
58 Collision-Based Computing
G. Rozenbe
Springer
Andrew Adamatzky1 . Jérôme Durand-Lose2
1Department of Computer Science, University of the West of England,

Bristol, UK
andrew.adamatzky@uwe.ac.uk
2LIFO, Université d’Orléans, France
jerome.durand-lose@univ-orleans.fr
1
 Introduction . 1950
2
 Principles of Collision-Based Computing . 1952
3
 Collision-Based Computing in Natural Systems . 1953
4
 One-Dimensional Cellular Automata . 1962
5
 Abstract Geometrical Computation . 1969
rg et al. (eds.), Handbook of Natural Computing, DOI 10.1007/978-3-540-92910-9_58,

-Verlag Berlin Heidelberg 2012

1950 58 Collision-Based Computing
Abstract

Collision-based computing is an implementation of logical circuits, mathematical machines,

or other computing and information processing devices in homogeneous, uniform and

unstructured media with traveling mobile localizations. A quanta of information is repre-

sented by a compact propagating pattern (gliders in cellular automata, solitons in optical

systems, wave fragments in excitable chemical systems). Logical truth corresponds to presence

of the localization, logical false to absence of the localization; logical values can also be

represented by a particular state of the localization. When two or more traveling localizations

collide, they change their velocity vectors and/or states. Post-collision trajectories and/or states

of the localizations represent results of logical operations implemented by the collision. One of

the principal advantages of the collision-based computing medium – hidden in 1D systems

but obvious in 2D and 3D media – is that the medium is architecture-less: nothing is

hardwired, there are no stationary wires or gates, a trajectory of a propagating information

quanta can be seen as a momentary wire. The basics of collision-based computing are

introduced, and the collision-based computing schemes in 1D and 2D cellular automata

and continuous excitable media are overviewed. Also a survey of collision-based schemes,

where particles/collisions are dimensionless, is provided.
1 Introduction

Edward Fredkin, Tommaso Toffoli, Norman Margolus, Elwyn Berlekamp and John Conway

are fully recognized founders of the field of collision-based computing. The term ‘‘collision-

based computing’’ was first used in Adamatzky (2002a). There are, however, several equivalent

but lesser-used terms such as ‘‘signal computing,’’ ‘‘ballistic computing,’’ ‘‘free

space computing,’’ and ‘‘billiard ball computing.’’ The idea of collision-based computing

is based on studies dealing with collisions of signals traveling along discrete chains, on a

one-dimensional cellular automata. The interaction of signals traveling along one-dimensional

conductors was among the famous problems in physics, biology, and physiology for

centuries, and the problem of interaction was interpreted in terms of finite state machines

in the 1960s. The earliest computer science-related results on signal interaction can be

attributed to:

� Atrubin (Atrubin 1965), who designed the first-ever multiplier based on a one-dimen-

sional cellular automaton in 1965;

� Fischer (Fischer 1965), who developed a cellular automaton generator of prime numbers

in 1965; and

� Waksman (Waksman 1966), who initiated the very popular firing squad synchronization

problem and provided an eight-state solution, in 1966.

Banks (1971) showed how to build wires and simple gates in configurations of a

two-dimensional binary-state cellular automaton. This was not architecture-free computing,

because a wire was represented by a particular stationary configuration of cell states (this was

rather a simulation of a ‘‘conventional’’ electrical, or logical, circuit). However, Banks’s design

was a huge influence on the theory of computing in cellular automata and beyond.

In 1982, Elwyn Berlekamp, John Conway, and Richard Gay proved that Game of Life ‘‘can

imitate computers’’ (Berlekamp et al. 1982).

Collision-Based Computing 58 1951
They mimicked electric wires by lines ‘‘along which gliders travel’’ and demonstrated how

to do a logical gate by crashing gliders into one another. Chapter 25 of their ‘‘Winning Ways’’

(Berlekamp et al. 1982) demonstrates computing designs that do not simply look fresh

20 years later but are still rediscovered again and again by Game of Life enthusiasts all

over the Net.

Berlekamp, Conway, and Gay employed a vanishing reaction of gliders – two crashing

gliders annihilate themselves – to build a NOT gate. They adopted Gosper’s eater to collect

garbage and to destroy glider streams. They used combinations of glider guns and eaters to

implement AND and OR gates, and the shifting of a stationary pattern or block, by a mobile

pattern, or glider, when designing auxiliary storage of information.

There is even the possibility that space–time itself is granular, composed of discrete units, and

that the universe, as Edward Fredkin of M.I.T. and others have suggested, is a cellular automaton

run by an enormous computer. If so, what we call motion may be only simulated motion.

A moving particle in the ultimate microlevel may be essentially the same as one of our gliders,

appearing to move on the macro-level, whereas actually there is only an alteration of states of basic

space–time cells in obedience to transition rules that have yet to be discovered. – Berlekamp et al.

(1982).

Meanwhile, in 1978, Edward Fredkin and Tommaso Toffoli submitted a 1-year project

proposal to DARPA, which got funding and thus started a chain of remarkable events.

Originally, Fredkin and Toffoli aimed to ‘‘drastically reduce the fraction of ’’ energy ‘‘that is

dissipated at each computing step’’ (Fredkin and Toffoli 2002). To design a non-dissipative

computer they constructed a new type of digital logic – conservative logic – that conserves

both ‘‘the physical quantities in which the digital signals are encoded’’ and ‘‘the information

present at any moment in a digital system’’ (Fredkin and Toffoli 2002).

Fredkin and Toffoli (1982) further developed these ideas in the seminal paper ‘‘Conserva-

tive Logic,’’ from which a concept of ballistic computers emerged. The Fredkin–Toffoli model

of conservative computation – the billiard ball model – explores ‘‘elastic collisions involving

balls and fixed reflectors.’’ Generally, they proved that ‘‘given a container with balls one can do

any kind of computation.’’

The billiard ball model became a masterpiece of cellular automaton theory, thanks to

Norman Margolus who invented a cellular automaton (block cellular automata or partitioned

cellular automata) implementation of the model. Norman published this result in 1984

(Margolus 1984). ‘‘Margolus neighborhood’’ and ‘‘billiard ball model cellular automata’’ are

exploited widely nowadays.

A detailed account of collision-based computing is not provided. There are no excuses to

avoid reading original sources (Berlekamp et al. 1982; Fredkin and Toffoli 1982; Margolus

1984). A comprehensive, self-contained report of the modern state of collision-based com-

puting is provided in the book by Adamatzky (2002a). The present chapter rather discusses

personal experience designing collision-based computing schemes in one- and two-dimen-

sional cellular automata, and spatially extended nonlinear media. It also provides some hands-

on examples of recently discovered collision-based computing devices, with the hope that the

examples will help readers to experiment with their own designs.

The chapter is structured as follows. Principles of collision-based computing are outlined

in > Sect. 2. > Section 3 shows how basic logical gates can be implemented by colliding

localizations in natural systems – simulated reaction–diffusion medium (> Sect. 3.1) and

light-sensitive Belousov–Zhabotinsky medium (> Sect. 3.2). The theoretical foundations

of computing with signals in 1D cellular automata are presented in > Sect. 4, including

1952 58 Collision-Based Computing
collision-based implementation of 1D Turing machine (> Sect. 4.2.1) and cyclic tag systems

(CTS) (> Sect. 4.2.2). The excursion to architectureless computing is complete with abstract

geometrical computation in > Sect. 5, where time and space are continuous and particles/

localizations are dimensionless.
2 Principles of Collision-Based Computing

This section attempts to summarize all types of collision-based computers. A collision-based

computer is an empty space populated with mobile and stationary localizations. The mobile

localizations used for computing so far are:

� Billiard balls (Fredkin and Toffoli 1982)

� Gliders in cellular automata models (Berlekamp et al. 1982; Adamatzky and Wuensche

2007; Delorme and Mazoyer 2002; Rennard 2002; Rendell 2002)

� Solitons in nonlinear media (Jakubowski et al. 1996, 2001; Steiglitz 2001; Anastassiou et al.

2001; Rand et al. 2005; Rand and Steiglitz 2009), and

� Localized wave fragments in excitable chemical media (Adamatzky 2004; Adamatzky and

De Lacy Costello 2007)

Examples of stationary localizations are:

� ‘‘Still lives,’’ blocks, and eaters in Conway’s Game of Life (Berlekamp et al. 1982; Rendell

2002)

� Standing waves in automaton models of reaction–diffusion systems (Adamatzky and

Wuensche 2007) and

� Breathers in computing devices based on polymer chains and oscillons in vibrating

granular materials (Adamatzky 2002b)

Usually mobile localizations represent signals and stationary localizations are used

to route the signals in the space; however, by allowing balls and mirrors to change

their states, in addition to velocity vectors, one can, in principle, build multivalued logic

circuits.

Classical examples of collision-based gates are shown in > Fig. 1. The interaction gate

involves two balls to represent values of variables x and y (> Fig. 1a). If two balls are present

at the input trajectories, this corresponds to both variables having TRUTH values that collide

and deflect as a result of collisions. The deflected trajectories of the balls represent conjunc-

tions of the input variables, xy. If only one ball—say the ball corresponding to the variable

x—is present initially, then this ball travels along its original trajectories and does not change

its velocity vector. The undisturbed trajectories of the balls represent logical functions xy and

xy (> Fig. 1a).

The switch gate (> Fig. 1b) is another famous example, which also demonstrates the role of

mirrors (stationary localizations). In the switch gate, the signal x is conditionally routed by a

control signal c. If the signal is not present, the ball x continues along its original trajectory

traveling southeast. The ball x is delayed and its trajectory shifts eastward if the signal c is

present in the system. After collision, balls x and c are reflected but their further propagation is

restricted by mirrors: the ball c collides with the Northern mirror and the ball x with the

Southern mirror (> Fig. 1b).

. Fig. 1

Basics of billiard ball model: Fredkin–Toffoli interaction gate (a) and switch gate (b). (From

Fredkin and Toffoli 1982.)

Collision-Based Computing 58 1953
3 Collision-Based Computing in Natural Systems

Those focused on implementation issues may wonder how a scheme of collision-based comput-

ing can be implemented in natural, chemical, physical, or biological materials. This section

provides two examples of computing with localizations in spatially extended quasi-chemical

(reaction–diffusion cellular automata) and excitable chemical (Belousov–Zhabotinsky reaction)

systems.
3.1 Computing Schemes in Reaction–Diffusion Cellular Automata:
Spiral Rule

The reaction–diffusion cellular automaton Spiral Rule (Adamatzky and Wuensche 2007)

exhibits a wide range of mobile and stationary localizations, thus offering unique opportu-

nities to employ both traveling and still patterns in a computation process.

An automaton is designed that emulates nonlinearity of activator (A) and inhibitor (I)

interaction for subthreshold concentrations of activator. The following quasi-chemical reac-

tion was used to construct cell-state transition rules (Adamatzky and Wuensche 2007):

Aþ 6S ! A Aþ I ! I Aþ 3I ! I

Aþ 2I ! S 2A ! I

3A ! A bA ! I

I ! S

For subthreshold concentration of the inhibitor and threshold concentrations of activator, the

activator is suppressed by the inhibitor. For critical concentrations of the inhibitor, both

inhibitor and activator dissociate, producing the substrate.

The quasi-chemical reactions are mapped to cellular automaton rules as follows. Take a

totalistic hexagonal cellular automaton (CA), where a cell takes three states – substrate S,

1954 58 Collision-Based Computing
activator A, and inhibitor I – and the cell updates its state depending on just the numbers of

different cell-states in its neighborhoods. The update rule can be written as follows:

xtþ1 ¼ f ðsIðxÞt ; sAðxÞt ; sSðxÞtÞ

where sp(x)
t is the number of cell x’s neighbors (in seven cells neighborhood) with cell-state

p 2 {I, A, S} at time step t. The rule is compactly represented as a matrix M = (Mij), where

0� i� j� 7, 0� i + j� 7, andMij 2 {I, A, S} (Adamatzky et al. 2006). The output state of each

neighborhood is given by the row-index i (the number of neighbors in cell-state I) and

column-index j (the number of neighbors in cell-state A). One does not have to count the

number of neighbors in cell-state S, because it is given by 7� ði þ jÞ. A cell with a neighbor-

hood represented by indices i and j will update to cell-state Mij, which can be read off the

matrix. In terms of the cell-state transition function, this can be presented as follows:

xtþ1 ¼ Ms2ðxÞts1ðxÞt . The exact structure of the transition matrix is as follows (Adamatzky

and Wuensche 2007):

M ¼

S A I A I I I I

S I I A I I I

S S I A I I

S I I A I

S S I A

S S I

S S

S

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

The entryM01 = A symbolizes the diffusion of activator A,M11 = I represents the suppression

of activator A by the inhibitor I, andMz2 = I (z = 0, . . . , 5) is the self-inhibition of the activator

in particular concentrations. Mz0 = S (z = 1, . . . , 7) means that the inhibitor is dissociated in

the absence of the activator, and that the activator does not diffuse in subthreshold concen-

trations; Mzp = I, p � 4 is an upper-threshold self-inhibition.

Starting in a random initial configuration, the automaton will evolve towards a quasi-

stationary configuration, with typically two types of stationary localizations, and a spiral

generator of mobile localizations, or gliders (> Fig. 2). The core of a glider-gun is a discrete

analog of a ‘‘classical’’ spiral wave. However, at some distance from the spiral wave tip, the wave

front becomes unstable and splits into localized wave fragments. The wave fragments continue

traveling along their originally determined trajectories and keep their shape and velocity vector

unchanged unless disturbed by other localizations. So, the wave fragments behave as in sub-

excitable Belousov–Zhabotinsky systems.

Basic gliders, those with one (activator) head, are found in five types (> Fig. 3), which vary

by the number of trailing inhibitors. Three types (G34, G24, G43) alternate between two forms.

Two types (G4, G5) have just one form. The spiral glider-gun in > Fig. 2 emits G34 gliders. An

alternative, low frequency, spiral glider-gun (Wuensche and Adamatzky 2006) (not shown)

releases G4 gliders. These basic gliders, and also a variety of more complicated gliders

including mobile glider-guns, are also generated by many other interactions. Stationary

localizations, or eaters (> Fig. 3i, j), are another important feature of the CA.

The principal components of any computing device are the input interface, memory,

routers, and logical gates. Readers are referred to the paper Adamatzky and Wuensche (2007)

to study possible input functions.

. Fig. 2

A typical quasi-stable configuration of the CA, which started its development in a random initial

configuration (with 1 ∕ 3 probability of each cell-state). Cell-state I (inhibitor) is shown by a

black disk, cell-state A (activator) by a circle, and cell-state S (substrate) by a dot. One can see

there are two types of stationary localizations (glider eaters) and a spiral glider-gun, which emits

six streams of gliders, with a frequency of a glider per six time steps in each glider stream. (From

Adamatzky and Wuensche 2007.)

Collision-Based Computing 58 1955
How does one implement a memory in the Spiral Rule CA? The eater E6 can play the role

of a 6-bit flip-flop memory device. The substrate-sites (bit-down) between inhibitor-sites

(> Fig. 3i, j) can be switched to an inhibitor-state (bit-up) by a colliding glider.

An example of writing one bit of information in E6 is shown in > Fig. 4. Initially E6 stores

no information. The aim is to write one bit in the substrate-site between the northern and

northwestern inhibitor-sites (> Fig. 4a). A glider G34 is generated (> Fig. 4b, c) that travels

west. G34 collides with (or brushes past) the north edge of E6 resulting in G34 being trans-

formed to a different type of glider, G4 (> Fig. 4g, h). There is now a record of the collision –

evidence that writing was successful. The structure of E6 now has one site (between the

northern and northwestern inhibitor-sites) changed to an inhibitor-state (> Fig. 4j) – a bit

was saved.

To read a bit from the E6 memory device with one bit-up (> Fig. 5a), one collides (or

brushes past) with glider G34 (> Fig. 5b). Following the collision, the glider G34 is transformed

into a different type of basic glider, G34 (> Fig. 5g), and the bit is erased (> Fig. 5j).

. Fig. 3

The basic localizations in a Spiral Rule automaton: gliders (a–g) and eaters (h–i). (a–g) Five types

of gliders, shown here traveling west, in the direction of their activator head (cell-state A), with a

tail of trailing inhibitors made up of several cell-states I. The glider designator Gab refers to

the numbers of trailing inhibitors. (a) and (b) Two forms of glider G34. (c) Glider G4. (d) Glider G5.

(e) and (f) Two forms of glider G24. (g) and (h) Two forms of glider G43. (i) Eater E3. (j) Eater E6.

(From Adamatzky and Wuensche 2007.)

. Fig. 4

Write bit. (a) t. (b) t þ 1. (c) t þ 2. (d) t þ 3. (e) t þ 4. (f) t þ 5. (g) t þ 6. (h) t þ 7. (i) t þ 8. (j) t þ 9.

(From Adamatzky and Wuensche 2007.)

1956 58 Collision-Based Computing
To route signals, one can potentially employ other gliders to act as mobile reflectors.
> Figure 6 shows how a glider traveling northwest collides with a glider traveling west, and is

reflected southwest as a result of the collision. However, both gliders are transformed to

different types of gliders. This is acceptable on condition that both types of gliders represent

the same signal, or signal modality.

. Fig. 5

Read and erase bit. (a) t. (b) t þ 5. (c) t þ 7. (d) t þ 8. (e) t þ 9. (f) t þ 10. (g) t þ 11. (h) t þ 12.

(i) t þ 13. (j) t þ 14. (From Adamatzky and Wuensche 2007.)

. Fig. 6

Glider reflection. (a) t. (b) t þ 1. (c) t þ 2. (d) t þ 3. (e) t þ 4. (f) t þ 5. (g) t þ 6. (h) t þ 7. (i) t þ 8.

(j) t þ 9. (From Adamatzky and Wuensche 2007.)

Collision-Based Computing 58 1957
There are two more gates that are useful in designing practical collision-based computa-

tional schemes. They are the FANOUT gate and the ERASE gate. The FANOUT gate is based on glider

multiplication. There are a few scenarios where one glider can be multiplied by another glider

(for details see the original beehive rule [Wuensche 2005]); for example, one can make a FANOUT

gate by colliding glider G34 with glider G24. The gliders almost annihilate as a result of the

collision, but recover into a complicated one, which splits into three G5 gliders. To annihilate

1958 58 Collision-Based Computing
a glider, one can collide it with the central body of an eater, or with another glider; for

example, head-on collisions usually lead to annihilation.

The asynchronous XOR gate can be constructed from the memory device in > Figs. 4

and > 5, employing the eater E6 and the glider G34. The incoming trajectory of the gliders is

an input x = hx, yi of the gate, and the state of the cell that is switched to the inhibitor state by

the gliders is an output z of the gate (this cell is shown by � in > Fig. 7a). As seen in > Fig. 4,

when glider G34 brushes by the eater E6 it ‘‘adds’’ one inhibitor state to the eater configuration

(> Fig. 4, t + 7), and transforms itself into glider G43. If glider G34 brushes by E6 with an

additional inhibitor state (> Fig. 5, t), it ‘‘removes’’ this additional state and transforms itself

into glider G4 (> Fig. 5, t + 11).

Assume that the presence of glider G34 symbolizes input logical TRUE and its absence –

input FALSE, inhibitor state I in cell � – output TRUE and substrate state S – output FALSE. The

result of this logical operation can be read directly from the configuration of E6 or by sending a

control glider to brush by E6 to detect how the glider is transformed. Then the structure

implements exclusive disjunction (> Fig. 7b). The gate constructed is asynchronous, because

the output of the operation does not depend on the time interval between the signals but only

on the value of signals: when the inhibitor state is added or removed from E6 the configuration

of E6 remains stable and does not change till another glider collides into it.

The eater E6 can take four different configurations resulting from the interactions of

gliders brushing past, and there are seven types of gliders produced in collisions with the

eater (including some basic types flipped). One therefore can envisage (Adamatzky and

Wuensche 2007) that a finite state machine can be implemented in the eater-glider system.

The internal state of such a machine is represented by the configuration of the eater, the type of

the incoming glider symbolizes the input symbol of the machine, and the type of the outgoing

glider represents the output state of the machine.

To construct the full state transition table of the eater-glider machine, seven types of gliders

are collided into four configurations of the eater and the results of the collisions are recorded.

For the sake of compact representation, the configurations of the eater are encoded as shown

in > Fig. 8. The gliders are denoted as follows: G34 as a, G43 as b, G5 as c, G4 as d, G24 as e, G
4

(glider G4 flipped horizontally) is f, and G43 (glider G43 flipped horizontally) is g. The state

transition table is shown in > Fig. 9.

Consider the internal states of the eater-glidermachine as unary operators on the set {a, b, c,

d, e, f, g}, that is, the machine’s state is reset to its initial state after the collision with the glider.

For example, the unary operator a implements the following transformation: a ! b, b ! c,
. Fig. 7

Asynchronous XOR gate. (a) Position of output cell is shown by �. (b) Operation implemented by

the gate, input state G34 is logical TRUE, output state S is FALSE, output state I is TRUE. (From

Adamatzky and Wuensche 2007.)

. Fig. 8

Encoding the internal states of the glider-eater machine in the configuration of eater E6. (a) a.

(b) b. (c) x. (d) d.

. Fig. 9

The state transition table of the eater-glider machine. Tuple xy, a pair made up of an eater

state x and glider state y, at the intersection of the ith row and jth column, signifies that being in

state i while receiving input j the machine takes state x and generates output y.

. Fig. 10

Limit sets of unary operators a, . . . , g.

Collision-Based Computing 58 1959
c! a, d! a, e! d, f! e, g! e. The operators have the following limit sets: operator a has
the limit set {a, b, c}, b – set {c}, w has two limit sets {a, d} and {b, c}, and operator d – two limit

sets {a, b, c, d} and {e, f}. Considering unary operators a, . . . , g operating on set {a, b, w, d}, one
obtains the limit sets shown in > Fig. 10. Many of the operators have more than two limit sets,

which may indicate a significant computational potential of the eater-glider machine.

To characterize the eater-glider machine in more detail, a study was conducted to find out

what output strings are generated by the machine when the machine receives the uniform

infinite string s∗, s 2 {a, . . . , g} on its input. These input string to output string transforma-

tions are shown in > Fig. 11.

Input string abcdefg evokes the following output strings when fed into the machine.

The machine starting in state a generates string begabac, in state b string dcgabac, in state

w string deccgae, and in state d string bcccgae.

. Fig. 11

Input string to output string transformations implemented by the eater-glider machine. String s,

at the intersection of the ith row and jth column, tells one that being initially in state i and

receiving a uniform string j, the machine generates string s.

1960 58 Collision-Based Computing
3.2 Collision-Based Computing in Excitable Chemical Media

This section gives a brief introduction to implementation of collision-based circuits in

excitable chemical media, the Belousov–Zhabotinsky (BZ) system. Examples discussed here

are based on numerical experiments; see the chapter >Reaction–Diffusion Computing of this

book for implementation of collision-based circuits in a BZ medium in chemical laboratory

conditions. Now, computing is discussed with localized wave fragments in the Oregonator

(Field and Noyes 1974; Tyson and Fife 1980) model adapted to a light-sensitive BZ reaction

with applied illumination (Beato and Engel 2003; Krug et al. 1990):

@u

@t
¼ 1

e
u � u2 � ðfv þ fÞ u � q

u þ q

� �
þ Dur2u; and

@v

@t
¼ u � v

where variables u and v represent local concentrations of bromous acid HBrO2 and the

oxidized form of the catalyst ruthenium Ru(III), e sets up a ratio of time scale of variables

u and v, q is a scaling parameter depending on reaction rates, f is a stoichiometric coefficient,

f is a light-induced bromide production rate proportional to the intensity of illumination (an

excitability parameter – moderate intensity of light will facilitate excitation process, higher

intensity will produce excessive quantities of bromide which suppresses the reaction). It is

assumed that the catalyst is immobilized in a thin layer of gel; therefore, there is no diffusion

term for v. To integrate the system, one uses the Euler method with five-node Laplacian

operator, time step Dt ¼ 10�3 and grid point spacing Dx = 0.15, with the following para-

meters: f ¼ f0 þ A=2, A = 0.0011109, f0 = 0.0766, e = 0.03, f = 1.4, q = 0.002.

The chosen parameters correspond to a region of ‘‘higher excitability of the sub-excit-

ability regime’’ outlined in Sendiña-Nadal et al. (2001), which supports propagation of

sustained wave fragments (> Fig. 12a). These wave fragments are used as quanta of informa-

tion in the design of CB logical circuits. The waves were initiated by locally disturbing initial

concentrations of species; for example, ten grid sites in a chain are given value u = 1.0 each.

This generates two or more localized wave fragments, similar to counter-propagating waves

induced by temporary illumination in experiments. The traveling wave fragments keep their

shape for around 4 � 103–104 steps of simulation (4–10 time units), then decrease in size and

vanish. The wave’s life-time is sufficient, however, to implement logical gates; this also allows

one not to worry about ‘‘garbage collection’’ in the computational medium.

http://dx.doi.org/10.1007/978-3-540-92910-9_56
http://dx.doi.org/10.1007/978-3-540-92910-9_56

. Fig. 12

Basic operations with signals. Overlay of images taken every 0.5 time units. Exciting domains of

impurities are shown in black, inhibiting domains of impurities are shown in gray. (a) Wave

fragment traveling north. (b) Signal branching without impurities: a wave fragment traveling

east splits into two wave fragments (traveling southeast and northeast) when it collides into a

smaller wave fragment traveling west. (c) Signal branching with impurity: wave fragment

traveling west is split by impurity (shown on the right) into two waves traveling northwest and

southwest. (d) Signal routing (U-turn) with impurities: wave fragment traveling east is routed

north and then west by two impurities (shown on the right). An impurity-reflector consists of

inhibitory (gray) and excitatory (black) chains of grid sites. (From Adamatzky 2004.)

Collision-Based Computing 58 1961
Signals aremodeled by traveling wave fragments (Sendiña-Nadal et al. 2001; Beato and Engel

2003): a sustainably propagating wave fragment (> Fig. 12a) represents the TRUE value of a

logical variable corresponding to the wave’s trajectory (momentarily wire). To demonstrate that a

physical system is logically universal, it is enough to implement negation and conjunction or

disjunction in the spatio-temporal dynamics of the system. To realize a fully functional logical

circuit, one must also know how to operate input and output signals in the system’s dynamics,

namely to implement signal branching and routing; delays can be realized via appropriate routing.

One can branch a signal using two techniques. Firstly, one can collide a smaller auxiliary

wave to a wave fragment representing the signal, the signal-wave will then split into two signals

(these daughter waves shrink slightly down to stable size and then travel with constant shape a

further 4 � 103 time steps of the simulation) and the auxiliary wave will annihilate (> Fig. 12b).

Secondly, one can temporarily and locally apply illumination impurities on a signal’s way to

change properties of the medium and thus cause the signal to split (> Fig. 12c).

A control impurity, or reflector, consists of a few segments of sites for which the illumina-

tion level is slightly above or below the overall illumination level of the medium. Combining

excitatory and inhibitory segments, one can precisely control the wave’s trajectory, for

example, determining a U-turn of a signal (> Fig. 12d).

1962 58 Collision-Based Computing
A typical billiard ball model interaction gate (Fredkin and Toffoli 1982; Margolus 1984)

has two inputs – x and y, and four outputs – xy (ball x moves undisturbed in the absence of

ball y), xy (ball y moves undisturbed in the absence of ball x), and twice xy (balls x and y

change their trajectories when they collide into each other). It was not possible to make wave

fragments implement exact billiard-ball gates, because the interacting waves either fused or

one of the waves was annihilated as a result of the collision with another wave.

However, a BZ (nonconservative) version of a billiard-ball gate with two inputs and three

outputs is implemented, which is just one xy output instead of two. This BZ collision gate is

shown in > Fig. 13.

The rich dynamic of the BZ medium allows one to also implement complicated logical

operations just in a single interaction event. An example of a composite gate with three inputs

and six outputs is shown in > Fig. 14. As one sees in > Fig. 14, some outputs, for example xyz,

are represented by gradually vanishing wave fragments. The situation can be dealt with by

either using a very compact architecture of the logical gates or by installing temporary

amplifiers made from excitatory fragments of illumination impurities.

As known from results of computer simulations and experimental studies, classical

excitation waves merge or annihilate when they collide with one another. This may complicate

the implementation of nontrivial logical circuits in classical excitable media. Wave fragments,

however, behave a bit differently, more like quasi-particles.

In computational experiments with exhaustive analysis of all possible collisions between

localized wave fragments (Adamatzky and De Lacy Costello 2007), all the collisions are

classified as (> Fig. 15): quasi-elastic reflection of wave fragments (> Fig. 15a), pulling

and pushing of a wave fragment by another wave fragment (> Fig. 15b, c), sliding of one

wave fragment along the refractory trail of another fragment (> Fig. 15d), and translation of a

wave fragment along one axis by another wave fragment (> Fig. 15e). Examples of two types of

collision are shown in > Fig. 16.
4 One-Dimensional Cellular Automata

This section deals with cellular automata in general and discrete signals in particular. It is

shown both how they compute in the classical understanding and how they can be used to
. Fig. 13

Two wave fragments undergo angle collision and implement interaction gate

hx; yi ! hxy; xy; xyi. (a) In this example x = 1 and y = 1, both wave fragments are present initially.

Overlay of images taken every 0.5 time units. (b) Scheme of the gate. In upper left and bottom

left corners of (a) one sees domains of wave generation, two echo wave fragments are also

generated, they travel outward from the gate area and thus do not interfere with computation.

(From Adamatzky 2004.)

. Fig. 14

Implementation of hx; y; zi ! hxy; yz; xyz; xyz; xyz; xyzi interaction gate. Overlay of images of

wave fragments taken every 0.5 time units. The following combinations of input configuration are

shown: (a) x = 1, y = 1, z = 0, north–south wave collides with east–west wave. (b) x = 1, y = 1, z = 1,

north–south wave collides with east–west wave, and with west–east wave. (c) x = 1, y = 0, z = 1,

west–east and east–west wave fragments pass near each other without interaction. (d) x = 0,

y = 1, z = 1, north–south wave collides with east–west wave. (e) Scheme of the gate. (From

Adamatzky 2004.)

Collision-Based Computing 58 1963
implement some phenomena relevant to massively distributed computing but without any

sequential counterpart.

Cellular automata (CA) were introduced as a discrete model for parallel, local, and

uniform phenomena, whether of engineering, physical, or biological nature. They often

provide a medium where signals naturally appear and are thoroughly used to understand

the global dynamics. On the other hand, a correct handling of such signals is the key to

compute and to design special purpose CA.

A cellular automaton works in the following way. The space is regularly partitioned in cells.

All the cells are identical and are regularly displayed as an infinite array (having as many

. Fig. 15

Schematic representation of interaction between wave-fragments. (a) Reflection. (b) Attraction.

(c) Repulsion. (d) Sliding. (e) Shifting-sliding. (From Adamatzky and De Lacy Costello 2007.)

. Fig. 16

(a–d) Sliding: snapshots of wave fragment moving southwest colliding with wave fragment

traveling southeast. Center of the initial excitation of the southwest wave fragment is shifted

southwards by 22 sites. (From Adamatzky and De Lacy Costello 2007.) (e–h) Slide-shift: snapshots

of wave fragment moving southeast colliding with wave fragment traveling west.

1964 58 Collision-Based Computing
dimensions as the modeled space). Each cell can be in finitely many states and evolves

according to its state and the states of the surrounding cells – locality. All the cells are identical

and behave similarly – uniformity. The cells are all updated synchronously, like a massive

parallel process sharing a single clock. In essence, CA form a discrete model: discrete time,

discrete space, and discrete values.

Generally, the array is considered to extend infinitely in all directions so that there are no

boundaries to deal with. However, borders can be encoded using special states which are never

changed and make the two sides independent. Another way to simulate a CA on a computer is

to consider that outside of a finite range all cells are in the same stable state (called a quiescent

state). Finite/periodic configuration can also be generated by displaying the cells to be on a

ring (or torus): the last and first are then neighbors.

Collision-Based Computing 58 1965
Previous collision-based systems are CA, or, more accurately, are simulated by CA, some of

them work on hexagonal lattices. Computation in dimension 2 and above can be done

straightforwardly as already presented by bit encoding and implementation of logic gates.

From now on only one-dimensional space is considered because, on the one hand, in

higher dimensions it can – up to some point – be treated alike or correspond to what has been

exemplified in previous sections, and, because, on the other hand, dimension 1 is particularly

restrictive and needs special focus.

The reader interested in CAmight consult Ilachinski (2001), Kari (2005), Sarkar (2000) for

various topics not covered here.
4.1 Signals in CA

In space–time diagrams, or orbits, configurations are concatenated as iterations go. They are

very important in order to comprehend the dynamics. Since the temporal coordinate is added,

this leads to an array with one more dimension than the underlying space.

A signal is anything periodic in the space–time diagram. If the periodicity is in two

directions, then it can fill the whole space–time and is referred as a background, the substrata

upon which signals move. The frontier between two backgrounds is a signal as long as it is

periodic. > Figure 17 provides an example with a complex background (alternatively 0111,

1000, 1101, and 0010 repeating) on the left. On the right, signals are revealed by an ad hoc

filtering. This example illustrates the variety in width and pattern of signals. As can be seen,

collisions between signals can be pretty complicated.
4.2 Computing in One-Dimensional Systems

In dimension two and above, as soon as it is possible to carry information around (with signal),

to make information crossing and duplication, and to process it (with collision) in the proper

way to yield a sufficiently large set of logical gates, computation is straightforwardly possible.
. Fig. 17

Filtering to exhibit signals and backgrounds on rule 54 (inspired from Boccara et al. 1991,

Fig. 7). Time is increasing upwards.

1966 58 Collision-Based Computing
In dimension 1, this is not so easy, because there is no way for a signal to go around

another one or some static artifact. This means that signal propagation is really an issue and,

for example, handling garbage signals can be cumbersome. One way to cope with it is to have

various kinds of signals not identically affected by artifacts (some would pass unaffected while

others interact).

This means that to use the bits and gates scheme, one has to be very careful with available

signals and have a very clever positioning of the logic circuitry, which is always thought of as

two dimensional (time often provides the extra dimension for displaying it). For example, the

construction of Ollinger (2002) provides a small CA that is able to compute with circuit

implementation where displaying the circuit is not straightforward.

Another way to tackle computation is to use other formalisms. One classical way is to go

back to Turing machines, another one is to implement minimal rewriting systems like cyclic

tag systems.
4.2.1 Turing Machine

A Turing machine is a finite automaton acting on a potentially infinite array of symbols. The

computation starts with the automaton in its initial state and the input written on the tape.

The tape is accessed through a read/write head. At each iteration, the automaton reads the

symbol under the head, rewrites a symbol, changes its state, and moves the head left or right.

A Turing machine is basically as one dimensional as its tape, so that it naturally fits on a

one-dimensional CA.

The simulation is rather simple: signals encoding the symbols are motionless and one

signal amounting to the state of the automaton is moving round updating the symbols.

Collisions are as follows: a moving state meets a stationary symbol, which leaves a new

stationary symbol and a moving new state. (> Figure 24 in the next section provides a clear

illustration of this in a continuous setting.) This was implemented by, for example, Lindgren

and Nordahl (1990).
4.2.2 Cyclic Tag Systems (CTS)

Another way to define computation is to rely on a word that is rewritten until the system halts.

The input is given as the starting word and the output is the final word. Connexion with a

Turing machine is straightforward when considering the tape as a finite word and the state of

the automaton as an extra symbol at the head.

Cyclic tag systems (CTS) is a particular case of many Turing-universal rewriting systems.

A CTS considers a binary word together with a circular list of binary words (appendants).

At each iteration, the first bit is removed from the word; if it is 1, then the first appendant of

the list is added at the end of the word, then the list is rotated. The computation stops

when the word is empty or a special halting word (denoted h in the example) is activated.

An example is provided in > Fig. 18.

Cyclic tag systems were proven to be able to perform any computation (Cook 2004)

and even to do so in polynomial time (Woods and Neary 2006) and were used to build very

small universal Turing machines (Neary and Woods 2009). They have been implemented in

one-dimensional CA with collision/signal-based computing by Cook (2004) to produce

. Fig. 18

Example of computation of a CTS (given on the first line).

Collision-Based Computing 58 1967
computation universal CA with only two states (it is impossible to compute with less). The

construction relies on signals moving and colliding that are sought and classified in order to

work on a more abstract level.

As far as minimal CA are concerned, it is worth mentioning that four states are enough to

get a one-dimensional CA, which is able to simulate any other one-dimensional CA (Richard

and Ollinger 2008). This is not Turing universality since the simulation encompasses infinite

configurations.
4.3 Signal-Specific Issues

Since CA form a model for physical phenomena and also for parallel computing architectures,

other issues arise. One is to understand the underlying dynamics when used as a discrete

model. The other is to design CA for special purposes.
4.3.1 Signals to Understand Dynamics

Once a simulation is running as a CA, one common way to understand the dynamics is to try

to find regularities in the space–time diagram and observe them. They are often the key to the

underlying dynamics and predictions. (Although it might happen that what is observed is

nothing but an artifact of the model and has no counterpart in reality.) This is made clear by

considering two examples.

The first one models sand dripping in a one-dimensional space. The dynamics are quite

simple: there is nothing in the initial configuration and at each iteration one grain is added

to the first pile/cell. Each time a pile has at least two more grains than the next one, a grain falls.

If only grains dropping at odd time are colored in black, then their position is as in
> Fig. 19a after 10,000 iterations and only the top grains will ever move. This strange disposal,

as well as the two different slopes and precise long-term behavior, are explained by signals

(Durand-Lose 1996, 1998). These signals can be identified on > Fig. 19b where the successive

configurations (iteration 100–150) are set one after the other to form a volume. On this

volume, triangles can be seen on the lower (as well as the upper parts), with their frontiers as

signals (which can be revealed with an appropriate filtering).

Another example is provided by Das et al. (1995). The aim is to generate a CA with two

states and a five-closest-cell neighborhood, such that, on a ring of any size, whatever configu-

ration it is started on it always ends up blinking: all cells are 0 then all cells are 1, alternatively,

forever. Instead of trying to build it straightaway, evolutionary programming is used: random

. Fig. 19

One-dimensional sand dripping. (a) Dotting even grains (Durand-Lose 1996, Fig. 6) at iteration

10,000. (b) Successive configurations (Durand-Lose 1996, Fig. 3).

1968 58 Collision-Based Computing
CA are generated; they are ranked according to their ‘‘blinking capability’’; then the best are

kept, recombined and mutated to form the next generation. It then cycles through ranking and

the next generation until one ‘‘fully blinking’’ CA emerges.

The obtained CA is analyzed in terms of signal (again with some filtering), as illustrated in
> Fig. 20. (The apparent non-connectivity of some signals comes from the filtering and also

because cells can influence one another up to distance 2.) The evolutionary process goes in

steps where various intermediate levels of ‘‘blinking’’ appear. Analyzing typical members of

each level reveals the progressive apparition of signals and collision rules.

It is very important to notice how, in a context where signals were not asked for by the

evolutionary process, they indeed appear and are the key to both the desired dynamics and the

evolutionary process.

The previous example does not compute in the classical understanding; nevertheless, it

provides a relevant dynamical global property.
4.3.2 Signals to Generate a Particular Behavior

Computing, in the usual understanding, is a special behavior. But CA can also be thought of as

a computing model on its own. Then primitives can be specially defined to take advantage of

the huge parallelism. Signals are the key to managing it.

As already cited, the pioneering work of Fischer (1965) generates prime numbers using a

parallel implementation of the Sieve of Eratosthenes where they are indicated as no signal on

the first cell at the corresponding times. Prime numbers can then be read on the space–time

diagram by observing the state of the first cell.

. Fig. 20

Figure and filtering to highlight signals and analyze (from Das et al. 1995, Fig. 1). Time is

increasing downward. (a) Space–time diagram. (b) Filtered space–time diagram.

Collision-Based Computing 58 1969
Another complex behavior is the famous firing squad synchronization problem (FSS).

Starting from all but one cell in a quiescent state, one wants all the cells to enter simultaneously

the same state – which has not been used before. Like if they would all blink for the very first

time synchronously.

Each example of > Fig. 21 shows the Euclidean conception and then the discrete imple-

mentation of a FSS solution. Both constructions rely on recursive cuts in half. In the discrete

implementation, at some point, the granularity of space – a cell cannot be divided – is reached.

Since CA are synchronous, this point is reached simultaneously everywhere, ensuring the

global synchronization of the entire array of cells.
4.3.3 Signals as a Computational Model on Its Own

Mazoyer et al. developed a computing model where multiplication (as in > Fig. 22a),

composition (as in > Fig. 22b), and even iteration are graphically achieved. The programming

system is achieved by using a trellis of adaptable size that can be dynamically generated. The

computation is carried out over the trellis. Composition is then achieved by having the next

computation displayed on a new trellis. Recursion is provided by a scheme that dynamically

starts another iteration providing each time an adapted trellis.
5 Abstract Geometrical Computation

Abstract geometrical computation (AGC) is an idealization of collision-based computing

where particles/signals are dimensionless (time and space are continuous). Although the

number of signals in a bounded space is expected to be finite, it is unbounded. Another way

. Fig. 21

FSS implementations. (a) Divide and conquer in 3n-steps (Yunès 2007a, Fig. 2.3).

(b) Eight-states and 4n-steps (Yunès 2007b, Fig. 1).

1970 58 Collision-Based Computing
to consider AGC is as a continuous counterpart of CA as a limit when the size of the cells tends

to zero. In CA, signals are almost always the key to understanding and designing, and, indeed,

in the literature, the discreteness of CA and of their signals is often put aside to reason at a

more abstract level and is left to technical details.

In abstract geometrical computation, dimensionless signals move at constant speed. When

they meet, they are replaced by others according to some rewriting rules. A signal machine

(SM) gathers the definition of the nature of available signals (calledmeta-signals), their speeds,

and the collision rules. There are finitely many meta-signals and each one is assigned a

constant speed (velocity and direction). The constant speed may seem surprising, but each

discrete CA signal has indeed a constant speed.

The space–time diagrams generated are continuous in both space and time and the traces

of signals form line segments. For a given meta-signal, all these segments are parallel. In this

section, only one-dimensional AGC are considered, so that the space–time diagram is always

two dimensional with time increasing upwards as illustrated by > Fig. 23.

Space–time diagrams can be much more complicated and, as presented below, use conti-

nuity to implement the Zeno paradox and emulate the black hole model of computation.
5.1 Computing

Computing, in the classical understanding, is pretty easy. In fact, many constructions for

CA directly translate to ACG and are even easier, since discreteness does not have to be taken

. Fig. 22

Mazoyer’s system. Time is increasing upwards. (a) Multiplication (Mazoyer 1996, Fig. 4).

(b) Composition of multiplications (Mazoyer 1996, Fig. 8).

cells

Time

0

1

*
*

1

0

1

1

0

0
1

1

1

0

Bit 1 of the
multiplier

Bit 0 of the
multiplier

Bit 1 of the
multiplicand

Bit 0 of the
multiplicand

0, 1 Bits of the
multiplier

0, 1 Bits of the
multiplicand

* End of words*

0

1

0

0

0

1

0

1

0

0

1

*

0

0,1,* Bits of the
result

Bits 1 in transit through
the network

Bits 0 in transit through
the network

0

1

1

0

1

0

*

1

1

0

0

1

1

*

<

0

1

0

0

0

1

1

0

0

0

1

0

*

0

0

1

0

0

0

0

0

1

0

1

Bits 0 in transit
through the
network

Bits 1 in transit
through the
network

Limits of a
computation

Bits 1 of the
multiplier

Bits 0 of the
multiplier

Bits 1 of the
multiplicand

Bits 0 of the
multiplicand

Bit "end " of
the multiplier

Bit "end" of
the multiplicand

a b

. Fig. 23

Example of a space–time diagram.

Collision-Based Computing 58 1971
into account. Two ways to achieve computability are presented: Turing machines and cyclic

tag systems.

For Turing machines (as presented in > Sect. 4.2.1), the implementation is quite straight-

forward: static signals encode the tape – one signal per symbol – and one signal encodes the

state of the automaton and the position of the head. The latter moves forth and back from

symbol to symbol as the read/write head. This is depicted in > Fig. 24. The construction is

detailed in Durand-Lose (2009).

. Fig. 24

Simulating a Turing machine. (a) TM evolution. (b) TM simulation.

1972 58 Collision-Based Computing
Cyclic tag systems are presented in > Sect. 4.2.2. The simulation is done by encoding, left

to right, the word and then the circular list of appendants by parallel signals encoding the bits

as shown in > Fig. 25a. At each iteration, the list is rotated to the right, but before that, if the

erased bit of the word is 1, a copy is left. The copy is directly added at the right of the word as in
> Fig. 25b, which presents one full iteration. The full simulation of the example of > Fig. 18 is

given in > Fig. 25c. The rightward drifting corresponds to the erasure of the word from the left

and to the rightward rotation of the list. Each group of oblique lines corresponds to one

rotation of the list.

This simulation is detailed in Durand-Lose (2008a). The signal machine obtained is able to

simulate any CTS, and is thus Turing universal. It is the smallest one known (it has only 13

meta-signals).
5.2 Geometric Primitives

As for CA, AGC can also be considered as a model on its own, with particular operators, which

might not have any classical computation counterpart (like FSS) or discrete counterpart.

All the following constructions involve adding meta-signals and rules to a given SM, so

that the desire capability exists. Signals have to be added to the initial configuration in order to

fire the effect. Rules can also be modified in order to dynamically fire it.

Space and time are continuous and scaleless, and since signals have no dimension, there is no

limit on the scalability. If all signals are scaled spatially by a given coefficient, the whole computa-

tion is also scaled temporally. So, the duration of a computation is meaningless and complexity

measures, such as the maximal number of collisions, with a causal link, have to be used.

Spatial rescaling of the initial configuration is a static operation. It is also possible to do it

during the computation. The construction relies on the ability to freeze a configuration.

. Fig. 25

Simulating a cyclic tag system. (a) Initial configuration on 101 and 011 :: 10 :: 10 :: 01. (b) Initial

configuration and first iteration on 101 and 011 :: 10 :: 10 :: 01. (c) Full simulation on 101 & 011 ::

h :: 0110 :: 01011.

Collision-Based Computing 58 1973
Freezing a computation is quite simple. One signal is added on one side and it crosses the

entire configuration. Doing so, each time it meets a signal (or enters a previously existing

collision), it replaces it with another signal encoding the meta-signal. All the encoding signals

have the same speed: they are parallel and do not interact and, moreover, the distance between

them is preserved. The configuration is frozen and shifts. To unfreeze it, a signal comes from

the side, crosses the configuration, and replaces each encoding signal by the encoded one

(or the result of the collision). Freezing and unfreezing signals must have the same speed so

that the configuration is restored exactly as it was, up to a translation. (And indeed they

correspond to the same meta-signal toggle.) This is depicted in > Fig. 26.

Meanwhile, when a configuration is frozen into parallel signals, it is possible to act on these

signals. One simple trick is to change their direction. In > Fig. 27a, this is done twice so as to

restore the original direction. (An extra signal is used on the right to delete the structure.) As a

result, since different slopes are used to change direction, the distances between signals are scaled

(here by one half). Adding freezing and unfreezing signals (automatically fired in due time), an

artifact, to scale down a whole configuration, is generated as can be seen on the > Fig. 27c.

The initial configuration has been modified in order to start straightaway the effect. It is

also possible to fire it dynamically during the computation when some special collision

happens. This is used to iterate it.

. Fig. 26

Freezing and unfreezing. (a) Normal computation. (b) Translated computation. (c) Example.

. Fig. 27

Scaling. (a) Principle. (b) Scaled computation. (c) Example.

1974 58 Collision-Based Computing
5.3 Infinite Acceleration and Non-recursive Function

Scaling can be automatically restarted ad infinitum; since both space and time are continuous,

this is not a problem – at least before the singularity. In > Fig. 28, a computation producing an

infinite trellis, extending indefinitely in both space and time, is folded into the structure. The

right signal and the middle one are very important since the folded computations should be

bounded in order to ensure that it is fully scaled.

A singularity refers to an accumulation of infinitely many collisions and signals to a given

location. > Figure 28a shows that the structure alone already creates a singularity. This

illustrates the Zeno paradox. The leftmost signals of > Fig. 28a form an infinite sequence

with infinitely (yet countably) many collisions, although the time elapsed as well as the total

distance crossed by signals is finite.

All the signals and collisions that would have existed if there would have been no folding

indeed exist, but in a bounded portion of the space and time diagram. (The equivalence of

the plane and a bounded part is somehow implemented.) So that up to the presence of the

structure and of the frozen parts and the different scales, the computation is the same.

Collision-Based Computing 58 1975
Any computation starting with finitely many signals can be folded. Inside the structure, the

rescaling provides speedup (the closer they are, the faster they collide). This speedup is

unbounded and goes to infinity. Inside the structure there is a space–time where time-lines

are infinitely accelerated compared to the outside. This is the first step to emulate the black-

hole model of computation (Hogarth 1994; Etesi and Németi 2002; Lloyd and Ng 2004).

The second step is to find a way for an atomic piece of information to leave the black hole,

here the singularity. One meta-signal can be added and rules changed so that the new meta-

signal is not affected by the structure but can be generated by the initial computation.

The final step is to add bounding signals on both sides of the folding (called here

horizonLe and horizonRi). At their collision point, the folded computation is entirely in the

causal past as displayed in > Fig. 29. Any signal leaving the folding would have been collected.

This way the black-hole model is emulated: there are two time-lines, one for the machine

and one for the observer. The machine one is infinite. On the observer one, after a finite

duration, the whole machine one is entirely in the causal past. A single piece of information

can be sent by the machine to the observer and it has to be sent after a finite (machine)

duration. The ultimate date for the observer to receive anything from the machine is finite and

known. To understand the power of this model, just imagine that the machine only sends a

signal if its computation ends. The observer receives a signal only if it stops and after a

duration the observer is aware that any signal sent would have been received. So, by just
. Fig. 28

Folding or infinite rescaling. (a) Folding structure. (b) Example.

. Fig. 29

Framing the folding to collect all signals exiting the folding.

1976 58 Collision-Based Computing
checking its clock, the observer knows that the computation did not halt when it is the case.

Altogether, the halting problem (whose undecidability is the cornerstone of Turing comput-

ability theory) is decidable!

This model, as well as AGC, clearly computes beyond Turing. In formal term, it can decide

S0
1 formulae in the arithmetical hierarchy, which is a recursive/computable predicate prefixed

by an existential quantifier. This includes, for example, the consistency of Peano arithmetic

and set theory, many conjectures such as the Collatz conjecture and Goldbach’s conjecture.

Defining what happens at the singularity point is not easy, especially since the accumulat-

ing set can be a line segment, a fractal curve or even a Cantor! (To understand this, take a

continuous look at the FSS: what would happen at the bottom of > Fig. 21?) For singularity

on a single point, a careful continuation has been proposed in Durand-Lose (2009) that allows

us to climb the arithmetical hierarchy. There is also another use of isolated singularity as a way

to provide limits for analog computation.
5.4 Analog Computation

Unlike collision-based computing and CA, with dimensionless signals in a continuous space, it is

possible to encode real numbers as the distance between signals. In the AGC context, this distance

is exact—that is, it is a real number in exact precision. As long as signals are parallel, this distance

is preserved. This allows one to encode real numbers and tomake some computations over them.

Since any real number can be encoded exactly, the model ipso facto falls out of classical

computability (because of cardinalities, there is no way to encode all the reals with natural

numbers or finite strings). Therefore, an analog model of computation has to be searched for.

With this encoding of real numbers, AGC is equivalent to the linear Blum–Shub–Smale

model (BSS) (Blum et al. 1998). In the linear BSS model, variables hold (exact) real numbers

and the operations available are addition, multiplication by a constant and branch, according

to the sign of a variable. This equivalence is true as long as the BSS machine has an unbounded

number of variables (accessed through a context shift like moving a window over an infinite

array of variables), there are finite signals and there is no singularity (Durand-Lose 2007).

If singularities are used in a proper way, it becomes possible to multiply two variables.

Then the classical BSS model can be implemented in AGC (Durand-Lose 2008b). The

simulation is not possible in the other way anymore since, for example, the exact square

rooting can also be computed by AGC.

Just as in the discrete case, a proper handling of isolated singularities of any order can be

used to decide quantified (over natural but not real numbers) predicates in the BSS model and

climb the BSS-arithmetical hierarchy (Durand-Lose 2009).
References
Adamatzky A (ed) (2002a) Collision-based computing.

Springer, London

Adamatzky A (ed) (2002b) Novel materials for collision-

based computing. Springer, Berlin

Adamatzky A (2004) Collision-based computing in

Belousov–Zhabotinsky medium. Chaos Soliton

Fract 21:1259–1264
Adamatzky A, De Lacy Costello B (2007) Binary colli-

sions between wave-fragments in sub-excitable

Belousov–Zhabotinsky medium. Chaos Soliton

Fract 34:307–315

Adamatzky A, Wuensche A (2007) Computing in spiral

rule reaction-diffusion hexagonal cellular automa-

ton. Complex Syst 16(4):277–298

Collision-Based Computing 58 1977
Adamatzky A, Wuensche A, De Lacy Costello B (2006)

Glider-based computation in reaction-diffusion

hexagonal cellular automata. Chaos Soliton Fract

27:287–295

Anastassiou C, Fleischer JW, Carmon T, Segev M,

Steiglitz K (2001) Information transfer via

cascaded collisions of vector solitons. Optics Lett

26:1498–1500

Atrubin AJ (1965) A one-dimensional real-time iterative

multiplier. IEEE Trans Electron Computers EC-14

(1):394–399

Banks E (1971) Information and transmission in cellular

automata. Ph.D Dissertation, MIT, cited by Toffoli

and Margolus (1987)

Beato V, Engel H (2003) Pulse propagation in a model

for the photosensitive Belousov-Zhabotinsky reac-

tion with external noise. In: Schimansky-Geier L,

Abbott D, Neiman A, van den Broeck C (eds)

Noise in complex systems and stochastic dynamics.

Proceedings of SPIE, 2003

Berlekamp ER, Conway JH, Guy RL (1982) Winning

ways for your mathematical plays, vol 2 Games in

particular. Academic, London

Blum L, Cucker F, Shub M, Smale S (1998) Complexity

and real computation. Springer, New York

Boccara N, Nasser J, Roger M (1991) Particle-like

structures and interactions in spatio-temporal

patterns generated by one-dimensional determin-

istic cellular automaton rules. Phys Rev A 44(2):

866–875

Cook M (2004) Universality in elementary cellular auto-

mata. Complex Syst 15:1–40

Das R, Crutchfield JP, Mitchell M, Hanson JE (1995)

Evolving globally synchronized cellular automata.

In: Eshelman LJ (ed) International conference on

genetic algorithms ’95. Morgan Kaufmann, San

Mateo, CA, pp 336–343

Delorme M, Mazoyer J (2002) Signals on cellular auto-

mata. In: Adamatzky A (ed) Collision-based com-

puting. Springer, Berlin, pp 234–275

Durand-Lose J (1996) Grain sorting in the one dimen-

sional sand pile model. Complex Syst 10(3):195–206

Durand-Lose J (1998) Parallel transient time of one-

dimensional sand pile. Theoret Comp Sci 205

(1–2):183–193

Durand-Lose J (2007) Abstract geometrical computation

and the linear Blum, Shub and Smale model. In:

Cooper S, Löwe B, Sorbi A (eds) Computation and

logic in the real world. 3rd Conference Computabil-

ity in Europe (CiE ’07). Springer, no. 4497 in LNCS,

pp 238–247

Durand-Lose J (2008a) Abstract geometrical computa-

tion: small Turing universal signal machines. In:

Neary T, Seda A, Woods D (eds) International work-

shop on the complexity of simple programs. Cork

University Press, Cork, Ireland, December 6–7
Durand-Lose J (2008b) Abstract geometrical computation

with accumulations: beyond the Blum, Shub and

Smale model. In: Beckmann A, Dimitracopoulos C,

Löwe B (eds) Logic and theory of algorithms. CiE 2008

(abstracts and extended abstracts of unpublished

papers). University of Athens, Athens, pp 107–116

Durand-Lose J (2009) Abstract geometrical computation

3: Black holes for classical and analog computing.

Nat Comput 8(3):455–472

Etesi G, Németi I (2002) Non-Turing computations via

Malament-Hogarth space-times. Int J Theor Phys 41

(2):341–370, gr-qc/0104023

Field RJ, Noyes RM (1974) Oscillations in chemical sys-

tems. iv. limit cycle behavior in a model of a real

chemical reaction. J Chem Phys 60:1877–1884

Fischer PC (1965) Generation of primes by a one-

dimensional real-time iterative array. J ACM

12(3):388–394

Fredkin EF, Toffoli T (1982) Conservative logic. Int

J Theor Phys 21(3/4)219–253

Fredkin EF, Toffoli T (2002)Design principles for achieving

high-performance submicron digital technologies.

In: Adamatzky A (ed) Collision-based computing.

Springer, Berlin, pp 27–46

Hogarth ML (1994) Non-Turing computers and non-

Turing computability. In: Hull D, Forbens M,

Burian RM (eds) Biennial meeting of the philosophy

of science association. East Lansing, MI, pp 126–138

Ilachinski A (2001) Cellular automata – a discrete uni-

verse. World Scientific, Singapore

Jakubowski MH, Steiglitz K, Squier RK (1996) When can

solitons compute? Complex Syst 10(1):1–21

Jakubowski MH, Steiglitz K, Squier RK (2001) Comput-

ing with solitons: a review and prospectus. Multiple

Valued Logic 6(5–6):439–462

Kari J (2005) Theory of cellular automata: a survey.

Theoret Comp Sci 334:3–33

Krug HJ, Pohlmann L, Kuhnert L (1990) Analysis of

the modified complete oregonator (MCO) account-

ing for oxygen- and photosensitivity of Belousov-

Zhabotinsky systems. J Phys Chem 94:4862–4866

Lindgren K, Nordahl MG (1990) Universal computation

in simple one-dimensional cellular automata. Com-

plex Syst 4:299–318

Lloyd S, Ng YJ (2004) Black hole computers. Sci Am 291

(5):31–39

Margolus N (1984) Physics-like models of computation.

Phys D 10:81–95

Mazoyer J (1996) Computations on one dimensional

cellular automata. Ann Math Artif Intell 16:

285–309

Neary T, Woods D (2009) Four fast universal Turing

machines. Fundam Inform 410(4):443–450

Ollinger N (2002) The quest for small universal cellular

automata. In: ICALP ’02, Springer, Heidelberg,

no. 2380 in LNCS, pp 318–329

1978 58 Collision-Based Computing
Rand D, Steiglitz K (2009) Computing with solitons. In:

Meyers RA (ed) Encyclopedia of complexity and

systems science. Springer, Heidelberg

Rand D, Steiglitz K, Prucnal P (2005) Signal standardiza-

tion in collision-based soliton computing. Int

J Unconvent Comput 1:31–45

Rendell P (2002) Turing universality of the game of life.

In: Adamatzky A (ed) Collision-based computing.

Springer, Berlin, pp 513–540

Rennard JP (2002) Implementation of logical functions

in the game of life. In: Adamatzky A (ed) Collision-

based computing. Springer, London, pp 491–512

Richard G, Ollinger N (2008) A particular universal

cellular automaton. In: Neary T, Woods D, Seda

AK, Murphy N (eds) The complexity of simple

programs. National University of Ireland, Cork

Sarkar P (2000) A brief history of cellular automata.

ACM Comput Surv 32(1):80–107

Sendiña-Nadal I, Mihaliuk E, Wang J, Pérez-Muñuzuri V,

Showalter K (2001) Wave propagation in subexcita-

ble media with periodically modulated excitability.

Phys Rev Lett 86:1646–1649

Steiglitz K (2001) Time-gatedManakov spatial solitons are

computationally universal. Phys Rev E 63:1660–1668

Toffoli T, Margolus N (1987) Cellular automata machine -

a new environment for modeling. MIT Press,

Cambridge, MA
Tyson JJ, Fife PC (1980) Target patterns in a realistic

model of the Belousov-Zhabotinsky reaction.

J Chem Phys 73:2224–2237

Waksman A (1966) An optimum solution to the firing

squad synchronization problem. Inform Control

9(1):66–78

Woods D, Neary T (2006) On the time complexity of

2-tag systems and small universal Turing machines.

In: 47th Annual IEEE Symposium on Foundations

of Computer Science (FOCS ’06), IEEE Computer

Society, Berkeley, CA, pp 439–448

Wuensche A (2005) Glider dynamics in 3-value hexago-

nal cellular automata: the beehive rule. Int J Uncon-

ventional Comput 1:375–398

Wuensche A, Adamatzky A (2006) On spiral glider-

guns in hexagonal cellular automata: activator-

inhibitor paradigm. Int J Modern Phys C 17(7):

1009–1026

Yunès JB (2007a) Automates cellulaires; fonctions boo-

léennes. Habilitation à diriger des recherches, Uni-

versité Paris 7

Yunès JB (2007b) Simple new algorithms which

solve the firing squad synchronization problem: a

7-states 4n-steps solution. In: Durand-Lose J,

Margenstern M (eds) Machine, Computations and

Universality (MCU ’07). Springer, Berlin, no. 4664

in LNCS, pp 316–324

	Collision-Based Computing
	1 Introduction
	2 Principles of Collision-Based Computing
	3 Collision-Based Computing in Natural Systems
	3.1 Computing Schemes in Reaction-Diffusion Cellular Automata: Spiral Rule
	3.2 Collision-Based Computing in Excitable Chemical Media

	4 One-Dimensional Cellular Automata
	4.1 Signals in CA
	4.2 Computing in One-Dimensional Systems
	4.2.1 Turing Machine
	4.2.2 Cyclic Tag Systems (CTS)

	4.3 Signal-Specific Issues
	4.3.1 Signals to Understand Dynamics
	4.3.2 Signals to Generate a Particular Behavior
	4.3.3 Signals as a Computational Model on Its Own

	5 Abstract Geometrical Computation
	5.1 Computing
	5.2 Geometric Primitives
	5.3 Infinite Acceleration and Non-recursive Function
	5.4 Analog Computation

	References

