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Abstract: Semantic repositories are database management systems, capable of handling

structured data, taking into consideration their semantics. The Semantic Web represents

the next-generationWeb of Data, where information is published and interlinked in away,

which facilitates both humans and machines to exploit its structure and meaning. To

foster the realization of the Semantic Web, the World Wide Web Consortium (W3C)

developed a series of metadata, ontology, and query languages for it. Following the

enthusiasm about the Semantic Web and the wide adoption of the related standards,

today, most of the semantic repositories are database engines, which deal with data

represented in RDF, support SPARQL queries, and can interpret schemas and

ontologies represented in RDFS and OWL. Naturally, such engines take the role of Web

servers of the Semantic Web.

This chapter starts with an introduction to semantic repositories and discussion on

their links to several other technology trends, including relational databases, column-

stores, and expert systems. As the most distinguishing quality of the semantic repositories

is reasoning, an overview of the strategies for the integration of inference in the data

management life cycle is presented. An overall view of the mechanics of the engines is

provided from the perspective of a conceptual framework that reveals all their tasks and

activities (e.g., storage and retrieval) along with the factors that impact their performance

(e.g., data size and complexity). A review of several design issues, including distribution,

serves as a basis for understanding the different implementation approaches and their

implications on the performance of semantic repositories. Several of the most popular

benchmarks and datasets, which are often used as measuring sticks for the performance of

the engines, and few of the outstanding semantic repositories, are presented along with the

best published evaluation results.

The advantages and the typical applications of semantic repositories are presented

focusing on two usage scenarios: reasoning with and the management of linked data

(a popular trend in the Semantic Web) and enterprise data integration. The chapter ends

with some considerations regarding the future development of semantic repositories and

design topics like adaptive indexing and interoperability patterns.
7.1 Introduction

The Semantic Web creates a wealth of data, where information is given well-defined

meaning and computers are better able to work with it; a vast collection of structured

data are published and interlinked together to form a Web of Data. The potential for

increasing knowledge availability and the ability of machines to effectively work with it is

enormous. Managing the data on the Web, however, represents a tremendous challenge,

considering their size and complexity, the anticipated number of requests, and the

desirable response times. This opens the story of semantic repositories (SR) – tools that

combine characteristics of database management systems (DBMS) and inference engines

to support efficient manipulation of Semantic Web data. Semantic repositories take the

role of Web servers, providing access to the Web of Data.
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The presence of such data management systems, able to hold, interpret, and serve

requests and queries from multiple users against massive amounts of data, is an indis-

pensable step toward the realization of the vision and the potential of the Semantic Web.

They evolve dynamically, racing to extend human’s and computer’s capabilities to deal

with structured data. The implementation of such engines requires advancement of the

frontiers in two fields: databases and reasoning. Each new development allows loading

more data, dealing with more comprehensive schemas and ontologies, and answering

more complex queries in less time. As in mountain climbing, each new achievement

uncovers new opportunities and challenges.

A story related to UNIPROT illustrates what it feels like to be a technology pioneer.

UNIPROT is the most extensive and the most popular public database about protein-

related information (see > Sect. 7.5.2). Back in 2006, Ontotext established LifeSKIM –

a small team to work on life science applications. One of the first tasks of the LifeSKIM

people was to load UNIPROT in the OWLIM semantic repository (see > Sect. 7.6.4). The

first attempt ended up with a ‘‘stack overflow’’ error – the corresponding version of the

engine was not prepared for a group of 3,000 concepts, related through the transitive owl:

sameAs property. Once this problem was fixed, it became clear that heavy usage of owl:

sameAs alignment can ruin the performance, as discussed in > Sect. 7.2.1.4. The neces-

sary optimizations in the indices were made; latter on those proved to be very useful for

linked data management and data integration (see > Sect. 7.8.1). It was finally possible to

load UNIPROTand to perform materialization against the relevant fragment of OWL. The

last surprise camewhen a person from the LifeSKIM teamdefined several sample queries and

tried to make sense of the results. Some of them were definitely incorrect, and investigation

was carried out to find the source of the problem. Finally, it appeared that there was a small

bug in the UNIPROTschema, which remained unspotted by its developers and its numerous

users, because no one before was able to interpret this aspect of its semantics.

The UNIPROTencounter with OWLIM (the semantic repository) is an example of how

a dataset can drive an improvement in the engine and vice versa. Practically, semantic

repositories can be seen as track-layingmachines, which extend the reach of the data railways:

Each previous step is only possible on top of the results of the previous one. These railways

change the data-economy of entire domains and areas, by allowing larger volumes of more

complex data to be handled at lower cost. This makes the topics around performance,

capabilities, and development of semantic repositories both fascinating and intriguing.

This chapter deals with the foundations of semantic repositories and attempts to

provide a roadmap toward their major characteristics, related design and performance

issues, the state of the art in the field, and future directions. The major objectives are:

● To clarify the principles of operation of semantic repositories and the benefits of their

usage

● To explain the facets of their performance, because their understanding of this is a key

factor for the successful adoption of semantic repositories

The remainder of this section starts with discussion on the recent history and the

‘‘political economy’’ of the field (> Sect. 7.1.1), the role of the semantic repositories and
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their typical usage (> Sect. 7.1.2), and continues with a quick introduction to several

related subjects: RDF data models (> Sect. 7.1.3) and linked data basics (> Sect. 7.1.4).

> Section 7.2 discusses reasoning within the semantic repositories: the strategies for

the integration of inference in the data management life cycle, with their advantages and

related problems, as well as, ontology languages and dialects suitable for inference in such

scenarios. In > Sect. 7.3, a conceptual framework for the understanding of all tasks and

activities of a semantic repository is provided. This framework addresses also the factors

that impact its performance and the different aspects or dimensions of this performance.

> Section 7.4 goes into a range of practical issues related to the design of today’s semantic

repositories, including analysis of typical server configurations and various approaches for

the distribution of the repositories. Next, in > Sect. 7.5, several of the most popular

benchmarks and datasets are presented – those are often used as measuring sticks for the

performance of the semantic repository engines. At this point, the floor is set to discuss a

few of the most prominent semantic repositories (> Sect. 7.6) and present an overview of

the best published evaluation results (> Sect. 7.7).

> Section 7.8 outlines three typical applications of semantic repositories:

● FactForge: a search engine, serving as a gateway, facilitating the usage of the central

datasets in the Linking Open Data cloud

● LinkedLifeData: a platform for semantic data integration in life sciences domain

● BBC’s website for World Cup 2010, which demonstrates how semantic technologies

can enable optimizations in the publishing process

Finally, a list of related resources is provided (> Sect. 7.9) and discussion on a few of the

key issues related to the future development of the semantic repositories (> Sect. 7.10),

along with design considerations (like adaptive indexing) and interoperability patterns,

which are likely to be adopted in order to resolve some of the bottlenecks of today’s

semantic technology applications.
7.1.1 Inspiring Vision + Standards + Business Demands =
Rapid Development

Semantic repositories are still in the initial phase of rapid upward development. Since

2004, every couple of years, the engines have been getting an order of magnitude faster and

more scalable. Such development has been enabled by several factors:

● Standards – standardization efforts related to the Semantic Web, most notably

RDF(S), OWL, and SPARQL, provided a solid ground for development and good

minimal levels of interoperability.

● Benchmarks – the performance of a semantic repository is a multidimensional phe-

nomenon; the performance with respect to different tasks depends on a range of

factors and parameters. Making sustainable progress in the performance of the engines

requires adequate measuring sticks and methods, namely, benchmarks and evaluation
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methodologies. They can provide clear indication about the cost, the applicability, and

the benefits of each new optimization, approach, or technique with respect to the

different aspects of the performance.

● Hardware – while a $10,000 server was needed to load one billion statements in 2006,

three years later, this task was achievable on a $2,000 workstation. Running semantic

repositories on commodity hardware comparable with the environments on which

relational databases are run is considered as a serious asset.

● Performance engineering – the understanding about the optimal server config-

urations for different tasks, types of data, and query loads is far better today than

5 years ago.

● Data integration demands – globalization and the consolidation of the business

increased the demand for data integration approaches, which scale efficiently to tens

and hundreds of data sources. In the life sciences, the availability of hundreds of public

databases, efficient access to which can facilitate medical research and drug develop-

ment, served as a huge stimulus for the adoption of semantic repositories.

● Linked data enthusiasm – the emergence of the Web of linked data (see > Sect. 7.1.4)

provoked interest in industry (and many governments) to use public data and to

publish databases in RDF, according to the linked data principles [5].

In summary, the growing demand for the management of heterogeneous and dynamic

structured data met with a technology stream that already offers robust tools. The latter

are backed by a vision, community, and standards that ensure its steady development. The

overheads related to the adoption of higher-level data management paradigm became

bearable in the light of the increasing hardware capabilities.
7.1.2 Semantic Repositories = Inference Engines +
Column-Stores

Semantic repositories are engines similar to database management systems (DBMS).Their

major functionality is to support efficient storage, querying, and management of struc-

tured data. The major differences with the DBMS can be summarized as follows:

● They use ontologies as semantic schemas, which allows them to automatically reason

about the data.

● They work with generic physical data models, which allows them to easily adopt

updates and extensions in the schemas, that is, in the structure of the data.

Functionally, semantic repositories are essentially DBMS that can interpret the data. Based

on the semantics of the schemas, they can infer implicit facts and consider them in the

process of query evaluation.

As an illustration of this, > Fig. 7.1 provides an example of the representation of

simple family relationships (the graph on the right) and the facts that can be inferred from

those (indicated with dashed arcs) based on simple entailment rules (presented on the

left). Two explicit facts were asserted in the repository (the solid orange arcs): ‘‘Ivan is
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Data representation and interpretation in semantic repositories
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a child of Maria’’ and ‘‘Maria is a woman.’’ The repository was able to infer several

new facts (the dashed orange arcs), for example, that Maria is parent of Ivan, that they

are relatives to each other, that Maria is a person and an agent. Those inferences were

made on the basis of the specific data schema that was used. The interpretation of both the

specific instance data and the schema was possible based on the semantics of the system

primitives used (the part of the graph in blue), encoded in the entailment rules (presented

on the left).

The most direct benefit of the ability of the semantic repository to interpret the data is

that it can evaluate queries (or more generally retrieval requests) in a much ‘‘cleverer’’ and

more flexible manner. For instance, in the above example, the repository will be able to

return Ivan as a result of a request asking for all relatives of Maria (e.g., by the retrieval

pattern ‘‘Maria relativeOf ?x’’). In this case, the query pattern is more general than the

explicit fact asserted (being a relative is a general case of being a child). Moreover, the

relation in the query goes in the inverse direction (the fact was ‘‘Ivan ?p Maria,’’ but it

matches request for ‘‘Maria ?p ?x’’).

The above query example is an illustration that semantic repositories allow query

variation with respect to the level of generality and the direction of the relation between

two entities. More generally, the expression of the information need in the query no longer

has to match the syntax of assertion of the data. This enables a whole new range of

information access scenarios, where the person who formulates the query is not aware of

the details of the schemas that were used for the encoding of the data. This is only

possible in a DBMS where the engine understands (to some extend) the semantics of

the data and the semantics of the query and can interpret them in order to find matches
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despite syntax variations. This is probably the major difference between the RDF-based

semantic repositories and XML-based DBMS. XML is designed to allow interoperability

with respect to the syntax of the data, remaining ignorant to its semantics. For instance, in

an XML schema, one cannot define inverse, transitive, and symmetric properties as it is

possible with RDF (see > Fig. 7.1). This means that the XML database has no chance to

interpret the data and to provide a useful answer to the query in the example given above.

As already mentioned, another principal advantage of the RDF-based DBMS is that

they use a generic physical model. The data are represented internally in graph-like data

structures like the one depicted on > Fig. 7.1. > Figure 7.2, on the other hand, presents

a comparison of the representation of the data in relational DBMS (RDBMS, on the left)

and the RDF databases (on the right), where each arc from the RDF graph is represented as

a triple: subject (the source node), predicate (the property, which determines the type of

relation or the attribute), and object (the target node, or the value). A change in the

schema (e.g., definition of a new property) requires no changes in the representation of

the asserted facts in the RDF database, because it does not impose a structural change

in the physical representation. In contrast, in the relational DBMS, the physical represen-

tation of the data schema is dependent on the schema. The data are stored in files,

structured in accordance with the structure of the tables, essentially as sequences of

bytes of equal length, each of which representing one row in the table as depicted on

> Fig. 7.2 (on the left). Thus, a change in the schema (e.g., addition of a new column in

a table) requires considerable re-arrangement of the data files.

Historically, over the last couple of decades, there were multiple attempts to imple-

ment ‘‘semantic databases’’ based on data understanding and interpretation. Those were

labeled and promoted in very different ways, depending on their origin and the IT trends
Person
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…
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Row stores versus RDF databases



7.1 Introduction 7 239
at the time of their appearance. The most notable language for ‘‘semantic databases’’ in

this line is probably known as Datalog – a limited version of Prolog, defined for usage in

DBMS (such databases were referred to as deductive databases). Most of the scalable

semantic repositories today support logical languages quite similar in spirit and expressive

power to Datalog (see > Sect. 7.2.2). Further, many of the expert systems and knowledge

base management systems developed in the late 1980s and the early 1990s, as part of

the Artificial Intelligence (AI) work, were also offering fairly similar functionality, pack-

aged and promoted with plenty of high-level claims. Finally, over the last couple of

decades, there have always been reasoners or inference engines. While these tools are mostly

focused on logical inference, at the end of the day, their basic functionality is the same:

One should be able to assert some facts and get answers based on interpretation of their

semantics.

Over the last decade, the popularity of column-stores has been growing. The central

idea is that, while in the relational database the information is stored and managed

primarily by rows (those could be referred to as row-stores), in the column-stores,

information is managed by columns. Typical representatives are Google’s BigTable, [12],

and the Vertica Database, [66]. The major advantage of this representation is the same as

with the RDF databases: Changes in the schema are far easier to implement compared to

RDBMS. Such representations are also far more efficient for the management of sparse

data. Imagine a class of objects that can have 50 different attributes. In relational

databases, the information about the instances of such class will be naturally modeled

as a table of 51 columns (one for primary key and 50 for the attributes). Now, imagine that

for each instance of the class there are values defined only for 10 of these attributes on

average. In a typical RDBMS, this would result in a data file, which is 80% full with null

values. In contrast, an RDF-based DBMS does not need to allocate space for missing

attribute values – there will be simply no such records in the Statements table as shown in

the example on > Fig. 7.2.

In a nutshell, column-stores have considerable advantages against the RDBMS in two

respects: dynamic data schema and sparse data. The principal advantage of the RDBMS is

that the information is already grouped to a major extent, so, typically, the RDBMS needs

to make less joins (i.e., to resolve less references to other records) during query evaluation.

Obviously, both column- and row-stores have their advantages in different data manage-

ment scenarios. Column-stores are good in situations where aggregates are computed over

large number of similar data items, like in data warehouses. Row-stores are good in

situations where relatively stable processes with predetermined structure are to be auto-

mated and managed.

While RDF databases and column-stores share a lot of design principles, a typical

column-store differs from an RDF-based semantic repository in several ways:

● Globally unique identifiers. An important feature of RDF, as a data representation

model, is that it is based on the notion of Unique Resource Identifiers (URI, [4]).

All predicates andmost of the subjects (see> Sect. 7.1.3) are identified by a URI. In the

examples provided above (see > Fig. 7.2), the nodes are identified by URLs
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(myd:Maria is a URL representation as QName, using namespace prefix, e.g., myd:).

In contrast, most of the other DBMS use integer identifiers, which are unique only in

the scope of the same type of elements in the same instance of the database.

● Standard compliance. While there are no well-established standards in the area of the

column-stores, the RDF-based semantic repositories are highly interoperable between

one another on the basis of a whole ecosystem of languages for schema definition,

ontology definition, and querying.

Semantic repositories can be described as ‘‘RDF-based column-stores with inference

capabilities.’’

As a wrap-up, provided is a list of the major characteristics and advantages of semantic

repositories:

● Easy integration of multiple data sources: Once the schemas of these sources are

semantically aligned, the inference capabilities of the engine support the interlinking

and combination of the facts from the different sources.

● Easy querying against rich, diverse, or unknown data schemas: Inference is applied to

match the semantics of the query to the semantics of the data, regardless of the

vocabulary and the data modeling patterns used for encoding data.

● Great analytical power: One can count that semantics will be thoroughly applied even

when this requires recursive inferences on multiple steps. In this way, semantic

repositories can uncover facts, based on the interlinking of long chains of evidence –

the vast majority of those facts would remain unspotted in a regular DBMS.

● Efficient data interoperability: Importing RDF data from one store to another is

straightforward, based on the usage of globally unique identifiers.

The above qualities make semantic repositories an attractive choice for a range of data

management tasks, that is, data integration, data warehousing, content management,

metadata management, master data management (MDM), online analytical processing

(OLAP), and business intelligence (BI). Over the last couple of years, these applications

have been recognized and analyzed by many reputable analysts of information technology

(see [52] and [67]).
7.1.3 RDF, SPARQL, and RDF-Based Data Representation
Models

Resource Description Framework (RDF) is a language for representing information about

resources in the World Wide Web [41]. Although it was designed to represent metadata

about Web resources, RDF has much broader use as a generic data model for structured

data management and reasoning. SPARQL, [53], is a query language for RDF data sources.

Here we provide an overview of several augmentations of the basic RDF specification,
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which are relevant to its usage as data representation model in semantic repositories and

the support of SPARQL queries.

The atomic data element in RDF represents a statement about a resource or a blank

node. Each statement is a triple of the format < Subject, Predicate, Object>, for

example, <John, loves, Mary > or < Mary, hasBirthday, “14.11.1972”>. RDF

description can be seen as directed labeled graph, where each triple defines an edge

directed from the subject to the object, which is labeled with the predicate. The nodes

of the graph could be URI (unified resource identifiers, [4], e.g., an URL), blank node

(auxiliary nodes), or XML literal. The predicates are always URIs. Literals are not allowed

in subject position, that is, they cannot be the start of an edge in the graph. Intuitively,

literals are used to describe resources identified by URIs, but there is no point in

describing literals, because they represent primitive data values. A sample graph, which

describes a Web page, created by a person called Adam, can be seen in > Fig. 7.3. More on

RDF can be found in > Semantic Annotation and Retrieval: RDF.

SPARQL [53] is an SQL-like query language for RDF data, specified by the RDF Data

Access Working Group of W3C. It differs from SQL in the following aspects:

● SPARQL does not contain specific Data Definition Language (DDL) provisions

because the schemas are represented in both RDFS and OWL as standard RDF graphs,

thus requiring no specific language to deal with them.

● SPARQL is not a Data Modification Language (DML), that is, one cannot insert,

delete, and update RDF graphs using SPARQL. The major reason for this is that there

is still no consensus on the optimal DML design for RDF.
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City

ty
pe

“Eden”

http://www.hyz.com/home.html
creator
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Homepage
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RDF graph describing Adam and his home page
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SPARQL supports four types of queries:

● SELECT queries – return n-tuples of results just like the SELECT queries in SQL.

● DESCRIBE queries – return an RDF graph. The resulting graph describes the

resources, which match the query constraints. Usually, a description of a resource is

considered an RDF-molecule, forming the immediate neighborhood of an URI.

● ASK queries – provide positive or negative answer indicating whether or not the query

pattern can be satisfied.

● CONSTRUCT queries – return an RDF graph constructed by means of the substitu-

tion of the variables in the graph template and combining the triples into a single RDF

graph by set union. More on SPARQL can be found in >Querying the Semantic Web:

SPARQL.

Named graph, [11], is an RDF graph with assigned name in the form of a URI

reference. In an extended RDF model, one can deal with multiple named graphs and

describe the graphs, making statements about them, putting their URIs in subject

position. While the original definition of named graphs leaves plenty of room for

interpretation, a more concrete definition is provided in the specification of SPARQL,

where queries are evaluated against datasets, composed from multiple RDF graphs. In

SPARQL, [53], RDF Dataset is defined as

{ G, (<U1>, G1), (<U2>, G2), . . . (<Un>, Gn) }

where G and each Gi are RDF graphs, and each <Ui> is a distinct IRI (internationalized

URI). The pairs (<Ui>, Gi) are called named graphs, where <Ui> is the name of graph

Gi. G is called default graph – it contains all triples, which belong to the dataset, but not to

any specific named graph. The notion of default graph is not present in [41]. Intuitively,

a dataset integrates several RDF graphs in such a way that each graph can be distinguished,

manipulated, and addressed separately. In a nutshell, in the RDF data model, extended with

named graphs, statements can be part of named graphs, which can be used to model

provenance or other contextual meta-information: Named graphs are also referred to as

contexts in some systems.

Formally, a dataset can be represented as an RDF multi-graph, which, in its turn, can

be represented as a set of quadruples of the following type: <S,P,O,G>. The first three

elements of the quadruple,<S,P,O>, represent an RDF statement; the fourth element, G,

represents the name of the named graph.

The SPARQL specification does not provide sufficient formal grounds for the semantics

of the named graphs in order to determine the possible behavior of a semantic repository

that supports such an extended RDFmodel. As SPARQL supports no datamodification, it is

unclear what should be the formal consequences of adding or removing a statement from

a named graph. Counting statements in a SPARQL dataset is also not specified. To fill this

gap, the specification of the second generation of the ORDI framework, [43] defined these

aspects of the semantics of named graphs and introduced a new notion, namely triplesets.

A tripleset, as introduced in [43], is a mechanism to deal with parts of datasets or to

group some of the statements in a dataset. An RDF dataset with named graphs and
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triplesets is depicted in > Fig. 7.4. The difference between named graphs and datasets can

be explained as follows:

● Named graphs ‘‘own’’ the statements; for example, each statement belongs to a specific

named graph of the default graph.When a statement is added or deleted from a named

graph, a new arc appears or disappears from the multi-graph, which represents the

datasets; the count of the arcs increases or decreases, respectively.

● Triplesets are tags on the statements. When a statement is associated with a tripleset,

this can be seen as an association operation, which does not add a new arc in the graph.

When statement is removed from a tripleset, that is, it is no longer a member of this

group of statements, it does not disappear from the dataset, it is just being un-tagged

or disassociated.

Given the above extensions, the atomic entity of the tripleset model is a quintuple:

< S, P, O, G, {TS1,. . .,TSn} >

where G is the named graph and {TS1, . . . TSn} is a set of identifiers of the triplesets to

which the contextualized statement < S, P, O, G > is associated. In other words,

each statement (from each graph) can be member of multiple triplesets. Formally, the

extension of a tripleset is an RDF multi-graph, a subset of the set of all quadruples in

the dataset. Triplesets are named, that is, each tripleset is associated with an URI. It is

worth noting that the above quintuple is provided for the sake of formal specification of

the semantics of the extended RDF data model. Semantic repositories can (and most

of them do) implement alternative data representation and indexing structures, while

supporting the same semantics.
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The need for the enhancement of the RDF data model with triplesets is a result from

the clear specification of the semantics of the named graphs. Named graphs are used most

often for tracking of provenance, for example, when multiple graphs from different

sources are merged or referenced (e.g., when dealing with linked data, see > Sects. 7.1.4

and > 7.8). In such a scenario, strong ‘‘ownership’’ semantics should be enforced for the

named graphs so that updates of the contents of specific named graphs can have real

impact on the contents of the dataset. Once named graphs are given such semantics, there

is a need for a mechanism which allows for dealing with metadata about the contents

of an integrated dataset. Triplesets are defined as a weaker mechanism to group quadru-

ples (statements form a dataset) and assign metadata with them. Moreover, since

the triplesets allow for the designation or tagging of parts of a dataset, they are especially

useful when selecting parts of the dataset, for example, in the course of multistage

processing, where intermediate results should be passed from one component to another.

Triplesets are supported by BigOWLIM and the storage infrastructure of Freebase (see

> Sect. 7.8.1.1); they are also a standard feature of the LarKC data layer (see > Sect. 7.5.1

in [31]). A more concise description of the tripleset mechanism is provided in [35].
7.1.4 Linked Data

The notion of ‘‘linked data’’ (linked data principles and applications are presented in

greater detail in > Semantic Annotation and Retrieval: Web of Data; this section provides

only a brief introduction to their major principles as linked data bring specific require-

ments for semantic repositories) is defined by Tim Berners-Lee, [4], as RDF graphs,

published on the WWW so that one can explore them across servers by following the

links in the graph in a manner similar to the way the HTMLWeb is navigated. It is viewed

as a method for exposing, sharing, and connecting pieces of data, information, and

knowledge on the Semantic Web using URIs and RDF. ‘‘Linked data’’ are constituted by

publishing and interlinking open data sources, following four principles. These are:

1. Using URIs as names for things

2. Using HTTP URIs, so that people can look up those names

3. Providing useful information when someone looks up a URI

4. Including links to other URI, so people can discover more things

In fact, most of the RDF datasets fulfill principles 1, 2, and 4 by design. The piece of

novelty in the design principles above concerns the requirement for enabling Semantic

Web browsers to load HTTP descriptions of RDF resources based on their URIs. To this

end, data publishers should make sure that:

● The ‘‘physical’’ addresses of the published pieces of data are the same as the ‘‘logical’’

addresses, used as RDF identifiers (URIs).

● Upon receiving an HTTP request, the server should return an RDF-molecule, that is,

the set of triples that describe the resource.
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Linking Open Data (LOD, [68]) is aW3C SWEO community project aiming to extend

the Web by publishing open datasets as RDF and by creating RDF links between data

items from different data sources. Linked Open Data provides sets of referencable,

semantically interlinked resources with defined meaning. The central dataset of the

LOD is DBPedia – an RDF extract of the Wikipedia open encyclopedia (DBPedia is

discussed in > Sect. 7.5.3). Because of the many mappings between other LOD datasets

and DBPedia, the latter serves as a sort of a hub in the LOD graph assuring a certain level of

connectivity. LOD is rapidly growing – as of September 2010, it contains 203 datasets, with

total volume of 25 billion statements, interlinked with 142 million statements as illus-

trated on > Fig. 7.5.

Although not related to semantics, the linked data concept turns into an enabling

factor for the realization of the Semantic Web as a global Web of structured data around

the Linking Open Data initiative. Still, querying and reasoning with linked data raises

various challenges related to the very scale and nature of such data. A specific approach for

the management of linked data, named ‘‘reason-able views,’’ is presented in > Sect. 7.8.1

and > Sect. 7.8.1.1 provides an overview of few of the central LOD datasets.

More generally, the management and publishing of linked data creates major

usage scenarios for semantic repositories, which bring a range of specific requirements,

such as:

● Dealing with a massive number of different predicates with no proper definition –

there are about hundred thousand predicates in DBPedia.

● Optimizations in the reasoning with owl:sameAs-equivalence (see > Sect. 7.2.1.4) – in

linked data, many objects havemultiple different identifiers across different datasets or

even within a single dataset.

● Novel query methods need to be developed as the standard structured query languages

and engines assume schema knowledge at the time of query specification. In the linked

data scenario, such assumptions are nonrealistic; methods of the type of the RDF

Search developed in BigOWLIM and used in FactForge are required (see > Sects. 7.6.4

and > 7.8.1.1 respectively).

7.2 Reasoning in the Semantic Repositories

Amajor distinctive feature of the semantic repositories, versus most of the other database

management systems (DBMS), is that they manage the data taking into consideration

their semantics. They can interpret the semantics of the schemas and the data loaded into

them and deliver answers, based on this interpretation. In the simplest scenario, a request

using the pattern “?x fellowCitizenOf Frank” will return Orri as a result, if “Frank

fellowCitizenOf Orri” was asserted and fellowCitizenOf is defined to be

a symmetric relationship.

The ability of the semantic repositories to interpret the semantics of the data delivers

one major advantage. The syntax of the query is no longer required to match the syntax of



S
ur

ge
R

ad
io

W
ik

i-
co

m
pa

ny
LI

B
R

IS

F
lic

kr
ex

po
rt

er

R
ev

yu
O

pe
n-

G
ui

de
s

P
is

a
V

ir
tu

os
o

S
po

ng
er

S
IO

C
S

ite
s

fli
ck

r
w

ra
pp

r

O
pe

n
C

al
ai

s

R
D

F
 B

oo
k

M
as

hu
p

Fr
ee

ba
se

lin
gv

oj

Li
nk

ed
M

D
B

D
B

pe
di

a

M
ag

na
-

tu
neG
eo

-
na

m
es

E
ur

o-
st

at

P
ro

je
ct

G
ut

en
-

be
rg

C
ru

nc
h

B
as

e
B

B
C

Jo
hn

P
ee

l

B
B

C
La

te
r 

+
TO

T
P

Q
D

O
S

D
oa

p-
sp

ac
e

rie
se

W
or

ld
Fa

ct
-

bo
ok

F
O

A
F

pr
of

ile
s

A
ud

io
-

S
cr

ob
bl

er

M
us

ic
-

br
ai

nz

B
B

C
P

la
yc

ou
nt

D
at

a

M
yS

pa
ce

W
ra

pp
er

Ja
m

en
do

B
B

C
P

ro
gr

am
m

es

Li
nk

ed
G

eo
D

at
a

U
S

C
en

su
s

D
at

a

G
ov

-
Tr

ac
k

O
pe

n
C

yc
Ya

go

H
om

ol
o

G
en

e

P
ub

C
he

m

S
ym

bo
l

D
is

ea
-

so
m

e
C

A
S

H
G

N
C

M
G

I
P

ub
M

ed

In
te

r
P

ro
P

D
B

G
en

e
O

nt
ol

og
y

U
ni

P
ro

t

P
fa

m
P

ro
D

om A
s 

of
 J

ul
y 

20
09

P
R

O
S

IT
E

Ta
xo

no
m

y

IB
M

LA
A

S
-

C
N

R
S

U
ni

R
ef

D
B

LP
H

an
no

ve
r

C
ite

S
ee

r

IE
E

E
N

ew
-

ca
st

le

C
O

R
D

IS
ep

rin
ts

D
B

LP
R

K
B

E
xp

lo
re

r

R
K

B
E

C
S

S
ou

th
-

am
pt

on

R
A

E
20

01

N
at

io
na

l
S

ci
en

ce
F

ou
nd

at
io

n

R
eS

IS
T

P
ro

je
ct

W
ik

i

E
ur

ec
om

B
ud

a-
pe

st
B

M
E

A
C

M

S
W

C
on

fe
re

nc
e

C
or

pu
s

S
em

an
tic

W
eb

.o
rg

R
D

F
oh

lo
h

IR
IT

To
ul

ou
se

R
es

ex

G
en

eI
D

C
hE

B
I

O
M

IM

K
E

G
G

D
ru

g
B

an
k

Li
nk

ed
C

T

G
E

O
S

pe
ci

es
D

B
LP

B
er

lin
R

ea
ct

om
e

U
ni

P
ar

c

U
M

B
E

L

W
3C

W
or

dN
et

D
ai

ly
M

ed

U
ni

S
T

S

P
ub

G
ui

de

B
B

C
 M

us
ic

E
C

S
S

ou
th

-
am

pt
on

S
em

-
W

eb
-

C
en

tr
al

.
F
ig
.
7
.5

M
a
p
o
f
th
e
d
a
ta
se
ts

in
Li
n
k
in
g
O
p
e
n
D
a
ta

(L
O
D
)
p
ro
je
ct
,
[6
8
]

246 7 Storing the Semantic Web: Repositories



7.2 Reasoning in the Semantic Repositories 7 247
the assertion. In the example above, the user will receive one and the same results,

disregarding the direction in which the symmetric relationship was asserted. A slightly

more complicated scenario is presented in > Fig. 7.1, where the request is formulated

through a more general relationship (relative), but the repository is capable of delivering

results based on assertion of a more specific one (child). More generally, the engine takes

care to interpret the semantics of the query and the semantics of the data in order to

deliver all correct results.

The ability to abstract the query syntax from the data syntax bears important advan-

tages in data access scenarios where one has to deal with complex relationships or with

schema diversity. > Figure 7.1 presented a simple example of enhanced analytical power –

one can obtain results at the desired level of generality, even if the underlying data are far

more specific. As long as the semantic repositories can interpret the semantics in

a recursive fashion, one can enjoy interpretations of the data, which combine results

from previous interpretations and explicit assertions. In other words, depending on the

data patterns and the semantics, one can retrieve facts, which are the results of multiple

steps of interpretation, and by this way one can uncover relationships, which would

otherwise remain hidden.

In a data integration scenario, often similar facts are encoded in different ways across

different data sources. Imagine a case when one data source deals with information about

the locations of airports encoded as “Stansted airportOf London”, while another

data source associates airports to cities in a more fine grained manner, using patterns like

“London hasMainAirport Heathrow” and “London hasAlternativeAirport

Gatwick.” An approach to integrate these data using RDFS and OWL would be to

define a new property hasAirport, and to define it to be inverse property of airportOf

and super-property of both hasMainAirport and hasAlternativeAirport. Given

such semantic vocabulary alignment, a semantic repository will be able to return all the

three airports as a match for the retrieval pattern “London hasAirport ?x.” This way

data and schema interpretation facilitate data integration.

Although all the examples of data or query interpretation can be achieved when

working with other types of DBMS also, RDF-based semantic repositories provide the

most efficient and standard compliant mechanism to deliver such limited intelligence in

a robust, reliable, and manageable manner.
7.2.1 Lightweight Inference Integration

Semantic repositories are expected to demonstrate performance and scalability compa-

rable to those of the mature database management systems. They should be able to deal

with billions of facts, to handle online updates while at the same time processing vast

query loads. This puts heavy constraints on both the worst-case and average-case com-

plexity of the reasoning algorithms to be used. Further, such repositories shall be used and

operated by engineers and administrators with no deep understanding of reasoning or



248 7 Storing the Semantic Web: Repositories
mathematical logic. This means that the inference techniques used should allow inferences

to be traced and ‘‘debugged’’ by a typical database administrator, given one week of RDF

(S) and OWL training. Altogether, these factors limit the applicability of non-tractable

languages and techniques like satisfiability checking in semantic repositories. As seen in

> Sect. 7.6, most of the semantic repositories (which offer inference at all) support

reasoning based on Datalog-style rule entailment.
7.2.1.1 Rule-Based Entailment Example and Relations to Query
Evaluation

The following example is meant to facilitate intuitive understanding of the mechanisms

for Datalog-style rule entailment in RDF repositories (a proper definition of RDF-based

rule-entailment formalisms is provided in > Sect. 7.1.1) and their similarities to the

structured query evaluation mechanisms. In a typical language of this type, rules are

defined through premises and consequences. One or more RDF triple patterns, involving

variables, constitute the premises of the rule and several others represent the conse-

quences. For variable bindings, which satisfy the premises, the reasoner can infer the

consequences. For instance, given the rule:

<I, rdf:type, C1 > AND < C1, rdfs:subClassOf, C2> => < I, rdf:type, C2>

where I, C1, and C2 are variables, if the following statements are already in the repository

<myData:Maria, rdf:type, ptop:Woman>

<ptop:Woman, rdfs:subClassOf, ptop:Person>

it can infer the following statement

<myData:Maria, rdf:type, ptop:Person>

It is important to be considered that rule-based reasoning of the type presented

above is computationally very similar to the evaluation of structured queries in

languages like SQL and SPARQL (see > Sect. 7.1.3). For instance, the consequences

of the above rule are the same as the results of the following query (The definitions

of the namespace prefixes rdf and rdfs are omitted above for the sake of better

readability.):

CONSTRUCT { ?I rdf:type ?C2 }

WHERE { ?I rdf:type ?C1. ?C1 rdfs:subClassOf ?C2 }

The latter has several implications. As a start, it indicates that reasoning can

be implemented by means of query evaluation. It is also the case that most of the

performance considerations concerning query evaluation are also relevant to rule-based

reasoning – such is the case with distribution approaches discussed in > Sect. 7.4.2.
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7.2.1.2 Reasoning Strategies: Forward- and Backward-Chaining

The main strategies for the implementation of rule-based inference are as follows. (More

information on rule-based semantics can be found in >KR and Reasoning on the

Semantic Web: RIF, which introduces the Rule Interchange Format and provides discus-

sion on interoperability across multiple rule-based systems.)

● Forward-chaining: to start from the known facts (the explicit statements) and to

derive valid implications. The goals of such reasoning can vary: to compute the

inferred closure ; to answer a particular query; to infer a particular sort of knowledge

(e.g., the class taxonomy).

● Backward-chaining: to start from a particular fact or a query and to verify it or to

find all possible solutions. In a nutshell, the reasoner decomposes or transforms the

query into simpler (or alternative) requests that can be matched directly to explicit

facts available in the KB or can be proven through further recursive transformations.

The most popular example for backward-chaining is the unification mechanism in

Prolog.

In the context of forward-chaining, inferred closure (also known as deductive closure) is

the extension of a knowledge base (or an RDF graph) with all the implicit facts (or

statements) that could be inferred from it, based on the enforced semantics.

In relational database management systems,materialized views represent an approach

where the results of the query, which define the view, are cached in a sort of temporary

table. Generally, in inference engines, materialization is the process of making some

reasoning results explicit. In both cases, it is a matter of storing the results of data

processing so that these are available at a later stage. In relation to semantic repositories,

materialization is used to refer to a range of techniques similar to those referred above,

which are, however, diverse and not standardized. Below is provided a definition for

materialization, as a reasoning strategy for semantic repositories, considering that such a

strategy should be transparent for the clients of the repository. In other words, following

the ‘‘separation of concerns’’ principle, the clients of the repository should not experience

functional differences in the case of a change of the strategy. Given the same sequence of

update transactions and queries, the repository should return the same results for the

queries disregarding the reasoning strategy, which is implemented. Still the clients can

(and are likely to) experience change in some nonfunctional parameters, for example, the

speed of specific operations.

Materialization is a strategy for reasoning in semantic repositories where the inferred

closure of the contents of the repository is derived through forward-chaining andmaintained

in a form that allows its efficient usage. In practice, thismeans that the inferred closure of large

volumes of data should be persisted and indexed in order to enable efficient query evaluation

or retrieval. The repository should take care to keep the inferred closure up-to-date after each

update of its contents, that is, at the end of each update transaction.
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7.2.1.3 The Advantages and Applicability of the Different
Strategies

The principal advantages and disadvantages of materialization can be summarized as

follows:

● The loading of new facts gets slower because the repository is extending the inferred

closure after each transaction. In fact, all the reasoning is performed during loading.

● The deletion of facts is also slow, because the repository should remove from the

inferred closure all the facts, which cannot be inferred any longer.

● Themaintenance of the inferred closure usually requires considerable additional space

(RAM, disk, or both, depending on the implementation).

● Query and retrieval are fast, because no deduction, satisfiability checking, or other

sorts of reasoning are required.

The advantages and disadvantages of the backward-chaining-based interpretation of

the data in semantic repositories are also well known:

● The loading and modification of the data are faster, compared to repositories using

materialization, because no time and space is lost for the computation and mainte-

nance of the inferred closure of the data.

● Query evaluation is slower because extensive query rewriting (reformulation and

expansion) has to be performed. As a result, a potentially much larger number of

lookups in the indices are required, as compared to standard query evaluation.

The choice of the most appropriate and efficient reasoning strategy requires balancing

between loading and query performance, considering several factors, related to the data,

its semantics, and the typical usage scenarios and loads:

● When the data are updated very intensively, there will be relatively high costs for the

maintenance of the inferred closure, so materialization becomes less attractive.

● In the case of challenging query loads, backward-chaining becomes inappropriate, as

long as it increases the time for query evaluation considerably.

● If materialization requires time and space, which are hard to be secured, it should be

avoided.

● Whenever low response time has to be guaranteed, backward-chaining should be

avoided because it leads to recursive query evaluation, where performance cannot be

easily estimated and managed.

The selection of the appropriate reasoning strategy for the specific application is very

important as long as it can change the performance of some operations several times; see

for instance, the variation in the loading performance in dependence of the materializa-

tion complexity in > Sect. 7.7.2. One should note, however, that the reasoning strategy

generally impacts the so-called average-case complexity. The worst-case reasoning

complexity, even for relatively simple ontology languages, is unbearable for semantic
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repositories, independently of the selected strategy. Suppose, for instance, a dataset where

each of the one million citizens of Amsterdam is linked to one of the other citizens with

a fellowCitizen relationship. Suppose also that the latter is defined to be transitive and

symmetric, as it naturally is. The inferred closure of such dataset will contain one trillion

facts; thus, total materialization is impractical. A query checking the pattern

“AmsCitizen fellowCitizen ?x,” in a system using backward-chaining, will have

to make one million steps of recursion, which is also practically unfeasible. Avoiding such

cases requires through ontology and schema design and, more generally, concise data

modeling. Architects and database administrators should be aware of such dangers and

take care to control the complexity. In this respect, semantic repositories are not very

different from the mainstream DBMS, which also expose unbearable query evaluation

performance in cases of poor data or query modeling – no one can guarantee the good

performance of an SQL database if indices are not properly defined or if a query specifies

unconstrained Cartesian products on large tables.

Total materialization is adopted as a reasoning strategy in a number of popular

Semantic Web repositories, including Sesame, Jena, DAML DB, ORACLE, and

BigOWLIM (please, refer to the corresponding subsections of > Sect. 7.6 for details).

Probably, the most important advantage of the usage of materialization in semantic

repositories is that all data are available at query time, which makes possible RDBMS-

like query optimization techniques. The query evaluation engine can use statistics tomake

guesses about the cost of evaluation of a particular constraint and the cardinality of its

results; such guesses allow DBMS to reorder constraints in order to build an efficient

query evaluation plan. Such optimization techniques are far more complex in the case of

deductive query evaluation.
7.2.1.4 Hybrid Strategies and Dynamic Materialization

A range of different techniques have been invented to improve the efficiency of the

reasoning strategies for specific types of data and usage scenarios.

There are cases where hybrid strategies, which involve partial materialization and

partial backward-chaining for specific data patterns, deliver the best overall performance.

One such schema, related to the efficient handling of the semantics of owl:sameAs, is

described in > Sect. 7.4.1. The lightweight version of OWLIM (SwiftOWLIM ver. 2.9, see

> Sect. 7.6.4) implements a partial materialization schema where the inference related to

transitive, inverse, and symmetric properties is performed during forward-chaining;

however, a specific materialization strategy is applied to avoid the inflation of the indices

of the repository.

There are repositories, which use backward-chaining, but do caching of the interme-

diate results, which effectively means that they perform partial materialization on

demand. Such a strategy, named dynamic materialization, is implemented in

AllegroGraph (see > Sect. 7.6.2). The advantage, compared to the full materialization, is

that the inferred closure is materialized incrementally. Further, in many application
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scenarios, a significant fraction of the implicitly inferable facts will never be accessed

during the handling of retrieval queries – in the case of dynamic materialization, those will

never be materialized. The advantage compared to backward-chaining is that the same

conclusions do not need to be inferred multiple times. The principal disadvantages of the

dynamic materialization are that (1) it still slows down the query processing, (2) query

optimization, based on cardinality statistics, is still hardly applicable, and (3) the cached

partial materialization still requires maintenance upon modification of the repository

contents.
7.2.1.5 The Honey and the Sting of owl:sameAs

owl:sameAs is a system predicate in OWL, declaring that two different URIs denote one

and the same resource. Most often it is used to align the different identifiers of the same

real-world entity used in different data sources. In FactForge (see > Sect. 7.8.1.1), one and

the same entity has different URIs in the different linked data LOD datasets (See

> Sect. 7.1.4) where it appears. For instance, in DBPedia, the URI of the city of Vienna

is http://dbpedia.org/page/Vienna, while in Geonames, it is http://sws.geonames.org/

2761369/. DBpedia contains the statement

(S1) dbpedia:Vienna owl:sameAs geonames:2761369

which declares that the two URIs are equivalent. owl:sameAs is probably the most

important OWL predicate when it comes to merging data from different data sources.

Following the specification of OWL (To be more specific, this is the semantics defined

in OWL 2 RL, but also in the other dialects discussed in> Sect. 7.1.1.), whenever twoURIs

U1 and U2 are declared equivalent, all statements that involve U1 and are true will also be

inferable and retrievable, with U2, replacing U1 at the same position. For instance, in

Geonames, the city of Vienna is defined as part of http://www.geonames.org/2761367/

(the first-order administrative division in Austria with the same name), which, in turn, is

part of Austria (http://www.geonames.org/2782113):

(S2) geonames:2761369 gno:parentFeature geonames:2761367

(S3) geonames:2761367 gno:parentFeature geonames:2782113

As long as gno:parentFeature is a transitive relationship, in the course of the initial

forward-chaining, it will be derived that the city of Vienna is also part of Austria:

(S4) geonames:2761369 gno:parentFeature geonames:2782113

Based on the semantics of owl:sameAs, from (S1), it should be inferred that statements

(S2) and (S4) also hold for Vienna when it is referred with its DBpedia URI:

(S5) dbpedia:Vienna gno:parentFeature geonames:2761367

(S6) dbpedia:Vienna gno:parentFeature geonames:2782113

http://dbpedia.org/page/Vienna
http://sws.geonames.org/2761369/
http://sws.geonames.org/2761369/
http://www.geonames.org/2761367/
http://www.geonames.org/2782113
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These are true statements and when querying RDF data, no matter which one of the

equivalent URIs is used in the explicit statements, the same results will be returned. When

one considers that Austria, too, has an equivalent URI in DBpedia.

(S7) geonames:2782113 owl:sameAs dbpedia:Austria

it should also infer that:

(S8) dbpedia:Vienna gno:parentFeature dbpedia:Austria

(S9) geonames:2761369 gno:parentFeature dbpedia:Austria

(S10) geonames:2761367 gno:parentFeature dbpedia:Austria

In the above example, there are two alignment statements (S1 and S7), two statements

carrying specific factual knowledge (S2 and S3), one statement inferred due to a transitive

property (S4), and seven statements inferred as a result of owl:sameAs alignment (S5, S7,

S8, S9, S10, and the inverse statements of S1 and S7, which are not given above due to

space limitations). As seen, inference without owl:sameAs inflated the dataset by 25%

(one new statement on top of four explicit), while owl:sameAs related inference

increased the dataset by 175% (seven new statements). Considering that Vienna has a

URI also in UMBEL, which is also declared equivalent to the one in DBpedia, the addition

of one more explicit statement for this alignment will cause inference of four new implicit

statements (duplicates of S1, S5, S6, and S8). Although this is a small example, it provides

a good indication about the performance implications of using owl:sameAs alignment

in LOD. Also, because owl:sameAs is a transitive, reflexive, and symmetric rela-

tionship, a set of N equivalent URIs N2 owl:sameAs statements will be generated

for each pair of URIs. Thus, although owl:sameAs is useful for interlinking RDF

datasets, its semantics cause considerable inflation of the number of implicit facts that

should be considered during inference and query evaluation (either through forward- or

backward-chaining).

To overcome this problem, BigOWLIM and ORACLE (see > Sects. 7.6.4 and > 7.6.7)

handle owl:sameAs in a specific manner. In their indices, each set of equivalent URIs

(the equivalence class with respect to owl:sameAs) is represented by a single super-node.

This way, the repository does not inflate the indices and, at the same time, retains the

ability to enumerate all statements that should be inferred using the equivalence upon

retrieval request (e.g., during inference or query evaluation).
7.2.1.6 Truth Maintenance and Smooth Invalidation

Normally, repositories, which use materialization support dialects of OWL, which allow

for monotonic inference (see > Sect. 7.2.2). Upon the addition of new statements, they

can incrementally extend the inferred closure with new facts, which can be entailed from

the new data. The deletion of statements requires the repository to remove from the

inferred closure statements, which are no longer inferable. The classical approach to
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implement this is known from the expert systems as a truth maintenance system (TMS),

which keeps meta-information about which fact can be inferred from which other facts.

While such systems allow for the tracing of the inference dependencies and the invalida-

tion of the statements which are no longer supported, the overheads associated with the

maintenance of the TMS information itself appear quite high for most of the scenarios of

usage of semantic repositories. This is the reason why most of the repositories which use

materialization do not implement a TMS – upon deletion, they have to delete the entire

inferred closure and compute it again. Scenarios where deletion can be avoided or

postponed have no problem with such strategy. However, there are plenty of scenarios

where deletion should be performed in real time.

Smooth invalidation is technique implemented in BigOWLIM (see > Sect. 7.6.4),

which allows for the efficient maintenance of the inferred closure upon deletion. It is

based on an algorithm which performs a sequence of backward- and forward-chaining

iterations to figure out what part of the deductive closure is no longer supported, without

using truth maintenance information. The complexity of this algorithm is comparable to

the complexity of the plain forward-chaining. In other words, the update of the inferred

closure after removal of some statements requires time and computational resource

comparable to those needed for the update of the inferred closure after the addition of

the same statements.

One should note that the removal of key statements from the schema may lead to the

invalidation of a large fraction of the inferred closure – in such cases the computation of

the inferred closure from scratch can be the more efficient option. Still, in most of the data

management scenarios, non-monotonic schema changes represent a tiny fraction of all

update transactions and usually can be postponed and implemented in a time slot when

full re-inference is feasible. This way, for a very large range of applications, forward-

chaining, combined with optimizations (like those discussed in > Sects. 7.2.1.3 and

> 7.2.1.4) and smooth invalidation, represents the optimal reasoning strategy, which

delivers good performance through the entire life cycle of the data. A BigOWLIM instance

implementing this strategy was used behind the BBC’sWorld Cup 2010 website, presented

in > Sect. 7.8.2.
7.2.2 OWL Dialects Suitable for Scalable Inference

In order to match the expectations for the next-generation global Web of data, the

Semantic Web requires a scalable high-performance storage and reasoning infrastructure.

One challenge toward building such an infrastructure is the expressivity of its schema and

ontology definition standards RDFS and OWL. RDFS, [10], is the schema language for

RDF, which allows for the definitions of subsumption hierarchies of classes and properties;

the latter being binary relationships defined with their domains and ranges. While RDFS is

generally a fairly simple knowledge representation language, implementing semantic repos-

itories which support its semantics and provide performance and scalability comparable to

those of relational database management systems (RDBMS) is very challenging.
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The semantics of RDFS is based on Logical Programming (LP) – a declarative

programming paradigm, in which the program specifies a computation by giving

the properties of a correct answer. The LP languages like PROLOG emphasize the logical

properties of a computation, using logic and proof procedures to define and resolve

problems. Most logic programming is based on Horn-clause logic with negation-as-

failure to store the information and rule entailment to solve problems. Datalog is

a query and rule language, a simplified version of PROLOG, meant to enable the efficient

implementation of deductive databases. The semantics of RDFS is defined by means of

rule-entailment formalism, which is a simplification of Datalog.

OWL [13] is an ontology language which supports more comprehensive logical

descriptions of the schema elements, for instance: transitive, symmetric, and inverse

properties; unions and intersections of classes; and property restrictions (for a detailed

introduction into OWL one can refer to >KR and Reasoning on the Semantic Web:

OWL). The first version of the OWL specification, which was published as a

W3C standard in year 2004 has three dialects: OWL Lite, OWL DL, and OWL Full.

They range in their levels of expressivity. OWL Lite is a subset of OWL DL, and

OWL DL is a subset of OWL Full. The OWL language is based on description logics

(DL, [3]). The reasoning procedures of DLs are decision procedures that are aimed

to always terminate – in mathematical logic terms this means that DLs are decidable.

Compared to other logical languages, DLs are relatively inexpressive. Still reasoning with

DLs is based on satisfiability checking, which means that in order to prove or to reject

a specific statement, a DL reasoner needs to check whether it is possible or not to

build a model of the world that satisfies a ‘‘theory’’ which includes this statement or its

negation. For instance, suppose that there is a semantic repository which contains

one billion statements and a client makes a query, checking whether a specific resource

is an instance of a specific class. In order to validate this, with respect to the semantics

of OWL DL, a repository should add to its current contents the statement that the

resource is not an instance of the class and check whether the new state of the repository

is consistent. It is clear that such semantics is impractical to implement for large volumes

of data. Even the simplest dialect of OWL, OWL Lite is a DL formalism which does not

support algorithms enabling efficient inference and query answering over reasonably large

knowledge bases.

Logic programming and description logics support semantics and data interpretation

capabilities of a different nature: LP uses rules to infer new knowledge, whereas DL

employ descriptive classification mechanisms. None of these is more powerful or expres-

sive than the other one – there are meaning aspects, which can be expressed in each one of

them, which cannot be expressed in a language from the other paradigm. As a result, the

semantics of OWL Lite and DL are incompatible with that of RDFS. (The issues related to

the interoperability and layering of the Semantic Web languages are also discussed in

> Introduction to the Semantic Web Technologies.) Although OWL was meant to be

layered on top of RDFS in the Semantic Web specification stack, there is no ‘‘backward

compatibility.’’ In practical terms, this means that it may be impossible to ‘‘upgrade’’ to

OWL an application, which uses RDFS schemas, without replacing them with OWL
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ontologies. The latter may require considerable changes in the semantics of the classes and

the properties and in the data modeling principles used in the application.

To bridge the gap of expressivity, compatibility, and logical decidability and reach the

goals of scalable inference, other dialects of OWL have been created which lie between

RDF(S) and OWL Lite. > Figure 7.6 presents a simplified map of the expressivity or

complexity of a number of these OWL-related languages together with their bias toward

description logic (DL) and Logical Programming (LP) based semantics. The diagram

provides a very rough idea about the expressivity of the languages, based on the com-

plexity of entailment algorithms for them. A direct comparison between the different

languages is impossible in many of the cases. For instance, Datalog is not simpler than

OWL DL, it just allows for a different type of complexity.

OWL DLP is a nonstandard dialect, offering a promising compromise between

expressive power, efficient reasoning, and compatibility. It is defined in [21] as the

intersection of the expressivity of OWL DL and Logic Programming (LP). In fact, OWL

DLP is defined as the most expressive sub-language of OWL DL, which can be mapped to

Datalog. OWLDLP is simpler than OWL Lite. The alignment of its semantics to the one of

RDFS is easier, as compared to the Lite and DL dialects. Still, this can only be achieved

through the enforcement of some additional modeling constraints and transformations.

A broad collection of information related to OWL DLP can be found in [49]. DLP has

certain advantages:

● There is freedom to use either DL or LP (and associated tools and methodologies) for

modeling purposes, depending on the modeler’s experience and preferences.
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● From an implementation perspective, either DL reasoners or deductive rule systems

can be used. Thus it is possible tomodel using one paradigm, for example, a DL-biased

ontology editor, and to use a reasoning engine based on the other paradigm, for

example, a semantic repository based on rules.

These features of DLP provide extra flexibility and ensure interoperability with

a variety of tools. Experience with using OWL has shown that existing ontologies

frequently use only very few constructs outside the DLP language.

In [62] ter Horst defines RDFS extensions toward rule support and describes

a fragment of OWL, more expressive than OWL DLP. He introduces the notion of

R-entailment of one (target) RDF graph from another (source) RDF graph on the basis

of a set of entailment rules R. R-entailment is more general than the D-entailment used by

Hayes, [26], in defining the standard RDFS semantics. Each rule has a set of premises,

which conjunctively define the body of the rule. The premises are ‘‘extended’’ RDF

statements, where variables can take any of the three positions. The head of the rule

comprises one ormore consequences, each of which is, again, an extended RDF statement.

The consequences may not contain free variables, that is, which are not used in the body

of the rule. The consequences may contain blank nodes.

The extension of the R-entailment (as compared to the D-entailment) is that it

‘‘operates’’ on top of the so-called generalized RDF graphs, where blank nodes can appear as

predicates. R-entailment rules without premises are used to declare axiomatic statements.

Rules without consequences are used to imply inconsistency.

This extension of RDFS became popular as ‘‘OWL Horst.’’ As outlined in [62], this

language has a number of important characteristics:

● It is a proper (backward-compatible) extension of RDFS. In contrast to OWL DLP, it

puts no constraints on the RDFS semantics. The widely discussed meta-classes (classes

as instances of other classes) are not disallowed in OWL Horst.

● Unlike the DL-based rule languages, like SWRL, [28] and [46], R-entailment provides

a formalism for rule extensions without DL-related constraints;

● Its complexity is lower than the one of SWRL and other approaches combining DL

ontologies with rules; see > Sect. 7.5 of [62].

OWL Horst is supported by OWLIM and ORACLE (presented in > Sect. 7.6), which

makes it the OWL dialect that has the largest industry support. An official OWL dialect with

the same properties emerged recently under the name OWL 2 RL. The latter is one of the

tractable profiles (dialects) defined in the specification of OWL 2, [45] – the next version of

the OWL language that is currently in process of standardization. OWL 2 RL is designed with

the objective to be themost expressive OWL dialect, which allows for efficient reasoning with

large volumes of data in rule-based systems. OWL 2 RL was inspired by OWL Horst – its

semantics is defined with the rule language equivalent to R-entailment. However, OWL 2 RL

is considerably more expressive than OWL Horst. Support for OWL 2 RL is provided by

several reasoning engines, including OWLIM and ORACLE. More details on the OWL 2

profiles can be found in >KR and Reasoning on the Semantic Web: OWL.
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Recent research reported in [58] evaluates the level of completeness of the inference

supported by few inference engines (namely, HAWK) and semantic repositories: IBM’s

Minerva, Sesame (> Sect. 7.6.8), and OWLIM (> Sect. 7.6.4). It demonstrates that

although OWLIM supports sufficient reasoning to answer the LUBM (LUBM benchmark

is introduced in > Sect. 7.5.1) queries correctly, it is still not complete with respect to the

semantics of the data and the queries.
7.3 Semantic Repository Tasks, Performance Factors, and
Dimensions

Measuring and benchmarking the performance of semantic repositories is an important

aspect in allowing the engineers to understand and use them efficiently. As discussed in

> Sect. 7.1.2, semantic repositories are RDF databases that may or may not provide

lightweight inference support. Their benchmarking is a complicated exercise, which

requires a clear conceptualization and structuring. This section provides a conceptual

framework for benchmarking of semantic repositories, as further development of [32].

The framework takes into consideration the tasks executed by the semantic repository,

examines the performance factors and the performance dimensions of the measurements,

and introduces the concept of full-cycle benchmarking.

A wide range of links to resources related to benchmarking RDF repositories can be

found on the page on ‘‘RDF Store Benchmarking’’ in the ESW wiki, maintained by W3C,

at http://esw.w3.org/topic/RdfStoreBenchmarking.
7.3.1 Tasks

The major tasks and activities toward which the performance of semantic repositories

needs to be benchmarked are:

● Data loading, including parsing, persistence, and indexing of both instance data and

ontologies

● Query evaluation, including query preparation, optimization, and fetching

● Data modification, which may involve changes to the ontologies and the schemas

Inference is not a first-level activity in a semantic repository. Depending on the

implementation, it can affect the performance of the other activities, for instance, when

inference is performed during loading.

Modifications to the data and/or schemas (e.g., updating and deleting values or

changing class definitions) represent another important class of the tasks performed

against a semantic repository. Most of the contemporary RDF-related benchmark suites

do not cover modification tasks, because their specifics, complexity, and importance can

change considerably across applications and usage patterns.

http://esw.w3.org/topic/RdfStoreBenchmarking
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7.3.2 Performance Factors

The performance of data loading depends on several factors:

● Materialization – whether and to what extent forward-chaining is performed at load

time, including the complexity of the forward-chaining (see > Sect. 7.2.1)

● Data model complexity – support for extended RDF data models (see > Sect. 7.1.3), for

instance, including named graphs, is computationally more ‘‘expensive’’ as compared

to the simple triple model

● Indexing specifics – repositories may or may not create a variety of different indices

in dependence of the datasets loaded, the foreseen usage patterns, hardware

constraints, etc.

● Data access and location – where the data is imported from, for instance, local files,

loaded from the network, etc.

Several factors affect the time and memory space, or more generally, the computing

resources, required for query evaluation:

● Deduction – whether and to what extent backward-chaining is involved, whether it is

recursive, etc. (see > Sect. 7.2.1)

● Size of the result-set – fetching large result-sets can take considerable time

● Query complexity – the number of constraints (e.g., triple-pattern joins), the semantics

of the query (e.g., negation- and disjunction-related clauses), the usage of operators

that are hard to support through indexing (e.g., LIKE)

● Number of clients – number of simultaneous client requests

● Quality of results – what is the quality of the results required in modalities where

incomplete answers are requested

Transaction size and level of isolation may also have serious impact on the perfor-

mance of both loading and query evaluation. Although many semantic repositories

provide some sort of transaction isolation, it is usually less comprehensive than

the corresponding mechanisms in the mature RDBMS. Furthermore, transaction

management in large-scale systems is usually carefully designed and tuned for each

specific setup.
7.3.3 Performance Dimensions

The performance dimensions of a semantic repository comprise parameters of a specific

task or scenario, which affect its speed, and the size of the loaded datasets. There are several

parameters affecting the speed of a semantic repository:

● Scale – the size of the repository in terms of number of RDF triples (more generally,

facts or atomic assertions).
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● Schema and data complexity – the complexity of the ontology/logical language, the

specific ontology (or schema), and the dataset. A highly interconnected dataset, with

long chains of transitive properties, can appear far more challenging for reasoning

compared to another dataset, even when both are encoded against one and the same

ontology; sparse versus dense datasets; presence and size of literals; number of

predicates used; usage of owl:sameAs, and other alignment primitives.

● Hardware and software setup – the performance can vary considerably depending on

the version and configuration of the compiler or the virtual machine, the operating

system, the configuration of the engine itself, and the hardware configuration, of

course.

The size of a dataset loaded in a semantic repository is measured in different ways.

These are related to the types of statements taken into consideration. The following

measures should be considered:

● Number of inserted statements (NIS): How many statements have been inserted in the

repository.

● Number of stored statements (NSS): How many different statements have been stored

and indexed by the repository. For engines using forward-chaining and materializa-

tion, the volume of the data to be indexed includes the inferred triples. For

instance, the RDF/OWL representation of WordNet expands after materialization

from 1.9 million (NIS) statements to 7.1 million (NSS). In the opposite direction,

NSS can be smaller than NIS, when one and the same statement is inserted multiple

times.

● Number of retrievable statements (NRS): How many different statements can be

retrieved from the repository. This number can be different from NSS when the

repository supports some sort of backward-chaining. For instance, BigOWLIM per-

forms owl:sameAs optimization, which reduces considerably the NSS in the

repository.
7.3.4 Full-Cycle Benchmarking

The performances of a specific setup of a given semantic repository on loading datasets

and query evaluation are interdependent. More comprehensive indexing and forward-

chaining take time during loading and respectively make the loading performance worse

in order to facilitate faster query processing. In fact, if query evaluation performance is not

to be considered, loading of RDF could be as fast as the file-system could be in storing the

input files locally with no overheads to maintain indices.

Here the notion of full-cycle benchmarking is introduced – an evaluation experiment,

which provides a complete picture of the performance of a repository with respect to the

full ‘‘life cycle’’ of the data within the engine. At the high-level, this means the measuring

and publication of data for both loading and query evaluation performance within

a single experiment or benchmark run. Thus, full-cycle benchmarking requires loading
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performance data to be matched with query evaluation data. A full-cycle run on LUBM,

[22], or similar benchmark usually involves the following activities:

1. Loading input RDF files from the storage system

2. Parsing the RDF files

3. Indexing and storing the triples

4. Forward-chaining and materialization (optional)

5. Query parsing

6. Query optimization
a. Query rewriting (optional)
7. Query evaluation, involving
a. Backward-chaining (optional)

b. Fetching of the results
While different repositories can employ different indexing, reasoning, and query evalua-

tion strategies, the seven activities listed above should always be handled in a cycle that

includes data loading and query evaluation.

To provide correct answers to queries, a semantic repository should consider the

semantics of the data. For instance, it is impossible to deliver correct results to the queries

of LUBM without some form of reasoning. As discussed in > Sect. 7.2.1, different

reasoning strategies can be adopted. Inference can take place either during loading (step

4 above) or during query evaluation (steps 6a and/or 7a above).

Full-cycle benchmarking provides an adequate picture on the performance of the

engine and its utility in real-world applications. It shows the implications of the different

design choices and implementation approaches. This notion needs further extension to

include data modification.
7.4 Performance Considerations and Distribution
Approaches

This section covers several issues related to the implementation of efficient and scalable

semantic repositories. It includes a discussion on the principal advantages and disadvan-

tages of some distribution approaches along with practical aspects such as the current

state of the server hardware and the typical sizes of the datasets used today. The latter

provides a good perspective toward the economic efficiency of the different distribution

approaches.
7.4.1 Performance Engineering and Hardware Trends

As stated earlier, semantic repositories represent a sort of database management systems

(DBMS) and have performance requirements similar to those of the relational DBMS and

the NoSQL solutions, [47], used as back-ends for some of the largest websites. The basic
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requirement is fast random access to relatively small blocks of data (few kilobytes),

retrieved from large volumes of data – the indices maintained by the engine to enable the

fast retrieval of data records based on specific constraints or retrieval patterns. Thus, themajor

factors for the performance of a server, when running a semantic repository, are the amount of

the available RAM and the random seek speed of the hard drives. In an ideal situation, all the

data can be cached in the RAM, which provides 3 orders of magnitude faster random access

time than enterprise class hard drives (few microseconds versus few milliseconds).

A sample server configuration is provided below that, considering the above high-level

requirements and their experience, is appropriate for handling serious query loads against

datasets comparable to the volume of several of the central linked data datasets (see

> Sect. 7.1.4). While the needs of each usage scenario are different, this configuration

could be used as a starting point for the estimation of the hardware requirements of

a specific application.
7.4.1.1 Usage Scenario: 1 Million Queries per Day Against
10 Billion Statements

The scenario described here assumes that an enterprise is interested to provide, through its

website, some sort of public information access service, which exposes proprietary

content and data, which is annotated and interlinked with several linked data datasets.

This could be the example of a media company, annotating its news with respect to

a dataset like FactForge, described in > Sect. 7.8.1.1, or a pharmaceutical company

interlinking its internal data and clinical trial reports to resource like LinkedLifeData,

> Sect. 7.8.1.2. Such a scenario can be described as follows:

● Data size: between one and ten billion statements.

● Semantics: OWL 2 RL lightweight reasoning.

● Query loads: about one million queries per day; 10–20 queries per second. This load is

comparable to the peak load at BBC’s World Cup 2010 website (see > Sect. 7.8.2).

● Update rate: about a hundred small updates per hour. Small updates can be described

like transactions, which add or delete up to 1,000 statements, without changing the

schemas and the ontologies. (Changes in the schemas are possible in such scenarios,

and they can be adopted far quicker in semantic repositories as compared to relational

databases. Still the complexity of such updates varies considerably and is hard for

quantification.) Such updates are cases like updating the descriptions of several related

entities or the metadata of several articles or pictures.
7.4.1.2 The $10,000 Database Server Landmark

Considering the scenario described in the previous section using the benchmarking data

and experience, provided below is a sample description of a server configuration which,
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given the current situation on the hardware market, combines good efficiency with low

cost per transaction per second. The server configuration with an assembly cost below

$10,000 is:

● 2 � Xeon 5500 series CPUs, each with four cores with hyper-threading

● 48–72 GB of RAM

● 8 � 120 GB SSD MLC drives with appropriate RAID controller, setup in RAID-0;

those are to be used as fast storage for the indices of the semantic repository

● 2 � 2 TB SATA HDD set up in mirror (RAID-1), to be used for complementary data

and content and for backup of the data placed on the SSD drives

The above configuration represents a commodity databases server, with the

specificity that it is loaded with as much RAM as the configuration allows. This amount

of memory would allow most of the engines to keep in memory several critical types

of information (e.g., URL-to-internal-ID dictionaries) for datasets of a size up to

10–20 billions of statements. The solid state drives (SSD) and the hard disk drives

(HDD) should be carefully selected to deliver best performance and reliability for this

class of products.

More powerful database servers with four CPUs and 128 to 144 GB of RAM can be

purchased for approximately $20,000–30,000.While the price of such servers is dispropor-

tionally higher, compared to their capacity, they are still very likely to offer a more efficient

solution for data scalability issues, compared to distribution approaches involving data

partitioning (see > Sect. 7.4.2.1). Such machines can handle up to 40–50 billion explicit

statements and query loads approaching one thousand queries per minute.

One should consider that the above configurations represent an efficient solution in

the year 2010. As the hardware evolves rapidly, they should be considered only as

a reference point to estimate the required hardware for specific loads.
7.4.2 Distributed Semantic Repositories

The restriction to a single computer system limits the overall scalability and performance

parameters of a semantic repository. Database management distribution is usually con-

sidered to address one or more of the following goals:

1. To handle efficiently larger volumes of data (The size of the data, managed by a DBMS,

and the average time for the execution of specific operations with the data are always in

dependency – thus the first point above can be seen as a generalization of the following

ones. Data scalability issues can always be avoided by adoption of a DBMS or a DBMS

configuration, which has lower hardware requirements, trading scale for efficiency.

Still, the notion of ‘‘data scalability’’ appears here, because often change of the DBMS

configuration or further lowering the hardware requirements is impractical.)

2. To speed up the data loading and indexing and to improve the performance

for updates
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3. To lower the query evaluation time for complex queries (e.g., analytical Business

Intelligence reports)

4. To better handle concurrent query loads and large numbers of users

5. To ensure failover, for example, to surmount failure of one or more nodes and

repositories

The general approaches for the distribution of database management systems are:

● Data partitioning, where the information stored and accessed by the system is spread

across multiple machines, so that none of them contains the entire dataset

● Data replication, where the entire dataset resides on each of the machines

The remainder of this section provides discussion on the different approaches, their

advantages and disadvantages, and appropriateness with respect to different scenarios

and goals.
7.4.2.1 Data Partitioning

While data partitioning looks as the more promising schema, it is also the one which is

most problematic to implement. In general, it enables the management of larger volumes

of data and provides more space for in-memory data structures. Each node can apply

more efficient caching and optimization with respect to the fraction of the data that it

deals with. Data partitioning with redundancy also allows for failover support. Still, the

major issue is that query evaluation against distributed data requires intensive commu-

nication between the nodes for exchanging intermediate results; the most common variety

of such communication is known as ‘‘remote join.’’ Query optimization schemas, which

consider the communication costs, are far harder to implement, which triggers less-

optimal query evaluation plans and larger overall numbers of index lookups. In large

number of scenarios, these effects neutralize the gains from the additional computing

power gained from several machines. As outlined in > Sect. 7.2.1.1, the same concerns are

the application of rule-based reasoning in repositories using data partitioning.

Two approaches to data partitioning appear in database systems from the established

distributed DBMS research: horizontal and vertical partitioning. The horizontal data

partitioning approach partitions a dataset across several repository nodes where no

schema limitations apply to any of the nodes. A vertical partitioning approach would

assign different parts of the data schema to different repository nodes so that later on

requests for any type of data would be redirected to the respective repository node. This

approach can be further extended and types of data that usually appear ‘‘close’’ together

can be placed within a single node (when possible). In principle, such clustering would

allow for whole sub-queries to be executed within a single node. It would therefore avoid

the transfer of intermediate results between the repository nodes and the central query

processing node only to complete the query. Overall, one should consider that data

partitioning comes together with problems which are not trivial to solve and imply
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compromises in the engineering design. The CAP theorem [9], summarizes the results of

significant amount of theoretical and experimental work in distributed database systems

by stating the trade-offs between consistency, availability, and partition-tolerance. Hybrid

schemes are possible for datasets that are both horizontally and vertically too large to fit in

a single computational node. Such a partitioning scheme, however, would complicate

considerably the query processing subsystem, whichwould have to take into account splits

and joins in both dimensions while planning the query execution.
7.4.2.2 Data Replication

Data replication is a traditional approach for boosting the read performance of a DBMS at

the cost of redundancy and write propagation complexity. In a classic scenario, several

slave nodes are assigned incoming read requests by a central master node that performs

any sort of load balancing (e.g., round robin) to distribute the load evenly across the

slaves. Writes are executed on the master node, and updates are propagated to the slaves in

the background. Such a setup is very appropriate in situations when a lot of read requests

occur while write requests are rare or clustered together in large batches (for example, if

a large dataset is initially loaded in the repository). In such situations, the resource-

intensive replication procedure will not be necessary most of the time, while

a theoretically linear scalability will take place on the reading side.

In an alternative replication implementation, write operations are propagated to all

the slave nodes which operate as independent repositories. Such schema is implemented

in BigOWLIM (see > Sect. 7.6.4) and presented on > Fig. 7.7. In this case, the total

loading and modification performance of the cluster is equal to that of the fastest slave

node. The data scalability of the cluster is bounded by those of the weakest slave node.

Such design, however, simplifies the role of themater node and the communicationwithin

the cluster, bringing principal advantages with respect to the resilience of the cluster.
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Data replication with propagation of write operations
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In case of failure of one ormore instances, the performance degradation is graceful and the

cluster will be fully operational even when there is only one instance working.

Using replication excludes the remote join problem, as each node can evaluate the

query without exchanging information with the other nodes. As a result, there are no

query performance issues, which facilitates a better handling of concurrent user requests.

Load balancing and failover are easy to implement. The cluster can scale horizontally to

handle virtually unlimited query loads, as the query evaluation capacity is a sum of the

capacities of all the slave nodes in the cluster. Still, replication does not deliver better

scalability with respect to larger datasets and the usage of resources is not optimal because

all the loading and modifications need to be performed on all nodes.
7.4.2.3 Advantages of the Different Distribution Approaches

As an overview of the two major distribution approaches we can summarize that:

● Data partitioning improves data scalability; however, in most of the cases it hampers the

query evaluation performance due to high communication overheads. It can improve

loading performance if there is no materialization involved (see > Sect. 7.2.1.2).

● Data replication allows for a better handling of concurrent query loads and failover. It

is neutral with respect to loading and inference performance.

None of these approaches provide a principal advantage for the evaluation of complex

queries. Under data replication, one of the nodes can be off-loaded from concurrent

queries, which would allow faster execution of a complex query. An approach known as

‘‘federated join’’ can in theory improve the performance of such queries in very specific

data partitioning scenarios, where the communication costs can be minimized.

As already mentioned, a direct consequence of the CAP theorem [9] is that data

consistency might have to be sacrificed if availability and partitioning are required. One

might argue that data inconsistency could be a serious issue in certain types of real-world

production-level applications. An eventually consistent and highly scalable distributed

system could be very well suited for the semantic repository of an incomplete reasoning

system, where result completeness is not a requirement by design.
7.4.3 Multi-Core Parallelism

In addition to the various multi-node data distribution approaches, parallelization at

thread level within a single computer system can also be considered. This is the approach

of multi-core parallelism. These days even commodity desktop hardware is equipped with

dual or even quad-core CPUs that are better utilized by multi-threaded implementations

whenever these are appropriate. The cost-efficient DB servers (as the one presented in

> Sect. 7.4.1.2) come with 8–12 CPU cores, each of which is an autonomous computing

device, while all cores share the same RAM. A multi-threaded semantic repository can

benefit from parallel execution using multiple CPUs for computation, as with the
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repositories distributed across several machines, but without the communication costs

and overheads of the distributed approach, in particular without the remote join problem.

One should consider that efficient multi-threading with respect to loading and modifi-

cation requires nontrivial locking and synchronization, whereas multi-threaded handling

of read-only operations (like query evaluation) is straightforward. One possible candidate

for multi-threading is the ‘‘federated join’’ approach in which the outer-most loop of

the query evaluation routine (i.e., the one traversing the outer-most triple pattern of the

query) is split among several threads that operate over equal parts of the repository. This is

another case that would be appropriate in scenarioswhen reads occur a lot andwrites are rare.

Both Virtuoso and BigOWLIM support multi-threading and can efficiently use multi-

core CPU as it becomes evident from the results of the BSBM benchmark presented

in > Sect. 7.2.1. As anticipated, multi-threaded query evaluation works without extra

effort. The query throughput grows until the number of simultaneous users reaches the

hardware support for parallelism. However, the usage of multi-threading for loading and

inference requires special configuration. Local data partitioning is applied tominimize the

interlocking between multiple threads used for loading and inference.
7.5 Popular Benchmarks and Datasets

The data stored in the semantic repositories form datasets. Their most distinctive features

are their size and their complexity with respect to reasoning and querying. Benchmarks

can be created through the combination of datasets and predefined sets of queries, which

along with the datasets are commonly used as measuring sticks for evaluating the

performance of the semantic repositories. A few of the most popular are presented here.
7.5.1 Lehigh University Benchmark (LUBM) and UOBM

Themost popular benchmark for semantic repositories with support for RDF and OWL is

Lehigh University Benchmark (LUBM), defined in [22]. The purpose of the benchmark is

to measure the performance of storing and querying of large amounts of data that are

created for realistic Semantic Web systems. It employs synthetically generated datasets

using a fixed OWL ontology of university organizations, lecturers, teachers, students, and

courses. The complexity of the language constructs used is between OWLHorst and OWL

DLP [17], [50]. Fourteen queries are defined that are used to check the query evaluation

correctness and speed of repositories that have loaded a given dataset. The biggest

standard dataset is LUBM(50) (i.e., it contains synthetic data for 50 universities). Its

size is 6.8 million explicit statements, distributed in 1,000 RDF/XML files with total size of

600 megabytes. For the purposes of scalability measurements, many groups have used the

LUBM generator to create bigger datasets.

This is the dataset which is adapted practically by all major semantic repository

vendors. Through the years, it played a considerable role in the development of the
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field. Many of the scalable reasoning records were generated on the basis of LUBM – in

2009, 5 years after LUBM was published, BigOWLIM loaded a dataset of 90,000 univer-

sities. The major critiques against LUBM are as follows:

● The RDF graphs generated are very easy for partitioning and could providemisleading

positive results for some query evaluation, reasoning, and distribution approaches

that otherwise may not perform well on top of real-world datasets such as UNIPROT

and DBPedia (described in the next sections).

● Some of the queries (most notably Q2 and Q9) return results, which are proportional

to the size of the dataset, which for very large datasets is impractical and introduces

distortion of the query evaluation results.

UOBM [40], is a benchmark that puts on test scalable ABox (instance data) reasoning

against a relatively inexpressive DL ontology. UOBM is a further development of the

LUBM benchmark; it uses the same evaluation framework (i.e., Java libraries), but pro-

vides alternative ontology, knowledge base, and queries, which allow for:

● More comprehensive coverage and usage of the OWL Lite and OWL DL semantics.

● Additional connections across the datasets for different universities – this modifica-

tion assures higher level of connectivity in the RDF graph, which provides a more

realistic and interesting test case.

The UOBM benchmark includes two distinct datasets for OWL Lite and OWL DL,

each of which includes data collections for one, five, or ten universities, named respec-

tively: Lite-1, Lite-5, Lite-10, DL-1, DL-5, and DL-10. No dataset generator for UOBM is

publicly available at present. The Lite version of the test contains 13 queries; the DL

version adds two more. Both the Lite and the DL variants of UOBM require considerably

more complex reasoning to be performed by a semantic repository in order to provide

correct answers to the queries.
7.5.2 UniProt

UniProt (Universal Protein Resource, http://www.uniprot.org) is the world’s most com-

prehensive and most popular dataset of information on proteins, created by joining

several other resources (Swiss-Prot, TrEMBL, and PIR). UniProt RDF, [59], is an RDF

representation of the dataset; it is based on an OWL ontology, expressed in a sub-language

of OWL Lite, that is more expressive than OWL Horst, but still tractable (see > Sect. 7.2.2

for information on the different OWL dialects). It represents one of the largest datasets

distributed in RDF and OWL. Processing UniProt is often used as benchmark for

scalability and reasoning capabilities of semantic repositories. Still, very few of the

repositories are capable of loading UniProt and perform materialization on top of it or

to interpret its semantics otherwise.

The size of the RDF representation of UniProt is above 1.5 billion unique explicit

statements. The RDF graph defined in the UniProt ontology is highly interconnected,

http://www.uniprot.org
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which has significant impact on the loading and reasoning speed of the semantic

repositories. Today UniProt is one of the central datasets in the biomedical part of the

Linking Open Data (LOD) initiative [38], [39].

The RDF representation of UniProt was used for benchmarking Jena and

AllegroGraph (see > Sects. 7.6.6 and > 7.6.2). It is also part of the Pathway and

Interaction Knowledge Base (PIKB), [2], and the LinkedLifeData service presented in

> Sect. 7.8.1.2.
7.5.3 DBPedia and Other Linked Datasets

DBPedia (More information about DBPedia is provided by its developers in > Semantic

Annotation and Retrieval: Web of Data) is a dataset represented in RDF the Infobox of

Wikipedia together with other information related to or derived fromWikipedia. It serves

as a connectivity hub of the Linked Open Data (LOD) initiative, [39]. The diversity of the

information represented in DBPedia and the fact that it represents encyclopedic knowl-

edge make it an excellent resource for benchmarking semantic repositories. DBPedia

version 3.3 includes 362 million unique statements without the owl:sameAs links.

FactForge (> Sect. 7.8.1.1) is probably the largest and most heterogeneous body

of general factual knowledge that was ever used for logical inference. It integrates in a

single repository several of the most central datasets of Linking Open Data (LOD) cloud

[39]. When used for benchmarking of semantic repositories, it has several advantages,

compared to the straightforward usage of DBPedia:

● It is more diverse, as it represents data and data modeling patterns from several other

datasets as well. One should consider for instance that DBPedia and Geonames are

datasets of a very different nature. A repository, which performs well on Geonames

could show poor performance when dealing with DBPedia for various reasons; one of

them being that Geonames uses few tens of different predicates, whereas DBPedia uses

around a hundred thousand predicates.

● The data in FactForge can be used for inference, because they were cleaned up and

prepared to allow this. On the other hand, reasoning with the raw DBPedia data is

inappropriate as it results in the inference of a very large number of false and useless

statements; the latter happens mostly due to problems with the category hierarchy

discussed in [34].

7.5.4 Berlin SPARQL Benchmark (BSBM)

Berlin SPARQL Benchmark, [6], evaluates the performance of query engines in an

eCommerce use case: searching products and navigating through related information.

Randomized ‘‘query mixes’’ (of 25 queries each) are evaluated continuously through a

client application that communicates with the repository through a SPARQL endpoint.
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The benchmark enables evaluation with respect to the changing sizes of the dataset and

differing numbers of simultaneous clients.

Although created for the benchmarking of SPARQL engines, the design of BSBM

favors relational databases and other raw-store-based implementations, as long as they

deal with a single fixed data schema and uniform dense data representation. Generally,

RDF databases are designed to deal efficiently with diverse data, integrated from multiple

data sources, encoded against different data schema, resulting in sparse data tables in

relational databases (see > Sect. 7.1.2).

BSBM supports the benchmarking of relational engines, as there is an SQL-based

version of the dataset and the queries. One should note that the semantics of some of the

queries in the SQL version is simpler than those of their SPARQL equivalents, that is, the

SQL versions are less powerful and return different results. The evaluation results

published in [7] prove that relational databases are really more suitable for such loads –

considering that the results are not truly comparable, it is still amazing that the relational

engines are one order of magnitude faster.

Finally, unlike LUBM (> Sect. 7.5.1), BSBM does not require any inference – an

engine can deliver correct results of the queries without any interpretation of the

semantics of the data. Still, the benchmark is useful for evaluation of the SPARQL support

of the engines and their efficiency in handling multi-client loads.
7.6 Semantic Repository Engines

Several of today’s outstanding semantic repositories are presented in alphabetical order in

this section with discussion on their specific advantages and features.
7.6.1 3store, 4store, 5store

3store, 4store, and 5store represent a family of RDF database engines developed by Garlik

(http://www.garlik.com/) – a company dealing with online identity and personal infor-

mation protection in UK. 4store (http://www.4store.org) is an open-source RDF storage

engine designed to run in cluster setup of up to 32 nodes. 4store implements a distribution

schema based on data partitioning (see > Sect. 7.4.2.1); more details about it are available

in [23]. While 4store does not offer inference capabilities, [57] presents the 4s-reasoner,

which implements RDF reasoning through backward-chaining on top of 4store.

It is implemented in ANSI C99 and is available for UNIX-based operating systems

only, including Linux and MacOS. 4store is advertised with the fact that at Garlik it is

‘‘holding and running queries over databases of 15GT, supporting a Web application used

by thousands of people.’’ The RDF repositories created with 4store are managed through

a set of command line utilities that allow the importing of RDF data in various formats,

http://www.garlik.com/
http://www.4store.org
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querying using SPARQL, backup, and other maintenance tasks. The 4store distribution

also includes a stand-alone SPARQL HTTP protocol server as a standard interface to the

4store repository.

As the names suggest, 3store is the predecessor and 5store is the successor of 4store.

According to the website of 5store (http://4store.org/trac/wiki/5store), it offers the

same functionality and interfaces as 4store, but features a new architecture which allows

for the handling of larger clusters and better performance. There is no public information

about benchmarking 4store or 5store with respect to popular benchmark datasets;

there are also no publications about independent performance evaluations of 4store

and 5store.
7.6.2 AllegroGraph

AllegroGraph RDFStore, [1, 18], is an RDF database with support for ‘‘SPARQL, RDFS++,

and Prolog reasoning from Java applications.’’ In addition to the ‘‘basic’’ DBMS

functionality, it offers specific support for geo-spatial data handling and social network

analysis.

AllegroGraph does not perform reasoning andmaterialization during loading. The so-

called RDFS++ reasoning can be switched on during query processing. The semantics

supported in this way is comparable to OWL Horst ([17]). RDFS++ reasoning allows

AllegroGraph to deliver correct results on LUBM benchmark. Versions 3.2 and 4.0 of

AllegroGraph support the so-called RDFS++ dynamic materialization, [20], which seems

to require building some extra indices on-the-fly, whenever those are required for query

evaluation. This approach helps AllegroGraph report excellent results, [19], on query

evaluation in LUBM(8000).

One of the major developments in AllegroGraph 3.0 is the ‘‘federation’’ that enables

the grouping multiple stores (running locally or on a remote machine) within a single

virtual store. Federation has the potential to considerably speed up the loading process, as

the work is effectively distributed across multiple stores. The distribution approach

implemented in AllegroGraph is based on data partitioning (see > Sect. 7.4.2.1).
7.6.3 BigData

BigData (http://www.systap.com/bigdata.htm) is an open-source distributed B + Tree

database, designed to accommodate large RDF repositories and scale horizontally on

commodity hardware. Scaling is achieved by index partitioning across the nodes of the

cluster. As the data evolve, partitions of the indices might get split, moved, or joined

transparently and asynchronously to the client. A centralized metadata index takes care of

locating the index partitions in the cluster. As discussed in [60] and [61], BigData is

http://4store.org/trac/wiki/5store
http://www.systap.com/bigdata.htm
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designed to support various modalities of transactional isolation through multi-version

concurrency control (MVCC, [55]) and aims to support load balancing internally.

BigData integrates with the Sesame 2.0 platform (see> Sect. 7.6.8) to achieve SPARQL

support and therefore relies on it for query parsing but implements query optimization

based on the fast key-range counts supported natively by the B + Tree architecture.

BigData supports a sort of RDFS + inferencing backed by a hybrid approach of

materializing the entailments of some rules (forward-chaining) at load time and using

backward-chaining for others at query time. Other features of BigData include statement-

level provenance and full-text indexing.
7.6.4 BigOWLIM

OWLIM is a semantic repository implemented in Java and packaged as a Storage

and Inference Layer (SAIL) for the Sesame RDF database (see > Sect. 7.6.8). OWLIM is

based on TRREE – a native RDF rule-entailment engine. The standard inference strategy

is forward-chaining and materialization. The supported semantics can be configured

through rule-set definition and selection. The most expressive predefined rule-set is

OWL 2 RL, [45]. Custom rule-sets allow tuning for optimal performance and

expressiveness.

The two major varieties of OWLIM are SwiftOWLIM and BigOWLIM. In

SwiftOWLIM, reasoning and query evaluation are performed in memory, while, at the

same time, a reliable persistence strategy assures data preservation, consistency, and

integrity. BigOWLIM is the ‘‘enterprise’’ variety that deals with data and indices directly

from disk or other file storage, which allows it to scale more comprehensively. Further,

BigOWLIM’s indices are specially designed to allow efficient query evaluation against

huge volumes of data. SwiftOWLIM can manage millions of explicit statements on

desktop hardware. Given an entry-level server, BigOWLIM can handle billions of state-

ments and serve multiple simultaneous user sessions.

The most advanced features of version BigOWLIM 3.3, released in June 2010 and used

in BBC’s World Cup 2010 website (see > Sect. 7.8.2), can be summarized as follows:

● Pure Java implementation compliant with Sesame (see > Sect. 7.6.8). The latter brings

interoperability benefits and support for all popular RDF syntaxes and query lan-

guages, including SPARQL

● Clustering support brings resilience, failover, and horizontally scalable parallel query

processing (see > Sect. 7.4.2.2)

● Optimized handling of owl:sameAs (see > Sect. 7.2.1.5), which delivers considerable

improvements in performance and usability when huge volumes of data frommultiple

sources are integrated

● Full-text search, based on either Lucene or proprietary techniques

● High-performance retraction of statements and their inferences (see > Sect. 7.2.1.6)
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● Logical consistency checking mechanisms, as those supported in OWL 2 RL and OWL

Horst (see > Sect. 7.2.2)

● RDF rank, similar to Google’s PageRank, can be calculated for the nodes in an RDF

graph and used for ordering query results by relevance

● A notification mechanism, to allow clients to react to updates in the data stream

A feature of BigOWLIM 3.3 which deserves special attention is the so-called RDF

Search, which provides a novel method for the schema-agnostic retrieval of data from

RDF datasets. The main rationale behind RDF search is to allow one to search in an RDF

graph by keywords and get usable results (stand-alone literals are not useful in many

cases). Technically, it involves the full-text indexing of the URIs in the RDF graph with

respect to their ‘‘text molecules’’ – text snippet achieved by means of the concatenation of

text from all the nodes in the RDF-molecule of the corresponding URI. The result is list of

URIs, ranked with a metric combining the standard full-text search Vector Space Model

and the RDFRank. In FactForge (see > Sect. 7.8.1.1), each of the URIs in the result list is

presented with human-readable labels and text snippets.
7.6.5 DAML DB, Asio Parliament

DAMLDB is an older name of the engine of BBNTechnologies, which currently appears as

part of Parliament (http://www.bbn.com/technology/knowledge/parliament) – an open-

source knowledge base management system that implements a high-performance storage

engine, compatible with the RDF and OWL standards. It is usually combined with query

processing frameworks, such as Sesame (> Sect. 7.6.8) or Jena (> Sect. 7.6.6), to imple-

ment a complete data management solution with support for SPARQL query language.

Although there are no recent evaluation results published, DAML DB still seems to be

one of the very few systems that can demonstrate a full-cycle benchmark results (see

> Sect. 7.3.4) on test like LUBM(8000).
7.6.6 Jena TDB

TDB (http://jena.hpl.hp.com/wiki/TDB) is an open-source RDF storage layer for the Jena

Semantic Web Java framework (http://jena.sourceforge.net/). It is implemented purely in

Java and can be accessed through Jena APIs or through several separately provided

command line scripts. Paired with Jena, TDB provides a single-machine, non-

transactional RDF storage and query environment that can be accessed over the SPARQL

protocol when running inside the Jena-based Joseki HTTP server. SPARQL queries over

TDB are made possible through Jena’s ARQ SPARQL query engine.

A TDB repository can be operated by 32-bit and 64-bit JVM without any format

migration being necessary (a direct consequence of Java’s architecture independent types).

http://www.bbn.com/technology/knowledge/parliament
http://jena.hpl.hp.com/wiki/TDB
http://jena.sourceforge.net/
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However, in 64-bit mode, TDB uses memory-mapped files to access its repository

binary representation (data and indices). This is reported to contribute to a much

better performance compared to the 32-bit case where data caching is handled by the

TDB engine itself. Another benefit from relying on the operating system to do the file

caching is the dynamically determined amount of memory used by the engine for disk

caches.

TDB is equipped with different SPARQL query optimizers (e.g., fixed and statistical)

that aim to optimize SPARQL queries on a per-repository basis. The fixed optimizer only

considers the number of variables in a query’s triple pattern in its reordering decision. The

statistical optimizer relies on rules that approximate the number of results to be expected

from a triple pattern (those rules could be either written manually or generated by the

engine). TDB interprets RDF simple types (e.g., xsd:integer), which makes it possible

to optimize SPARQL range filters.
7.6.7 ORACLE

ORACLE offers RDF support as part of the Spatial option of its DBMS since version 10 g

R2. As presented in [69], in version 11 g R2, this support is improved in several ways,

including:

● Support for the OWL Prime dialect, which is comparable with the owl-max semantics

of OWLIM, [50]. The Pellet DL reasoner is integrated for T-Box (schema level)

inference.

● The efficiency of RDF loading and inference is considerably improved.

ORACLE supports RDF models with named graphs, that is, it can be seen as

a quadruple store. The semantics to be used for inference is defined in terms of rule-

bases, which essentially represent sets of entailment rules. Inference is implemented in

terms of forward-chaining and materialization – the results are stored in rule indices. The

initiative regarding inference is given to the user, who should take care of it explicitly:

● Force inference, that is, generation of the rule indices.

● Invalidate the rule indices when necessary, that is, after statements are deleted.

The latest results from benchmarking ORACLE 11 g are published in [65]. One should

consider summing up the times for the different steps. For instance, the times reported for

LUBM(8000) are as follows:

● Bulk-load: 30 h. 43 min.

● Loading into staging table: 11 h. 32 min. (when proper correctness checks are

performed by the RDF parser).

● Inference (OWL Prime): 11 h. Multi-threaded inference runs 3.3 times faster as

compared to single-threaded one on a quad-core CPU.
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Two important circumstances should be acknowledged:

● The LUBM(8000) results for ORACLE are measured on desktop computer, while most of

the other results are measured on servers. In fact, the configuration used for inference is

comparable to the workstation used for benchmarking BigOWLIM on LUBM(8000).

● ORACLE is also the most ‘‘economic’’ with respect to the RAM usage – the above

results reflect the inference run with 4 GB of RAM, but results measured on 2 GB

systems suggest graceful degradation of the performance when less memory is available.

● The results reported for loading and for inference come from different machines; there

are no public results for loading times at the same CPU where ORACLE achieves its

best inference time.

7.6.8 Sesame

Sesame is one of the most popular semantic repositories that supports RDF(S) and all the

major syntaxes and query languages related to it. Sesame is ranked by multiple indepen-

dent evaluations (e.g., [53]) as the most efficient RDF repository framework. Several

engines rely on the Sesame RDF database framework (http://www.openrdf.org). Semantic

repositories like OWLIM and BigData (see > Sects. 7.6.3 and > 7.6.4) use Sesame as

a library, taking advantage of its APIs for storage and querying, as well as the support for

a wide variety of query languages (e.g., SPARQL and SeRQL) and RDF syntaxes (e.g.,

RDF/XML, N3, Turtle). Other engines like Virtuoso and AllegroGraph use it just for the

sake of interoperability.
7.6.9 Virtuoso

OpenLink Virtuoso (http://www.openlinksw.com/virtuoso/) is a ‘‘universal server’’ offer-

ing diverse data and metadata management facilities, for example, XML management,

RDBMS integration, full-text indexing, etc. The core engine of Virtuoso is a relational

database engine with numerous RDF-oriented adaptations in datatypes, index layout, and

query optimization.

Virtuoso does not have built-in materialization of entailment during loading. Instead,

it supports the semantics related to subclasses, sub-properties, and owl:sameAs at

runtime, through backward-chaining on the basis of a specified RDF schema. Thus, the

user is not required to rewrite queries. Materialization is possible by writing SPARUL

statements to generate implied triples.

Virtuoso uses bitmap indices with key compression to address the issue of space

efficiency, and samples the database at query optimization time by keeping the data in

memory to address the issue of speed of processing. It is designedwith partitioning, specified

at the index level – a hash partitioning where the hash picks a logical partition out of a space

http://www.openrdf.org
http://www.openlinksw.com/virtuoso/
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of n logical partitions, where n is a number several times larger than the expectedmaximum

machine count. Each logical partition is then assigned to a physical machine. When loading

RDF data, the database translates between IRI’s and literals and their internal identifiers.

It then inserts the resulting quad in each index. An RDF query consists of a single key

lookups grouped in nested loop joins with occasional bitmap intersections. The basic query

is a pipeline of steps where most steps are individually partitioned operations. The

partitioned pipe function may return a set of follow-up functions and their arguments,

which get partitioned and dispatched in turn. In Virtuoso, each logical partition is allocated

onmultiple nodes. At query time, a randomly selected partition is used to answer the query

if the data are not local. At update time, all copies are updated in the same transaction. This is

replicated on all nodes. When loading data at a rate of 40Ktriples/s, the network traffic is

170 messages/s and the aggregate throughput is 10 MB/s with no real network congestion.

Scale can be increased without hitting a network bottleneck. Thus Virtuoso can run complex

queries with a reasonable number of messages, about 1620/34 = 47 messages per query.

As data are becoming a utility, the objective of Virtuoso and semantic repositories in general

is to provide for the rapid deployment of arbitrary scale RDF and other database systems for

the clouds. This involves automatic partitioning and re-partitioning and adapting query

planning cost models to data that contain increasing inference.

The developers of Virtuoso report in [14] the results of various ‘‘distributions of labor’’

between materialization and query expansion. As expected, it appears that extensive

materialization can save a lot of computations during querying, while the same query

completeness is achieved. In principle, this type of inference can be implemented on top of

any DBMS – the complexity of the inference depends on the complexity of the query

language supported. Here the semantics is not enforced by the engine, but it is rather

a matter of handcrafted queries that may or may not correctly reflect the semantics of the

ontology language primitives.

The data provided in [14] leave several questions open:

● The queries of LUBM are modified, so it is not clear: (1) how the query evaluation

performance compares with that of other engines benchmarked with the original

LUBM queries and (2) whether the query results are truly complete and whether the

implemented inference mechanisms are correct and sufficient for a full LUBM run.

● No performance data are provided for entailment and materialization, that is, there

are no indications about the performance and efficiency of the various inference

configurations that were put on test.

● Implementing the semantics of transitive properties via query-based entailment and

materialization, as presented in [9], requires recursive query evaluation. However,

there are no comments on the implementation of such behavior in Virtuoso.

Version 6.0 is the latest generation of the Virtuoso engine, which supports

distributed RDF database management. The results (http://www.openlinksw.com/

dataspace/vdb/weblog/vdb%27s%20BLOG%20%5B136%5D/1563) from the loading of

LUBM(8000) in a cluster of eight instances running on a single dual-CPU, eight-core,

server represent the fastest load on this benchmark on a server worth less than $10,000.

http://www.openlinksw.com/dataspace/vdb/weblog/vdb%27s%20BLOG%20%5B136%5D/1563
http://www.openlinksw.com/dataspace/vdb/weblog/vdb%27s%20BLOG%20%5B136%5D/1563
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7.7 State of the Art in Performance and Scalability

This section provides a discussion on the current state of the art with respect to scalability

and the different aspects of the performance (outlined in > Sect. 7.3). Reference [33]

presents an overview and comparison of the most relevant publicly available benchmark

results from several of the most prominent semantic repositories. Such a comparison is

not presented here because in the year 2010, the rate of publication of new results is

already quite high, which means that any specific results will be out of date soon. Further,

the results being published are very hard to compare in a reliable manner for several

reasons: Most of the vendors do not publish sufficient information about the

benchmarking experiments; most of the information published does not comply with

the full-cycle benchmarking principles (presented in > Sect. 7.3.4); the hardware used by

the different vendors is very different in terms of both price and performance. Instead, the

remainder of this section generalizes some trends and refers to reports on independent

evaluations and comparisons of semantic repositories, such as [63] and [8].
7.7.1 Data Loading Performance

The current publications at the ‘‘Large Triple Stores’’ page (a wiki page maintained by

W3C at http://esw.w3.org/LargeTripleStores, where vendors report on their scalability

achievements) suggest that there are several repositories which can load RDF datasets of a

size between 10 and 20 billion statements. Most of the vendors report such results using

servers similar to the one presented in > Sect. 7.4.1.2. There are however certain

differences:

● According to a post at the ‘‘Large Triple Store’’ (no further information is provided

elsewhere), a Virtuoso (See > Sect. 7.6.9 for more information about the engine)

cluster of eight servers has loaded 15 billion statements of the LOD Cloud Cache

(http://lod.openlinksw.com/) service. No average loading speed for the entire dataset

is provided, here is a quote ‘‘Latest bulk load added ~3 Billion triples in ~3 h— roughly

275Ktps (Kilotriples-per-second)—with partial parallelization of load.’’Materialization

is not performed

● According to [33], BigOWLIM (See > Sect. 7.6.4 for more information about the

engine) uses a single server to load the 12 billion statements of LUBM(90,000),

perform materialization, and index 20 billion statements. Two speeds should be

considered here because of the materialization: 12,000 statements/s. is the speed of

loading explicit statements; 18,000 statements/s. is the speed of indexing statements

● Again according to a post at the ‘‘Large Triple Store’’ with no further information

provided elsewhere, 4Store (See > Sect. 7.6.1 for more information about the engine)

‘‘. . . is running with 15B triples in a production cluster’’. While no proper reference is

provided for the average loading speed, values in the range of 140,000 statements per

second are indicated. 4Store does not perform materialization.

http://esw.w3.org/LargeTripleStores
http://lod.openlinksw.com/
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To summarize, systems which do not perform materialization and feature data

partitioning demonstrate speeds in the range of few hundred thousand statements per

second. Still, to understand the importance of these achievements, one should be able to

analyze also query evaluation correctness and performance. This is important in order to

distinguish really comprehensive implementations, on the one end of the spectrum, from

a trivially partitioned store (TPS) like the following one, on the other end. Suppose that

TPS is a distributed repository which is implemented as a cluster of N nodes, each of

which being a stand-alone semantic repository. New statements are given a hash code and

distributed to one of the nodes; materialization is not supported. All low-level read

requests are broadcasted to all the nodes, and the results are federated at the master

node. Such a TPS will exhibit perfect horizontal scalability with respect to the volumes of

data and the speed of loading; given a hash function which distributes the statements

evenly, the loading speed of the TPS will be close to the sum of the speeds of all the nodes.

However, the query evaluation speed of the TPS will be very poor due to the high

communication costs.

Under full-cycle benchmarking conditions, the best loading speeds for datasets in the

range of one billion statements are in the range of 100,000 statements per second; such is

the case of AllegroGraph’s multi-threaded loads, [19]. As expected, and as observed in the

results comparison in [33], materialization with respect to OWL Horst-like languages,

even for the synthetic datasets of LUBM (See> Sect. 7.5.1), brings the loading speed down

to the levels of a few tens of thousands of statements. This is the case even with multi-

threaded loading and inference implementations as the one of ORACLE, [69].

Probably the most interesting and useful performance analysis results are presented in

[63] where several of the outstanding repositories are evaluated with respect to a real-

world scenario. The repository is populated with: an ontology; a factual knowledge base of

about seven million statements; and eight million statements of metadata about

a collection of Press Association, containing five million images. Next 15 queries relevant

to a content management and Web publishing are evaluated. The scenario requires

interpretation of the ontology with respect to OWL Horst semantics. The test setup

makes no assumptions whether reasoning is implemented through forward-chaining

and materialization during loading or through backward-chaining during query evalua-

tion. AllegroGraph loads the data about ten times faster than the engines which perform

materialization (Sesame, Jena TDB, and BigOWLIM); as expected, this has implications

on the query evaluation times presented in the next section.
7.7.2 Query Evaluation

Loading, combined with query evaluation, can deliver full-cycle benchmarking

(> Sect. 7.3.4), i.e., an adequate picture of the performance of the engine. Below we

provide publicly available results about query evaluation performance of the engines

presented in > Sect. 7.6 based on two benchmarks: BSBM (> Sect. 7.5.4) and LUBM

(> Sect. 7.5.1). We will start, however, with the result of a query evaluation benchmarking
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a real-world scenario of Press Association, reported in [63] and introduced in

> Sect. 7.7.1. While AllegroGraph was much faster in the loading of the data, it fails to

answer two of the queries and its average query evaluation time is 50 times slower than

that of BigOWLIM (8.2 s. versus 0.16 s.) This is a clear demonstration of the trade-offs

between the two main reasoning strategies (see > Sect. 7.2.1.2).
7.7.2.1 BSBM Results

Recent results from evaluation of few of the most popular engines with the BSBM

benchmark (see> Sect. 7.5.4) are published in [7] and [8]. The former includes: relational

database engines (running the SQL version of the benchmark), relation-to-RDFwrappers,

and native RDF engines. As long as BSBM is biased toward relational databases, it is not

a surprise that the relational engines (MS SQL and Virtuoso SQL) perform far better than

the native RDF stores and the relational-to-RDF wrappers are somewhere in the middle

(> Fig. 7.8).

> Figure 7.9 provides a comparison between results from the internal evaluation of

BigOWLIM 3.1 and results for other systems from [7] regarding query evaluation with a

growing number of simultaneous clients (1, 4, 8) against 25-million statement version of

the BSBM dataset. Unfortunately, there are no public BSBM results on the evaluation of

engines, other than OWLIM, withmore than four clients for datasets larger than 25M. On

the other hand, for the most mature engines, the indices of the 25 M dataset fit into the

main memory of any machine with more than 4 GB of RAM. Still, the results demonstrate

the degree to which the engines can parallelize query processing in a way which utilizes the

hardware more efficiently.

Given a larger number of simultaneous clients, BigOWLIM and Virtuoso can deliver

considerably larger overall throughput, almost proportional to the number of CPU cores

of the system. BigOWLIM’s results were acquired on a desktop (osol) with a quad-core

CPU with hyper-threading support; Virtuoso’s results were acquired on a desktop quad-

core CPU without hyper-threading.
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In subsequent experiments, [8], the authors of BSBM evaluated the performance of

BigOWLIM, Jena TDB, and the native RDF Virtuoso engine. Excerpts of these results are

presented in > Fig. 7.9. The experiments included two scales: 100 M and 200 M. Apart

from the standard runs, there are also results for two variants: running with four clients

(indicated on the diagramwith ‘‘4C’’) and running a ‘‘reduced query mix’’ (indicated with

RQM). The reduction of the query mix was made by removing a couple of queries, which

are not suitable for benchmarks at scales above 25 M; at large scale, they consume above

80% of the query time for the entire mix. Analysis of these results follows:

● As already observed on > Fig. 7.9, Virtuoso and BigOWLIM are efficient in

parallelizing the query evaluation.

● Both Virtuoso and BigOWLIM can handle about 10 nontrivial queries per second

against 200 M dataset, even running in single-client mode on desktop machine worth

less than $1,000.
7.7.2.2 LUBM Results

Although there are plenty of data on loading performance and the scalability of LUBM, in

a very few cases, query evaluation has been benchmarked within the same environment

that was used for dataset loading.

The table below presents the results of query evaluation of the LUBM benchmark with

8,000 universities. Two sets of results are provided for BigOWLIM 3.1 – for server (onap) and

desktop (osol). The results of AllegroGraph 3.2, [19], were acquired on a server comparable

to the one used for BigOWLIM. The semantic repository engines in question are described

in> Sect. 7.6, and specifications of the benchmark environments are given in> Sect. 7.7.1.
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Query performance LUBM(8000), one billion statements
Query No
 # of results
BigOWLIM 3.1
(onap)
 BigOWLIM 3.1 (osol)
 AllegroGraph 3.2
Time
(msec)
QTPR
(msec)
Time
(msec)
QTPR
(msec)
Time
(msec)
QTPR
(msec)
1
 4
 23
 5.8
 52
 13.0
 4
 1.0
2
 2,528
 251,992
 99.7
 873,197
 345.4
 54,964
 21.7
3
 6
 26
 4.3
 25
 4.2
 2
 0.3
4
 34
 8
 0.2
 28
 0.8
 14
 0.4
5
 719
 38
 0.1
 29
 0.0
 37
 0.1
6
 83,557,706
 84,333
 0.0
 174,777
 0.0
 104,794
 0.0
7
 67
 38
 0.6
 71
 1.1
 9
 0.1
8
 7,790
 113
 0.0
 132
 0.0
 178
 0.0
9
 2,178,420
 523,215
 0.2
 1,460,862
 0.7
 117,303
 0.1
10
 4
 27
 6.8
 24
 6.0
 5
 1.3
11
 224
 4
 0.0
 23
 0.1
 8
 0.0
12
 15
 6
 0.4
 33
 2.2
 14
 0.9
13
 37,118
 1,662
 0.0
 121,980
 3.3
 47
 0.0
14
 63,400,587
 63,998
 0.0
 157,568
 0.0
 27,990
 0.0
Average
 66,106
 8.4
 199,200
 26.9
 21,812
 1.9
Considering that some of the LUBM queries return a very large number of results for

large datasets, the query-time-per-result (QTPR) metric is introduced, where the query

evaluation time is normalized with respect to the size of the result-set. Average QTPR

represents a better overall score of the query performance on LUBM because the perfor-

mance of queries with large result-sets does not dominate the score as in the case of using

average query evaluation time. QTPR appearing as 0.0 indicates a value below 0.1

milliseconds.

As expected, given a large dataset, the query performance of the server is considerably

better than that of the desktop. This should most probably be attributed to the better

storage system and data buses between the CPUs and the main memory.

The query performance reported for AllegroGraph looks very good, especially if one

considers that, based on the vendor information, ‘‘dynamic materialization’’ is performed

during query evaluation. The major gain in terms of average QTPR and evaluation time

comes from queries #2 and #9 – probably the two most challenging in the benchmark.

This is the state of the art in performance and scalability of semantic repositories.

Dataset loading and query evaluation times are observed, considering the hardware

configurations and the overall test environment.
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7.8 Typical Applications

The applications of semantic repositories are presented in this section to illustrate their

strengths across different domains and scenarios. The following table compares the most

relevant characteristics of these applications.

Comparison of sample semantic repository applications
FactForge
 LinkedLifeData
 BBC’s World Cup website
Scope
 General
 Domain-
specific
Domain- and application-specific
Closed-world
assumption
�
 +
 +
Data
management
approach
Integration with
minimal
intervention
Extensive data
restructuring
Well-maintained schema and data,
extended using entity extraction
Update rate
 Once in a few
months
Once in a few
months
Hundreds of updates per hour
7.8.1 Reason-Able Views to the Web of Linked Data

Reason-able views represent an approach for reasoning and themanagement of linked data

from the Linking Open Data (LOD) cloud (see > Sect. 7.1.4). Reason-able view (RAV) is

an assembly of independent datasets, which can be used as a single body of knowledge

with respect to reasoning and query evaluation.

Reason-able views are necessary as reasoning with linked data is problematic with

respect to different dimensions. For example, reasoning with the Web of linked data is not

feasible because of the clash between the mainstream reasoning techniques and the

WWW-like nature of the data such as Linking Open Data (LOD). The major obstacles

for this lay in several reasons:

● Most of the popular reasoners implement sound and complete inference under

‘‘closed-world assumption.’’ Such setups are irrelevant in an environment, like the

Web of Data and the WWW, where the knowledge is incomplete by design and logical

consistency is not guaranteed.

● In addition to that, the complexity of reasoning even with the simplest knowledge

representation language based on description logics (DL – one of the most popular

paradigms nowadays) OWL Lite is prohibitatively high when applied to Linking Open

Data (LOD). The great complexity of the algorithms for basic reasoning tasks indicates

that they are unfeasible for application to large-scale knowledge bases and datasets.

● Further, the LOD cloud contains datasets that are not suitable for reasoning. Some of

them are derived by the means of text-mining and include incorrect information, due
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to the intrinsic limitations of the accuracy of the extraction techniques. Such inaccu-

racies are probably not a serious problem for human readers, but they can lead to

significant noise and inconsistencies by automated reasoning.

● Finally, data publishers use OWL vocabulary with no account for its formal semantics.

This results in long cycles in many category hierarchies.

Reasoning is practically unfeasible with distributed data as well. It is actually possible,

but is usually far slower than reasoning with local data. The fundamental reason for that is

related to the ‘‘remote join’’ problem. The remote join problem pertains to DBMS

(Database Management Systems). The remote join is a method capable of executing

a join across two DBMSs. The remote join problem is solved by creating a join view

at the remote database, and a local synonym for this view, then retrieving through

this local view. Distributed joins have caused performance problems throughout

the history of distributed database support in general. That is why they cause problems

in the context of reasoning with the Linking Open Data (LOD) cloud as well. In addition

to this, this speed of access and service availability in distributed data can be a major issue

regarding reasoning and manipulating the Web of Data in distributed environments.

Thus, the key ideas around the reason-able views approach focus on the following

aspects:

● The grouping of the selected datasets and ontologies in a compound dataset, which

becomes a single body of knowledge – integrated dataset – with respect to reasoning

and query evaluation.

● Loading of the compound dataset in a single semantic repository in order to make

query evaluation and reasoning practically feasible. It can be considered as an index,

which caches parts of the Linking Open Data (LOD) cloud and provides access to the

datasets included as Web search engines index WWW pages and facilitate their usage.

● The performance of inference with respect to tractable OWL dialects. Given all public

results, only OWL Horst (see > Sect. 7.2.2)–like languages seem to be suitable for

reasoning with data in the range of billions of statements.

Complying with all these aspects makes reasoning with the Linking Open Data (LOD)

feasible. This is because a basic level of consistency of the data is being guaranteed, along

with a guaranteed service availability because the compound dataset is loaded into a single

semantic repository. This allows for the easier exploration and querying of unseen data

and ensures a lower cost of entry.

The constitution of reason-able views obeys special selection criteria for the datasets,

for example, the datasets must allow inference and deliver meaningful results under the

semantics determined for the view. Further, it is necessary that the datasets are easy to

define and isolate, for example, they must be clearly distinguishable from other datasets.

In many cases, additional manipulations on the datasets like cleanups are required. The

datasets must allow easy and cheap cleanupmanipulations that can be performed on them

in an automated or semiautomated fashion. Ultimately, the datasets must be more or less

static, able to function in predictable way, opposite to database wrappers which
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implement complex mappings to be reusable in unplanned contexts, such as Web-based

applications or federated systems, where RDF is generated in answer to retrieval requests.

There are two implementations of the concept for linked data reason-able views:

● FactForge, in red on > Fig. 7.10 (see > Sect. 7.8.1.1)

● Linked Life Data (LLD) and PIKB Pathway and Interaction Knowledge Base, (see

> Sect. 7.8.1.2)

Although similar in spirit and based on identical principles, these two applications are

very different use cases. FactForge is a collection of a vast amount of heterogeneous

general purpose data, whereas LLD – PIKB is a domain-specific warehouse.

FactForge and LLD – PIKB are presented in greater detail in the following sections.While

both of them can be seen as reason-able views to theWeb of linked data (a notion introduced

in > Sect. 7.8.1), sharing one and the same search, exploration, and querying facilities, they

are in fact quite different in terms of the datamanagement approach, assumptions, and users.
7.8.1.1 FactForge: The Upper-Level Knowledge Base

FactForge is a reason-able view to the Web of linked data, an assembly of some of the

central LOD datasets, which have been selected and refined in order to:

● Serve as a useful index and entry point to the LOD cloud

● Present a good use case for large-scale reasoning and data integration

It includes DBPedia, Geonames, UMBEL, Freebase, WordNet, CIA World Factbook,

Lingvoj datasets and Dublin Core (DC), SKOS (Simple Knowledge Organization System),

RSS, FOAF schemas.

The datasets of FactForge are loaded into BigOWLIM, where forward-chaining and

materialization are performed. BigOWLIM uses internally a rule language that supports

R-entailment – ‘‘owl-max,’’ which extends OWLHorst, [60], to deliver expressiveness very

similar to OWL 2 RL, [41]. The standard reasoning behavior of OWLIM is to update the

deductive closure upon committing a transaction to the repository. Consistency checking

is performed, applying the checking rules after adding all new statements and updating

the deductive closure. Inconsistencies are reported accordingly. FactForge is loaded with

OWLIM’s ‘‘partialRDFS’’ option enabled. This excludes rules supporting some of the

features from RDFS and OWL, thus avoiding inferring and indexing three ‘‘trivial’’

statements for each URI in the repository.

Additionally, the loading of FactForge benefits from a specific feature of the BigTRREE

engine (see > Sect. 7.6.4) that enables the engine to handle efficiently owl:sameAs

statements in order to avoid their over-generation (see > Sect. 7.2.1.5). The results of

the loading of FactForge can be summarized as follows:

● Number of inserted statements (NIS): 1.4 billion

● Number of stored statements (NSS), including the implicit ones: 2.2 billion

● Number of retrievable statements (NRS): 10 billion
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The larger number of retrievable statements is a result of the owl:sameAs optimization

discussed above. The optimization has ‘‘compressed’’ 7.8 billion statements, reducing the

size of the indices five times. There are seven different ‘‘retrievable’’ statements against

a single explicit statement asserted. The version of FactForge launched in May 2010

includes version 3.3 of DBPedia and a version of Geonames downloaded in April 2010.

FactForge is available as a free public service at http://factforge.net, offering the

following access facilities:

● Incremental URI auto-suggest

● One-node-at-a-time exploration through Forest and Tabulator linked data browsers

● RDF Search: retrieve ranked list of URIs by keywords (see > Sect. 7.6.4)

● SPARQL end-point
7.8.1.2 Linkedlifedata: 25 Biomedical Databases in a Box

Linked Life Data – Pathway and Interaction Knowledge Base (LLD – PIKB, http://

linkedlifedata.com) is the largest known reason-able view of the Web of Data

(4,179,999,703 triples). It assembles a large fraction of the life science–related datasets

in LOD, and includes about 20 databases, as described in [41]. Linked Life Data is a data

integration platform that realizes a massive RDF warehouse solution extended with

inference and semantic annotations support. It integrates semantically, molecular infor-

mation and realizes its linking to the public data cloud (LOD). The well-known data

sources PubMed, UMLS, Entrez-Gene, and OBO Foundry have been transformed into

RDF, using, in most of the cases, SKOS schema to represent the triples [29].

LLD – PIKB contains about 2,735,148,325 explicit triples, which are complemented by

another 1,444,851,378 implicit statements inferred from them.

The data integration process is linking between related resources in the disconnected

datasets. It takes place automatically according to predefined alignment patterns, map-

ping rules. They are presented in > Sect. 7.8.1.2. For example, Namespace mapping

identifies common parts of the URI and states that the same resource is referred to within

two namespaces. Or Reference node identifies that a URI and a node with properties

corresponding to parts of the URI refer to the same resource. Thus, LLD has an innovative

way of handling pathways. It selects resources based on the metadata describing

a resource, which interacts with the resource to be selected, whereas conventional

approaches select elements based on the metadata describing them directly. Three types

of mappings are supported: exactMatch, closeMatch, and related. exactMatch

means that both entities have the same semantics, for example, they are both genes or

proteins, and the mappings are made based on the existing stable unique identifiers.

closeMatch means that both entities have the same semantics, for example, they are

both gene or protein, but their mappings are made based on nonstable identifiers, for

example, gene names. Related means that the two mapped entities can have different

semantics, for example, one of them could be a gene, and one a protein.

http://factforge.net
http://linkedlifedata.com
http://linkedlifedata.com
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A fourth special way of mapping individuals is through semantic annotation. Seman-

tic annotation is used for assigning links between the entities, recognized by arbitrary

information extraction algorithms, and their semantic descriptions. This process pro-

duces metadata providing class and/or instance information about the entities. The

semantic annotation links identified entities in a given LLD dataset with their mentions

in documents, for example, PubMed documents, and stores this information back into the

semantic repository. Furthermore, the semantic annotation in LLD is capable of identi-

fying and resolving all alternative names of a given element or concept to the same

resource. The results demonstrate efficient search capabilities over highly heterogeneous

and loosely coupled domain-specific data.

LLD - PIKB is used as a domain-specific reporting tool for generating new informa-

tion insights. The system facilitates the mining of concealed relations among data by

interlinking information from multiple heterogeneous sources and by providing a more

holistic view over a particular scientific problem.

Linked data already gained popularity as a platform for data integration and analysis

in the life science and health care domain. Reference [41] reports on recent developments

in the Linked Life Data (LLD) platform and the Pathway and Interaction Knowledge Base

(PIKB) dataset. The main objective set for the system is to facilitate the mining

of concealed relations among data. Information is mined in 15 different data sources

from five different biomedical domains. More than 20 completed data sources are

interconnected, thus aiding in the understanding of research problems by linking

unrelated data from heterogeneous knowledge domains. The collection of domain knowl-

edge has been optimized by the use of instance alignment patterns that restore missing

information relationships in the public linked data cloud (LOD). Additionally, informa-

tion from unstructured texts has been matched with semantic annotations to the linked

data instances from the knowledge base. This work addresses the reality that researchers in

life sciences require different views over one and the same data. To understand the ‘‘bigger

picture’’ of a research problem, the scientists need to link visually unrelated data from

heterogeneous knowledge domains, while usually the analysis is limited based on the

accessible overview of the data. Semantic Web technology has a place as a promising

technology for reducing the complexity of combining data from multiple sources and

resolving classical integration problems related to information accessibility. RDF tech-

nologies are applied as the ‘‘semantic glue’’ in these processes. Linked Life Data (LLD) is

a data integration platform that realizes a massive RDF warehouse solution extended with

inference and semantic annotations support. It implements the RDF representation of the

PubMed, UMLS, Entrez-Gene, and OBO Foundry data sources, based on the SKOS

scheme, and uses linked data principles. Integration patterns have been identified to

interconnect related resources in RDF database representations. Semantic Annotation

has been used for assigning links between the entities, recognized by arbitrary information

extraction algorithm, and their semantic descriptions. This allows knowledge acquisition

based on the extraction of more complex dependencies like the analysis of relationships

between entities, event, and situation descriptions. The data in Pathway and Interaction

knowledge Base (PIKB) has more than 2,217 billion statements, loaded in 40 h on
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a standard server configuration with an average loading and inference speed varying

between 5,000 and 60,000 statements per second, depending on the complexity of the

loaded dataset. Continuous updates are maintained, and all post processing activities are

automated. The LLD platform demonstrates efficient search over highly heterogeneous

and loosely coupled data. It is capable of executing queries that cover information from

seven different sources in a timely fashion. The platform and the PIKB dataset are used as

domain-specific reporting tools for generating new information insights. The Web front-

end provides three paths to access the data: a Web form for issuing SPARQL queries,

a browser for exploring resources, and full-text search in the graph containing the

searched literal with matched resources.
7.8.2 Publishing of Content on the Web, Based on Semantic
Metadata

The BigOWLIM semantic repository (see > Sect. 7.6.4) was successfully integrated into

the high-performance SemanticWeb publishing stack powering the BBC’s 2010World Cup

website. This use case is presented as an example of an application of semantic repository

technology in the publishing industry, which is remarkable in twoways: It provides evidence

for the advantages of the technology compared to relational databases, and it proves that

such engines are already mature enough to handle high loads in critical applications.

The following information was stored in the repository backing BBC’s World Cup

website:

● Ontologies, both domain-specific ones (about sport and particularly football) and

general (e.g., the FOAF schema)

● Factual knowledge, for example, information about specific teams, players, games, etc.

● Metadata about describing the content produced and published by the BBC by means

of references to the ontologies and the entities described in the factual knowledge part

The metadata part was updated constantly to reflect at real time the stream of new content

(articles and other media assets) relevant to the World Cup, which was the subject of

publishing at the BBC’s website. As described below, the main function of the repository

was to provide selections of artifacts relevant to specific concepts – these selections were used

to dynamically generate Web pages on the subject. Reasoning helped the matching between

the content metadata and the subjects to take into consideration the semantics of all the data.

BigOWLIM was set up to perform materialization against a customized variant of the

OWL Horst rule-set. As the updates of the repository required deletions and needed to

happen in real time, the ‘‘smooth invalidation’’ feature of BigOWLIM (see > Sect. 7.2.1.6)

was critical for the performance of the overall solution. Further, the Replication Cluster

feature (see > Sects. 7.4.2 and > 7.6.4) of BigOWLIM enabled horizontal scaling with

respect to the query loads and failover.

Due to confidentiality constraints, the use case will be described through citations of

a couple of blog posts from the technical team at BBC that provide an insight into the
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business case for the deployment of semantic technologies in theirWorld Cup website, the

technical architecture of the publishing stack, the strategic importance of the project’s

success, and the plans for the further usage of semantic technology and linked data within

the BBC.

In [45], John O’Donovan, Chief Technical Architect, JournalismandKnowledge, BBCFuture

Media & Technology, discusses the business benefits of the implemented semantic solution:

" ‘‘The World Cup site is our first major statement on how we think this (the Semantic Web) can

work for mass market media and a showcase for the benefits it brings. . . . Though we have been

using RDF and linked data on some other sites (. . .) we believe this is the first large scale, mass

media site to be using concept extraction, RDF and a Triple store to deliver content.’’
‘‘. . .we are not publishing pages, but publishing content as assets which are then organized

by the metadata dynamically into pages, but could be re-organized into any format we want

much more easily than we could before. . . . There is also a change in editorial workflow for

creating content and managing the site. This changes from publishing stories and index pages,

to one where you publish content and check the suggested tags are correct. The index pages are

published automatically. This process is what assures us of the highest quality output, but still

saves large amounts of time in managing the site and makes it possible for us to efficiently run

so many pages for the World Cup.’’

‘‘As more content has Linked Data principles applied to it . . . the vision of a Semantic Web

moves closer. Importantly, what we have been able to show with the World Cup, is that the

technology behind this is ready to deliver large scale products.’’

‘‘This is more than just a technical exercise – we have delivered real benefits back to the

business as well as establishing a future model for more dynamic publishing which we think

will allow us to make best use of our content and also use Linked Data to more accurately

share this content and link out to other sites and content, a key goal for the BBC. We look

forward to seeing the use of Linked Data grow as we move towards a more Semantic Web.’’
In a following post [51], Jem Rayfield, Senior Technical Architect, BBC News and

Knowledge, provides more information on the technical architecture of the high-

performance publishing stack and the related data flows and data modeling:

" ‘‘The World Cup 2010 website is a significant step change in the way that content is

published. . . . As you navigate through the site it becomes apparent that this is a far deeper

and richer use of content than can be achieved through traditional CMS-driven publishing

solutions.’’
‘‘The site features 700-plus team, group and player pages, which are powered by a

high-performance dynamic semantic publishing framework. This framework facilitates the

publication of automated metadata-driven web pages that are light-touch, requiring minimal

journalistic management, as they automatically aggregate and render links to relevant

stories.’’

‘‘The foundation of these dynamic aggregations is a rich ontological domain model. The

ontology describes entity existence, groups and relationships between the things/concepts that

describe the World Cup. For example, ‘‘Frank Lampard’’ is part of the ‘‘England Squad’’ and the
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‘‘England Squad’’ competes in ‘‘Group C’’ of the ‘‘FIFA World Cup 2010’’. The ontology also

describes journalist-authored assets (stories, blogs, profiles, images, video and statistics) and

enables them to be associated to concepts within the domain model . . .’’

‘‘A RDF triplestore (ref. BigOWLIM) and SPARQL approach was chosen over and above

traditional relational database technologies due to the requirements for interpretation of

metadata with respect to an ontological domain model. The high level goal is that the

domain ontology allows for intelligent mapping of journalist assets to concepts and queries.

The chosen triple store provides reasoning following the forward-chaining model and thus

implied inferred statements are automatically derived from the explicitly applied journalist

metadata concepts.’’

‘‘This inference capability makes both the journalist tagging and the triple store powered

SPARQL queries simpler and indeed quicker than a traditional SQL approach. Dynamic aggre-

gations based on inferred statements increase the quality and breadth of content across the site.

The RDF triple approach also facilitates agile modeling, whereas traditional relational schema

modeling is less flexible and also increases query complexity.’’

‘‘Our triple store is deployed multi-data center in a resilient, clustered, performant and

horizontally scalable fashion, allowing future expansion for additional ontologies and indeed

linked open data (LOD) sets. . . . The triple store is abstracted via a JAVA/Spring/CXF JSR 311

compliant REST service. . . . The API is designed as a generic facade onto the triple store allowing

RDF data to be re-purposed and re-used pan BBC. This service orchestrates SPARQL queries and

ensures that results are dynamically cached with a low ‘time-to-live’ (TTL) (1 minute) expiry cross

data center using memcached.’’

‘‘This dynamic semantic publishing architecture has been serving millions of page requests

a day throughout the World Cup with continually changing OWL reasoned semantic RDF data.

The platform currently serves an average of a million SPARQL queries a day with a peak RDF

transaction rate of 100s of player statistics per minute. . . .’’

‘‘The development of this new high-performance dynamic semantic publishing stack is a

great innovation for the BBC aswe are the first to use this technology on such a high-profile site. It

also puts us at the cutting edge of development for the next phase of the Internet, Web 3.0.’’
7.9 Related Resources

This section provides references to publications related to semantic repositories, their

functionality, design, and performance.

Kiryakov [32] aims to define criteria for the validation of the performance of semantic

repositories and in particular for the data layer of the LarKC platform for web-scale

reasoning. It introduces the first version of the conceptual framework for semantic repos-

itory tasks and performance aspects (presented in > Sect. 7.3 here) and provides an

overview of the state-of-the-art repositories. Finally, he defines performance and scalability

targets for the development of the semantic repositories over a period of 3 years.
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In [15], the developers of the Virtuoso engine (see > Sect. 7.6.8) argue that web-scale

RDFmanagement requires manipulations like joining, aggregation, and the filtering of data

together with inference and on-the-fly schema mapping. Further, they present some of the

research and experiments on the usage of various indexing techniques and distribution

schemas. The paper motivates the usage of bitmap indices with key compression (to

improve space efficiency) and data sampling at query optimization time by keeping the

data in memory (to address the issue of the speed of processing). The data partitioning

schema used in Virtuoso is presented along with the basic IRI encoding and indexing

mechanisms. Useful observations and statistics about the actual computational cost of

some atomic operations and the network traffic are also presented. [16] provides more

recent insights of Orri Earling on the trends of development of the semantic repositories

and argues that in order for the latter to become a widely adopted data management

technology, they should match the efficiency of the relational DBMS in dealing with regular

data. As an approach to achieve such efficiency, it proposes column-based compression

techniques and reports evaluation results of an early implementation of such technique.

As discussed in > Sect. 7.4.2, approaches based on distribution via data partitioning

have some intrinsic limitations when it comes to full-cycle data management (see

> Sect. 7.3.4). Still, in specific scenarios and for specific tasks, distribution can deliver

amazing results. In the scope of the LarKC project, a group at the VU Amsterdam

developed the WebPIE (The distributed materialization approach implemented in

WebPIE is presented in greater detail in >KR and Reasoning on the Semantic Web:

Web-scale Reasoning) system, which implements a MapReduce (MapReduce is

a framework for the parallel and distributed processing of batch jobs on a large number

of compute nodes.) based distributed materialization. As reported in [61], WebPIE

demonstrates extremely scalable reasoning with respect to the semantics of RDFS and

OWL Horst. The success of WebPIE is based on several optimizations, related to the

specificity of the entailment rules, which defined the semantics of the above-mentioned

languages, and assumptions about the specific data loading discipline. These optimiza-

tions allow WebPIE to decrease the number of inference jobs to be performed by the

cluster, and thus the time required for closure computation. Given real-world datasets like

UNIPROT and FactForge (see > Sects. 7.5.2 and > 7.5.3) of size close to 1 billion

statements, it delivers OWL Horst reasoning speeds in the range of 70,000 explicit

statements per second on a 64-node cluster. The experiments with the synthetic datasets

of the LUBM benchmark (see > Sect. 7.5.1) demonstrate speeds in the range of 500,000

statements per second for a dataset of 100 billion explicit statements. As already discussed

in > Sect. 7.5.1, this proves that LUBM datasets are relatively easy to reason with; still, at

present, this experiment demonstrates the highest speed and scalability officially reported.

WebPIE builds on top of the experience with MARVIN [48], a system, which imple-

ments incomplete distributed materialization. MARVIN is based on the approach of divide-

conquer-swap, for example, peers autonomously partition the problem in some manner,

each operate on some subproblem to find partial solutions, and then repartition their

part and swap it with another peer; all peers keep repartitioning, solving, and swapping to
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find all solutions. MARVIN guarantees eventual completeness of the inference process

and produces its results gradually. Initial partitioning is accomplished by reading some

random data from disk, and subsequent partitioning is dictated by step swap. The conquer

phase is performed by an off-the-shelf reasoner which computes the closure of the portion

of the data available at a specific step in a single node. The problem of making distributed

reasoning scalable and load-balanced is addressed with the SpeedDate approach that is

also used in newer developments around WebPIE, [35], which count on the so-called

elastic clustering to deal with skewed term frequency distributions.

In [28] Adam Jacobs examines some facets of data organization and processing,

relating to the design of the data structure for efficient querying and analysis, and not

just for storing. He argues for adopting sequential access to data, because what makes the

big data big is the repeated observations over time and space. In other words, large

datasets have inherent temporal or spatial dimensions, and in order to achieve acceptable

performance for highly order-dependent queries on truly large data, one should turn to

a data representationmodel that recognizes the concept of inherent ordering of data down

to the implementation level. Further, the paper presents a discussion on several issues

related to the interplay between the constraints and the capabilities of the current

hardware infrastructure and few of the most popular approaches for high-performance

data management, for example, ‘‘everything in memory’’ and distributed computation.

The YARS repository was the first one to demonstrate an efficient implementation of

large-scale RDF management via data partitioning. The system was proven in scale-up

experiments on seven billion synthetically generated statements over 16 Index Managers

on 16 machines with 100 queries with a randomly chosen resource joined with one or

two quad patterns. The basic design principles behind YARS2, along with algorithms

and evaluation data, are presented in [23]. While YARS is not provided at present as

a stand-alone product, the results and the principles discussed in this paper are used

in several of the prominent engines discussed in > Sect. 7.6. Further, YARS was developed

as part of SWSE – an end-to-end Semantic Web search engine that uses a graph data model

to enable interactive query answering over structured and interlinked data collected from

many disparate sources on the Web. In many aspects, SWSE is similar to the

FactForge linked data service, presented in > Sect. 7.8.1.1. The major difference is that

the RDF data indexed in SWSE are crawled from the Web, while FactForge is loaded with

specific datasets, which are preprocessed and cleaned up in order to provide some level

of guarantee about the consistency of the data and inferences on top of it; it is also the case

that FactForge supports SPARQL queries, while SWSE only supports keyword search.

What is common between the two systems is that in both projects ranking and information

retrieval (More information about search and retrieval methods appropriate for the

retrieval of relevant information from large RDF dataset can be found in > Semantic

Technology Adoption: A Business Perspective: The Cases of Swoogle and Watson, which

presents two other semantic Web search projects. Sindice (http://sindice.com/) is another

Semantic Web search engine. The similarity between Sindice and SWSE is that they both

offer partial support for structured queries: Users are allowed to make one-step attribute-

value constraints, which allow efficient implementation without expensive DBMS-alike

http://sindice.com/
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join operations.) methods for semi-structured RDF data represent a key feature.

A detailed and up-to-date description of SWSE can be found in [26], while [24] presents

a brief overview of the key points and the recent advances in both SWSE and YARS.

This 2004 paper [22] presents evaluationwork of knowledge-based systems in largeOWL

applications to help in the selection of themost appropriate system for a given task. It provides

the rationale for and describes the LUBM (Lehigh University Benchmark) – today’s most

popular semantic repository benchmark, discussed in > Sect. 7.5.1. This is first-of-a-kind

experiment with respect to the scale of data it was designed for, the open and comprehensive

design, and the clear documentation of the benchmark framework, which allowed many

repository vendors and users to adopt it for the testing of their tools and environments.

Over the last couple of years, semantic technologies have started getting real attention

from the business (The adoption of semantic technologies by the industry is discussed

in > Semantic Technology Adoption: A Business Perspective). As discussed in

> Sect. 7.1.1, RDF-based semantic repositories are seen as an alternative technology,

which can replace relational DBMS in many environments in order to improve the

efficiency of data integration and heterogeneous data management. RDF-based data

management is being promoted by respected mainstream analysts and consultants such

as PriceWaterhouseCoopers [49], and Gartner [63]. According to [49], among the most

critical business problems today are the information gaps, especially in the areas of customer

needs and business risk.What is actually missing is more context that explains what the data

mean. The Semantic Web directly engages with the meaning and context of a business – its

semantics, and the linked data approach ensures access to comprehensive data and a greater

sharing of internal data. Data federation for web-scale many-to-many sharing with easier

connections to more sources, combined with the ability to be reused by others, is the

preferred data model for accomplishing this. It is argued that business data integration

must be rethought as data linking, a decentralized, federated approach that uses ontology-

mediated links to have those data at their sources. The goal is to create an information

mediation layer that lets business staff explore what-if scenarios, assess strategies and risks,

and gain insight from the messy reality of the world inside and outside the company. The

linked data approach is contrasted with the data warehouse approach, which is deemed as

nonflexible and outdated, unable to meet the actual business needs.

According to [63], Master Data Management (MDM) is one possible path to

bridge the gap of the adoption of semantic technologies in the enterprise. It is considered

as a semantic-oriented discipline focusing on sustaining a ‘‘single view’’ of critical

enterprise information (referred as ‘‘master data’’), which seems like an argument for

mapping semantics across different systems and data stores. The authors believe that the

link between semantics, Semantic Web, and MDM will increase in the future.
7.10 Future Issues

Semantic repositories are database management systems, based on RDF as data represen-

tations model. They combine important features of several other types of tools: reasoning
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capabilities, like those of the inference engines; capabilities to handle sparse data and

evolving data schemas like those of the column-stores; the robustness of the relational

DBMS. After 10 years of development, semantic repositories now start seeing adoption in

real-world applications, which can be explained by two reasons: The tools passed some

threshold of maturity, and the market finally started understanding and appreciating their

unique value proposition.

Facing real usage and actual end-user requirements from wide range of applications

generates new requirements for semantic repositories. Here follows a list of directions for

future development:

● Web-scale and –style incomplete reasoning, similar to those developed in the LarKC

project

● Content-based retrieval modalities, like the RDF Search employed in FactForge

(> Sect. 7.8.1.1)

● Extensible architectures, which allow for efficiently handling specific, filtering and

lookup criteria, for instance, geo-spatial constraints, full-text search, and social net-

work analysis.
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