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and Enrique S. Quintana-Ort́ı1
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Abstract. In this paper, we present a parallel multilevel ILU precon-
ditioner implemented with OpenMP. We employ METIS partitioning
algorithms to decompose the computation into concurrent tasks, which
are then scheduled to threads. Concretely, we combine decompositions
which obtain significantly more tasks than processors, and the use of
dynamic scheduling strategies in order to reduce the thread’s idle time,
which it is shown to be the main source of overhead in our parallel algo-
rithm. Experimental results on a shared-memory platform consisting of
16 processors report remarkable performance for our approach.
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1 Introduction

The solution of large sparse linear systems is an ubiquitous problem in chem-
istry, physics, and engineering applications. Often, sparse direct solvers are used
to deal with these problems, but the large amount of memory they sometimes re-
quire (due to, e.g., excessive fill-in in the factors), in practice limits the size of the
problems these methods can solve. In recent years, iterative methods based on
Krylov subspaces combined with preconditioners as, e.g., incomplete LU decom-
positions, have become popular and successful in many application problems.
Among these methods, ILUPACK1 (Incomplete LU decomposition PACKage) is
a novel software package based on approximate factorizations which enhances
the performance of the process in terms of a more accurate solution and a lower
execution time.

1 http://www.math.tu-berlin.de/ilupack

J.M.L.M. Palma et al. (Eds.): VECPAR 2008, LNCS 5336, pp. 314–327, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Design, Tuning and Evaluation of Parallel Multilevel ILU Preconditioners 315

Our mid-term goal is to develop a parallel package to solve large sparse linear
systems on shared-memory multiprocessors (including novel multicore proces-
sors) using the same techniques employed in ILUPACK. In an earlier paper [1],
we presented a parallel preconditioner for the solution of sparse linear systems
with symmetric positive definite coefficient matrix, and an OpenMP-based im-
plementation of this preconditioner. In this paper, we extend previous work with
the following new contributions:

– We discuss in detail the foundations of the design of the parallel precondi-
tioner.

– We evaluate the preconditioner using a benchmark collection with problems
arising from different domains such as, e.g., computational fluid dynamics
(CFD) or circuit simulation.

– We split the task tree deeply in order to decompose the computation into a
large number of fine-grain tasks.

– We provide a detailed explanation of the experimental performance. In par-
ticular, we use the KOJAK2 and VAMPIR3 performance analysis tools to
gain a complete understanding of the performance of the parallel algorithm.

The paper is structured as follows. In Section 2 we briefly review the basis
of the preconditioning procedure underlying ILUPACK. Next, in Section 3, we
offer further details on the design of our parallel preconditioner. Section 4 gathers
data from numerical experiments with our parallel algorithm implementation.
Concluding remarks and future research goals follow in Section 5.

2 An Overview of ILUPACK

ILUPACK is a preconditioning package to solve large sparse linear systems via
preconditioned Krylov subspace methods, where the preconditioner is based on
multilevel ILUs. We will focus on the computation of the preconditioner since
this is the most challenging task from the parallelization viewpoint.

The rationale behind the computation of the preconditioner is to obtain an
incomplete LU decomposition of the coefficient matrix A in such a way that ele-
ment growth in the inverse triangular factors remains bounded, thereby improv-
ing the quality of the preconditioner [3,4,5,14]. ILUPACK adopts the following
combination of steps in a multilevel manner in pursue of this goal:

1. A static pre-ordering and scaling of the system to transform A as

A → PT D1AD2Q = Â. (1)

The reordering strategy is intended to reduce the fill-in, while scaling is
applied in order to balance the size of the entries.

2. A partial incomplete LU factorization of Â is applied, where rows/columns
associated with “tiny” diagonal pivots are permuted to the bottom right
corner of the matrix; see Figure 1. For the multilevel ILU, a bound κ for the

2 http://www.fz-juelich.de/jsc/kojak/
3 http://www.vampir-ng.de
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Fig. 1. ILUPACK pivoting strategy

(norm of the) inverse triangular factors is prescribed. Tiny pivots are thus
defined as those which cause these inverses to exceed κ. These rows/columns
are not considered further in this step: their decomposition is delayed until
the next level. Thus, we obtain a partial approximation of the following
reordered system

P̂T ÂP̂ =
(

B F
E C

)
≈

(
LB 0
LE I

) (
DB 0
0 S

) (
UB UF

0 I

)
, (2)

where LB, UT
B are unit lower triangular factors, DB is a diagonal matrix,

and S is the approximate Schur complement, where tiny pivots reside. The
Schur complement corresponds to:

S ≈ C − LEDBUF . (3)

Elements of magnitude ε/κ are dropped from the factors as well as from
S during the computation, where ε is a user-defined tolerance. For details,
see [5].

3. A multilevel configuration, which recursively applies the previous two steps
to S, completes the partial decomposition of step 2.

3 Parallel Multilevel Preconditioners

3.1 Task Decomposition

The first step in the development of a parallel preconditioner consists of split-
ting the procedure that computes the preconditioner into tasks, and identifying
the dependencies among these. In the context of the sparse direct solvers, elim-
ination trees are widely used as a source of coarse-grain parallelism [8]. The
starting point of our approach is the elimination tree [7] of a sparse symmet-
ric matrix ordering. Thus, e.g., if Ti and Tj are independent subtrees of the
elimination tree (i.e., neither root node of the subtrees is a descendant of the
other), then the operations on the rows corresponding to the nodes in Ti can
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Fig. 2. Elimination tree and an associated task tree of height 2

proceed independently from those corresponding to the nodes in Tj. Hence these
computations can be done simultaneously by separate processors with no com-
munication between them. Therefore, we can define a new tree, which we call
the task (dependency) tree, where the leaf tasks correspond to the independent
subtrees, and the intermediate dependent tasks correspond to the ancestor nodes
of these subtrees in the elimination tree; see Figure 2.

These abstractions reveal the parallelism in the sparse Cholesky factorization,
and can also be used to obtain a multilevel ILU preconditioner in parallel. We
now discuss how this preconditioner is computed using the task tree in Figu-
re 2 (right). We first note that this task tree yields a partition of the coefficient
matrix A. For the discussion, we consider the matrix reordering which corre-
sponds to a breadth-first traversal of the task tree from bottom to top:

A →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 0 0 0 A15 0 A17
0 A22 0 0 A25 0 A27
0 0 A33 0 0 A36 A37
0 0 0 A44 0 A46 A47

AT
15 AT

25 0 0 A55 0 A57
0 0 AT

36 AT
46 0 A66 A67

AT
17 AT

27 AT
37 AT

47 AT
57 AT

67 A77

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

Here the separating lines represent the partition with respect to the levels of the
task tree. In order to compute the factorization in parallel, we split A into the
sum of four submatrices:

A = PT
1

⎛
⎝A11 A15 A17

AT
15 A1

55 A1
57

AT
17 (A1

57)
T A1

77

⎞
⎠

︸ ︷︷ ︸
A1

P1 + PT
2

⎛
⎝A22 A25 A27

AT
25 A2

55 A2
57

AT
27 (A2

57)
T A2

77

⎞
⎠

︸ ︷︷ ︸
A2

P2 +
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PT
3

⎛
⎝A33 A36 A37

AT
36 A3

66 A3
67

AT
37 (A3

67)
T A3

77

⎞
⎠

︸ ︷︷ ︸
A3

P3 + PT
4

⎛
⎝A44 A46 A47

AT
46 A4

66 A4
67

AT
47 (A4

67)
T A4

77

⎞
⎠

︸ ︷︷ ︸
A4

P4, (5)

where P1, P2, . . . , P4 denote block permutations, and A55 = A1
55 + A2

55, A57 =
A1

57 +A2
57, A66 = A3

66 +A4
66, A77 = A1

77 +A2
77 +A3

77+A4
77. In this paper, we have

selected A1
55 = A2

55, A1
57 = A2

57, A3
66 = A4

66, A3
67 = A4

67, and A1
77 = A2

77 = A3
77 =

A4
77, to comply with (5). In (5), the separating lines for a given Ai, represent the

partitioning with respect to the path from leaf task Ti to the root.
Then, tasks T1, T2, . . . , T4 compute, respectively, multilevel ILU decomposi-

tions of A1, A2, . . . , A4 following the approach presented in Section 2. We focus
next on how the decomposition of A1 is carried out in a parallel environment.
The other submatrices are treated analogously. First, step 1 from Section 2 is
restricted to the A11 block, i.e.:

P = Q =
(

P11 0
0 I

)
, D1 = D2 =

(
D11 0
0 I

)
, (6)

with P11 and D11 of the same row dimension as A11. Next, in step 2 tiny pivots
are moved to the end of the A11 block, instead of the end of A1. Thus,

P̂T
1 A1P̂1 =

⎛
⎜⎜⎝

B11 F11 Â15 Â17

FT
11 C11 Ã15 Ã17

ÂT
15 ÃT

15 A1
55 A1

57

ÂT
17 ÃT

17 (A1
57)

T A1
77

⎞
⎟⎟⎠ , (7)

and we obtain the following approximate partial factorization:

P̂T
1 A1P̂1 ≈

⎛
⎜⎜⎝

ÛT
11 0 0 0

ŨT
11 I 0 0

UT
15 0 I 0

UT
17 0 0 I

⎞
⎟⎟⎠

⎛
⎜⎜⎝

D11 0 0 0
0 S11 S15 S17

0 ST
15 S1

55 S1
57

0 ST
17 (S1

57)
T S1

77

⎞
⎟⎟⎠

⎛
⎜⎜⎝

Û11 Ũ11 U15 U17
0 I 0 0
0 0 I 0
0 0 0 I

⎞
⎟⎟⎠ . (8)

The multilevel approach from Section 2 is repeated on the remaining Schur
complement (Sij)i,j=1,5,7, until either S11 is empty or when trying to decompose
S11, the number of rows factorized is small with respect to the size of S11.

After computing the multilevel ILU decompositions of A1, A2, . . . , A4, we
define how the parallel algorithm proceeds with the next level inside the task
tree. To do this, we form matrices S5 and S6, which are the input matrices for T5
and T6, respectively. Now, we show how S5 is built from the Schur complements
computed by T1 and T2:

S5 =

⎛
⎜⎜⎝

S11 0 S15 S17
0 0 0 0

ST
15 0 S1

55 S1
57

ST
17 0 (S1

57)
T S1

77

⎞
⎟⎟⎠

︸ ︷︷ ︸
S1

+

⎛
⎜⎜⎝

0 0 0 0
0 S22 S25 S27
0 ST

25 S2
55 S2

57
0 ST

27 (S2
57)

T S2
77

⎞
⎟⎟⎠

︸ ︷︷ ︸
S2

. (9)
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(a)
T

T T1 2

3

−→
⎛
⎝ A11 0 A13

0 A22 A23

AT
13 AT

23 A33

⎞
⎠

(b)

T

T

T T

1

2 2
1 2

T3
2

3

−→

⎛
⎜⎜⎜⎜⎝

A11 0 0 0 A13

0 A11
22 0 A13

22 A1
23

0 0 A22
22 A23

22 A2
23

0 (A13
22)T (A23

22)T A33
22 A3

23

AT
13 A1 T

23 A2 T
23 A3 T

23 A33

⎞
⎟⎟⎟⎟⎠

Fig. 3. Task tree height vs. number of artificial structural levels. (a) A task tree of
height one introduces two levels. (b) If task T2 of task tree (a) is split further into two
leaves, the resulting task tree introduces one additional level.

Equation (9) is the key to understand how task interaction works: once T1
and T2 are completed, so that their corresponding Schur complements S1 and S2
are available, the corresponding processes in charge of T1 and T2 send S1 and S2
to the process in charge of T5, which then computes S5 = S1 + S2. Tasks T3, T4
and T6 operate in the same way with S3, S4 and S6. Then, T5 and T6 compute
a partial multilevel ILU decomposition of S5 and S6, as T1, T2, . . . , T4 did with
submatrices A1, A2, . . . , A4. This recursive parallel process is completed when
the root task T7 fully factorizes S1,2,3,4

77 , which is computed by the interaction of
T5, T6 and T7 once the second level of the tree is completed.

This process yields a template for the computation of multilevel precondition-
ers based on partial approximations such as, e.g., [13]. The procedure is easily
generalized for task trees of height larger than 2, and also for non-complete4

task trees. Finally, from the mathematical point of view, the parallel approach
introduces artificial structure levels to compute the preconditioner in parallel,
which may not be necessary in the sequential algorithm; see Figure 3. Therefore,
the computations as well as the preconditioners computed by the sequential and
the parallel algorithms are, in general, different. The same happens when com-
puting parallel preconditioners with task trees of different heights, as we will see
in Section 4.

3.2 Quality of the Task Trees

The performance of the parallel algorithm directly depends on properties of the
task tree such as its shape or the computational costs associated with its tasks.
Assuming the number of processors is a power of two, a desirable task tree should
present the following properties:
4 In this context, a complete task tree is one in which all leaves present the same

height.
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1. It should be a complete binary task tree of height log2(p), where p is the
number of processors, as this enables enough concurrency for p processors
(a task tree of this shape has p leaf tasks).

2. Leaf tasks should concentrate the computational cost of the whole process:
in a complete binary task tree the number of processors which can operate
in parallel is divided by two when we move one level higher in the tree.

3. Leaf tasks should have similar costs as, otherwise, a static mapping of tasks
to processors can lead to an unbalanced distribution of the computational
load.

In practice, those three properties are difficult to satisfy simultaneously. For
the first two properties, remind that the task tree is constructed from the elim-
ination tree, whose shape strongly depends on the selected coefficient matrix
ordering. Thus, given an elimination tree, there is no guarantee that the desired
number of independent subtrees (p) will be obtained at a certain level (log2(p)).
Besides, there is no guarantee either that the independent subtrees which are
identified will not concentrate the bulk of the computational cost; such case hap-
pens, e.g., when the number of nodes of the independent subtrees is relatively
small compared with the number of nodes of the whole elimination tree.

In order to address these two difficulties, we employ the MultiLevel Nested
Dissection (MLND) sparse matrix ordering algorithm provided by the METIS
library5 [9]. MLND produces fill-reducing orderings with balanced elimination
trees and a high degree of concurrency. Furthermore, intermediate tasks obtained
as a by-product of MLND orderings correspond to node graph separators. MLND
has been found to produce very small node separators, so that independent
subtrees are likely to concentrate most of the nodes of the elimination tree.

MLND helps with the first two items, but we still have to address the diffi-
culties associated with the third property: the computational costs of tasks are
unknown before execution and they can be heterogenous. The cost of a task de-
pends on many factors such as, e.g., the size of the associated block, its density
and sparsity pattern, the growth of the inverse factors, etc. Unfortunately, many
of these are unknown until the approximation has been computed. Therefore, it
can be interesting to obtain more leaf tasks than processors and use dynamic
scheduling to deal with tasks irregularity as, assuming that leaves concentrate
the major part of the computation, load unbalance in the computation of leaf
tasks is likely to become the main source of overhead in the parallel algorithm.

The leaf tasks which present a “high” relative cost are a potential source of
load unbalance. Our approach focuses on these tasks, which are further split
into finer-grain tasks. As we mentioned before, these costs are unknown a priori,
so that we must use an heuristic which yields an estimation of the cost of a
leaf task. Currently, our heuristic is based on the number of nonzeros of the
submatrix being approximated. For example, the heuristic of the relative cost
of task T1 (see Figure 2) is h1 = nnz(A1)

nnz(A) , where nnz(M) denotes the number
of nonzero elements of the matrix M . Moreover, we must define the criterion to

5 http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
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decide whether to split a given leaf task. Currently, we split those leaves which
satisfy hi > 1

f , where f is a user-defined threshold for the splitting mechanism.
Thus, larger values of f yield a higher task tree. In this paper, we have selected
f to be a modest multiple of the number of processors p. Roughly, if we select
f = kp, we get at least k tasks per processor. For example, assuming a complete
task tree of height log2(p) and k = 1, where h1 ≈ h2 . . . ≈ hp, we obtain p
leaves. However, if some leaves at level log2(p) have a high value of hi, then
some branches are split more than others, yielding a non-complete task tree
with more leaves than processors.

3.3 Implementation Details

We now discuss some aspects related with the OpenMP implementation. The
task tree is constructed sequentially, prior to the parallel computation of the pre-
conditioner. Then, the computation of the preconditioner begins, and tasks are
executed by threads following a dynamic scheduling strategy, which maps tasks
to threads on execution time. In general, an optimal scheduling executes ready
tasks (i.e., those with their dependencies fulfilled) with highest computational
cost as soon as possible. Our scheduling strategy applies this requirement only
to the leaves of the task tree, as those concentrate the bulk of the computation.
Concretely, it always gives leaves higher priority over inner tasks; among leaves,
it schedules those with higher computational time first. The priority between
inner tasks depends on our implementation, which we discuss next.

The key of our implementation is a ready queue which contains those tasks
with their dependencies resolved. Tasks are dequeued for execution from the
head, and new ready tasks are enqueued at the tail of this structure. Leaf tasks
are initially enqueued in order of priority following our heuristic approach; see
Figure 4 (a). The execution of tasks is scheduled dynamically: whenever threads
become idle, they monitor the queue for pending tasks. When a thread completes
execution of a task, the task dependent on it is examined, and if its dependencies
have been resolved, then it is enqueued at the ready queue by this thread. Fig-
ure 4 (b) illustrates an example scenario of how this mechanism works with p = 2

(a)

T

T T

T T21

T T3 4

5 6

7

1> h2> h4 > h5h

Ready Queue

New ready tasks T1TTT 245
Execution

(b)

1T2exec. of T

P1 P begin2T1TTT 245 T5
P 2  completes T2

P  enqueues T2 3

TT 43

    

...TT 45
P  completes T11

P1 4 begin exec. of T

Fig. 4. Dynamic scheduling implementation. (a) The initial state of the ready queue.
(b) An example scenario of how dynamic scheduling works with p = 2. Note that in
this situation there has been a heuristic missestimation: T1 is completed before T2.
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and the task tree of Figure 4 (a). As can be observed, when thread 2 (i.e., P2)
completes the execution of T2, dependencies of T3 are resolved and T3 becomes
ready. Idle threads continue to dequeue tasks until all tasks have been executed.
Similar mechanisms have been proposed for irregular codes as part of the Cilk
project [10] and for dense linear algebra codes in the FLAME project [6].

4 Experimental Results

All experiments in this section were obtained on a SGI Altix 350 CC-NUMA
multiprocessor consisting of 16 Intel Itanium2@1.5 GHz processors sharing 32
GBytes of RAM via a SGI NUMAlink interconnect. IEEE double-precision arith-
metic was employed in all experiments, and one thread was binded per processor.
In both the serial and parallel algorithms we used ILUPACK default values for
the condition estimator (κ=100), as well as default the drop tolerances for the L
factor (ε1=10−2) and the Schur complement (ε2=10−2).

Table 1 characterizes the benchmark matrices from the UF sparse matrix
collection6 employed in the evaluation. As shown there, they arise from different
application areas. Table 2 reports the results obtained from the execution of
the serial algorithm in ILUPACK: serial execution time and fill-in factor (ratio
between the number of nonzero elements in the triangular factors produced by
the algorithm and the coefficient matrix). In the multilevel configuration, the
input matrix for the first level has been pre-ordered with MLND, while the
input matrices for the rest of the levels are not pre-ordered.

Table 1. Benchmark matrices selected to test the parallel multilevel ILU

Code Group/Name Problem Domain Rows/Cols. Nonzeros

m1 GHS psdef/bmwcra 1 Structural Problem 148770 10641602
m2 Wissgott/parabolic fem Computational Fluid Dynamics 525825 3674625
m3 Schmid/thermal2 Thermal Problem 1228045 8580313
m4 AMD/G3 circuit Circuit Simulation Problem 1585478 7660826

Table 2. Results from the execution of the serial algorithm in ILUPACK

Code m1 m2 m3 m4

Time (secs.) 98.6 9.63 22.4 32.1
Fill-in factor 7.2 4.4 4.3 5.0

For the parallel algorithm, the multilevel configuration of the sequential al-
gorithm is kept. For simplicity, we only present results for f = p, 2p, 4p, with
p = 2, 4, 8, 16 processors, but note that our implementation also allows values of
6 http://www.cise.ufl.edu/research/sparse/matrices
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f and p which are not power of two, e.g., p = 12 and f = 3p, and values of f
which are not a multiple of p. Therefore, we use six different values of f , resulting
in as many different preconditioners. Some of these are computed varying the
number of processors; thus, e.g., f = 8 is used for p = 2, 4, 8 processors. Table 3
reports the number of leaves in the task trees and the fill-in factor for the corre-
sponding preconditioner obtained by various choices of f . The fill-in factors are
similar to those attained by the serial algorithm in ILUPACK, except for matrix
M1, for which the fill-in tends to be more reduced. The height of the tree de-
pends on the value of f . As stated in Section 3.1, the computed preconditioners
may differ when employing task trees of different heights. Therefore, the fill-in
may change.

To give a rough idea of how our approach will perform, we simulate how dy-
namic scheduling would work in case of hi = ci, where ci is the relative computa-
tional cost of a given task Ti. For example, assuming the task tree of Figure 4 (a),
with h1 = 0.39, h2 = 0.29, h4 = 0.2 and h5 = 0.1, and p = 2, then the leaf tasks
scheduling events are simulated to happen in the following order: T1 scheduled to
P1, T2 scheduled to P2, T4 scheduled to P2, and T5 scheduled to P1. If we define
P1 = h1+h5 and P2 = h2+h4, we can compute the variation coefficient ch = σh/h̄
with σh the standard deviation and h̄ the average of these values (i.e., P1 and P2).
Table 3 reports the value of ch (expressed as a percentage) of each combination
for all four matrices m1-m4, fraction, and number of processors. A ratio close to
0% implies an accurate heuristic balancing (e.g., m2/f = 16/p = 16), while a
ratio significantly large (e.g., m1/f = 16/p = 16) indicates heuristic unbalance.
As can be observed in Table 3, it is a good strategy to employ the same task tree
while reducing the number of processors. For example, for matrix m1/f = 16,
ch is reduced by factor of 73% when we use p = 4 instead of p = 16 processors.
Therefore, in general, a larger number of leaves per processor increases heuristic
balancing. For matrix m2 this difference is not observed. This is due to the struc-
ture of the graph underlying m2, which allows MLND to produce high balanced
elimination trees. This can be observed from the fact that, for f = 2, 4, 8, 16, we
obtain complete binary task trees with f leaves.

Table 4 reports the execution time and the speed-up of the parallel algorithm.
The speed-up is computed with respect to the parallel algorithm executed using
the same task tree on a single processor. A comparison with the serial algorithm
in ILUPACK offers superlinear speed-ups in many cases (see execution times in
Table 1) and has little meaning here. Table 4 also reports the variation coefficient
ct (expressed as a percentage), which takes into consideration measured data
from the execution instead of estimations, as ch do. A ratio close to 0% indicates
a balanced distribution of the workload (e.g., m2/f = 16/p = 16), while a ratio
significantly large (e.g., m1/f = 16/p = 16) indicates an unbalanced distribution
of the computational load.

For matrices m2, m3, m4, and p = 2, 4, 8, 16, it was enough to select f = p
in order to get remarkable speed-ups (close to linear). This situation was well
predicted by our current heuristic, as can be observed by comparing the values
of ch and ct in Tables 3- 4. However, for matrix m1 it is not enough to select
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Table 3. Number of leaf tasks of the tasks trees constructed, fill-in generated for each
selected value of f and variation coefficient for each combination of f and p

m1

f

L
ea

ve
s

F
ill

-i
n

p ch

2 2 6.3 2 1

4 6 4.6
2 1
4 4

8 10 4.2
2 0
4 8
8 9

16 20 3.4
4 3
8 9

16 11

32 36 2.9
8 5

16 9
64 66 2.7 16 5

m2

f

L
ea

ve
s

F
ill

-i
n

p ch

2 2 4.4 2 0

4 4 4.4
2 0
4 0

8 8 4.4
2 0
4 0
8 0

16 16 4.5
4 0
8 0

16 0

32 34 4.5 8 2
16 2

64 70 4.4 16 3

m3

f

L
ea

ve
s

F
ill

-i
n

p ch

2 4 4.3 2 1

4 7 4.3
2 0
4 1

8 12 4.3
2 1
4 1
8 2

16 22 4.3
4 0
8 2

16 2

32 43 4.4 8 1
16 2

64 83 4.4 16 1

m4

f

L
ea

ve
s

F
ill

-i
n

p ch

2 5 5.0 2 0

4 11 5.0
2 0
4 0

8 19 5.0
2 1
4 1
8 2

16 38 5.0
4 0
8 1

16 2

32 74 5.0 8 1
16 1

64 158 5.0 16 0

f = p; see, e.g., what happens for f = 8/p = 8 and f = 16/p = 16, where the
speed-up are 4.74 and 9.26 respectively. This situation was not well predicted
by our heuristic, which makes too optimistic predictions in these situations. A
closer inspection of the task tree for f = 16, reveals 20 highly irregular leaf tasks
to be mapped to p = 16 processors. In this case, dynamic mapping is useless,
and hence the computational load is unbalanced. However, using this task tree
with p = 8 and p = 4 leads to better results: when obtaining more leaves per
processor, dynamic mapping is able to balance the computational load. Further
splitting the task tree led to better performance in many situations, as happened,
e.g., for m1/p = 8, where the speed-up was increased from 4.74 (f = 8) to 7.54
(f = 32). Finally, the relationship between ct and the speed-up, confirms that
the computational cost is concentrated on the leaves, and hence load balancing
in the computation of these tasks led to high parallel performance.

We also traced the execution of our parallel algorithm with the KOJAK and
VAMPIR performance analysis tools. Concretely, we focus on the influence of
the potential sources of overhead in our parallel algorithm as idle threads, syn-
chronization, access to shared resources on the SMM, CC-NUMA data locality,
etc. We observed that idle threads are the main source of overhead, while the
influence of other factors is negligible. For example, for p = 16 and matrix
m1, the mean time to access the shared queue used for the dynamic scheduling
implementation is approximately 40 μsecs. Therefore, as we employ large-grain
parallelism (i.e., f a modest multiple of p), this overall synchronization overhead
does not hurt performance.

In some situations dynamic mapping could have further reduced idle threads
with a better heuristic estimation. To reduce idle threads it is mandatory to
schedule those tasks which are in the critical path (that is, those leaf tasks with
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Table 4. Performance of the parallel multilevel ILU

m1

f p

T
im

e(
se

c.
)

Sp
ee

d-
U

p
ct

2 2 43.7 1.92 1

4
2 28.6 1.96 2
4 15.9 3.52 11

8
2 28.1 1.92 4
4 15.2 3.57 10
8 11.4 4.74 35

16
4 13.2 3.81 4
8 8.55 5.91 18

16 5.45 9.26 37

32 8 6.00 7.54 2
16 3.44 13.1 7

64 16 3.61 13.0 7

m2

f p

T
im

e(
se

c.
)

Sp
ee

d-
U

p

ct

2 2 4.88 1.97 0

4
2 4.77 1.99 1
4 2.41 3.93 1

8
2 4.70 1.99 0
4 2.37 3.95 0
8 1.23 7.63 2

16
4 2.33 3.98 0
8 1.20 7.77 1

16 0.65 14.3 3

32 8 1.20 7.61 2
16 0.65 14.0 3

64 16 0.62 14.6 3

m3

f p

T
im

e(
se

c.
)

Sp
ee

d-
U

p

ct

2 2 11.1 1.97 0

4
2 11.0 1.98 1
4 5.58 3.91 1

8
2 11.1 1.96 2
4 5.59 3.89 2
8 2.89 7.54 2

16
4 5.53 3.92 2
8 2.82 7.67 2

16 1.46 14.8 2

32 8 2.77 7.76 1
16 1.45 14.8 2

64 16 1.42 14.9 2

m4

f p

T
im

e(
se

c.
)

Sp
ee

d-
U

p

ct

2 2 16.1 1.98 0

4
2 16.1 1.98 1
4 8.20 3.89 1

8
2 16.2 1.96 2
4 8.22 3.87 2
8 4.20 7.57 2

16
4 8.09 3.90 2
8 4.23 7.46 3
16 2.26 14.0 3

32 8 4.14 7.60 2
16 2.21 14.2 4

64 16 2.16 14.6 2

higher cost) as soon as possible. As mentioned in Section 3.3, we priorize the
execution of leaves with higher heuristic by inserting them first in the queue. If
some leaves costs are missestimated dynamic mapping can not comply with this
requirement. Figure 5 shows a capture of the global timeline view of VAMPIR
when displaying a trace of our parallel algorithm with m1/f = 16/p = 8. For
each thread (i.e., each horizontal stripe), the display shows the different states
and their change over execution time along a horizontal time axis. Concretely,
black bars represent time intervals where threads are executing tasks, while white
bars represent other thread states, such as idle or synchronization states. As can
be observed, the two boxed leaf tasks present a high relative cost, and have
been scheduled after other leaves with less computational cost, due to heuristic
missestimation. Here, delays due to idle threads are further reduced by splitting
the task tree: thus, the efficiency attained for m1/f = 16/p = 4 is 95%.

Finally, we employed our own implementation [2] of the PCG solver to evaluate
and compare the numerical quality of our parallel preconditioners and those com-
puted by ILUPACK serial routines. The preconditioned iteration was stopped
when either the iteration count exceeded 1000 iterations or the iterates satisfied
the stopping criterion described in [11]. Table 5 shows the number of iteration
steps required by the PCG to solve the preconditioned linear systems considered,
as a function of the f parameter. The values at column f = 1 correspond to ILU-
PACK preconditioning serial routines. For matrix m1, we changed the default
value for the condition estimator from κ=100 to κ=5 because the PCG solver
did not converge within the maximum prescribed number of iteration steps.
The preliminary results shown at Table 5 confirm that the numerical quality of
the computed parallel preconditioners mildly depends on the task tree. This is
currently under investigation.
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Fig. 5. VAMPIR global timeline view for m1/f = 16/p = 8. The two boxed leaf
tasks present a high relative cost, and have been scheduled after other leaves with less
computational cost.

Table 5. Iteration count for the PCG with our parallel multilevel ILU preconditioners

Code\f 1 2 4 8 16 32 64
m1 780 836 839 855 842 835 828
m2 90 93 92 95 104 107 112
m3 138 147 156 162 165 170 185
m4 69 75 77 80 79 79 85

5 Conclusions and Future Work

We have presented in detail the design foundations of a parallel multilevel precon-
ditioner for the iterative solution of sparse linear systems using Krylov subspace
methods. Our OpenMP implementation internally employs the serial routines
in ILUPACK. MLND ordering, task splitting, and dynamic scheduling of tasks
are used to enhance the degree of parallelism of the computational procedure.
The use of large-grain decompositions (f = p) led to poor performance in some
situations. This can be solved by obtaining finer-grain decompositions (f = 4p)
combined with dynamic scheduling to deal with tasks irregularity. Remarkable
performance has been reported on a CC-NUMA platform with 16 Itanium2 pro-
cessors and we have gained more insights on the performance attained with the
performance analysis tools employed.

Future work includes:
– To compare and contrast the numerical properties of the preconditioner in

ILUPACK and our parallel preconditioner.
– To develop parallel algorithms to apply the preconditioner to the system,

and to solve the system iteratively.
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– To develop parallel preconditioners for non-SPD linear systems.
– To analyze alternative heuristics.
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