

Lecture Notes in Computer Science 5389
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Sándor P. Fekete (Ed.)

Algorithmic Aspects
of Wireless
Sensor Networks

Fourth International Workshop
ALGOSENSORS 2008
Reykjavik, Iceland, July 2008
Revised Selected Papers

13

Volume Editor

Sándor P. Fekete
Department of Computer Science
Braunschweig University of Technology
38106 Braunschweig, Germany
E-mail: s.fekete@tu-bs.de

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.2, C.2, E.1, G.2

LNCS Sublibrary: SL 5 – Computer Communication Networks
and Telecommunications

ISSN 0302-9743
ISBN-10 3-540-92861-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-92861-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12590049 06/3180 5 4 3 2 1 0

Preface

Wireless ad-hoc sensor networks are a very active research subject, as they have
high potential to provide diverse services to numerous important applications, in-
cluding remote monitoring and tracking in environmental applications and
low-maintenance ambient intelligence in everyday life. The effective and efficient
realization of such large-scale, complex ad-hoc networking environments requires
intensive, coordinated technical research and development efforts, especially in
power-aware, scalable, robust wireless distributed protocols, due to the unusual
application requirements and the severe resource constraints of the sensor devices.

On the other hand, a solid foundational background seems necessary for sen-
sor networks to achieve their full potential. It is a challenge for abstract modeling,
algorithmic design and analysis to achieve provably efficient, scalable and fault-
tolerant realizations of such huge, highly dynamic, complex, non-conventional
networks. Features including the extremely large number of sensor devices in
the network, the severe power, computing and memory limitations, their dense,
random deployment and frequent failures pose new, interesting challenges of
great practical impact for abstract modeling, algorithmic design, analysis and
implementation.

This workshop aimed at bringing together research contributions related to
diverse algorithmic and complexity-theoretic aspects of wireless sensor networks.
This was the fourth event in the series. ALGOSENSORS 2004 was held in Turku,
Finland, ALGOSENSORS 2006 was held in Venice, Italy, and ALGOSENSORS
2007 was held in Wroc�law, Poland. Since its beginning, ALGOSENSORS has
been collocated with ICALP. Previous proceedings have appeared in the Springer
LNCS series: vol. 3121 (2004), vol. 4240 (2006), and vol. 4837 (2007).

ALGOSENSORS 2008 was part of ICALP 2008 and was held on July 12 2008
in Reykjavik, Iceland. After a careful review by the Program Committee, 11 out
of 27 submissions were accepted; in addition, a keynote speech was given by
Roger Wattenhofer. The Program Committee appreciates the help of 35 external
referees, who provided additional expertise. We are also thankful for the help
of the sponsors (EU-project “FRONTS” and coalesenses), who supported the
organization of the meeting as well as a best-paper award.

October 2008 Sándor P. Fekete

Organization

Conference and Program Chair

Sándor P. Fekete Braunschweig University of Technology,
Germany

Program Committee

Michael Beigl Braunschweig University of Technololgy,
Germany

Michael Bender Stony Brook University, USA
Ioannis Chatzigiannakis University of Patras and CTI, Greece
Josep Diaz Technical University of Catalonia, Spain
Shlomi Dolev Ben-Gurion University, Israel
Alon Efrat University of Arizona, USA
Michael Elkin Ben Gurion University, Israel
Sándor P. Fekete Braunschweig University of Technology,

Germany (Chair)
Stefan Fischer University of Lübeck, Germany
Stefan Funke University of Greifswald, Germany
Jie Gao Stony Brook University, USA
Magnús Halldórsson Reykjavik University, Iceland
Riko Jacob TU Munich, Germany
Alexander Kröller Braunschweig University of Technology,

Germany
Fabian Kuhn ETH Zurich, Switzerland
Miros�law Kuty�lowski Wroc�law University of Technology, Poland
Alberto

Marchetti-Spaccamela University of Rome “La Sapienza”, Italy
Friedhelm Meyer

auf der Heide Universität Paderborn, Germany
Thomas Moscibroda Microsoft Research, USA
David Peleg Weizmann Institute, Israel
Dennis Pfisterer University of Lübeck, Germany
Andrea Richa Arizona State University, USA
Paolo Santi CNR - Pisa, Italy
Christian Scheideler TU Munich, Germany
Subhash Suri University of California at Santa Barbara,

USA
Dorothea Wagner K.I.T, Karlsruhe, Germany
Roger Wattenhofer ETH Zurich, Switzerland

VIII Organization

Steering Committee

Josep Diaz Technical University of Catalonia, Spain
Jan van Leeuwen Utrecht University, The Netherlands
Sotiris Nikoletseas University of Patras and CTI, Greece (Chair)
Jose Rolim University of Geneva, Switzerland
Paul Spirakis University of Patras and CTI, Greece

Additional Referees

Dror Aiger Sol Lederer
Eitan Bachmat Nissan Lev-Tov
Leonid Barenboim Peter Mahlmann
Claudia Becker Steffen Mecke
Vincenzo Bonifaci Calvin Newport
Carsten Buschmann Melih Onus
Jacek Cichon Raphael Eidenbenz
Bastian Degener Laurence Pilard
Bernhard Fuchs Michal Ren
Joachim Gehweiler Rik Sarka
Seth Gilbert Christiane Schmidt
Horst Hellbrück Barbara Schneider
Tom Kamphans Paul Spirakis
Bastian Katz Elias Vicari
Marcin Kik Axel Wegener
Miros�law Korzeniowski Dengpan Zhou
Ralf Klasing Xianjin Zhu
Marina Kopeetsky

Organization IX

Sponsoring Institutions

EU Commission: Project “FRONTS”
Contract Number: FP7 FET ICT-215270

coalesenses: Wireless Sensor Networks

Table of Contents

Algorithms for Sensor Networks: What Is It Good for? 1
Roger Wattenhofer

Tight Local Approximation Results for Max-Min Linear Programs 2
Patrik Floréen, Marja Hassinen, Petteri Kaski, and Jukka Suomela

Minimizing Average Flow Time in Sensor Data Gathering 18
Vincenzo Bonifaci, Peter Korteweg,
Alberto Marchetti-Spaccamela, and Leen Stougie

Target Counting Under Minimal Sensing: Complexity and
Approximations . 30

Sorabh Gandhi, Rajesh Kumar, and Subhash Suri

Efficient Scheduling of Data-Harvesting Trees . 43
Bastian Katz, Steffen Mecke, and Dorothea Wagner

Link Scheduling in Local Interference Models . 57
Bastian Katz, Markus Völker, and Dorothea Wagner

Algorithms for Location Estimation Based on RSSI Sampling 72
Charalampos Papamanthou, Franco P. Preparata, and
Roberto Tamassia

Random Fault Attack against Shrinking Generator 87
Marcin Gomu�lkiewicz, Miros�law Kuty�lowski, and Pawe�l Wlaź

Probabilistic Protocols for Fair Communication in Wireless Sensor
Networks . 100

Ioannis Chatzigiannakis, Lefteris Kirousis, and Thodoris Stratiotis

Simple Robots in Polygonal Environments: A Hierarchy 111
Jan Brunner, Matúš Mihalák, Subhash Suri, Elias Vicari, and
Peter Widmayer

Deployment of Asynchronous Robotic Sensors in Unknown Orthogonal
Environments . 125

Eduardo Mesa Barrameda, Shantanu Das, and Nicola Santoro

Optimal Backlog in the Plane . 141
Valentin Polishchuk and Jukka Suomela

Author Index . 151

Algorithms for Sensor Networks:
What Is It Good for?

Roger Wattenhofer

Distributed Computing Group
Computer Engineering and Networks Laboratory

Information Technology and Electrical Engineering
ETH Zurich
Switzerland

wattenhofer@tik.ee.ethz.ch

Abstract. Absolutely nothing!? The merit of theory and algorithms in
the context of wireless sensor and ad hoc networks is often questioned.
Admittedly, coming up with theory success stories that will be accepted
by practitioners is not easy. In my talk I will discuss the current score of
the Theory vs. Practice game, after playing seven years for the Theory
team. Probably due to a “seven year itch”, I recently also started playing
for the Practice team.

S. Fekete (Ed.): ALGOSENSORS 2008, LNCS 5389, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tight Local Approximation Results
for Max-Min Linear Programs

Patrik Floréen, Marja Hassinen, Petteri Kaski, and Jukka Suomela

Helsinki Institute for Information Technology HIIT
Helsinki University of Technology and University of Helsinki

P.O. Box 68, FI-00014 University of Helsinki, Finland
patrik.floreen@cs.helsinki.fi, marja.hassinen@cs.helsinki.fi,
petteri.kaski@cs.helsinki.fi, jukka.suomela@cs.helsinki.fi

Abstract. In a bipartite max-min LP, we are given a bipartite graph
G = (V ∪ I ∪ K, E), where each agent v ∈ V is adjacent to exactly
one constraint i ∈ I and exactly one objective k ∈ K. Each agent v
controls a variable xv. For each i ∈ I we have a nonnegative linear
constraint on the variables of adjacent agents. For each k ∈ K we have a
nonnegative linear objective function of the variables of adjacent agents.
The task is to maximise the minimum of the objective functions. We
study local algorithms where each agent v must choose xv based on input
within its constant-radius neighbourhood in G. We show that for every
ε > 0 there exists a local algorithm achieving the approximation ratio
∆I(1 − 1/∆K)+ε. We also show that this result is the best possible – no
local algorithm can achieve the approximation ratio ∆I(1 − 1/∆K). Here
∆I is the maximum degree of a vertex i ∈ I , and ∆K is the maximum
degree of a vertex k ∈ K. As a methodological contribution, we introduce
the technique of graph unfolding for the design of local approximation
algorithms.

1 Introduction

As a motivating example, consider the task of data gathering in the following
sensor network.

k1 k2 k3 k4 k5 ∈ K

i1 i2 i3 ∈ I

1 2 3
4 5 6 7 8 9 ∈ V

Each open circle is a sensor node k ∈ K, and each box is a relay node i ∈ I.
The graph depicts the communication links between sensors and relays. Each
sensor produces data which needs to be routed via adjacent relay nodes to a
base station (not shown in the figure).

For each pair consisting of a sensor k and an adjacent relay i, we need to
decide how much data is routed from k via i to the base station. For each such

S. Fekete (Ed.): ALGOSENSORS 2008, LNCS 5389, pp. 2–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tight Local Approximation Results for Max-Min Linear Programs 3

decision, we introduce an agent v ∈ V ; these are shown as black dots in the
figure. We arrive at a bipartite graph G where the set of vertices is V ∪ I ∪ K
and each edge joins an agent v ∈ V to a node j ∈ I ∪ K.

Associated with each agent v ∈ V is a variable xv. Each relay constitutes a
bottleneck: the relay has a limited battery capacity, which sets a limit on the
total amount of data that can be forwarded through it. The task is to maximise
the minimum amount of data gathered from a sensor node. In our example, the
variable x2 is the amount of data routed from the sensor k2 via the relay i1,
the battery capacity of the relay i1 is an upper bound for x1 + x2 + x3, and the
amount of data gathered from the sensor node k2 is x2 + x4. Assuming that the
maximum capacity of a relay is 1, the optimisation problem is to

maximise min {x1, x2 + x4, x3 + x5 + x7, x6 + x8, x9}
subject to x1 + x2 + x3 ≤ 1,

x4 + x5 + x6 ≤ 1,

x7 + x8 + x9 ≤ 1,

x1, x2, . . . , x9 ≥ 0.

(1)

In this work, we study local algorithms [1] for solving max-min linear programs
(LPs) such as (1). In a local algorithm, each agent v ∈ V must choose the
value xv solely based on its constant-radius neighbourhood in the graph G. Such
algorithms provide an extreme form of scalability in distributed systems; among
others, a change in the topology of G affects the values xv only in a constant-
radius neighbourhood.

1.1 Max-Min Linear Programs

Let G = (V ∪ I ∪ K, E) be a bipartite, undirected communication graph where
each edge e ∈ E is of the form {v, j} with v ∈ V and j ∈ I ∪ K. The elements
v ∈ V are called agents, the elements i ∈ I are called constraints, and the
elements k ∈ K are called objectives ; the sets V , I, and K are disjoint. We define
Vi = {v ∈ V : {v, i} ∈ E}, Vk = {v ∈ V : {v, k} ∈ E}, Iv = {i ∈ I : {v, i} ∈ E},
and Kv = {k ∈ K : {v, k} ∈ E} for all i ∈ I, k ∈ K, v ∈ V .

We assume that G is a bounded-degree graph; in particular, we assume that
|Vi| ≤ ∆I and |Vk| ≤ ∆K for all i ∈ I and k ∈ K for some constants ∆I and ∆K .

A max-min linear program associated with G is defined as follows. Associate
a variable xv with each agent v ∈ V , associate a coefficient aiv ≥ 0 with each
edge {i, v} ∈ E, i ∈ I, v ∈ V , and associate a coefficient ckv ≥ 0 with each edge
{k, v} ∈ E, k ∈ K, v ∈ V . The task is to

maximise ω = mink∈K

∑
v∈Vk

ckvxv

subject to
∑

v∈Vi
aivxv ≤ 1 ∀ i ∈ I,

xv ≥ 0 ∀ v ∈ V.

(2)

We write ω∗ for the optimum of (2).

4 P. Floréen et al.

1.2 Special Cases of Max-Min LPs

A max-min LP is a generalisation of a packing LP. Namely, in a packing LP there
is only one linear nonnegative function to maximise, while in a max-min LP the
goal is to maximise the minimum of multiple nonnegative linear functions.

Our main focus is on the bipartite version of the max-min LP problem. In the
bipartite version we have |Iv| = |Kv| = 1 for each v ∈ V . We also define the 0/1
version [2]. In that case we have aiv = 1 and ckv = 1 for all v ∈ V, i ∈ Iv, k ∈ Kv.
Our example (1) is both a bipartite max-min LP and a 0/1 max-min LP.

The distance between a pair of vertices s, t ∈ V ∪ I ∪K in G is the number of
edges on a shortest path connecting s and t in G. We write BG(s, r) for the set
of vertices within distance at most r from s. We say that G has bounded relative
growth 1 + δ beyond radius R ∈ N if

|V ∩ BG(v, r + 2)|
|V ∩ BG(v, r)| ≤ 1 + δ for all v ∈ V, r ≥ R.

Any bounded-degree graph G has a constant upper bound for δ. Regular grids are
a simple example of a family of graphs where δ approaches 0 as R increases [3].

1.3 Local Algorithms and the Model of Computation

A local algorithm [1] is a distributed algorithm in which the output of a node
is a function of input available within a fixed-radius neighbourhood; put other-
wise, the algorithm runs in a constant number of communication rounds. In the
context of distributed max-min LPs, the exact definition is as follows.

We say that the local input of a node v ∈ V consists of the sets Iv and Kv

and the coefficients aiv, ckv for all i ∈ Iv, k ∈ Kv. The local input of a node i ∈ I
consists of Vi and the local input of a node k ∈ K consists of Vk. Furthermore,
we assume that either (a) each node has a unique identifier given as part of the
local input to the node [1,4]; or, (b) each vertex independently introduces an
ordering of the edges incident to it. The latter, strictly weaker, assumption is
often called port numbering [5]; in essence, each edge {s, t} in G has two natural
numbers associated with it: the port number in s and the port number in t.

Let A be a deterministic distributed algorithm executed by each of the nodes
of G that finds a feasible solution x to any max-min LP (2) given locally as input
to the nodes. Let r ∈ N be a constant independent of the input. We say that
A is a local algorithm with local horizon r if, for every agent v ∈ V , the output
xv is a function of the local input of the nodes in BG(v, r). Furthermore, we say
that A has the approximation ratio α ≥ 1 if

∑
v∈Vk

ckvxv ≥ ω∗/α for all k ∈ K.

1.4 Contributions and Prior Work

The following local approximability result is the main contribution of this paper.

Theorem 1. For any ∆I ≥ 2, ∆K ≥ 2, and ε > 0, there exists a local approxi-
mation algorithm for the bipartite max-min LP problem with the approximation
ratio ∆I(1 − 1/∆K) + ε. The algorithm assumes only port numbering.

Tight Local Approximation Results for Max-Min Linear Programs 5

We also show that the positive result of Theorem 1 is tight. Namely, we prove a
matching lower bound on local approximability, which holds even if we assume
both 0/1 coefficients and unique node identifiers.

Theorem 2. For any ∆I ≥ 2 and ∆K ≥ 2, there exists no local approxi-
mation algorithm for the max-min LP problem with the approximation ratio
∆I(1 − 1/∆K). This holds even in the case of a bipartite, 0/1 max-min LP and
with unique node identifiers given as input.

Considering Theorem 1 in light of Theorem 2, we find it somewhat surprising
that unique node identifiers are not required to obtain the best possible local
approximation algorithm for bipartite max-min LPs.

In terms of earlier work, Theorem 1 is an improvement on the safe algo-
rithm [3,6] which achieves the approximation ratio ∆I . Theorem 2 improves
upon the earlier lower bound (∆I + 1)/2 − 1/(2∆K − 2) [3]; here it should be
noted that our definition of the local horizon differs by a constant factor from
earlier work [3] due to the fact that we have adopted a more convenient graph
representation instead of a hypergraph representation.

In the context of packing and covering LPs, it is known [7] that any approxima-
tion ratio α > 1 can be achieved by a local algorithm, assuming a bounded-degree
graph and bounded coefficients. Compared with this, the factor ∆I(1 − 1/∆K)
approximation in Theorem 1 sounds somewhat discouraging considering practi-
cal applications. However, the constructions that we use in our negative results
are arguably far from the structure of, say, a typical real-world wireless net-
work. In prior work [3] we presented a local algorithm that achieves a factor
1 + (2 + o(1))δ approximation assuming that G has bounded relative growth
1 + δ beyond some constant radius R; for a small δ, this is considerably better
than ∆I(1 − 1/∆K) for general graphs. We complement this line of research on
bounded relative growth graphs with a negative result that matches the prior
positive result [3] up to constants.

Theorem 3. Let ∆I ≥ 3, ∆K ≥ 3, and 0 < δ < 1/10. There exists no local ap-
proximation algorithm for the max-min LP problem with an approximation ratio
less than 1 + δ/2. This holds even in the case of a bipartite max-min LP where
the graph G has bounded relative growth 1 + δ beyond some constant radius R.

From a technical perspective, the proof of Theorem 1 relies on two ideas: graph
unfolding and the idea of averaging local solutions of local LPs.

We introduce the unfolding technique in Sect. 2. In essence, we expand the
finite input graph G into a possibly infinite tree T . Technically, T is the universal
covering of G [5]. While such unfolding arguments have been traditionally used
to obtain impossibility results [8] in the context of distributed algorithms, here
we use such an argument to simplify the design of local algorithms. In retrospect,
our earlier approximation algorithm for 0/1 max-min LPs [2] can be interpreted
as an application of the unfolding technique.

The idea of averaging local LPs has been used commonly in prior work on
distributed algorithms [3,7,9,10]. Our algorithm can also be interpreted as a
generalisation of the safe algorithm [6] beyond local horizon r = 1.

6 P. Floréen et al.

To obtain our negative results – Theorems 2 and 3 – we use a construction
based on regular high-girth graphs. Such graphs [11,12,13,14] have been used in
prior work to obtain impossibility results related to local algorithms [4,7,15].

2 Graph Unfolding

Let H = (V, E) be a connected undirected graph and let v ∈ V . Construct a
(possibly infinite) rooted tree Tv = (V̄ , Ē) and a labelling fv : V̄ → V as follows.
First, introduce a vertex v̄ as the root of Tv and set fv(v̄) = v. Then, for each
vertex u adjacent to v in H, add a new vertex ū as a child of v̄ and set fv(ū) = u.
Then expand recursively as follows. For each unexpanded t̄ �= v̄ with parent s̄,
and each u �= f(s̄) adjacent to f(t̄) in H, add a new vertex ū as a child of t̄ and
set fv(ū) = u. Mark t̄ as expanded.

This construction is illustrated in Fig. 1. Put simply, we traverse H in a
breadth-first manner and treat vertices revisited due to a cycle as new vertices;
in particular, the tree Tv is finite if and only if H is acyclic.

H:

a

b

c
d

(Ta, fa):
a

b c

c b
da

d
a

b c

(Tc, fc):
c

a b d

b a

c c

a
d

b
d

(T , f):

a

c

b

a

c

b

d

d

Fig. 1. An example graph H and its unfolding (T , f)

The rooted, labelled trees (Tv, fv) obtained in this way for different choices
of v ∈ V are isomorphic viewed as unrooted trees [5]. For example, the infinite
labelled trees (Ta, fa) and (Tc, fc) in Fig. 1 are isomorphic and can be trans-
formed into each other by rotations. Thus, we can define the unfolding of H as
the labelled tree (T , f) where T is the unrooted version of Tv and f = fv; up to
isomorphism, this is independent of the choice of v ∈ V .

2.1 Unfolding in Graph Theory and Topology

We briefly summarise the graph theoretic and topological background related to
the unfolding (T , f) of H.

From a graph theoretic perspective, using the terminology of Godsil and
Royle [17, §6.8], the surjection f is a homomorphism from T to H. Moreover, it
is a local isomorphism: the neighbours of v̄ ∈ V̄ are in one-to-one correspondence
with the neighbours of f(v̄) ∈ V . A surjective local isomorphism f is a covering
map and (T , f) is a covering graph of H.

Tight Local Approximation Results for Max-Min Linear Programs 7

Covering maps in graph theory can be interpreted as a special case of covering
maps in topology: T is a covering space of H and f is, again, a covering map.
See, e.g., Hocking and Young [18, §4.8] or Munkres [19, §53].

In topology, a simply connected covering space is called a universal cover-
ing space [18, §4.8], [19, §80]. An analogous graph-theoretic concept is a tree:
unfolding T of H is equal to the universal covering U(H) of H as defined by
Angluin [5].

Unfortunately, the term “covering” is likely to cause confusion in the context
of graphs. The term “lift” has been used for a covering graph [13,20]. We have
borrowed the term “unfolding” from the field of model checking; see, e.g., Esparza
and Heljanko [21].

2.2 Unfolding and Local Algorithms

Let us now view the graph H as the communication graph of a distributed
system, and let (T , f) be the unfolding of H. Even if T in general is countably
infinite, a local algorithm A with local horizon r can be designed to operate at
a node of v ∈ H exactly as if it was a node v̄ ∈ f−1(v) in the communication
graph T . Indeed, assume that the local input at v̄ is identical to the local input
at f(v̄), and observe that the radius r neighbourhood of the node v̄ in T is equal
to the rooted tree Tv trimmed to depth r; let us denote this by Tv(r). To gather
the information in Tv(r), it is sufficient to gather information on all walks of
length at most r starting at v in H; using port numbering, the agents can detect
and discard walks that consecutively traverse the same edge.

Assuming that only port numbering is available, the information in Tv(r) is in
fact all that the agent v can gather. Indeed, to assemble, say, the subgraph of H
induced by BH(v, r), the agent v in general needs to distinguish between a short
cycle and a long path, and these are indistinguishable without node identifiers.

2.3 Unfolding and Max-Min LPs

Let us now consider a max-min LP associated with a graph G. The unfolding
of G leads in a natural way to the unfolding of the max-min LP. We show in
this section that in order to prove Theorem 1, it is sufficient to design a local
approximation algorithm for unfoldings of a max-min LP.

Unfolding requires us to consider max-min LPs where the underlying com-
munication graph is countably infinite. The graph is always a bounded-degree
graph, however. This allows us to circumvent essentially all of the technical-
ities otherwise encountered with infinite problem instances; cf. Anderson and
Nash [16]. For the purposes of this work, it suffices to define that x is a feasible
solution with utility at least ω if (x, ω) satisfies∑

v∈Vk
ckvxv ≥ ω ∀ k ∈ K,∑

v∈Vi
aivxv ≤ 1 ∀ i ∈ I,

xv ≥ 0 ∀ v ∈ V.

(3)

8 P. Floréen et al.

Observe that each of the sums in (3) is finite. Furthermore, this definition is
compatible with the finite max-min LP defined in Sect. 1.1. Namely, if ω∗ is the
optimum of a finite max-min LP, then there exists a feasible solution x∗ with
utility at least ω∗.

Let G = (V ∪ I ∪K, E) be the underlying finite communication graph. Unfold
G to obtain a (possibly infinite) tree T = (V̄ ∪ Ī ∪ K̄, Ē) with a labelling f .
Extend this to an unfolding of the max-min LP by associating a variable xv̄

with each agent v̄ ∈ V̄ , the coefficient aῑv̄ = af(ῑ),f(v̄) for each edge {ῑ, v̄} ∈ Ē,
ῑ ∈ Ī, v̄ ∈ V̄ , and the coefficient cκ̄v̄ = cf(κ̄),f(v̄) for each edge {κ̄, v̄} ∈ Ē, κ̄ ∈ K̄,
v̄ ∈ V̄ . Furthermore, assume an arbitrary port numbering for the edges incident
to each of the nodes in G, and extend this to a port numbering for the edges
incident to each of the nodes in T so that the port numbers at the ends of each
edge {ū, v̄} ∈ Ē are identical to the port numbers at the ends of {f(ū), f(v̄)}.
Lemma 1. Let Ā be a local algorithm for unfoldings of a family of max-min LPs
and let α ≥ 1. Assume that the output x of Ā satisfies

∑
v∈Vk

ckvxv ≥ ω′/α for
all k ∈ K if there exists a feasible solution with utility at least ω′. Furthermore,
assume that Ā uses port numbering only. Then, there exists a local approximation
algorithm A with the approximation ratio α for this family of max-min LPs.

Proof. Let x∗ be an optimal solution of the original instance, with utility ω∗.
Set xv̄ = x∗

f(v̄) to obtain a solution of the unfolding. This is a feasible solution
because the variables of the agents adjacent to a constraint ῑ in the unfolding
have the same values as the variables of the agents adjacent to the constraint
f(ῑ) in the original instance. By similar reasoning, we can show that this is a
feasible solution with utility at least ω∗.

Construct the local algorithm A using the assumed algorithm Ā as follows.
Each node v ∈ V simply behaves as if it was a node v̄ ∈ f−1(v) in the unfolding
T and simulates Ā for v̄ in T . By assumption, the solution x computed by Ā in
the unfolding has to satisfy∑

v̄∈Vκ̄
cκ̄v̄xv̄ ≥ ω∗/α ∀ κ̄ ∈ K̄,∑

v̄∈Vῑ
aῑv̄xv̄ ≤ 1 ∀ ῑ ∈ Ī .

Furthermore, if f(ū) = f(v̄) for ū, v̄ ∈ V̄ , then the neighbourhoods of ū and
v̄ contain precisely the same information (including the port numbering), so
the deterministic Ā must output the same value xū = xv̄. Giving the output
xv = xv̄ for any v̄ ∈ f−1(v) therefore yields a feasible, α-approximate solution
to the original instance. 	

We observe that Lemma 1 generalises beyond max-min LPs; we did not exploit
the linearity of the constraints and the objectives.

3 Approximability Results

We proceed to prove Theorem 1. Let ∆I ≥ 2, ∆K ≥ 2, and ε > 0 be fixed. By
virtue of Lemma 1, it suffices to consider only bipartite max-min LPs where the
graph G is a (finite or countably infinite) tree.

Tight Local Approximation Results for Max-Min Linear Programs 9

(a)

k0
v0

(b)

i0

Fig. 2. Radius 6 neighbourhoods of (a) an objective k0 ∈ K and (b) a constraint
i0 ∈ I in the regularised tree G, assuming ∆I = 4 and ∆K = 3. The black dots
represent agents v ∈ V , the open circles represent objectives k ∈ K, and the boxes
represent constraints i ∈ I .

To ease the analysis, it will be convenient to regularise G to a countably
infinite tree with |Vi| = ∆I and |Vk| = ∆K for all i ∈ I and k ∈ K.

To this end, if |Vi| < ∆I for some i ∈ I, add ∆I − |Vi| new virtual agents
as neighbours of i. Let v be one of these agents. Set aiv = 0 so that no matter
what value one assigns to xv, it does not affect the feasibility of the constraint i.
Then add a new virtual objective k adjacent to v and set, for example, ckv = 1.
As one can assign an arbitrarily large value to xv, the virtual objective k will
not be a bottleneck.

Similarly, if |Vk| < ∆K for some k ∈ K, add ∆K − |Vk| new virtual agents as
neighbours of k. Let v be one of these agents. Set ckv = 0 so that no matter what
value one assigns to xv, it does not affect the value of the objective k. Then add
a new virtual constraint i adjacent to v and set, for example, aiv = 1.

Now repeat these steps and grow virtual trees rooted at the constraints and
objectives that had less than ∆I or ∆K neighbours. The result is a countably
infinite tree where |Vi| = ∆I and |Vk| = ∆K for all i ∈ I and k ∈ K. Observe also
that from the perspective of a local algorithm it suffices to grow the virtual trees
only up to depth r because then the radius r neighbourhood of each original
node is indistinguishable from the regularised tree. The resulting topology is
illustrated in Fig. 2 from the perspective of an original objective k0 ∈ K and an
original constraint i0 ∈ I.

3.1 Properties of Regularised Trees

For each v ∈ V in a regularised tree G, define K(v, �) = K∩BG(v, 4�+1), that is,
the set of objectives k within distance 4�+1 from v. For example, K(v, 1) consists
of 1 objective at distance 1, ∆I−1 objectives at distance 3, and (∆K−1)(∆I−1)
objectives at distance 5; see Fig. 2a. In general, we have

|K(v, �)| = 1 + (∆I − 1)∆Kn(�), (4)

10 P. Floréen et al.

where

n(�) =
�−1∑
j=0

(∆I−1)j(∆K−1)j .

Let k ∈ K. If u, v ∈ Vk, u �= v, then the objective at distance 1 from u is the
same as the objective at distance 1 from v; therefore K(u, 0) = K(v, 0). The
objectives at distance 3 from u are at distance 5 from v, and the objectives at
distance 5 from u are at distance 3 or 5 from v; therefore K(u, 1) = K(v, 1). By
a similar reasoning, we obtain

K(u, �) = K(v, �) ∀ � ∈ N, k ∈ K, u, v ∈ Vk. (5)

Let us then study a constraint i ∈ I. Define

K(i, �) =
⋂

v∈Vi

K(v, �) = K ∩ BG(i, 4�) = K ∩ BG(i, 4� − 2).

For example, K(i, 2) consists of ∆I objectives at distance 2 from the constraint
i, and ∆I(∆K − 1)(∆I − 1) objectives at distance 6 from the constraint i; see
Fig. 2b. In general, we have

|K(i, �)| = ∆In(�). (6)

For adjacent v ∈ V and i ∈ I, we also define ∂K(v, i, �) = K(v, �) \ K(i, �). We
have by (4) and (6)

|∂K(v, i, �)| = 1 + (∆I∆K − ∆I − ∆K)n(�). (7)

3.2 Local Approximation on Regularised Trees

It now suffices to meet Lemma 1 for bipartite max-min LPs in the case when
the underlying graph G is a countably infinite regularised tree. To this end, let
L ∈ N be a constant that we choose later; L depends only on ∆I , ∆K and ε.

Each agent u ∈ V now executes the following algorithm. First, the agent
gathers all objectives k ∈ K within distance 4L + 1, that is, the set K(u, L).
Then, for each k ∈ K(u, L), the agent u gathers the radius 4L+2 neighbourhood
of k; let G(k, L) be this subgraph. In total, the agent u accumulates information
from distance r = 8L + 3 in the tree; this is the local horizon of the algorithm.

The structure of G(k, L) is a tree similar to the one shown in Fig. 2a. The
leaf nodes of the tree G(k, L) are constraints. For each k ∈ K(u, L), the agent
u forms the constant-size subproblem of (2) restricted to the vertices of G(k, L)
and solves it optimally using a deterministic algorithm; let xkL be the solution.
Once the agent u has solved the subproblem for every k ∈ K(u, L), it sets

q = 1/
(
∆I + ∆I(∆I − 1)(∆K − 1)n(L)

)
, (8)

xu = q
∑

k∈K(u,L) xkL
u . (9)

This completes the description of the algorithm. In Sect. 3.3 we show that the
computed solution x is feasible, and in Sect. 3.4 we establish a lower bound on
the performance of the algorithm. Section 3.5 illustrates the algorithm with an
example.

Tight Local Approximation Results for Max-Min Linear Programs 11

3.3 Feasibility

Because each xkL is a feasible solution, we have∑
v∈Vi

aivxkL
v ≤ 1 ∀ non-leaf i ∈ I in G(k, L), (10)

aivxkL
v ≤ 1 ∀ leaf i ∈ I, v ∈ Vi in G(k, L). (11)

Let i ∈ I. For each subproblem G(k, L) with v ∈ Vi, k ∈ K(i, L), the constraint
i is a non-leaf vertex; therefore∑

v∈Vi

∑
k∈K(i,L)

aivxkL
v =

∑
k∈K(i,L)

∑
v∈Vi

aivx
kL
v

(10)
≤

∑
k∈K(i,L)

1

(6)
= ∆I n(L).

(12)

For each subproblem G(k, L) with v ∈ Vi, k ∈ ∂K(v, i, L), the constraint i is a
leaf vertex; therefore∑

v∈Vi

∑
k∈∂K(v,i,L)

aivx
kL
v

(11)
≤
∑
v∈Vi

∑
k∈∂K(v,i,L)

1

(7)
= ∆I

(
1 + (∆I∆K − ∆I − ∆K)n(L)

)
.

(13)

Combining (12) and (13), we can show that the constraint i is satisfied:∑
v∈Vi

aivxv
(9)
= q

∑
v∈Vi

aiv

∑
k∈K(v,L)

xkL
v

= q

(∑
v∈Vi

∑
k∈K(i,L)

aivxkL
v

)
+ q

(∑
v∈Vi

∑
k∈∂K(v,i,L)

aivxkL
v

)
≤ q∆In(L) + q∆I

(
1 + (∆I∆K − ∆I − ∆K)n(L)

)
(8)
= 1.

3.4 Approximation Ratio

Consider an arbitrary feasible solution x′ of the unrestricted problem (2) with
utility at least ω′. This feasible solution is also a feasible solution of each finite
subproblem restricted to G(k, L); therefore∑

v∈Vh
chvxkL

v ≥ ω′ ∀ h ∈ K in G(k, L). (14)

Define
α =

1
q(1 + (∆I − 1)∆Kn(L))

. (15)

12 P. Floréen et al.

Consider an arbitrary k ∈ K and u ∈ Vk. We have∑
v∈Vk

ckvxv = q
∑
v∈Vk

ckv

∑
h∈K(v,L)

xhL
v

(5)
= q

∑
h∈K(u,L)

∑
v∈Vk

ckvxhL
v

(14)
≥ q

∑
h∈K(u,L)

ω′

(4)
≥ q(1 + (∆I − 1)∆Kn(L))ω′

(15)
= ω′/α.

By (8) and (15), we have

α = ∆I

(
1 − 1

∆K + 1/((∆I − 1)n(L))

)
.

For a sufficiently large L, we meet Lemma 1 with α < ∆I(1 − 1/∆K) + ε. This
completes the proof of Theorem 1.

3.5 An Example

Assume that ∆I = 4, ∆K = 3, and L = 1. For each k ∈ K, our approximation
algorithm constructs and solves a subproblem; the structure of the subproblem
is illustrated in Fig. 2a. Then we simply sum up the optimal solutions of each
subproblem. For any v ∈ V , the variable xv is involved in exactly |K(v, L)| = 10
subproblems.

First, consider an objective k ∈ K. The boundary of a subproblem always
lies at a constraint, never at an objective. Therefore the objective k and all its
adjacent agents v ∈ Vk are involved in 10 subproblems. We satisfy the objective
exactly 10 times, each time at least as well as in the global optimum.

Second, consider a constraint i ∈ I. The constraint may lie in the middle of
a subproblem or at the boundary of a subproblem. The former happens in this
case |K(i, L)| = 4 times; the latter happens |Vi| · |∂K(v, i, L)| = 24 times. In
total, we use up the capacity available at the constraint i exactly 28 times. See
Fig. 2b for an illustration; there are 28 objectives within distance 6 from the
constraint i0 ∈ I.

Finally, we scale down the solution by factor q = 1/28. This way we obtain a
solution which is feasible and within factor α = 2.8 of optimum. This is close to
the lower bound α > 2.66 from Theorem 2.

4 Inapproximability Results

We proceed to prove Theorems 2 and 3. Let r = 4, 8, . . ., s ∈ N, DI ∈ Z
+, and

DK ∈ Z
+ be constants whose values we choose later. Let Q = (I ′ ∪K ′, E′) be a

Tight Local Approximation Results for Max-Min Linear Programs 13

bipartite graph where the degree of each i ∈ I ′ is DI , the degree of each k ∈ K ′

is DK , and there is no cycle of length less than g = 2(4s + 2 + r) + 1. We first
show that such graphs exist for all values of the parameters.

We say that a bipartite graph G = (V ∪U, E) is (a, b)-regular if the degree of
each node in V is a and the degree of each node in U is b.

Lemma 2. For any positive integers a, b and g, there exists an (a, b)-regular
bipartite graph which has no cycle of length less than g.

Proof (sketch). We slightly adapt a proof of a similar result for d-regular graphs
[13, Theorem A.2] to our needs. We proceed by induction on g, for g = 4, 6, 8,

For the base case g = 4, we can choose the complete bipartite graph Kb,a.
Next consider g ≥ 6. Let G = (V ∪ U, E) be an (a, b)-regular bipartite graph

where the length of the shortest cycle is c ≥ g−2. Let S ⊆ E. Construct a graph
GS = (VS ∪ US , ES) as follows:

VS = {0, 1} × V,

US = {0, 1} × U,

ES = {{(0, v), (0, u)}, {(1, v), (1, u)} : {v, u} ∈ S}
∪ {{(0, v), (1, u)}, {(1, v), (0, u)} : {v, u} ∈ E \ S}.

The graph GS is an (a, b)-regular bipartite graph. Furthermore, GS has no cycle
of length less than c. We proceed to show that there exists a subset S such that
the number of cycles of length exactly c in GS is strictly less than the number of
cycles of length c in G. Then by a repeated application of the same construction,
we can conclude that there exists a graph which is an (a, b)-regular bipartite
graph and which has no cycle of length c; that is, its girth is at least g.

We use the probabilistic method to show that the number of cycles of length
c decreases for some S ⊆ E. For each e ∈ E, toss an independent and unbiased
coin to determine whether e ∈ S. For each cycle C ⊆ E of length c in G, we have
in GS either two cycles of length c or one cycle of length 2c, depending on the
parity of |C ∩ S|. The expected number of cycles of length c in GS is therefore
equal to the number of cycles of length c in G. The choice S = E doubles the
number of such cycles; therefore some other choice necessarily decreases the
number of such cycles. 	

4.1 The Instance S
Given the graph Q = (I ′ ∪ K ′, E′), we construct an instance of the max-min
LP problem, S. The underlying communication graph G = (V ∪ I ∪ K, E) is
constructed as shown in the following figure.

Q G for s = 0 G for s = 1

14 P. Floréen et al.

Each edge e = {i, k} ∈ E′ is replaced by a path of length 4s + 2: the path
begins with the constraint i ∈ I ′; then there are s segments of agent–objective–
agent–constraint; and finally there is an agent and the objective k ∈ K ′. There
are no other edges or vertices in G. For example, in the case of s = 0, DI = 4,
DK = 3, and sufficiently large g, the graph G looks locally similar to the trees
in Fig. 2, even though there may be long cycles.

The coefficients of the instance S are chosen as follows. For each objective
k ∈ K ′, we set ckv = 1 for all v ∈ Vk. For each objective k ∈ K \ K ′, we set
ckv = DK − 1 for all v ∈ Vk. For each constraint i ∈ I, we set aiv = 1. Observe
that S is a bipartite max-min LP; furthermore, in the case s = 0, this is a 0/1
max-min LP. We can choose the port numbering in G in an arbitrary manner,
and we can assign unique node identifiers to the vertices of G as well.

Lemma 3. The utility of any feasible solution of S is at most

DK

DI
· DK − 1 + DKDIs − DIs

DK − 1 + DKs
.

Proof. Consider a feasible solution x of S, with utility ω. We proceed to derive
an upper bound for ω. For each j = 0, 1, . . . , 2s, let V (j) consist of agents v ∈ V
such that the distance to the nearest constraint i ∈ I ′ is 2j + 1. That is, V (0)
consists of the agents adjacent to an i ∈ I ′ and V (2s) consists of the agents
adjacent to a k ∈ K ′. Let m = |E′|; we observe that |V (j)| = m for each j.

Let X(j) =
∑

v∈V (j) xv/m. From the constraints i ∈ I ′ we obtain

X(0) =
∑

v∈V (0)

xv/m =
∑
i∈I′

∑
v∈Vi

aivxv/m ≤
∑
i∈I′

1/m = |I ′|/m = 1/DI .

Similarly, from the objectives k ∈ K ′ we obtain X(2s) ≥ ω|K ′|/m = ω/DK .
From the objectives k ∈ K \ K ′, taking into account our choice of the co-

efficients ckv, we obtain the inequality X(2t) + X(2t + 1) ≥ ω/(DK − 1) for
t = 0, 1, . . . , s − 1. From the constraints i ∈ I \ I ′, we obtain the inequality
X(2t+1)+X(2t+2) ≤ 1 for t = 0, 1, . . . , s−1. Combining inequalities, we have

ω/DK − 1/DI ≤ X(2s) − X(0)

=
s−1∑
t=0

((
X(2t + 1) + X(2t + 2)

)
−
(
X(2t) + X(2t + 1)

))
≤ s ·

(
1 − ω/(DK − 1)

)
.

The claim follows. 	

4.2 The Instance Sk

Let k ∈ K ′. We construct another instance of the max-min LP problem, Sk. The
communication graph of Sk is the subgraph Gk of G induced by BG(k, 4s+2+r).
By the choice of g, there is no cycle in Gk. As r is a multiple of 4, the leaves
of the tree Gk are constraints. For example, in the case of s = 0, DI = 4, DK = 3,

Tight Local Approximation Results for Max-Min Linear Programs 15

and r = 4, the graph Gk is isomorphic to the tree of Fig. 2a. The coefficients,
port numbers and node identifiers are chosen in Gk exactly as in G.

Lemma 4. The optimum utility of Sk is greater than DK − 1.

Proof. Construct a solution x as follows. Let D = max {DI , DK + 1}. If the
distance between the agent v and the objective k in Gk is 4j + 1 for some j, set
xv = 1 − 1/D2j+1. If the distance is 4j + 3, set xv = 1/D2j+2.

To see that x is a feasible solution, first observe that feasibility is clear for a
leaf constraint. Any non-leaf constraint i ∈ I has at most DI neighbours, and
the distance between k and i is 4j + 2 for some j. Thus∑

v∈Vi

aivxv ≤ 1 − 1/D2j+1 + (DI − 1)/D2j+2 < 1.

Let ωk be the utility of x. We show that ωk > DK − 1. First, consider the
objective k. We have∑

v∈Vk

ckvxv = DK(1 − 1/D) > DK − 1.

Second, each objective h ∈ K ′\{k} has DK neighbours and the distance between
h and k is 4j for some j. Thus∑

v∈Vh

chvxv = 1/D2j + (DK − 1)(1 − 1/D2j+1) > DK − 1.

Finally, each objective h ∈ K \K ′ has 2 neighbours and the distance between h
and k is 4j for some j; the coefficients are chv = DK − 1. Thus∑

v∈Vh

chvxv = (DK − 1)(1/D2j + 1 − 1/D2j+1) > DK − 1.
	

4.3 Proof of Theorem 2

Let ∆I ≥ 2 and ∆K ≥ 2. Assume that A is a local approximation algorithm
with the approximation ratio α. Set DI = ∆I , DK = ∆K and s = 0. Let r
be the local horizon of the algorithm, rounded up to a multiple of 4. Construct
the instance S as described in Sect. 4.1; it is a 0/1 bipartite max-min LP, and
it satisfies the degree bounds ∆I and ∆K . Apply the algorithm A to S. The
algorithm produces a feasible solution x. By Lemma 3 there is a constraint k
such that

∑
v∈Vk

xv ≤ ∆K/∆I .
Now construct Sk as described in Sect. 4.2; this is another 0/1 bipartite max-

min LP. Apply A to Sk. The algorithm produces a feasible solution x′. The radius
r neighbourhoods of the agents v ∈ Vk are identical in S and Sk; therefore the
algorithm must make the same decisions for them, and we have

∑
v∈Vk

x′
v ≤

∆K/∆I . But by Lemma 4 there is a feasible solution of Sk with utility greater
than ∆K −1; therefore the approximation ratio of A is α > (∆K − 1)/(∆K/∆I).
This completes the proof of Theorem 2.

16 P. Floréen et al.

4.4 Proof of Theorem 3

Let ∆I ≥ 3, ∆K ≥ 3, and 0 < δ < 1/10. Assume that A is a local approximation
algorithm with the approximation ratio α. Set DI = 3, DK = 3, and s =
�4/(7δ)− 1/2. Let r be the local horizon of the algorithm, rounded up to a
multiple of 4.

Again, construct the instance S. The relative growth of G is at most 1 +
2j/((2j − 1)(2s + 1)) beyond radius R = j(4s + 2); indeed, each set of 2j new
agents can be accounted for 1+ 2+ · · ·+ 2j−1 = 2j − 1 chains with 2s+1 agents
each. Choosing j = 3, the relative growth of G is at most 1+ δ beyond radius R.

Apply A to S. By Lemma 3 we know that there exists an objective h such
that

∑
v∈Vh

xv ≤ 2 − 2/(3s + 2). Choose a k ∈ K ′ nearest to h. Construct Sk

and apply A to Sk. The local neighbourhoods of the agents v ∈ Vh are identical
in S and Sk. By Lemma 4 there is a feasible solution of Sk with utility greater
than 2. Using the assumption δ < 1/10, we obtain

α >
2

2 − 2/(3s + 2)
= 1 +

1
3s + 1

≥ 1 +
1

3(4/(7δ) + 1/2) + 1
> 1 +

δ

2
.

This completes the proof of Theorem 3.

Acknowledgements

We thank anonymous reviewers for their helpful feedback. This research was
supported in part by the Academy of Finland, Grants 116547 and 117499, and
by Helsinki Graduate School in Computer Science and Engineering (Hecse).

References

1. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Com-
puting 24(6), 1259–1277 (1995)

2. Floréen, P., Hassinen, M., Kaski, P., Suomela, J.: Local approximation algorithms
for a class of 0/1 max-min linear programs (manuscript, 2008) arXiv:0806.0282
[cs.DC]

3. Floréen, P., Kaski, P., Musto, T., Suomela, J.: Approximating max-min linear
programs with local algorithms. In: Proc. 22nd IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Miami, FL, USA. IEEE, Piscataway
(2008)

4. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Comput-
ing 21(1), 193–201 (1992)

5. Angluin, D.: Local and global properties in networks of processors. In: Proc. 12th
Annual ACM Symposium on Theory of Computing (STOC), Los Angeles, CA,
USA, pp. 82–93. ACM Press, New York (1980)

6. Papadimitriou, C.H., Yannakakis, M.: Linear programming without the matrix.
In: Proc. 25th Annual ACM Symposium on Theory of Computing (STOC), San
Diego, CA, USA, pp. 121–129. ACM Press, New York (1993)

Tight Local Approximation Results for Max-Min Linear Programs 17

7. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In:
Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Mi-
ami, FL, USA, pp. 980–989. ACM Press, New York (2006)

8. Lynch, N.A.: A hundred impossibility proofs for distributed computing. In: Proc.
8th Annual ACM Symposium on Principles of Distributed Computing (PODC),
Edmonton, Canada, pp. 1–28. ACM Press, New York (1989)

9. Kuhn, F., Moscibroda, T.: Distributed approximation of capacitated dominating
sets. In: Proc. 19th Annual ACM Symposium on Parallel Algorithms and Archi-
tectures (SPAA), San Diego, CA, USA, pp. 161–170. ACM Press, New York (2007)

10. Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of bounded growth.
In: Proc. 24th Annual ACM Symposium on Principles of Distributed Computing
(PODC), Las Vegas, NV, USA, pp. 60–68. ACM Press, New York (2005)

11. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3),
261–277 (1988)

12. Lazebnik, F., Ustimenko, V.A.: Explicit construction of graphs with an arbitrary
large girth and of large size. Discrete Applied Mathematics 60(1–3), 275–284 (1995)

13. Hoory, S.: On Graphs of High Girth. PhD thesis, Hebrew University, Jerusalem
(March 2002)

14. McKay, B.D., Wormald, N.C., Wysocka, B.: Short cycles in random regular graphs.
Electronic Journal of Combinatorics 11(1), R66 (2004)

15. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally!
In: Proc. 23rd Annual ACM Symposium on Principles of Distributed Computing
(PODC), St. John’s, Newfoundland, Canada, pp. 300–309. ACM Press, New York
(2004)

16. Anderson, E.J., Nash, P.: Linear Programming in Infinite-Dimensional Spaces:
Theory and Applications. John Wiley & Sons, Ltd., Chichester (1987)

17. Godsil, C., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics,
vol. 207. Springer, New York (2004)

18. Hocking, J.G., Young, G.S.: Topology. Addison-Wesley, Reading (1961)
19. Munkres, J.R.: Topology, 2nd edn. Prentice-Hall, Upper Saddle River (2000)
20. Amit, A., Linial, N., Matoušek, J., Rozenman, E.: Random lifts of graphs. In:

Proc 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Wash-
ington, DC, USA, pp. 883–894. Society for Industrial and Applied Mathematics,
Philadelphia (2001)

21. Esparza, J., Heljanko, K.: A new unfolding approach to LTL model checking. In:
Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
475–486. Springer, Heidelberg (2000)

Minimizing Average Flow Time
in Sensor Data Gathering�

Vincenzo Bonifaci1,3, Peter Korteweg2,
Alberto Marchetti-Spaccamela3,��, and Leen Stougie2,4,���

1 Università degli Studi dell’Aquila, Italy
bonifaci@dis.uniroma1.it

2 Eindhoven University of Technology, The Netherlands
p.korteweg@tue.nl, l.stougie@tue.nl

3 Sapienza Università di Roma, Italy
alberto@dis.uniroma1.it

4 CWI, Amsterdam, The Netherlands
stougie@cwi.nl

Abstract. Building on previous work [Bonifaci et al., Minimizing flow
time in the wireless gathering problem, STACS 2008] we study data gath-
ering in a wireless network through multi-hop communication with the
objective to minimize the average flow time of a data packet. We show
that for any ε ∈ (0, 1) the problem is NP-hard to approximate within
a factor better than Ω(m1−ε), where m is the number of data packets.
On the other hand, we give an online polynomial time algorithm that we
analyze using resource augmentation. We show that the algorithm has
average flow time bounded by that of an optimal solution when the clock
speed of the algorithm is increased by a factor of five. As a byproduct of
the analysis we obtain a 5-approximation algorithm for the problem of
minimizing the average completion time of data packets.

1 Introduction

In this paper we study a scheduling problem motivated by data gathering in
sensor networks: we are given a graph where nodes represent sensors (or wireless
stations), edges possible communication links and there is special node, the base
station (also called the sink). Over time events occur at the nodes; events are
unpredictable and each such event triggers the invoice of a packet toward the
sink using edges of the graph (multihop communication). The goal is to find an
on-line schedule (i.e. a schedule unaware of future events) that optimizes a given
objective function; the obtained schedule must comply with constraints posed by

� Research supported by EU FET-project under contract no. FP6-021235-2 AR-
RIVAL and by the EU COST-action 293 GRAAL.

�� Research supported by EU ICT-FET 215270 FRONTS and MIUR-FIRB Italy-
Israel project RBIN047MH9.

��� Research supported the Dutch BSIK-BRICKS project.

S. Fekete (Ed.): ALGOSENSORS 2008, LNCS 5389, pp. 18–29, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Minimizing Average Flow Time in Sensor Data Gathering 19

interferences in the communication that restrict contemporary communication
between nearby nodes.

The problem was introduced in [4] in the context of wireless access to the
Internet in villages. For a motivation and history of the problem we refer to
[4, 6] or to the PhD-thesis of Korteweg [14]. Here we restrict to explaining the
ingredients.

In our model we assume that sensor nodes share a common clock, thus allowing
division of time into rounds. At each round a node can either send a packet or
receive a packet or be silent. Since not all nodes in the network can communicate
with each other directly, packets have to be sent through several intermediate
nodes before they can be gathered at the sink through multihop communication.

The key issue is interference. The model we use was proposed by Bermond et
al. in [4]: there is an edge between nodes i and j if corresponding sensors can
directly communicate (i.e. they are within transmission range of each other). An
integer parameter dI models the interference radius, with distance between any
pair of vertices expressed as the number of edges on a shortest path between
them. A node j successfully receives a packet from one of its neighbors if no
other node within distance dI from j is transmitting in the same round. In
fact, Bermond et al. in [4] proposed an integer transmission radius dT ≤ dI ,
indicating the maximum number of edges between any two consecutive hops for
every message. In that sense we just consider the case dT = 1.

Given an instance of the data gathering problem several possible objective
functions can be considered. In [4] the authors considered the goal of mini-
mizing the completion time (makespan) of the schedule. Makespan is promi-
nently used for assessing the performance of scheduling algorithms; however it
is now accepted that it is an unsuitable measure when jobs arrive in continuous
streams [3].

Today, flow time minimization is a largely used criterion in scheduling theory
that more suitably allows to assess the quality of service provided when multiple
requests occur over time [8, 9,13,19]. The flow time of a data packet is the time
elapsed between its release at the release node and its arrival at the sink. In [6]
the considered objective was to minimize the maximum flow time of a data
packet. Here we study the problem of minimizing the average flow time or total
flow time of data packets.

Both flow time objective functions have been thoroughly studied by the
scheduling community and there is an extensive literature both for the on-line
and off-line algorithms for which we refer to [18]. Here we remark that the two
problems have fundamentally different characteristics and that results for one
problem do not carry over to the other one. In general minimizing total flow
time appears to be a more difficult problem than minimizing max flow time.

In fact, if we consider on-line algorithms and if the objective function requires
to minimize the maximum flow time then the First In Firts Out (FIFO) heuristic
is the natural choice: at each time FIFO schedules the earliest released jobs
among unfinished jobs. In the case of uniprocessor scheduling FIFO produces
an optimal solution while in the case of parallel machines it gives a 3 − 2/m

20 V. Bonifaci et al.

approximation (where m denotes the number of used machines) [3]. When the
objective function is total flow time the natural heuristic to be used is Shortest
Remaining Processing Time (SRPT) first, the on-line strategy that schedules
first jobs closer to completion. This heuristic is optimal in the case of one machine
but it is not constant approximate in the case of parallel machines. In fact SRPT
gives a solution that is Θ(min(log n

m , log P)) approximate, where n and m denote
respectively the number of jobs and the number of machines and P denotes the
ratio between the longest and the smallest processing time [17]. In the same
paper it is shown that no on-line randomized algorithm can achieve a better
competitive ratio.

We resume the problem that we study in the following definition. A mathe-
matical formalization will be given in Section 2.

F-Wgp. An instance of the Wireless Gathering Problem (Wgp) is given by a
network which consists of several stations (nodes) and one base station (the
sink), modeled as a graph, together with the interference radius dI ; over time
data packets arrive at stations that have to be gathered at the base station.

A feasible solution of an instance of Wgp is a schedule without interference
which determines for each packet both route and times at which it is sent.

The objective is to minimize the average flow time of packets.
Having defined the problem we now discuss two key aspects that restrict the

class of algorithms that we consider. Firstly, we are interested in on-line algo-
rithms. At time t an on-line algorithm makes its decisions on events that occur
at or before t and it ignores future events. Competitive analysis compares the
solution of the on-line algorithm with the optimal solution obtained by an omni-
scient adversary. We refer the reader to [7] for a comprehensive survey on on-line
algorithms and competitive analysis. Secondly we restrict to simple distributed
algorithms that might be amenable for implementation or that faithfully repre-
sent algorithms used in practice. In fact, we think that sophisticated algorithms
are impractical for implementations and have mainly theoretical interest.

Related Work. The Wireless Gathering Problem was introduced by Bermond
et al. [4] in the context of wireless access to the Internet in villages. The authors
proved that the problem of minimizing the completion time is NP-hard and
presented a greedy algorithm with asymptotic approximation ratio at most 4.
They do not consider release times. In [5] we considered the same problem with
arbitrary release times and proposed a simple on-line greedy algorithm with the
same approximation ratio. Both papers do not consider distributed algorithms.
The present paper builds on [6] in which on-line distributed algorithms are anal-
ysed for the problem when the objective is to minimize the maximum flow time
of a data packet.

The case dI = 1 has been extensively considered (see for example [2, 11, 12]);
we remark that assuming dI = 1 or assuming that interferences/transmissions
are modeled according to the well known unit disk graph model does not ade-
quately represent interferences as they occur in practice [21]. We also observe

Minimizing Average Flow Time in Sensor Data Gathering 21

that almost all of the previous literature considered the objective of minimizing
the completion time (see for example [1,2,4, 11, 12, 15,20]).

Finally, we note that many papers study broadcasting in wireless networks
[1, 20]. However, we stress that broadcasting requires to broadcast the same
piece of information to all nodes; so the two problems are intrinsically different.
In particular, given a broadcast schedule it is not possible to obtain a gather-
ing schedule by simply exchanging sender and receiver. This would only be true
if data packets could be aggregated into single packets and disaggregated after-
wards, or in case of private broadcasting in which each data packet has a specific
recipient address.

Results of the Paper. The F-Wgp problem is NP-hard, as can be shown by
using a modification of a construction by Bermond et al. [4] (this also implies
that C-Wgp is NP-hard). In Section 3.2 we show the stronger result that F-

Wgp is also hard to approximate, namely for any ε ∈ (0, 1) there is a lower
bound of Ω(m1−ε) on the approximation ratio (m is the number of packets). We
notice that this is a stronger inapproximability result than the one we obtained
for the maximum flow time minimization problem [6]. The construction of both
results have many similarities though, both being based on the same reduction.
We will point out the differences between the two in the analysis in Section 3.2.

In Section 3.1 we propose an online polynomial time algorithm based on the
Shortest Remaining Processing Time first rule. We show that it yields a pseu-
doapproximation to F-Wgp, in the sense that its average flow time is not larger
than that of an optimal solution, assuming that the algorithm runs at speed 5
times higher than an optimal algorithm. This type of analysis, called resource
augmentation, has already been used successfully in the context of many machine
scheduling problems [9,13]. We showed already in [6] that resource augmentation
is also a useful tool for the analysis of algorithms for wireless communication,
allowing to obtain positive results for data gathering problems.

It is not surprising that a FIFO-type algorithm as studied for minimizing
maximum flow time in [6] does not work for minimizing average flow time when
SRPT rule is the one to use. However we observe that we are unable to prove
our result for SRPT but only for a modified rule. It remains an interesting open
problem to decide whether a similar result can be proved for SRPT.

As a byproduct of our analysis we also obtain an online, polynomial time
5-approximation algorithm for C-Wgp. An additional useful property of our
algorithms is that nodes only need a limited amount of information in order to
coordinate.

2 Mathematical Formulations

In this section we define the problem more formally. The model we use is not
new: it can be seen as a generalization of a well-studied model for packet radio
networks [1,2]. It has also been used in more recent work [4, 6]. We summarize
it for independent reading.

22 V. Bonifaci et al.

An instance of Wgp consists of a graph G = (V, E), a sink node s ∈ V , a
positive integer dI , and a set of data packets J = {1, 2, . . . , m}. Each packet
j ∈ J has a release node or origin oj ∈ V and a release date rj ∈ R+. The
release date specifies the time at which the packet enters the network, i.e. packet
j is not available for transmission before round rj .

Time is slotted; each time slot is called a round. The rounds are numbered
0, 1, 2, . . . During each round a node may either be sending a packet, be receiving
a packet or be inactive. If two nodes u and v are adjacent, then u can send a
packet to v during a round. If node u sends a packet j to v in some round, the
pair (u, v) is said to be a call from u to v. For each pair of nodes u, v ∈ V , the
distance between u and v, denoted by d(u, v), is the minimum number of edges
between u and v in G. Two calls (u, v) and (u′, v′) interfere if they occur in
the same round and either d(u′, v) ≤ dI or d(u, v′) ≤ dI ; otherwise the calls are
compatible. The parameter dI is called the interference radius.

We formulate our problem as an offline problem, but the algorithms we analyze
are online, in the sense that when scheduling a certain round they only use the
information about packets released not later than the same round.

A solution for a Wgp instance is a schedule of compatible calls such that all
packets are ultimately collected at the sink. Since it suffices to keep only one
copy of each packet during the execution of a schedule, we assume that at any
time there is a unique copy of each packet. Packets cannot be aggregated in this
model.

Given a schedule, let vt
j be the unique node holding packet j at time t. The

value Cj := min{t : vt
j = s} is called the completion time of packet j, while

Fj := Cj − rj is the flow time of packet j. In this paper we are interested in the
minimization of

∑
j Fj (F-Wgp). As a byproduct of the analysis of F-Wgp, we

also give a result on the minimization of
∑

j Cj (C-Wgp).
Some additional notation: we denote by δj := d(oj , s) the minimum number of

calls required for packet j to reach s. We also define γ := dI +2, which is a lower
bound, because of interference, on the inter arrival time at s of two messages
that use the same dI + 2 nodes as hops on their way to s. The critical region is
the set {v ∈ V | d(s, v) ≤ �(dI − 1)/2�}, which is the region around s in which
no two nodes can receive a message in the same round. Related to this region we
define γ∗ := �(dI + 1)/2�, which is then a lower bound, because of interference,
on the inter arrival time at s between any two messages that are released outside
the critical region.

In what follows we assume that the reader is familiar with the basic notions
related to approximation algorithms. We also use resource augmentation to as-
sess our algorithms. We consider augmentation based on speed, meaning that
the algorithm can schedule compatible calls with higher speed than an optimal
algorithm. For any σ ≥ 1, we call an algorithm a σ-speed algorithm if the time
used by the algorithm to schedule a set of compatible calls is 1/σ time units.
Thus, the ith round occurs during time interval [i/σ, (i + 1)/σ). We notice that
the release dates of packets are independent of the value of σ.

Minimizing Average Flow Time in Sensor Data Gathering 23

3 Gathering to Minimize Average Flow Time
3.1 The Interleaved Shortest Remaining Processing Time

Algorithm

We introduce an algorithm that we call Interleaved SRPT and prove that a
constant-factor speed augmentation is enough to enable this algorithm to out-
perform the optimal average flow time of the original instance. The algorithm is
based on a well-known scheduling algorithm, the shortest remaining processing
time first rule (SRPT) [22], so we first describe this algorithm in the context of
Wgp.

Algorithm 1. Shortest Remaining Processing Time (SRPT)
for k = 0, 1, 2, . . . do

At time t = k/σ, let 1, . . . , m′ be the available packets in order of non-decreasing
distance to the sink (that is, d(vt

1, s) ≤ d(vt
2, s) ≤ . . . ≤ d(vt

m′ , s))
for j = 1 to m′ do

Send j to the next hop along an arbitrary shortest path from vt
j to the sink,

unless this creates interference with a packet j′ with j′ < j
end for

end for

Every iteration k in the algorithm corresponds to a round of the schedule.
We notice that this algorithm is a dynamic-priority algorithm, in the sense that
the ordering in which packets are scheduled can change from round to round.
We also notice that, δj < γ∗ for each packet j ∈ J (that is, when all packets
are released inside the critical region), then Wgp reduces to a single machine
scheduling problem with preemption. The problem of minimizing average flow-
times is then equivalent to the single machine scheduling problem with the same
objective, allowing preemption and jobs having release times: 1|rj , pmtn|

∑
j Fj

in terms of [16]. For the off-line problem minimizing average flow-time has the
same optimal solution as minimizing average completion times. Schrage [22]
showed that SRPT solves the latter problem to optimality, which motivated our
use of SRPT.

Consider a schedule generated by σ-speed SRPT, that is, every round is
executed in time 1/σ. It will be convenient to refer to round [i/σ, (i + 1)/σ) as
“round i/σ”. Recall that we use Cj to denote the completion time of packet j.

We denote the ith packet to arrive at the sink in this schedule as p(i), for
1 ≤ i ≤ m. We define a component as a set S of packets with the following
properties:

1. There is an index a such that S = {p(a), p(a + 1), . . . , p(a + |S| − 1)};
2. If i ≥ 1 and i ≤ |S| − 1, then Cp(a+i) ≤ Cp(a+i−1) + γ/σ;
3. If a + |S| ≤ m, then Cp(a+|S|) > Cp(a+|S|−1) + γ/σ.

That is, a component is a maximal set of packets arriving subsequently at the
sink, each within time γ/σ of the previous packet. It follows from the definition

24 V. Bonifaci et al.

that the set J of all packets can be partitioned into components T1, . . . , T�, for
some �.

Lemma 1. For any component T we have minj∈T Cj = minj∈T (rj + δj/σ).

Proof. Consider the partition of the packet set J into components T1, . . . , T�.
The components are ordered so that maxj∈Ti Cj < mink∈Ti+1 Ck for each i; by
definition of a component such an ordering exists.

Let S(i) = ∪�
h=iTh, for 1 ≤ i ≤ �. We define ti := minj∈S(i)(rj + δj/σ),

the earliest possible arrival time of any packet in S(i), and ti := max{rj :
j ∈ S(i) and rj + δj/σ = ti}, the maximum release date of a packet in S(i)
with earliest possible arrival time ti. Consider the following set of packets, for
ti ≤ t ≤ ti:

Mi(t) = {j ∈ S(i) : rj ≤ t and d(vt
j , s) ≤ d(vt

k, s) for all k ∈ S(i)},

Note that |Mi(t)| ≥ 1 for ti ≤ t ≤ ti, because no packet in S(i) arrives at the sink
before round ti. The crucial observation is that for each round t we have that if
no packet in Mi(t) is sent towards the sink, then some packet in J \S(i) is sent;
also, by definition of SRPT this packet must be closer to the sink during round
t than any packet in Mi(t). The proof of the lemma follows from the following
claim.

Claim. For i = 1, 2, . . . , � and for any round t ∈ [ti, ti] there exists j ∈ Mi(t)
such that t + d(vt

j , s)/σ ≤ ti.

Suppose the claim holds. Then choosing t = ti implies that for each i, 1 ≤ i ≤ �,
there is a packet j ∈ Mi(ti) which arrives at the sink in round ti = mink∈S(i) rk+
δk/σ. As a consequence j ∈ Ti, and ti = rj + δj/σ, which proves the lemma. 	

Proof of Claim. The claim trivially holds for t = ti, because some packet j ∈ S(i)
with earliest possible arrival time ti is released in round ti, hence ti+d(vti

j , s)/σ =
rj + δj/σ = ti.

First, consider the case i = 1; then S(1) = J . It follows from the observation
above and the facts J \S(1) = ∅ and |M1(t)| ≥ 1 for t ∈ [t1, t1] that during each
round t ∈ [t1, t1] some packet in M1(t) is sent towards the sink. This proves the
claim for this case.

Next consider i > 1. Suppose that during each round t ∈ [ti, ti] some packet
in Mi(t) is sent towards the sink. Then as above this would prove the claim.
Otherwise, there must be a maximal round t′ ∈ [ti, ti] in which no packet in
Mi(t′) is sent towards the sink. By definition of SRPT there is a packet k ∈
J \S(i) which is sent, and a packet j ∈ Mi(t′) for which d(vt′

j , vt′

k) ≤ dI +1. Since

j is not sent during round t′, we also have d(vt′+1/σ
j , vt′

k) ≤ dI + 1. Additionally,
d(vt′

k , s)/σ ≤ Ck − t′ because otherwise k could not reach the sink by time Ck.
Now for each round t ∈ [t′+1/σ, ti] a packet in Mi(t) is sent. In particular, there
must be a packet from the set ∪t∈(t′,ti]Mi(t), call it q, that arrives at the sink

Minimizing Average Flow Time in Sensor Data Gathering 25

no later than j would arrive if j were always sent from round t′ + 1/σ on. We
have

Cq ≤ (t′ + 1/σ) +
(
d(vt′+/σ

j , vt′

k) + d(vt′

k , s)
)

/σ ≤ Ck + (dI + 2)/σ = Ck + γ/σ.

That is, packet q ∈ S(i) arrives at most γ/σ time units after packet k ∈ J \S(i),
which contradicts the fact that q and k are in different components. Thus this
case never occurs and the claim holds. 	

We now describe Interleaved SRPT. The algorithm partitions the set of pack-
ets J in two subsets, J in := {j ∈ J : δj < γ∗} and Jout := {j ∈ J : δj ≥ γ∗}.
The two subsets are scheduled in an interleaved fashion using SRPT. The pseu-
docode is given as Algorithm 2.

Algorithm 2. Interleaved SRPT (ISRPT)
Inizialization: c := 1
loop

if c �= 0 (mod 5) then
execute one round of SRPT on the set Jout

else
execute one round of SRPT on the set J in

end if
c := c + 1

end loop

In the performance analysis of Interleaved SRPT we use the following
lower bound on the sum of optimal completion times of a subset of jobs in Jout,
which is obtained as a direct corollary of Lemma 2 in [5].

Lemma 2. Let S ⊆ Jout. If C∗
j denotes the completion time of packet j in any

feasible schedule, we have

∑
j∈S

C∗
j ≥

|S|−1∑
i=0

(CS + iγ∗)

where CS := minj∈S rj + δj. 	

Theorem 1. 5-speed ISRPT is optimal for F-Wgp.

Proof. Let Cj be the completion time of packet j in a 5-speed ISRPT schedule,
and let C∗

j be the completion time of packet j in any feasible (possibly optimal)
1-speed schedule. We prove the theorem by showing that

∑
j∈J in Cj ≤

∑
j∈J in C∗

j

and
∑

j∈Jout Cj ≤
∑

j∈Jout C∗
j .

Consider first the packets in J in. Since we are executing ISRPT at speed
5, and the set J in is considered once every five iterations, we have that every
one time unit a round of SRPT is executed on the set J in. So the completion

26 V. Bonifaci et al.

times of the packets in J in are not worse than those that would be obtained
by running SRPT with unit speed on J in alone. On the other hand, inside the
critical region the gathering problem is nothing else than the scheduling problem
1|rj , pmtn|

∑
j Cj , meaning that SRPT is optimal. It follows that

∑
j∈J in Cj ≤∑

j∈J in C∗
j .

Consider now the packets in Jout. Because the first four out of every five
rounds of ISRPT this set is scheduled using SRPT, the completion time of
each packet in Jout is not larger than the completion time of the same packet in
a 4-speed SRPT schedule of Jout:

Cj ≤ Cj for all j ∈ Jout, (1)

where Cj is the completion time of j in a 4-speed SRPT schedule of Jout.
Consider any component T in this latter schedule. By Lemma 1,∑

j∈T

Cj ≤
∑

0≤i<|T |
(CT +

1
4
iγ). (2)

On the other hand by Lemma 2,∑
j∈T

C∗
j ≥

∑
0≤i<|T |

(CT + iγ∗). (3)

So, since γ ≤ 4γ∗ for every value of dI , it follows by combining (1), (2) and
(3) that

∑
j∈T Cj ≤

∑
j∈T C∗

j . The result follows by summing over all the
components. 	

Corollary 1. There is an online 5-approximation algorithm for C-Wgp.

Proof. Notice that the analysis of the above theorem also yields that∑
j∈J

Cj ≤
∑
j∈J

C∗
j ,

where Cj is the completion time of packet j in the schedule generated by 5-
ISRPT. We can now simulate the schedule generated by 5-ISRPT by running
it at a lower speed: whatever 5-ISRPT does at time t, a unit-speed algorithm
can do at time 5t. The schedule can be constructed online and clearly it respects
the release dates. If C′

j is the completion time of packet j in the new schedule,
we obtain ∑

j∈M

C′
j =

∑
j∈M

5 · Cj ≤ 5
∑
j∈M

C∗
j .

	

3.2 Approximation Hardness

In this section we show that, for any ε ∈ (0, 1), no polynomial time algorithm
can approximate F-Wgp within a factor Θ(m1−ε) unless P=NP. This explains
why resource augmentation is necessary to obtain a useful bound.

Minimizing Average Flow Time in Sensor Data Gathering 27

The proof builds upon the one in our previous paper [6] and is based on the
hardness of the induced matching problem. A matching M in a graph G is an
induced matching if no two edges in M are joined by an edge of G.
Induced Bipartite Matching (IBM)
Instance: a bipartite graph G and an integer k.
Question: does G have an induced matching of size at least k?

The optimization version of the above problem is hard to approximate: there
exists an α > 1 such that it is NP-hard to distinguish between graphs with
induced matchings of size k and graphs in which all induced matchings are of
size at most k/α [10].

Theorem 2. Let ε ∈ (0, 1). Unless P=NP, no polynomial time algorithm can
approximate F-Wgp within a ratio better than Ω(m1−ε).

Proof. We only describe the additional steps needed with respect to the proof
of inapproximability for minimizing maximum flow time, Theorem 3.2 in [6].
As shown in [6], it is possible to construct in polynomial time, given an IBM

instance I, an instance I ′ of Wgp with an arbitrary number m of packets such
that the following hold:

1. if I has an induced matching of size k, then there is a schedule for I ′ with
maximum flow time 2k + 1;

2. if all induced matchings of I are of size at most k/α, then in every schedule
for I ′ there will be a round in which Θ(m/k) packets have been released but
not yet collected at the sink.

In the above construction choose m := (1 − 1/α)−1(1 + k/α)(2k + 1)k3/ε−2 =
Θ(k3/ε). In case (1), since there is a schedule for I ′ in which the maximum flow
time is 2k +1, we have that in the same schedule the total flow time is bounded
by (2k + 1) · m = O(m1+ε/3).

Instead, in case (2), we have that in any schedule there will be a round when
Θ(m/k) packets are available but not yet delivered. We now use the simple fact
that if at any time during a schedule there are p available packets that still
need to reach the sink, then the total flow time of the schedule is Ω(p2); this
is true because the sink can only absorb at most one packet per round. Since
p = Θ(m/k), it follows that the total flow time is Ω(m2/k2) = Ω(m2−2ε/3).

The ratio between the total flow time achievable in cases (2) and (1) is
Ω(m1−ε). Thus, any polynomial-time algorithm approximating the total flow
time within a better ratio could be used to approximate IBM within factor α,
which is NP-hard. 	

References

[1] Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: an exponential gap between determinism and random-
ization. Journal of Computer and Systems Sciences 45(1), 104–126 (1992)

28 V. Bonifaci et al.

[2] Bar-Yehuda, R., Israeli, A., Itai, A.: Multiple communication in multihop radio
networks. SIAM Journal on Computing 22(4), 875–887 (1993)

[3] Bender, M.A., Chakrabarti, S., Muthukrishnan, S.: Flow and stretch metrics for
scheduling continuous job streams. In: Proc. 9th Symp. on Discrete Algorithms,
pp. 270–279. SIAM, Philadelphia (1998)

[4] Bermond, J., Galtier, J., Klasing, R., Morales, N., Pérennes, S.: Hardness and
approximation of gathering in static radio networks. Parallel Processing Let-
ters 16(2), 165–183 (2006)

[5] Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: An approx-
imation algorithm for the wireless gathering problem. In: Arge, L., Freivalds,
R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 328–338. Springer, Heidelberg
(2006)

[6] Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: Minimizing
flow time in the wireless gathering problem. In: Proc. 25th Symp. on Theoretical
Aspects of Computer Science, pp. 109–120. IBFI Dagstuhl (2008)

[7] Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

[8] Chan, H.-L., Lam, T.W., Liu, K.-S.: Extra unit-speed machines are almost as
powerful as speedy machines for competitive flow time scheduling. In: Proc. 17th
Symp. on Discrete Algorithms, pp. 334–343. SIAM, Philadelphia (2006)

[9] Chekuri, C., Goel, A., Khanna, S., Kumar, A.: Multi-processor scheduling to
minimize flow time with epsilon resource augmentation. In: Proc. 36th Symp. on
Theory of Computing, pp. 363–372. ACM, New York (2004)

[10] Duckworth, W., Manlove, D., Zito, M.: On the approximability of the max-
imum induced matching problem. Journal of Discrete Algorithms 3(1), 79–91
(2005)

[11] Florens, C., Franceschetti, M., McEliece, R.J.: Lower bounds on data collection
time in sensory networks. IEEE Journal on Selected Areas in Communications 22,
1110–1120 (2004)

[12] Gargano, L., Rescigno, A.A.: Optimally fast data gathering in sensor networks.
In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 399–411.
Springer, Heidelberg (2006)

[13] Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. Journal of
the ACM 47(4), 617–643 (2000)

[14] Korteweg, P.: Online gathering algorithms for wireless networks. PhD thesis, Tech-
nische Universiteit Eindhoven (2008)

[15] Anil Kumar, V.S., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: End-to-end
packet-scheduling in wireless ad-hoc networks. In: Munro, J.I. (ed.) Proc. 15th
Symp. on Discrete Algorithms, pp. 1021–1030. SIAM, Philadelphia (2004)

[16] Lageweg, B.J., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Computer-
aided complexity classification of combinatorial problems. Communications of the
ACM 25, 817–822 (1982)

[17] Leonardi, S., Raz, D.: Approximating total flow time on parallel machines. Journal
of Computer and Systems Sciences 73(6), 875–891 (2007)

[18] Leung, J.Y.-T. (ed.): Handbook of Scheduling. CRC Press, Boca Raton (2004)
[19] McCullough, J., Torng, E.: SRPT optimally utilizes faster machines to minimize

flow time. In: Munro, J.I. (ed.) Proc. 15th Symp. on Discrete Algorithms, pp.
350–358. SIAM, Philadelphia (2004)

Minimizing Average Flow Time in Sensor Data Gathering 29

[20] Pelc, A.: Broadcasting in radio networks. In: Handbook of Wireless Networks and
Mobile Computing, pp. 509–528. Wiley and Sons, Chichester (2002)

[21] Schmid, S., Wattenhofer, R.: Algorithmic models for sensor networks. In: Proc.
20th Int. Parallel and Distributed Processing Symposium. IEEE, Los Alamitos
(2006)

[22] Schrage, L.: A proof of the optimality of the shortest remaining processing time
discipline. Operations Research 16(3), 687–690 (1968)

Target Counting under Minimal Sensing:
Complexity and Approximations�

Sorabh Gandhi, Rajesh Kumar, and Subhash Suri

Department of Computer Science,
University of California,

Santa Barbara, CA-93106

Abstract. We consider the problem of counting a set of discrete point
targets using a network of sensors under a minimalistic model. Each sen-
sor outputs a single integer, the number of distinct targets in its range,
but targets are otherwise indistinguishable to sensors: no angles, dis-
tances, coordinates, or other target-identifying measurements are avail-
able. This minimalistic model serves to explore the fundamental perfor-
mance limits of low-cost sensors for such surveillance tasks as estimating
the number of people, vehicles or ships in a field of interest to first de-
gree of approximation, to be followed by more expensive sensing and
localization if needed. This simple abstract setting allows us to explore
the intrinsic complexity of a fundamental problem, and derive rigorous
worst-case performance bounds. We show that even in the 1-dimensional
setting (for instance, sensors counting vehicles on a road), the problem
is non-trivial: target count can be estimated within relative accuracy of
factor

√
2 and this is the best possible in the worst-case. We then address

additional questions related to constructing feasible target placements,
and noisy counters. In two dimensions, the problem is considerably more
complicated: a constant-factor approximation is impossible. Our algo-
rithms and analysis can easily handle some of the non-idealities of real
sensors, such as asymmetric ranges and non-exact target counts.

1 Introduction

Inexpensive smart sensors coupled with ad hoc wireless networking provide a com-
pelling and cost-effective technology for what is variously called ubiquitous com-
puting or situational awareness. Specifically, there has been a growing interest in
the networked power of many cheap and low-fidelity but unattended and
geographically-distributed sensors. Because of their low cost, both in hardware
that can be several orders of magnitude cheaper than their “mainframe” counter-
parts, and the untethered, self-organizing architecture that makes them attractive
for deployment at large geographic scale without costly human management, per-
vasive sensor networks hold great potential for “environmental monitoring.” The
hardware costs and availability, however, are only part of the solution. In order to
� This research was supported in part by the National Science Foundation under grants

CNS-0626954 and CCR-0514738.

S. Fekete (Ed.): ALGOSENSORS 2008, LNCS 5389, pp. 30–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Target Counting under Minimal Sensing: Complexity and Approximations 31

realize the full potential of these networked smart sensors, significant challenges
in algorithms, software, and signal processing must be addressed, many of which
arise from the “minimalistic” nature of this sensing and computing platform.

In this paper, we examine some of these key issues in the context of counting
and localizing targets in a physical space under minimal sensing assumptions. We
focus on target counting, as opposed to the more-widely studied target tracking
problem, for two reasons: (1) counting is an important problem in its own right;
in many environmental monitoring and unattended surveillance applications, for
which sensor networks are an ideal platform, accurately estimating a population
(e.g. animals in natural habitats, intruders in sensitive areas) is a fundamental
end goal; and (2) a good estimate on the target count is often a pre-requisite
for robust tracking; for instance, many popular tracking heuristics such as those
based on particle filters need a good educated guess on the number of unknown
targets to avoid getting stuck.

We frame our research within a minimalistic sensing model to align it with
the primary motivation behind the appeal of sensor networks: low cost and small
form factor. As a result, the binary sensing model has received a great deal of
attention for target tracking and other monitoring applications, both in theory
and practice (for instance, see [1,2,3,4,5,6]). While the binary sensing model has
been shown to achieve excellent performance for tracking a single target [5],
for multiple targets it is useful only in settings where the targets are pairwise
widely-separated, as was formalized in [6]. As a result, provable-quality tracking
and counting of targets requires a richer class of sensors.

In this paper, we work with an abstract model of a counting sensor : each
sensor outputs an integer value, representing the number of distinct targets in
its sensing range. Each target is modeled as a point. The sensor produces no
other information about the targets, such as their locations, angles, distances,
or any other distinguishing identifiers. While a convenient abstraction for our
theoretical investigation of the fundamental limits of target counting and local-
ization, such a sensor is also a fairly good first-order approximation of low-cost
radar sensors that can detect the presence of multiple targets but cannot localize
them individually. Other sensors including infra-red sensors or acoustic sensors
also exhibit this characteristic. In low-cost camera systems as well, achieving
reliable calibration or coordinating multiple snapshots for depth and location is
both difficult and error-prone [7,8,9]. Furthermore, the measurements are often
so noisy that systems actually improve performance by using only the simplest
and most robust information content; for instance, Oh et al. [10] report that
the variability in the signal strength of their PIR (passive infrared) motion sen-
sors was so great that they actually improved the performance of their tracking
system by using them as binary sensors.

Because our main focus is fundamental achievable limits of performance, we
begin with an idealized sensing model, and then discuss the impact of these
assumptions as well as generalizations to non-idealized settings. We assume
that each ideal sensor has a circular sensing range of a known radius, and it

32 S. Gandhi, R. Kumar, and S. Suri

Fig. 1. The two scenarios have identical sensory information: each sensor detects 1
target, yet the total number of targets is different in the two cases

reliably counts the number of distinct targets in its range. Even with such ide-
alization, it is easy to see that our minimal sensing model does not have enough
information to accurately count targets even in 1-dimension. Figure 1 shows an
example of two scenarios with two sensors. The sensory information of both sen-
sors is identical in the two scenarios: both sensors detect 1 target. Thus, there
is no way to distinguish between the two scenarios, and decide whether the true
target count is 2 (left) or 1 (right). One can, of course, generalize this to an
example where sensors cannot distinguish between n and 2n targets, and arrive
at the impossibility result that, under our minimal sensing model, no algorithm
can count targets with an accuracy factor better than

√
2. It turns out, however,

that this is essentially the worst-possible scenario, and one can always achieve√
2 approximation factor for any configuration of targets and sensors in one

dimension.
Given our sensing model, one may feel that the best counting accuracy is

achieved by non-overlapping sensing ranges—the inaccuracies arise only from
multiple sensors counting the same target. Why not just deploy sensors with
non-overlapping ranges and obtain the best possible results? There are at least
three reasons for sensors with overlapping ranges. First, circles do not tile the
two-dimensional plane, and so even in an idealized setting, one cannot achieve
full coverage without overlapping circular ranges. Second, while the target count
can be improved by minimizing the overlap among different sensing ranges, the
location accuracy, in fact, improves with increasing the overlap [5]. Thus, there
is an inherent tension between counting accuracy and the localization accuracy,
which may promote sensor deployments with significantly overlapping ranges,
even in one-dimensional situations, like a road environment. Finally, all of our
results, in fact, hold even when the sensing ranges are not ideal disks; they
just need to be connected intervals in one-dimension and any reasonable convex
shape in two dimension. Thus, our theory applies to irregular, anisotropic sensing
ranges of real sensors, whose overlap is both unpredictable and impossible to
eliminate. Therefore, in this work we approach the problem with a worst-case
viewpoint, and make no assumptions about the placement of targets or the
sensors. We seek to provide worst-case guarantees for the target count for any
(adversarial) choice of targets and sensor ranges.

Our approximate counting algorithm, however, is non-constructive, in that
it does not necessarily produce a configuration of targets consistent with the
sensing input—it just produces upper and lower bounds on the target population.
Furthermore, it is easy to show examples where not all target counts between

Target Counting under Minimal Sensing: Complexity and Approximations 33

the lower and upper bounds are feasible, meaning that there is no possible con-
figuration of targets that is consistent with the sensors’ readings. Constructing
a feasible configuration of targets is not entirely trivial, but it can be solved in
polynomial time by a reduction to the shortest path problem in a graph.

Next, we consider the impact of some non-idealities on our results. In par-
ticular, we allow sensor ranges to be non-unit-disk: they can be arbitrary size
segments in 1D and arbitrary convex regions in the plane, and they can be asym-
metric around the sensor. The target sensing also can be “noisy,” in that the
number of targets detected by a sensor can lie in an uncertainty range. Specifi-
cally, we assume that if the true reading of a sensor is c, then a sensor can report
any value in the range [(1 − ρ)c, (1 + ρ)c], where ρ is the noise or uncertainty
parameter, reflecting the false positives and negatives in the sensor’s reading. It
turns out that all our algorithms and theorems hold even in these more general
and realistic models; of course, the accuracy of the target counting now depends
on the parameter ρ.

We then consider the target counting problem in two-dimensions and prove
that, in the worst-case, no fixed approximation is achievable. An easy

√
m ap-

proximation is possible if the maximum degree of overlap among sensor ranges
is m. (This is in contrast to the 1-dimension, where the approximation factor
does not depend on the degree of sensing overlap.) All of these results extend to
the “noisy” sensor model. All the theorems in this pre-proceedings version are
without proofs, the proofs will be included in the conference proceedings.

2 The Counting Sensor Model

We begin with an idealized model of sensing. Each target is modeled as a point,
and each sensor is assumed to have a unit-disk sensing range, with perfect sens-
ing: each sensor is able to count precisely the number of targets present in its
range. Neither of these assumptions are critical to our algorithms and analysis,
as we later discuss, but provide a convenient framework to understand the fun-
damental limits of target counting. Because the communication requirements of
our collaborative counting are so minimal (each sensor only needs to communi-
cate its reading), we abstract away all networking issues in our discussion. In
particular, we assume that all the processing occurs at a base station, or a tracker
node, that knows the precise geometry of the sensors’ locations and ranges. We
make no assumptions about the geographic distribution of sensors or targets:
our results are worst-case.

Throughout, we assume that the targets have fixed locations, and sensors’
readings represent a snapshot of the target locations. This view is valuable even
in tracking applications when no a priori information is available about the mo-
tion of the targets and where the targets can be deliberately evasive, creating an
adversarial situation. In such settings, a tracking algorithm is forced to interpo-
late the motion across snapshots, and therefore must solve the target counting
and localization problem considered here.

34 S. Gandhi, R. Kumar, and S. Suri

We begin our discussion by considering the problem in a one-dimensional
setting. We imagine targets as points arranged on a line, and a collection of
sensors, each with a unit-interval sensing range. It turns out that the exact
counting of targets is non-trivial even in this simple setting, and leads to some
interesting results. The 1-dimensional setting is also a useful framework in many
practical situations, such as counting targets along a road or counting objects in
a crowd using far away cameras.

3 Counting and Localization Targets in One Dimension
with Ideal Sensors

We begin by repeating our earlier example to argue that precise counting is not
possible even in one dimension, and even with idealized counting sensors.

Theorem 1. If sensors have overlapping ranges, then precise counting of tar-
gets is impossible even with idealized counting sensors. Thus, for arbitrary ar-
rangements of sensors and targets, no algorithm can determine the target count
precisely.

Fortunately, it turns out that this is the worst possible scenario, and the
√

2
approximation of the target count is possible for any (adversarial) placement of
targets and sensors in 1-dimension.

3.1 Target Count Approximation

Let S = {s1, s2, . . . , sn} denote the set of sensors, and let C = {c1, c2, . . . , cn}
denote their sensing counts; that is, ci is the number of targets detected by si in
its range. We denote the set of sensing ranges by R, and the union of all these
ranges by U . Recall that each sensing range is an interval on the line containing
the sensors and the targets. We assume that U is a contiguous range, if not, we
run our algorithm on the disconnected contiguous subsets of U separately and
add the counts to get the approximate count.

Our algorithm for approximating the number of targets, which we call the
scan algorithm, is as follows. We compute a non-redundant subset R′ ⊂ R of
the sensing ranges, where non-redundancy means that union of the ranges in R′

equals U , and no range r ∈ R′ is covered by the union of the remaining ranges
in the set. In other words, no range can be deleted from R′ without losing some
coverage of the domain.

Let us denote the set of sensors associated with R′ by S′ = {s′1, s′2, . . . , s′n′}
and their readings by set C′ = {c′1, c′2, . . . , c′n′}. Our algorithm outputs CA = SC′√

2
as the target count, where SC′ is the sum of readings of the set C′, namely,
SC′ =

∑
1≤i≤n′ c′i. The algorithm for finding the set R′ is given in Algorithm 1.

It is easy to verify that this algorithm can be implemented in worst-case time
O(n log n). We now prove the main result of this section that CA is a factor

√
2

approximation of the true count, which we denote as COPT .

Target Counting under Minimal Sensing: Complexity and Approximations 35

Algorithm 1. scan

1: Sort the segments in R in increasing order of left endpoints.
2: R′ = ∅, r = first segment in the sorted set R
3: R′ = R′ ∪ {r}, R = R \ {r}
4: while R �= ∅ do
5: T = set of segments in R that intersect with r.
6: Let r′ be the segment in T with the rightmost endpoint.
7: R = R \ T , R′ = R′ ∪ {r′}, r = r′.
8: end while
9: Output the total count of targets associated with ranges in R divided by

√
2.

Theorem 2
CA√

2
≤ COPT ≤

√
2CA

In effect, the algorithm scan above outputs a range [a, b] with a guarantee that
the true target count lies between a and b, and b ≤ 2a. By predicting the
geometric mean of these two bounds as an approximation, the algorithm can
guarantee that its prediction is within a factor of

√
2 of the true count.

Unfortunately, the counting scheme presented so far is non-constructive—it
tells us bounds on the number of targets, but offers no actual placements of
targets satisfying the readings of all the sensors. In the following section, we
address this fundamental problem of producing target placements consistent
with the sensors’ readings.

3.2 Target Placement

Consider the example in Figure 2. For this example, the algorithm scan outputs
the target range [2, 4], which clearly is consistent with the sensors’ readings.
However, a moment’s reflection shows that there is no realizable (feasible) target
placement that is consistent with the target count of either 2 or 3. Indeed, the
only feasible target placement satisfying the sensors’ readings needs 4 targets, as
shown. Even for feasible target counts, the algorithm does not provide an actual
placement of targets. We address these shortcomings in the following.

Consider a set S = {s1, s2, . . . , sn} of n sensors along the X-axis, and let
C = {c1, c2, . . . , cn} denote the readings associated with these sensors. Let P =

2

0

2

Fig. 2. An example of 3 sensors on a line, where the first and the third sensor has
target count 2, while the middle sensor has count 0. The scan algorithm outputs a
target range of [2, 4]. Only the target count of 4 is realizable as a physical configuration
of targets consistent with the sensors’ readings.

36 S. Gandhi, R. Kumar, and S. Suri

p1 p2 p3 p4 p5 p6

5

4

2

s1

s3
s2

Fig. 3. An example with 7 targets and 3 sensors. The true target positions are shown as
solid circles. The sensor readings are shown by the numbers placed above each sensor’s
range. The output placement computed by our algorithm is shown using lightly shaded
triangles.

{p1, p2, . . . , p2n} denote the set of 2n points defining the start and the end points
of the sensor ranges, sorted in order of increasing x-coordinates; that is, the x-
coordinate of pi is less than the x-coordinate of pi+1.

We introduce a set of variables Z = {z1, z2, . . . , z2n} where zi represents the
total number of targets lying to the left of point pi. By definition, therefore, we
have the following constraint:

z1 ≤ z2 ≤ . . . ≤ z2n, (1)

because the number of targets to the left of pi+1 is at least as large as the number
of targets to the left of pi.

Next, if pj and pk are the starting and end points associated with the range of
sensor si, then zk−zj denotes the number of targets in si’s range. This introduces
another constraint:

zk − zj = ci (2)

We have one such constraint for each sensor. Any assignment of zi’s satisfying
these constraints, together with z1 = 0, corresponds to a feasible placement of
targets for our problem. In particular, a feasible solution can be obtained by plac-
ing zi − zi−1 targets spaced equally between points pi−1 and pi, for 2 ≤ i ≤ 2n.
The set of constraints described above can be solved as an integer linear program.
Unfortunately, in general, integer linear programming is NP-Hard. Fortunately,
the special structure of our problem admits a rather efficient (polynomial time)
solution, by a transformation to a shortest path problem. In particular, all the
constraints in our problem have the form of a difference constraint. We explain
the reduction to the shortest path problem, using an example.

Consider the example shown in Figure 3, with 7 targets and 3 sensors. The
true target positions are shown as solid circles. The sensor readings are shown by
the numbers placed above each sensor’s range. The first set of constraints that
enforce the conditions zi ≤ zi+1, for 1 ≤ i ≤ 2n, can be written as the following
set of difference constraints:

z1 − z2 ≤ 0, z2 − z3 ≤ 0, z3 − z4 ≤ 0
z4 − z5 ≤ 0, z5 − z6 ≤ 0

Target Counting under Minimal Sensing: Complexity and Approximations 37

Each of the equality constraint encoding the count of each sensor (Eq. 2) can be
written as a pair of difference constraints:

z4 − z1 ≤ 5, z1 − z4 ≤ −5
z5 − z2 ≤ 4, z2 − z5 ≤ −4
z6 − z3 ≤ 2, z3 − z6 ≤ −2

These inequalities can be transformed into the formulation of a shortest path prob-
lem in a graph as shown in Figure 4. In this graph, there exists a node for each
variable zi, and an edge for each difference constraint. In particular, the difference
constraint zi − zj ≤ � maps to an edge directed from node wj to node wi, with
weight �. In addition, we add an artificial node s, and introduce 0-weight edges from
s to all other nodes in the graph. We now observe that this graph has well-defined
shortest paths from s to all other nodes if and only if there is no negative-weight
cycle in the graph. More precisely, if there is a negative cycle in the graph, then the
set of inequalities are inconsistent, and there is no feasible solution. Otherwise, the
shortest path distances to the nodes zi correspond to a feasible solution.

Solving the shortest path problem on the graph gives the following shortest path
distances from s: z1 = −5, z2 = −4, z3 = −2, z4 = z5 = z5 = 0. We can enforce
z1 = 0 by adding 5 to all these variables, without violating any constraints. We
then get: z1 = 0, z2 = 1, z3 = 3, z4 = z5 = z6 = 5. The placement of targets corre-
sponding to these variable settings is shown in Figure 3 by lightly shaded triangles.

We can solve the shortest paths problem in the graph using the Bellman-
Ford algorithm; this algorithm either determines that the graph contains a
negative-weight cycles, or computes valid shortest path distances in worst-case
time O(|V ||E|), where |V | and |E|, respectively, are the number of vertices and
edges in the graph [11] . In our setting, both the number of vertices and edges is
O(n), so the algorithm has time complexity O(n2). We can now state the main
result of this section.

Theorem 3. Given a set of n counting sensors on a line and their target counts,
we can find in O(n2) time a placement of targets consistent with all the sensors’
counts, or determine that the sensors’ readings are inconsistent.

5 4 2

−5 −4 −2

0
0 0

00 0

w1 w2 w3 w4 w5 w6

s

Fig. 4. The graph corresponding to the example of Figure 3

38 S. Gandhi, R. Kumar, and S. Suri

The Bellman-Ford shortest path algorithm, in fact, has an interesting prop-
erty: the algorithm minimizes the maximum difference between the difference
variables. In other words, the algorithm not only finds a feasible assignment of
variables, but actually finds an assignment satisfying

min max
1≤i≤2n,1≤j≤2n

|zi − zj |

In our setting, the maximum difference is between the variables z2n and z1
(Equation 1). But z2n − z1 equals the total number of targets in the solution,
and so our algorithm finds a feasible solution with the least possible number of
targets consistent with the sensors’ counts.

4 Extensions to Non-ideal Sensing

In this section, we make a limited attempt to address two of the most severe
assumptions of the idealized sensor model, namely, the unit disk sensing range
and perfect target count. In particular, we show that our algorithms can easily
handle sensing ranges that are neither unit length (in 1d) or unit disk (in 2d)
nor symmetric about the center. Secondly, our algorithms can gracefully han-
dle noisy target counts by sensors. Specifically, if the true target count for a
sensor is c, then a sensor can report any value in the range [(1 − ρ)c, (1 + ρ)c],
where ρ is the noise parameter, reflecting the false positives and negatives in the
sensor’s reading. We now discuss the implications of these non-idealities on our
algorithms.

4.1 Target Count Approximation with Non-ideal Sensors

Let S = {s1, s2, . . . , sn} denote the set of sensors. We denote the set of sensing
ranges by R. As in the case of ideal sensors, we use the algorithm scan to
compute the non-redundant set R′. Let S′ = {s′1, s′2, . . . , s′n′} denote the set
of sensors associated with R′ and let C′ = {c′1, c′2, . . . , c′n′} denote the (noisy)
counts associated with these sensors. Our algorithm outputs CA = SC′√

2(1−ρ2)
as

the target count, where SC′ is the sum of readings of set C′, namely, SC′ =∑
1≤i≤n′ c′i. Let COPT denote the actual count of the number of targets in the

system. The following theorem analyzes the accuracy of this approximation.

Theorem 4
CA√
2(1+ρ)
1−ρ

≤ COPT ≤

√
2(1 + ρ)
1 − ρ

CA

It is not too difficult to see that our bounds for both ideal and non-ideal sensors
are the best possible in the worst-case. In particular, given any value of ρ, it
is possible to achieve the worst-case approximation factor (both overcount and
undercount) with just two sensors. In the next section, we extend the target
placement algorithm proposed for ideal sensors to estimate target placements in
the presence of non-ideal sensors.

Target Counting under Minimal Sensing: Complexity and Approximations 39

4.2 Target Placement with Non-ideal Sensing

Let the sets C′ = {c′1, c′2, . . . , c′n} and C = {c1, c2, . . . , cn} denote the noisy and
the true readings of the sensor set S = {s1, s2, . . . , sn}. Let us associate the set
of variables Z = {z1, z2, . . . , z2n} with the sorted set P = {p1, p2, . . . , p2n} of
start and end point of the sensor ranges, where, as for ideal sensors, zi denotes
the number of points to the left of point pi. We now show that a feasible target
placement can be obtained even for non-ideal sensors,

Theorem 5. Given a set of n non-ideal sensors and their readings, we can find
a placement for targets in the network which satisfies all sensor readings.

Of course, both the target placement as well as the number of targets estimated
may be different from the ones found using non-noisy counts, but the approxima-
tions are guaranteed to be within the range of accuracy given by our theorems.

In the next section, we consider the target counting problem when the sensors
and the targets are scattered in a two-dimensional plane.

5 Two Dimensional Target Counting

We begin with an example to argue that, unlike in the one dimension, approxi-
mation within a constant factor is not achievable for the two-dimensional target
counting problem. The construction is quite simple, and shown in Figure 5.
Imagine starting with n circles, centered at the origin. (The circles represent the
sensing ranges of our idealized counting sensors.) We keep one circle stationary,
and translate the centers of the remaining n − 1 circles by {δ, 2δ, . . . , (n′ − 1)δ}
along the positive X-axis, where δ is chosen such that (n − 1)δ is less that the
radii of these circles.

With this arrangement of sensors, consider two different sets of target place-
ments. In the first case (left figure), we place k targets at the origin. In the
second case (right figure). we place k targets each near the top of each sensor’s
range. It is easy to see that in both cases, each sensor counts precisely k targets
in its range, but the total number of targets present is k in the first case, and
nk in the second case. Because the two cases are indistinguishable based on the

.

kk k

k

k
. . .

Fig. 5. Two scenarios with identical sensors information, but different total target
counts: k for the left figure, and nk for the right figure

40 S. Gandhi, R. Kumar, and S. Suri

sensors’ counts, no algorithm in this model can count targets with any constant
factor accuracy. We summarize this result in the following theorem.

Theorem 6. For arbitrary arrangements of sensors and targets, no algorithm
can achieve a constant-factor approximation of the target counts even with ide-
alized counting sensors in two dimensions.

Clearly, the main source of difficulty is the overlapping sensing ranges. The con-
struction of Figure 5 achieves the impossibility result by forcing an unbounded
level of overlap among the ranges. In the following, we argue that if the degree of
overlap is at most m, then one can approximate the target count within factor√

m; thus, in practice, where we expect the overlap to be small, the approxi-
mation may be acceptable. By the degree of overlap, we mean the maximum
number of sensing ranges that cover a point in the plane.

Theorem 7. If the maximum degree of sensor overlap is m, then we can ap-
proximate the total number of targets in two dimensions to within a factor

√
m.

If we consider the non-idealities of convex ranges and noise parameter as de-
fined in Section 2, then for these non-ideal sensors the proof given above can be

extended to obtain an approximation factor of
√

m(1+ρ)
1−ρ .

6 Related Work

The problem of detecting and tracking targets is of broad interest to many
applications dealing with unattended monitoring and surveillance, with a rich
literature in many disciplines, including computer vision, signal processing, ad
hoc networks etc. [7,12,9,13]. The research goals in these areas, however, are dif-
ferent from those being pursued in sensor networks. In particular, the vision and
signal processing communities are concerned with extraction of distinguishing
features in detailed signals (e.g. images) and classifying the targets (e.g. tanks
or cars). The mobile and ad hoc network communities have considered tracking
with the goal of maintaining the state of network connectivity. In these cases,
the nodes try to track other nodes using mobility models so that routing can be
achieved successfully.

Counting targets is closely related to monitoring, intrusion detection and
tracking targets. Counting is often the first step in most of these applications.
Research in sensor networks has seen a lot of work in tracking multiple targets
[14,15,16,17,18,19,20,21] and almost every piece of work assumes that the num-
ber of targets in the network is known. Our work is closely related to [5,6] in
terms of deriving fundamental limits for tracking and counting targets using a
minimal sensing model. These papers use a binary sensing model, which has
also been considered by [1,2,3,4]. Counting sensor model is similar to the binary
model in terms of minimal sensing, instead of transmitting a bit of information,
counting sensors transmit an integer representing the number of targets in their

Target Counting under Minimal Sensing: Complexity and Approximations 41

range. The problem of counting targets is explored in [6] and the authors show
that even in one dimension, counting targets accurately is not possible using
binary sensing model unless the targets are spaced far apart from each other.
Gfeller et. al. [22] add to the basic binary sensing model by considering mobile
binary sensors and show that even then the problem is hard. Counting targets
is also addressed in [23], the sensors considered are proximity sensors and sense
the amplitude only. The target counting is then represented as peak counting
problem in the aggregate sensor network, but the framework assumes that the
targets are well separated. In [24], the authors look at the problem of counting
the number of people in a crowd using image sensors. They subtract background
from the image and then count number of visual hulls to count number of people.
Their focus is on geometric hull computation and our techniques can be used on
top of their algorithms to provide the bounds and counts. In [25] the authors use
topological integration theory to provide expected target counts as compared to
the deterministic bounds provided in this paper. The model of sensing consid-
ered is similar in the sense that the sensors give a count of the number of objects.
However, the paper does not make any assumptions about sensing shapes and
proves that the expected counts is the best one can hope for without geometry.

References

1. Arora, A., Dutta, P., Bapat, S., Kulathumani, V., et al.: A line in the sand: A
wireless sensor network for target detection, classification, and tracking. Computer
Networks (2004)

2. Aslam, J., Butler, Z., Constantin, F., Crespi, V., et al.: Tracking a moving object
with a binary sensor network. In: SENSYS (2003)

3. Lazos, L., Poovendran, R., Ritcey, J.: Probabilistic detection of mobile targets in
heterogeneous sensor networks. In: IPSN (2007)

4. Oh, S., Sastry, S.: Tracking on a graph. In: IPSN (2005)
5. Shrivastava, N., Mudumbai, R., Madhow, U., Suri, S.: Target tracking with binary

proximity sensors: fundamental limits, minimal descriptions, and algorithms. In:
SENSYS (2006)

6. Singh, J., Kumar, R., Madhow, U., Suri, S., et al.: Tracking multiple targets using
binary proximity sensors. In: IPSN (2007)

7. Cai, Q., Aggarwal, J.K.: Tracking human motion using multiple cameras. In: ICPR
(1996)

8. Nguyen, N., Venkatesh, S., West, G., Bui, H.: Multiple camera coordination in a
surveillance system (2003)

9. Stauffer, C., Eric, W., Grimson, L.: Learning patterns of activity using real-time
tracking. IEEE Transaction on Pattern Analysis Machine Intelligence (2000)

10. Oh, S., Chen, P., Manzo, M., Sastry, S.: Instrumenting wireless sensor networks for
real-time surveillance. In: International Conference on Robotics and Automation
(2006)

11. Cormen, T., Lieserson, C., Rivest, R., Stein, C.: Introduction to algorithms (2004)
12. Collins, R., Lipton, A., Fujiyoshi, H., Kanade, T.: Algorithms for cooperative mul-

tisensor surveillance. Proceedings of the IEEE 89, 1456–1477 (2001)
13. Zaidi, Z., Mark, B.: A mobility tracking model for wireless ad hoc networks. In:

IEEE WCNC (2003)

42 S. Gandhi, R. Kumar, and S. Suri

14. Chen, H., Kirubarajan, T., Bar-Shalom, Y.: Multiple target tracking with multiple
finite resolution. In: 5th International Conference on Information Fusion (2002)

15. Hwang, I., Roy, K., Balakrishnan, H., Tomlin, C.: A distributed multiple-target
identity management algorithm in sensor networks. In: IEEE Conference on Deci-
sion and Control (2004)

16. Jung, B., Sukhatme, G.: Tracking targets using multiple robots: The effect of en-
vironment occlusion. Autonomous Robots (2002)

17. Liu, J., Liu, J., Reich, J., Cheung, P., et al.: Distributed group management for
track initiation and maintenance in target localization applications. In: Zhao, F.,
Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 113–128. Springer, Heidelberg
(2003)

18. Mechitov, K., Sundresh, S.: Cooperative tracking with binary-detection sensor net-
works. In: SENSYS (2003)

19. Oh, S., Hwang, I., Roy, K., Sastry, S.: A fully automated distributed multiple-target
tracking and identity management algorithm. In: AIAA Guidance, Navigation, and
Control Conference (2005)

20. Rachlin, Y., Negi, R., Khosla, P.: Sensing capacity for discrete sensor network
applications. In: IPSN (2005)

21. Shin, J., Guibas, L., Zhao, F.: A distributed algorithm for managing multi-target
identities in wireless ad-hoc sensor networks. In: Zhao, F., Guibas, L.J. (eds.) IPSN
2003. LNCS, vol. 2634, pp. 223–238. Springer, Heidelberg (2003)

22. Gfeller, B., Mihalak, M., Suri, S., Vicari, E., et al.: Counting targets with mobile
sensors in an unknown environment. In: Kuty�lowski, M., Cichoń, J., Kubiak, P.
(eds.) ALGOSENSORS 2007. LNCS, vol. 4837, pp. 32–45. Springer, Heidelberg
(2008)

23. Fang, Q., Zhao, F., Guibas, L.: Counting targets: Building and managing aggre-
gates in wireless sensor networks. PARC Technical Report (2002)

24. Yang, D., Gonzalez-Banos, H., Guibas, L.: Counting people in crowds with a real-
time network of image sensors. In: International Conference on Computer Vision
(2003)

25. Baryshnikov, Y., Ghirst, R.: Target enumeration in sensor networks via integration
with respect to euler characteristic (2007)

Efficient Scheduling of Data-Harvesting Trees

Bastian Katz�, Steffen Mecke��, and Dorothea Wagner

Universität Karlsruhe (TH)
{katz,mecke,wagner}@ira.uka.de

Abstract. Many applications in sensor networks demand for energy and
time optimal routing of data towards a sink. In this work we present
mechanisms to set up energy and time efficient TDMA schedules for a
given routing tree under very strict limitations: Nodes have only a con-
stant size memory and must agree on a schedule using only a minimum
of communication for set up: Each node is only allowed to send a single
message to each of its neighbors.

We propose and analyze solutions in two different interference models.
We show that, despite these tight restrictions, it is possible to compute
energy optimal schedules which are almost time optimal and time opti-
mal schedules which are almost energy optimal in the total interference
model and we describe a 4-approximative algorithm in the k-local inter-
ference model.

We also show how to extend these mechanisms to settings with packet
loss, while still guaranteeing bounds on energy consumption.

1 Introduction

Data-harvesting applications in sensor networks gather bulk data from the data
field and collect them at a central repository or sink. Examples are data archiving
or surveillance applications that periodically sample snapshots at high rates,
storing or analyzing them centrally outside the network [1]. Another class are
scenarios in which network nodes store measured data until from time to time
a user requires access to the data stored in a large number of nodes [2]. In low-
power networks, these applications demand highly optimized communication
management to keep the network operable for as long as possible.

This paper considers sensor networks where sensor nodes are distributed over
a geographic area and measure values in regular time intervals. At certain times,
the stored data must be routed through the network and collected at a central
location, the sink, usually along a routing tree rooted at the sink. Since the
radio communication dominates the energy consumption, minimizing the cost of
wireless communication is crucial to maximize the lifetime of a sensor network.

� Partially supported by the German Research Foundation (DFG) within the Research
Training Group GRK 1194 “Self-organizing Sensor-Actuator Networks”.

�� Partially supported by the “BW-FIT” project “ZeuS” by the Landesstiftung Baden-
Württemberg.

S. Fekete (Ed.): ALGOSENSORS 2008, LNCS 5389, pp. 43–56, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

{katz,mecke,wagner}@ira.uka.de

44 B. Katz, S. Mecke, and D. Wagner

Power consumption in this scenario can be reduced in several ways. First
by compressing the data, second by improving the routing tree to prevent that
single nodes are overly burdened, and third by avoiding all unnecessary power
consumption of the radio. Although these three issues are not fully independent,
it makes sense to analyze them separately. Data reduction is an application-
specific problem that is largely orthogonal to the other two problems. The con-
struction of routing trees is subject to many other practical restrictions such as
link quality in real-life networks. We will thus focus on the problem of avoiding
all unnecessary power consumption by the radio for a fixed routing tree provided
by some arbitrary protocol.

If communication patterns are known in advance, schedule-based (“TDMA”)
protocols outperform contention-based (“CSMA”) protocols, because they do
not waste energy due to idle listening and collisions. Their drawback however is
an increased protocol overhead for schedule set-up. Therefore, we develop and
analyze efficient, schedule-based protocols that require only a minimum of set-up
communication.

The problem addressed in this paper can be summarized as follows: Given a
routing tree in which all nodes store data that is to be collected at a sink, we
allow each node to pass only one packet to each of its neighbors in that tree. Is
it possible to agree on an energy-optimal TDMA schedule, i. e., a schedule that
allows to transport all stored packets to the sink and in which all nodes know
exactly when to send and when to listen? Is it possible to agree on a schedule of
minimum length?

We will contribute to this problem by providing lower bounds and algorithms
for two reasonable interference models. In the total interference model, we as-
sume that at any time, only one single transmission is allowed throughout the
whole network. We will provide two transmission schedules that comply with
the above restrictions, the first being time-optimal at the price of adding a small
protocol overhead to routed packets, the second being energy-optimal, but not
time-optimal. We also provide a third transmission schedule for routing trees
that is both, energy- and time-optimal, at increased set-up costs. Furthermore,
we prove that in this interference model, an energy- and time-optimal transmis-
sion schedule cannot route single data packets with minimum delay. We conjec-
ture that it is impossible to set up an energy- and time-optimal schedule under
our restrictions at all.

In the k-local interference model we assume that transmissions do only inter-
fere with transmissions within some constant neighborhood. We will show how
to set up a transmission schedule that is energy-optimal and constant-factor
time-approximative for the given tree.

This paper is organized as follows: In the remainder of this section, we will
discuss related work and give a formal problem definition. In Section 2, we cover
the problem of finding schedules for a routing tree with total interference. In
Section 3, we do the same for local interference models. Section 4 discusses a
method to handle the problem of unreliable links. We conclude in Section 5.

Efficient Scheduling of Data-Harvesting Trees 45

1.1 Related Work and Overview

There is a plethora of algorithms for finding topologies (or routing information)
for the data gathering problem in sensor networks. There are several goals for
optimization, for example throughput, latency, reliability, security and energy
consumption, the last one being the most important in sensor networks. Almost
all of these different approaches, however, construct one or sometimes several
routing trees.

There has been previous work on minimzing the time for data gathering. In
[3] a problem similar to ours is studied, a 4-approximation algorithm is given
and NP-hardness of the problem shown. A problem with variable release times
is studied in [4]. Unlike this previous work, however, we focus on distributed
algorithms and take set-up cost into account. Also, we do not concentrate so
much on time optimality but on energy optimality.

There are two main kinds of medium access methods: contention based
(“CSMA”) protocols and scheduled (“TDMA”) protocols (see [5] for a partial
overview of MAC protocols for sensor networks). There are also a few hybrid
forms. The strength of contention based protocols include simplicity, low protocol
overhead and flexibility, but they suffer from energy waste caused by collisions,
overhearing and idle listening. TDMA-based protocols do not have any of these
drawbacks (at least in theory) but they require more communication to establish
the scheme, time synchronization is usually more of an issue and they are less
flexible in case of topology changes.

One of the very few contention-based MAC protocols that take advantage of
the tree topologies present in data-archiving systems is [6]. The wakeup times
of nodes are staggered on paths towards the sink, which reduces latency. Mea-
sures are employed to reduce interference among packets travelling along the
same paths. Additionally, special “More-to-Send” packets are used to further
synchronize wakeup times and thus increase throughput. However, this protocol
is designed for very low data rates. It is not energy-optimal and there are no
special mechanisms to reduce congestion and ensure fairness.

Flexible Power Scheduling (FPS) is described in [7]. In FPS parents are respon-
sible for assigning time slots to their children. FPS reduces contention but does
not guarantee collision-free communication. Therefore, an underlying MAC layer
is still required. Fairness among children in different branches is not ensured.

MPS (Multi-Flow Power Scheduling) and HPS (Hybrid Power Scheduling) are
enhancements on FPS introduced in [8]. MPS is closely related to our k-layer
interference protocol in Section 3, but performance is only evaluated experimen-
tally and there is no theoretical analysis of the protocols. Also, the interference
model is not described explicitely.

The authors of [2] address the problem of congestion, fairness and robustness
during the transport of high volumes of sampled data. They use the total in-
terference model (cf. Section 2). Their approach is based on a slot distribution
scheme. Nodes that have no more packets to send can pass their slots back to
their parent. Every second slot that a node receives from its children is passed
on to its parent. This aims at distributing slots more fairly: Nodes with high

46 B. Katz, S. Mecke, and D. Wagner

loads get more slots. In [9] further refinement of slot distribution strategies are
developed. But even with these refinements, the channel usage is still fairly low
and decreases with growing network size. In the same paper, there is another
scheme (similar to ours in Section 2) which, however, leads to unlimited buffer
size and the control message overhead is not analyzed.

DOZER ([10]) is an approach that tries to solve the problems of medium
access, tree construction and scheduling together. The authors employ a local
TDMA scheme which reduces requirements on clock synchronization but does
not ensure fairness. Collisions are reduced by letting schedules of interfering
node pairs “drift apart” through randomization. This approach is designed for
scenarios with very low data rates but causes problems when there are higher
volumes of data to deliver.

In contrast to these approaches, we focus on detailed theoretical analysis of
throughput and protocol overhead. Our approaches are also designed for arbi-
trarily large networks and high data load.

1.2 Problem Definition and Network Model

Throughout this work, we assume that we are running a sensor network with
one node serving as a sink that is connected to some infrastructure or monitor.
The task now is to set-up a transmission schedule that collects sensor data from
all nodes at the sink without aggregation. This task naturally divides into the
following subtasks or stages:

Topology stage: decide on a topology to collect data. We assume that the result-
ing topology is a tree routed at the sink.
Set-up stage: perform the communication necessary to agree on a schedule that
guarantees delivery of all sensor data to the sink and complies with an interfer-
ence model.
Collection stage: run the schedule as long as data is to be collected.

Energy consumption is our primary concern. We want to minimize it during both
the set-up stage and the collection stage. Energy use during the collection stage
can be minimized if each node knows exactly in which slots to listen and when
to send and if there is no idle listening or failed transmission. Nodes that are
neither sending nor trying to receive can go into sleep mode or at least turn off
their radio, dramatically reducing the energy consumption. We concentrate on
solutions which achieve this with a minimalistic kind of set-up communication:
Just one convergecast and one broadcast. It is impossible to let all nodes know
about the schedule’s length, let alone a first point in time to transmit or receive
with less communication.

More formally, we restrict solutions to the following model:

1. Each node v in the network must transmit a (possibly individual) number
of own data packets, σ (v) to the sink.

2. Within the network, a spanning tree T , rooted at the sink r is provided by
some standard protocol, i. e., every node knows its parent and a list of its
children.

Efficient Scheduling of Data-Harvesting Trees 47

3. During the set-up stage, every node can send at most one packet of size
O(log N) bits to each of its neighbors in T , N being the number of packets
in the network. We assume that during this stage a different medium access
scheme is used to establish parameters for the TDMA-based scheme of the
collection stage.

4. Each node (except for the sink) has only a limited, constant amount of
memory for buffering packets and storing information about the slots to be
active.

As a secondary criterion, we want to minimize the length of the schedule, i. e.,
the time until all packets have been delivered.

1.3 Definitions and Notation

We will denote a node’s distance from the sink in T by h(·) and the height of
the tree by h. We will talk of children, descendants, parents and ancestors in
the usual sense. We will refer to the set of a node v’s descendants including v
as D(v) := {w | w is descendant of v} ∪ {v}. The set of children of v is denoted
by C(v). We will assume that there is a fixed ordering among the children of
every node. A child v is said to be left of w if it preceeds w in this order. We
will also refer to the pre- and postorder number of nodes as pre(v) and post(v)
(with respect to these orderings) in the usual sense. As defined above, let σ (v)
denote the number of own packets a node has to deliver. We will assume that
every node (except the sink, for which we assume σ (r) = 0) has at least one
data packet. We will shortcut

∑
v∈V ′ σ (v) by σ (V ′) and σ (V) with N . We will

also write π (V ′) :=
∑

v∈V ′ h(v)σ (v) for the number of transmissions a set of
nodes causes and π̄ (v) := π (D(v)).

2 Scheduling a Tree with Total Interference

This section covers the case of total interference. That is, no two nodes are ever
allowed to transmit in the same time slot.

2.1 Infeasibility

We conjecture that it is not possible to find a scheme that achieves optimal time
and energy using only one concast and convergecast in the total interference
model under the assumptions given in section 1.2. We have no proof for this
claim, but if we restrict ourselves to certain kinds of schedules, it follows quite
easily:

Proposition 1. Let σ (v) ≡ 1, every node can store at most one packet (at the
beginning every node’s memory is filled with its own packet), during the set-
up stage only one convergecast and one broadcast of (log N)-sized messages is
allowed and no additional information can be attached to the packets during the
collection stage.

Under these restriction it is not possible to compute and run a time-optimal

48 B. Katz, S. Mecke, and D. Wagner

schedule in which each packet is immediately passed to the sink once it has started
from its originating node.

Proof. Let r be the sink node. During the set-up stage, r has only received
|C(v)|c log N bits for some constant c. For every packet arriving at r during the
collection stage, the height of the originating node can be determined by the
time since the arrival of the previous packet. As r is only allowed to be awake
when packets arrive, it must know the times of arrival in advance. This is equiv-
alent to knowing the heights {h1, h2, . . . , hn} of the packets in advance. There
are, however, an exponential1 number of such sequences, each one requiring a
different schedule at r. But these cannot be identifed by the C(v)c log N bits.

Most of the assumptions can be relaxed without invalidating Proposition 1, but
it is not apparent if different kinds of schedules (which, for example, buffer
incoming packets) could achieve more. The rest of the paper will show what is
possible if some of the assumptions are relaxed.

2.2 An Optimal Scheme with Increased Packet Size

In our first approach we will achieve a time and energy optimal scheme by
allowing slightly increased packet size during the collection stage.

We will proceed as follows: The packets are transported to the sink in pre-
order. Each packet is immediately passed down to the sink once it has started.

1

3,6,10,14

5,9,13

18

r

8,16

8 12

2,4,7,11,
15,17,19

Fig. 1. Example schedule, num-
bers denote slots for sending

A node v never has to wake up before all nodes
which are further left than v but not descen-
dants of v have transmitted their packets to
the sink. Let’s call the first time slot in which
v has to transmit a packet T (v). We have

T (v) = T (parent(v)) + π (parent(v)) (1)

if v is the leftmost child of its parent. Else, we
have

T (v) = T (sl(v)) + π̄ (sl(v)) . (2)

The σ (v) packets of v are then transmit-
ted in time slots T (v), T (v) + h(v), . . . until
T (v) + (σ (v) − 1)h(v). After transmitting its
own packets, the next time to wake up for v is
when its leftmost child w transmits its packet.

The ancestors of v also have to have infor-
mation about when to receive these packets on their way to the sink. A node w
on the path from v to the sink r has to receive in slot T (v) + h(v) − h(w) − 1
and has to send in slot T (v)+ h(v)− h(w) (and so on. . .). Therefore, v attaches

1 Exponential in n, even disregarding isomorphisms and order.

Efficient Scheduling of Data-Harvesting Trees 49

to the payload P of the message an information t about the next time slot it is
going to send in.

t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T (v) + h(v)k if P is the kth packet of v and it has packets left
T (c) + 1 if the next packet belongs to a child c of v

t′ + 1 if P is from a descendant of v and t′ �= 0
0 if t′ = 0 and no children of v are left

(3)

After all descendants of v have transmitted their packets, v can sleep for the rest
of the protocol.

In summary, each node v has to compute

1. the number of packets σ (D(c)) in the subtree of each of its children ci

(counted during the convergecast),
2. its own height h(v) (determined during the broadcast),
3. the weighted sizes of the subtrees π̄ (ci) (computed from h(v) and information

collected during the convergecast),
4. its own starting time slot T (v) and the starting slots of all of its children

(computed via Equations (1) and (2)).

Theorem 1. There is a scheme that produces an optimum length schedule of
length π̄ (r). In this scheme, every node receives 1 + C(v) packets and transmits
1 + C(v) packets of size log(N) in the set-up stage.

Every node receives and sends Θ (σ (D(v)) log(h)) additional bits during the
collection stage. In total, an additional Θ(n∆·log(N)+π̄ (r) log h) bits are trans-
mitted and received (with ∆ := maxv C(v)). A node needs additional memory of
O(∆ log(nh maxw∈V σ (w))) .

Remark 1. The amount of additional data can be reduced to Θ(D(v) log h) (or
O(n log h)) bits per node. The total amount of additional data can be reduced
to
∑

v h(v) log h ≤ nh log h bits.

Summarizing, we have described a time- and energy-optimal scheme at the price
of increasing each packet by log(h) bits.

2.3 Variants

In the previous section we saw how an optimal (shortest) schedule can be con-
structed with relatively little (but unbounded) message overhead. With slight
modifications (which include adding a memory buffer for one packet at every
node), a similar scheme as in the previous section can be constructed for pos-
torder. In this section we will propose two different ways of cheating to get a
time optimal schedule.

Our first proposal needs more energy in the set-up stage and more than
constant memory:

50 B. Katz, S. Mecke, and D. Wagner

Proposition 2. It is sufficient to send (and store) h log N bits per edge once:
the number of nodes in every layer below that edge. If we use level order, we can
compute t from this information.

Finding a scheme for level order seems a little bit more involved. If, however,
every node v knows the number of nodes in lower levels and for each level � ≥ h(v)
the number of nodes in level � to the left of v, in v’s subtree and to the right
of v, then it can easily compute the slots in which it has to send or receive.
However, this requires additional memory per node in the order of Θ(h log N)
and the same amount additional communication per edge.

The second approach is a scheme which fulfills all the requirements on com-
munication and memory but at the cost of time optimality:

Proposition 3. If all nodes have the same number σ of packets, we can ar-
range an energy optimal schedule with length Nh (h is the tree height) and time
approximation factor

√
n.

Proof. This schedule works as follows: As before we process packets in preorder
and immediately hand them down to the sink. The only difference being that
T (v) = σh · (pre(v) − 1) + h − h(v) + 1. The packets of v are then transmitted
in slots T (v), T (v) + h, . . . , T (v) + (σ − 1)h. If v actually has height h(v) < h,
there are h − h(v) − 1 unused slots.

The approximation ratio of the length of this scheme is Θ(
√

n): For a fixed
height h the worst case is a “flower” with one path of length h and all other
nodes at height 1. The approximation ratio is σnh/|SOPT| = nh/(h · (h− 1)/2+
(n − h) · 1) ≤ c

√
n.

Remark 2. For “well-behaved”, geometric graphs in the plane with height Θ(
√

n)
and O(�) nodes in every level � (like a regular, geometric grid), the schedule has
length Θ(σn

√
n) which is within a constant factor of the optimum.

3 Scheduling with Local Interference

In this section, we assume that a transmission (u, v) is successful if and only if
u is the only active sender in v’s k-hop neighborhood for some constant k. We
call this interference model k-local interference. This model is a reasonable, yet
a cautious approximation of interference in dense networks, in which euclidian
distance and hop-distance closely correlate.

Quite typically, routing trees for data aggregation in sensor networks are set
up using some kind of request flooding, i. e., the routes between a node and
the sink are shortest paths (in hops). This is not only a very lightweight, robust
protocol, but also guarantees that data travels on short routes, which reduces the
risk of packet loss. In such trees, a transmission (u, v) is always successful if u is
the only active sender among all nodes with |h(v)−h(u)| ≤ k. This follows from
the triangle inequality. We call this property of a rooted tree k-layer bounded
interference. We will propose a protocol, coined k-LS, to set up a schedule that
is energy optimal and time approximative within a constant factor.

Efficient Scheduling of Data-Harvesting Trees 51

1-21

2-22

3-23

4-24

5-25

6-21 26

7 12-17

13

26-56

27-57

28-58

29-59

30-45 50-60

31-46

32 37-42

51-61

52-57

38 53

V
k
+

2

1 + 5N

2 + 5N

3 + 5N

4 + 5N

0 + 5N

1 + 5N

2 + 5N

3 + 5N

V
\

V
k
+

2

r

(a) slot assignment

V
k
+

2
V

\
V

k
+

2

r

(b) resulting situation

Fig. 2. Slot assignment (a) and result (b) of the first phase of k-LS for k = 3 and
σ ≡ 1. Edges are active at time t if t is in the given range and matches the modulo for
the sender’s level of the tree.

Theorem 2. In the k-local interference model, there is a scheme for trees with
k-layer bounded interference yielding an energy optimal schedule that is time
approximative within a factor of k+2

�(k+1)/2� ≤ 4.

Proof. The key idea of k-LS is to set up two schedule phases that are performed
successively. In the first phase data is “pipelined” towards the sink ending in a
state where no nodes having a height of more than k+2 have any packets left. In
more detail, the sink’s neighbors pass packets to the sink every k+2 slots starting
with the first slot and sending one after another. Whenever a node transmits a
packet, it receives a packet in the next slot from one of its children as long as
their children have more packets. Every node v passes σ (D(v) \ Vk+2) packets,
i. e., as many packets as there are in its subtree in heights more than k + 2. In
the second phase data is collected from the remaining nodes using essentially
the same technique as in Proposition 2. For the following formal description,
we will shortcut the set of nodes with height less than or equal to some h with
Vh := {u ∈ V | h(u) ≤ h}.

During the convergecast phase each node v learns how many packets to relay
from nodes with heights h(v) + 1, . . . , h(v) + k + 2 and from more distant levels.
Obvioulsy, (k + 3)ldN bits, i. e. a message size of O(log N) during the concast
phase is sufficient to achieve this. In the broadcast phase, each node v learns
its height h(v) and some starting slots to be described later. Given its height,
it knows how many packets to relay that do not originate at nodes u ∈ Vk+2,
i. e. σ (D(v) \ Vk+2) and, if h(v) ≤ k + 2, how many nodes to relay from each
of the levels h(v) + 1 to k + 2. For the first, the pipelining phase, every node is
additionally assigned a starting slot T (v) as follows: The sink assigns itself the
(imaginary) starting slot T (r) = 0, and using messages of at most 2ldN bits,
each node v assigns start slots T (v)+ 1 +

∑
0<j<i σ (D(cj) \ Vk+2) to each of its

children ci. For the second phase, nodes in Vk+2 additionally receive the starting

52 B. Katz, S. Mecke, and D. Wagner

slots according to the scheme proposed in Proposition 2 restricted to nodes in
Vk+2 plus an offset of (k + 2) ·σ (V \ Vk+2), which is known to the sink after the
convergecast. In the pipelining phase, each node v but the sink now transmits
in slots T (v) + i(k + 2) for i = 0, . . . , σ (D(v) \ Vk+2). It receives a packet in the
following slot the first

∑
c∈C(v) σ (D(c) \ Vk+2) times. This process is depicted in

Fig. 2 for k = 3 and σ ≡ 1. Quite obviously, this part of the schedule has length
(k + 2) · σ (V \ Vk+2) + 1. Nevertheless, for the analysis, we can assume a length
of only (k + 2) · σ (V \ Vk+2) since the last transmission of this part can safely
overlap with the first transmission of the second part. After completion, no node
with height more than k + 2 neighborhood has any packets left and each node v
in Vk+2 has exacly σ (v) packets stored. Now, the rest of the packets is collected
optimally as described in Proposition 2, i. e. in π (Vk+2) slots.

It is easy to see that the resulting schedule is energy optimal for the given
tree. To show the approximation factor of (k + 2)/�(k + 1)/2�, we observe that
for l := �(k + 1)/2�, no two nodes in Vl can transmit at the same time. Thus,
each packet originating at a node with height of more than l accounts for at least
those l slots where it is the only one transmitted by a node with height of l or
less in an optimal schedule. Similarly, every packet originating at a node v ∈ Vl

accounts for at least h(v) slots. Hence, an optimal schedule has at least length

|SOPT| ≥ lσ (V \ Vl) + π (Vl)
= lσ (V \ Vk+2) + lσ (Vk+2 \ Vl) + π (Vl)

(4)

The schedule produced by k-LS in turn uses

|Sk-LS| = (k + 2)σ (V \ Vk+2) + π (Vk+2)
= (k + 2)σ (V \ Vk+2) + π (Vk+2 \ Vl) + π (Vl)

(5)

The claim now follows from the fact that π (Vk+2 \ Vl) ≤ (k + 2)σ (Vk+2 \ Vl).

Applying very similar arguments as above, we can observe that first, k-LS pro-
duces a time optimal schedule if the first (k + 2) levels of T form a single path,
and second, that if T is a hop-shortest path tree in the sink’s l-hop neigborhood,
the produced schedule is time approximative not only for an optimal schedule
of T , but for an optimal schedule of any spanning tree. For the sake of brevity,
we omit the proof.

Corollary 1. The schedule produced by k-LS is time optimal for the given tree
if Vk+2 is a path and time approximative within a factor of k+2

�(k+1)/2� among all
schedules of all spanning trees of G if h(v) = dG(v, r) for all v with dG(v, r) ≤ l,
i. e. if T is a hop-shortest path tree in the l-hop neighborhood of r.

All these results can very naturally be extended to a relaxed local interfer-
ence model, the ki/ko-local interference model, in which a transmission (u, v) is
successful if u is the only active sender in v’s ko-neighborhood, but might be
successful if u is the only active sender in the ki-neighborhood of v. Then, the
approximation ratio from Theorem 2 becomes ko+2

�(ki+1)/2� .

Efficient Scheduling of Data-Harvesting Trees 53

4 Making Schedules Robust

In this section, we will analyze an approach to make the above schemes robust
to link failures using logarithmic sized additional memory per node. To allow for
more sophisticated solutions than blindly repeating transmissions, which would
not lead to a robust scheme anyway, we will assume some sort of ACK to acknowl-
edge successful transmissions and a known lower bound on reception probability
α (u) (including the feedback) for every link (u, v) ∈ T . We further assume
reception probabilities to be independent for every transmission. We will first
analyze a generic approach and then discuss individual issues of the proposed
schemes.

For the generic approach, we will assume a non-robust schedule in which no
node receives twice in a row without sending in between like all of the above. We
further assume that we we have a mechanism to allocate t(u) ≥ �2/α (u) suc-
cessive slots for every scheduled transmission (u, v) in the non-robust schedule.
We will discuss later how to do this for the individual protocols. The basic idea
now is to run the non-robust schedule, with t(u) slots reserved for every trans-
mission (u, v). We will show that as long as every node only uses the t(u) slots
allocated for a single transmission in the non-robust schedule for at most one
first transmission attempt (and arbitrarily many retransmissions), with high
probability all packets are delivered if nodes are able to buffer a logarithmic
number of packets and if the schedule budgets for a slightly more than σ (u)
packets for every node, namely σ′ (v) := σ (v) + σ̂ (v). More specifically, let
every node v have a buffer of size of (|C(v)| + 1)b for b := 3 log4 N packets,
and let σ̂ (v) := (25

32 ln 4 + 5
2 (|C(v)| + 1))b. We propose a robust transmission

protocol (RTP) where a node u uses the t(u) slots reserved for a transmission
(u, v) in the non-robust schedule as follows: First, if all packets in the sender’s
buffer are marked as “pending”, it pushes a “fresh” own packet to the buffer
if there are any. Second, if there are unmarked packets in the buffer, it then
marks one of them as “pending”. Third, it tries to transmit as many pending
packets as possible, removing successfully transmitted packets from the buffer.
The receiver v simply adds new packets to its buffer if they have not been
received before2.

Proposition 4. With high probability, RTP delivers all packets.

Before we prove this claim, we prove the following lemma:

Lemma 1. With high probability, no buffer of any node v ever contains more
than b packets marked as pending or more than |C(v)|b unmarked packets.

Proof (Lemma 1). First, we observe that in a transmission phase, the number
of nodes marked as pending at the sender can increase by at most 1, if all t(u)
transmission attempts fail and decreases by at least one if two or more trans-
mission attempts are successful. Since the number of transmission attempts is

2 Which can happen due to lost ACKs.

54 B. Katz, S. Mecke, and D. Wagner

higher than 2/α (u), the probability that the number of pending packets de-
screases, p−, is more than four times the probability that this number increases,
p+, unless there were no pending packets at the begin of the transmission phase.
Modeling the buffer utilization by marked packets as a finite markov chain, we
get a probability of less than (p+/p−)b to be in a state where the buffer contains
more than b marked packets by steady state analysis. The probability to reach
such a state in any node in any transmission phase is thus less than

1 −
(
1 − (1/4)b

)N2

= 1 −
(
1 − 1/N3)N2

< 1/N

On the other hand it is easy to see that also the number of unmarked packets in
a node v’s buffer can never exceed |C(v)|b: Looking at a node v and its children
C(v), we observe that the sum of packets marked as pending in the buffers
of the children and the unmarked packets in the buffer of v can only increase
during a transmission phase of a child and the next transmission phase of v (no
node receives twice in a row) if v had no unmarked packet in its buffer prior
to the transmission phase and the transmissions all failed. But since with high
probability, the first number stays below b for all children, i. e. the sum of marked
packets in the children’s buffers does whp. not exceed |C(v)|b, the sum of marked
packets at the children plus the number of unmarked packets at v cannot exceed
|C(v)|b, which proves the claim.

Proof (Proposition 4). Before the additional σ̂ (v) transmission phases start,
every node had enough transmission phases to shift all its own packets to the
buffer. From Lemma 1, we know that whp., the buffer sizes are sufficient. It
remains to show that the additional σ̂ (v) transmission phases are sufficient for
every node to get rid of the packets left in the buffer, i. e. at most (C(v) + 1)b
packets. As argued above, in every transmission phase, with probability p >
4/5, at least one packet is transmitted. Thus, Hoeffding’s inequality gives us
the following upper bound on the probability that for a single node, less than
(|C(v)| + 1)b of the σ̂ (v) calls are successful:

Psnf ≤ exp
(
−2(σ̂ (v) p − (|C(v)| + 1)b)2

σ̂ (v)

)
< exp

(
16(|C(v)| + 1)

5
b − 32

25
σ̂ (v)

)
With b and σ̂ (v) as above, we get Psnf < 1/N3, and a probability of less than
Pfail < 1 − (1 − 1/N3)|V | < 1/N that any node has any packets left when the
schedule ends.

Note that while retransmissions of failed transmissions are inevitable, the pro-
posed scheme does waste some energy for the following reasons: First, every
node accounts for additional O(log N) packets, and second, nodes do have to
transmit at least once during a transmission phase even if they do not have any
packet marked as pending. Both effects increase the energy consumption only
by small constant factors if every node has a payload of at least σ (v) > σ̂ (v),
i. e. σ (v) ∈ Ω(log N). If, in this case, the number of time slots t(v) can be set

Efficient Scheduling of Data-Harvesting Trees 55

to exactly �2/α (v) for every v, the total number of time slots 2t(v)σ (D(v))
reserved for v’s transmission attempts is at most six times the expected number
of necessary transmission attempts σ (D(v)) /α (v).

Adapting this approach to the proposed schedulings, however, can incur ad-
ditional costs. This adaption is easy if there is some reasonable lower bound
on reception probability, i. e., if there is some small constant c > 1 for which
maxv∈V α (v) < c minv∈V α (v). Then, every scheme can be made robust by
choosing t ≡ �2/ minv∈V α (v). Schemes in the total interference model can also
be made robust by treating a link (v, parent(v)) with reception probability α (v)
as if it was a path of length t(v) = �2/α (v). In this case, the height of the tree
changes accordingly.

For the time-optimal scheduling scheme in the total interference model, ro-
bustness can cause higher costs: Since packets contain additional routing data,
missing packets can sometimes only be compensated for by idle listening when
waiting for the next packet. On the other hand, buffer sizes and packet count
increase can be lowered for some of the proposed solutions: If a protocol guaran-
tees that a node does not receive packets from children alternatingly, which does
hold for all protocols but the level-order schemes, then the |C(v)| can safely be
replaced by 1 in the definition of b and σ̂ (v).

5 Conclusion and Open Problems

We have analyzed the performance of different TDMA schemes for two interfer-
ence models. Under the total interference model we have analyzed a scheme that
optimizes the number of transmissions and the time to complete at the cost of
increasing the packet size. We described another scheme which does not need to
change the packet size but which is not time optimal. We have conjectured that
there is no scheme which is time and energy optimal at the same time. The proof
of this conjecture remains an open problem. It is also an open question if there
are energy optimal schedules with better approximation guarantees (concerning
time to complete) than Θ(

√
n).

For the k-layer interference model we have proposed a scheme which is energy
optimal and is a good approximation with respect to time till completion. Finally,
we have shown how our schemes can be improved in order to integrate robustness
mechanisms.

Our analysis has shown some lower bounds on the performance of TDMA
schemes for data harvesting. It remains to evaluate the practical performance of
our algorithm compared to other approaches under more realistic conditions.

Acknowledgements

The authors would like to thank Robert Görke and Reinhard Bauer for proof-
reading and fruitful discussions.

56 B. Katz, S. Mecke, and D. Wagner

References

1. Xu, N., Rangwala, S., Chintalapudi, K.K., Ganesan, D., Broad, A., Govindan,
R., Estrin, D.: A Wireless Sensor Network for Structural Monitoring. In: 2nd Int.
Conf. on Embedded networked sensor systems (SenSys 2004), pp. 13–24. ACM
Press, New York (2004)

2. Turau, V., Weyer, C.: Scheduling Transmission of Bulk Data in Sensor Networks
Using a Dynamic TDMA Protocol. In: 8th Int. Conf. on Mobile Data Management
(MDM 2007), pp. 321–325. IEEE Computer Society Press, Los Alamitos (2007)

3. Bermond, J.C., Galtier, J., Klasing, R., Morales, N., Perennes, S.: Hardness and
Approximation of Gathering in Static Radio Networks. Parallel Processing Let-
ters 16(2), 165–183 (2006)

4. Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: An Approxi-
mation Algorithm for the Wireless Gathering Problem. In: Arge, L., Freivalds, R.
(eds.) SWAT 2006. LNCS, vol. 4059, pp. 328–338. Springer, Heidelberg (2006)

5. Langendoen, K., Halkes, G.: Energy-efficient medium access control. In: Zurawski,
R. (ed.) Embedded Systems Handbook. CRC Press, Boca Raton (2005)

6. Lu, G., Krishnamachari, B., Raghavendra, C.S.: An Adaptive Energy-Efficient and
Low-Latency MAC for Data Gathering in Wireless Sensor Networks. In: 18th Int.
Parallel and Distributed Processing Symp (IPDPS 2004), p. 224a. IEEE Computer
Society, Los Alamitos (2004)

7. Hohlt, B., Doherty, L., Brewer, E.A.: Flexible power scheduling for sensor networks.
In: 3rd Int. Symp. on Information Processing in Sensor Networks (IPSN 2004), pp.
205–214. IEEE Computer Society, Los Alamitos (2004)

8. Yao, Y., Alam, S.M.N., Gehrke, J., Servetto, S.D.: Network Scheduling for Data
Archiving Applications in Sensor Networks. In: 3rd Worksh. on Data Management
for Sensor Networks (DMSN 2006), pp. 19–25. ACM Press, New York (2006)

9. Turau, V., Weyer, C.: TDMA-Schemes for Tree-Routing in Data Intensive Wireless
Sensor Networks. In: 1st Int. Work. on Protocols and Algorithms for Reliable and
Data Intensive Sensor Networks (PARIS), pp. 1–6. IEEE Computer Society Press,
Los Alamitos (2007)

10. Burri, N., von Rickenbach, P., Wattenhofer, M.: Dozer: Ultra-Low Power Data
Gathering in Sensor Networks. In: 6th Int. Symp. on Information Processing in
Sensor Networks (IPSN 2007), pp. 450–459. ACM Press, New York (2007)

Link Scheduling in Local Interference Models

Bastian Katz�, Markus Völker, and Dorothea Wagner

Faculty of Informatics, Universität Karlsruhe (TH)
{katz,mvoelker,wagner}@ira.uka.de

Abstract. Choosing an appropriate interference model is crucial for link
scheduling problems in sensor networks. While graph-based interference
models allow for distributed and purely local coloring approaches which
lead to many interesting results, a more realistic and widely agreed on
model such as the signal-to-noise-plus-interference ratio (SINR) inher-
ently makes scheduling radio transmission a non-local task, and thus
impractical for the development of distributed and scalable scheduling
protocols in sensor networks. In this work, we focus on interference mod-
els that are local in the sense that admissibility of transmissions only
depends on local concurrent transmissions, and correct with respect to
the geometric SINR model.

In our analysis, we show lower bounds on the limitations that these
restrictions impose an any such model as well as approximation results
for greedy scheduling algorithms in a class of these models.

1 Introduction

Agreeing on good schedules in wireless networks is not only a question of good,
i. e., local and distributed scheduling algorithms. The correctness of any schedul-
ing algorithm’s output relies on the underlying interference model. Choosing an
interference model is thus crucial for any kind of scheduling protocol in sensor
networks. Both, interference models and scheduling problems have been studied
thoroughly in the “tradition” of sensor networks. Complex interference mod-
els incorporating sophisticated signal fading models and antenna characteristics,
developed over the years, proved helpful in the simulation and design of sensor
networks. In the algorithmic community, however, the need of clear, preferably
combinatoric and geometric interference models, led to a focus on graph-based
interference models. These graphs all have in common that they are local in the
sense that mutual exclusion between transmissions only “connects” nodes that
are close to each other. The simple combinatorial character of these models nat-
urally translates scheduling problems to coloring problems in graphs. Moreover,
the geometric properties of these graphs allow for tailored coloring protocols.

Despite their simplicity, the downside of these models clearly is that they could
neither be proven to be correct nor good in real sensor networks. They cannot

� Partially supported by the German Research Foundation (DFG) within the Research
Training Group GRK 1194 “Self-organizing Sensor-Actuator Networks”.

S. Fekete (Ed.): ALGOSENSORS 2008, LNCS 5389, pp. 57–71, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

{katz,mvoelker,wagner}@ira.uka.de

58 B. Katz, M. Völker, and D. Wagner

model interference from far away nodes summing up and jamming communica-
tion, nor can they model that if in reality any pair out of three transmissions can
successfully be performed simultaneously, this does not necessarily mean that all
three transmissions can be performed simultaneously.

Algorithmic research considering a class of models that renders signal propa-
gation much more realistically did to the best of our knowledge not yet lead to
local algorithms. In SINR models, successful or sufficiently probable reception
is assumed if at a receiver, the respective sender’s signal strength outperforms
the sum of all interfering signals plus the background noise by a hardware de-
pendent constant. The geometric SINR models closely cover the main features
of sophisticated fading models such as the two-ray-ground model without losing
too much of the simplicity needed for algorithmic results.

In this paper, we introduce the concept of locality and correctness of inter-
ference models. We prove fundamental limitations of all models that are local
in a very straightforward sense and correct with respect to the geometric SINR
model. We show under which conditions well known concepts such as graph col-
oring can be used to approximate scheduling problems and a generalization that
improves the quality of easy-to-implement scheduling algorithms. We believe
that the introduced models open a door to more realistic, yet viable solutions
not only for scheduling, but for many protocols that rely on local, dependable
communication.

2 Related Work

Interference of concurrent communication, being the most outstanding attribute
of wireless networks, has been subject of countless publications. Since in reality,
interference is composed of many hard-to-capture phenomena such as multipath
fading, algorithmic research developed numerous simplifications. Most of the
algorithmic models model interference as a binary relation on transmissions,
among them the unit disk graph (UDG) with distance or hop interference or the
protocol model. We refer the reader to [1] for a survey. In SINR models, successful
reception depends on the ratio between the received signal strength on the one
side and the interference from concurrent transmissions plus the background
noise on the other side [2,3]. They differ in whether they assume signal strength
decay to be a function of the distance (geometric SINR) or allow an arbitrary
gain matrix. In the geometric SINR model, Gupta and Kumar analyzed the
capacity of ad-hoc networks and proved an upper bound on the throughput of
Θ(1/

√
n) for networks of n nodes. Until now, the effects of the SINR models to

algorithm design raise interesting questions [4].
Scheduling of link transmissions has been addressed in many interference

models and, in most cases, proven to be NP-hard. Among others are proofs
for scheduling in graph-based models [5, 6], in the abstract SINR model in [7],
and, recently, in the geometric SINR model for fixed power assignment by Gous-
sevskaia et al. [8]. The joint problem of scheduling and power assignment is
still open in the geometric SINR model [9]. A variety of graph-based scheduling

Link Scheduling in Local Interference Models 59

algorithms has been proposed and analyzed [10, 11, 12]. It is however argued
in various works that graph-based scheduling is inferior to scheduling designed
for the SINR model [13, 14]. Among the early publications addressing schedul-
ing in geometric SINR models, Moscibroda and Wattenhofer show that uniform
or linear power assignments in worst-case scenarios need exponentially longer
schedules for a strongly connected set of links [15] than more sophisticated as-
sigments. Moscibroda et al. also propose a scheduling algorithm for arbitrary
power assignment in [16] that outperforms previous heuristics by an exponential
factor. In [8], Goussevskaia et al. propose an approximation algorithm for link
scheduling and the problem of finding a maximum number of links that can
transmit concurrently in the geometric SINR model under the fixed power as-
sumption. The latter three works introduced many of the techniques applied in
the following under the practically more relevant assumptions that nodes do not
feature arbitrarily high transmission powers and cannot rely on a global instance
to compute a schedule, but are restricted to a local view. Locality has, to our
knowledge, only been looked at in a combinatorial sense [17, 18, 19].

3 Definitions and Models

A deterministic interference model M is a property telling for a fixed set of
nodes V whether a set of transmissions T between nodes in V can be car-
ried out simultaneously for given transmission powers. More formally, let T :={
(u, v, p) ∈ V2 × R+ | u �= v

}
be the set of all possible transmissions and trans-

mission powers. Then, a model M ⊆ P(T) contains all sets of transmissions
which are valid. We further assume that less concurrent transmissions cannot
cause a transmission to fail, i. e., that for all T ′ ⊆ T ⊆ T ,

T ∈ M ⇒ T ′ ∈ M , (1)

which holds for all models which are currently used and most likely for all mod-
els which are meaningful. One should note that the restriction to deterministic
models alone already is a giant step away from reality and the probabilistic mod-
els typically employed by communication theorists. But still, even deterministic
models are not understood well. Such models can rely on various kinds of addi-
tional input and assumptions of radio propagation, antenna characteristics and
so on. In higher layer protocol design, however, there is a need to “model away”
the complexity of most of these unrulable phenomena. An aspect that has not
received much attention yet is how different approaches to model interference
relate to each other, or, in other words: If I choose a simpler model, are my algo-
rithms or schedules still correct with respect to a more realistic one or are they
just suboptimal? Do optimal solutions in a simple model approximate optimal
solutions in a more complex model? In the following, we will call an interference
model M conservative with respect to another model M′ if M ⊂ M′.

Most analytical research on scheduling problems has been done in some kind
of graph-based interference model accordig to the following definition from [4].

60 B. Katz, M. Völker, and D. Wagner

Definition 1 (Graph-Based Model). A graph-based model M can be defined
by two directed graphs, one connectivity graph DC = (V , AC) restricting possible
transmissions and one interference graph DI = (AC , AI) connecting conflicting
transmissions, such that T ∈ M if and only if T ⊂ AC and T 2 ∩ AI = ∅.

Usually, a simpler model consisting of two graphs GC = (V , EC) and GI =
(V , EI) is used, in which a set of transmissions is valid, if for every sender, the
intended receiver is a neighbor in GC and no receiver of a distinct transmission
is connected in GI . Sometimes, the connectivity graph and interference graph
are defined implicitly, i. e., as the result of a geometric setting.

Graph-based models all have in common that they claim that a set of trans-
missions whose transmissions can pairwise be carried out at the same time, col-
lectively may be scheduled into one single time slot. This is unrealistic in general,
and the models fail to formulate the assumptions under which they guarantee
not to produce schedules that do not comply with more realistic models. On
the other hand, in the single-power case, graph-based models reduce scheduling
problems to well-known coloring problems.

As opposed to the oversimplification of graph-based interference models, the
models capturing the findings of signal propagation and reception best are the
signal-to-noise-plus-interference (SINR) models. Their main paradigm is that a
transmission is (almost) always successful, if the sender’s signal strength at the
receiver is significantly stronger than the sum of all interfering signals, including
other sender’s signals and (individual) background noise. Thus, in its most gen-
eral form, an SINR model is defined by a gain matrix (Guv) denoting the signal
fading between nodes u and v, on the background noise ηv at each of the nodes
and the (individual) ratio βv a node v needs for proper reception. Here, a set of
transmissions is valid, i. e. T ⊂ M, if and only if for all t = (s, r, ps) ∈ T

psGsr

ηr +
∑

(u,v,pu)∈T\{t} puGur
≥ βr . (2)

Definition 2 (Geometric Model). In a geometric model, M is defined for
V = R

2 such that M is invariant under all isometries.

Generally speaking, geometric interference models are incapable of modeling in-
dividual characteristics of nodes, but are restricted to those of geometric settings.
This does not mean that a geometric model has to be parameter-free, but for
geometric SINR models, this definition implies a much simpler structure:

Theorem 1. Every geometric SINR model can also be defined equivalently such
that all ηv and all βv are independent of the respective position v and all Guv

can be expressed as Guv := f(d(u, v)) for a f : R → R.

Proof. Let M be a geometric SINR model defined by (Gji), (ηi) and (βi). We get
an equivalent model for (G′

ji), (η′
i), and (βi), in which all η′

i = η′ are the same by
setting G′

ji = Gji
η′

ηi
. Now, for any d, take two pairs u1, v1 and u2, v2. We know

that {(ui, vi, p)} ∈ M if and only if p ≥ η′β′
vi

/Guivi . Since there is an isometry

Link Scheduling in Local Interference Models 61

mapping u1 to u2 and v1 to v2, and since M is geometric, transmissions (u1, v1, p)
are valid, for exactly the same values of p as (u2, v2, p). Thus, p ≥ η′β′

v1
/G′

u1v1

if and only if p ≥ η′β′
v2

/G′
u2v2

and thus β′
v1

/G′
u1v1

= beta′
v2

/G′
u2v2

. I. e., all pairs
of nodes with distance d have the same ratio of G′

ji and βi and by fixing some
β′ and setting G′′

ji = G′
jiβ

′/βi, we get a representation of the claimed form.

The class of geometric SINR models (SINRG) is a quite straightforward appli-
cation of the above definition. Individual characteristics such as the background
noise and the necessary SINR ratio are replaced by common constants η and β
and the gain Guv is replaced by a function of the distance, usually Kd−α

uv for
a so-called path-loss exponent α and some constant K. Currently, the SINRG

models widely agreed are the best models to reason about in the algorithmics of
sensor networks. Thus, we will focus on local models that are conservative with
respect to this class of models.

A scheduling problem in a wireless network is a set Q of communication re-
quests, each request (s, r) consisting of a sender s and a receiver r, both from
some set V of nodes. A schedule then is a sequence T1, T2, . . . , Tk of sets of
transmissions of the form (s, r, p) for some (s, r) ∈ Q and some power assign-
ment p ∈ R+, such that for every (s, r) ∈ Q, there is a transmission (s, r, p) in one
of the Ti, and every Ti is valid with respect to an interference model. We refer to
the problem of finding a schedule of minimum length as Schedule, and to the
problem of finding a maximum number of transmissions that can be scheduled
to a single slot as OneShotSchedule as in [8]. We will also denote the maxi-
mum link lenght occurring in a schedule request Q by �(Q) := max(s,r)∈Q dsr . If
the scheduling problem is combined with the problem of assigning transmission
powers, usually powers must be chosen from some power range p = [pmin, pmax].
In the following, we will focus on the problem of finding schedules for a fixed
power p and thus also write (s, r) to denote a transmission (s, r, p).

4 Local Interference Models

The concept of locality has been introduced for distributed systems and adopted
in the context of sensor networks. Usually, a distributed algorithm is said to be
k-local, if the outcome for every node only depends on nodes which are in-
side a k-hop-neighborhood. Unfortunately, this concept is too restrictive to al-
low for any local scheduling algorithms in a geometric SINR model with nodes
that do not feature arbitrarily high transmission powers, but are limited to
some maximum power. Even if we define a node’s neighborhood as the set of
nodes the node can communicate with when no other communication takes
place at the same time, in an SINRG model MG, it might be impossible to
arrange a schedule at all. If we denote the maximum possible link length of
an interference model M by �(M) := lim sup{(u,v,p)}∈M duv, we get �(MG) =
α
√

Kp/(βη), since for nodes with higher distance even in the absence of con-
current transmissions sending at maximum power does not result in a received
signal strength of βη, which is necessary due to the background noise alone.

62 B. Katz, M. Völker, and D. Wagner

s1 r1

s2 r2

�(MG)

�(
M

G
)
+

ε

Fig. 1. Links with dis-
tance �(MG) + ε may
need communication

In Fig. 1, such a situation is depicted: Out of the two
sender/receiver pairs in the transmission request, only the
pairs themselves have a distance less than �(MG), and
thus, there is no communication possible between the dif-
ferent pairs, which, however, have to agree not to transmit
at the same time since both of them cannot compensate
for the interference caused by the other. We will thus in
the next section look at a weaker, geometric definition of
locality and its consequences for scheduling problems.

Definition 3 (Local Model). A ρ-local model is a geometric model M with
the additional constraint that T ∈ M if for every t = (s, r, p) ∈ T

T (s, ρ) := {(s′, r′, p′) ∈ T | d(s, s′) ≤ ρ} ∈ M .

In other words, an interference model is local, if for a set of transmissions T , it
is sufficient that for every sender in T the transmissions in its ρ-neighborhood
comply with the model to make T valid. Models of this kind not only allow to tell
that a set of transmissions will be successful by only locally looking at the trans-
missions, but they are also essential for the design of local algorithms. They can
be seen as a rule for every node that can only observe nearby nodes, either dur-
ing a setup phase or, more importantly maintaining a dynamic link transmission
schedule. The geometric graph-based models mentioned above quite naturally
have this property, but SINRG models do not, which proved to be one of the
main obstacles when tackling scheduling problems in these models. This holds
for existing centralized approximation algorithms which try to break the inter-
woven dependencies into independent subproblems as in [8], and it inherently
does so in distributed settings – how could nodes come up with a provably valid
schedule with local communication, when the validity of a schedule cannot be
judged locally? Local interference models on the other hand seem to be incor-
rect by design: They are blind for interference that arises from nodes that are
far away, and thus cannot factor what these nodes are doing. From this time
on, let MG = (K, η, β, α) be a standard SINRG model. We start with an obser-
vation which illustrates the first limitations local reasoning about interference
implicates. It is a generalization of the considerations above.

Observation 1. Let ML be a MG-conservative, ρ-local interference model. The
following two inequalities hold:

�(ML) <
ρ

1 + α
√

β
and �(ML) < �(MG) ·

(
1 +

3Kp

ηρα

)−1/α

(3)

Proof. Let T ∈ ML be any set of transmissions that is accepted by the local
model and t = (s, r) any transmission in T . Let �t := dsr. By the subset accep-
tance property (1) and the fact that ML is geometric (and thus invariant under
isometries of the plane), ML would accept any set of transmissions T in which
all senders have pairwise distances of more than ρ and all transmissions from T
have length �t.

Link Scheduling in Local Interference Models 63

s
r

s1 s2

s3

ρ

Fig. 2. Lower bounding in-
terference in ρ-local models

Now, consider a set of transmissions T , as de-
picted in Fig. 2, where senders are placed on a tri-
angular grid with edge length ρ := ρ+ ε, i. e., which
complies with the considerations above. First, if we
assume that �t ≥ ρ/(1+ α

√
β), the interference of the

sender s2 alone would interfere with the reception
of the transmission t to the limit,

lim
ε→0

Kpρ−α(1 + α
√

β)α

Kpρ−α(1 − 1/(1 + α
√

β))−α
= β ,

and together with the additional interference caused by other senders, reception
would become impossible, contradicting with the choice of t.

Second, as we now know that �t < ρ/2, we get that the interference of the
senders s1, s2 and s3 at the receiver is at least 3Kpρ−α. Thus, since T ∈ MG,

Kp�−α
t

3Kpρ−α + η
≥ β ⇔ �t ≤

(
βη

Kp
+

3β

ρα

)−1/α

= �(MG) ·
(

1 +
3Kp

ηρα

)−1/α

,

which concludes the proof.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

trivial
analytical
numerical

maximum link length

lo
ca

lit
y

ra
di

us

Fig. 3. Lower bounds on ρ (α = β = 4.0)

Note that this bound is by no
means tight, but it shows how severe
the restrictions are that one can only
overcome by globally solving schedule
problems: To allow for longer links,
especially of lengths close to �(MG),
the radius ρ has to be chosen accord-
ingly. We can derive better bounds
by calculating interferences more ac-
curately than above by summing up
interference for more senders on the
same triangular grid. Fig. 3 shows an
exemplary tradeoff between the maximum link length needed, �(ML) and the
resulting analytical and numerical lower bounds on the radius ρ for α = 4, β = 4
(≈ 6dB) and η, p, K normalized to �(MG) = 1. It shows that in the case that we
do not assume that nodes can communicate with nodes outside their transmis-
sion radius, e. g., by the assumption that the node density is sufficiently high, no
link length longer than 40% of the maximum link length can safely be scheduled
in realistic scenarios.

The second observation we can make about local interference models regards
the case that nodes cannot send with arbitrarily low power:

Observation 2. Let ML be a MG-conservative ρ-local interference model for a
ρ < ∞. Even for requests with �(Q) ≤ �(ML)), optimal solutions to Schedule

and OneShotSchedule in ML can be arbitrarily worse than in MG.

64 B. Katz, M. Völker, and D. Wagner

ρ
+

ε

Fig. 4. Ring of trans-
missions

For the sake of brevity, we will only give a sketch of the
proof here. We look at a request of a ring of n transmissions
as depicted in Fig. 4 with sufficiently small transmission
lengths �(g) plus one transmission t� of length �(n) in the
middle. It is easy to see that in MG, it is admissible to
schedule all transmissions but t� to the same slot (and t�

to a second). In MG, assigning a slot to t� and to the rest
of transmissions is independent. Thus, at no time more
than a constant number of the n outer transmissions can
be carried out, allowing for concurrent transmission of t�.

5 Ω(1)-Sender Model

In every meaningful local model, acceptance of a (local) set of transmissions
must follow this consideration: Given the rules for local acceptance of a set of
transmissions – is it guaranteed that if all nodes obey these local rules, no node
possibly has to accept more interference from outside the ρ-neighborhood than
allowed, given the amount of interference arising from local transmissions. A
quite straightforward implementation of this concept is the following: For some
function µ : R+ → R+, which serves as an upper bound for interference from
far away nodes, a set of transmissions T is licit if for every transmission (s, r) a
local signal-to-noise-plus-interference condition holds:

Kpd−α
sr∑

(ŝ,r̂)∈T (s,ρ) Kpd−α
ŝ,r + η + µ(dsr)

≥ β , (4)

and if it is guaranteed that a transmission (s, r) cannot receive more interference
than µ(dsr) from senders further away than ρ from s. One way to guarantee the
latter is to prohibit that close senders are transmitting concurrently and thus,
to limit the density of active senders:

Definition 4 (Ω(1)-sender model). In the Ω(1)-sender model M = (ρ, c, µ),
a set of transmissions T is valid if and only if for every (s, r) ∈ T equation (4)
holds, and any two senders in T have distance at least c.

Such a model clearly is ρ-local if c ≤ ρ, but quite obviously not MG-conservative
for an arbitrary µ. However, for certain values of ρ, c, and µ, the resulting model
(ρ, c, µ) is MG-conservative and local:

Lemma 1. Let ML = (ρ, c, µ) be an Ω(1)-sender model. ML is conservative
with respect to MG if 1

µ(�) ≥
√

12Kpπζ(ρ2/c2 + 2ρ/c)
(ρ − �)α

=: µ1(�) (5)

1 For the Riemannian ζ-function and ζ := ζ(α − 1), a constant 1 < ζ < 2 for α ≥ 3.

Link Scheduling in Local Interference Models 65

Proof. Let (s, r) be some sender/receiver pair with dsr = �. We divide the plane
into annuli Ak with center s and radii kρ and (k + 1)ρ for k ∈ N. The maximum
number of senders lying within the kth annulus is the maximum number of disks
of radius c within an annulus with radii kρ − c and (k + 1)ρ + c. Since senders
in Ω(1)-sender models form a Minkowski arrangement, which cannot exceed a
density of 2π√

3
≈ 3.638 [20], we get that the number of senders in Ak is at most

Nk :=

⎢⎢⎢⎣ 2π√
3
·
π
(
((k + 1)ρ + c)2 − (kρ − c)2

)
πc2

⎥⎥⎥⎦ ≤ k
√

12π
(
ρ2/c2 + 2ρ/c

)︸ ︷︷ ︸
:=N∗

,

The interference received from any of the senders in Ak can be bounded by

Ik := Kp(kρ− �)−α ≤ k−α Kp (ρ − �)−α︸ ︷︷ ︸
=:I∗

,

and the total interference received from any sender can then be bounded by∑∞
k=1 NkIk ≤ N∗I∗

∑∞
k=1 k−α+1 = N∗I∗ζ.

Let (ρ, c) denote a shortcut for the MG-conservative model (ρ, c, µ1). Obviously,
the bound µ1 can very straightforward be replaced by a better numerical bound.
Fig. 5(a) shows how these bounds compare to each other and to the lower bound
from the last section. Note that all bounds are correct, and, given the SINR
parameters, easy to calculate. We will use the closed-form result for further
analysis and the improved bounds for simulation.

With the approximation above, we still have the choice of first the maximum
possible link length and second, the balance of the locality factor ρ and the
exclusion radius c.

Corollary 1. Let � = u · �(MG) for some 0 < u < 1 be a link length and a ≥ 1,
the MG-conservative Ω(1)-sender model ML = (ρ, ρ/a) with

ρ =

⎛⎝1 +
α

√√
12(a2 + 2a)πβζ

1 − uα

⎞⎠ · �

has �(ML) = �. It is graph-based for a = 1, yielding (ρ, ρ).

Proof. According to Lemma 1, ML is MG-conservative. It remains to show that
�(ML) = �. First, by � = u α

√
Kp/βη, we observe that

ρ − � =
α

√√
12(a2 + 2a)πβζ

1 − uα
· � = α

√√
12(a2 + 2a)πKpζ

η(u−α − 1)
(6)

and therefore by the definition of u

�(ML) = α

√
Kp

βη +
√

12(a2 + 2a)πKpβζ (ρ − �)−α = α

√
Kp

βηu−α
= �

Obviously, it is graph-based for a = 1.

66 B. Katz, M. Völker, and D. Wagner

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

needed locality, analytic
needed locality, numerical
lower bound

maximum link length

lo
ca

lit
y

ra
di

us

(a) Minimum locality as function of max-
imum link length, analytical and numeri-
cal bounds compared to lower bound

2 3 4 5 6 7 8 9

0.
0

1.
0

2.
0

3.
0 90% of link length

80% of link length
60% of link length

locality radius

ex
cl

us
io

n
ra

di
us

(b) Tradeoff between the minimum pair-
wise sender distance and the locality ra-
dius for fixed �(ML)/�(MG)

Fig. 5. Tradeoffs for Ω(1)-sender model (ρ, ρ)

This corollary in a way justifies the work that has been done on scheduling
problems in graph-based models as it provides a very simple graph-based model
that is provably correct with respect to the geometric SINR models (and, at
the same time shows the price for reducing an SINRG model to a graph-based
model). Fig. 5(b) shows this tradeoff between the maximum schedulable link
length and the respective ρ for different ratios. As argued in Section 4, no local
model can allow for “good” solutions in the single-power setting in the sense that
the scheduling problems can be approximated within a constant factor in any
such model if links can be arbitrarily short. We will show that MG-conservative
Ω(1)-sender models (ρ, ρ) are only by constant and comparably small factors
worse than any local model in two dimensions – first the locality needed to allow
for a given maximum link length and second the quality of optimal solutions to
the scheduling problems.

Lemma 2. Let ML = (ρ, ρ) be the MG-conservative Ω(1)-sender model ac-
cording to Corollary 1 for some �. Then for any ρ′-local model M′

L which is
MG-conservative,

ρ

ρ′
≤ 1

α
√

3β
+ 2

√
3πζ

Proof. From (3) and with u := �/�(MG), we get that

ρ′ = α
√

3β

(
1

�(ML)α
− 1

�(MG)α

)−1/α

= � α
√

3β (1 − uα)−1/α

and, from Corollary 1 and u < 1,

ρ =

⎛⎝1 +
α

√
6
√

3πβζ

1 − uα

⎞⎠ · � < (1 − uα)−1/α ·
(

1 + α

√
6
√

3πβζ

)
· � ,

which directly implicates the claimed approximation.

Link Scheduling in Local Interference Models 67

This bound depends only on α and β, and is thus constant for a fixed SINRG

model. For a given set of SINRG parameters, this approximation ratio can be
improved using the non-closed-form lower bounds for local models and upper
bounds for the c-distant sender model. E. g., for the exemplary values used
throughout this paper, the best bounds guarantee a ratio of less than 5/4 for
arbitrary �.

Lemma 3. Let ML = (ρ, ρ) be the MG-conservative Ω(1)-sender model accord-
ing to Lemma 1 and Corollary 1. Let Q be a schedule request with �(Q) < �(ML).
Optimal solutions to Scheduling and One-Shot-Schedule in ML are only
by a constant factor worse than optimal solutions in any other ρ-local MG-
conservative model.

Proof. First we show that any ρ-local model M′
L with �(M′

L) ≥ � cannot accept
any set of transmissions T such that for any transmission (s, r, p), T (s, ρ) con-
tains more than h := 4α6

√
3ζ transmissions. To this extent, let T be a set of h

transmissions such that T (s, ρ) = T for some (s, r) ∈ T . We add a transmission
(s′, r′) to T with ds,s′ = 2ρ, pointing towards s. Note that if T is valid in M′

L,
then T ′ = T ∪ {(s′, r′)} must be valid, too. But if all transmissions in T ′ are
carried out simultaneously, the SINR-level at r′ is below

Kp�−α

hKp(2ρ)−α + η
=

�−α

h4−α �α(1−uα)
6
√

3πβζ
+ η

Kp

=
�−α

�−α(1−uα)
β + η

Kp

= β .

Now take any schedule request Q. Let A be the square with side ρ/
√

2 that
contains the most senders in Q. Let m denote this number. Since in every ρ-
local model at most h of the senders in A can transmit concurrently, leading to
a schedule length of at least �m/h. In ML, in turn, we can construct a schedule
of length 4m by the same construction as in [8]: We extend the square to a
grid of grid-length ρ/

√
2, 4-color the grid cells, and cyclically choose a color and

pick an unscheduled sender from each cell with that color. This guarantees a 4h-
approximative schedule compared to an optimal solution in any ρ-local model.
Similar arguments lead to a 4h-approximation of One-Shot-Schedule: Take
an optimal solution T in any ρ-local model and picture a 4-colored grid with
grid-length ρ/

√
2. Focus only on grid-squares that contain a sender of T . Each

of the squares contains at most h transmissions in T . Now pick the color of
the most non-empty squares and pick one transmission of each square. This
set of transmissions contains at least �|T |/4h transmissions that can all be
carried out concurrently in ML. We get a slightly worse approximation for greedy
scheduling, where we will only look at the Scheduling problem: In the very
same grid as above, if one cell does not contain an active sender in a slot, then
for two possible reasons: First, since all senders have been scheduled to earlier
slots, and second, because of some active sender in one of the adjacent cells.
Thus, greedy scheduling uses at most 9m slots, which is 9h-approximative.

68 B. Katz, M. Völker, and D. Wagner

6 Implementation and Simulation Results

We implemented a very basic scheduling algorithm for Ω(1)-sender models which
greedily assigns slots to senders in a random order: Each sender is assigned to the
first allowed slot according to the respective model. This is not only a very sim-
ple centralized approach, but also a reasonable distributed scheduling algorithm.
Given that the node density is sufficient for nodes to have their ρ-neighborhood
some constant number of hops away, nodes can draw random numbers and decide
on their slot after all neighbors with lower numbers did so only by local communi-
cation. This approach is also suited to schedule online requests. We compare the
results to three different global scheduling algorithms. First, we select nodes in
random order and add them to the first slot allowed by the plain SINRG model.
Second, we compare to the algorithm given in [8]. Please note that this algorithm
is not designed to produce good schedulings, but only as a proof of approximabil-
ity. It is thus not surprising that it returns comparably poor results. Third, since
solving the Schedule problem optimally is hard, and solving the corresponding
mixed-integer linear problem only works for a very small number of transmis-
sions, we compare to a heuristic, which produced near-optimal results for small
instances of random transmission requests. We fill the slots one after another,
at any time adding the transmission which causes the least drop of the mini-
mum signal-to-noise-plus-interference ratio for all transmissions earlier added to
that slot. We ran all of the above algorithms on schedule requests with at most
80% of the maximum link length in the SINRG model. Instances were random
sets of 20000 transmissions and random unit disk graphs with 5000 nodes on a
50x50 square unit area, i. e. some 10000 edges leading to some 20000 transmis-
sions to schedule links symmetrically. For the Ω(1)-sender models, we compare
three configurations. First, the graph-based (ρ, ρ) model with minimum ρ, sec-
ond a (ρ, �(MG)) model with minimum ρ and third, a (ρ, �(MG)) model for a ρ
higher than necessary. Additionally, we compare to a variant of the Ω(1)-sender
models, where the locality radius ρ is centered at the receiver, where the interfe-
rence occurs. We call this receiver-centered locality. This class of models never is

Table 1. Comparison of scheduling in different interference models

locality excl. rad. random links
Algorithm [�(MG)] [�(MG)] length max. util. avg. util.
Greedy scheduling in MG ∞ 0 71.91 482.45 278.43
Intelligent scheduling in MG ∞ 0 34.15 2726.00 586.11
Goussevskaia et al. [8] ∞ 0 605.03 206.01 33.06
Greedy scheduling in . . .
. . . (ρ, ρ), min. ρ (graph-based) 2.82 2.82 117.38 224.31 170.45
. . . (ρ, �(MG)), min. ρ 4.59 1.00 58.63 626.59 341.31
. . . (ρ, �(MG)), incr. ρ 6.00 1.00 47.89 629.41 417.86
. . . rc.-local (ρ, r), min. ρ 2.55 (rc) 1.75 60.88 487.68 328.79
. . . rc.-local (ρ, �(MG)), min. ρ 3.82 (rc) 1.00 54.84 675.81 364.91
. . . rc.-local (ρ, �(MG)), incr. ρ 6.00 (rc) 1.00 46.48 646.45 430.50

Link Scheduling in Local Interference Models 69

0 20 40 60 80 100 120 140

0
10

0
20

0
30

0
40

0
50

0
greedy global
intelligent global
graph−based (2.82)
local (4.59)
rc−local (2.55)
Goussevskaia et al.

slot

co
nc

ur
re

nt
 tr

an
sm

is
si

on
s

0 50 100 150 200

0
10

0
20

0
30

0
40

0
50

0

greedy global
intelligent global
graph−based (2.82)
local (4.59)
rc−local (2.55)
Goussevskaia et al.

slot

co
nc

ur
re

nt
 tr

an
sm

is
si

on
s

Fig. 6. Utilization of slots for different scheduling algorithms, for 20000 randim
links (left) and random UDGs with ≈20000 links, averaged over 250 runs. Plot-
ted are results for the graph-based Ω(1)-sender models (2.82�(MG), 2.82�(MG)) and
(4.59�(MG), �(MG)) and the model (2.55�(MG), 1.75�(MG)) for the receiver-centered
locality. Values for ρ and c are minimal in the sense that by decreasing these parameters
we cannot prove correctness with respect to MG. Results are compared to the following
global algorithms : greedy scheduling, intelligent scheduling and the algorithm from [8].

graph-based, but allows for better bounds and schedules. Table 1 shows values for
random links, averaged over 250 runs, a selection is also plotted in Fig. 6 together
with results from scheduling UDG links. Not surprisingly, the more far-seeing
global algorithm performs best among all compared schemes and the global al-
gorithm from [8] by far worst. Among the greedy schedule algorithms, the global
view did in general not give an advantage. Greedy scheduling in the SINRG model
only outperformed the graph-based variant (whose big advantage is its simplic-
ity). Increasing locality a little more or switching to the receiver-centered locality,
the local models even led to better results since the exclusion radius prevented
scheduling of close links and receiver-centered locality reflects the nature of
interference better.

7 Conclusion and Future Work

In this work, we introduced the concept of local interference models capturing the
natural demand for scalable and distributed scheduling protocols to have a local
yet provably correct characterization of successful concurrent transmissions. We
prove lower bounds that arise in those models and introduce a very simple class,
Ω(1)-sender models which provably allow for constant approximation compared
to any other local interference model that produces correct results with respect
to the widely agreed on geometric SINR model. We believe that these models
will be helpful to attack other local problems such as the problem to construct
good topologies not only with respect to properties of spanning ratios and low
degree or other heuristics to minimize interference, but with respect to the local
construction of short schedules of these topologies. To this extent, it will also be
of interest to generalize the findings of this work to the case of variable power

70 B. Katz, M. Völker, and D. Wagner

assignment, which, unfortunately is not well understood even with respect to
global schedule algorithms.

References

1. Schmidt, S., Wattenhofer, R.: Algorithmic Models for Sensor Networks. In: 20th
IEEE Int. Parallel and Distributed Processing Symposium (IPDPS 2006), pp. 450–
459 (2007)

2. Rappaport, T.: Wireless Communications: Principles and Practices. Prentice-Hall,
Englewood Cliffs (1996)

3. Gupta, P., Kumar, P.R.: The Capacity of Wireless Networks. IEEE Transactions
on Information Theory 46(2), 388–404 (2000)

4. Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol Design Beyond Graph-Based
Models. In: Proc. of the 5th Workshop on Hot Topics in Networks (HotNets) (2006)

5. Hunt, H., Marathe, M., Radhakrishnan, V., Ravi, S., Rosenkrantz, D., Stearns, R.:
NC-Approximation Schemes for NP- and PSPACE-Hard Problems for Geometric
Graphs. Journal of Algorithms 26 (1998)

6. Krumke, S.O., Marathe, M., Ravi, S.S.: Models and approximation algorithms for
channel assignment in radio networks. Wireless Networks 6, 575–584 (2000)

7. Björklund, P., Värbrand, P., Yuan, D.: A Column Generation Method for Spatial
TDMA Scheduling in Ad hoc Networks. Ad Hoc Networks 2(4), 4005–4418 (2004)

8. Goussevskaia,O.,Oswald,Y.A.,Wattenhofer,R.:Complexity inGeometricSINR. In:
Proceedings of the 8thACMInternational SymposiumonMobileAdHocNetworking
and Computing (MOBIHOC 2007), pp. 100–109. ACM Press, New York (2007)

9. Locher, T., von Rickenbach, P., Wattenhofer, R.: Sensor Networks Continue to
Puzzle: Selected Open Problems. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy,
C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 25–38. Springer,
Heidelberg (2008)

10. Hajek, B., Sasaki, G.: Link Scheduling in Polynomial Time. IEEE Transactions on
Information Theory 34(5), 910–917 (1988)

11. Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: End-to-end
packet scheduling in wireless ad-hoc networks. In: Proc. of the 15th annual ACM-
SIAM symposium on Discrete Algorithms (SODA 2004), pp. 1021–1030 (2004)

12. Moscibroda, T., Wattenhofer, R.: Coloring Unstructured Radio Networks. In: Proc.
of the 17th Annual ACM Symp. on Parallel Algorithms and Architectures (SPAA
2005) (2005)

13. Behzad, A., Rubin, I.: On the Performance of Graph-based Scheduling Algorithms
for Packet Radio Networks. In: Proc. of the IEEE Global Telecommunications
Conference (GLOBECOM) (2003)

14. Grönkvist, J., Hansson, A.: Comparison Between Graph-Based and Interference-
Based STDMA Scheduling. In: Proc. of the 2nd ACM International Symposium
on Mobile Ad Hoc Networking & Computing (MOBIHOC), pp. 255–258 (2001)

15. Moscibroda, T., Wattenhofer, R.: The Complexity of Connectivity in Wireless Net-
works. In: Proceedings of the 25th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM 2006) (2006)

16. Moscibroda, T., Oswald, Y.A., Wattenhofer, R.: How Optimal are Wireless
Scheduling Protocols? In: Proceedings of the 26th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM 2007) (2007)

Link Scheduling in Local Interference Models 71

17. Linial, N.: Locality in Distributed Graph Algorithms. SIAM Journal on Comput-
ing 21, 193–201 (1992)

18. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Com-
puting 24(6), 1259–1277 (1995)

19. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The Price of Being Near-Sighted. In:
Proc. of the 17th ACM–SIAM Symp. on Discrete Algorithms (SODA 2006) (2006)

20. Toth, L.F.: Minkowskian distribution of discs. Proceedings of the AMS 16(5), 999–
1004 (1965)

Algorithms for Location Estimation
Based on RSSI Sampling

Charalampos Papamanthou, Franco P. Preparata, and Roberto Tamassia

Department of Computer Science and Center for Geometric Computing
Brown University

{cpap,franco,rt}@cs.brown.edu

Abstract. In this paper, we re-examine the RSSI measurement model
for location estimation and provide the first detailed formulation of the
probability distribution of the position of a sensor node. We also show
how to use this probabilistic model to efficiently compute a good esti-
mation of the position of the sensor node by sampling multiple readings
from the beacons (where we do not merely use the mean of the samples)
and then minimizing a function with an acceptable computational effort.
The results of the simulation of our method in TOSSIM indicate that
the location of the sensor node can be computed in a small amount of
time and that the quality of the solution is competitive with previous
approaches.

1 Introduction

Estimating the location of a roaming sensor is a fundamental task for most
sensor networks applications. For example, if a sensor network has been deployed
to provide protection against fire (in this case, sensor nodes report a sudden
increase in temperature), we want to know the location of the sensor that triggers
an alert so that action can be taken accordingly. Additionally, some routing
protocols for sensor networks, such as geographical routing [15, 44], make routing
decisions based on the knowledge of the locations of the sensor nodes. Common
location estimation protocols that are widely adopted in practice assume that
there are some fixed nodes (base stations) that know their location which are
called beacons. These nodes send a signal to the sensor nodes that want to
determine their location. According to the intensity (or for example the angle)
of this signal, the sensor node can have an estimate of the distance between them
and the beacons.

After performing a certain number of such measurements for different bea-
cons, the sensor node has to combine all this information (for RSSI (Received
Signal Strength Indicator), this information is the power of each individual sig-
nal and the coordinates of the corresponding transmitter) in order to estimate
its location. However one could ask the following question: Why cannot we use a
Geographic Positioning System (GPS) to efficiently achieve the task of localiza-
tion? The answer is that a GPS requires a strong computing platform which is
not available in sensor networks. Sensor nodes are typically very low-computing

S. Fekete (Ed.): ALGOSENSORS 2008, LNCS 5389, pp. 72–86, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Algorithms for Location Estimation Based on RSSI Sampling 73

power units that can efficiently perform only basic arithmetic operations; Re-
quiring the execution of complex arithmetic operations on a sensor node would
entail a quick depletion of its battery which is not desirable for most practical
applications. Finally, the localization problem gets even more difficult because
the available power on the sensor node is limited: therefore no accurate mea-
surements of the signal can be made (since an accurate measurement requires
more computing power) which means that the measurements are prone to er-
rors. This is something that should also be taken into consideration and treated
accordingly.

Therefore, any location estimation algorithm should have the following re-
quirements:

1. The sensor node should avoid complex and time consuming computations,
which would deplete its energy supply (typically a low-cost battery) rapidly;

2. The computations should take into consideration the error in the measure-
ments, which can be large.

1.1 Related Work and Observations

There are several proposed location estimation protocols for sensor networks,
see, e.g., [5, 7, 8, 11, 23, 24, 25, 26, 27]. All these protocols use the same model,
where some nodes know their location (either because they are fixed or by using
GPS) and are called beacons or anchor nodes, and some other nodes, called sen-
sor nodes, estimate their location using the information they receive from the
beacons. This information consists of the beacons’ coordinates and of features
of the beacon signal, such as the received signal strength indicator (RSSI) or the
time difference of arrival (TDoA). Also, other protocols (e.g., [26]) are based on
the capability of the nodes to sense the angle from which a signal is received.
Recently [38] presented a solution for aerial localization and [22] proposed a
solution where the localization is based on adopting slightly different periodic
signal frequencies (interferometric positioning). This solution [22] is very com-
petitive and achieves very good precision. However the computations used are
very intensive.

Several previous approaches use computationally demanding methods, such
as convex optimization [8], systems of complex equations [26], minimum mean
square error (MMSE) methods [6, 33], and Kalman filters [34]. In these ap-
proaches, the measurement model is not adequately analyzed and the error is
assumed to be small, which is not the case in most real applications of sensor
networks.

Other approaches, notably [17, 30, 36], estimate the location of a node using
the RSSI method (analyzed in [31]), which is the most realistic model for sen-
sor network communication. In [17], the authors evaluate the ability of a sensor
network to estimate the location of sensor nodes. They assume that the location
of the sensor node is known and develop arguments concerning the probability
that the network will detect this location. They use the RSSI error model to
analyze the problem of evaluating the ability of the sensor network to locate a

74 C. Papamanthou, F.P. Preparata, and R. Tamassia

sensor node. However, they do not describe how their algorithms can be imple-
mented on a sensor node to estimate its own location. Moreover, their method
does not take into account the basic parameters of the RSSI model (standard
deviation and path loss exponent) and thus gives incorrect results.

In this paper, we formulate the correct probability distribution of the position
of a sensor node based on one reading produced with the RSSI model. Due to
the errors implicit in the RSSI model, it is unrealistic to try to compute a good
estimation of the location of the sensor node based only on a single measurement
(or even few measurements) from each beacon. Such an approach would be
so inaccurate to make the estimate practically worthless. Notwithstanding this
difficulty, we show that a reliable estimation of the location can be achieved by
processing a reasonably small number of readings of the signals.

Especially for indoor positioning systems, this is an assumption that has been
extensively used. For example, in [13, 14], the position estimation is based on a
location fingerprint t = [t1 t2 . . . tN], where N is the number of beacons and ti
(i = 1, . . . , N) is the mean value of the received signal strength over a certain
time window. Also, in [3, 9, 20, 42], experiments with various sample sizes are
presented where the samples are used to compute certain features of the signal
strength such as the standard deviation and the path loss exponent. Finally, [12]
presents simulations that use various number of samples, where more than 50
samples to filter out the errors in the probability distribution are used.

We show that using only the mean of the measurements is not a correct
procedure, due to the lognormal distribution of the distance from the beacon (see
Theorem 3). Instead of using directly the mean value, we use another value that
is adequate according to the specific underlying probability distribution of the
distance. The number of samples that are used vary from 20 to 60 and obviously
the accuracy of the computed location grows with the number of samples. Finally,
once the sampling has been performed, we show how to seek the minimum of a
function that approximates the actual location with small computational effort.

1.2 Our Contributions

The main contributions of this paper are as follows:

1. We evaluate the probability that a sensor node lies within a certain region,
given that the power received from the beacons is modeled with RSSI. To the
best of our knowledge, this is the first detailed formulation of the probability
distribution of the position of a sensor node. We show that unlike the normal
distribution of the received power, the probability distribution of the actual
position is lognormal. Thus, we give evidence to the role of the parameters
σ and n in the probability distribution of the actual distance, where σ is the
standard deviation of the normal variable that models the power received
by the sensor and n is a parameter, called path loss exponent, that depends
on the transmission medium. In previous approaches [17], the probability
distributions used did not exhibit dependency on these two variables.

2. We present a method for estimating the location of a node from multiple
sample power readings from the beacons. Our method computes the expected

Algorithms for Location Estimation Based on RSSI Sampling 75

value of the received power and combines it with the mean and the standard
deviation of the sample readings using a steepest descent approach [37]. We
show that our method is simple and efficient and provides a good estimation
of the position. Note that using multiple sample readings is necessary for a
reliable location estimation since the probability distribution of the location
for a single sample implies that the domain within which the sensor lies with
high probability has large area.

3. We describe an implementation of our location estimation algorithm that is
suitable for execution on standard sensor hardware and we analyze the re-
sults of an extensive simulation of the execution of the algorithm in TOSSIM
[10, 18]. Our simulation shows that our method has accuracy that is compa-
rable to or better than that of previous methods.

1.3 Organization of the Paper

The rest of this paper is organized as follows. In Section 2, we overview the
RSSI model, give formulas for the probability distribution of the position of a
sensor node due to power measurements, and show how to estimate the actual
distance given a set of sample power readings. We develop an efficient algorithm
for location estimation and analyze its running time in Section 3. Finally, in
Section 4, we report the results of the simulation and present a comparison (in
terms of localization error) of our method with previous approaches. Concluding
remarks are in Section 5.

2 Theoretical Framework

This section provides a formal probabilistic framework for estimation of the
position of a sensor node from power measurements.

2.1 RSSI Model

Suppose we are given a region of the plane with k beacon nodes b1, b2, . . . , bk

(nodes of known location). The coordinates of the beacons are (xi, yi) for i =
1, . . . , k. The beacons transmit information about their location with a signal of
normalized intensity to a sensor node s that does not know its location. Based
on the locations of the beacons and the estimated distances from the beacons
(computed from the received signals), the sensor is to compute its actual location.

Among the several models proposed for estimating the distance between a
beacon and a sensor node, the most realistic and commonly used one is the
received signal strength indicator model (RSSI) [31]. In this model, the beacon
broadcasts signal to all sensors and the sensors can estimate the distance between
them and the beacons on the basis of the strength of the signals they receive.

Let bi be a beacon located at (xi, yi) and s a sensor node located at (x, y).
We define the relative error εi pertaining to bi as follows. Suppose that s reads
a distance r̂i, while the actual distance is ri. The relative error is

76 C. Papamanthou, F.P. Preparata, and R. Tamassia

εi =
r̂i

ri
− 1 ∈ [−1, +∞). (1)

The commonly accepted transmission model [31] expresses the received power
pi (in dBm) as

pi = p0 + 10n log
(

ri

r0

)
(2)

where p0 is the received power in dBm at a reference distance r0 and n is the
path loss exponent which is a constant depending on the transmission medium
(indoors, outdoors) and ranges typically from 2 to 4. In some environments, such
as buildings, stadiums and other indoor environments, the path loss exponent
can reach values in the range of 4 to 6. On the other hand, a waveguide type of
propagation may occur in tunnels, where the path loss exponent drops below 2.

We recall that if the received power in mW at a point k is Pk, and Pk′ is
the received power at some reference point k′ (again in mW), then the received
power pk in dBm at point k is defined as

pk = 10 log (Pk/Pk′) . (3)

The measured power, however, differs from that given in Equation (2); due to
channel fading (variation of the received signal power caused by changes in trans-
mission medium or path), the measured power is p̂i = pi+x. The random variable
x represents the medium-scale channel fading and is typically modelled as Gaus-
sian zero-mean with variance σ2 (in dBm). Typically, σ is as low as 4 and as
high as 12 (this implies that the error may be large). Inserting p̂i and r̂i into
(2), we get

p̂i = p0 + 10n log
(

r̂i

r0

)
(4)

where now the measured power p̂i in dBm relates to the measured distance r̂i by
the sensor. By combining the above equations, we get that the relation between
the measured distance and the actual distance is

r̂i = ri10
x

10n (5)

which gives
εi = 10

x
10n − 1. (6)

2.2 Probability Distributions

In this section, we present the probability distribution of the position of the
sensor node based on measurements of one or more beacons. We denote ex with
exp(x).

Theorem 1. Let bi be a beacon node located at (xi, yi) sending information to
a sensor node under the RSSI model with standard deviation σ and path loss
exponent n. Let r̂i be the measured distance from beacon node bi at the sensor

Algorithms for Location Estimation Based on RSSI Sampling 77

node. We have that the probability density function of the actual position (x, y)
of the sensor node is given by

P
(i)
X,Y (x, y) =

10n exp

(
−
(

10n log r̂i√
(x−xi)2+(y−yi)2

)2

/2σ2

)
2πσ

√
2π ln(10)((x − xi)2 + (y − yi)2)

.

To simplify the notation, we denote the probability distribution due to beacon
bi with

Φbi(x, y) = P
(i)
X,Y (x, y).

The previous argument can be extended to a finite set of beacons B = {b1,
. . . , bk} yielding the following theorem:

Theorem 2. Let B = {b1, b2, . . . , bk} be a set of beacons sending information
to a sensor node under the RSSI model with standard deviation σ and path loss
exponent n. If the measured distance from beacon node bi at the sensor node is
r̂i (i = 1, . . . , k), then the probability density function (due to all the beacons in
B) of the actual position (x, y) of the sensor node is given by

Φ(B)(x, y) =
∏k

i=1 Φbi(x, y)∫ +∞
−∞

∫ +∞
−∞

(∏k
i=1 Φbi(x, y)

)
dydx

where Φbi(x, y) is the probability distribution due to beacon bi, as defined in
Theorem 1.

As we will see later, if we use only one measurement, we may end up with a
density function having more than one maximum. Moreover, the computation
of this maximum on a sensor node is a difficult task since there is no simple
analytical expression for the maximum of the probability distribution. Also,
there is no suitable analytical expression for the integrals needed to compute the
probability for a certain region. Due to space limitations, the proofs of the two
theorems can be found in the full version of the paper.

2.3 Samples of Measurements

In the previous sections, we have examined the probability distribution of the
sensor’s position based on a single measurement. This setting, however, can give
rise to unacceptable errors for the values of σ (σ = 4, 6, 8) reported in the liter-
ature [31]. A consequence of this situation is that we may be unable to define a
disk containing the sensor’s location with an acceptable degree γ of confidence
(say, γ > 0.9). Additionally, if our practice is based on only one reading, there
is no way for the sensor to estimate the standard deviation σ (this is actually
the standard deviation of the Gaussian random variable x introduced in Section
2.1) of each beacon. This parameter σ—conveniently assumed to be known in

78 C. Papamanthou, F.P. Preparata, and R. Tamassia

Section 2.1—must be estimated in practice as it is needed in the computations
(see below).

To overcome these difficulties, we show in this section how we can obtain a
good estimate of the location of the sensor node based on small number of read-
ings. Especially for indoor positioning systems, this is an assumption that has
been extensively used. For example, in [13, 14], the position estimation is based
on a location fingerprint t = [t1 t2 . . . tN], where N is the number of beacons and
ti (i = 1, . . . , N) is the mean value of the received signal strength from the i-th
beacon over a certain time window. Note that ti denotes the measured power
p̂i that appears in Equation 4. Hence, the “measured power” location finger-
print t can be transformed to a location fingerprint r of “measured radii” by
using Equation 4, since the reference values p0 and d0 are known. The number
of samples that are used vary from 20 to 60 and obviously this number affects
the accuracy of the computed location. Also, in [3, 9, 20, 42], experiments with
various sample sizes are presented where the samples are used to compute cer-
tain features of the signal strength such as the standard deviation and the path
loss exponent.

Suppose now that we use a sample of k readings from beacon bi. We have a
sequence of radii r̂i1, r̂i2, . . . , r̂ik. Let r̄i, s̄i denote the unbiased estimators of the
value E[r̂i] and of the standard deviation

√
Var(r̂i) of the underlying distribution

of the measured radii r̂i (i = 1, . . . , 3) respectively. We have the following result
that relates estimates of the actual distance and the standard deviation with
reference to a beacon bi with features of the lognormal distribution:

Theorem 3. Suppose a sensor node reads k distance samples r̂i1, r̂i2, . . . , r̂ik

from a beacon bi that is modeled with the RSSI of path loss exponent n and
standard deviation σi. If r̄i is the sample mean and s̄i is the sample standard
deviation then we have the following:

1. The estimate of the square of the actual distance r2
i from beacon bi is

r̄i
4

r̄i
2 + s̄i

2 .

2. The estimate of the square of the standard deviation σ2
i is

100n2

ln2(10)
ln

[
1 +

(
s̄i

r̄i

)2
]

.

Note that the above theorem indicates that the quality of estimation of the
actual distance is heavily dependent on the estimation of the distribution of the
measured radii.

3 Location Estimation

In this section, we develop an algorithm for location estimation based on several
samples. This algorithm does not involve any complex calculations (such as
square roots) which is very important to consider when we develop algorithms
to be executed on sensor nodes, due to the sensor’s modest computing power.

Algorithms for Location Estimation Based on RSSI Sampling 79

3.1 Algorithm

As we saw in the previous section, after completing the sampling procedure, we
derive estimates for r2

1 , r
2
2 , r

2
3 , given by Theorem 3. Our aim is to formulate a

function whose minimum will yield a good approximation of the sensor’s location.
This function should be convex and also its derivatives should not include roots.
Suppose now we have three beacons located at (x1, y1), (x2, y2), (x3, y3). Let
f(x, y) be the function

f(x, y) =
3∑

i=1

((x − xi)2 + (y − yi)2 − r2
i)2. (7)

Note that if all 3 circles intersect at the same point (x0, y0), this function has
minimum 0 at (x0, y0). Unfortunately, minimizing that function is not an easy
task, if we are restricted on the available primitives. Hence we are going to use
methods that are based on the gradient of the function. The good feature about
such methods is that we can get to a point very close to the minimum in a small
number of computationally simple iterations. Indeed, let

α(x, y) =
∂f(x, y)

∂x
= 4

3∑
i=1

(x − xi)((x − xi)2 + (y − yi)2 − r2
i) (8)

and

β(x, y) =
∂f(x, y)

∂y
= 4

3∑
i=1

(y − yi)((x − xi)2 + (y − yi)2 − r2
i) (9)

be the partial derivatives of f . Note that the above expressions are computable
on a sensor node. The function z = f(x, y) describes a convex solid surface
with obvious definitions of “interior” and “exterior”. Initially, we make a guess
for our point (this is required by all steepest descent methods [37]). Suppose,
for uniformity, we choose as our initial point (x0, y0) the centroid of the beacon
triangle. We compute the vector v which is orthogonal to the tangent plane T and
pointing toward the exterior. Hence v =

[
α(x0, y0) β(x0, y0) −1

]T . Let now P be
the vertical plane containing v applied to (x0, y0, f(x0, y0)). Since P is a vertical
plane, any normal vector w of P will have a zero z-component. Additionally, w is
orthogonal to v and therefore may be chosen as w =

[
−β(x0, y0) α(x0, y0) 0

]T .
We seek the vector q pointing towards the minimum of the function. Such vector
belongs to P and is orthogonal to v (q is orthogonal both to v and w), i.e.,

q =
[
α(x0, y0) β(x0, y0) α2(x0, y0) + β2(x0, y0)

]T
.

Now we compute the intersection point (x′
0, y

′
0) of the line (with the surface

z = 0) passing by (x0, y0, f(x0, y0)) which is collinear with the direction q and
the xy-plane. The parametric equation of this line is (x, y, z) = (x0 + tqx, y0 +
tqy, f(x0, y0) + tqz) for all t ∈ R. The new point (x′

0, y
′
0) is then given by

(x′
0, y

′
0) =

(
x0 −

f(x0, y0)α(x0, y0)
α2(x0, y0) + β2(x0, y0)

, y0 −
f(x0, y0)β(x0, y0)

α2(x0, y0) + β2(x0, y0)

)
.

80 C. Papamanthou, F.P. Preparata, and R. Tamassia

The described process gives a new point (x′
0, y

′
0). This point is expectedly closer

to the point that corresponds to the minimum of f as we follow the direction
of the gradient as long as the products α(x0, y0)α(x′

0, y
′
0) > 0 and β(x0, y0)

β(x′
0, y

′
0) > 0. When this condition no longer holds, we have “overshot”; to

remedy, we backtrack to the previous point referred here as (x, y) and apply a
typical steepest descent method with very small rate λ. We therefore compute
our new point (x′, y′) by setting

(x′, y′) = (x − λα(x, y), y − λβ(x, y)). (10)

We continue this process until the gradients α(x, y), β(x, y) change sign. At that
point we stop and we report the final point as our estimation. Here we should
emphasize the fact that it is important to take samples of adequate size. Taking
samples implies a better behavior for f , meaning that there would be only one
minimum and therefore the algorithm will quickly converge to the minimum. As
far as the value of the variable λ is concerned, this variable is chosen to be small
enough and inversely proportional to the size of the grid since these features of
λ force the second repeat loop of the algorithm to converge quickly. This has
been observed in the experiments. For the experiments, the value of λ is equal
to 1000−m/100.

3.2 Complexity and Limitations

The most expensive part of the presented algorithm is the sampling procedure
and the computation of the estimates r̄i

2 and s̄i
2. These steps take time O(k),

where k is the number of samples. There is an obvious trade-off between accuracy
and power consumption. Also, the computation executed on the sensor nodes
depends on the time the gradient methods take to converge, which is generally
small for a well-behaved function. For the other parts of the algorithm there are
closed formulas, so we can assume that they take time O(1). We can also see
that the exact number of multiplications needed by the presented program is
(7k + 8) + 10n1 + 4n2, where is k is the size of the sample, n1 is the number of
iterations of the first repeat loop and n2 is the number of iterations of the second
repeat loop.

The size of the code of the program (ROM) written in NesC [10] is 47K
whereas the amount of memory (RAM) needed to execute this program in
TOSSIM [18] (see Section 4) is 637K. As far as the complexity of the closed
formulas computation is concerned it is realistic to assume that the involved in
closed-formula calculation can be executed on a sensor node (essentially floating
point operations). For example, there are micro-controllers, such as the ATM-
Mega128L [2] and MSP430 [39], which have very rich instruction sets. Finally, a
hardware multiplier allows floating-point arithmetic to be carried out [21].

4 Simulation

In this section, we present and analyze extensive simulation results of our
method. We have run our experiments with TOSSIM [10, 18], a widely used
simulator of the TinyOS operating system for sensor networks.

Algorithms for Location Estimation Based on RSSI Sampling 81

We executed our simulations in a square of area m × m cells, where m =
50, 100, 200. The three beacons are placed in positions that form a well condi-
tioned triangle (well-conditioning is synonymous with the fact that the function
f(x, y) has a single global minimum). Namely, the first beacon is placed at
(0, 0), the second beacon is placed at (m, 0) and the third beacon is placed at
(m/2, 3m/4). The standard deviations of the three beacons σ1, σ2, σ3 are set to
4 and the path loss exponent n is set to 2. We also recall that we set the variable
λ that appears in Equation 10 equal to 1000−

m
100 , where m is the dimension of

the grid. Finally the measured distance is computed using Equation 5.
We measure the execution time of the algorithm implemented in NesC [10]

(that runs in TinyOS) and the average number of iterations of the repeat loops
over 1000 runs. We also determine the mean of the distance d between the actual
point and the computed point. We use the ratio d

m to evaluate the quality of the
solution computed by the algorithm. Note that this metric was proposed in [41].

The results obtained for different numbers of samples and different sizes of
grids are shown in Table 1 , where m is the dimension of the square region, k is
the number of samples, the time is counted in milliseconds (we count the exact
time that the simulated processor in TOSSIM takes to execute this program), n1
is the number of iterations of the first repeat loop, n2 is the number of iterations
of the second repeat loop and d is the mean of the distance between the actual
point and the computed point.

The simulation results with TOSSIM show that the sensor node can execute
the algorithm in a small amount of time. This time is proportional to the number
of samples we use each time, which indicates that the sampling procedure domi-
nates the execution time on the sensor node. Only up to six iterations (n1 + n2)
are enough to compute an estimation of the actual point and the quality of
the estimation is dependent on the number of the samples. Additionally, note
that for various grid sizes, the algorithm has a uniform behavior since the ra-
tio d

m is similar for different sizes of the grid. Finally, in all cases, the solution
we get is better for larger sizes of samples. For example, though not practical
for power consumption issues, for 200 samples the estimation gets even better
(d/m = 0.041 for m = 200).

Table 1. Results of the simulation in TOSSIM for an m × m square grid (m =
50, 100, 200): execution time, average number of iterations of the program (n1, n2),
localization error (d) and ratio d

m
for various samples sizes over 1000 runs

m × m k time (ms) n1 n2 d d/m

50 × 50 20 0.140 4.045 1.081 5.018 0.1003
50 × 50 40 0.230 4.226 1.061 3.774 0.0745

100 × 100 20 0.130 3.670 1.142 9.986 0.0986
100 × 100 40 0.240 3.817 1.046 7.634 0.0763
200 × 200 20 0.120 3.640 2.736 19.977 0.0998
200 × 200 40 0.240 3.820 2.323 14.957 0.0747

82 C. Papamanthou, F.P. Preparata, and R. Tamassia

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

distance from actual position

fr
eq

ue
nc

y
Histogram for 1000 runs and k=50 (mean=3.02)

Fig. 1. Histogram for 1000 runs and k = 50

We show in Figure 1 the probability distribution of the distance of the com-
puted point from the actual point derived for 1000 runs and for m = 50. In
particular, we show the plot of the distribution of the error of the estimation
(which we define as the distance of the computed point from the actual point)
for sample size k = 50. The mean of the error for these measurements is about 3
for k = 50. Also, we observe that the distribution of the error appears to follow
a lognormal distribution.

Finally, Table 2 compares location estimation algorithms. We present the
average localization error d, the area A of the field where the experiments are
executed and the ratio d√

A
. We use as a comparison measure the quantity d√

A
,

which for our algorithm is bounded by 0.1 (this is what we get for the smallest
number of samples k = 20). However, for a number of samples k = 300 (though
not so practical) we can get even smaller values (for example for k = 300 and
for an area 1000 × 1000 we get d√

A
= 0.026).

From Table 2, we see that our method gives always better or as good results
as the results obtained by the existing methods (except for [38] where, however,
the time needed for localization ranges from 10 milliseconds to 2 minutes —
something that is also observed in [22]— where the precision is even better).
Also, if we slightly increase the number of the samples we use, we get very good
results and the ratio drops substantially (for example for k = 60 we get a ratio

Algorithms for Location Estimation Based on RSSI Sampling 83

Table 2. Comparison of existing work. In each row, we display the bibliographic ref-
erence and the respective average localization error (d), the size of the area of the
experiments A, the ratio d√

A
and finally the number of samples used by each method.

Note that it is not always feasible to compare between different methods since the
settings used can be different. N.A. stands for “not applicable” and it means that
the certain method does not refer explicitly to the number of samples used or that the
sampling technique is not used.

reference error d simulation area A d/
√

A number of samples

[3] 3 22.5 × 45.5 0.090 20
[32] 3 16 × 40 0.118 N.A.
[4] 4 35 × 40 0.107 250
[29] 7.62 13.71 × 32 0.360 40
[1] 3 500 0.130 N.A.
[30] 6 60 × 60 0.100 N.A.
[5] 1.83 10 × 10 0.183 20
[35] 0.8 6 × 6 0.130 50
[19] 13 18751 0.094 N.A.
[43] 10 26 × 49 0.280 N.A.
[38] 3.5 60 × 120 0.058 N.A.
[16] 0.82 5 × 5 0.164 N.A.

our scheme 4.350 50 × 50 � 0.087 25
our scheme 3.020 50 × 50 � 0.064 50

d√
A

= 0.06). Note that previous methods use more than three beacon nodes (see
for example [28] where O(m) beacons are placed in the area of localization for
an m × m grid).

5 Conclusions

In this paper, we have analyzed the RSSI model for location estimation in sensor
networks. Given a normal distribution for the error in dBm, we compute the
correct probability distribution of the sensor’s location and then we adopt this
probability distribution in a theoretical analysis of sampling the measurements
for location estimation. We finally give a simple algorithm that can be executed
on sensor nodes; its complexity, for a constant number of beacons, is proportional
to the size of the sample.

Location estimation in sensor networks presents several trade-offs. If higher
accuracy is desired, one has to deploy more beacons or use more samples. Using
a large number of beacons and samples causes significant energy consumption.
The energy-optimal case occurs when only three beacons are deployed and an
estimation of the actual point is based on the probability distribution computed
by taking into consideration only one measurement. This solution, however, gives
unacceptable errors. Additionally, performing computations with the exact prob-
ability distribution is unrealistic, since it involves complex formulas. Hence, were
we to depend on few measurements, off-line computed data must be stored as

84 C. Papamanthou, F.P. Preparata, and R. Tamassia

tables within the sensor, which immediately creates a storage problem. However,
one can use more samples, thus increasing energy consumption.

Acknowledgments

This research was supported by the U.S. National Science Foundation under
grants IIS–0324846 and CCF–0830149 and by the Center for Geometric Com-
puting and the Kanellakis Fellowship at Brown University. The views in this
paper do not necessarily reflect the views of the sponsors. We thank Goce Tra-
jcevski for useful discussions.

References

[1] Alippi, C., Vanini, G.: A RSSI-based and calibrated centralized localization tech-
nique for wireless sensor networks. In: Proc. IEEE Int. Conf. on Pervasive Com-
puting and Communications Workshops (PERCOMW), pp. 301–306 (2006)

[2] Atmel Corporation. ATM128 Datasheet, Revised 2461-09/03 (2003)
[3] Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based user location

and tracking system. In: Proc. IEEE Conf. on Computer Communications (IN-
FOCOM), pp. 775–784 (2000)

[4] Brunato, M., Battiti, R.: Statistical learning theory for location fingerprinting in
wireless LANs. Computer Networks 47(6), 825–845 (2005)

[5] Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low cost outdoor localization for
very small devices. IEEE Personal Communications Magazine 7(5), 28–34 (2000)

[6] Capkun, S., Hubaux, J.-P.: Secure positioning of wireless devices with application
to sensor networks. In: Proc. IEEE Conf. on Computer Communications (INFO-
COM), pp. 1917–1928 (2005)

[7] Dil, B., Dulman, S., Havinga, P.: Range-based localization in mobile sensor net-
works. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN 2006. LNCS, vol. 3868,
pp. 164–179. Springer, Heidelberg (2006)

[8] Doherty, L., Pister, K.S.J., Ghaoui, L.E.: Convex optimization methods for sensor
node position estimation. In: Proc. IEEE Conf. on Computer Communications
(INFOCOM), pp. 1655–1663 (2001)

[9] Faria, D.B.: Modeling signal attenuation in IEEE 802.11 wireless LANs. vol. 1.
Technical Report TR-KP06-0118, Stanford University (2005)

[10] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
language: A holistic approach to networked embedded systems. In: Proc. ACM
Conf. on Programming Language Design and Implementation (PLDI), pp. 1–11
(2003)

[11] He, T., Huang, C., Blum, B.M., Stankovic, J.A., Abdelzaher, T.: Range-free lo-
calization schemes for large scale sensor networks. In: Proc. of the Int. Conf. on
Mobile Computing and Networking (MOBICOM), pp. 81–95 (2003)

[12] Hu, L., Evans, D.: Localization for mobile sensor networks. In: Proc. of the Int.
Conf. on Mobile Computing and Networking (MOBICOM), pp. 45–57 (2004)

[13] Kaemarungsi, K., Krishnamurthy, P.: Modeling of indoor positioning systems
based on location fingerprinting. In: Proc. IEEE Conf. on Computer Commu-
nications (INFOCOM), pp. 1012–1022 (2004)

Algorithms for Location Estimation Based on RSSI Sampling 85

[14] Kaemarungsi, K., Krishnamurthy, P.: Properties of indoor received signal strength
for WLAN location fingerprinting. In: Proc. Int. Conf. on Mobile and Ubiquitous
Systems (MOBIQUITOUS), pp. 14–23 (2004)

[15] Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless
networks. In: Proc. of the Int. Conf. on Mobile Computing and Networking (MO-
BICOM), pp. 243–254 (2000)

[16] Krohn, A., Hazas, M., Beigl, M.: Removing systematic error in node localisation
using scalable data fusion. In: Langendoen, K.G., Voigt, T. (eds.) EWSN 2007.
LNCS, vol. 4373, pp. 341–356. Springer, Heidelberg (2007)

[17] Kuo, S.-P., Tseng, Y.-C., Wu, F.-J., Lin, C.-Y.: A probabilistic signal-strength-
based evaluation methodology for sensor network deployment. In: Proc. Int. Conf.
on Advanced Information Networking and Applications (AINA), pp. 319–324
(2005)

[18] Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: accurate and scalable simula-
tion of entire TinyOS applications. In: Proc. Int. Conf. on Embedded Networked
Sensor Systems (SENSYS), pp. 126–137 (2003)

[19] Lorincz, K., Welsh, M.: MoteTrack: A robust, decentralized approach to RF-based
location tracking. Personal and Ubiquitous Computing 11(6), 489–503 (2007)

[20] Lymberopoulos, D., Lindsey, Q., Savvides, A.: An empirical characterization of ra-
dio signal strength variability in 3-D IEEE 802.15.4 networks using monopole an-
tennas. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN 2006. LNCS, vol. 3868,
pp. 326–341. Springer, Heidelberg (2006)

[21] Lynch, C., Reilly, F.O.: Processor choice for wireless sensor networks. In: Proc.
ACM Workshop on Real-World Wireless Sensor Networks (REALWSN), pp. 52–
68 (2005)

[22] Maróti, M., Völgyesi, P., Dóra, S., Kusý, B., Nádas, A., Lédeczi, Á., Balogh, G.,
Molnár, K.: Radio interferometric geolocation. In: Proc. Int. Conf. on Embedded
Networked Sensor Systems (SENSYS), pp. 1–12 (2005)

[23] Moore, D., Leonard, J.J., Rus, D., Teller, S.J.: Robust distributed network local-
ization with noisy range measurements. In: Proc. Int. Conf. on Embedded Net-
worked Sensor Systems (SENSYS), pp. 50–61 (2004)

[24] Nagpal, R., Shrobe, H.E., Bachrach, J.: Organizing a global coordinate system
from local information on an ad hoc sensor network. In: Zhao, F., Guibas, L.J.
(eds.) IPSN 2003. LNCS, vol. 2634, pp. 333–348. Springer, Heidelberg (2003)

[25] Nasipuri, A., Li, K.: A directionality based location discovery scheme for wireless
sensor networks. In: Proc. ACM Int. Workshop on Wireless Sensor Networks and
Applications (WSNA), pp. 105–111 (2002)

[26] Niculescu, D., Badrinath, B.R.: Ad hoc positioning system (APS) using AOA. In:
Proc. IEEE Conf. on Computer Communications (INFOCOM), pp. 1734–1743
(2003)

[27] Niculescu, D., Nath, B.: DV based positioning in ad hoc networks. Telecommuni-
cation Systems 22, 267–280 (2003)

[28] Ochi, H., Tagashira, S., Fujita, S.: A localization scheme for sensor networks based
on wireless communication with anchor groups. In: Proc. Int. Conf. on Parallel
and Distributed Systems (ICPADS), pp. 299–305 (2005)

[29] Prasithsangaree, P., Krishnamurthi, P., Chrysanthis, P.K.: On indoor position
location with wireless LANs. In: Proc. IEEE Int. Symposium on Personal, Indoor,
and Mobile Radio Communications (PIMRC), pp. 720–724 (2002)

[30] Ramadurai, V., Sichitiu, M.L.: Localization in wireless sensor networks: A proba-
bilistic approach. In: Proc. Int. Conf. on Wireless Networks (ICWN), pp. 275–281
(2003)

86 C. Papamanthou, F.P. Preparata, and R. Tamassia

[31] Rappaport, T.S., Rappaport, T.: Wireless Communications: Principles and Prac-
tice, 2nd edn. Prentice-Hall, Englewood Cliffs (2001)

[32] Roos, T., Myllymaki, P., Tirri, H., Misikangas, P., Sievanen, J.: A probabilistic
approach to WLAN user location estimation. International Journal of Wireless
Information Networks 9(3), 155–166 (2002)

[33] Savvides, A., Han, C.-C., Strivastava, M.B.: Dynamic fine-grained localization in
Ad-Hoc networks of sensors. In: Proc. of the Int. Conf. on Mobile Computing and
Networking (MOBICOM), pp. 166–179 (2001)

[34] Savvides, A., Park, H., Srivastava, M.B.: The bits and flops of the n-hop multi-
lateration primitive for node localization problems. In: Proc. ACM Int. Workshop
on Wireless Sensor Networks and Applications (WSNA), pp. 112–121 (2002)

[35] Shen, X., Wang, Z., Jiang, P., Lin, R., Sun, Y.: Connectivity and RSSI based
localization scheme for wireless sensor networks. In: Huang, D.-S., Zhang, X.-P.,
Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3645, pp. 578–587. Springer, Heidel-
berg (2005)

[36] Sichitiu, M., Ramadurai, V.: Localization of wireless sensor networks with a mobile
beacon. In: Proc. IEEE Conf. on Mobile Ad-hoc and Sensor Systems (MASS), pp.
177–183 (2004)

[37] Snyman, J.A.: Practical Mathematical Optimization: An Introduction to Ba-
sic Optimization Theory and Classical and New Gradient-Based Algorithms.
Springer, Heidelberg (2005)

[38] Stoleru, R., Vicaire, P., He, T., Stankovic, J.A.: StarDust: a flexible architec-
ture for passive localization in wireless sensor networks. In: Proc. Int. Conf. on
Embedded Networked Sensor Systems (SENSYS), pp. 57–70 (2006)

[39] Texas Instruments. MSP430C13x1 Datasheet (Revised September 04, 2004)
[40] Wackerly, D., Mendenhall, W., Scheaffer, R.: Mathematical Statistics with Appli-

cations, 6th edn. Duxbury Advanced Series (2002)
[41] Whitehouse, K., Karlof, C., Culler, D.: A practical evaluation of radio signal

strength for ranging-based localization. In: ACM Mobile Computing and Com-
munications Review, pp. 41–52 (2007)

[42] Xiang, Z., Song, S., Chen, J., Wang, H., Huang, J., Gao, X.: A wireless LAN-based
indoor positioning technology. IBM J. Res. Dev. 48(5/6), 617–626 (2004)

[43] Yedavalli, K., Krishnamachari, B., Ravula, S., Srinivasan, B.: Ecolocation: a se-
quence based technique for RF localization in wireless sensor networks. In: Proc.
Int. Conf. on Information Processing in Sensor Networks (IPSN), p. 38 (2005)

[44] Yu, Y., Govindan, R., Estrin, D.: Geographical and energy aware routing: A re-
cursive data dissemination protocol for wireless sensor networks. Technical Report
UCLA/CSD-TR-01-0023, UCLA Computer Science Department (2001)

Random Fault Attack against Shrinking Generator�

Marcin Gomułkiewicz1, Mirosław Kutyłowski1, and Paweł Wlaź2

1 Wrocław University of Technology
2 Lublin University of Technology

Abstract. We concern security of shrinking generator against fault attacks.
While this pseudorandom bitstream generator is cryptographically strong and
well suited for hardware implementations, especially for cheap artefacts, we show
that using it for the devices that are not fault resistant is risky. That is, even if a
device concerned is tamper-proof, generating random faults and analyzing the
results may reveal secret keys stored inside the device.

For the attack we flip a random bit and observe propagation of errors. The
attack uses peculiar properties of the shrinking generator and presents a new kind
of threats for designs based on combining weaker generators. In particular, it
indicates that potentially all designs based on combining LFSR generators might
be practically weak due to slow propagation of errors in a single LFSR.

1 Introduction

Small sensing devices and other tiny artefacts are crucial for future pervasive systems.
While in certain situations they transmit sensitive information, it is necessary to protect
their integrity and confidentiality in a reliable way. It is also necessary to authenticate
the source of information and secure against attacks that are specific to ad hoc unsu-
pervised systems (such as the replay attack - transmitting once more the old encrypted
packets). Theoretically, there are many cryptographic schemes that provide solutions
for these problems. However, they are typically designed for different scenarios: broad-
band communication, reasonable computing power, secure computing units, . . . and are
useless for tiny artefacts.

Since certain devices in pervasive systems should be as simple as possible in order
to reduce their price, energy consumption and the number of possible faults, it would
be desirable to implement basic cryptographic primitives with a simple dedicated hard-
ware. Indeed, these devices may be too weak to operate with a standard processor. Sim-
ple means here ease of implementation concerning such issues as layout area and fault
tolerance. This excludes asymmetric methods, at least according to the current state of
technology. So in practice it excludes majority of cryptographic protocols. However,
the situation is even worse: solutions based on such primitives as currently used hash
functions like SHA-1 turn out to be of little interest due to the cost of hardware imple-
mentation. The same applies to standard symmetric encryption methods, regardless of

� This work was supported by Polish Ministry of Science and Education, grant 3T11C 011 26. It
was finalized within a project partially supported by EU within the 7th Framework Programme
under contract 215270 (FRONTS). An extended abstract of this paper appeared as Dagstuhl
report urn:nbn:de:0030-drops-6117.

S. Fekete (Ed.): ALGOSENSORS 2008, LNCS 5389, pp. 87–99, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

88 M. Gomułkiewicz, M. Kutyłowski, and P. Wlaź

their careful design and focusing on ease of hardware implementation. In such a situa-
tion the only remaining choice is to design security mechanisms based on the simplest
stream ciphers. This in turn requires constructing strong pseudorandom bit generators
that would be both easy to implement by simple circuits and resistant to various attacks.

Prominent examples of this approach are implementations of algorithms like A5
(for GSM) and Bluetooth (for computer devices). Both solutions fail– the underlying
algorithms turn out to be relatively weak even without fault analysis.

Unfortunately, the sensors and other tiny devices cannot be physically protected –
they can be captured by an adversary and inspected in a cryptanalytic way. This may
be dangerous for a whole system, since the devices often share secret keys. So at least
we should make them resistant to simple attacks that can be carried out without sophis-
ticated equipment. The most important issue is proliferation of such attack possibili-
ties. It is critically dangerous, if an attack is possible with widely available and cheap
technology.

Shrinking Generator. Recall that an LFSR (Linear Feedback Shift Register) with
output d1, d2, d3, . . . is characterized by the equality

dh =
∑m

i=1 ti · dh−m+i mod 2

that holds for each h > m. The number m is called length of the LFSR, the sequence
of bits t1, . . . , tm is called the tap sequence, d1, . . . , dm is its secret seed.

With all good statistic properties that can be achieved by an LFSR, it is useless in
cryptographic sense - breaking it is just solving a set of linear equations. Shrinking
generator invented by Coppersmith et al. [3] is one of the main designs in the area of
pseudorandom bitstream generators. Its advantages are simplicity, high efficiency and
relatively high resistance to conventional cryptanalytic attacks. The shrinking generator
attempts to create a cryptographically strong pseudorandom bitstream generator out of
weak components, usually LFSR’s.

Many other solutions of this kind were proved to be weak. [14,15]. The shrinking
generator (and its variant self-shrinking generator) successfully faces the trial of time: the
best known attacks against it are exponential in the LFSR’s length [4,6,7,10,11,12,13],
or based on the assumption that the feedback is known [5].

Amazingly, the construction of the shrinking generator is very simple. It consists
of two bitstream generators (most frequently LFSRs) we shall call them the input (or
base) generator A and the control generator C; their output is denoted by a1, a2, a3, . . .
and c1, c2, c3, . . ., respectively. The output Z = z1, z2, z3, . . . is composed of those and
only those of ai for which ci = 1. Formally: zt = ai for i so that:

t =
∑i

j=1 cj , ci = 1 . (1)

Fault Attacks. In practice, the attacks can use all available means. The idea [2] of
fault attacks is to induce an error in a computation and compare a faulty output with
the correct one. In this way, we are sometimes able to derive information on the secret
keys contained in the cryptographic device in a non-invasive way. The simplest way to
induce errors is to use high level electromagnetic radiation (for instance by putting a

Random Fault Attack against Shrinking Generator 89

piece of uranium on the device). A particle intruding the chip changes the contents of
a register to a low energy state (so typically it changes a one to a zero). The change
concerns one bit or a group of neighboring bits (depending on the technology used and
size of the registers).

Previous Results. The paper [9] shows two fault attacks against the shrinking gener-
ator. The first one is based on the assumption that the clocks of the internal generators
can be desynchronized (a similar assumption was made in [8]), the second one is essen-
tially based on the possibility of replacing the control register by a source of indepen-
dent, random bits, while keeping intact the contents of the input register. The first attack
gives quite powerful results (with high probability only a couple of possible control se-
quences, including the correct one), but the assumptions made require the cooperation
of the device’s manufacturer (and / or very careless design of the device). The second
attack, while quite feasible from a technical point of view, gives only moderate results
– it yields a sequence that coincides with the input sequence of the shrinking genera-
tor on a large fraction of positions. However, it is not known on which positions both
sequences coincide. So, this attack should be regarded as an initial phase of a possible
full attack revealing the internal state of the shrinking generator.

New Results. We propose attacks based on analysis of propagation of errors caused
by single bit flips. These attacks are technically more feasible and hard to prevent,
unless special error propagation countermeasures are developed (which is not the case
yet). Our goal is to show certain novel approaches to fault analysis and in this way
give a chance to respond with new algorithms tailored for sensor devices that would be
sufficiently immune against fault attacks and cryptographically strong at the same time.

2 Attack by Faults in the Input Register

In this section we consider a shrinking generator, for which the input register is an LFSR
with a known feedback, while the control register is an arbitrarily chosen bitstream gen-
erator. Our goal is to find the contents of the control register (which typically depends
directly on the shared key).

Assumptions. Let A denote the input register. We assume that A is an LFSR of
length m with a known feedback function f . Let its initial contents be denoted by
a1, a2, . . . , am (a1 being on the output position). Let Z denote the output of the shrink-
ing generator. We assume that we can restart the shrinking generator and flip exactly
one of bits ai, i ≤ m and get a new output sequence Z ′. In this case the control register
starts with exactly the same contents as before. We assume that the error introduced is
transient – after restarting the device we get the original contents of the input register.

By f we denote the known feedback function of the input sequence, and let F de-
scribe the output of A, that is F : {0, 1}m → {0, 1}∞ and

F (a1, a2, . . . , am) = (a1, a2 . . .) where ap+m = f(ap, . . . , ap+m−1), for p ≥ 1.

Since we assume f to be a linear function, also F is linear, that is

F (a) + F (b) = F (a + b), (2)

90 M. Gomułkiewicz, M. Kutyłowski, and P. Wlaź

where + denotes sum modulo 2. Sometimes f is described by a so called tap sequence
t0, t1, . . . , tm−1 such that tj ∈ {0, 1} and t0 = 1:

f(ap, ap+1, . . . , ap+m−1) =
∑m−1

j=0 tj · ap+j .

Sketch of the Attack. Suppose that we have flipped ak, for some i ≤ m, and that the
resulting output of the input register is a′

1, a
′
2, According to (2) it means that

(a′
1, a

′
2, . . .) = F (a′

1, a
′
2, . . . , a

′
m) =

= F (ek + (a1, a2, . . . , am)) =
= F (ek) + (a1, a2 . . .)

(3)

where
ek = (0, 0, . . . , 0︸ ︷︷ ︸

k−1

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
m−k

).

We assume that we know exactly the value of k. If this is not the case, then complexity
of the attack will increase by a small factor bounded by m. (Moreover, it is possible to
estimate k for sparse tap sequences using methods described in the next section.)

It follows from (3) that by adding (a1, a2, . . .) and (a′
1, a

′
2, . . .) we obtain F (ek).

So F (ek) gives us positions where the sequences (a1, a2, . . .) and (a′
1, a

′
2, . . .) differ.

However, an attacker can see only (z1, z2, . . .) and (z′1, z′2, . . .). Now we will try to
reconstruct n consecutive bits of the bitstream (c1, c2, . . .) generated by the control
register, where n may be chosen arbitrarily. If we knew the feedback of the control
register, then of course we could choose n to be equal its length and try to obtain the
cq, cq + 1, . . . , cq+n−1 for some known q ≥ 1.

For a moment we fix some p and q. We consider output sequences of the shrinking
generator from positions p and will assume that these both sequences correspond to the
input sequence and the control sequence from position q. Then p = q/2 + ∆, where
∆ is small value compared to q and can be estimated with Chernoff bounds as for the
number of successes in q Bernoulli trials.

In a standard way we construct a labeled tree describing the possible values of
cq, cq+1, . . . – if the edges of a path from the root to a node s have labels b1, . . . , bu,
then s corresponds to the situation that c1 = b1, . . . , cu = bu (see Fig. 1).

Suppose that we have guessed all the values cq, cq+1, . . . , cq+i−1. We want to guess
the value of cq+i. One of the choices is of course 0, but when can it be 1? If w denotes
the number of ones in cq, cq+1, . . . , cq+i−1, then we can exclude the value cq+i = 1 if

F (ek)|q+i �= (zp+w + z′p+w mod 2) (4)

This moment is quite important, since if the probability of (4) is fairly large, then we
will be able to prune a substantial number of subtrees of the tree describing all possible
values of the control sequence.

First assume that the guess of the control sequence up to position q+i−1 was correct
so far in the sense that the number of ones up to cq+i−1 is correct (but not necessarily
their distribution). Consider a node s of the tree corresponding to this choice. Since

Random Fault Attack against Shrinking Generator 91

we cannot exclude the possibility that cq+i = 0, node s has a son to which leads an
edge with label 0. On the other hand, if cq+i = 1 and this is the right choice, then the
inequality (4) does not hold and s has the second son. If this is not the right choice, then
(4) does not hold if and only if F (ek)|q+i = (zp+w + z′p+w mod 2), while in fact we
have

(zp+w + z′p+w mod 2) = F (ek)|q+i+h ,

where h ≥ 0 is the smallest index such that cq+i+h = 1. So, node s has the second son
if and only if

F (ek)|q+i = F (ek)|q+i+h . (5)

At this point we may assume that LFSR used as the input generator has good statistical
properties and from some position F (ek) passes standard statistical tests. So in average
conditions like (5) are satisfied for 50% of cases, provided that q is large enough.

Now consider the remaining cases. As before, we cannot prune the son of s corre-
sponding to the guess that cq+i = 0. On the other hand, for cq+i = 1 we check the
condition (4). It concerns the value (zp+w + z′p+w mod 2) which equals F (ek)|q+j for
some j that is different from i. So, the condition (4) is satisfied in this case iff

F (ek)|q+i = F (ek)|q+j . (6)

Due to the statistic properties of the input register, this occurs in about 50% of cases.
It follows from our considerations that the expected number of sons of a node of the

search tree is slightly higher than 3
2 . Since the height of the tree is n, we expect about(3

2

)n ≈ 20.585n (7)

leaves in the tree. So for n = 64 we get a tree with about 237.5 leaves and gain about
0.415 · n ≈ 26.5 bits. For n = 94 we get 255 leaves and gain about 0.415 · n ≈ 39 bits.
Of course, this gain is smaller, if we cannot estimate well p and q.

Example. We explain the above ideas with the following toy example. Let

f(x1, x2, . . . , x6) = x1 + x2 mod 2 (8)

(so ap = ap−6 + ap−5, for p > 6). Assume that the control sequence is generated by
some other LFSR of length 5. Let us have, in our example, two output sequences:

(z1, z2, . . .) = 111011110001 . . . and

(z′1, z
′
2, . . .) = 111001101111 . . .

(9)

Assume that the 3rd position in input register (counting from the output position) is
flipped, so by (8), F (ek) = 00100001100010100111101000111001001011011101100
11010101111110000010000 . . . We take q = 9, as F (ek) is already “random” from
position 9 and the number of ones approximately equals the number of zeroes. In the
first 8 elements of the control sequence we expect about 4 ones, so we skip the first 4
elements of output sequence. This might be false, but if the attack fails, then we will try
other less probable possibilities. First we compute

(z5, z6, . . .) + (z′5, z
′
6, . . .) = 10011110 . . . (10)

92 M. Gomułkiewicz, M. Kutyłowski, and P. Wlaź

Note that
(F (ek)|9, F (ek)|10 . . .) = 10001010011110100 . . .

Now consider the tree of guesses for the control sequence from position 9. As always,
c9 can be equal to 0, but c9 = 1 is also possible since F (ek)|9 = (z5 + z′5 mod 2). If
c9 = 0, then c10 �= 1 as F (ek)|10 �= (z5 + z′5 mod 2). We continue in that manner until
we obtain a tree of height 5 (five is the length of control register) – where every leaf
gives us values of c9, c10, . . . , c13 (see Fig. 1).

0 1

0 1 0 1

0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

c9

{

c10

{

c11

{

c12

{

c13

{

Fig. 1. A tree of guesses for the control sequence in the example

The tree constructed has only 11 leaves (note that the leaf corresponding to 00 . . .0
is excluded, as this is the content of the register which never appears in calculations).
Each leaf corresponds to a full contents of the control register. To proceed we assume
to know the feedback of the control LFSR, for instance

ci = ci−5 + ci−3 mod 2

Now we can emulate the system (taking ek as the starting state for the input register) and
compare the results with z+z′ mod 2. Take the first leaf corresponding to c9c10..c13 =
00001. Then c9 . . . c18 = 0000100101 and, consequently, z7 = a18. On the other hand,
F (ek)|18 = 1, what implies that a18 �= a′

18. However, in our example z7 = z′7, thus we
have to exclude the leaf corresponding to 00001.

In a quite similar way we exclude all but one leaf, namely 11101, so this is the only
candidate left for the true contents of c9c10c11c12c13. We clock the control register back
and obtain c1c2c3c4c5 = 11000. Now we can check that among the first 8 control bits
there are exactly 4 ones, as assumed at the beginning. Now we can write equations for
ai, and since we can express all ai as linear expressions of {a1, a2, a3, a4, a5, a6}, we
need 6 independent equations. For instance,

a1 = z1, a2 = z2, a6 = z3, a3 + a4 = z5, a5 + a6 = z6, a1 + a3 = z8

which leads to a solution a1a2a3a4a5a6 = 110101 .

Experimental Data. Since formula (7) has been obtained by some simplifications we
have implemented the attack and checked performance of the attack in practice.

In the experiments we choose at random 32-bit LFSRs with 4 taps for the control
registers and 32-bit LFSRs with 6 taps for input registers (all of them with the period

Random Fault Attack against Shrinking Generator 93

5 · 108

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

107

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

106

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

l 849456 743831 707807 659037 634954 630105 635776 750100 759812 825408 835153
t 16 17 18 19 20 21 22 23 24 25 26

Fig. 2. The number l of leaves in a search tree related to the number t of ones in a segment of
F (ek) of size 41

232 − 1). We considered about 800 such pairs and for each pair we took as a number
q anything from 20 to 200. As starting contents of the control register we gave some
random value and run the simulator. For each value of q we considered all p between
q/2 − 10 and q/2 + 10 and calculated the average number of leaves in each case.

We experimentally investigate what is the sufficiently large q. We look for a simple
rule to make a decision. For this purpose we consider the number t of ones within the
segment [q−20, q+20] in the sum of the input sequence and the faulty input sequence.
For each t we have computed the average size l of the search tree. As one might expect
t equal to about half of the width of the segment leads to optimum number of leaves of
tree – see Fig. 2. On this figure at the bottom of each bar we have marked the number
t, the height of the bar reflects the average number of leaves. Due to high differences
in the values of l, we have split the picture into 3 parts, each in a different scale. In the
lowest part of Fig. 2 we present some exact values. We see that applying the rule that
the number of ones in a segment of F (ek) should be about the half of the length of the
segment turns to be a good choice: the average number of leaves for t ∈ {20, 22} are
approximately (1.52)32, which is close to (7).

3 Attack through Faults in Control Register

Now we outline another attack against the shrinking generator. This time, unlike in [9],
we shall assume that the control register is an LFSR with a known feedback, while
the input generator may be arbitrarily chosen random bit generator. Our goal is to

94 M. Gomułkiewicz, M. Kutyłowski, and P. Wlaź

reconstruct the contents of the control register. Of course, once this is achieved and the
input register is also an LFSR generator, one can immediately reconstruct the contents
of the input register.

Notations and Assumptions. We shall adopt the notations from Section 2. On top of
that we shall assume that one can cause exactly one random bit-flip within the control
register and rerun the generator. However, the position of the bit flipped is random.
This corresponds to physical reality of radiation-induced bit-flips – neutrons are able
to introduce transient and permanent faults. That is, if the register has length n, and
its cells contain c1, c2, . . . , cn (c1 in the output position), then it is possible to get the
output sequence Z ′ corresponding to the c′1, c

′
2, . . . , c

′
n, where all but one c′i are equal

to ci.

Attack Idea. For the sake of simplicity we present the attack for a specific case, where
it is particularly evident how it works and the number of possible details and attack
options is relatively small. We shall consider one of the tap sequences listed in [1],
namely LFSR register of length 94 with tap sequence 94, 73 (i.e. we have ci = ci−94 +
ci−73, for all i > 94). Let us call it L.

Let us use the following convention: let cj denote the bit which is shifted along L, so
that it would become the jth output of L, if L were used alone as pseudorandom gener-
ator. The first observation is that if we flip cs at the moment when cs is before position
74 in L, then cs+73, cs+94 will be flipped as well due to changes induced directly by
cs through the tap sequence, and cs+73+73, cs+73+94due to changes induced directly by
cs+73 through the tap sequence, and cs+94+73, cs+94+94due to changes induced directly
by cs+94 through the tap sequence, and

cs+146+73, cs+146+94, cs+188+73, cs+188+94, cs+219+73, cs+219+94

and so on. Note that finally changes occur at

cs, cs+73, cs+94, cs+146, cs+188, cs+219, cs+240, cs+261, cs+282, . . .

(notice that two flips occurring at cs+167 cancel themselves). We see that (at least at the
beginning) the distances between the changed bits are quite large.

Let a1, a2, . . . denote the output that would be generated by the input generator. The
second observation is that flipping a control bit cj can have two different effects:

1. if a zero is replaced by one – then an additional element aj from the input generator
is inserted into the output sequence, or

2. a one is replaced by a zero – in this case aj is removed from the output sequence.

It turns out that it is possible to detect which case has occurred, and so in this way
find out what was the value of the bit flipped. Consider first the effect of flipping cs.
Since the bits up to cs are unchanged, until the position corresponding to s, the output
of the shrinking generator remains the same. Let t be this position. Then either a bit
is removed from position t or a new bit is inserted between positions t − 1 and t. The
output bit from position t occurs in a block of bits of the same value (in particular, it
may consist of this single bit). Without loss of generality assume that this is a block

Random Fault Attack against Shrinking Generator 95

w

w

0 0 ... 0 1

correct output:

w

output after inserting a zero:

the same effect obtained removing a bit:

0 0 ... 0 0 1

0 0 ... 0 0 1

Fig. 3. Possible interpretation of a change in the output sequence, when cs is changed from 0 to 1

of zeroes. If such a block gets longer, then two reasons are possible (see Fig. 3). One
is inserting an additional zero. The second one is that a one separating two blocks of
zeroes is removed. In some distance no other control bit is affected by the change of cs,
so a certain sequence w remains unchanged after the mentioned block of zeroes is in
the output of the shrinking generator. One can easily see that we cannot resolve which
case has occurred, if w is a prefix of 10w. This occurs only if w = 101010 If |w| is
large (say |w| ≥ 20), the case of such a pattern occurs quite infrequently. Small values
of |w|, on the other hand, also happen with very low probability. Indeed, we can assume
that the output of the input generator has good stochastic properties. Then the average
value of |w| is about 72/2 = 36 and |w| < 20 with probability less than 4 ·10−5. So the
case when we cannot distinguish between both cases occurs with a very low frequency.

If the block of zeroes concerned gets shorter, then again there are two cases. Obvi-
ously, it can be due to removing a bit from the output of the shrinking generator. The
other case is that a one is inserted in front of the last zero in the block (see Fig. 4). In
this case w must be a prefix of 01w, hence w = 0101

We see that with a high probability we may determine which change has occurred
via flipping a bit, and so what was the value of the bit flipped. What we do not know is
the position of the flipped bit in the control register. We even cannot say exactly which
bit of the output sequence has been removed or inserted, respectively. We can only
point to a block of the same bit value where the change has occurred (of course, we can
locate the changes in cases when the block of length one is canceled or a new block is

0 0 ... 0 1

correct output:

the same effect obtained via inserting a one

output after removing a zero:

0 0 ... 1

0 0 ... 1 0 1

w

w

w

Fig. 4. Possible interpretation of a change in the output sequence, when cs is changed from 1 to 0

96 M. Gomułkiewicz, M. Kutyłowski, and P. Wlaź

introduced). Hence, so far we do not get much useful information for reconstructing the
contents of the control register.

Reconstructing Induced Changes. One of the crucial observations is that in the sce-
nario considered above flipping the bit cs causes flipping the bits cs+73, cs+94, cs+146,
cs+188, . . . as well. Due to large distances between the bits flipped with high probabil-
ity we can recognize their values as described in the previous subsection (at least at the
beginning, since the bits flipped become eventually quite dense). Note that we know ex-
actly the distances between these bits in the output of the control register. So, each time
we flip a bit, we get a pattern of bits cs, cs+73, cs+94, cs+146, cs+188, cs+219, cs+240,
cs+261.

In our example, we can reconstruct a few more bits in this way. In fact, notice that
cs + cs+21 = cs+94, cs+52 + cs+73 = cs+146, cs+94 + cs+115 = cs+188, cs+125 +
cs+146 = cs+219. Hence we can derive easily the values of cs+21, cs+52, cs+115, cs+125.
Then in turn we consider equality cs+31 + cs+52 = cs+125, and derive cs+31. Similarly,
cs+22 + cs+43 = cs+115, hence we may derive cs+43.

So finally we get a pattern consisting of the values

cs, cs+21, cs+31, cs+43, cs+52, cs+73, cs+94, cs+115, cs+125, cs+146, . . .

For our example, we shall use the values of cs, cs+21, cs+31, cs+43, cs+52, cs+73.
The main disadvantage concerning the indexes of bits recovered according to the

procedure described in the previous subsection is that they do not occur in the same
block of length 94. Nevertheless, as we have shown, we can “shift” information by
considering the tap connections. This holds also in the case when tap sequences consist
of more than two connections. The only disadvantage in this case is that instead of
values of single bits we get values of sums of bits. Treating these as a system of linear
equations for cs, . . . , cs+93 we will in fact gain as many bits as is the rank of the system
(by guessing some values and calculating all other occurring in the sums).

Ordering Different Patterns. Assume that we have recovered two patterns, say

cs, cs+73, cs+94, cs+146, cs+188, . . . and cz, cz+73, cz+94, cz+146, cz+188, . . . ,

but we do not know the values of s and z. We shall see that almost always we may
recognize which of the values s, z is smaller.

The changes of cs and cz cause changes in the output of the shrinking generator.
As above, the place of a change can be located within a block of the same symbols.
Obviously, if the change related to cz occurs in a block that comes later than the block,
where a change is caused by flipping cs, then obviously s < z.

If we cannot determine that s < z or z < s, since the first changes occur in the same
block of the output of the shrinking generator, we still have chance to compare s and
z by considering the changes in the output of the shrinking generator induced by the
changes that occur at cs+73 and cz+73. If this fails, we have still a chance to detect the
order of s and z at cs+94 and cz+94, cs+146 and cz+146, cs+188 and cz+188, cs+219 and
cz+219, cs+240 and cz+240, cs+261 and cz+261, cs+282 and cz+282. Observe that if the
bits generated by the input register on positions s + j and z + j are different, we shall

Random Fault Attack against Shrinking Generator 97

detect the order of s and z. So if we treat the output of the input generator as a random
string, then with probability only 2−9 the opposite case occurs for each of the 9 pairs
listed. In fact, probability of detection is higher: even if the bits generated by the input
generator on positions s + j and z + j are equal, it may happen that they do not belong
to the same block of identical bits in the output generated by the correct computation.
Probability of such an event grows with the distance between s and z.

Let us observe that not only we can detect that, for instance s < z, but also get further
estimation, like z < s+21. For this purpose we look at the changes induced by changing
cz+73 and cs+94. As before, if these changes do not occur in the same block of the
same symbols in the output of the shrinking generator, we can derive this information.
Similarly, in order to get analogous results we may consider the changes induced by
cz+188 and cs+219, cz+219 and cs+240, cz+240 and cs+261, cz+261 and cs+282. Hence,
with a fairly good probability we may detect patterns generated by flipping cz where
z ∈ (s, s + 240).

Additional Data – Number of Ones. Analyzing errors induced for generating pat-
terns discussed in the previous subsection yields one more information. Consider for
instance cs+73 and cs+94. We can determine the place where the change of cs+73 and
cs+94 yields the changes in the output of the shrinking generator. These places can be
determined almost exactly – uncertainty is related to the case when we remove or intro-
duce symbols within a block of the same bits in the output string. The best case is that
this block is of length one – then we know the position exactly. Anyway, the average
length of such a block is less than 2.

On the other hand, the number of bits in the output of the shrinking generator be-
tween the positions corresponding to cs+73 and cs+94 equals the number of ones in
the sequence cs+74 through cs+93. This reduces the number of cases for a brute force
search. For instance, instead of 220 possible settings we have to consider only

(20
w

)
cases, where w is the number of ones. For w = 10 we get the maximum number of
cases ≈ 217.5.

Sketch of the Attack. Let us now summarize the steps performed during the attack:

1. We generate 1 bit failures in the control generator in about the same time, each time
restarting the shrinking generator in the same state.

2. We choose a group of patterns such that:
– if the pattern with the earliest error corresponds to flipping cs, then for each

other pattern of the group the bit flipped is not later than cs+21,
– we can determine the time ordering between each pair of patterns in the group,
– cs corresponds to a block of length 1 (in fact, this only simplifies the

description),
– the group chosen has the highest cardinality among the groups having the above

properties.
3. If s + s1 < s + s2 < . . . < s + sd denote the indexes of the bits flipped for the

patterns in the group, we consider separately each configuration 0 < s1 < . . . <
sd < 21.

4. Given a configuration 0 < s1 < . . . < sd < 21 we set all remaining bits in
positions s through s + 93 without violating the conditions about the number of
ones in each of the intervals.

98 M. Gomułkiewicz, M. Kutyłowski, and P. Wlaź

5. In order to check a solution we generate the outputs of the control register for a
few hundred of bits for each of the patterns. Then we check if they are consistent
with the outputs of the shrinking generator. That is, if for si and sj we have cl = 1,
then we check if the output bits of the shrinking generator are the same on positions
corresponding to cl for both erroneous outputs. Note that the position in the output
string corresponding to cl is the position of cs plus the offset given by the number
of ones in the sequence cs+1, . . . , cl.

Let us comment on the computational complexity of this attack. Assuming that we
get 8 patterns of the properties described we have to consider

(20
7

)
≈ 216 cases in

step 3. However, in this way we set 8× 6 = 48 bits. Setting the remaining bits requires
considering 293−48 = 245 cases. In fact, this is overestimated, since we can bound the
number of cases based on the information of the number of ones in certain intervals –
the search can be performed using the standard branch and bound technique. Together
we have a rough estimate of 261 cases to be considered. So the gain of the attack in
this case is more than 33 bits, even if the brute force attack could consider the control
register alone.

Final Remarks

Even if in our presentation we assume that the input and control sequences are generated
by LFSRs, in fact we require a slightly weaker assumption. Namely, if we flip a single
bit of the internal state of a generator, then we can say which of the bits of the output of
the generator become flipped as well.

It follows from the discussion in the paper that in most cases one can easily detect
that the number of bits flipped is higher than 1 and, for instance, skip such data. On
the other hand, the attack can be adapted to the case when not a single bit but a group
of a few consecutive bits is flipped at once. This would correspond to realistic fault
conditions for the highest integration scale. We also have to remark that even if the
attacks presented are focused on some specific details, the case study shows that there
might be many ways to fine tune the attack.

References

1. Alfke, P.: Efficient Shift Registers, LFSR Counters, and Long Pseudo-Random Sequence
Generators. Application Note, XAPP 052 July 7 (1996) (Version 1.1),
http://www.xilinx.com/bvdocs/appnotes/xapp052.pdf

2. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryptographic Pro-
tocols for Faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51.
Springer, Heidelberg (1997)

3. Coppersmith, D., Krawczyk, H., Mansour, Y.: The Shrinking Generator. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg (1994)

4. Dawson, E., Golič, J.D., Simpson, L.: A Probabilistic Correlation Attack on the Shrinking
Generator. In: Boyd, C., Dawson, E. (eds.) ACISP 1998. LNCS, vol. 1438, pp. 147–158.
Springer, Heidelberg (1998)

5. Ekdahl, P., Johansson, T., Meier, W.: Predicting the Shrinking Generator with Fixed Con-
nections. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 330–344. Springer,
Heidelberg (2003)

http://www.xilinx.com/bvdocs/appnotes/xapp052.pdf

Random Fault Attack against Shrinking Generator 99

6. Golič, J.D., O’Connor, L.: Embedding and Probabilistic Correlation Attacks on Clock-
Controlled Shift Registers. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950,
pp. 230–243. Springer, Heidelberg (1995)

7. Golič, J.D.: Correlation Analysis of the Shrinking Generator. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 440–457. Springer, Heidelberg (2001)

8. Gomułkiewicz, M., Kutyłowski, M., Vierhaus, T.H., Wlaź, P.: Synchronization Fault Crypt-
analysis for Breaking A5/1. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp.
415–427. Springer, Heidelberg (2005)

9. Gomułkiewicz, M., Kutyłowski, M., Wlaź, P.: Fault Cryptanalysis and the Shrinking Gen-
erator. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007, pp. 61–72. Springer,
Heidelberg (2006)

10. Krause, M.: BDD-based Cryptanalysis of Keystream Generators. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 222–237. Springer, Heidelberg (2002)

11. Krause, M., Lucks, S., Zenner, E.: Improved Cryptanalysis of the Self-Shrinking Generator.
In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 21–35. Springer,
Heidelberg (2001)

12. Meier, W., Staffelbach, O.: The Self-shrinking Generator. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 205–214. Springer, Heidelberg (1995)

13. Mihaljevic, M.: A Faster Cryptanalysis of the Self-shrinking Generator. In: Pieprzyk, J.P.,
Seberry, J. (eds.) ACISP 1996. LNCS, vol. 1172, pp. 182–188. Springer, Heidelberg (1996)

14. Rao, T.R.N., Yang, C.-H., Zeng, K.: An Improved Linear Syndrome Algorithm in Crypt-
analysis With Applications. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 34–47. Springer, Heidelberg (1991)

15. Zenner, E.: On the Efficiency of the Clock Control Guessing Attack. In: Lee, P.J., Lim, C.H.
(eds.) ICISC 2002. LNCS, vol. 2587, pp. 200–212. Springer, Heidelberg (2003)

Probabilistic Protocols for Fair Communication
in Wireless Sensor Networks�

Ioannis Chatzigiannakis1,2, Lefteris Kirousis1,2, and Thodoris Stratiotis2

1 Research Academic Computer Technology Institute, Patras, Greece
2 Department of Computer Engineering and Informatics, University of Patras, Greece

ichatz@cti.gr, kirousis@ceid.upatras.gr, stratiot@ceid.upatras.gr

Abstract. In this work we present three new distributed, probabilistic
data propagation protocols for Wireless Sensor Networks which aim at
maximizing the network’s operational life and improve its performance.
The keystone of these protocols’ design is fairness which declares that
fair portions of network’s work load should be assigned to each node,
depending on their role in the system. All the three protocols, EFPFR,
MPFR and TWIST, emerged from the study of the rigorously analyzed
protocol PFR. Its design elements were identified and improvements were
suggested and incorporated into the introduced protocols. The experi-
ments conducted show that our proposals manage to improve PFR’s per-
formance in terms of success rate, total amount of energy saved, number
of alive sensors and standard deviation of the energy left. Indicatively we
note that while PFR’s success rate is 69.5%, TWIST is achieving 97.5%
and its standard deviation of energy is almost half of that of PFR.

1 Introduction

The subject of this study is the communication protocols for static, homogeneous
Wireless Sensor Networks (WSN’s), where the energy reserves of the particles
are finite. A protocol’s goal should be to prolong system’s functional life and
maximize the number of events which get successfully reported. There is a great
variety of different protocols for WSN’s. A well known data aggregation paradigm
is Directed Diffusion whose key element is data propagation through multiple
paths. Multi-path (e.g. [3,7]) protocols contrary to the single-path ones, broadcast
to more than one nodes in each single hop. Thus they are less affected by node
failures and ensure successful message deliveries. Additionally they are easier
to implement since they do not involve a route discovery process. On the other
hand, they tend to spend more energy than the single-path protocols since they
engage more particles to the propagation process than the single-path ones.

Energy Awareness is another important property of communication algo-
rithms applied to sensor networks and many protocols take energy consumption
into account for their routing decisions (e.g. [7,9,12]). Some approaches even

� Partially supported by the EU within the 7th Framework Programme under contract
215270 (FRONTS).

S. Fekete (Ed.): ALGOSENSORS 2008, LNCS 5389, pp. 100–110, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Probabilistic Protocols for Fair Communication in WSN’s 101

propose sleep/awake schemes aiming at energy saving. Moreover there are many
protocols presented, applying techniques in order to achieve Balanced Energy
Dissipation. This feature’s concept is that, even more important from saving
energy, is assuring that the energy is dissipated uniformly by all the particles.
Thus the premature depletion of certain keystone nodes, which in turn results
to the destruction of the whole network, is avoided and the system operational
life is elongated. This goal is pursued by many researchers (e.g. [5,7,12]).

1.1 Protocol Engineering

Our objective is to devise communication protocols for WSN’s that allow the
underlying network to operate effectively for the longest possible time. These
protocols have to be decentralized and adaptive to current conditions. On the
other hand they should take measures against the nodes’ energy dissipation and
their “death”. Our efforts were initially focused on the study of the rigorously
analyzed Probabilistic Forwarding Protocol - PFR [3]. This protocol, presented
in more detail in section 4, attracted our attention because of its design char-
acteristics. It is simple, lightweight, probabilistic and totaly distributed. All it
needs is local information which is easily provided to the particles, although
some researchers [6] suggest the use of global topology, which can be encoded
and consequently disseminated throughout the network. On top of that PFR is
thoroughly analyzed considering correctness, energy efficiency and robustness.

Then we tested PFR on diverse operation scenarios and we identified its design
flaws and its beneficial elements. We modified its components and experimen-
tally assessed their impact. The process yielded interesting ideas which were
simulated and evaluated as well. Corrections were suggested and experiments
took place to identify the best setting of their parameters. From this procedure
protocols EFPFR and MPFR emerged (see sections 5.1 and 5.2 respectively) as
descendants of PFR, and protocol TWIST (see section 5.3) evolved, in turn, from
MPFR. The keystone of these new protocols’ design is Fairness. This concept, in
the context of WSN’s, has been addressed by many researchers in the past (e.g.
[10]). In this work the term implies that the protocols must be able to identify
each particle’s particularities and roles and consequently treat them respectively.
For instance important nodes should be relieved from some of their burden, while
the seemingly less important ones, should be prompted to participate more in
the data propagation process. This could be realized either by prohibiting trans-
missions from the frequently used, “poor”, in terms of energy particles, or by
encouraging propagations through paths different from the greedy, shorter ones.
The goal is to amplify “solidarity” within the network and keep it functional for
more time.

2 The Model and the Problem

In this work we follow the model presented in [3]. It is comprised by N sensor
particles and one sink. The particles’ positions are chosen uniformly at random.

102 I. Chatzigiannakis, L. Kirousis, and T. Stratiotis

Sink’s resources (energy, transmission radius and processing and storage capa-
bilities) are infinite. Once the sensors are deployed, no new ones are added. The
nodes are assumed to be static, identical and their transmission ranges R and
initial energy reserves Ein, are finite and fixed. The transmission ranges could
be variable as well, but we prefer to deal with a simpler and stricter case. Each
data transmission is a broadcast and every particle can communicate with every
other being positioned within its range R assuming the absence of obstacles. A
critical event E occurs with probability PE , called injection rate. Additionally we
assume that every particle can estimate the direction of a received transmission
and the distance from its source, as well as the direction towards the sink. The
particles can retrieve this kind of information employing various techniques. One
way is incorporating smart antennas into the particles, which may be feasible in
the near future (see [4]). Thus within an initialization round, during which the
sink is broadcasting a powerful signal of known intensity, the sensors calculate
their direction in relation to the sink and their distance from it, measuring sig-
nal attenuation. The particles can also use GPS transceivers to estimate their
positions or even localization methods (e.g. [11]) to decide on fictitious virtual
coordinates and thereafter be able to estimate directions and distances.

The Energy Model: As it is proposed in [8], we consider that energy is dissi-
pated when the particles transmit, receive and remain in idle state. The energy
needed for a transmission/reception is proportional to the time the transmit-
ter/receiver must operate in order to transmit/receive the entire message. Thus
Etx = Ttxstart ·Ptxstart + nmes

Rt
· (Ptxelec

+Pamp) is the amount of energy required
to transmit a message having length n bits. Ttxstart is the time required to turn
on the transmitter, Ptxstart is the power needed for this task, Rt is the trans-
mission rate and Ptxelec

and Pamp are respectively the amounts of power needed
to operate the transmitter and the amplifier. Similarly the energy needed to re-
ceive a message of nmes bits is: Erx = Trxstart · Prxstart + nmes

Rt
· Prxelec

, where
Trxstart is the time required to turn on the receiver, Prxstart is the power needed
to be spent for that purpose and Prxelec

is the amount of power required to
operate the receiver. Finally when a particle is idle we consider that it spends
an amount of energy Eidle, equal to that required to receive only one bit. So:
Eidle = Trxstart ·Prxstart +

1
Rt

·Prxelec
. Intuitively, during each time step, a particle

switches on its receiver, senses the carrier (receives O(1) bits) and if no worthy
transmission is taking place, it switches off the receiver. In some architectures
the amount of power the particle’s circuit spends during the idle state (Pidelec

)
is different from that of the receiver Prxelec

.

The Fair Propagation Problem: The propagation problem Π can be for-
mulated as following: “Which is the propagation strategy the particles should
follow, in order to distribute the work load in “fair” fashion and report as many
messages as possible to the sink, during the K time-steps of network’s opera-
tion?”. Π implies the need of cooperation between the particles in order to share
the data dissemination burden and propagate efficiently most of the messages
without spending much energy. The issue of balanced energy dissipation must

Probabilistic Protocols for Fair Communication in WSN’s 103

be taken into account as well. A protocol’s ability of delivering most of the re-
porting messages is quantified by the Success Rate Ps. Ps is the fraction of the
number r of the events successfully reported to the sink, over the total number of
events generated g, i.e. Ps = r

g . Additionally we measure the Final Total Energy
Efin. Given a network of size N where each node i has Ei energy units left at
the end of the simulation, Efin =

∑N
k=1 Ek. To assess how energy balanced a

protocol is, we calculate the Standard Deviation of the Energy Left, σEfin
. For

every particle i having Ei units of energy, σEfin
=
√

E(Ei
2) − E(Ei)2. Other

approaches [12] characterize a protocol as energy balanced if no sensor dissipates
more than O(E(n)/n) energy, where n is the number of sensors and E(n) the
total amount of energy spent. We also measure the Number of Alive Particles
Ha, i.e. the number of particles i that have, at the end of the simulation, energy
levels above zero, i.e. Ei > 0. Finally we calculate how fast a protocol delivers
its messages using the Mean Latency metric, L. If an event ε belongs to the set
of the successfully delivered events Ed and made it to the sink after lε rounds,

then L =

∑
ε∈Ed

lε

|Ed| .

3 Implementation Issues

The implementation assumes that all the particles operate within discrete time-
steps. This implies synchronization, although the latter is not necessary. The
regular and the special “energy level update” messages can be delivered at
any time and each particle is free to store and process them at the proper
moment. We assume as well that the particles avoid message re-transmissions
by keeping a record of the previously encountered ones. Also we make the as-
sumption that an underlying MAC communication protocol exists dealing with
the interference problem, as the radiogram protocol applied on the Sun SPOT
motes [1]. Additionally we consider the sleep/awake scheme as an underlying
subprotocol that can be applied on every classic routing protocol and thus we
don’t take its application into account in this study; all the particles are con-
stantly awake. Each experiment is executed on the same hundred of similar
instances and the results harvested are the average values from those taken
on every single instance. The specifications utilized concern: the network size
which is 10000 particles. The plane which is shaped as a unit diameter disk.
The sink’s position in the disk’s center. Additionally the events are getting de-
tected close to an arc which is a part of disk’s circumference; the “event arc”.
The size of the “event arc’s” subtending angle is 30◦. The injection rate is 0.4
and the β parameter (express the length of PFR’s “Front Creation” phase)
is 2. The particles’ communication radii and initial energy reserves are 0.025
length units and 5000 energy units respectively. Each experiment lasts 5000
rounds. The energy specifications are based on real data drawn from data-sheets
of six well known micro-sensor transceiver architectures (µAMPS-1, WINS,
nRF905, MEDUSA II, TR1001 and CC1100). Here we report only the ex-
periments regarding the µAMPS-1 architecture. Similar results hold for the other

104 I. Chatzigiannakis, L. Kirousis, and T. Stratiotis

architectures as well. All these characteristics describe an average case scenario
where the network works sufficiently for most of the time, but a significant frac-
ture of the network gets depleted in order to evaluate protocols’ robustness. More
details regarding the experimental conditions can be found at the full version of
this paper: http://ru1.cti.gr/aigaion/?TR=446.

4 Probabilistic Forwarding Protocol - PFR

The Probabilistic Forwarding Protocol (PFR) is a flat, distributed and multi-
path protocol and it favors transmissions only from those sensor particles that
lie close to the optimal line; i.e. the line connecting the source of a message and
its destination, the sink. It evolves in two phases:

The Front Creation Phase. This effect of this phase is to ensure that the
data propagation process survives for an appropriately large period of time. It
initiates when a new event E is detected by a particle p and E ’s message mE
is sent to p’s neighbors. It lasts for β rounds and during them each particle
receiving a message w it deterministically forwards it.

The Probabilistic Forwarding Phase. After the Front Creation phase data
propagation is done in a probabilistic manner. When a particle v receives a new
message m, it decides to propagate it with probability pfwd = φ

π . φ is the angle
formed between the particle-source A of the message m, particle v and the sink
S (φ = ÂvS).

PFR’s main drawback is its flooding behavior. This behavior is illustrated in
Fig. 1(a). Flooding, favors the creation of multiple paths and thus the delivery
probability is increased while the energy dissipation is increased as well.

(a) PFR (b) EFPFR (c) MPFR (d) TWIST

Fig. 1. Single message’s propagation. The light grey spots stand for particles having
received the message and the dark ones for nodes having received and transmitted it.

5 Designing Protocols

5.1 Energy-Fair Probabilistic Forwarding Protocol - EFPFR

EFPFR’s goal is to limit message broadcasts and thus energy consumption,
without blocking events from being reported to the sink. The idea of limiting

Probabilistic Protocols for Fair Communication in WSN’s 105

transmissions was also utilized from different perspectives in [9]. EFPFR inherits
both the Front Creation and Probabilistic Forwarding Phase from PFR, but it
slightly modifies the latter one. It introduces the “local energy ranking” criterion
which in combination with the original PFR’s “angle” criterion, regulates the
transmission decision process. A similar criterion was used in [7]. The local energy
ranking criterion requires that each particle should have some knowledge about
the energy reserve levels of its neighbors. Thus periodically all the particles are
broadcasting information about their own energy level. Those special messages
are the energy update messages, the special rounds are the energy update rounds
and the number of rounds intervene between two consecutive energy update ones
is called the energy update period length. During the energy update rounds, each
particle receives its neighbors’ energy information. Thus it can compare its own
energy reserve with those of its neighbors, and assess whether it is locally “rich”
or “poor”, in terms of energy. If it is “rich”, it concludes that it should take
the initiative to forward its messages and relieve its “poor” neighbors. If it is
“poor” it reduces the forwarding probability of its message since it “assumes”
that there is another, “richer” neighbor to do so. Note that with high probability
in a neighborhood all the particles possess more or less the same set of messages,
as long as they have common neighbors to pass them the same messages. While
in an energy update round, a sensor particle can still sense events, which will be
processed during the next round of operation.

Fairness in EFPFR is expressed by the fact that in each neighborhood the
burden of forwarding messages is undertaken by the “richest” particles relieving
the “poor” ones. The energy distribution throughout the network may change
in time. Since the energy update rounds occur periodically, the protocol adapts
to the new environment. Summing up, during the EFPFR’s Probabilistic For-
warding phase, a particle v forwards a message originating from particle A with
probability:

pfwd =
{

φ
π × Ev−Emin+1

Emax−Emin+1 , if v �≡ A,

1 , if v ≡ A.

Ev, Emin and Emax are respectively the energy level of particle v and the mini-
mum and maximum energy levels in v’s neighborhood including its own energy
level, as they were reported during the last energy update round. The “+1”
factor added at the numerator and the denominator, is normalizing the fraction
in the case Emin = Emax. Note that the probability of broadcasting a message
by the message’s source particle is always 1. The only parameter left open is the
energy update period length. A small period is keeping the energy information
up to date but it causes frequent energy update rounds costing more energy. Our
simulations showed that an energy update period of 80 rounds is optimal (de-
tails can be found in the full version of this paper). As it was expected and can
be showed experimentally (see section 6), EFPFR improves PFR’s performance
because it saves energy truncating unnecessary message transmissions and some
receptions. The message flooding is still present since only few transmissions in
a dense network are enough to propagate data everywhere. This is depicted at
Fig. 1(b).

106 I. Chatzigiannakis, L. Kirousis, and T. Stratiotis

5.2 Multi-phase Probabilistic Forwarding Protocol - MPFR

MPFR follows a different approach from EFPFR’s one to achieve fairness.
MPFR’s concept is to forward messages not through the “optimal line”, but
rather through longer, crooked routes. This design choice works well on instances
where all, or most of the events occur and get detected in a specified area. This
assumption is reasonable, since in real applications a critical phenomenon is
usually observed in specific regions and not throughout all the monitored space.
MPFR’s benefit is that energy dissipation per message is more balanced as the
particles on the “optimal line” get some relief when the traffic is diverted away.
In addition more potential propagations paths are created, increasing message’s
probability of delivery. On the other hand this technique affects the mean mes-
sage delivery delay and increases the overall energy consumption.

MPFR calls PFR multiple times in order to form the indirect, crooked trans-
mission path. In more detail, MPFR divides the network area using concentric
rings, whose radii are integer multiplicates of the radius of the smaller one, also
called redirection radius Rrd. The center of all these rings is the sink. Conse-
quently the number of the rings is set by Rrd. Thereupon when a particle p
detects an event E , it creates the reporting message mE and calculates its own
distance dp, from the sink. If dp ≤ Rrd PFR is used to carry mE directly to the
sink. Else p picks the next intermediate destination of mE . Apparently Rrd and
dp set the number of PFR calls. Thus if kRrd < dp ≤ (k + 1)Rrd and k ≥ 1,
PFR will be called k + 1 times and mE will be redirected k times. Picking the
next destination particle p′ is not trivial. p′ is picked by p, uniformly at random
from those particles lying close to the so called “choice arc”. The original design
choice suggests that the “choice arc” should be a hemicycle having as center p
and whose radius would be equal to dp − (k−m) ·Rrd. Additionally the bisector
of this arc should coincide with the line connecting p and the sink. An example
is illustrated on Fig. 2(a), where an event originally detected by particle A is
reaching the sink, passing through B and C. The light grey line represents the
message’s routing, while the two dark arcs are the “choice arcs” of particles A
and B. The problem is that sometimes a message is forced to backtrack and
it gets blocked as the particles which had encountered it in the past ignore it.
In the case showed on Fig. 2(a) this could happen if B’s choice would be D
instead of C. This “message blocking” phenomenon has a strong negative effect
on protocol’s performance. To cope with it we proposed two measures. The first
is the non-blocking feature which declares that the particles should consider a
message, when it is redirected, as different from the original one and not block
it. The other one is the “periphery-targeting” mechanism. This concept changes
the definition of the“choice arc”.

It defines it to be part of the next outer concentric ring towards the sink and
whose ends are the intersection points between the ring itself and the two tangent
lines from particle p to the ring. Fig. 2(b) visualizes it. The goal of this strategy
is to minimize the probability of message blocking because of backtracking, since
the protocol always targets forwards.

Probabilistic Protocols for Fair Communication in WSN’s 107

(a) A message from A propagates
through B and C to the sink using the
original destination choice method

(b) The original destination method’s
“choice arc” is dark, while the periph-
ery targeting concept’s one is light

Fig. 2. Design elements of the MPFR protocol

Our simulations indicate that despite of the correcting measures we intro-
duced, MPFR’s performance was still poor and specifically slightly worse than
that of PFR. The main explanation is that MPFR is relying its success on the
ability to bypass the direct route, from a message’s source to the sink which is not
possible because of the still present flooding behavior. The solution we turned
to, was the to make the PFR’s angle criterion stricter. To do so instead of for-
warding a message with probability φ

π we forward it with probability (φ
π)

n
where

n is an integer number greater than 1. Fig. 1(c) depicts how MPFR propagates a
message to the sink when it follows both the “non-blocking” and the “periphery
targeting” concepts and when the propagation criterion is raised to the power
of 5. The extensive experiments we conducted showed that the MPFR performs
best when the criterion’s power is 5, the redirection radius is large and when
both the “non-blocking” and the “periphery targeting” features are applied. De-
tails regarding these simulations and the overall design process of MPFR can be
found at the full version of this paper.

5.3 Twisting Forwarding Protocol - TWIST

MPFR was engineered to enforce fairness by probabilistically deflecting data
propagation away from the area close to the “optimal line”. Its design aimed at
indirectly achieve this goal and so its success was only partial. Using our experi-
ence on MPFR we designed protocol TWIST which aims exactly at directing data
propagation away from greedy choices; the straight routes. TWIST considers that
the network is deployed in a disc, at the center of which lies the sink.

TWIST runs in three phases. During the first one, the message is forwarded
from the source particle E along the “optimal line” but only until a randomly
selected point; the twisting point T . Then the second phase, called “twisting
phase”, is initiated and the message is forwarded along the perimeter of the
circle having as center the sink and whose radius is equal to the distance between
the sink and the twisting point. This twisting propagation is done clockwise or
anticlockwise, and the covered arc’s subtending angle is random (between 0 and
π). The other end of the arc is called direct forwarding point D. Reaching this

108 I. Chatzigiannakis, L. Kirousis, and T. Stratiotis

point the third phase is initiated and the message follows once again a straight
route towards the sink S. The line, formed by the two straight lines of the first
and the third phase and by the arc of the second phase, is called propagation
line. An example of TWIST propagation is illustrated on Fig. 1(d).

This protocol is probabilistic since, for each message the positions of the twist-
ing and direct forwarding points are random. Those positions are picked from
the source-particle and they are recorded in the message. All the other decisions
are deterministic. The reason is that we want to keep the three individual prop-
agation routes “thin” enough to avoid flooding and spoil protocol’s character.
So a particle transmits a message, if and only if its distance from the propa-
gation line is equal or shorter to its communication radius. The area around
the propagation line where transmitting is permitted is called propagation zone.
Details regarding TWIST’s implementation are provided in the full version of
this paper.

6 Comparative Study

Table 1 contains the performance measurements of the four protocols. As we
see, EFPFR ameliorates PFR’s success rate and this improvement is obvious to
every single metric. Even the standard deviation of energy is smaller than that
of PFR, implying a fairer distribution of the workload. The limitation of PFR’s
flooding behavior is obvious comparing Figures 3(a) and 3(b). Thus EFPFR
indeed is improving PFR’s performance, without compromises.

(a) PFR (b) EFPFR (c) MPFR (d) TWIST

Fig. 3. The distribution of energy dissipation. Light painted areas host the most de-
pleted particles, while the less depleted ones lie on the dark ones.

MPFR as shown in Table 1 succeeded in its mission. It achieved a success rate
higher than that of EFPFR, it saved twice more energy than PFR and preserved
alive much more particles than EFPFR did. Its standard deviation of energy was
also much better than EFPFR’s. From the other hand Fig. 3(c) shows that the
key to MPFR’s success is not that it enjoins fairness throughout the disk, but
rather that it restrains flooding, and provides multiple delivery paths. TWIST
finally seems achieving the best performance (97.5% in terms of success rate),
keeps alive more particles, and the total amount of energy spared is comparable
to that of MPFR. TWIST’s success is the reduction of the energy’s standard

Probabilistic Protocols for Fair Communication in WSN’s 109

Table 1. Comparative study of protocols PFR, EFPFR, MPFR and TWIST

Parameters
Protocols Success Final Tot. Alive Std. Dev. Mean Min Max Mean

Rate Enrg. Particl. Energy Enrg. Enrg. Enrg. Latency

PFR 69.5% 20.227.374 7470 1845.47 2023 0 4862 29.03
EFPFR 81.1% 29.652.830 9199 1768.33 2965 0 4847 28.47
MPFR 88.9% 42.289.624 9824 1275.97 4229 0 4862 26.22
TWIST 97.5% 39.323.864 9895 1006.78 3932 0 4828 38.38

deviation (see Fig. 3(d)). As expected, the only drawback TWIST faces is that
its message’s delivery latency is significantly elongated.

7 Closing Remarks

Our future plan is to carry on the work on discovering the principles governing
a good communication protocol for WSN’s. We aim at extending our investi-
gations on instances where obstacles exist, and in the same time enhance our
experimental findings with analytical proofs. Finally we plan to take further
our research on the mechanisms that ensuring fairness and we will work with
another important virtue: adaptability.

References

1. Sun Small Programmable Object Technology (Sun SPOT) Developer’s Guide, V3
“Purple” release, http://www.sunspotworld.com/docs/

2. Nikoletseas, S.E., Rolim, J.D.P. (eds.): ALGOSENSORS 2004. LNCS, vol. 3121.
Springer, Heidelberg (2004)

3. Chatzigiannakis, I., Dimitriou, T., Nikoletseas, S.E., Spirakis, P.G.: A probabilistic
algorithm for efficient and robust data propagation in wireless sensor networks. Ad
Hoc Networks 4(5), 621–635 (2006)

4. Dimitriou, T., Kalis, A.: Efficient delivery of information in sensor networks using
smart antennas. In: ALGOSENSORS [2], pp. 109–122

5. Falck, E., Floréen, P., Kaski, P., Kohonen, J., Orponen, P.: Balanced data gathering
in energy-constrained sensor networks. In: ALGOSENSORS [2], pp. 59–70

6. Fekete, S.P., Kröller, A.: Topology and routing in sensor networks. In: Kuty�lowski,
M., Cichoń, J., Kubiak, P. (eds.) ALGOSENSORS 2007. LNCS, vol. 4837, pp.
6–15. Springer, Heidelberg (2008)

7. Hong, X., Gerla, M., Wang, H., Clare, L.: Load balanced, energy-aware communi-
cations for mars sensor networks. In: IEEE Aerospace, Bigsky (March 2002)

8. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks.
John Wiley & Sons, Chichester (2005)

9. Leone, P., Moraru, L., Powell, O., Rolim, J.D.P.: Localization algorithm for wireless
ad-hoc sensor networks with traffic overhead minimization by emission inhibition.
In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2006. LNCS, vol. 4240,
pp. 119–129. Springer, Heidelberg (2006)

http://www.sunspotworld.com/docs/

110 I. Chatzigiannakis, L. Kirousis, and T. Stratiotis

10. Rangwala, S., Gummadi, R., Govindan, R., Psounis, K.: Interference-aware fair
rate control in wireless sensor networks. SIGCOMM Comput. Commun. Rev. 36(4),
63–74 (2006)

11. Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic
routing without location information. In: 9th ACM/IEEE Annual International
Conference on Mobile Computing (MOBICOM 2003), pp. 96–108 (2003)

12. Singh, M., Prasanna, V.K.: Energy-optimal and energy-balanced sorting in a single-
hop wireless sensor network. In: PerCom, pp. 50–59 (2003)

Simple Robots in Polygonal Environments:
A Hierarchy

Jan Brunner1, Matúš Mihalák1, Subhash Suri2,�,
Elias Vicari1,��, and Peter Widmayer1,��

1 Department of Computer Science, ETH Zurich, Zurich, Switzerland
jabrunne@student.ethz.ch,{mmihalak,vicariel,widmayer}@inf.ethz.ch

2 Department of Computer Science, University of California, Santa Barbara, USA
suri@cs.ucsb.edu

Abstract. With the current progress in robot technology and related
areas, sophisticated moving and sensing capabilities are at hand to de-
sign robots capable of solving seemingly complex tasks. With the aim
of understanding the limitations of such capabilities, swarms of simple
and cheap robots play an increasingly important role. Their advantages
are, among others, the cost, reusability, and fault-tolerance. While it can
be expected that for a variety of problems a wealth of robot models are
proposed, it is rather unfortunate that almost all proposals fail to point
out their assumptions explicitly and clearly. This is problematic because
seemingly small changes in the models can lead to significant differences
in the capabilities of the robots. Hence, a clean assessment of the “power
of robot models” is dearly needed, not only in absolute terms, but also
relative to each other. We make a step in this direction by explaining
for a set of elementary sensing devices which of these devices (alone and
in combination) enable a robot to solve which problems. This not only
leads to a natural relation (and hierarchy) of power between robot mod-
els that supports a more systematic design, but also exhibits surprising
connections and equivalences. For example, one of the derived relations
between the robot models implies that a very simple robot (that cannot
measure distances) moving inside a simple polygon can find a shortest
path between two vertices by means of a sensor that detects for an an-
gle at a vertex of the polygon whether it is convex. We give an explicit
algorithm which allows the robot to find a shortest path.

1 Introduction

Nowadays, rapid technological innovation gives rise to new hopes and exciting
possibilities for microrobots. For instance, camera sensors continuously become

� The author gratefully acknowledges the support of the National Science Foundation
under research grants CNS-0626954 and CCF-0514738.

�� Work partially supported by the National Competence Center in Research on Mobile
Information and Communication Systems NCCR-MICS, a center supported by the
Swiss National Science Foundation under grant number 5005 – 67322.

S. Fekete (Ed.): ALGOSENSORS 2008, LNCS 5389, pp. 111–124, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

112 J. Brunner et al.

smaller, cheaper and provide images of higher quality. It is natural for robotics
engineers to build sophisticated robots that use many of the available features.

It is, however, not always clear that the more complex information gained
from more sophisticated sensors is what a robot needs in order to solve a task
at hand. For instance, the project SToMP (Sensors, Topology, and Minimalist
Planning) of the University of Illinois investigates questions of this nature. The
current understanding of robotics is not united in answering the question of
which sensor is better for certain tasks. Giving all possible sensors/features to
the robot may prevent scientists from asking such questions, but it does not
come for free, and one has to justify the increased cost of building, memory
usage, energy consumption, etc. Recently, Seth Teller gave a Plenary talk at
IPSN on Darpa’s Self-Driving car Grand Challenge [1]. The car they built for the
challenge was completely self-driving in a real-world traffic, with other robot cars,
and several stunt drivers. The interesting aspect that Seth Teller pointed out was
the “sensory overload”. Even with 40 CPUs packed in the trunk of the car, they
could not keep up with all the information that the sensors were feeding, and it
was also clear that most of the sensing information was not being used. While in
this paper we stick with a purely theoretical point of view, this example shows
that a fundamental research that identifies the “necessary and sufficient” sensing
information for a task (such as driving) would be very valuable. It is therefore
an important research question to understand the limitations and strengths of
available features/sensors.

We take a step in this direction and try to understand what is the information
(gained via sensors) that a robot necessarily needs to solve a certain task. We
compare several sensors within the framework of simple robots in polygonal en-
vironments. Such sensors can be e.g. the capability to measure distances between
visible vertices, or the capability to measure angles between visible vertices. We
compare the resulting robot models with the aim to determine their computa-
tional strength. At this stage of our investigation we do not want to compare how
effective the robots may be in dealing with a massive amount of data. Instead
we base our comparison on the notions of “possibility” – we are only interested
whether the considered robots can solve the same task, and we do not compare
how much time, memory, energy, etc. the robots need to complete the task.

To give a concrete example, consider a polygonal maze with one exit and no
holes, where every wall has a different color. There are three different simple
robots placed in the maze. All robots can see the vertices and the walls of the
polygonal maze. Robot A can additionally measure the distance between its
position and a visible vertex, robot B can see the color of the wall, and knows
the order of the colors as they appear on the boundary, and robot C can decide
whether an angle between two visible vertices and its position is convex. These
robots have seemingly very different level of sophistication. The task for the
robots is to find the exit. This is of course an easy task as a robot can walk
along the boundary and it eventually finds the exit. In this paper we prove
that the three robots can do more: they can determine a Euclidean shortest
path between their position and the exit of the maze. Even though this sounds

Simple Robots in Polygonal Environments: A Hierarchy 113

plausible for robot A, we think it is very surprising for the other robots that
have no distance measuring capability. This motivates the need to understand
the true strengths (and weaknesses) of idealized robots.

On the practical side and with the important growth of wireless sensor net-
works [2], a group of simple and small robots also offers an attractive and scalable
architecture for large-scale collaborative deployment and exploration of unknown
environments.

The remainder of the paper is organized as follows. We first relate our work
and models to the existing literature. We then define the simple robot model
we are dealing with, together with the class of sensors that we are going to
consider. We define the relation stronger which is used in the subsequent sections
to compare the resulting robot models. At the end we resolve the problem from
our motivating example, namely, we show how a robot C, which can recognize
whether an angle between two given visible vertices is convex, can find a shortest
path in a polygon. Furthermore we show that robot B (which can “see the
colors”) is “equivalent” to robot C and thus it can solve the maze problem, too.

Related Work. In this paper we study idealized robot models which are similar
to the ones described in [3,4,5,6]. This class of robots has proved to be useful as
the robots are able to solve involved geometrical problems like the Art Gallery
Problem [3] or Pursuit-Evasion [5] despite their severe sensing limitations.

In the literature there have been other efforts to introduce a hierarchical de-
scription of robot models – see for example [7], which summarizes some of the
recent work. The idea of understanding and comparing robots’ sensor-equipment
and the underlying strength of resulting robots is not new. Donald [8] defines
and studies among the first general concepts of hierarchies among robots. His
work deals, analogously to our, with the problem of determining the information
requirement of a robot to solve a task. He also introduces a general concept for
comparing different robot models. The present analysis differentiates from the
previous work in two main aspects. Firstly, instead of considering the universe
of robots we focus on a specific class of robots. Each robot that we consider is
derived from a single basic robot by equipping it with new devices of different
sophistication. Such a restriction allows more precise and formal reasoning. Fur-
ther, along with a hierarchy which represents the relative strengths of the robots,
we study the absolute strengths of the robots. To do so, we try to understand
which information about the environment can be extracted by each robot. In
the considered model we also apply results of computational geometry and get
to the information-theoretical core of sensors.

2 Definitions and Models

Polygons and Visibility. In this paper we deal exclusively with simply-connected
polygons. A simply-connected polygon P is the compact region of the plane
bounded by a closed, non-selfintersecting polygonal curve, called the boundary

114 J. Brunner et al.

(or boundary curve) of P . We denote by V (P) = {v0, . . . , vn−1} the set of vertices
of the boundary curve, which we assume are ordered counterclockwise (ccw).
Every vertex vi, 0 ≤ i ≤ n − 1, is a point in the Euclidean plane. We assume,
for simplicity of exposition only, that no three vertices lie on a line. Let E(P) =
{e0, . . . , en−1} be the edge-set of a polygon P , where an edge is the open segment
ei = (vi, vi+1), i = 0, . . . , n − 1. All arithmetic operations on the indices of the
vertices are to be understood modulo n. Let Pn be the set of all simply-connected
polygons on n vertices in the Euclidean plane, and let P be the set of all simply-
connected polygons, i.e., P =

⋃
n≥3 Pn. Given two points p1 and p2 in the

polygon, we denote by p1p2 the line segment between the two points. We say
that p2 is visible to p1 in P if p1p2 ∩ P = p1p2 (note that the relation visible is
symmetric). Two (mutually) visible vertices vi and vj , j �∈ {i − 1, i + 1} form a
diagonal of P .

The visibility graph of a polygon P is the (labelled) graph G = (V, E) with
V = V (P) where two vertices are adjacent iff they are (mutually) visible in P .
The vertex-edge visibility graph is a bipartite graph G′ = (V ′, E′) with V ′ =
V (P)
E(P) where two vertices v ∈ V (P) and e ∈ E(P) are adjacent in G iff v
is visible to at least a point of the edge e in P .

A Robot Hierarchy. The set of problems that we are interested in is defined by
the universe of mappings f : P × I → O, where I denotes the set of inputs
(additional to the polygon) and O the set of outputs, respectively. Instead of
using a more classical Turing machine as a computational model to solve the
aforementioned problems, we use robots. An instance of a problem f is defined
by a pair (P, I), where P ∈ P and I ∈ I. Given a problem f , a robot is said
to be able to solve f if, given any instance (P, I) of the problem f , a robot
R that moves according to its deterministic specifications in the polygon P
returns a solution O ∈ O which (1) is independent of the vertex where the
robot is initially located, (2) fulfills O = f(P, I), and (3) needs a finite number
of movements of the robot. For example, consider the problem of determining
the euclidean shortest path between two vertices s and t of a polygon P (on
n vertices), which lies entirely inside P . We set I = N

2, which represents the
choice of s and t, O =

⋃
P∈P{set of all polygonal paths in P} and f is the map

that given a polygon P and two vertices of P returns a shortest path inside P
between those two vertices.

In this paper we consider a robot as a computational model for problems
in polygons. Robots are characterized by given features and limitations, which
define a robot model1 – we denote by R the set of all robot models that operate
in polygons. For a robot model R ∈ R we want to identify the set of problems
that a robot can solve. Accordingly we define a partial order on the set of robot
models. We say that a robot R1 is at least as strong as the robot R2 – denoted
R2 � R1 – if R1 can solve all the problems that R2 can solve. We say that R1 is

1 When this is not misleading, we often do not distinguish the concepts of a robot and
a robot model.

Simple Robots in Polygonal Environments: A Hierarchy 115

strictly stronger (R2 � R1) if additionally there is a problem that R1 can solve
but R2 cannot. R1 and R2 are equivalent, if R1 � R2 and R2 � R1.

Robot Models. All considered robot models of this paper are extensions of a
basic robot model – the simple combinatorial robot (the definition follows), which
provides elementary motion and vision capabilities. We model additional sensing
capabilities by devices which can be “mounted” onto the basic robot. Any set of
devices derives a new robot model from the basic robot. We define the considered
devices after the introduction of the basic robot.

The simple combinatorial robot has very basic sensing and motion capabili-
ties. We assume that the robot is placed on a vertex of a polygon P . The robot
possesses a sense of handedness. It can locally distinguish its immediate “left”
and “right”: a robot at vertex vi distinguishes vi−1 as the “left” neighbor and
vi+1 as the “right” neighbor. In general, a robot at vertex v gets the following
information about the environment. The sensory system scans the surroundings
counterclockwise from the right neighbor of v. This produces an ordered list of
visible vertices (including v itself), starting with the right neighbor of v and
ending with the left neighbor and the vertex v. The vertices are visually in-
distinguishable to the robot (they are unlabelled). Hence, the robot cannot in
general recognize a vertex, that is, cannot detect whether a vertex seen from one
location is the same as another vertex seen from another location. The sensing
process produces the so called combinatorial visibility vector (cvv for short) of
the vertex v. The cvv is a binary vector encoding the presence of edges between
the visible vertices. The ith component of cvv is 1 if between the (i − 1)st and
ith visible vertex there is a polygonal edge, and it is 0 if there is a diagonal (see
Fig. 2 for an example).

The motion ability is likewise very limited. The robot picks a destination
among the visible vertices and moves on a straight line – along a polygonal edge
or diagonal – until the destination is reached. Thus, if the robot does not move,
it stands on a vertex of P . During the motion no sensing is possible.

Our focus is to study the possibility issues of the simple robots equipped
with various devices. Therefore we assume that the robot has an unbounded
computational power and an infinitely large memory with arbitrary precision.
We note that the simple combinatorial robot has the sensory and motion systems
similar to the robots studied in [3].

We consider the following, some of the most common devices in robotics.

Pebble. A pebble is a device that is used for marking the vertices. The robot
can drop the pebble at the vertex of the robot’s position, and can recollect
it again for further use. If the vertex with the pebble is visible to the robot’s
position, the robot sees the vertex as marked, and distinguishes this from
the other vertices. The most important implication of this is the following.
Suppose that the robot is on the vertex vi, leaves the pebble at this vertex
and moves to the vertex vj . There, at vertex vj , the robot can determine the
relative position of vi in the robot’s cvv.

Angle-Measuring Device, Length-Measuring Device. Suppose that a
robot is on vertex vi and that two vertices vj and vk are visible from vi.

116 J. Brunner et al.

Let us assume, w.l.o.g., the positions of vj and vk in the cvv of vi are j′ and
k′, respectively, j′ < k′. Upon a request for the angle between the visible
vertices j′ and k′ of the cvv, the angle-measuring device returns the exact an-
gle ∠vjvivk, i.e. the angle that “lies” entirely inside the polygon. Analogously,
the length-measuring device measures the distance between the robot’s cur-
rent location and a chosen visible vertex.

Reflexity Detector. The reflexity detector is similar to the angle-measuring
device but instead of providing the size of the angle it merely decides whether
the angle is convex or reflex, i.e., whether the angle is smaller, respectively
bigger, than 180 degrees.

Compass. The north-direction is a consistent reference direction in the poly-
gon and is parallel to the y-axis in the coordinate system of the polygon.
The compass enables the robot to measure the angle formed by the north-
direction, the robot’s current location and a chosen visible vertex.

Oracle. An oracle Ω is a (possibly non-deterministic) “black-box” device that
can answer pre-specified questions posed by the robot. An oracle has per-
fect knowledge of the universe (the polygon, the robot’s position, history of
movements, etc.). Note that the other devices can all be seen as oracles.

The labeller oracle Ωl answers the following type of questions. The query
to the oracle is a component i of the cvv of v. If the component is 1 then the
oracle reports the (global) label k of the corresponding edge ek, i.e., the edge
between the (i − 1)st and ith visible vertex from v. If the component is 0,
then the oracle reports the label of the edge that is partially visible behind
the corresponding diagonal. This is the first edge that is intersected by the
line that emanates from the vertex v and passes through the (i−1)st visible
vertex of v (see Fig. 1). Note that the line that emanates from v and passes
through the ith visible vertex intersects the same edge.

v0
ei

vi

vi+1

vj

vj′

Fig. 1. Partially visible edge ei = (vi, vi+1) from vertex v0

We investigate some interesting combination of devices. In the following table
we name the considered robot models and the devices that specify them.

Simple Robots in Polygonal Environments: A Hierarchy 117

Explorer Pebble
Reflexer Pebble, reflexity detector2

Labeller Pebble, labeller oracle Ωl
3

Surveyor Pebble, angle-measuring device

3 Combinatorial Structures of a Polygon

All robots of our interest have limitations in the motion and sensing capabilities,
but no limits on their computational power or memory size. In that respect an
ability of a robot to solve a problem is closely related to the ability of building a
good representation of the environment. The goal of this section is to character-
ize, where possible, the information that a robot can extract from a polygon –
its map. To do so, we compare according to the aforementioned complexity hier-
archy the robot models with the so called delphic robot4. The delphic robot has
the conceptually unbounded computational unit and the memory of the simple
combinatorial robot but it can neither sense the environment nor move. For the
comparison we characterize the delphic robot by a specific oracle Ω. The nature
of the oracle will help us understand the type of information that the compared
robot can extract from the polygon.

Theorem 1. The explorer is equivalent to the delphic robot with the oracle that
returns the visibility graph of the polygon.

Proof. [3] shows that the explorer can build the visibility graph of a polygon.
For the other direction, note that the cvv of every vertex can be read from
the visibility graph, and also the information about a placed pebble (since the
visibility graph is labelled). 	

Using the same arguments, one can show that a simple robot with more pebbles
is equivalent to the explorer. In a similar way one can also prove the following
theorem.

Theorem 2. The labeller is equivalent to the delphic robot with the oracle that
returns the visibility graph and the vertex-edge visibility graph of the polygon.

[9] shows that if no three vertices of the polygon are on a line, the visibility
graph of a polygon can be computed from the vertex-edge visibility graph. This
is not true in general otherwise.

To study the strengths of the surveyor, which seems to be a very strong
robot, we introduce an oracle Ωs. Let A be the set of orientation-preserving
similarity transformations5 of the plane. When queried, Ωs returns the sequence
2 Reflexer is the robot C of the introduction.
3 Using colors to label edges, we see that labeller is the robot B of the introduction.
4 Delphi is known for the oracle at the sanctuary that became dedicated to Apollo

during the classical period.
5 An orientation-preserving similarity transformation is a point-to-point mapping of

the plane which is a composition of scalings and rotations followed by a translation.

118 J. Brunner et al.

(v′0, . . . , v
′
n−1), where v′i is the image (i.e. the coordinates) of the vertex vi ac-

cording to a mapping m ∈ A, where m is fixed (independent of the query) and
unknown to the robot.

Theorem 3. The surveyor is equivalent to the delphic robot that is equipped
with the oracle Ωs.

Proof. First observe that the surveyor can build the visibility graph of the poly-
gon because it is an extension of the explorer and hence can easily navigate in
the polygon P (move from a desired vertex to another).

Let the delphic robot have an instance of the oracle Ωs that uses a map
m ∈ A. Consider now the surveyor. Pick a triangulation T of P and take an
edge e of T which corresponds to an edge or a diagonal of P with endpoints
u and v. The robot assigns arbitrary (distinct) coordinates to u and v to start
building a representation of P . Take a vertex w that induces a triangle with e in
T . The robot can measure perfectly the angles ∠(u, v, w), ∠(v, w, u), ∠(w, u, v).
This leaves exactly two points of the plane where w can be placed to represents
correctly the angles of P . The handedness of the robot cuts down the number
of options to one. It is easy to see that by further following the triangulation T
the remaining vertices of P are placed uniquely. Hence the coordinates of the
representation of P of the robot are equal to the image of the true coordinates
of P under a (unknown) map m′ ∈ A. Note that this map is fully specified by
the coordinates of the vertices u, v. This shows that the surveyor can simulate
the oracle Ωs. For the other direction observe that the angles that the delphic
robot measures in the representation generated by the oracle are equal to the
respective angles measured by the surveyor. 	

Suppose that we enrich the capabilities of the surveyor. In addition to the angle-
measuring device, we endow the surveyor with either a length-measuring device
or a compass (or both). By literally repeating the previous proof, we can easily
see that such a robot builds a more accurate representation of the polygon. In
other words, the enriched surveyor is equivalent to the delphic robot endowed
with the same oracle Ωs, but the set of geometric transformations which may
be used by the oracle is smaller – the length-measuring device prevents the ora-
cle to pick a transformation that involves a scaling while the compass prevents
rotations. By again arguing with a triangulation of the polygon, it becomes evi-
dent that the length-measuring device can simulate the angle-measuring device.
Obviously, the opposite direction does not hold.

We note that the angle-measuring device can be simulated by the compass
and that the pebble can be simulated by the combination of the compass and
the length-measuring device. To see the latter, notice that a robot equipped with
the compass and the length-measuring device can simulate a polar coordinate
system and hence give coordinates to the vertices that coincide with the true
coordinates up to a translation. If coordinates are given, the robot can operate
with labelled features and hence a pebble can be easily simulated.

Simple Robots in Polygonal Environments: A Hierarchy 119

4 A Robot Hierarchy

In this section we want to precisely investigate the relationships between the
different robots. Trivially, “simple combinatorial robot � explorer”.

Theorem 4. The explorer is strictly stronger than the simple combinatorial
robot.

Proof. We show that the simple combinatorial robot cannot solve a problem
that is trivial for the explorer: count the vertices of a polygon. Consider the
two polygons depicted in Fig. 2. The polygon P1 is only partially drawn. Easy
geometric arguments show that P1 can be extended to an arbitrary size with the
property that vertices with cvv (1, 0, 0, 1) and (1, 1, 0, 1, 1, 0, 1, 1) alternate along
the boundary (on both sides). If P1 is made large enough, then its middle part,
i.e. the portion of the polygon specified by all the vertices except for those with
maximal and minimal x-coordinate, “looks like” the polygon P2. Let us make
this precise. The middle part of P1 and of P2 are composed by vertices of two
different cvv’s: c1 = (1, 0, 0, 1) and c2 = (1, 1, 0, 1, 1, 0, 1, 1). Moreover, take two
vertices v ∈ V (P1) and w ∈ V (P2) with the same cvv. If we move to the ith
visible vertex in both cases, we get to two vertices v′, w′, respectively, such that
again cvv(v′) = cvv(w′) holds. Provided that P1 is large enough and v is chosen
“in the middle” of P1, this observation can be repeated a finite number of times.

Suppose that there is an algorithm A for a simple combinatorial robot to count
the vertices of a polygon. Let the robot sitting on a vertex of type ci, i = 1, 2, of
P2 execute A. The robot will report 10 after moving a finite number of times –
say t times. By the above argument, if we place the robot on a middle vertex of

v1

v2

P1

l1

l2

(1, 0, 0, 1)

(1, 1, 0, 1, 1, 0, 1, 1)

l1

l2

l3

l4

w2

w1

P2

Fig. 2. P1 and P2 are the polygons used in the proof of Theorem 4

120 J. Brunner et al.

type ci of P1, it will visit the same sequence of vertices as in the execution in P2,
because it makes decisions only according to the sequence of cvv ’s of the visited
vertices. Thus it reports 10 after exactly t steps – this is a contradiction. 	

Theorem 5. We have “explorer � labeller”.

Labeller is obviously at least as strong as the explorer. To see that it is strictly
stronger take for instance the problem of deciding if a given vertex is convex or
reflex. [3] shows that the explorer cannot solve this problem in general, whereas
[9] shows that the vertex-edge visibility provides this information.

The next result is more surprising.

Theorem 6. Labeller and reflexer are equivalent.

Proof. As both robots are at least as strong as the explorer, both can build the
visibility graph of the polygon.

We first prove that “labeller � reflexer”. To do so, we show that reflexer can
use its capabilities to simulate labeller’s oracle, i.e., we want to show that reflexer
can identify the endpoints of every (partially) visible edge of the polygon. This is
obvious if an edge ei is totally visible, i.e., if both the vertices vi, vi+1 are visible
from the robot’s current position – w.l.o.g. v0. In this case the reflexer sees the
endpoints, too, and thus can read the labels of the vertices, and hence the label
of the edge, from the visibility graph.

Thus we concentrate on the case where the reflexer sees only a portion of the
edge ei. The edge ei thus corresponds to a 0 (a diagonal) in the robot’s cvv –
let vjvj′ be this diagonal (the robot knows the labels j and j′ from the visibility
graph). The visible part of ei is determined by the cone defined by the lines v0, vj

and v0, vj′ . See Fig. 1 for illustration. The robot first checks whether it sees one
endpoint of ei, i.e., whether vi = vj or vi+1 = vj′ . The case vi = vj happens iff
the vertex vj+1 lies left of the line v0, vj , i.e., iff the angle ∠v0vjvj+1 is convex.
Similarly, vi+1 = vj′ happens iff the vertex vj′−1 lies right of the line v0, vj′ , i.e.,
iff the angle ∠vj′−1vj′v0 is convex. In such a case reflexer can easily identify the
labels of the endpoints of ei.

It remains to consider the case when the robot does not see vi and vi+1 from
v0. Thus, vi lies to the right of the line v0, vj and vi+1 lies to the left of the line
v0, vj′ (see Fig. 1). Observe that this is the only visible edge between vj and vj′

with this property. Thus, it follows trivially, ei is the only visible edge which has
one endpoint to the right of v0, vj and the second endpoint to the left of v0, vj .
The robot then moves to vj and checks whether it sees from vj an edge where
one endpoint vk is to the right of v0, vj (again, this can be done by deciding
whether the angle ∠v0vjvk is reflex) and the second endpoint vk+1 is to the
left of v0, vj . If it cannot find such an edge, the edge ei (which is still partially
visible from vj ; actually, a bigger portion is visible) forms the background of
some diagonal in the robot’s cvv. It is easy to identify which diagonal it is – the
only diagonal formed by vertices vk and vk′ for which vk lies to the right of the
line v0, vj and vk′ lies to the left of the line v0, vj . We have been in our analysis
in this situation already – the robot now checks whether it sees one endpoint of

Simple Robots in Polygonal Environments: A Hierarchy 121

ei, i.e., whether vi = vk or vi+1 = vk′ . If yes, we are done, otherwise we proceed
recursively: the edge ei has its endpoints on the two sides of the cone formed
by the lines vj , vk and vj , vk′ , and it is the only edge between vk and vk′ with
this property. Thus, the robot can move to vk and perform the whole procedure
again. This recursive approach has to stop, as the distance between k and k′ is
getting smaller in every step, and eventually vk = vi.

We now prove that “reflexer � labeller”. Recall that by Theorem 2, labeller
is already able to decide the type of an angle specified by three consecutive
vertices. Consider the angle ϑ = ∠vivjvk and for simplicity assume that 1 ≤ i <
j < k ≤ n. ϑ is convex iff one of the edges ej, ej+1, . . . , ek−1 are partially visible
to vi. To see this, assume first that k− j = 1 and that ϑ is reflex. Then vi cannot
see ej because it is hidden by vj . Conversely suppose that ϑ is convex. Then
by the assumption that the boundary curve is non-selfintersecting, vi must be
able to see a portion of ej . The general claim follows by noting that vi can see
a portion of the diagonal vjvk if and only if it can see a portion of one of the
claimed edges. 	

5 Equivalent Robots: An Example

O’Rourke and Streinu [9] showed that the vertex-edge visibility graph provides
enough information to determine the Euclidean shortest path between two points
in a polygon (and also a shortest path tree from a given vertex). In the previous
sections we have proved that reflexer is equivalent to labeller and that labeller is
equivalent to the delphic robot that has access to the vertex-edge visibility graph.
Hence we know that reflexer can compute a shortest path between two vertices
of the polygon as well. A way for reflexer to do this is to follow the reduction
to labeller and simulate the labeller’s algorithm. This may not always lead to
an intuitive algorithm for a problem. In this section we solve the shortest-path
problem by reflexer directly, and present an algorithm that exploits naturally
reflexer’s features – deciding the convexity of any angle induced by two visible
vertices and the robot’s position.

To this end, we exploit the following structural theorem about paths in poly-
gons. A polygonal path is a path induced by a sequence l1, l2, . . . , lk of points in
the plane – it starts at a vertex l1 and always connects by a straight line to the
next vertex of the sequence. We look only at polygonal paths that are entirely
included in the polygon P and with {l1, . . . , lk} ⊂ V (P). An internal angle of a
polygonal path at vertex li, 1 < i < k, is the angle between the lines lili−1 and
lili+1, that lies entirely inside P .

Theorem 7. Let P be a simply-connected polygon and s, t ∈ V (P). Then there
is a unique polygonal s − t-path that turns at vertices of the polygon for which
every internal angle is reflex. This path is the unique shortest s − t-path in P .

Lee and Preparata [10] showed that the shortest s−t-path in a polygon is unique
and has the claimed property. Nevertheless, we present a new proof because it
is slightly simpler and additionally shows that no other s− t-path that turns at
vertices of the polygon with reflex internal angles exists.

122 J. Brunner et al.

s

t

Fig. 3. The picture depicts a polygon with a shortest s− t-path. Note that all internal
angles are reflex.

Proof. Figure 3 illustrates the situation of the theorem. It has already been
proved in the literature that a shortest path between any two points in a polygon
is a polygonal path that turns at vertices of the polygon [11]. Furthermore, it is
not difficult to see that every shortest path has only reflex internal angles (i.e.,
angles bigger than 180 degrees): suppose that an internal angle ∠li−1lili+1 of a
shortest (polygonal) path is convex. Then the general position assumption of the
polygon implies that li can be moved slightly in the direction of the bisector of the
angle ∠li−1lili+1 such that the new path does not cross the polygonal boundary.
Obviously the newly created path is shorter (see Fig. 4), which contradicts our
assumption. A more careful analysis shows that the general position assumption
is not necessary (we omit the analysis here due to space limit).

li−1

li

li+1

Fig. 4. The shortest path in a simple polygon has all its internal angles reflex

We now show that there is a unique polygonal s − t-path with all internal
angles being reflex. This then shows that it has to be a shortest s − t-path.

Suppose for contradiction that we can find two distinct polygonal s− t-paths
L1, L2 such that all their internal angles are reflex. Let p be the first vertex on
L1 from which the two paths differ, and let q be the first point on L1 after p,
where the two paths meet again (notice that q does not have to be a vertex of
P). Let L′

1 and L′
2 be the induced sub-paths of L1 and L2, respectively, between

p and q. Observe that L′
1, L

′
2 induce a closed curve C. Observe also, that the

region enclosed by C is completely inside the polygon.

Simple Robots in Polygonal Environments: A Hierarchy 123

L1

L2

Q

p
q

Fig. 5. The picture depicts the situation of the proof of Theorem 7. For simplicity the
polygon P has been omitted.

Let Q be the polygon which is defined by the convex hull of the nodes of C.
Note that Q has at least three vertices and that all vertices other than p and q
are vertices of P . The situation is depicted in Fig. 5. As L′

1 and L′
2 lie in Q, the

internal angle of any vertex of L′
1 or L′

2 is at most the respective angle of the
polygon Q. However, the angles of Q are all convex, so every internal angle of a
vertex of L′

1 and L′
2 must be convex. Thus there is a vertex w of a path L′

1 or
L′

2 not equal to p and q such that the internal angle of w is convex. This vertex
induces the same convex angle in the whole path (L1 or L2), which means there
is a convex internal angle in one of those paths, a contradiction. 	

The new insight of Theorem 7 is that a polygonal s − t-path that turns only
at polygonal vertices with reflex internal angles is unique. To find a shortest
s− t-path in a polygon P , the reflexer can just find the unique polygonal s− t-
path with only reflex internal angles. We describe an algorithm for reflexer that
builds a shortest-path tree of P rooted at s. The robot starts at s and connects
s with all visible vertices to begin the construction of the shortest-path tree T .
The robot then proceeds iteratively: it goes to every leaf l of T and for every
visible vertex v from the leaf the robot checks whether the angle between the
predecessor of the leaf and v is reflex. If yes, it connects v to l in T . The following
invariant follows easily from Theorem 7 and is maintained at any time of the
algorithm: (i) The path in T from s to any vertex of T is the shortest path
between the vertices in P , (ii) and T is a tree. It is not difficult to see that at the
end T contains all vertices of P , and thus T is a shortest-path tree of polygon P .

The surprising fact is that to determine the Euclidean shortest path in a poly-
gon we do not measure lengths. We remark that in multiply-connected polygons
paths composed by reflex vertices are not unique in general (and have not the
same length). Theorem 7 settles the intriguing example of the introduction.

As discussed above, the explorer is not able to recognize whether a vertex
is convex or reflex. Subsequently the explorer is not capable in general of de-
termining the Euclidean shortest path between two vertices in a polygon. If an
algorithm for this problem would exist, then the explorer could easily exploit it
to determine the type of the vertex vi: vi is reflex if and only if the shortest path
between vi−1 and vi+1 goes through vi.

124 J. Brunner et al.

Corollary 1. The explorer cannot determine in general the Euclidean shortest
path between two vertices of a polygon.

References

1. Teller, S.: Development of a self-driving car as a mobile sensing platform. In: CPS
Week Keynote Presentation at the International Conference on Information Pro-
cessing in Sensor Networks (IPSN) (April 2008)

2. Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Commun.
ACM 43(5), 51–58 (2000)

3. Suri, S., Vicari, E., Widmayer, P.: Simple robots with minimal sensing: From lo-
cal visibility to global geometry. In: Proceedings of the Twenty-Second National
Conference on Artificial Intelligence and the Nineteenth Innovative Applications of
Artificial Intelligence Conference. AAAI Press, Menlo Park; Extended Version as
ETH Technical Report 547 - Computer Science Department, pp. 1114–1120 (2007)

4. Gfeller, B., Mihalák, M., Suri, S., Vicari, E., Widmayer, P.: Counting targets with
mobile sensors in an unknown environment. In: Kuty�lowski, M., Cichoń, J., Kubiak,
P. (eds.) ALGOSENSORS 2007. LNCS, vol. 4837, pp. 32–45. Springer, Heidelberg
(2008)

5. Yershova, A., Tovar, B., Ghrist, R., LaValle, S.M.: Bitbots: Simple robots solving
complex tasks. In: Proceedings of the Twentieth National Conference on Artificial
Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence
Conference, pp. 1336–1341 (2005)

6. Ganguli, A., Cortes, J., Bullo, F.: Distributed deployment of asynchronous guards
in art galleries. In: Proceedings of the American Control Conference, pp. 1416–1421
(June 2006)

7. O’Kane, J.M., LaValle, S.M.: Dominance and equivalence for sensor-based agents.
In: Proceedings of the Twenty-Second National Conference on Artificial Intelligence
and the Nineteenth Innovative Applications of Artificial Intelligence Conference,
pp. 1655–1658. AAAI Press, Menlo Park (2007)

8. Donald, B.R.: On information invariants in robotics. Artificial Intelligence 72(1-2),
217–304 (1995)

9. O’Rourke, J., Streinu, I.: The vertex-edge visibility graph of a polygon. Computa-
tional Geometry: Theory and Applications 10(2), 105–120 (1998)

10. Lee, D.T., Preparata, F.P.: Euclidean shortest paths in the presence of rectilinear
barriers. Networks 11, 285–304 (1984)

11. Mitchell, S.B.: Geometric shortest paths and network optimization. In: Handbook
of Computational Geometry, pp. 633–701 (2000)

Deployment of Asynchronous Robotic Sensors in
Unknown Orthogonal Environments�

Eduardo Mesa Barrameda1, Shantanu Das2, and Nicola Santoro3

1 Universidad de La Habana, Cuba
eduardomesa@matcom.uh.cu
2 ETH Zurich, Switzerland
shantanu.das@inf.ethz.ch

3 Carleton University, Canada
santoro@scs.carleton.ca

Abstract. We consider the problem of uniformly dispersing mobile
robotic sensors in a simply connected orthogonal space of unknown
shape. The mobile sensors are injected into the space from one or more
entry points and rely only on sensed local information within a restricted
radius. Unlike the existing solution, we allow the sensors to be asyn-
chronous and show how, even in this case, the sensors can uniformly fill
the unknown space, avoiding any collisions and without using any explicit
communication, endowed with only O(1) bits of persistent memory and
O(1) visibility radius. Our protocols are memory- and radius- optimal; in
fact, we show that filling is impossible without persistent memory (even
if visibility is unlimited); and that it is impossible with less visibility
than that used by our algorithms (even if memory is unbounded).

1 Introduction

The Framework: An important problem for wireless sensor systems is the ef-
fective deployment of the sensors within the target space S. The deployment
must usually satisfy some optimization criteria with respect to the space S (e.g.,
maximize coverage). In case of static sensors, they are usually deployed by exter-
nal means, either carefully (e.g., manually installed) or randomly (e.g., dropped
by an airplane); in the latter case, the distribution of the sensors may not satisfy
the desired optimization criteria.

If the sensing entities are mobile, as in the case of mobile sensor networks,
vehicular networks, and robotic sensor networks, they are potentially capable to
position themselves in appropriate locations without the help of any central coor-
dination or external control. However to achieve such a goal is a rather complex
task, and designing localized algorithms for efficient and effective deployment of
the mobile sensors is a challenging research issue.

We are interested in a specific instance of the problem, called the Uniform Dis-
persal (or Filling) problem, where the sensors have to completely fill an unknown

� Research partially supported by NSERC Canada.

S. Fekete (Ed.): ALGOSENSORS 2008, LNCS 5389, pp. 125–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

126 E.M. Barrameda, S. Das, and N. Santoro

Fig. 1. An orthogonal region to be filled by the sensors

space S entering through one or more designated entry points called doors. In the
process, the sensors must avoid colliding with each other, and must terminate (i.e.,
reach a quiescent state) within finite time. The space S is assumed to be simply
connected (i.e., without holes), and orthogonal, i.e. polygonal with sides either
parallel or perpendicular to one another (e.g., see Figure 1). Orthogonal spaces
are interesting because they can be used to model indoor and urban environment.

We wish to study the problem from an algorithmic point of view, focussing
on the minimum capabilities required by the sensors in order to effectively com-
plete this task. We consider this problem within the context of robotic sensors
networks: the mobile entities rely only on sensed local information within a
restricted radius, called visibility range; when active they operate in a sense-
compute-move cycle; and usually they have no explicit means of communication.

Existing Results: The problem of deployment of mobile sensor networks has
been studied by several authors and continues to be the subject of extensive
research; e.g., see [7,8,9,10,13,16,22]. Most of the work is focused on the uniform
self-deployment problem; that is, how to achieve uniform deployment in S (usu-
ally assumed to be polygonal) starting from an initial random placement of the
sensors in S. The uniform dispersal problem, studied here, has been previously
investigated by Howard et al. [9]: sensors are deployed one-at-a-time into an
unknown environment, and each sensor uses information gathered by previously
deployed sensors to determine its deployment location.

The robotic sensor networks, studied in this paper, have been and continue to
be the object of extensive investigations both from the control and the comput-
ing point of view (e.g., [1,3,4,5,6,12,14,20,21]; see [2,18] for recent surveys). A
crucial difference between robotic sensor networks and traditional wireless sen-
sor networks is in the determination of an entity’s neighbours. In robotic sensor
networks, the determination of one’s neighbours is done by sensing capabilities
(e.g., vision): any sensor in the sensing radius is detected even if inactive. On
the other hand, in traditional wireless sensor networks, determination of the
neighbours is achieved by radio communication; since an inactive sensor does
not participate in any communication, the simple activity of determining one’s
neighbours, to be completed, requires the use of randomization or the presence

Deployment of Asynchronous Robotic Sensors 127

of sophisticated synchronization and scheduling mechanisms (e.g., [15,17]). Both
problems, uniform self-deployment and uniform dispersal have been studied for
robotic sensor networks.

The uniform self-deployment problem for robotic sensor networks has been
studied recently, and localized solution algorithms have been developed when
the space S is a line (e.g., a rectilinear corridor) [3], and when it is a ring
(e.g., the boundary of a convex region) [4]. The proposed solutions operate even
if the sensors are very weak; indeed they are anonymous (i.e., indistinguishable),
oblivious (i.e., without any recollection of computations and actions performed
in the previous activity cycles), asynchronous (i.e., when the time between suc-
cessive activity cycles is finite but unpredictable), and are communication-free
(i.e., they use no explicit form of communication).

The uniform dispersal problem for robotic sensor networks, in which the sen-
sors are injected one-at-a-time into the unknown environment S, has been in-
troduced and investigated by Hsiang et al.[11]. Their results are based on an
ingenious follow-the-leader technique where each sensor communicates with the
one following it and instructions to move are communicated from predecessor
to successor. The sensors are anonymous but they need some persistent mem-
ory to remember whether or not is a leader1 and the direction of its movement.
Since the algorithm uses only O(1) bits of working memory in total, computa-
tionally the sensors can be just finite-state machines. In addition to requiring
explicit communication, the solution of [11] makes the strong assumption that
the sensors operate synchronously, which allows perfect coordination between
the sensors.

This fact opens a series of interesting questions on the capabilities needed by
the sensors to achieve uniform dispersal in orthogonal environments. In other
words, how ”weak” the sensors can be and still be able to uniformly disperse ?
In particular: is persistent memory needed ? can the task be performed if the
sensors are asynchronous ? is explicit communication really necessary ? In this
paper we consider precisely these questions and provide some definite answers.

Our Results: We identify intrinsic limitations on the type of memory and
the visibility radius of needed by asynchronous sensors to solve the uniform
dispersal problem for any simply connected orthogonal space whose shape is a
priori unknown. We then show that these results are tight; in fact we present
protocols and prove that they solve the problem while meeting these limitations,
and without using explicit communication.

We first consider the case of a single door. We show that oblivious sensors can
not deterministically solve the problem, even if they have unlimited visibility.
We then present (in section 4) an algorithm for solving the problem in the case
of single door with asynchronous identical sensors having persistent working
memory of only two bits and a visibility radius of just one unit.

For the case of multiple doors, we prove that asynchronous sensors can not
solve the problem if the visibility radius is less than two units, even if they

1 There is one leader for each door.

128 E.M. Barrameda, S. Das, and N. Santoro

have unbounded memory. On the other hand, even with unbounded visibility
and memory, the problem is still unsolvable if the sensors are identical. Thus,
we assume that sensors entering the space from different doors have different
colors (i.e. they are distinguishable). We prove that under this assumption, the
problem can be solved with sensors having visibility radius two and constant
(persistent) memory. The proof is constructive: we present the radius-optimal
and memory optimal distributed algorithm for achieving this (in section 5).

Let us stress that, in our algorithms sensors use only constant memory; hence,
they can be simple finite-state machines like in [11]. Unlike those in [11], our algo-
rithms work for the asynchronous case; hence they are robust against occasional
stalling of the sensors.

2 Model, Definitions and Properties

2.1 Sensors and Dispersal

The space to be filled by the sensors is a simply connected orthogonal region S
that is partitioned into square cells each of size roughly equal to the area occupied
by a sensor. Simply connected means that it is possible to reach any cell in the
space from any other cell and there are no obstacle surrounded completely by
cells belonging to the space.

The system is composed of simple entities, called sensors, having sensory and
locomotion capabilities. The entities can turn and move in any direction. The
sensory devices on the entity allows it to have a vision of its immediate sur-
rounding; we assume the sensors to have restricted vision up to a fixed radius
around it2. Even if two sensors see each-other, they do not have any explicit
means of communicating with each-other. Each sensor functions according to an
algorithm preprogrammed into it. The sensors have a O(1) bits of working mem-
ory, and they have a local sense of orientation (i.e., each sensor has a consistent
notion of “up-down” and “left-right”);

If two sensors are in the same cell at the same time then there is a collision.
The algorithm executed by the sensors must avoid collisions (e.g., to prevent
damage to the sensor or its sensory equipment).

The sensors enter the space through special cells called doors [11]. A door is
simply a cell in the space which always has a sensor in it. Whenever the sensor
in the door moves to a neighboring cell, a new sensor appears instantaneously in
the door. A sensor may not distinguish a door cell from an ordinary cell, using
its sensory vision.

During each step taken by a sensor, the sensor first looks at its surrounding (up
to its visibility radius) and then based on the rules of the algorithm, the sensor
either chooses one of the neighboring cells to move to, or decides to remain
stationary. Each step is atomic and during one step a sensor can only move to
a neighboring cell. However, since the sensors are asynchronous, an arbitrary
amount of time may lapse between two steps taken by a sensor.
2 A visibility radius of one means that the robot sees all eight neighboring cells.

Deployment of Asynchronous Robotic Sensors 129

The problem to be solved is that of uniform dispersal (or filling) : within finite
time, the entire space must be filled, i.e., every cell of the space is occupied by
a sensor; furthermore the system configuration at that time must be quiescent,
i.e., no sensor moves thereafter. The goal is to design a protocol P , the same for
all sensors, that specifies which operations a sensor must perform whenever it is
active, and that will always correctly within a finite time and without collisions
lead the system to a quiescent configuration where the entire space is filled.

2.2 Space Representation and Properties

Let A = Ay × Ax be the smallest rectangular area containing the space S. We
consider a partition of the area A into pixels pi,j , 1 ≤ i ≤ r, 1 ≤ j ≤ c where
r = Ay/q, c = Ax/q and q is the length of each cell in the space. Thus, some
of the pixels (called valid pixels) correspond to the cells in the space while the
other pixels represent obstacles. We represent the structure of the space S in the
form a graph G = (N, E) defined as follow:

– Each column of the space is partitioned into segments of consecutive valid
pixels ended by an obstacle in both extremes and numbered from top to
down.

– Each segment is a node of G. We denote by lkj ∈ N the node corresponding
to the k − th segment of column j.

– We denote by d pk
j the bottom-most pixel of the segment lkj .

– There is an edge (lkj , lk
′

j′) ∈ E if and only if:
(a) j = j′ + 1 or j = j′ − 1 and
(b) There is a pixel pi,j′ ∈ lk

′

j′ neighbor to d pk
j or there is a pixel pi,j ∈ lkj

neighbor to d pk′

j′ .

The following propositions are easy to verify.

Proposition 1. If lkj and lk
′

j′ are two distinct nodes of G then there is at most
one edge between them.

Proposition 2. Two nodes lkj and lk
′

j′ have neighboring pixels if and only if there
is an edge (lkj , lk

′

j′) ∈ E between them.

Proposition 3. The graph G is connected.

Proposition 4. The graph G is acyclic.

If there is an edge (lkj , lk
′

j′) such that the bottom-most pixel d pk
j = pi,j of lkj is a

neighbor of the pixel pi,j′ ∈, lk
′

j′ , we say that pi,j is the entry point from lkj to
lk

′

j′ and pi,j′ is the entry point from lk
′

j′ to lkj .

130 E.M. Barrameda, S. Das, and N. Santoro

. . .

(a)

(b) (c)

(e)

(d)

Fig. 2. (a) and (b) are indistinguishable configurations. (c) to (d) are allowable con-
figurations; (e) is an unavoidable configuration.

3 Impossibility Results

We first show that the sensors must have some persistent memory of the past,
for solving the filling problem successfully.

Theorem 1. The filling problem can not be solved by oblivious sensors, even
if they have unbounded visibility. This result holds even if there is only a single
door.

Proof. Consider the space consisting of a single line of n = 2m+1 pixels of which
one of them is a door. By contradiction, let P be a correct filling protocol. Since
the sensors have no memory of past, each step taken by a sensor depends only
on the current configuration (i.e. which cells are filled and which are empty). We
can represent each empty cell by 0 and each filled cell by 1; the door would be
represented by D; however note that it is not distinguishable from a filled cell.
A configuration can thus represented by the sequence < d1...dn > of the the
values of the cells left-to-right. If algorithm P is correct then the penultimate
configuration (i.e., the final configuration before the space is completely filled),
must have exactly one empty cell and this cell should be adjacent to the door.
So, if the door is the leftmost cell then the only possible final configuration is
< D011....11111 >. Notice that this is indistinguishable from the configuration
< 10D11....1111 > and the algorithm must make the same move in both cases.
In the former situation, the leftmost robot (from the door) must move to the
right, but the same move will leave the space unfilled in the latter scenario. So
the configuration < 10D11....1111 > must be avoided by the algorithm; this im-
plies that the only correct penultimate configuration when the door is the third
cell is < 11D01....1111 >. Extending this argument inductively, the only correct
penultimate configuration when the door is the 2i + 1-th cell (0 ≤ i < m), is
the one where d2i+1 = D, d2(i+1) = 0, and all other dj ’s are 1. Hence the only
correct penultimate configuration when the door is the 2(m−1)+1-th cell, must
be < 11111....1D01 >. Notice that this configuration is indistinguishable from
< 11111....110D > which thus must be avoided by the algorithm, However this is

Deployment of Asynchronous Robotic Sensors 131

1

* *

i i+2 n

(a)

(b)

(c) * * * * *a b

b

a

Fig. 3. A single line of cells with doors at one or both ends

the only possible penultimate configuration when the door is the rightmost cell.
A contradiction.

Theorem 2. In the case of multiple doors, it is impossible for asynchronous
sensors to solve the filling problem avoiding collisions, if the visibility radius is
less than two. The result holds even if the sensors have distinct visible identities
and each sensor has an unbounded amount of memory.

Proof. (Sketch) By contradiction, let P be a correct filling protocol for asyn-
chronous sensors in simply-connected orthogonal spaces with multiple doors.
Consider the space consisting of a single line of pixels, with a door at each end.
Since the sensors at one door do not know of the existence of the other door, P
must force the sensor initially at the left door (sensor ‘a’) to move towards the
right end of the line (as in the case when there is no right door: figure 3(a)).
Similarly, the protocol must force the sensor initially at the right door (sensor
‘b’) to move into the corridor towards the left end of the line (figure 3(b)).Thus,
if both doors were present the sensors ‘a’ and ‘b’ must move towards each other.
It is possible for an adversary to schedule the activations of the sensors (i.e., to
choose the finite delays between successive activity cycles) so as to generate the
situation where both ‘a’ and ‘b’ are about to enter the same empty cell that lies
between them (see figure 3(c)). Since the visibility is less than two, they do not
see each other but only the empty cell. By scheduling both sensors to move at
the same time, the adversary generates a collision during the execution of P ;
this contradicts the assumption that P is correct and thus collision-free. Notice
that even if the sensors remember a complete history of their past moves and
have distinct visible IDs, the collision can not be avoided.

Theorem 3. If sensors entering from distinct doors are indistinguishable from
each other, then there is no collision-free solution to the filling problem for mul-
tiple doors. The result holds irrespective of the visibility range of the sensors.

Proof. Consider the space S consisting of a single column of n − 2 cells (n > 2)
and two extra cells adjacent to the column—one on the left and one on the right
(see Figure 4). We consider three cases: (i) The cell on the left of the column

132 E.M. Barrameda, S. Das, and N. Santoro

. . .

(c)(b)(a)

. .
 .

. . .

. .
 .

. . .

. .
 .

a ab b

Fig. 4. (a) Single door on the left (b) Single door on the right (c) Indistinguishable
sensors entering the column from two doors

is the only door, (ii) The cell on the right is the only door, and (iii) Both the
cells to the left and the right of the column are doors. As before we consider the
penultimate configuration reached by any correct filling algorithm for each of
these cases, shown in Figure 4(a), (b) and (c) respectively. Notice that there is
only one cell adjacent to the door in each case and thus this cell must be empty
in the penultimate configuration. For cases (i) and (iii), let ‘a’ be the sensor
currently at the door on the left. For cases (ii) and (iii), let ‘b’ be the sensor
currently at the door on the right. It is possible for an adversary to schedule the
activation of the sensors in such a way that both ‘a’ and ‘b’ become active for the
first time only after reaching the penultimate configuration. Thus, neither sensor
has any past history and any decision taken by sensor ‘a’ (or sensor ‘b’) would
depend only on the current configuration. Notice that the current configuration
in the three cases are indistinguishable from each other. So, sensor ‘a’ must take
the same decision for case (i) and (iii). Similarly, sensor ‘b’ must take the same
decision in case (ii) and (iii). If one of the sensors decides not to move to the
empty cell, then the space remains unfilled in at least one of scenarios. On the
other hand, if both decide to move, the adversary can force a collision for case
(iii), by scheduling them to move at the same time.

In Section 5 we show that if the sensors have visibility radius at least two and
sensors coming from distinct doors are distinguishable then there is a solution
to the filling problem for any connected space with any number of doors.

4 Filling Algorithm: Single Door

In this section we consider the case when is only one door through which the
sensors enter the space. We show that visibility radius of one and a constant
amount of memory for each sensor, is sufficient in this case. Each sensor just
needs one bit of memory, to remember its last location, so that it never back-
tracks. The idea of the algorithm (SINGLE) is to move the robots along the

Deployment of Asynchronous Robotic Sensors 133

Algorithm 1. SINGLE
Meta-Rule:

– A sensor never backtracks.

Rules: A sensor r in pixel pi,j executes the following rules:
if (pi+1,j is empty) then

r moves to pi+1,j .
else if (pi−1,j is empty) then

r moves to pi−1,j .
else if ((pi,j−1 is empty) ∧

((pi−1,j−1 is obstacle) ∨ (pi−1,j is obstacle))) then
r moves to pi,j−1.

else if ((pi,j+1 is empty) ∧
((pi−1,j+1 is obstacle) ∨ (pi−1,j is obstacle))) then

r moves to pi,j+1.
else

r does not move.
end if

paths in G, starting from the node containing the door. Since the sensor can
see the eight neighboring pixels, it can determine when it has reached an entry
point.

Following the rules of algorithm SINGLE, any path of consecutive pixels in
the space on which a sensor is allowed to travel is called a valid path. Notice that
any valid path corresponds to some path in G.

Theorem 4. Algorithm SINGLE solves the filling problem for any space of size
n and a single door, without any collisions and using n sensors each having a
constant amount of memory and a visibility radius of one.

5 Filling Algorithm: Multiple Doors

If there are multiple doors, then we know that the sensors must have a visibility
radius of at least two and they should not be indistinguishable. We assume
sensors coming from different doors have different colors and each sensor has
visibility radius of two. Our algorithm for this case, uses the following restriction
on the movement of the sensors.

Meta-Rule. “A sensor may not move until its previous position is occupied”.

The idea of our algorithm (called algorithm MULTIPLE) is sketched here. Sen-
sors coming from different doors (i.e. sensors of different colors) follow distinct
paths in G and these paths do not intersect. In other words, we ensure that the
cells visited by sensors of color ci are occupied by sensors of the same color (and
never by sensors of any other color). Thus, a sensor before moving to a pixel pi,j

needs to determine if this pixel was visited by sensors of another color. We show

134 E.M. Barrameda, S. Das, and N. Santoro

r

p
i,j1
2

3

(a)

r

p
i,j

(b)

r'

r

p
i,j

(c)

r'

r

p
i,j

(d)

r'

Fig. 5. Sensor r needs to check cells 1,2, and 3. The sensor (of the same color) that
last visited pi,j must be in one of these locations.

r

p
i,jb
b'

b'

r
p
i,j

b
b'b'

r

p
i,j b

b'

b'

(i)

r
b

i,j
p

' ' 'bp
i,j

p

p'

r
b

i,j
p

' ' 'bp
i,j

p
r

b

i,j
p

' ' 'bp
i,j

p

(ii)

Fig. 6. (i) To determine if pi,j was visited by sensor b, sensor r should be able to see
both b and its successor b′. (ii) If b′ has moved out of the visibility range of r then
there must be a sensor of the same color in cell P (or P’).

r
b

i,j
p

' ' 'bp
i,j

p
r

b

i,j
p

' ''b p
i,j

p

(a) (b)

Fig. 7. If b′ has moved out of the visibility range of r then there must be a sensor of
the same color in the cell marked P

Deployment of Asynchronous Robotic Sensors 135

a sensor r of color cr can always determine if the next pixel pi,j (in one of its valid
paths) was visited by sensors of the same color (see Figure 5). In that case, the
sensor r moves to the pixel pi,j . Otherwise there may be two cases: (i) either pixel
pi,j was visited by sensors of another color or (ii) pixel pi,j was never visited be-
fore. In the first case, sensor r does not move to pixel pi,j and searches for alternate
paths. In the second case, sensor r needs to take a decision based on whether there
are other sensors waiting to move into pixel pi,j . In case there are two or more
sensors in cells neighboring an unvisited pixel pi,j, the sensors are assigned prior-
ities3 based whether they are coming from the left, right, top or bottom (in that
order). The sensor with the highest priority (among those sensors for whom pi,j

is a valid move) moves to pixel pi,j . Notice that it may not be always possible for
a sensor r to determine if its neighbor pixel pi,j is unvisited or has been visited by
a sensor of another color (see Figure 6). If that is the case, then sensor r simply
waits until the situation changes (so that it is able to take a decision). We shall
show that such waiting never results in a deadlock, as the sensor with the highest
priority to move is always able to decide, without waiting.

The formal description of algorithm MULTIPLE is given in Algorithm 2. The
functions isValidUp(), isValidDown(), isValidLeft() and isValidRight() express
how the sensor makes a decision if it can move or not to an specific neighboring
pixel. We use the following notations in the algorithm:

– r.Color is the color of the door sensor r came from.
– If a pixel pi,j is occupied by some sensor r, then (pi,j).Color = r.Color.

Otherwise (pi,j).Color = None.

Algorithm 2. MULTIPLE
Meta-Rules:

– A sensor never backtracks.
– A sensor does not move if its previous position is empty.

Rules: A sensor r in a pixel pi,j of lkj executes the following:
if isValidUp(r) then

r moves to pi+1,j .
else if isValidDown(r) then

r moves to pi−1,j .
else if isValidLeft(r) then

r moves to pi,j−1.
else if isValidRight(r) then

r moves to pi,j+1.
else

r does not move.
end if

Proposition 5. The following properties hold during the execution of the algo-
rithm MULTIPLE.
3 This is the only way to avoid collision as well as ensure progress of the algorithm.

136 E.M. Barrameda, S. Das, and N. Santoro

Algorithm 3. Function IsValidDown(< sensor >)
bool IsValidDown(r){

if pi−1,j is occupied then
return false

else if ((pi−2,j is empty) ∧
((pi−1,j−1 is empty) ∨ ((pi−2,j−1 is not obstacle) ∨

(pi−2,j is not obstacle))) ∧
((pi−1,j+1 is empty) ∨ ((pi,j+1 is not obstacle) ∨

(pi−2,j is not obstacle)))) then
return true

else if (((pi−2,j).Color = r.Color) ∨
(((pi−2,j−1 is obstacle) ∨ (pi−2,j is obstacle)) ∧

((pi−1,j−1).Color = r.Color)) ∨
(((pi−2,j+1 is obstacle) ∨ (pi−2,j is obstacle)) ∧

((pi−1,j+1).Color = r.Color))) then
return true

else
return false

end if

}

Algorithm 4. Function IsValidUp(< sensor >)
bool IsValidUp(r){

if pi+1,j is occupied then
return false

else if ((pi+2,j is empty) ∧
((pi+1,j−1 is empty) ∨ (pi,j−1 is not obstacle)) ∧
((pi+1,j+1 is empty) ∨ (pi,j+1 is not obstacle))) then

return true
else if (((pi+2,j).Color = r.Color) ∨

((pi,j−1 is obstacle) ∧ ((pi+1,j−1).Color = r.Color)) ∨
((pi,j+1 is obstacle) ∧ ((pi+1,j+1).Color = r.Color))) then

return true
else if (((pi,j−1 is obstacle) ∧ (pi+1,j−1 is occupied)) ∨

((pi,j+1 is obstacle) ∧ (pi+1,j+1 is occupied))) then
return false

else if (((pi,j−1 is obstacle) ∧
(((pi+1,j−1).Color = (pi+2,j).Color) ∨
((pi+2,j−1).Color = (pi+2,j).Color) ∨
((pi+1,j−2).Color = (pi+2,j).Color))) ∨

((pi,j+1 is obstacle) ∧
(((pi+1,j+1).Color = (pi+2,j).Color) ∨
((pi+2,j+1).Color = (pi+2,j).Color) ∨
((pi+1,j+2).Color = (pi+2,j).Color)))) then

return false
else

return true
end if

}

Deployment of Asynchronous Robotic Sensors 137

Algorithm 5. Function IsValidLeft(< sensor >)
bool IsValidLeft(r){

if ((pi,j−1 is occupied) ∨
((pi−1,j−1 is not obstacle) ∧ (pi−1,j is not obstacle))) then

return false
else if ((pi+1,j−1 is empty) ∧ (pi−1,j−1 is empty) ∧

((pi,j−2 is empty) ∨
((pi−1,j−2 is not obstacle) ∧ (pi−1,j−1 is not obstacle)))) then

return true
else if (((pi+1,j−1).Color = r.Color) ∨ ((pi−1,j−1).Color = r.Color) ∨

(((pi,j−2).Color = r.Color) ∧
((pi−1,j−2 is obstacle) ∨ (pi−1,j−1 is obstacle)))) then

return true
else if ((pi,j−2 is occupied) ∧

((pi−1,j−2 is obstacle) ∨ (pi−1,j−1 is obstacle)))) then
return false

else if ((((pi+1,j−1).Color = (pi+1,j−2).Color) ∧
((pi−1,j−2 is obstacle) ∨ (pi−1,j−1 is obstacle))) ∨

(((pi+1,j−1).Color = (pi−1,j−2).Color) ∧
((pi−1,j−1 is obstacle) ∨ (pi−2,j−2 is obstacle) ∨
(pi−2,j−1 is obstacle))) ∨

((pi+1,j−1).Color = (pi−1,j−1).Color) ∨
((pi+1,j−1).Color = (pi−2,j−1).Color) ∨
(((pi−1,j−1).Color = (pi+1,j−2).Color) ∧
((pi−1,j−2 is obstacle) ∨ (pi,j−2 is obstacle))) ∨

((pi−1,j−1).Color = (pi+2,j−1).Color))) then
return false

else
return true

end if

}

(i) A sensor r can always determine if a neighboring pixel pi,j was visited by
sensors from the same door.

(ii) The sensor r having the highest priority to move into a pixel pi,j can always
determine if the pixel pi,j is unvisited or not.

(iii) Two sensors from different doors never visit the same pixel (i.e. no inter-
sections).

(iv) Two sensors are never in the same pixel at the same time (i.e. no
collisions).

Proposition 6. The algorithm MULTIPLE terminates in a finite time.

Based on the facts that there are no collisions and the sensors never re-visit the
same pixel, we can prove this proposition in the same way as for the previous
algorithm.

Proposition 7. On termination of algorithm MULTIPLE, there are no empty
pixels in the space.

138 E.M. Barrameda, S. Das, and N. Santoro

Algorithm 6. Function IsValidRight(< sensor >)
bool IsValidRight(r){

if ((pi,j+1 is occupied) ∨
((pi−1,j+1 is not obstacle) ∧ (pi−1,j is not obstacle))) then

return false
else if ((pi+1,j+1 is empty) ∧ (pi−1,j+1 is empty) ∧

((pi,j+2 is empty) ∨
((pi−1,j+2 is not obstacle) ∧ (pi−1,j+1 is not obstacle)))) then

return true
else if (((pi+1,j+1).Color = r.Color) ∨ ((pi−1,j+1).Color = r.Color) ∨

(((pi,j+2).Color = r.Color) ∧
((pi−1,j+2 is obstacle) ∨ (pi−1,j+1 is obstacle)))) then

return true
else if (((((pi,j+2).Color = (pi+1,j+1).Color) ∨

((pi,j+2).Color = (pi+2,j+1).Color)) ∧
((pi−1,j+2 is obstacle) ∨ (pi−1,j+1 is obstacle))) ∨

((((pi,j+2).Color = (pi−1,j+1).Color) ∨
((pi,j+2).Color = (pi−2,j+1).Color)) ∧

(pi−1,j+2 is obstacle)) ∨
(((pi+1,j+1).Color = (pi+1,j+2).Color) ∧
((pi−1,j+2 is obstacle) ∨ (pi−1,j+1 is obstacle))) ∨

(((pi+1,j+1).Color = (pi−1,j+2).Color) ∧
((pi−1,j+1 is obstacle) ∨ (pi−2,j+2 is obstacle) ∨
(pi−2,j+1 is obstacle))) ∨

((pi+1,j+1).Color = (pi−1,j+1).Color) ∨
((pi+1,j+1).Color = (pi−2,j+1).Color) ∨
(((pi−1,j+1).Color = (pi+1,j+2).Color) ∧
((pi−1,j+2 is obstacle) ∨ (pi,j+2 is obstacle))) ∨

((pi−1,j+1).Color = (pi+2,j+1).Color))) then
return false

else
return true

end if

}

Finally, we have the following result regarding the correctness of our algorithm.

Theorem 5. The algorithm MULTIPLE completely fills any connected space,
without collisions, even when the sensors enter from multiple doors (assuming
they have distinct colors). The algorithm requires n sensors each having visibility
radius two and a constant amount of memory.

6 Conclusions and Open Problems

We have shown that, for uniform dispersal in simply connected orthogonal
spaces, synchronicity and explicit communication are not necessary, while per-
sistent memory is needed. More precisely, we have presented localized algorithms

Deployment of Asynchronous Robotic Sensors 139

(one in the case of a single entry point, and one in the case of multiple entry
points) that allow asynchronous mobile sensors to fill simply connected orthog-
onal spaces of unknown shape; the sensors do so without collisions and without
any explicit direct communication, endowed with only O(1) bits of persistent
memory and O(1) visibility radius. In both cases, the protocols are memory-
and radius- optimal; in fact, we have shown that filling is impossible without
persistent memory (even if visibility is unlimited); it is also impossible with less
visibility than that used by our algorithms (even if memory is unbounded).

There are many interesting research problem still open. For example, orthog-
onal spaces that are not simply connected (i.e., containing holes) can be filled by
synchronous sensors [11], but asynchronous solutions are not yet available. The
study of the filling problem in more general classes of spaces is still open both
in the synchronous and asynchronous settings. Another interesting direction for
future research is to study the impact of having communication capabilities.

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM J. on Computing 36, 56–82 (2006)

2. Bullo, F., Cortes, J., Martinez, S.: Distributed algorithms for robotic networks.
In: Meyers, R. (ed.) Encyclopedia of Complexity and Systems Science. Springer,
Heidelberg (to appear, 2008)

3. Cohen, R., Peleg, D.: Local algorithms for autonomous robot systems. In: Proc.
13th Colloquium on Structural Information and Communication Complexity, pp.
29–43 (2006)

4. Flocchini, P., Prencipe, G., Santoro, N.: Self-deployment of mobile sensors on a
ring. Theoretical Computer Science 402(1), 67–80 (2008)

5. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
mobile robots with limited visibility. Theoretical Computer Science 337, 147–168
(2005)

6. Ganguli, A., Cortes, J., Bullo, F.: Visibility-based multi-agent deployment in or-
thogonal environments. In: Proceedings American Control Conference, pp. 3426–
3431 (2007)

7. Heo, N., Varshney, P.K.: A distributed self spreading algorithm for mobile wireless
sensor networks. In: Proceedings IEEE Wireless Communication and Networking
Conference, vol. 3, pp. 1597–1602 (2003)

8. Heo, N., Varshney, P.K.: Energy-efficient deployment of intelligent mobile sensor
networks. IEEE Transactions on Systems, Man, and CyberNetics - Part A 35(1),
78–92 (2005)

9. Howard, A., Mataric, M.J., Sukahatme, G.S.: An incremental self-deployment al-
gorithm for mobile sensor networks. IEEE Transactions on Robotics and Automa-
tion 13(2), 113–126 (2002)

10. Howard, A., Mataric, M.J., Sukhatme, G.S.: Mobile sensor network deployment
using potential fields: A distributed, scalable solution to the area coverage prob-
lem. In: Proceedings 6th International Symposium on Distributed Autonomous
Robotics Systems (DARS 2002), pp. 299–308 (2002)

11. Hsiang, T.R., Arkin, E., Bender, M.A., Fekete, S., Mitchell, J.: Algorithms for
rapidly dispersing robot swarms in unknown environment. In: Proc. 5th Workshop
on Algorithmic Foundations of Robotics (WAFR), pp. 77–94 (2002)

140 E.M. Barrameda, S. Das, and N. Santoro

12. Lee, J., Venkatesh, S., Kumar, M.: Formation of a geometric pattern with a mobile
wireless sensor network. Journal of Robotic Systems 21(10), 517–530 (2004)

13. Loo, L., Lin, E., Kam, M., Varshney, P.: Cooperative multi-agent constellation
formation under sensing and communication constraints. Cooperative Control and
Optimization, 143–170 (2002)

14. Martinson, E., Payton, D.: Lattice formation in mobile autonomous sensor arrays.
In: Proc. International Workshop on Swarm Robotics (SAB 2004), pp. 98–111
(2004)

15. Nikoletseas, S.E.: Models and algorithms for wireless sensor networks. In: Proc.
32nd Conference on Current Trends in Theory and Practice of Computer Science,
pp. 64–83 (2006)

16. Poduri, S., Sukhatme, G.S.: Constrained coverage for mobile sensor networks. In:
Proc. IEEE Int. Conference on Robotic and Automation, pp. 165–173 (2004)

17. Powell, O., Leone, P., Rolim, J.: Energy optimal data propagation in wireless sensor
networks. Journal of Parallel and Distributed Computing 67(3), 302–317 (2007)

18. Prencipe, G., Santoro, N.: Distributed algorithms for mobile robots. In: Proc. 5th
IFIP International Conference on Theoretical Computer Science (TCS 2006) (2006)

19. Reif, J.H., Wang, H.: Social potential fields: A distributed behavioral control for
autonomous robots. Robotics and Autonomous Systems 27(3), 171–194 (1999)

20. Susca, S., Martinez, S., Bullo, F.: Monitoring enviromental boundaries with a
robotic sensor network. IEEE Transactions on Control Systems Technology 16(2),
288–296 (2008)

21. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

22. Wang, G., Cao, G., La Porta, T.: Movement-assisted sensor deployment. In: Proc.
IEEE INFOCOM, vol. 4, pp. 2469–2479 (2004)

Optimal Backlog in the Plane

Valentin Polishchuk and Jukka Suomela

Helsinki Institute for Information Technology HIIT
Helsinki University of Technology and University of Helsinki

P.O. Box 68, FI-00014 University of Helsinki, Finland
valentin.polishchuk@cs.helsinki.fi, jukka.suomela@cs.helsinki.fi

Abstract. Suppose that a cup is installed at every point of a planar
set P , and that somebody pours water into the cups. The total rate at
which the water flows into the cups is 1. A player moves in the plane
with unit speed, emptying the cups. At any time, the player sees how
much water there is in every cup. The player has no information on how
the water will be poured into the cups in the future; in particular, the
pouring may depend on the player’s motion. The backlog of the player is
the maximum amount of water in any cup at any time, and the player’s
objective is to minimise the backlog. Let D be the diameter of P . If
the water is poured at the rate of 1/2 into the cups at the ends of a
diameter, the backlog is Ω(D). We show that there is a strategy for the
player that guarantees the backlog of O(D), matching the lower bound
up to a multiplicative constant. Note that our guarantee is independent
of the number of the cups.

1 Introduction

Consider a wireless sensor network where each sensor node stores data locally
on a flash memory card [1,2,3,4,5]. To conserve energy, radio communication is
only used for control information; for example, each network node periodically
reports the amount of data stored on the memory card. We have one maintenance
man who visits the sensors and physically gathers the information stored on the
memory cards. The maximum amount of data produced at a sensor between
consecutive visits – the backlog – determines how large memory cards are needed.
In this work we study the problem of designing a route for the maintenance man
to minimise the backlog.

If each device produces data at the same constant rate, then we have an offline
optimisation problem which is exactly the travelling salesman problem: find a
minimum-length tour that visits each device.

However, in the general case, the data rate may vary from time to time and
from device to device; for example, a motion-tracking application produces data
only when there is a monitored entity in the immediate neighbourhood of the
sensor. We arrive at an online problem: guide the maintenance man so that
the maximum backlog is minimised, using only the information on the current
backlog.

S. Fekete (Ed.): ALGOSENSORS 2008, LNCS 5389, pp. 141–150, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

142 V. Polishchuk and J. Suomela

We only assume that we know the total volume of the data that is gathered on
the memory cards in one time unit; we assume nothing about the distribution
of the data. For example, our network could be tracking a constant number
of moving objects, and each of the objects produces data at a constant rate
at its nearest sensor; we assume nothing about how the objects move. At first
glance assuming so little may seem overly cautious, but as we shall see, we can
nevertheless obtain strong positive results.

Our primary interest is in the scalability of the system. Trivially, doubling the
total rate of the data means that the backlog may double as well. We focus on
the effect of increasing the number of sensor devices and increasing the physical
area within which the devices are installed.

Surprisingly, it turns out that if the diameter of the physical area is fixed and
the total rate at which the data accumulates at the devices is fixed, we can guar-
antee a certain amount of backlog regardless of the number or placement of the
sensors. The adversary can install any number of sensors in arbitrary locations,
and the adversary can also change the distribution of the data depending on the
activities of our maintenance man; nevertheless, we can keep the backlog below
a certain level.

As a direct consequence, the backlog increases only linearly in the diameter of
the physical area. If the diameter is doubled, we only need to double the speed
of our maintenance man – or double the size of the memory cards.

1.1 Problem Formulation and Contribution

Formally, the minimum backlog game is defined as follows. Because of historical
precedent [6,7], we use cups and water instead of sensor devices and data.

Definition 1 (Minimum backlog game). Let P ⊂ R
2 be a finite planar set.

There is a cup on each point in P . The adversary pours water into the cups P ;
the total rate at which the water is poured into the cups is 1. The player moves
in the plane with unit speed, starting at an arbitrary point. Whenever the player
visits a cup, the cup is emptied. The goal of the player is to keep the maximum
level of water in any cup at any time as low as possible.

Let D be the diameter of P . Clearly, the adversary can ensure that some cup at
some time will contain Ω(D) water: the adversary may just take two cups that
define the diameter of P , and pour water with the rate 1/2 into each of them.
In this paper, we prove that the player can match this, up to a multiplicative
constant.

Theorem 1. The player has a strategy which guarantees that no cup ever con-
tains more than O(D) units of water.

We emphasise that the result does not depend on the number of cups in the set,
but just on its diameter.

1.2 Comparison with Previous Work

In the discrete version of the game [7], the cups are installed at the nodes of
a graph. The game proceeds in time steps ; in each step the adversary pours a

Optimal Backlog in the Plane 143

total of 1 water, while the player moves from a node to an adjacent node. The
competitive ratio of any algorithm has a lower bound of Ω(∆), where ∆ is the
diameter of the graph [7]. This motivated determining a strategy for the player
that guarantees a uniform upper bound on the backlog.

In an arbitrary graph on n nodes, the deamortization analysis of Dietz and
Sleator [8] leads to a strategy that guarantees O(∆ log n) backlog. In certain
graphs (stars) the adversary can guarantee a matching Ω(∆ log n) lower bound.
The main contribution of Bender et al. [7] was an algorithm achieving a backlog
of O(n

√
log log n) in the case when the graph is an n-by-n grid. It was sketched

how to extend the regular-grid approach to the game on a general planar set P
to guarantee a backlog of O(D

√
log log|P |), where D is the diameter of P .

Our strategy guarantees a backlog of O(D), independent of the number of
cups. The strategy consists of a set of coroutines, each responsible for clearing
water of certain age. Similarly to prior work [7], we compare the performance
of the coroutines to that of a player in an “imaginary” game. We give bounds
on the performance of each of the coroutines, combining them into the bound
for the topmost algorithm.

2 Preliminaries

We define the concept of a (τ, k)-game, forming the basis of our analysis. We
give a preliminary lemma about the performance of the player in the game; the
lemma is a direct extension of a result of Dietz and Sleator [8]. We also recall a
result of Few [9] stating that for any planar set Q there exists a cycle through
Q of length O(diam(Q)

√
|Q|).

2.1 The (τ, k)-Game

For each τ ∈ R, k ∈ N we define the (τ, k)-game as follows.

Definition 2. There is a set of cups, initially empty, not located in any partic-
ular metric space. At each time step the following takes place, in this order:

1. The adversary pours a total of τ units of water into the cups. The adversary
is free to distribute the water in any way he likes.

2. The player empties k fullest cups.

The game is discrete – the player and the adversary take turns making moves
during discrete time steps. The next lemma bounds the amount of water in any
cup after few steps of the game.

Lemma 1. The water level in any cup after r complete time steps of the (τ, k)-
game is at most Hrτ/k, where Hr is the rth harmonic number.

Proof. We follow the analysis of Dietz and Sleator [8, Theorem 5]. Consider the
water levels in the cups after the time step j. Let Xj

(i) be the amount of water
in the cup that is ith fullest, and let

Sj =
(r−j)k+1∑

i=1

X
(i)
j

144 V. Polishchuk and J. Suomela

be the total amount of water in (r − j)k + 1 fullest cups at that time. Initially,
j = 0, X

(i)
0 = 0, and S0 = 0.

Let us consider what happens during the time step j ∈ {1, 2, . . . , r}. The
adversary pours τ units of water; the total amount of water in (r − j + 1)k + 1
fullest cups is therefore at most Sj−1 + τ after the adversary’s move and before
the player’s move (the worst case being that the adversary pours all water into
(r − j + 1)k + 1 fullest cups).

Then the player empties k cups. The k fullest cups contained at least a fraction
k/((r− j +1)k+1) of all water in the (r− j +1)k+1 fullest cups; the remaining
(r − j)k + 1 cups are now the fullest. We obtain the inequality

Sj ≤
(

1 − k

(r − j + 1)k + 1

)
(τ + Sj−1)

or
Sj

(r − j)k + 1
≤ τ

(r − j + 1)k + 1
+

Sj−1

(r − j + 1)k + 1
.

Therefore the fullest cup after time step r has the water level at most

X(1)
r =

Sr

k(r − r) + 1

≤ τ

1k + 1
+

τ

2k + 1
+ . . . +

τ

rk + 1
+

S0

rk + 1

≤ τ

k

(
1
1

+
1
2

+ . . . +
1
r

)
. 	

2.2 Few’s Lemma

Our strategy for the minimum backlog game invokes a number of coroutines at
different moments of time. The following result by Few [9] provides the basis of
the proof that the execution of the coroutines can indeed be scheduled as we
define.

Lemma 2. [9, Theorem 1] Given n points in a unit square, there is a path
through the n points of length not exceeding

√
2n + 1.75.

We make use of the following corollary.

Corollary 1. Let S be a D × D square. Let i ∈ {0, 1, . . .}. Let Q ⊂ S be a
planar point set with |Q| = 25i and diam(Q) = D. For any point p ∈ S there
exists a closed tour of length at most 5i+1D that starts at p, visits all points in
Q, and returns to p.

Proof. If i > 0, by Lemma 2, there is tour of length at most(√
2(25i + 1) + 1.75 +

√
2
)
D ≤ 5i+1D

that starts at p, visits all points in Q, and returns to p. If i = 0, there is a tour
of length 2

√
2D ≤ 5D through p and |Q| = 1 points. 	

Optimal Backlog in the Plane 145

3 The Strategy

The player’s strategy is composed from a number of coroutines, which we label
with i ∈ {0, 1, . . .}. The coroutine i is invoked at times (10L + �)τi for each
L ∈ {0, 1, . . .} and � ∈ {1, 2, . . . , 10}. Whenever a lower-numbered coroutine is
invoked, higher-numbered coroutines are suspended until the lower-numbered
coroutine returns.

We choose the values τi as follows. For i ∈ {0, 1, 2, . . .}, let

ki = 25i,

τi = (2/5)i · 10Dki = 10i · 10D.

For L ∈ {0, 1, . . .} and � ∈ {1, 2, . . . , 10}, define (i, L, �)-water to be the water
that was poured during the time interval [10Lτi, (10L + �)τi].

3.1 The Coroutine i

The coroutine i performs the following tasks when invoked at time (10L + �)τi:

1. Determine which ki cups to empty. The coroutine chooses to empty ki cups
with the largest amount of (i, L, �)-water.

2. Choose a cycle of length at most τi/2i+1 which visits the ki cups and re-
turns back to the original position. This is possible by Corollary 1 because
5i+1D = τi/2i+1.

3. Guide the player through the chosen cycle.
4. Return.

Observe that when a coroutine returns, the player is back in the location from
which the cycle started. Therefore invocations of lower-numbered coroutines do
not interfere with any higher-number coroutines which are currently suspended;
they just delay the completion of the higher-numbered coroutines.

The completion is not delayed for too long. Indeed, consider a time pe-
riod [jτi, (j + 1)τi] between consecutive invocations of the coroutine i. For
h ∈ {0, 1, . . . , i}, the coroutine h is invoked 10i−h times during the period. The
cycles of the coroutine h have total length at most

10i−hτh/2h+1 = τi/2h+1.

In grand total, all coroutines 0, 1, . . . , i invoked during the time period take time

i∑
h=0

τi/2h+1 < τi.

Therefore all coroutines invoked during the time period are able to complete
within it. This proves that the execution of the coroutines can be scheduled as
described.

146 V. Polishchuk and J. Suomela

4 Analysis

We now analyse the backlog under the above strategy. For any points in time
0 ≤ t1 ≤ t2 ≤ t3, we write W ([t1, t2], t3) for the maximum per-cup amount of
water that was poured during the time interval [t1, t2] and is still in the cups
at time t3.

We need to show that W ([0, t], t) is bounded by a constant that does not
depend on t. To this end, we first bound the amount of (i, L, �)-water present
in the cups at the time (10L + � + 1)τi. Then we bound the maximum per-cup
amount of water at an arbitrary moment of time by decomposing the water into
(i, L, �)-waters and a small remainder.

We make use of the following simple properties of W ([·, ·], ·). Consider any
four points in time 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4. First, the backlog for old water is
nonincreasing: W ([t1, t2], t4) ≤ W ([t1, t2], t3). Second, we can decompose the
backlog into smaller parts: W ([t1, t3], t4) ≤ W ([t1, t2], t4) + W ([t2, t3], t4).

4.1 (i, L, �)-Water at Time (10L + � + 1)τi

Let i ∈ {0, 1, . . .}, L ∈ {0, 1, . . .}, and � ∈ {1, 2, . . . , 10}. Consider (i, L, �)-water
and the activities of the coroutine i when it was invoked at the times (10L + 1)τi,
(10L + 2)τi, . . . , (10L + �)τi.

The crucial observation is the following. By the time (10L + � + 1)τi, the
coroutine i has, in essence, played a (τi, ki)-game for � rounds with (i, L, �)-
water. The difference is that the coroutine cannot empty the cups immediately
after the adversary’s move; instead, the cup-emptying takes place during the
adversary’s next move. Temporarily, some cups may be fuller than in the (τi, ki)-
game. However, once we wait for τi time units to let the coroutine i complete
its clean-up tour, the maximum level of the water that has arrived before the
beginning of the clean-up tour is at most that in the (τi, ki)-game.

The fact that the emptying of the cups is delayed can only hurt the adversary,
as during the clean-up tour the player may also accidentally undo some of the
cup-filling that the adversary has performed on his turn. The same applies to
the intervening lower-numbered coroutines.

Therefore, by Lemma 1, we have

W
([

10Lτi, (10L + �)τi

]
, (10L + � + 1)τi

)
≤ H� · τi/ki < 3τi/ki. (1)

4.2 Decomposing Arbitrary Time t

Let t be an arbitrary instant of time. We can write t as t = Tτ0 + ε for a
nonnegative integer T and some remainder 0 ≤ ε < τ0. Furthermore, we can
represent the integer T as

T = �0 + 10�1 + · · · + 10N�N

for some integers N ∈ {0, 1, . . .} and �i ∈ {1, 2, . . . , 10}. Since the range is
1 ≤ �i ≤ 10, not 0 ≤ �i ≤ 9, this is not quite the usual decimal representation;
we chose this range for �i to make sure that �i is never equal to 0.

Optimal Backlog in the Plane 147

We also need partial sums

Li = �i+1 + 10�i+2 + · · · + 10N−i−1�N .

Put otherwise, for each i ∈ {0, 1, . . . , N} we have

T = �0 + 10�1 + · · · + 10i�i + 10i+1Li

and therefore

t = ε + �0τ0 + �1τ1 + · · · + �NτN

= ε + �0τ0 + �1τ1 + · · · + �iτi + 10Liτi.

We partition the time from 0 to t−ε into long and short periods. The long period
i ∈ {0, 1, . . . , N} is of the form

[
10Liτi, (10Li + �i − 1)τi

]
and the short period

i is of the form
[
(10Li + �i − 1)τi, (10Li + �i)τi

]
. See Fig. 1 for an illustration.

Short periods are always nonempty, but the long period i is empty if �i = 1.

4.3 Any Water at Arbitrary Time t

Now we make use of the decomposition of an arbitrary time interval [0, t] defined
in the previous section: we have long periods i ∈ {0, 1, . . . , N}, short periods
i ∈ {0, 1, . . . , N}, and the remainder [t − ε, t].

Consider the long period i. We bound the backlog from this period by con-
sidering the point in time (10Li + �i)τi ≤ t. If the period is nonempty, that is,
�i > 1, then we have by (1)

W
([

10Liτi, (10Li + �i − 1)τi

]
, t
)

≤ W
([

10Liτi, (10Li + �i − 1)τi

]
, (10Li + �i)τi

)
< 3τi/ki.

(2)

Naturally, if the period is empty, then (2) holds as well.
Consider a short period i for i > 0. It will be more convenient to write the

short period in the form [10L′
iτi−1, (10L′

i + 10)τi−1] where L′
i = 10Li + �i − 1

is a nonnegative integer (this is illustrated in Fig. 1 for i = 3). We bound the
backlog from this period by considering the point in time (10L′

i + 11)τi−1 ≤ t.
By (1) we have

W
([

(10Li + �i − 1)τi, (10Li + �i)τi

]
, t
)

= W
([

10L′
iτi−1, (10L′

i + 10)τi−1
]
, t
)

≤ W
([

10L′
iτi−1, (10L′

i + 10)τi−1
]
, (10Li + 11)τi−1

)
< 3τi−1/ki−1.

(3)

Next consider the short period i = 0. We have the trivial bound τ0 for the water
that arrived during the period. Therefore

W
([

(10L0 + �0 − 1)τ0, (10L0 + �0)τ0
]
, t
)
≤ τ0. (4)

Finally, we have the time segment from t − ε to t. Again, we have the trivial
bound ε for the water that arrived during the time segment. Therefore

W
([

t − ε, t
]
, t
)
≤ ε < τ0. (5)

148 V. Polishchuk and J. Suomela

τ0

τ0

τ1

τ1

τ2

τ2

τ3

τ3 short period 3

short period 2

short period 1

short period 0

(10L3 + 1)τ3

(10L3 + �3 − 1)τ3

(10L3 + �3)τ3 = 10L2τ2

10L3τ3 = 0

(10L2 + �2 − 1)τ2

(10L2 + 1)τ2

(10L2 + �2)τ2 = 10L1τ1

t
(10L0 + �0)τ0 = Tτ0 = t − ε

(10L′
3 + 11)τ2

(10L′
3 + 10)τ2

10L′
3τ2

long period 0

long period 1

long period 3

long period 2

. . .

. . .

. . .

. . .

Fig. 1. Decomposition of the time; in this example, N = 3. The illustration is not in
scale; actually τi = 10τi−1.

Optimal Backlog in the Plane 149

Now we can obtain an upper bound for the backlog at time t. Summing up
(2), (3), (4), and (5), we have the maximum backlog

W
([

0, t
]
, t
)
≤

N∑
i=0

W
([

10Liτi, (10Li + �i − 1)τi

]
, t
)

+
N∑

i=0

W
([

(10Li + �i − 1)τi, (10Li + �i)τi

]
, t
)

+ W
([

t − ε, t
]
, t
)

≤
N∑

i=0

3τi/ki +
N∑

i=1

3τi−1/ki−1 + 2τ0

≤
∞∑

i=0

6τi/ki + 2τ0

= 60D

∞∑
i=0

(2/5)i + 20D = 120D = O(D).

5 Conclusions

We have shown that the player in the minimum backlog game has a strategy
where the backlog does not depend on the number of cups, but only on the
diameter of the cups set. This implies that the backlog scales linearly with the
diameter of the area.

An interesting open question is the scalability in the number of players. If
we have four players instead of one, we can divide the area into four parts and
assign each player into one of the parts; this effectively halves the diameter and
thus halves the backlog. It remains to be investigated whether we can exploit
multiple players in a more efficient manner.

Acknowledgements

We thank Esther Arkin, Michael Bender, Sándor Fekete, Alexander Kröller,
Vincenzo Liberatore, and Joseph Mitchell for discussions. This research was sup-
ported in part by the Academy of Finland, Grants 116547 and 118653 (ALGO-
DAN), and by Helsinki Graduate School in Computer Science and Engineering
(Hecse).

References

1. Somasundara, A.A., Ramamoorthy, A., Srivastava, M.B.: Mobile element scheduling
for efficient data collection in wireless sensor networks with dynamic deadlines. In:
Proc. 25th IEEE International Real-Time Systems Symposium (RTSS), Lisbon,
Portugal, pp. 296–305. IEEE Computer Society Press, Los Alamitos (2004)

150 V. Polishchuk and J. Suomela

2. Jea, D., Somasundara, A., Srivastava, M.: Multiple controlled mobile elements (data
mules) for data collection in sensor networks. In: Prasanna, V.K., Iyengar, S.S., Spi-
rakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 244–257. Springer,
Heidelberg (2005)

3. Gu, Y., Bozdağ, D., Brewer, R.W., Ekici, E.: Data harvesting with mobile elements
in wireless sensor networks. Computer Networks 50(17), 3449–3465 (2006)

4. Mathur, G., Desnoyers, P., Ganesan, D., Shenoy, P.: Ultra-low power data storage for
sensor networks. In: Proc. 5th International Conference on Information Processing
in Sensor Networks (IPSN), Nashville, TN, USA, pp. 374–381. ACM Press, New
York (2006)

5. Diao, Y., Ganesan, D., Mathur, G., Shenoy, P.: Rethinking data management for
storage-centric sensor networks. In: Proc. 3rd Biennial Conference on Innovative
Data Systems Research (CIDR), Asilomar, CA, USA, pp. 22–32 (January 2007)

6. Adler, M., Berenbrink, P., Friedetzky, T., Goldberg, L.A., Goldberg, P., Paterson,
M.: A proportionate fair scheduling rule with good worst-case performance. In: Proc.
15th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA),
San Diego, CA, USA, pp. 101–108. ACM Press, New York (2003)

7. Bender, M.A., Fekete, S.P., Kröller, A., Liberatore, V., Mitchell, J.S.B., Polishchuk,
V., Suomela, J.: The minimum-backlog problem. In: 2nd International Conference
on Mathematical Aspects of Computer and Information Sciences (MACIS), Paris,
France (December 2007)

8. Dietz, P.F., Sleator, D.D.: Two algorithms for maintaining order in a list. In: Proc.
19th Annual ACM Symposium on Theory of Computing (STOC), pp. 365–372.
ACM Press, New York (1987)

9. Few, L.: The shortest path and the shortest road through n points. Mathematika 2,
141–144 (1955)

Author Index

Barrameda, Eduardo Mesa 125
Bonifaci, Vincenzo 18
Brunner, Jan 111

Chatzigiannakis, Ioannis 100

Das, Shantanu 125

Floréen, Patrik 2

Gandhi, Sorabh 30
Gomu�lkiewicz, Marcin 87

Hassinen, Marja 2

Kaski, Petteri 2
Katz, Bastian 43, 57
Kirousis, Lefteris 100
Korteweg, Peter 18
Kumar, Rajesh 30
Kuty�lowski, Miros�law 87

Marchetti-Spaccamela, Alberto 18
Mecke, Steffen 43
Mihalák, Matúš 111

Papamanthou, Charalampos 72
Polishchuk, Valentin 141
Preparata, Franco P. 72

Santoro, Nicola 125
Stougie, Leen 18
Stratiotis, Thodoris 100
Suomela, Jukka 2, 141
Suri, Subhash 30, 111

Tamassia, Roberto 72

Vicari, Elias 111
Völker, Markus 57

Wagner, Dorothea 43, 57
Wattenhofer, Roger 1
Widmayer, Peter 111
Wlaź, Pawe�l 87

	Title Page
	Preface
	Organization
	Table of Contents
	Algorithms for Sensor Networks: What Is It Good for?
	Tight Local Approximation Results for Max-Min Linear Programs
	Introduction
	Max-Min Linear Programs
	Special Cases of Max-Min LPs
	Local Algorithms and the Model of Computation
	Contributions and Prior Work

	Graph Unfolding
	Unfolding in Graph Theory and Topology
	Unfolding and Local Algorithms
	Unfolding and Max-Min LPs

	Approximability Results
	Properties of Regularised Trees
	Local Approximation on Regularised Trees
	Feasibility
	Approximation Ratio
	An Example

	Inapproximability Results
	The Instance \mathcal{S}
	The Instance \mathcal{S}_k
	Proof of Theorem 2
	Proof of Theorem 3

	References

	Minimizing Average Flow Time in Sensor Data Gathering
	Introduction
	Mathematical Formulations
	Gathering to Minimize Average Flow Time
	The Interleaved Shortest Remaining Processing Time Algorithm
	Approximation Hardness

	References

	Target Counting under Minimal Sensing: Complexity and Approximations
	Introduction
	The Counting Sensor Model
	Counting and Localization Targets in One Dimension with Ideal Sensors
	Target Count Approximation
	Target Placement

	Extensions to Non-ideal Sensing
	Target Count Approximation with Non-ideal Sensors
	Target Placement with Non-ideal Sensing

	Two Dimensional Target Counting
	Related Work
	References

	Efficient Scheduling of Data-Harvesting Trees
	Introduction
	Related Work and Overview
	Problem Definition and Network Model
	Definitions and Notation

	Scheduling a Tree with Total Interference
	Infeasibility
	An Optimal Scheme with Increased Packet Size
	Variants

	Scheduling with Local Interference
	Making Schedules Robust
	Conclusion and Open Problems
	References

	Link Scheduling in Local Interference Models
	Introduction
	Related Work
	Definitions and Models
	Local Interference Models
	Ω(1)-Sender Model
	Implementation and Simulation Results
	Conclusion and Future Work
	References

	Algorithms for Location Estimation Based on RSSI Sampling
	Introduction
	Related Work and Observations
	Our Contributions
	Organization of the Paper

	Theoretical Framework
	RSSI Model
	Probability Distributions
	Samples of Measurements

	Location Estimation
	Algorithm
	Complexity and Limitations

	Simulation
	Conclusions
	References

	Random Fault Attack against Shrinking Generator
	Introduction
	Attack by Faults in the Input Register
	Attack through Faults in Control Register
	References

	Probabilistic Protocols for Fair Communication in Wireless Sensor Networks
	Introduction
	Protocol Engineering

	The Model and the Problem
	Implementation Issues
	Probabilistic Forwarding Protocol - PFR
	Designing Protocols
	Energy-Fair Probabilistic Forwarding Protocol - EFPFR
	Multi-phase Probabilistic Forwarding Protocol - MPFR
	Twisting Forwarding Protocol - TWIST

	Comparative Study
	ClosingRemarks
	References

	Simple Robots in Polygonal Environments: A Hierarchy
	Introduction
	Definitions and Models
	Combinatorial Structures of a Polygon
	A Robot Hierarchy
	Equivalent Robots: An Example
	References

	Deployment of Asynchronous Robotic Sensors in Unknown Orthogonal Environments
	Introduction
	Model, Definitions and Properties
	Sensors and Dispersal
	Space Representation and Properties

	Impossibility Results
	Filling Algorithm: Single Door
	Filling Algorithm: Multiple Doors
	Conclusions and Open Problems
	References

	Optimal Backlog in the Plane
	Introduction
	Problem Formulation and Contribution
	Comparison with Previous Work

	Preliminaries
	The (τ,k)-Game
	Few’s Lemma

	The Strategy
	The Coroutine i

	Analysis
	(i,L,ℓ)-Water at Time ${(10 L + \ell + 1)} \tau_i$
	Decomposing Arbitrary Time t
	Any Water at Arbitrary Time t

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

