
16 Semantic Web Search
Engines
John Domi

DOI 10.100
Mathieu d’Aquin1 . Li Ding2 . Enrico Motta1
1The Open University, Milton Keynes, UK
2Rensselaer Polytechnic Institute, Troy, NY, USA
16.1
ngu

7/9
Scientific and Technical Overview . 661
16.1.1
 Challenges . 662
16.1.2
 Related Systems . 663
16.1.3
 Abstract Specification . 664
16.1.4
 Case Study 1: Swoogle . 667
16.1.4.1
 Architecture . 668
16.1.4.2
 Crawling . 668
16.1.4.3
 Indexing . 670
16.1.4.4
 Ranking . 670
16.1.4.5
 Retrieval . 671
16.1.4.6
 Archive . 672
16.1.5
 Case Study 2: Watson . 672
16.1.5.1
 Architecture . 673
16.1.5.2
 Collecting Semantic Content: Crawling the Semantic Web 673
16.1.5.3
 Analyzing Semantic Content: Validation, Indexing, and Metadata

Generation . 674
16.1.5.4
 Web Interface: Search, Navigation, and Exploration . 676
16.1.5.5
 The Watson API . 678
16.2
 Example Applications: Semantic Web Search Engines in Action 680
16.2.1
 Semantic Web Search Engines as Development Platforms 680
16.2.1.1
 Scarlet: Relation Discovery . 680
16.2.1.2
 Swoogle Ontology Dictionary . 680
16.2.1.3
 Sig.Ma . 681
16.2.1.4
 The Watson Plug-In for Knowledge Reuse . 682
16.2.1.5
 Swoogle-Based Triple Shop . 683
16.2.1.6
 Evolva: Ontology Evolution Using Background Knowledge 685
16.2.1.7
 Wahoo/Gowgle: Query Expansion . 685
16.2.1.8
 SWAML . 686
16.2.1.9
 PowerAqua: Question Answering . 686
16.2.1.10
 PowerMagpie: Semantic Browsing . 687
16.2.1.11
 FLOR: Folksonomy Ontology Enrichment . 687
e, Dieter Fensel & James A. Hendler (eds.), Handbook of Semantic Web Technologies,

78-3-540-92913-0_16, # Springer-Verlag Berlin Heidelberg 2011

660 16 Semantic Web Search Engines
16.2.1.12
 The Watson Synonym Service . 688
16.2.2
 Semantic Web Search Engines as Research Platforms 689
16.2.2.1
 Swoogle-Based Semantic Web Statistics . 689
16.2.2.2
 Characterizing Knowledge on the Web with Watson . 690
16.2.2.3
 Measuring Ontology Agreement and Disagreement in Watson 692
16.3
 Related Resources . 696
16.4
 Conclusion and Future Directions . 697
16.5
 Cross-References . 698

16.1 Scientific and Technical Overview 16 661
Abstract: The last couple of years have seen an increasing growth in the amount of

Semantic Web data made available, and exploitable, on the Web. Compared to the Web,

one unique feature of the Semantic Web is its friendly interface with software programs.

In order to better serve human users with software programs, supporting infrastructures

for finding and selecting the distributed online Semantic Web data are needed. A number

of Semantic Web search engines have emerged recently. These systems are based on

different design principles and provide different levels of support for users and/or

applications. In this chapter, a survey of these Semantic Web search engines is presented,

together with the detailed description of the design of two prominent systems: Swoogle

and Watson. The way these systems are used to enable domain applications and support

cutting-edge research on Semantic Web technologies is also discussed. In particular, this

chapter includes examples of a new generation of semantic applications that, thanks to

Semantic Web search engines, exploit online knowledge at runtime, without the need for

laborious acquisition in specific domains. In addition, through collecting large amounts of

semantic content online, Semantic Web search engines such as Watson and Swoogle allow

researchers to better understand how knowledge is formally published online and how

Semantic Web technologies are used. In other terms, by mining the collected semantic

documents, it becomes possible to get an overview and explore the Semantic Web

landscape today.

The first section below (> Sect. 16.1) presents a general overview of the area, including

the main challenges, related systems, as well as an abstract specification of what is called

Semantic Web search engines. It also includes a detailed overview of the two systems more

specifically considered as case studies, Swoogle (> Sect. 16.1.4) andWatson (> Sect. 16.1.5).

> Section 16.2 shows how these systems are currently being used and applied, both as

development platforms to make possible the realization of applications exploiting

Semantic Web content (> Sect. 16.2.1), and as research platforms, allowing one to better

understand the content of the Semantic Web, how knowledge is published online and how

it is structured. Finally, > Sect. 16.3 briefly introduces other resources to be considered in

the area of Semantic Web search engines, and > Sect. 16.4 concludes the chapter.
16.1 Scientific and Technical Overview

In the early years, the deployment of the SemanticWeb has been hindered by a dilemma on

ontology reuse: ontology developers wanted others to adopt ontologies they created but

they seldom adopted the ontologies created by others. Ontologies and knowledge bases

were generally tailored to fit specific domain applications, which were rarely open to

multiple, external ontologies and did not have to tackle the issues related to data integra-

tion, ontology coevolution, etc. This situation could be attributed to a number of reasons

such as the existence of alternative standards, formalisms and languages (e.g., RDF and

Conceptual Graphs [1]), the difficulties in integrating knowledge from different sources

(e.g., DAML time ontology [2] and SOUPA [3] time ontology), and most importantly, to

the limited support for finding and selecting reusable knowledge on the Web.

662 16 Semantic Web Search Engines
With the great efforts on standardization (see, e.g., RDF [4], OWL [5], URIs for the

Semantic Web [6], SPARQL [7]), the fast-growing linked data (see, e.g., [8, 9]), and the

advance of technologies such as robust storage, querying, and manipulation systems,

the Semantic Web is now deemed as a huge success, at least according to one particular

measure – availability: vast amounts of Semantic Web data are now directly made

accessible from the Web for applications to reuse; SPARQL endpoints have been

deployed all over the world to host particular datasets in specific domains; and more

and more datasets encoded in relatively confined ontologies are now getting linked to

the linked data cloud, which is leading to the ultimate ‘‘Web of Data’’ vision of the

Semantic Web.

As a consequence, new challenges emerge surrounding the data accessibility issues:

How to make the huge amount of Semantic Web data and data services published on the

Web accessible by Web users, especially those unexpected consumers who are not familiar

with the published datasets? How to facilitate applications access and integrate distributed

Semantic Web data at web-scale? What kind of applications and research can be

conducted with access to all the Semantic Web data published on the Web? What sort of

support is needed by these applications for effectively using such knowledge? Semantic

Web search engines, therefore, are developed to address these issues.
16.1.1 Challenges

The core challenges surrounding data accessibility can be summarized as making ontol-

ogies and data distributed on the Web accessible by intelligent applications to effectively

take advantage of the Semantic Web as a distributed and interlinked knowledge base. Of

course, more specific challenges emerge from this goal:

Heterogeneity : Despite the effort in standardizing technologies, at a higher level, the

Semantic Web is characterized by heterogeneity along several dimensions, such as

ontology quality, complexity, modeling, and views. A nontrivial effort is necessary to

provide a homogeneous view and homogeneous access mechanisms to such hetero-

geneous information.

Scalability : With its millions of documents and billions of triples, the Semantic Web is

already well beyond the size of any existing knowledge base in any semantic appli-

cation. Although applications and users of the Semantic Web typically focus on

a subset of what is available, efficient access mechanisms are required, and a shift is

necessary for applications to locate and process the relevant information. Moreover,

the open nature and the current rate of growth of the Semantic Web make it

unrealistic to keep all Semantic Web data in a completely centralized manner;

therefore, it is always desired to have relevant Semantic Web documents filtered

before use.

Quality : Perfect quality cannot be assumed even in the absence of parser failure or

semantic inconsistency. Information on the Semantic Web originates from many

different sources and therefore varies considerably in quality. Trust becomes a key

16.1 Scientific and Technical Overview 16 663
factor in using the Semantic Web and increasing amount of interests have been

projected on ranking both the importance of Semantic Web resources, and the level

of confidence with which these resources can be used.
16.1.2 Related Systems

Several Semantic Web search engines have recently appeared (see > Sect. 16.3) with the

aim to tackle the above challenges. Aiming at an infrastructure for providing an effective

access to Semantic Web data, Semantic Web search engines share the following charac-

teristics: (1) They can scale up to web-scale, that is, they are to provide an effective index

for all known Semantic Web data published on the Web. Instead of directly answering

queries to SemanticWeb data, they use their global index to filter the relevant dataset to be

used to answer queries. (2) They can provide ranking to help users deal with alternative

data, and thus better assist the selection of ontologies or semantic documents of different

qualities on the Web. (3) They can provide advanced ‘‘semantic-based’’ services to human

users and computer applications, and thus enable computer-assisted search-then-query

processes. In this way, they help human users better leverage the automated processing of

information to conduct intelligent filtering and integration tasks.

In order to clarify the scope of Semantic Web search engines, in the following are

briefly presented other categories of systems that partly share the goal of data accessibility

with Semantic Web search engines.

Database systems and knowledge-based systems generally focus on answering questions

using well-structured knowledge stored in closed databases or knowledge bases. The

typical input is a query encoded in a formal language, such as KIF (http://www-ksl.

stanford.edu/knowledge-sharing/kif/) or SQL (http://en.wikipedia.org/wiki/SQL); the

typical output are variable bindings that answer the query using the stored data or

knowledge. Recent advances on natural language processing (NLP) technologies such as

Controlled Natural Language [10] have been used to help users in composing structured

queries using natural language. Existing triple store systems can be classified as database

systems or knowledge base systems depending on whether inference (e.g., RDFS or

OWL inference) is executed to answer queries on data encoded in RDF graph and the

corresponding ontologies. SPARQL queries are used as data access interface and the query

results with bindings to RDF resources and triples are typical output. It is notable that

SPARQL by itself does not encode any inference requirements, and most triple stores

provide SPARQL interface with various back-end inference capability on RDFS semantics

and OWL semantics. Triples store queries, database queries, and knowledge base queries

share similar focus on a limited scope of data even though they could be in huge volumes,

and the results are expected to be complete and sound.

Web Search and Semantic Search focus on filtering relevant text documents. Using

keyword-based queries, they return documents that, in the basic case of Web search, simply

contain the keywords. Semantic Search extends this conventional scenario by adding some

semantic components to better exploit the intended meaning of the keywords, as well as the

http://www-ksl.stanford.edu/knowledge-sharing/kif/
http://www-ksl.stanford.edu/knowledge-sharing/kif/
http://en.wikipedia.org/wiki/SQL

664 16 Semantic Web Search Engines
semantic content of the documents being searched. There have been a number of systems

implementing a variety of tasks that relate to Semantic Search. For example, computer-

assisted semantic query expansion based on latent semantic analysis is used to improve

search results. In this way, Cuil.com presents follow-up drill down links by understanding

what users want (note that on September 17, 2010 the Cuil servers were permanently taken

offline). Semantic tags and annotations can also be attached to a document to better identify

its content. These semantic indexes for documents can bemanually entered or automatically

extracted from the semantic analysis of the documents (see, e.g., PowerSet.com).

In comparison, Semantic Web search engines focus on Semantic Web data published

on the openWeb. They are specialized to search for documents or objects published on the

Web using standard Semantic Web languages. They do not try to answer the queries

directly like triple stores, but return relevant data to answer queries. Generally, they take

keywords with simple constraints (e.g., restricting to particular types of entities) as input,

althoughmore formal query and explorationmechanisms are often available. Their goal is

to provide a simple access point for these data, acting like classical search engines do for

Web documents, but retrieving and delivering the URLs ormaterializations of the relevant

Semantic Web data, and providing a basic Web-service infrastructure for applications to

make use of these data and knowledge.
16.1.3 Abstract Specification

There are a number of initiatives that have emerged from the need for efficient, robust,

and scalable Semantic Web search engines. While all these systems take different perspec-

tives on the task of Semantic Web search, have different focuses, and are based on different

assumptions, there exists a common ground that relates them to each other. This section

intends to give the specification of this common base for Semantic Web search engines.

A Semantic Web search engine is a system that collects, indexes, and analyzes Semantic

Web documents to provide search and querying mechanisms. Semantic Web documents

are documents containing information encoded using standard Semantic Web languages

such as RDF, RDFS, and OWL.

> Figure 16.1 gives a general overview of the common activities of SemanticWeb search

engines. Not all of these components are present in all the search engines. For example,

some systems rely only on manual submissions of semantic documents and do not use

a crawler. However, this provides a general framework to which existing systems can be

related and distinguished according to the way they implement the included components.

Crawling. Crawling is an essential task for systems with ambition to provide access to

the whole set of semantic documents available on the Web. To some extent, crawling here

is very similar to crawling for Web documents. However, the links that are followed by the

crawler can be different (imports, explicit references through namespaces, etc.) Also,

crawlers in Semantic Web search engines can exploit different sources of information to

locate documents. For example, specific extensions of the sitemap mechanism have been

developed (http://sw.deri.org/2007/07/sitemapextension/), as well as formats to describe

http://sw.deri.org/2007/07/sitemapextension/

Web

Crawling Indexing Inference

StoreIndexes

Retrieval Exploring Querying

Ranking

GUI Services/APIs

Applications

. Fig. 16.1

High-level view of the activities of a Semantic Web search engine

16.1 Scientific and Technical Overview 16 665
semantic datasets online (http://semanticweb.org/wiki/VoiD). A system called PingTheSe-

manticWeb.com is dedicated to alerting Semantic Web crawlers of the appearances and

updates of semantic documents online. In addition to the task of locating semantic

documents, many refinements can be considered, including the necessary activity of re-

crawling for evolving documents, ofmeta-crawling using otherWeb search engines, as well

as the management of the overall crawling process, for example, using a pipelined

approach [11]. Finally, the crawler is the part of a search engine where it is decided

what should count as a semantic document, and what should be the boundaries of such

a document. Indeed, Semantic Web data can be searched at different levels of granularity

(see > Fig. 16.2), ranging from the universal graph of all RDF data on the Web to a single

RDF triple or even the constituent terms such as a URI. Also, some search engines may be

more relaxed than others with respect to what can be included in their collection, filtering

out, for example, RSS (RSS Feeds are arguably Semantic Web data because they are

typically treated as XML data, as the related ontology barely use Semantic Web features.)

Indexing. One of the core elements of a Semantic Web search engine is its indexing

process. Indeed, classical indexing mechanisms can be used to associate semantic docu-

ments to a set of terms, but most of the existing systems enhance such indexes for full-text

http://semanticweb.org/wiki/VoiD

Reference to concept

The “Semantic Web” on the Web

Universal RDF graph

RDF document/triple store

Instance

RDF molecule

Triple

Literal

Physical bounded RDF graph

Triples describing a subject

Finest lossless set of triples

Atomic block of knowledge

Resource

. Fig. 16.2

The granularity levels range from the universal graph comprising all RDF data on theWeb to

individual triples and their constituent resources and literals

666 16 Semantic Web Search Engines
search with additional information such as metadata elements related to each document

or indexes of the content of the documents (relations between entities) to allow for

efficient querying and exploration mechanisms.

Inference. Inference can be used in a Semantic Web search engine to enhance the

collected datasets and include inferred information. Heavy reasoning procedures might be

used at indexing time (i.e., offline) as a one-time process, while lighter reasoning mech-

anisms (e.g., simple subclass transitive closure) might be realized at query time.

Ranking. As in Web search, the goal of ranking in Semantic Web search engines is to

facilitate the selection of the most relevant information. However, the notion of relevance

for semantic data can be more fuzzy and context dependent. Therefore, different systems

adopt different approaches to the problem of ranking, from the use of simple measures

originating from information retrieval [12], to more sophisticated metrics [13] and

customizable ranking [14].

Retrieval. The data retrieval capabilities in different systems vary. The input ranges

from keyword search to formal queries. Generally, results are URIs of Semantic Web

documents, Semantic Web terms (i.e., classes and properties), and/or objects. Results can

however be presented with certain amounts of additional associated metadata, and can be

browsed in various ways.

Querying. While the search function is generally based on some form of keyword-

based search, some systems can provide more formal ways to query the collection of

documents they contain. A typical example is the use of SPARQL to allow users, but more

importantly applications, to directly access the content of the documents, thus enabling

their exploitation. Hence, some search engines may also play the role of global triple

stores.

Navigation/Exploring. As mentioned above, Semantic Web search engines often pro-

vide browsable results, allowing the user to navigate the discovered documents (through

the relations interlinking objects), to inspect the information attached to the documents

16.1 Scientific and Technical Overview 16 667
or to refine the query through query expansion mechanisms. These exploration mecha-

nisms are also very useful to applications, as they provide specific points to drill down the

relevant data, for example, an agent, once it has found a class foaf:Person, can further

compose a precise query on finding FOAF documents by exploring all documents that

declared at least one instance of foaf:Person.

Search interface. Most of the systems provide services to agents, allowing them to

directly access the metadata and search results, in addition to a graphical user interface for

human users. Different technologies might be used to deliver such interfaces and the level

of features provided through these services can vary from simple search mechanisms to

complete APIs for the exploration and exploitation of online semantic content.

The next two sections show how the abstract specification described above is instan-

tiated in two of the most prominent systems currently deployed.
16.1.4 Case Study 1: Swoogle

In order to support consumers to find and surf the fast-growing Semantic Web data on

the Web, Swoogle [15] has been designed and implemented to complement the conven-

tional Web search engines. > Figure 16.3 illustrates a typical use of Swoogle in supporting

web-scale Semantic Web data access. In this case, a software agent tries to answer queries

using Semantic Web data on the Web via the following steps: (1) Swoogle crawls the Web

for Semantic Web documents (SWDs) and Semantic Web terms (SWTs). It then builds

an index for the harvested Semantic Web data and computes the corresponding rank.

(2) The agent asks Swoogle’s term search service using a keyword query ‘‘person’’ and is

informed a suggested URI reference (URIref) -foaf:Person. (3) The agent then composes

a SPARQL query using the retrieved URIrefs together with some known URIrefs. (4) The
Search URIref of term

Compose SPARQL query

Build local triple store

Query local triple store

Fetch SWDs

ask (“person”)

inform (doc URLs)

Harvest/index RDF data

Search for URIrefs
in SWT index

Search for URLs
in SWD index

ask (“?x rdf:type foaf:Person”)

inform (“foaf:Person”)

Agent Swoogle the Web

. Fig. 16.3

A typical usage of Swoogle in web-scale Semantic Web data access

668 16 Semantic Web Search Engines
agent asks Swoogle’s document search service for URLs of SWDs relevant to the SPARQL

query. (5) The agent builds a local triple store by fetching the SWDs from the returned

URLs. (6) The agent answers the SPARQL query using the integrated data in a local triple

store.
16.1.4.1 Architecture

Similar to conventional Web search engines, Swoogle crawls the Web, builds indexes,

computes ranks, and provides search services shown in > Fig. 16.4. Meanwhile, Swoogle is

specialized for processing Semantic Web data on the Web. In what follows, several

highlighted components in this architecture are elaborated.
16.1.4.2 Crawling

In order to effectively harvest SWDs on the Web, Swoogle uses a hybrid crawler that

integrates several mechanisms for discovering and harvesting Semantic Web documents

on the Web. > Figure 16.5 illustrates the conceptual workflow of the hybrid crawler, and

the details are explained below.

1. Bootstrapping. Manually submitted URLs are used to bootstrap the discovery process

by providing the seeding URLs for Google-based meta-crawling and bounded HTML

crawling.

2. Google-based Meta-crawling. Meta-crawling [16] involves directly harvesting URLs

from search engines without crawling the entire Web. Google is used for several

reasons: (1) It has indexed the largest number of Web documents among existing
html rdf/xml

Analysis

Index

Discovery

IR indexer

Search services

Semantic Web
metadata

Web
service

Web
server

Candidate
URLs

Bounded Web crawler
Google crawler

SwoogleBot

SWD indexer

Ranking

Document cache

SWD classifier

Human Machine

…

the Web

Semantic Web
Information flow

Web interface
Swoogle’s

Legends

. Fig. 16.4

The architecture of Swoogle

Would
sample

Sample Swoogle
sample
dataset

Inductive
learner

Manual
submission

Seeds RSeeds HSeeds M

RDF crawlingBounded HTML crawlingMeta crawling

Crawl

The Web

CrawlGoogle API callG
oogle

estim
ation

. Fig. 16.5

The Swoogle system uses an adaptive Semantic Web harvesting framework with three

different kinds of crawlers

16.1 Scientific and Technical Overview 16 669
Web search engines [17], (2) it does not filter Semantic Web documents out of search

results, (3) it provides a Web API which is friendly to meta-crawlers, and most

importantly, (4) it supports rich query constraints on both the text content and the

URL ofWeb documents, namely ‘‘filetype,’’ ‘‘inurl,’’ and ‘‘site.’’ The crawler is provided

with seeds frommanual bootstrapping input and enriches the seeds using the inductive

learner that selects ‘‘good’’ seeds from the harvested Swoogle sample dataset. A ‘‘good’’

seed is a Google query that is believed to contribute a high percentage of SWDs, for

example, most URLs returned by the query rdf filetype:rdf are indeed SWDs.

3. Bounded HTML crawling. HTML crawling (i.e., conventional Web crawling) harvests

Web documents by extracting and following hyperlinks, and is useful in harvesting

clusters of SWDs on the Web. The bounded HTML crawling imposes some thresholds

(e.g., crawling depth, maximum number of URLs to visit, and minimum percentage

of SWD in visited URLs) to limit search space and ensure efficiency. For exam-

ple, the crawler has harvested many PML documents (SWDs) that populate instances

of the Proof Markup Language (PML) by a bounded HTML crawl starting at

http://iw.stanford.edu/proofs. Again, manual submission and automated inductive

learner are involved in collecting seeding URLs.

4. RDF crawling. The RDF crawler enhances conventional HTML crawling by adding

RDF validation and semantic hyperlink extraction components. It also visits newly

discovered URLs and periodically revisits pages to keep metadata up to date. For each

URL, it tries to download the content of the Web page, and then parse an RDF graph

from the document using popular RDF parsers (e.g., Jena). If successful, it generates

document-level metadata for the SWD and also appends the newly discovered URLS

that may link to SWDs to its to-visit list.

5. Inductive learner and Swoogle sample dataset. The sample dataset is obtained from the

metadata of the SWDs confirmed by RDF crawling. Based on the features (e.g., URL,

frequency of referred Semantic Web URIs, the source website) of harvested documents

http://iw.stanford.edu/proofs

670 16 Semantic Web Search Engines
and their labels (e.g., whether they are SWD, embedded SWD or non-SWD), an

automated inductive learner is used to generate new seeds for Google-based meta-

crawling and bounded HTML crawling.

The crawler schedules its methods according to the following strategies: (1) Semantic

Web ontologies have the highest priority since ontologies are critical for users to encode

and understand Semantic Web data, (2) Semantic Web documents in RDF/XML syntax

have higher priorities than Web pages that embed Semantic Web data because the former

usually contain more Semantic Web data, and (3) harvesting URLs from one website is

delayed where more than 10,000 SWDs have already been found at the site (e.g.,

liveJournal) to avoid having the catalog dominated by SWDs from a few giant websites.
16.1.4.3 Indexing

The Indexing component analyzes the discovered SWDs and generates the bulk of

Swoogle’s metadata about the Semantic Web. The metadata not only characterize the

features associated with individual SWDs and SWTs, but also track the relations among

them, for example, ‘‘how SWDs use/define/populate a given SWT’’ and ‘‘how two SWTs

are associated by instantiating ‘rdfs:domain’ relation’’ [12].

The annotation metadata of a URI include the namespace and local-name extracted

from the terms URI; the literal description of the term from different SWDs. The annota-

tion metadata of SWDs include metadata about itself (such as document URL and last

modified time) and its content (such as terms being defined or populated and ontology

documents being imported). Moreover, Swoogle maintains relational metadata that enable

users to combine keyword search and hyperlink-based surfing to locate search targets.
16.1.4.4 Ranking

Google was one of the first Web search engines to order its search results based in part on

a Web page’s ‘‘popularity’’ as computed from the Web’s graph structure. This idea has

turned out to be enormously useful in practice and is applicable to Semantic Web search

engines. However, Google’s PageRank [18] algorithm, which is based on the ‘‘random

surfer model,’’ cannot be directly used in the Semantic Web for several reasons. URIs in

a document are not merely hyperlinks but semantic symbols referring to classes, instances,

ontology documents, normal Web resources, etc. Semantic Web surfing is not merely

random hyperlink-based surfing but rational surfing that requires understanding the

semantic content of documents.

In order to rank the popularity of Semantic Web documents, the rational surfing

model is adopted: a rational surfer always recursively pursues the definition of classes and

properties for complete understanding of a given RDF graph. > Figure 16.6 illustrates the

rational surfing behavior of a software agent, which unfolds as follows. The agent jumps

randomly to one of the accessible SWDs with uniform probability. It either terminates

hasDefinitionIn

hasDefinitionIn

Imports

swt1

hasOfficialOntology

hasNamespace

sameURL

hasNamespace

Random terminate

same URL

swt2

swt3

Node4

ns4

d2

o2

o1

1. SELF-DEF
 d1 => d1

3. EXT-DEF
 d1 => o2

4. LINK
d1 => d2 or
d1 => d3

5. No-outletSTOP

2. IMP-DEF
 d1 => o1

d3

ns3

d1

Start

Uniform
random

jump

Legends

Document
(SWD)

RDF
resource

Surfing
path

R
an

do
m

 ju
m

p
by

 te
rm

 fr
eq

ue
nc

y

Node5

swt3

d1

. Fig. 16.6

Swoogles ranking algorithm is based on a ‘‘rational surfer model’’ that captures how

a program might access links in processing Semantic Web documents

16.1 Scientific and Technical Overview 16 671
surfing with constant probability or chooses one RDF node in the RDF graph of the

document, and the node is chosen based on its term frequency in the N-Triples version of

the document. The agent either surfs to another document or terminates surfing based on

the semantics of the chosen node. Paths 1 (SELF-DEF), 2 (IMP-DEF), and 3 (EXT-DEF)

represent the agent pursuing a definition. If the node is not anonymous and is used as

a class or property usage in the present document, the agent pursues further definition

from the present document, the imported ontologies, or the ontology addressed by the

namespace part of the node’s URI. Path 4 (LINK) shows the hyperlink-based surfing

behavior: if the node is not anonymous and is not used as a class or property, the surfer

follows the URL obtained from its URI or namespace to another Semantic Web docu-

ment. Path 5 (No-outlet) includes all cases when no further surfing path starts from the

present node, for example, the present node is literal or anonymous, or the present node’s

URI links to a normal Web document.
16.1.4.5 Retrieval

The retrievalmodule provides search services to both human and software users using the

indexed metadata. While queries to Web search engines return documents, the results of

a Semantic Web search query can be at different levels of granularity: a Semantic Web

document as well as a URI of Semantic Web terms (i.e., classes and properties). Currently,

Swoogle provides two types of search services: (1) search for Semantic Web ontologies or

all Semantic Web documents using keywords with additional query constraints, and

672 16 Semantic Web Search Engines
(2) search for Semantic Web terms using keywords with additional query constraints.

Keywords are used to match the text parsed from the URI, labels, comments of

a document, or a term. Additional query constraints can be used to filter the results

using the indexed metadata, for example, only find SWTs defined as OWL class, only

find SWTs defined using FOAF namespace, only find SWDs published at http://inference-

web.org.

Nineteen REST Web service APIs are specially developed to support machine agents

data access activities. A PHP-based website is built on top of the Swoogle APIs to support

human users as well as to test the APIs. The service APIs are highlighted by demonstrating

the enhanced Search and Navigation model [12].
16.1.4.6 Archive

Like most search engines, Swoogle keeps a cache of the publicly available Semantic Web

documents it indexed. Furthermore, Swoogle goes beyond this in two ways. First, it also

maintains a copy of each documents representation as a set of triples, a more useful form

for programs and agents. Second, and more significantly, Swoogle maintains an archive of

all of the current and old versions of each Semantic Web document in its index. The

resulting Semantic Web Archive (http://swoogle.umbc.edu/index.php?option=com_

swoogle_service&service=archive) can be used by researchers to study how ontologies

evolve, to track the growth of documents containing RDF data or to investigate the natural

life cycle of the Semantic Web.
16.1.5 Case Study 2: Watson

The research onWatson originates from the observation, and anticipation, that, more and

more, the way intelligent applications will be developed will change due to the availability

of a large-scale, distributed body of knowledge on the Web. The dynamic exploitation of

this body of knowledge introduces new possibilities and challenges requiring novel

infrastructures to support the implementation of a new generation of Semantic Web

applications. New mechanisms are required to enable the development of such applica-

tions, exploring large-scale semantics [19, 20]:

Finding the relevant sources: The ability to locate dynamically the sources containing relevant

semantic information is a prerequisite for applications that aim to leverage the use of

online knowledge. This feature is important because, in such applications, the relevance

of a particular resource to a problem-solving need cannot be judged at design time.

Selecting the appropriate knowledge: From the set of previously located semantic docu-

ments, the appropriate knowledge has to be selected based on application-dependent

criteria, such as the quality of the data and its adequacy to the task at hand.

Exploiting heterogeneous knowledge sources: When reusing online semantic information,

no assumption can be made on the ontological nature of the elements that are

http://inference-web.org
http://inference-web.org
http://swoogle.umbc.edu/index.php?option=com_swoogle_service&service=archive
http://swoogle.umbc.edu/index.php?option=com_swoogle_service&service=archive

16.1 Scientific and Technical Overview 16 673
manipulated. Hence the process needs to be generic enough so that it can make use

of any online semantic resource. In addition, as in the case of the aforementioned tasks

of finding and selecting semantic resources, this activity must also be carried out at

runtime.

Combining ontologies and resources: It cannot be expected that one unique source of

knowledge will provide all the required elements for a given application. Therefore, it is

often necessary for next-generation Semantic Web applications to select and integrate

partial fragments of knowledge fromdifferent sources, so that they can be exploited jointly.

Watson is a gateway to the Semantic Web: it collects, analyzes, and gives access to

ontologies and semantic data available online. Its objective is to support the development

of this new generation of Semantic Web applications that dynamically select, combine,

and exploit the knowledge published on the Semantic Web.
16.1.5.1 Architecture

The role of a gateway to the Semantic Web is to provide an efficient access point to online

ontologies and semantic data. Therefore, such a gateway realizes three main activities:

(1) it collects the available semantic content on the Web, (2) analyzes it to extract useful

metadata and indexes, and (3) implements efficient query facilities to access the data. While

these three tasks are generally at the basis of any classical Web search engine, their imple-

mentation is rather different when dealing with semantic content as opposed toWeb pages.

To realize these tasks, Watson is based on a number of components depicted in

> Fig. 16.7, relying on existing, standard, and open technologies. Locations of existing

semantic documents are first discovered through a crawling and tracking component,

using in particular Heritrix, the Internet Archive’s Crawler (http://crawler.archive.org/).

The Validation and Analysis component is then used to create a sophisticated system of

indexes for the discovered documents, using the Apache Lucene indexing system (http://

lucene.apache.org/). Based on these indexes, a core API is deployed that provides all the

functionalities to search, explore, and exploit the collected semantic documents. This API

also links to the Revyu.com Semantic Web–based reviewing system to allow users to rate

and publish reviews on ontologies.
16.1.5.2 Collecting Semantic Content: Crawling the Semantic Web

The goal of the crawling task in Watson is to discover locations of semantic documents

and to collect them. Classical Web crawlers can be used, but they need to be adapted to

take into account the fact that the crawler is not dealing only withWeb pages, but also with

semantic content.

Sources: Different sources are used by the crawler of Watson to discover ontologies and

semantic data (Google, Swoogle, http://pingthesemanticweb.com/, etc.). Specialized

crawlers were designed for these repositories, extracting potential locations by sending

http://crawler.archive.org/
http://lucene.apache.org/
http://lucene.apache.org/
http://pingthesemanticweb.com/

Crawling
and

tracking

Revyu.
com

Watson API

User
Eval.

SPARQL
Onto.
explor.

Keyword
search

URLs
history

File
cache

Indexes
Offline

Ext. Resources

W
E
B

Validation
and

analysis

Runtime

. Fig. 16.7

Overview of the Watson architecture

674 16 Semantic Web Search Engines
queries that are intended to be covered by a large number of ontologies. For example, the

keyword search facility provided by Swoogle is exploited with queries containing terms

from the most common words in the English language. Another crawler heuristically

explores Web pages to discover new repositories and to locate documents written in

certain ontology languages (e.g., by including ‘‘filetype:owl’’ in a query to Google). Finally,

already collected semantic documents are frequently re-crawled, to discover evolutions of

known semantic content or new elements at the same location.

Filters: Once located and retrieved, these documents are filtered to keep only the

elements that characterize the Semantic Web. In particular, to keep only the documents

that contain semantic data or ontologies, the crawler eliminates any document that cannot

be parsed by Jena (http://jena.sourceforge.net/). In that way, only RDF-based documents

are considered. Furthermore, a restriction exists, which imposes that all RDF-based seman-

tic documents be collected with the exception of RSS. The reason to exclude these elements

is that, even if they are described in RDF, RSS feeds represent semantically weak documents,

relying on RDF Schema more as a way to describe a syntax than as an ontology language.
16.1.5.3 Analyzing Semantic Content: Validation, Indexing, and
Metadata Generation

Many different elements of information are extracted from the collected semantic docu-

ments: information about the entities and literals they contain, about the employed

http://jena.sourceforge.net/

16.1 Scientific and Technical Overview 16 675
languages, about the relations with other documents, etc. This requires analyzing the

content of the retrieved documents in order to extract relevant information (metadata) to

be used by the search functionality of Watson.

Simple Metadata: Besides trivial information, like the labels and comments of ontol-

ogies, some of the metadata that are extracted from the collected ontologies influence the

way Watson is designed. For instance, there are several ways to declare the URI of an

ontology: as the namespace of the document, using the xml:base attribute, as the

identifier of the ontology header, or even, if it is not declared, as the URL of the document.

URIs are supposed to be unique identifiers in the scope of the Semantic Web. However,

two ontologies that are intended to be different may declare the same URI [10, 21]. For

these reasons, Watson uses internal identifiers that may differ from the URIs of the

collected semantic documents. When communicating with users and applications, these

identifiers are transformed into common, nonambiguous URIs.

Content : Another important step in the analysis of a semantic document is to

characterize it in terms of its content. Watson extracts, exploits, and stores a large range

of declared metadata or computed measures, like the employed languages/vocabularies

(RDF, RDFS, OWL, DAML + OIL), information about the contained entities (classes,

properties, individuals and literals), or measures concerning the richness of the knowl-

edge contained in the document (e.g., the expressiveness of the employed language, the

density of the class definitions, etc.). By combining these elements of information,

Watson can decide whether or not a particular document should be treated as

a semantically rich ontology. These elements are then stored and exploited to provide

advanced, quality-related filtering, ranking, and analysis of the collected semantic

content.

Relations between semantic documents: In the previous paragraphs, the analysis task

was to extract metadata concerning one particular semantic document. In addition, a core

aspect in the design of Watson concerns the exploitation of relations between semantic

documents. The retrieved ontologies are inspected in order to extract information linking

to other semantic documents. There are several semantic relations between ontologies

that have to be followed (e.g., owl:imports, rdfs:seeAlso, namespaces,

derefenceable URIs). Besides providing useful information about the considered

documents, the results of this task are also used to extract potential locations of other

semantic documents to be crawled.

In addition to declared semantic relations like owl:imports, the aim is also to

compute implicit relations that can be detected by comparing ontologies. Equivalence is

one of the most obvious of these relations, which is nevertheless crucial to detect. Indeed,

detecting duplicated knowledge ensures that redundant information is not stored and that

duplicated results are not presented to the user. On the same basis, several other relations

are considered relying on particular notions of similarity between ontologies (inclusion,

extension, overlap, etc.). Combined with other information from the crawler (e.g., date of

discovery, of modification), these relations make possible the study and characterization

of the evolution of ontologies on the Web through their different versions.

676 16 Semantic Web Search Engines
16.1.5.4 Web Interface: Search, Navigation, and Exploration

Even if the first goal of Watson is to support semantic applications, it is important to

provide Web interfaces that facilitate the access to ontologies for human users. Users may

have different requirements and different levels of expertise concerning semantic tech-

nologies. For this reason, Watson provides different ‘‘perspectives,’’ from the most simple

keyword search, to sophisticated queries using SPARQL (see > Fig. 16.8). It can be

accessed at the following address http://watson.kmi.open.ac.uk/.

Keyword search: The keyword search feature of Watson is similar in its use with usual

Web or desktop search systems. The set of keywords entered by the user is matched to the

local names, labels, comments, or literals of entities occurring in semantic documents.

A list of matching ontologies is then displayed with, for each ontology, some information

about it (language, size, etc.) and the list of entities matching each keyword. The search

can also be restricted to consider only certain types of entities (classes, properties,

individuals) or certain descriptors (labels, comments, local names, literals).

Ontology summaries: In order to facilitate the assessment and selection of ontologies

by users, it is crucial to provide overviews of ontologies that are easy to read and

understand, both at the level of the automatically extracted metadata about them, as

well as at the level of their content. For each collected semantic document, Watson

provides a page that summarizes essential information such as the size of the document

(in bytes, triples, number of classes, properties, and individuals), the language used

(OWL, RDF-S and DAML + OIL, as well as the underlying description logic), the links

with other documents (through imports), and the reviews from users of Watson. Provid-

ing an appropriate overview of the content of an ontology or a semantic document is

a difficult task. The complete graph of the content would not be really convenient for the

user, and the natural language description contained in the comment about the ontology

is rarely present, and generally not precise enough to help understanding the information

formalized within this ontology. In other terms, there is a need to summarize ontologies,

providing concise descriptions of the most important elements they contain. Peroni et al.

[22] present a method to automatically extract the key concepts of an ontology using

a variety of dimensions. The key concepts of an ontology are the concepts that are

considered the best descriptors of the ontology by human users. In Watson, this work is

used to generate small graphs, showing the six first key concepts of each ontology and an

abstract representation of the existing relations between these concepts (see the example

in > Fig. 16.9). These visual summaries of ontologies provide a convenient way to obtain

a quick overview of the considered ontology, which can be completed by a more precise

and detailed exploration of the ontology if necessary.

Ontology exploration: One principle applied to theWatson interface is that every URI is

clickable. AURI displayed in the result of the search is a link to a page giving the details of

either the corresponding ontology or a particular entity. Since these descriptions also

show relations to other elements, this allows the user to navigate among entities and

ontologies. It is therefore possible to explore the content of ontologies, navigating through

the relations between entities as well as to inspect ontologies and their metadata.

http://watson.kmi.open.ac.uk/

.
F
ig
.
1
6
.8

O
v
e
rv
ie
w

o
f
th
e
W
a
ts
o
n
W
e
b
in
te
rf
a
ce

16.1 Scientific and Technical Overview 16 677

Employee
Event

Publication
 organization

FacultyMember

Person

. Fig. 16.9

Key concept–based visual summary of the ontology http://swrc.ontoware.org/ontology/

portal

678 16 Semantic Web Search Engines
SPARQL. A SPARQL endpoint has been deployed on the Watson server and is

customizable to the semantic document to be queried. A simple interface allows one to

enter a SPARQL query and to execute it on the selected semantic document. This feature

can be seen as the last step of a chain of selection and access tasks using the Watson Web

interface. Indeed, keyword search and ontology exploration allow the user to select the

appropriate semantic document to be queried. The next step is to extend this feature to be

able to query not only one semantic document at a time, but also to automatically retrieve

the semantic data useful for answering the query.
16.1.5.5 The Watson API

The core components of Watson are the services and API it provides to support

the development of next-generation Semantic Web applications (see > Fig. 16.10).

Indeed, Watson deploys a number of Web Services and a corresponding API allowing

applications to:

● Find SemanticWeb documents through sophisticated keyword-based search, allowing

applications to specify queries according to a number of parameters (type of entities,

level of matching of the keywords, etc.)

● Retrieve metadata about these documents, for example, size, language, label, logical

complexity, etc.

● Find specific entities (classes, properties, individuals) within a document

● Inspect the content of a document, that is, the semantic description of the entities it

contains

● Apply SPARQL queries to Semantic Web documents

In sum, Watson’s API provides a number of advantages. In Watson, it is considered

that any piece of information that has been collected should be made available, so that

applications are provided with as much information as possible. Also, the comprehensive

set of functionalities exposed by the API allows any application to use online semantic

http://swrc.ontoware.org/ontology/portal
http://swrc.ontoware.org/ontology/portal

. Fig. 16.10

Using the Watson API to build Semantic Web applications

16.1 Scientific and Technical Overview 16 679
data in a lightweight fashion, without even having to download the corresponding

semantic documents. The content of a semantic document is processed and indexed by

Watson so that it can be accessed by applications at runtime, without requiring sophis-

ticated mechanisms and large resources.

The combination of mechanisms for searching semantic documents (keyword search),

retrieving metadata about these documents and querying their content (e.g., through

SPARQL) provides all the necessary elements for applications to select and exploit online

semantic resources. Moreover, theWatsonWeb Services and API are in constant evolution

to support the requirements of novel applications. In particular, an initial set of measures,

which evaluate the complexity and richness of ontologies, is currently being used for

ranking. A more flexible framework combining both automatic metrics for ontology

evaluation and user evaluation is being developed to allow for a more customizable

selection mechanism. Another important direction concerns the detection of semantic

relations between ontologies to support their combination. Indeed, while a simple dupli-

cate detection mechanism is already in place, more advanced mechanisms need to be

considered to efficiently discover fine-grained relations such as extension, version, or

compatibility.

680 16 Semantic Web Search Engines
16.2 Example Applications: Semantic Web Search Engines
in Action

16.2.1 Semantic Web Search Engines as Development
Platforms

A number of applications relying on Watson, Swoogle, and other Semantic Web search

engines have been developed and provide demonstrators of the possibilities offered by

exploiting the SemanticWeb. This section describes a few selected applications in different

categories (services, ontology and semantic data management tools, end-user applica-

tions) with the aim of providing an overview of the variety of tasks that can be achieved

nowadays with the Semantic Web. More details can be found in [19, 23].
16.2.1.1 Scarlet: Relation Discovery

Scarlet (http://scarlet.open.ac.uk/) follows the paradigm of automatically selecting and

exploring online ontologies to discover relations between two given concepts. For exam-

ple, when relating two concepts labeled Researcher and AcademicStaff, Scarlet, using

Watson, (1) identifies (at runtime) online ontologies that can provide information

about how these two concepts interrelate and then (2) combines this information to

infer their relation. Two increasingly sophisticated strategies were investigated to discover

and exploit online ontologies for relation discovery. The first strategy, S1, derives

a relation between two concepts if this relation is defined within a single online ontology,

for example, stating that Researcher v AcademicStaff. The second strategy, S2, addresses

those cases in which no single online ontology states the relation between the two

concepts, by combining relevant information which is spread over two or more ontol-

ogies, for example, that Researcher v ResearchStaff in one ontology and that

ResearchStaff v AcademicStaff in another. To support this functionality, Scarlet relies

on Watson to access online ontologies.

Scarlet originates from the design of an ontology matcher that exploits the Semantic

Web as a source of background knowledge to discover semantic relations (mappings)

between the elements of two ontologies. This matcher was evaluated in the context of

aligning two large, real-life thesauri: the UNs AGROVOC thesaurus (40 K terms) and the

United States National Agricultural Library thesaurus NALT (65 K terms) [24]. The

matching process performed with both strategies resulted in several thousand mappings,

using several hundred online ontologies, with an average precision of 70%.
16.2.1.2 Swoogle Ontology Dictionary

Swoogle Ontology Dictionary is an add-on application on top of Swoogle. It collects all

Semantic Web terms from the harvested Semantic Web documents and builds a global

http://scarlet.open.ac.uk/

16.2 Example Applications: Semantic Web Search Engines in Action 16 681
view of the Semantic Web vocabulary. It has two potential contributions to the Semantic

Web community:

● It builds a comprehensive view of the Semantic Web vocabulary and breaks the

(unnecessary) physical boundary imposed by Semantic Web ontologies. There are

two well-known drawbacks of using ontology documents to group Semantic Web

terms: (1) Semantic Web terms defined in one Semantic Web ontology may be

instantiated in quite different frequencies, for example, owl:versionInfo is far less

instantiated than owl:Class in the Semantic Web; and (2) Semantic Web terms from

multiple ontologies are usually used together to modify one class-instance, for

example, rdfs:seeAlso and dc:title have been frequently used together to modify the

class-instances of foaf:Person.

● Beside the Semantic Web terms defined or referenced in Semantic Web ontologies, it

also collects the Semantic Web terms which have been instantiated as classes or

properties but have not been defined by any existing Semantic Web ontology. For

example, the property http://webns.net/mvcb/generatorAgent has been widely used,

and interested users may want to reuse this term even though no existing Semantic

Web ontology has defined it.

Currently, Swoogle ontology dictionary provides two user interfaces for locating

Semantic Web terms.

● Term Search is essentially a web interface based on the Swoogle term search API, which

allows users to search SWTs by URI, namespace, local name, literal definitional

description, and semantic definition.

● Alphabetical Term Index, as shown in > Fig. 16.11, organizes all Semantic Web terms

by prefix alphabetically. It has two views: the prefix view (left panel) and the matched-

term-list view (right panel). In the prefix view, each prefix is followed by the number of

terms using that prefix (using case-insensitive string matching here). In the matched-

term-list view, all terms matching the current prefix are listed.

16.2.1.3 Sig.Ma

Sig.Ma [25] (http://sig.ma) is a service built on top of the Sindice [26] Semantic Web

search engine. Sindice indexes very large quantities of information from the Web, espe-

cially coming from the linked data community. Sig.Ma relies on Sindice to provide an

aggregated view on the available semantic data for a given entity or resource. Starting from

a simple keyword query supposed to describe the entity to look up; Sig.Ma displays the

properties of the corresponding entities present in a large variety of linked data sources, as

well as the correspondences between each piece of data and the sources where it origi-

nated. For example, using the name of a person as a starting point, Sig.Ma can show the

location, photos, workplace, contact details, and birthday of this person, each piece of

information potentially coming from a different source. Of course, noise could easily

http://webns.net/mvcb/generatorAgent
http://sig.ma

. Fig. 16.11

The alphabetical term index interface

682 16 Semantic Web Search Engines
appear in the results, due to the potential ambiguity of the initial query. Sig.Ma allows the

user to customize the view by refining the list of sources, removing the ones which do not

match the initial intent of the query.

A point worth noticing is that Sig.Ma is not only an application itself, but also provides

a base for other applications. Each view, even customized, is associated with aWeb address

(a URI). An API and awidget are also available that give access to the functionalities of Sig.

Ma to other applications.
16.2.1.4 The Watson Plug-In for Knowledge Reuse

Ontology reuse is a complex process involving activities such as searching for relevant

ontologies for reuse, assessing the quality of the knowledge to reuse, selecting parts of it

and, finally, integrating it in the current ontology project. As the Semantic Web provides

more and more ontologies to reuse, there is an increasing need for tools supporting these

activities.

The Watson plug-in (http://watson.kmi.open.ac.uk/editor_plugins.html) (see

> Fig. 16.12) aims to facilitate knowledge reuse by integrating the search capabilities

of Watson within the environment of an ontology editor (the NeOn Toolkit, http://

neon-toolkit.org). The resulting infrastructure allows the user to perform all the steps

necessary for the large-scale reuse of online knowledge within the same environment

where this knowledge is processed and engineered.

http://watson.kmi.open.ac.uk/editor_plugins.html
http://neon-toolkit.org
http://neon-toolkit.org

. Fig. 16.12

The Watson Plug-in for ontology editors

16.2 Example Applications: Semantic Web Search Engines in Action 16 683
In practice, the Watson plug-in allows the ontology developer to find, in existing

online ontologies, descriptions of the entities present in the currently edited ontology (i.e.,

the base ontology), to inspect these descriptions (the statements attached to the entities)

and to integrate these statements into the base ontology. For example, when extending the

base ontology with statements about the class Researcher, the Watson plug-in identifies,

through Watson, existing ontologies that contain relevant statements such as:

● Researcher is a subclass of AcademicStaff

● PhDStudent is a subclass of Researcher

● Researcher is the domain of the property isAuthorOf

These statements can be used to extend the edited ontology, integrating them to

ensure, for example, that the class Researcher becomes a subclass of a newly integrated

class AcademicStaff.
16.2.1.5 Swoogle-Based Triple Shop

Triple Shop [27] was developed to better assist users to utilize the search results of

Swoogle. It worked as follows: Swoogle would present query results (URIs) to the user,

684 16 Semantic Web Search Engines
and then the user could check URIs to be added to his or her shopping cart. Eventually,

a user could check out, have all URIs loaded into a triple store and be presented with an

interface for issuing SPARQL queries. This utility proved to be an extremely useful tool in

integrating scientific data. Below are some key features:

● Finding datasets. A dataset finder is a service that implements the Swoogle-assisted

data access process by facilitating the completion of an incomplete SPARQL-ish

query. Besides manually specifying the URIs of RDF resources, users can simply use

English terms to refer to RDF resources in the WHERE clause of a SPARQL query.

This service will search Swoogle for appropriate URIs to substitute the English terms

in the query, and the user can then select one from the alternative resulting URIs.

Users can also leave dataset specification empty, that is, without specifying the

FROM clause. Again, the service will search Swoogle to suggest relevant SWDs to

answer the query. It is notable that the search for SWDs and SWTs can be refined in

a number of ways. Constraints can be placed on the domain of a URI, and on the

namespaces that it uses.

● Inference. After constructing a dataset, the user can specify a level of reasoning to be

performed in executing the query. Choices range from no reasoning, through RDFS,

to OWL.

● Dataset persistence and reuse. A user can save a dataset on the Triple Shop server, tag

a dataset, search for existing tagged datasets, and add tags to existing datasets. Each

dataset can be stored as a list of URLs of SWDs, or be materialized into a merged RDF

graph in triple store.

Triple Shop has been used in ELVIS (the Ecosystem Location Visualization and

Information System), which is a suite of tools for constructing food webs for a given

location. ELVIS is motivated by the belief that food web structure plays a role in the

success or failure of potential species invasions. Because very few ecosystems have been the

subject of empirical food web studies, response teams are typically unable to get quick

answers to questions like what are likely prey and predator species of the invader in the

new environment? The ELVIS tools seek to fill this gap. ELVIS functionality is exposed as

a collection of Web Services, and all input and output data are expressed in OWL, thereby

enabling its integration with other Semantic Web resources.

Bioinformatic data in ELVIS are encoded in RDF and cover the following categories:

(1) species distribution data compiled by the California node of the National Biological

Information Infrastructure; (2) trophic data compiled from over 250 datasets; (3) the

complete contents of Animal Diversity Web (ADW), a popular online encyclopedia [48];

and (4) a collection of lists designating species as being invasive in particular regions.

With the available datasets in ELVIS, researchers can verify their hypotheses on the

complex relations in a food web. The complex relations can be mapped to a query on

the RDF data in ELVIS. As the researchers may not necessarily knowURIs for all the terms

or know which datasets are relevant, Triple Shop can assist completing a query with

the help of Swoogle, gathers/integrates all triples that might be relevant to the query, and

will do forward-chaining inference to generate all implied triples when appropriate. This

16.2 Example Applications: Semantic Web Search Engines in Action 16 685
process may take anywhere from seconds to hours. When it is complete, the researchers

can see query results, and share the resulting integrated dataset with colleagues in a

persistent manner.
16.2.1.6 Evolva: Ontology EvolutionUsing BackgroundKnowledge

Ontologies form the backbone of Semantic Web–enabled information systems. Today’s

organizations generate huge amounts of information daily, thus ontologies need to be

kept up to date in order to reflect the changes that affect the life cycle of such systems (e.g.,

changes in the underlying datasets, a need for new functionalities, etc.). This task,

described as the ‘‘timely adaptation of an ontology to the arisen changes and the

consistent management of these changes,’’ is called ontology evolution [28]. While it

seems necessary to apply such a process consistently for most of the ontology-based

systems, it is often a time-consuming and knowledge-intensive task, as it requires

a knowledge engineer to identify the need for change, perform appropriate changes on

the base ontology, and manage its various versions.

Evolva (an overview of Evolva can be found in [29, 30]) is an ontology evolution

system starting from external data sources (text documents, folksonomies, databases, etc.)

that form the most commonmeans of storing data. First, a set of terms are extracted from

these sources as potentially relevant concepts/instances to add to the ontology, using

common information extraction methods. Evolva then makes use of Watson (through the

intermediary of Scarlet) to find external sources of background knowledge to establish

relations between these terms and the knowledge already present in the ontology, pro-

viding in this way the means to integrate these new terms in the ontology. For this

purpose, a relation discovery process was devised, that combines various background

knowledge sources with the goal of optimizing time-performance and precision.
16.2.1.7 Wahoo/Gowgle: Query Expansion

Wahoo and Gowgle (http://watson.kmi.open.ac.uk/wahoo and http://watson.kmi.open.

ac.uk/gowgle) are two demonstrators, showing how Watson can be used for a simple

application to perform query expansion in a classical Web search engine. For example,

when given the keyword developer, such a tool could find out that in an ontology, there is

a subclass programmer of developer and could therefore suggest this term as a way to

specify the query to the Web search engine. Without Watson, this would require one to

integrate one or several ontologies about the domain of the queries and an infrastructure

to store them, explore them, and query them. However, if the considered search engine is

a general Web search engine, such as Google or Yahoo!, the domain of the queries cannot

be predicted: the appropriate ontology can only be selected at runtime, depending on the

query that is given. In addition, this application would require a heavy infrastructure to be

http://watson.kmi.open.ac.uk/wahoo
http://watson.kmi.open.ac.uk/gowgle
http://watson.kmi.open.ac.uk/gowgle

686 16 Semantic Web Search Engines
able to handle large ontologies and to query them efficiently. Gowgle and Wahoo rely on

Semantic Web ontologies explored using Watson instead.

The overall architecture of these applications is made of a Javascript/HTML page for

entering the query and displaying the results, which communicates using the principles of

AJAX with the Watson server. In the case of Gowgle, Google is used as the Web search

engine and theWatson SOAPWeb Services are employed for ontology exploration (http://

watson.kmi.open.ac.uk/WS_and_API.html). In the case of Wahoo, Yahoo!, and the

Watson REST API (http://watson.kmi.open.ac.uk/REST_API.html) are used.

Both applications use Watson to exploit online ontologies in order to suggest terms

related to the query, that is, if the query contains the word developer (1) to find ontologies

somewhere talking about the concept of developer, (2) to find in these ontologies which

entities correspond to developer, and (3) to inspect the relations of these entities to find

related terms.
16.2.1.8 SWAML

SWAML (http://swaml.berlios.de/), the Semantic Web Archive of Mailing Lists Project

[31], is building a series of tools to enable the semantic publication and browsing of e-mail

collections. It is able to extract e-mails from a mailbox and create a representation of these

e-mails using mainly the SIOC ontology (http://sioc-project.org/). However, the infor-

mation contained in the mailbox alone is not enough to organize its content. People

information, for example, is present in many different sources on the SemanticWeb, based

on the FOAF vocabulary (http://www.foaf-project.org/). SWAML, therefore, uses Sindice

to collect semantic data related to people, based on their e-mail addresses. One of the

advantages of Sindice in this case is its ability to draw inferences on inverse functional

properties (IFPs). Indeed, in FOAF, the relation connecting a person to his or her e-mail

address is declared as an IFP, meaning that an e-mail address is associated to only one

person. Therefore, whenever several resources appear to be connected to the same e-mail

address, Sindice can infer that these resources refer to the same person.
16.2.1.9 PowerAqua: Question Answering

To some extent, PowerAqua (http://poweraqua.open.ac.uk/) can be seen as

a straightforward human interface to any semantic document indexed by Watson. Using

PowerAqua, a user can simply ask a question, like ‘‘Who are the members of the rock band

Nirvana?’’ and obtain an answer, in this case in the form of a list of musicians (Kurt

Cobain, Dave Grohl, Krist Novoselic, and other former members of the group). The main

strength of PowerAqua resides in the fact that this answer is derived dynamically from the

relevant datasets available on the Semantic Web.

Without going into toomany details, PowerAqua first uses a Gate-based [32] linguistic

component to transform a question into a set of possible ‘‘query triples,’’ such as<person/

organization, members, rock band Nirvana>. The next step consists then in locating,

http://watson.kmi.open.ac.uk/WS_and_API.html
http://watson.kmi.open.ac.uk/WS_and_API.html
http://watson.kmi.open.ac.uk/REST_API.html
http://swaml.berlios.de/
http://sioc-project.org/
http://www.foaf-project.org/
http://poweraqua.open.ac.uk/

16.2 Example Applications: Semantic Web Search Engines in Action 16 687
thanks to Watson, online semantic documents describing entities that correspond to the

terms of the query triples, locating, for example, an individual called Nirvana in a dataset

about music. During this step, WordNet (http://wordnet.pinceton.edu) is used to aug-

ment the terms in the query triples with possible synonyms. Once a collection, usually

rather large, of potential candidate ontologies is found, PowerAqua then employs a variety

of heuristics and a powerful matching algorithm, PowerMap [33], to try and find answers

from the collection of candidate ontologies. In the example, the query triple shown above

can be successfully matched to the schema <Nirvana, has_members, ?x:Musician>,

which has been found in a music ontology on the Semantic Web. In more complex

examples, an answer may require integrating a number of statements. For instance, to

answer a query such as ‘‘Which Russian rivers flow to the Black Sea,’’ PowerAquamay need

to find information about Russian rivers, information about rivers which flow to the Black

Sea and then combine the two. In general, several sources of information, coming from

various places on theWeb, may provide overlapping or complementary answers. These are

therefore ranked and merged according to PowerAqua’s confidence in their contribution

to the final answer.
16.2.1.10 PowerMagpie: Semantic Browsing

PowerMagpie (http://powermagpie.open.ac.uk) is a Semantic Web browser that makes

use of openly available semantic data through Watson to support the interpretation

process of the content of arbitrary Web pages. Unlike its predecessor, Magpie, which

relied on a single ontology selected at design time, PowerMagpie automatically, that is, at

runtime, identifies and uses relevant knowledge provided by multiple online ontologies.

From a user perspective, PowerMagpie is an extension of a classical Web browser and takes

the form of a vertical widget displayed on top of the currently browsed Web page. This

widget provides several functionalities that allow the exploration of the semantic infor-

mation relevant to the current Web page. In particular, it summarizes conceptual entities

relevant to theWeb page. Each of the entities can then be shown in the text, where the user

may initialize different ways of exploring the information space around a particular entity.

In addition, the semantic information discovered by PowerMagpie, which relates the text

to online semantic resources, is ‘‘injected’’ into the Web page as embedded annotations in

RDFa. These annotations can then be stored into a local knowledge base and act as an

intermediary for the interaction of different semantic-based systems.
16.2.1.11 FLOR: Folksonomy Ontology Enrichment

Folksonomies, social tagging systems such as Flickr and Delicious, are at the forefront of

the Web2.0 phenomenon as they allow users to tag, organize, and share a variety of

information artifacts. The lightweight structures that emerge from these tag spaces only

weakly support content retrieval and integration applications since they are agnostic to

http://wordnet.pinceton.edu
http://powermagpie.open.ac.uk

688 16 Semantic Web Search Engines
the explicit semantics underlying the tags and the relations among them. For example,

a search formammal ignores all resources that are not tagged with this exact word, even if

they are tagged with specific mammal names such as lion, cow, and cat. The objective of

FLOR [34] is to attach formal semantics to tags, derived from online ontologies and make

the relations between tags explicit (e.g., that mammal is a superclass of lion). The

enrichment algorithm that has been experimentally investigated builds on Watson:

given a set of tags, the prototype identifies the ontological entities (classes, properties,

and individuals) that define the tags in their respective contexts. Additionally, it aims

to identify formal relations between the tags (subsumption, disjointness, and generic

relations) utilizing Scarlet.

The experiments [21] have led to further insights into the nature of ontologies on the

Semantic Web, from which two key ones are highlighted here. First, it was found that

online ontologies have a poor coverage of a variety of tag types denoting novel scientific

terminology, multilingual terms, and domain-specific jargon. Secondly, it was observed

that online ontologies can reflect different views and when used in combination can lead

to inconsistencies in the derived structures.
16.2.1.12 The Watson Synonym Service

The Watson Synonym Service (http://watson.kmi.open.ac.uk/API/term/synonyms) is

a simple service that creates a base of term clusters, where the terms of a cluster are

supposed to be associated to the same sense. It makes use of the information collected by

Watson in the form of ontologies to derive these clusters.

The basic algorithm to create term clusters is quite straightforward. Entities in Semantic

Web ontologies all possess one and only one identifier (in a given namespace, e.g., Person is

considered to be the identifier of http://www.example.org/onto#Person). They can also be

associated to one or several labels, through the rdf:label property. Hence, the algorithm

simply assumes that a term t1 is a synonym of another term t2 if t1 and t2 are used either as

label or identifier of the same entity. The role of the synonym discovery offline algorithm is

then simply to iterate through all the entities in Watson’s ontologies to create clusters of

terms that are used together in the identifiers or labels of entities.

Of course, the quality of the results obtained with this method is not as good as the one

obtained with the complex and costly approaches that are employed to build systems such

as WordNet (http://wordnet.pinceton.edu). However, the advantage of this algorithm is

that its quality improves together with the growth of the SemanticWeb, without requiring

any additional effort for collecting the data. A high number of good synonyms are found,

like in the cluster {ending, death, termination, destruction}. In addition, this method does

not only find synonyms in one language, but can provide the equivalent terms in various

languages, providing that multilingual ontologies exist and cover these terms. It could be

argued that these are not actually synonyms (but translations) and one of the possible

extensions for this tool is to make use of the language information in the ontologies to

distinguish these cases.

http://watson.kmi.open.ac.uk/API/term/synonyms
http://www.example.org/onto#Person
http://wordnet.pinceton.edu

16.2 Example Applications: Semantic Web Search Engines in Action 16 689
16.2.2 Semantic Web Search Engines as Research Platforms

Semantic Web search engines are tools and infrastructure components that automatically

collect, analyze, and index ontologies and semantic data available online. Besides enabling

the exploitation of the SemanticWeb, they can be seen as a research platform supporting the

exploration of the SemanticWeb to better understand its characteristics. Indeed,most of the

existing systems provide statistics for the documents and Semantic Web entities they have

collected (see, e.g., the statistics page of the Falcons system, http://iws.seu.edu.cn/services/

falcons/statistics.jsp), but beyond basic statistics, researchers involved in the development

of Semantic Web search engines were able to realize global studies of the Semantic Web

landscape, using the large collections of ontologies and semantic data available through

these systems.
16.2.2.1 Swoogle-Based Semantic Web Statistics

Based on the Semantic Web dataset collected by Swoogle, measures of some statistical

properties of Semantic Web data were presented in [35]. This paper should be considered

for precise results available at the time of its publication; however, the focus here is on

demonstrating how Swoogle can be used to compute these measures, as the actual values

would need to be updated to reflect the current status of the Semantic Web.

One interesting question is the size of the Semantic Web on the Web. However,

this number is hard to obtain because (1) Semantic Web documents are sparsely distrib-

uted on the Web and (2) validating whether a Web document is a Semantic Web

document requires nontrivial computation. Brute-force sampling, that is, measuring

the size of the Web (e.g., testing 80 ports for a huge list of IP addresses) [36], is not

suitable due to their unacceptable low efficiency. Analysis on the overlap of meta-search

results of conventionalWeb search engines [17, 37] is suitablemainly because SWDs are less

favored by these engines, and some even provide limited support on searching SWDs. For

example, even though both support filetype search, only Google search but not MSN

search supports searching for the filetype ‘‘rdf’’ and ‘‘owl.’’ A Google-based meta-search is

adopted for estimating SWDs based on the observation that 99% of SWDs have declared

RDF namespace, whose URL is http://www.w3.org/1999/02/22-rdf-syntax-ns#, as non-

markup which should be indexed by conventional search engines.

Another interesting measure is the deployment status of the Semantic Web on the

Web with respect to theWeb and the RDF graphworld. In particular, a series of quantitative

metrics and in-depth analysis bring a global picture of the SWDs and SWTs in the Semantic

Web. (Invariant) Power distribution has been observed in many cases, such as the distribu-

tion of SWDs per website and the definition quality of SWT. It was also noticed that the bias

introduced by the dynamic SWDs could block the diversity of the SemanticWeb and should

be controlled. A good number of metrics have been proposed for measuring the statistical

distribution of SWDs and SWTs. SWDs are the atomic containers for transferring Semantic

Web data and the interfaces between the Web and the RDF graph world.

http://iws.seu.edu.cn/services/falcons/statistics.jsp
http://iws.seu.edu.cn/services/falcons/statistics.jsp
http://www.w3.org/1999/02/22-rdf-syntax-ns#

690 16 Semantic Web Search Engines
● Source of SWD. In order to measure how Semantic Web data are distributed on the

Web, SWDs are grouped by their source websites. SWDs can further be grouped by the

top-level domain extracted from the URLs of the website hosting the SWDs.

● Size of SWD. The size of a SWD indicates the volume of Semantic Web data in the

SWD, which is usually measured by the number of triples in the RDF graph parsed

from the SWD.

● Age of SWD. SWDs could be uploaded, modified, and removed on theWeb. The age of

an SWD is measured by the last modified time (attached in the header of HTTP

response) of its latest version.

● Size change of SWD. In order to track the size change of SWDs, snapshots of each

SWD are maintained once a new version has been detected.

● Definition quality of SWD. In order to evaluate the portion of the definition in an

SWD, the ontology ratio (OntoRatio) is calculated at class-instance level and triple

level. High OntoRatio implies a preference for adding term definition rather than

populating existing terms; hence, OntoRatio can be used to quantify the degree of

a Semantic Web document being a ‘‘real’’ ontology.

SWTs are also evaluated using collected data.

● Overall Meta-Usage of SWT. Analyzes the usage of SWTs in SWDs based on the

combination of the six types of meta-usage identified by the WOB ontology,

namely, hasClassDefinitionIn, hasPropertyDefinitionIn, hasClassInstanceIn, hasProper-

tyInsanceIn, hasClassReferenceIn, and hasPropertyReferenceIn.

● Definition quality of SWT. The definition of an SWT depends on its residential RDF

graph that is serialized by an SWD. Again, the number of definitional triples of the

SWT is counted to estimate the quality of its definition within an SWD. Usually,

important classes and properties have more definitional triples.

● A common question posed by Semantic Web knowledge consumers is what kind of

Semantic Web data are available. The answer to this question is given bymeasuring the

instance space of the Semantic Web, that is, how SWTs are populated in SWDs as

classes and properties, for example, the number of SWTs being populated as class

(or property) by at least m instances,

The navigational paths in the Semantic Web are still in small amount and not enough

for effective Semantic Web surfing. In the category, Navigation Quality using statistics of

several important types of paths was investigated: (1) paths based on explicit import

semantics, (2) paths based on inexplicit namespace reference, and (3) paths based on Link

Indicators, such as the value of rdfs:seeAlso in FOAF.
16.2.2.2 Characterizing Knowledge on the Web with Watson

To give an account of the way semantic technologies are used to publish knowledge on the

Web, of the characteristics of the published knowledge, and of the networked aspects of

16.2 Example Applications: Semantic Web Search Engines in Action 16 691
the Semantic Web, an analysis of a sample of 25,500 semantic documents collected by

Watson was realized (see [38] for the details).

This analysis looked in particular into the use of Semantic Web languages and of their

primitives. Watson implements a simple, but restrictive language detection mechanism.

It is restrictive in the sense that it considers a document to employ a particular language

only if this document actually instantiates an entity of the language vocabulary (any

kind of description for RDF, a class for RDF-S, and a class or a property for OWL and

DAML + OIL). A simple conclusion that can be drawn from this analysis is that, while the

majority of the considered documents are exclusively considering factual data in RDF,

amongst the ontology representation languages (RDF-S, OWL and DAML + OIL), OWL

has clearly been adopted in majority.

The initial version of OWLwas divided into three sub-languages, OWL Lite, OWL DL,

and OWL Full, that represent different (increasing) levels of complexity (in the current

version, OWL 2, these sub-languages have been replaced by profiles, see http://www.w3.org/

TR/owl2-profiles/ see also >KR and Reasoning on the Semantic Web: OWL). Another

way to measure the expressivity (and so the complexity) of the language used is to consider

the underlying description logic. Description logics are named according to the primitives

they contain. For example, the DL of OWL Lite isALCR+ HIF (D), meaning, for example,

that it allows the description of inverse relations (I) and of limited cardinality restrictions

(F). One noticeable fact that can be derived from analyzing both the OWL Species and the

description logic used in ontologies is that, while a large majority of the ontologies in the

set were in OWL Full (the most complex variant of OWL, which is undecidable), most of

them were in reality very simple, only using a small subset of the primitives offered by the

language (95% of the ontologies where based on the ALH(D) description logic). This is

consistent with conclusions obtained in [39].

Looking at the size and structure of Semantic Web documents also highlighted that

a large majority of them were very simple. Indeed, a simple measure of density for RDF

entities is used (measuring relations they share with other entities) and discovered that the

employed collection of online semantic documents was made of a very large number of

very small and very shallow structures, and of a very small number of very large and

complex ontologies.

Another interesting element to consider is the duplication or URIs. Indeed, in theory,

if two semantic documents are identified by the same URI, they are supposed to contrib-

ute to the same ontology, that is, the entities declared in these documents are intended to

belong to the same conceptual model. However, even if this situation appears rarely (only

60 URIs of documents are ‘‘nonunique’’ in the considered set), in most cases, semantic

documents that are identified by the same URI are not intended to be considered together.

Different situations can be distinguished that lead to this problem:

Default URI of the ontology editor: http://a.com/ontology is the URI of 20 documents that

do not seem to have any relationwith each other, and that are certainly not meant to be

considered together in the same ontology. The reason for this URI to be so popular is

that it was the default namespace attributed to ontologies edited using the Protégé

http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://a.com/ontology

692 16 Semantic Web Search Engines
editor (http://protege.stanford.edu/) at the time. This problem has been reduced now

by the fact that Protégé forces its users to change the URI of their ontologies.

Mistaken use of well-known namespaces: The second most commonly shared URI in the

Watson repository is http://www.w3.org/2002/07/owl, which is the URI of the OWL

schema. The namespaces of RDF, RDF Schema, and of other well-known vocabularies

are also often duplicated. Using these namespaces as URIs for ontologies is (in most

cases) a mistake that could be avoided by checking, prior to giving an identifier to an

ontology, if this identifier has already been used in another ontology.

Different versions of the same ontology: A third common reason for which different

semantic documents share the same URI is in situations where an ontology evolves

to a new version, keeping the same URI (e.g., http://lsdis.cs.uga.edu/proj/semdis/

testbed/). As it is the same ontology, it seems natural to keep the same URI, but in

practice, this can cause problems in these cases where different versions coexist and are

used at the same time. This leads to a need for recommendations of good practices on

the identification of ontologies, that would take into account the evolution of the

ontologies, while keeping different versions clearly separated.

Related to this last point, an initial experiment [40] recently investigated the use of

information encoded in the URIs of the ontologies to encode versioning data, which can

be extracted to trace the different versions of ontologies. It appears that many different,

more or less popular conventions are used to encode such version data, from the use of

version numbers (e.g., v1.2, rev = 3.6) to the use of time-stamps and dates (using two

or three numbers, in big endian or little endian orders). Through recognizing these

patterns in URIs, many ‘‘chains’’ of ontology versions can be detected with varying levels

of accuracy, providing an insight on how ontologies evolve on the Web.

Watson provides an efficient platform, allowing researchers to obtain an overview of

the Semantic Web, to apprehend its content and development, and to analyze the way

knowledge is published online. Many other elements have been, and could be analyzed

concerning the Semantic Web, including the (explicit and implicit) relationships existing

between documents, the coverage in terms of domains and topics, etc. [41]. The next

section briefly summarizes recent work on using Watson to measure agreements and

disagreements in ontologies.
16.2.2.3 Measuring Ontology Agreement and Disagreement in
Watson

Ontologies are knowledge artifacts representing particular models of some particular

domains. They are built within the communities that rely on them, meaning that they

represent consensual representations inside these communities. However, when consid-

ering the set of ontologies distributed on theWeb, many different ontologies can cover the

same domain, while being built by and for different communities. Knowing which

ontologies agree or disagree with others or how much a particular statement is generally

agreed with in online ontologies can be very useful in many scenarios.

http://protege.stanford.edu/
http://www.w3.org/2002/07/owl
http://lsdis.cs.uga.edu/proj/semdis/testbed/
http://lsdis.cs.uga.edu/proj/semdis/testbed/

16.2 Example Applications: Semantic Web Search Engines in Action 16 693
Oneway to detect whether there is a disagreement between two ontologies is to rely on the

presence of logical contradictions. The two ontologies can be merged, based on mappings

between their entities, and the resulting model be checked for inconsistencies and incoher-

ences. While this approach would certainly detect some forms of disagreement, it only checks

whether the ontologies disagree or not. It does not provide any granular notion

of disagreement and, if no contradictions are detected, it does not necessarily mean that

the ontologies agree. Indeed, while two ontologies about two completely different,

nonoverlapping domains would certainly not disagree, they do not agree either. More

importantly, logical contradictions are not the onlyway for two ontologies to disagree. Indeed,

there could also be conceptual mismatches, like in the case where one ontology declares that

‘‘Lion is a subclass of Species’’ and the other one indicates that ‘‘Lion is an instance of Species.’’

Even at content level, logical contradictions would not detect some form of disagreements.

Indeed, the two statements ‘‘Human is a subclass of Animal’’ and ‘‘Animal is a subclass of

Human’’ do not generate any incoherence. However, they disagree in the sense that, if put

together, they generate results that were not expected from any of the two ontologies.

For these reasons, [42] defines two basic measures for assessing agreement and

disagreement of an ontology O with a statement s = < subject, relation, object >:

agreement ðO; sÞ! ½0::1�
disagreement ðO; sÞ! ½0::1�

Two distinct measures are used for agreement and disagreement so that an ontology

can, at the same time and to certain extents, agree and disagree with a statement. These

two measures have to be interpreted together to indicate the particular belief expressed by

the ontology O regarding the statement s. For example, if agreement(O, s) = 1 and

disagreement(O, s) = 0, it means that O fully agrees with s and conversely if agreement

(O, s) = 0 and disagreement(O, s) = 1, it fully disagrees with s. Now, agreement and

disagreement can vary between 0 and 1,meaning thatO can only partially agree or disagree

with s and sometimes both, when agreement(O, s)> 0 and disagreement(O, s)> 0. Finally,

another case is when agreement(O, s) = 0 and disagreement(O, s) = 0. This basically means

thatO neither agrees nor disagrees with s, for the reason that it does not express any belief

regarding the relation encoded by s.

The actual values returned for both measures, when different from 0 and 1, are not

very important. They correspond to different levels of disagreement/agreement and only

an order between predefined levels is needed to interpret them. The values used and the

ways to compute them are given in [42].

Considering that ontologies are made of statements, extending the measures above to

compute agreement and disagreement between two ontologies is relatively straightforward,

using themean of eachmeasure for each statement of an ontology against the other ontology,

in both directions and making this a normalized measure. However, while relatively simple,

the two measures of agreement and disagreement between ontologies provide an interesting

way to obtain an overview of a set of ontologies. Indeed, an experiment looked at the 21

ontologies returned by Watson when querying for semantic documents containing a class

with the term SeaFood in its ID or label, and computed the agreement and disagreement

a

b

. Fig. 16.13

Agreement (top) and disagreement (bottom) relations among the 21 test ontologies. Plain

lines represent full disagreement/agreement (measures’ values = 1). Dashed lines represent

partial disagreement/agreement (measures’ values greater than 0)

694 16 Semantic Web Search Engines

16.2 Example Applications: Semantic Web Search Engines in Action 16 695
measures for all pairs of ontologies in this set. The results are shown in > Fig. 16.13 where

ontologies are numbered according to their rank in Watson (valid on the 20/09/2009).

Analyzing these diagrams, it appears that there is a certain level of ‘‘coherence’’ in the

results. In particular, homogeneous clusters can be built from the agreement and dis-

agreement values: the ontologies O1, O2, O3, O4, O5, O6, O7, O11, O12, O13, O16, O17,

O18, O19, andO20 all fully agree with each other and, at the same time, partially agree and

disagree with O14 and O15. O14 and O15 also form a cluster since they agree with each

other, and consistently disagree with the same set of ontologies (the reason being that

O14 and O15 are the ontologies considering that SeaFood is a subclass of Meat, but agree

on all the other related statements). O21 is also particular, since it disagrees with most of

the ontologies of the first cluster, sometimes fully. Indeed, it also considers SeaFood to be

a subclass of Meat, and additionally disagrees on several other statements with some of the

other ontologies (e.g., it considers that tuna is a subclass of fish while several other

ontologies consider tuna as an instance of fish). O8, O9, and O10 are particular since

there is only a very small overlap between them and the other ontologies. For example, O9

only agrees with O11 that Vegan is a subclass of Vegetarian.

Another interesting piece of information that can be derived from the measures

defined and from exploiting the collection of ontologies in Watson is the level to which

particular statements are agreed with, that is, the level of consensus on a statement.

Conversely, a related item of information concerns the level of controversy on the

statement, that is, whether there is a clear-cut between agreement and disagreement.

Here, a normalized meanwas also used tomeasure the global agreement and disagreement

of a statement st in a set of ontologies R (see details in [42]). From these two measures,

consensus is defined as having a high level of certainty on whether ontologies in R agree or

disagree with st. There is a high level of (positive consensus) if the overall agreement about

this statement is high and the overall disagreement is low. Thus, the measure of consensus

is computed in a set of ontologies R upon a statement st as follows:

consensus ðst ;RÞ ¼ agreement ðst ;RÞ � disagreement ðst ;RÞ
The notion of controversy is then considered to be the inverse from the one of

consensus: there is a high level of controversy on a given statement when there is no

clear-cut between agreement and disagreement, that is, there is a low level of consensus.

Therefore, the measure of controversy in a set of ontologies R upon a statement st can

simply be computed in the following way:

controversy ðst ;RÞ ¼ 1� consensus ðst ;RÞj j
To illustrate these measures, nine statements concerning the class SeaFood in Watson

are considered. The results are summarized in >Table 16.1.

As can be seen from these results, the first four statements are fully agreed with by

ontologies in Watson, meaning that all the ontologies containing both entities of each

statement express exactly the same relation as the one of the statement. The three next

statements also have a very high level of agreement, and a very low level of disagreement.

This is mainly due to a few ontologies containing the right entities, but not necessarily

. Table 16.1

Consensus and controversy on statements concerning the SeaFood class in Watson

Statement Consensus Controversy

< SeaFood, disjointWith, Dessert > 1.0 0.0

< Fowl, disjointWith, SeaFood > 1.0 0.0

< Pasta, disjointWith, SeaFood > 1.0 0.0

< SeaFood, subClassOf, EdibleThing > 1.0 0.0

< ShellFish, subClassOf, SeaFood > 0.89 0.109

< Fish, subClassOf, SeaFood > 0.875 0.125

< SeaFood, disjointWith, Fruit > 0.75 0.25

< Meat, disjointWith, SeaFood > 0.53 0.46

< SeaFood, subClassOf, Meat > �0.719 0.281

696 16 Semantic Web Search Engines
describing any relation between them. Hence, there is a high level of consensus on these

statements. Finally, the last two statements are the ones for which there is the highest level

of controversy. The last one is by far the most disagreed with (which correlates with the

high level of agreement of the other one contradicting it).

Another interesting example is the one of the statement < river, subClassOf, sea >,

which gives a high level of disagreement (0.766). The disagreement is not 1 in that case,

because only very few ontologies express explicitly contradicting relations. However, in this

case, the level of agreement is 0: There is no ontology to actually agree with this statement.
16.3 Related Resources

The previous sections give a detailed account of existing uses and applications of Semantic

Web search engines, focusing in particular on two of the most prominent systems which are

currently active. Due to the increase in the number of semantic documents made available

online, and so to the need for search functionalities, a number of other systems have emerged

recently from academic research (the list is deliberately restricted to systems that provide at

least a freely accessible Web user interface for searching or querying semantic data):

Sindice (http://sindice.com/) is a Semantic Web index or entity look-up service that

focuses on scaling to very large quantities of data. It provides keyword and URI-

based search, structured query, and relies on some simple reasoning mechanisms for

inverse-functional properties [26].

Falcons (http://iws.seu.edu.cn/services/falcons/) is a keyword-based semantic entity

search engine. It provides a sophisticated Web interface that allows one to restrict

the search according to recommended concepts or vocabularies [43].

SWSE (http://swse.deri.org/) is also a keyword-based entity search engine, but one that

focuses on providing semantic information about the resulting entities rather than

only links to the corresponding data sources [44]. Its collection is automatically

http://sindice.com/
http://iws.seu.edu.cn/services/falcons/
http://swse.deri.org/

16.4 Conclusion and Future Directions 16 697
gathered by crawlers. SWSE also provides a SPARQL endpoint enabling structured

query on the entire collection.

Semantic Web Search (http://www.semanticwebsearch.com/) is also a semantic entity

search engine based on keywords, but that allows one to restrict the search to

particular types of entities (e.g., DOAP Projects) and provides structured queries.

OntoSelect (http://olp.dfki.de/ontoselect/) provides a browsable collection of ontologies

that can be searched by looking at keywords in the title of the ontology or by providing

a topic [45].

OntoSearch2 (http://www.ontosearch.org/) is a Semantic Web Search engine that allows

for keyword search, formal queries, and fuzzy queries on a collection of manually

submitted OWL ontologies. It relies on scalable reasoning capabilities based on

a reduction of OWL ontologies in DL-Lite ontologies [46].

Sqore (http://ict.shinawatra.ac.th:8080/sqore) is a prototype search engine that allows for

structured queries in the form of OWL descriptions [47]. Desired properties of entities

to be found in ontologies are described as OWL entities and the engine searches for

similar descriptions in its collection.

Finally, it is worth noticing that the issue of collecting semantic data from the Web has

recently reached a broader scope, with the appearance of features within mainstreamWeb

search engines exploiting structured data to improve the search experience and presenta-

tion. Indeed, Yahoo! SearchMonkey (http://developer.yahoo.com/searchmonkey/) crawls

and indexes semantic information embedded in Web pages as RDFa (http://www.w3.org/

TR/xhtml-rdfa-primer/) or microformats (http://microformats.org/), in order to provide

enriched snippets describing the Web pages in the search results. Similarly, Google Rich

Snippets (http://googlewebmastercentral.blogspot.com/2009/05/introducing-rich-snip-

pets.html) makes use of collected semantic data using specific schemas in Web pages to

add information to the presentation of results.
16.4 Conclusion and Future Directions

Semantic Web search engines are critical to the Semantic Web infrastructure. With the

growth of Semantic Web data, applications and users, more and more research and

development activities are being dedicated to building robust and scalable Semantic

Web search engines. Most of the resulting systems are comparable in their structures

and goals, but take different perspectives on the type of content they collect, on the task

they support, and on the techniques they implement.

Developing such a system is a fascinating experience, touching on many different

practical aspects of Semantic Web developments and including elements from other areas

(information retrieval, interaction, databases, Web development, etc.), while integrating

the tough constraint of reliability. But even more fascinating is the way Semantic Web

search engines are used. They enable a new generation of applications that can benefit

from a body of knowledge comparable to no other before. They allow users to explore this

http://www.semanticwebsearch.com/
http://olp.dfki.de/ontoselect/
http://www.ontosearch.org/
http://ict.shinawatra.ac.th:8080/sqore
http://developer.yahoo.com/searchmonkey/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://microformats.org/
http://googlewebmastercentral.blogspot.com/2009/05/introducing-rich-snippets.html
http://googlewebmastercentral.blogspot.com/2009/05/introducing-rich-snippets.html

698 16 Semantic Web Search Engines
knowledge in efficient ways. They form a platform for researchers to study the Semantic

Web and understand its content, its structure, and its evolution.

While SemanticWeb search engines have gone a long way since the very first version of

Swoogle (in 2004!), many research issues still need to be explored. The dynamic aspect of

the Semantic Web will certainly become an important problem in the next few years and

Semantic Web search engines will be required to come up with new solutions to deliver

only valid, up-to-date knowledge. The implicit relationships that relate semantic docu-

ments should also be better explored, providing ways to really exploit the network of

ontologies which is available online, in a currently very shallow form. Also, while the

quality of online information is still a major issue, facilitating various levels of user

contributions, from writing new ontologies to linking datasets and reviewing semantic

information, seems an interesting direction for the future.
16.5 Cross-References

>KR and Reasoning on the Semantic Web: OWL

>KR and Reasoning on the Semantic Web: Web-scale Reasoning

>Ontologies and the Semantic Web

>Querying the Semantic Web: SPARQL

> Semantic Annotation and Retrieval: RDF

> Semantic Annotation and Retrieval: Web of Data

> Semantic Annotation and Retrieval: Web of Hypertext – RDFa and Microformats

> Semantic Web Architecture

> Storing the Semantic Web: Repositories
References
1. Sowa, J.F.: Conceptual graphs summary. In:

Nagle, T.E., Nagle, J.A., Gerholz, L.L., Eklund,

P.W. (eds.) Conceptual Structures: Current

Research and Practice, pp. 3–51. Ellis Horwood,

New York (1992) ISBN:0-13-175878-0

2. Hobbs, J.R., Ferguson,G., Allen, J., Fikes, R.,Hayes,

P., McDermott, D., Niles, I.: Adam Pease, Austin

Tate, Mabry Tyson, Richard Waldinger. A daml

ontology of time. http://www.cs.rochester.edu/

~ferguson/daml/daml-time-nov2002.txt(2002)
3. Chen, H., Perich, F., Finin, T., Joshi, A.:

SOUPA: standard ontology for ubiquitous

and pervasive applications. In: Proceedings of

the First International Conference on Mobile

and Ubiquitous Systems: Networking and

Services (Mobiquitous 2004), Boston (2004)

4. Hayes, P.: RDF semantics. http://www.w3.org/TR/

2004/REC-rdf-mt-20040210/ (2004)
5. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL

web ontology language semantics and abstract

syntax. http://www.w3.org/TR/2004/REC-owl-

semantics-20040210/ (2004)

6. Ayers, D., Völkel, M.: Cool URIs for the semantic

web, W3C Interest Group Note. http://www.w3.

org/TR/cooluris/ (Sept 2010)

7. Prud’hommeaux, E., Seaborne, A.: SPARQL

query language for RDF. http://www.w3.org/TR/

2006/WD-rdf-sparql-query-20060220/ (2006)

8. Bizer, C.: The emerging web of linked data. IEEE

Intell. Syst. 24, 87–92 (2009)

9. Bizer, C., Heath, T., Berners-Lee, T.: Linked data,

the story so far. Int. J. Semantic Web Inf. Syst.

5(3), 1–22 (2009)

10. Androutsopoulos, I., Ritchie, G.D., Thanisch, P.:

Natural language interfaces to databases: an

introduction. Nat. Lang. Eng. 1(1), 29–81 (1995)

http://www.cs.rochester.edu/~ferguson/daml/daml-time-nov2002.txt
http://www.cs.rochester.edu/~ferguson/daml/daml-time-nov2002.txt
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
http://www.w3.org/TR/2006/WD-rdf-sparql-query-20060220/
http://www.w3.org/TR/2006/WD-rdf-sparql-query-20060220/
http://www.w3.org/TR/cooluris/
http://www.w3.org/TR/cooluris/

16.5 Cross-References 16 699
11. Harth, A., Umbrich, J., Decker, S.: Multi-crawler: a

pipelined architecture for crawling and indexing

semantic web data. In: Proceedings of the Fifth

International Semantic Web Conference (ISWC

2006), Athens, GA. Lecture Notes in Computer Sci-

ence, vol. 4273, pp. 258–271. Springer, Berlin (2006)

12. Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y.,

Kolari, P.: Finding and ranking knowledge on the

semantic web. In: Proceedings of the Fourth Inter-

national Semantic Web Conference (ISWC 2005),

Galway. Lecture Notes in Computer Science, vol.

3729, pp. 156–170. Springer, Heidelberg (2005)

13. Alani,H., Brewster, C., Shadbolt,N.: Rankingontol-

ogies with aktiverank. In: Proceedings of the Fifth

International Semantic Web Conference (ISWC

2006), Athens, GA. Lecture Notes in Computer Sci-

ence, vol. 4273, pp. 1–15. Springer, Berlin (2006)

14. d’Aquin, M., Euzenat, J., Le Duc, C., Lewen, H.:

Sharing and reusing aligned ontologies with

cupboard. In: Demo, Proceedings of the Fifth

International Conference on Knowledge Capture

(K-CAP 2009), Los Angeles (2009)

15. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S.,

Peng, Y., Reddivari, P., Doshi, V., and Sachs, J.:

Swoogle: a search and metadata engine for the

semantic web. In: Proceedings of the 13th ACM

International Conference on Information and

Knowledge Management (CIKM 2004), Wash-

ington, DC, pp. 652–659 (2004)

16. Sherman, C.:Metacrawlers andmetasearch engines.

http://searchenginewatch.com/links/article.php/

2156241 (last visited on March 2006) (2004)

17. Gulli, A., Signorini, A.: The indexable web is

more than 11.5 billion pages. In: Proceedings of

the 14th International World Wide Web Confer-

ence (WWW 2005) (poster paper), Chiba (2005)

18. Page, L., Brin, S., Motwani, R., Wino-grad, T.:

The PageRank citation ranking: bringing order

to the web. Technical report, Stanford Digital

Library Technologies Project (1998)

19. d’Aquin, M., Sabou, M., Motta, E., Angeletou, S.,

Gridinoc, L., Lopez, V., Zablith, F.: What can be

done with the semantic web? An overview of Wat-

son-based applications. In: Proceedings of the

Fifth Workshop on Semantic Web Applications

and Perspectives (SWAP 2008), Rome (2008)

20. d’Aquin, M., Motta, E., Sabou, M., Angeletou, S.,

Gridinoc, L., Lopez, V., Guidi, D.: Toward a new

generation of semantic web applications. IEEE

Intell. Syst. 23(3), 20–28 (2008)
21. Angeletou, S., Sabou, M., Specia, L., Motta, E.:

Bridging the gap between folksonomies and the

semantic web: an experience report. In: Proceed-

ings of the International Workshop on Bridging

the Gap between Semantic Web and Web 2.0 at

the Fourth European Semantic Web Conference

(ESWC 2007), Innsbruck (2007)

22. Peroni, S., Motta, E., d’Aquin, M.: Identifying key

concepts in an ontology through the integration

of cognitive principles with statistical and topo-

logical measures. In: Proceedings of the Third

Asian Semantic Web Conference (ASWC 2008),

Bangkok. Lecture Notes in Computer Science,

vol. 5367, pp. 242–256. Springer, Berlin (2009)

23. d’Aquin, M., Motta, E., Sabou, M., et al.: Towards

a new generation of semantic web applications.

IEEE Intell. Syst. 23(3), 20–28 (2008)

24. Sabou, M., d’Aquin, M., Motta, E.: Exploring the

semantic web as background knowledge for

ontology matching. J. Data Semant. XI. Lecture

Notes in Computer Science, vol. 5383, pp. 156–

190, doi: 10.1007/978-3-540-92148-6_6 (2008)

25. Tummarello, G., Cyganiak, R., Catasta, M.,

Danielczyk, S., Delbru, R., Decker, S.: Sigma: live

views on the Web of Data. In: Demonstration at

the Proceedings of the 19th World Wide Web

Conference (WWW 2010), Raleigh (2010)

26. Tummarello, G., Oren, E., Delbru, R.: Sindice.

com: weaving the open linked data. In: Proceed-

ings of the Sixth International Semantic Web

Conference and Second Asian Semantic

Web Conference (ISWC/ASWC 2007), Busan.

Lecture Notes in Computer Science, vol. 4825,

pp. 547–560. Springer, Berlin (2007)

27. Finin, T.W., Sachs, J., Parr, C.S.: Finding data,

knowledge, and answers on the semantic web.

In: Proceedings of the 20th International Florida

Artificial Intelligence Research Society Confer-

ence (FLAIRS 2007), Key West, pp. 2–7. AAAI,

Menlo Park (2007)

28. Haase, P., Stojanovic, L.: Consistent evolution of

OWL ontologies. In: Proceedings of the Second

European Semantic Web Conference (ESWC

2005), Heraklion. Lecture Notes in Computer

Science, vol. 3532, pp. 182–197. Springer, Berlin

(2005)

29. Zablith, F.: Dynamic ontology evolution. In: Pro-

ceedings of the Seventh International Semantic

Web Conference (ISWC 2008), Doctoral Consor-

tium, Karlsruhe (2008)

http://searchenginewatch.com/links/article.php/2156241
http://searchenginewatch.com/links/article.php/2156241

700 16 Semantic Web Search Engines
30. Zablith, F., Sabou, M., d’Aquin, M., Motta, E.:

Using background knowledge for ontology

evolution. In: Proceedings of the Second Interna-

tional Workshop on Ontology Dynamics (IWOD

2008) Co-located with Seventh International

Semantic Web Conference (ISWC 2008), Karls-

ruhe (2008)

31. Fernàndez, S., Berrueta, D., Shi, L., Labra, J.E.,

Ordóñez de Pablos, P.: Mailing lists and social

semantic web. In: Patricia Ordonez de Pablos

Miltiadis D. Lytras (ed.) Social Web Evolution:

Integrating Semantic Applications and Web 2.0

Technologies. Social Computing: Concepts,

Methodologies, Tools, and Applications Editor

(s): Subhasish Dasgupta (George Washington

University, USA), pp. 335–349 (2010)

32. Cunningham, H., Maynard, D., Bontcheva, K.,

Tablan, V.: GATE: a framework and graphical

development environment for robust NLP tools

and applications. In: Proceedings of the 40th

Annual Meeting of the Association for Computa-

tional Linguistics (ACL 2002), Philadelphia (2002)

33. Lopez, V., Sabou, M., Motta, E.: PowerMap:

mapping the real semantic web on the fly. In:

Proceedings of the International Semantic Web

Conference (ISWC 2006), Athens, GA. Lecture

Notes in Computer Science, vol. 4273,

pp. 414–427. Springer, Berlin (2006)

34. Angeletou, S., Sabou, M., Motta, E.: Semantically

enriching folksonomies with FLOR. In: Proceed-

ings of the First International Workshop on Col-

lective Semantics: Collective Intelligence and the

Semantic Web (CISWeb 2008), Tenerife (2008)

35. Ding, L., Finin, T.: Characterizing the semantic web

on the web. In: Proceedings of the Fifth Interna-

tional SemanticWebConference (ISWC2006),Ath-

ens, GA. Lecture Notes in Computer Science, vol.

4273, pp. 242–257. Springer, Berlin (2006)

36. Lawrence, S., Lee Giles, C.: Accessibility of informa-

tion on the web. Nature 400, 107–109 (1999)

37. Bharat, K., Broder, A.: A technique for measuring

the relative size and overlap of public web search

engines. In: Proceedings of the Seventh Interna-

tional Conference on World Wide Web (WWW

1998), Brisbane, pp. 379–388 (1998)

38. d’Aquin, M., Baldassarre, C., Gridinoc, L.,

Angeletou, S., Sabou, M., Motta, E.: Characterizing

knowledge on the semantic web with Watson. In:

Workshop on Evaluation of Ontologies and

Ontology-Based Tools (EON 2007), Madrid (2007)
39. Wang, T.D., Parsia, B., Hendler, J.: A survey of

the web ontology landscape. In: Proceedings

of the Fifth International Semantic Web Confer-

ence, (ISWC 2006), Athens, GA. Lecture Notes in

Computer Science, vol. 4273, pp. 682–694.

Springer, Berlin (2006)

40. Allocca, C., d’Aquin, M., Motta, E.: Detecting

different versions of ontologies in large ontology

repositories. In: Proceedings of the Third Inter-

national Workshop on Ontology Dynamics

(IWOD 2009), Washington, DC. CEUR-WS

Online Proceedings, vol. 519 (2009)

41. d’Aquin, M., Allocca, C., Motta, E.: A platform for

semantic web studies. In: Web Science Conference

(WebSci 2010), Poster Session, Raleigh (2010)

42. d’Aquin, M.: Formally measuring agreement

and disagreement in ontologies. In: Proceedings

of the Fifth International Conference on Knowl-

edge Capture (K-CAP 2009), Los Angeles (2009)

43. Cheng, G., Ge, W., Qu, Y.: Falcons: searching and

browsing entities on the semantic web. In: Pro-

ceedings of the 17th International Conference on

World Wide Web (WWW 2008), Beijing,

pp. 1101–1102. ACM, New York (2008)

44. Harth, A., Hogan, A., Delbru, R., Umbrich, J.,

O’Riain, S., Decker, S.: SWSE: Answers before links!

In: Proceedings of the Semantic Web Challenge,

CEURWorkshop Proceedings, vol. 295 (2007)

45. Buitelaar, P., Eigner, T., Declerck, T.: Ontose lect:

a dynamic ontology library with support for

ontology selection. In: Proceedings of the Demo

Session at the Third International Semantic Web

Conference (ISWC 2004), Hiroshima (2004)

46. Thomas, E., Pan, J.Z., Sleeman, D.H.: On-

tosearch2: searching ontologies semantically.

In: Proceedings of the Third International Work-

shop on OWL: Experiences and Directions

(OWLED 2007), Innsbruck. CEUR Workshop

Proceedings, vol. 258 (2007)

47. Ungrangsi, R., Anutariya, C., Wuwongse, V.:

SQORE-based ontology retrieval system. In: Pro-

ceedings of the 18th International Conference on

Database and Expert Systems Applications

(DEXA 2007), Regensburg. Lecture Notes in

Computer Science, vol. 4653, pp. 720–729.

Springer, Berlin (2007)

48. Myers, P., Espinosa, R., Parr, C.S., Jones, T.,

Hammond, G.S., Dewey, T. A.: The Animal

Diversity Web (online). http://animaldiversity.

org (2006). Accessed 5 Aug 2009

http://animaldiversity.org
http://animaldiversity.org

	16 Semantic Web Search Engines
	16.1 Scientific and Technical Overview
	16.1.1 Challenges
	16.1.2 Related Systems
	16.1.3 Abstract Specification
	16.1.4 Case Study 1: Swoogle
	16.1.4.1 Architecture
	16.1.4.2 Crawling
	16.1.4.3 Indexing
	16.1.4.4 Ranking
	16.1.4.5 Retrieval
	16.1.4.6 Archive

	16.1.5 Case Study 2: Watson
	16.1.5.1 Architecture
	16.1.5.2 Collecting Semantic Content: Crawling the Semantic Web
	16.1.5.3 Analyzing Semantic Content: Validation, Indexing, and Metadata Generation
	16.1.5.4 Web Interface: Search, Navigation, and Exploration
	16.1.5.5 The Watson API

	16.2 Example Applications: Semantic Web Search Engines in
Action
	16.2.1 Semantic Web Search Engines as Development Platforms
	16.2.1.1 Scarlet: Relation Discovery
	16.2.1.2 Swoogle Ontology Dictionary
	16.2.1.3 Sig.Ma
	16.2.1.4 The Watson Plug-In
 for Knowledge Reuse
	16.2.1.5 Swoogle-Based
 Triple Shop
	16.2.1.6 Evolva: Ontology Evolution Using Background Knowledge
	16.2.1.7 Wahoo/Gowgle: Query Expansion
	16.2.1.8 SWAML
	16.2.1.9 PowerAqua: Question Answering
	16.2.1.10 PowerMagpie: Semantic Browsing
	16.2.1.11 FLOR: Folksonomy Ontology Enrichment
	16.2.1.12 The Watson Synonym Service

	16.2.2 Semantic Web Search Engines as Research Platforms
	16.2.2.1 Swoogle-Based
Semantic Web Statistics
	16.2.2.2 Characterizing Knowledge on the Web with Watson
	16.2.2.3 Measuring Ontology Agreement and Disagreement in Watson

	16.3 Related Resources
	16.4 Conclusion and Future Directions
	16.5 Cross-References
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

