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Abstract. We consider the problem of counting a set of discrete point
targets using a network of sensors under a minimalistic model. Each sen-
sor outputs a single integer, the number of distinct targets in its range,
but targets are otherwise indistinguishable to sensors: no angles, dis-
tances, coordinates, or other target-identifying measurements are avail-
able. This minimalistic model serves to explore the fundamental perfor-
mance limits of low-cost sensors for such surveillance tasks as estimating
the number of people, vehicles or ships in a field of interest to first de-
gree of approximation, to be followed by more expensive sensing and
localization if needed. This simple abstract setting allows us to explore
the intrinsic complexity of a fundamental problem, and derive rigorous
worst-case performance bounds. We show that even in the 1-dimensional
setting (for instance, sensors counting vehicles on a road), the problem
is non-trivial: target count can be estimated within relative accuracy of
factor

√
2 and this is the best possible in the worst-case. We then address

additional questions related to constructing feasible target placements,
and noisy counters. In two dimensions, the problem is considerably more
complicated: a constant-factor approximation is impossible. Our algo-
rithms and analysis can easily handle some of the non-idealities of real
sensors, such as asymmetric ranges and non-exact target counts.

1 Introduction

Inexpensive smart sensors coupled with ad hoc wireless networking provide a com-
pelling and cost-effective technology for what is variously called ubiquitous com-
puting or situational awareness. Specifically, there has been a growing interest in
the networked power of many cheap and low-fidelity but unattended and
geographically-distributed sensors. Because of their low cost, both in hardware
that can be several orders of magnitude cheaper than their “mainframe” counter-
parts, and the untethered, self-organizing architecture that makes them attractive
for deployment at large geographic scale without costly human management, per-
vasive sensor networks hold great potential for “environmental monitoring.” The
hardware costs and availability, however, are only part of the solution. In order to
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realize the full potential of these networked smart sensors, significant challenges
in algorithms, software, and signal processing must be addressed, many of which
arise from the “minimalistic” nature of this sensing and computing platform.

In this paper, we examine some of these key issues in the context of counting
and localizing targets in a physical space under minimal sensing assumptions. We
focus on target counting, as opposed to the more-widely studied target tracking
problem, for two reasons: (1) counting is an important problem in its own right;
in many environmental monitoring and unattended surveillance applications, for
which sensor networks are an ideal platform, accurately estimating a population
(e.g. animals in natural habitats, intruders in sensitive areas) is a fundamental
end goal; and (2) a good estimate on the target count is often a pre-requisite
for robust tracking; for instance, many popular tracking heuristics such as those
based on particle filters need a good educated guess on the number of unknown
targets to avoid getting stuck.

We frame our research within a minimalistic sensing model to align it with
the primary motivation behind the appeal of sensor networks: low cost and small
form factor. As a result, the binary sensing model has received a great deal of
attention for target tracking and other monitoring applications, both in theory
and practice (for instance, see [1,2,3,4,5,6]). While the binary sensing model has
been shown to achieve excellent performance for tracking a single target [5],
for multiple targets it is useful only in settings where the targets are pairwise
widely-separated, as was formalized in [6]. As a result, provable-quality tracking
and counting of targets requires a richer class of sensors.

In this paper, we work with an abstract model of a counting sensor : each
sensor outputs an integer value, representing the number of distinct targets in
its sensing range. Each target is modeled as a point. The sensor produces no
other information about the targets, such as their locations, angles, distances,
or any other distinguishing identifiers. While a convenient abstraction for our
theoretical investigation of the fundamental limits of target counting and local-
ization, such a sensor is also a fairly good first-order approximation of low-cost
radar sensors that can detect the presence of multiple targets but cannot localize
them individually. Other sensors including infra-red sensors or acoustic sensors
also exhibit this characteristic. In low-cost camera systems as well, achieving
reliable calibration or coordinating multiple snapshots for depth and location is
both difficult and error-prone [7,8,9]. Furthermore, the measurements are often
so noisy that systems actually improve performance by using only the simplest
and most robust information content; for instance, Oh et al. [10] report that
the variability in the signal strength of their PIR (passive infrared) motion sen-
sors was so great that they actually improved the performance of their tracking
system by using them as binary sensors.

Because our main focus is fundamental achievable limits of performance, we
begin with an idealized sensing model, and then discuss the impact of these
assumptions as well as generalizations to non-idealized settings. We assume
that each ideal sensor has a circular sensing range of a known radius, and it
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Fig. 1. The two scenarios have identical sensory information: each sensor detects 1
target, yet the total number of targets is different in the two cases

reliably counts the number of distinct targets in its range. Even with such ide-
alization, it is easy to see that our minimal sensing model does not have enough
information to accurately count targets even in 1-dimension. Figure 1 shows an
example of two scenarios with two sensors. The sensory information of both sen-
sors is identical in the two scenarios: both sensors detect 1 target. Thus, there
is no way to distinguish between the two scenarios, and decide whether the true
target count is 2 (left) or 1 (right). One can, of course, generalize this to an
example where sensors cannot distinguish between n and 2n targets, and arrive
at the impossibility result that, under our minimal sensing model, no algorithm
can count targets with an accuracy factor better than

√
2. It turns out, however,

that this is essentially the worst-possible scenario, and one can always achieve√
2 approximation factor for any configuration of targets and sensors in one

dimension.
Given our sensing model, one may feel that the best counting accuracy is

achieved by non-overlapping sensing ranges—the inaccuracies arise only from
multiple sensors counting the same target. Why not just deploy sensors with
non-overlapping ranges and obtain the best possible results? There are at least
three reasons for sensors with overlapping ranges. First, circles do not tile the
two-dimensional plane, and so even in an idealized setting, one cannot achieve
full coverage without overlapping circular ranges. Second, while the target count
can be improved by minimizing the overlap among different sensing ranges, the
location accuracy, in fact, improves with increasing the overlap [5]. Thus, there
is an inherent tension between counting accuracy and the localization accuracy,
which may promote sensor deployments with significantly overlapping ranges,
even in one-dimensional situations, like a road environment. Finally, all of our
results, in fact, hold even when the sensing ranges are not ideal disks; they
just need to be connected intervals in one-dimension and any reasonable convex
shape in two dimension. Thus, our theory applies to irregular, anisotropic sensing
ranges of real sensors, whose overlap is both unpredictable and impossible to
eliminate. Therefore, in this work we approach the problem with a worst-case
viewpoint, and make no assumptions about the placement of targets or the
sensors. We seek to provide worst-case guarantees for the target count for any
(adversarial) choice of targets and sensor ranges.

Our approximate counting algorithm, however, is non-constructive, in that
it does not necessarily produce a configuration of targets consistent with the
sensing input—it just produces upper and lower bounds on the target population.
Furthermore, it is easy to show examples where not all target counts between
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the lower and upper bounds are feasible, meaning that there is no possible con-
figuration of targets that is consistent with the sensors’ readings. Constructing
a feasible configuration of targets is not entirely trivial, but it can be solved in
polynomial time by a reduction to the shortest path problem in a graph.

Next, we consider the impact of some non-idealities on our results. In par-
ticular, we allow sensor ranges to be non-unit-disk: they can be arbitrary size
segments in 1D and arbitrary convex regions in the plane, and they can be asym-
metric around the sensor. The target sensing also can be “noisy,” in that the
number of targets detected by a sensor can lie in an uncertainty range. Specifi-
cally, we assume that if the true reading of a sensor is c, then a sensor can report
any value in the range [(1 − ρ)c, (1 + ρ)c], where ρ is the noise or uncertainty
parameter, reflecting the false positives and negatives in the sensor’s reading. It
turns out that all our algorithms and theorems hold even in these more general
and realistic models; of course, the accuracy of the target counting now depends
on the parameter ρ.

We then consider the target counting problem in two-dimensions and prove
that, in the worst-case, no fixed approximation is achievable. An easy

√
m ap-

proximation is possible if the maximum degree of overlap among sensor ranges
is m. (This is in contrast to the 1-dimension, where the approximation factor
does not depend on the degree of sensing overlap.) All of these results extend to
the “noisy” sensor model. All the theorems in this pre-proceedings version are
without proofs, the proofs will be included in the conference proceedings.

2 The Counting Sensor Model

We begin with an idealized model of sensing. Each target is modeled as a point,
and each sensor is assumed to have a unit-disk sensing range, with perfect sens-
ing: each sensor is able to count precisely the number of targets present in its
range. Neither of these assumptions are critical to our algorithms and analysis,
as we later discuss, but provide a convenient framework to understand the fun-
damental limits of target counting. Because the communication requirements of
our collaborative counting are so minimal (each sensor only needs to communi-
cate its reading), we abstract away all networking issues in our discussion. In
particular, we assume that all the processing occurs at a base station, or a tracker
node, that knows the precise geometry of the sensors’ locations and ranges. We
make no assumptions about the geographic distribution of sensors or targets:
our results are worst-case.

Throughout, we assume that the targets have fixed locations, and sensors’
readings represent a snapshot of the target locations. This view is valuable even
in tracking applications when no a priori information is available about the mo-
tion of the targets and where the targets can be deliberately evasive, creating an
adversarial situation. In such settings, a tracking algorithm is forced to interpo-
late the motion across snapshots, and therefore must solve the target counting
and localization problem considered here.
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We begin our discussion by considering the problem in a one-dimensional
setting. We imagine targets as points arranged on a line, and a collection of
sensors, each with a unit-interval sensing range. It turns out that the exact
counting of targets is non-trivial even in this simple setting, and leads to some
interesting results. The 1-dimensional setting is also a useful framework in many
practical situations, such as counting targets along a road or counting objects in
a crowd using far away cameras.

3 Counting and Localization Targets in One Dimension
with Ideal Sensors

We begin by repeating our earlier example to argue that precise counting is not
possible even in one dimension, and even with idealized counting sensors.

Theorem 1. If sensors have overlapping ranges, then precise counting of tar-
gets is impossible even with idealized counting sensors. Thus, for arbitrary ar-
rangements of sensors and targets, no algorithm can determine the target count
precisely.

Fortunately, it turns out that this is the worst possible scenario, and the
√

2
approximation of the target count is possible for any (adversarial) placement of
targets and sensors in 1-dimension.

3.1 Target Count Approximation

Let S = {s1, s2, . . . , sn} denote the set of sensors, and let C = {c1, c2, . . . , cn}
denote their sensing counts; that is, ci is the number of targets detected by si in
its range. We denote the set of sensing ranges by R, and the union of all these
ranges by U . Recall that each sensing range is an interval on the line containing
the sensors and the targets. We assume that U is a contiguous range, if not, we
run our algorithm on the disconnected contiguous subsets of U separately and
add the counts to get the approximate count.

Our algorithm for approximating the number of targets, which we call the
scan algorithm, is as follows. We compute a non-redundant subset R′ ⊂ R of
the sensing ranges, where non-redundancy means that union of the ranges in R′

equals U , and no range r ∈ R′ is covered by the union of the remaining ranges
in the set. In other words, no range can be deleted from R′ without losing some
coverage of the domain.

Let us denote the set of sensors associated with R′ by S′ = {s′1, s′2, . . . , s′n′}
and their readings by set C′ = {c′1, c′2, . . . , c′n′}. Our algorithm outputs CA = SC′√

2

as the target count, where SC′ is the sum of readings of the set C′, namely,
SC′ =

∑
1≤i≤n′ c′i. The algorithm for finding the set R′ is given in Algorithm 1.

It is easy to verify that this algorithm can be implemented in worst-case time
O(n log n). We now prove the main result of this section that CA is a factor

√
2

approximation of the true count, which we denote as COPT .
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Algorithm 1. scan

1: Sort the segments in R in increasing order of left endpoints.
2: R′ = ∅, r = first segment in the sorted set R
3: R′ = R′ ∪ {r}, R = R \ {r}
4: while R �= ∅ do
5: T = set of segments in R that intersect with r.
6: Let r′ be the segment in T with the rightmost endpoint.
7: R = R \ T , R′ = R′ ∪ {r′}, r = r′.
8: end while
9: Output the total count of targets associated with ranges in R divided by

√
2.

Theorem 2
CA√

2
≤ COPT ≤

√
2CA

In effect, the algorithm scan above outputs a range [a, b] with a guarantee that
the true target count lies between a and b, and b ≤ 2a. By predicting the
geometric mean of these two bounds as an approximation, the algorithm can
guarantee that its prediction is within a factor of

√
2 of the true count.

Unfortunately, the counting scheme presented so far is non-constructive—it
tells us bounds on the number of targets, but offers no actual placements of
targets satisfying the readings of all the sensors. In the following section, we
address this fundamental problem of producing target placements consistent
with the sensors’ readings.

3.2 Target Placement

Consider the example in Figure 2. For this example, the algorithm scan outputs
the target range [2, 4], which clearly is consistent with the sensors’ readings.
However, a moment’s reflection shows that there is no realizable (feasible) target
placement that is consistent with the target count of either 2 or 3. Indeed, the
only feasible target placement satisfying the sensors’ readings needs 4 targets, as
shown. Even for feasible target counts, the algorithm does not provide an actual
placement of targets. We address these shortcomings in the following.

Consider a set S = {s1, s2, . . . , sn} of n sensors along the X-axis, and let
C = {c1, c2, . . . , cn} denote the readings associated with these sensors. Let P =

2

0

2

Fig. 2. An example of 3 sensors on a line, where the first and the third sensor has
target count 2, while the middle sensor has count 0. The scan algorithm outputs a
target range of [2, 4]. Only the target count of 4 is realizable as a physical configuration
of targets consistent with the sensors’ readings.
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Fig. 3. An example with 7 targets and 3 sensors. The true target positions are shown as
solid circles. The sensor readings are shown by the numbers placed above each sensor’s
range. The output placement computed by our algorithm is shown using lightly shaded
triangles.

{p1, p2, . . . , p2n} denote the set of 2n points defining the start and the end points
of the sensor ranges, sorted in order of increasing x-coordinates; that is, the x-
coordinate of pi is less than the x-coordinate of pi+1.

We introduce a set of variables Z = {z1, z2, . . . , z2n} where zi represents the
total number of targets lying to the left of point pi. By definition, therefore, we
have the following constraint:

z1 ≤ z2 ≤ . . . ≤ z2n, (1)

because the number of targets to the left of pi+1 is at least as large as the number
of targets to the left of pi.

Next, if pj and pk are the starting and end points associated with the range of
sensor si, then zk−zj denotes the number of targets in si’s range. This introduces
another constraint:

zk − zj = ci (2)

We have one such constraint for each sensor. Any assignment of zi’s satisfying
these constraints, together with z1 = 0, corresponds to a feasible placement of
targets for our problem. In particular, a feasible solution can be obtained by plac-
ing zi − zi−1 targets spaced equally between points pi−1 and pi, for 2 ≤ i ≤ 2n.
The set of constraints described above can be solved as an integer linear program.
Unfortunately, in general, integer linear programming is NP-Hard. Fortunately,
the special structure of our problem admits a rather efficient (polynomial time)
solution, by a transformation to a shortest path problem. In particular, all the
constraints in our problem have the form of a difference constraint. We explain
the reduction to the shortest path problem, using an example.

Consider the example shown in Figure 3, with 7 targets and 3 sensors. The
true target positions are shown as solid circles. The sensor readings are shown by
the numbers placed above each sensor’s range. The first set of constraints that
enforce the conditions zi ≤ zi+1, for 1 ≤ i ≤ 2n, can be written as the following
set of difference constraints:

z1 − z2 ≤ 0, z2 − z3 ≤ 0, z3 − z4 ≤ 0
z4 − z5 ≤ 0, z5 − z6 ≤ 0
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Each of the equality constraint encoding the count of each sensor (Eq. 2) can be
written as a pair of difference constraints:

z4 − z1 ≤ 5, z1 − z4 ≤ −5
z5 − z2 ≤ 4, z2 − z5 ≤ −4
z6 − z3 ≤ 2, z3 − z6 ≤ −2

These inequalities can be transformed into the formulation of a shortest path prob-
lem in a graph as shown in Figure 4. In this graph, there exists a node for each
variable zi, and an edge for each difference constraint. In particular, the difference
constraint zi − zj ≤ � maps to an edge directed from node wj to node wi, with
weight �. In addition, we add an artificial node s, and introduce 0-weight edges from
s to all other nodes in the graph. We now observe that this graph has well-defined
shortest paths from s to all other nodes if and only if there is no negative-weight
cycle in the graph. More precisely, if there is a negative cycle in the graph, then the
set of inequalities are inconsistent, and there is no feasible solution. Otherwise, the
shortest path distances to the nodes zi correspond to a feasible solution.

Solving the shortest path problem on the graph gives the following shortest path
distances from s: z1 = −5, z2 = −4, z3 = −2, z4 = z5 = z5 = 0. We can enforce
z1 = 0 by adding 5 to all these variables, without violating any constraints. We
then get: z1 = 0, z2 = 1, z3 = 3, z4 = z5 = z6 = 5. The placement of targets corre-
sponding to these variable settings is shown in Figure 3 by lightly shaded triangles.

We can solve the shortest paths problem in the graph using the Bellman-
Ford algorithm; this algorithm either determines that the graph contains a
negative-weight cycles, or computes valid shortest path distances in worst-case
time O(|V ||E|), where |V | and |E|, respectively, are the number of vertices and
edges in the graph [11] . In our setting, both the number of vertices and edges is
O(n), so the algorithm has time complexity O(n2). We can now state the main
result of this section.

Theorem 3. Given a set of n counting sensors on a line and their target counts,
we can find in O(n2) time a placement of targets consistent with all the sensors’
counts, or determine that the sensors’ readings are inconsistent.

5 4 2

−5 −4 −2

0
0 0

00 0

w1 w2 w3 w4 w5 w6

s

Fig. 4. The graph corresponding to the example of Figure 3
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The Bellman-Ford shortest path algorithm, in fact, has an interesting prop-
erty: the algorithm minimizes the maximum difference between the difference
variables. In other words, the algorithm not only finds a feasible assignment of
variables, but actually finds an assignment satisfying

min max
1≤i≤2n,1≤j≤2n

|zi − zj |
In our setting, the maximum difference is between the variables z2n and z1

(Equation 1). But z2n − z1 equals the total number of targets in the solution,
and so our algorithm finds a feasible solution with the least possible number of
targets consistent with the sensors’ counts.

4 Extensions to Non-ideal Sensing

In this section, we make a limited attempt to address two of the most severe
assumptions of the idealized sensor model, namely, the unit disk sensing range
and perfect target count. In particular, we show that our algorithms can easily
handle sensing ranges that are neither unit length (in 1d) or unit disk (in 2d)
nor symmetric about the center. Secondly, our algorithms can gracefully han-
dle noisy target counts by sensors. Specifically, if the true target count for a
sensor is c, then a sensor can report any value in the range [(1 − ρ)c, (1 + ρ)c],
where ρ is the noise parameter, reflecting the false positives and negatives in the
sensor’s reading. We now discuss the implications of these non-idealities on our
algorithms.

4.1 Target Count Approximation with Non-ideal Sensors

Let S = {s1, s2, . . . , sn} denote the set of sensors. We denote the set of sensing
ranges by R. As in the case of ideal sensors, we use the algorithm scan to
compute the non-redundant set R′. Let S′ = {s′1, s′2, . . . , s′n′} denote the set
of sensors associated with R′ and let C′ = {c′1, c′2, . . . , c′n′} denote the (noisy)
counts associated with these sensors. Our algorithm outputs CA = SC′√

2(1−ρ2)
as

the target count, where SC′ is the sum of readings of set C′, namely, SC′ =∑
1≤i≤n′ c′i. Let COPT denote the actual count of the number of targets in the

system. The following theorem analyzes the accuracy of this approximation.

Theorem 4
CA

√
2(1+ρ)
1−ρ

≤ COPT ≤
√

2(1 + ρ)
1 − ρ

CA

It is not too difficult to see that our bounds for both ideal and non-ideal sensors
are the best possible in the worst-case. In particular, given any value of ρ, it
is possible to achieve the worst-case approximation factor (both overcount and
undercount) with just two sensors. In the next section, we extend the target
placement algorithm proposed for ideal sensors to estimate target placements in
the presence of non-ideal sensors.
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4.2 Target Placement with Non-ideal Sensing

Let the sets C′ = {c′1, c′2, . . . , c′n} and C = {c1, c2, . . . , cn} denote the noisy and
the true readings of the sensor set S = {s1, s2, . . . , sn}. Let us associate the set
of variables Z = {z1, z2, . . . , z2n} with the sorted set P = {p1, p2, . . . , p2n} of
start and end point of the sensor ranges, where, as for ideal sensors, zi denotes
the number of points to the left of point pi. We now show that a feasible target
placement can be obtained even for non-ideal sensors,

Theorem 5. Given a set of n non-ideal sensors and their readings, we can find
a placement for targets in the network which satisfies all sensor readings.

Of course, both the target placement as well as the number of targets estimated
may be different from the ones found using non-noisy counts, but the approxima-
tions are guaranteed to be within the range of accuracy given by our theorems.

In the next section, we consider the target counting problem when the sensors
and the targets are scattered in a two-dimensional plane.

5 Two Dimensional Target Counting

We begin with an example to argue that, unlike in the one dimension, approxi-
mation within a constant factor is not achievable for the two-dimensional target
counting problem. The construction is quite simple, and shown in Figure 5.
Imagine starting with n circles, centered at the origin. (The circles represent the
sensing ranges of our idealized counting sensors.) We keep one circle stationary,
and translate the centers of the remaining n − 1 circles by {δ, 2δ, . . . , (n′ − 1)δ}
along the positive X-axis, where δ is chosen such that (n − 1)δ is less that the
radii of these circles.

With this arrangement of sensors, consider two different sets of target place-
ments. In the first case (left figure), we place k targets at the origin. In the
second case (right figure). we place k targets each near the top of each sensor’s
range. It is easy to see that in both cases, each sensor counts precisely k targets
in its range, but the total number of targets present is k in the first case, and
nk in the second case. Because the two cases are indistinguishable based on the

. . . . . .

kk k

k

k
. . .

Fig. 5. Two scenarios with identical sensors information, but different total target
counts: k for the left figure, and nk for the right figure
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sensors’ counts, no algorithm in this model can count targets with any constant
factor accuracy. We summarize this result in the following theorem.

Theorem 6. For arbitrary arrangements of sensors and targets, no algorithm
can achieve a constant-factor approximation of the target counts even with ide-
alized counting sensors in two dimensions.

Clearly, the main source of difficulty is the overlapping sensing ranges. The con-
struction of Figure 5 achieves the impossibility result by forcing an unbounded
level of overlap among the ranges. In the following, we argue that if the degree of
overlap is at most m, then one can approximate the target count within factor√

m; thus, in practice, where we expect the overlap to be small, the approxi-
mation may be acceptable. By the degree of overlap, we mean the maximum
number of sensing ranges that cover a point in the plane.

Theorem 7. If the maximum degree of sensor overlap is m, then we can ap-
proximate the total number of targets in two dimensions to within a factor

√
m.

If we consider the non-idealities of convex ranges and noise parameter as de-
fined in Section 2, then for these non-ideal sensors the proof given above can be

extended to obtain an approximation factor of
√

m(1+ρ)
1−ρ .

6 Related Work

The problem of detecting and tracking targets is of broad interest to many
applications dealing with unattended monitoring and surveillance, with a rich
literature in many disciplines, including computer vision, signal processing, ad
hoc networks etc. [7,12,9,13]. The research goals in these areas, however, are dif-
ferent from those being pursued in sensor networks. In particular, the vision and
signal processing communities are concerned with extraction of distinguishing
features in detailed signals (e.g. images) and classifying the targets (e.g. tanks
or cars). The mobile and ad hoc network communities have considered tracking
with the goal of maintaining the state of network connectivity. In these cases,
the nodes try to track other nodes using mobility models so that routing can be
achieved successfully.

Counting targets is closely related to monitoring, intrusion detection and
tracking targets. Counting is often the first step in most of these applications.
Research in sensor networks has seen a lot of work in tracking multiple targets
[14,15,16,17,18,19,20,21] and almost every piece of work assumes that the num-
ber of targets in the network is known. Our work is closely related to [5,6] in
terms of deriving fundamental limits for tracking and counting targets using a
minimal sensing model. These papers use a binary sensing model, which has
also been considered by [1,2,3,4]. Counting sensor model is similar to the binary
model in terms of minimal sensing, instead of transmitting a bit of information,
counting sensors transmit an integer representing the number of targets in their
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range. The problem of counting targets is explored in [6] and the authors show
that even in one dimension, counting targets accurately is not possible using
binary sensing model unless the targets are spaced far apart from each other.
Gfeller et. al. [22] add to the basic binary sensing model by considering mobile
binary sensors and show that even then the problem is hard. Counting targets
is also addressed in [23], the sensors considered are proximity sensors and sense
the amplitude only. The target counting is then represented as peak counting
problem in the aggregate sensor network, but the framework assumes that the
targets are well separated. In [24], the authors look at the problem of counting
the number of people in a crowd using image sensors. They subtract background
from the image and then count number of visual hulls to count number of people.
Their focus is on geometric hull computation and our techniques can be used on
top of their algorithms to provide the bounds and counts. In [25] the authors use
topological integration theory to provide expected target counts as compared to
the deterministic bounds provided in this paper. The model of sensing consid-
ered is similar in the sense that the sensors give a count of the number of objects.
However, the paper does not make any assumptions about sensing shapes and
proves that the expected counts is the best one can hope for without geometry.
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