the query 
is obtained starting from the information contained in the XML request. In particular, 
the row 3 is used to retrieve the Fuzzy Knowledge Base information from the RDF 
fuzzy model in order to analyze its components (the fuzzy variables). The analysis of 
each fuzzy variable is accomplished from row 4 to row 10. Particularly, rows from 5 
to 9 are used to set the fuzzy variable name, scale, type and the universe of discourse 
coming from the AmI environment into RDQL query. 

Once it has realized the RDQL query, the retrieval algorithm uses the Sesame 
SAIL API in order to deduct new information from the RDF repositories. In particu-
lar, this information is represented from the endpoint of the FML controller able to 
control the data contained in the XML request. This endpoint, successively, is sent to 
the AmI client where it will be used to interface the controlled AmI environment with 
the automatic remote fuzzy controller. 

6   Case Study and Experimental Results 

As mentioned in the paper introduction, the proposed granular ubiquitous system can 
be exploited in many applicative fields, but its potential is clearly highlighted by hu-
man-centric applications. For this reason a domotic application (as known as Home 
Automation application) could be represent an interesting case study on which the 
FML based ubiquitous findability system can be applied to check and validate the 
suitability of proposed framework to real world applications. 

Each domotic application needs of control network infrastructure capable of inter-
connecting the set of sensors/actuators among them and interfacing this network with 
the typical TCP/IP data network. By means of this interface is possible to control the 
set of domestic devices through a network of dedicated agents hosted on distributed 
computing devices. Our application exploits the Lonworks technologies and, conse-
quently, the Lontalk control network protocol to manage the details about ambient in-
telligence internetworking. 

In order to test the proposed ambient intelligence framework, it is fundamental to 
simulate the upload of FML files on the servers introduced in previous sections. This 
simulated controllers uploading will allows FML clients to retrieve the appropriate 
controllers by means of semantic analysis based on RDF language. This case study 
exploits a modified evolutionary approach to generate, randomly, a collection of FML 
files that, successively, will be uploaded on aforesaid servers. At same time, the FML 
client hosted in our test environment will query the servers to search the right control-
lers. Our aim is to quantify the time taken from the client to learn this FML collection. 
At the end of this step, the success search probability will be computed. 

6.1   Evolutionary FML Controllers Generation 

In this section the algorithm exploited to generate a collection of FML code will be 
highlighted. As previously mentioned, this algorithm uses theories coming from evo-
lutionary methodologies area, in particular, a modified model of genetic algorithm. 
More in detail, our approach exploits the classical operators employed in the genetic 
schema as the crossover and mutation by omitting the selection operator and fitness 
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function concept because they are related to optimization context of genetic algo-
rithm, while, in our approach only the population evolution has to be dealt. In order to 
start the FML genetic evolution is necessary a collection of ambient intelligence vari-
ables on which generate the FML controllers. Let Variables be this collection of vari-
ables. Each variable, as previously depicted, is characterized by name, universe of 
discourse, type (input or output) and a collection of fuzzy terms. The pseudocode in 
listing 5 shows how, starting from Variables set, the FML collection is generated: 
 
k = number of algorithm iterations 
i = 0 
while (i < k) { 

FMLCollection = 0 
Choose , randomly , a number n (1 <= n  <= #Variables) 
Choose , randomly , a number n (1 <= m  <= #Variables) 
Extracts n input variables from Variables and put them in Input set . 
Extracts m input variables from Variables and put them in Output set. 
Code the Input variables in FML 
Code the Output input variable s in FML 
Choose , randomly , a number r 
Generate r fuzzy rules by , randomly , choosing the fuzzy terms from Input and Out-
put set. 
Add rules to Rules s t 
Code the r u l e b a s e Rules in FML. 
Add the gene rat ed FML program to FMLCollection 
Choose , randomly , a number , g 
j = 0 
while j < g { 

apply g times the genetic operator (crossover and mutation) 
Add the generated FML program to FMLCollection 

} 
Upload the FMLCollection on Servers 
} 

Listing 5. Evolutionary FML Code Generation 

The crossover operator is applied on a pair of rules by crossing the antecedent part of 
first rule with consequent part of second rule, and vice versa. The mutation operator 
changes the fuzzy term value of a rule clause (input or output) in a random way. This 
algorithm generates at most k · (g+1) different FML controllers that, successively, 
will be coded in RDF and upload on the servers. Reasoning in this way, the client will 
find the appropriate controllers with probability, at most,  

 

where ci is the number of fuzzy term related to ith
 fuzzy variable, n is the number of 

clauses in rule antecedent part, m is the number of clauses of rule consequent part and 
r is the total number of rules. 
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Fig. 8. p = k·(g+1)/325 Probability Map 

Our aim is to find the most suitable values of k and g in order to achieve the fol-
lowing tradeoff: the client finds the appropriate FML controller in the quickest way. 
In order to evaluate these values is possible to analyze the following simplified 
mathematical representation of the aforementioned probability: 

 

where n=4, m=1, r=5 and c1 = c2 = . . . = c25 = 3. Figure 8 shows the diagram of 
function p, where g varies on horizontal axis, p(g) varies on vertical axis and k repre-
sents the map parameter; the arrow individuates the increase direction of k. Starting 
from this graphical analysis it is clear that the are necessary exponential values of the 
parameter k to increase to probability p to 1. 

In short, the proposed approach could be efficient if the number of server users grows 
in exponential way regarding the number of queries carried out from client users. 

7   Related Works and Final Consideration 

In recent years, we have witnessed the rapidly growing role of Human-Centric sys-
tems as a novel computational paradigm implementing a pervasive framework by fo-
cusing on the human and on its interactions with electronic equipments.  

Ambient Intelligence can be considered as a new means of distributing network of 
intelligent devices that provides information, communication, and entertainment 
around human beings. These systems adapt to the user in a context-aware fashion and 
differ substantially from contemporary equipment in their appearance in people envi-
ronments, and in the way users interact with them. The recent developments not only 
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define new market opportunities but also define new challenging tasks for designers, 
requiring complex AmI systems design as well as strong flexibility and interoperabil-
ity. This complexity stimulates the developments of sophisticated information tech-
nologies skilled to model and realize integrated networks of smart devices where it is 
possible to dynamically program devices’ behavior and making aspects of the pro-
grammability accessible to third-party vendors and users. This abstractness is needed 
to free “control” service, traditionally closed and static inside the device towards more 
dynamic environments where all devices and services seamlessly interoperate and co-
operate with each other. 

Several implementations of automatic controllers for AmI environments have been 
implemented, but only recently the interest of the scientific community in finding ap-
propriate solutions to control large-scale systems has produced an uninterrupted flow 
of results, some of them involving Fuzzy Logic theories. In [9], a novel type-2 fuzzy 
system adaptive architecture for agents embedded in ambient intelligent environments 
(AIEs) is presented. Other approaches have been proposed for the development of 
learning architectures to devices control in intelligent buildings. In [11] an evolution-
ary algorithm is analyzed as a candidate for the initial phases of the design of such ar-
chitectures: fuzzy controllers for the devices are offline induced from data sampled 
from the environment. Other computational intelligence methodologies have been ap-
plied to AmI; for instance, in [18] a novel connectionist embedded agent architecture 
that combines the use of unobtrusive and relatively simple sensors and employs a con-
structive algorithm with temporal capabilities which is able to recognize different 
high level activities (such as sleeping, working at computer, eating) is depicted. Other 
recent surveys on AmI researches can be found in [7] where an advanced fuzzy-based 
telecare system is developed. The previous works witness the strategic role played by 
Fuzzy Logic when applied in a general design methodology applied to complex sys-
tem. In our approach we follow this trend, renforcing a deeper view abong three ac-
tors: the power of fuzzy control (where the power is expressed in terms of user-
centered description of control activity), the abstract description level (arising from 
FML), and the open computational framework that envisage a platform for ubiquitous 
fuzzy control. 

This paper reports our efforts to design and implement a collaborative network sys-
tem capable of deploying a set of ubiquitous fuzzy granules together with a autonomous 
composition framework based on semantic web theories offering a method to, dynami-
cally, search and compute the most suitable set of control objects in order to satisfying 
the user’s needs and preferences as required by AmI paradigm. In other words, the pro-
posed framework allows human beings to be considered as the core of a distributed en-
vironment capable of adapting itself in order to satisfy the main user’s requirements. 
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Abstract. To classify biomedical data is to find a mapping from patterns to a set of classes 
(e.g., disease states). Patterns are represented by features (e.g., metabolite concentrations) and 
class labels are assigned using a reference test (e.g., an expert’s analysis of “normality”). This 
process often suffers from three significant challenges: voluminous features; pattern paucity; 
and reference test imprecision. Three computational intelligence based techniques, which ex-
ploit the notion of information granulation, are presented to address these challenges. Fuzzy 
quantile encoding replaces a feature with its membership values in a fuzzy set collection de-
scribing the feature’s interquantile range. Class label adjustment compensates for reference test 
imprecision by adjusting design set class labels using a fuzzified similarity measure based on 
robust measures of class location and dispersion. Stochastic feature selection is a strategy where 
instances of classifiers are presented with feature regions sampled from an ad hoc cumulative 
distribution function. These techniques as well as their application to several classification 
problems in the biomedical domain will be discussed. 

Keywords: Biomedical Informatics, Biomedical Data Analysis, Information Granules, Pattern 
Analysis, Computational Intelligence, Feature Selection, Feature Encoding, Fuzzy Set Theory, 
Biomedical Data Classification, Artificial Neural Networks, Gold Standards Analysis, Perform-
ance Measures, Classifier Aggregation, Fuzzy Integration, Fuzzy Systems, Parallel Computing, 
Information Processing, Biomedical Applications, Granular Computing, Feature Extraction. 

1   Introduction 

Human centric computing has as its main objective the development of computing 
systems that intuitively adjust to the needs of the user in a seamlessly integrated fash-
ion [27]. This paradigm is relevant to a number of information processing fields in-
cluding pervasive and ubiquitous computing, ambient intelligence, sensor networks, 
semantic webs, e-health, e-commerce, wearable hardware, and, specific to our case, 
biomedical informatics. A typical requirement for human centric computing is a “se-
mantic” layer between fine, detailed numerical data and coarser, generalized abstrac-
tions. The semantic layer must perform a translation or transformation from data to 
abstractions in an efficient and effective manner as the data may need to be abstracted 
in different ways depending on the needs and objectives of a possibly diverse group 
of users. In the case of biomedical informatics, for instance, it is necessary to provide 
effective explanatory analysis while simultaneously finding succinct interpretable 
(biomedically meaningful) representations. Of course, the challenge is determining 
the underlying semantic translation that provides the optimal mapping from volumi-
nous data to human manageable, qualitative interpretations. One successful approach 
to deal with this issue is granular computing. 
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Granular computing [26] is an information processing paradigm that deals with 
complex information entities in a coherent and comprehensive fashion. Central to this 
theoretical perspective is the concept of information granules – conceptual entities 
possessing elements of similarity, functional adjacency, or spatial (or temporal) prox-
imity. Information granules are used to describe or interpret phenomena and carry out 
processing at the level that is most suitable for the designer of the system and most 
germane to its potential user. In this sense, one may regard granular computing as an 
important paradigm for the development of human-centric confirmatory (or explora-
tory) biomedical data analysis. As a rich theoretical perspective, granular computing 
subsumes and augments the well established disciplines of interval analysis, fuzzy 
sets, rough sets, and probability theory [24,25,50,51]. 

Granular computing research focuses on the construction of a coherent conceptual 
and methodological framework (and related algorithmic issues): granule quantifica-
tion and discretization; communication mechanisms between environments of differ-
ent information granularity levels; translation formalisms between granules grounded 
in different conceptual environments (e.g., possibility–probability transformations or 
fuzzy/crisp set approximations); granule construction (e.g., via clustering); and analy-
sis/synthesis of granular systems (e.g., granular classifiers). 

There are three types of granulation that are germane to biomedical information 
processing: discretization; conceptual; and clustering. Discretization involves granula-
tion at the level of feature values. This may be achieved by mapping (binning) a range 
of values for a biological feature (for example, the concentration of a metabolite) to an 
ordinal value or through rank ordering of feature values. As it is not feasible to exam-
ine the effects of all different discretization combinations for a particular biomedical 
data analysis problem [18], care must be exercised in designing a heuristic to find near-
optimal (or at least adequate) discretizations. Concept granulation involves the notion 
that different sets of features may give rise to interactions leading to different, possibly, 
conflicting, higher level conceptual formulations. Clustering involves feature aggrega-
tion or transformation to reduce the dimensionality of the original biomedical feature 
space. Many techniques, with varied relative advantages and disadvantages, fall under 
this category of granulation: multidimensional scaling, agglomerative techniques, prin-
cipal component analysis, fuzzy clustering, projection pursuit, independent component 
analysis, factor analysis, and so on [7,26,49]. For biomedical data analysis, it is impor-
tant that granulation techniques do not mask or diminish the information content pre-
sent in the original (biomedically relevant) feature space. 

1.1   Biomedicine and Vagueness 

Imprecision, incompleteness, and uncertainty are intrinsic to the practice of medicine. 
While this art of making decisions with inadequate information is often impervious to 
precise modes of analytical reasoning, it is regularly amenable to approximate ones 
[15], and, as a result, the field has become a fertile and active domain with which to 
exercise granular computing based modes of reasoning. Further, medical decision-
making is paradigmatic of general decision support systems in which principles, pro-
cedures, data, and knowledge are approximate; hence, successful methods applied to 
the medical domain may often be generalized across many application domains. 
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The medical diagnostic process involves an inference of a disease from a set of 
symptoms based on a body of medical knowledge about nosology1 and symptomatol-
ogy2. Unfortunately, vagueness is a hallmark of this process. A disease may manifest 
itself differently from one patient to the next as well as temporally for the same 
patient. Medical diagnosis is confounded by multiple diseases present in a particular 
patient or a specific symptom present in multiple disease states. A patient’s historical 
information may be incomplete, physical examinations may inadvertently ignore 
symptoms, laboratory test results may be imprecise, and the distinction between the 
states of normality and abnormality is not necessarily crisp. Important diagnostic in-
formation acquired from medical instrumentation such as magnetic resonance, infra-
red, or mass spectrometers is often complex and voluminous and their interpretation 
may vary from one expert to the next. Medical knowledge is often couched in neces-
sarily imprecise linguistic terminology. The proliferation of new medical knowledge, 
introduces uncertainty and inconsistencies during its assimilation into the current or-
thodoxy. For instance, the inclusion of new diagnostic procedures after they have 
been successfully assessed against the corresponding external reference test (this cur-
rently accepted diagnostic procedure is often referred to as the “gold standard”), 
which itself may be imprecise. 

1.2   Granular Computing and Computational Intelligence Strategy 

Classifying biomedical data involves finding a mapping (relationship) from patterns 
(e.g., data relating to some type of tissue or biofluid) to a set of classes (e.g., disease 
states). Patterns are represented by features (e.g., concentrations of biological com-
pounds) and class labels are assigned using a reference test (e.g., a medical expert’s 
analysis of tissue being “normal” or “abnormal”). This process often suffers from 
three significant challenges: the number of features in a pattern is high; the number of 
patterns is low; and the reference test may be unreliable. The first two challenges, 
known collectively as the “curse of dimensionality”, cause an inability to find robust, 
general solutions. This is often addressed by reducing, in some fashion, the number of 
features; however, a direct correspondence back to the original features is necessary 
for medical experts to make informed judgments about the mapping’s predictive 
power. While external reference tests may be well-established benchmarks, they are 
seldom perfectly accurate and sometimes improperly applied. Nevertheless, any strat-
egy that compensates for this reference test imprecision must ensure that the mapping 
is correctly validated against the benchmark. In this chapter we present three tech-
niques based upon computational intelligence and the paradigm of granular comput-
ing to deal with the biomedical data analysis challenges described above. 

Fuzzy quantile encoding is a classification preprocessing method that replaces a 
specific feature value for a pattern with its membership values in a collection of fuzzy 
sets describing the interquantile range of all values for that feature within the dataset. 
This method “normalizes” features to the unit interval, diminishes the impact of fea-
ture “outliers”, and improves the overall accuracy and computational performance of 
adaptive classifiers such as supervised feed-forward neural networks. 

                                                           
1 The branch of medical science dealing with the classification of diseases. 
2 The study of symptoms of disease and signs of pathogens for the purpose of diagnosis. 
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Gold standard class label adjustment is a set of mitigation strategies that compen-
sates for possible reference test imprecision by adjusting the design set class labels us-
ing a fuzzified similarity measure based on robust measures of location and dispersion 
of class medoids (robust centroids). These mitigation strategies fall into three catego-
ries: reassignment involves changing the class label of a design subset pattern, if it is 
found to be more “similar” to patterns from another class; surrogation involves using 
a new space of class labels for the design set (for instance, cluster analysis may indi-
cate that patterns in a particular class are distributed in such a way that they are better 
represented by two surrogate class labels); and gradation involves the fuzzy set notion 
of a pattern belonging to all classes to varying degrees (that is, moving from a crisp, 
Boolean class assignment to a fuzzy one). 

Stochastic feature selection is a parallelized classification strategy where many in-
stances of heterogeneous classifiers are presented with (possibly quadratically trans-
formed) feature regions of varying cardinality. Regions are stochastically sampled 
from an ad hoc cumulative distribution function that is iteratively updated based on a 
frequency histogram of features used by prior classifiers whose performance (accu-
racy) exceeds a pre-defined threshold. Fuzzy integration is used to aggregate the best 
classification outcomes. 

The schema presented in Figure 1 indicates the three main classification phases: 
pre-processing, fuzzy quantile encoding and gold standard class label adjustment;  
 

Classification Phase 

Feature Space Pre-processing Phase 

Feature Encoding 

Class Label Adjust-

Design Patterns 

Validation Patterns

Classifier 1 

Classifier 2 

Classifier 3 

Classifier p

...

Post-processing Phase 

Aggregated Mapping 

Classification Outcome
 

Fig. 1. Schema indicating the pre-/post-processing and classification phases 
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classification, stochastic feature selection coupled with a set of p heterogeneous clas-
sifiers; and, post-processing, mapping aggregation (prediction fusion). The figure also 
clearly indicates that only design patterns (those patterns randomly assigned to the 
design subset) are used in these phases to construct the aggregated classification map-
ping. In order to attenuate bias, classification performance (accuracy) is assessed 
using this mapping with only the validation patterns. 

Each of these classification techniques and strategies will be discussed in the sec-
tions that follow. A description of the architecture of the biomedical data analysis 
software, which implements several key aspects of this methodology, will be pro-
vided. Finally, the successful application of this methodology to several classification 
problems in the biomedical domain will be discussed. 

2   Biomedical Data Classification 

The latest biomedical spectroscopic modalities produce information rich but complex 
and voluminous data [23]. For instance, magnetic resonance (MR) spectroscopy, 
which exploits the interaction between an external homogenous magnetic field and a 
nucleus that possesses spin, is a reliable and versatile spectroscopic modality [10]. 
Coupled with robust multivariate discrimination methods, it is especially useful in the 
classification and interpretation of high-dimensional biomedical spectra of biofluids 
and tissues [42]. However, the sample to feature ratio of these data is typically low; 
the feature space dimensionality is O(103–104) while the sample size is O(10–100). 
This “curse of dimensionality” is a serious challenge for the classification of biomedi-
cal spectra: the excess degrees of freedom tend to cause overfitting, which affects the 
reliability of the chosen classifier. 

Advances in pattern recognition, computational intelligence, and granular comput-
ing, contribute ever more sophisticated models upon which to build ever more sophis-
ticated classifiers. Herein lies a major problem: if these models are highly non-linear, 
they may be unstable, if they are iterative, they may not converge, if they are prob-
abilistic, they may be based on underlying statistical assumptions that are often not 
true in real-world scenarios. Preprocessing may address these concerns: data may be 
transformed such that a non-linear model may be replaced by a linear one, the dimen-
sionality of the data may be reduced so that an iterative method may converge or may 
be substituted for an analytic one, or the data may be “normalized”, in some sense, 
such that the underlying statistical assumptions of a probabilistic model are realized. 
Years of investigations in biomedical data analysis have led to this author’s conjec-
ture that the 80/20 rule holds in the development of classification systems: 20% of a 
researcher’s effort should be spent on selecting and tuning a classifier; 80% should be 
spent on a thorough analysis of the data to simplify them, via pre-processing, prior to 
presentation to the classifier of choice. 

Here, we formally introduce some notation used throughout this chapter. Let 
X={(xk,ωk), k=1..N} be a set of N patterns, xk∈ℜn, with respective class labels, ωk∈Ω, 
Ω={1..c} that are randomly assigned to either a design subset, XD, comprising ND pat-
terns, or a validation subset, XV, comprising NV patterns (ND+NV=N). Classification 
involves finding a mapping (function approximation), f:XD→Ω, and then validating 
its effectiveness using XV, f:XV→Ω (if the predicted class label does not match the as-
signed class label then it is considered to be a misclassification). 
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Many classification architectures exist (granular classifiers, supervised artificial 
neural networks, multivariate statistical methods, evolutionary computation, hybrid 
strategies, and so on), with various advantages and disadvantages [7]. However, as 
mentioned above significant effort must be expended in the analysis of appropriate 
pre-processing strategies. For instance, feature selection is a typical preprocessing 
strategy for attenuating the effects of the curse of dimensionality by reducing the size 
of the input (feature) space. Feature selection involves finding a mapping, ƒ:X→X′, 
where X′⊆ℜm (m<<n) is the reduced feature space. Subsequently, classification in-
volves finding a mapping from the reduced feature space to the space of class labels, 
g: X′→Ω. The intent of this strategy is to select those features possessing significant 
discriminatory power. 

One aspect of biomedical data classification that is often glossed over is the reli-
able validation of the accuracy results generated by a classification schema. It is es-
sential that datasets be divided (randomly) into design and validation sets. Design pat-
terns may be used in the construction of a classification system but once this phase is 
complete, performance results must be based on the validation patterns. Given this 
necessary condition, how is the performance of a classification system to be measured 
given a c×c confusion matrix of desired versus actual class labels using the validation 
patterns? The conventional performance measure is the ratio of correctly classified 
patterns to the total number of patterns, PO 

1 ( 1, , )o V iii
i cP N n− == ∑ K                                               (1) 

where nij is the number of class i validation patterns predicted to belong to class j. An 
alternate performance measure is the average class-wise accuracy, PA 

( )1 ( , 1, , )A ii iji j
i j cP c n n− == ∑ ∑ K                                 (2) 

But neither Po nor PA take into account any agreement due to chance [8], PL 

( )2 ( , 1, , )L ij jii j j
i j cP N n n− == ∑ ∑ ∑ K                         (3) 

A more conservative performance measure is the κ score [9], a chance-corrected 
measure of agreement between the desired and actual class assignments 

( ) ( )1o L LP P Pκ = − −                                                 (4) 

If the agreement is due strictly to chance, κ=0. If it is greater than chance κ>0; κ=1 
indicates complete agreement. If the agreement is less than chance then κ<0 (floor 
depends upon the marginal distributions). A useful benchmark for agreement strength 
(confidence) is: poor (κ=0), slight (0.0<κ≤0.2), fair (0.2<κ≤0.4), moderate 
(0.4<κ≤0.6), substantial (0.6<κ≤0.8), and almost perfect (0.8<κ<1.0) [17]. Table 1 
shows the necessity of careful analysis of accuracy. It lists two confusion matrices 
with the same number of patterns per class and the same overall accuracy, PO=0.66. 
Using PA it is clearer that the accuracy is in fact worse in Table 1(ii), PA=0.33 than 
Table 1(i) PA=0.62. However, via κ, it is clear that the apparent accuracy in the second  
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Table 1. Two three-class confusion matrices with the same pattern distributions 

(i)C1 C2 C3 (ii)C1 C2 C3 N=300 

C1 15 10 5  3 24 3 N1=30 

C2 37 163 40  24 192 24 N2=240 

C3 2 8 20  3 24 3 N3=30 

Accuracy PO=0.66 PA=0.62 κ=0.29  PO=0.66 PA=0.33 κ=0.00  

 
confusion matrix is due strictly to chance, κ=0.00 versus κ=0.29. This is further evi-
denced by examining PL (0.52 versus 0.66). 

Here, we briefly present three classifiers (two neural networks and one statistical 
method) that have been used for biomedical data analysis described in the applica-
tions section. Neural networks [1] are self-adaptive, machine learning systems com-
posed of layers of processing elements, which are sets of inputs and weights com-
bined to generate outputs used by an adjacent layer. Supervised networks [38] require 
the desired class labels for each pattern so that they may be compared to the predicted 
label. Based on these comparisons, a learning strategy, used to make incremental 
changes to the weights, minimizes an error criterion. 

The multi-layer perceptron (MLP) [39] is a supervised feed-forward network, which 
has consistently demonstrated its effectiveness as a reliable nonlinear classification 
technique [3]. The transfer function γ (often the logistic function, γ(x)=(1+e–x)–1) is 
sigmoidal and the output of processing element j is xj=γ(∑iwjixi). In general, an MLP 
may be considered a non-linear regression system that performs a gradient descent 
search through the weight space, searching for minima. 

The probabilistic neural network (PNN) [43] uses patterns to construct probability 
density functions (pdf) to estimate the likelihood of a given pattern belonging to a 
class. When the class pdfs are known, a PNN correspond to a Bayesian classifier. 
Since true class pdfs are rarely known, they are usually approximated via a sampling 
histogram and Parzen estimators [22]. This involves the construction of unit area 
Gaussians centred at the values of the features for every design pattern. These Gaus-
sians are summed and scaled to produce a composite curve. As the number of design 
patterns increase, the composite curve asymptotically approaches the true pdf. [How-
ever, it is not possible to determine the number of patterns required to estimate the pdf 
to a specified accuracy.] 

Linear discriminant analysis (LDA) is a classification approach that determines 
linear decision boundaries between c classes while taking into account inter- and in-
tra-class variances [40]. If the error distributions for each class are the same, LDA 
constructs the optimal linear decision boundary between the classes. In real-world 
situations, this optimality is seldom achieved since different classes typically give rise 
to different distributions. LDA is a useful linear classifier; however, when appropriate 
data preprocessing is applied, in particular, dimensionality reduction techniques such 
as stochastic feature selection. LDA allocates a pattern, x, to class i for which the 
probability distribution, pi(x), is greatest. That is, x is allocated to class i, if 
qipi(x)>qjpj(x) (∀j≠i), where q are the prior (or proportional) probabilities. The dis-
criminant function is Li(x)=logqi+mi

TW–1(x–½mi) where mi is the mean for class i and 
W is the covariance matrix. 
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3   Stochastic Feature Selection 

Stochastic feature selection (SFS) is a feature selection/reduction pre-processing 
method that is tightly coupled to the classification phase. SFS may be used with any 
homogeneous or heterogeneous set of classifiers (e.g., LDA, MLP, PNN, or support 
vector machines [47]). Essentially, SFS iteratively presents, in a highly parallelized 
fashion, many feature regions (contiguous subsets of pattern features) to the set of 
classifiers retaining the best set of classifier/region pairs. Figure 2 lists several of the 
key parameters used in SFS, which we will reference in the following detailed de-
scription of SFS. 

After selecting the minimum and maximum number of feature regions and the 
minimum and maximum size (cardinality) for a feature region (cf. fields shown in 
Figure 2, “Min number of regions”, “Max number of regions”, “Min region length”, 
“Max region length”, respectively), the general procedure is: (i) randomly select a 
number of feature regions and, for each region, select a random size (satisfying the 
above constraints); (ii) prune the features not selected in (i) from the training and 
monitoring sets; (iii) use the training set and classifier to produce classification coef-
ficients; (iv) test these candidate coefficients with the monitoring set; (v) repeat steps 
(i)–(iv) until either the accuracy threshold (“Fitness threshold”) or maximum number 
of iterations (“Max number of iterations”) is exceeded; (vi) finally, use the best coef-
ficients found and assess their performance using the validation set. Note that the 
training and monitoring sets are composed of patterns exclusively from the design set. 
The validation patterns are only used in step (vi). 

SFS retains a list of the best classification results (“Number of results to re-
turn/keep”) based on the selected fitness function (“Order by”). The fitness function  
 

 

Fig. 2. Several parameters used for stochastic feature selection 
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may be PO, PA, or κ, which may be applied (“Based on”) exclusively to the training 
set or in conjunction with the monitoring set and internal cross-validation is also used 
(“N-Fold Validation”). Feature regions are normally disjoint but this can be relaxed 
(“Allow region overlap”). Moreover, transformations may be performed on regions 
(“Transform”) such as computing their average feature value, their variance, or other 
statistical moments. 

3.1   Feature Frequency Histogram 

The stochastic nature of this method is normally controlled by the feature frequency 
histogram (see Figure 3). During an SFS run, the performance of each classification 
task is assessed using the selected fitness function. If the fitness exceeds the histo-
gram fitness threshold (cf. Figure 2, “Histogram threshold”), which is set to some 
value less than the fitness threshold stopping criterion, the frequency histogram is in-
cremented at those feature indices corresponding to the regions used by the particular 
classification task. This histogram is then used to generate a cumulative distribution 
function (cdf). Now, when feature regions are selected for a new classification task, 
features are randomly selected using the current cdf. So, rather than each feature hav-
ing an equal likelihood of being selected for a new classification task, those features 
that were used in previous “successful” tasks have a greater likelihood of being cho-
sen. A temperature term, t∈[0,1], provides additional control over this process. If t=0, 
the cdf is used as described but, as t→1, the randomness becomes more uniform 
(when t=1 a strict uniform distribution is used). A useful interactive option is to pause 
SFS, select those regions that have been shown to be most discriminatory, and con-
tinue SFS so that subsequent regions will be selected only from these highly discrimi-
natory features. 

 

Fig. 3. A typical SFS feature frequency histogram 

3.2   Quadratic Combination of Features 

A useful SFS pre-processing option is to augment the original features with a quad-
ratic combination of feature regions. The intention here is that if the original feature 
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space possesses non-linear decision boundaries between classes, the new (quadratic) 
parameter space may possess more “linearized” decision boundaries. For instance, say 
we have a set of three-feature two-class points (patterns), x={x1,x2,x3}∈[0,1]3) 
bounded by the unit hypercube where one class of points, ω1, are those within the unit 
hypersphere (x1

2+x2
2+x3

2<1) and the other class, ω2, are those points outside 
(x1

2+x2
2+x3

2≥1). These patterns are obviously separated by a circular (non-linear) de-
cision boundary. A linear classification system using, for instance, linear discriminant 
analysis, would perform poorly (PO≈0.50) with such a dataset as no linear decision 
boundary (plane) can accurately delineate the two classes of points (patterns). How-
ever, if we create a new three-coordinate feature space by simply squaring the original 
features, the decision boundary (in this new space) would be a plane and a linear clas-
sifier will now perfectly separate the two classes of patterns. 

SFS has three categories of quadratic combinations with which to augment the 
original features (cf. the respective fields shown in Figure 2): (i) using the original 
feature region (“Category 0 Probability”); (ii) squaring the values for the selected fea-
ture region (“Category 1 Probability”); or (iii) using all pair-wise cross-products of 
features from two regions (“Category 2 Probability”). Given the potential combinato-
rial explosion with the third category, an upper limit for the region size may also be 
specified (“Category 2 Max Region Length”). The probabilities of selecting one of 
these quadratic combination categories must sum to 1.0. 

3.3   Parallelized Classification 

SFS takes full advantage of parallel computations using the Scopira Agent Library 
[6], a sophisticated message-passing library similar in functionality to MPI [41]. 
Given a high-performance computing cluster (e.g., a Linux Beowulf cluster) envi-
ronment, classification tasks are distributed to slave nodes for computation. A master 
node coordinates the distribution of tasks, updates the feature frequency histogram, 
and records intermediate classification performance results. To minimize inter-
process communication and maximize continuous computational loads on the proces-
sors, SFS efficiently “bundles” sets of classification tasks. Furthermore, while SFS 
exploits parallelism, it still remains a strictly deterministic system. That is, experi-
mental results are perfectly reproducible regardless of computational load, which is 
extremely important in the analysis, and interpretation of complex biomedical data. 

4   Fuzzy Quantile Encoding 

Zadeh’s seminal work on fuzzy set theory [51] may be applied to a classification pre-
processing technique that encodes the feature space prior to presentation to a classi-
fier. For instance, a feature may be intervalized across a collection of fuzzy sets 
thereby producing a list of degrees of membership for each of the fuzzy sets. In other 
words, given s fuzzy sets, F1, F2, …, Fs, and fi is the membership function for fuzzy 
set i, then the list of values for a single feature value x is {f1(x), f2(x), …, fs(x)}. Figure 
4 illustrates this intervalization approach using the membership functions for two 
fuzzy sets for feature i that overlap at 0.5 (see below). 
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Fuzzy quantile encoding (FQE) uses a feature’s quantile values as the consecutive 
intersections of triangular (or trapezoidal) fuzzy sets [36]. To derive the formula (a 
full derivation and complete discussion may be found in [30]), the following terms 
need to be defined. Let b, 0≤b≤1, be the boundary value at the intersection of the 
fuzzy sets. For simplicity, b may be held constant for each intersection. Let w be the 
width of the top of the trapezoid of the fuzzy sets. [If w=0, the fi’s are triangular fuzzy 
sets.] Let li and ri be the left and right boundary, respectively, of the fuzzy set Fi such 
that fi(li)=fi(ri)=b. Finally, let x be the original non-encoded input value. Then, 
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where ∨ and ∧ are the max and min operators, respectively (other norm/co-norm 
pairs, of course, are permissible). The latter two cases define a delta function when 
li=ri. These delta functions satisfy the criteria for a fuzzy set: it is monotonic and it 
maps onto the unit interval. Delta functions may arise when pattern feature values are 
significantly skewed (non-normal). It is important to note that, since fi(ri)=fi+1(li+1)=b, 
ri=li+1 (∀i=1..s–1). It should also be noted that the corresponding membership func-
tions are symmetric about the boundaries li and ri. When b≥0.5 and w=0 there exists a 
strict 1–1 correspondence between the encoding and the original feature value. When 
b<0.5 (or w>0), a 1–many correspondence exists. 

Quantiles are used to determine reasonable values for the fuzzy set boundaries li 
and ri. The Qth quantile of N feature values is a value such that Q% of the area under 
the relative frequency distribution for the feature values lies to the left of the Qth quan-
tile and (100–Q)% of the area under the distribution lies to its right. 

xi
l1

0.0

f1 f1b

r2l2=r1

1.0

0.5

 

Fig. 4. FQE membership functions using two fuzzy sets for feature i 

4.1   Interquartile Range 

Normally, the selected quantiles for FQE are the feature’s quartiles (see Figure 5 il-
lustration): the lower quartile (25th quantile), QL; the median (50th quantile), m; and 
the upper quartile (75th quantile), QU. By using the interquartile range for the feature j,  
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Fig. 5. FQE membership functions using a feature’s interquartile range 

uniform coverage is effected through the use of four overlapping fuzzy sets, Fj
1, F

j
2, 

Fj
3, F

j
4. To ensure a 1–1 mapping between the original feature values and the FQE 

values, w=0 and b=0. [However, the constraint on w can be relaxed (see sub-section 
below).] Specifically, the membership functions for feature j are 
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where αj and βj are the feature’s respective minimum and maximum values. A dimen-
sion-preserving variant to this fuzzy encoding approach [29] is to use a single mem-
bership function, fj(x), which corresponds to a piece-wise linear fuzzy set (w=0), to 
capture the information represented by the feature’s interquartile range 
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4.2   Dispersion Adjustment 

An effective extension to fuzzy quantile encoding involves adjusting the fuzzy sets in 
order to take into account a feature’s overall dispersion of values [28]. A robust tech-
nique to implement dispersion-adjusted FQE is to use a feature’s median of absolute 
deviations, τ 

(| ( ) |)
( )

m x m x
xτ

σ
−=                                                           (8) 

where m is the feature’s median and σ=0.6745 to ensure that, as the error distribution 
becomes more normal, τ converges to the standard deviation. While only 40% efficient 
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for normal data [13], τ is robust to outliers and long-tailed distributions. In other words, 
as the features becomes more contaminated (less normal), the relative efficiency of τ 
becomes greater than the standard deviation. 

In order to take into account a feature’s overall dispersion, the constraint on w 
needs to be relaxed; for a given pattern feature, let w=τ. Using (8), (5) can easily be 
modified to now permit the use of trapezoidal fuzzy sets. As the dispersion increases 
(τ becomes larger), the width of the trapezoid increases and, as a result, more original 
feature values will be encoded to 1. As the dispersion decreases, the trapezoid ap-
proaches a triangular fuzzy set, so fewer values will be encoded to 1. 

4.3   FQE Properties 

FQE may be easily integrated into any classification system. The input layer (feature 
space) will have s×n coordinates where n is the dimensionality of the original feature 
space and s is the number of fuzzy sets used for encoding (s=4 for interquartile encod-
ing). FQE exhibits several useful properties. 

First, the feature space is “normalized”: that is, for any given pattern feature, x, its 
corresponding membership functions map feature values onto the unit interval, 
fi(x)∈[0,1] (∀i=1..s). This is particularly useful during the classification process since 
scaled biomedical data stabilize the effects of extreme variance disparities across 
pattern features [38]. Without scaled data, features with large variances will have a 
tendency to predominate, during the training phase, over those features with small 
variances even though the latter features may be highly discriminatory. 

Another beneficial property is that, during the construction of the discriminating 
class decision boundaries, feature values that may be considered as outliers impact 
less severely upon classifiers that employ any type of iterative adjustments to its error 
function (e.g., artificial neural networks such as MLP). This does not mean that pat-
terns with features that are outliers are removed during the design or validation phases 
of the classification process, however. FQE values will approach zero as values move 
outside a feature’s interquartile range. In the case of MLP, where its hidden layer 
processing elements are summing products of weights and input values this is impor-
tant since, if the FQE values of an outlier are all zero or near zero, those values will 
contribute very little to the learning process (local error adjustments) regardless of the 
processing elements weights. This is an extremely useful property if the original fea-
ture value is indeed an outlier (nevertheless, if it is not an outlier it still does contrib-
ute to a degree). Conversely, values that are within the feature’s interquartile range 
will contribute strongly to the iterative learning process. 

Another purpose behind FQE intervalization, as with any type of intervalization, is 
to reduce the effects of noise in the data as well as to transform the problem in such a 
way that a non-linear regression model such as MLP can provide better (more accu-
rate) solutions. 

Moreover, a FQE based classifier projects the original n-dimensional pattern fea-
ture space onto a new 4n-dimensional parameter space of membership values. This 
projection often has the positive effect of “linearizing”, to some degree, the discrimi-
nation problem (that is, moving from non-linear to linear class decision boundaries).  
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Further, since many FQE values are zero (or near zero), artificial neural network 
processing elements that use these encoded values as input terms will produce output 
values that are also at or near zero regardless of the corresponding processing element 
weights. Subsequently, these processing elements tend to contribute little to the over-
all classification error (and, derivatively, to the overall learning) of the FQE-based ar-
tificial neural network so resultant errors propagated back through the neural network 
are not caused (to any great extent) by these values. These simplifications, caused by 
the projection, often significantly reduce the training phase convergence time for su-
pervised artificial neural networks [29]. 

5   Fuzzy Class Label Adjustment 

Gold standard fuzzy class label adjustment (GSA) compensates for the possible im-
precision of a well-established but tarnished gold standard (external reference test) by 
adjusting, if necessary, the class labels of the design set patterns. The procedure be-
gins with finding the centroids of each class using their respective design set patterns. 
Distances are computed between each design pattern and each class centroid. A fuzzy 
set theoretic membership function uses these distances to adjust the class labels; in 
general, the further a pattern is from a class centroid, the lower its membership value 
for that class. However, the class label for a pattern will only be adjusted if it is suffi-
ciently distant from the centroid of its original class and sufficiently near another 
class’ centroid. Note that any adjustments made to the gold standard occur only for 
patterns in the design set; for verification purposes, the class labels for the validation 
set patterns are never altered. Hence, the efficacy of this method is always measured 
against the original gold standard (regardless of its possible imprecision). 

Distances and dispersions are measured using robust multivariate statistics since 
they are much more resistant to effects caused by extreme feature values than para-
metric statistics. More specifically, a statistical estimate is robust if it is insensitive to 
slight deviations from its requisite model assumptions (often normal assumptions) 
about the underlying feature distribution [13]. This is crucial when dealing with out-
liers, patterns that do not follow the distribution of the majority of the data. 

Although it is a univariate estimator, τ(x) (see (8)) may be extended to the multi-
variate case by computing a vector, τl=[τl

1..τl
n], which is a feature-wise measure of 

dispersion for the class l patterns. First, let Xl={(xk,l), k=1..Nl}⊂X be the set of all pat-
terns belonging to class l (Nl is the number of class l patterns and xk=[xk1..xkn]). Also, 
let zl

j=[xij] (i=1..Nl) be the respective values of feature j for the class l patterns. Now, 
τl

j=m|zl
j–m(zl

j)|/0.6745. The distance between each pattern and each of the class cen-
troids may now be determined. The weighted distance, dl, of xk from the class l cen-
troid (more correctly its medoid) may be defined as 
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This distance measure is incorporated into the original gold standard using mem-
bership functions; the class l membership function for a pattern, xk, is defined as 
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where p>1 and q>0 describe the shape and amount of fuzziness for the membership 
function (0≤fl(xk)≤1). Figure 6(i) plots (10) for different values of p with a constant q. 
Note that f is sigmoidal and that as p increases, f approaches a step function. The 
point, at which the membership function is 0.5, occurs when the distance equals q. 
Figure 6(ii) plots f for different values of q with a constant p. As q increases, member-
ship values will remain high even at great distances. 
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Fig. 6. Plot of f versus distance (d) between a pattern and a class medoid with (i) varying p 
(q=2) and (ii) varying q (p=2) 

Finally, we use contrast intensification, yl, on the class l membership function to 
increase membership values above 0.5 and reduce those values that are below this 
point [51]. Using GSA, we may now recode the class label for xk from the scalar ωk to 
the vector [yi] (i=1..c). 

( )
( )( )

( )
( )

2

2

2 0 0.5
( )

0.5 1.01 2 1

l k l k
l k

l kl k

f fif
y

if ff

⎧ ≤ ≤⎪= ⎨ ≤ ≤− −⎪⎩

x x
x

xx
    (11) 

If xk was originally assigned to, say class l, by the gold standard, it may be the case 
that it was, in fact, closest to some other class medoid, say class o. In this case, 
yo(xk)>yl(xk) and, hence, the original gold standard assignment will no longer pre-
dominate. If this is undesirable (or unacceptable) for the particular problem domain, 
the situation may be rectified by constraining the membership functions expressed by 
(11) so that fl(xk)=fo(xk)+ε where ε is a small positive constant. Now, a pattern will 
never be reassigned to a class different from the one to which it was originally as-
signed. However, if a pattern is sufficiently near another class medoid then the corre-
sponding class membership value for that pattern will not be zero. In general, the fur-
ther xk is from a class medoid, the lower its membership value for that class. While 
the original class label assigned by the gold standard is crisp (xk belongs to one and 
only one class with degree 1), the (soft) class label assigned by GSA (using (11)) is 
fuzzy (x belongs to all classes to varying degrees). 
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6   Classifier Aggregation 

The fuzzy measure [44] is a set function used to express the grade of fuzziness. Say, X 
is a non-empty universe of discourse and B, is a σ-field of X [14]. Given the sets, A1 and 
A2, B is a family of subsets of X if: (i) ∅∈B; (ii) X∈B; (iii) if A1∈B then ¬A1∈B; and, 
(iv) B is closed under set union (i.e., if A1∈B and A2∈B then A1∪A2∈B)]. The set func-
tion, g:B→[0,1], is a fuzzy measure over X if three axioms hold: (i) g(∅)=0 and g(X)=1 
(boundary conditions ensure that regardless of the degree of evidence an element must 
not belong to the null set and it must belong to the universe of discourse); (ii) if A1,A2∈B 
and A1⊂A2 then g(A1)≤g(A2) (evidence of an element’s membership in a set must always 
be at least as great as that in any of the set’s subsets); and, (iii) if A1∈B and A1 is mono-
tone increasing then lim g(A1)=g(lim A1) (consistency constraint). A fuzzy measure 
commonly found in the literature is the Sugeno fuzzy measure [45], gλ, which satisfies 
the additional constraint that g(A1∪A2)=g(A1)+g(A2)+λg(A1)g(A2), where λ>–1 and 
A1∩A2=∅. 

The fuzzy integral [11] is a nonlinear aggregation scheme for combining multiple 
sources of information to arrive at a “confidence value” for a decision (hypothesis). 
Let us define a mapping h:X→[0,1] where a finite ordered X={x1…xn} is of interest. 
Typical examples are the Sugeno, Su(x), Choquet, Ch(x), and Shilkret, Sh(x), integrals 
[5,19,20]. The fuzzy integrals of h over X with respect to gλ are defined as: 
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i i
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                            (12) 

where Xi={x1, x2,…,xi} and h(x0)=0. While several possible interpretations exist for 
the conceptual meaning of a fuzzy integral [46,48], in this discussion it is considered 
to mean the maximum degree of belief (for a prediction or classification outcome) ob-
tained by the fusion (aggregation) of several sources of objective evidence. 

Integrating the results from multiple classifiers involves using their respective con-
fusion matrices to compute the fuzzy densities for each of the classifiers in order to 
determine the fuzzy measures used in (12). To this end, the technique described in [4] 
is followed primarily and is briefly described here. Let Rk=(nkij) be the c×c confusion 
matrix for classifier, k, where nkii is the number of class i patterns that were correctly 
classified by k and nkij (i≠j) is the number of class i patterns that were incorrectly as-
signed to class j by k. The preliminary fuzzy density of class i with respect to classi-
fier k, 0<g*

ki<1, is 

*

1

kii
ki c

kijj

n
g

n
=

=
∑

                                                     (13) 

These densities must be adjusted to take into account the frequencies of correct and 
incorrect classifications within and across the set of classifiers. This leads to the fol-
lowing expressions 
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where ε is a small positive constant. The corrected fuzzy density, gki, may now be 
computed as 

( ) ( )1 2* w w

ki ki kir kis kir kisg g δ δ γ γ= × × × × × ×L L  (15) 

where w1 and w2, (w1+w2=1) are weighting factors and r and s are the indices of those 
pattern classes for which classifier k produced the highest classification accuracy. The 
first adjustment, δ∈(0,1], reflects the pattern misclassifications within the confusion 
matrix for k. As the pattern misclassifications increase, δ→0 (the third condition in 
(14) represents the degenerate case when more patterns of a particular class are mis-
classified than correctly classified). The second adjustment, γ∈(0,1], reflects the 
pattern misclassifications across all classifiers with respect to k. As the pattern mis-
classifications increase, γ→0 (the third condition in (14) is the degenerate case when 
no patterns of a particular class are correctly classified). 

Finally, the Sugeno, Choquet, and Shilkret integrals can exploit several variants of 
h including: hc(x), contrast intensification as defined by (11), and hp(x)=xp (p>0), 
where x∈[0,1] is the classifier’s predicted class label assignment. When 0<x<1, h(x) 
will act to dilate membership values, while concentration will occur when x>1. In or-
der to constrain the number of parameters, the standard fuzzy set based definitions for 
concentration (p=2) and dilation (p=0.5) are normally used. In total, four variants are 
typical candidates for the integrals: hc(x), h0.5(x), h2(x), and h1(x) (identity). Finally, 
using equations (12)–(15), the actual class label output from the set of pattern classifi-
ers is the one with the highest integrated value. 

7   Experiments, Analysis and Results 

In this concluding section, we present a series of experiments, which employed the clas-
sification approaches described above, relating to the interpretation, analysis, and classi-
fication of several biomedical datasets. A summary of the results, listed in Table 2, may 
be found at the end of this section. 

7.1   FQE 

In [34], MR spectra were obtained (360 MHz) for 25 thyroid biopsies: 16 papillary 
carcinomas and 9 normal. Two spectral regions were analyzed: the main lipid CH2 
and CH3 peaks, 0.64–2.59 ppm; and the choline-like species, 2.59–3.41 ppm. Analy-
sis was based on 170 features for the choline region and 400 features for the lipid 
region. As a benchmark, the inputs to an MLP classifier were the 10 principal compo-
nents of the dataset that accounted for 97% of the cumulative variance [37]. FQE was 
used with 680 (choline) and 1600 (lipid) membership values. 
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FQE significantly outperformed the benchmark: PO=0.92 versus PO=0.64 (cho-
line); PO=0.88 versus PO=0.80 (lipid). Of particular interest is the significant reduc-
tion in convergence rate for the FQE MLP, O(103) versus O(106) for the benchmark. 

In [30], data were analyzed pertaining to tonsillectomy/adenoidectomy patients with 
predispositions to excessive bleeding. These blood abnormalities include hemophilia, a 
hereditary hemorrhagic diathesis due to coagulation cofactor FVIII deficiency; von 
Willebrand’s disease, a diathesis associated with von Willebrand protein antigen factor 
deficiencies or in the activity measured as the restocetin cofactor; and thrombopathy, a 
platelet function defect measured as the occurrence of at least two abnormal platelet 
aggregation [21]. Data were collected from the patient database associated with a he-
matology expert system containing information relating to coagulation laboratory test 
results and patients responses to a bleeding tendency questionnaire. 

Two major experiments were conducted. In the first, 96 patient records (patterns) 
were assigned to one of three disease states (class labels): 42 hemophilia (H), 30 
platelet function defect (P), and 24 von Willebrand’s disease (V). LDA, MLP, and 
FQE (with MLP) classifiers were used in the analysis: respectively, κ=0.55 (moderate 
agreement), κ=0.71 (substantial agreement), and κ=0.79 (substantial agreement). 
MLP and FQE also had consistently better classification results across all three dis-
ease states with particularly strong improvements with H and V. While FQE outper-
formed MLP with respect to correctly classifying P (80% versus 70%), it under per-
formed with respect to V (83% versus 88%). However, FQE was clearly superior in 
classifying H; 93% versus 81%. FQE, on average, converged 4.2 times faster during 
the training phase than MLP. 

In the second set of experiments, a different gold standard was used (derived from 
the expert system) to assign 191 patient records to either a normal (N) or abnormal 
(A) class. The records were randomly assigned to a design set (60 N and 60 A) or a 
validation set (42 N and 29 A). The respective κ scores for LDA, MLP, and FQE were 
0.16 (slight agreement), 0.39 (fair agreement), and 0.46 (moderate agreement). 

In [32], dispersion-adjusted FQE (DFQ) MLP classifiers were used in the analysis 
and classification of three biomedical datasets found in the Machine Learning Reposi-
tory (http://mlearn.ics.uci.edu/MLSummary.html) at the University of California, 
Irvine. The patterns in these three datasets belong to one of two possible classes: “tar-
get”, where the pattern belongs to an abnormal or disease state; and, “control”, where 
the pattern belongs to a normal or control state. 

In the first case, the heart data [16] is a description of diagnoses relating to N=267 
cardiac single proton emission computed tomography images [10]. The n=44 features 
relate to frequency information across 22 different regions of interest and alternate be-
tween images taken while the patient was at rest or during a controlled stress condition 
(target=55, control=22). The overall classification accuracy using the original features 
was PO=0.80 while the FQE accuracy was PO=0.92 and the DFQ accuracy was 
PO=0.95 (a respective 15% and 19% increase in performance). DFQ decreased the 
false positive error rate from 10% to 7% with an overall increase in accuracy of 3%. 

In the second case, each of the N=155 patterns (target=32, control=123) within the 
hepatitis dataset [2] is composed of 19 features: 6 nominal features (age, bilirubin, al-
kaline phosphate, SGOT, albumin, and protime) and 13 binary features (sex, steroids, 
antivirals, fatigue, malaise, anorexia, large liver, firm liver, palpable spleen, spiders,  
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ascites, varices, and histology). The overall accuracy using the original features was 
PO=0.88 while the FQE accuracy was PO=0.91 and the DFQ accuracy was PO=0.94 (a 
respective 3% and 7% increase in classifier performance). With FQE, this improve-
ment was gained exclusively by a reduction in the false negative error rate (from 37% 
to 22%). In the DFQ case, a greater reduction in the false negative error rate (19%) was 
achieved with an overall increase in accuracy of 3% compared to the FQE encoding. 

In the third case, the lung cancer data [12], which comprises 56 nominal features 
taking on integer values (0–3), represents three different types of pathological lung 
cancers. Due to the paucity of patterns (N=32) in this dataset, and in the interest of 
simplifying the comparative analysis with the other two biomedical datasets, the two 
classes with the fewest patterns are merged into one pathological (target) case (con-
trol=13, target=19). The overall classification accuracy using the original features was 
PO=0.63 while the FQE accuracy was PO=0.78 and the DFQ accuracy was PO=0.84 (a 
respective 23% and 33% increase in classifier performance). DFQ achieved an 8% 
improvement in classification performance compared to FQE. 

7.2   GSA 

In [31], GSA was used in the analysis of a biomedical dataset composed of 206 1H 
MR spectra (360 MHz, 37°) consisting of 95 meningiomas (M), 74 astrocytomas (A), 
and 37 control samples of non-tumorous brain tissue from patients with epilepsy (E). 
The biomedical spectra (n=550 in the region of 0.3–4.0 ppm) were randomly assigned 
to either a design (ND=80, with 29 M, 31 A, and 20 E) or a validation set (NV=126). 
Applying GSA to the gold standard (provided by a pathologist) improved the overall 
diagnostic (classification) performance of an MLP classifier by 13%: κ=0.80 versus 
κ=0.71 using the original design class labels. 

Although none of the spectra (patterns) in the validation set was reclassified, two 
validation spectra were flagged as outliers (two M spectra were flagged as A), and 
these spectra were indeed misclassified as A. Classification errors were also more 
conservative. Using the original class labels, 5 E’s (control) were classified as tumors 
(M or A) and 4 tumors as control. However, in the case of GSA, only 1 E was mis-
classified as a tumor while only 3 tumors were misclassified as control. 

7.3   SFS 

In [33], SFS was used in the analysis and classification of N=444 1H MR spectra (360 
MHz at 37°C) of isolates of five different species of Candida yeast (n=1500): 104 al-
bicans (A), 93 parapsilosis (P), 81 krusei (K), 75 tropicalis (T), and 91 glabrata (G). 
The design set comprised 50 randomly selected patterns from each class. The feature 
region cardinality range was 7–1231. 

The mean accuracy (for the 10,000 MLP processes) was PO=0.83 for the validation 
set. The best accuracy score was PO=0.95 for an MLP using only 16 of the 1500 fea-
tures (~1%). Interestingly, the top four accuracy scores were achieved by MLPs that 
used less than 20 features. 

In [29], SFS was used in the classification of two biomedical datasets. In the first 
case, 186 infrared spectra of synovial joint fluid were assigned to one of three disease  
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states: 72 rheumatoid arthritis (R), 72 osteo-arthritis (O), and 42 control samples (C). 
The spectra (n=2801) cover the wavelength range 1000–3700 cm-1. The pattern de-
sign set contained 28 randomly selected spectra from each class. The feature region 
cardinality range was 7–192 and the mean κ score was 0.79 for the 20,000 MLP and 
PNN classification processes. The best validation κ score was 0.86±0.02 (almost per-
fect agreement) using the MLP classifier with only 20 of the 2801 original features 
(<1%). The best validation κ score for PNN was 0.84±0.02 (almost perfect agree-
ment) using 25 of the original features (<1%). Using the original 2801 spectral fea-
tures (i.e., no stochastic feature selection), the PNN benchmark produced a validation 
set κ score of only 0.51 (moderate agreement), while the MLP benchmark κ score was 
only 0.29 (fair agreement). 

In the second case, this is likely due to over-fitting of the design (training) data as 
is evidenced by the high κ score of 0.88. Due to the inversion of the large covariance 
matrix, LDA produced spurious results. Next, the original infrared spectra were aver-
aged down to 100 features. All three benchmarks performed well (substantial 
agreement): PNN, κ=0.69; MLP, κ=0.74; LDA, κ=0.69. While slightly worse than the 
average of all 10000 PNN (and MLP) runs using SFS, they were appreciably worse 
than the best runs. In the second case, 227 MR spectra of a biological fluid discretized 
(n=512) were assigned to one of three classes: 108 normal (N), 54 of borderline char-
acter (B), and 65 abnormal (A). The design set contained 36 randomly selected sam-
ples from each class. 

The feature region cardinality range was 4–212. For the 10000 MLP classification 
processes, the mean κ score was 0.42 for the validation set. For the 10000 PNN 
classification processes, the mean κ score was 0.48 for the validation set. The best 
validation κ score was 0.54±0.02 (moderate agreement) using MLP and 83 of the 512 
original features (16%). The best validation κ score for PNN was 0.48±0.02 (moder-
ate agreement) using 79 of the original features (15%). Using the original 512 spectral 
features (again no feature selection), all benchmarks performed poorly (only fair 
agreement): PNN, κ=0.38; MLP, κ=0.25; LDA, κ=0.24. As with the infrared spectra, 
the MLP likely over-fitted the design data (κ=0.88). Finally, the original dataset was 
averaged down to 128 features. All benchmarks had moderate levels of agreement: 
PNN, κ=0.47; MLP, κ=0.46; LDA, κ=0.43. 

7.4   Classifier Aggregation 

In [35], fuzzy aggregation was used in conjunction with SFS in the analysis and clas-
sification of N=191 MR spectra (n=3380) of a biofluid that were assigned to one of 
two classes by a medical expert: 116 normal and 75 abnormal. The design set com-
prised 58 randomly selected patterns from each class. Three transformed dataset 
variants were generated: first derivative; rank ordered; and first derivative with rank 
ordering. The best validation set result was PO=0.79 using the fuzzy aggregation ap-
proach with rank ordered transformed features, which is an 8% improvement over the 
corresponding best individual (PNN) classifier. Further, the aggregated approach out-
performed the corresponding best individual classifiers across all variants: respec-
tively (PO), 0.76/0.74, 0.74/0.62, 0.79/0.73, 0.75/0.73. 
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Table 2. Summary of biomedical data classification results 

Description N n P Method Benchmark

FQE: MRS Thyroid I  25  170 PO 0.92 0.64 

FQE: MRS Thyroid II  25  400 PO 0.88 0.80 

FQE: Hematology I  96  11 κ 0.79 0.71 

FQE: Hematology II  191  9 κ 0.46 0.39 

DFQ: Heart  267  44 PO 0.95 0.92 

DFQ: Hepatitis  155  19 PO 0.94 0.91 

DFQ: Lung Cancer  32  56 PO 0.84 0.78 

GSA: MRS Brain  206  550 κ 0.80 0.71 

SFS: MRS Candida  444 1500 PO 0.95 0.83 

SFS: Synovial Fluid  186 2801 κ 0.86 0.74 

SFS: MRS Biofluid  227  512 κ 0.54 0.47 

Fusion: MRS Biofluid  191 3380 PO 0.79 0.73 

Each entry lists the biomedical classification method examined (as described in this 
section), the dataset used in the evaluation, the number of patterns (N), the number of 
features (n), the performance measure (P), the method’s overall accuracy, and the accu-
racy for the best benchmark. 

8   Conclusion 

The analysis, interpretation, and classification of biomedical data are replete with pat-
tern recognition challenges stemming from the curse of dimensionality and tarnished 
gold standards. This chapter presents a computational intelligence based methodol-
ogy, which remediates these challenges, exploiting strategies and methods inspired by 
the granular computing paradigm. Stochastic feature selection, gold standard class 
label adjustment, classifier aggregation, and fuzzy quantile encoding may be used 
singly or in concert within a classification system. As pre- and post-processing 
approaches, they may easily be incorporated into investigators’ classifiers of choice. 
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Abstract. Analysis of gene interaction networks is crucial for understanding fundamental cellu-
lar processes involving growth, development, hormone secretion and cellular communication. 
A gene interaction network comprises of proteins and genes binding to each other, and acting as 
a complex input-output system for controlling cellular functions. A small set of genes take part 
in a cellular process of interest, while a single gene may be involved in more than one cellular 
process at the same time. Soft computing is a consortium of methodologies that works synergis-
tically and provides flexible information processing capability for handling real life ambiguous 
situations. The tools include fuzzy sets, evolutionary computing, neurocomputing, and their hy-
bridizations. We discuss some existing literature pertaining to the use of soft computing and 
other classical methodologies in the reverse engineering of gene interaction networks. As a case 
study we describe here a soft computing based strategy for biclustering and the use of rank cor-
relation, for extracting rank correlated gene interaction sub-networks from microarray data. Ex-
perimental results on time series gene expression data from Yeast were biologically validated 
based on standard databases and information from literature. 

Keywords: Soft Computing, bioinformatics, multi-objective evolutionary biclustering, tran-
scriptional regulatory network extraction, gene expression profile, rank correlation, gene inter-
action network. 

1   Introduction 

With the current development in microarray technology (gene chips), today research-
ers in Bioinformatics have, at their disposal, expression data of thousand of genes of 
different organisms under various experimental conditions. This had led to complete-
genome expression profiling of several organisms. The latest Affymetrix gene chips 
contain 750,000 unique 25-mer oligonucleotide features constituting more than 
28,000 mouse gene-level probe sets. This DNA microarray technology forms an in-
dispensable tool for exploring transcriptional regulatory networks from the system 
level and is useful when one dwells into the cellular environment to investigate vari-
ous complex interactions [1]. Biological networks connect genes, gene products (in 
the form of protein complexes) or their groups to one another. A network of co-
regulated genes may form gene clusters that can encode proteins, which interact 
amongst themselves and take part in common biological processes. Clustering of gene 
expression profiles have been employed to identify co-expressed groups of genes [2] 
as well as to extract gene interaction/gene regulatory networks [3].  

Sharing of the regulatory mechanism amongst genes, in an organism, is predomi-
nantly responsible for their co-expression. Genes with similar expression profiles are 
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very likely to be regulators of one another or be regulated by some other common 
parent gene [4]. Often, it is noted that during few conditions a small set of genes are 
co-regulated and co-expressed, their behavior being almost independent for rest of the 
conditions. The genes share local rather than global similar patterns in their gene ex-
pression profiles. Generally, group of genes are identified in the form of biclusters us-
ing continuous columns biclustering because biological processes start and terminate 
over a continuous interval of time [5, 6]. The aim of biclustering is to bring out such 
local structure inherent in the gene expression data matrix. It refers to the clustering of 
both rows (genes) and columns (conditions) of a data matrix (gene expression matrix), 
simultaneously, during knowledge discovery about local patterns from microarray 
data [7]. 

The genome, comprising the set of all genes in an organism along with their ex-
pressions values, is considered to be a switching network, with its vertices denoting 
the proteins or molecules and the directed edges representing their various interac-
tions and inter-dependence. Such networks relate genes, gene products or their groups 
(like protein complexes or protein families) to each other. A directed edge (or arc) 
connects one node (or vertex) to another. Consider the graph depicted in Fig. 1. 
Mathematically a network can be expressed as a graph },{ EVG = , where V  

represents the set of N  vertices },...,,{ 21 NVVV  while E  represents the set of 

edges that connect two elements in V . 

 

Fig. 1. A sample gene interaction network with nine nodes and ten edges 

In this chapter we provide an overview on the extraction of gene interaction networks 
followed by a study involving a rank correlation-based multi-objective evolutionary 
technique for the extraction of simple gene interaction sub-networks from microarray 
data. Use of soft computing, with biclustering, is described in this connection. Pre-
processing, involving the discretization of the rank correlation matrix (using quantile 
partitioning) and subsequent elimination of weak correlation links, is employed to re-
tain strongly rank correlated (positive or negative) gene interaction pairs. Experimen-
tal results on Yeast data are validated in terms of a gene ontology (GO) study. The rest 
of the chapter is organized as follows. Section 2 introduces the basics of biological 
networks and gene interaction networks. Section 3 describes some classical reverse 
engineering approaches for generating gene interaction networks using time series 
gene expression data. In Section 4, the existing literature pertaining to the use of soft 
computing in the extraction of gene interaction networks is compiled. As a case study, 
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the use of multi-objective evolutionary biclustering and rank correlation for the ex-
traction of Gene interaction sub-network is described in Section 5. The effectiveness 
of the discussed methodology is also demonstrated therein, using time-series gene ex-
pression data from Yeast. The article is concluded in Section 6. 

2   Biological Networks 

Biological pathways can be conveniently represented as networks and broadly classi-
fied as metabolic pathways, signal transduction pathways and gene interaction net-
works. The repository of information about various biological pathway data is avail-
able in some databases like BioCyc1 [8], EcoCyc [9], What Is There (WIT) system2, 
RegulonDB [10], etc. GO [11] and the KEGG Orthology [12] promote the use of con-
trolled vocabulary to facilitate computational analysis. These databases can be inte-
grated with various computational methods to get an insight into complex biological 
functions. They can help in (i) reconstructing biochemical pathways from the com-
plete genome sequence, and (ii) predicting gene interaction networks. The proper  
understanding of gene interaction networks is essential for the understanding of fun-
damental cellular processes involving growth and decay, development, secretion of 
hormones, cellular communication, etc. During transcription of gene expression spe-
cific groups of genes may be made active by certain signals, which on activation, may 
regulate similar biological processes. The genes may also be regulators of each 
other’s transcription. 

The metabolic pathways facilitate mass generation, energy production, information 
transfer and cell-fate specification, in a cell or micro-organism; they are seamlessly 
integrated through a complex network of cellular constituents and reactions. Such a 
metabolic network consists of nodes, i.e., substrates (genes or proteins), which are in-
terconnected through links, i.e., metabolic reactions in which enzymes provide the 
catalytic scaffolds [13]. 

Signal transduction is the process by which a cell converts one kind of signal or 
stimulus into another by a series of steps, causing functional changes inside the cell. 
The signal may pass from one cell to another (Hormone-Receptor concept), from ex-
tracellular environment to inside the cell (through plasma membrane) or from one 
compartment inside the cell to another compartment (i.e., from cytoplasm to nucleus). 
A signal transduction pathway can be considered as a biological network of bio-
molecules connected by various kinds of interactions (protein-protein interactions, 
protein-ion interactions, etc.) among them. 

Analyzing various types of messenger RNAs (mRNAs) produced by a cell and 
quantifying them, one can determine the gene or set of genes that get transcribed un-
der particular experimental conditions. A cell dynamically responds to both environ-
mental stimuli and its own changing requirements in a highly complicated and tightly 
regulated process. This process helps one to monitor the required increase or decrease 
of the expression levels of particular genes. The control and regulation of gene ex-
pression could be caused by various external factors, occurring at different stages of 

                                                           
1 http://www.biocyc.org/ 
2 http://wit.integratedgenomics.com/ 
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the cellular information flow from DNA, RNA to protein, like in mRNA splicing, 
translational control and/or post-translational control. Nevertheless, the one involving 
the initiation of transcription has been most widely studied in literature [14, 15, 16]. 

A gene regulatory network (GRN) determines which subset of genes is expressed, 
up to what level, and in response to what conditions of the cellular environment. 
While the metabolic networks form the basis for the net accumulation of bio-
molecules in living organisms, the regulatory networks modulate their action – 
thereby leading to physiological and morphological changes. However, one should 
note that any apparent similarity of expression profiles between two genes may not 
always mean that they may regulate each other but may signify (i) indirect co-
regulation by other genes, (ii) direct regulation of one gene by the other, or (iii) a 
mere coincidence involving no causal relationship. An integration of additional bio-
logically relevant knowledge may, therefore, provide constraints on suitable identifi-
cation of groups of co-regulated genes. 

3   Reverse Engineering of Genetic Interaction Networks 

Reconstruction of interactions in gene regulatory networks, from gene expression data, 
is termed reverse engineering. Some of the techniques, typically used for the purpose, 
include the generalized Bayesian networks [17, 18], Boolean networks [19, 20, 21, 22], 
linear and non-linear ordinary differential equations (ODEs) [14, 23, 24]. Boolean 
networks are binary models with genes taking on values one (or zero) to represent ac-
tive (or inactive) states [22]. However these ignore the effect of genes at intermediate 
levels, and result in information loss during discretization. Bayesian networks are 
graph models that estimate complicated multivariate joint probability distributions 
through local probabilities [17]. Reverse engineering with Bayesian learning [18] en-
abled the generation of gene regulatory interactions from simulated gene expression 
data. Dynamic Bayesian networks (DBNs) were subsequently used for inferring the re-
lationship amongst genes from time-series gene expression data [25, 26]. 

Gene regulatory relationships were extracted for cell cycle-regulated genes in 
yeast, with the activation or inhibition between gene pairs being represented as events 
[27]. Matching of corresponding events was followed by a sequence alignment of the 
event strings. Regulatory relationships have also been deduced from the correlation of 
co-expressions, between a DNA-binding transcription regulator and its target gene, by 
using a probabilistic expression model [28]. However, correlation matching alone is 
deemed unsuitable to effectively distinguish between regulators and target genes. It is 
also difficult to discern whether the correlated target is directly or indirectly regulated. 
Hence additional information like protein-DNA binding has been integrated into tran-
scriptional regulatory networks [29] for validating direct regulator-target interaction. 

Co-regulated genes are often functionally, i.e., physically, spatially and/or geneti-
cally associated. In real life, however, the genes may be co-regulated only across a 
subset of all observed experimental conditions. In other words, a small number of 
genes participate in a cellular process of interest while a gene may be simultaneously 
active in more than one cellular process. It is here, where biclustering (or cocluster-
ing) becomes more appropriate than standard clustering, for the purpose of modeling 
regulatory pathways. Here we perform simultaneous clustering of both rows (genes) 
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and columns (conditions) of the gene expression matrix, for knowledge discovery in 
maximal subgroups of local patterns [30, 31]. An algorithm cMonkey has been devel-
oped [32], to detect putatively co-regulated gene groupings by integrating biclustering 
of gene expressions and various functional associations with the de novo detection of 
sequence motifs. 

4   Role of Soft Computing 

In addition to the combinatorial approach, soft computing is gradually opening up 
several possibilities by generating low-cost (computational cost both in terms of space 
and time complexity), low-precision (approximate), good solutions. Soft computing is 
a consortium of methodologies that works synergistically and provides flexible in-
formation processing capability for handling real life ambiguous situations [33]. The 
tools include fuzzy sets, evolutionary computing, neurocomputing, and their hybridi-
zations. Typically, they require little a priori knowledge about the underlying system, 
and the model can be derived directly from the data. Since the work deals with huge 
amounts of incomplete or ambiguous data, (i) the uncertainty handling capacity of 
fuzzy sets, (ii) the learning ability of artificial neural networks (ANNs) to discover 
hidden regularities within the data, and (iii) the searching potential of evolutionary 
strategies (like genetic algorithms) to explore the large pattern space, are typically 
utilized [34]. 

The human mind expresses higher level of perceptions using vague, non-crisp con-
cepts. So for developing really intelligent methods for approximate reasoning about 
similar concepts accessible for intelligent systems, languages need to be developed. 
One way out while searching for solutions to these tasks is the use of Granular Com-
puting. Granular computing [35] (GC) is useful in finding meaningful patterns in data 
by expressing and processing chunks of information (granules). The solutions involv-
ing GC become feasible because they specify non-Boolean or non-crisp specifications 
to a satisfactory degree and can be, more often than not, efficiently constructed than 
those involving detailed, purely numeric solutions. GC may thus be informally de-
fined as a general computing theory for effectively using granules in the form of 
classes, clusters, subsets or groups, etc. and intervals for developing efficient compu-
tational models for complex applications involving huge amount of data, information 
and knowledge [36].  

A problem that we conceive of is generally cast into frameworks, which facilitate 
the observations about clusters of objects with some commonality and eventually lead 
to the effective formulation of the problem and its solution with considerable acuity 
[35]. Such frameworks are ideal for problems involving pattern recognition, feature  
selection and reduction, knowledge discovery and bioinformatics. Identification of 
relevant features of objects contained in information granules help us to formulate hy-
potheses about the significance of the objects, construct new granules and refine the in-
formation, use GC to measure the distance among complex granules, etc. GC brings 
together the existing formalisms of set theory, fuzzy sets, and rough sets under a com-
mon platform by clearly visualizing some fundamental similarities and synergies. 

The modeling of imprecise and qualitative knowledge, as well as the transmission 
and handling of uncertainty at various stages are possible through the use of fuzzy 
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sets. Fuzzy logic is capable of supporting, to a reasonable extent, human type reason-
ing in natural form. Fuzzy Adaptive Resonance Theory (FART) associated matrix 
method has been developed [37] to cluster gene expression profiles of Saccharomyces 
cerevisiae (yeast) responding under oxidative stresses, followed by the extraction of 
genetic networks from them. The inferred genetic interactions are quantitatively 
evaluated, and validated in terms of the KEGG metabolic map, BRITE3 protein inter-
action map and related literature. The number of clusters is controlled by the vigilance 
parameter of FART. Fuzzy rules of an activator-repressor model of gene interactions 
were used [38] to transform expression values into qualitative descriptors. A new 
multiscale fuzzy c-means clustering method was designed to model gene interactions 
between regulatory pathways, across different conditions and at different levels of  
detail [39]. 

The adaptivity of artificial neural networks (ANNs) to learn from data-rich envi-
ronments and their robustness to noise make them good candidates for modeling ge-
netic interactions from gene expressions. Some such connectionist models employed 
for extracting genetic regulatory effects include perceptrons [40, 41], self-organizing 
maps [42, 43], and recurrent neural networks (RNNs) [44, 45]. The RNN was used to 
model the dynamics of gene expression in the lambda phage4 regulatory system [44].  

Use of genetic algorithm (GAs) for reconstructing genetic networks has been re-
ported in literature [46, 47]. The mutation and crossover operators help to intelligently 
guide the GA in the complex search space. Typically the GA searches for the most 
likely genetic networks that best fit the data, considering the set of genes to be in-
cluded in the network along with the strength of their interactions. Gene interaction 
networks were inferred from microarray data [48], using GAs for interactive reverse 
engineering. However the combinatorial complexity is expected to be unmanageable 
in real-world problems, involving a large number of genes [49]. 

Hybrid techniques like neuro-fuzzy computing have found applications in the 
realm of genetic networks as well. ANNs and fuzzy logic have been employed to 
form a framework for inferring gene interaction networks. Knowledge-based neural 
networks, which incorporated prior knowledge about gene interactions, were used by 
Kasabov [50] for the reverse engineering of genetic networks. A hybrid methodology 
for this purpose has been developed [51] by combining ANN, fuzzy sets and multi-
objective GAs.  

5   Extraction of Gene Interaction Network: A Multi-objective 
Evolutionary Approach 

Biological networks involving gene pairs, which demonstrate transcription factor 
(TF)-target relationship, is an important research problem. A gene interaction network 
is a complex structure comprising various gene products activating or repressing other 
gene products. A gene that regulates other genes is termed the transcription factor, 

                                                           
3 KEGG BRITE Database is a collection of hierarchical classifications representing knowledge 

on various aspects of biological systems. http://www.genome.jp/kegg/brite.html 
4 Enterobacteria phage λ (lambda phage) is a temperate bacteriophage that infects the bacteria 

Escherichia coli. 
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while the gene being regulated is called its target. The presence of a TF, can alterna-
tively switch “ON” some genes in the network while others remain “OFF”, orchestrat-
ing many genes simultaneously. The proper understanding of gene interaction networks 
is essential for the understanding of fundamental cellular processes involving growth 
and decay, development, secretion of hormones, etc. During transcription of gene ex-
pression specific groups of genes may be made active by certain signals, which on acti-
vation may regulate similar biological processes. The genes may also be regulators of 
each other’s transcription. Target genes sharing common TFs demonstrate similar gene 
expression patterns along time [14, 52]. Analysis of similar expression profiles brings 
out several complex relationships between co-regulated gene pairs, including co-
expression, time shifted, and inverted relationships [53].  

We describe a methodology for modeling the relationship between a transcription 
factor and its target’s expression level variation over time in the framework of the 
generated biclusters. The extraction of the relationship between the gene pair is bio-
logically more meaningful and computationally less expensive as a bicluster is a sub-
set of highly correlated genes and conditions. Rank correlation provides a similarity 
measure, which retains the relevant information necessary for computing pairwise 
correlation between gene pairs. The relationship is presented in terms of rules, where 
a TF is connected to its regulated target gene. These rules are subsequently mapped to 
generate parts of the entire regulatory network. It may be noted that intra-pathway 
gene interactions, responsible for a particular biological function and possibly within 
a bicluster, are generally stronger than any inter-pathway interactions. 

The goal in genetic networks is to identify possible direct excitatory and/or inhibi-
tory connections between genes, gene products and proteins, when the time-steps are 
close enough. Otherwise, indirect connections, through a third gene, needs to be es-
tablished. Sometimes additional biological knowledge, such as gene ontology5 and 
transcription factors, is included.  

Most real-world search and optimization problems typically involve multiple ob-
jectives. A solution that is better with respect to one objective requires a compromise 
in other objectives. In problems with more than one conflicting objective there exists 
no single optimum solution. Rather, there exists a set of solutions, which are all opti-
mal involving trade-offs between conflicting objectives. Unlike single-objective op-
timization problems, the multi-objective evolutionary algorithms (MOEA) tries to  
optimize two or more conflicting characteristics represented by fitness functions. 
Modeling this situation with single-objective GA would amount to heuristic determi-
nation of a number of parameters involved in expressing such a scalar-combination-
type fitness function. MOEA, on the other hand, generates a set of Pareto-optimal  
solutions, which simultaneously optimize the conflicting requirements of the multiple 
fitness functions. Among the different multi-objective algorithms, it is observed that 
non-dominated sorting genetic algorithm (NSGA-II) possesses all the features re-
quired for a good MOEA. It has been shown that this can converge to the global 
Pareto front, while simultaneously maintaining the diversity of population. More de-
tails on the characteristics of NSGA-II, like non-domination, crowding distance and 
crowding selection operator can be found in [54].  

                                                           
5 A shared, controlled vocabulary that is being developed to cover all organisms, in terms of 

molecular function, biological process and cellular component. http://www.geneontology.org 
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Biclustering refers to the simultaneous clustering and redundant feature reduction 
involving both attributes and samples. This results in the extraction of biologically 
more meaningful, less sparse partitions from high-dimensional data, and exhibit simi-
lar characteristics. The partitions are known as biclusters. Biclustering has been ap-
plied to gene expressions from cancerous tissues [31], mainly for identifying co-
regulated genes, gene functional annotation, and sample classification. A bicluster can 
be defined as a pair ( )c,g , where { }m,...,1g ⊆  represents a subset of genes and 

{ }n,...,1c ⊆  represents a subset of conditions (or time points). The optimization task 

[30] involves finding the maximum-sized bicluster not exceeding a certain homogene-
ity constraint mentioned below. The size (or volume) f(g, c) of a bicluster is defined 
as the number of cells in the gene expression matrix E  (with values ije  ) that are 

covered by it. The homogeneity ( )c,gG  is expressed as a mean squared residue score. 

More details on the biclustering scheme can be obtained in [54]. 
The Multi-objective GA (NSGA II), in association with the local search procedure 

discussed in [54], was used for the generation of the set of biclusters. The algorithm 
followed is discussed in details in [54]. The maximal set of genes and conditions rep-
resenting size were generated keeping the “homogeneity” criteria of the biclusters  
intact. Since these two characteristics of biclusters are conflicting to each other, multi-
objective optimization was employed to model them. To optimize this conflicting 

pair, the fitness function 1f  (corresponding to size) is always maximized while func-

tion 2f  (reflecting ratio of means square residual error and the threshold) is maxi-

mized as long as the residue is below the threshold, δ .  
Like GC biclustering also contains some condensed information pertaining to cor-

relation/co-regulation among subset(s) of genes. So, this helps in the extraction of 
gene interaction sub-networks, which appear to be more understandable to the human 
end-user. 

5.1   Correlation between Gene Pairs 

In this section we demonstrate the efficacy of a rank correlation-based approach for 
the extraction of gene interaction networks. A small number of genes participate in a 
cellular process of interest, being expressed over few conditions. Co-regulated genes 
are often found to have similar patterns in their gene expression profiles locally, 
rather than globally. The genes share similar sub-profiles, over a few time points, in-
stead of the complete gene expression profiles. Thus, considering the global correla-
tion amongst genes, i.e., computation of correlation amongst genes employing the 
complete gene expression data matrix, would not reveal proper relationship between 
two of them. The Spearman rank correlation provides such a local similarity measure 
between the two time-series curves, since it is shape-based. The expression profile e  
of a gene may be represented over a series of n  time points. Since the genes in a bi-
cluster are co-expressed, the concept of correlation has been used to quantify their 
similarity. Instead of the commonly used similarity measures like the Euclidean  
distance or the Pearson correlation the Spearman rank correlation ( RC ) have been 
employed due to its robustness towards outliers and measurement errors [55, 56]. 
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Moreover, RC  does not assume a Gaussian distribution of points. ( )21,eeRC  be-

tween gene expression profile pair 1e  and 2e  provides a shape-based similarity 

measure between the two time-series curves, sampled at ie1  and ie2  over n  time in-

tervals. This is expressed as 

( ) ( ) ( ) ( )[ ] ,erer
1nn

6
1e,eRC

2

i
i22ei11e221 ∑ −

−
−=  (1) 

where ( )ie er 11  is the rank of ie1 . Here an extended version of the RC has been used 

which takes into account the resolving of ties, i.e., je1  = ie1  for ji ≠ . The RC  

satisfies ( ) 1,1 21 ≤≤− eeRC  for all 1e , 2e . 

The first preprocessing step is to filter correlation coefficients, which contribute 
minimally towards regulation. This is because often an exhaustive search of the pos-
sible interactions between genes is intractable. Next those coefficients are selected 
whose absolute values are above a detection threshold, suggesting greater correlation 
amongst the gene pairs. In this way we focus on a few highly connected genes that 
possibly link the remaining sparsely connected genes. The correlation range 

[ ]minmax , RCRC  is divided into three partitions each, using quantiles [57] so that the 

influence of noise is lessened. Only strong and positive (negative) interactions are se-
lected. Thereafter, a network connecting the various genes is generated. 

5.2   The Algorithm 

The main steps of the procedure are outlined as follows: 

I)    Extraction of biclusters by multi-objective genetic algorithm. 
II)    Determination of pairwise rank correlation between gene pairs. 
III)  Discretization of the correlation matrix for eliminating the weaker interactions. 
IV)  Network generation from connectivity matrix (Section 5.3.1) 
V)     Biological validation (as discussed in Section 5.3.2). 

5.3   Experimental Results 

Data from the budding yeast S.cerevisiae is employed for extracting the gene interac-
tion sub-networks.  

5.3.1   Network Extraction 
Yeast cell-cycle CDC28 data [58] is a collection of 6178 genes (attributes) for 17 
conditions (time points), taken at 10-minute time intervals covering nearly two cycles. 
The synchronization of the yeast cell cultures was done using the so-called CDC28 ar-
rest. The experiments were performed using Affymetrix oligonucleotide array. The 
missing values present in the data set were imputed according to the methodology  
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provided in [59]6. At first pairwise rank correlation coefficients between gene pairs 
are computed by eqn. 1 to generate the network architecture from the extracted bi-
clusters. Quantile partitioning is employed next, to choose the strong positive as well 

as negative correlation links. In this way, the top 
3

1
 of the positive and negative links 

is chosen to be connected in a network. A sample network consisting of three bi-
clusters of sizes 7, 10, and 14, respectively, are shown in Fig. 2. A transcription factor 
is connected to its target gene by an arrow when such a TF-Target pair is found to ex-
ist within any of the biclusters. Gene pairs connected by solid lines depict positive 
correlation, while those connected by dashed lines are negatively correlated. TFs ex-
ternal to the network, but having targets within the network, are connected to their 
corresponding targets by dotted arrows. As an example, the TF YHR084W (encircled 
with solid lines) is a member of the network of 10 genes and has targets in all the 
three networks. An external TF YJL056C (encircled with dotted lines) has targets in 
networks of 7 and 10 genes. The biclusters were biologically validated from gene on-
tology study, based on the statistically significant GO annotation database7. 

5.3.2   Biological Validation 
During the prediction of regulatory networks [60] the genes YHR084W and 
YLR351C were reported to form a TF-Target pair. We also obtained the summary of 
the TF-Target pair YHR084W-YLR351C (Fig. 2) in terms of Molecular Function, 
Biological Process and Cellular Component from the Saccharomyces Genome Data-
base (SGD)8. From our calculations we have also confirmed that an interaction exists 
between the target and its TF. It is reported in the database that the biological process 
involving protein YLR351C is not fully understood as yet and YHR084W has tran-
scription factor activity. It becomes more difficult when one attempts to extract some 
biologically meaningful information involving these two entities. From such scanty 
information our method has been able to identify that there exists a link between a TF 
and its target. From their cellular components we model, as an efficacy of the biclus-
tering, the transcription of YLR351C by YHR084W occurring inside the nucleus, and 
then the regular translation mechanism follows. In likewise manner for the TF-Target 
pair of YPL075W and YJR045C (Fig. 2) reported in [59], we obtained their summary 
from SGD and found YPL075W to be transcriptional activator of genes involved in 
glycolysis while YJR045C has ATPase, enzyme regulator and protein transporter ac-
tivity. Again we were able to predict that YPL075W is involved in the transcription of 
YJR045C and would go into the glycolysis process. 

One can arrive at similar kind of conclusions, for the rest TF-Target pairs, with a 
certain definite degree of confidence. As relevant literature in this area are really very 
sparse a large number negative results is only expected. Our algorithm has not yet de-
tected any false positive or false negative TF-Target pairs, which is consistent with 
the information available either in the literature or in the databases. 
                                                           
6 LSimpute: accurate estimation of missing values in microarray data with least squares methods. 
7 http://db.yeastgenome.org/cgi-bin/GO/goTermFinder 
8 A scientific database of the molecular biology and genetics of the yeast Saccharomyces cere-

visiae - http://db.yeastgenome.org/ 
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6   Conclusions and Discussion 

In this chapter we have described the extraction of gene interaction networks. This 
was followed by a soft-computing approach to reverse engineering. Multi-objective 
evolutionary biclustering selected the co-regulated partitions. Subsequently, rank cor-
related gene pairs were extracted as a part of the gene interaction subnetworks.  

Biologically relevant small biclusters were obtained, using time-series gene ex-
pression data from Yeast. These were validated using the statistically significant GO 
annotation database. The pairwise rank correlation coefficients among gene pairs 
were computed by eqn. 1 followed by the quantile partitioning to select the strong 
positive as well as negative correlation links. The strongly correlated genes were then 
chosen to be connected in a network. The TF-Target gene pairs in the network, shown 
in Fig. 2, were found to exhibit strong correlations. We tried to model the interaction 
among them from information available in the literature/databases viz., SGD. We 
have also analyzed the expression profiles of the regulator and the regulated genes, 
which revealed several complex (time shifted, inverted, and simultaneous, etc.) rela-
tionships between them. The sparse nature of gene regulatory networks was reflected 
well on choosing Spearman rank correlation as the similarity measure. 
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Abstract. The chapter is devoted to applications of selected methods of computational intelli-
gence: evolutionary algorithms and artificial neural networks, in identification of physical sys-
tems being under the uncertain conditions. Uncertainties can occur in boundary conditions, in 
material coefficients or some geometrical parameters of systems and are modeled by three 
kinds of granularity: interval mathematics, fuzzy sets and theory of probability. In order to 
evaluate fitness functions the interval, fuzzy and stochastic finite element methods are applied 
to solve granular boundary-value problems for considered physical systems. Several numerical 
tests and examples of identification of uncertain parameters are presented.  

1   Introduction 

In the majority engineering cases it is not possible to determine exactly all parameters 
of the physical systems. It is necessary to introduce some uncertain parameters [2] 
which describe the granular character of data. Representation of uncertain values may 
have different forms. It depends of the physical meaning of the considered problem 
and the assumed model of uncertainty. There are several for-mal frameworks in which 
information granules can be built [2], among them interval analysis [17], fuzzy sets 
[25] [12] [13] and random variables [19] can be considered. The aim of an identifica-
tion problem is to find some unknown parameters of a physical system by minimizing 
a norm between computed and measured state fields. Due to the fact that some pa-
rameters of the physical system have the granular character then the minimized fitness 
function is also granular. 

The evolutionary algorithms [16], as the global optimization technique for search-
ing uncertain values, are applied in finding the interval parameter, fuzzy models, 
fuzzy controllers, fuzzy rules, random parameters and others  [10][11][18][20][21]. In 
such algorithms, the chromosome consists of uncertain genes. Therefore, the evolu-
tionary operators are modified for uncertain types of data.  

This chapter describes a novel idea of uncertain identification problems in the con-
text of granular computing using granular evolutionary algorithms and artificial neu-
ral networks. The following kinds of granular models are considered: (i) interval 
numbers, (ii) fuzzy numbers and (iii) random variables.  

The presented idea differs from conventional methods of identification, based on 
hard computing, in that, unlike hard computing, it is tolerant of imprecision, uncertainty, 



330 T. Burczyński and P. Orantek 

partial truth, and approximation. In effect, the role model for identification based on soft 
computing is the human mind.  

In the first part of the chapter the uncertain identification problem is formulated. 
Next, the following optimization algorithms in the granular form are described: (i) an 
evolutionary algorithm, (ii) a local gradient method supported by artificial neural 
networks and (iii) a global evolutionary strategy. In the finish part of the chapter sev-
eral examples of applications of the presented approach for selected granular forms in 
uncertain identification problems are presented.  

2   Formulation of Uncertain Identification Problem 

Consider a continuous physical system occupying  a domain ( 2 3)mE m orΩ ⊂ =  

bounded by a boundary ∂Ω ≡ Γ  (Fig.1). The system is described by the following 
boundary value problem: 

( ), ,

,( ),

,( ),
u pu uo

p po u p

= ∀ ∈ Ω
Γ ∪ Γ = Γ∀ ∈ ∂Ω ≡ Γ= ⎫⎪

⎬∀ ∈ ∂Ω ≡ Γ= Γ ∩ Γ = ∅⎪⎭

Au b z z

zu u z

zPu p z

                  (1) 

where A  and P  are differential operators which depend on a considered physical 
problem, b  is a source function, = ( )u u z  is a state field which can have various 

physical meanings, e.g. a displacement and a temperature or an electric potential. 

 

Fig. 1. The continuous physical systems described by granular parameters 

Some parameters ( ), 1, 2,.., ,ix i n= =x  of the system as: (i) geometry of the bound-

ary Γ , (ii) coefficients of operators A  or P  (material coefficients) and (iii) boundary 
conditions are modeled by uncertain (granular) values [17][25][13][19]. The aim of 
the identification problem is to find the unknown vector x  of parameters of the sys-
tem having measured granular information about some state fields. 

From the mathematical point of view, the identification problem [4][5] is ex-
pressed as minimization of a special objective function f  with respect to unknown 

granular parameters x : 
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( ) ( ) ( )2

1

ˆmin , ( )
m

i

i

f f dδ
= Γ

⎡ ⎤≡ − − Γ⎣ ⎦∑∫x
u z u z z z z                    (2) 

where:  ( )u z  - a computed field of state variables (e.g. displacements), ˆ ( )u z  - a 

measured field of state variables, i=z z  - i-th sensor point, m – a number of sensor 
points, δ - the Dirac function. 

3   Granular Evolutionary Algorithm 

Minimization of the granular function f  (2) with respect to unknown granular pa-

rameters is performed by the granular evolutionary algorithm with granular operators 
and granular representation of the data. The chromosomes contain granular genes 
which play the role of identification parameters. Each gene decides about the heredity 
of one or a few characteristics. The individuals can be modified by means of the 
granular operators. The evolutionary operators generate new chro-mosomes. The next 
step is the operator of the selection. It creates a new genera-tion, which contains better 
chromosomes. All steps are repeated until the stop condition is fulfilled. 

In the granular evolutionary algorithm an individual expresses a granular solution. 
In each generation the granular evolutionary algorithm contains a population of solu-
tions. Each solution is evaluated, and as the result a granular value of the fitness func-
tion is obtained.   

3.1   The Granular Representation of Chromosomes 

In most cases genes are represent by the real values. The granular evolutionary algo-
rithm works on the granular data, so the gene should be modified to granular data. 
The following cases are considered: (i) interval genes, (ii) fuzzy genes and (iii) ran-
dom genes.  

3.1.1   The Interval Chromosome 
In the interval case the gen [ ] [ , ]x x x=  is described by the central value 

([ ]) ( ) / 2cv x x x= +  and the radius ([ ]) ( ) / 2r x x x= − . 

Therefore the interval chromosome expressed by: 

[ ] [ ] [ ] [ ]1 2, ,..., ,...,i nx x x x⎡ ⎤⎣ ⎦                                               (3) 

can be replaced by the real-coded chromosome: 

( ) ( ) ( ) ( )1 1 2 2, , , ,..., , ,..., ,i i n ncv r cv r cv r cv r⎡ ⎤⎣ ⎦                                 (4) 

where:  [ ] ( ),i i ix cv r= . 

3.1.2   The Fuzzy Chromosome 
In the fuzzy case the gene x  can be considered as a fuzzy set. The fuzzy set is con-
sidered as a set of pairs of the x  and the membership function ( )xμ . When the fuzzy 
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set is convex and normal and the membership function is continuous, the fuzzy set is 
the fuzzy number. The concept of alpha-cuts plays the important role in the theory of 
fuzzy sets.  

An alpha-cut of a fuzzy number x  is an interval that contains all the numbers of x  
that have the membership value of x  greater than or equal to alpha. In this case the 
fuzzy number can be replaced by a set of the interval values, which are stretched on 
the adequate levels (alpha-cuts) of the fuzzy value. This approach has some advan-
tages. For each alpha-cut the interval arithmetic operators can be used. It is possible to 
obtain different forms of the fuzzy values due to the generation of a few alpha-cuts 
and corresponding them interval values [ ],x x . The forms can be symmetric or not 

symmetric. They describe some characteristic forms of the fuzzy values, and permit to 
build a new form of the fuzzy value, too. Finally, each gene x  is expressed as the real 

value: the central value ( )cv x  and a set of parameters ( )ia x and ( )ib x , (i=1,…,M, 

where M is a number of alpha-cuts) which define distances between ( )cv x  and edges 

of intervals. It is possible to introduce some constraints on the ( )cv x and non-

symmetric constraints on widths of intervals using the parameters ( )ia x and ( )ib x . 

Therefore, the fuzzy chromosome expressed by:  

[ ]1 2, ,..., ,...,i nx x x x=x                                                (5) 

can be replaced by the real-coded chromosome (for M=2): 

( ) ( ) ( )1 2 2 1 1 2 2 1 1 2 2 1
1 1 1 1 1, , , , ,..., , , , , ,..., , , , ,i i i i i n n n n na a cv b b a a cv b b a a cv b b⎡ ⎤⎣ ⎦          (6) 

where: ( )1 2 2 1, , , ,i i i i i ix a a cv b b= . 

3.1.3   The Stochastic Chromosome 
In the theoretical model of random phenomena the basic role is played by the prob-
ability space (G, F, P). The set G, called the space of elementary events represents all 
the possible simplest outcomes of a trial associated with a given random phenomenon. 
F  is a σ - algebra of subset of G.  The elements of the F  are called random events. P 
is a probability defined on F  [19]. 

In the random case the gene is represented by a random variable, which is a real 
function ( )i iX X γ= , Gγ ∈ , defined on a sample space G and measurable with re-

spect to P: i.e., for every real number ix , the set { }: ( )i iX x<γ γ  is an event in F. The 

chromosome ( )X γ  is a function (measurable respect to P) which takes every element 

Gγ ∈  into a point nR∈x  [19].  

The chromosome is expressed as a random vector: 

1 2( ) [ ( ), ( ),..., ( ),..., ( )]i nX X X Xγ γ γ γ γ=X                             (7) 

which has an n-dimensional Gaussian distribution of the probability density function, 
given as follows: 



 Uncertain Identification Problems in the Context of Granular Computing 333 

1 2 / 2
, 1

1 1
( , ,..., ,..., ) ( )( )
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i j

p x x x x K x m x m
π =
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= − − −⎢ ⎥

⎢ ⎥⎣ ⎦
∑KK

            (8) 

where 0≠K  is the determinant of the matrix covariances, ijk⎡ ⎤= ⎣ ⎦K , i, j = 1,2,…,n, 

where ( ) ( )ij i i j jk X m X m⎡ ⎤= − −⎣ ⎦E , ijK is the co-factor of the element ijk the ma-

trix K  and  ( )i im X= ⎡ ⎤⎣ ⎦E γ  is the mean value of ( )iX γ . 

It is assumed that random genes are independent random variables. The joint prob-
ability density function is expressed by the probability density functions of single 
random genes as follows: 

1 2 1 1 2 2( , ,..., ,..., ) ( ) ( ).... ( ).... ( )i n i i n np x x x x p x p x p x p x=                         (9) 

where: 

( ) ( ) ( )2

2

1
, exp

22
i i

i i i i
ii

x m
p x N m σ

σσ π

⎡ ⎤−
= = −⎢ ⎥

⎢ ⎥⎣ ⎦
                          (10) 

is the probability density function of the random gene ( )iX γ , where iσ  denotes the 

standard deviation of ( )iX γ . 

It can be seen that if the random genes ( )iX γ , i=1,2,…,n, are random independent 

Gaussian variables, two moments describe the probability density function of the ran-
dom variable ( )iX γ . 

The stochastic chromosome (7) is replaced by a vector:  

( ) ( ) ( ) ( )1 1 2 2, , , ,..., , ,..., ,i i n nm m m mσ σ σ σ⎡ ⎤⎣ ⎦                            (11) 

which is described by moments im  and iσ . 

3.2   The Granular Operators 

3.2.1   The Granular Mutation 
In the interval case two types of the mutation operators are applied. In both cases the 
modified gene jx  is randomly selected from the chromosome 1 2=[ , ,..., ,..., ]j nx x x xx . 

In the first type of the mutation (mutation I) the central value ( )jcv x  of the j-th in-

terval value jx  is modified. The operator is expressed by the following equation: 

*( ) ( )j j hh x h x H= +                                                  (12) 

where: h=cv for each gene, Hh – random value (with Gaussian distribution), j=1..n  is 
the number of the gene. 

The second type of the mutation operators (mutation II) concentrates/deconcentrates 
the interval value. The mutation changes the radius ( )jr x  according to the equation (12), 
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where h=r  for each gene. Therefore, two types of the mutation operator are introduced, 
both can work together or independently.  

In the fuzzy case two types of the mutation operators are also applied. In both cases the 
modified gene jx  is randomly selected from the chromosome 1 2=[ , ,..., ,..., ]j nx x x xx .  

In the first type of the mutation (mutation I) the central value ( )jcv x  of the j-th fuzzy 

value jx  is modified. The operator is expressed by the equation (12), where  h=cv. 

The second type of the mutation operators (mutation II) concentrates/deconcentrates 
the fuzzy value jx . The mutation changes the distances ( )i

ja x or ( )i
jb x  by equation 

(12) where: h= ai, bi.  
This operator is considered as symmetric ( ( )i

ja x and ( )i
jb x  are changed by means 

of the same value), and non-symmetric ones. The operator can change only the se-
lected alpha-cut. Therefore, two types of the mutation operator is introduced, both can 
work together or independently. 

In the random variables case, two types of the mutation operators are also applied. 
In both cases the modified gene jx  is randomly selected from the chromosome 

1 2=[ , ,..., ,..., ]j nx x x xx . The first type changes the first normal moment m using for-

mula (12), where: h=m. The second type changes the standard deviation of the j-th 
random variable using formula (12), where: h= σ [18]. 

3.2.2   The Granular Crossover 
The granular arithmetic crossover operator is proposed in the granular evolutionary 

algorithm. The crossover creates two offspring individuals * * * * *
1 2, ,..., ,...,j nx x x x⎡ ⎤= ⎣ ⎦x  

and * * * * *
1 2, ,..., ,...,j ny y y y⎡ ⎤= ⎣ ⎦y  on the basis of two parent chromosomes 

1 2, ,..., ,...,j nx x x x⎡ ⎤= ⎣ ⎦x  and 1 2, ,..., ,...,j ny y y y⎡ ⎤= ⎣ ⎦y . 

The selected parameters of the j-th genes of the offspring chromosomes are ex-
pressed by the following equations (interval cases): 

( ) ( ) (1 ) ( )j j jh x h x h yλ λ= + −                                             (13) 

* * *( ) ( ) (1 ) ( )j j jh y h y h xλ λ= + −                                            (14) 

where: h=cv, r, and [0,1]∈λ  is a random value with the uniform distribution. 

In the fuzzy case the selected parameters of the j-th genes of the offspring chromo-
somes are expressed by the equations (13) and (14), where h=cv,ai,bi. 

In the random variables case the offspring chromosomes are expressed by equa-
tions (13) and (14), where h=m,σ. More details are shown in [18]. 

3.2.3   The Granular Selection 
The last modified operator for the interval, fuzzy values and random variables is the 
selection operator. This operator is constructed on the basis of  the well known tour-
nament selection. In this selection the fitness function values f are compared, and the 
better chromosome wins more often. Therefore the special strategy of comparison of 
two granular values f1 and f2 is proposed.  



 Uncertain Identification Problems in the Context of Granular Computing 335 

In interval case the special conditions are constructed: 

1 2f fh h<                                                            (15) 

where: h=cv,r. 
In the fuzzy case the condition (15) is checked, where: h=cv, ai, bi . In the stochas-

tic case the condition (15) is checked, where: h=m, σ [18]. 

3.3   The Granular Fitness Function 

One of the most important steps of the evolutionary algorithm is the evaluation of the 
fitness function. If the design variables are deterministic, the fitness function result is 
also deterministic. In the case of solving the granular optimization problems, the 
problem of evaluating the fitness function is much more complicated. A few ways to 
estimate the results are possible in this case. In the case of simple mathematical func-
tions the basic arithmetic operators {+;-;*;/} for granular representation are used.  

Unfortunately, in many physical problems the fitness function can be examinated 
after solving the interval/fuzzy/stochastic boundary-value problem. The boundary-
value problems can be solved by means of the interval/fuzzy/stochastic boundary 
element method or the interval/fuzzy/stochastic finite element method [8][9][14]. 

3.4   Testing the Granular Evolutionary Algorithm 

The aim of the test is to find the granular vector x which minimizes the function: 
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where: n – the number of granular design decision variables ix , p – the number of the 

optimum. 
In the first step of examination, the best (optimal) probabilities of the mutation (pm) 

and the crossover (pc) operators were searched. In the second stage the best population 
size (ps) was searched. For each combination (n=1..5, p=1..5) the 10000 independent 
experiments were run. The optimal probabilities and population size of granular evolu-
tionary algorithms (interval, fuzzy and stochastic) are included in Tables 1 ÷ 4. 

Table 1. The optimal probabilities pm, pc and population size ps of the granular evolutionary 
algorithm (interval case) 

n p 

 1 2 3 4 5 

 pm pc ps pm pc ps pm pc ps pm pc ps pm pc ps 

1 0.4 0.2 4 0.4 0.2 3 0.3 0.1 3 0.3 0.1 4 0.3 0.1 3 

2 0.4 0.1 4 0.4 0.1 4 0.4 0.1 4 0.3 0.1 4 0.3 0.1 4 

3 0.3 0.1 4 0.3 0.1 5 0.3 0.1 4 0.2 0.1 4 0.2 0.1 5 

4 0.3 0.1 5 0.2 0.1 4 0.2 0.1 4 0.2 0.1 4 0.2 0.1 4 

5 0.3 0.1 5 0.2 0.1 5 0.2 0.1 4 0.3 0.1 4 0.2 0.1 5 
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Table 2. The optimal probabilities pm, pc and population size ps of the granular evolutionary 
algorithm (fuzzy case, 2 alpha cuts) 

n p 

 1 2 3 4 5 

 pm pc ps pm pc ps pm pc ps pm pc ps pm pc ps 

1 0.4 0.1 5 0.4 0.1 4 0.3 0.1 5 0.3 0.1 5 0.3 0.1 6 

2 0.4 0.1 4 0.4 0.1 5 0.4 0.1 5 0.4 0.1 7 0.4 0.1 8 

3 0.5 0.2 11 0.5 0.2 15 0.5 0.2 15 0.5 0.2 18 0.5 0.2 19 

4 0.5 0.2 10 0.5 0.2 15 0.5 0.2 18 0.5 0.2 18 0.5 0.2 20 

5 0.5 0.2 11 0.5 0.2 16 0.5 0.2 19 0.5 0.2 21 0.5 0.2 23 

Table 3. The optimal probabilities pm, pc and population size ps of the granular evolutionary 
algorithm (fuzzy case, 3 alpha cuts) 

n p 

 1 2 3 4 5 

 pm pc ps pm pc ps pm pc ps pm pc ps pm pc ps 

1 0.4 0.1 4 0.3 0.1 6 0.3 0.1 8 0.3 0.1 9 0.3 0.1 11 

2 0.4 0.1 4 0.4 0.1 6 0.4 0.1 6 0.4 0.1 9 0.4 0.1 11 

3 0.4 0.2 8 0.4 0.2 14 0.4 0.2 13 0.4 0.2 13 0.4 0.2 15 

4 0.5 0.2 10 0.5 0.2 19 0.4 0.2 17 0.4 0.2 21 0.5 0.2 22 

5 0.5 0.2 11 0.5 0.2 16 0.5 0.2 19 0.5 0.2 24 0.5 0.2 27 

Table 4. The optimal probabilities pm, pc and population size ps of the granular evolutionary 
algorithm (stochastic case) 

n p 

 1 2 3 4 5 

 pm pc ps pm pc ps pm pc ps pm pc ps pm pc ps 

1 0.4 0.1 4 0.4 0.1 5 0.3 0.1 4 0.3 0.1 9 0.3 0.1 11 

2 0.3 0.1 4 0.3 0.1 6 0.3 0.1 9 0.4 0.1 9 0.4 0.1 11 

3 0.2 0.1 4 0.2 0.1 5 0.2 0.1 5 0.4 0.2 13 0.4 0.2 15 

4 0.2 0.1 4 0.2 0.1 5 0.2 0.1 5 0.4 0.2 21 0.5 0.2 22 

5 0.2 0.1 4 0.2 0.1 5 0.2 0.1 4 0.5 0.2 24 0.5 0.2 27 

 
The obtained optimal parameters of the mutation, the crossover and the population 

size are very similar to the optimal parameters in real-coded cases, which were tested 
in earlier examinations. The probability of the mutation varies mainly between 0.3 
and 0.4. The probability of the crossover is close to the value 0.4 in many cases. The 
population size is relatively small and depends on the number of variables. Therefore 
all parameters are very easy in setting and the expected computation time should be 
relatively small.  
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4   The Local Gradient Method Supported by Artificial Neural 
Networks 

4.1   The (RBF) Artificial Neural Networks 

The approximation problem is one of the well known applications of artificial neural 
networks [1].    

Consider artificial neural networks with radial (RBF) active functions. The number 
of neurons in the input layer is equal to the number of design variables of the ap-
proximated fitness function. In the output layer there is only one neuron, its output 
value plays the role of the fitness function. 

The number of radial basis functions depends on the degree of difficulty of the 
function. The output value of neurons in the hidden layer in the case of the network 
(RBF) is expressed by: 
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ti – a center of i-th radial function, σi – a standard deviation of i-th radial function.  
The output value of the whole network (RBF) is given as follows: 
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where: iW  and 0W  - weights. Detailed description can be found in [15]. 

4.2   The Sensitivity of the Neural Network 

The sensitivity of the output signal e21 of the (RBF) network in the some z input value 
e0z is expressed by: 
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The formula (20) can be expressed by the simpler form [18]: 
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This way of function sensitivity computation was tested [18] and gives positive and 
promised results. 
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4.3   The Local Gradient Method 

The proposed local optimization method [18] is a combination of the classical gradi-
ent method (the steepest descent method) and the (RBF) artificial neural network.  

At the beginning of the method a set (cloud) of fuzzy points in the function domain 
is generated. In order to perform the optimization process the network is constructed. 
The number of neurons in the input layer is equal to the number of design variables of 
the approximated fitness function. In the output layer there is only one neuron, its 
output value plays the role of the fitness function. 

In each iteration of the presented optimization method a few steps are performed. 
In the first step the set of training vectors of the network is created. In the first it-

eration the set is created on the basis of the cloud of points. The coordinates of points 
play the role of the input values of the network, the fitness values in points play the 
role of output value of the network.  

In the second step the network is trained. In the next, third step, the optimization 
process is carried out. The steepest descent method of optimization is used. The net-
work as the fitness function approximation is used. The gradient formula (21) is em-
ployed in computation.   

For a point, which is a result of optimization (found in step 3), the actual fitness 
function is computed. 

In the last step the stop condition is checked. In the case, in which the condition is 
true, the point is treated as the result of the optimization process. If this condition is 
false, this point is added to the training vector set and the next iteration is carried out 
(go to step 1). 

4.4   The Granular Local Gradient Method 

Presented in the previous subsection the local gradient method is based in the real 
(non granular) representation. It can be extended to different models of granular 
cases.  

A special multilevel artificial neural network is used as the approximation tool of 
the granular problem [18].  

In the interval case the multilevel artificial neural network has 2 levels. The first 
level corresponds with the central value of the interval and the second one with the 
radius of an interval.  

In fuzzy case the number of levels is equal to 1+2cm, where cm is the number of 
alpha-cuts. Each level corresponds with a selected parameter of the fuzzy number (the 
central value cv and a set of parameters ai and bi, (i=1,…,M, where M is a number of 
alpha-cuts)). 

In stochastic case the number of levels is equal to the number of moments, which 
describes the random number. In presented works the random number is described by 
two moments ( m  - the mean value and σ  - standard deviation) therefore the number 
of level is equal to 2.   

This approach and its application results are described more detailed in [18]. 
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5   The Two-Stage Granular Evolutionary Strategy 

The main idea of creating the two-stage strategy [15] is the coupling of the advan-
tages of evolutionary and gradient optimization methods aided by neuro-computing. 

The evolutionary algorithms are very useful in finding the global optimum, but it is 
very time consuming. The gradient methods can find the optimum precisely, but they 
need information about sensitivity of the objective function. 

The strategy in the first stage uses some properties of the evolutionary algorithms. 
They are procedures which search the optimum in the feasible space of solutions. 

The evolutionary algorithm generates a cluster of points. The cluster is positioned 
closely to the optimum and there is a great possibility that this optimum is global. 
Sometime there is a risk that points are located close to the more than one optimum. In 
this case the second stage (a local method) can work unstably. It can be solved in a few 
ways. One is to introduce a parameter which describes the maximum size of the clus-
ter. The parameter can be expressed by a radius of a region in the domain. The center 
of the region is equal to the best solution of the evolutionary algorithm. All points 
which are inside the region, belong to the cloud of points. This approach is character-
ized by a variable number of training vectors. In this case an alternative parameter is 
introduced. The parameter defines the maximum number of points in the cloud. 

In the second stage of the strategy several best points in this region are selected. 
Then, these points play the role of the cloud and as previously shown, the local 
method is performed. This method is based on the gradient method, but the sensitivity 
analysis is evaluated by the neuro-computing. 

The described strategy combines advantages of the previous described methods, 
and avoids disadvantages. 

The crucial problem is the moment of transition from the first stage to the second 
one. Some experience allows taking parameters of the strategy, for which the strategy 
can find the optimum earlier than the evolutionary algorithm, which is used separately.  

In the general case the moment of transition can depend on some parameters of the 
first stage: (i) the changes of the fitness function of the best chromosome, (ii) the size 
of the clusters of chromosomes, (iii) the diversification of the population and many 
others. Detailed description can be found in [18]. 

6   Examples of Application in Uncertain in Identification Problems 

In all examples presented below one assumes that measured state fields û are simu-
lated numerically by solutions of the granular boundary-value problem (1) for actual 
parameters. 

6.1   The Identification of the Boundary Conditions in 3-D Structures 

Consider a 3-D elastic system discretized by the cubic finite elements [7]. The dimen-
sions and loading of this system is presented in Figure 2. There are four different 
kinds of loading F1, F2, F3 and F4, which are imposed on the four different parts of 3-
D structure. Moreover this structure is fixing in the bottom part (Figure 2). Due to the 
symmetry of the structure only two unknown forces F1 and F2 are identified on the ba-
sis of displacements measured in selected sensor points. 
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Fig. 2. The mechanical structure described by granular parameters 

The actual and found values of F1 and F2 are presented in the Table 5 (interval 
case), Table 6 (fuzzy case) and Table 7 (stochastic case).  

The following parameters of the granular strategy in the interval and stochastic 
cases were assumed: a population size: 50, a number of generations: 50, a probability 
of the mutation: 0.2, a probability of the crossover 0,1. The following parameters of 
strategy in the fuzzy case were assumed: a population size: 100, a number of genera-
tions: 75, a probability of the mutation: 0.2, a probability of the crossover 0,1. 

In this example of identification of loads imposing on the elastic system the evolution-
ary algorithm correctly found a region of the global optimum in all cases of data granu-
larity. The local neuro-gradient method found the optimum with the high accuracy. 

Table 5. The results of interval identification 

 1F  1F  2F  2F  

Min -5.00 -5.00 -5.00 -5.00 

Max 205.00 205.00 205.00 205.00 

Actual 48.00 51.00 149.00 152.00 

After 1st stage 47.55 52.45 148.57 153.99 

After 2nd stage 48.00 51.00 149.00 152.00 

Table 6. The results of fuzzy identification (first and second α-cuts) 

alpha cut first second 

 1F  1F  2F  2F  1F  1F  2F  2F  

Min -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 

Max 205.00 205.00 205.00 205.00 195.00 205.00 195.00 205.00 

Actual 48.00 51.00 149.00 152.00 49.00 51.00 150.00 151.00 

After 1st stage 47.46 53.21 148.46 154.32 48.77 51.53 149.95 151.23 

After 2nd stage 48.00 51.00 149.00 152.00 49.00 51.00 150.00 151.00 
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Table 7. The results of stochastic identification 

 1F  2F  

 m σ m σ 

Min 0.00 0.00 0.00 0.00 

Max 200.00 5.00 200.00 5.00 

Actual 50.00 1.00 150.00 2.00 

After 1st stage 48.67 0.54 151.92 2.14 

After 2nd stage 50.00 1.00 150.00 2.00 

6.2   The Identification of Boundary Conditions in Elastoplastic Structures 

A mechanical system presented in Figure 3 is considered [7]. The system is modeled 
as an elastoplastic body, fixed on the left side in the hole and loaded using two fields 
of tractions p1 and p2. Equivalent stresses values were greater than the yield stress for 
the used material. The tests were performed using 11 sensor points. The position of 
sensor points is presented in Figure 3. 

 

Fig. 3. The elastoplastic structure with boundary conditions and sensor points 

The actual and found values of tractions p1 and p2 are presented in the Table 8 (in-
terval case), Table 9 (fuzzy case) and Table 10 (stochastic case). 

The following parameters of the granular strategy in the interval and stochastic 
cases were assumed: a population size: 50, a number of generations: 100, a probability 
of the mutation: 0.2, a probability of the crossover 0.1. The following parameters of the  
 

Table 8. The results of interval identification 

 
1

p  
1p  2

p  
2p  

Min -0.90 -0.90 -0.90 -0.90 

Max 11.00 11.00 11.00 11.00 

Actual 1.80 2.10 7.90 8.20 

After 1st stage 1.77 2.33 7.88 8.03 

After 2nd stage 1.80 2.10 7.90 8.20 
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Table 9. The results of fuzzy identification (first and second alpha-cuts) 

alpha-cut first second 

 
1

p  
1p  2

p  
2p  1

p  
1p  2

p  
2p  

Min -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 

Max 11.00 11.00 11.00 11.00 9.00 11.00 9.00 11.00 

Actual 1.80 2.10 7.90 8.20 1.90 2.10 8.00 8.10 

After 1st stage 1.68 2.45 7.77 8.16 1.95 2.23 7.83 8.09 

After 2nd stage 1.80 2.10 7.90 8.20 1.90 2.10 8.00 8.10 

Table 10. The results of stochastic identification 

 1p  2p  

 m σ m σ 

Min 0.00 0.00 0.00 0.00 

Max 10.00 0.50 10.00 0.50 

Actual 2.00 0.10 8.00 0.20 

After 1st stage 1.96 0.02 7.83 0.32 

After 2nd stage 2.00 0.10 8.00 0.20 

 
granular strategy in the fuzzy case were assumed: a population size: 50, a number of 
generations: 50, a probability of the mutation: 0.2, a probability of the crossover 0.1. 

The aim of the example was to find traction fields in the elastoplastic system. Due 
to the application of the two stage strategy the optimum was found with the high ac-
curacy and time of identification was short. 

6.3   The Identification of Beams Distribution 

Consider a rectangular plate with the hole, reinforced by beams of circular cross-
sections as shown in Figure 4.  

 

Fig. 4. Reinforced plate (modelled as the plate and beams), design variables and constraints 
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The plate is stretched by the uniformly distributed load applied at the left and right 
edge [7]. The value of the load is p=10 MPa. The length and the height of the struc-
ture and the hole radius are L=10 cm, H=5 cm and R=1 cm, respectively. The thick-
ness of the plate is g=1 cm, the diameter of each beam is d=0.3 cm.  

The aim of the identification problem is to find coordinates of ends of beams (de-
sign variables X1,X2,Y1 and Y2 shown in Figure 4). 

It is assumed that the plate is symmetrical with respect to two axes thus only the 
quarter of the structure (the upper right part) with two beams and the appropriate 
boundary conditions at axes are modeled. 

The sensor points are located on the external boundary.  
The actual and found values of unknown parameters X1,X2,Y1 and Y2 are presented in 

the Table 11 (interval case), Tables 12 and 13 (fuzzy case) and Table 14 (stochastic case). 
The following parameters of the granular strategy in the interval and stochastic 

cases were assumed: a population size: 50, a number of generations: 50, a probability 
of the mutation: 0.2, a probability of the crossover 0.1. The following parameters of the  
 

Table 11. The results of interval identification 

 1X  1X  1Y  1Y  2X  2X  2Y  2Y  

Min 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

Max 3.70 3.70 2.20 2.20 3.70 3.70 2.20 2.20 

Actual 1.45 1.55 1.15 1.25 2.95 3.05 1.95 2.05 

After 1st stage 1.41 1.73 1.10 1.20 3.00 4.20 1.90 2.17 

After 2nd stage 1.45 1.55 1.15 1.25 2.95 3.05 1.95 2.05 

Table 12. The results of fuzzy identification (first alpha-cut) 

 1X  1X  1Y  1Y  2X  2X  2Y  2Y  

Min 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

Max 3.70 3.70 2.20 2.20 3.70 3.70 2.20 2.20 

Actual 1.45 1.55 1.15 1.25 2.95 3.05 1.95 2.05 

After 1st stage 1.38 2.92 1.20 1.49 2.98 3.05 1.95 2.04 

After 2nd stage 1.45 1.55 1.15 1.25 2.95 3.05 1.95 2.05 

Table 13. The results of fuzzy identification (second alpha-cut) 

 1X
 1X  1Y

 1Y  2X
 2X  2Y

 2Y  
Min 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

Max 3.30 3.70 1.80 2.20 3.30 3.70 1.80 2.20 

Actual 1.49 1.52 1.18 1.23 3.00 3.05 2.00 2.02 

After 1st stage 1.43 1.53 1.20 1.43 2.99 3.02 1.98 2.02 

After 2nd stage 1.49 1.52 1.18 1.23 3.00 3.05 2.00 2.02 
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Table 14. The results of stochastic identification 

 1X  1Y  2X  2Y  

 m σ m σ m σ m σ 

Min 0.50 0.00 0.50 0.00 0.50 0.00 0.50 0.00 

Max 3.50 0.30 2.50 0.30 3.50 0.30 2.50 0.30 

Actual 1.50 0.07 1.20 0.07 3.00 0.07 2.00 0.07 

After 1st stage 1.42 0.12 1.12 0.01 2.68 0.06 2.13 0.07 

After 2nd stage 1.50 0.07 1.20 0.07 3.00 0.07 2.00 0.07 

 
granular strategy in the fuzzy case were assumed: a population size: 50, a number of 
generations: 75, a probability of the mutation: 0.2, a probability of the crossover 0.1. 

The presented example was concerned with identification of uncertain geometrical 
granular parameters in the elastic system. In all three kinds of granularity the two 
stage strategy gave satisfactory results.   

6.4   The Identification of Thermal Materials Parameters 

A thermo-mechanical system presented in Figure 5 is considered [6]. One surface of 
the box is supported, whereas on the opposite one the point load is applied at every 
node (the total load is equal to 224kN). On the supported surface of the structure the 
temperature T=10°C is applied. The third type thermal boundary condition (convec-
tion) is specified on the internal surface, where the ambient temperature T ∞  and the 
heat convection coefficient α  are identified. 

The identification has been performed for 4 sensor points of temperature and 4 sensor 
points of displacements located on the external surfaces of the structure. The structure  
 

 

Fig. 5. Geometry, boundary conditions, location of the sensor points, distribution of the tem-
perature and deformation of the structure  

 



 Uncertain Identification Problems in the Context of Granular Computing 345 

is made of steel whose material properties are identical as in the previous example.  
Figure 5 shows deformation and distribution of the temperature in the model.  

The actual and found values of the heat convection coefficient α  and ambient 
temperature T ∞  are presented in the Table 15 (interval case), Table 16 (fuzzy case) 
and Table 17 (stochastic case). 

The following parameters of the granular strategy in the interval and stochastic 
cases were assumed: a population size: 30, a number of generations: 100, a probability 
of the mutation: 0.2, a probability of the crossover 0,1. The following parameters of the 
granular strategy in the fuzzy case were assumed: a population size: 30, a number of 
generations: 200, a probability of the mutation: 0.2, probability of the crossover 0,1. 

Identification of selected uncertain granular physical parameters of the thermo-
mechanical system was considered. Similarly like in the previous examples the granu-
lar algorithm found actual parameters of the system.   

Table 15. Results for interval identification 

 α  α  T ∞
 T ∞

 
Min 1.00 1.00 0.00 0.00

Max 25.00 25.00 105.00 105.00

Actual 3.00 7.00 45.00 52.00

After 1st stage 2.61 6.76 49.99 53.33

After 2nd stage 3.00 7.00 45.00 52.00

Table 16. Results for fuzzy identification (first and second alpha–cuts) 

alpha-cut first second 

 α  α  T ∞
 T ∞

 α  α  T ∞
 T ∞

 
Min 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 

Max 25.00 25.00 105.00 105.00 25.00 25.00 105.00 105.00 

Actual 3.00 7.00 45.00 52.00 4.00 6.00 48.00 51.00 

After 1st stage 2.05 8.45 43.54 54.43 4.97 6.45 49.94 51.93 

After 2nd stage 3.00 7.00 45.00 52.00 4.00 6.00 48.00 51.00 

Table 17. Results for stochastic identification 

 α  T ∞  

 m σ m σ 

Min 1.00 0.00 0.00 0.00

Max 25.00 5.00 100.00 20.00

Actual 5.00 0.70 50.00 10.00

After 1st stage 4.91 0.45 52.12 11.05

After 2nd stage 5.00 0.70 50.00 10.00



346 T. Burczyński and P. Orantek 

6.5   The Identification of Piezoelectric Parameters of Material 

The identification of piezoelectric material constants and the polarization direction of 
a plate was considered [6]. The plate is subjected to a stress in y-direction and an ap-
plied voltage as shown in Figure 6. The PZT-4 ceramic material is modeled [6]. The 
applied voltage is V0=1000 V. On the horizontal edges of the strip, the charge flux 
density is equal to zero. The applied stresses are equal to σ=5 MPa. The length of the 
strip is equal to L=1 mm, the height h=0.5 mm.  

The 4 design variables are used: 3 piezoelectric constants and the value of the an-
gle θ , which describes the polarization direction. The displacements, electric poten-
tial and charge sensors are placed in every node. 

The actual value and found value of piezoelectric parameters and polarization di-
rection are presented in the Table 18 (interval case), Tables 19 and 20 (fuzzy case) 
and Table 21 (stochastic case). 

The following parameters of the granular strategy in the interval and stochastic 
cases were assumed: a population size: 70, a number of generations: 140, a probabil-
ity of the mutation: 0.2, a probability of the crossover 0,1. The following parameters 
of the granular strategy in the fuzzy case were assumed: a population size: 100, a 
number of generations: 200, a probability of the mutation: 0.2, a probability of the 
crossover 0,1. 

 

Fig. 6. Geometry and boundary conditions for the considered piezoelectric plate 

Table 18. Results for interval identification 

 11e
 11e 13e 13e 33e 33e θ  θ  

Min 0.20 0.20 0.20 0.20 0.20 0.20 0.00 0.00

Max 2.00 2.00 1.00 1.00 2.00 2.00 180.00 180.00

Actual 0.72 0.74 0.63 0.65 0.20 0.22 89.00 91.00

After 1st stage 0.70 0.73 0.61 0.65 0.26 0.27 88.54 90.34

After 2nd stage 0.72 0.74 0.63 0.65 0.20 0.22 89.00 91.00
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Table 19. Results for fuzzy identification (first alpha-cut) 

 11e
 11e 13e 13e 33e 33e θ  θ  

Min 0.20 0.20 0.20 0.20 0.20 0.20 0.00 0.00

Max 2.00 2.00 1.00 1.00 2.00 2.00 180.00 180.00

Actual 0.71 0.73 0.62 0.66 0.20 0.22 88.00 92.00

After 1st stage 0.63 0.76 0.60 0.68 0.16 0.25 88.78 92.56

After 2nd stage 0.71 0.73 0.62 0.66 0.20 0.22 88.00 92.00

Table 20. Results for fuzzy identification (second alpha-cut) 

 11e
 11e 13e 13e 33e 33e θ  θ  

Min 0.20 0.20 0.20 0.20 0.20 0.20 0.00 0.00

Max 2.00 2.00 1.00 1.00 2.00 2.00 180.00 180.00

Actual 0.72 0.74 0.63 0.65 0.20 0.22 89.00 91.00

After 1st stage 0.66 0.69 0.61 0.65 0.18 0.21 89.73 91.98

After 2nd stage 0.72 0.74 0.63 0.65 0.20 0.22 89.00 91.00

Table 21. Results for stochastic identification 

 11e  13e  33e  θ  

 m σ m σ m σ m σ 

Min 0.20 0.00 0.20 0.00 0.10 0.00 0.00 0.00

Max 2.00 0.10 1.00 0.10 2.00 0.10 180.00 10.00

Actual 0.73 0.01 0.64 0.01 0.21 0.01 90.00 5.00

After 1st stage 0.70 0.00 0.59 0.03 0.25 0.04 92.32 3.01

After 2nd stage 0.73 0.01 0.64 0.01 0.21 0.01 90.00 5.00

 
The aim of identification was to find the granular physical parameters of the piezo-

electric system. Optimal parameters of the granular optimization method provided the 
short time of computing. 

6.6   The Identification of Laminate Materials Parameters 

A rectangular simple laminate plate [3] made of the glass-epoxy is considered. Each 
ply of the symmetrical laminate has the same thickness hi=0.002m. The stacking se-
quence of the laminate is: (0/45/90/-45/0/90/0/90)s [3]. The sensor points are located 
on the edges of the plate. 

The actual and found values of laminate parameters are presented in the Table 22 
(interval case), Tables 23 and 24 (fuzzy case) and Table 25 (stochastic case). 

The following parameters of the granular strategy in the interval and stochastic cases 
were assumed: a population size: 100, a number of generations: 200, a probability of the  
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Table 22. Results for interval identification 

 1E  1E  2E  2E  12υ  12υ  12G  12G  

Min 1.92E10 1.92E10 4.20E09 4.20E09 0.190 0.190 9.70E08 9.70E08 

Max 5.08E10 5.08E10 1.08E10 1.08E10 0.410 0.410 8.03E09 8.03E09 

Actual 3.70E10 4.00E10 8.00E09 8.50E09 0.250 0.270 4.00E09 4.20E09 

After 1st stage 3.72E10 3.99E10 8.07E09 8.67E09 0.243 0.272 4.01E09 4.24E09 

After 2nd stage 3.70E10 4.00E10 8.00E09 8.50E09 0.250 0.270 4.00E09 4.20E09 

Table 23. Results for fuzzy identification (first alpha-cut) 

 1E  1E  2E  2E  12υ  12υ  12G  12G  

Min 1.92E10 1.92E10 4.20E09 4.20E09 0.190 0.190 9.70E08 9.70E08 

Max 5.08E10 5.08E10 1.08E10 1.08E10 0.410 0.410 8.03E09 8.03E09 

Actual 3.82E10 3.90E10 8.23E09 8.31E09 0.257 0.263 4.10E09 4.18E09 

After 1st stage 3.89E10 3.92E10 8.20E09 8.31E09 0.258 0.264 4.09E09 4.19E09 

After 2nd stage 3.82E10 3.90E10 8.23E09 8.31E09 0.257 0.263 4.10E09 4.18E09 

Table 24. Results for fuzzy identification (second alpha-cut) 

 1E
 1E

 2E
 2E

 12υ
 12υ

 12G
 12G

 
Min 1.92E10 1.92E10 4.20E09 4.20E09 0.190 0.190 9.70E08 9.70E08 

Max 5.08E10 5.08E10 1.08E10 1.08E10 0.410 0.410 8.03E09 8.03E09 

Actual 3.84E10 3.87E10 8.25E09 8.28E09 0.259 0.261 4.12E09 4.15E09 

After 1st stage 3.87E10 3.92E10 8.26E09 8.29E09 0.258 0.262 4.12E09 4.18E09 

After 2nd stage 3.84E10 3.87E10 8.25E09 8.28E09 0.259 0.261 4.12E09 4.15E09 

Table 25. Results for stochastic identification 

 E1 E2 ν12 G12 

 m σ m σ m σ m σ 

Min 2.00E10 0.00E9 4.00E9 0.00E9 0.000 0.000 2.00E9 0.10E8 

Max 6.00E10 0.30E9 9.00E9 0.30E9 0.500 0.100 6.00E9 0.70E8 

Actual 3.86E10 0.12E9 8.28E9 0.20E9 0.260 0.020 4.14E9 0.50E8 

After 1st stage 3.92E10 0.11E9 8.14E9 0.17E9 0.270 0.040 4.07E9 0.22E8 

After 2nd stage 3.86E10 0.12E9 8.28E9 0.20E9 0.260 0.020 4.14E9 0.50E8 

 
mutation: 0.2, a probability of the crossover 0,1. The following parameters of the 
granular strategy in the fuzzy case were assumed: a population size: 200, a number of 
generations: 200, a probability of the mutation: 0.2, a probability of the crossover 0,1. 
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The presented example was concerned with identification of uncertain granular 
material parameters of laminates. In presented kinds of granularity (interval, fuzzy 
and stochastic) the two stage strategy gave satisfactory results.   

7   Conclusions 

An effective intelligent technique based on the granular evolutionary computing  has 
been presented. This approach can be applied in optimization and identification of 
physical systems that are in the uncertain conditions. Various physical systems as: elas-
tic, elastoplastic, thermo-mechanical, piezoelectric and composites were considered. 
Moreover the presented methodology can be extended also to biophysics systems.  

Three models of granularity were examined: (i) interval, (ii) fuzzy and (iii) sto-
chastic. Applications of other kinds of granularity based on e.g.  rough sets, can be 
also possible [13][24].  

The granular evolutionary algorithm aided by the local gradient method supported 
by the artificial neural network has turned out as an efficient approach. In all exam-
ined examples of identification the granular computing approach enables to find un-
known parameters of systems with the great precision. This approach can be also very 
promising for reliability optimization in which the safety of a system is estimated and 
represented by a certain measure of uncertainty of its failure. 

The crucial problem is selection of a suitable model of granularity. The stochastic 
approach is very useful and convenient in the case of existing of statistical data. When 
experimental data is obtained only from a few measurements and the probability den-
sity function is unknown the interval approach is much more convenient. If parame-
ters of the systems are evaluated on the basis of some linguistic descriptions [24] then 
the fuzzy approach of granularity is more preferred. 

The guiding principle of granular computing in identification problems is to exploit 
the tolerance for imprecision, uncertainty, partial truth, and approximation to achieve 
robustness and low solution cost.  

Acknowledgements. The work was done as a part of project N502 4573 33 spon-
sored by the Polish Ministry of Science and Higher Education. 
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Abstract. Based on formal concept analysis we propose a novel lattice visualization
system for huge image databases as a realization of the important paradigm of human-
centered information processing based on granular computing. From a given cross table
of objects (images) and attributes (image features) the proposed system first constructs
a concept lattice. Then the Hasse diagram of this lattice is visualized. The information
granules in the proposed system correspond to the elements of the concept lattice. All
the important components of granular computing are shown to be present in the pro-
posed system, such as: abstraction of data, derivation of knowledge and empirical verifi-
cation of the abstraction. Since formal concept analysis generates an order relation, we
obtain a hierarchical structure of concepts. This structure is shown to be also strongly
related to the granular computing, since this is how the lattice visualization system
implements the zoom in and zoom out capability of granular computing systems. Using
the proposed system, a user can freely analyze the perspective and detailed structure of
a large image database in the setting of granular computing. Furthermore, through an
interaction function, the potential user can adjust the quantization of features, being
able in this way, to select the attributes which allow him to obtain a suitable concept
lattice. Therefore, the proposed system can be regarded as a promising human-centric
information processing algorithm, based on granular computing.

1 Introduction

Due to the spread of high performance computers, digital input devices and high
capacity memory devices, information explosion is becoming nowadays a more
and more acute problem raised by the society to the information processing com-
munity [26]. Especially the amount of digital images has been rapidly increasing
in accordance with prevailing digital cameras for individual use.

IDC [25] reports that the digital universe was in 2007, at the level of 281
exabytes or 281 billion gigabytes. Meanwhile, the ability of human-beings to
process the information has not dramatically improved in the last several hun-
dreds of years. Due to this information explosion, we need novel methods to

A. Bargiela, W. Pedrycz (Eds.): Human-Centric Information Processing, SCI 182, pp. 351–373.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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visualize information contained in image databases or video sequences (see e.g.,
[5] [6] [8] [20] [27]).

In order to extract information with understandable contents and suitable
size from such a huge volume of data, we need new, intelligent, human-centric
information processing techniques and information visualization schemes. The
users need to be able to recognize and understand comprehensive information
about several images at once.

1.1 Information Visualization

In the topic of information visualization there is a very intense, ongoing research.
Almost all the research efforts in the topic of information visualization [5] [6] [8]
[20] [27], with target objects either text or images are directed towards a metric
spaces based approach, where the similarity between objects is obtained based
on a distance between them. From the mathematical point of view, this research
can be sought as metric structure based visualization.

This chapter introduces a novel idea in this research field, by proposing a
visualization method for huge image databases based on granular computing [1]
[23], and formal concept analysis [9].

1.2 Granular Computing

Human centric information processing traces back to the celebrated works of L.
Zadeh [22], [23]. Indeed, Information Granulation appears for the first time in
the paper [23], but as Zadeh himself underlines in [23], the basic ideas related
to this concept can be rooted back to the very beginning of Fuzzy Sets Theory,
[22]. Human-centric information processing relates to the concept of information
granulation since this is one of the three basic tasks underlying human cognition
[23]. Information Granulation is the conceptual framework for granular comput-
ing. The Granular Computing paradigm was first considered by T.Y. Lin in [13]
and the first monograph in this direction was written by A. Bargiela and W.
Pedrycz, [1].

Information granulation (see e.g., [21], [23], [24] ) is the process of grouping el-
ements based on their indistinguishability, similarity, proximity or functionality.
According to [1], information granules are complex entities that arise in the pro-
cess of abstraction of data and derivation of knowledge from information. Also,
as it is shown in [1], information granules typically have a hierarchical structure.
From a mathematical point of view, this is shown in the very recent paper [2], to
be the Information Sciences analogue to the axiomatization of the Classical Set
Theory using classes (Von Neumann–Bernays–Gödel set theory). This idea and
the mathematical formulation of the Von Neumann–Bernays–Gödel set theory
leads to a higher level of abstraction and generalization in this area, which fur-
ther emphasizes the hierarchical nature of granular computing. Following this
definition for information granules, granular computing can be defined as (see [2])
a “structured combination of algorithmic abstraction of data and nonalgorithmic
empirical verification of the semantics of abstractions”. This definition allows a
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higher level of generality since there are no prescribed mechanisms to perform
the tasks of abstraction of data and derivation of knowledge (see also [14]) and
it is consistent with the hierarchical approach of [1].

1.3 Granular Computing in Image Processing

Human beings have the gift that looking at an image or a set of images, they are
able immediately to perform the granulation of data and derivation of knowl-
edge. For machines this is not at all a trivial task and the way how information
granulation is performed is usually application oriented, despite the trend to-
wards generality in what regards this issue. In the Image Processing field the
idea of human centered information processing and granularity of information
was present tacitly for a long time ([1]), since the pattern recognition field has
its central issue the recognition, classification and abstraction of image data. It
appeared recently also explicitly in e.g. ([1], [15], [16], [19]).

Information in Image Processing is represented by images. Machines represent
them as matrices with integer elements. Human beings, as mentioned earlier have
the ability to see in an image beyond the numbers a “flower” or a “dinosaur”. Our
point is that an information granule that humans use for the representation of a
“flower” is a collection of images gathered by some image features and attributes.
This is also consistent with the ideas and the formalism in [2]. Indeed we can
regard images as information (set) and collections of several images, together
with their features as information granules (classes).

1.4 Ordered Structure-Based Image Processing

Furthermore, our point is that in the visualization problem, using only the idea of
“distance” is not precisely reflecting the human way of thinking. Indeed, human
beings can recognize a flower in an image that contains also buildings and ani-
mals. This gift of human beings translates in mathematical terms into an order
relation, “inclusion” relation between objects, in some sense. In terms of math-
ematical structures this pushes our thoughts from a purely metric spaces based
approach, towards an ordered structure based approach for image processing.

Most of the literature in information visualization focuses on a metric space
approach so conventional image database visualization systems are unable to
show the perspective nature of the whole database. The present chapter, in
contrast, focuses on a different kind of basic mathematical structure, i.e., the
ordered structure [7] [11]. This approach allows us to develop and to implement
a more comprehensive information visualization strategy, namely, we visualize
the lattice structure of an image database. It is easy to see that the ordered
structure is very suitable for human perception and intuition. Partially this is
the reason why fuzzy sets theory, based on a lattice structure as well, is able
to interpret and to implement expert’s knowledge [12] [17] [22]. Consequently,
the ordered structure has a great potential ability to fit our intent to perform
information processing tasks in a more and more human-centered manner. This
approach allows us to deal with objects and relations in terms of an ordered
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structure [7] [11], which is different from the mathematical structure used by the
conventional ongoing research.

1.5 Visualizing Huge Image Databases by Formal Concept Analysis

Formal concept analysis [9] constructs a concept lattice (which is a complete
lattice) from the context table (information table) which contains objects and
their attributes (feature vectors). The concept lattice has an ordered structure
induced by the order of different concepts in a given context. This structure is
very intuitive and so it is suitable for human perception. The proposed system
is able to visualize a complete lattice obtained from a huge image database or a
long video sequence, and users can easily recognize, understand and moreover,
they can further process comprehensive information about the images in the
database at once. In the present paper we discuss in detail the construction
process which generates the context table, the quantization of attributes, and
finally the generation of the concept lattice itself.

Finally the Hasse diagram of the concept lattice is visualized, and it is easy to
see that it supports the empirical verification of the semantics of abstractions.
Also, the knowledge obtained automatically is intuitively communicated to the
user. So, a huge image database is visualized by the proposed method at once.
Surely the hierarchical structure of the granular information makes it possible
to the user to zoom in and out at any information granule.

The proposed system was realized using the JAVA based programming lan-
guage Processing [18], on an ordinal platform (CPU = 2.13GHz, MM = 2GB). As
visualization experiments, we perform lattice visualization for the Corel Image
Gallery and the Ubiquitous Home Image Database.

Since concept lattices are strongly related to the processes of discretization
and quantization, we can see that the proposed visualization system perfectly
fits in the setting of granular computing [1]. Indeed, we can see in the proposed
system all the important elements of granular computing. The link between
the proposed system and granular computing based human-centric information
processing can be summarized as follows:

• Abstraction of data is performed through the discretization and quantization
of features and attributes. Then a relation which relates objects to attributes
is constructed. This way we obtain a huge number of abstract data as objects
and very complex relations.

• Derivation of knowledge, is performed through construction of a complete
lattice by formal concept analysis.

• Formal concept analysis is based on an ordered structure given by the set
inclusion between attributes as order relation. This hierarchical structure of
concepts in the proposed structure corresponds exactly to the hierarchical
representation of granular elements. Using this ordered structure, we have
realized the zoom in and zoom out capability of granular computing.

• The binary relation used in the formal concept analysis can be extended to
a fuzzy relation, i. e., the proposed system can naturally work in the context
of human subjectivity. [3]



Visualizing Huge Image Databases by Formal Concept Analysis 355

• The ideas underlying the visualization platform and the interaction function
of the proposed system give a great ability to support the empirical verifica-
tion of the results. Moreover, the potential user can adjust the quantization
of features, being able in this way, to select the attributes which allow the
him to obtain a suitable concept lattice. This interaction between user and
machine through the formal concept analysis can be regarded as a promising
human-centric, granular computing-based information processing method.

In Sec. 2 give some preliminaries about formal concept analysis. In Sec. 3, we
present the proposed formal concept analysis-based lattice visualization system,
aimed to allow users to understand and extract information from large image
databases or video sequences. Section 4 shows two visualization experiments
of two huge image databases: the Corel Image Gallery and Ubiquitous Home
Database produced by National Institute of Information and Communication
Technology (NICT). In Sec. 5, we explain the relationship between the proposed
lattice visualization system and the important paradigms of granular computing
and in Sec. 6 we conclude the paper.

2 Formal Concept Analysis

2.1 Formal Concept Analysis – An Overview

Formal concept analysis [7] [9] is a powerful mathematical tool, which helps
us to construct a complete lattice from a cross table (relation) (e.g. Tab. 1)
between of objects and attributes. Let us illustrate first on an example, how we
can use formal concept analysis in our problem. We construct in the followings a
complete lattice from objects and attributes corresponding respectively to images
and features.

In Tab. 1, the fact that the ith object possesses the jth attribute is indicated
by the symbol × in the ij-position of the table, and Figs. 1 - 4 correspond to
the images 1 - 8.

In this context, a concept will be an ordered pair (A,B), where A (the extent)
is a subset of a set consisting of eight images and B (the intent) is a subset of the

Table 1. An example of an information table

Human Animals RED GREEN BLUE WHITE

Image 1 × × ×
Image 2 × ×
Image 3 × ×
Image 4 × ×
Image 5 × ×
Image 6 × ×
Image 7 × ×
Image 8 × ×
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Fig. 1. Example: Images 1 and 2

Fig. 2. Example: Images 3 and 4

Fig. 3. Example: Images 5 and 6

Fig. 4. Example: Images 7 and 8
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six types of image features, e.g., “Human” means that there are human beings
in the image. To demand that the concept is determined by its extent and by its
intent, means that B should contain just the properties shared by all the images
in A and, similarly, the images in A should be precisely those sharing all the
properties in B. A simple procedure for finding a concept is as follows: take an
object, say the “Image 2”, and let B be the set of attributes which it possesses,
in this case

B = {BLUE, WHITE}. (1)

Let A be the set of all frames possessing all the attributes in B,i.e., in our case

A = {Image 2, Image 8}. (2)

Then (A,B) is a concept, and in this context, we can interpret this concept

(A,B) = ({Image 2, Image 8}, {BLUE, WHITE}), (3)

as a “resort”, since the images “Image 2” and “Image 8” are representing ‘beach’
and ‘mountain’, respectively. In other words, the concept ‘resort’ always contains
the attributes ‘BLUE’ and ‘WHITE’. If we will have any images with attributes
‘BLUE’ and ‘WHITE’, we can guess that the image is related to ‘resorts’ based
on this relationship (knowledge). More generally, we may begin with a set of
objects rather than a single object. Concepts may also be obtained via a similar
process commencing with a set of attributes.

It is usual to regard a concept (A1, B1) as being ‘less general’ than a concept
(A2, B2) if the extent A1 of (A1, B1) is contained in the extent A2 of (A2, B2).
Thus an order is defined on the set of concepts by

(A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2. (4)

Fig. 5. Concept Lattice with respect to Table 1
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The asymmetry in this definition is illusory since A1 ⊆ A2 is equivalent to
B1 ⊇ B2. The resulting ordered set of concepts for the image database is the
lattice given in Fig. 5.

2.2 An Intuitive Algorithm to Construct the Concept Lattice

We show in the present section how to construct a concept lattice from any cross
table, based on the following precise definitions. A context is a triple (G,M, I)
where G and M are two sets and I ⊆ G ×M is a relation. The elements of G
and M are called objects and attributes respectively. As it is usual, instead of
writing (g,m) ∈ I, we write gIm and we say that ‘the object g has the attribute
m’. For A ⊆ G and B ⊆M , we define

A′ = {m ∈M | (∀g ∈ A) gIm}, (5)
B′ = {g ∈ G | (∀m ∈ B) gIm}, (6)

so A′ is the set of attributes common to all the objects in A while B′ is the set of
objects possessing the attributes in B. Then a concept of the context (G,M, I)
is defined to be a pair (A,B) where A ⊆ G, B ⊆ M , A′ = B and B′ = A. The
extent of the concept (A,B) is A while its intent is B. The set of all concepts
of the context (G,M, I) is denoted by B(G,M, I).

Let (G,M, I) be a context. For concepts (A1, B1) and (A2, B2) in B(G,M, I)
we write (A1, B1) ≤ (A2, B2), if A1 ⊆ A2. Also, A1 ⊆ A2 implies that A

′
1 ⊇ A

′
2,

and the reverse implication is valid too, because A
′′
1 = A1 and A

′′
2 = A2. We

have therefore,

(A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2 ⇔ B1 ⊇ B2. (7)

We can easily see that the relation ≤ is an order relation on B(G,M, I), and
〈B(G,M, I);≤〉 is a complete lattice, i.e., it is the concept lattice of the context
(G,M, I).

We consider in what follows an intuitive algorithm for the construction of
the concept lattice. First, we select an object of the context (G,M, I), and then
using Eqs. (5) and (6), we can successively find the corresponding concepts.

The detailed procedure is as follows:

1. Find all the extents of the concepts in the context (G,M, I)
a) Draw a table with two columns headed attributes and extents. Leave

the first cell of the attributes column empty and write G in the first cell
of the extents column.

b) Find a maximal attribute-extent, say m′.
i. If the set m′ is not already in the extents’ column, add the row

[m|m′] to the attribute-extent table. Intersect the set m′ with all
previous extents in the Extents column. Add these intersections to
the Extents’ column (unless they are already in the list), and leave
the corresponding cells in the Attribute column empty.



Visualizing Huge Image Databases by Formal Concept Analysis 359

ii. If the set m′ is already in the Extents column, add the label m to
the attribute cell of the row where m′ previously occurred.

c) Delete the column below m from the table.
d) If the last column has been deleted, stop, otherwise return to 1-(b).

2. Draw the diagram with m and m′ labels. Start at the top of the diagram
with one point labeled G. Work down the list of Extents in the table from 1.
For each set S in the list, add an appropriately positioned new point to the
diagram. Below the point corresponding to S list the elements in S. If S is an
attribute-extent, say S = m′, add the label m above the point corresponding
to S.

3. Redraw the diagram with g and m labels
a) Redraw the diagram. Add the m labels as in the first diagram.
b) For each object g in G, add a label g below the point on the diagram

which has the smallest extent containing the object g (this point can be
found from the first diagram). Alternatively, the point g to be labeled
can be obtained by finding the point

∧{m | gIm}.
4. Check the answer.

a) Check that every joint-irreducible element has a label g ∈ G.
b) Check that every meet-irreducible element has a label m ∈M .
c) Check that

(∀g ∈ G)(∀m ∈M)gIm ⇔ g ≤ m (8)

by checking that, for all m ∈M , the set of object labels in ↓ m is exactly
the attribute-extent m′, where ↓ m stand for the down set of m i.e., the
set of all elements less than m.

[Example]

Using the cross table shown in Table 1, we present in this particular case the way
how we can construct the concept lattice. In order to improve the visualization of
the lattice, we convert Table 1 into the following table 2. With respect to Table 2,
we apply the intuitive algorithm shown above, and we obtain the attributes-
extents table given in Tab. 3.

Table 2. A cross table

Hu An Re Gr Bl Wh

1 × × ×
2 × ×
3 × ×
4 × ×
5 × ×
6 × ×
7 × ×
8 × ×
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Table 3. Attributes and Extents Table

Attributes Extents

G

Gr {3, 5, 6, 7}
Wh {1, 2, 4, 8}
An {3, 4, 7}

{3, 7}
{4}

Bl {1, 2, 8}
Re {5, 6}
Hu {1}

φ

We observe the inclusions in Tab. 3, and so we obtain Fig. 5, where the
overlaps are eliminated.

2.3 Next Closure Algorithm

The intuitive algorithm shown in the previous subsection includes some redun-
dant computations, therefore in the present chapter we will use the next clo-
sure algorithm to perform the formal concept analysis step [9]. We will briefly
describe the next closure algorithm in the followings:

[Def. Lexicographic Order]

A,B ⊆ G, i ∈ G
i)

A < B ⇔ ∃i ∈ B \A, (9)
A ∩ {1, 2, . . . , i− 1} = B ∩ {1, 2, . . . , i− 1}.

ii)

A <i B ⇔ ∈ B \A, (10)
A ∩ {1, 2, . . . , i− 1} = B ∩ {1, 2, . . . , i− 1}.

[Def. Next Closure]

A⊕ i = ((A ∩ {1, . . . , i− 1}) ∩ {i}) . (11)

According to the above definitions, the next closure algorithm will work as
follows:
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[Next Closure Algorithm]

main

begin
A = φ′′

repeat
Output A
Next Closure

until not success
end

3 A Lattice Visualization System for Huge Image
Databases

As shown in the previous section, we can construct concept lattices from any
cross tables having texts, images, video or sound files as objects, provided that
they have precisely defined attributes. The main, still not completely solved
question is, how to quantize the feature vectors to obtain relevant but not re-
dundant attributes. These can contain multiple values as e.g., intensities of pixels
in {0, 1, . . . , 255}) while, in contrast, the attributes should be binary values. Of
course, we can assign the digit of each feature value to an attribute in the cross
table, however, the concept lattice will be too complex if we adopt such a strat-
egy. The quantization should be performed carefully, however, we currently do
not have any systematic way to quantize the feature vectors into attributes. This
is apparently a drawback but it can be turned into an advantage allowing a more
human-centered processing. Therefore, we have developed a lattice structure vi-
sualization system with an interaction function, where the user can adjust the

Next Closure

begin
i = maximum element of G
i= succ(i)
success = false

repeat
i = pred(i)
if (i /∈ A){
B = (A ∩ {1, 2, . . . , i − 1}) ∩ {i}
C = B′′

if(A <i C){
A = C
success = true
}
}

until success or i = minimum element of G
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Fig. 6. Overview of the proposed visualization system

way how the features of images (color, intensity information) are quantized into
attributes (Fig. 6).

The proposed system defines the features of images according to the following
approach. We denote the images by Pk (k = 1, 2, . . . , Pmax) (Pmax = the number
of images in database) as the objects G = {Pk|k = 1, 2, . . . , Pmax} of the cross
table. Each image of the size m × n is represented by three image planes, i.e.,
read, green, blue, therefore, the definition of an object is as follows:

P =
{
P c

k | P c
k ∈ {0, . . . , 255}m×n, c ∈ {R,G,B}} . (12)

In order to acquire a suitable and at the same time understandable lattice
structure for the proposed human visualization system, HSB color space is em-
ployed. Furthermore, as attributes used in formal concept analysis, we propose
new image features considering the effects of saturation and brightness.

The Hue (H), Saturation (S), and Brightness (B) are respectively defined as

Hk(i, j) = tan−1 γ

β − α
, (13)

Sk(i, j) =
α2 + β2 + γ2

3
(14)

and
Bk(i, j) = PR

k (i, j) + PG
k (i, j) + PB

k (i, j), (15)

where ⎧⎨
⎩
α = PB

k (i, j) − PR
k (i, j),

β = PR
k (i, j) − PG

k (i, j),
γ = PG

k (i, j) − PB
k (i, j).

(16)
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In the framework of the new image features that we are currently using in
formal concept analysis, the weights of Saturation, and Brightness are given by

Sw(Pk(i, j)) =
S(Pk(i, j))
Smax

, (17)

and

Bw(Pk(i, j)) = 1 − |B(Pk(i, j)) − Bmax

2 |
Bmax

2

, (18)

where Smax and Bmax are the maximum values of the Saturation and Brightness
respectively.

Finally we define a modified Hue as a new image feature as

H ′(Pk(i, j)) =
∑

0≤i≤m,0≤j≤n

H(Pk(i, j))Sw(Pk(i, j))Bw(Pk(i, j)). (19)

The attribute sets used in the framework of formal concept analysis are defined
as

M = {A1, A2, . . . , AMax}, (20)

where

Ak =
{

0 otherwise,
1 Tk−1 ≤ H ′ < Tk,

(21)

and T is a threshold value. The index ‘max’ corresponds to the quantization
number of our color space, and the proposed system can adjust this value through
computer-user interaction.

4 Visualization Experiments by the Proposed System

The proposed visualization system is developed on a usual platform (CPU =
2.13GHz, MM = 2GB) using the JAVA based programming language ‘Process-
ing’ [18].

In the first step of the algorithm, the proposed system successively loads all the
images from a given database. Then, with respect to each image we perform the
image feature extraction and so we generate the candidates for the attributes
used in the formal concept analysis step. In the next step, the user sets the
desired attributes by the interaction function proposed, and the concept lattice
will be generated based on the selected attributes.

4.1 Visualization of Corel Image Database

For our first experiment we use the Corel Image Gallery which consists of 1,000
images, shown in Fig. 7, in the categories of Human, Dinosaur, Flower, Elephant,
Bus, Mountain, Horse, Dish, Building and Sea. This visualization experiment
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Fig. 7. Examples of Corel Image Database

Fig. 8. Concept lattice obtained by first attributes set (Corel Image Database)
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Fig. 9. Concept lattice obtained by second attributes set (Corel Image Database)

Fig. 10. Concept ‘flower’, attributes : Hue = Red, Saturation = Low

uses two fixed attribute sets, this means that the proposed system generates
two attribute sets by the interaction function. The first set is composed of 15
attributes (12 color quantized regions, and 3 brightness levels). The second set
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Fig. 11. Concept ‘dinosaur’, the attributes : Saturation = High

Fig. 12. Concept ‘elephant’, RGB color space = Red and Green

of attributes is composed of 24 attributes (20 color quantized regions, and 4
brightness levels).

The concept lattices obtained are shown in Fig. 8 (first attribute set) and
Fig. 9 (second attribute set), respectively. In these figures, the size of an element
is proportional to the number of images which belong to each concept. The color
of an element of the lattice represents the average color of the images it contains.
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Fig. 13. Example Images, Ubiquitous Home Database

Therefore, using the proposed visualization platform of the concept lattice, we
can recognize a perspective structure of the whole image database.

The proposed system can focus on each of the elements of the concept lat-
tice. The user can zoom in at the level of any element and he can view the
images included in each concept as shown in Figs. 10, 11, and 12. These can
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Fig. 14. Concept lattice obtained by first attributes set (Ubiquitous Home Database)

Fig. 15. Concept lattice obtained by second attributes set (Ubiquitous Home Database)
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Fig. 16. Obtained scene 1 by proposed system

Fig. 17. Obtained scene 2 by proposed system

be recognized as belonging to the ‘flower’, ‘dinosaur’ or ‘elephant’ categories,
respectively. Of course, the attributes of these concepts express the features in
the ‘flower’, ‘dinosaur’ and ‘elephant’ concepts.

By visualization based on formal concept analysis, we found the following
knowledge with respect to Corel Image Gallery:
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• The ‘flower’ concept is composed of the attributes : Hue = Red, Saturation
= Low

• The ‘Dinosaur’ concept is composed of the attributes : Saturation = High
• The ‘elephant’ concept has the following attributes : RGB color space = Red

and Green

Fig. 18. Obtained scene 3 by proposed system

Fig. 19. Obtained scene 4 by proposed system
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4.2 Ubiquitous Home Database Visualization

In this subsection, we perform a lattice visualization experiment with the ubiq-
uitous home database produced by NICT (National Institute of Information and
Communication Technology). Some example images are shown in Fig. 13. As it
can be seen from these images, they are obtained by fixed cameras. Unlike the
previous section’s data, images of the ubiquitous home database have almost
the same picture composition. In this visualization experiment, we confirm the
effectiveness of the proposed system for scene extraction and recognition. As
attribute sets, we employ the same two sets as in the previous section.

The concept lattices obtained are shown in Fig. 14 (first attribute set) and
Fig. 15 (second attribute set), respectively. Figures 16 - 19 show some extracted
scenes. As it can be seen from these results, the proposed visualization system
is useful for scene recognition.

5 Proposed Lattice Structure Visualization and Granular
Computing Based Human Centric Information
Processing

At the beginning of the manuscript we have pointed out the conceptual relation-
ships between the proposed system and the granular computing paradigm. In
the present section we compare in view of the experimental results shown, the
proposed visualization system with the basic concepts of granular computing.

These results show a strong relationship between granular computing and the
proposed, formal concept analysis-based lattice structure visualization system.
Indeed, we can see a correspondence between our system and basic concepts of
Granular Computing.

1. The proposed system’s information granules correspond to the elements of
the concept lattice while the partitioning corresponds to the quantization of
features.

2. It is easy to see that the concept lattice is a realization of the perspective,
hierarchical nature of granular computing. In the concept lattice, upper el-
ements stand for big information granules, and by duality, lower elements
represent small granules.

3. The ability of the proposed system for the derivation of knowledge was shown
in the proposed examples. It is interesting to remark here that the proposed
system also caries the property to be highly intuitive, and so it allows the
empirical verification of the results.

4. Another notable result of this manuscript is that the proposed system has
interaction functions to adjust the quantization number, and to select the
attributes for obtaining a suitable concept lattice.

We can now conclude by pointing out that altogether, the features of the pro-
posed system show the characteristics of Human-Centric Information Processing
based on Granular Computing.
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6 Conclusions

In order to extract understandable information with suitable sizes from huge
volumes of image data, a lattice visualization system based on granular com-
puting and formal concept analysis has been proposed. The proposed system
generates the information granules as elements in the concept lattice, from the
cross table composed of objects and attributes. The objects and attributes are
images and features respectively. The interaction function proposed here, allows
users to adjust the quantization of features and to select desired attributes. In
the visualized lattice, users can easily recognize the perspective structure of a
whole image database.

Since we can recognize in this approach information granules as elements of
our lattice and partitioning of granular elements as the quantization of attributes,
the proposed lattice visualization system is a realization of the important, gran-
ular computing paradigm.

The proposed system has been developed on an ordinal computer (CPU =
2.13GHz, MM = 2GB) based on Processing language, and two visualization
experiments have been performed. In these experiments, we have used the Corel
Image Gallery and the Ubiquitous Home Database. Through these experiments,
we have confirmed that the proposed system is able to visualize huge image
databases in an intuitive way, and also it becomes suitable for scene recognition
from a huge amount of data.
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Abstract. Dendritic cells are the crime scene investigators of the human immune system. Their 
function is to correlate potentially anomalous invading entities with observed damage to the 
body. The detection of such invaders by dendritic cells results in the activation of the adaptive 
immune system, eventually leading to the removal of the invader from the host body. This 
mechanism has provided inspiration for the development of a novel bio-inspired algorithm, the 
Dendritic Cell Algorithm. This algorithm processes information at multiple levels of resolution, 
resulting in the creation of information granules of variable structure. In this chapter we 
examine the multi-faceted nature of immunology and how research in this field has shaped the 
function of the resulting Dendritic Cell Algorithm. A brief overview of the algorithm is given 
in combination with the details of the processes used for its development. The chapter is 
concluded with a discussion of the parallels between our understanding of the human immune 
system and how such knowledge influences the design of artificial immune systems. 

1   Introduction 

The human immune system (HIS) is a decentralised, robust and error tolerant system 
which consists of a plethora of interacting cells. This system provides protection from 
invading entities such as bacteria and regulates numerous bodily functions. 
Immunology, the study of the human immune system, encompasses multiple levels of 
abstraction. For the past 100 years immunology has been a reductionist science, 
concentrating on the precise mechanisms involved in the relationship between immune-
related molecules and cells. More recently [Cohen07] immunologists are examining 
such components from a systemic perspective. The exact purpose of the HIS still 
remains elusive, though current thinking within immunology is that it provides a 
combination of protection and regulation. Protection involves the rapid detection of 
invading microorganisms termed pathogens, their subsequent removal from the body 
and the process of repair following pathogenic infection. Regulation via the immune 
systems involves the maintenance of a constant internal environment, namely the 
homeostasis of bodily processes. This includes temperature, acidity levels, growth of 
blood vessels, regulation of inflammatory processes and tolerance to self-cells.  

As computer scientists, our interest in the immune system is as a protection system 
as natural parallels can be drawn between natural pathogens and threats to computer 
systems, such as internet based ‘viruses’ and ‘worms’[Forrest94]. To use the immune 
system as inspiration for computer algorithms, the construction of immune-inspired 
models is performed at numerous levels of abstraction, including molecular signaling 
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networks and models of cell. These concepts are translated into an algorithm or 
system through processes of abstraction and modeling.  

The creation of artificial immune systems (AISs) involves the translation of basic 
immunological models into feasible algorithms. This requires careful modeling of 
immune inspired features. To achieve this successfully, it is recommended that the 
desired immune components are modelled at various levels of abstraction then 
transformed into an algorithm using a similar multi-scale ethos.The choice of 
functions abstracted from the natural system is heavily influenced by the methods 
used in experimental immunology as this limits our understanding of the immune 
system. Three different levels of abstraction are commonly used including the 
molecular level, cellular level and systemic level, with the majority of research 
focusing on the molecular level. Such trends within immunology influence the 
manner by which AISs are created with most using models of molecular interactions 
in terms of binding between molecules [deCastro02].  

The Dendritic Cell Algorithm (DCA) is an example of an immune inspired 
algorithm developed using a multi-scale approach. This algorithm is based on an 
abstract model of dendritic cells (DCs). The DCA is abstracted and implemented 
through a process of examining and modeling various aspects of DC function, from 
the molecular networks present within the cell to the behaviour exhibited by a 
population of cells as a whole. Within the DCA information is granulated at different 
layers, achieved through multi-scale processing. This differs from the standard view 
of granular computation [Bargiela03] as such information granules do not have an 
explicit fuzzy component or membership function. However, their processing is 
performed in a similar multi-level manner and across multiple time scales forming a 
diverse set of information granules. Input data is in the form of two different input 
streams, which are combined and correlated across variable time windows. In addition 
such AIS algorithms are inherently human-centric in their development. They are 
based on a foundation of how the immune system is perceived through 
immunological experimentation. This ultimately forms the abstract biological model 
underpinning the function of immune inspired computational systems.  

In this chapter we use the parallels drawn between natural DCs and the artificial 
population of DCs used in the DCA to illustrate the principles behind multi-scale 
algorithm development. The aim of this chapter is to show how such abstraction can 
be achieved and to stress the importance of understanding a system from multiple 
perspectives to produce systems that encompass several layers of information 
granularity. In Section two an overview of the relevant immunology is presented and 
the development process of multi-signal models is outlined. In addition we present an 
overview of the AIS algorithms developed for computer security and optimisation and 
draw parallels with human-centric developments in immunology. Section three 
introduces the DCA as a multi-resolution algorithm. Section four provides a brief 
description of an implemented DCA highlighting signal and antigen processing as 
granular computation, and Section five continues the discussion of the DCA in the 
context of human centric development. Finally conclusions are drawn regarding the 
relationships between immunology, AIS and the lessons learned from the 
developmental process used to create the DCA. 
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2   Background 

2.1   Human Immune System 

The human immune system (HIS) is vast, containing in excess of 10 million cells. There 
is no archetypal “immune cell” akin to neurones in the central nervous system. Instead 
the HIS is an abstract concept, a name imposed by immunologists for a collection of 
cells whose function is within the remit of protection and regulation. The HIS is 
classically subdivided into two distinct branches: the innate and the adaptive systems. 
The innate system is evolutionarily the oldest immune component and its role to provide 
a rapid response on detection of specified molecules within the body [Murphy08]. 

Innate cells include macrophages, natural killer cells and dendritic cells, which 
perform initial pathogen detection by instructing the immune system of damage and 
clear the surrounding tissue of any debris. Over the evolution of the species, the 
immune system has acquired the knowledge of which molecules indicate the presence 
of pathogens. Immune cells are equipped with receptors (surface bound proteins) 
armed to detect such molecules. These receptors are present in great number on the 
cells of the innate immune system. The repertoire of pathogenic recognition receptors 
(termed pattern recognition receptors) is fixed once the genome of an individual is 
encoded. This implies that the innate immune system cannot adapt to novel threats 
over the lifetime of the individual - an important task given the fact that pathogens are 
constantly evolving.  

To keep pace within this biological arms race, the HIS also contains a population 
of cells that are able to dynamically restructure their receptors to adapt to new threats. 
Such cells of the adaptive immune system, namely B-cells and T-cells, have the 
ability upon cloning to reorganise the molecules of their pathogen detectors (termed 
variable region receptors) to attempt to adapt to new threats. It is the combination of 
the rapid response of the innate immune system, coupled with the dynamic 
modifications of the adaptive immune system that provides sufficient protection to 
ensure the survival of our species. 

The current thinking of immunologists heavily influences the manner by which we 
construct AISs. The inspiration used as the basis of such algorithms is derived not 
from the immune system itself, but from human abstractions of how we believe the 
immune system to function. Therefore here we introduce the basic trends in 
immunology over the past 100 years and comment on how various human-centric 
streams of research in immunology has influenced the field of AIS.  

In 1891, Paul Ehrlich and his colleagues [Silverstein05] postulated that the human 
defense mechanism against pathogens revolved around the generation of immunity 
through the production of antibodies. He showed that these generated antibodies are 
specific to the pathogen or toxin being targeted. From his perspective a paradox 
existed termed horror autotoxicus - the immune system has to ensure that invaders are 
controlled and deleted before an infection spreads without responding to or damaging 
its own cells. Following Ehrlich’s work, the clonal selection principle was developed 
where the immune system is postulated to have the ability to respond to proteins - 
termed antigen - which do not belong to ‘self’ and to target antigens belonging to 
‘nonself i.e. pathogenic proteins.  This formed a major constituent of a theory known 
as central tolerance and is shown in Figure 1 as the “one-signal model”. 
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Fig. 1. Abstract representation of the three multiple signal models developed in immunology, 
including the original one signal model, the costimulation driven two signal model where the 
involvement of pathogens was not understood until after the model was explored, and finally 
the three signal model which also includes danger signals. 

As the 20th century progressed, T-cells were characterised in addition to the 
antibody producing B-cells. In 1959, Lederberg proposed the principle of negative 
selection. He established the link between foetal development and the generation of 
tolerance to self-antigen. It is shown that in infancy, newly created T-cells are 
presented a sample of self-antigen. T-cells are deleted if they displaying a receptor 
protein which matches self-antigen with a sufficiently high binding affinity. This 
results in a population of T-cells acutely tuned to respond to non-self entities. 

However, this response to non-self is not always an observable fact and numerous 
noteworthy exceptions have been discovered [Murphy07]. Four main problems have 
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arisen questioning the credibility of central tolerance and ‘self-nonself' as the central 
dogma of immunology. 

• Vaccinations and immunisations require adjuvants (bacterial detritus) despite the 
vaccination containing non-self particles; 

• What the body classes as self changes over time for example in pregnancy; 
• Our guts are host to colonies of bacteria which serve a symbiotic function forming 

the gut flora, without which we are prone to severe intestinal infections and 
inflammation;  

• The immune system can behave inappropriately and attacks its host in the form of 
autoimmune diseases such as multiple sclerosis, rheumatoid arthritis and inflam-
matory bowel disorders, in addition to the generation of allergy to benign particles 
such as pollen.  

The first major modification to the classical one-signal model is the addition of a 
secondary pathway for the activation of adaptive immune cells. This is termed 
costimulationand has been shown as a requirement for the full activation of T-cells, 
forming the two-signal model shown in Figure 1. Even if an antigen and T-cell bind 
sufficiently well, a costimulation signal is required in order for the activation of the T-
cell to effector function. In order to bind to antigen, a T-cell must be ‘presented’ the 
antigen by a cell of the innate immune system, known as an antigen presenting cell 
(APC) such as DCs. 

It is thought that for a T-cell to become activated it must be first presented its 
antigen by an APC in conjunction with molecules termed co-stimulatory molecules 
(CSM). Initially it was undetermined as to what causes APCs to express such 
molecules. Janeway [Janeway89] postulated that APCs produced CSMs in response to 
the detection of bacterial sugars, known as PAMPs - pathogen associated molecular 
patterns. These molecules are exclusively produced by pathogens as the name 
suggests and hence act as a signature of bacterial presence in the body. This is a ‘two-
signal model’ (Figure 1) as the T-cell is given two signals, CSM and antigen. 

This theory explains the need to add bacterial detritus to immunisations, and also 
the lack of response to changing self-proteins, as they do not have PAMPS. However, 
this theory alone cannot explain the lack of response by the immune system to the 
‘friendly’ bacteria in the gut or the phenomenon of auto-immunity to which no 
pathogens are present. 

One of the most recent models is the “danger theory” which incorporates a third 
signal. Matzinger [Matzinger94] proposed that in addition to the requirement for 
antigen and CSMs, T-cells also require a particular type of interleukin, a messenger 
molecule, from the APC to promote full T-cell activation. The danger theory 
postulates that this particular interleukin is produced by the APC in response to 
exposure to tissue damage. This ‘three-signal model’ is shown in Figure 1. 

It is thought that the presence of something like a bacterial colony in an otherwise 
healthy piece of tissue will cause the tissue cells to die unexpectedly. As a result of such 
cell death, termed necrosis, the inner constituents of the tissue cells are subject to a 
rather chaotic degradation process. DCs in particular are shown to increase production 
of the relevant interleukin, IL-12, upon receipt of such indicators of cell damage.  

Conversely, cells can die as part of a normal regulatory process, termed apoptosis. 
DCs exposed to the signals of apoptosis themselves produce a different kind of signal, 
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termed IL-10. Instead of activating the T-cell, production IL-10 by DCs causes T-cell 
deactivation. Through DCs producing varying amounts of IL-12 versus IL-10, the T-
cell is given final confirmation whether to respond to the presented antigen or to 
become tolerant to its presence. 

Research continues in immunology to find further plausible mechanisms of 
immune activation. Recently, a new type of T-cell, a Th17 cell has come to the fore 
using a fourth signal expressed by DCs. The mechanism of action still remains 
unclear, though it appears that this cell is stimulated without the third interleukin 
signal and in the presence of a fourth signal known as TGF-β. These discoveries show 
that no matter what the current state of the art, such models will be continually 
updated and improved as we develop increasingly sophisticated techniques for the 
study of the function of the HIS, leading in perpetual development of AIS based on 
these new discoveries. 

To summarise, multiple-signal models of T-cell activation have dominated much 
of immunology for the past century. This basic model has been subject to much 
debate and numerous additions incorporating different molecular activating and 
suppressing signals in addition to the binding of T-cell to antigen. Understanding the 
basics of immunology is the initial step in creating AIS algorithms. In the next section 
we discuss how AISs have developed in a similar manner to the multiple signal 
models presented in this section. 

2.2   Artificial Immune Systems (AISs) 

AISs are computer systems and algorithms inspired by the function of the HIS. There 
are numerous parallels in the pathway of development of AISs. As with immunology, 
AIS also began by using the self-nonself principles of negative and clonal selection to 
create the Negative Selection Algorithm, which was used primarily for applications 
within computer security. Clonal selection is used in a variety of immune algorithms 
including AIRS, which has proven to be a competitive multi-class classification system. 

In comparison with other bio-inspired computing paradigms, AISs are relatively 
young. Forrest et al. first implemented negative selection in 1994 [Forrest94], based 
on the T-cell centric one-signal model. Exposition and exploration of this algorithm 
dominated the field of AIS for the following decade. The idea behind this principle is 
appealing to computer security - the notion of creating a computer immune system to 
detect computer viruses is naturally appealing as a metaphor. This algorithm uses self-
nonself principles, creating a set of randomly generated ‘detectors’ tuned via a 
mechanism of profiling of normal behaviour, selection of detectors which deviate 
from normal. This results in a detector set tuned to only respond to ‘non-self’ or 
anomalous strings.  

While negative selection generated much interest in AIS, the algorithm itself has 
been shown to have a number of shortcomings. The nature by which the detectors are 
generated relies on the initial creation of a sufficient amount of detectors to cover the 
potential self-nonself feature space. Obviously, as the dimensionality or size of this 
feature space increases, the number of detectors required to fully cover such space 
increases exponentially. This has been proven both experimentally [Kim01] and 
theoretically [Stibor06]. In addition to such scaling problems, the algorithm also is 
prone to the generation of false alarms or false positives. These type1 misclassification 
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errors are thought to arise partially due to the ‘one-shot’ style of learning, and the fact 
that it is difficult to accurately represent what is ‘normal’ within a single bit-string 
[Stibor05]. Despite numerous attempts to remedy this challenge with thorough 
investigations of the representation [Zhou06], this algorithm does not produce results 
similar in calibre to that observed by the HIS.  

Consequently AIS researchers have incorporated an ever-increasing amount of 
underlying immune-inspiration in an attempt to improve such algorithms. For 
example, the incorporation of a second signal was first proposed by Hofmeyr 
[Hofmeyr99] and implemented by Balthrop [Balthrop05], where it was shown to 
reduce the rates of false positives in numerous cases. As with immunology, AIS has 
continued to add signals to its underlying models in much the same manner as 
immunologists have over the past century.  

Aickelin et al. proposed a novel approach to the development of AIS[Aickelin03] 
centered in the incorporation of the danger theory to AIS. Two streams of research  
 

 

Fig. 2. The parallel development of immunology and subsequently, artificial immune systems. 
Given the trend in artificial immune systems to work increasingly closely with immunologists, 
we expect that this trend will continue for the forseeable future within this field. 
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resulted from this proposition, one including Janeway’s infectious nonself model and 
the other resulting in the creation of the Dendritic Cell Algorithm. Both algorithms 
are applied with success to the detection of network intruders, encompassing a variety 
of problems within such fields [Greensmith06, Twycross06].  

The augmented two-cell model was implemented by Twycross and Aickelin 
[Twycross06] and while it was never explained as incorporating a PAMP signal (it is 
expressed as a ‘danger signal’ in their literature) it is indeed incorporating a secondary 
signal to a process which also requires the selection of a T-cell along with the use of 
an APC to provide the second signal. The second signal was derived from data out of 
range of characterised ‘normal’ data.  

The developments of AIS outlined above do not focus on the development of 
clonal selection and idiotypic network based systems, as they do not have sufficient 
relevance to the development of the DCA. However, the interested reader is advised 
to refer to Timmis and DeCastro [Timmis02] for further details.  

The development of AIS for uses within computer security in particular have 
inherent parallels with dogma in immunology as summarised in Figure 2. This can be 
attributed to the fact that AIS researchers are improving their relationships with 
practical immunologists as interdisciplinary collaborations become increasingly 
prevalent within computer science and the life sciences. This was indeed the case for 
the ‘Danger Project’ resulting in the development of the DCA. This is corollary to the 
fact that techniques in immunology have developed to such a level where quite 
detailed models can be constructed as the knowledge base expands regarding the 
actual function of the HIS. 

3   Overview of the Dendritic Cell Algorithm (DCA) 

In this section we give an overview of the DCA and its underlying immune inspiration. 
Metaphorically, DCs are the crime-scene investigators of the HIS, traversing the tissue 
for evidence of damage - namely the signals of apoptosis and necrosis, and for 
potential culprits responsible for the damage, namely antigen. More information 
regarding the function of natural DCs can be found in an excellent review by of the 
field by Lutz and Schuler [Lutz02] with a distilled version for computer scientists 
presented in [Greensmith07]. 

The DCA is derived from an abstract model of DC biology resulting in an anomaly 
detection algorithm that provides robust detection and correlation. Different cells 
process input data mapped as ‘signals’ acquired over different time periods. This 
generates individual ‘snapshots' of input information that are subsequently correlated 
with antigens. The DCA is described in greater technical detail in numerous sources 
including Greensmith et al. [Greensmith06, Greensmith08a] and in the corresponding 
PhD thesis [Greensmith07].  

The process of creating an algorithm such as the DCA is nontrivial, involving 
multiple stages of development and requires the performance of cross-disciplinary 
research in conjunction with immunologists. Within the framework of the Danger 
Project [Aickelin03], practical immunologists conducted parallel research which 
filled gaps in knowledge to assist in the creation of the most accurate models 
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possible. In this section a high level description of the algorithm is provided for 
illustrative purposes.  

The DCA is a population based algorithm, with each artificial cell acting as an 
agent within the system. To achieve the incorporation of our abstract model of DC 
function two levels of abstraction are used, namely the internal mechanisms of the 
cell and the overall behaviour of the cell throughout its lifetime. As an algorithm it 
performs filtering of input signals, correlation between signals and antigen, and 
classification of antigen types as normal or anomalous. Two levels are explicitly 
modelled, namely the internal cell procedures and the behavioural state changes.  

The internal cell procedures form the lowest level of abstraction used to dictate the 
behaviour of the artificial DCs. This comprises the collection of antigen data and the 
cumulative processing of the cells input signals.  Input signals are transformed into 
cumulative output signals acquired over time. Signal data enters the system and is 
stored in an array. The cell uses these signal values each time the cell update function 
is called. Upon acquisition of the signal values each cell performs a weighted sum 
equation to combine the inputs three times to produce interim output values. These 
interim values are added to a final output value resulting in each cell producing three 
‘running total’ output signals. Each input signal has a weight associated to transform 
the input values into the three interim values. The model of this process is represented 
in Figure 3.  

 

Fig. 3. Graphical representation of the signal processing used within each cell of the DCA. 
Each input signal per category is transformed to one of the three outputs. The weights used in 
this calculation are derived from a ratio discovered by our associate immunologists. 

Each output signal is assessed each iteration. Three output signals are generated 
termed the costimulation value; the semi-mature output; and the mature output and 
their respective functions described in Table 1. The costimulation value is used to 
limit the lifespan of each individual cell within the DC population. Upon initialisa-
tion, each cell is assigned a threshold value, representing the lifespan of the cell. The  
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Table 1. Cumulative output signal functions for the three output signals of an artificial DC 

Output signal Function 
Costimulatory signal Assessed against a threshold to 

limit the duration of DC signal and 
antigen sampling, based on a 
migration threshold 

Semi-mature signal Terminal state to semi-mature if 
greater than resultant mature signal 
value 

 
Mature signal Terminal state to mature if greater 

than resultant semimature signal value 

 

Fig. 4. UML state chart representing the abstract model of an individual DC 
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cumulative costimulation value is assessed against the lifespan threshold each 
iteration. Once this threshold is exceeded, the cell is removed from the population, 
analysed and eliminated. Upon analysis, the remaining two values are assessed.  

The behavioural component is summarised in Figure 4. This level of abstraction is 
used to define the state changes that appear to be so pivotal to the role of the DC in 
the HIS. In nature DCs change state to either mature or semi-mature at a certain point. 
In our abstract model the DCs have perceived sufficient information when they 
produce a particular receptor attracting the cell to the lymph node compartment.  

The costimulatory value controls the initial state change from immature to either the 
semi-mature or mature state. The final state is determined by the greater of the two 
remaining values. If the value of the semi-mature output is greater then the cell is 
deemed semi mature, and the same process applies should the mature signal be greater.  

Each time input signals are received an antigen may also be collected (unless no 
antigen are generated at that timepoint). All antigen collected by the cell over its 
lifetime are ‘presented’ in conjunction with this context value at this analysis stage. 
The antigen-plus-context is used to assess the anomalous nature of such antigen. 
Antigen are not modified in any way by the DC, but are collected from the antigen 
vector and stored until presentation. The manner by which the antigen are stored has 
varied between the various versions of the algorithm, though this is not thought to 
affect the resulting performance of the algorithm.  

A minimum number of ten cells are required to perform processing [Greensmith08]. 
The multiplicity of cells means that the algorithm uses a consensus decision generated 
across the population to make decisions. The output of the algorithm is an anomaly 
score for each antigen type, to which a threshold can apply to give a definite class 
prediction. Due to the time-sensitive nature of the algorithm, it is not particularly suited 
to randomly ordered data but is shown to have useful and robust properties when 
applied to challenging real-time applications [Greensmith07]. The abstract principles 
outlined in this section are further elaborated upon in Section 4 to demonstrate how 
this algorithm works in practice. 

4   Implementing the DCA 

In Section 3 a high level overview of the DCA is given. In this section a more detailed 
algorithmic description is given. The purpose of a DC algorithm is to correlate 
disparate data-streams in the form of antigen and signals and to label groups of 
identical antigen as ‘normal’ or ‘anomalous’. The DCA is not a classification 
algorithm, but shares properties with certain filtering and sorting techniques. This is 
achieved through the generation of an anomaly coefficient value, termed the MCAV. 
The labeling of antigen data with a MCAV coefficient is performed through 
correlating a time-series of input signals with a group of antigen. The signals are pre-
normalised and pre-categorised data sources based on snapshots of preliminary 
experimental data, which reflect the behaviour of the system being monitored.  
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Categorisation of the signals is basedon the four signal model based on PAMP, 
danger, safe and inflammation signals. The co-occurrence of antigen and high/low 
signal values forms the basis of categorisation for the antigen data. The primary 
components of a DC based algorithm are as follows: 

 
1) Individual DCs with the capability to perform multi-signal processing 
2) Antigen collection and presentation 
3) Sampling behaviour and DC maturation state changes 
4) A population of DCs and their interactions with signals and antigen 
5) Incoming signals and antigen, with signals pre-categorised as PAMP, 

danger, safe or inflammation 
6) Multiple antigen presentation and analysis using ‘types’ of antigen 
7) Generation of anomaly coefficient for various different types of antigen 

 
Each cell in the population acts as an agent and has a set of instructions, which are 

performed every cell update iteration. Control of the frequency and nature of cell 
updates is specific to the instance of the algorithm’s implementation as is the rate of 
signal sampling and the number of antigen collected per iteration. Diversity is 
generated within the DC population by initiation of migration of the DCs at different 
time points i.e. the cessation of data sampling. This creates a variable time window 
effect throughout the DC population, which adds robustness to the system, and 
segments signals and antigen into variable information granules which underpin the 
functioning of the algorithm. 

Each time a cell is updated the input signals are processed and added to the cell’s 
internal values to form a set of cumulatively updated output signals in addition to the 
collection of antigen data items. The DCs are assigned one of three states at any point 
in time, namely immature, semi-mature or mature.  Initially the cells are all assigned 
the ‘immature’ state label. Upon the receipt of sufficient signal values to initiate a 
process termed maturation, the cell can transform to either the semi-mature or the 
mature state. The differences in the semi-mature and mature state are controlled by a 
single variable, determined by the relative differences between two output signals 
produced by the DCs. If, over its lifespan, the cell accumulates predominantly safe 
signals, the cell is classed as semi-mature, otherwise it is assigned the mature status. 
Whilst in the immature state, the DC has three functions, which are performed each 
time a single DC is updated: 

 
1) Sample antigen: the DC collects antigen from an external source and places 

the antigen in its own antigen storage data structure. 
2) Update input signals: the DC collects values of all input signals present in 

the signal storage area 
3) Calculate interim output signals: at each iteration each DC calculates three 

temporary output signal values from the received input signals, with the 
output values then added to form the cell’s cumulative output signals. 
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Signal processing is performed via a weighted sum equation, bypassing the 
modelling of any biologically realistic gene regulatory network. A simple weighted 
sum equation is used in order to reduce any additional computational overheads, as 
the primary purpose of this algorithm is to perform anomaly detection in near to real-
time. The crucial component of this procedure is the ability of the user to map 
normalised input data to one of the four categories of input signal (PAMP, danger, 
safe and inflammation). The general form of the signal processing equation is:  

 
Op = (Pw∑iPi + Dw∑iDi + Sw∑iSi) (1+I) ∀p , 

 
wherePw, Dwand Sware assigned weights,Pi, Diand Siare the input signal values of 
category PAMP (P), danger (D) or safe(S) for all signals (i) of that category for all 
output signals p, assuming that there are multiple signal sources per category. In this 
equation, the term I represents the inflammation signal. This sumis repeated three 
times, once per output signal, which are then added to the cumulative output signals. 
Suggested ratios for the weights are given in Table 2 where input signals are 
represented as j per category and outputs as p  per value. Each weight can be derived 
from two weights directly assigned to the PAMP signals (W1 and W2). The actual 
values used for the weights can be user defined, though the relative values determined 
from biological experimentation are kept constant.  

Table 2. Derivation and interrelationship between weights in the signal processing equation, 
where the values of the PAMP weights are used to create the all other weights relative to the 
PAMP weight. W1 is the the weight to transform the PAMP signal to the CSM output signal 
and W2 is the weight to transform the PAMP signal to the mature output signal. 

 i= 1, PAMP i= 2, Danger i= 3, Safe  
p = 1, 

costimulation 
W1 W1 / 2  W1 * 1.5 

p = 2,  semi-
mature 

0 0 1 

p = 3, mature  W2 W2 / 2  W2  * -1.5 

 
Each member of the DC population is assigned a context upon its state transition 

from immature to a matured state of either mature (context = 1) or semi-mature 
(context =0). Diversity and feedback in the DC population is maintained through the 
use of variable migration thresholds. The natural mechanism of DC migration is 
complex and not particularly well understood, involving the under and over 
production of numerous interacting molecules. Therefore we use a simple 
approximation of a thresholding mechanism using migration thresholds to assess if a 
DC has received sufficient information to present suitable context information along 
side the antigen collected during this sampling period.  
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Each DC in the population is assigned a “migration threshold value upon its 
creation. Following the update of the cumulative output signals, a DC compares the 
costimulatory signal value (CSM) with its assigned migration threshold value. If CSM 
exceeds the migration threshold, the cell ceases sampling input data and the resultant 
values and collected antigen are ‘presented’ for analysis. At this point the cell is reset 
(all internal values set to zero and antigen expunged) and returned to the sampling 
pool of cells.  

The range of the migration thresholds assigned throughout the population is also a 
user-defined parameter. Previously random, Gaussian and uniform distributions have 
been used to provide the population with this diversity with respect to the range. We 
have used simple heuristics to define the limits of such ranges of threshold value, 
relating to the median values of the input signal data, and as a result are data-specific.  
The net result of this is that different members of the DC population ‘experience’ 
different sets of signals across a time window. If the input signals are kept constant, 
this implies that members of the population with low values of migration threshold 
present antigen more frequently, and therefore produce a tighter couple between 
current signals and current antigen. Conversely, DCs with a larger migration threshold 
may sample for a longer duration, producing relaxed coupling between potentially 
collected signal and context. This diversity ensures that the same information is 
processed in slightly different manners, resulting in noise tolerance to variation and 
conflict in the input data streams.  

Once all data is processed or a specified number of antigen are presented (if the 
dataset is sufficiently large) the antigen and cell context values are collated to form 
the anomaly scores for each antigen type. The antigen data used with the DCA are an 
enumerated type variable, with multiple antigen of the same value forming a single 
antigen type. For example, a running process on a CPU has a process ID, and the 
antigen can be a representation of the process ID generated each time the process 
invokes a system call.  

Antigens are collected by different DCsthat have experienced different snapshots 
of signal data. Therefore to analyse an antigen type one must average the experience 
of the DC population for that particular type. The value we assign per antigen type is 
termed the mature context antigen value or MCAV. This is a real value between zero 
and one: the closer this value is to one the greater the probability that this antigen type 
is anomalous. The MCAV is the sum of the number of individual antigen presented in 
the mature context divided by the total number of antigen presented for a single 
antigen type. This forms an average context value for each antigen type calculated 
from information derived using the population dynamics of the algorithm. The 
creation of this value also adds robustness as it cancels out any errors made by 
individuals in the DC population. At the core of this algorithm is a combination of 
numerical signal data processed at the lowest level of granularity, correlated with 
enumerated type antigen at a higher level of abstraction, which when brought together 
results in a robust anomaly detection paradigm. A generic version of the DCA is 
shown in Figure 5.  
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Fig. 5. A high level overview of the DCA as a system, with data flowing in to the signal matrix 
and antigen storage areas, and antigen types presented for analysis where the MCAV anomaly 
values are generated.  

The DCA has been applied to numerous anomaly detection problems where signal 
and antigen mapping is possible. Such scenarios include the detection of port scans 
and internal intrusions. The detection of internal intrusions with the DCA formed a 



390 J. Greensmith and U. Aickelin 

significant development for this algorithm, with extensive experimentation and 
analysis performed [Greensmith08a]. The dataset used was derived from monitoring a 
real host machine under a variety of experimental scenarios, such as emulating busy 
‘mid-morning’ periods and performing scanning attacks under different network 
conditions. The objective of the insider experiments is to assess the DCA’s 
performance when applied to the detection of slow and stealthy port scans. The 
antigen types are captured process IDs generated by the host machine each time a 
monitored process invokes a system call. The seven used signals are monitored from 
various system attributes of the monitored host:  

 
1) PAMP1 : Number of ICMP destination unreachable errors received per 

second; 
2) PAMP2 : Number of TCP Reset packets received per second; 
3) Danger1 : Sending of network packets per second; 
4) Danger2 : Ratio of TCP to all other packets per second; 
5) Safe1 :  Rate of change of sending network packets per second; 
6) Safe2 : Average TCP packet size; 
7) Inflammation: Presence of a remote root login.  

 
In these experiments we show that the DCA has the ability to discriminate between 

the standard running processes on a monitored machine and an anomalous sustained 
port scan, performed by an emulated internal intruder. The results of this study also 
highlight a susceptibility of the algorithm to the ‘bystander’ effect, as a small number of 
false positives are generated to a normal process if it is equally as active as an 
anomalous process at exactly the same time. For this study the DCA is compared 
against a neural network based Self Organising Map (SOM) approach. Significant 
statistical differences were found in the performance of the two algorithms, with further 
one-sided nonparametric statistical tests concluding that the performance of the DCA is 
superior to that of a standard SOM, when comparing antigen type segment sizes of 
10000. For full experimental details and a comprehensive analysis of this comparative 
study refer to Greensmith et al. [Greensmith08a], and [Gu08] for a comparative study of 
the DCA, negative selection and other machine learning algorithms.  

5   DCA Development 

Numerous stages are involved in creating an immune inspired algorithm. Following 
the description given in the previous section, here the process is presented by which 
this algorithm was designed and implemented. This process consisted of numerous 
stages and commenced by examining the interactions between DCs and T-cells. Once 
this information was compiled it became apparent that DCs perform a crucial role in 
mediating between the innate and adaptive immune system. 

DCs appear to be a key cell in the immunological decision making process. The 
model generated at this stage involved multiple signal processing pathways within the 
DC itself in addition to complex interactions with a variety of adaptive immune cells.  
This model is highly complicated and is not suitable for direct transformation into an 
algorithm as it contained too many interactions. An abstract model of this process was 
required and developed.  
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The core of the abstract model is shown in Figure 4. This model dictates the cell 
behaviour and groups multiple cell inputs and outputs into four categories of input 
signal and three categories of output signal. In this model the state changes of an 
individual cell are also defined. While a DC is in its signal and antigen collection 
phase, the cell is termed immature. Upon receipt of input signals (PAMPs, danger 
signals from necrosis and safe signals from apoptosis) the immature cell undergoes a 
state change to either the mature or semi-mature state.  

Antigen presented by a mature cell are potentially anomalous, and antigen 
presented by a semi-mature cell are potentially normal. For each type of antigen the 
number of semi-mature versus mature presentations are counted. This metric is used 
to derive an anomaly score for that particular type of antigen, upon which a threshold 
of anomaly is applied. Antigen with a score above this threshold are classed as 
anomalous. This calculation allows us to dispense with the computationally intensive 
process of generating T-cells, but provides a similar output functionally.  

This abstract model could then be taken and transformed into a feasible algorithm 
as outlined in Section 3.2. As shown in Figure 6, three incarnations of the algorithm 
have been developed, implemented and tested on a variety of applications. The initial 
prototype system provided a ‘proof of concept’, and resulted in a feasible algorithm. 
This system used the minimum components, using three input signals derived from 
the dataset, and for each data item, ten artificial DCs were used to sample both 
antigen (the data ID) and signals (attributes). 

As a rudimentary test, the prototype DCA is applied to the Wisconsin Breast 
Cancer dataset, where it achieved high rates of true positives and very low rates of 
false positives. This investigation highlights the suitability of the algorithm for 
applications which require ordered input data, such as real-time anomaly detection. 
We demonstrated that the DCA was not suitable for solving standard machine 
learning problems but could be applied to problems involving intensive processing in 
a real-time environment.  

Following the prototype, the algorithm was scaled up to become a fully working, 
real-time intrusion detection system [Greensmith06]. An agent-based framework, 
libtissue [Twycross06] was used as a development platform with each DC acting as an 
independent agent. Antigen are fed into a storage area to be randomly selected at any 
point by any DC. Signals are fed into a signal matrix, with each member of the DC 
population updated with new input information each time the matrix is updated. The 
mechanism used by individual DCs to produce three output signals from this input is 
explained in the next section. Once all antigen are fed into the system anomaly scores 
are calculated for each antigen type. To test this system, the DCA is initially applied to 
the detection of scanning activity from a monitored client machine. As with the proof 
of concept experiment it is shown that high rates of false positives and low rates of true 
positives are generated. The initial investigation was then scaled up to encompass more 
sophisticated scans, where the performance was similarly good. Upon comparison with 
a Self-Organising Map [Greensmith08a], it is shown that the DCA produces 
significantly fewer false positives than this established technique.  

This particular version of the DCA has also been applied to the detection of a novel 
threat on the internet, botnets [AlHammadi08], where the DCA produced high rates of 
true positives and low rates of false positives in comparison to a statistical technique. 
Outside of computer security Kim et al. [Kim06] have successfully applied the DCA  
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Fig. 6. Diagram of the DCA development process. As shown in the legend, this process cycles 
between complex and simple models. The appropriate level of complexity is dependent upon 
the use of the model, shown in the right hand column. 

to the detection of misbehaviour in wireless sensor networks, where again the 
algorithm showed much promise. The DCA is also showing promise in the area of 
robotic security as demonstrated by Oates et al. [Oates07]. A proof of concept 
experiment is performed to demonstrate that the DCA could be used for basic object 
discrimination in a controlled environment.  The same researchers have now extended 
this research into the theoretical domain [Oates08] through frequency tuning analysis. 
This research has highlighted that the DCA exhibits filter properties and moreover 
suggests the importance of the lifespan limit.  
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We had developed a seemingly successful algorithm capable of good performance 
across a range of problems and domains. However, this system consisted of over 15 
tunable parameters, such as the number of cells, the threshold for maturation, the 
number of input signals, the weights for the processing of the input signals and 
numerous other parameters [Greensmith06]. Basic sensitivity analyses could be 
performed, but was difficult as due to large amounts of probabilistic elements it was 
not clear which components were performing which function and what exactly was 
performing the anomaly detection. We suspect that the key to the algorithm is the 
time-sensitive correlation between processed signals and collected antigen combined 
with a consensus decision taken across a population of cells. Due to the sheer amount 
of factors and parameters it was not obvious how we could analyse such a system to 
the degree of accuracy required.  

The most recent incarnation of the DCA is a deterministic version. This remedies 
the problem of excessive stochastic elements and assists in proving to our community 
and the bio-inspired community at large not only that the algorithm can produce good 
results. In addition, we understand why it produces such results. Investigations of the 
time delay between signals and antigen have assisted in improving our understanding 
of how the correlation between these two sources of data is performed 
[Greensmith08].  

In addition an improved anomaly assessment and comparable results with our 
previous systems, it has provided a platform in which we can track individual cells 
and antigen through the system over numerous repetitions and achieve identical 
scenarios within our antigen and signal processing. This reproducibility has let us 
examine the various features in isolation. We aim to extend this work across a 
multitude of applications and to use it to perform more theoretical analyses of the 
algorithm. This includes discovering in which situations it is unsuitable along with 
finding successful applications, allowing for a fuller characterisation of the 
capabilities of the technique. We intend to use this system as our testbed for adding 
novel components to the algorithm as the state-of-the-art in immunology progresses 
including such components as the Th17 cells mentioned previously. 

6   Conclusions 

In this book chapter both human centric and multi-faceted development paradigms  
have been presented. We have shown the parallels which exist between immunology 
and artificial immune systems. Such parallels are in terms of development, where 
immunological discovery has ultimately shaped the way in which we view the 
immune system in order to construct immune-inspired algorithms. This phenomena 
may be at least partially attributed to the fact that what is of interest to immunologists 
is ultimately published and such resources form the basis of inspiration. Perhaps the 
link between immunology and AIS will become even closer as interdisciplinary 
collaborations within AIS become more prevalent, resulting in algorithms which 
actually resemble an immune system. Whether an increased amount of immunological 
accuracy will be of any great benefit to AIS remains to be seen. However, the close 
examination of immunology appears to have been fruitful for the DCA. 
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With the DCA two levels of abstraction were used, namely at an intra-cellular level 
and at a cell behaviour level. The choice to use these levels in particular was dictated 
by the scope of experiments performed by the collaborating immunologists. This has 
resulted in an algorithm which is unique as it performs filtering on input signals, 
correlation between signals and antigen and classification of antigen. Without such 
detailed immunology, the inspiration may have appeared too abstract, and the resulting 
system may have become over simplistic. In order to develop complex algorithms one 
may need to understand the complex form of the chosen system of inspiration.  

Finally, it is crucial to note the manner by which the DCA was developed as shown 
in Figure 5. This process varied between highly complicated models and systems to 
simplified versions. The cycling between complex and simple is necessary - the 
complex models are needed in order to find the correct level of detail, with the 
simplification process reducing factors such as computational complexity or having to 
explicitly model interactions between molecules and receptors. Both types of model, 
simple and complex, are needed in order to find the right level of abstraction to 
transform an idea into a working system.  

The current incarnation, the deterministic DCA, has reduced numbers of 
parameters and controllable elements, so the same antigen and signals are sampled by 
the same cell agents  provided the input is kept constant. As the simple to complex 
cycle continues, the next step with this algorithm is to introduce stochastic elements 
individually. This will allow for the investigation of the algorithm behaviour in more 
detail, and will assist in demonstrating how much randomness is necessary in this 
system or similar. 
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Burczyński, Tadeusz 329

Castillo, Oscar 203
Coupland, Simon 185

Das, Ranajit 313
de Oliveira, José Valente 119
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